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Preface

This textbook on theoretical physics (I-IV) is based on lectures held by one of
the authors at the University of Regensburg in Germany. The four ‘canonical’
parts of the subject have been condensed here into a single volume with the
following main sections :
I = Mechanics and Basic Relativity;
II = Electrodynamics and Aspects of Optics;
III = Quantum Mechanics (non-relativistic theory), and
IV = Thermodynamics and Statistical Physics.

Our compendium is intended primarily for revision purposes and/or to aid
in a deeper understanding of the subject. For an introduction to theoretical
physics many standard series of textbooks, often containing seven or more
volumes, are already available (see, for example, [1]).

Exercises closely adapted to the book can be found on one of the authors
websites [2], and these may be an additional help.

We have laid emphasis on relativity and other contributions by Einstein,
since the year 2005 commemorated the centenary of three of his ground-
breaking theories.

In Part II (Electrodynamics) we have also treated some aspects with which
every physics student should be familiar, but which are usually neglected in
textbooks, e.g., the principles behind cellular (or mobile) phone technology,
synchrotron radiation and holography. Similarly, Part III (Quantum Mechan-
ics) additionally covers aspects of quantum computing and quantum cryp-
tography.

We have been economical with figures and often stimulate the reader to
sketch his or her own diagrams. The frequent use of italics and quotation
marks throughout the text is to indicate to the reader where a term is used
in a specialized way. The Index contains useful keywords for ease of reference.

Finally we are indebted to the students and colleagues who have read
parts of the manuscript and to our respective wives for their considerable
support.

Regensburg, Uwe Krey
May 2007 Anthony Owen
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Part I

Mechanics and Basic Relativity



1 Space and Time

1.1 Preliminaries to Part I

This book begins in an elementary way, before progressing to the topic of an-
alytical mechanics.1 Nonlinear phenomena such as “chaos” are treated briefly
in a separate chapter (Chap. 12). As far as possible, only elementary formulae
have been used in the presentation of relativity.

1.2 General Remarks on Space and Time

a) Physics is based on experience and experiment, from which axioms or gen-
erally accepted principles or laws of nature are developed. However, an
axiomatic approach, used for the purposes of reasoning in order to estab-
lish a formal deductive system, is potentially dangerous and inadequate,
since axioms do not constitute a necessary truth, experimentally.

b) Most theories are only approximate, preliminary, and limited in scope.
Furthermore, they cannot be proved rigorously in every circumstance (i.e.,
verified), only shown to be untrue in certain circumstances (i.e., falsified;
Popper).2 For example, it transpires that Newtonian mechanics only ap-
plies as long as the magnitudes of the velocities of the objects considered
are very small compared to the velocity c of light in vacuo.

c) Theoretical physics develops (and continues to develop) in “phases”
(Kuhn3, changes of paradigm). The following list gives examples.
1. From ∼ 1680−1860: classical Newtonian mechanics, falsified by exper-

iments of those such as Michelson and Morley (1887). This falsification
was ground-breaking since it led Einstein in 1905 to the insight that
the perceptions of space and time, which were the basis of Newtonian
theory, had to be modified.

2. From ∼ 1860−1900: electrodynamics (Maxwell). The full consequences
of Maxwell’s theory were only later understood by Einstein through
his special theory of relativity (1905), which concerns both Newtonian

1 See, for example, [3].
2 Here we recommend an internet search for Karl Popper.
3 For more information we suggest an internet search for Thomas Samuel Kuhn.
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mechanics (Part I) and Maxwell’s electrodynamics (Part II). In the
same year, through his hypothesis of quanta of electromagnetic waves
(photons), Einstein also contributed fundamentally to the developing
field of quantum mechanics (Part III).

3. 1905: Einstein’s special theory of relativity, and 1916: his general theory
of relativity.

4. From 1900: Planck, Bohr, Heisenberg, de Broglie, Schrödinger: quan-
tum mechanics; atomic and molecular physics.

5. From ∼ 1945: relativistic quantum field theories, quantum electro-
dynamics, quantum chromodynamics, nuclear and particle physics.

6. From ∼ 1980: geometry (spacetime) and cosmology: supersymmetric
theories, so-called ‘string’ and ‘brane’ theories; astrophysics; strange
matter.

7. From ∼ 1980: complex systems and chaos; nonlinear phenomena in
mechanics related to quantum mechanics; cooperative phenomena.

Theoretical physics is thus a discipline which is open to change. Even in
mechanics, which is apparently old-fashioned, there are many unsolved prob-
lems.

1.3 Space and Time in Classical Mechanics

Within classical mechanics it is implicitly assumed – from relatively inaccu-
rate measurements based on everyday experience – that

a) physics takes place in a three-dimensional Euclidean space that is not
influenced by material properties and physical events. It is also assumed
that

b) time runs separately as an absolute quantity; i.e., it is assumed that all
clocks can be synchronized by a signal transmitted at a speed v →∞.

Again, the underlying experiences are only approximate, e.g., that

α) measurements of lengths and angles can be performed by translation and
rotation of rigid bodies such as rods or yardsticks;

β) the sum of the interior angles of a triangle is 180◦, as Gauss showed in
his famous geodesic triangulation of 1831.

Thus, according to the laws of classical mechanics, rays of light travel in
straight lines (rectilinear behavior). Einstein’s prediction that, instead, light
could travel in curved paths became evident as a result of very accurate as-
tronomical measurements when in 1919 during a solar eclipse rays of light
traveling near the surface of the sun were observed showing that stellar bod-
ies under the influence of gravitation give rise to a curvature of spacetime
(general theory of relativity), a phenomenon which was not measurable in
Gauss’s time.

Assumption b) was also shown to be incorrect by Einstein (see below).



2 Force and Mass

2.1 Galileo’s Principle (Newton’s First Axiom)

Galileo’s principle, which forms the starting point of theoretical mechanics,
states that in an inertial frame of reference all bodies not acted upon by any
force move rectilinearly and homogeneously at constant velocity v.

The main difficulty arising here lies in the realization of an inertial frame,
which is only possible by iteration: to a zeroth degree of approximation an
inertial frame is a system of Cartesian coordinates, which is rigidly rotating
with the surface of the earth, to which its axes are attached; to the next
approximation they are attached to the center of the earth; in the following
approximation they are attached to the center of the sun, to a third approxi-
mation to the center of our galaxy, and so on. According to Mach an inertial
frame can thus only be defined by the overall distribution of the stars. The
final difficulties were only resolved later by Einstein, who proposed that in-
ertial frames can only be defined locally, since gravitation and acceleration
are equivalent quantities (see Chap. 14).

Galileo’s principle is essentially equivalent to Newton’s First Axiom (or
Newton’s First Law of Motion).

2.2 Newton’s Second Axiom:
Inertia; Newton’s Equation of Motion

This axiom constitutes an essential widening and accentuation of Galileo’s
principle through the introduction of the notions of force, F , and inertial
mass, mt ≡ m. (This is the inertial aspect of the central notion of mass, m.)

Newton’s second law was originally stated in terms of momentum. The
rate of change of momentum of a body is proportional to the force acting on
the body and is in the same direction. where the momentum of a body of
inertial mass mt is quantified by the vector p := mt · v.1 Thus

F =
dp
dt

. (2.1)

1 Here we consider only bodies with infinitesimal volume: so-called point masses.
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The notion of mass also has a gravitational aspect, ms (see below), where
mt = ms(≡ m). However, primarily a body possesses ‘inertial’ mass mt,
which is a quantitative measure of its inertia or resistance to being moved2.
(Note: In the above form, (2.1) also holds in the special theory of relativity,
see Sect. 15 below, according to which the momentum is given by

p =
m0v√
1− v2

c2

;

m0 is the rest mass, which only agrees with mt in the Newtonian approxi-
mation v2 � c2, where c is the velocity of light in vacuo.)

Equation (2.1) can be considered to be essentially a definition of force
involving (inertial) mass and velocity, or equivalently a definition of mass in
terms of force (see below).

As already mentioned, a body with (inertial) mass also produces a gravi-
tational force proportional to its gravitational mass ms. Astonishingly, in
the conventional units, i.e., apart from a universal constant, one has the
well-known identity ms ≡ mt, which becomes still more astonishing, if one
simply changes the name and thinks of ms as a “gravitational charge” instead
of “gravitational mass”. This remarkable identity, to which we shall return
later, provided Einstein with strong motivation for developing his general
theory of relativity.

2.3 Basic and Derived Quantities; Gravitational Force

The basic quantities underlying all physical measurements of motion are

– time: defined from multiples of the period of a so-called ‘atomic clock ’,
and

– distance: measurements of which are nowadays performed using radar
signals.

The conventional units of time (e.g., second, hour, year) and length (e.g.,
kilometre, mile, etc.) are arbitrary. They have been introduced historically,
often from astronomical observations, and can easily be transformed from
one to the other. In this context, the so-called “archive metre” (in French:
“mètre des archives”) was adopted historically as the universal prototype for
a standard length or distance: 1 metre (1m).

Similarly, the “archive kilogram” or international prototype kilogram in
Paris is the universal standard for the unit of mass : 1 kilogram (1 kg).

2 in German: inertial mass = träge Masse as opposed to gravitational mass =
schwere Masse ms. The fact that in principle one should distinguish between
the two quantities was already noted by the German physicist H. Hertz in 1884;
see [4].



2.3 Basic and Derived Quantities; Gravitational Force 7

However, the problem as to whether the archive kilogram should be used
as a definition of (inertial) mass or a definition of force produced a dilemma.
In the nineteen-fifties the “kilopond (kp)” (or kilogram-force (kgf)) was
adopted as a standard quantity in many countries. This quantity is defined
as the gravitational force acting on a 1 kg mass in standard earth gravity (in
Paris where the archive kilogram was deposited). At that time the quantity
force was considered to be a “basic” quantity, while mass was (only) a “de-
rived” one. More recently, even the above countries have reverted to using
length, time, and (inertial) mass as base quantities and force as a derived
quantity. In this book we shall generally use the international system (SI)
of units, which has 7 dimensionally independent base units: metre, kilogram,
second, ampere, kelvin, mole and candela. All other physical units can be
derived from these base units.

What can be learnt from this? Whether a quantity is basic or (only) de-
rived , is a matter of convention. Even the number of base quantities is not
fixed; e.g., some physicists use the ‘cgs’ system, which has three base quan-
tities, length in centimetres (cm), time in seconds (s) and (inertial) mass in
grams (g), or multiples thereof; or the mksA system, which has four base
quantities, corresponding to the standard units: metre (m), kilogram (kg),
second (s) and ampere (A) (which only comes into play in electrodynamics).
Finally one may adopt a system with only one basic quantity, as preferred
by high-energy physicists, who like to express everything in terms of a funda-
mental unit of energy, the electron-volt eV: e.g., lengths are expressed in units
of � · c/(eV), where � is Planck’s constant divided by 2π, which is a universal
quantity with the physical dimension action = energy× time, while c is the
velocity of light in vacuo; masses are expressed in units of eV/c2, which is the
“rest mass” corresponding to the energy 1 eV. (Powers of � and c are usually
replaced by unity3).

As a consequence, writing Newton’s equation of motion in the form

m · a = F (2.2)

(relating acceleration a := d2r
dt2 and force F ), it follows that one can equally

well say that in this equation the force (e.g., calibrated by a certain spring)
is the ‘basic’ quantity, as opposed to the different viewpoint that the mass
is ‘basic’ with the force being a derived quantity, which is ‘derived’ by the
above equation. (This arbitariness or dichotomy of viewpoints reminds us of
the question: “Which came first, the chicken or the egg?!”). In a more modern
didactical framework based on current densities one could, for example, write
the left-hand side of (2.2) as the time-derivative of the momentum, dp

dt ≡
F , thereby using the force as a secondary quantity. However, as already

3 One should avoid using the semantically different formulation “set to 1” for the
quantities with non-vanishing physical dimension such as c(= 2.998 · 108 m/s),
etc.
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mentioned, a different viewpoint is also possible, and it is better to keep an
open mind on these matters than to fix our ideas unnecessarily.

Finally, the problem of planetary motion dating back to the time of New-
ton where one must in principle distinguish between the inertial mass mt

entering (2.2) and a gravitational mass ms, which is numerically identical to
mt (apart from a universal constant, which is usually replaced by unity), is
far from being trivial; ms is defined by the gravitational law:

F (r) = −γ Ms ·ms

|r −R|2 ·
r −R
|r −R| ,

where r and ms refer to the planet, and R and Ms to the central star (“sun”),
while γ is the gravitational constant. Here the [gravitational] masses play
the role of gravitational charges, similar to the case of Coulomb’s law in
electromagnetism. In particular, as in Coulomb’s law, the proportionality
of the gravitational force to Ms and ms can be considered as representing
an active and a passive aspect of gravitation.4 The fact that inertial and
gravitational mass are indeed equal was first proved experimentally by Eötvös
(Budapest, 1911 [6]); thus we may write ms = mt ≡ m.

2.4 Newton’s Third Axiom (“Action and Reaction . . . ”)

Newton’s third axiom states that action and reaction are equal in magni-
tude and opposite in direction.5 This implies inter alia that the “active” and
“passive” gravitational masses are equal (see the end of the preceding sec-
tion), i.e., on the one hand, a body with an (active) gravitational charge Ms

generates a gravitational field

G(r) = −γ Ms

|r −R|2 ·
r −R
|r −R| ,

in which, on the other hand, a different body with a (passive) gravitational
charge ms is acted upon by a force, i.e., F = ms ·G(r). The relations are
analogous to the electrical case (Coulomb’s law). The equality of active and
passive gravitational charge is again not self-evident, but in the considered
context it is implied that no torque arises (see also Sect. 5.2). Newton also
recognized the general importance of his third axiom, e.g., with regard to the
application of tensile stresses or compression forces between two bodies.

Three additional consequences of this and the preceding sections will now
be discussed.

4 If one only considers the relative motion, active and passive aspects cannot be
distinguished.

5 In some countries this is described by the abbreviation in Latin “actio=reactio”.
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a) As a consequence of equating the inertial and gravitational masses in
Newton’s equation F (r) = ms ·G(r) it follows that all bodies fall equally
fast (if only gravitational forces are considered), i.e.: a(t) = G(r(t)).
This corresponds to Galileo’s experiment6, or rather thought experiment,
of dropping different masses simultanously from the top of the Leaning
Tower of Pisa.

b) The principle of superposition applies with respect to gravitational forces:

G(r) = −γ
∑
k

(ΔMs)k
|r −Rk|2

· r −Rk

|r −Rk|
.

Here (ΔMs)k := 
kΔVk is the mass of a small volume element ΔVk, and

k is the mass density. An analogous “superposition principle” also applies
for electrostatic forces, but, e.g., not to nuclear forces. For the principle
of superposition to apply, the equations of motion must be linear.

c) Gravitational (and Coulomb) forces act in the direction of the line joining
the point masses i and k. This implies a different emphasis on the meaning
of Newton’s third axiom. In its weak form, the postulate means that
F i,k = −F k,i; in an intensified or “strong” form it means that F i,k =
(ri − rk) · f(ri,k), where f(rik) is a scalar function of the distance ri,k :=
|ri − rk|.

As we will see below, the above intensification yields a sufficient condition
that Newton’s third axiom not only implies F i,k = −F k,i, but also Di,k =
−Dk,i, where Di,k is the torque acting on a particle at ri by a particle at rk.

6 In essence, the early statement of Galileo already contained the basis not only of
the later equation ms = mt, but also of the Eötvös experiment, [6] (see also [4]),
and of Einstein’s equivalence principle (see below).
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in One Dimension

3.1 Geometrical Relations for Curves in Space

In this section, motion is considered to take place on a fixed curve in
three-dimensional Euclidean space. This means that it is essentially one-
dimensional; motion in a straight line is a special case of this.

For such trajectories we assume they are described by the radius vector
r(t), which is assumed to be continuously differentiable at least twice, for
t ∈ [ta, tb] (where ta and tb correspond to the beginning and end of the
motion, respectively). The instantaneous velocity is

v(t) :=
dr
dt

,

and the instantaneous acceleration is

a(t) :=
dv
dt

=
d2r

dt2
,

where for convenience we differentiate all three components, x(t), y(t) and
z(t) in a fixed Cartesian coordinate system,

r(t) = x(t)ex + y(t)ey + z(t)ez :
dr(t)
dt

= ẋ(t)ex + ẏ(t)ey + ż(t)ez .

For the velocity vector we can thus simply write: v(t) = v(t)τ (t), where

v(t) =
√

(ẋ(t))2 + (ẏ(t))2 + (ż(t))2

is the magnitude of the velocity and

τ (t) :=
v(t)
|v(t)|

the tangential unit vector to the curve (assuming v �= 0).
v(t) and τ (t) are thus dynamical and geometrical quantities, respectively,

with an absolute meaning, i.e., independent of the coordinates used.
In the following we assume that τ (t) is not constant; as we will show, the

acceleration can then be decomposed into, (i), a tangential component, and,
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(ii), a normal component (typically: radially inwards), which has the direction
of a so-called osculating normal n to the curve, where the unit vector n is
proportional to dτ

dt , and the magnitude of the force (ii) corresponds to the
well-known “centripetal” expression v2

R (see below); the quantity R in this
formula is the (instantaneous) so-called radius of curvature (or osculating
radius) and can be evaluated as follows:

1
R

= | dτ
v · dt | .

1

Only the tangential force, (i), is relevant at all, whereas the centripetal
expression (ii) is compensated for by forces of constraint2, which keep the
motion on the considered curve, and need no evaluation except in special
instances.

The quantity
t∫

ta

v(t)dt

is called the arc length s(t), with the differential ds := v(t)dt. As already
mentioned, the centripetal acceleration, directed towards the center of the
osculating circle, is given by

acentrip..(t) = n(t)
v2(t)
R(t)

.

We thus have

a(t) ≡ τ (t) · dv(t)
dt

+ acentrip.(t) .

The validity of these general statements can be illustrated simply by con-
sidering the special case of circular motion at constant angular velocity, i.e.,

r(t) := R · (cos(ωt)ex + sin(ωt)ey) .

The tangential vector is

τ (t) = − sin(ωt)ex + cos(ωt)ey ,

and the osculating normal is

n(t) = −(cos(ωt)ex + sin(ωt)ey) ,

i.e., directed towards the center. The radius of curvature R(t) is of course
identical with the radius of the circle. The acceleration has the above-
mentioned magnitude, Rω2 = v2/R, directed inwards.
1 It is strongly recommended that the reader should produce a sketch illustrating

these relations.
2 This is a special case of d’Alembert’s principle, which is described later.
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Fig. 3.1. Osculating circle and radius of curvature. The figure shows as a typical

example the lower part of an ellipse (described by the equation y1
b

:= 1±
q

1 − x2

a2 ,

with a := 2 and b := 1) and a segment (the lower of the two curves!) of the osculating

circle at x = 0 (with R := a2

b
≡ 4). Usually a one-dimensional treatment suffices,

since an infinity of lines have the same osculating circle at a given point, and since

usually one does not require the radial component n · mv2

R
of the force (which

is compensated by forces of constraint), as opposed to the tangential component
F tangent := m · v̇(t) ·τ (t) (where t is the time, m the inertia and v the magnitude of
the considered point mass); n and τ are the osculating normal and the tangential
unit vectors, respectively. A one-dimensional treatment follows

Finally, as already alluded to above, the quanties τ (t), n(t), R(t), and s(t)
have purely geometrical meaning; i.e., they do not change due to the kine-
matics of the motion, but only depend on geometrical properties of the curve
on which the particle moves. The kinematics are determined by Newton’s
equations (2.2), and we can specialize these equations to a one-dimensional
problem, i.e., for ∼ τ (t), since (as mentioned) the transverse forces, n(t) · v2R ,
are compensated for by constraining forces.

The preceding arguments are supported by Fig. 3.1 above.
Thus, for simplicity we shall write x(t) instead of s(t) in the following,

and we have

v(t) =
dx(t)

dt
and m · a(t) = m · d2x(t)

dt2
= F (t, v(t), a(t)) ,

where F is the tangential component of the force, i.e., F ≡ F · τ .

3.2 One-dimensional Standard Problems

In the following, for simplicity, instead of F we consider the reduced quantity
f := F

m . If f(t, v, x) depends on only one of the three variables t, v or x, the
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equations of motion can be solved analytically. The most simple case is where
f is a function of t. By direct integration of

d2x(t)
dt2

= f(t)

one obtains:

v(t) = v0 +
∫ t

t0

dt̃f(t̃) and x(t) = x0 + v0 · (t− t0) +
∫ t

t0

dt̃v(t̃) .

(x0, v0 and t0 are the real initial values of position, velocity and time.)
The next most simple case is where f is given as an explicit function of v.

In this case a standard method is to use separation of variables (=̂ transition
to the inverse function), if possible: Instead of

dv
dt

= f(v)

one considers
dt =

dv
f(v)

, or t− t0 =
∫ v

v0

dṽ
f(ṽ)

.

One obtains t as a function of v, and can thus, at least implicitly, calculate
v(t) and subsequently x(t).

The third case is where f ≡ f(x). In this case, for one-dimensional prob-
lems, one always proceeds using the principle of conservation of energy, i.e.,
from the equation of motion,

m
dv
dt

= F (x) ,

by multiplication with

v =
dx
dt

and subsequent integration, with the substitution vdt = dx, it follows that

v2

2m
+ V (x) ≡ E

is constant, with a potential energy

V (x) := −
x∫

x0

dx̃F (x̃) .

Therefore,

v(x) =

√
2
m

(E − V (x)) ,
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or dt =
dx√

2
m (E − V (x))

, and finally

t− t0 =
∫ x

x0

dx̃√
2
m (E − V (x̃))

.

This relation is very useful, and we shall return to it often later.
If f depends on two or more variables, one can only make analytical

progress in certain cases, e.g., for the driven harmonic oscillator, with damp-
ing proportional to the magnitude of the velocity. In this important case,
which is treated below, one has a linear equation of motion, which makes the
problem solvable; i.e.,

ẍ = −ω2
0x−

2
τ
v + f(t) ,

where useful general statements can be made (see below). (The above-
mentioned ordinary differential equation applies to harmonic springs with
a spring constant k and mass m, corresponding to the Hookean force
FH := −k · x, where ω2

0 = k/m, plus a linear frictional force FR := −m 2
τ · v,

plus a driving force FA := m · f(t).)
There are cases where the frictional force depends quadratically on the

velocity (so-called Newtonian friction),

FR := −α · mv
2

2
,

i.e., with a so-called technical friction factor α, and a driving force depending
mainly, i.e., explicitly, on x, and only implicitly on t, e.g., in motor racing,
where the acceleration may be very high in certain places, Fa = mf(x). The
equation of motion,

mv̇ = −αmv
2

2
+mf(x) ,

can then be solved by multiplying by

dt
dx

(
≡ 1
v

)
:

One thus obtains the ordinary first-order differential equation

dv
dx

+
αv

2
=
f(x)
v

,

which can be solved by iteration. On the r.h.s. of this equation, one uses, for
example, an approximate expression for v(x) and obtains a refinement on the
l.h.s., which is then substituted into the r.h.s., etc., until one obtains con-
vergence. In almost all other cases one has to solve an ordinary second-order
differential equation numerically. Many computer programs are available for
solving such problems, so that it is not necessary to go into details here.



4 Mechanics of the Damped

and Driven Harmonic Oscillator

In this section the potential energy V (x) for the motion of a one-dimensional
system is considered, where it is assumed that V (x) is smooth everywhere
and differentiable an arbitrarily often number of times, and that for x = 0,
V (x) has a parabolic local minimum. In the vicinity of x = 0 one then obtains
the following Taylor expansion, with V ′′(0) > 0:

V (x) = V (0) +
1
2
V ′′(0)x2 +

1
3!
V ′′′ (0)x3 + . . . ,

i.e.,

V (x) = V (0) +
mω2

0

2
x2 +O

(
x3
)
,

with ω2
0 := V ′′(0)/m, neglecting terms of third or higher order. For small os-

cillation amplitudes we thus have the differential equation of a free harmonic
oscillator of angular frequency ω0:

mẍ = − dV
dx

, ẍ = −ω2x ,

whose general solution is: x(t) = x0·cos(ω0t−α), with arbitrary real quantities
x0 and α.

In close enough proximity to a parabolic local potential energy minimum,
one always obtains a harmonic oscillation (whose frequency is given by ω0 :=
V ′′(0)
m ).
If one now includes (i) a frictional force, FR := −γv, which can be char-

acterized by a so-called “relaxation time” τ (i.e., γ =: m · 2/τ), and (ii)
a driving force FA(t) = m · f(t), then one obtains the ordinary differential
equation

ẍ+
2
τ
ẋ+ ω2

0x = f(t) .

This is a linear ordinary differential equation of second order (n ≡ 2) with
constant coefficients. For f(t) ≡ 0 this differential equation is homogeneous,
otherwise it is called inhomogeneous. (For arbitrary n = 1, 2, . . . the general

inhomogeneous form is:
(

dn

dnt +
n−1∑
ν=0

aν
dν

dνt

)
x(t) = f(t)).
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For such differential equations, or for linear equations in general, the
principle of superposition applies: The sum of two solutions of the homo-
geneous equation, possibly weighted with real or complex coefficients, is also
a solution of the homogeneous equation; the sum of a “particular solution”
of the inhomogeneous equation plus an “arbitrary solution” of the homoge-
neous equation yields another solution of the inhomogeneous equation for
the same inhomogeneity; the sum of two particular solutions of the inhomo-
geneous equation for different inhomogeneities yields a particular solution
of the inhomogeneous differential equation, i.e., for the sum of the inhomo-
geneities.

The general solution of the inhomogeneous differential equation is there-
fore obtained by adding a relevant particular solution of the inhomogeneous
(i.e., “driven”) equation of motion to the general solution of the homogeneous
equation, i.e., the general “free oscillation”.

As a consequence, in what follows we shall firstly treat a “general free
oscillation”, and afterwards the seemingly rather special, but actually quite
general “periodically driven oscillation”, and also the seemingly very special,
but actually equally general so-called “ballistically driven oscillation”.

The general solution of the equation for a free oscillation, i.e., the general
solution of (

dn

dnt
+
n−1∑
ν=0

aν
dν

dνt

)
x(t) = 0 for n = 2 ,

is obtained by linear combination of solutions of the form x(t) ∝ eλ·t. After
elementary calculations we obtain:

x(t) = exp
(
− t
τ

)
·

⎧
⎨
⎩x0 cos

(√
ω2

0 −
1
τ2
· t
)

+
(
v0 +

x0

τ

)
·
sin

(√
ω2

0 − 1
τ2 · t

)
√
ω2

0 − 1
τ2

⎫
⎪⎬
⎪⎭
. (4.1)

This expression only looks daunting at first glance, until one realizes that the
bracketed expression converges for t→ 0 to

x0 +
(
v0 +

x0

τ

)
· t ,

as it must do.
Equation (4.1) applies not only for real

ε =

√
ω2

0 −
1
τ2
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but also for imaginary values, because in the limit t→ 0 not only

sin(εt)
ε

,

but also
sin iεt

iε
→ t ;

x0 and v0 are the initial position and the initial velocity, respectively. Thus
the above-mentioned formula applies

a) not only for damped oscillations , i.e., for ε > 0, or

ω2
0 >

1
τ2

,

i.e., sine or cosine oscillations with frequency

ω1 :=

√
ω2

0 −
1
τ2

and the damping factor e−λ1t, with λ1 := 1
τ ,

b) but also for the aperiodic case,

ω2
0 <

1
τ2

,

since for real

ε :
sin(iε · t)

iε
≡ sinh εt , with

sinh(x) : =
1
2
(ex − e−x) , and

cos(iεt) ≡ cosh(εt) , with

cosh(x) : =
1
2
(ex + e−x) :

In the aperiodic case, therefore, an exponential behavior with two char-
acteristic decay frequencies results (“relaxation frequencies”),

λ± :=
1
τ
±
√

1
τ2
− 1
ω2

0

.

Of these two relaxation frequencies the first is large, while the second is
small.

c) Exactly in the limiting case, ε ≡ 0, the second expression on the r.h.s.
of equation (4.1) is simply (v0 + x0

τ ) · t for all t, i.e., one finds the fastest
decay.
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Thus far we have only dealt with the free harmonic oscillator.

1) We now consider a forced harmonic oscillator, restricting ourselves at first
to the simple periodic “driving force”

f(t) := fAeiωAt .

However, due to the superposition principle this is no real restriction, since
almost every driving force f(t) can be written by Fourier integration as
the sum or integral of such terms:

f(t) =

+∞∫

−∞
dωAf̃(ωA)eiωA·t , with f̃(ωA) = (2π)−1

+∞∫

−∞
dtf(t)eiωA·t .

For x(t) in the above-mentioned case, after relaxation of a transient pro-
cess, the following stationary solution results:

x(t) = xA · eiωAt ,

with (complex) amplitude

xA =
−fA

ω2
A − ω2

0 + 2iωA
τ

. (4.2)

If one now plots, for the case of weak friction, i.e., for τω0 
 1, the
fraction ∣∣∣∣

xA

fA

∣∣∣∣
as a function of the driving frequency ωA, the following typical amplitude
resonance curve is obtained:

∣∣∣∣
xA

fA

∣∣∣∣ (ωA) =
1√

(ω2
0 − ω2

A)2 + 4ω2
A

τ2

. (4.3)

This curve has a very sharp maximum (i.e., a spike) of height τ
2ω0

at the
resonance frequency, ωA = ω0; for slight deviations (positive or negative)
from resonance, i.e., for

ωA ≈ ω0 ±
1
τ
,

the amplitude almost immediately becomes smaller by a factor of 1√
2
,

compared to the maximum. For small frequencies, i.e., for ωA � ω0, the
amplitude xA is in phase with the driving force; for high frequencies, i.e.,
for ωA 
 ω0, they are of opposing phase (out of phase by 180◦ or π); at
resonance the motion xA is exactly 90◦ (or π

2 ) behind the driving force
fA. The transition from in phase to opposite phase behavior is very rapid,
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occurring in the narrow interval given by the values

ωA ≈ ω0 ∓
1
τ
.

The dimensionless ratio τω0(
 1) is called the quality factor of the reso-
nance. It can be of the order of 1.000 or 10.000, or even higher.

2) In the ballistic case, there is again no restriction. For a sequence of ultra-
short and ultra-strong pulses ∼ δ(t− t′) with t′ between t′ = t0 and t′ = t,
i.e., for the formal case

f(t) =

t∫

t0

dt′g(t′)δ(t− t′) ,

with the Dirac δ-function δ(x) (a very high and very narrow ‘bell-shaped
function’ of height ∝ 1

ε (→∞) and width ∝ ε (→ 0), but where the integral

should always != 1, e.g., δ(x) := e−x2/(2ε2)√
2πε2

) we have quite generally:

x(t) =

t∫

t0

dt′g (t′)G (t− t′) . (4.4)

The so-called Green’s function G(t− t′) is thus identical with the response
to the specific pulse δ(t− t′), but actually it depends only on the system
considered (not on the driving force itself), and the response agrees with
the general principles of causality (i.e., t′ ≤ t) and of linearity (i.e., the
superposition principle)1 analogous to (4.1); i.e., independent of g(t′), we
have in the limit of ε→ 0:

G(t− t′) ≡ e−
t−t′

τ ·
sin

[
(t− t′)

√
ω2

0 − 1
τ2

]
√
ω2

0 − 1
τ2

. (4.5)

1 Due to every pulse (at time t = t′) the velocity increases, v(t′ + ε) − v(t′ − ε) ≡
g(t′).



5 The Three Classical Conservation Laws;

Two-particle Problems

We shall now deal with the three classical conservation laws in mechanics,
viz for momentum, angular momentum, and energy. We shall formulate and
prove them for N point masses at positions ri, for which

a) internal forces F ik (i, k = 1, . . . , N) exist; these are the forces by which
the k-th point mass acts on the i-th point mass. These internal forces are
assumed to obey Newton’s third axiom in its strong version, see above,
i.e.,

F i,k = −F k,i ∝ (ri − rk) .

This implies that the internal forces are not only mutually opposite to
each other but also act in the direction of the vector joining the mutal
positions, as applies to Newtonian gravitational forces and electrostatic
Coulomb forces;

b) external forces F ext
i are also assumed to act on every point mass (i =

1, . . . , N).

Newton’s equation for each point mass can therefore be written

miv̇i =

(
N∑
k=1

F i,k

)
+ F ext

i . (5.1)

Next we shall state a theorem on the time-derivative of the total momen-
tum. (This is identical to a well-known theorem on the motion of the center
of mass).

5.1 Theorem for the Total Momentum
(or for the Motion of the Center of Mass)

Carrying out the summation in (5.1) for i = 1, . . . , N and using Newton’s
third axiom, since

N∑
i,k=1

F i,k ≡ 0 ,
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one obtains that the time-derivative of the total momentum,

P :=
N∑
i=1

mivi ,

is identical to the sum of (only) the external forces, whereas the internal
forces compensate each other:

Ṗ =
N∑
i=1

F ext
i . (5.2)

At the same time, this becomes a well-known theorem on the motion of the
center of mass, because it is easily shown that the total momentum P is
identical with the expression Mvs, where

M

(
=
∑
i

mi

)

is the total mass of the system considered, while

vs := M−1
∑
i

mivi

is the velocity of the center of mass.

5.2 Theorem for the Total Angular Momentum

Similarly the time derivative of the total angular momentum L is equal to
the sum of the external torques, where both quantities, L and the sum of the
external torques, are related to the center of mass,

Rs := M−1
N∑
i=1

miri ,

even if this is in motion:

L̇ =
∑
i

(ri −Rs(t)) ×miv̇i =
N∑
i=1

Dext
i . (5.3)

Here Dext
i is the external torque about the (resting or moving) center of

mass, i.e., for gravitational forces, or for the forces of electrostatic monopoles
(Coulomb forces):

Di = (ri −Rs)× F ext
i .
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Thus, the theorem states that under the above-mentioned conditions the
time-derivative of the total angular momentum L, i.e., related to the center
of mass, is identical to the sum of external torques. We write consciously “sum
of external torques”, and not “sum of the torques generated by the external
forces”, because the external torques are not always identical to the torques
of the external forces: A ‘counter-example’ is given in the case of electric
dipoles, pi: Here the forces and torques, through which they interact, are
complicated (see below), but even in this case Newton’s third axiom applies
in its strong sense,

F i,k = −F k,i plus Di,k = −Dk,i .

To be specific: on the one hand one has for the force F i on an electric
dipole

F i = (pi · ∇)

⎛
⎝∑
k( �=i)

E(k)(ri) +Eext

⎞
⎠ ,

where E(k)(ri) is the electric field generated by a dipole k at the position ri
and Eext the external electric field. But on the other hand, for these forces,
one does not have as usual

Di = (ri −Rs(t))×

⎛
⎝∑
k( �=i)

F i,k + F ext
i

⎞
⎠ ,

but instead

Di = pi ×

⎛
⎝∑
k( �=i)

E(k)(ri) +Eext

⎞
⎠

(see Part II of this volume, Sect. 17.2.6).
Even in this more complicated case the theorem on the time-derivative

of the total angular momentum applies, basically because dipole forces and
torques can be derived as limiting cases from monopole forces, i.e., by opposite
point charges at slightly different places (as will be shown below, see Sect.
17.2.6).

What can be learnt from this?

a) The time-derivative of the total linear momentum P or total angular mo-
mentum L is equal to the sum of the external forces (

∑
i F

ext
i ) or the

sum of the external torques (
∑

iDext
i ), respectively. Due to Newton’s

third axiom the internal forces or torques compensate in a pairwise man-
ner. These statements of course embody the principle of conservation of
total momentum (or total angular momentum) in the special case that the
sum of the external forces (or torques) vanish. In any case, Newton’s third
axiom includes both forces and torques: it includes both conservation the-
orems separately (i.e., the second theorem is not just a consequence of the
first one, or vice versa).
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Fig. 5.1. A lever with two opposite forces producing a torque

b) Sometimes a good question can decisively help our understanding. For
example the following question aids in understanding the separation of
forces and torques in connection with Newton’s third axiom: Does the sum
of the internal torques vanish if the sum of the internal forces vanishes?
The answer is of course “No”. A simple drawing helps. Consider the special
case of a horizontal lever, where two opposite external forces are applied at
the ends, the first one upwards to the r.h.s. and the second one downwards
to the l.h.s. of the lever, generating a torque, as shown in Fig. 5.1.
In this example the sum of the forces vanishes, but the sum of the torques
does not vanish as an automatic consequence, unless the forces have the
direction of the vector ri − rk.

We shall now consider the energy theorem.

5.3 The Energy Theorem; Conservative Forces

In this case too we shall be somewhat more general, i.e., we will not simply
derive the energy conservation law, but look in detail at the necessary pre-
requisites. For this purpose, we shall consider the totality of the forces, F i,
acting on N point masses, i.e., with 3N components. These correspond to 3N
coordinates xα, α = 1, . . . , 3N , for the N point masses. For the components
Fα we assume

Fα = −∂V(x1, . . . , x3N , t)
∂xα

− vα · f (α)
R (x1, . . . , v1, . . . , t) +

∑
β,λ

εα,β,λvβCλ ,

(5.4)
with non-negative frictional forces f (α)

R (x1, . . . , v1, . . . , t).
In the first term on the r.h.s. of (5.4), V(x1, . . . , x3N , t) describes a poten-

tial energy, which we assume to exist. This is a strong assumption (see below)
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and typically it includes the most important contribution to the considered
forces. (We stress here that the existence of V is far from being self-evident).

In contrast, the second term on the r.h.s. describes frictional forces , which
are often less important, and the third term, which looks rather formal, but
is very strong in certain cases, (with the vector Cλ (λ = 1, 2, 3) and an
antisymmetric tensor εα,β,λ = −εα,λ,β) describes some kind of Lorentz force
or Coriolis force, i.e.,

F Lorentz = qv ×B ,

with electric charge q and magnetic induction B, or

FCoriolis = −2mtω × v ,

where ω is the rotation of the coordinate system and v the velocity in this
system. We thus have C = qB or C = −2mtω, respectively. We shall re-
turn to the Coriolis force below, see Sect. 14.2, in connection with so-called
“fictitious (or inertial) forces”, which are always multiplied by a factor mt.

A characteristic property of the Lorentz and Coriolis forces is that, in
contrast to frictional forces, they do no work, viz in the following sense:

δAB := dr · [v ×B] ≡ 0 ,

as dr = vdt. In fact one obtains from Newton’s equation (5.4), multiplying
with vα = ẋα,

d
dt

3N∑
α=1

mαv
2
α

2
= − dV

dt
+
∂V
∂t
−
∑
α

v2
αf

(α)
R . (5.5)

Here we have used the fact that

dV(xα, t)
dt

= ẋα
∂V
∂xα

+
∂V
∂t

.

As a consequence we obtain the following energy theorem

d
dt

(
3N∑
α=1

mαv
2
α

2
+ V(x1, . . . , x3N , t)

)
=
∂V
∂t
−

3N∑
α=1

v2
αf

(α)
R . (5.6)

Thus the total mechanical energy, i.e., the sum of the kinetic energy T and
potential energy V , can change, but only as follows:

a) due to frictional forces the total mechanical energy always decreases,
b) whereas Lorentz and Coriolis forces alone do not influence the energy

although they do influence the motion itself,
c) while the total mechanical energy can increase or decrease according to

the sign of the explicit change with time, ∂V
∂t , of the potential energy V .
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For example, if a load attached to the end of a rope, which is oscillating
transversally, is continuously pulled upwards by an external force during the
motion, then the potential energy of the load increases with time, and this
has consequences for the oscillation.

We shall return later to the possibility of enhancing the energy of an
oscillation by systematically influencing its potential energy (parametric am-
plification, parametric resonance, building up of the amplitude).

Finally some conceptual remarks should be made. Forces depending ex-
plicitly on velocity and/or time are called non-conservative forces; therefore,
both Lorentz forces and frictional forces are non-conservative, although the
Lorentz forces do not “hamper” the conservation of energy. On the other
hand, for so-called conservative forces, one requires that they can be derived
solely from a potential energy V , where V should be a function of position
only.

In short, for conservative forces a function V(x1, . . . , x3N ) is assumed to
exist such that for α = 1, . . . , 3N :

Fα ≡ −
∂

∂xα
V(x1, . . . , x3N ) . (5.7)

Thus for conservative forces (but also for a sum of conservative forces plus
Lorentz and Coriolis forces) the energy theorem can be simplified to the well-
known theorem on the conservation of mechanical energy T + V .

The postulate that a potential energy should exist, implies that the 3N ·
(3N − 1)/2 conditions

∂Fα
∂xβ

=
∂Fβ
∂xα

are satisfied (so-called generalized irrotational behavior).
This criterion results from the equality of the mixed derivatives of V , i.e.,

∂V
∂xi∂xj

≡ ∂V
∂xj∂xi

,

and it can be checked in finite time, whereas the other criteria mentioned in
this context, e.g., the criterion that for every closed loopW the work-integral

∮

W

N∑
α=1

Fα · dxα

should vanish, cannot be checked directly in finite time, although it follows
from the above-mentioned generalized irrotational behavior.

In any case, if the above-mentioned 3N ·(3N−1)/2 generalized irrotational
conditions are satisfied and no explicit time dependence arises, one can define
the potential energy V (apart from an arbitrary constant) by the following
expression:

V(x1, . . . , x3N ) = −
r∫

r0

3N∑
α=1

dxα · Fα(x1, . . . , x3N ) . (5.8)
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Here r := (x1, . . . , x3N ); r0 is an arbitrary starting point, and the integration
path from r0 to r is also arbitrary.

(With regard to the mathematics: on the r.h.s. of (5.8), under the integral,
we have a differential form of the first kind, a so-called “Pfaff form”, which
neither depends on v nor t. We assume that this differential form is total,
i.e., that it can be derived from a uniquely defined function −V . This requires
additionally that the boundary of the considered region does not consist of
separate parts.)

5.4 The Two-particle Problem

With regard to the Center of Mass theorem one should mention that so-
called two-particle problems can always be solved analytically by separating
the motion into that of the center of mass and the corresponding relative
motion:

Consider for i = 1, 2 two coupled vectorial equations of motion of the
form

mir̈i = F ext
i + F int

i,k ,

where k is complementary to i, i.e.,

F int
1,2 and F int

2,1 = −F int
1,2 .

Adding the equations of motion one obtains

M v̇s = (F ext
1 + F ext

2 )

(→ motion of the center of mass). Similarly a weighted difference,

F int
1,2

m1
−
F int

2,1

m2
,

yields
d2

dt2
(r1 − r2) =

1
mred

F int
1,2

(→ relative motion). Here we assume that

F ext
1

m1
− F

ext
2

m2

vanishes (no external forces at all).
This means that in the Newtonian equations for the relative quantity r :=

r1 − r2 not only the internal force F int
1,2 has to be used, but also the so-called

reduced mass mred,
1

mred
:=

1
m1

+
1
m2

.



6 Motion in a Central Force Field;

Kepler’s Problem

Kepler’s problem concerning the motion of the planets in our solar system
is one of the main problems in Classical Mechanics, similar to that of the
hydrogen atom in Quantum Mechanics. Incidentally they are both closely
related (A typical examination question might read: “In what respect are
these problems and their solutions analogous or different?”).

6.1 Equations of Motion in Planar Polar Coordinates

We have

r(t) =r(t) · (cosϕ(t), sinϕ(t)) ≡ r(t)er(t) ,
dr
dt

=v = ṙ(t)er + r(t)ėr = ṙ(t)er(t) + r(t)ϕ̇(t)eϕ(t) .

Thereby er =(cosϕ(t), sinϕ(t)) , and
eϕ(t) :=(− sinϕ(t), cosϕ(t)) .

But ėϕ = −ϕ̇er.
As a consequence, one obtains for the acceleration:

a(t) =
d2r

dt2
=
{
r̈(t)− r(t)ϕ̇(t)2}er(t) + {2ṙϕ̇+ rϕ̈

}
eϕ(t) . (6.1)

For a purely radial force, F = Fr(r, ϕ)er, we thus have Fϕ ≡ 0; therefore

2ṙϕ̇+ rϕ̈ ≡ 1
r

d(r2ϕ̇)
dt

≡ 0 ,

or
1
2
r2ϕ̇ = constant .

This is Kepler’s second law, or “law of equal areas”, since

1
2
r2ϕ̇dt

is the triangular area covered by the vector from the center of the sun to the
planet in the time interval dt.

At this point we should remind ourselves of Kepler’s three laws.
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6.2 Kepler’s Three Laws of Planetary Motion

They are:

1) The planets orbit the central star, e.g., the sun, on an elliptical path, where
the sun is at one of the two foci of the ellipse.

2) The vector from the center of the sun to the planet covers equal areas in
equal time intervals.

3) The ratio T 2/a3, where T is the time period and a the major principal
axis of the ellipse, is constant for all planets (of the solar system). (In
his famous interpretation of the motion of the moon as a planet orbiting
the earth, i.e., the earth was considered as the “central star”, Newton
concluded that this constant parameter is not just a universal number,
but proportional to the mass M of the respective central star.)

As already mentioned, Kepler’s second law is also known as the law of
equal areas and is equivalent to the angular momentum theorem for relative
motion, because (for relative motion1)

dL
dt

= r × F ,

i.e., ≡ 0 for central forces, i.e., if F ∼ r. In fact, we have

L = r × p = m · r2ϕ̇ez .

Here m is the reduced mass appearing in Newton’s equation for the rela-
tive motion of a “two-particle system” (such as planet–sun, where the other
planets are neglected); this reduced mass,

m

1 + m
M

,

is practically identical to the mass of the planet, since m�M .
The complete law of gravitation follows from Kepler’s laws by further

analysis which was first performed by Newton himself. The gravitational
force F , which a point mass M at position RM exerts on another point mass
m at r is given by:

F (r) ≡ −γ (m ·M) · (r −RM )
|r −RM |3

. (6.2)

The gravitational force, which acts in the direction of the line joining r and
RM, is (i) attractive (since the gravitional constant γ is > 0), (ii) ∝ m ·M ,
and (iii) (as Coulomb’s law in electromagnetism) inversely proportional to
the square of the separation.

1 We do not write down the many sub-indices rel., which we should use in principle.
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As has already been mentioned, the principle of superposition applies to
Newton’s law of gravitation with regard to summation or integration over
M , i.e., Newton’s theory of gravity, in contrast to Einstein’s general theory of
relativity (which contains Newton’s theory as a limiting case) is linear with
respect to the sources of the gravitational field.

Newton’s systematic analysis of Kepler’s laws (leading him to the impor-
tant idea of a central gravitational force) follows below; but firstly we shall
discuss the reverse path, the derivation (synthesis) of Kepler’s laws from New-
ton’s law of gravitation, (6.2). This timeless achievement of Newtonian theory
was accomplished by using the newly developed (also by Newton himself2)
mathematical tools of differential and integral calculus.

For 200 years, Newton was henceforth the ultimate authority, which makes
Einstein’s accomplishments look even greater (see below).

6.3 Newtonian Synthesis: From Newton’s Theory
of Gravitation to Kepler

Since in a central field the force possesses only a radial component, Fr, (here
depending only on r, but not on ϕ), we just need the equation

m ·
(
r̈ − rϕ̇2

)
= Fr(r) .

The force is trivially conservative, i.e.,

F = −gradV (r) ,

with potential energy

V (r) ≡ −
∫ r

∞
dr̃Fr(r̃) .

Thus we have conservation of the energy :

m

2
·
(
ṙ2 + r2ϕ̇2

)
+ V (r) = E . (6.3)

Further, with the conservation law for the angular momentum we can elimi-
nate the variable ϕ̇ and obtain

m

2
· ṙ2 +

L2

2mr2
+ V (r) = E . (6.4)

Here we have used the fact that the square of the angular momentum

(L = r × p)
2 Calculus was also invented independently by the universal genius Wilhelm Leib-

niz, a philosopher from Hanover, who did not, however, engage in physics.
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is given by3 the following relation:

L2 = (mr2ϕ̇)2 .

Equation (6.4) corresponds to a one-dimensional motion with an effective
potential energy

Veff(r) := V (r) +
L2

2mr2
.

The one-dimensional equation can be solved using the above method based
on energy conservation:

t− t0 =

r∫

r0

dr̃√
2
m (E − Veff(r̃))

.

Similarly we obtain from the conservation of angular momentum:

t− t0 =
m

L

ϕ∫

ϕ0

r2(ϕ̃) · dϕ̃ .

Substituting

dt =
(

dϕ̃
dt

)−1

· dϕ̃

we obtain:

ϕ(r) = ϕ0 +
L

m

r∫

r0

dr̃

r̃2
√

2
m (E − Veff(r̃))

. (6.5)

All these results apply quite generally. In particular we have used the fact
that the distance r depends (via t) uniquely on the angle ϕ, and vice versa,
at least if the motion starts (with ϕ = ϕ0 = 0) at the point closest to the
central star, the so-called perihelion, and ends at the point farthest away, the
so-called aphelion.

6.4 Perihelion Rotation

What value of ϕ is obtained at the aphelion? It is far from being trivial (see
below) that this angle is exactly π, so that the planet returns to the perihelion
exactly after 2π. In fact, this is (almost) only true for Kepler potentials, i.e.,
for V = −A/r, where A is a constant4, whereas (6.4) applies for more general
potentials that only depend on r. If these potentials deviate slightly from

3 In quantum mechanics we have L2 → �
2l · (l + 1), see Part III.

4 We write “almost”, because the statement is also true for potentials ∝ r.
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Fig. 6.1. Perihelion rotation. The function
r(t) = 0.5/(1+0.5 cos(2πt)) is plotted together
with the three straight lines: ϕ(t) = (2π)∗(1+
ε) ∗ t, with ε = −0.1, 0.0 and +0.1. The three
corresponding orbits r(φ) yield a closed ellipse
only for ε ≡ 0; in the other two cases one ob-
tains so-called rosette orbits, see the following
figure

the Kepler potential, one actually observes the phenomenon of perihelion
rotation, i.e., the aphelion position is not obtained for ϕ = π, but later (or
earlier), viz for

ϕ = π ± 1
2
Δϕ ,

and the planet returns to the perihelion distance only at an angle deviating
from 2π, viz at 2π ±Δϕ, see Fig. 6.1 below.

Such a perihelion rotation is actually observed, primarily for the planet
Mercury which is closest to the sun. The reasons, all of them leading to tiny,
but measurable deviations from the -A/r-potential, are manifold, for example

– perturbations by the other planets and/or their moons can be significant,
– also deviations from the exact spherical shape of the central star may be

important,
– finally there are the general relativistic effects predicted by Einstein, which

have of course a revolutionary influence on our concept of space and time.
(Lest we forget, this even indirectly became a political issue during the
dark era of the Nazi regime in Germany during the 1930s.)

How perihelion rotation comes about is explained in Figs. 6.1 and 6.2.
In the following section we shall perform an analysis of Kepler’s laws,

analogously to Newtonian analysis, in order to obtain the laws of gravitation.

Fig. 6.2. Rosette orbits. If r(t) and ϕ(t)
have different periods (here r(t) = 0.5/(1 +
0.5 cos(2πt)) but ϕ(t) = 1.9π · t), one obtains
the rosette orbit shown. It corresponds exactly
to a potential energy of the non-Keplerian form
V (r) = −A/r − B/r2, and although looking
more complicated, it consists of only one con-
tinuous line represented by the above function
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6.5 Newtonian Analysis: From Kepler’s Laws
to Newtonian Gravitation

As mentioned above, Newton used a rather long but systematic route to
obtain his law of gravitation,

F (r) = −γ m̃M
r2

r

r
,

from Kepler’s laws.

6.5.1 Newtonian Analysis I: Law of Force from Given Orbits

If the orbits are of the form 1
r = f(ϕ), then one obtains by straightforward

differentiation:

− ṙ

r2
= ϕ̇ · d

dϕ
f(ϕ) =

(
L

mr2

)
· df

dϕ
, or

ṙ = − L
m

df
dϕ

, i.e.,

r̈ = −ϕ̇ L
m

d2f

dϕ2
= − L2

m2r2
d2f

dϕ2
,

or finally the law of force:

Fr
m
≡ r̈ − rϕ̇2 = − L2

m2r2

(
d2f

dϕ2
+

1
r

)
. (6.6)

Equation (6.6) will be used later.

6.5.2 Newtonian Analysis II: From the String Loop Construction
of an Ellipse to the Law Fr = −A/r2

Reminding ourselves of the elementary method for drawing an ellipse using
a loop of string, we can translate this into the mathematical expression

r + r′ = r +
√
r2 + (2a)2 − 2r · 2e · cosϕ != 2a .

Here 2a is the length of the major axis of the ellipse (which extends from
x = −a to x = +a for y ≡ 0); r and r′ are the distances from the two foci
(the ends of the loop of string) which are situated at x = ±e on the major
axis, the x-axis, and ϕ is the azimuthal angle, as measured e.g., from the
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left focus.5 From this we obtain the parametric representation of the ellipse,
which was already well-known to Newton:

r =
p

1− ε cosϕ
,

or
1
r

=
1
p
· (1− ε cosϕ) . (6.7)

Here a2 − e2 =: b2, and b2

a = p; b is the length of the minor semiaxis of the
ellipse. The parameter p is the distance from the left focus to the point of
the ellipse corresponding to the azimuthal angle ϕ = π

2 , and

ε :=
a2 − b2
a2

is the ellipticity, 0 ≤ ε < 1.
As a result of the above relations we already have the following inverse-

square law of force:

Fr(r) =
−A
r2

, where A > 0

(attractive interaction), while the parameter p and the angular momen-
tum L are related to A by:

p =
L2

A ·m .

6.5.3 Hyperbolas; Comets

Equation (6.7) also applies where ε ≥ 1. In this case the orbits are no longer
ellipses (or circles, as a limiting case), but hyperbolas (or parabolas, as a lim-
iting case).6

Hyperbolic orbits in the solar system apply to the case of nonreturning
comets, where the sun is the central point of the hyperbola, i.e., the perihe-
lion exists, but the aphelion is replaced by the limit r → ∞. For repulsive
interactions, A < 0, one would only have hyperbolas.

5 Here we recommend that the reader makes a sketch.
6 For the hydrogen atom the quantum mechanical case of continuum states at
E > 0 corresponds to the hyperbolas of the Newtonian theory, whereas the
ellipses in that theory correspond to the bound states of the quantum mechanical
problem; see Part III of this volume.
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6.5.4 Newtonian Analysis III: Kepler’s Third Law
and Newton’s Third Axiom

Up till now we have not used Kepler’s third law; but have already derived an
attractive force of the correct form:

Fr(r) = −A
r2

.

We shall now add Kepler’s third law, starting with the so-called area velocity
VF, see below. Due to the lack of any perihelion rotation, as noted above,
Newton at first concluded from Kepler’s laws that the “time for a round
trip” T must fulfil the equation

T =
πa · b
VF

,

since the expression in the numerator is the area of the ellipse; hence

T 2 =
π2a2b2

V 2
F

=
π2a3p

V 2
F

.

However, according to Kepler’s third law we have

T 2

a3
=
π2p

V 2
F

=
π2p

L2/(4m2)
=

4π2p

L2
m2 = C ,

i.e., this quantity must be the same for all planets of the planetary system
considered. The parameter A appearing in the force

Fr(r) = −A
r2

, i.e., A =
L2

p2m
,

is therefore given by the relation:

Fr(r) = −A
r2

= −4π2

C
· m
r2

,

i.e., it is proportional to the mass m of the planet.
In view of the principle of action and reaction being equal in magnitude

and opposite in direction, Newton concluded that the prefactor

4π2

C

should be proportional to the mass M of the central star,

4π2

C
= γ ·M , where γ

is the gravitational constant.
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By systematic analysis of Kepler’s three laws Newton was thus able to
derive his general gravitational law from his three axioms under the implicit
proposition of a fixed Euclidean (or preferably Galilean) space-time structure.

It is obvious that an inverse approach would also be possible; i.e., for
given gravitational force, Kepler’s laws follow from Newton’s equations of
motion. This has the didactic virtue, again as mentioned above, that the
(approximate) nonexistence of any perihelion rotation, which otherwise would
be easily overlooked, or erroneously taken as self-evident, is now explicitly
recognized as exceptional7.

We omit at this point any additional calculations that would be necessary
to perform the above task. In fact this so-called synthesis of Kepler’s laws
from Newton’s equations can be found in most of the relevant textbooks; it
is essentially a systematic exercise in integral calculus.

For the purposes of school physics many of these calculations may be sim-
plified, for example, by replacing the ellipses by circles and making system-
atic use of the compensation of gravitational forces and so-called centrifugal
forces. However, we shall refrain from going into further details here.

6.6 The Runge-Lenz Vector
as an Additional Conserved Quantity

The so-called Runge-Lenz vector, Le, is an additional conserved quantity,
independent of the usual three conservation laws for energy, angular momen-
tum, and linear momentum for a planetary system. The additional conser-
vation law only applies for potentials of the form ∓A/r (as well as ∓A · r
potentials), corresponding to the fact that for these potentials the orbits are
ellipses, i.e., they close exactly, in contrast to rosettes, see above.

The Runge-Lenz vector is given by

Le :=
v ×L
A
− er , where L

is the angular momentum. It is not difficult to show that Le is conserved:

d
dt

(v ×L) = a×L = a×
(
mr2ϕ̇ez

)

= −A
r2
er · r2ϕ̇× ez

= −Aϕ̇er × ez = Aϕ̇eϕ = Aėr

7 The (not explicitly stated) non-existence of any perihelion rotation in Kepler’s
laws corresponds quantum mechanically to the (seemingly) incidental degeneracy
of orthogonal energy eigenstates ψn,l of the hydrogen atom, see Part III, i.e.,
states with the same value of the main quantum number n but different angular
quantum numbers l.
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i.e., L̇e = 0. The geometrical meaning of Le is seen from the identity

Le ≡
e

a
, where 2e

is the vector joining the two foci of the ellipse, and a is the length of its
principal axis: aLe is thus equal to e. This can be shown as follows.

From a string loop construction of the ellipse we have

r + r′ = r +
√

(2e− r)2 = 2a ,

i.e.,
r2 + 4e2 − 2e · r = (2a− r)2 = r2 − 4ar + 4a2 ,

hence on the one hand

r =
a2 − e2
a

− e · r
a
≡ p− e

a
· r .

On the other hand we have

r ·Le = r · v ×L
A

− r · er =
[r × v] ·L

A
− r =

L ·L
mA

− r = p− r ,

hence
r ≡ p−Le · r .

We thus have
Le =

e

a
,

as stated above.



7 The Rutherford Scattering Cross-section

We assume in the following that we are dealing with a radially symmetric
potential energy V(r), see also section 6.3, which is either attractive (as in
the preceding subsections) or repulsive.

Consider a projectile (e.g., a comet) approaching a target (e.g, the sun)
which, without restriction of generality, is a point at the origin of coordinates.
The projectile approaches from infinity with an initial velocity v∞ parallel to
the x-axis with a perpendicular distance b from this axis. The quantity b is
called the impact parameter1.

Under the influence of V(r) the projectile will be deflected from its original
path. The scattering angle ϑ describing this deflection can be calculated by
(6.5) in Sect. 6.3, where ϕ(r) describes the path with

ϕ(−∞) = 0 , and
ϑ

2
= ϕ0 while ϑ = ϕ(+∞) ;

r0 is the shortest distance from the target. It corresponds to the perihelion
point r0.

The main problem in evaluating ϑ from (6.5) is the calculation of r0.
For this purpose we shall use the conservation of angular momentum L and
energy E. Firstly we may write

L = m · b · v∞ ≡ m · r0 · v0 , where v0

is the velocity at the perihelion. In addition, since the potential energy van-
ishes at infinity, conservation of energy implies:

V (r0) =
m

2
v2
∞ −

m

2
v2
0 ,

where the second term can be expressed in terms of L and r0. In this way the
perihelion can be determined together with the corresponding orbit r(ϑ) and
the scattering angle ϑ∞ = ϑ(r → ∞). As a consequence, there is a unique
relation between the impact parameter p and the scattering angle ϑ. Further-
more we define an “element of area”

d(2)σ := 2πbdb ≡ 2πb(ϑ)
db

2π sinϑdϑ
· dΩ ,

1 a sketch is recommended (this task is purposely left to the reader), but see Fig.
7.1.
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where we note the fact that a solid-angle element in spherical coordinates
can be written as

dΩ = 2π sinϑdϑ .

The differential cross-section is defined as the ratio d(2)σ
dΩ :

d(2)σ

dΩ
=
b(ϑ)db(ϑ)
sinϑdϑ

. (7.1)

This expression is often complicated, but its meaning can be visualized, as
follows. Consider a stream of particles with current density j0 per cross-
sectional area flowing towards the target and being scattered by the potential
V . At a large distance beyond the target, a fraction of the particles enters
a counter, where they are recorded. The number of counts in a time Δt is
given by

ΔN =
d(2)σ

dΩ
· j0 ·Δt ·ΔΩ .

The aperture of the counter corresponds to scattering angles in the interval
(ϑ, ϑ+ dϑ), i.e., to the corresponding solid angle element

ΔΩ := 2π sinϑΔϑ .

The differential scattering cross-section is essentially the missing propor-
tionality factor in the relation

ΔN ∝ j0 ·Δt ·ΔΩ ,

and (7.1) should only be used for evaluation of this quantity..
The description of these relations is supported by Fig. 7.1.
For A/r-potentials the differential cross-section can be evaluated exactly,

with the result
d(2)σ

dΩ
=

A2

16E2

1
sin4 ϑ

2

,

which is called the Rutherford scattering cross-section. This result was ob-
tained by Rutherford in Cambridge, U.K., at the beginning of the twentieth
century. At the same time he was able to confirm this formula, motivated by
his ground-breaking scintillation experiments with α-particles. In this way he
discovered that atoms consist of a negatively-charged electron shell with a ra-
dius of the order of 10−8 cm, and a much smaller, positively-charged nucleus
with a radius of the order of 10−13 cm. In fact, the differential cross-sections
for atomic nuclei are of the order of 10−26 cm2, i.e., for α-particles the space
between the nuclei is almost empty.



Fig. 7.1. Schematic diagram on differential scattering cross-sections. A particle
enters the diagram from the left on a path parallel to the x-axis at a perpendicular
distance b (the so-called “impact parameter”; here b = 0.25). It is then repulsively
scattered by a target at the origin (here the scattering occurs for −20 ≤ x ≤ 20,
where the interaction is felt) and forced to move along the path y(x) = b+0.00025 ·
(x+20)2, until it leaves the diagram asymptotically parallel to the inclined straight
line from the origin (here y = 0.016 · x). Finally it enters a counter at a scattering
angle ϑ = arctan 0.016, by which the above asymptote is inclined to the x-axis. If
the impact parameter b of the particle is slightly changed (in the (y, z)-plane) to
cover an area element d(2)A(b) := dϕ · b · db (where ϕ is the azimuthal angle in
that plane), the counter covers a solid-angle element dΩ(b) = dϕ · sin ϑ(b) ·dϑ. The

differential cross-section is the ratio d(2)A
dΩ

=
˛̨
˛ b·db(ϑ)
sin ϑ·dϑ

˛̨
˛.



8 Lagrange Formalism I:

Lagrangian and Hamiltonian

In the present context the physical content of the Lagrange formalism (see
below) does not essentially go beyond Newton’s principles; however, mathe-
matically it is much more general and of central importance for theoretical
physics as a whole, not only for theoretical mechanics.

8.1 The Lagrangian Function; Lagrangian
Equations of the Second Kind

Firstly we shall define the notions of “degrees of freedom”, “generalized co-
ordinates”, and the “Lagrangian function” (or simply Lagrangian) assuming
a system of N particles with 3N Cartesian coordinates xα, α = 1, . . . , 3N :

a) The number of degrees of freedom f is the dimension of the hypersurface1

in 3N -dimensional space on which the system moves. This hypersurface
can be fictitious ; in particular, it may deform with time. We assume that
we are only dealing with smooth hypersurfaces, such that f only assumes
integral values 1, 2, 3, . . ..

b) The generalized coordinates q1(t), . . . , qf (t) are smooth functions that
uniquely indicate the position of the system in a time interval Δt around
t; i.e., in this interval xα = fα(q1, . . . , qf , t), for α = 1, . . . , 3N . The gen-
eralized coordinates (often they are angular coordinates) are rheonomous,
if at least one of the relations fα depends explicitly on t; otherwise they
are called skleronomous. The Lagrangian function L is by definition equal
to the difference (sic) between the kinetic and potential energy of the
system, L = T − V , expressed by qα(t), q̇α(t) and t, where it is assumed
that a potential energy exists such that for all α the relation Fα = − ∂V

∂xα

holds, and that V can be expressed by the qi, for i = 1, . . . , f , and t.

Frictional forces and Lorentz forces (or Coriolis forces, see above) are not al-
lowed with this definition of the Lagrangian function, but the potential energy
may depend explicitly on time. However, one can generalize the definition of
the Langrangian in such a way that Lorentz forces (or Coriolis forces) are
1 For so-called anholonomous constraints (see below), f is the dimension of an

infinitesimal hypersurface element
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also included (see below). The fact that the Lagrangian contains the differ-
ence, and not the sum of the kinetic and potential energies, has a relativistic
origin, as we shall see later.

8.2 An Important Example: The Spherical Pendulum
with Variable Length

These relations are best explained by a simple example. Consider a pendulum
consisting of a weightless thread with a load of mass m at its end. The length
of the thread, l(t), is variable, i.e., an external function. The thread hangs
from the point x0 = y0 = 0, z0 �= 0, which is fixed in space, and the load
can swing in all directions. In spherical coordinates we thus have (with z
measured as positive downwards): ϑ ∈ [0, π], where ϑ = 0 corresponds to the
position of rest, and ϕ ∈ [0, 2π):

x = l(t) · sinϑ · cosϕ
y = l(t) · sinϑ · sinϕ
z = z0 − l(t) · cosϑ . (8.1)

The number of degrees of freedom is thus f = 2; the generalized coordinates
are rheonomous, although this is not seen at once, since q1 := ϑ and q2 = ϕ do
not explicitly depend on t, in contrast to the relations between the cartesian
and the generalized coordinates; see (8.1). Furthermore,

V = mgz = mg · (z0 − l(t) · cosϑ) ,

whereas the kinetic energy is more complicated. A long, but elementary cal-
culation yields

T =
m

2
(
ẋ2 + ẏ2 + ż2

)
≡m

2

{
l2 ·

(
ϑ̇2 + sin2 ϑϕ̇2

)

+ 4ll̇ sinϑ cosϑϑ̇+ l̇2 sin2 ϑ
}
.

Apart from an additive constant the Lagrangian L = T − V is thus:

L(ϑ, ϑ̇, ϕ̇, t) =
m

2

{
l2
(
ϑ̇2 + sin2 ϑϕ̇2

)
+ 4ll̇ sinϑ cosϑϑ̇

+l̇2 sin2 ϑ
}

+mg · (l(t)− z0) · cosϑ . (8.2)

(In the expression for the kinetic energy the inertial mass should be used,
and in the expression for the potential energy one should actually use the
gravitational mass ; g is the acceleration due to gravity.)
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8.3 The Lagrangian Equations of the 2nd Kind

These shall now be derived, for simplicity with the special assumption f = 1.
Firstly we shall consider an actual orbit q(t), i.e., following the Newtonian
equations transformed from the cartesian coordinate x to the generalized
coordinate q. At time t1 this actual orbit passes through an initial point q1,
and at t2 through q2. Since Newton’s equation is of second order, i.e., with
two arbitrary constants, this is possible for given q1 and q2.

In the following, the orbit is varied, i.e., a set of so-called virtual orbits,

qv(t) := q(t) + ε · δq(t) ,

will be considered, where the real number ε ∈ [−1, 1] is a so-called vari-
ational parameter and δq(t) a fixed, but arbitrary function (continuously
differentiable twice) which vanishes for t = t1 and t = t2. Thus, the virtual
orbits deviate from the actual orbit, except at the initial point and at the end
point; naturally, the virtual velocities are defined as

q̇v(t) := q̇(t) + ε · δq̇(t) , where δq̇(t) =
dq(t)
dt

.

Using the Lagrangian function L(q, q̇, t) one then defines the so-called
action functional

S[qv] :=

t2∫

t1

dtL(qv, q̇v, t) .

For a given function δq(t) this functional depends on the parameter ε, which
can serve for differentiation. After differentiating with respect to ε one sets
ε = 0. In this way one obtains

dS[qv ]
dε |ε=0

=

t2∫

t1

dt
{
∂L
∂q̇v

δq̇(t) +
∂L
∂qv

δq(t)
}
. (8.3)

In the first term a partial integration can be performed, so that

dS[qv]
dε |ε=0

=
∂L
∂q̇v |t1

δq(t1)−
∂L
∂q̇v |t2

δq(t2)

+

t2∫

t1

dt
{
− d

dt
∂L
∂q̇v

+
∂L
∂qv

}
δq(t) . (8.4)

In (8.4) the first two terms on the r.h.s. vanish, and since δq(t) is arbitrary,
the action functional S becomes extremal for the actual orbit, qv(t) ≡ q(t),
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Fig. 8.1. Hamilton’s variational principle. The figure shows the ε-dependent set
of virtual orbits qv(t) := t + (t2 − 1) + ε · sin (t2 − 1)3, for ε = −0.6,−0.4, . . . , 0.6
and times t between t1 = −1 and t2 = 1. The actual orbit, q(t), corresponds to the
central line (ε = 0) and yields an extremum of the action functional. The virtual
orbits can also fan out more broadly from the initial and/or end points than in this
example

iff (i.e., “if, and only if”) the so-called variational derivative

δS
δq

:=
{
− d

dt
∂L
∂q̇v

+
∂L
∂qv

}

vanishes. An example is shown in Fig. 8.1.
The postulate that S is extremal for the actual orbit is called Hamilton’s

variational principle of least2 action, and the equations of motion,

d
dt
∂L
∂q̇v
− ∂L
∂qv

= 0 ,

are called Lagrangian equations of the 2nd kind (called “2nd kind” by some
authors for historical reasons). They are the so-called Euler-Lagrange equa-
tions3 corresponding to Hamilton’s variational principle. (The more compli-
cated Lagrangian equations of the 1st kind additionally consider constraints
and will be treated in a later section.)

For the special case where

L =
m

2
ẋ2 − V (x) ,

Newton’s equation results. (In fact, the Lagrangian equations of the 2nd kind
can also be obtained from the Newtonian equations by a general coordinate
transformation.) Thus one of the main virtues of the Lagrangian formalism
with respect to the Newtonian equations is that the formalisms are physically
equivalent; but mathematically the Lagrangian formalism has the essential
2 In general, the term “least” is not true and should be replaced by “extremal”.
3 Of course any function F (L), and also any additive modification of L by a total

derivative df(q(t),q̇(t),t)
dt

, would lead to the same equations of motion.
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advantage of invariance against general coordinate transformations, whereas
Newton’s equations must be transformed from cartesian coordinates, where
the formulation is rather simple, to the coordinates used, where the formu-
lation at first sight may look complicated and very special.

In any case, the index v, corresponding to virtual, may be omitted, since
finally ε ≡ 0.

For f ≥ 2 the Lagrangian equations of the 2nd kind are, with i = 1, . . . , f :

d
dt
∂L
∂q̇i

=
∂L
∂qi

. (8.5)

8.4 Cyclic Coordinates; Conservation
of Generalized Momenta; Noether’s Theorem

The quantity

pi :=
∂L
∂q̇i

is called the generalized momentum corresponding to qi. Often pi has the
physical dimension of angular momentum, in the case when the corresponding
generalized coordinate is an angle. One also calls the generalized coordinate
cyclic4, iff

∂L
∂qi

= 0 .

As a consequence, from (8.5), the following theorem5 is obtained.
If the generalized coordinate qi is cyclic, then the related generalized mo-

mentum
pi :=

∂L
∂q̇i

is conserved.
As an example we again consider a spherical pendulum (see Sect. 8.2). In

this example, the azimuthal angle ϕ is cyclic even if the length l(t) of the
pendulum depends explicitly on time. The corresponding generalized momen-
tum,

pϕ = ml2 · sinϑ · ϕ̇ ,

is the z-component of the angular momentum, pi = Lz. In the present case,
this is in fact a conserved quantity, as one can also show by elementary argu-
ments, i.e., by the vanishing of the torque Dz .

4 In general relativity this concept becomes enlarged by the notion of a Killing
vector.

5 The name cyclic coordinate belongs to the canonical jargon of many centuries
and should not be altered.
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Compared to the Newtonian equations of motion, the Lagrangian formal-
ism thus:

a) not only has the decisive advantage of optimum simplicity. For suitable
coordinates it is usually quite simple to write down the Lagrangian L of
the system; then the equations of motion result almost instantly;

b) but also one sees almost immediately, because of the cyclic coordinates
mentioned above, which quantities are conserved for the system.

For Kepler-type problems, for example, in planar polar coordinates we di-
rectly obtain the result that

L =
M

2
v2
s +

m

2
·
(
ṙ2 + r2ϕ̇2

)
− V (r) .

The center-of-mass coordinates and the azimuthal angle ϕ are therefore
cyclic; thus one has the total linear momentum and the orbital angular mo-
mentum as conserved quantities, and because the Lagrangian does not depend
on t, one additionally has energy conservation, as we will show immediately.

In fact, these are special cases of the basic Noether Theorem, named after
the mathematician Emmy Noether, who was a lecturer at the University of
Göttingen, Germany, immediately after World War I. We shall formulate the
theorem without proof (The formulation is consciously quite sloppy):

The three conservation theorems for (i) the total momentum, (ii) the to-
tal angular momentum and (iii) the total mechanical energy correspond (i)
to the homogeneity (= translational invariance) and (ii) the isotropy (rota-
tional invariance) of space and (iii) to the homogeneity with respect to time.
More generally, to any continuous n-fold global symmetry of the system there
correspond n globally conserved quantities and the corresponding so-called
continuity equations, as in theoretical electrodynamics (see Part II).

For the special dynamic conserved quantities, such as the above-mentioned
Runge-Lenz vector, cyclic coordinates do not exist. The fact that these quan-
tities are conserved for the cases considered follows only algebraically using
so-called Poisson brackets, which we shall treat below.

8.5 The Hamiltonian

To treat the conservation of energy, we must enlarge our context somewhat
by introducing the so-called Hamiltonian

H(p1, . . . , pf , q1, . . . , qf , t) .

This function is a generalized and transformed version of the Lagrangian,
i.e., the Legendre transform of −L, and as mentioned below, it has many
important properties. The Hamiltonian is obtained, as follows:
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Firstly we note that the Lagrangian L depends on the generalized ve-
locities q̇i, the generalized coordinates qi and time t. Secondly we form the
function

H̃(p1, . . . , pf , q̇1, . . . , q̇f , q1, . . . , qf , t) :=
f∑
i=1

piq̇i − L(q̇1, . . . , q̇1, q1, . . . , qf , t) .

Thirdly we assume that one can eliminate the generalized velocities q̇i by
replacing these quantities by functions of pi, qk and t with the help of the
equations pi ≡ ∂L

∂q̇i
. This elimination process is almost always possible in

nonrelativistic mechanics; it is a basic prerequisite of the method. After this
replacement one finally obtains

H̃(p1, . . . , q̇1(q1, . . . , p1, . . . , t), . . . , q1, . . . , t) ≡ H(p1, . . . , pf , q1, . . . , qf , t) .

As already mentioned, the final result, i.e., only after the elimination
process, is called the Hamiltonian of the system. In a subtle way, the Hamil-
tonian is somewhat more general than the Lagrangian, since the variables
p1, . . . , pf can be treated as independent and equivalent variables in addition
to the variables q1, . . . , qf , whereas in the Lagrangian formalism only the gen-
eralized coordinates qi are independent, while the generalized velocities, q̇i,
depend on them6. But above all, the Hamiltonian, and not the Lagrangian,
will become the important quantity in the standard formulation of Quantum
Mechanics (see Part III).

8.6 The Canonical Equations;
Energy Conservation II; Poisson Brackets

As a result of the transformation from L to H one obtains:

dH =
f∑
i=1

(
dpi · q̇i + pidq̇i −

∂L
∂q̇i

dq̇i −
∂L
∂qi

dqi

)
− ∂L

∂t
dt .

Here the second and third terms on the r.h.s. compensate for each other, and
from (8.5) the penultimate term can be written as −ṗidqi.

Therefore, since dH can also be written as follows:

dH =
f∑
i=1

(
dpi

∂H
∂pi

+ dqi
∂H
∂qi

)
+
∂H
∂t

dt , (8.6)

6 Here we remind ourselves of the natural but somewhat arbitrary definition δq̇ :=
d(δq)

dt
in the derivation of the principle of least action.
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one obtains by comparison of coefficients firstly the remarkable so-called
canonical equations (here not only the signs should be noted):

q̇i = +
∂H
∂pi

, ṗi = −∂H
∂qi

,
∂H
∂t

= −∂L
∂t

. (8.7)

Secondly, the total derivative is

dH
dt

=
f∑
i=1

(
ṗi
∂H
∂pi

+ q̇i
∂H
∂qi

)
+
∂H
∂t

,

and for a general function

F (p1(t), . . . , pf (t), q1(t), . . . , qf (t), t) :
dF
dt

=
f∑
i=1

{
ṗi
∂F

∂pi
+ q̇i

∂F

∂qi

}
+
∂F

∂t
.

Insertion of the canonical equations reduces the previous results to:

dH
dt

=
∂H
∂t

= −∂L
∂t

and
dF
dt

=
f∑
i=1

{
∂H
∂pi

∂F

∂qi
− ∂H
∂qi

∂F

∂pi

}
+
∂F

∂t
,

respectively, where we should remember that generally the total and partial
time derivatives are different!

In both cases the energy theorem (actually the theorem of H conservation)
follows:

If L (or H) does not depend explicitly on time (e.g., ∂H
∂t ≡ 0), then H

is conserved during the motion (i.e., dH
dt ≡ 0). Usually, but not always, H

equals the total mechanical energy.
Thus some caution is in order:H is not always identical to the mechanical

energy, and the partial and total time derivatives are also not identical; but
if

L = T − V ,
then (if skleronomous generalized coordinates are used) we automatically ob-
tain

H ≡ T + V ,
as one can easily derive by a straightforward calculation with the above def-
initions. Here, in the first case, i.e., with L, one should write

T =
mv2

2
,

whereas in the second case, i.e., with H, one should write

T =
p2

2m
.
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In the second case the sum of the braced terms yields a definition for the
so-called Poisson brackets:

[H, F ]P :=
f∑
i=1

{
∂H
∂pi

∂F

∂qi
− ∂H
∂qi

∂F

∂pi

}
. (8.8)

For the three components of the above-mentioned Runge-Lenz vector

F := (Le)j , with j = x, y, z ,

it can be shown that with the particular (but most important) Hamilto-
nian for the Kepler problem (i.e., with -A/r potentials) the Poisson brackets
[H, F ]P vanish, while the Poisson brackets of F with the other conserved
quantities (total momentum and total angular momentum) do not vanish.
This means that the Runge-Lenz vector is not only an additional conserved
quantity for Kepler potentials, but is actually independent of the usual con-
served quantities.

The equations of motion related to the names of Newton, Lagrange and
Hamilton (i.e., the canonical equations in the last case) are essentially all
equivalent, but ordered in ascending degree of flexibility, although the full
power of the respective formalisms has not yet been (and will not be) ex-
ploited. We only mention here that there is a large class of transformations,
the so-called canonical transformations, leading from the old (generalized)
coordinates and momenta to new quantities, such that Hamilton’s formal-
ism is preserved, although generally with a new Hamiltonian. In quantum
mechanics (see Part III) these transformations correspond to the important
class of unitary operations.

Additionally we mention another relation to quantum mechanics. The
Poisson bracket [A,B]P of two measurable quantities A and B is intimately
related to the so-called commutator of the quantum mechanical operators Â
and B̂, i.e.,

[A,B]P →
i
�

(
ÂB̂ − B̂Â

)
.



9 Relativity I: The Principle

of Maximal Proper Time (Eigenzeit)

Obviously one could ask at this point whether Hamilton’s principle of least
action1 is related to similar variational principles in other fields of theoretical
physics, e.g., to Fermat’s principle of the shortest optical path Δlopt.2

The answer to this question is of course affirmative. However, we shall
abstain from making the relations explicit, except for the particular interpre-
tation and relativistic generalization of Hamilton’s principle of least-action
by Einstein’s principle of maximal proper time (or maximal eigenzeit).3

According to Einstein’s principle, the motion of small particles under
the influence of the effects of special and general relativity takes place in
a curved four-dimensional “space-time” (three space dimensions plus one time
dimension) and has the particular property that the proper time (eigenzeit) of
the particle between the starting point and the end point under the influence
of gravitational forces should be a maximum; the eigenzeit of the particle is
simply the time measured by a conventional clock co-moving with the particle.
As shown below, Einstein’s postulate corresponds not only to Hamilton’s
principle, but it also yields the correct formula for the Lagrange function L,
i.e.,

L = T − V ,

of course always in the limit of small velocities, i.e., for v2 � c2, where c is
the velocity of light in vacuo.

1 The name least action is erroneous (as already mentioned), since in fact only an
extremum of the action functional is postulated, and only in exceptional cases
(e.g., for straight-line motion without any force) is this a minimum.

2 The differential dlopt is the product of the differential dlgeom. of the geometrical
path multiplied by the refractive index.

3 As mentioned, one should be cautious with the terms “least”, “shortest” or
“maximal”. In fact for gravitational forces in the non-relativistic limit the action,
W :=

R tB

tA
dtL, can be identified with −m0c

2
R tB

tA
dτ (see below) and one simply

obtains complementary extrema for the proper time τ and for the Hamiltonian
action W . Actually, however, in general relativity, see [7] and [8], the equations
of motion of a particle with finite m0 under the influence of gravitation are time-
like geodesics in a curved Minkowski manifold, i.e., with maximal (sic) proper
time. However, the distinction between “timelike” and “spacelike” does not make
sense in Newtonian mechanics, where formally c→ ∞ (see below).



56 9 Relativity I: The Principle of Maximal Proper Time (Eigenzeit)

In the next section we shall firstly define some necessary concepts, such
as the Lorentz transformation.

9.1 Galilean versus Lorentz Transformations

The perception of space and time underlying Newtonian mechanics corre-
sponds to the so-called Galilean transformation:

All inertial frames of Newtonian mechanics are equivalent, i.e., Newton’s
equations have the same form in these systems. The transition between two
different inertial systems is performed via a Galilean transformation: If the
origin of a second inertial frame, i.e., primed system, moves with a velocity
v in the x direction, then

x = x′ + vt and t = t′ , and of course y = y′ , z = z′ .

For the Galilean transformation, space and time are thus decoupled. New-
ton’s equations of motion have the same form in both the primed and un-
primed inertial frames, where for the forces we have of course

Fx ≡ F ′x′ .

The above relation implies a simple addition of velocities, i.e., if motion
occurs in the unprimed system with velocity u, and in the primed system with
velocity u′ (in both cases in the x direction) then

u = u′ + v .

According to Newtonian mechanics, an event which took place in the
unprimed coordinate system with exactly the vacuum velocity of light u = c
would thus have a velocity

u′ = u− v (�= c)

in the primed system. Thus Maxwell’s theory of electrodynamics (see Part
II), which describes the propagation of light with velocity

c =
1

√
ε0μ0

(see below), is not invariant under a Galilean transformation.
On the suggestion of Maxwell himself, the hypothesis of “additivity of ve-

locities” was tested for light with great precision, firstly by Michelson (1881)
and then by Michelson and Morley (1887), with negative result. They found
that

u = c⇔ u′ = c ,

implying that something fundamental was wrong.
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Fig. 9.1. The Lorentz transformation.

The Lorentz transformation

8
<
:x =

x′+ v
c

ct′r
1− v2

c2

, ct =
ct′+ v

c
x′r

1− v2
c2

9
=
; transforms the square

{0 ≤ x ≤ 1, 0 ≤ ct ≤ 1} into a rhombus with unchanged diagonal (x = ct ↔ x′ =
ct′). The angle of inclination α between the primed and non-primed axes is given
by α = tanhv

c

As mentioned previously, it had already been established before Ein-
stein’s time that the basic equations of electrodynamics (Maxwell’s equa-
tions), which inter alia describe the propagation of light, were simply not
invariant under a Galilean transformation, in contrast to Newtonian mechan-
ics. Thus, it was concluded that with respect to electrodynamics the inertial
systems were not all equivalent, i.e., there was a particular frame, the aether,
in which Maxwell’s equations had their usual form, whereas in other inertial
frames they would be different.

However, Maxwellian electrodynamics can be shown to be invariant with
respect to a so-called Lorentz transformation,4 which transforms space and
time coordinates in a similar way, as follows:

x =
x′ + v

c ct
′

√
1− v2

c2

; ct =
ct′ + v

cx
′

√
1− v2

c2

.

(Additionally one has of course y = y′ and z = z′.)
These equations have been specifically written in such a way that the

above-mentioned similarity with respect to space and time becomes obvious.
(We should keep these equations in mind in this form.) Additionally, Fig. 9.1
may be useful.

4 Hendryk A. Lorentz, Leiden, NL; 1904
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Furthermore a nontrivial velocity transformation follows from the Lorentz
transformations. Since

u′ :=
dx′

dt′

(not : = dx′
dt ), one obtains

u =
u′ + v

1 + u′v
c2

,

which implies that u = c ⇔ u′ = c, independently of v. Before Einstein,
these relations were only considered to be strange mathematical properties
of the aether, i.e., one believed erroneously that the Newtonian and Galilean
considerations on space and time needed no modification.

Einstein’s special theory of relativity (1905)5 then changed our perception
radically. It transpired that Newton’s theory, not that of Maxwell, had to be
modified and refined. The modifications involved our basic perception of space
and time (but fortunately, since v2 � c2, Newtonian theory still remains valid
in most practical cases of everyday life). However, an important new paradigm
now entered science: a theory could be true only under certain quantitative
constraints and could be refined or modified in other cases.

The main implications of the new theory may be restated, as follows:
For all physical events all inertial frames are equivalent (i.e., there is no

need for a special inertial frame called the aether). However, the transforma-
tion between different inertial frames must be made via a Lorentz transforma-
tion not a Galilean transformation. As a consequence, as already mentioned6,
with these new insights into space and time Newtonian mechanics, in con-
trast to Maxwell’s theory of electromagnetism, had to be modified and refined,
but fortunately only for very high velocities when the condition v2 � c2 is
violated.

9.2 Minkowski Four-vectors and Their Pseudo-lengths;
Proper Time

Two years after Einstein’s epochal work of 1905, the mathematician Hermann
Minkowski introduced the notion of a so-called four-vector

ṽ := (v1, v2, v3, i · v4) .

Here, all four variables vα, α = 1, . . . , 4, are real quantities (i.e., the fourth
component of ṽ is imaginary7).
5 Einstein’s special theory of relativity was published in 1905 under the title “ Zur

Elektrodynamik bewegter Körper ” in the journal Annalen der Physik (see [5] or
perform an internet search).

6 Sometimes an important statement may be repeated!
7 Many authors avoid the introduction of imaginary quantities, by using instead

of ṽ the equivalent all-real definition ṽ′ :=
`
v0, v1, v2, v3

´
, with v0 := v4; how-
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Moreover, these real variables v1, . . . , v4 are assumed to transform by
a Lorentz transformation combined with rotation in three-space, just as the
variables x, y, z and ct.

The union of such Minkowski four-vectors is the Minkowski space M4.
A typical member is the four-differential

dx̃ := (dx, dy, dz, i · cdt) .

It is easy to show that under Lorentz transformations the so-called pseudo-
length

ṽ2 := v2
1 + v2

2 + v2
3 − v2

4

of a Minkowski four-vector is invariant (e.g., the invariance of the speed
of light in a Lorentz transformation results simply from the fact that for
a Lorentz transformation one has: x2 = c2t2 ⇔ x′2 = c2t′2). In addition, the
so-called pseudo-scalar product of two Minkowski four-vectors,

ṽ · w̃ := v1w1 + v2w2 + v3w3 − v4w4 ,

is also invariant for all Lorentz transformations, which means that Lorentz
transformations play the role of pseudo-rotations in Minkowski space.

Among the invariants thus obtained is the so-called proper time (eigen-
zeit) dτ , which corresponds to the pseudo-length of the above-mentioned
Minkowski vector

dτ :=

√
dx̃2

−c2 = dt ·
√

1− v2

c2
.

Here we have assumed dx = vxdt etc. and consider only events with v2 < c2.
A time interval dτ measured with a co-moving clock, the proper time, is

thus always shorter than the time interval dt measured in any other frame.
This means for example that a co-moving clock transported in an aeroplane
around the earth, ticks more slowly than an earth-based clock remaining at
the airport, where the round-trip around the earth start and ends. This is
a measurable effect, although very small! (More drastic effects result from the
cascades of μ particles in cosmic radiation. The numerous decay products of
these cascades, which have their origin at a height of ∼ 30 km above the
surface of the earth, have only a proper lifetime of Δτ ≈ 10−6s. Nevertheless,
showers of these particles reach the surface of the earth, even though with
v ≈ c in 10−6s they should only cover a distance of 300 m before decaying.
The solution for this apparent discrepancy is the gross difference between dτ
and dt for velocities approaching the speed of light8.)

ever, avoiding the imaginary unit i, one must pay some kind of penalty, being
forced instead to distinguish between covariant and contravariant four-vector
components, which is not necessary with the “imaginary” definition.

8 Here one could introduce the terms time dilation, i.e., from dτ → dt, and length
contraction, e.g., from 30 km to 300 m.
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In a curved space the ticking speed of clocks is not only influenced by v,
but also by gravitating bodies, as described by Einstein’s general theory of
relativity (which goes far beyond the scope of our text). Here, we only note
that for sufficiently weak gravitation potentials V(r) one has the relation

dτ = dt ·

√
1− v2

c2
+

2V
m0c2

.

The quantity m0 is the rest mass of the considered particle, as already men-
tioned.

Thus, Einstein’s principle of the maximal proper time implies that af-
ter multiplication with (−m0c

2) the actual path yields an extremum of the
action9

W := −m0c
2

t2∫

t1

dt

√
1− v2

c2
+

2V
m0c2

.

A Taylor expansion10 of this expression yields (in the lowest nontrivial
order w.r.t. v2 and V) the usual Hamilton principle of least action.

In addition one should note that the first three spatial components and
the fourth timelike component of a Minkowski four-vector (because of the
factor i2 = −1) enter the final result with different signs. Ultimately, this
different behavior of space-like and time-like components of a Minkowski
four-vector (i.e., the square of the imaginary unit i appearing with the time-
like component) is the genuine reason why in the formula

L = T − V

the kinetic energy T and potential energy V enter with different signs, i.e.,
we are dealing here with an intrinsically relativistic phenomenon.

9.3 The Lorentz Force and its Lagrangian

If, additionally, an electric field E and a magnetic induction B are present,
then the force F q exerted by these fields on a particle with an electric charge
q is given by

F q = q · (E + v ×B) ,

where the last term describes the Lorentz force.
The magnetic induction B can be calulated from a vector potential A,

where
B = curlA ,

9 Dimensional analysis: action := energy × time.
10 ‘Sufficiently weak’, see above, means that a Taylor expansion w.r.t. the lowest

nontrivial order makes sense.
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whereas an electric field E can be mainly calculated from the scalar poten-
tial Φ, since

E = −gradΦ− ∂A

∂t
.

The main content of the relativistic invariance of Maxwell’s theory is, as we
shall only mention, that Φ and A can be combined into a Minkowski four-
vector

Ã :=
(
Ax, Ay, Az , i

Φ

c

)
.

Furthermore, the quadruple

ũ :=
1√

1− v2

c2

(vx, vy, vz , ic)

(≡ dx̃
dτ , i.e., the Minkowski vector dx̃ divided by the Minkowski scalar dτ)

constitutes a Minkowki four-vector, so that it is almost obvious to insert the
invariant pseudo-scalar product qÃ · ũ into the Lagrangian, i.e.,

qÃ · ũ =
q√

1− v2

c2

· (A · v − Φ) .

In fact, for v2 � c2 this expression yields an obvious addition to the La-
grangian. Thus, by the postulate of relativistic invariance, since without the
Lorentz force we would have

L ∼= T − V − qΦ ,

we obtain by inclusion of the Lorentz force:

L ≡ T − V − q√
1− v2

c2

(Φ− v ·A ) , (9.1)

and in the nonrelativistic approximation we can finally replace the compli-
cated factor ∝ q simply by q itself to obtain a Lagrangian including the
Lorentz force.

9.4 The Hamiltonian for the Lorentz Force;
Kinetic versus Canonical Momentum;
Gauge Transformations

One can also evaluate the Hamiltonian from the Lagrangian of the Lorentz
force. The details are not quite trivial, but straightforward. The following
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result is obtained:

H =
(p− q ·A(r, t))2

2m
+ V (r) + q · Φ . (9.2)

Here, by means of a so-called gauge transformation, not only A, but
simultaneously also p, can be transformed as follows:

q ·A→ q ·A+ gradf(r, t) ,
p→ p+ gradf(r, t) , and

q · Φ→ q · Φ− ∂tf(r, t) .

The gauge function f(r, t) is arbitrary.
What should be kept in mind here is the so-called minimal substitution

p→ p− q ·A ,

which also plays a part in quantum mechanics.
From the first series of canonical equations,

ẋ =
∂H
∂px

etc., it follows that
mv ≡ p− qA .

This quantity is called the kinetic momentum, in contrast to the canonical
momentum p, which, as mentioned above, must be gauged too, if one gauges
the vector potential A. In contrast, the kinetic momentum mv is directly
measurable and gauge-invariant.

After lengthy and subtle calculations (→ a typical exercise), the second
series of canonical equations,

ṗx = −∂H
∂x

etc., yields the equation corresponding to the Lorentz force,

mv̇ = q · (E + v ×B) .



10 Coupled Small Oscillations

10.1 Definitions; Normal Frequencies (Eigenfrequencies)
and Normal Modes

Let our system be described by a Lagrangian

L =
3N∑
α=1

mα

2
ẋα − V (x1, . . . , x3N ) ,

and let
x(0) :=

(
x

(0)
1 , . . . , x

(0)
3N

)

be a stable second-order equilibrium configuration, i.e., V (x(0)) corresponds
to a local minimum of 2nd order, the forces

Fα(x0) := − ∂V
∂xα |x(0)

vanish and the quadratic form

Q :=
3N∑
i,k=1

∂2V

∂xi∂xk
ΔxiΔxk

is “positive definite”, Q > 0, as long as

Δx := x− x(0) �= 0 ,

except for the six cases where the Δxi correspond to a homogeneous transla-
tion or rotation of the system. In these exceptional cases the above-mentioned
quadratic form should yield a vanishing result.

The (3N)× (3N)-matrix

Vα,β :=
∂2V

∂xi∂xk

is therefore not only symmetric (Vα,β ≡ Vβ,α), such that it can be diagonal-
ized by a rotation in R3N , with real eigenvalues, but is also “positive”, i.e.,
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all eigenvalues are > 0 except for the above-mentioned six exceptional cases
where they are zero (the six so-called Goldstone modes). Writing

xi =: x(0)
i + ui ,

and neglecting terms of third or higher order in ui, we obtain:

L =
∑
α

mα

2
u̇2
α −

1
2

∑
α,β

Vα,βuαuβ − V (0) .

Here all masses mα can be replaced by 1 in the original equation, if one adds
a symbol ∼, i.e., by the substitution ũα :=

√
mαuα.

Thus we have

L =
3N∑
α=1

˙̃u2
α

2
− 1

2

3N∑
α,β=1

Ṽα,β ũαũβ − V (0) .

Here
Ṽα,β :=

Vα,β√
mαmβ

is again a symmetric matrix which can also be diagonalized by a rotation
in R3N (and now the rotation leaves also the kinetic energy invariant). The
diagonal values (“eigenvalues”) of the matrix are positive (with the above-
mentioned exception), so they can be written as ω2

α, with ωα ≥ 0, for α =
1, . . . , 3N , including the six zero-frequencies of the Goldstone modes.

The ωα are called normal frequencies, and the corresponding eigenvectors
are called normal modes (see below).

One should of course use a cartesian basis corresponding to the diag-
onalized quadratic form, i.e., to the directions of the mutually orthogonal
eigenvectors. The related cartesian coordinates, Qν , with ν = 1, . . . , 3N , are
called normal coordinates.

After diagonalization1, the Lagrangian is (apart from the unnecessary
additive constant V(0)):

L =
1
2

3N∑
ν=1

(
Q̇2
ν − ω2

νQ
2
ν

)
.

Previously the oscillations were coupled, but by rotation to diagonal form
in R3N they have been decoupled. The Hamiltonian corresponds exactly to
L (the difference is obvious):

H =
1
2

3N∑
ν=1

(
P 2
ν + ω2

νQ
2
ν

)
.

Here Pν is the momentum conjugate with the normal coordinate Qν .
1 The proof of the diagonalizability by a suitable rotation in R3N (ω), including

the proof of the mutual orthogonality of the eigenvectors, is essentially self-
evident. It is only necessary to know that a positive-definite quadratic form,P3N

α,β=1 Vα,βωαωβ, describes a 3N-dimensional ellipsoid in this Euclidean space,
which can be diagonalised by a rotation to the principal axes of the ellipsoid.
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10.2 Diagonalization: Evaluation of the Eigenfrequencies
and Normal Modes

In the following we replace 3N by f . The equations of motion to be solved
are:

¨̃ui = −
∑
k

Ṽi,kũk .

For simplicity, we omit the symbol ∼ in ũi.
Thus, using the ansatz ui = u

(0)
i cos(ωt− α), we obtain:

∑
k

Vi,ku
(0)
k − ω

2u
(0)
i = 0 , with i = 1, . . . , f ;

and explicitly:
⎛
⎜⎜⎜⎜⎝

V1,1 − ω2 , V1,2 , . . . , V1,f

V2,1 , V2,2 − ω2 , . . . , V2,f

. . . , . . . , , . . . , . . .

. . . , . . . , , . . . , . . .
Vf,1 , Vf,2 , . . . , Vf,f − ω2

⎞
⎟⎟⎟⎟⎠
·

⎛
⎜⎜⎜⎜⎜⎝

u
(0)
1

u
(0)
2

. . .

. . .

u
(0)
f

⎞
⎟⎟⎟⎟⎟⎠

= 0 . (10.1)

These equations have of course the trivial solution
(
u

(0)
1 , . . . , u

(0)
f

)
≡ 0 ,

which is not of interest. Nontrivial solutions exist exactly iff the determinant
of the matrix of the set of equations vanishes. This yields f (not necessarily
different) eigenfrequencies ω.

As mentioned, the squares of these eigenfrequencies are all non-negative.
The corresponding eigenvectors (normal modes), which are only determinate
up to an arbitrary factor, can be typically obtained by inserting the previously
determined eigenfrequency into the first (f−1) equations of the system (10.1),
from which the (

u
(0)
1 , u

(0)
2 , . . . , u

(0)
f−1, 1

)

can be calculated. Usually, this is straightforward, but cumbersome.
Often, however, one can considerably simplify this procedure, since for

reasons of symmetry, one already knows the eigenvectors in advance, either
completely or at least partially, before one has evaluated the eigenfrequencies,
as we shall see in the following example.

10.3 A Typical Example: Three Coupled Pendulums
with Symmetry

In the following example, consider a horizontal rod, e.g., a curtain rod, from
which three pendulums are hanging from separate threads, not necessarily
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of different length li, i = 1, 2, 3, with point masses mi at the lower ends.
The pendulums are assumed to move in an (x,z)-plane, and additionally they
are supposed to be coupled by two horizontal springs. The two springs are
fastened to the respective threads at a distance L from the uppermost point
of the pendulum considered; spring one joins the threads 1 and 2, spring two
joins the threads 2 and 32. The corresponding spring constants are k1,2 and
k2,3. (Instead of the three threads one can also use three rigid bars made
from an extremely light material.)

The kinetic and potential energies of the system are thus given by:

T =
3∑
i=1

1
2
mil

2
i ϕ̇

2 , (10.2)

V =
3∑
i=1

migli ·(1−cosϕj)+
L2

2
·
{
k1,2(ϕ2 − ϕ1)2 + k2,3(ϕ3 − ϕ2)2

}
. (10.3)

As usual,
L = T − V ;

g is the acceleration due to gravity.
In the following we shall replace

1− cosϕj by
ϕ2
j

2
;

i.e., we consider the approximation of small oscillations around the equilib-
rium position ϕj = 0. The three Lagrangian equations of the 2nd kind are:

d
dt

∂L
∂ϕ̇j

− ∂L
∂ϕj

= 0 ,

with j = 1, 2, 3. They lead to

m1l1ϕ̈1 + m1gl1ϕ1 + k1,2L
2 · (ϕ1 − ϕ2) = 0

m2l2ϕ̈2 + m2gl2ϕ2 + k1,2L
2 · (ϕ2 − ϕ1) + k2,3L

2 · (ϕ2 − ϕ3) = 0
m3l3ϕ̈3 + m3gl3ϕ3 + k2,3L

2 · (ϕ3 − ϕ2) = 0 . (10.4)

With the ansatz
ϕj(t) = ϕ

(0)
j · cos(ωt− αj)

and by dividing the line j by mj l
2
j we obtain the following linear algebraic

3× 3-equation:

2 It is again suggested that the reader should make his/her own sketch.
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⎛
⎜⎜⎝

g
l1

+ k1,2L
2

m1l21
− λ , −k1,2L

2

m1l21
, 0

−k1,2L
2

m2l22
, gl2 −

(k1,2+k2,3)L
2

m2l22
− λ , −k2,3L

2

m2l22

0 , −k2,3L
2

m3l23
, gl + k2,3L

2

m3l23
− λ

⎞
⎟⎟⎠

·

⎛
⎜⎝
ϕ

(0)
1

ϕ
(0)
2

ϕ
(0)
3

⎞
⎟⎠ = 0 , where λ = ω2 . (10.5)

The eigenfrequencies ω2
j are routinely obtained by searching for the zeroes

of the determinant of this set of equations; subsequently, also routinely, one
can determine the eigenvectors, as described above. In the present case of
three coupled equations this task is still feasible, although tedious and rather
dull. However, in the case of “left-right symmetry”, 1 ⇔ 3 (see below), one
can simplify the calculation considerably, as follows:

Assume that all parameters reflect this left-right symmetry, i.e., the La-
grangian L shall be invariant against permutation of the indices j = 1 and
j = 3, such that the system possesses mirror symmetry with respect to the
central pendulum j = 2.

We then find (without proof)3 that the eigenvectors correspond to two
different classes, which can be treated separately, viz

a) to the class I of odd normal modes :

ϕ1(t) ≡ −ϕ3(t) , ϕ2(t) ≡ 0

i.e., the external pendulums, 1 and 3, oscillate against each other, while
the central pendulum, 2, is at rest, and

b) to the class II of even normal modes,

ϕ1(t) ≡ +ϕ3(t)(�= ϕ2(t)) .

One also speaks of odd or even parity (see Part III).
For class I there is only one eigenfrequency,

ω2
1 =

g

l1
+
k1,2L

2

m1l21
.

Here the first term corresponds to oscillations of pendulum 1, i.e., with length
l1, in a gravitational field of acceleration g; the second term represents the
additional stress induced by the horizontal spring, which is ∝ k1,2.

3 For generalizations, one can refer to the script by one of the authors (U.K.) on
“Gruppentheorie und Quantenmechanik”.
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In contrast, for the second class one obtains two equations with two un-
knowns:

⎛
⎝

g
l1

+ k1,2L
2

m1l21
− ω2 , −k1,2L

2

m1l2

− 2k1,2L
2

m2l22
, gl2 + 2k1,2L

2

m2l22
− ω2

⎞
⎠ ·

(
ϕ

(0)
1

ϕ
(0)
2

)
= 0 . (10.6)

With the abbreviations

Ω1,2 :=
k1,2L

2

m1l21
,

Ω2,1 :=
k1,2L

2

m2l22
,

Ω1,1 :=
g

l1
+
k1,2L

2

m1l21
, and

Ω2,2 :=
g

l2
+
k1,2L

2

m2l22

we have:

ω2
2,3 = ω2

± =
Ω2

1,1 +Ω2
2,2

2
±

√
(Ω2

1,1 −Ω2
2,2)2

4
+ 2Ω2

1,2Ω
2
2,1 . (10.7)

Thus, of the two eigenfrequencies, one is lower, ω = ω−, the other one
higher, ω = ω+. For the lower eigenfrequency, all three pendulums oscillate
almost in phase, i.e., the springs are almost unstressed. In contrast, for the
higher eigenfrequency, ω = ω+, only pendulum 1 and pendulum 3 oscillate
almost in phase, whereas pendulum 2 moves in anti-phase (“push-pull sce-
nario”), so that the horizontal springs are strongly stressed. (We advise the
reader to make a sketch of the normal modes).

10.4 Parametric Resonance: Child on a Swing

For a single pendulum of length l, the eigenfrequency of the oscillation,

ω0 =
√
g

l
,

does not depend on the amplitude ϕ0.
This is true as long as ϕ2

0 � 1. If this condition is violated, then ω0

decreases and depends on ϕ0, i.e., for

0 < ϕ0 < π one has: ω0 =
2π
τ0

.
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Here τ0 is the time period. Using the principle of conservation of energy as
in section 3.2 one obtains the result:

τ0
4

=

√
2l
g
·
ϕ0∫

0

dϕ
1√

cosϕ− cosϕ0
.

Therefore, although it contains an amplitude-dependent factor, the oscil-
lation frequency is still inversely proportional to the square-root of l/g. If the
parameter l/g is periodically changed, then one obtains the phenomenon of
so-called parametric resonance. In the resonance case, the frequency ωP of
this parameter variation is a non-trivial integral multiple of ω0. If, for exam-
ple, the length of the pendulum is shortened, whenever it reaches one of the
two points of return (i.e., the points where the total energy is identical to
the potential energy; there the pendulum is in effect “pulled upwards”), and
then the pendulum length is increased when the next zero-crossing is reached
(i.e., there the “child on the swing” stretches out, such that the maximum
value of the kinetic energy, which in this case is identical to the total energy,
is enhanced; there the pendulum is in effect “pushed down”), then, by this
periodic parameter variation,

l → l∓ δL ,

one can increase the mechanical energy of the motion of the pendulum. In
this way the oscillation amplitude can be pumped, until it becomes stationary
due to frictional losses.

The period of the parameter variation leading to the building up of the
oscillation amplitude is

ωP = 2 · ω0

for the above example. This mechanical example is actually most instructive.
In fact, the equations are more complex, and besides paramagnetic resonance
one should also consider the usual driving-force resonance, extended to non-
linearity. However, we shall omit the mathematical details, which are far from
being straightforward.
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11.1 Translational and Rotational Parts
of the Kinetic Energy

Consider a rigid body consisting of N (≈ 1023) atoms, with fixed distances
|ri − rk| between the atoms. The velocity of an arbitrary atom is written as

vi = ṙ0 + ω × (ri − r0) .

Here r0 corresponds to an arbitrary point of reference, and ω is the vector
of the angular velocity, i.e., we have

ω = nω · ω ,

where the unit vector nω describes the axis of the rotation and

ω := |ω|

the magnitude of the angular velocity. (We assume ω > 0; this is no re-
striction, because ω is a so-called axial vector1: For example, a right-handed
rotation around the unit vector n with positive angular velocity ϕ̇ is identical
to a rotation, also right-handed, around (−n) with negative angular velocity
(−ϕ̇); for left-handed rotations one has similar statements.)

Changing the reference point r0 does not change ω. This is an essen-
tial statement. We return to this freedom of choice of the reference point in
connection with the so-called Steiner theorem below.

In spite of this fact it is convenient to proceed as usual by choosing the
center of mass as reference point, even if this changes with time, which often
happens:

r0(t)
!= Rs(t) , with Rs(t) := M−1

N∑
i=1

miri(t) .

This choice has the decisive advantage that the kinetic energy T of the rigid
body can be separated into two parts corresponding to the translational mo-
tion of the center of mass, and to a rotational energy, whereas with other
reference points it can be shown that mixed terms would also appear.
1 e.g., the vector product v1×v2 of two ordinary (i.e., polar) vectors vi is an axial

vector.
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With vs as the velocity of the center of mass we have:

T =
∑
i

mi

2
v2
i =

M

2
v2

s + Trot ,

including the rotational energy, which is ∝ ω2:

Trot =
N∑
i=1

mi

2
[ω × (r −Rs(t))]2 . (11.1)

11.2 Moment of Inertia and Inertia Tensor;
Rotational Energy and Angular Momentum

The moment of inertia Θ(nω) of a system K with respect to rotations around
a given axis nω through the center of mass can thus be shown from (11.1) to
satisfy the equation

Trot =
1
2
Θ(nω)ω2 ,

and can be calulated as follows:

Θ(nω) =
N∑
i=1

mir
2
i,⊥ , or as an integral:

Θ(nω) =
∫

K

(r)dV r2⊥ .

Here 
(r) is the mass density and r⊥ is the perpendicular distance from
the axis of rotation. At first glance it appears as if we would be forced, for
extremely asymmetric systems, to re-calculate this integral for every new
rotation direction. Fortunately the situation is much simpler. For a given
system a maximum of six integrals suffices. This is at the expense of defining

a mathematical entity
↔
θ with two indices and with transformation properties

similar to a product of two components of the same vector (i.e., similar to
vivk), the components θi,k = θk,i of the so-called inertia tensor, as derived in
the following:

Firstly we apply the so-called Laplace identity
[a× b]2 ≡ a2b2 − (a · b)2 ,

and obtain explicitly, by using the distance vector ri −Rs with components
(xi, yi, zi):

Trot =
1
2

N∑
i=1

mi

[
ω2(ri −Rs)2 − (ω · (ri −Rs))2

]

=
1
2

N∑
i=1

mi ·
[
ω2
x · (yi + zi)2 + ω2

y · (zi + xi)2 + ω2
z · (xi + yi)2

−2ωxωy · xiyi − 2ωyωz · yizi − 2ωzωx · ziyi] . (11.2)
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As a consequence, the kinetic energy is

T ≡ 1
2
Mv2

s +
1
2
Θ(nω)ω2 ,

with a moment of inertia Θ(nω), which depends on the direction nω of the
rotation vector according to the following statement:

For
ω̂ = nω =

ω

|ω|
we have

Θ(nω) ≡
3∑

j,k=1

θj,kω̂jω̂k ,

with the so-called inertia tensor θj,k, j, k = 1, 2, 3, which is a real symmet-
ric 3 × 3-matrix, where the diagonal elements and off-diagonal elements are
defined by

θx,x :=
∫

K
dV 
 ·

(
y2 + z2

)
, θx,y = θy,x := −

∫

K
dV 
 · xy, etc. (11.3)

These formulae can be unified (with x =: x1, y =: x2, z =: x3) to the
following expression:

θj,k =
∫

K
dV 
 ·

{
(x2

1 + x2
2 + x2

3) · δj,k − xjxk
}
.

Here δj,k is the Kronecker delta, defined as δj,k = 1 for j = k, and δj,k = 0
for j �= k.

At this point we shall summarize the results. For the rotational energy
one obtains

Trot =
1
2
Θ(ω̂)ω2 ≡ 1

2

3∑
j,k=1

ωjθj,kωk . (11.4)

Here the double sum can be shortened to

Trot ≡
1
2
ω·
↔
θ ·ω .

Similarly one can show that the angular momentum, L, typically with
respect to an axis of rotation through the center of mass, can also be expressed
by the inertia tensor, e.g., for j = 1, 2, 3:

Lj =
3∑

k=1

θj,kωk . (11.5)

This corresponds to the short version L ≡
↔
θ ·ω.
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11.3 Steiner’s Theorem; Heavy Cylinder
on an Inclined Plane; Physical Pendulum

Steiner’s theorem states that for a rotation about an axis nω not passing
through the center of mass, but with a (perpendicular) distance l⊥ from this
point, the moment of inertia is related to the “central moment” Θ(cm)(nω)
(i.e., for a parallel rotation axis through the center of mass) by the following
simple expression:

Θ(l⊥,nω) ≡M · l2⊥ +Θ(cm)(nω) .

The proof of Steiner’s theorem will be omitted here, since it is very ele-
mentary. We only note that the reference point r0 is not Rs, but Rs + l⊥.

As an example consider a heavy roller on an inclined plane. We assume
that the mass distribution of the system has cylindrical symmetry. Let M be
the total mass of the cylinder, while the radius is R. We assume further that
the moment of inertia w.r.t. a longitudinal axis through the center of mass
of the cylinder is Θ(s).

Let the slope of the inclined plane, which is assumed to be parallel to the
cylinder axis, be characterized by the angle α. We then have the Lagrangian

L =
1
2

(
Mv2

s +Θ(s)ϕ̇2
)

+Mgeff · s .

Here s stands for the distance rolled, while geff = g · tanα.
Furthermore, one can set

v2
s = ṡ2 and ϕ =

s

R
,

thus obtaining a Lagrangian that depends only on s and ṡ. The rest of the
analysis is elementary2.

Up till now, in our description of the motion of the roller, we have con-
centrated on the cylinder axis and the center of mass of the cylinder, which
lies on this axis; and so we have explicitly obtained the translational part of
the kinetic energy. But equivalently, we can also concentrate on the rolling
motion of the tangential point on the surface of the cylinder, i.e., where the
surface of the roller touches the inclined plane. Then the translational part
does not enter explicitly; instead, it is concealed in the new moment of in-
ertia. This moment must be calculated according to Steiner’s theorem with
respect to the axis of contact. Therefore, we have

ΘR := Θ(s) +MR2 , i.e., we obtain L ≡ T − V =
1
2
ΘRϕ̇

2 +Mgeffs .

Both descriptions are of course equivalent.
2 Below, we shall return to this seemingly elementary problem, which (on exten-

sion) is more complicated than one might think at first sight.
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We should mention in this context that modifications of this problem fre-
quently appear in written examination questions, in particular the problem of
the transition from rolling motion down an inclined segment to a subsequent
horizontal motion, i.e., on a horizontal plane segment, and we also mention
the difference between gliding and rolling motions (see below).

As an additional problem we should also mention the physical pendulum,
as opposed to the mathematical pendulum (i.e., a point mass suspended from
a weightless thread or rod), on which we concentrated previously. The physical
pendulum (or compound pendulum) is represented by a rigid body, which is
suspended from an axis around which it can rotate. The center of mass is at
a distance s from the axis of rotation, such that

L ≡ T − V ≡ 1
2
Θϑ̇2 −Mgs · (1− cosϑ) .

Here M is the mass of the body, and

Θ := Θ(s) +Ms2

is the moment of inertia of the rigid body w.r.t. the axis of rotation.
The oscillation eigenfrequency for small-amplitude oscillations is therefore

ω0 =
√

g

lred
,

where the so-called reduced length of the pendulum, lred, is obtained from the
following identity:

lred =
Θ

Ms
.

At this point we shall mention a remarkable physical “non-event” occur-
ring at the famous Gothic cathedral in Cologne. The towers of the medieval
cathedral were completed in the nineteenth century and political representa-
tives planned to highlight the completion by ringing the so-called Emperor’s
Bell, which was a very large and powerful example of the best technology of
the time. The gigantic bell, suspended from the interior of one of the towers,
was supposed to provide acoustical proof of the inauguration ceremony for
the towers. But at the ceremony, the bell failed to produce a sound, since
the clapper, in spite of heavy activity of the ringing machinery, never actu-
ally struck the outer mantle of the bell3. This disastrous misconstruction can
of course be attributed to the fact that the angle of deflection ϑ1(t) of the
clapper as a function of time was always practically identical with the angle
of deflection of the outer mantle of the bell, i.e., ϑ2(t) ≈ ϑ1(t) (both angles
measured from the vertical direction). This is again supported by a diagram
(Fig. 11.1).

3 An exercise can be found on the internet, [2], winter 1992, file 8.
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Fig. 11.1. Schematic diagram for a bell. The diagram shows the mantle of the
bell (the outer double lines, instantaneously swinging to the right) and a clapper
(instantaneously swinging to the left). It is obvious from this sketch that there
are two characteristic angles for the bell, the first one characterizing the deviation
of the center of mass (without clapper) from the vertical, the second one for the
clapper itself.

The reason for the failure, which is often used as a typical examination
question on the so-called double compound pendulum, is that the geometrical
and material parameters of the bell were such that

lred|{bell with fastened clapper} ≈ lred|{clapper alone} .

Another remarkable example is the reversion pendulum. If we start from
the above-mentioned equation for the reduced length of the pendulum, inser-
tion of the relation

Θ
!= Θ(s) +Ms2 gives lred(s) !=

Θ(s)

Ms
+ s .

This yields a quadratic equation with two solutions satisfying

s1 + s2 = lred .

For a given system, i.e., with given center of mass, we thus obtain two solu-
tions, with

s2 = lred − s1 .

If we let the pendulum oscillate about the first axis, i.e., corresponding to
the first solution s1, then, for small oscillation amplitudes we obtain the
oscillation eigenfrequency

ω0 =
√

g

lred
.

If, subsequently, after reversion, we let the pendulum oscillate about the par-
allel second axis, i.e., corresponding to s2, then we obtain the same frequency.
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11.4 Inertia Ellipsoids; Poinsot Construction

The positive-definite quadratic form

2Trot =
3∑

i,k=1

θi,kωiωk

describes an ellipsoid within the space R3(ω), the so-called inertia ellipsoid.
This ellipsoid can be diagonalized by a suitable rotation, and has the

normal form

2Trot =
3∑

α=1

Θα · ω2
α ,

with so-called principal moments of inertia Θα and corresponding principal
axes of lengths

aα =
√

2Trot

Θα
.

(See Fig. 11.2.)
Every rigid body, however arbitrarily complex, possesses such an inertia

ellipsoid. This is a smooth fictitious body, in general possessing three principal
axes of different length, and where the directions of the principal axes are not
easily determined. However, if the body possesses a (discrete!) n-fold axis of
rotation4, with n ≥ 3, then the inertia ellipsoid is an ellipsoid of (continuous!)
revolution around the symmetry axis.

As a practical consequence, e.g., for a three-dimensional system with
a square base, this implies the following property. If the system is rotated
about an arbitrary axis lying in the square, then the rotational energy of
the system does not depend on the direction of the rotation vector ω, e.g.,
whether it is parallel to one of the edges or parallel to one of the diagonals;
it depends only on the magnitude of the rotational velocity.

The angular momentum L is calculated by forming the gradient (w.r.t.
ω) of Trot(ω). Thus

L(ω) = gradωTrot(ω) , i.e., Lα =
∂Trot

∂ωα
= Θαωα .

Since the gradient vector is perpendicular to the tangent plane of Trot(ω),
one thus obtains the so-called Poinsot construction:
For given vector of rotation the angular momentum L(ω) is by construc-
tion perpendicular to the tangential plane of the inertial ellipsoid Trot(ω) =
constant corresponding to the considered value of ω. This can be seen in
Fig. 11.2.

4 This means that the mass distribution of the system is invariant under rotations
about the symmetry axis by the angle 2π/n.
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Fig. 11.2. Inertia ellipsoid and Poinsot con-
struction. For the typical values a := 2 and
b := 1, a (ωx, ωy)-section of an inertia ellip-

soid
ω2
1

Θ1
+ . . . +

ω2
3

Θ3
= 2 · Trot (with, e.g.,

a2 ≡ 2·Trot
Θ1

) and an initial straight line
(here diagonal) through the origin is plot-
ted as a function of ωx. The second (exter-
nal) straight line is perpendicular to the tan-
gential plane of the first line, i.e., it has the
direction of the angular momentum L. This
is the so-called Poinsot construction

One can also define another ellipsoid, which is related to the inertia el-
lipsoid, but which is complementary or dual to it, viz its Legendre transform.
The transformed ellipsoid or so-called Binet ellipsoid is not defined in the
space R3(ω), but in the dual space R3(L) by the relation

2Trot =
3∑

α=1

L2
α

Θα
.

Instead of the angular velocity ω, the angular momentum L is now central.
In fact, L and ω are not parallel to each other unless ω has the direction of
a principal axis of the inertia ellipsoid.

We shall return to this point in Part II, while discussing crystal optics,
when the difference between the directions of the electric vectors E and D
is under debate.

11.5 The Spinning Top I: Torque-free Top

A spinning top is by definition a rigid body supported at a canonical reference
point r0 (see above), where in general v0 �= 0. For example, r0 is the point
of rotation of the rigid body on a flat table. In this case, the gravitational
forces, virtually concentrated at the center of mass, produce the following
torques w.r.t. the point of rotation of the top on the table:

Dr0 = (Rs − r0)× (−Mgẑ) .

A torque-free top is by definition supported at its center of mass; there-
fore no gravitational torque does any work on the top. The total angular
momentum L is thus conserved, as long as external torques are not applied,
which is assumed. Hence the motion of the torque-free top can be described as
a “rolling of the inertia ellipsoid along the Poinsot plane”, see above. In this
way, ω-lines are generated on the surface of the inertia ellipsoid as described
in the following section.
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11.6 Euler’s Equations of Motion
and the Stability Problem

We now wish to describe the stability of the orbits of a torque-free top. There-
fore we consider as perturbations only very weak transient torques. Firstly,
we have

ω(t) =
3∑

α=1

ωα(t)eα(t) and L =
3∑

α=1

Lα(t)eα(t) .

Here the (time-dependent) unit vectors eα(t) describe the motion of the prin-
cipal axes of the (moving) inertia ellipsoid; ωα(t) and Lα(t) are therefore
co-moving cartesian coefficients of the respective vectors ω and L; i.e., the
co-moving cartesian axes eα(t), for α = 1, 2, 3, are moving with the rigid
body, to which they are fixed and they depend on t, whereas the axes ej , for
j = x, y, z, are fixed in space and do not depend on t:

Lα(t) ≡ Lα(t)|co−moving ,

ωα(t) ≡ ωα(t)|co−moving .

But
d
dt
eα = ω × eα ;

hence

d
dt
L =

3∑
α=1

(
dLα
dt

)

|co−moving

eα(t) + ω ×L = δD(t) , (11.6)

where the perturbation on the right describes the transient torque.
We also have

d
dt
ω =

3∑
α=1

(
dωα
dt

)

|co−moving

eα(t) .

Hence in the co-moving frame of the rigid body:
(

dLα
dt

)
+ ωβLγ − ωγLβ = δDα

etc., and with Lα = Θαωα we obtain the (non-linear) Euler equations for the
calculation of the orbits ω(t) on the surface of the inertia ellipsoid :

Θα ·
(

dωα
dt

)
+ ωβωγ · (Θγ −Θβ) = δDα(t) ,

Θβ ·
(

dωβ
dt

)
+ ωγωα · (Θα −Θγ) = δDβ(t) ,
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Θγ ·
(

dωγ
dt

)
+ ωαωβ · (Θβ −Θα) = δDγ(t) . (11.7)

Let us now consider the case of an ellipsoid with three different principal
axes and assume without lack of generality that

Θα < Θβ < Θγ .

In (11.7), of the three prefactors

∝ ωβωγ ,∝ ωγωα and ∝ ωαωβ

the first and third are positive, while only the second (corresponding to the
so-called middle axis) is negative. As a consequence, small transient perturba-
tions δDα and δDγ lead to elliptical motions around the respective principal
axis, i.e.,

∝
(
εβω

2
β + εγω

2
γ

)
and ∝

(
εαω

2
α + εβω

2
β

)
,

whereas perturbations corresponding to δDβ may have fatal effects, since in
the vicinity of the second axis the ω-lines are hyperbolas,

∝
(
εαω

2
α − εγω2

γ

)
,

i.e., along one diagonal axis they are attracted, but along the other diagonal
axis there is repulsion, and the orbit runs far away from the axis where it
started.

The appearance of hyperbolic fixed points is typical for the transition to
chaos, which is dicussed below.

Motion about the middle axis is thus unstable.
This statement can be shown to be plausible by plotting the orbits in

the frame of the rotating body for infinitesimally small perturbations, δD →
0, The lines obtained in this way on the surface of the inertia ellipsoid by
integration of the three coupled equations (11.7) describe the rolling motion
of the inertia ellipsoid on the Poinsot plane. Representations of these lines
can be found in almost all relevant textbooks.

Another definition for the ω-lines on the inertia ellipsoid is obtained as
follows: they are obtained by cutting the inertia ellipsoid

3∑
α=1

Θαω
2
i = 2Trot = constant′ .

with the so-called L2 or swing ellipsoid , i.e., the set

3∑
α=1

Θ2
αω

2
i = L2 = constant′ .

We intentionally omit a proof of this property, which can be found in many
textbooks.
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To calculate the Hamiltonian it is not sufficient to know

d
dt
ωα|co−moving .

Therefore we proceed to the next section.

11.7 The Three Euler Angles ϕ, ϑ and ψ;
the Cardani Suspension

Apart from the location of its center of mass, the position of a rigid body
is characterized by the location in space of two orthogonal axes fixed within
the body: e3 and e1. For example, at t = 0 we may assume

e3 ≡ ẑ and e1 (without prime) ≡ x̂ .

For t > 0 these vectors are moved to new directions:

e3(0)→ e3(t)(≡ e3) and e1 → e′1 (now with prime) .

This occurs by a rotation DR, which corresponds to the three Euler angles
ϕ, χ and ψ, as follows (the description is now general):

a) Firstly, the rigid body is rotated about the z-axis (which is fixed in space)
by an angle of rotation ϕ, in such a way that the particular axis of the
rigid body corresponding to the x̂ direction is moved to a so-called node
direction e1.

b) Next, the particular axis, which originally (e.g., for t = 0) points in the
ẑ-direction, is tilted around the nodal axis e1 in the e3 direction by an
angle ϑ = arccos(ẑ · e3).

c) Finally, a rotation by an angle ψ around the e3 axis follows in such a way
that the nodal direction, e1, is rotated into the final direction e′1.

As a consequence we obtain

DR ≡ D3)
e3

(ψ) · D2)
e1

(ϑ) · D1)
ẑ (ϕ) ,

where one reads from right to left, and the correct order is important, since fi-
nite rotations do not commute (only infinitesimal rotations would commute).
A technical realization of the Euler angles is the well-known Cardani sus-
pension, a construction with a sequence of three intertwined rotation axes
in independent axle bearings (see the following text). In particular this is
a realization of the relation

ω = ψ̇e3 + ϑ̇e1 + ϕ̇ẑ ,

which corresponds to the special case of infinitesimal rotations; this relation
will be used below.
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In the following we shall add a verbal description of the Cardani suspen-
sion, which (as will be seen) corresponds perfectly to the Euler angles.

The lower end of a dissipationless vertical rotation axis, 1 (=̂ ± ẑ, cor-
responding to the rotation angle ϕ), branches into two axle bearings, also
dissipationless, supporting a horizontal rotation axis, 2 (= ±e1), with corre-
sponding rotation angle ϑ around this axis.

This horizontal rotation axis corresponds in fact to the above-mentioned
nodal line; in the middle, this axis branches again (for ϑ = 0: upwards and
downwards) into dissipationless axle bearings, which support a third rotation
axis, 3, related to the direction e3 (i.e., the figure axis), with rotation angle
ψ. For finite ϑ, this third axis is tilted with respect to the vertical plane
through ẑ and e1. The actual top is attached to this third axis.

Thus, as mentioned, for the so-called symmetrical top, i.e., where one is
dealing with an inertia ellipsoid with rotational symmetry, e.g.,

Θ1 ≡ Θ2 ,

the (innermost) third axis of the Cardani suspension corresponds to the so-
called figure axis of the top.

The reader is strongly recommended to try to transfer this verbal descrip-
tion into a corresponding sketch! The wit of the Cardani suspension is that
the vertical axis 1 branches to form the axle bearings for the horizontal nodal
axis, 2, and this axis provides the axle bearings for the figure axis 3.

To aid the individual imagination we present our own sketch in Fig. 11.3.
The importance of the Euler angles goes far beyond theoretical mechanics

as demonstrated by the technical importance of the Cardani suspension.

Fig. 11.3. The figure illustrates a so-called Cardani sus-
pension, which is a construction involving three different
axes of rotation with axle bearings, corresponding to the
Euler angles ϕ, ϑ and ψ
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11.8 The Spinning Top II: Heavy Symmetric Top

The “heavy symmetric top” is called heavy, because it is not supported at
the center of mass, so that gravitational forces now exert a torque, and it is
called symmetric, because it is assumed, e.g., that

Θ1 ≡ Θ2(�= Θ3) .

The axis corresponding to the vector e3 is called the figure axis. Additionally
one uses the abbreviations

Θ⊥ := Θ1 ≡ Θ2 and Θ|| := Θ3 .

Let us calculate the Lagrangian

L(ϕ, ϑ, ψ, ϕ̇, ϑ̇, ψ̇) .

Even before performing the calculation we can expect that ψ and ϕ are cyclic
coordinates, i.e., that

∂L
∂ϕ

=
∂L
∂ψ

= 0 ,

such that the corresponding generalized momenta

pϕ :=
∂L
∂ϕ̇

and pψ :=
∂L
∂ψ̇

are conserved quantities.
Firstly, we express the kinetic energy

Trot :=
1
2
·
[
Θ⊥ ·

(
ω2

1 + ω2
2

)
+Θ||ω2

3

]

in terms of the Euler angles by

ω = ψ̇e3 + ϑ̇e1 + ϕ̇ẑ .

Scalar multiplication with e3, e1 and e2 yields the result5:

ω3 = ψ̇ + ϕ̇ · cosϑ ,

ω1 = ϑ̇ and
ω2 = ϕ̇ · sinϑ .

As a consequence, we have

Trot =
Θ⊥
2
·
(
ϑ̇2 + sin2 ϑϕ̇2

)
+
Θ||
2
·
(
ψ̇ + ϕ̇ cosϑ

)2

. (11.8)

5 because e3, ẑ and e2 are co-planar, such that e3 · ẑ = cosϑ and e2 · ẑ = sinϑ.
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Additionally we have the potential energy

V = Mgs · cosϑ , where s · cosϑ

is the z-component of the vector (Rs − r0). The Lagrangian is

L = Trot − V .

Obviously ψ and ϕ are cyclic, and the above-mentioned generalized momenta
are conserved, viz the following two components of the angular momentum L:

pψ =
∂Trot

∂ψ̇
= Θ|| · (ψ̇ + ϕ̇ cosϑ) = Θ||ω3 ≡ L3 ≡ L(t) · e3(t) , and

pϕ =
∂Trot

∂ϕ̇
= Θ⊥ · sin2 ϑϕ̇+Θ|| · (ψ̇ + ϕ̇ cosϑ) cosϑ

= Θ2ω2 sinϑ+Θω3 cosϑ
= L2 sinϑ+ L3 cosϑ ≡ Lz ≡ L(t) · ẑ .

The symmetric heavy top thus has exactly as many independent6 con-
served quantities as there are degrees of freedom. The number of degrees of
freedom is f = 3, corresponding to the three Euler angles, and the three
independent conserved quantities are:

a) The conservation law for the (co-moving!) component L3 of the angu-
lar momentum, i.e., the projection onto the (moving!) figure axis. (This
conservation law is remarkable, in that the figure axis itself performs
a complicated motion. On the one hand the figure axis precesses around
the (fixed) z-axis; on the other hand, it simultaneously performs so-called
nutations, i.e., the polar angle ϑ(t) does not remain constant during the
precession, but performs a more-or-less rapid periodic motion between
two extreme values.)
For the asymmetric heavy top this conservation law would not be true.

b) The component Lz of the angular momentum (fixed in space!).
c) As a third conservation law we have, of course, conservation of energy,

since on the one hand the Lagrangian L does not depend explicitly on
time, while on the other hand we have used skleronomous coordinates,
i.e., the relation between the Euler angles and the cartesian coordinates
x, y and z does not explicitly depend on time.

6 Two dependent conserved quantities are e.g., the Hamiltonian H of a conservative
system and any function F (H).
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Systems for which the number of independent conserved quantities agrees
with the number f of degrees of freedom are termed integrable. They are
quasi especially simple and set the standards in many respects.

If one fixes the values of the independent conserved quantities, then in 2f -
dimensional phase-space (with the canonical phase-space variables p1, . . . , pf
and q1, . . . , qf ) one generates an f -dimensional hypersurface, which for f = 2
has the topology of a torus.

However, it is obvious that most systems are non-integrable, since gener-
ically the number of degrees of freedom is larger than the number of con-
servation theorems. This applies, e.g., to so-called three-body problems, and
it would also apply to the asymmetric heavy top, as mentioned above, or to
the double pendulum. It is no coincidence that in the usual textbooks1 little
attention is paid to non-integrable systems because they involve complicated
relations, which require more mathematics than can be assumed on a more
or less elementary level.2

Linear systems are, as we have seen above, always simple, at least in
principle. In contrast, for non-linear non-integrable systems chaotic behavior
occurs. In most cases this behavior is qualitatively typical and can often be
understood from simple examples or so-called scenarios. One of these scenar-
ios concerns the so-called sensitive dependence on the initial conditions, e.g.
as follows.

Consider a non-linear system of differential equations

dX(t)
dt

= f(t;X0) ,

where X0 are the initial values of X(t) for t = t0. We then ask whether the
orbits X(t) of this non-linear “dynamical system” depend continuously on
the initial values in the limit t → ∞; or we ask how long the orbits remain
in an ε-neighborhood of the initial values.

1 This text makes no exception.
2 It is mostly unknown and symptomatic for the complexity of nonintegrable sys-

tems that Sommerfeld, who was one of the greatest mathematical physicists of
the time, wrote in the early years of the twentieth century a voluminous book
containing three volumes on the “Theory of the Spinning Top”.
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In particular one might ask for the properties of the derivative

dX(t;X0 + ε)
dε

as a function of t. For “malicious” behavior of the system. e.g., for turbulent
flow, weather or stock-exchange or traffic forecasting etc., the limits ε → 0
and t→∞ cannot be interchanged. This has the practical consequence that
very small errors in the data accumulation or in the weighting can have
irreparable consequences beyond a characteristic time for the forecasting or
turbulent flow (the so-called butterfly effect).

However, these and other topics lead far beyond the scope of this text
and shall therefore not be discussed in detail, especially since a very readable
book on chaotic behavior already exists [9].

Some of these aspects can be explained by the above example of the
spherical pendulum, see section 8.2. As long as the length of the thread of the
pendulum is constant, the system is conservative in the mechanical sense; or
in a mathematical sense it is describable by an autonomous system of two
coupled ordinary differential equations for the two variables ϕ(t) and ϑ(t).
Thus the number of degrees of freedom is f = 2, which corresponds perfectly
to the number of independent conserved quantities, these being the vertical
component of the angular momentum plus the sum of kinetic and potential
energies: the system is integrable.

However, the integrability is lost if the length of the pendulum depends
explicitly on t and/or the rotational invariance w.r.t. the azimuthal angle ϕ
is destroyed3. In the first case the system of coupled differential equations
for the variables ϑ and ϕ becomes non-autonomous ; i.e., the time variable t
must be explicitly considered as a third relevant variable.

In the following we shall consider autonomous systems. In a 2f -dimen-
sional phase space Φ of (generalized) coordinates and momenta we consider
a two-dimensional sub-manifold, e.g., a plane, and mark on the plane the
points, one after the other, where for given initial values the orbit intersects
the plane. In this way one obtains a so-called Poincaré section, which gives
a condensed impression of the trajectory, which may be very “chaotic” and
may repeatedly intersect the plane. For example, for periodic motion one
obtains a deterministic sequence of a finite number of discrete intersections
with the plane; for nonperiodic motion one typically has a more or less chaotic
or random sequence, from which, however, on detailed inspection one can
sometimes still derive certain nontrivial quantitative laws for large classes of
similar systems.

3 This applies, e.g., to the so-called Henon-Heiles potential V (x1, x2) := x2
1 +

x2
2 + ε · (x2

1x2 − x3
2
3

), which serves as a typical example of non-integrability and
“chaos” in a simple two-dimensional system; for ε 	= 0 the potential is no longer
rotationally invariant, but has only discrete triangular symmetry.
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A typical nonintegrable system, which has already been mentioned, is
the double pendulum, i.e., with L(ϑ1, ϑ2, ϑ̇1, ϑ̇2), which was discussed in Sect.
11.2. If here the second pendulum sometimes “flips over”, the sequence of
these times is of course deterministic, but practically “random”, i.e., non-
predictable, such that one speaks of deterministic chaos ; this can easily be
demonstrated experimentally.
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13.1 D’Alembert’s Principle

Consider a system moving in n-dimensional space with (generalized) coor-
dinates q1,..,qn, but now under the influence of constraints. The constraints
can be either (i) holonomous or (ii) anholonomous . In the first case a single
constraint can be formulated, as follows: f(q1, q2, . . . , qn, t)

!= 0, i.e., the con-
straint defines a time-dependent (n−1)-dimensional hypersurface inRn(q). If
one has two holonomous constraints, another condition of this kind is added,
and the hypersurface becomes (n− 2)-dimensional, etc..

In the second case we may have:

n∑
α=1

aα(q1, . . . , qn, t)dqα + a0(q1, . . . , qn, t)dt
!= 0 , (13.1)

where (in contrast to holonomous constraints, for which necessarily aα ≡ ∂f
∂qα

,
and generally but not necessarily, a0 ≡ ∂f

∂t ) the conditions of integrability,

∂aα
∂qβ
− ∂aβ
∂qα

≡ 0, ∀α, β = 1, . . . , n ,

are not all satisfied; thus in this case one has only local hypersurface elements,
which do not fit together.

If the constraints depend (explicitly) on the time t, they are called
rheonomous, otherwise skleronomous.

In the following we shall define the term virtual displacement : in contrast
to real displacements, for which the full equation (13.1) applies and which we
describe by exact differentials dqα, the virtual dispacements δqα are written
with the variational sign δ, and instead of using the full equation (13.1), for
the δqα the following shortened condition is used:

n∑
α=1

aα(q1, . . . , q2, t)δqα
!= 0 . (13.2)
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In the transition from equation (13.1) to (13.2) we thus always put δt ≡ 0
(although dt may be �= 0), which corresponds to the special role of time in
a Galilean transformation1, i.e., to the formal limit c→∞.

To satisfy a constraint, the system must exert an n-dimensional force
of constraint Z.2 (For more than one constraint, μ = 1, . . . , λ, of course,
a corresponding set of forces Z(μ) would be necessary, but for simplicity in
the following we shall only consider the case n = 1 explicitly, where the index
μ can be omitted.)

D’Alembert’s principle applies to the constraining forces:

a) For all virtual displacements a force of constraint does no work
n∑
α=1

Zαδqα ≡ 0 . (13.3)

The following two statements are equivalent:
b) A force of constraint is always perpendicular to the instantaneous hyper-

surface or to the local virtual hypersurface element, which corresponds to
the constraint; e.g., we have δf(q1, . . . , qn, t) ≡ 0 or equation (13.2).

c) A so-called Lagrange multiplier λ exists, such that for all

α = 1, . . . , n : Zα = λ · aα(q1, . . . , qn, t) .

These three equivalent statements have been originally formulated in
cartesian coordinates; but they also apply to generalized coordinates, if the
term force of constraint is replaced by a generalized force of constraint.

Now, since without constraints

L = T − V

while for cartesian coordinates the forces are

Fα = − ∂V
∂xα

it is natural to modify the Hamilton principle of least action in the presence
of a single holonomous constraint, as follows:

dS[q1 + εδq1, . . . , qn + εδqn]
dε |ε≡0

=

=

t2∫

t=t1

dt{L(q1, . . . , qn, q̇1, . . . , q̇n, t) + λ · f(q1, . . . , qn, t)} != 0 . (13.4)

1 This is also the reason for using a special term in front of dt in the definition
(13.1) of anholonomous constraints.

2 As stated below, here one should add a slight generalization: force → general-
ized force; i.e.,

Pn
β=1 Z̃βδxβ ≡ Pn

α=1 Zαδqα, where the Z̃β are the (cartesian)
components of the constraining force and the Zα the components of the related
generalized force.
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Analogous relations apply for more than one holonomous or anholonomous
constraint. Instead of the Lagrange equations of the second kind we now have:

− d
dt

∂L
∂q̇α

+
∂L
∂qα

+ λ · ∂f
∂qα

= 0 . (13.5)

For anholonomous constraints the term

λ · ∂f
∂qα

is replaced by λ · aα, and for additional constraints one has a sum of similar
terms: ∑

μ

λ(μ) · a(μ)
α .

These are the Lagrange equations of the 2nd kind with constraints. Ori-
ginally they were formulated only in cartesian coordinates as so-called La-
grange equations of the 1st kind, which were based on the principle of d’
Alembert and from which the Lagrange equations of the 2nd kind were de-
rived. Many authors prefer this historical sequence.

Textbook examples of anholonomous constraints are not very common.
We briefly mention here the example of a skater. In this example the con-
straint is such that the gliding direction is given by the angular position of
the skates. The constraints would be similar for skiing.

13.2 Exercise: Forces of Constraint for Heavy Rollers
on an Inclined Plane

For the above-mentioned problem of constraints additional insight can again
be gained from the seemingly simple problem of a roller on an inclined plane.
Firstly we shall consider the Euler angles :

– ϕ is the azimuthal rotation angle of the symmetry axis ±e3 of the roller
about the fixed vertical axis (±ẑ-axis); this would be a “dummy” value,
if the plane were not inclined. We choose the value ϕ ≡ 0 to correspond
to the condition that the roller is just moving down the plane, always in
the direction of steepest descent.

– ϑ is the tilt angle between the vector ê3 and the vector ẑ; usually ϑ = π/2.
– Finally, ψ is the azimuthal rotation angle corresponding to the distance

Δs = R ·Δψ

moved by the perimeter of the roller; R is the radius of the roller.



92 13 Lagrange Formalism II: Constraints

In the following we consider the standard assumptions3

ϕ ≡ 0 and ϑ ≡ π

2
,

i.e., we assume that the axis of the circular cylinder lies horizontally on the
plane, which may be not always true.

In each case we assume that the Lagrangian may be written

L = T − V =
M

2
v2
s +

Θ||
2
ψ̇2 +Mgs · sinα ,

where α corresponds to the slope of the plane, and s is the distance corre-
sponding to the motion of the center of mass, i.e., of the axis of the roller.

We now consider three cases, with vs = ṡ:

a) Let the plane be perfectly frictionless, i.e., the roller slides down the
inclined plane. The number of degrees of freedom is, therefore, f = 2; they
correspond to the generalized coordinates s and ψ. As a consequence, the
equation

d
dt
∂L
∂ṡ
− ∂L
∂s

= 0

results in
Ms̈ = Mg sinα .

In contrast the angle ψ is cyclic, because

∂L
∂ψ

= 0 ;

therefore one has

vs = vs|0 + geff · (t− t0) and ψ̇ = constant ,

i.e., the heavy roller slides with constant angular velocity and with effec-
tive gravitational acceleration

geff := g sinα ,

which is given by the slope tanα of the inclined plane.
b) In contrast, let the plane be perfectly rough, i.e., the cylinder rolls down

the plane. Now we have f ≡ 1; and since

ψ̇ =
vs
R

: L ≡ M

2
v2
s +

Θ||
2
v2
s

R2
+Mgeffs .

3 One guesses that the problem can be made much more complex, if the roller does
not simply move down the plane in the direction of steepest descent, but if ϕ
and/or ϑ were allowed to vary; however, even to formulate these more complex
problems would take some effort.
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Therefore

vs ≡ Rψ̇ = vs|0 +
M · geff
Meff

· (t− t0) , with Meff := M ·
(

1 +
Θ||
MR2

)
.

The holonomous (and skleronomous) constraint s − Rψ = 0 has been
explicitly eliminated, such that for the remaining degree of freedom the
simple Lagrange equation of the second kind without any constraint could
be used directly.
But how do the constraining forces originate? (These are frictional forces
responsible for the transition from sliding to rolling.) The answer is ob-
tained by detailed consideration, as follows:

c) The plane is rough, but initially 0 ≤ Rsψ̇ < vs (e.g., the rolling is slow or
zero). Now consider the transition from f = 2 to f ≡ 1.
We have,

(1), Mv̇s = Fg − Ffr and ,

(2), Θ||ψ̈ = R · Fg .

(Here Fg = Mg sinα is the constant gravitational force applied to the axis,
directed downwards, while (−Ffr) is the frictional force, ∝ ψ̇, applied to
the tangential point of rolling, and with upward direction.)
According to (b), the angular velocity ψ̇ increases (e.g., from zero) ∝ t as
the cylinder rolls downwards; at the same time the gravitational force is
constant; thus, after a certain time τc the frictional force counteracts the
gravitational one and vs = Rψ̇. As a consequence, a weighted sum of the
two above equations yields after this time:

(
M +

Θ||
R2

)
v̇s = Fg .

Here one sees explicity how d’Alembert’s principle (that the forces of con-
straint do no work, one considers virtual displacements) becomes satisfied
after τc: Then we have

δA = F fr · δr +Dψδψ = −Fgds+RFfr dψ = 0 for ds = Rdψ .

Another consequence of the above facts is that a soccer player should avoid
letting the football roll on the grass, because the ball is slowed down due to
rolling:

M →
(
M +

Θ||
R2

)
.
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14.1 Newton’s Equation
in an Accelerated Reference Frame

Thus far we have considered reference frames moving at a constant velocity.
In the following, however, we shall consider the transition to accelerated coor-
dinate systems, where the accelerated coordinates and basis vectors are again
denoted by a prime, while r0(t) is the radius vector of the accelerated origin.

Keeping to the limit v2 � c2, i.e., to the Newtonian theory, the basic
equation is

mt
d2

dt2

{
r0(t) +

3∑
i=1

x′i(t)e
′
i(t)

}
≡ F .

The force F on the r.h.s. will be called the true force1, in contrast to ficti-
tious forces, which are also called inertial forces, appearing below in equation
(14.1) on the r.h.s., all multiplied by the inertial mass mt.

By systematic application of the product rule and the relation

de′i
dt

= ω × e′i , with v′(t) =
3∑
i=1

ẋ′i(t)e
′
i(t) ,

the following result for the velocity is obtained:

v(t) = v0(t) + v′(t) + ω × r′ .

In the same way one obtains for the acceleration:

a(t) = a0(t) + a′(t) + 2ω × v′ + ω × [ω × r′] + ω̇ × r′ .

Newton’s equation of motion mta = F , transformed to the primed (ac-
celerated) system, is therefore given by:

mta
′ ≡ F
−mtr̈0(t)− 2mtω × r′ −mtω × [ω × r′]−mtω̇ × r′ . (14.1)

1 Here we remind ourselves that in General Relativity, [7] and [8], all inertial forces
and the gravitational part of the “true” forces are transformed into geometrical
properties of a curved Minkowski spacetime.
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This is the equation of motion in the accelerated (i.e., linearly acceler-
ated and/or rotating) reference frame. On the r.h.s. of (14.1) the first term
represents the true force (involving, e.g., the gravitational mass), from which
the following terms are subtracted: these terms are the fictitous forces, re-
cognizable by the factor mt, the inertial mass of the corresponding point,
i.e.

– the so-called elevator force, mt · r̈0(t);
– the Coriolis force mt · 2ω × v ;
– the centrifugal force mt · ω × [ω × r′],
– and finally, a force mt · ω̇ × r′, which has no specific name.

Since a major part of the true force, the gravitational force, is propor-
tional to the gravitational mass ms, this can be compensated by the inertial
forces, because of the equality (according to the pre-Einstein viewpoint: not
identity!2) ms = mt.

In particular, for a linearly accelerated system, which corresponds to an
elevator falling with acceleration −gẑ downwards in “free fall”, the difference
between the gravitational “pull” −ms · gẑ and the inertial elevator “push”
is exactly zero. From this thought experiment, Einstein, some years after he
had formulated his special theory of relativity, was led to the postulate that

a) no principal difference exists between gravitational and inertial forces
(Einstein’s equivalence principle); moreover,

b) no global inertial frames as demanded by Mach exist, but only “free
falling” local inertial frames, or more accurately: relative to the given
gravitating bodies freely moving local inertial frames exist, where for small
trial masses the gravitational forces are exactly compensated by the in-
ertial forces corresponding to the “free motion” in the gravitational field;
in particular

c) the general motion of a small trial point of infinitesimal mass mt = ms

takes place along extremal paths in a curved Minkowski space, where the
proper time does not obey, as in a “flat” Minkowski space, the formula

−ds2
(
≡ c2dτ2

)
= c2 dt2 − dx2 − dy2 − dz2 ,

but a more general formula corresponding to a nontrivial differential
geometry in a curved Minkowski manifold, i.e.,

−ds2
(
≡ c2dτ2

)
=

4∑
i=1

gi,k (x̃) dxidxk ,

with a so-called metric fundamental tensor3 gi,k(x̃), which depends in
a nontrivial manner on the distribution of the gravitating masses, and

2 It was again Einstein, who postulated in 1910 that the equality should actually
be replaced by an identity.

3 As to the sign and formulation of ds2 there are, unfortunately, different equiva-
lent conventions.
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which has, as for “flat” Minkowski spaces, one eigenvalue of one sign and
three eigenvalues of the opposite sign.

The space of Minkowski four-vectors

x̃ := (x, y, z, ict)

thus becomes a curved Minkowski manifold, where local coordinates of space
and time may be defined by means of radar signals.

Further details which would lead to Einstein’s general theory of relativity,
will not be treated here, although the effects of curvature of space and time
not only play a part in present-day astrophysics, e.g., in the neighborhood of
neutron stars and black holes, but have also entered our daily lives through
the Global Positioning System (GPS), a satellite navigation system, which is
presently used for many purposes.

14.2 Coriolis Force and Weather Pattern

Apart from elevator forces, Coriolis forces are perhaps the most important
inertial force. In contrast to centrifugal forces they are proportional to ω and
not ∝ ω2 (i.e., not of second-order):

F ′Coriolis = −2mt · ω × v′ .

Particularly important are the consequences of this force in the weather
pattern, where the Coriolis force governs the deflection of wind currents from
regions of high atmospheric pressure to those of low pressure. For example,
if there were a high pressure region at the equator, with coordinates

x′ = −H, y′ = 0 ,

and if the nearest low-pressure region were at

x′ = +T, y′ = 0 ,

then without rotation of the earth, i.e., for ω = 0, the wind would only have
a velocity component vx, i.e., it would directly move from west to east on the
shortest path from high pressure to low pressure.

However, due to the rotation of the earth,

ω =
2π
24h

ẑ ,

where ẑ denotes the axis of rotation, we have

F ′Coriolis = −2mt · ωvxey ,
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i.e., a force directed from north to south. As a consequence, in the northern
hemisphere the wind flows out of the high-pressure region with a deflection
to the right and into the low-pressure region with a deflection to the left.

In addition, for the so-called trade winds (Passat wind) over the oceans,
which without rotation of the earth would blow directly towards the equator,
i.e., southwards (in the northern hemisphere), the rotation of the earth leads
to a shift of the direction. As a consequence the trade winds are directed from
north-east to south-west.

A further subject for which the rotation of the earth plays an essential
part concerns the Foucault pendulum, a very long pendulum swinging from
the ceiling of a large building, such that one can directly infer the rotation of
the earth from the varying plane of oscillations of the swings, c.f. subsection
14.4.

14.3 Newton’s “Bucket Experiment” and the Problem
of Inertial Frames

We return to the problem of ascertaining whether a frame of reference is
rotating, ω �= 0, or whether, perhaps, it is an inertial frame. For this purpose,
we can return to the proposal already known by Newton, of observing the
surface of water in a bucket rotating with the reference frame.

Due to the internal friction of the liquid, its surface shows a profile given
by

z(r) =
r2ω2

2g
,

where z(r) is the height of the liquid surface measured from the central
(lowest) point. In addition, the local slope of the surface of the liquid in the
bucket is given by

tanα =
dz
dr

=
rω2

g
.

This relation is obtained by equating the centrifugal force (per unit mass of
liquid)

(F ′x)centrifugal = mtω
2r

with the gravitational force (per unit mass)

Fz = −msg .

In this way one can therefore ascertain whether one is in a rotating reference
frame, and here the third inertial force, the centrifugal force, explicitly comes
into play.

In view of the difficulties in defining an inertial reference frame, towards
the end of the nineteenth century, the physicist and important Viennese
philosopher, Ernst Mach, postulated that a global inertial system can only
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be defined in a constructive way by the totality of all stars. But as mentioned
above it was only Einstein, who, some years later, cut the “Gordian knot” by
stating that only local inertial frames exist, thus solving in an elegant way
an essential problem left over from Newtonian mechanics. More details can
be found above in Sect. 14.1.

14.4 Application: Free Falling Bodies with Earth
Rotation; the Foucault Pendulum

In a cartesian coordinate system fixed to the moving surface of the earth, let
e1 correspond to the direction “east”, e2 to “north” and e3 to the geometrical
vertical direction (e3 ≡ e1 × e2).

Let the geographical latitude correspond to the angle ψ such that ψ = 0
at the equator and ψ = π

2 at the North Pole. Hence for the angular velocity
of the rotation of the earth we have

ω = ω cosψe2 + ω sinψe3 .

The three equations of motion are, therefore:

mtẍ1 = msG1 − 2mtω · (cosψv3 − sinψv2) ,
mtẍ2 = msG2 − 2mtω sinψv1 +mtω

2R cosψ sinψ ,
mtẍ3 = msG3 + 2mtω cosψv1 +mtω

2R cos2 ψ. (14.2)

If the earth had the form of an exact sphere, and if the mass distribution
were exactly spherical, then G1 and G2 would vanish, and G3 ≡ −g. The
deviations correspond to gravitational anomalies, which are measured and
mapped by geophysicists, e.g., in mineral prospecting. As usual, for didactical
reasons we distinguish between the inertial mass mt and the gravitational
mass ms, although

ms = mt ; R(= R(ψ))

is the radius of the earth at the latitude considered (where we average over
mountains and depressions at this value of ψ).

We shall now discuss the terms which are (a) ∝ ω2, i.e., the centrifugal
force, and (b) ∝ |ωv|, i.e., the Coriolis force.

– (ai) The very last term in (14.2) leads to a weak, but significant flattening
of the sphere (→ “geoid” model of the earth = oblate spheroid), since

−msg +mtω
2R cos2 ψ =: −mtgeff(ψ)

depends on the geographical latitude. The gravitational weight of a kilo-
gram increases towards the poles.



100 14 Accelerated Reference Frames

– (aii) The terms ∝ ω2 in the second equation and the north anomaly
G2

4 of the gravitational force lead to a deviation in the direction of the
gravitational force both from the direction of e3 and also from the G
direction. The deviations are described by the angles δ and δ′, respectively:

tan δ =
G2 − ω2R cosψ sinψ

G3

and

tan δ′ =
−ω2R cosψ sinψ

G3
.

For realistic values

G3 ≈ 981 cm/s2 and ω2R ≈ 3.4 cm/s2

these effects are roughly of the relative order of magnitude 3 · 10−3.

With regard to the terms which are linear in ω (case b), we think of the
Foucault pendulum and assume therefore that v3 ≡ 0, whereas v1 and v2 are
not ≡ 0. The equations of motion are

mtẍ1 = F1 + 2mtωv2 sinψ and
mtẍ2 = F2 − 2mtωv1 sinψ , i.e.,

v̇ =
F

mt
+ ωeff(ψ) × v .

This can be formulated with an effective rotational velocity that depends on
the geographical latitude ψ, viz

ωeff(ψ) = −2ω sinψe3 , with ω =
2π
24h

.

A superb example of a Foucault pendulum can be seen in the Science Museum
in London.

4 The averaged east/west anomaly G1 vanishes for reasons of symmetry, or with
perturbations of the east-west symmetry it is usually much smaller in magnitude
than |G2|.
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The Lorentz transformations,

x =
x′ + v

c ct
′

√
1− v2

c2

, ct =
ct′ + v

cx
′

√
1− v2

c2

,

have already been treated in Sect. 9.1, together with the difference between
the invariant proper time (eigenzeit)dτ – this is the time in the co-moving
system – and the noninvariant time dt in the so-called laboratory system.

Let us recall the invariant quantity

−(dx̃)2 := c2 dt2 − dx2 − dy2 − dz2 ,

which can be either positive, negative or zero. Positive results apply to time-
like Minkowski four-vectors

dx̃ := (dx, dy, dz, icdt)

in all inertial frames. For space-like four-vectors the invariant expression on
the r.h.s. of the above equation would be negative and for light-like Minkowski
four-vectors it would be zero. These inequalities and this equality characterize
the above terms.

In fact, time-like, space-like and light-like Minkowski four-vectors exhaust
and distinguish all possible cases, and for time-like four-vectors one obtains
(with the proper time τ):

c2 dτ2 ≡ −dx̃2 ,

i.e., apart from the sign this is just the square of the invariant pseudo-length
in a pseudo-Euclidean Minkowski space. As mentioned above, Lorentz tran-
formations can be considered as pseudo-rotations in this space.

Since dx̃ is an (infinitesimal) Minkowski four-vector and dτ an (infinites-
imal) four-scalar1, i.e., Lorentz invariant, the above-mentioned four-velocity,

ṽ :=
dx̃
dτ

=
(vx, vy, vz , ic)√

1− v2

c2

1 In contrast to dτ the differential dt is not a Minkowski scalar, i.e., not invariant
against Lorentz transforms.
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is a Minkowski four-vector. The factor

1√
1− v2

c2

is thus compulsory! In addition, if this result is multiplied by the rest mass
m0, one obtains a Minkowski four-vector, i.e.

p̃ :=
m0√
1− v2

c2

(vx, vy, vz, ic) .

This four-vector is the relativistic generalization of the momentum, and
the dependence of the first factor on the velocity, i.e., the velocity dependence
of the mass,

m =
m0√
1− v2

c2

,

is also as compulsory as previously that of ṽ.
The imaginary component of the four-momentum is thus

i · m0c√
1− v2

c2

.

On the other hand, in the co-moving system (v = 0), a force vector can
be uniquely defined by the enforced velocity change, i.e.,

d(m0v)
dτ

=: F ,

analogously to Newton’s 2nd law.
The work done by this force, δÂ, serves to enhance the kinetic energy

Ekin : δÂ− Ėkin dt = F · dr − lF
c
cdt ≡ 0 ,

with the so-called power lF := Ėkin.
Formally this means the following:
The force-power four-vector

F̃ :=
(
Fx, Fy, Fz , i

lF
c

)

is pseudo-perpendicular to

dx̃ := (dx, dy, dz, icdt) : F̃ · dx̃ ≡ 0 .

This is valid in all inertial frames (Lorentz frames).
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We now define
E := Ekin +m0c

2 .

It is then natural to supplement the relation

lF = Ė by F = ṗ

and in this way to define the energy-momentum four-vector

p̃ =
m0√
1− v2

c2

(vx, vy, vz, ic) ,

i.e.,

p̃ =
(
px, py, pz, i

E

c

)

with the following two relations, which belong together, equivalent to

F̃ · dx̃ ≡ 0 :

p =
m0v√
1− v2

c2

and E =
m0c

2

√
1− v2

c2

. (15.1)

In fact, one can explicitly evaluate that in this way the equation

F̃ · dx̃ ≡ 0

is satisfied.
The invariant pseudo-length of the energy-momentum four-vector is thus

p̃2 = −m2
0c

2 ; the energy E = mc2

is the sum of the rest energy m0c
2 and the kinetic energy

T :=
m0c

2

√
1− v2

c2

−m0c
2 ,

which in a first approximation leads to the usual nonrelativistic expression,

T ≈ m0v
2

2
.

In addition we have the relativistic form of the equation of motion, which
is that in every inertial system:

dp
dt

= F , (15.2)
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with
p =

m0v√
1− v2

c2

.

By integrating this differential equation for the velocity at constant force
and with the initial values

v(t = 0) ≡ 0 ,

one obtains
p2 = F 2t2 ,

or
v2

c2
=

F̂ 2t2

1 + F̂ 2t2
,

with
F̂ :=

F

m0c
.

For t → ∞ the r.h.s. of v2

c2 converges to 1 (monotonically from below); c is
thus the upper limit of the particle velocity v.

Our derivation of the above relations was admittedly rather formal, but
Einstein was bold enough, and gave reasons (see below) for proposing the
even more important interpretation of his famous relation,

E = mc2 ,

which not only implies the above decomposition of the energy into a rest
energy and a kinetic part, but that the formula should additionally be inter-
preted as the equivalence of mass and energy; i.e., he suggested that mass
differences (×c2) can be transformed quantitatively into energy differences2.
This is the essential basis, e.g., of nuclear energetics ; nuclei such as He, which
have a strong binding energy δEB, also have a measurable mass defect

δmB = δEB/c
2 .

One could give many more examples.
The above reasons can, in fact, be based on considerations of the impact

between different particles. For example, viewed from the rest frame of a very
heavy point mass, which forms the target of other particles moving towards
it with very high velocity (almost c) the kinetic energy of any of the moving
particles is essentially identical to its (velocity dependent) mass times c2.
Thus in this case the rest mass is negligible.
All these considerations, which in our presentation have been partly stringent
and partly more or less heuristic, have proved valid over decades, without

2 Here one should not forget the fact that m0c
2 (in contrast to E) is relativistically

invariant.
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any restriction, not only by thought experiments and mathematical deriva-
tions, but also by a wealth of nontrivial empirical results. As a consequence,
for decades they have belonged to the canonical wisdom not only of university
physics, but also of school physics and gradually also in daily life, although
there will always be some people who doubt the above reasoning and experi-
ence. We shall therefore conclude Part I of the book by restating Einstein’s
relation

E = mc2 , where m = m0/

√
1− v2

c2
,

almost exactly one century after it was originally conceived in the “miraculous
year” of 1905.



Part II

Electrodynamics and Aspects of Optics



16 Introduction and Mathematical

Preliminaries to Part II

The theory of electrodynamics provides the foundations for most of our
present-day way of life, e.g., electricity, radio and television, computers, radar,
mobile phone, etc.; Maxwell’s theory lies at the heart of these technologies,
and his equations at the heart of the theory.

Exercises relating to this part of the book (originally in German, but now
with English translations) can be found on the internet, [2].

Several introductory textbooks on theoretical electrodynamics and as-
pects of optics can be recommended, in particular “Theoretical Electrody-
namics” by Thorsten Fliessbach (taken from a comprehensive series of text-
books on theoretical physics). However, this author, like many others, exclu-
sively uses the Gaussian (or cgs) system of units (see below). Another book
of lasting value is the text by Bleaney and Bleaney, [10], using mksA units,
and containing an appendix on how to convert from one system to the other.
Of similar value is also the 3rd edition of the book by Jackson, [11].

16.1 Different Systems of Units in Electromagnetism

In our treatment of electrodynamics we shall adopt the international sys-
tem (SI) throughout. SI units are essentially the same as in the older mksA
system, in that length is measured in metres, mass in kilograms, time in
seconds and electric current in ampères. However other systems of units,
in particular the centimetre-gram-second (cgs) (or Gaussian) system, are
also in common use. Of course, an mks system (without the “A”) would
be essentially the same as the cgs system, since 1 m = 100 cm and
1 kg = 1000g. In SI, the fourth base quantity, the unit of current, ampère
(A), is now defined via the force between two wires carrying a current. The
unit of charge, coulomb (C), is a derived quantity, related to the ampère
by the identity 1 C = 1 A.s. (The coulomb was originally defined via the
amount of charge collected in 1 s by an electrode of a certain electrolyte
system.) For theoretical purposes it might have been more appropriate to
adopt the elementary charge |e| = 1.602 . . . · 10−19C as the basic unit of
charge; however, this choice would be too inconvenient for most practical
purposes.
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The word “electricity” originates from the ancient Greek word ελεκτ
oν,
meaning “amber”, and refers to the phenomenon of frictional or static elec-
tricity. It was well known in ancient times that amber can be given an electric
charge by rubbing it, but it was not until the eighteenth century that the law
of force between two electric charges was derived quantitatively: Coulomb’s
law1 states that two infinitesimally small charged bodies exert a force on each
other (along the line joining them), which is proportional to the product of
the charges and inversely proportional to the square of the separation. In SI
Coulomb’s law is written

F 1←2 =
q1q2

4πε0r21,2
e1←2 , (16.1)

where the unit vector e1←2 describes the direction of the line joining the
charges,

e1←2 := (r1 − r2)/|r1 − r2| , while r1,2 := |r1 − r2|

is the distance between the charges.
According to (16.1), ε0, the permittivity of free space, has the physical

dimensions of charge2/(length2 · force).
In the cgs system, which was in general use before the mksA system had

been introduced2, the quantity 4πε0 in Coulomb’s law (16.1) does not appear
at all, and one simply writes

F 1←2 =
q′1q
′
2

r21,2
e1←2 . (16.2)

Hence, the following expression shows how charges in cgs units (primed)
appear in equivalent equations in mksA or SI (unprimed) (1a):

q′ ⇔ q√
4πε0

,

i.e., both charges differ only by a factor, which has, however, a physical
dimension.

(Also electric currents, dipoles, etc., are transformed in a similar way to
electric charges.) For other electrical quantities appearing below, the relations
are different, e.g., (2a):

E′ ⇔ E ·
√

4πε0

(i.e., q′ ·E′ = qE(≡ F )); and, (3a):

D′ ⇔D ·
√

4π
ε0

1 Charles Augustin de Coulomb, 1785.
2 Gauß was in fact an astronomer at the university of Göttingen, although perhaps

most famous as a mathematician.
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(where in vacuo D := ε0E, but D′ := E′). For the magnetic quantities we
have analogously, (1b):

m′ ⇔ m√
4πμ0

;

(2b):
H ′ ⇔H ·

√
4πμ0 ;

(3b):

B′ ⇔ B ·
√

4π
μ0

, where μ0 :=
1
ε0c2

,

with the light velocity (in vacuo) c; m is the magnetic moment, while H and
B are magnetic field and magnetic induction, respectively.

Equations (1a) to (3b) give the complete set of transformations between
(unprimed) mksA quantities and the corresponding (primed) cgs quantities.
These transformations are also valid in polarized matter.

Since ε0 does not appear in the cgs system – although this contains a com-
plete description of electrodynamics – it should not have a fundamental sig-
nificance per se in SI. However, Maxwell’s theory (see later) shows that ε0 is
unambiguously related to μ0, the equivalent quantity for magnetic behavior,
via c, the velocity of light (i.e., electromagnetic waves) in vacuo, viz

ε0μ0 ≡
1
c2
.

Now since c has been measured to have the (approximate) value 2.998 . . . ·
108 m/s, while μ0, the vacuum permeability, has been defined by international
convention3 to have the exact value

μ0 ≡ 4π · 10−7 Vs/(Am) , 4

then ε0 is essentially determined in terms of the velocity of light; ε0 (≡
1/(μ0 · c2)) has the (approximate) value 8.854 . . . · 10−12 As/(Vm).

In SI, Maxwell’s equations (in vacuo) are:

divE = 
/ε0, divB = 0, curlE = −∂B
∂t

, curlB = μ0j +
1
c2
∂E

∂t
. (16.3)

These equations will be discussed in detail in the following chapters.
The equivalent equations in a Gaussian system are (where we write the

quantities with a prime):

divE′ = 4π
′, divB′ = 0, curlE′ = −∂B
′

∂ct
, curlB′ =

4π
c
j′ +

∂E′

∂ct
. (16.4)

3 essentially a political rather than a fundamentally scientific decision!
4 This implies that B′ = 104 Gauss corresponds exactly to B = 1 Tesla.
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One should note the different powers of c in the last terms of (16.3) and
(16.4).

Another example illustrating the differences between the two equivalent
measuring systems is the equation for the force exerted on a charged particle
moving with velocity v in an electromagnetic field, the so-called Lorentz force:
In SI this is given by

F = q · (E + v ×B) , (16.5)

whereas in a Gaussian system the expression is written

F = q′ ·
(
E′ +

v

c
×B′

)

We note that all relationships between electromagnetic quantities can be
expressed equally logically by the above transformations in either an SI system
(“SI units”) or a Gaussian system (“Gaussian units”). However, one should
never naively mix equations from different systems.

16.2 Mathematical Preliminaries I: Point Charges
and Dirac’s δ Function

A slightly smeared point charge of strength q at a position r′ can be described
by a charge density


ε(r) = q · δε(r − r′) , where δε

is a suitable rounded function (see Fig. 16.1) and ε is a corresponding smear-
ing parameter. For all positive values of ε the integral

∫
d3rδε(r − r′) != 1 ,

although at the same time the limit lim
ε→0

δε(r) shall be zero for all r �= 0. It
can be shown that this is possible, e.g., with a Gaussian function

δε(r − r′) =
exp

(
− |r−r′|

2ε2

)

(2πε2)3/2

(in three dimensions, d = 3).
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The functions δε(r−r′) are well-behaved for ε �= 0 and only become very
“spiky” for ε→ 0 5, i.e.,

δ(r − r′) := lim
ε→0

δε(r − r′) ,

where the limit should always be performed in front of the integral, as in the
following equations (16.6) and (16.7).

For example, let f(r) be a test function, which is differentiable infinitely
often and nonzero only on a compact set ∈ R3; for all these f we have

∫
d3r′δ(r′ − r) · f(r′) := lim

ε→0

∫
d3r′δε(r′ − r) · f(r′) ≡ f(r) . (16.6)

In the “weak topology” case considered here, the δ-function can be dif-
ferentiated arbitrarily often6: Since the test function f(r) is (continuously)
differentiable with respect to the variable x, one obtains for all f by a partial

Fig. 16.1. Gaussian curves as an approximation for Dirac’s δ-function. Here we
consider one-dimensional Gaussian curves (for y between 0 and 2)
δε(x) := (2πε2)−0.5 exp(−x2/(2ε2)) plotted versus x (between −1 and 1) with in-
creasing sharpness, ε = 0.2, 0.1 and 0.05, which serve as approximations of Dirac’s
δ-function for d = 1; this function is obtained in the limit ε→ 0, where the limit is
performed in front of an integral of the kind mentioned in the text

5 Dirac’s δ-function is sometimes referred to as a “spike function”; in particular,
the function δε(x) (for d=1) is often defined via the limit ε → 0 of δε(x) = 1/ε
for |x| ≤ ε/2, otherwise = 0. This is convenient in view of the normalization;
however, because of (16.7) we recommend modifying these functions slightly by
smearing them somewhat, i.e., at the sharp edges they should be made differen-
tiable infinitely often.

6 This may be somewhat surprising, if one abides by the simple proposition of an
infinitely high spike function corresponding to the popular definition δ(x) ≡ 0
for x 	= 0, but δ(0) is so large that

R
dxδ(x) = 1, i.e., if one does not keep in

mind the smooth definition of the approximants δε(x).
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integration:
∫

d3r′
∂

∂x′
δ(r′ − r) · f(r′) := lim

ε→0

∫
d3r′

∂

∂x′
δε(r′ − r) · f(r′)

≡ (−1)
∂

∂x
f(r) . (16.7)

To summarize: a point charge of strength q, located at r′, can be formally
described by a charge density given by:


(r) = q · δ(r − r′) . (16.8)

16.3 Mathematical preliminaries II: Vector Analysis
and the Integral Theorems of Gauss and Stokes

In this section we shall remind ourselves of a number of important mathe-
matical operators and theorems used in electrodynamics. Firstly, the vector
operator nabla

∇ :=
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
(16.9)

is used to express certain important operations, as follows:

a) The gradient of a scalar function f(r) is a vector field defined by

gradf(r) := ∇f(r) = (∂xf(r), ∂yf(r), ∂zf(r)) , (16.10)

where we have used the short-hand notation

∂j :=
∂

∂xj
.

This vector, gradf(r), is perpendicular to the surfaces of constant value
of the function f(r) and corresponds to the steepest increase of f(r). In
electrodynamics it appears in the law relating the electrostatic field E(r)
to its potential φ(r) (E = −gradφ). The minus sign is mainly a matter of
convention, as with the force F and the potential energy V in mechanics.)

b) The divergence (or source density) of v(r) is a scalar quantity defined
as

divv(r) := ∇ · v(r) = ∂xvx + ∂yvy + ∂zvz . (16.11)

It is thus formed from v(r) by differentiation plus summation7. The fact
that this quantity has the meaning of a source density follows from the
integral theorem of Gauss (see below).

7 One should not forget to write the “dot” for the scalar multiplication (also called
“dot product”) of the vectors v1 and v2, since for example c := ∇v (i.e., without
·), would not be a scalar quantity, but could be a second-order tensor, with
the nine components ci,k = ∂vk

∂xi
. However, one should be aware that one can

encounter different conventions concerning the presence or absence of the dot in
a scalar product.
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c) The curl (or circulation density) of a vector field v(r) is a vector quantity,
defined as

curlv(r) := ∇× v(r) = [∂yvz − ∂zvy, ∂zvx− ∂xvz , ∂xvy − ∂yvx] . (16.12)

(The term rotv is also used instead of curlv and the ∧ symbol in-
stead of ×.) Additionally, curl can be conveniently expressed by means
of the antisymmetric unit tensor and Einstein’s summation convention8,
(curlv)i = eijk∂jvk).
The fact that this quantity has the meaning of a circulation density follows
from the integral theorem of Stokes, which we shall describe below.

Having introduced the operators grad, div and curl, we are now in a po-
sition to describe the integral theorems of Gauss and Stokes.

a) Gauss’s theorem
Let V (volume) be a sufficiently smooth oriented9 3d-manifold with closed
boundary ∂V and (outer) normal n(r). Moreover, let a vector field v(r)
be continuous on ∂V and continuously differentiable in the interior of V 10.
Then Gauss’s theorem states that

∫∫
©
∂V

v(r) · n(r)d2A =
∫∫∫

V

divv(r)d3V . (16.13)

Here d2A is the area of an infinitesimal surface element of ∂V and d3V is
the volume of an infinitesimal volume element of V . The integral on the
l.h.s. of equation (16.13) is the “flux” of v out of V through the surface
∂V . The integrand divv(r) of the volume integral on the r.h.s. is the
“source density” of the vector field v(r).
In order to make it more obvious that the l.h.s. of (16.13) represents
a flux integral, consider the following: If the two-dimensional surface ∂V
is defined by the parametrization

∂V := {r|r = (x(u, v), y(u, v), z(u, v))} , (16.14)

with (u, v) ∈ G(u, v), one then has on the r.h.s. of the following equation
an explicit double-integral, viz
∫∫
©
∂V

v(r) · n(r)d2A ≡
∫∫

G(u,v)

v(r(u, v)) ·
[
∂r

∂u
× ∂r

∂v

]
dudv . (16.15)

8 Indices appearing two times (here j and k) are summed over.
9 “Inner” and “outer” normal direction can be globally distinguished.

10 These prerequisites for Gauss’s integral theorem (and similar prerequites for
Stokes’s theorem) can of course be weakened.
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b) Stokes’s theorem
Let Γ be a closed curve with orientation, and let F be a sufficiently
smooth 2d-manifold with (outer) normal n(r) inserted11 into Γ , i.e., Γ ≡
∂F . Moreover, let v(r) be a vector field, which is continuous on ∂F and
continuously differentiable in the interior of F . The theorem of Stokes
then states that

∮

∂F

v(r) · dr =
∫∫

F

curlv(r) · n(r)d2A. (16.16)

The line integral on the l.h.s. of this equation defines the “circulation” of v
along the closed curve Γ = ∂F . According to Stokes’s theorem this quan-
tity is expressed by a 2d-surface integral over the quantity curlv ·n. Hence
it is natural to define curlv as the (vectorial) circulation density of v(r).

Detailed proofs of these integral theorems can be found in many mathe-
matical textbooks. Here, as an example, we only consider Stokes’s theorem,
stressing that the surface F is not necessarily planar. But we assume that it
can be triangulated, e.g., paved with infinitesimal triangles or rectangles, in
each of which “virtual circulating currents” flow, corresponding to the chosen
orientation, such that in the interior of F the edges of the triangles or rect-
angles run pairwise in opposite directions, see Fig. 16.2. It is thus sufficient to
prove the theorem for infinitesimal rectanglesR. Without lack of generality,R
is assumed to be located in the (x,y)-plane; the four vertices are assumed to be

P1 = (−Δx/2,−Δy/2) (i.e., lower left) ,
P2 = (+Δx/2,−Δy/2) (i.e., lower right) ,
P3 = (+Δx/2,+Δy/2) (i.e., upper right) and
P4 = (−Δx/2,+Δy/2) (i.e., upper left) .

Therefore we have
∮

∂R

v · dr ∼= [vx(0,−Δy/2)− vx(0,+Δy/2)]Δx

+ [vy(+Δx/2, 0)− vy(−Δx/2), 0)]Δy

∼=
(
−∂vx
∂y

+
∂vy
∂x

)
ΔxΔy

=
∫∫

R

curlv · nd2A . (16.17)

11 To aid understanding, it is recommended that the reader produces his or her
own diagram of the situation. Here we are somewhat unconventional: usually
one starts with a fixed F , setting ∂F = Γ ; however we prefer to start with Γ ,
since the freedom to choose F , for fixed Γ (→ ∂F ), is the geometrical reason for
the freedom of gauge transformations, see below.
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Fig. 16.2. Stokes’s theorem: triangulating
a 2d-surface in space. As an example, the
surface z = xy2 is triangulated (i.e., paved)
by a grid of small squares. If all the squares
are oriented in the same way as the out-
ermost boundary line, then in the interior
of the surface the line integrals are per-
formed in a pairwise manner in the oppo-
site sense, such that they compensate each
other, leaving only the outermost boundary
lines. As a consequence, if the integral theo-
rem of Stokes applies for the small squares,
then it also applies for a general surface

With n = (0, 0, 1) and d2A = dxdy this provides the statement of the
theorem.12

12 Because of the greater suggestive power, in equations (16.17) we have used
H

∂R

instead of
R

∂R
.
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17.1 Electrostatic Fields in Vacuo

17.1.1 Coulomb’s Law and the Principle of Superposition

The force on an electric point charge of strength q at the position r′ in an
electric field E(r′) (passive charge, local action) is given by

F (r′) = qE(r′) . (17.1)

This expression defines the electric field E via the force acting locally on the
passive charge q. However, the charge itself actively generates a field E(r) at
a distant position r (active charge, action at a distance) given by:

E(r) =
q · (r − r′)

4πε0|r − r′|3
. (17.2)

The fact that the active and passive charges are the same (apart from
a multiplicative constant of nature such as c, which can be simply replaced
by 1 without restriction) is not self-evident, but is essentially equivalent to
Newton’s third axiom. One consequence of this is the absence of torques in
connection with Coulomb’s law for the force between two point charges:

F 1,2 =
q1q2 · (r1 − r2)
4πε0|r1 − r2|3

(= −F 2,1) . (17.3)

Similar considerations apply to gravitational forces; in fact, “gravitational
mass” could also be termed “gravitational charge”, although an essential
difference from electric charges is that inter alia electric charges can either
have a positive or a negative sign, so that the force between two electric
charges q1 and q2 can be repulsive or attractive according to the sign of
q1q2, whereas the gravitational force is always attractive, since “gravitational
charges” always have the same sign, while the gravitational constant leads to
attraction (see (17.4)).

Certainly, however, Newton’s law of gravitation,

(F gravitation)1,2 = −γm1m2 · (r1 − r2)
|r1 − r2|3

, (17.4)
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where γ is the gravitational constant, is otherwise similar to Coulomb’s law
in electrostatics.

For a distribution of point charges, the electric field E(r) generated by
this ensemble of charges can be calculated according to the principle of su-
perposition:

F 1←2,3,... = q1 ·E(r1) = q1 ·
∑

k=2,3,...

qk(r1 − rk)
4πε0|r1 − rk|3

. (17.5)

This principle, which also applies for Newton’s gravitational forces, is
often erroneously assumed to be self-evident. However for other forces, such as
those generated by nuclear interactions, it does not apply at all. Its validity in
electrodynamics is attributable to the fact that Maxwell’s equations are linear
w.r.t. the fields E and B, and to the charges and currents which generate
them. On the other hand: the equations of chromodynamics, a theory which is
formally rather similar to Maxwell’s electrodynamics but describing nuclear
forces, are non-linear, so the principle of superposition is not valid there.

17.1.2 Integral for Calculating the Electric Field

For a continuous distribution of charges one may “smear” the discrete point-
charges, (qk → 
(rk)ΔVk), and the so-called Riemann sum in equation (17.5)
becomes the following integral:

E(r) =
∫∫∫

dV ′

(r′)(r − r′)
4πε0|r − r′|3

. (17.6)

This integral appears to have a singularity∝ |r−r′|−2, but this singularity
is only an apparent one, since in spherical coordinates near r′ = r one has

dV ′ ∝ |r′ − r|2d(|r′ − r|) .

The electric field E(r) is thus necessarily continuous if 
(r) is continuous;
it can even be shown that under this condition the field E(r) is necessarily
continuously differentiable if the region of integration is bounded1. It can
then be shown that

divE(r) = 
(r)/ε0 .

This is the first of Maxwell’s equations (16.3), often referred to as Gauss’s
law. A proof of this law is outlined below. (This law is not only valid under
static conditions, but also quite generally, i.e., even if all quantities depend
explicitly on time.)

1 This is plausible, since for d = 1 the integral of a continuous function is a con-
tinuously differentiable function of the upper integration limit.
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17.1.3 Gauss’s Law

Gauss’s law2 gives the relation between the electric flux flowing out of a closed
surface and the electric charge enclosed inside the surface. The proof is subtle
and we only give a few essential hints. Consider two complementary regions of
integration: For the first integration region, “1”, we consider a small sphere of
radius ε (an “ε-sphere”), whose center is situated exactly at the singularity
r′ = r. The second integration region, “2”, is the complement of our “ε-
sphere”, i.e., the outer part. (A sketch is recommended.) In this outer region,
all differentiations with respect to the components of the vector r 3 can be
performed under the integral, and one obtains the exact result 0, because we
have for

r �= r′ :
(r − r′)
|r − r′| = 0

(since for example ∂x
(
x/r3

)
= 1/r3 − 3x2/r5, such that ∇ ·

(
r/r3

)
= 0). As

a consequence there remains

divE(r) ≡ divE1(r) , where E1(r) ∼= 
(r)ΔV
(r − r′)

4πε0 |r − r′|3
,

where we assume that the volume ΔV of our ε-sphere,

ΔV =
4πε3

3
,

is small enough that throughout the sphere 
(r′) can be considered as con-
stant.

We now use the statement, equivalent to the integral theorem of Gauss,
that divE1 can be interpreted as a source density, i.e.,

divE1(r) = lim
ΔV→0

(ΔV )−1

∫∫
©
∂ΔV

E1(r) · n(r)d2A .

As a consequence, after a short elementary calculation with

R = ε and n =
r − r′
|r − r′|

2 Here we should be aware of the different expression: “Gauss’s theorem” is the
divergence or integral theorem, while “Gauss’s law” means the first Maxwell
equation.

3 We must differentiate with respect to r, not r′.
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we obtain the result

divE(r) =

(r)(ΔV )4πR2

(ΔV )4πε0R2
≡ 
(r)/ε0 .

This equation,
divE(r) = 
(r)/ε0 ,

constitutes the differential form of Gauss’s law. The proof can be simplified
using the δ-function:

div
(r − r′)
|r − r′|3 ≡ 4πδ(r − r′) , ∀r , including r = r′ . (17.7)

One can now formally differentiate infinitely often under the integral, and
one immediately obtains

divE(r) ≡
∫∫∫

dV ′
(r′)δ(r − r′)/ε0 = 
(r)/ε0 . (17.8)

Inserting (17.8) into Gauss’s integral theorem, we then arrive at the integral
form of Gauss’s law:

∫∫
©
∂V

E(r) · n(r)d2A ≡ Q(V )
ε0

, (17.9)

where Q(V ) is the total amount of charge contained in the enclosed volume4.
The theorem can be proved most visually in this integral version, since, due
to the superposition principle, one can assume that one is dealing only with
a single point charge placed at the origin r′ = 0. The field strength is then
∝ R−2, or more exactly:

E · n = cosϑ ·
(
4πε0R2

)−1
, but d2A = R2dΩ/ cosϑ .

Here, ϑ is the angle between the field direction (radial direction) and the
surface normal n (not necessarily radially directed); dΩ is the solid-angle
corresponding to a surface element, i.e.,

∮
dΩ = 4π .

These arguments are supported by Fig. 17.1.

4 However, surface charges, i.e., those located on ∂V , are only counted with a factor
1/2, whereas charges in the interior of V are counted with the full factor 1.
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Fig. 17.1. On the proof of Gauss’s law (= Maxwell I). At the center of an ellipsoid
(here with the axes a = 2 and b = 1) there is a point charge Q, which generates the
electric field E = Q/(4πε0r

2)er, where er is the radial unit vector. Also plotted
are two long lines y ≡ x · 1 and y ≡ x · 0.85, which are meant to illustrate a cone,
through which the field flows outwards. The corresponding surface element d(2)A
on the ellipsoid is r2dΩ/ cos ϑ, where r is the distance of the surface from the
charge, ϑ the angle between the directions of the surface normal n and the field
direction, and dΩ the solid-angle element. On the other hand, the scalar product
n ·E is Q/(4πε0r

2) ·cos ϑ. Therefore, according to obvious geometrical reasons, the
result of an integration over the surface of the ellipsoid is Q/ε0, i.e., Gauss’s law,
as described above. In contrast, charges outside the ellipsoid give two compensating
contributions, i.e., then the result is zero

17.1.4 Applications of Gauss’s Law: Calculating the Electric
Fields for Cases of Spherical or Cylindrical Symmetry

The integral formulation of Gauss’s law is useful for simplifying the calcula-
tion of fields in the cases of spherical or cylindrical symmetry (see problems
1 and 3 of the exercises in summer 2002, [2]).

Firstly, we shall consider spherical symmetry:


(r) ≡ 
(r) , with r :=
√
x2 + y2 + z2 .

As a consequence, the electric field is also spherically symmetrical, i.e.,

E(r) = E(r) · er , where er :=
r

r

is the radial unit vector.
Applying the integral version of Gauss’s law for a sphere of arbitrary

radius r, we easily obtain the following result for the amplitude of the field,
E(r), i.e. for all 0 ≤ r <∞:

E(r) =
1

ε0r2

r∫

0

r̃2dr̃
(r̃) . (17.10)
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A similar result is obtained for cylindrical symmetry, i.e., with


(r)→ 
(r⊥) , 5

where
r⊥ :=

√
x2 + y2 .

In this case we obtain

E(r) = E⊥(r⊥)e⊥ , with r = (x, y, z) , but e⊥ := (x, y, 0)/r⊥ ,

and

E⊥(r⊥) =
1

ε0r⊥

r⊥∫

0

r̃⊥dr̃⊥
(r̃⊥) . (17.11)

Using these formulae, calculation of the fields in the interior and exterior
of many hollow or massive bodies with spherical or cylindrical symmetry can
be considerably simplified. Externally the field appears as if the total charge
of the sphere or cylinder is at the center of the sphere or on the axis of the
cylinder.

17.1.5 The Curl of an Electrostatic Field;
The Electrostatic Potential

One knows “by experience” that the curl of an electrostatic field always
vanishes (i.e., the electrostatic field is irrotational). This is in agreement
with the third of Maxwell’s equations or Faraday’s law of induction

curlE = −∂B
∂t

(see below).

One should keep in mind here that although Maxwell’s equations are
based on experimental observations. Therefore they should not really be re-
garded as universal laws or axioms, which are – as it were – self-evident or
valid “before all experience”, although one could conceivably think of them
in that way.6

The experience mentioned above is that by calculating the work done
along a closed path in 3-space,

∮
dr · F (r) = q

∮
dr ·E(r) ,

5 We do not consider any dependence on z.
6 The excellent textbook by Sommerfeld derives the whole of electrodynamics from

Maxwell’s equations, from which it starts without any reasoning or justification.
This is permissible in this case, but it should not be regarded naively as an
acceptable modus operandi for theroretical scientists in general.
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no energy can be gained, i.e., one always has
∮

Γ

E(r) · dr = 0 , for any closed path Γ ∈ R3 .

In the above we are assuming that the boundary of the region considered
is “connected” (i.e., one considers “one-fold connected regions” without any
“holes”), such that any closed line Γ in the considered region G can be
written as the boundary line, Γ = ∂F , of a 2d-manifold F which is completely
contained in G. With these conditions one obtains from the integral theorem
of Stokes: ∮

Γ

E(r) · dr =
∫∫

FE(r) · n(r)d2A .

As a consequence one has
E(r) ≡ 0 .

However, according to Poincaré’s lemma, any vector field v(r) which is
irrotational (curlv ≡ 0) in a “one-fold connected open region” G, possesses
in G a potential φ(r) such that

v(r) = −gradφ(r) , i.e., vi(r) = −∂iφ(r) for i = 1, 2, 3 .

The potential φ(r) is only determined up to an arbitrary additive con-
stant, similar to the potential energy in mechanics, and the minus sign is
mainly a matter of convention (although there are good reasons for it). For
any irrotational vector field E(r), and in particular the electric field, this
potential can be calculated using

φ(r) = −
r∫

r1

E(r̃) · dr̃ , (17.12)

where both r1 and the integration path from r1 to r can be arbitrarily chosen.
A potential φ(r) which leads to the standard expression occurring in

electrostatics,
r − r′
|r − r′|3 , is φ(r) =

1
|r − r′| .

In fact it can easily be shown, with

|r−r′| = [(x−x′)2+(y−y′)2+(z−z′)2] 1
2 , that −∂x

1
|r − r′| =

x− x′
|r − r′|3 .

For a continuous charge distribution, in accordance with the principle of
superposition, one thus obtains the following potential:

φ(r) =
∫∫∫

d3r′

(r′)

4πε0|r − r′|
, (17.13)

which is a result that can easily be memorized.
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17.1.6 General Curvilinear, Spherical and Cylindrical Coordinates

At this point it makes sense to include a short mathematical section on polar
coordinates. Hitherto we have always written vectors, e.g., dr, as triples of
three orthogonal Cartesian coordinates. We shall now adopt general curvi-
linear coordinates u, v, w such that

dr =
∂r

∂u1
du1 +

∂r

∂u2
du2 +

∂r

∂u3
du3 . (17.14)

By introducing the unit vectors

ei :=
∂r

∂ui
/| ∂r
∂ui
| (i = 1, 2, 3)

one obtains with well-defined functions ai(u1, u2, u3) (for i = 1, 2, 3):

dr =
3∑
i=1

{ai(u1, u2, u3)dui}ei(u1, u2, u3). (17.15)

Note that the products aidui have the physical dimension of “length”. By
introducing the so-called dual triplet of bi-orthogonal vectors e∗j (dual to the

triplet ei, i.e., for i, j = 1, 2 and 3: e∗j ·ei
!= δj,i, i.e., != 1 for i = j, but != 0

for i �= j, implemented by e∗1 := e2×e3
e1·[e2×e3]

etc.), one obtains the short-hand
expression

gradφ =
3∑
i=1

∂φ

ai∂ui
e∗i . (17.16)

Therefore one always obtains the following relation for the total differen-
tial dφ:

dφ = gradφ · dr =
3∑
i=1

∂φ

∂ui
dui .

This formulation of the vectors dr and gradφ does not depend on the
particular choice of curvilinear coordinates. In particular, for spherical and
cylindrical coordinates we have e∗j ≡ ej , i.e., one is dealing with the special
case of locally orthogonal curvilinear coordinates, and the ∗-symbols can be
deleted.

a) For spherical polar coordinates we have θ ∈ [0, π] (latitude), ϕ ∈ [0, 2π)
(longitude, meridian, azimuth) and

x = r sin θ cosϕ , y = r sin θ cosϕ , z = r cos θ : (17.17)
dr = drer + r · dθeθ + r · sin θdϕeϕ , (17.18)

dV = r2dr sin θdθdϕ , (17.19)
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gradφ =
∂φ

∂r
er +

∂φ

r · ∂θeθ +
∂φ

r sin θ · ∂ϕeϕ , and (see below) (17.20)

∇2φ =
1
r

∂2

∂r2
(rφ) +

∂

r2 sin θ∂θ

(
sin θ

∂φ

∂θ

)
+

∂2φ

r2 sin2 θ∂ϕ2
. (17.21)

(The first term on the r.h.s. of equation (17.21) can also be written as
∂

r2∂r

(
r2 ∂φ∂r

)
, which is easier generalizable, if one considers dimensional-

ities d ≥ 2, i.e., ∂
rd−1∂r

(
rd−1 ∂φ

∂r

)
, but is less useful for the comparison

with d = 1, see Part III.)
b) In cylindrical coordinates (or planar polar coordinates)

x = r⊥ cosϕ, y = r⊥ sinϕ, z = z (i.e., unchanged) : (17.22)
dr = dr⊥er⊥ + r⊥ · dϕeϕ + dzez , (17.23)
dV = r⊥dr⊥dϕdz , (17.24)

gradφ =
∂φ

∂r⊥
er⊥ +

∂φ

r⊥ · ∂ϕ
eϕ +

∂φ

∂z
ez , (17.25)

∇2φ =
∂

r⊥∂r⊥

(
r⊥

∂φ

∂r⊥

)
+

∂2φ

r2⊥∂ϕ2
+
∂2φ

∂z2
. (17.26)

In (17.21) and (17.26) we have added the so-called Laplace operator

∇2(= div grad) .

These results are particularly important, since they occur in many applica-
tions and examples.

In fact, with

∇2φ ≡ div gradφ and gradφ = −E

they result from the following very general formula for orthogonal curvilinear
coordinates, which can be proved by elementary considerations on source
densities:

divE =
1

a1a2a3

{
a2a3

∂E1

∂u1
+ a3a1

∂E2

∂u2
+ a1a2

∂E3

∂u3

}
. (17.27)

Capacitors; Capacity; Harmonic Functions; The Dirichlet Problem

Consider two arbitrary metal plates connected to the opposite poles of a cell
or battery. The approximate profiles of the equipotential surfaces φ(r) =
constant and the corresponding electrostatic fields

E = −gradφ



128 17 Electrostatics and Magnetostatics

between the capacitor plates can be readily sketched; but how does the field
vary quantitatively in the space between the two capacitor plates?

This will now be discussed in detail.
We recall that the boundary of a conductor is always an equipotential

surface (electrons can flow until the potential is equal everywhere) and that
the relation

E = −gradφ

implies that the field is perpendicular to the equipotential surfaces

φ(r) = constant .

Furthermore in the interior of the conductor all three components of the
electric field are zero.

In the space S outside or between the conductors there are no charges, so
the equation

∇2φ(r) ≡ 0

holds. But on the surfaces ∂Vi of the two metal plates 1 and 2 the electrostatic
potential φ must have different, but constant values, say

φ|∂V1 ≡ c+ U ; φ|∂V2 ≡ c ,

where U is the potential difference (or “voltage”) provided by the battery.7

A function φ(r) which satisfies Laplace’s equation,

∇2φ = 0 ,

in an open region G (here G = S) is called harmonic.
As a consequence, in the space S between V1 and V2 we must find a har-

monic function φ(r) which assumes the values

φ|∂V1 ≡ U , but φ|∂V2 ≡ 0

(and vanishes, of course, sufficiently quickly as |r| → ∞).
This is a simplification of the somewhat more general Dirichlet problem:

for given charges 
(r) one has the task of finding a function Φ(r), which (i)
in the interior of S satisfies the Poisson equation

∇2Φ
!= −
(r)/ε0 ,

and which (ii) at the boundary of S takes prescribed values:

Φ|∂S
!= f(r) , with fixed 
(r) and f(r) .

7 We remind the reader that the potential is only determined relative to some
arbitrary reference value. Therefore it is always advisable to “ground” the second
metal plate, since otherwise the field can be changed by uncontrolled effects, e.g.,
electrically charged dust particles.
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The Neumann problem, where one prescribes boundary values not for the
function φ(r) itself, but for the normal derivative

∂nφ := gradφ · n

is only slightly different.
One can show that a solution of the Dirichlet problem, if it exists, is always

unique. The proof is based on the linearity of the problem and on another
important statement, which is that a harmonic function cannot have a local
maximum or local minimum in the interior of an open region.

For example, in the case of a local maximum in three dimensions the
equipotential surfaces culminate in a “peak”, and the field vectors, i.e., the
negative gradients of the potential, are oriented away from the peak. Accord-
ing to Gauss’s law there would thus be a positive charge on the peak. This
would contradict


|S ≡ 0 ,

i.e., the harmonicity of the potential.
Let us now assume that in S a given Dirichlet problem has two different

solutions, φ1 and φ2; then (because of the linearity) the difference

w := φ2 − φ1

would satisfy in S the differential equation

∇2w(r) = 0 ,

with boundary values
w|∂S = 0 .

Because of the non-existence of a local maximum of a harmonic function in
the interior of S the function w(r) must vanish everywhere in S, i.e.,

φ2 ≡ φ1 ,

in contradiction with the assumption.
By applying voltages U and 0 to the capacitor plate V1 and V2, respec-

tively, one induces charges Q1 (on ∂V1) and Q2 (on ∂V2). We shall now show
that

Q2 = −Q1 ,

even if only V1 is connected to pole 1 of the battery, while V2 is grounded,
but not directly connected to pole 2;

Q2

(
=
∫∫
©
∂V2

ε0 ·E · nd2A

)

is called the induced charge on ∂V2 (see below).
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Proof of the above statements is again based on Gauss’s integral theorem,
according to which (with En := E · n)

Q1 +Q2 =
∫∫
©
∂V1+∂V2

ε0End2A . (17.28)

However
∂S = −∂V1 − ∂V2 ,

where the change of sign reflects that, e.g., the outer normal of V1 is an inner
normal of S. But according to Gauss’s integral theorem:

∫∫
©
∂S

End2A =
∫∫∫

S

divEdV. (17.29)

Since
divE = 0 , we have Q1 +Q2 = 0 ,

as stated.
The solution of the corresponding Neumann problem (i.e., not U , but Q is

given) is also essentially unique for the capacitor. Here the proof of uniqueness
is somewhat more subtle (N.B. we have used the term essentially above).

For a given Qj two different solutions φk (k = 1, 2) must both satisfy

−ε0 ·
∫∫
©
∂Vj

(∇φk · n) d2A = Qj (for j = 1, 2) ;

thus their difference w := φ2 − φ1 satisfies
∫∫
©
∂Vj

∇w · nd2A = 0 ,

and since w is constant on ∂Vj , one even has
∫∫
©
∂(Is)

(w∇w) · nd2A = 0 .

Moreover, according to Gauss’s integral theorem it follows that
∫∫∫

Is∇ · (w∇w)dV = 0 , i.e.,
∫∫∫

Is

[
(∇w)2 + w∇2w

]
dV = 0 .

Therefore, since

∇2w = 0 we have
∫∫∫

Is(∇w)2dV = 0 ;
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as a consequence
∇w ≡ 0

everywhere (apart from a set of zero measure). Therefore, it is not now the
potential that is unique but its essence, the gradient, i.e., the electric field
itself.

The capacity of a condenser is defined as the ratio of charge to voltage
across the plates, or C := Q

U . Elementary calculations contained in most
textbooks give the following results: For a plate capacitor (with plate area F
and plate separation d), a spherical capacitor (with inner radius R and outer
radius R + ΔR), and for a cylindrical capacitor (with length L and inner
radius R⊥) one obtains, respectively:

C = ε0
F

d
, C = 4πε0

R · (R +ΔR)
ΔR

, C = 2πε0
L

ln R⊥+ΔR⊥
R⊥

. (17.30)

In the limit ΔR� R (ΔR⊥ � R⊥) these results are all identical.

17.1.7 Numerical Calculation of Electric Fields

The uniqueness theorem for the Dirichlet problem is useful, amongst other
reasons, because it allows one immediately to accept a solution (found or
guessed by any means available) as the only solution. One should not under-
estimate the practical importance of this possibility!

If all analytical methods fail, numerical methods always remain. These
methods are not necessarily as complicated as one might think, and they can
often be used in the context of school physics. If one considers, for example,
a simple-cubic grid of edge length a between lattice points, then one has (up
to a small discretization error ∝ a2):

(
∇2φ

)
n
≡

6∑
j=1

(φn+Δj − φn)/a2. (17.31)

Here the six vectors n +Δj denote the nearest neighbours (right – left,
backwards – forwards, up – down) of the lattice point considered, and

φn := φ(rn) .

To obtain a harmonic function, it is thus only necessary to iterate (to the
desired accuracy) until at any lattice point one has obtained

φn ≡
1
6

6∑
j=1

φn+Δj ,

i.e., the l.h.s. must agree with the r.h.s.
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17.2 Electrostatic and Magnetostatic Fields
in Polarizable Matter

17.2.1 Dielectric Behavior

For a polarizable medium, such as water, the permittivity of free space ε0
must be replaced by the product ε0 · ε, where ε is the relative dielectric
constant of the medium, which is assumed to be isotropic here (this applies
to gases, liquids, polycrystalline solids and crystals with cubic symmetry8; ε
is a dimensionless constant of the order of magnitude O(ε) = 10 to 100 (e.g.,
for water ε ∼= 81)9.

When a dielectric (or polarizable material) is placed between the plates
of a condenser, the capacity is increased by a factor ε. For a parallel plate
condenser, for example, the capacity becomes:

C = εε0
F

d
.

This enhancement is often considerable, and in practice a dielectric material,
such as an insulating plastic, is inserted between condenser plates in order to
increase the amount of charge that can be stored for a given U .

In addition, the electric displacement vector D (see later)10 is defined for
such materials as D := ε0εE. Then, from Gauss’s law we obtain the first of
Maxwell’s equations (i) in integral form

∫∫
©∂VD · nd2A = Q(V ) (Maxwell I) , (17.32)

and (ii) in differential form
divD = 
 . (17.33)

What are the atomistic reasons for dielectric behavior? The answer to this
short question requires several sections (see below).

17.2.2 Dipole Fields; Quadrupoles

An electric dipole at a position r′ in vacuo can be generated by the following
elementary dumbbell approach.
8 Generalizations to non-cubic crystals will be treated below in the context of

crystal optics.
9 The product ε0 · ε is sometimes called the absolute dielectric constant of the

material and also written as ε; however this convention is not followed below,
i.e., by ε we always understand the relative dielectric constant, especially since
ε0 does not appear in the cgs system whereas the relative dielectric constant is
directly taken over into that system. In addition it should be mentioned that the
dielectric constant is not always constant but can be frequency dependent.

10 So-called for historical reasons.
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Firstly consider two exactly opposite point charges each of strength ±q,
placed at the ends of a small dumbbell, r′ + (a/2) and r′ − (a/2). Then
take the limit (i) a → 0 while (ii) q → ∞, in such a way that qa → p(�= 0),
whereas the limit qa2 → 0. The result of this procedure (the so-called “dipole
limit”) is the vector p, called the dipole moment of the charge array. Similarly
to Dirac’s δ-function the final result is largely independent of intermediate
configurations.

The electrostatic potential φ (before performing the limit) is given by

φ(r) =
q

4πε0

(
1

|r − r′ − a
2 |
− 1
|r − r′ + a

2 |

)
. (17.34)

Using a Taylor expansion w.r.t. r and neglecting quadratic terms in |a|, one
then obtains:

φ(r) ∼= −
qa

4πε0
· gradr

1
|r − r′| =

qa

4πε0
· r − r

′

|r − r′|3 . (17.35)

The electrostatic potential φDp due to an electric dipole with dipole vector
p at position r′ is thus given by

φDp(r) =
p

4πε0
· r − r

′

|r − r′|3 , (17.36)

and the corresponding electric field, EDp = −gradφDp, is (→ exercises):

E(r)Dp =
(3(r − r′) · p) (r − r′)− |r − r′|2p

4πε0|r − r′|5
. (17.37)

In particular one should keep in mind the characteristic kidney-shaped appear-
ance of the field lines (once more a sketch by the reader is recommended).

A similar calculation can be performed for an electric quadrupole. The
corresponding array of charges consists of two opposite dipoles shifted by
a vector b.11 The Taylor expansion must now be performed up to second
order. Monopole, dipole and quadrupole potentials thus decay ∼ r−1, ∼ r−2

and ∼ r−3, whereas the fields decay ∝ r−2, ∝ r−3 and ∝ r−4, respectively.

17.2.3 Electric Polarization

In a fluid (i.e., a gas or a liquid) of dielectric molecules, an external electric
field E polarizes these molecules, which means that the charge center of the
(negatively charged) electron shells of the molecules shifts relative to the
(positively charged) nuclei of the molecule. As a consequence, a molecular
electric dipole moment is induced, given by

11 Another configuration corresponds to a sequence of equal charges of alternating
sign at the four vertices of a parallelogram.
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p = αε0E ,

where α is the so-called molecular polarizability, which is calculated by quan-
tum mechanics.

Now, a volume element ΔV of the fluid contains

ΔN := nVΔV

molecules of the type considered. Moreover, the electric moment of this vol-
ume element is simply the sum of the electric moments of the molecules
contained in ΔV , i.e.,

Δp ≡ PΔV .

This is the definition of the so-called electric polarization:

P ≡ Δp

ΔV
, where Δp :=

∑
ri∈ΔV

p(ri) ;

i.e., the polarization P is the (vector) density of the electric moment (dipole
density). Under the present conditions this definition leads to the result

P = nV ε0αE .

Furthermore, the displacement D, is generally defined via the dipole den-
sity as

D := ε0E + P . (17.38)

For dielectric material we obtain

D = ε0 · (1 + χ) ·E where χ = nV α

is the electric susceptibility, i.e., ε = 1 + χ.
(N.B.: In a cgs system, instead of (17.38) we have: D′ := E′ + 4πP ′,

where P ′ = nvαE
′, for unchanged α. Hence ε = 1 + 4πχ′ = 1 + χ, i.e.,

χ = 4πχ′. Unfortunately the prime is usually omitted from tables of data,
i.e., the authors of the table rely on the ability of the reader to recognize
whether given data correspond to χ or χ′. Often this can only be decided if
one knows which system of units is being used.)

17.2.4 Multipole Moments and Multipole Expansion

The starting point for this rather general subsection is the formula for the
potential φ(r) of a charge distribution, which is concentrated in a region of
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vacuum G′:

φ(r) =
∫

G′


(r′)dV ′

4πε0|r − r′|
.

We assume that for all r′ ∈ G′ the following inequality holds: |r| 
 |r′|, i.e.,
that the sampling points r are very far away from the sources r′.

A Taylor expansion w.r.t. r′ can then be performed, leading to

1
|r − r′|

∼=
1
r
+

3∑
i=1

(−x′i)
∂

∂xi

1
r
+

1
2!

3∑
i,k=1

(−x′i) (−x′k)
∂2

∂xi∂xk

1
r
+. . . . (17.39)

Substitution of (17.39) into the formula for φ(r) finally results in

φ(r) =
1

4πε0

⎧
⎨
⎩
Q

r
+
p · r
r3

+
1
2

3∑
i,k=1

qi,k
3xixk − r2δi,k

r5
+ . . .

⎫
⎬
⎭ , (17.40)

with

a) the total charge of the charge distribution,

Q :=
∫

G′

(r′)dV ′ ;

b) the dipole moment of the charge distribution, a vector with the three
components

pi :=
∫

G′

(r′)x′idV

′ ;

and
c) the quadrupole moment of the distribution, a symmetric second-order

tensor, with the components

qi,k =
∫

G′

(r′)x′ix

′
kdV

′ .

Higher multipole moments qi1,...,il are calculated analogously, i.e., in terms
of order l (l = 0, 1, 2, . . .) one obtains

φ(r) ∼=
Q

4πε0r
+

p · r
4πε0r3

+
∞∑
l=2

3∑
i1,...,il=1

(−1)l

l!
1

4πε0
qi1,...,il ·

∂l

∂xi1 . . . ∂xil

(
1
r

)
. (17.41)

However, only a minor fraction of the many 2l-pole moments qi1,...,il ac-
tually influence the result; in every order l, there are only 2l + 1 linear in-
dependent terms, and one can easily convince oneself that the quadrupole
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tensor can be changed by the addition of an arbitrary diagonal tensor,

qi,k → qi,k + a · δi,k ,

without any change in the potential.
As a result, for l = 2 there are not six, but only 2l + 1 = 5 linearly

independent quadrupole moments qi,k = qk,i. Analogous results also apply
for l > 2, involving so-called spherical harmonics Ylm(θ, ϕ), which are listed
in (almost) all relevant books or collections of formulae, especially those on
quantum mechanics. One can write with suitable complex expansion coeffi-
cients cl,m:

φ(r) =
Q

4πε0r
+

p · r
4πε0r3

+
∞∑
l=2

1
4πε0rl+1

·
+l∑

m=−l
cl,mYl,m(θ, ϕ) . (17.42)

Due to the orthogonality properties of the spherical harmonics, which are
described elsewhere (see Part III), the so-called spherical multipole moments
cl,m, which appear in (17.42), can be calculated using the following integral
involving the complex-conjugates Y ∗l,m of the spherical harmonics:

cl,m =
4π

2l+ 1

∞∫

0

drr2
π∫

0

dθ sin θ

2π∫

0

dϕ
(r)rlY ∗l,m(θ, ϕ) . (17.43)

Dielectric, Paraelectric and Ferroelectric Systems;
True and Effective Charges

a) In dielectric systems, the molecular dipole moment is only induced,
pmolec. = ε0αE.

b) In contrast, for paraelectric systems one has a permanent molecular dipole
moment, which, however, for E = 0 vanishes on average, i.e., by perform-
ing an average w.r.t. to space and/or time. (This is the case, e.g., for
a dilute gas of HCl molecules.)

c) Finally, for ferroelectric systems, e.g., BaTiO3 crystals, below a so-called
critical temperature Tc a spontaneous long-range order of the electric po-
larization P exists, i.e., even in the case of infinitesimally small external
fields (e.g. E → 0+) everywhere within the crystal a finite expectation
value of the vector P exists, i.e., for T < Tc one has 〈P 〉 �= 0.

In each case where P �= 0 Gauss’s law does not state that
∫∫
©
∂V

ε0E · nd2A = Q(V ) ,
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but, instead (as already mentioned, with D = ε0E + P ):
∫∫
©
∂V

D · nd2A = Q(V ) . (17.44)

Alternatively, in differential form:

divD = 
 i.e., precisely: div(ε0E + P ) = 
 , (17.45)

and not simply
divε0E = 
 .

For a parallel plate condenser filled with a dielectric, for given charge Q,
the electric field E between the plates is smaller than in vacuo, since part of
the charge is compensated by the induced polarization. The expression


E := divε0E

represents only the remaining non-compensated (i.e. effective) charge density,


E = 
true − divP ,

(see below).
In the following, 
 will be systematically called the true charge density

(
 ≡ 
true). In contrast, the expression


E := ε0divE

will be called the effective charge density. These names are semantically some-
what arbitrary. In each case the following equation applies:


E = 
− divP .

Calculating the Electric Field in the “Polarization
Representation” and the “Effective Charge Representation”

a) We shall begin with the representation in terms of polarization, i.e., with
the existence of true electric charges plus true electric dipoles, and then
apply the superposition principle. In the case of a continous charge and
dipole distribution, one has the following sum:

φ(r) =
∫∫∫


(r′)dV ′

4πε0|r − r′|
+
∫∫∫

dV ′P (r′) · (r − r′)
4πε0|r − r′|3

. (17.46)

This dipole representation is simply the superposition of the Coulomb
potentials of the true charges plus the contribution of the dipole potentials
of the true dipoles.
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b) Integrating by parts (see below), equation (17.46) can be directly trans-
formed into the equivalent effective-charge representation, i.e., with


E := 
− divP

one obtains:

φ(r) =
∫∫∫


E(r′)dV ′

4πε0|r − r′|
. (17.47)

The electric polarization does not appear in equation (17.47), but instead
of the density 
 of true charges one now has the density 
E = 
 − divP
of effective (i.e., not compensated) charges (see above). For simplicity we
have assumed that at the boundary ∂K of the integration volume K the
charge density and the polarization do not jump discontinously to zero but
that, instead, the transition is smooth. Otherwise one would have to add to
equation (17.47) the Coulomb potential of effective surface charges

σEd2A := (σ + P · n)d2A ,

i.e., one would obtain

φ(r) =
∫∫∫

K


E(r′)dV ′

4πε0|r − r′|
+
∫∫
©
∂K

σE(r′)d2A′

4πε0|r − r′|
. (17.48)

Later we shall deal separately and in more detail with such boundary
divergences and similar boundary rotations. Essentially they are related to
the (more or less elementary) fact that the formal derivative of the unit step
function (Heaviside function)

Θ(x)(= 1 for x > 0 ; = 0 for x < 0 ; =
1
2

for x = 0)

is Dirac’s δ-function:
dΘ(x)

dx
= δ(x) .

Proof of the equivalence of (17.47) and (17.46) would be simple: the equiv-
alence follows by partial integration of the relation

r − r′
|r − r′|3 = +∇r′

1
|r − r′| .

One shifts the differentiation to the left and obtains from the second term in
(17.46):

−
∫∫∫ ∇r′ ·P (r′)

4πε0|r − r′|
dV ′ .

Together with the first term this yields the required result.
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17.2.5 Magnetostatics

Even the ancient Chinese were acquainted with magnetic fields such as that
due to the earth, and magnetic dipoles (e.g., magnet needles) were used by
mariners as compasses for navigation purposes. In particular it was known
that magnetic dipoles exert forces and torques on each other, which are analo-
gous to those of electric dipoles.

For example, the torque D, which a magnetic fieldH exerts on a magnetic
dipole, is given by

D = m×H ,

and the force F on the same dipole, if the magnetic field is inhomogeneous,
is also analogous to the electric case, i.e.,

F = (m · grad)H

(see below).
On the other hand a magnetic dipole at r′ itself generates a magnetic

field H, according to12

H(r) = −gradφm , with φm =
m · (r − r′)
4πμ0|r − r′|3

.

All this is completely analogous to the electric case, i.e., according to this
convention one only has to replace ε0 by μ0, E by H and p by m.

However, apparently there are no individual magnetic charges, or mag-
netic monopoles, although one has searched diligently for them. Thus, if one
introduces analogously to the electric polarization P a so-called magnetic po-
larization J 13, which is given analogously to the electric case by the relation

Δm = JΔV ,

then one can define a quantity

B := μ0H + J ,

the so-called “magnetic induction”, which is analogous to the “dielectric dis-
placement”

D := ε0E + P ;

but instead of
divD = 


12 Unfortunately there are different, although equivalent, conventions: many au-
thors write D = mB ×B, where in vacuo B = μ0H , and definemB as magnetic
moment, i.e., mB = m/μ0, where (unfortunately) the index B is omitted.

13 All these definitions, including those for P and J , are prescribed by international
committees and should not be changed.
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one obtains
divB ≡ 0 ,

or better ∫∫
©∂V d2A(B · n) ≡ 0 , ∀V (Maxwell II) ; (17.49)

i.e., there are no (“true”) magnetic charges at all, but only magnetic dipoles.
The above relation is the second Maxwell equation, which is again essen-

tially based on experimental experience.
Using these relations, the magnetic field H in the absence of electric

currents, can be derived from a magnetic potential φm, which is calculated
from equations analogous to (17.46) and (17.48). (The reader – if a student
undergoing examinations – should write down the equations as preparation
for a possible question.)

Solution:
H(r) = −gradφm(r) ,

with the two equivalent formulae

a) dipole representation for magnetized bodies

φm(r) =
∫∫∫

G

dV ′
J(r′) · (r − r′)
4πμ0|r − r′|3

; (17.50)

b) representation in terms of effective magnetic charges

φm(r) =
∫∫∫

G

dV ′
−(divJ)(r′)
4πμ0|r − r′|

+
∫∫
©
∂G

d2A′
J(r′) · n(r′)
4πμ0|r − r′|

. (17.51)

17.2.6 Forces and Torques on Electric and Magnetic Dipoles

The force on an electric dipole in an electric field may be calculated using
the dumbbell approximation of two opposite charges at slightly different po-
sitions:

F = q ·
(
E
(
r +

a

2

)
−E

(
r − a

2

))
∼= q

3∑
i=1

(
ai

∂

∂xi

)
E(r)

→ (p · ∇)E(r) . (17.52)

In the dipole limit (q →∞, a→ 0, but q ·a→ p(�= 0), whereas qaiaj → 0)
one obtains the result

F = (p · grad)E(r) .

A similar calculation yields the formula for the torque D:

D = q
[(
r +

a

2

)
×E

(
r +

a

2

)
−
(
r − a

2

)
×E

(
r − a

2

)]

→ p×E(r) . (17.53)

For the magnetic case one only needs to replace p by m and E by H.



17.2 Electrostatic and Magnetostatic Fields in Polarizable Matter 141

17.2.7 The Field Energy

We shall now introduce a number of different, but equivalent, expressions for
the energy associated with an electric field. The expressions are fundamental
and will be used later. Firstly, we shall start with a capacitor with dielectric
material of dielectric constant ε between the plates.

Let us transport an infinitesimal amount of charge14, δQ, from the metal
plate at lower potential to that with the higher potential, where a capacitor
voltage

U(Q) =
Q

C

has already been built up. The (infinitesimal) energy or work done in trans-
porting the charge is

δE = δQ · U(Q) .

By transporting the total charge in this way we finally obtain

E =

Q∫

0

dQ̃ · U(Q̃) , with U(Q̃) =
Q̃

C
,

i.e.,

1.) E =
1
2
U ·Q =

Q2

2C
=
C

2
U2. (17.54)

This is our first expression for the electric field energy.
The following (seemingly more general) expression is equivalent:

2.) E =
1
2

∫∫∫
φ(r)
(r)dV . (17.55)

Since the charge density vanishes in the space between the metal plates,

 ≡ 0, whereas at the lower plate the potential is φ ≡ 0 and at the upper
plate φ ≡ U , and since 
dV can be replaced by σd2A (with σ = D · n), we
obtain the same result as before.

Now, substituting the result

φ(r) =
∫∫∫

dV ′

(r′)

4πεε0|r − r′|

into equation (17.55), we obtain a third expression for the field energy, which
is the energy of mutual repulsion of the charges at r′ and r:

3.) E =
1
2

∫∫∫

r

∫∫∫

r′
dV dV ′


(r′)
(r)
4πεε0|r − r′|

. (17.56)

14 “true charge”
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(The factor “ 1
2” in all these expressions is most obvious here, since when

calculating the mutual repulsion each pair of charges should only be counted
once.)

Finally, perhaps the most important expression is the following result,
which is obtained from (17.55) by integrating by parts: In equation (17.55)
we substitute


 = ∇ ·D

and again shift the ∇-differentiation to the left. The result, with

−∇φ = E ,

is:
4.) E =

1
2

∫∫∫

S

dVE ·D. (17.57)

(It is obvious that one only has to integrate over the space S between the
metal plates 1 and 2, since in the interior of the plates the electric field E
vanishes.)

The energy density of the electric field, we, e.g., to build up the field
between the plates of a capacitor, is thus given by

we(r) :=
ε · ε0

2
E(r)2 .

Similarly (without proof) in the magnetic case we have the following result
for the energy density of the field, wm, e.g., to build up the magnetic field in
the interior of a solenoid filled with material of relative permeability μ:

wm(r) =
μ · μ0

2
H(r)2 .

17.2.8 The Demagnetization Tensor

With the aid of the above equations (17.46) and (17.48) one can always
calculate the electrostatic field E(r) and the magnetostatic field H(r) of
an electrically or magnetically polarized system, at every sampling point r;
however, in general the calculation is difficult and the results are complicated,
except for the case of an ellipsoid.

It can be shown that the field outside an ellipsoid has exactly the same
form as the field due to a dipole at the center, with dipole moment

p = PΔV ,

where ΔV is the volume of the ellipsoid and P is the electric polarization.
This field is of course inhomogeneous, but rather simple. In the interior of
the ellipsoid one has an even simpler result, a homogeneous field with the
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three components

Ei = − 1
ε0

3∑
k=1

NikPk .

(The proof is omitted here).
Ni,k(= Nk,i) is a tensor, which is diagonal w.r.t. the principal axes of

the ellipsoid and has the property that the eigenvalues depend only on the
ratios of these axes. In the magnetic case, this same tensor is called the
demagnetization tensor. It always satisfies the identity

3∑
i=1

Nii ≡ 1 .

The three eigenvalues of the demagnetization tensor are called demagneti-
zation factors ; i.e., for a sphere they have the value 1

3 ; for an infinitely-long
circular cylinder two of the eigenvalues (the “transverse” ones) are 1

2 , whereas
the “longitudinal” one is zero; and finally for a very thin extended plane the
two “in-plane” eigenvalues are zero, whereas the “out-of-plane” eigenvalue is
1. For other geometries the eigenvalues can be found in tables.

17.2.9 Discontinuities at Interfaces; “Interface Divergence”
and “Interface Curl”

At interfaces between systems with different material properties the fields are
usually discontinuous, but the integral formulations of Maxwell’s equations
are valid, whenever the integrals can be performed, e.g., for piecewise con-
tinuous functions, which are non-differentiable. From Gauss’s law (“Maxwell
I”) (17.32), by applying it to a so-called Gauss interface box (which is a box
running parallel to the 2d-interface that is aligned, e.g., horizontally, such
that the top of the box is contained in the region above the interface and
the bottom is below the interface, whereas the height of the side surfaces is
negligibly small) the following equation can be derived

n ·
(
D(+) −D(−)

)
= σ . (17.58)

The D(±) are the fields at the outer and inner sides of the interface,
respectively, and σ is the (2d) interface charge density.

The operation
n · (v+ − v−)

corresponding to the l.h.s. of equation (17.58) is called the interface diver-
gence of the vector field v(r). This quantity is obtained from divv by formally
replacing the (vectorial) differential operation ∇·v by the difference operation

n · (v+ − v−)

appearing in (17.58).
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One can proceed similarly with the curl operator: Calculating the circula-
tion of the electric field E(r) along a Stokes interface loop (i.e., a small closed
loop running in one direction on the upper side of the horizonal interface and
in the opposite direction on the lower side but with negligible vertical height),
one obtains from curlE = ∇×E = 0:

n×
(
E(+) −E(−)

)
= 0 . (17.59)

From (17.58) and (17.59) one can derive a law of refraction the electric
field lines at the interface between two different dielectric materials. This law
follows from the fact that the tangential components of E are continuous,
whereas the normal components

n ·E(i) with i = 1, 2

(i.e., corresponding to the two different materials) are inversely proportional
to the respective εi. It then follows that tanα2

tanα1
≡ ε2

ε1
, with angles αi to the

normal. For ε2/ε1 → ∞ one obtains conditions such as those for a metal
surface in vacuo, α2 → 90◦, α1 → 0 (a sketch is recommended).



18 Magnetic Field of Steady Electric Currents

18.1 Ampère’s Law

For centuries it had been assumed that electricity and magnetism were com-
pletely separate phenomena. Therefore it was quite a scientific sensation when
in 1818 the Danish physicist Hans Christian Ørsted proved experimentally
that magnetic fields were not only generated by permanent magnetic dipoles,
but also by electric currents, and when slightly later André Marie Ampère
showed quantitatively that the circulation of the magnetic field H along
a closed loop followed the simple relation:

∮

∂F

H(r) · dr = I(F ) (Ampere’s law) . (18.1)

Here, I(F ) is the flux of electric current through a surface F inserted into
the closed loop Γ = ∂F 1

I(F ) :=
∫∫

F

j · nd2A . (18.2)

j := 
(r)v(r)

is the vector of the current density (dimensionality: A/cm2 = C/(cm2s)).
With Stokes’s integral theorem it follows that the differential form of

Ampère’s law (18.1) is given by:

curlH = j . (18.3)

For the special case of a thin wire aligned along the z-axis from (−∞) to
(+∞), in which a steady electric current I flows, using cylindrical coordinates
one obtains

H ‘z−wire′ = eϕ
I

2πr⊥
. (18.4)

Just as the electrostatic field of a point charge possesses a (three-
dimensional) δ-divergence,
1 The surface F is not uniquely defined by Γ , since different surfaces can be in-

serted into the same closed loop. This is the topological reason underlying gauge
freedom of the vector potential, which is discussed below.
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div
(

qr

4πε0r3

)
= qδ(x, y, z) ,

an analogous relation is also valid for the curl of the magnetic field of the
above “z-wire”:

(curlH“z−wire′′)(x, y, z) = Iδ(x, y)ez .

We can formulate these ideas in a general way:
The effective electric charges are the sources of the electrostatic field E(r)

(whereas the vortices of E vanish); in contrast the vortices of the magneto-
static field B(r) correspond to effective electric currents (whereas the sources
of B vanish).

Generally, a vector field v(r) is determined by its sources and vortices.
Note that we have written B, not H , and “effective” quantities, not

“true” ones (see above). In particular, the relations between E and D as well
as B and H are not quite simple, and not all magnetic fields are produced
by electric currents (Sect. 18.5 → spin magnetism).

18.1.1 An Application: 2d Boundary Currents
for Superconductors; The Meissner Effect

As already detailed in Sect. 17.2.9, at an interface Ampère’s equation

curlH = j

must be generalized to

n× (H+ −H−) = js ,

where js is an interface-current density (dimensionality: A/cm, not A/cm2;
and we have js ≡ σv, analogously to j ≡ 
v).

As we shall see, this formulation yields a simple explanation of the so-
called Meissner effect of superconductivity. This effect amounts to “expelling”
the magnetic field from the interior of a superconducting material, by loss-
free interface (super)currents that flow tangentially at the interface between
a superconducting region “1” (e.g., the r.h.s. of a plane) and a normally
conducting region “2” (e.g., vacuum on the l.h.s.). For example, if the in-
terface normal (from “1” to “2”) is in the (−x)-direction and the external
magnetic field (in the normal conducting region “2”) is (as usual) in the +z-
direction, then in “1” (at the interface towards “2”) supercurrents flow in the
y-direction, producing in “1” a field −Bez, which is different from zero only
in a very thin layer of typical width

Δx = λ ≈ 10 nm .
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For energy reasons (the magnetic field energy in region “1” can be saved)
the supercurrents flow with such a strength that in the interior of region “1”,
outside the above-mentioned interface zone of width

Δx = λ ,

the external magnetic field is exactly compensated. Further details cannot be
given here.

18.2 The Vector Potential; Gauge Transformations

Since
curlH = j(�= 0) ,

the magnetic field can no longer be calculated from a scalar potential: With

H(r) = −gradφm(r)

one would derive
curlH ≡ 0 ,

since
curl gradφm(r) ≡ 0

for arbitrary scalar functions φm(r). (∇× (∇φm) is formally a cross-product
of two identical vectors and thus ≡ 0.) Fortunately we have

divB(r) ≡ 0 ,

so that one can try:
B = curlA(r) ,

because
div curlv(r) ≡ 0

for all vector fields v(r), as can easily be shown. (Formally div curlv is a so-
called spate product, the determinant of a 3 × 3-matrix, i.e., of the form
u · [v × w], with two identical vectors, ∇ · [∇ × v], and therefore it also
vanishes identically.)

In fact an important mathematical theorem, Poincaré’s lemma, states the
following: For source-free vector fields B, i.e., if

∫∫
©
∂G

d2AB · n ≡ 0 ,

in a convex open region G (e.g., in the interior of a sphere) with a sufficiently
well-behaved connected boundary ∂G, one can write vector potentialsA with

B = curlA .
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One should note that A is not at all unique, i.e., there is an infinity of
different vector potentialsA, but essentially they are all identical. If one adds
an arbitrary gradient field to A, then curlA is not changed at all. A so-called
gauge transformation:

A→ A′ := A+ gradf(r) , (18.5)

with arbitrary f(r), implies

curlA ≡ curlA′ , since curl gradf ≡ 0 .

Therefore, the physical quantity B is unchanged.

18.3 The Biot-Savart Equation

In the following we consider, as usual, G = R3.

a) Firstly, we shall use a gauge such that divA(r) = 0 (Landau gauge).
b) Secondly, from Ampère’s law,

curlH = j , with B = μ0H + J ,

we conclude that

curlB = μ0j + curlJ =: μ0jB ,

with the effective current

jB := j +M , where M :=
J

μ0

is the magnetization and J the magnetic polarization2.
c) Thirdly, we now use the general identity

curl curlA ≡ grad divA−∇2A . (18.6)

Hence, due to
curl B =: μ0jB ,

the Cartesian components of A satisfy the Poisson equations

−∇2Ai = μ0 · (jB)i , for i = x, y, z .

The solution of these equations is analogous to the electrostatic problem,
viz

A(r) =
∫∫∫

dV ′
μ0jB(r′)
4π|r − r′| . (18.7)

2 In the cgs system the corresponding quantities areM ′
“
= (ΔV )−1P

ri∈ΔV m
′
i

”

and 4πM ′.
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One can easily show by partial integration that this result also satisfies
the equation

divA ≡ 0 , since divjB = 0 .

Later, in the context of the so-called continuity equation, this relation will be
discussed more generally.

By applying the curl operator, equation (18.7) leads to the formula of
Biot and Savart :

B(r) =
∫∫∫

dV ′
μ0

4π
jB(r′)× (r − r′)
|r − r′|3 . (18.8)

In the integrand one has the same dependence on distance as in Coulomb’s
law for E, but complemented by the well-known right-hand rule connecting
the directions of the effective current jB and the magnetic induction B, i.e.,
the product

1
ε0

E(r′)

(r − r′)
|r − r′|3

is replaced by the cross-product

μ0jB(r′)× (r − r′)
|r − r′|3 .

(It is no coincidence that the equation for A, (18.7), is easier to remember
than its consequence, the Biot-Savart equation (18.8).)

18.4 Ampère’s Current Loops and their Equivalent
Magnetic Dipoles

This section is especially important, since it shows that the relationships be-
tween electric currents and magnetic dipoles are very strong indeed. Firstly
we state (without proof, but see the next footnote) that the magnetic induc-
tion B(r) produced by a current loop Γ = ∂F (current I) is quantitatively
identical to the magnetic field that would be produced by an infinitesimal
film of magnetic dipoles inserted into the same loop, i.e., for the fictitious
2d-dipole density dm of that film the following formula would apply:

dm ≡ μ0Ind2A .

a) For a current loop, one obtains from Biot and Savart’s equation

B(r) =
μ0I

4π

∮

∂F

dr′ × r − r′
|r − r′|3 . (18.9)
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b) In the dipole case one would obtain outside the (fictitious) dipole film the
equivalent result

B = μ0H ,

with

H(r) = −grad
I

4π

∫∫

F

d2A′
n(r′) · (r − r′)
|r − r′|3 . (18.10)

Proof of the equivalence of the two results proceeds analogously to Stokes’s
theorem, but since it is somewhat difficult in detail, we only give an outline
in a footnote3. An example is given in Fig. 18.1.

In this context we additionally keep two useful identities in mind:

A = m× r

4πr3

Fig. 18.1. The diagram illustrates a typical section of the magnetic field lines
produced by a current loop of two (infinitely) long straight wires. The wires intersect
the diagram at the points (±1, 0). The plane of the loop of area A (→ ∞) and
carrying a current I (i.e., of opposite signs in the two long wires) is perpendicular
to the plane of the diagram. Exactly the same inductionB(= μ0H) is also produced
by a layer of magnetic dipoles inserted into the current loop, with the quantitative
relation, dm ≡ μ0Ind2A, given in the text

3 In the following we use the antisymmetric unit-tensor eijk and Ein-
stein’s summing convention, i.e., all indices which appear twofold
are summed over. With these conventions Stokes’s theorem becomes:H

∂F
Ejdxj =

RR
F ejlm∂lEmnjd

2A. Now the following chain of equations is true:H
∂F
eijk

dx′
j(xk−x′

k)

|r−r′|3
“
≡ H

∂F
dx′

jejki∂
′
k

1
|r−r′|

”
=
RR

F ejlm∂
′
lemki∂

′
k

1
|r−r′|njd

2A′ =

− RRF eikmejlm∂
′
lk

1
|r−r′|njd

2A′. With the basic identity eikmejlm = δijδkl−δilδkj

and the simple relations ∂′
i

1
|r−r′| = −∂i

1
|r−r′| and ∂kk

1
|r−r′| = 0 (for r′ 	= r)

our statement of equivalence is obtained.
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for the vector potential of a magnetic dipole and

curl
(
m× r

r3

)
=mdiv

r

r3
− grad

m · r
r3

(cf. problem 5 of the exercises, summer 2002 [2]).
Because of the above-mentioned equivalence it would be natural to suggest

that all magnetic dipole moments are generated in this way by Ampèrian
current loops. However, this suggestion would be wrong: There are magnetic
moments which cannot be generated in this “classical” way, but which are
related to the non-classical concept of “electron spin” (see Part III: Quantum
Mechanics). The following section deals with the difference.

18.5 Gyromagnetic Ratio and Spin Magnetism

An atomic electron orbiting the nucleus on a circular path of radius R with
velocity

v = ωR

(
time period T =

2π
ω

)

has an angular momentum of magnitude

L = R ·mev = meωR
2 .

According to the Ampèrian “current loop” picture it would be equivalent to
a magnetic dipole moment

m = μ0
e

T
πR2 =

μ0eωR
2

2
,

where we have used I = e
T (me is the electron mass).

For a current loop, therefore, the gyromagnetic ratio

γ :=
m

L

is given by
γ ≡ μ0e

2me
.

However, in the nineteen-twenties due to an experiment by Einstein and
de Haas it was shown that for the usual magnetic materials, e.g., alloys of Fe,
Co and Ni, the gyromagnetic ratio is twice as large as the above ratio. For
these materials the magnetism is due almost entirely to pure spin magnetism.
For the angular momentum of these alloys the “classical” orbital contribution
(see Part I) is almost negligible; the (dominant!) contribution is essentially
“non-classical”, i.e., due to spin magnetism, which is only understandable
in a quantum mechanical context. (In fact, a profound analysis is not even
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possible in non-relativistic quantum mechanics, but only in Dirac’s relativistic
version.)

In elementary texts one often reads that the spin angular momentum of
a (charged) particle is some kind of “proper angular momentum”, this being
acceptable if one does not consider the particle to be rotating like a “spinning
top”, since a spinning charge would have the classical value,

γ =
μ0

2me
,

for the gyromagnetic ratio and not twice this value. One has to admit that
these relations are complicated and not understandable at an elementary
level.
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of Induction; the Continuity Equation;
Maxwell’s Displacement Current

Maxwell’s first and second equations, divD = 
 and divB = 0 (i.e., Gauss’s
law for the electric and the (non-existent) magnetic charges, respectively)
also apply without change for time-dependent electrodynamic fields. This is
different with respect to the third and fourth Maxwell equations:

a) Faraday’s law of induction (Faraday 1832)

curlE = −∂B
∂t

, (19.1)

and
b) Ampère’s law including Maxwell’s displacement current :

curlH = j +
∂D

∂t
. (19.2)

These two equations, (19.1) and (19.2), will be discussed in the following
subsections. To aid our understanding of the last term in (19.2), known as
Maxwell’s displacement current, we shall include a subsection on the conti-
nuity equation. This general equation contains an important conservation law
within it, the conservation of total charge (see below).

19.1 Faraday’s Law of Induction and the Lorentz Force;
Generator Voltage

In 1832 Faraday observed that a time-dependent change of magnetic flux

φB(F ) =
∫∫

F

B · nd2A

through a current loop Γ = ∂F gives rise to an electromotive force (i.e., a force
by which electric charges of different sign are separated). This corresponds
to a generator voltage which is similar to the off-load voltage between the
two poles of a battery. (In the interior of a battery the current flows from the
minus pole to the plus pole; only subsequently, in the external load circuit,
does the current flow from plus to minus.) In Fig. 19.1 we present a sketch
of the situation.
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Fig. 19.1. Sketch to illustrate Faraday’s law of induction. The three arrows on the
r.h.s. of the figure denote a magnetic induction B. An oriented loop Γ is plotted, as
well as a paved surface F , which is inserted into Γ (Γ = ∂F ) but which does not need
to be planar as in the diagram. A change in magnetic flux φB(F ) :=

RR
F
B ·nd2A

gives rise to an induced voltage Ui(Γ )

 
=

r1−εH
r1+ε

E · dr
!

between two infinitesimally

close points r1+ε and r1−ε on the loop. These two points – which are formally the
initial and end points of the loop – can serve as the poles of a voltage generator
(the initial point r1+ε corresponds to the negative pole). The related quantitative

equation is Faraday’s law: Ui(t) = − dφB(F )
dt

Faraday’s law of induction states that the induced voltage (i.e., the gen-
erator voltage mentioned above)

Ui =

r1−ε∮

r1+ε

E(r) · dr

between (arbitrary) initial points r1+ε and (almost) identical end points r1−ε
of an (almost) closed line1 Γ = ∂F obeys the following law:

Ui(t) = −dφB(F )
dt

. (19.3)

As already mentioned, the initial and end points of the (almost) closed
loop Γ differ only infinitesimally. They correspond to the minus and plus
poles of the generator, i.e., Ui is the generator voltage.

It does not matter at which position of the curve Γ the voltage is
“tapped”, nor does it matter whether the change of the magnetic flux re-
sults

a) from a change of Γ (i.e., form or size) relative to the measuring equipment,
b) from a change of the magnetic induction B(r, t), or
c) by a combination of both effects.
1 A sketch is recommended. The normal vector n of the area F should coincide

with the orientation of the loop Γ = ∂F .
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We thus realize that Faraday’s law of induction (19.3), which appears so
simple, embodies a great deal of experimental information. In addition we
may already surmise at this point that Maxwell’s theory is relativistically
invariant, as we shall show later in detail.

For case b), i.e., constant Γ but variable B, using Stokes’s theorem, from
the integral form of the law of induction,

∮

∂F

E · dr = −
∫∫

F

∂B

∂t
· nd2A ,

one obtains the differential form (19.1).
To derive case a) as well, we additionally use the expression for the Lorentz

force on an electrically charged particle, which moves with velocity v in
a magnetic field. This law was formulated by Hendryk A. Lorentz in Lei-
den decades after Faraday’s discovery2, and it states the following:

The force FL on an electrically charged particle moving in a magnetic
induction B(r, t) with velocity

v(r, t) is F L = qv ×B (Lorentz force) .

We shall now consider an infinitesimal line element dr (e.g., dley) of the
current loop Γ = ∂F and move this line element during a time interval δt
with velocity v (e.g. in the x-direction), such that the line element defines
a surface element

(vδt)× dr .

The corresponding change in magnetic flux is given by

δφB = δt[v × dr] ·B = −δtdr · [v ×B] .

We then calculate the integral of this force along the loop, i.e.,
r1−ε∮

r1+ε

dr · FL .

But
FL = q ·E .

Therefore, we finally obtain

Ui ≡
∮
E · dr ≡ −δφB

δt
.

Case c) follows from b) and a) by linear superposition and the product
law of differentiation.

Consequently, we can state that the integral version of Faraday’s law
contains more than the differential version (19.1); inter alia the Lorentz force,
i.e., not only b), but also a).
2 Shortly before Einstein’s special theory of relativity Lorentz also formulated his

famous Lorentz transformations.
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19.2 The Continuity Equation

The conservation law for total charge mentioned above, states that

Qtotal(t) :=
{∫∫∫

∞
dV 
(r)

}
(t) = constant ,

where we integrate over the whole space R3. This implies that the electric
charge contained in a finite volume V ,

Q(V ) :=
∫

V

dV 
(r) ,

can only increase by an influx of charge from outside, i.e.,

dQ(V )
dt

= −
∫∫
©
∂V

j · nd2A . (19.4)

Now for constant volume we have:

dQ(V )
dt

=
∫∫∫

V

∂


∂t
dV ,

and by Gauss’s integral theorem:

−
∫∫
©
∂V

j · nd2A = −
∫∫∫

V

divjdV .

As a consequence we have
∫∫∫

V

{
∂


∂t
+ divj

}
dV ≡ 0 ,

i.e. not divj ≡ 0, but instead the continuity equation

divj +
∂


∂t
≡ 0 . (19.5)

This equation, including its derivation, should be kept in mind, since ana-
logous continuity equations apply to other conservation laws.

19.3 Ampère’s Law with Maxwell’s Displacement
Current

As a result of the continuity equation, (19.5), Ampère’s law

curlH = j
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cannot remain unchanged for time-dependent electromagnetic fields, since

div curlH ≡ 0 ,

whereas according to (19.5) divj �= 0 applies. Maxwell found the correct
solution by adding a displacement current ∂D

∂t to the true current j, to give:

curlH = j +
∂D

∂t
.

Due to the permutability of partial derivatives, e.g.,

∂

∂x

∂

∂t
=

∂

∂t

∂

∂x
,

one obtains
div

∂D

∂t
=

∂

∂t
divD .

But according to the first Maxwell equation one has divD = 
. Thus, with
the continuity equation one obtains:

div
{
j +

∂D

∂t

}
≡ 0 ,

as expected. The fourth Maxwell equation was therefore deduced to be:

curlH = j +
∂D

∂t
(Maxwell IV; differential version) . (19.6)

(By analogy with Faraday’s law this equation could be termed Maxwell’s
law3.)

In the corresponding integral form (see below) one considers a metal ca-
pacitor. A true current enters plate 1 of this capacitor from a lead 1, whereas
from plate 2 a corresponding true current flows outwards through a lead 2.

In the space between plate 1 and plate 2 no true current flows, but the
D-field changes with time, since the curls of the magnetic field surrounding
the true currents in the leads cannot stop in the interspace: curls must always
continue (a diagram is recommended here!)

As with Faraday’s law of induction, the integral form of the fourth
Maxwell equation is again somewhat more general than the differential form
(Note the time derivative in front of the integral):

∮

∂F

H · dr =
∫∫

F

j · nd2A+
d
dt

∫∫

F

D · nd2A . (19.7)

3 The fact that on the r.h.s. of (19.1) and (19.2) the time derivatives of the electro-
magnetic fields B and D enter with different signs is ultimately responsible (as
we shall see) for the existence of electromagnetic waves. The difference in signs
also reminds us of a similar difference in the canonical equations in classical me-
chanics (see Part I) and gives another pointer to the existence of matter waves
(see Part III).
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19.4 Applications: Self-inductance and Mutual
Inductances; Transformers; Complex Resistances;
Alternating-current Resonance Circuit

a) Inductance
Consider a solenoid of length l and circular cross-section (radius r0) filled
with a material of relative permeability μ (typically a soft-iron core).
Let l be the length of the solenoid, while r0 is the radius of the circular
cross-section and the number of windings is N1. The total magnetic flux
through all the windings of the solenoid is thus

φB = N1 · μμ0H · πr20 .

Applying Ampère’s law,
∮

∂F

H · dr = I(F ) ,

to a long closed loop circulating around the core with all windings, implies
for the magnetic field H in the interior of the solenoid:

H =
N1

l
· I ,

where I is a quasi-static, i.e., slowly (periodically) changing current in the
coil. Hence we have

φB = μμ0
N2

1

l
πr20 · I , i.e. , φB ≡ L · I ,

where L is the (self-)inductance of the solenoid, given by

L(=: L1,1) = μμ0
N2

1

l
πr20 . (19.8)

The field energy of the solenoid can be written

Emag =
μμ0

2
H2 · πr20l .

With
H =

N1

l
· I

one obtains the equivalent result

Emag =
L

2
I2 , i.e. ,

dEmag

dt
= L · I dI

dt
= L

dI
dt
I = −Ui · I ,

as expected.
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b) The transformer
The index 1 above refers to the number of windings for a single solenoid.
Now consider a second solenoid of equal length wrapped around the first
solenoid and possessing only a marginally larger cross-sectional radius r0,
but a significantly different number of windings N2. (This arrangement
is merely designed so that the same flux of magnetic field lines passes
through both coils.)
The terminals of solenoid 2 are assumed to remain open, i.e., no current
flows through solenoid 2, in contrast to solenoid 1, through which a current
I1 flows. The magnetic field H2 in the interior of solenoid 2 due to the
current I1 in 1 is thus

H2 =
N1

l
I1 .

The magnetic flux through solenoid 2 is then

(φB)2 = L2,1 · I1 ,

where L2,1 is the mutual inductance,

L2,1 = L1,1 ·
N2

N1
.

It follows that (in the case of a low-frequency4 alternating current) the in-
duced voltages measured at the ends of the closed solenoid 1 and the open
solenoid 2 behave as the ratio of the corresponding number of windings,

(Ui)2 : (Ui)1 = N2 : N1 .

This is the principle of the transformer.

c) Complex alternating-current resistances

Consider a circuit in which an alternating current (a.c.)

I(t) = I(0) · cos(ωt− α)

is generated by a voltage

UG(t) = U
(0)
G · cos(ωt)

of angular frequency ω. The phase of the current I(t) is thus shifted with
respect to that of the voltage UG(t) (for positive α: the maxima of the
current are delayed w.r.t. the maxima of the generator voltage).
Making use of the Euler-Moivre relation:

eiωt = cos(ωt) + i sin(ωt) , (19.9)
4 Only later will we see quantitatively what “low frequency” means in this context.
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where i2 = −1, we thus have

UG(t) = Re(UGeiωt)

and

I(t) = Re(J eiωt) , where

U ≡ U (0)
G and

J ≡ (I(0)e−iα) .

By analogy with Ohm’s law we then define the complex quantityR, where

UG = R · I .

The quantity R is the complex a.c. resistance or simply impedance.
The total impedance of a circuit is calculated from an appropriate com-
bination of three types of standard elements in series or parallel, etc.
1. Ohmic resistances (positive and real) are represented by the well-

known rectangular symbol and the letter R. The corresponding com-
plex resistance is

RR = R .

2. Capacitive resistances (negatively imaginary) correspond to a pair
of capacitor plates, together with the letter C. The corresponding
impedance is given by

RC =
1

iωC
.

(A short justification: UC(t) = Q(t)
C , i.e., U̇C(t) = I(t)

C . Thus with the
ansatz UC(t) ∝ eiωt one obtains U̇C(t) ≡ iωUC(t)).

3. Inductive resistances (positively imaginary) are represented by a solenoid
symbol, together with the letter L. The corresponding impedance is

RL = iωL .

(The induced voltage drop in the load results from building-up the
magnetic field, according to the relation UL(t) = L · dI(t)dt , i.e., UL(t) =
L · İ(t). But with the ansatz I(t) ∝ eiωt we obtain İ(t) ≡ iωI(t).)

One can use the same methods for mutual inductances (i.e., transformers ;
see exercises)5.

5 The input (load) voltage of the transformer is given by the relation U(1)
Tr =

iωL1,2 · J2, while the output (generator) voltage is given by U(2)
Tr = −iωL2,1 · J1.
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d) An a.c. resonance circuit
The following is well-known as example of resonance phenomena. For a se-
ries RLC circuit connected as a load to an alternating-voltage generator

UG(t) = U
(0)
G · cos(ωt) ,

one has
J
U =

1
R =

(
R+ i

(
ωL− 1

ωC

))−1

.

Thus we obtain

I(t) = I(0) · cos(ωt− α) , with

I(0)

U
(0)
G

=
∣∣∣∣
1
R

∣∣∣∣ =
1√

R2 + (ωL− 1
ωC )2

and tanα =
ωL− 1

ωC

R
.

For sufficiently small R (see below) this yields a sharp resonance at the
resonance frequency

ω0 :=
1√
L · C

.

For this frequency the current and the voltage are exactly in phase,
whereas for higher frequencies the current is delayed with respect to the
voltage (inductive behavior) while for lower frequencies the voltage is de-
layed with respect to the current (capacitive behavior). At the resonance
frequency ω0 the current has a very sharp maximum of height U (0)

G /R,
and for weak damping (i.e., for sufficiently small values of R) it decays
very quickly as a function of ω, for very small deviations from ω = ω0;
i.e., for

ω± := ω0 ± ε , where ε =
R

2L
is � |ω0| ,

the current has already decreased to 70% of the maximum (more precisely:
from 1×I(0) down to 1√

2
× I(0)).

The ratio
Q :=

ω0

R/L

is called the quality factor of the resonance; it characterizes the sharpness
of the phenomenon. In fact, Q often reaches values of the order of 103 or
more.
(Here the reader could try solving exercises 11 and 12 (file 6) from the
summer term of 2002, which can be found on the internet, [2]. This can
simultaneously serve as an introduction to MAPLE. In fact, it may be
helpful to illustrate resonance phenomena using mathematical computer
tools such as MAPLE or MATHEMATICA. See for example [12] as a rec-
ommendable presentation.)
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Now consider the power loss in an a.c. circuit. By forming the derivative
of the energy, we may write

(dE/dt)(t) = UG(t) · I(t) = U
(0)
G · I(0) cosωt · cos(ωt− α)

≡ U (0)
G · I(0) ·

[
cosα · (cosωt)2 + sinα · (cosωt · sinωt)

]
.

Averaged over a complete cycle the first term gives

U
(0)
G · I(0) · 1

2
· cosα .

This is the resistive part, and represents the energy dissipated. The second
term, however, vanishes when averaged over a complete cycle, and is called
the reactive part. Using complex quantities one must explicitly take into
account the factor 1

2 . The resistive part may be written

{(dE/dt)(t)} = Re
(

1
2
UGJ ∗

)
,

while the reactive part (which vanishes on average) is given by

Im
(

1
2
UGJ ∗

)
.

Further details on alternating-current theory can be found in many standard
textbooks on applied electromagnetism.



20 Maxwell’s Equations II:

Electromagnetic Waves

20.1 The Electromagnetic Energy Theorem;
Poynting Vector

The Poynting vector which is defined as

S := E ×H (20.1)

has the meaning of “energy current density”:

S ≡ jenergy .

Firstly we have the mathematical identity

div[E ×H] = H · curlE −E · curlH ,

which can be proved using the relation

div[E ×H] = ∂iei,j,kEjHk = . . . .

With the Maxwell equations

curlE = −∂B
∂t

and curlH = j +
∂D

∂t

one then obtains the continuity equation corresponding to the conservation
of field energy:

div[E ×H ] +E · j +E · ∂D
∂t

+H · ∂B
∂t
≡ 0 , (20.2)

i.e.,

divjenergy +
∂wenergy

∂t
= −j ·E , (20.3)

where

∂wenergy

∂t
:= E · ∂D

∂t
+H · ∂B

∂t
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is the (formal)1 time-derivative of the energy density and −j · E describes
the Joule losses, i.e., one expects

j ·E ≥ 0 .

(The losses are essentially sources of heat production, since the Ohmic be-
havior, j = σ ·E (where σ is the specific conductivity) arises due to frictional
processes leading to energy dissipation and heat production due to scattering
of the carriers of the current, e.g., by impurities. The case of vanishing losses
is called ballistic.)

For Ohmic behavior one has

j =
1
κ
E ,

where
κ =

1
σ

is the specific resistivity2, a constant property of the Ohmic material; i.e.,

−j ·E = −E
2

κ
.

In the absence of electric currents the electromagnetic field energy is con-
served. If the material considered shows Ohmic behavior, the field energy
decreases due to Joule losses.

At this point we shall just mention two further aspects: (i) the role of the
Poynting vector for a battery with attached Ohmic resistance. The Poynting
vector flows radially out of the battery into the vacuum and from there into
the Ohmic load. Thus the wire from the battery to the Ohmic resistance
is not involved at all, and (ii) Drude’s theory of electric conductivity. This
theory culminates in the well-known formula

j(ω) = σ(ω)E(ω) ,

where the alternating-current specific conductivity is given by

σ(ω) ≡ σ(0)/(1 + iωτ) , with σ(0) = nV e
2τ/me .

Here nV is the volume density of the carriers, i.e., typically electrons;me is the
electron mass, e the electron charge, and τ is a phenomenological relaxation
time corresponding to scattering processes.

1 In the case of a linear relation (e.g., between E andD orB andH) the derivative
is non-formal; otherwise (e.g., for the general relation D = ε0E+P ) this is only
formally a time-derivative.

2 The Ohmic resistance R of a wire of length l and cross-section F made from
material of specific resistivity κ is thus R = κ · ( l

F
).
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20.2 Retarded Scalar and Vector Potentials I:
D’Alembert’s Equation

For given electromagnetic fields E(r, t) andB(r, t) one can satisfy the second
and third Maxwell equations, i.e., Gauss’s magnetic law, divB = 0, and
Faraday’s law of induction,

curlE ≡ −∂B
∂t

,

with the ansatz

B(r, t) ≡ curlA(r, t) and E(r, t) ≡ −gradφ(r, t)− ∂A(r, t)
∂t

. (20.4)

The scalar potential φ(r, t) and vector potential A(r, t) must now be
calculated simultaneously. However, they are not unique but can be “gauged”
(i.e., changed according to a gauge transformation without any change of the
fields) as follows:

A(r, t)→ A′(r, t) := A′(r, t) + gradf(r, t),

φ(r, t)→ φ′(r, t) := φ′(r, t)− ∂f(r, t)
∂t

. (20.5)

Here the gauge function f(r, t) in (20.5) is arbitrary (it must only be
differentiable). (The proof that such gauge transformations neither change
E(r, t) nor B(r, t) is again based on the fact that differentiations can be
permuted, e.g., ∂

∂t
∂f
∂x = ∂

∂x
∂f
∂t .)

In the following we use this “gauge freedom” by choosing the so-called
Lorentz gauge :

divA+
1
c2
∂φ

∂t
≡ 0 . (20.6)

After a short calculation, see below, one obtains from the two remaining
Maxwell equations (I and IV), divD = 
 and curlH = j + ∂D

∂t , the so-called
d’Alembert-Poisson equations:

−
(
∇2 − ∂2

c2∂t2

)
φ(r, t) = 
E(r, t)/ε0 and

−
(
∇2 − ∂2

c2∂t2

)
A(r, t) = μ0jB(r, t) . (20.7)

c is the velocity of light in vacuo, while 
E and jB are the effective charge
and current density, respectively. These deviate from the true charge and true
current density by polarization contributions:


E(r, t) := 
(r, t)− divP (rt) (20.8)

and

jB(r, t) := j(r, t) +
J(r, t)
μ0

+
∂P

∂t
. (20.9)
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A derivation of the two d’Alembert-Poisson equations now follows.

a)

divD = 
 ,→ ε0divE = 
− divP =: 
E ;→ −∇2φ− div
∂A

∂t
= 
E/ε0 .

With
div

∂A

∂t
=

∂

∂t
divA

and with the Lorentz gauge (20.6) we obtain the first d’Alembert-Poisson
equation.

b)

curlH = j +
∂D

∂t
→ curlB − curlJ = μ0 ·

(
j + ε0

∂E

∂t
+
∂P

∂t

)
;

→ curl curlA = μ0

(
j + curl

J

μ0
+
∂P

∂t

)
+ μ0ε0

∂E

∂t
.

One now inserts

curl curlA ≡ grad(divA)−∇2A and E = −gradφ− ∂A

∂t

and obtains with
ε0μ0 =

1
c2

the gradient of an expression that vanishes in the Lorentz gauge. The
remaining terms yield the second d’Alembert-Poisson equation.

In the next section (as for the harmonic oscillator in Part I) we discuss
“free” and “fundamental” solutions of the d’Alembert equations, i.e., with
vanishing r.h.s. of the equation (and ∝ δ(r)). Of special importance among
these solutions are planar electromagnetic waves and spherical waves.

20.3 Planar Electromagnetic Waves; Spherical Waves

The operator in the d’Alembert-Poisson equations (20.7)

� :=
(
∇2 − ∂2

c2∂t2

)
(20.10)

is called the d’Alembert operator or “quabla” operator.
Amongst the general solutions of the free d’Alembert equation

�φ(r, t) ≡ 0
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(also known simply as the wave equation) are right-moving planar waves of
the kind

φ+(r, t) ≡ g(x− ct) .
Here g(x) is a general function, defined on the whole x-interval, which must
be continuously differentiable twice. g(x) describes the profile of the traveling
wave, which moves to the right here (positive x-direction) with a velocity c.
A wave traveling to the left is described by

φ−(r, t) ≡ g(x+ ct) .

Choosing x as the direction of propagation is of course arbitrary; in general
we could replace x by k · r, where

k̂ := k/|k|

is the direction of propagation of the planar wave.
All these relations can be evaluated directly from Maxwell’s equations. In

particular, it is necessary to look for the polarization direction, especially for
the so-called transversality. The first two Maxwell equations,

divE ≡ 0 and divB ≡ 0 ,

imply (if the fields depend only on x and t) that the x-components Ex and
Bx must be constant (i.e., != 0, without lack of generality). Thus, only the
equations

curlE = −∂B
∂t

and curlB ≡ μ0ε0
∂E

∂t

remain (i.e., ≡ 1
c2
∂E
∂t ), which can be satisfied by

E ≡ g(x− ct)ey and B ≡ c−1g(x− ct)ez ,

with one and the same arbitrary profile function g(x). (For an electromagnetic
wave traveling to the left one obtains analogously E ≡ g(x + ct)ey and
B ≡ −c−1g(x+ ct)ez .)

For electromagnetic waves traveling to the right (or left, respectively) the
propagation direction k̂ and the vectors E and cB thus form a right-handed
rectangular trihedron (in both cases!), analogous to the three vectors ±ex,
ey and ±ez. In particular, the amplitude functions of E and cB (in the cgs
system: those of E′ and B′) are always identical.

The densities of the electromagnetic field energy are also identical:

wE =
ε0
2
E2 ≡ wB :=

B2

2μ0
.

The Poynting vector
S := [E ×H ]
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is related to the total field-energy density of the wave,

wtotal := wE + wB ,

as follows:
S ≡ ck̂ · wtotal ,

as expected.
Spherical waves traveling outwards,

Φ+(r, t) :=
g(t− r

c )
r

, (20.11)

for r > 0 are also solutions of the free d’Alembert equation. This can easily
be seen from the identity

∇2f(r) = r−1 d2(r · f(r))
dr2

.

If the singular behavior of the function 1/r at r = 0 is again taken into
account by exclusion of a small sphere around the singularity, one obtains
from the standard definition

divv := lim
V→0

(
1
V

∫∫
©
∂V

v · nd2A

)

for sufficiently reasonable behavior of the double-derivative g̈(t) the following
identity:

�
g(t− r

c )
r

≡
(
∇2 − 1

c2
∂2

∂t2

)
g(t− r

c )
r

≡ −4πδ(r)g
(
t− r

c

)
. (20.12)

This corresponds to the analogous equation in electrostatics:

∇2 1
r
≡ −4πδ(r) .

As a consequence we keep in mind that spherical waves traveling outwards ,

Φ+(r, t) :=
g
(
t− r

c

)
r

,

are so-called fundamental solutions of the d’Alembert-Poisson equations.

(The corresponding incoming spherical waves, Φ−(r, t) :=
g(t+ r

c )
r , are

also fundamental solutions, but in general they are non-physical unless one
is dealing with very special initial conditions, e.g., with a pellet bombarded
from all sides by intense laser irradiation, which is performed in order to
initiate a thermonuclear fusion reaction.)
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20.4 Retarded Scalar and Vector Potentials II:
The Superposition Principle with Retardation

With equation (20.12) we are now in a position to write down the explicit
solutions of the d’Alembert-Poisson equations (20.7), viz,

φ(r, t) =
∫∫∫

dV ′

E

(
r′, t− |r−r′|

c

)

4πε0|r − r′|
,

A(r, t) =
∫∫∫

dV ′
μ0jB

(
r′, t− |r−r′|

c

)

4π|r − r′| . (20.13)

In principle these rigorous results are very clear. For example, they tell
us that the fields of single charges and currents

a) on the one hand, can be simply superimposed, as in the static case with
Coulomb’s law, while

b) on the other hand, the retardation between cause and effect has to be
taken into account, i.e., instead of t′ = t (instantaneous reaction) one has
to write

t′ = t− |r − r
′|

c
,

i.e., the reaction is retarded, since electromagnetic signals between r′ and
r propagate with the velocity c.

c) Huygens’s principle3 of the superposition of spherical waves is also con-
tained explicitly and quantitatively in equations (20.13).

d) According to the rigorous result (20.13) the mutual influences propagate
at the vacuum light velocity, even in polarizable matter.

(This does not contradict the fact that stationary electromagnetic waves in
dielectric and permeable matter propagate with a reduced velocity (c2 →
c2/(εμ)). As with the driven harmonic oscillator (see Part I) these stationary
waves develop only after a finite transient time. The calculation of the tran-
sition is one of the fundamental problems solved by Sommerfeld, who was
Heisenberg’s supervisor.)

The explicit material properties enter the retarded potentials (20.13) only
through the deviation between the “true charges” (and “true currents”) and
the corresponding “effective charges” (and “effective currents”). One should
remember that in the rigorous equations (20.13) the effective quantities enter.
Only in vacuo do they agree with the true quantities.

3 See section on optics
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20.5 Hertz’s Oscillating Dipole (Electric Dipole
Radiation, Mobile Phones)

It can be readily shown that the electromagnetic field generated by a time-
dependent dipole p(t) at r′ = 0, viz

B(r, t) =
μ0

4π
curl

ṗ
(
t− r

c

)
r

E(r, t) =
1

4πε0
curl curl

p
(
t− r

c

)
r

, (20.14)

for t ∈ (−∞,∞), solves everywhere all four Maxwell equations. (If B(r, t)
obeys Maxwell’s equations, then so does E(r, t) and vice versa, in accordance
with (20.14).)

A practical example of such a time-dependent electric dipole (so-called
Hertz dipole) is a radio or mobile-phone antenna, driven by an alternating
current of frequency ω. Since the current is given explicitly by

I(t) ≡ |ṗ(t)| ,
the retarded vector potential has the following form, which is explicitly used
in equation (20.14):

A(r, t) =
μ0

4πr
ṗ
(
t− r

c

)
.

In particular, the asymptotic behavior of the fields in both the near-field
and far-field range can be derived without difficulty, as follows:

a) In the near-field range (for r � λ, where λ is the wavelength of light
in a vacuum, corresponding to the frequency ω, i.e., λ = ω

2πc ) one can
approximate

p
(
t− r

c

)
r

by
p(t)
r

.

After some elementary transformation, using the identity

curl curlv ≡ (grad div −∇2)v

and the spherical wave equation given previously, one then obtains:

E(r, t) ∼=
3(p(t) · r)r − r2p(t)

4πε0r5
, (20.15)

which is the quasi-static result

E(r, t) ∝ r−3 for r → 0

with which we are already familiar, while simultaneously

B(r, t) ∼=
μ0

4πr3
ṗ(t)× r , i.e. , ∝ r−2 for r → 0 ,

and is thus less strongly divergent (i.e., asymptotically negligible w.r.t.
E(r, t)) for r → 0. Here the position-dependence of the denominator
dominates.
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b) In the far-field range (for r 
 λ), the position-dependence of the numer-
ator dominates, e.g.,

∇× p
(
t− r

c

)
∼= −

1
c

[
r̂ ×

ṗ
(
t− r

c

)
r

]
, with r̂ = r/r .

Here, for r
 λ, one obtains asymptotically:

E(r, t) ∼=
1

4πε0c2r

[
r̂ ×

[
r̂ × p̈

(
t− r

c

)]]
and

B(r, t) ∼= −
μ0

4πcr

[
r̂ × p̈

(
t− r

c

)]
, (20.16)

i.e.,

S = E ×H ∼= r̂
(sin θ)2

16π2ε0c3r2

∣∣∣p̈
(
t− r

c

)∣∣∣
2

, (20.17)

where θ is the angle between p̈ and r̂.
As for planar waves, the propagation vector

r̂ := r/r

and the vectors E and cB form a right-handed rectangular trihedron, where
in addition the vector E in the far-field range lies asymptotically in the plane
defined by p̈ and r.

In the far-field range the amplitudes of both E and B are ∝ ω2r−1 sin θ;
the Poynting vector is therefore ∝ ω4r−2(sin θ)2r̂. The power integrated
across the surface of a sphere is thus ∝ ω4, independent of the radius! Due to
the ω4-dependence of the power, electromagnetic radiation beyond a limiting
frequency range is biologically dangerous (e.g.X-rays), whereas low-frequency
radiation is biologically harmless. The limiting frequency range (hopefully)
seems to be beyond the frequency range of present-day mobile phones, which
transmit in the region of 109 Hz.

20.6 Magnetic Dipole Radiation; Synchrotron Radiation

For vanishing charges and currents Maxwell’s equations possess a symmetry
which is analogous to that of the canonical equations of classical mechanics
(q̇ = −∂H∂p ; ṗ = ∂H

∂q , see Part I), called symplectic invariance: the set of
equations does not change, if E is transformed into cB, and B into

−c−1E

(
(E, cB)→

(
0,+1
−1, 0

)(
E
cB

))
.

To be more precise, if in equation (20.14) B is transformed into −D and
E is transformed into H, while simultaneously ε0 and μ0 are interchanged
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and the electric dipole moment is replaced by a magnetic one (corresponding
to B = μ0H + J , D = ε0E + P ), one obtains the electromagnetic field
produced by a time-dependent magnetic dipole. For the Poynting vector in
the far-field range one thus obtains instead of (20.17):

S = E ×H ∼= r̂
(sin θm)2

16π2μ0c3r2

∣∣∣m̈
(
t− r

c

)∣∣∣
2

, (20.18)

where θm is again the angle between m̈ and r̂.
We shall now show that magnetic dipole radiation for particles with non-

relativistic velocities is much smaller – by a factor ∼ v2

c2 – than electric dipole
radiation. Consider an electron moving with constant angular velocity ω in
the xy−plane in a circular orbit of radius R. The related electric dipole mo-
ment is

p(t) = eR · (cos(ωt) sin(ωt), 0) .

On average the amplitude of this electric dipole moment is p0 = eR. The
corresponding magnetic dipole moment is (on average)

m0 = μ0πR
2 eω

2π
,

where we have again used – as with the calculation of the gyromagnetic ratio
– the relation

I =
eω

2π
.

With
ω =

v

R

we thus obtain
m0 =

1
2
evR .

Therefore, as long as p(t) and m(t) oscillate in their respective amplitudes
p0 and m0 with identical frequency ω as in cosωt, we would get on average
the following ratio of the amplitudes of the respective Poynting vectors:4

|Sm|
|Se|

=
m2

0ε0
p2
0μ0

=
v2

4c2
. (20.19)

Charged relativistic particles in a circular orbit are sources of intense, po-
larized radiation over a vast frequency range of the electromagnetic spectrum,
e.g., from the infrared region up to soft X-rays. In a synchrotron, electrons
travelling at almost the speed of light are forced by magnets to move in

4 The factor 4 (= 22) in the denominator of this equation results essentially from
the fact that the above formula p(T ) = eR ·(cos(ωt), sin(ωt)) can be interpreted
as follows: there are in effect two electric dipoles (but only one magnetic dipole)
involved.



20.7 General Multipole Radiation 173

a circular orbit. The continual acceleration of these charged particles in their
circular orbit causes high energy radiation to be emitted tangentially to the
path. To enhance the effectivity the electrons usually travel through special
structures embedded in the orbit such as wigglers or undulators.

Synchrotron radiation is utilized for all kinds of physical and biophysical
research at various dedicated sites throughout the world.

20.7 General Multipole Radiation

The results of this section follow directly from (20.14) for electric dipole ra-
diation (Hertz dipole) and the corresponding equations for magnetic dipole
radiation (see Sect. 20.6). We recall that a quadrupole is obtained by a limit-
ing procedure involving the difference between two exactly opposite dipoles,
one of which is shifted with respect to the other by a vector b(= b2) ; an oc-
tupole is obtained by a similar shift (with b(= b3)) from two exactly opposite
quadrupoles, etc.

As a consequence, the electromagnetic field of electric octupole radiation,
for example, is obtained by application of the differential operator

(b3 · ∇)(b2 · ∇)

on the electromagnetic field of a Hertz dipole:

a) In the near-field range, i.e., for r � λ, one thus obtains the following
quasi-static result for the E-field of an electric 2l-pole:

E ∼= −gradφ(r, t) ,

with

φ(r, t) ∼=
1

4πε0rl+1

l∑
m=−l

cl,m(t)Yl,m(θ, φ) , (20.20)

where Yl,m are spherical harmonics.
The coefficients of this expansion depend on the vectors b1, b2, . . . ,bl,
and on time.

b) In the far-field range, i.e., for r 
 λ, one can approximate the expressions

(bi · ∇)

{
f
(
t− r

c

)
r

}
by 5 1

r
(bl · r̂)

(
−∂
c∂t

)
f
(
t− r

c

)

and one obtains for the electric 2l-pole radiation asymptotically:

5 It should be noted that the vector f (t − r
c
) is always perpendicular to r̂, cf.

(20.16).
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1)

E ∝ 1
r
·
(

l∏
ν=2

(bν · r̂)
)
·
(
−∂
c∂t

)l [
r̂ × p

(
t− r

c

)]
, (20.21)

2)
cB ∼= r̂ ×E and

3)
S ≡ E ×H , i.e., for p(t) = p0 cosωt

on average w.r.t. time:

S(r) ∝ ω2(l+1)

r2

(
l+1∏
ν=2

(bν · r̂)2
c2

)
|r̂ × p0|2 r̂ . (20.22)

Here we have l = 1, 2, 3 for dipole, quadrupole and octupole radiation.
The dependence on the distance r is thus universal, i.e., S ∝ r−2 for all l;
the dependence on the frequency is simple (S ∝ ω2(l+1)); only the angular
dependence of electric multipole radiation is complicated. However, in this
case too, the three vectors r̂, E and cB form a right-handed rectangular
trihedron, similar to ex, ey, ez. Details can be found in (20.21).6 For
magnetic multipole radiation the results are similar.

20.8 Relativistic Invariance of Electrodynamics

We have already seen in Part I that classical mechanics had to be amended as
a result of Einstein’s theory of special relativity. In contrast, Maxwell’s theory
is already relativistically invariant per se and requires no modification (see
below).

It does no harm to repeat here (see also Section 9.1) that prior to Ein-
stein’s theory of relativity (1905) it was believed that a special inertial frame
existed, the so-called aether or world aether, in which Maxwell’s equations
had their usual form, and, in particular, where the velocity of light in vacuo
had the value

c ≡ 1
√
ε0μ0

,

whereas in other inertial frames, according to the Newtonian (or Galilean)
additive behavior of velocities, the value would be different (e.g., c→ c+v). In
their well known experiments, Michelson and Morley attempted to measure
the motion of the earth relative to the aether and thus tried to verify this
behavior. Instead, they found (with great precision): c→ c.

6 Gravitational waves obey the same theory with l = 2. Specifically, in the distri-
bution of gravitational charges there are no dipoles, but only quadrupoles etc.
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In fact, Hendryk A. Lorentz from Leiden had already established before
Einstein that Maxwell’s equations, which are not invariant under a Galilean
transformation, are invariant w.r.t. a Lorentz transformation – as it was later
called – in which space and time coordinates are “mixed” (see Section 9.1).
Furthermore, the result of Michelson and Morley’s experiments follows nat-
urally from the Lorentz transformations. However, Lorentz interpreted his
results only as a strange mathematical property of Maxwell’s equations and
(in contrast to Einstein) not as a scientific revolution with respect to our
basic assumptions about spacetime underlying all physical events.

The relativistic invariance of Maxwell’s equations can be demonstrated
most clearly in terms of the Minkowski four-vectors introduced in Part I.

a) The essential point is that in addition to

x̃ := (x, y, z, ict) ,

the following two quadruplets,
1)

Ã :=
(
A, i

Φ

c

)
and ,

2)
j̃ := (j, ic
)

are Minkowski four-vectors, whereas other quantities, such as the d’Alem-
bert operator, are Minkowski scalars (which are invariant), and the fields
themselves, E plus B (six components) correspond to a skew symmetric
tensor

Fμ,ν(= −Fν,μ)

generated from Ã, viz

Fμ,ν :=
∂Aν
∂xμ

− ∂Aμ
∂xν

(e.g., F1,2 = −F2,1 = B3), with x1 := x, x2 := y, x3 := z, and x4 := ict.
b) One defines the “Minkowski nabla”

∇̃ :=
(
∂

∂x
,
∂

∂y
,
∂

∂z
,
∂

∂ict

)
=
(
∇, ∂

∂ict

)
.

Similarly to Euclidian space R3, where the Laplace operator ∇2 (≡ Δ)
is invariant (i.e., does not change its form) under rotations, in Minkowski
space M4 the d’Alembert operator ∇̃2 (≡ �) is invariant under pseudo-
rotations.
In addition, similar to the fact that the divergence of a vector field has
a coordinate-invariant meaning with respect to rotations inR3, analogous
results also apply for the Minkowski divergence, i.e. one has an invariant
meaning of ∇̃ · ṽ with respect to pseudo-rotations in M4.
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c) For example, the continuity equation,

divj +
∂


∂t
= 0 ,

has a simple invariant relativistic form (which we shall use below):

∇̃ · j̃ :=
4∑

ν=1

∂jν
∂xν

= 0 . (20.23)

d) Analogously, gauge transformations of the kind

A→ A+ gradg(r, t), Φ→ Φ− ∂g(r, t)
∂t

can be combined to
Ã(x̃)→ Ã(x̃) + ∇̃g(x̃) .

We are now prepared for the explicit Minkowski formulation of Maxwell’s
equations. As mentioned, the homogeneous equations II and III,

divB = 0 ; curlE = −∂B
∂t

are automatically satisfied by introducing the above skew symmetric field
tensor

Fμν := ∂μAν − ∂νAν , with μ, ν = 1, . . . , 4 ;

which is analogous to the representation of E and B by a scalar potential
plus a vector potential.

The remaining inhomogeneous Maxwell equations I and IV,

divE ≡ 
/ε0 and curlB ≡ μ0j ,

simply yield the following result, with Einstein’s summation convention7:

∂μFνμ = ∂μ∂νAμ − ∂μ∂μAν ≡ μ0jν .

With the Lorentz gauge,

divA+
1
c2
∂φ

∂t
= ∂μAμ = 0 , 8

the first term on the l.h.s. vanishes, i.e., we again obtain the d’Alembert-
Poisson equation

−∇̃2Ã ≡ μ0j̃ .

7 Using the Einstein convention one avoids clumsy summation symbols: If an index
appears twice, it is summed over.

8 Here we again use the permutability of partial derivatives.
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From the “simple” Lorentz transformations for the x- and t-components
of the Minkowski four-potential Ã, for a transition between different inertial
frames the following “more complicated” Lorentz transformations for elec-
tromagnetic fields result: The longitudinal components Ex and Bx remain
unchanged, whereas one obtains for the transverse components:

B⊥(r, t) =
B′⊥(r′, t′) + v

c2 ×E′(r′, t′)√
1− v2

c2

, (20.24)

E⊥(r, t) =
E′⊥(r′, t′)− v ×B′(r′, t′)√

1− v2

c2

. (20.25)

These results can be used to obtain the E- and B-fields of a moving point
charge from the Coulomb E′-field in the co-moving frame.9

9 See the exercises at http://www.physik.uni-regensburg.de/forschung/krey, sum-
mer 2002, file 9.



21 Applications of Electrodynamics

in the Field of Optics

21.1 Introduction: Wave Equations;
Group and Phase Velocity

Firstly we shall remind ourselves of the relationship between the frequency

ν =
2π
ω

and wavelength λ =
2π
k

(k = wavenumber)

of an electromagnetic wave in vacuo:

ω = 2πν = c · k = c · 2π
λ
, or λ · ν = c .

Secondly, electromagnetic waves cover an extremely wide spectral range.
For example, radio waves have wavelengths from 1 km or more (long-wave)
via 300 m (medium-wave) to about 50 m (short-wave). This range is followed
by VHF (very high frequency), then the range of television and mobile-phone
frequencies from ≈ 100MHz to 10GHz; then we have radar, light waves, X-
rays and, at very short wavelengths or high frequencies, γ-rays.

It is useful to remember that the wavelengths of visible light range from
λ ≈ 8000 Å (or 800nm, red) down to ≈ 4000 Å (400 nm, violet)1 On the lower
frequency side of the visible range come infrared and far-infrared, and on the
high-frequency side ultraviolet and soft-X-ray radiation.

Thirdly, in connection with X-rays and γ-radiation, it is useful to re-
member that these phenomena arise from quantum transitions, see Part III
(Fermi’s “golden rules”), according to the formula

ΔE ≡ Ei − Ef ≡ hν ,

i.e. by transitions from a higher initial energy Ei to a lower final energy Ef .
The radiation may have a continuous distribution of frequencies (so-called
bremsstrahlung, or braking radiation), or it may contain a discrete set of
spectral “lines”. The quantity h is Planck’s constant:

h = 6.625 . . . · 10−34 Ws2 ≡ 4.136 . . . · 10−15 eVs .
1 Some readers may prefer the characteristic atomic length 1 Å, whereas others

use units such as 1 nm (≡ 10 Å). Which one is more appropriate, depends on the
problem, on the method used, and on personal preferences.
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X-rays have typical energies of ΔE ≈ 10 keVto ≈ 1MeV, characteristic
for the electron shell of atoms, whereas for γ-radiation one is dealing with
excitations of nuclei, i.e., ΔE ≈ 1 MeVup to 1 GeV.

Fourthly, Planck’s formula for black-body radiation: The total energy of
the electromagnetic field contained in a volume V at Kelvin temperature T
is given by

U(T ) ≡ V
∞∫

0

dνu(ν, T ) ,

with the spectral energy density

u(ν, T ) =
8πν2

c3
hν

e
hν

kbT − 1
. (21.1)

For the surface temperature of the sun, i.e., for T ≈ 6000K, the function
u(ν, T ) has a pronounced maximum in the green range, i.e., for

ν =
c

λ
with λ ≈ 6000 Å(= 600 nm) .

See Fig. 21.1:
The vacuum velocity of electromagnetic waves (e.g., light) is

c0 := (ε0μ0)−
1
2 .

In polarizable matter, the (stationary) velocity of electromagnetic waves is
smaller:

cm =
c0
n
,

Fig. 21.1. Planck’s black-body radiation
formula. For the reduced frequency f (≡
hν/(kBT ) in the text) Planck’s function
P (f) := f3/(exp f − 1) is shown as a double-
logarithmic plot. It has a pronounced maxi-
mum around f ≈ 2
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where n (=
√
ε · μ) is the refractive index 2. In optically dense light-trans-

mitting media (e.g., glass or water) n is significantly > 1, which gives rise to
the well-known phenomenon of refraction described by Snell’s law :

sinα1

sinα2
=
n2

n1
.

This expression describes the refraction of light rays at a plane boundary
between a vacuum with refractive index n = 1 (or in practice: air) and an
(optically) denser medium with n2 > 1. The angle of incidence from the
vacuum is α1.

The refractive index, n, is thus related both to the (relative) dielectric
constant of the material, εr, and also to the (relative) permeability μr3. This
also means that generally n depends on the wavenumber k and frequency ω.

The above relation for dielectric and/or permeable matter follows from
Maxwell’s equations in the absence of charges and currents (i.e., for

 ≡ j ≡ 0):

divεrε0E = 
 ≡ 0 ; divB = 0 ;

curlE = −∂B
∂t

; curl
B

μrμ0
= j + εrε0

∂E

∂t
. (21.2)

Applying the operator curl to the third and fourth equations, together
with the identity

curl curlv = grad divv −∇2v

we obtain the following wave equations:
(
∇2 − 1

c2m
(∂t)2

)
E = 0 and

(
∇2 − 1

c2m
(∂t)2

)
B = 0 ,

where cm (see below) is the velocity of a stationary electromagnetic wave in
the considered medium.

Similar wave equations occur in other cases, e.g., for transverse sound
waves (shear waves, → transverse phonons in solid state physics) it is only
necessary to replace E and cB by the transverse displacements of the atoms
from their rest positions and the velocity of light, cm, by the transverse sound
velocity c

(s)
⊥ (which in metals is of the order of 103 m/s). With these re-

placements one obtains the same wave equation in totally different contexts.
(There are also longitudinal sound waves (compression waves4, → longitudi-
nal phonons) with a significantly higher sound velocity c(s)long..)

2 In some (mainly artificial) materials both ε and μ are negative, i.e., also n. These
so-called left-handed materials have unusual optical properties.

3 To avoid any misunderstanding, here we explicitly use the lower index r, although
hitherto we did not use this convention.

4 In liquids and gases only compression waves exist, and not shear waves.
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The relationship
ω = ω(k)

between frequency ω and wavenumber k5 is referred to as the dispersion
relation.

For light waves in vacuo the dispersion relation is simply ω = c0 · |k|.
In polarizable matter, light waves have only apparently almost the same

dispersion behavior. It is true that often ω = cm · |k|, but even then the light
velocity in matter,

cm = c0/
√
εr(ω) · μr(ω) ,

generally depends on the same frequency ω that one wishes to calculate6, so
that it makes sense to distinguish between the so-called phase velocity

vphase =
(ω
k

)
ek

and the group velocity
vgroup = gradkω(k) .

As a consequence, the components of the group velocity vgroup are calcu-
lated as follows:

(vgroup)i =
∂ω(k)
∂ki

. (21.3)

The group velocity can thus have a different direction from the wavenumber
k (see below, e.g., the term ray velocity in the subsection on birefringence in
crystals).

As an example for the difference between phase velocity and group veloc-
ity consider transverse sound waves propagating in an ideal crystal of cubic
symmetry with lattice constant a. Let k be parallel to an edge direction.
One then obtains transverse elastic plane waves with the following dispersion
relation:

ω(k) = c
(s)
⊥

sin
(
k·a
2

)
(
a
2

) . (21.4)

Thus, if the wavelength λ is much larger than the lattice constant a, i.e.,
for k · a � 1, we have, as expected:

ω = c
(s)
⊥ k ,

and the group velocity,
|vgroup| ,

5 k = 2π
λ
ek , where λ is the wavelength and ek the propagation direction of the

plane wave, i.e., according to the usual ansatz Ψ ∝ Re exp(i(k · r − ωt)).
6 The frequency dependence of the light velocity may involve not only the ampli-

tude, but also the direction (see below).
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and phase velocity, c(s)⊥ , are identical; but for k · a→ π, i.e., with decreasing
λ→ 2a, the group velocity converges to zero,

∂ω

∂k
→ 0 .

The meaning of “group velocity” can be illustrated by considering a wave
packet generated by the superposition of monochromatic plane waves with
slightly different k-vectors in the interval Δk:

Ψ(x, t) =
∫

Δk

dka(k)ei(k·x−ω(k)·t) . (21.5)

One obtains beats, which can be treated by a Taylor expansion, as follows:
If K0 is the center of the interval Δk, i.e.,

k = K0 + k′

(with k′ ∈
[
−K0

2 ,+
K0
2

]
) then we have a(k) ≈ a(K0) and

ω(k) · t ≈ ω(K0) · t+ k′
dω
dk
· t+ . . . .

Thus

Ψ(x, t) ≈ a(K0)ei(K0x−ω(K0)·t)

K0
2∫

−K0
2

dk′eik′·(x−vgroup·t) . (21.6)

The factor immediately in front of the integral, which can also be written
as eiK0·(x−vphaset) (i.e., with the phase velocity vphase) describes the rapid os-
cillation of the amplitude of the wave. In contrast, the integral itself describes
the (much slower) wave motion of an envelope function, which is propagated
at the group velocity vgroup; in particular we have

|Ψ(x, t)|2 ∝ |a(K0)|2 ·

∣∣∣∣∣∣∣∣

K0
2∫

−K0
2

dk′eik′·(x−vgroup·t)

∣∣∣∣∣∣∣∣

2

. (21.7)

The transport of energy in a wave packet propagates with the group veloc-
ity, not the phase velocity, and according to Einstein’s theory of relativity we
have the constraint that |vgroup| (and not |vphase|) must always be ≤ c (see
below).

The difference between phase velocity and group velocity becomes clear
if we consider an electromagnetic wave reflected “back and forth” between
two metal plates perfectly parallel to the plane z ≡ 0. (These parallel plates
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form the simplest version of a waveguide.) We assume that this guided elec-
tromagnetic wave propagates in the x-direction. The phase velocity is given
by

(vphase)x =
c

cos θ
, which is > c .

In contrast, the group velocity is

(vgroup)x = c · cos θ , i.e. , ≤ c ,

as expected. Here θ is the grazing angle at which the electromagnetic wave
meets the metal plates.

In the context of our treatment of phase and group velocity we should
mention not only Planck’s radiation formula (1900, see above) but also Ein-
stein’s “photon” hypothesis (1905, see below), which essentially resolved the
problem of whether light should be considered as a particle phenomenon
(Newton) or a wave phenomenon (Huygens). The answer is “both” (→ wave-
particle duality, see Part III). According to Einstein (1905, → Nobel prize
1921) electromagnetic waves result from the emission of individual relativistic
quanta with velocity c (→ “photons”, see below), possessing energy E = hν,
momentum

p =
E

c
=
hν

c
(= �k) ,

and vanishing rest mass. The internal energy U(T ) of the electromagnetic
field in a large cavity of volume V at Kelvin temperature T is then (see
above, and Parts III and IV) given according to Planck’s formula:

U(T ) = V ·
∞∫

ν=0

8πν2dν
c3

· hν

exp
(
hν
kBT

)
− 1

, (21.8)

where the factor

V · 8πν
2dν
c3

is the number of wave modes with frequencies ν ∈ dν; hν is the energy of
a single photon of wavelength c

ν , and the thermal expectation value 〈n〉ν of
the number of these photons is

〈n〉ν =

∞∑
n=0

n · e−n
hν

kBT

∞∑
n=0

e−n
hν

kBT

=
1

exp
(

hν
kBT

)
− 1

.

(kB is Boltzmann’s constant.)
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If in this formula the integration variable

8πν2dν
c3

is replaced by the more general expression

ef ·
d3k

(2π)3
,

where for photons the degeneracy factor ef has the value 2 and the function

ω(k) = c · k

has to be used, then Planck’s formula can be generalized.
For example, for the excitations of so-called quasi-particles resembling

photons, e.g. for “phonons” or “magnons” (the quanta of sound waves and
of spin waves, respectively) or for “plasmons” (quanta corresponding to os-
cillations of the charge density in solids), one has similar properties as for
photons, but different dispersion relations (e.g. ω(k) = D · k2 for magnons in
ferromagnets and

ω(k) = ωp + b · k2

for plasmons, where ωp is the plasma frequency and b a positive factor.)
Thus in analogous manner to that for photons one obtains different results

for the internal energy U(T ) of the quasi-particle gas considered. One sees
here that the dispersion relation ω(k) of a wave plays an important role not
only in optics but also in many other branches of physics.

21.2 From Wave Optics to Geometrical Optics;
Fermat’s Principle

By avoiding abrupt changes (e.g., by neglecting such quantities as

|λ · gradA(r)| ,

see below) one can start with wave optics and arrive at the field of geometrical
or ray optics as follows.

Commencing with the wave equation
(
∇2 −

(
1
cm

)2

∂tt

)
Ψ(r, t) = 0 , (21.9)

where Ψ is one of the Cartesian components of the electromagnetic fields
or one of the equivalent wave quantities considered7, we try to solve this
7 Neglecting the vectorial character of the electromagnetic field is already an ap-

proximation, the so-called scalar approximation. This can already be essential,
which should not be forgotten.
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equation with the usual stationary ansatz. Thus we are led to the following
wave equation: (

∇2 + k2(r)
)
ψ(r) != 0 , (21.10)

with
k(r) =

ω

cm
= k0 · n(r) ,

where k0 = ω
c0

and n(r) is the refractive index, which is a real quantity (see
above). For cases involving dielectric losses or for Ohmic behavior, one should
replace n(r) by the complex quantity

ñ := n+ iκ , where κ−1

is the absorption length.
The solution is now

ψ(r) := A(r) · exp ik0 · S(r) ,

with the so-called eikonal S(r). In spite of its strange name, which has mainly
historical reasons, this function S is most important for geometrical optics ;
it has the dimensionality of an effective length, viz the minimum distance
between two equivalent wave fronts.8

One now assumes that with the formation of the second derivatives the
terms ∝ k2

0 dominate, e.g.,

∂2ψ

∂x2
≈ −k2

0(
∂S

∂x
)2ψ + . . . ,

where the dots represent neglected terms, which are not proportional to k2
0 ,

but only to the first or zeroth power of k0.9 In this way the wave equation
(21.10) is systematically replaced by the so-called eikonal equation10

(gradS(r))2 ≈ n(r)2 . (21.11)

Here the surfaces S(r) = constant describe the wave fronts, and their
gradients describes the ray directions.

The eikonal approximation of a scalar wave equation, derived from
Maxwell’s theory, is the basis of geometrical (or ray) optics. In particular
one can derive from it Fermat’s principle of the “shortest optical path”:

r2∫

r1

dln(r) != min (21.12)

8 The eikonal function S(r) should of course not be confused with the Poynting
vector S or the entropy S(T ) of statistical physics (Part IV). In each of these
cases the same letter S is used.

9 Note that k0 is not small, but large (k0 = 2π
λ0

, where λ0 is the wavelength).
10 A similar approximation leads from Schrödinger’s wave equation of quantum

mechanics to the Hamilton-Jacobi equations of classical mechanics (see below).
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for the real path of a ray of light. Due to lack of space, further details on
Fermat’s principle will not be described here. We only mention that not only
Snell’s law of refraction (see above), but essentially the whole of lense optics,
including optical microscopy, can be derived from it.11

The eikonal approximation is significant because it contains the transition
from (i) the wave picture of light, explored by Huygens and Young (with the
basic issue of the ability to interfere; → holography, see below) to the (ii)
particle representation.

In the particle representation, light rays without the ability to interfere
are interpreted as particle trajectories, while the wave fronts S(r) are inter-
preted as purely fictitious mathematical quantities. This is analogous to the
transition from quantum mechanics to classical mechanics in semiclassical
theories: one tries to solve the Schrödinger equation

− �
2

2m
∇2ψ + V (r)ψ = Eψ ,

which plays the role of a matter-wave equation, by a kind of eikonal ansatz,

ψ(r) := A(r) · exp
i
�
S(r) .

(Here S(r) has the dimensionality of action, i.e., the same dimensionality
as Planck’s constant h (� is Planck’s constant divided by (2π).) An expansion
in powers of 1

�
(taking into account only the dominant terms analogously

to the eikonal ansatz ) leads to the so-called Hamilton-Jakobi equations of
classical mechanics, viz

(gradS)2

2m
+ V (r) ≡ E .

The Hamilton-Jakobi equation contains the totality of classical mechan-
ics, e.g., the Hamilton function, the canonical equations and also Hamilton’s
principle of least action, which ultimately corresponds to Fermat’s princi-
ple.12

11 See, e.g., Fliessbach’s book on electrodynamics, problem 36.2
12 The equivalence can be rather easily shown: Hamilton’s principle says thatR t2

t1
dtL !≡ extremal for variation of all virtual orbits in the space of gen-

eralized coordinates qi, for fixed initial and final coordinates. (The momenta
pi ≡ ∂L/∂q̇i result implicitly). Using a Legendre transformation, one replaces
L(qi, q̇i) →P

i piq̇i −H, with the Hamilton function H(pi, qk), where the gener-
alized coordinates and momenta are varied independently. Meanwhile one sub-
stitutes H by the constant E, i.e., one does not vary all orbits in phase space,
but only those with constant H ≡ E. In this way one obtains the so-called Mau-
pertuis principle (→ Landau-Lifshitz I, [13], Chap. 44) of classical mechanics. In
the field of optics, it corresponds exactly to Fermat’s principle.
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21.3 Crystal Optics and Birefringence

For (i) fluids (gases and liquids), (ii) polycrystalline solids, (iii) amorphous
substances and (iv) cubic crystals, the dielectric displacement D is propor-
tional to E, i.e., as assumed hitherto:

D = εrε0E .

In contrast, for non-cubic crystals plus all solid systems under strong uniaxial
tension or compression, the behavior is more complicated. For such systems
we have (for i = 1, 2, 3)

Di =
3∑

k=1

εi,kε0Ek , (21.13)

where the dielectric constants εi,k now form a tensor.
In the following we shall assume (i) that we are dealing with nonmagnetic

material, such that the relative permeability is 1, and (ii) that there are no
magnetic fields, such that

εi,k ≡ εk,i
The tensor εi,k can be diagonalized by a suitable rotation, i.e., in the new

orthogonal basis it has the diagonal representation

εα,β =

⎛
⎝
ε1 , 0 , 0
0 , ε2 , 0
0 , 0 , ε3

⎞
⎠ . (21.14)

The quadratic form

we =
1
2
E ·D ≡ ε0

2

3∑

i,k=1

εi,kEiEk

is thus diagonal in the eigenvector basis, i.e., there are analogous relations as
for the mechanical rotational energy of a rigid body (see Part I).

The relation
we =

1
2
E ·D

for the energy density of the electric field corresponds in fact to the mechan-
ical relation

TRot =
1
2
ω ·L ,

and the mechanical relation

Li =
3∑

k=1

Θi,kωk ,
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with the components Θi,k of the inertia tensor, corresponds to the electric
relation

Di/ε0 =
∑
k

εi,kEk ;

i.e., ω, L, and the inertia ellipsoid of classical mechanics correspond to the
quantities E, D and the εi,k-ellipsoid of crystal optics.

However, as in mechanics, where in addition to the inertia ellipsoid (ω-
ellipsoid) there is also an equivalent second form, the so-called Binet ellipsoid
(L-ellipsoid), which can be used to express the rotational energy in the two
equivalent ellipsoid forms

2 · TRot
(i)
= Θ1ω

2
1 +Θ2ω

2
2 +Θ2

3ω
2
3

(ii)
=

L2
1

Θ1
+
L2

2

Θ2
+
L2

3

Θ3
,

in the field of crystal optics it is also helpful to use two methods. One may
prefer either (i) the E-ellipsoid or (ii) the equivalent D-ellipsoid, as follows:
(i) if E and/or the Poynting vector S(= E ×H) are preferred, then one
should use the Fresnel ellipsoid (E-ellipsoid). On the other hand, (ii), if D
and/or the propagation vector k are involved, then one should use the index
ellipsoid (D-ellipsoid). These two ellipsoids are:

we
(i)
=
ε0
2
·
(
ε1E

2
1 + ε2E

2
2 + ε23E

2
3

) (ii)
=

1
2ε0
·
(
D2

1

ε1
+
D2

2

ε2
+
D2

3

ε3

)
. (21.15)

For a givenE, the direction of the vectorD is obtained in a similar way to
that in the mechanics of rigid bodies. In that case the direction of the vectorL
for a given ω must be determined by means of a Poinsot construction: L has
the direction of the normal to the tangential plane belonging to ω, tangential
to the inertia ellipsoid. Analogously, in the present case, the direction ofD has
to be determined by a Poinsot construction w.r.t. E, i.e., by constructing the
normal to the tangential plane of the E-ellipsoid, and vice versa. In general,
the vector E is thus rotated with respect to the direction of D. (The vector
S is rotated with respect to the vector k by exactly the same amount about
the same rotation axis, H, see below.)

In fact, the three vectors S, E and H form a right-handed trihedron
(S ≡ E ×H), similar to the three vectors k, D and H . These statements
follow from Maxwell’s equations: the monochromatic ansatz

D ∝ Dkei(k·r−ωt) ,

plus analogous assumptions for the other vectors, implies with

divD = 0 that k ·Dk ≡ 0 .

Similarly
divB = 0 implies that k ·Hk ≡ 0 .
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Furthermore the relation

curlH =
∂D

∂t
implies that k ×Hk = −ωDk ;

and with

curlE = −∂B
∂t

it follows that k ×Ek = μ0ωHk .

The four vectors D, E, k and S thus all lie in the same plane perpen-
dicular to H. The vectors D and k (as well as E and S) are perpendicular
to each other. E originates from D (and S from k) by a rotation with the
same angle about the common rotation axis H13.

One therefore distinguishes between (i) the phase velocity vphase, which is
immediately related to the wave-propagation vector k, and (ii) the so-called
ray velocity vray, which is instead related to the energy-current density vector
S. (These different velocities correspond to the phase and group velocities
discussed above.)

In most cases one of the three principal axes of the dielectric tensor, the
c-axis, is crystallographically distinguished, and the other two orthogonal
axes are equivalent, i.e., one is dealing with the symmetry of an ellipsoid of
revolution.

This is true for tetragonal, hexagonal and trigonal14 crystal symmetry.
Only for orthorhombic15, monoclinic and triclinic crystal symmetry can all
three eigenvalues of the dielectricity tensor be different. (This exhausts all
crystal classes). In the first case one is dealing with so-called optically uniaxial
crystals, in the latter case with optically biaxial crystals.

We have now arrived at the phenomenon of birefringence, and as a simple
example we shall consider a linearly polarized monochromatic electromag-
netic wave with wavenumber k, incident at right angles from a vacuum onto
the surface of a non-cubic crystal. In the interior of the crystal, k must also
be perpendicular to the surface. For fixed k we should use the D-ellipsoid
(index ellipsoid) which is assumed (by the symmetry of the crystal) in gen-
eral to be inclined to the direction of incidence, i.e., the propagation vector
k is not necessarily parallel to a principal axis of the dielectric tensor.

The values of Dk corresponding to the vector k are all located on an
elliptical section of the index ellipsoid with the plane perpendicular to k
through the origin.

13 With this (somewhat rough) formulation we want to state that the unit vector
Ê originates from D̂ by the above-mentioned rotation.

14 This corresponds to the symmetry of a distorted cube stressed along one space
diagonal; the c-axis is this diagonal, and in the plane perpendicular to it one has
trigonal symmetry.

15 This corresponds to the symmetry of a cube, which is differently strained in the
three edge directions.
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On the one hand, the vector E should be perpendicular to the tangential
plane of the index ellipsoid viz by the Poinsot construction; on the other
hand it should belong to the plane defined by D and k. As one can show,
these two conditions can only be satisfied if the direction of D is a principal
direction of the above-mentioned section. This allows only two (orthogonal)
polarization directions of D; thus the two corresponding sets of dielectric
constants are also fixed. In general they are different from each other and the
corresponding phase velocities,

cP =
c0√
ε(D)

,

differ as well. (In addition, in general, the ray velocities (=̂ group veloci-
ties) are different from the phase velocities, see above; i.e., two different ray
velocities also arise.)

Usually the incident wave has contributions from both polarizations. As
a consequence, even if in vacuo the wave has a unique linear polarization di-
rection (not parallel to a principal axis of the dielectric tensor), in the interior
of the crystal generally a superposition of two orthogonal linearly polarized
components arises, which propagate with different velocities.

The phenomenon becomes particularly simple if one is dealing with op-
tically uniaxial systems. In this case the index ellipsoid is an ellipsoid of
revolution, i.e., with two identical dielectric constants ε1 ≡ ε2 and a different
value ε3. Under these circumstances one of the two above-mentioned polar-
ization directions of the vectorD can be stated immediately, viz the direction
of the plane corresponding to

k × e3 .

For this polarization one has simultaneously E ∼ D (i.e., also S ∼ k),
i.e., one is dealing with totally usual relations as in a vacuum (the so-called
ordinary beam). In contrast, for orthogonal polarization the vectors E andD
(and S and k) have different directions, so that one speaks of an extraordinary
beam.

If the phase-propagation vector k is, e.g., in the (x1, x3)-plane under a gen-
eral angle, then the in-plane polarized wave is ordinary, whereas the wave
polarized perpendicular to the plane is extraordinary. In the limiting cases
where (i) k is ∼ e3 both waves are ordinary, whereas if (ii) k ∼ e1 both
polarizations would be extraordinary.

For optically biaxial crystals the previous situation corresponds to the
general case.

It remains to be mentioned that for extraordinary polarizations not only
the directions but also the magnitudes of phase and ray velocities are differ-
ent, viz

vphase ∝ k , with |vphase| =
c0√
ε(D)
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in the first case, and

vS ∝ S (for S = E ×H) , with |vS | =
c0√
ε(E)

in the second case. In the first case we have to work with the D-ellipsoid
(index ellipsoid), in the second case with the E-ellipsoid (Fresnel ellipsoid).

21.4 On the Theory of Diffraction

Diffraction is an important wave-optical phenomenon. The word alludes to
the fact that it is not always possible to keep rays together. This demands
a mathematically precise description. We begin by outlining Kirchhoff’s law,
which essentially makes use of Green’s second integral theorem, a variant of
Gauss’s integral theorem. It starts from the identity:

{
u(r)∇2v(r)− v(r)∇2u(r)

}
≡ ∇ · (u∇v − v∇u) ,

and afterwards proceeds to
∫∫∫

V

dV
{
u∇2v − v∇2u

}
≡
∫∫
©
∂V

d2An · (u∇v − v∇u) . (21.16)

This expression holds for continuous real or complex functions u(r) and
v(r), which can be differentiated at least twice, and it even applies if on the
l.h.s. of (21.16) the operator ∇2 is replaced by similar operators, e.g.,

∇2 → ∇2 + k2 .

Kirchhoff’s law (or “2nd law”, as it is usually called) is obtained by sub-
stituting

u(r) =
exp(ik|r − r′|)
|r − r′| and v(r) := ψ(r)

into (21.16). Here r′ is an arbitrary point in the interior of the (essentially
hollow) volume V (see below). As a consequence we have

(
∇2 + k2

)
v(r) ≡ 0 and

(
∇2 + k2

)
u(r) ≡ −4πδ(r − r′) .

Thus Kirchhoff’s 2nd law states rigorously that

ψ(r′) ≡
∫∫
©∂V

d2A

4π
n(r) ·

(
eik|r−r′|

|r − r′| ∇ψ(r)− ψ(r)∇eik|r−r′|

|r − r′|

)
. (21.17)

We assume here that the volume V is illuminated externally and that ∂V
contains an opening (or aperture) plus a “wall”. Only a small amount of the
light is diffracted from the aperture to those regions within the interior of
V in the geometrical shadow. Therefore it is plausible to make the following
approximations of (21.17)16:
16 a prerequisite is that the involved distances are � λ.
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a) only the aperture contributes to the integral in equation (21.17), and
b) within the aperture one can put

ψ(r) ≈ eik|r−rQ|

|r − rQ|
.

Here rQ is the position of a point light source outside the volume, which
illuminates the aperture. This is the case of so-called Fresnel diffraction.
(In the field of applied seismics, for example, one may be dealing with
a point source of seismic waves produced by a small detonation. Fresnel
diffraction is explained in Fig. 21.2 below.)
We then have

ψ(rP ) ≈ −ik
2π

∫∫

aperture

d2A
eikrQ

rQ
· e

ikrP

rP
. (21.18)

Here rQ and rP are the distances between the source point rQ on the
left and the integration point r, and between integration point r and
observation point

rP ≡ r′ .
(Note that ∇r = −∇rQ

).
c) The situation becomes particularly simple when dealing with a planar

aperture illuminated by a plane wave

∝ eik0·r

(so-called Fraunhofer diffraction). We now have

|k0| != k ,

and for a point of observation
r′ = rP

behind the boundary ∂V (i.e., not necessarily behind the aperture, but
possibly somewhere in the shadow behind the “wall”):

ψ(rP ) ≈ feik0·r
∫∫

aperture

d2A
exp(ik|r − rP |)
|r − rP |

(21.19)

Here f is a (noninteresting) factor.
Equation (21.19) is an explicit and particularly simple form of Huygens’

principle: Every point of the aperture gives rise to spherical waves, whose
effects are superimposed.

Two standard problems, which are special cases of (21.19) and (21.18),
should now be mentioned:

a) Fraunhofer diffraction at a single slit (and with interference, at a double
slit). This case, which is discussed in almost all textbooks on optics, will
be treated later.

b) Fresnel diffraction at an edge. This problem is also important in the field
of reflection seismology when, for example, there is an abrupt shift in the
rock layers at a fault.
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21.4.1 Fresnel Diffraction at an Edge; Near-field Microscopy

In the following we shall consider Fresnel diffraction at an edge.
Fresnel diffraction means that one is dealing with a point source. The

surface in shadow is assumed to be the lower part of a semi-infinite vertical
plane, given as follows:

x ≡ 0 , y ∈ (−∞,∞) , z ∈ (−∞, 0] .

This vertical half-plane, with a sharp edge z ≡ 0, is illuminated by a point
source

rQ := (−xQ, yQ, 0)

from a position perpendicular to the plane at the height of the edge, i.e., xQ
is assumed to be the (positive) perpendicular distance from the illuminating
point to the edge. Additionally we assume

y2
Q � x2

q , while yP ≡ 0 .

The point of observation behind the edge is

rP := (xP , 0, zP ) ,

where we assume xP > 0, whereas zP can be negative. In this case the point
of observation would be in the shadow; otherwise it is directly illuminated.
All distances are assumed to be 
 λ. The situation is sketched in Fig. 21.2.

Fig. 21.2. Schematic diagram to illustrate Fresnel diffraction. In the diagram
(which we have intentionally drawn without using coordinates; see the text), rays
starting on the l.h.s. from a point source Q (e.g., Q = (−xQ, yQ, zQ)) are diffracted
at the edge of a two-dimensional half-plane (e.g., (0, y, z), with z ≤ zQ), from where
waves proceed to the observation point P , which belongs to the three-dimensional
space behind the plane (e.g., (xP , yP , zP ), with xP > 0), for example, into the
shadow region (e.g., zP < zQ). In the directly illuminated region one observes
so-called fringes, as explained in the text
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We then have for small values of y2 and z2 :

ψ(rP ) ∼
∞∫

−∞
dy

∞∫

0

dz exp
[
ik ·

(
xQ +

(y − yQ)2 + z2

2xq
+ xP

+
y2 + (z − zP )2

2xp

)]
, (21.20)

i.e., apart from a constant complex factor

ψ(rP ) ∼
∞∫

0

dz exp
[
ik ·

(
z2

2xQ
+

(z − zP )2

2xP

)]
. (21.21)

By substitution, this result can be written (again apart from a complex
factor17 of order of magnitude 1)

ψ(rP ) ∼
∞∫

−w
dηeiη2

, (21.22)

with the w-parameter

w := zP ·
√

k · xq
2xP (xP + xQ)

. (21.23)

One thus obtains for the intensity at the point of observation:

I =
I0
2

∣∣∣∣∣∣

√
2
π

∞∫

−w
dηeiη2

∣∣∣∣∣∣

2

. (21.24)

The real and imaginary parts of the integral I(w) appearing in (21.24) define
the Fresnel integrals C(w) and S(w):

C(w) +
1
2

: =

√
2
π

∞∫

−w
cos(η2)dη , S(w) +

1
2

:=

√
2
π

∞∫

−w
sin(η2)dη , or

C(w) =

√
2
π

w∫

0

cos(η2)dη , S(w) =

√
2
π

w∫

0

sin(η2)dη ,

and the closely related Cornu spiral, which is obtained by plotting S(w) over
C(w), while w is the line parameter of the spiral; cf. Sommerfeld, [14], or
Pedrotti et al., Optics, [15], Fig. 18.1718.
17 Landau-Lifshitz II (Field theory (sic)), chapter 60
18 Somewhat different, but equivalent definitions are used by Hecht in [16].
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An asymptotic expansion of (21.24), given, e.g., in the above-mentioned
volume II of the textbook series by Landau and Lifshitz, [8], yields

I(w)
I0
∼=
{

1
4πw2 for w � 0

1 +
√

1
π

sin(w2−π
4 )

w2 for w 
 0
. (21.25)

A more detailed calculation also yields intermediate behavior, i.e., a smooth
function that does not jump discontinuously from 1 to 0, when the geomet-
rical shadow boundary is crossed, but which increases monotonically from
(I/I0) = 0 for w = −∞ (roughly ∼ 1/w2) up to a maximum amplitude

(I/I0) ≈ 1.37 for w ≈
√

3π
4

(The characteristic length scale for this monotonic increase is of the order of
half a wavelength), and then oscillates about the asymptotic value 1, with
decreasing amplitude and decreasing period: In this way fringes appear near
the shadow boundary on the positive side (cf. Fig. 12 in Chap. 60 of volume II
of the textbook series by Landau and Lifshitz, [8]), i.e. with an envelope-decay
length ΔzP which obeys the equation

(ΔzP )2xQ
λ2xP · (xP + xQ)

≡ 1 ,

and which is therefore not as small as one might naively believe (in particular
it can be significantly larger than the characteristic length λ

2 for the above-
mentioned monotonic increase), but which is

ΔzP :=
√

2λ · (xQ + xP ) · xP
xQ

.

Thus, even if the edge of the shadowing plane were atomically sharp, the
optical image of the edge would not only be unsharp (as naively expected)
on the scale of a typical “decay length” of the light (i.e., approximately on the
scale of λ

2 , where λ is the wavelength) but also on the scale of unsharpness
ΔzP , which is significantly larger19. The signal would thus be alienated and
disguised by the above long-wavelength fringes. In our example from seismo-
logy, however, a disadvantage can be turned into an advantage, because from
the presence of fringes a fault can be discovered.

19 This enlargement of the scale of unsharpness through the oscillating sign of the
fringes is a similar effect to that found in statistics, where for homogeneous cases
one has a 1/N-behavior of the error whereas for random signs this changes to
1/

√
N -behavior, which is significantly larger.
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The fact that the accuracy Δx of optical mappings is roughly limited to λ
2

follows essentially from the above relations. In expressions of the form

exp(ik ·Δx)

the phases should differ by π, if one wants to resolve two points whose posi-
tions differ by Δx. With

k =
2π
λ

this leads to Δx ≈ λ

2
.

This limitation of the accuracy in optical microscopy is essentially based on
the fact that in microscopy usually only the far-field range of the electromag-
netic waves is exploited.

Increased accuracy can be gained using near-field microscopy (SNOM ≡
Scanning Near Field Optical Microscopy). This method pays for the advan-
tage of better resolution by severe disadvantages in other respects20, i.e.,
one has to scan the surface point by point with a sharp micro-stylus: elec-
tromagnetic fields evolve from the sharp point of the stylus. In the far-field
range they correspond to electromagnetic waves of wavelength λ, but in the
near-field range they vary on much shorter scales.

21.4.2 Fraunhofer Diffraction at a Rectangular and Circular
Aperture; Optical Resolution

In the following we shall treat Fraunhofer diffraction, at first very generally,
where we want to show that in the transverse directions a Fourier transfor-
mation is performed. Apart from a complex factor, (for distances 
 λ) the
equality (21.19) is identical with

ψ(rP ) ∝
∫∫

aperture

d2rei(k0−kP )·r . (21.26)

(If the aperture, analogous to an eye, is filled with a so-called “pupil function”
P (r), instead of (21.26) one obtains a slightly more general expression:

ψ ∝
∫∫

aperture

d2rP (r)ei(k0−kP )·r .)

Here kP is a vector of magnitude k and direction rP , i.e., it is true for rP 
 r
that

exp(ik|r − rP |) ∼= exp[ikrP − i(rp · r)/rP ] ,

20 There is some kind of conservation theorem involved in these and other problems,
i.e. again the theorem of conserved effort.



198 21 Applications of Electrodynamics in the Field of Optics

such that apart from a complex factor, the general result (21.19) simplifies
to the Fourier representation (21.26).

For the special case of a perpendicularly illuminated rectangular aperture
in the (y, z)-plane one sets

k0 = k · (1, 0, 0)

and also

kP = k ·
(√

1− sin2 θ2 − sin2 θ3 , sin θ2 , sin θ3

)
,

and obtains elementary integrals of the form

aj/2∫

−aj/2

dyje−i(sin θj)·yj .

In this way one finds

ψ(rP ) ∝ a2a3 ·
3∏
j=2

(sin θj) · ajπ
λ

ajπ
λ

. (21.27)

The intensity is obtained from ψ · ψ∗.
For a circular aperture with radius a one obtains a slightly more compli-

cated result:

ψ(rP ) ∝ πa2 ·
2J1

[
2π · (sin θ) · aλ

]
2π · (sin θ) · aλ

, (21.28)

where J1[x] is a Bessel function. In this case the intensity has a sharp maxi-
mum at sin θ = 0 followed by a first minimum at

sin θ = 0.61
λ

a
,

so that the angular resolution for a telescope with an aperture a is limited
by the Abbé result

sin θ ≥ 0.61
λ

a
.

In this case too, diffraction effects limit the resolution to approximately λ
2 .
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21.5 Holography

Hitherto we have not used the property that electromagnetic waves can in-
terfere with each other, i.e., the property of coherence:

∣∣∣∣∣∣
∑
j

ψj

∣∣∣∣∣∣

2

≡

∣∣∣∣∣∣
∑
j,k

ψ∗jψk

∣∣∣∣∣∣
, and not simply ≡

∑
j

|ψj |2 .

(The last expression – addition of the intensities – would (in general) only
be true, if the phases and/or the complex amplitudes of the terms ψj were
uncorrelated random numbers, such that from the double sum

∑
j,k

ψ∗jψk only

the diagonal terms remained.)
If the spatial and temporal correlation functions of two wave fields,

C1,2 :=
〈(
ψ(1)

)∗
(r1, t1)ψ(2)(r2, t2)

〉

≡
∑

k1,k2

(
c
(1)
k1

)∗
e−i(k1·r1−ωt1)c(2)k2

ei(k2·r2−ωt2) , (21.29)

decay exponentially with increasing spatial or temporal distance, viz

C1,2 ∝ e−
“ |r1−r2|

lc
+

(t1−t2)
τc

”
,

then the decay length lc and decay time τc are called the coherence length
and coherence time, respectively.

Due to the invention of the laser one has gained light sources with macro-
scopic coherence lengths and coherence times. (This subject cannot be treated
in detail here.)

For photographic records the blackening is proportional to the intensity,
i.e., one loses the information contained in the phase of the wave. Long before
the laser was introduced, the British physicist Dennis Gabor (in 1948) found
a way of keeping the phase information intact by coherent superposition of
the original wave with a reference wave, i.e., to reconstruct the whole (→
holography) original wave field ψG(r, t)21 from the intensity signal recorded
by photography. However, it was only later (in 1962) that the physicists Leith
and Upatnieks at the university of Michigan used laser light together with the
“off-axis technique” (i.e., oblique illumination) of the reference beam, which
is still in use nowadays for conventional applications22.

21 This means that ψG(r, t) is obtained by illuminating the object with coherent
light.

22 Nowadays there are many conventional applications, mainly in the context of
security of identity cards or banknotes; this is treated, e.g., in issue 1, page 42,
of the German “Physik Journal”, 2005, see [17]
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The conventional arrangement for recording optical holograms is pre-
sented, for example, in Fig. 13.2 of the textbook by Pedrotti and coworkers.
The hologram, using no lenses at all (!), measures the blackening function of
a photographic plate, which is illuminated simultaneously by an object wave
and a reference wave.

As a consequence, the intensity I corresponds to the (coherent) superpo-
sition of (i) the object wavefunction ψG and (ii) the reference wave

∼ eik0·r , i.e., I ∝ |ψG + a0 exp (i(k0 · r)|2 .

In particular, the intensity I does not depend on time, since all waves are

∝ e−iωt .

If the terms ∝ a0, ∝ a∗0 and ∝ |a0|2 dominate, one thus obtains

I ∝ |a0|2 + a0eik0·rψG(r) + a∗0e
−ik0·rψ∗G(r)(→ Ihologram) , (21.30)

where additionally one has to multiply with the blackening function of the
photographic emulsion.

The second term on the r.h.s. of (21.30) is just the object wave field while
the third term is some kind of “conjugate object field” or “twin field”, which
yields a strongly disguised picture related to the object (e.g., by transition to
complex-conjugate numbers, eiΦ(r) → e−iΦ(r), points with lower coordinates
and points with higher coordinates are interchanged).

It is thus important to view the hologram in such a way that out of
the photograph of the whole intensity field Ihologram the second term, i.e.,
the object field, is reconstructed. This is achieved, e.g., by illuminating the
hologram with an additional so-called reconstruction wave

∝ e−i k1·r

(e.g., approximately opposite to the direction of the reference wave, k1 ≈ k0).
In the coherent case one thus obtains

Iview ∝ |a0|2e−ik1·r + a0ψG(r)ei (k0−k1)·r + a∗0ψ
∗
G(r)e−i (k0+k1)·r . (21.31)

For suitable viewing one mainly sees the second term on the r.h.s., i.e., exactly
the object wave field.
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It is clear that not all possibilities offered by holography have been ex-
ploited systematically as yet (see, for example, the short article, in German,
in the Physik Journal p. 42 (2005, issue 1) already mentioned in [17]; cer-
tainly in other journals similar articles in a different language exist). Some
of the present-day and future applications of holography (without claiming
completeness) are: color holography, volume holograms, distributed informa-
tion, filtering, holographic data-storage and holographic pattern recognition.
These new methods may be summarized as potential applications of analogue
optical quantum computing23.

23 In quantum computation (see Part III) one exploits the coherent superposition
of Schrödinger’s matter waves, where to date mainly quantum-mechanical two-
level systems are being considered. In the field of optics, in principle one is
further ahead, with the invention of coherent light sources, the laser, and with
the methods of holography.



22 Conclusion to Part II

In this part of the book we have outlined the foundations of theoretical elec-
trodynamics and some related aspects of optics (where optics has been es-
sentially viewed as a branch of “applied electrodynamics”). If in Maxwell’s
lifetime Nobel prizes had existed, he would certainly have been awarded one.
His theory, after all, was really revolutionary, and will endure for centuries
to come. Only the quantum mechanical aspects (e.g., light quanta), due to
the likes of Einstein and Planck etc. (→ Part III) are missing. It was not
coincidental that Einstein’s views on relativity turned out to be in accord
with Maxwell’s theory of electrodynamics (from which he was essentially in-
spired). In fact, without realizing it, Maxwell had overturned the Newtonian
view on space and time in favor of Einstein’s theory. Actually, as mentioned
in the Introduction, much of our present culture (or perhaps “lack of it”) is
based on (the) electrodynamics (of a Hertzian dipole)!



Part III

Quantum Mechanics
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Quantum mechanics first emerged after several decades of experimental and
theoretical work at the end of the nineteenth century on the physical laws
governing black-body radiation. Led by industrial applications, such as the
improvement of furnaces for producing iron and steel, physicists measured
the flux of energy of thermal radiation emitted from a cavity,1 finding that
at moderate frequencies it almost perfectly follows the classical theory of
Rayleigh and Jeans:

dU(ν, T ) = V · 8πν
2

c3
dν · kBT , (23.1)

where dU(ν, T ) is the spectral energy density of electromagnetic waves in
the frequency interval between ν and ν + dν, and V is the volume of the
cavity. The factor kBT is the usual expression for the average energy 〈ε〉T of
a classical harmonic oscillator at a Kelvin temperature T and kB is Boltz-
mann’s constant. Rayleigh and Jeans’ law thus predicts that the energy of
the radiation should increase indefinitely with frequency – which does not
occur in practice. This failure of the classical law at high frequency has been
dubbed “the ultraviolet catastrophe”.

However, in 1896 the experimentalist Wilhelm Wien had already deduced
that for sufficiently hiqh frequencies, i.e.,

hν 
 kBT ,

where h is a constant, the following behavior should be valid:

dU(ν, T ) = V · 8πν
2

c3
dν · hν · exp

(
− hν

kBT

)
. (23.2)

Here we have adopted the terminology already used in 1900 by Max Planck
in his paper in which he introduced the quantity h, which was later named
after him Planck’s constant

h = 6.25 . . . · 10−34 Ws2 .

(In what follows we shall often use the reduced quantity � = h
2π .)

1 A method named bolometry.
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Planck then effectively interpolated between (23.1) and (23.2) in his fa-
mous black-body radiation formula:

dU(ν, T ) = V · 8πν
2

c3
dν · hν

exp
(
hν
kBT

)
− 1

. (23.3)

In order to derive (23.3) Planck postulated that the energy of a harmonic
oscillator of frequency ν is quantized, and given by

En = n · hν , (23.4)

where2 n = 0, 1, 2, . . ..
Five years after Planck’s discovery came the annus mirabilis3 of Albert

Einstein, during which he not only published his special theory of relativity
(see Parts I and II) but also introduced his light quantum hypothesis:

– Electromagnetic waves such as light possess both wave properties (e.g.,
the ability to interfere with other waves) and also particle properties;
they appear as single quanta in the form of massless relativistic particles,
so-called photons, of velocity c, energy E = hν and momentum

|p| = E

c
=
hν

λ
= �|k|

(where ν · λ = c and |k| = 2π
λ ; λ is the wavelength of a light wave (in

vacuo) of frequency ν.)

According to classical physics, the simultaneous appearance of wave and par-
ticle properties would imply a contradiction, but as we shall see later, this
is not the case in quantum mechanics, where the concept of wave – particle
duality applies (see below).

By postulating the existence of photons, Einstein was then able to explain
the experiments of Philipp Lenard on the photoelectric effect; i.e., it became
clear why the freqency of the light mattered for the onset of the effect, and not
its intensity. Later the Compton effect (the scattering of light by electrons)
could also be explained conveniently4 in terms of the impact between particles
2 The correct formula, En = (n + 1

2
) · hν, also leads to the result (23.3). The

addition of the zero-point energy was derived later after the discovery of the
formalism of matrix mechanics (Heisenberg, see below).

3 In this one year, 1905, Einstein published five papers, all in the same journal,
with revolutionary Nobel-prize worthy insight into three topics, i.e., (i) he pre-
sented special relativity, [5]; (ii) stated the light quantum hypothesis, [18], which
in fact gained the Nobel prize in 1921; and (iii) (a lesser well-known work) he
dealt with Brownian motion, [35], where he not only explained the phenomenon
atomistically, but proposed a basic relation between diffusion and friction in
thermal equilibrium.

4 The Compton effect can also be explained (less conveniently, but satisfactorily)
in a wave picture.
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(governed by the conservation of energy and momentum). Indirectly due to
Einstein’s hypothesis, however, the particle aspects of quantum mechanics
were initially placed at the center of interest, and not the wave aspects of
matter, which were developed later by de Broglie and Schrödinger (see below).

In fact, in 1913, following the pioneering work of Ernest Rutherford, Niels
Bohr proposed his atomic model, according to which the electron in a hy-
drogen atom can only orbit the nucleus on discrete circular paths of ra-
dius rn = n · a0 (with n = 1, 2, 3, . . ., the principal quantum number5 and
a0 = 0.529 . . . Å, the so-called Bohr radius6), and where the momentum of
the electron is quantized:

∮
p · dq =

2π∫

0

pϕ · rdϕ != n · h . (23.5)

Thus, according to Bohr’s model, in the ground state of the H-atom the
electron should possess a finite angular momentum

�

(
=

h

2π

)
.

Later it turned out that this is one of the basic errors of Bohr’s model since
actually the angular momentum of the electron in the ground state of the H-
atom is zero. (A frequent examination question: Which are other basic errors
of Bohr’s model compared to Schrödinger’s wave mechanics?)

At first Bohr’s atomic model seemed totally convincing, because it ap-
peared to explain all essential experiments on the H-atom (e.g., the Ryd-
berg formula and the corresponding spectral series) not only qualitatively or
approximately, but even quantitatively. One therefore tried to explain the
spectral properties of other atoms, e.g., the He atom, in the same way; but
without success.

This took more than a decade. Finally in 1925 came the decisive break-
through in a paper by the young PhD student Werner Heisenberg, who
founded a theory (the first fully correct quantum mechanics) which became
known as matrix mechanics, [19,20]. Heisenberg was a student of Sommerfeld
in Munich; at that time he was working with Born in Göttingen.

Simultaneously (and independently) in 1924 the French PhD student
Louis de Broglie7, in his PhD thesis turned around Einstein’s light-quantum
hypothesis of wave-matter correspondence by complementing it with the
proposition of a form of matter-wave correspondence:

5 We prefer to use the traditional atomic unit 1Å = 0.1 nm.
6 Later, by Arnold Sommerfeld, as possible particle orbits also ellipses were con-

sidered.
7 L. de Broglie, Ann. de physique (4) 3 (1925) 22; Thèses, Paris 1924
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a) (de Broglie’s hypothesis of “material waves”):
Not only is it true to say that an electrodynamic wave possesses particle
properties, but conversely it is also true that a particle possesses wave
properties (matter waves). Particles with momentum p and energy E
correspond to a complex wave function

ψ(r, t) ∝ ei(k·r−ωt) ,

with
k =

p

�
+ e · gradf(r, t) and ω =

E

�
− e · ∂f

∂t
.

(Here the real function f(r, t) is arbitrary and usually set ≡ 0, if no
electromagnetic field is applied. This is a so-called gauge function, i.e., it
does not influence local measurenents; e is the charge of the particle.)

b) De Broglie’s hypothesis of matter waves , which was directly confirmed in
1927 by the crystal diffraction experiments of Davisson and Germer, [21],
gave rise to the development of wave mechanics by Erwin Schrödinger,
[22]. Schrödinger also proved in 1926 the equivalence of his “wave me-
chanics” with Heisenberg’s “matrix mechanics”.

c) Finally, independently and almost simultaneously, quantum mechanics
evolved in England in a rather abstract form due to Paul M. Dirac8. All
these seemingly different formulations, which were the result of consider-
able direct and indirect contact between many people at various places,
are indeed equivalent, as we shall see below.

Nowadays the standard way to present the subject – which we shall adhere
to – is (i) to begin with Schrödinger’s wave mechanics, then (ii) to proceed
to Dirac’s more abstract treatment, and finally (iii) – quasi en passant, by
treating the different quantum mechanical “aspects” or “representations” (see
below) – to present Heisenberg’s matrix mechanics.

8 In 1930 this became the basis for a famous book, see [23], by John von Neumann,
born in 1903 in Budapest, Hungary, later becoming a citizen of the USA, deceased
(1957) in Washington, D.C., one of the few universal geniuses of the 20th century
(e.g., the “father” of information technology).
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24.1 Physical States

Physical states in quantum mechanics are described by equivalence classes
of vectors in a complex Hilbert space (see below). The equivalence classes
are so-called “rays”, i.e., one-dimensional subspaces corresponding to the
Hilbert vectors. In other words, state functions can differ from each other
by a constant complex factor1, similar to eigenvectors of a matrix in linear
algebra.

Unless otherwise stated, we shall generally choose representative vectors
with unit magnitude,

〈ψ, ψ〉 = 1 ;

but even then these are not yet completely defined: Two unit vectors, differing
from each other by a constant complex factor of magnitude 1 (ψ → eiαψ,
with real α) represent the same state.

Furthermore, the states can depend on time. Vectors distinguished from
each other by different time-dependent functions typically do not represent
the same state 2.

In the position representation corresponding to Schrödinger’s wave me-
chanics, a physical state is described by a complex function

ψ = ψ(r, t) with

∫
dV |ψ(r, t)|2 != 1 ,

where the quantity
|ψ(r, t)|2 · dV

represents the instantaneous probability that the particle is found in the in-
finitesimally small volume element dV .

This is still a preliminary definition, since we have not yet included the
concept of spin (see below).

1 Two Hilbert vectors which differ by a constant complex factor thus represent the
same physical state.

2 At least not in the Schrödinger picture, from which we start; see below.
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24.1.1 Complex Hilbert Space

To be more specific, the Hilbert vectors of wave mechanics are square-
integrable complex functions ψ(r), defined for r ∈ V , where V is the avail-
able volume of the system and where (without lack of generality) we assume
normalization to 1. The function ψ(r) is also allowed to depend on a time
parameter t. For the scalar product of two vectors in this Hilbert space we
have by definition:

〈ψ1|ψ2〉 ≡
∫

dV ψ1(r, t)∗ψ2(r, t) ,

where ψ∗1 is the complex conjugate of ψ1. (Unfortunately mathematicians
have slightly different conventions3. However, we shall adhere to the conven-
tion usually adopted for quantum mechanics by physicists.)

As in linear algebra the scalar product is independent of the basis, i.e.,
on a change of the basis (e.g., by a rotation of the basis vectors) it must
be transformed covariantly (i.e., the new basis vectors are the rotated old
ones). Moreover, a scalar product has bilinear properties with regard to the
addition of a finite number of vectors and the multiplication of these vectors
by complex numbers. By the usual “square-root” definition of the distance
between two vectors, one obtains (again as in linear algebra) a so-called uni-
tary vector space (or pre-Hilbert space), which by completion wrt (= with
respect to) the distance, and with the postulate of the existence of at least
one countably-infinite basis (the postulate of so-called separability) becomes
a Hilbert space (HR).

If one is dealing with a countable orthonormal basis (orthonormality of
a countable basis can always be assumed, essentially because of the existence
of the Erhardt-Schmidt orthogonalization procedure), then every element |ψ〉
of the Hilbert space can be represented in the form

|ψ〉 =
∑
i

ci|ui〉 with ci = 〈ui|ψ〉

where
〈ψ1|ψ2〉 =

∫
dV ψ∗1(r, t)ψ2(r, t) =

∑
i

(
c
(1)
i

)∗
· c(2)i . (24.1)

This is similar to what is known from linear algebra; the main difference
here is that countably-infinite sums appear, but for all elements of the Hilbert
space convergence of the sums and (Lebesgue) integrals in (24.1) is assured4.

3 Mathematicians are used to writing 〈ψ1|ψ2〉 =
R

dV ψ1(r, t)(ψ2(r, t)), i.e., (i) in
the definition of the scalar product they would not take the complex conjugate
of the first factor but of the second one, and (ii) instead of the “star” symbol
they use a “bar”, which in physics usually represents an average.

4 by definition of HR and from the properties of the Lebesgue integral
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24.2 Measurable Physical Quantities (Observables)

Measurable quantities are represented by Hermitian operators5 in Hilbert
space, e.g., in the position representation the coordinates “x” of Hamiltonian
mechanics give rise to multiplication operators6,

ψ(r, t)→ ψ′(r, t) := (x̂ψ)(r, t) = x · ψ(r, t) ,

while the momenta are replaced by differential operators

ψ(r, t)→ ψ′(r, t) := (p̂xψ)(r, t) := (�/i)(∂ψ(r, t)/∂x) .7

Therefore one writes compactly

p̂x = (�/i)(∂/∂x) .

More precisely, one assumes that the operator corresponding to an observable
Â is not only Hermitian, i.e.,

〈ψ1|Âψ2〉 = 〈Âψ1|ψ2〉
for all ψ1 and ψ2 belonging to the range of definition of the operator Â, but
that Â, if necessary after a subtle widening of its definition space, has been
enlarged to a so-called self-adjoint operator: Self-adjoint operators are (i)
Hermitian and (ii) additionally possess a complete system of square-integrable
(so-called proper) and square-nonintegrable (so-called improper) eigenvectors
|ψj〉 and |ψλ〉, respectively (see (24.3)).

The corresponding eigenvalues aj and a(λ) (point spectrum and continu-
ous spectrum, respectively) are real, satisfying the equations:

Â|ψj〉 = aj |ψ〉 , Â|ψλ〉 = a(λ)|ψλ〉 . (24.2)

Here the position-dependence of the states has not been explicitly written
down (e.g., |ψλ〉=̂ψλ(r, t)) to include Dirac’s more abstract results. Moreover,
using the square-integrable (proper) and square-nonintegrable (improper)
eigenvectors one obtains an expansion theorem (=̂ so-called spectral reso-
lution). Any Hilbert vector |ψ〉 can be written as follows, with complex coef-
ficients ci and square-integrable complex functions8 c(λ):

|ψ〉 ≡
∑
i

ci|ψi〉+
∫

dλc(λ)|ψλ〉 . (24.3)

5 To be mathematically more precise: Self-adjoint operators; i.e., the operators
must be Hermitian plus complete (see below).

6 Operators are represented by a hat-symbol.
7 Mathematically these definitions are restricted to dense subspaces of HR.
8 c(λ) exists and is square-integrable, if in (24.4) ψλ is an improper vector and
ψ ∈ HR (weak topology). Furthermore, in (24.3) we assume that our basis does
not contain a so-called “singular continuous” part, see below, but only the usual
“absolute continuous” one. This is true in most cases.
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However the l.h.s. of (24.3) for ψ(r, t) does not necessarily agree pointwise
with the r.h.s. for every r, but the identity is only valid “almost everywhere”
in the following sense (so-called strong topology):

(|ψn〉 → |ψ〉 ⇐⇒
∫

dV |ψn(r)− ψ(r)|2 → 0) .

The coefficients ci and c(λ) are obtained by scalar multiplication from the
left with 〈ψi| and 〈ψλ|, i.e.,

ci = 〈ψi|ψ〉 , c(λ) = 〈ψλ|ψ〉 . (24.4)

In these equations the following orthonormalisation is assumed:

〈ψi|ψj〉 = δi,j , 〈ψλ′ |ψλ〉 = δ(λ′ − λ) , 〈ψi|ψλ〉 = 0 , (24.5)

with the Kronecker delta δi,j = 1 for i = j; δi,j = 0 otherwise (i.e.,
∑

j δi,jfj =
fi for all complex vectors fi), and the Dirac δ function δ(x), a so-called
generalized function (distribution), which is represented (together with the
limit9 ε→ 0) by a set {δε(x)}ε of increasingly narrow and at the same time
increasingly high bell-shaped functions (e.g., Gaussians) with

∫ ∞
−∞

dxδε(x) ≡ 1 ),

defined in such a way that for all “test functions” f(λ) ∈ T (i.e., for all
arbitrarily often differentiable complex functions f(λ), which decay for |λ| →
∞ faster than any power of 1/|λ|) one has the property (see Part II):

∫ ∞
−∞

dλδ(λ′ − λ) · f(λ) ≡ f(λ′), ∀f(λ) ∈ T . (24.6)

This implies the following expression (also an extension of linear algebra!)
for the scalar product of two vectors in Hilbert space after expansion in the
basis belonging to an arbitrary observable Â (consisting of the orthonormal
proper and improper eigenvectors of Â):

〈
ψ(1)

∣∣∣ψ(2)
〉

=
∑
i

(
c
(1)
i

)∗
· c(2)i +

∫
dλ

(
c(1)(λ)

)∗
· c(2)(λ) . (24.7)

For simplicity it is assumed below, unless otherwise stated, that we are
dealing with a pure point spectrum, such that in (24.7) only summations
appear.

9 The limit ε→ 0 must be performed in front of the integral.
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a) However, there are important observables with a purely continuous spec-
trum (e.g., the position operator x̂ with improper eigenfunctions

ψλ(x) := δ(x− λ)

and the momentum operator p̂x with improper eigenfunctions

ψλ(x) := (2π�)−1/2 exp(iλ · x/�) ;

the eigenvalues appearing in (24.2) are then a(λ) = x(λ) = p(λ) = λ).
b) In rare cases a third spectral contribution, the singular-continuous con-

tribution, must be added, where it is necessary to replace the integral∫
dλ . . . by a Stieltje’s integral

∫
dg(λ) . . . ,

with a continuous and monotonically nondecreasing, but nowhere differen-
tiable function g(λ) (the usual above-mentioned continuous contribution
is obtained in the differentiable case g(λ) ≡ λ).

For a pure point spectrum one can thus use Dirac’s abstract bra-ket formalism:

a) “observables” are represented by self-adjoint10 operators. In diagonal rep-
resentation they are of the form

Â =
∑
i

ai|ψi〉〈ψi| , (24.8)

with real eigenvalues ai and orthonormalized eigenstates |ψi〉,

〈ψi|ψk〉 = δik ,

and
b) the following statement is true (which is equivalent to the expansion the-

orem (24.5)):
1̂ =

∑
i

|ψi〉〈ψi|. (24.9)

Equation (24.9) is a so-called “resolution of the identity operator 1̂” by
a sum of projections

P̂i := |ψi〉〈ψi| .
The action of these projection operators is simple:

P̂i|ψ〉 = |ψi〉 〈ψi|ψ〉 = |ψi〉ci .

Equation (24.9) is often applied as

|ψ〉 ≡ 1̂|ψ〉 .
10 The difference between hermiticity and self-adjointness is subtle, e.g. instead

of vanishing values at the boundaries of an interval one only demands periodic
behavior. In the first case the differential expression for p̂x has no eigenfunctions
for the interval, in the latter case it has a complete set.
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24.3 The Canonical Commutation Relation

In contrast to classical mechanics (where observables correspond to arbitrary
real functions f(r,p) of position and momentum, and where for products
of xi and pj the sequential order does not matter), in quantum mechanics
two self-adjoint operators representing observables typically do not commute.
Instead, the following so-called canonical commutation relation holds11:

[p̂j, x̂k] := p̂j x̂k − x̂kp̂j ≡
�

i
δjk . (24.10)

The canonical commutation relation does not depend on the representa-
tion (see below). It can be derived in the wave mechanics representation by
applying (24.10) to an arbitrary function ψ(r) (belonging of course to the
maximal intersection Imax of the regions of definition of the relevant opera-
tors). Using the product rule for differentiation one obtains

�

i
{∂(xkψ(r))/∂xj − xk∂ψ(r)/∂xj} ≡

�

i
δjkψ(r) , ∀ψ(r) ∈ Imax ⊆ HR .

(24.11)
This result is identical to (24.10).

24.4 The Schrödinger Equation; Gauge Transformations

Schrödinger’s equation describes the time-development of the wave function
ψ(r, t) between two measurements. This fundamental equation is

−�

i
∂ψ

∂t
= Ĥψ . (24.12)

Ĥ is the so-called Hamilton operator of the system, see below, which corre-
sponds to the classical Hamiltonian, insofar as there is a relationship between
classical and quantum mechanics (which is not always the case 12). This im-
portant self-adjoint operator determines the dynamics of the system.

Omitting spin (see below) one can obtain the Hamilton operator directly
from the Hamilton function (Hamiltonian) of classical mechanics by replacing
the classical quantities r and p by the corresponding operators, e.g.,

x̂|ψ〉 → x · ψ(r) ; p̂x|ψ〉 →
�

i
∂

∂x
ψ(r) .

11 Later we will see that this commutation relation is the basis for many important
relations in quantum mechanics.

12 For example the spin of an electron (see below) has no correspondence in classical
mechanics.
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For example, the classical Hamiltonian H(r,p, t) determining the motion
of a particle of massm and electric charge e in a conservative force field due to
a potential energy V (r) plus electromagnetic fields E(r, t) and B(r, t), with
corresponding scalar electromagnetic potential Φ(r, t) and vector potential
A(r, t), i.e., with

B = curlA and E = −gradΦ− ∂A

∂t
,

is given by

H(r,p, t) =
(p− eA(r, t))2

2m
+ V (r) + eΦ(r, t) . (24.13)

The corresponding Schrödinger equation is then

−�

i
∂ψ(r, t)
∂t

= Ĥψ =
1

2m

(
�

i
∇− e ·A(r, t)

)2

ψ(r, t)

+ {V (r) + e · Φ(r, t)}ψ(r, t) . (24.14)

The corresponding Newtonian equation of motion is the equation for the
Lorentz force (see Parts I and II)13

m
dv
dt

= −∇V (r) + e · (E + v ×B) . (24.15)

Later we come back to these equations in connection with spin and with the
Aharonov-Bohm effect.

In (24.13) and (24.14), one usually sets A ≡ 0, if B vanishes everywhere.
But this is neither necessary in electrodynamics nor in quantum mechanics.
In fact, by analogy to electrodynamics, see Part II, a slightly more complex
gauge transformation can be defined in quantum mechanics, by which certain
“nonphysical” (i.e., unmeasurable) functions, e.g., the probability amplitude
ψ(r, t), are non-trivially transformed without changes in measurable quanti-
ties.

To achieve this it is only necessary to perform the following simultaneous
changes of A, Φ and ψ into the corresponding primed quantities14

A′(r, t) = A(r, t) +∇f(r, t) (24.16)

Φ′(r, t) = Φ(r, t)− ∂f(r, t)
∂t

(24.17)

ψ′(r, t) = exp
[
+ie · f(r, t)

�

]
· ψ(r, t) (24.18)

13 With the Hamiltonian H = (p−eA)2

2m
one evaluates the so-called canonical equa-

tions ẋ = ∂H/∂px , ṗx = −∂H/∂x, where it is useful to distinguish the canonical
momentum p from the kinetic momentum mv := p − eA.

14 Here we remind ourselves that in classical mechanics the canonical momentum
p must be gauged. In Schrödinger’s wave mechanics one has instead �

i
∇ψ, and

only ψ must be gauged.
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with an arbitrary real function f(r, t). Although this transformation changes
both the Hamiltonian Ĥ , see (24.14), and the probability amplitude ψ(r, t),
all measurable physical quantities, e.g., the electromagnetic fields E and B
and the probability density |ψ(r, t)|2 as well as the probability-current density
(see below, (25.12)) do not change, as can be shown.

24.5 Measurement Process

We shall now consider a general state |ψ〉. In the basis belonging to the
observable Â (i.e., the basis is formed by the complete set of orthonormalized
eigenvectors |ψi〉 and |ψλ〉 of the self-adjoint (=̂ hermitian plus complete)
operator Â), this state has complex expansion coefficients

ci = 〈ψi|ψ〉 and c(λ) = 〈ψλ|ψ〉

(obeying the δ-conditions (24.5)). If in such a state measurements of the
observable Â are performed, then

a) only the values ai and a(λ) are obtained as the result of a single measure-
ment, and

b) for the probability W (Â, ψ,Δa) of finding a result in the interval

Δa := [amin, amax) ,

the following expression is obtained:

W (Â, ψ,Δa) =
∑
ai∈Δa

|ci|2 +
∫

a(λ)∈Δa
dλ|c(λ|2 . (24.19)

In this way we obtain what is known as the quantum mechanical expectation
value, which is equivalent to a fundamental experimental value, viz the aver-
age over an infinitely long series of measurements of the observable Â in the
state ψ:

(A)ψ
(i)
=
∑
i

ai|ci|2 +
∫

dλa(λ)|c(λ)|2 (ii)
= 〈ψ|Â|ψ〉 . (24.20)

Analogously one finds that the operator

(
δÂ

)2

:=
(
Â− (A)ψ

)2

corresponds to the variance (the square of the mean variation) of the values
of a series of measurements around the average.
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For the product of the variances of two series of measurements of the observ-
ables Â and B̂ we have, with the commutator

[â, b̂] := ÂB̂ − B̂Â ,

Heisenberg’s uncertainty principle:

〈ψ|
(
δÂ

)2

|ψ〉 · 〈ψ|
(
δB̂

)2

|ψ〉 ≥ 1
4

∣∣∣〈ψ|
[
Â, B̂

]
|ψ〉

∣∣∣
2

. (24.21)

Note that this relation makes a very precise statement; however one should
also note that it does not deal with single measurements but with expectation
values, which depend, moreover, on |ψ〉.

Special cases of this important relation (which is not hard to derive) are
obtained for

Â = p̂x , B̂ = x̂ with
[
Â, B̂

]
=

�

i
,

and for the orbital angular moments15

Â = L̂x and B̂ = L̂y with
[
Â, B̂

]
= i�L̂z .

On the other hand permutable operators have identical sets of eigenvectors
(but different eigenvalues).

Thus in quantum mechanics a measurement generally has a finite influ-
ence on the state (e.g., |ψ〉 → |ψ1〉; state reduction), and two series of mea-
surements for the same state |ψ〉, but non-commutable observables Â and B̂,
typically (this depends on |ψ〉!) cannot simultaneously have vanishing expec-
tation values of the variances16.

24.6 Wave-particle Duality

In quantum mechanics this important topic means that

a) (on the one hand) the complex probability amplitudes (and not the prob-
abilities themselves) are linearly superposed, in the same way as field
amplitudes (not intensities) are superposed in coherent optics, such that
interference is possible (i.e., |ψ1 + ψ2|2 = |ψ1|2 + |ψ2|2 + 2Re(ψ∗1 · ψ2));
whereas

15 and also for the spin momenta (see below).
16 Experimentalists often prefer the “short version” “. . . cannot be measured si-

multaneously (with precise results)”; unfortunately this “shortening” gives rise
to many misunderstandings. In this context the relevant section in the “Feyn-
man lectures” is recommended, where it is demonstrated by construction that
for a single measurement (but of course not on average) even p̂x and x̂ can
simultaneously have precise values.
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b) (on the other hand) measurement and interaction processes take place
with single particles such as photons, for which the usual fundamental
conservation laws (conservation of energy and/or momentum and/or an-
gular momentum) apply per single event, and not only on average. (One
should mention that this important statement had been proved experi-
mentally even in the early years of quantum mechanics!)

For example, photons are the “particles” of the electromagnetic wave field,
which is described by Maxwell’s equations. They are realistic objects, i.e.
(massless) relativistic particles with energy

E = �ω and momentum p = �k .

Similarly, (nonrelativistic) electrons are the quanta of a “Schrödinger field”17,
i.e., a “matter field”, where for the matter field the Schrödinger equation plays
the role of the Maxwell equations .

The solution of the apparent paradox of wave-particle duality in quan-
tum mechanics can thus be found in the probabilistic interpretation of the
wave function ψ. This is the so-called “Copenhagen interpretation” of quan-
tum mechanics, which dates back to Niels Bohr (in Copenhagen) and Max
Born (in Göttingen). This interpretation has proved to be correct without
contradiction, from Schrödinger’s discovery until now – although initially the
interpretation was not undisputed, as we shall see in the next section.

24.7 Schrödinger’s Cat: Dead and Alive?

Remarkably Schrödinger himself fought unsuccessfully against the Copen-
hagen interpretation 18 of quantum mechanics, with a question, which we
paraphrase as follows: “What is the ‘state’ of an unobserved cat confined in
a box, which contains a device that with a certain probability kills it immedi-
ately?”

Quantum mechanics tends to the simple answer that the cat is either in
an “alive” state (|ψ〉 = |ψ1〉), a “dead” state(|ψ〉 = |ψ2〉) or in a (coherently)
“superposed” state (|ψ〉 ≡ c1|ψ1〉+ c2|ψ2〉).

With his question Schrödinger was in fact mainly casting doubt on the
idea that a system could be in a state of coherent quantum mechanical super-
position with nontrivial probabilities of states that are classically mutually
17 Relativistic electrons would be the quanta of a “Dirac field”, i.e., a matter field,

where the Dirac equation, which is not described in this book, plays the role of
the Maxwell equations of the theory.

18 Schrödinger preferred a “charge-density interpretation” of e|ψ(r)|2. But this
would have necessitated an addition δV to the potential energy, i.e., classically:
δV ≡ e2

RR
dV dV ′|ψ(r)|2|ψ(r′)|2/(8πε0|r−r′|), which – by the way – after a sys-

tematic quantization of the corresponding classical field theory (the so-called
“2nd quantization”) leads back to the usual quantum mechanical single-particle
Schrödinger equation without such an addition, see [24].
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exclusive (“alive” and “dead” simultaneously!). Such states are nowadays
called “Schrödinger cat states”, and although Schrödinger’s objections were
erroneous, the question led to a number of important insights. For exam-
ple, in practice the necessary coherence is almost always destroyed if one
deals with a macroscopic system. This gives rise to corresponding quantita-
tive terms such as the coherence length and coherence time. In fact there are
many other less spectacular “cat states”, e.g. the state describing an object
which is simultaneously in the vicinity of two different places,

ψ = c1ψx≈x1 + c2ψx≈x2 .

Nowadays one might update the question for contemporary purposes. For
example we could assume that Schrödinger’s proverbial cat carries a bomb
attached to its collar19, which would not only explode spontaneously with
a certain probability, but also with certainty due to any external interaction
process (“measurement with interaction”). The serious question then arises
as to whether or not it would be possible to verify by means of a “quantum
measurement without interaction”, i.e., without making the bomb explode,
that a suspicious box is empty or not.

This question is treated below in Sect. 36.5; the answer to this question is
actually positive, i.e., there is a possibility of performing an “interaction-free
quantum measurement”, but the probability for an interaction (⇒ explosion),
although reduced considerably, does not vanish completely. For details one
should refer to the above-mentioned section or to papers such as [31].

19 If there are any cat lovers reading this text, we apologize for this thought exper-
iment.



25 One-dimensional Problems

in Quantum Mechanics

In the following we shall deal with stationary states. For these states one can
make the ansatz :

ψ(r, t) = u(r) · e−i Et
� .

As a consequence, for stationary states, the expectation values of a constant
observable Â is also constant (w.r.t. time):

〈ψ(t)|Â|ψ(t)〉 ≡ 〈u|Â|u〉 .

The related differential equation for the amplitude function u(r) is called
the time-independent Schrödinger equation. In one dimension it simplifies for
vanishing electromagnetic potentials, Φ = A ≡ 0, to:

u′′ = −k2(x)u(x) , with k2(x) :=
2m
�2

(E − V (x)) . (25.1)

This form is useful for values of

x where E > V (x) , i.e., for k2(x) > 0 .

If this not the case, then it is more appropriate to write (25.1) as follows

u′′ = +κ2(x)u(x) , with κ2(x) :=
2m
�2

(V (x)− E) . (25.2)

For a potential energy that is constant w.r.t. time, we have the following
general solution:

u(x) = A+ exp(ik · x) +A− · exp(−ik · x) and
u(x) = B+ exp(+κ · x) +B− · exp(−κ · x) .

Using

cos(x) := (exp(ix) + exp(−ix))/2 and
sin(x) := (exp(ix)− exp(−ix))/(2i)
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we obtain in the first case

u(x) = C+ · cos(κ · x) + C− · sin(κ) , where
C+ = A+ +A− and
C− = i(A+ −A−) .

The coefficients A+, A− etc. are real or complex numbers, which can be
determined by consideration of the boundary conditions.

25.1 Bound Systems in a Box (Quantum Well); Parity

Assume that

V (x) = 0 for |x| ≥ a , whereas
V (x) = −V0(< 0) for |x| < a .

The potential is thus an even function,

V (x) ≡ V (−x) , ∀x ∈ R ,

cf. Fig. 25.1. Therefore the corresponding parity is a “good quantum number”
(see below).

Fig. 25.1. A “quantum well” potential and a sketch of the two lowest eigenfunc-
tions. A symmetrical quantum-well potential of width Δx = 2 and depth V0 = 1
is shown as a function of x. In the two upper curves the qualitative behavior of
the lowest and 2nd-lowest stationary wave functions (→ even and odd parity) is
sketched, the uppermost curve with an offset of 0.5 units. Note that the quantum
mechanical wave function has exponential tails in the external region which a clas-
sical bound particle never enters. In fact, where the classical bound particle has
a point of return to the center of the well, the quantum mechanical wave function
only has a turning point, i.e., only the curvature changes sign
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Next we assume E < 0 (i.e., for bound states). Then we have the following
solutions of the Schrödinger equation

u(x) = B
(1)
− exp(−κ|x|) +B

(1)
+ exp(+κ|x|) ,−x ≥ a , (25.3)

u(x) = C1 cos(k · x) + C2 sin(k · x) , |x| < a , (25.4)

u(x) = B
(2)
− exp(−κx) +B

(2)
+ exp(+κx) , +x ≥ a . (25.5)

a) Firstly, we recognise that the coefficents B(1)
+ and B(2)

+ must vanish, since
otherwise it would not be possible to satisfy the condition

∫ ∞
−∞

dx|u(x)|2 != 1 .

b) The remaining coefficients are determined (apart from a common factor,
where only the magnitude is fixed by the normalization condition) from
the continuity conditions for u and u′ at the potential steps, x = ±a.

The calculation is thus much easier for symmetrical potentials, V (x) =
V (−x), since then all solutions can be divided into two different classes:

even parity, i.e., u(−x) = u(x) , (⇒ B
(1)
− = B

(2)
− ; C2 = 0) and

odd parity, i.e., u(−x) = −u(x) , (⇒ B
(1)
− = −B(2)

− ; C1 = 0) .

One then only needs one continuity condition, i.e. the one for u′/u at
x = +a. From this condition (see below) one also obtains the discrete energy
values E = En, for which continuity is possible (for k > 0 and κ > 0):

κ(E)
k(E)

= tan(k(E) · a) , for even parity, (25.6)

−k(E)
κ(E)

= tan(k(E) · a) , for odd parity . (25.7)

These equations can be solved graphically (this is a typical exercise), by
plotting all branches of tan(k·a) as a function of k·a (these branches intercept
the x-axis at k · a = n · π, where n is integer, and afterwards they diverge to
+∞ from −∞, at k± · a = (2n± 1) · π/2∓ 0+). Then one can determine the
intersections of this multi-branched curve with the line obtained by plotting
the l.h.s. of (25.6) or (25.7) as a function of k(E) · a.

In this way one obtains the following general statements which are true
for a whole class of similar problems:

Existence I :
There is always at least one bound state. (This statement is true for

similar problems in one and two dimensions, but not in three dimensions1.
1 In d=3 dimensions one can show, see below, that for so-called s-states, i.e., if the

state does not depend on the angular coordinates ϑ and ϕ, the wave-function
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For example, for the analogous three-dimensional “potential box model” for
the mutual binding of a neutron and proton in the deuteron nucleus the depth
V0 is just deep enough to generate a bound state, whereas for a “di-neutron”
it is just not deep enough.)

Nodal theorem: The ground state, ψ0, has no “nodes” (i.e., no zeroes) at
all (between the interval limits, i.e., here for −∞ < x <∞). In contrast, an
eigenstate ψn, for n = 1, 2, . . ., if existent, has exactly n nodes.

If parity is a “good” quantum number, i.e., for symmetric potentials,
V (x) ≡ V (−x), the following principle is additionally true:

Alternating parity: The ground state, ψ(n=0), has even parity, the first
excited state odd parity, the 2nd excited state again even parity, etc..

Existence II :
Quantitatively one finds that the nth bound state, n = 1, 2, . . ., exists iff

the quantum well is sufficiently deep and broad, i.e., for the present case iff
√

2m|V0|a2

�2
> n · π

2
.

25.2 Reflection and Transmission at Steps
in the Potential Energy; Unitarity

For simplicity we assume firstly that

V (x) ≡ 0 for x < 0 and ≡ ΔV (x)(> 0) for all x ≥ 0 ,

with a barrier in a finite range including x = 0. Consider the reflection and
transmission of a monochromatic wave traveling from the left. We assume
below that E is sufficiently high (e.g., E > V (∞) in Fig. 25.2, see below.
Otherwise we have total reflection; this case can be treated separately.)

We thus have, with ω := E/�:

ψ(x, t) = A ·
(

ei(k−x−ωt) + r · ei(−k−x−ωt)
)

for x < 0 , and

= A · t · ei(k+x−ωt) for x > a ; (25.8)

is quasi one-dimensional in the following sense: The auxiliary quantity w(r) :=
r ·ψ(r) satisfies the same “quasi one-dimensional” Schrödinger equation as noted
above, see the three equations beginning with (25.3). As a consequence, one only
needs to put x → r and u(x) → w(r), and can thus transfer the above “one-
dimensional” results to three dimensions. But now one has to take into account
that negative r values are not allowed and that w(0)

!
= 0 (remember: w(r) =

r · ψ(r)). The one-dimensional solutions with even parity, i.e. u(x) ∝ cos kx, are
thus unphysical for a “three-dimensional quantum box”, i.e. for V (r) = −V0 for
r ≤ a, V ≡ 0 otherwise. In contrast, the solutions of odd parity, i.e., w(r) =
r · ψ(r) ∝ sin kr, transfer to d=3. – This is a useful tip for similar problems in
written examinations.
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k− and k+ are the wave numbers on the l.h.s. and r.h.s. of the barrier (see
below).

The amplitude A is usually replaced by 1, which does not lead to any
restriction. The complex quantities r and t are the coefficients of reflection
and transmission (not yet the reflectivity R and transmittivity T , see below).

The coefficients r and t follow in fact from the two continuity conditions
for ψ(x) and dψ(x)

dx . The reflectivity R(E) and the transmittivity T (E) them-
selves are functions of r(E) and t(E), i.e.,

R = |r|2, T =
k+

k−
|t|2 . (25.9)

The fraction k+
k− in the formula for T is the ratio of the velocities on the

r.h.s. and l.h.s. of the barrier in the potential energy; i.e.,

E =
�

2k2
−

2m
≡

�
2k2

+

2m
+ΔV. (25.10)

T can be directly calculated from R using the so-called unitarity relation2

R+ T ≡ 1. (25.11)

Fig. 25.2. Scattering of a plane wave by a barrier (schematically). A wave ∝ eik·x

traveling from −∞ with a certain energy meets a rectangular barrier, where it is
partially reflected and transmitted (indicated by the straight lines with arrows, i.e.,
the corresponding complex amplitudes r and t are also associated with cosine-like
behavior). The conditions determining r and t are that the wave function and its
derivative are continuous. The velocities on each side are different. The energy is
also allowed to be higher than that of the barrier

2 The name unitarity relation follows by addition of an incoming wave from the
right, i.e., the incoming wave is now a two-component vector with indices l
and r (representing left and right, respectively). This is also the case with the
outgoing wave. The incoming and outgoing waves are related, as can be shown,
by a unitary matrix (the so-called S-matrix), which generalizes (25.11).



228 25 One-dimensional Problems in Quantum Mechanics

25.3 Probability Current

All these statements follow explicitly (with v̂ = m−1(p̂− eÂ)) from a gauge
invariant relation for the probability current density:

jw(r, t) := Re {ψ∗(r, t)v̂ψ(r, t)} =
�

2im
(ψ∗∇ψ − ψ∇ψ∗)

− e
m
A|ψ|2 . (25.12)

Together with the scalar probability density


w(r, t) = |ψ(r, t)|2 ,

the current density jw satisfies (as one can show) the continuity equation

∂
w(r, t)
∂t

+ divjw(r, t) ≡ 0 . (25.13)

As shown in Part II in the context of electrodynamics, this continuity equa-
tion is equivalent to the conservation theorem of the total probability:

∫

∞
d3r
w(r, t) ≡ 1, ∀t .

Ultimately it is this fundamental conservation theorem, which stands behind
the unitarity relation (25.11).

For a series of different steps in potential energy the complex coefficients
rn and tn may be calculated sequentially. This gives rise to a so-called “trans-
fer matrix”.

25.4 Tunneling

In this section the probability of tunneling through a symmetrical rectangu-
lar barrier of width a and height V0(> 0) will be considered. Assume that
V (x) = 0 for x < 0 and x > a, but V (x) = V0 for 0 ≤ x ≤ a; furthermore
assume that the energy E is smaller than the barrier height, i.e., 0 < E < V0

(but see below!). Classically, in such a situation a particle will be elastically
reflected at the barrier. In contrast, quantum mechanically, with the methods
outlined above, it is straightforward to show that one obtains a finite tunnel-
ing probability, given by

T (E) =
1

1 + 1
4 (κk + k

κ )2 sinh2(κa))
. (25.14)
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Here

k(E) =
(

2m
�2
E

)1/2

, and κ(E) =
(

2m
�2

(V0 − E)
)1/2

.

For barriers with κa 
 1 the tunneling transmittivity is therefore exponen-
tially small, T � 1, but finite, as can be seen from

sinhx = (1/2)(ex + e−x)=̃ex/2

for x
 1:
T (E)=̃

16(
k
κ + κ

k

)2 · e−2κa. (25.15)

The factor in front of the exponential in (25.15) is of the order of O(4), if
k and κ are comparable. Therefore the following result for a non-rectangular
tunneling barrier is plausible (here we assume that V (x) > E only in the
interval a < x < b). Then one obtains (as long as the result is � 1):

T (E)=̃O(4) · exp

{
−2

∫ b

a

dx

√
2m
�2

(V (x) − E)

}
. (25.16)

(The exponent in this expression is essentially proportional to the product
of the width and the square-root of the height of the barrier. This yields
a rough but systematic approximation for tunnelling through a barrier.)

Furthermore, the factor 2 in the exponent and the factor O(4) in (25.16)
have an obvious meaning. They result from the correspondence T ∝ |ψ|2;
(i), the factor 2 in the exponent in front of the integral immediately follows
from the exponent 2 in |ψ|2, and, (ii), the prefactor O(4) is obtained from the
relation 4 = 22 by the fact that the wave-function must decay exponentially
on both sides of the barrier. Furthermore, the reciprocal length appearing
in the exponent of (25.16) is, as expected, proportional to �, i.e., this decay
length vanishes in the classical limit �→ 0.

Quantum mechanical reflection at a depression in the potential energy,
i.e., at a barrier with negative sign (e.g., a “quantum well” as in figure 25.1) is
also of interest: We now assume an incoming plane wave with E > 0 (instead
of the problem of bound states, E < 0); in any case (as already mentioned)
for V (x) we have the same situation as in Fig. 19.1, i.e. V ≡ 0 for x < 0
and x > a, but V (x) ≡ −|V0| for 0 ≤ x ≤ a. For such a “quantum well” (as
already stated) there is at least one bound state for E < 0. On the other
hand, classically an electron with E > 0 does not “see” the quantum well.
Quantum mechanically, however, even in this case there is a finite reflection
probability. In fact the transmittivity T for this case is analogous to (25.14),
again without proof:

T (E) =
1

1 + 1
4

(
k0
k + k

k0

)2

sin2(k0 · a)
, (25.17)
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where

k0(E) =

√
2m
�2

(E + |V0|) .

Complete transmission (T = 1) is only obtained for the special energy values
k0 · a = nπ (where n is an integer); otherwise T < 1, i.e., there is a finite
reflectivity.



26 The Harmonic Oscillator I

This is one of the most important problems of quantum mechanics. The
Hamilton operator is

Ĥ =
p̂2

2m
+
mω2

0x̂
2

2
. (26.1)

The harmonic oscillator is important inter alia because a potential energy
V (x) in the vicinity of a local minimum can almost always be approximated
by a parabola (which is the characteristic potential energy of the harmonic
oscillator),

V (x) = V0 +
1
2
V ′′(x0)(x− x0)2 + . . . .

We thus have
mω2

0 ≡ V ′′(x0) ,

and it is assumed that anharmonicities, i.e., the correction terms of higher
order, which are denoted by the dots, + . . ., can be neglected. In contrast,
the assumptions x0 = 0 and V0 = 0 impose no restrictions on generality.

In the position representation (wave mechanics), we thus have to solve
the Schrödinger equation

−�

i
∂ψ(x, t)
∂t

= Ĥψ(x, t) .

Using the ansatz for stationary states

ψ(x, t) != u(x) · e−iEt/� ,

we obtain the following time-independent Schrödinger equation:

u′′(x) !=
(

2m
�2
· mω

2
0x

2

2
− 2m

�2
E

)
· u(x) =

[(mω0

�

)2

− 2m
�2

E

]
· u(x) (26.2)

It is now advantageous to use reduced variables without physical dimen-
sion, i.e.,

ε := E/(�ω0/2), ξ := x/
√

�/(mω0) and

ũ(ξ) := u(x)
√

�

mω0
.



232 26 The Harmonic Oscillator I

Equation (26.2) is thus simplified to

d2ũ(ξ)
dξ2

= (ξ2 − ε) · ũ(ξ) , (26.3)

and the normalization condition
∫ ∞
∞
|u(x)|2 dx != 1 becomes

∫ ∞
−∞
|ũ(ξ)|2 dξ != 1 .

Using the ansatz
ũ(ξ) =: v(ξ) · e−ξ2/2

the (asymptotically dominating) exponential behavior ∼ e−ξ
2/2 can now be

separated out; the differential equation for v(ξ) (the so-called Hermitian dif-
ferential equation) is solved by means of a power series,

v(ξ) =
∞∑

ν=0,1,...

aνξ
ν .

Finally after straightforward calculations, for the coefficients aν the following
recursion relation is obtained:

aν+2

aν
=

2ν + 1− ε
(ν + 1)(ν + 2)

. (26.4)

Although Schrödinger’s differential equation (26.3) is now satisfied, one
must additionally demand that the recursion relation terminates at a finite

ν(= ν0) , i.e., ε = 2ν0 + 1 .

If it were not terminated, i.e., if for all non-negative integers ν the identity
ε = 2ν+1 were violated, then v(ξ) would diverge for |ξ| 
 1 (for even parity,
i.e., for [a0 �= 0, a1 = 0], the divergency would be asymptotically as ∼ e+ξ2 ,
whereas for odd parity, i.e., for [a1 �= 0, a0 = 0], v(ξ) ∼ ξ · e+ξ2). This would
violate the condition that

u(ξ)
(

= v(ξ) · e−
ξ2
2

)

must be square-integrable. In contrast, if there is termination at a finite ν,
then the question of the convergence of the ratio aν+2/aν becomes obsolete.

In conclusion, iff the power series for v(ξ) terminates at a finite n, i.e.
iff the reduced energy

ε = E/

(
�

ω0/2

)
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is identical to one of the eigenvalues 2n+ 1 with n = 0, 1, 2, . . .,

ũ(ξ)
(
= v(ξ) · e−ξ2/2

)

is square-integrable.
In this way the following energy levels for the harmonic oscillator are

obtained:
En = �ω0 · (n+ 1/2) , (26.5)

for n = 0, 1, 2, . . ., with the eigenfunctions

ũn(ξ) ∼ Hn(ξ)e−ξ
2/2 . (26.6)

The Hn(ξ) are the so-called Hermite polynomials ; e.g.,

H0(ξ) = 1 , H1(ξ) = ξ , H2(ξ) = 1− 2ξ2 and H3(ξ) = ξ ·
(

1− 2
3
ξ2
)

(only the first and second should be kept in mind). The missing normalization
factors in (26.6) are also unimportant.

Eigenfunctions of a Hermitian operator, corresponding to different eigen-
values of that operator, are necessarily orthogonal, as can easily be shown.
We thus have

〈ũi|ũj〉 = 〈ui|uj〉 = δi,j ,

as expected.
The completeness1, i.e., the basis property of the function system {un},

is also given, if all polynomial degrees n = 0, 1, 2, . . . are taken into account2.
In fact, the probability that an oscillating particle of a given energy En is
found outside the “inner” region which is classically allowed, is very small,
i.e., ∝ e−x

2/x2
0 , but finite even for large n.

As we shall see in a later section (→ 28.1), the harmonic oscillator can
also be treated in a purely abstract (i.e., algebraic) way.

1 We remember that the completeness property is not satisfied for the bound
functions of an arbitary quantum well.

2 Here the following examination questions suggest themselves: (i) What do the
eigenfunctions un(x) of a harmonic oscillator look like (qualitatively!) for the
following three cases: n = 0; n = 1; and n = 256? (ii) What would be obtained,
classically and quantum mechanically, for the probability of a harmonically os-
cillating particle of energy E to be found in a small interval Δx?



27 The Hydrogen Atom according to

Schrödinger’s Wave Mechanics

27.1 Product Ansatz; the Radial Function

The electron in a hydrogen atom is treated analogously to the previous cases.
The Hamilton operator is written

Ĥ =
p̂2

2m
+ V (r) . (27.1)

The explicit expression for the potential energy,

V (r) = − Z e2

4πε0r
,

is not immediately important: one only requires that V (r) should be rota-
tionally invariant.

Next, the usual ansatz for stationary states is made:

ψ(r, t) = u(r) · e−iEt/� .

Then, in spherical coordinates a product ansatz (separation of variables) fol-
lows:

u(r) = R(r) · Ylm(θ, ϕ) ,

with the spherical harmonics Ylm(θ, ϕ) (which have already been introduced
in Part II1).

This product ansatz can be made essentially because the operators L̂
2

and L̂z commute with each other and (as conserved quantities) also with Ĥ,
such that all three operators can be diagonalised simultaneously.

As for the Ylm, here we only need the property that they are eigenfunctions
of the (orbital) angular momentum operators L̂

2
and L̂z, i.e.,

L̂
2
Ylm(θ, ϕ) = �

2l · (l + 1)Ylm(θ, ϕ) , (27.2)
L̂zYlm(θ, ϕ) = �mYlm(θ, ϕ) . (27.3)

1 It is important to remind ourselves of other instances where the same or similar
ideas or equations are used.
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The characteristic values for the orbital angular momentum, l = 0, 1, 2, 3, . . .2

correspond, in “chemical language”, to s, p, d, f, . . . orbitals (we also have the
relation l ≤ n − 1, where n(= 1, 2, 3, . . .) is the principal quantum number,
see below). The “magnetic” quantum number m assumes the allowed values
m = −l,−l + 1, . . . ,+l (→ quantization of the orbital angular momentum;
we do not yet consider the spin momentum which will be treated below).

In addition we need to express the Laplace operator in spherical coordi-
nates:

∇2f =
1
r

∂2

∂r2
(rf)− L̂

2
f

�2r2
, (27.4)

where3 the square of the orbital angular momentum can be written as

− L̂
2

�2
f(θ, ϕ) :=

1
sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1
sin2 θ

∂2f

∂ϕ2
. (27.5)

For the radial function R(r) one obtains (using an auxiliary function
w(r) := r · R(r)) the following one-dimensional differential equation (N.B.
this depends on l, but not on m):

− �
2

2m
w(r)′′ +

[
�

2l(l+ 1)
2mr2

+ V (r)
]
· w(r) = E · w(r) . (27.6)

Additionally, the following boundary conditions must be satisfied: w(0) != 0
4 and ∫ ∞

0

r2|R(r)|2 dr =
∫ ∞

0

dr|w(r)|2 != 1

since d3r = r2 drdΩ and
∮

dΩ|Ylm(θ, ϕ)|2 :=
π∫

θ:=0

sin θdθ
2π∫
ϕ=0

dϕ|Ylm(θ, ϕ)|2 =

1). From now on we concentrate on a Coulomb potential

V (r) = −|e|2/(4πε0r) ,

i.e., to an A/r-potential, which has already been shown to be special in clas-
sical mechanics (remember that for A/r-potentials the Runge-Lenz vector is
conserved (→ absence of perihelion motion of the Kepler ellipses and hyper-
bolae)).
2 It can be shown algebraically that the commutation relations of angular mo-

menta can also be satisfied for half-integral numbers, 1/2, 3/2, 5/2 etc., which
corresponds to the possibility of non-orbital angular momenta, e.g., the spin, see
below.

3 The relation (27.4) has (since p̂2 = −�
2∇2) the following classical pendant:

p2 = p2
r + r−2[r × p]2 = p2

r + L2/r2; here L = r × p is the orbital angular
momentum vector.

4 Remember the footnote on the quasi one-dimensional behavior of bound s states
in a 3d quantum box in the previous Chap. 25.
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By analogy with the harmonic oscillator, reduced lengths and energies are
also defined, i.e. the variables 
 := r/a0 and ε := −E/ER, where

a0 =
�

2

4πε0 e2
(≈ 0.529 Å(≡ 0.0529 nm))

is called the Bohr radius and

ER :=
2m
�2

e4

(4πε0)2
(≈ 13.59 eV)

the Rydberg energy.
Finally the differential equation for w(
) thus obtained can again be sim-

plified by an ansatz separating the dominating asymptotic behavior for 
� 1
and 
 1 by two factorizations, i.e. by

w(
) =: 
l+1 · F (
) · e−
√
ε� .

Using this ansatz one obtains a rather simple differential equation (Laguerre’s
equation) for F (
), which is again solved by a power series

F (
) =
∞∑

ν=0,1,2,...

bν

ν .

In this way one is lead to the recursion relation

bν+1

bν
= 2
√
ε · (l + 1 + ν)− 1

(ν + 1)(ν + 2l+ 2)
. (27.7)

27.1.1 Bound States (E < 0)

These states correspond to negative energies E (positive values of ε). As for
the harmonic oscillator, the condition of square-integrability of

w(
) ,
∫ ∞

0

d
|w(
)|2 != 1 ,

is again only satisfied if the recursion relation (27.7) terminates. Again a pos-
itive integer n must exist, the “principal quantum number” (characterising
the electron shell), such that the recursion relation (27.7) results in bν+1 ≡ 0,
as soon as ν has reached the integer n− l − 1.

The energy E is then = −ER

n2 , i.e., it does not depend on l, although the
radial function R(
)(= Rnl(
)) does.

The fact that the binding energy of the H-atom only depends on the
principal quantum number n (and not on the orbital quantum number l)
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is a special property of the Coulomb potential5, i.e., this “accidental degen-
eracy”, as it it often called somewhat misleadingly, is not valid for general
V (r).

The product ansatz

u(r) = Rnl(r) · Ylm(θ, ϕ) ,

however, applies generally for rotationally invariant potentials V (r), and the
energy of bound states depends generally both on n and l.

27.1.2 The Hydrogen Atom for Positive Energies (E > 0)

This case is important inter alia because of its relation to the solar atmo-
sphere and corona. The analysis corresponds to the Kepler problem, but with
hyperbolic orbits, i.e., ε is now imaginary. Thus the recursion relation (27.7)
no longer terminates, since √

ε = i
√
|ε| ,

and one obtains radial functionsRE,l(r), which are (analogously to monochro-
matic plane waves) only almost square integrable, i.e., although not being
square integrable themselves, they can be superposed to square integrable
wave packets.

The corresponding wave functions are

uE;l,m(r) = Ylm(θ, ϕ) · RE,l(r) ,

where the radial functions can be orthonormalized as

〈RE,l|RE′,l′〉 =
∫ ∞

0

drr2RE,l(r)∗RE′,l′(r) = δll′δ(E − E′) . (27.8)

The asymptotic behavior of the RE,l(r) for r →∞ is given by

RE,l(r) ∝
sin

(
kE · r + κE ln(2kEr) + ηl,E − lπ

2

)
r

(27.9)

with

kE :=

√
2m
�2
E , κE :=

1√
|ε|

and with a real so-called Coulomb phase ηl,E .

5 In classical mechanics the corresponding speciality is the conservation of the so-
called Runge-Lenz vector for the Kepler problem (i.e., planetary motion), which
(as already mentioned) corresponds to the absence of any perihelion rotation in
the ideal case, i.e., for a perfect A/r-potential.
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27.2 Spherical Harmonics

The spherical harmonics Yl,m(ϑ, ϕ) appearing in the above product ansatz,

and in (27.2) and (27.3), are eigenfunctions of the operators L̂
2

and L̂z with
eigenvalues

�
2l · (l + 1) and m� ,

respectively (here, for convenience, we are using the index “m” (not mass)
instead of “ml”). The facts concerning L̂

2
and L̂z are most important at this

point and related to properties already known from electrodynamics, see Part
II, since products

rl · Yl,m(ϑ, ϕ)

are harmonic, i.e.,
∇2

[
rl · Yl,m(ϑ, ϕ)

]
≡ 0 ,

which yields a simple proof of the above relation (27.2).
Concerning the second relation we note that the functions Ylm(ϑ, ϕ) are

defined as
Ylm(θ, ϕ) = cl,|m| · Pl,|m|(cos θ) · eimϕ , (27.10)

where the normalization factors cl,|m| are not of interest (in particular, be-
cause there are different conventions, distinguished by a complex factor of
magnitude unity, a fact that one should consider when discovering apparent
mistakes or inconsistencies in some formulae). The Pl,|m| are called “asso-
ciated Legendre polynomials”; for m = 0 one has the “genuine” Legendre
polynomial.

The fact that Ylm(ϑ, ϕ) is an eigenfunction of the z-component L̂z, with
eigenvalue �m, follows directly from the definition (27.10), since for

L̂z = xp̂y − yp̂x ,

by application to a function of r, ϑ and ϕ, we have the simple identity

L̂z =
�

i
∂

∂ϕ
,

which can easily be proved (usually as an exercise).
In addition, the relation

L̂
2
Ylm = �

2l(l + 1)Ylm ,

which is equivalent to
∇2

(
rl · Ylm

)
= 0 ,

follows easily from the expression (27.4) for the ∇2 operator in spherical
coordinates.
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The normalization coefficients (see below) are chosen in such a way that
one obtains a complete orthonormalized system of angular functions on the
surface of a sphere, i.e.

〈Ylm|Yl′m′〉 : =
∫ π

0

dθ sin θ
∫ 2π

0

dϕYlm(θ, ϕ)∗Yl′m′(θ, ϕ)

= δll′δmm′ , (27.11)

such that a generalized Fourier expansion of an arbitrary function f(ϑ, ϕ) is
possible.

Important spherical harmonics are listed in the following table (we repeat
that the normalization factors are not important. The bracketed terms on
the r.h.s. show explicitly the relation to harmonic functions.)

Y0,0(θ, ϕ) =

√
1
4π

, (27.12)

Y1,0(θ, ϕ) =

√
3
4π

cos θ
(
∝ z

r

)
(27.13)

Y1,±1(θ, ϕ) =

√
3
8π

sin θ · e±iϕ

(
∝ x± iy

r

)
(27.14)

Y2,0(θ, ϕ) =

√
5

16π
(3 cos2 θ − 1)

(
∝ 3z2 − r2

r2

)
(27.15)

Y2,±1(θ, ϕ) =

√
15
16π

cos θ sin θ e±iϕ

(
∝ z · (x± iy)

r2

)
(27.16)

Y2,±2(θ, ϕ) =

√
15
32π

sin2 θ e±2iϕ

(
∝ (x± iy)2

r2

)
. (27.17)

A nodal theorem is also valid for the spherical harmonics: The real and
imaginary parts of Ylm possess l − |m| polar zero-lines (ϑ = constant) and
additionally |m| azimuthal zero-lines (ϕ = constant). The radial functions
Rn,l(r) have n− l− 1 radial nodal surfaces. The sum of the radial, polar and
azimuthal nodal surfaces of the product functions

Rnl(r) · Re[Ylm(ϑ, ϕ)]

(and similarly for the imaginary part) is thus n− 1, as expected.
As a consequence, in the hydrogen atom, the probability of finding the

electron outside a radius r0 
 n · a0 is exponentially small,

∝ e−2r0/(n·a0) 6 .

6 i.e., not as small as for the harmonic oscillator, where it is ∝ e−x2/x2
0 , see above.
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(Algebraic Methods)

28.1 The Harmonic Oscillator II:
Creation and Destruction Operators

Heisenberg was the first to recognise1 that for a given Hamiltonian the impor-
tant point is to represent the observables by algebraic entities (e.g., matrices
within his formalism; operators in Schrödinger’s wave mechanics) which sat-
isfy the canonical commutation relations (24.10)2. Then everything else fol-
lows purely algebraically (sometimes after a certain amount of perturbation
theory) without the aid of differential operators.

This approach will now be used to treat the harmonic oscillator (although
even the hydrogen atom was treated completely algebraically by Wolfgang
Pauli3, before Schrödinger invented his wave mechanics).

For the harmonic oscillator the Hamilton operator Ĥ written as a function
of the reduced length

ξ := x/
√

�/(mω0) ,

see Sect. 26, and reduced momentum

p̂ξ :=
1
i
∂

∂ξ

has the form:

Ĥ =
�ω0

2

(
p̂2
ξ + ξ̂2

)
.

The canonical commutation relations are equivalent to

[
p̂ξ, ξ̂

]
=

1
i
.

1 in his famous publication where he created matrix mechanics and in a subsequent
publication with the co-authors Max Born and Pascual Jordan.

2 This generalizes the Poisson brackets of classical mechanics, see Part I.
3 See the book on quantum mechanics, [24], by W. Döring, Göttingen 1962, who

also presents Pauli’s algebraic approach for the H atom.
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By complex rotation one now introduces the following operators, which are
called the destruction operator and the creation operator, respectively:

b̂ :=
1√
2

(
ξ̂ + ip̂ξ

)
and b̂+ :=

1√
2

(
ξ̂ − ip̂ξ

)
. (28.1)

They are mutually adjoint to each other,
〈
b̂+ψ1

∣∣∣ψ2

〉
= 〈ψ1|b̂ψ2

〉

(if |b̂ψ2〉 �= 0); i.e. they are clearly non-Hermitian, but instead they have
a number of remarkable properties, inter alia:

If |ψn〉 (n = 0, 1, 2, . . .) is a (normalized) eigenstate of Ĥ then one has for
n = 0, 1, 2, . . ., and for n = 1, 2, 3, . . ., respectively:

b+|ψn〉 =
√
n+ 1|ψn+1〉 and b̂|ψn〉 =

√
n|ψn−1〉 , (28.2)

as well as b̂|ψ0〉 = 0.
Thus b̂+ increases the number of excited quanta by 1, whereas b̂ decreases

this number by 1, which explains their names. The Hamilton operator itself
can be written as:

H =
�ω0

2
· (b̂+b̂+ b̂b̂+) = �ω0 ·

(
b̂+b̂+

1
2

)
. (28.3)

In (28.3) we have used the commutation relation4

[
b̂, b̂+

]
= 1

(which follows from [p̂, x̂] = �

i ). The number operator n̂ := b̂+b̂ is Hermitian,
with eigenvalues n = 0, 1, 2, . . ..

To prove the above statements we firstly calculate

|Φ〉 := b̂+b̂
(
b̂+|ψn〉

)

and find with the canonical commutation relation

b̂b̂+ = 1 + b̂+b̂ that |Φ〉 = b̂+
(
1 + b̂+b̂

)
|ψn〉 .

Since |ψ〉 ≡ |ψn〉 is already a (normalized) eigenstate of the number operator
n̂ = b̂+b̂ with eigenvalue n, we find that the state

|ψ′〉 := b+|ψn〉

must also be eigenstate of n̂, viz with eigenvalue n+ 1.
4 The operator b̂ is thus also not unitary, since for unitary operators Û one would

have Û Û+ = 1, i.e., without commutator bracket.
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The length of |ψ′〉 is calculated with

〈ψ′|ψ′〉 =
〈
b̂+ψn

∣∣∣b̂+ψn
〉

= 〈ψn|b̂b̂+ψn
〉
,

and with the canonical commutation relations we find

(1 + n) 〈ψn|ψn〉 (≡ 1 + n) .

Thus
||ψ′〉|

must be
√
n+ 1. In addition, if one assumed that the number operator n̂ had

eigenvalues different from the non-negative integer numbers, one would be
led into contradictions.

28.2 Quantization of the Angular Momenta;
Ladder Operators

One can proceed similarly with the angular momenta. Firstly, it follows from
the canonical commutation relations for r̂ and p̂ that for the orbital angular
momentum

L := r̂ × p̂
canonical angular momentum commutation relations are valid, i.e.,

[
Ĵx, Ĵy

]
= i�Jz

(etc., by cyclic permutation of the three Cartesian components of an angular
momentum vector operator Ĵ , which correspond to Hermitian operators Ĵk,
with k = x, y, z).

In the following, the algebra of the angular commutation relations is as-
sumed to apply more generally, i.e., not only for orbital moments, J = L,
where it can be derived from the canonical commutation relations for r̂ and
p̂, but without derivation right from the beginning. For example, on purely
mathematical reasoning we consider the possibility that there may be, for-
mally or not, other angular momenta or quasi-momenta5 than those of the
orbital motion.

The generalization of what is known for the harmonic oscillator is based
on the following facts: the ladder operators ,

Ĵ± := Ĵx ± iĴy ,

increase (or decrease) the eigenvalue of Ĵz by one unit of � from m · � to
(m ± 1) · �, as far as possible, so that the following statements are true and
can be proved purely algebraically (→ exercises):
5 e.g., the so-called isospin.
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a) The operators Ĵ
2

and Ĵz commute with each other, and are thus simul-
taneously diagonalizable.

b) The orthonormalized abstract eigenvectors |ψJ,MJ 〉 of Ĵ
2

and Ĵz (i.e., of
this simultaneous diagonalization) satisfy the relations

Ĵ
2|ψJ,MJ 〉 = �

2J(J + 1)|ψJ,MJ 〉 , (28.4)

with integral or half-integral (!) value of J (= 0, 1
2 , 1,

3
2 , . . .), while

Ĵz |ψJ,MJ 〉 = �MJ |ψJ,MJ 〉 , (28.5)

with
MJ = −J,−J + 1, . . . , J .

c) Under these constraints (and the usual phase conventions concerning
square roots of a complex number) one has

Ĵ±|ψJ,MJ 〉 = �

√
J(J + 1)−MJ(MJ ± 1)|ψJ,MJ±1〉 , (28.6)

i.e.,
Ĵ±|ψJ,±J〉 = 0 .

Thus, in addition to the orbital angular momentum (J = 0, 1, 2, . . .), al-
gebraically a second kind of angular momentum

(
J =

1
2
,
3
2
, . . .

)

should exist, which has no classical analogue. This comprises (in addition to
other cases) the so-called intrinsic or spin angular momentum of an electron6,
for which J = 1

2 .
In fact, for J = 1/2 the above-mentioned canonical angular momentum

commutation relations can be implemented as follows:

Ĵ =
�

2
σ ,

with the Pauli matrices

σx =
(

0 , 1
1 , 0

)
, σy =

(
0 , −i
i , 0

)
, σz =

(
1 , 0
0 , −1

)
. (28.7)

The corresponding states (complex two-component “spinors”) can be gen-
erated by the following basic states:

↓:=
∣∣∣ψ 1

2 ,− 1
2

〉
=
(

0
1

)
, ↑:=

∣∣∣ψ 1
2 ,

1
2

〉
=
(

1
0

)
. (28.8)

6 For other particles the spin may be different.
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28.3 Unitary Equivalence; Change of Representation

All the above statements are not only independent of the basis functions used
in the calculations but are also independent of the dynamical “aspect” used
in the formulation of quantum mechanics.

One usually begins with the first of the following three “aspects” (or “pic-
tures”, or “representations”) (i) the Schrödinger aspect , (ii) the Heisenberg
aspect , and (iii) the interaction (or Dirac) aspect .

Changes in the basis functions and/or “representations”7 are implemented
by means of unitary operators Û . These are special linear operators defined
on the total Hilbert space8, which can be interpreted as (complex) rotations
of the Hilbert space, since they leave scalar products invariant.

We thus assume that for all |ψ〉, |ψ1〉 and |ψ2〉 in Hilbert space the fol-
lowing equalities are valid:

|ψ′〉 = Û |ψ〉 or 〈ψ′1|ψ′2〉 =
〈
Ûψ1

∣∣∣Ûψ2

〉
=
〈
ψ1

∣∣∣Û+ Ûψ2

〉
= 〈ψ1|ψ2〉 .

(28.9)
For unitary transformations one therefore demands that

Û+Û = Û Û+ = 1̂ , or Û+ = Û−1 .

Such operators, if they do not depend on time, can always be written as
Û = eiB̂ with self-adjoint (Hermitian plus complete) B̂. The transition from
position functions to momentum functions, or the transitions between various
matrix representations, can be written in this way. However, unitary opera-
tors can also depend nontrivially on time. For example, the generalized gauge
transformation (24.16), which was treated in an earlier section, corresponds
to a (generally time-dependent) unitary transformation.

In addition to the invariance of all scalar products a unitary transforma-
tion also preserves the quantum mechanical expectation values, probability
statements, commutation relations etc., i.e., all measurable physical state-
ments. It is only necessary that all observables Â appearing in these state-
ments are transformed covariantly with the states, i.e. as follows:

|ψ〉 → |ψ′〉 := Û |ψ〉 , Â→ Â′ := Û+ÂÛ . (28.10)

It is easy to show that such transformations conserve all expectation val-
ues: 〈

ψ
∣∣∣Âψ

〉
≡

〈
ψ′
∣∣∣Â′ψ′

〉
. (28.11)

7 ,,Darstellungs- bzw. Bildwechsel” in German texts
8 We remind ourselves that usually the Hamilton operator Ĥ is not defined in

the total Hilbert space, since the functions ψ must be differentiable twice. In
contrast, exp [−iĤ · t/�], by a subtle limiting procedure, is defined in the total
Hilbert space.
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Up till now we have used Schrödinger’s “picture”. The transitions to the
other representations, (ii) the Heisenberg or (iii) the Dirac (= interaction)
representations, are described in the following. The essential point is that
one uses the unitary transformations corresponding to the so-called time-
displacement operators Û(t, t0). In addition we shall use indices S, H and I,
which stand for “Schrödinger”, “Heisenberg” and “interaction”, respectively.

a) In the Schrödinger picture the states are time-dependent, but in general
not the operators (e.g., position operator, momentum operator,. . . ). We
thus have

|ψS(t)〉 ≡ Û(t, t0)|ψS(t0)〉 .

Here the time-displacement operator Û(t, t0) is uniquely defined according
to the equation

−�

i
∂Û(t, t0)

∂t
= ĤSÛ(t, t0)

(i.e., the Schrödinger equation) and converges → 1̂ for t → t0. Here t0 is
fixed, but arbitrary.

b) In the Heisenberg picture the state vectors are constant in time,

|ψ′〉 ≡ |ψH〉 := |ψS(t0)〉 ,

whereas now the operators depend explicitly on time, even if they do not
in the Schrödinger picture: i.e., we have in any case:

ÂH(t) := Û+(t, t0)ÂS(t)Û(t, t0) . (28.12)

If this formalism is applied to a matrix representation

(AH)j,k(t) := 〈(ψH)j |ÂH(t)(ψH)k〉 ,

one obtains, quasi “by the way”, Heisenberg’s matrix mechanics.
c) In Dirac’s interaction picture, the Hamilton operator

Ĥ(= ĤS)

is decomposed into an “unperturbed part” and a “perturbation”:

ĤS = Ĥ0 + V̂S ,

where Ĥ0 does not explicitly depend on time, whereas VS can depend
on t.
One then introduces as “unperturbed time-displacement operator” the
unitary operator

Û0(t, t0) := e−iĤ0(t−t0)/�
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and transforms all operators only with U0, i.e., with the definition

AI(t) := U+
0 (t, t0)ÂS(t)Û0(t, t0) . (28.13)

(AI(t) is thus a more or less trivial modification of AS(t), although the
time dependence is generally different.)

In contrast, the time-displacement of the state vectors in the interaction
picture is more complicated, although it is already determined by (28.13)
plus the postulate that the physical quantities, e.g., the expectation values,
should be independent of which aspect one uses. In fact, for

|ψI(t)〉 := Û+
0 (t, t0)|ψS(t)〉

a modified Schrödinger equation is obtained, given by

−�

i
∂|ψI(t)〉
∂t

= V̂I(t)|ψI(t)〉 . (28.14)

The unperturbed part of the Hamilton operator, Ĥ0, is thus “transformed
away” from (28.14) in the interaction picture; but one should note that one
has some kind of “conservation of effort” theorem: i.e., in (28.14) one must
use V̂I(t) instead of V̂S .

The formal solution of (28.14) is9 the the following perturbation series
(Dyson series):

|ψ〉I(t) =
(

1̂− i
�

∫ t

t0

dt1V̂I(t1)

+
(

i
�

)2 ∫ t

t0

dt1
∫ t1

t0

dt2V̂I(t1)V̂I(t2)∓ . . .
)
|ψI(t0)〉 , (28.15)

which may be also symbolically abbreviated as
(
T e−

i
�

R
t
t0

dt1V̂I (t1)
)
|ψI(t0)〉 ;

the symbol T is called Dyson’s time-ordering operator, because in (28.15)

t ≥ t1 ≥ t2 ≥ . . . .

Apart from the spin, which is a purely quantum mechanical phenomenon,
there is a close correspondence between classical and quantum mechanical
observables. For example, the classical Hamilton function and the quantum
mechanical Hamilton operator usually correspond to each other by the above-
mentioned simple replacements. The correspondence is further quantified by
the Ehrenfest theorem, which states that the expectation values (!) of the

9 This can be easily shown by differentiation.
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observables exactly satisfy the canonical equations of motion of the classical
Hamilton formalism.

The theorem is most simply proved using Heisenberg’s representation;
i.e., firstly we have

dx̂H
dt

=
i
�

[
Ĥ, x̂H

]
and

dp̂H
dt

=
i
�

[
Ĥ, p̂H

]
.

Evaluating the commutator brackets, with

Ĥ =
p̂2

2m
+ V (x̂) ,

one then obtains the canonical equations

dx̂H
dt

=
∂Ĥ
∂p̂H

and
dp̂H
dt

= − ∂Ĥ
∂x̂H

. (28.16)



29 Spin Momentum and the Pauli Principle

(Spin-statistics Theorem)

29.1 Spin Momentum; the Hamilton Operator
with Spin-orbit Interaction

The Stern-Gerlach experiment (not described here) provided evidence for the
half-integral spin of the electron1. As a consequence the wavefunction of the
electron was assigned an additional quantum number ms,

ψ ≡ ψ(r,ms) ,

i.e., it is not only described by a position vector r but also by the binary
variable

ms = ±1
2
,

corresponding to the eigenvaluesms� of the z-component Ŝz of a spin angular
momentum. This was suggested by Wolfgang Pauli.

The eigenfunctions of the hydrogen atom are thus given by the following
expression, for vanishing magnetic field and neglected spin-orbit interaction
(see below), with s ≡ 1

2 :

un,l,s,ml,ms(r
′,m′s) = Rnl(r′) · Yl,ml

(θ′, ϕ′) · χs,ms(m
′
s) . (29.1)

Here the two orthogonal spin functions are

a)
χ 1

2 ,
1
2
(m′s) = δm′

s,+
1
2
,

which is identical to the above-mentioned two-spinor

α :=↑=
(

1
0

)
,

b)
χ 1

2 ,− 1
2
(m′s) = δm′

s,− 1
2
,

which is identical with

β :=↓=
(

0
1

)
.

1 Apart from the Stern-Gerlach experiment also the earlier Einstein-de Haas ex-
periment appeared in a new light.
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Corresponding to the five “good” quantum numbers n, l, s, ml and ms

there are the following mutually commuting observables :

Ĥ
(
≡ p̂2

2m
− Z e2

4πε0r

)
, L̂

2
, Ŝ

2
, L̂z and Ŝz .

In contrast, in a constant magnetic induction

B = ezBz = μ0H = μ0ezHz

without the spin-orbit interaction (see below) one obtains

Ĥ ≡ (p̂− eA)2

2m
− Z e2

4πε0r
− gμBH ·

Ŝ

�

(the last expression is the so-called “Pauli term”, which is now considered).
Here we have without restriction of generality:

A =
1
2
[B × r] =

Bz
2

(−y, x, 0) .

For electrons in vacuo the factor g is found experimentally and theo-
retically to be almost exactly 2 (more precisely: 2.0023. . . . Concerning the
number 2, this value results from the relativistic quantum theory of Dirac;
concerning the correction, 0.0023. . . , it results from quantum electrodynam-
ics, which are both not treated in this volume.) The quantity

μB =
μ0e�

2m

is the Bohr magneton (an elementary magnetic moment);

μ0 = 4π · 10−7 Vs/(Am)

is the vacuum permeability (see Part II). The spin-orbit interaction (see be-
low) has so far been neglected.

Now, including in Ĥ all relevant terms (e.g., the kinetic energy, the Pauli
term etc.) in a systematic expansion and adding the spin-orbit interaction as
well, one obtains the following expression:

Ĥ =
p̂2

2m
− Z e2

4πε0r
− k(r) L̂

�
· Ŝ

�
− μBH ·

(
glL̂+ gsŜ

)

�

+
μ2

0 e2

8m
H2 ·

(
x2 + y2

)
. (29.2)

Here the last term, ∝H2, describes the diamagnetism (this term is mostly
negligible). In contrast, the penultimate term, ∝ H, describes the Zeeman
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effect, i.e., the influence of an external magnetic field, and the temperature-
dependent paramagnetism, which has both orbital and spin contributions.
Generally this term is important, and through the spin g-factor gs = 2 one
recognizes at once the anomalous behavior of the spin momentum Ŝ com-
pared with the orbital angular momentum L̂, where the orbital g-factor gl is
trivial: gl = 1.

The third-from-last term is the spin-orbit interaction (representing the
so-called “fine structure” of the atomic spectra, see below):

In fact, an electron orbiting in an electrostatic fieldE partially experiences
this electric field, in the co-moving system, as a magnetic field H ′, cf. Part
II:

H ′ = −v ×E
μ0c2

.

With

E =
Z|e|

4πε0r3
r

one obtains a correction to the Hamilton operator of the form

−k(r) L̂
�
· Ŝ

�
,

which has already been taken into account in (29.2). Here −k(r) is positive
and ∝ 1/r3; the exact value follows again from the relativistic Dirac theory.

In the following sections we shall now assume that we are dealing with
an atom with many electrons, where L and S (note: capital letters!) are the
quantum numbers of the total orbital angular momentum and total spin mo-
mentum of the electrons of this atom (Russel-Saunders coupling, in contrast
to j−j coupling2). Furthermore, the azimuthal quantum numbers ml and ms

are also replaced by symbols with capital letters, ML and MS . The Hamilton
operator for an electron in the outer electronic shell of this atom is then of
the previous form, but with capital-letter symbols and (due to screening of
the nucleus by the inner electrons) with Z → 1.

29.2 Rotation of Wave Functions with Spin;
Pauli’s Exclusion Principle; Bosons and Fermions

Unusual behavior of electronic wave functions, which (as explained above)
are half-integral spinor functions, shows up in the behavior with respect to
spatial rotations. Firstly, we note that for a usual function f(ϕ) a rotation
about the z-axis by an angle α can be described by the operation

(
D̂αf

)
(ϕ) := f(ϕ− α) .

2 Here the total spins j of the single electrons are coupled to the total spin J of
the atom.
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As a consequence one can simply define the unitary rotation operator D̂α by
the identity

D̂α := e−iαL̂z/� ; i.e., with L̂z =
�

i
∂

∂ϕ

one obtains
D̂αf(ϕ) = e−α

∂
∂ϕ f(ϕ) ,

which is the Taylor series for f(ϕ− α).
As a consequence it is natural to define the rotation of a spinor of degree

J about the z-axis, say, by

e−iαĴz/�|J,MJ〉 .

The result,
e−iαMJ |J,MJ〉 ,

shows that spinors with half-integral J (e.g., the electronic wave functions,
if the spin is taken into account) are not reproduced (i.e., multiplied by 1)
after a rotation by an angle α = 2π, but only change sign, because

e−2πi/2 ≡ −1 .

Only a rotation by α = 4π leads to reproduction of the electronic wave
function.

As shown below, Pauli’s exclusion principle is an immediate consequence
of this rotation behavior. The principle describes the permutational behavior
of a wave function for N identical particles (which can be either elementary
or compound particles). Such particles can have half-integral spin (as elec-
trons, or He3 atoms, which have a nucleus composed of one neutron and two
protons, plus a shell of two electrons). In this case the particles are called
fermions. In contrast, if the particles have integral spin (as e.g., pions, and
He4 atoms) they are called bosons.

In the position representation one then obtains the N -particle wave func-
tion: ψ(1, 2, . . . , N), where the variables i = 1, . . . , N are quadruplets

i = (r′i, (M
′
S)i)

of position and spin variables.
In addition to the square integrability
∫

d1
∫
. . .

∫
dN |ψ(1, 2, . . . , N)|2 != 1 , with

∫
d1 :=

∑
M1

∫
d3r1 ,

one postulates for the Pauli principle the following permutational behavior for
the exchange of two particles i and j (i.e., for the simultaneous interchange
of the quadruplets describing position and spin of the two particles):
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(Pauli’s relation) ψ(. . . , j, i, . . .) !=(−1)2Sψ(. . . , i, j, . . .) ,

i.e., with (−1)2S =− 1 for fermions and
+ 1 for bosons . (29.3)

An immediate consequence is Pauli’s exclusion principle for electrons: elec-
trons have S = 1

2 ; thus the wavefunctions must be antisymmetric. However,
an anti-symmetric product function

(ui1(1) · ui2(2) · . . . · uiN (N))asy

vanishes identically as soon as two of the single-particle states

|uiν 〉(ν = 1, 2, . . . , N)

are identical (see also below). In other words, in an N-electron quantum
mechanical system, no two electrons can be the same single electron state.

Thus, both the rotational behavior of the states and the permutational
behavior of the wave function for N identical particles depend essentially on

S

(
=
S

�

)
,

or more precisely on (−1)2S , i.e., on whether S is integral (bosons) or half-
integral (fermions) (the so-called “spin-statistics theorem”). In fact, this is
a natural relation, since the permutation of particles i and j can be obtained
by a correlated rotation by 180◦, by which, e.g., particle i moves along the
upper segment of a circle from ri to rj , while particle j moves on the lower
segment of the circle, from rj to ri. As a result, a rotation by 2π is effected,
which yields the above-mentioned sign.

Admissable states of a system of identical fermions are thus linear combi-
nations of the already mentioned anti-symmetrized product functions, i.e.,
linear combinations3 of so-called Slater determinants of orthonormalized
single-particle functions. These Slater determinants have the form

ψSlater
u1,u2,...,uN

(1, 2, . . . , N)

:=
1√
N !

∑

P

0
@ i1 . . . iN

1 . . .N

1
A

(−1)Pu1(i1) · u2(i2) · . . . · uN (iN ) (29.4)

≡ 1√
N !

∣∣∣∣∣∣∣∣

u1(1) , u2(1) , . . . , uN(1)
u1(2) , u2(2) , . . . , uN(2)
. . . , . . . , . . . , . . .

u1(N) , u2(N) , . . . , uN(N)

∣∣∣∣∣∣∣∣
. (29.5)

3 Theoretical chemists call this combination phenomenon “configuration interac-
tion”, where a single Slater determinant corresponds to a fixed configuration.
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Every single-particle state is “allowed” at most once in such a Slater deter-
minant, since otherwise the determinant would be zero (→ Pauli’s exclusion
principle, see above).

This principle has enormous consequences not only in atomic, molecular,
and condensed matter physics, but also in biology and chemistry (where it
determines inter alia Mendeleev’s periodic table), and through this the way
the universe is constructed.

A more technical remark: if one tries to approximate the ground-state en-
ergy of the system optimally by means of a single anti-symmetrized product
function (Slater determinant), instead of a sum of different Slater determi-
nants, one obtains the so-called Hartree-Fock approximation4 .

Remarkably, sodium atoms, even though they consist exclusively of fermi-
ons, and both the total spin momentum of the electronic shell and the total
spin of the nucleus are half-integral, usually behave as bosons at extremely low
temperatures, i.e., for T less than ∼ 10−7 Kelvin, which corresponds to the
ultraweak “hyperfine” coupling of the nuclear and electronic spins. However
in the following sections, the physics of the electronic shell will again be at
the center of our interest although we shall return to the afore-mentioned
point in Part IV.

4 This is the simplest way to characterize the Hartree-Fock approximation in a nut-
shell.



30 Spin-orbit Interaction;

Addition of Angular Momenta

30.1 Composition Rules for Angular Momenta

Even if the external magnetic field is zero, ML and MS are no longer good
quantum numbers, if the spin-orbit interaction is taken into account. The
reason is that L̂z and Ŝz no longer commute with Ĥ. However, Ĵ2, the square
of the total angular momentum

Ĵ := L̂+ Ŝ ,

and the z-component
Ĵz := L̂z + Ŝz ,

do commute with each other and with Ĥ, and also with L̂2 and Ŝ2: the five
operators Ĥ, L̂2, Ŝ2, Ĵ2 and Ĵz (see below) all commute with each other. In
fact we have

2L̂ · Ŝ
(
∝ δĤ

)
≡ Ĵ2 − L̂2 − Ŝ2 .

Thus, by including the spin-orbit interaction, a complete system of mu-
tually commuting operators, including Ĥ, in a shell model, now consists of
Ĥ, L̂2, Ŝ2, Ĵ2 and Ĵz. The corresponding “good quantum numbers” are: N ,
L, S, J and MJ (no longer N , L, S, ML and MS).

In the following, the radial functions RN,L can be omitted. Then, by linear
combination of the

YL,ML (θ′, ϕ′) · χS,MS (M ′S)

(see below) one must find abstract states YL,S,J,MJ (θ′, ϕ′,M ′S):

YL,S,J,MJ (θ′, ϕ′,M ′S) :=
∑

ML,MS

c
(ML,MS)
L,S,J,MJ

· YL,ML (θ′, ϕ′)χS,MS (M ′S) ,

(30.1)
which are eigenstates of Ĵ

2
and Ĵz with eigenvalues �

2J(J + 1) and �MJ .1

1 Using a consistent formulation a related abstract state |ψL,S,J,MJ 〉 is defined
by YL,S,J,MJ (θ′, ϕ′,M ′

S) = 〈θ′, ϕ′,M ′
J |ψL,S,J,MJ 〉 := r.h.s. of (30.1) . . ., which is

similar to defining an abstract state function |ψ〉 by the function values ψ(r) :=
〈r|ψ〉.
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By straightforward, but rather lengthy methods, or more generally by
group theory2, this can be shown to be exactly possible if J is taken from
the following set:

J ∈ {L+ S,L+ S − 1, . . . , |L− S|} .

Furthermore, MJ must be one of the 2J + 1 integral or half-integral values
−J , −J + 1, . . . , +J , and MJ = ML +MS.

The coefficients in (30.1) are called Clebsch-Gordan coefficients . (N.B.
Unfortunately there are many different conventions in use concerning the
formulation of the coefficients.)

30.2 Fine Structure of the p-Levels; Hyperfine Structure

Without the spin-orbit interaction the p-levels (l = 1) of the outermost elec-
tron of an alkali atom are sixfold, since including spin one has 2× (2l+1) = 6
states. Under the influence of the spin-orbit interaction the level splits into
a fourfold p 3

2
-level, i.e., with

j = l +
1
2
,

with positive energy shift ΔE, and a twofold p 1
2
-level, i.e., with

j = l − 1
2
,

with an energy shift which is twice as large (but negative) −2ΔE; the “center
of energy” of the two levels is thus conserved.

This so-called fine structure splitting gives rise, for example, to the well-
known “sodium D-lines” in the spectrum of a sodium salt.

Analogously to the “fine structure”, which is is based on the coupling of
L̂ and Ŝ of the electrons,

δĤfine ∝ k(r)L̂ · Ŝ ,

there is an extremely weak “hyperfine structure” based on the coupling of
the total angular momentum of the electronic system, Ĵ , with the nuclear
spin, Î, to the total angular momentum of the atom,

F̂ := Ĵ + Î .

We have
δĤhyperfine = c · δ(r)Ĵ · Î ,

where the factor c is proportional to the magnetic moment of the nucleus
and to the magnetic field produced by the electronic system at the location
of the nucleus. In this way one generates, e.g., the well-known “21 cm line”
of the neutral hydrogen atom, which is important in radio astronomy.
2 See e.g., Gruppentheorie und Quantenmechanik, lecture notes (in German), [2]
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30.3 Vector Model of the Quantization
of the Angular Momentum

The above-mentioned mathematical rules for the quantization of the angular
momenta can be visualized by means of the so-called vector model, which also
serves heuristic purposes.

Two classical vectors L and S of length

�

√
L · (L+ 1) and �

√
S · (S + 1)

precess around the total angular momentum

J = L+ S ,

a vector of length
�

√
J · (J + 1) ,

with the above constraints for the admitted values of J for given L and
S. On the other hand, the vector J itself precesses around the z-direction,
where the Jz-component takes the value �MJ . (At this point, a diagram is
recommended.)



31 Ritz Minimization

The important tool of so-called “Ritz minimization” is based on a theorem,
which can easily be proved under general conditions.

For example, let the Hamilton operator Ĥ be bounded from below, with
lower spectral limit E0 (usually the true energy of the ground state); then
one has for all states ψ of the region of definition

DĤ of Ĥ ,

i.e., for almost all states ψ of the Hilbert space (a− ∀ψ):

E0 ≤

〈
ψ
∣∣∣Ĥψ

〉

〈ψ|ψ〉 “a−∀ψ′′
. (31.1)

If the lower spectral limit corresponds to the point spectrum of Ĥ, i.e., to
a “ground state” ψ0 and not to the continuous spectrum, the equality sign
in (31.1) applies iff

Ĥ|ψ0〉 = E0|ψ0〉 .
The theorem is the basis of Ritz approximations (e.g., for the ground

state), where one tries to optimize a set of variational parameters to obtain
a minimum of the r.h.s. of (31.1). As an example we again mention the
Hartree-Fock approximation, where one attempts to minimize the energy
expectation of states which are represented by a single Slater determinant
instead of by a weighted sum of different Slater determinants.

Generally the essential problem of Ritz minimizations is that one does not
vary all possible states contained in the region of definition of Ĥ, but only the
states of an approximation set T , which may be infinite, but is nonetheless
often too small. Usually even in the “infinite” case the set T does not contain
the true ground state ψ0, and one does not even know the distance of T from
ψ0.

The main disadvantage of the Ritz approximations is therefore that they
are “uncontrolled”, i.e., some intuition is needed.

For example, if one wants to obtain the ground states of (i) the harmonic
oscillator,

ψ0(x) ∝ e
− x2

2x2
0 ,
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and (ii) the H-atom,
ψn≡1(r) ∝ e−

r
a0 ,

by a Ritz minimization, the respective functions must be contained in T ;

x0(=
√

�

2mω0
) and a0

(
�

2

ma2
0

!=
e2

4πε0 · a0

)

are the characteristic lengths. For the n-th shell of the hydrogen atom the
characteristic radius is rn ≡ n · a0.



32 Perturbation Theory for Static Problems

32.1 Formalism and Results

Schrödinger’s perturbation theory is more systematic than the Ritz method.
Let there exist a perturbed Hamilton operator

Ĥ = Ĥ0 + λ · Ĥ1 ,

with a real perturbation parameter λ.
The unperturbed Hamilton operator Ĥ0 and the perturbation Ĥ1 shall

be independent of time; furthermore, it is assumed that the spectrum of Ĥ0

consists of the set of discrete eigenstates u(0)
n with corresponding eigenvalues

E
(0)
n . The following ansatz is then made:

un = u(0)
n + λ · u(1)

n + λ2 · u(2)
n + . . . , and analogously :

En = E(0)
n + λ · E(1)

n + λ2 ·E(2)
n + . . . . (32.1)

Generally, these perturbation series do not converge (see below), similarly
to the way the Taylor series of a function does not converge in general.

In particular, non-convergence occurs if by variation of λ the perturbation
changes the spectrum of a Hamilton operator not only quantitatively but
also qualitatively, e.g., if a Hamilton operator which is bounded from below
is changed somewhere within the assumed convergence radius Rλ into an
operator which is unbounded. In fact, the perturbed harmonic oscillator is
non-convergent even for apparently “harmless” perturbations of the form

δĤ = λ · x4 with λ > 0 .

The reason is that for λ < 0 the Hamiltonian would always be unbounded
(i.e., Rλ ≡ 0).

However, even in the case of non-convergence the perturbational results
are still useful, i.e., as an asymptotic approximation for small λ, as for a Tay-
lor expansion, whereas the true results would then often contain exponentially
small terms that cannot be treated by simple methods, e.g., corrections

∝ e−
constant

λ .
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With regard to the results of Schrödinger’s perturbation theory one must
distinguish between the two cases of (i) non-degeneracy and (ii) degeneracy
of the unperturbed energy level.

a) If u(0)
n is not degenerate, one has

E(1)
n =

〈
u(0)
n

∣∣∣ Ĥ1u
(0)
n

〉
, and E(2)

n = −
∑
m( �=n)

∣∣∣
〈
u

(0)
m

∣∣∣ Ĥ1u
(0)
n

〉∣∣∣
2

E
(0)
m − E(0)

n

,

(32.2)
as well as

∣∣∣u(1)
n

〉
= −

∑
m( �=n)

∣∣∣u(0)
m

〉
〈
u

(0)
m

∣∣∣ Ĥ1u
(0)
n

〉

E
(0)
m − E(0)

n

. (32.3)

Hence the 2nd order contribution of the perturbation theory for the energy
of the ground state is always negative. The physical reason is that the
perturbation leads to the admixture of excited states (=̂ polarization) to
the unperturbed ground state.

b) In the degenerate case the following results apply.
If (without restriction)

E0
1 = E

(0)
2 = . . . = E

(0)
f ,

then this degeneracy is generally lifted by the perturbation, and the val-
ues E(1)

n , for n = 1, . . . f , are the eigenvalues of the Hermitian f × f
perturbation matrix

Vi,k :=
〈
u

(0)
i

∣∣∣Ĥ1u
(0)
k 〉 , with i, k = 1, . . . , f .

To calculate the new eigenvalues it is thus again only necessary to know
the ground-state eigenfunctions of the unperturbed Hamilton operator.
Only these functions are needed to calculate the elements of the pertur-
bation matrix. Then, by diagonalization of this matrix, one obtains the
so-called correct linear combinations of the ground-state functions, which
are those linear combinations that diagonalize the perturbation matrix
(i.e., they correspond to the eigenvectors). One can often guess these cor-
rect linear combinations, e.g., by symmetry arguments, but generally the
following systematic procedure must be performed:
– Firstly, the eigenvalues, E(≡ E(1)), are calculated, i.e. by determining

the zeroes of the following determinant:

Pf (E) :=

∣∣∣∣∣∣∣∣

V1,1 − E , V1,2 , V1,3, . . . , V1,f

V2,1 , V2,2 − E , V2,3, . . . , V2,f

. . . , . . . , . . . , . . .
Vf,1 , Vf,2 , Vf,3, . . . , Vf,f − E

∣∣∣∣∣∣∣∣
. (32.4)
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– Secondly, if necessary, a calculation of the corresponding eigenvector

c(1) := (c1, c2, . . . , cf )

(which amounts to f − 1 degrees of freedom, since a complex factor is
arbitrary) follows by insertion of the eigenvalue into (f − 1) indepen-
dent matrix equations, e.g., for f = 2 usually into the equation

(V1,1 − E) · c1 + V1,2 · c2 = 0 .

(The correct linear combination corresponding to the eigenvalue E =
E(1) is then:

∑f
i=1 ci · u

(0)
i , apart from a complex factor.)

Thus far for the degenerate case we have dealt with first-order perturbation
theory. The next-order results (32.2) and (32.3), i.e., for E(2)

n and u
(1)
n , are

also valid in the degenerate case, i.e., for n = 1, . . . , f , if in the sum over m
the values m = 1, . . . , f are excluded.

32.2 Application I: Atoms in an Electric Field;
The Stark Effect of the H-Atom

As a first example of perturbation theory with degeneracy we shall consider
the Stark effect of the hydrogen atom, where (as we shall see) it is linear,
whereas for other atoms it would be quadratic.

Consider the unperturbed energy level with the principal quantum num-
ber n = 2. For this value the (orbital) degeneracy is f = 4

(
u

(0)
i ≡ u

(0)
n,l,m ∝ Y00 , ∝ Y10 , ∝ Y1,+1 and ∝ Y1,−1

)
.

The perturbation is
λĤ1 = −eF · z ,

with the electric field strength F .1

With z = r · cos θ one finds that only the elements

V21 = V12 ∝ 〈Y00| cos θY10〉

of the 4 × 4 perturbation matrix do not vanish, so that the perturbation
matrix is easily diagonalized, the more so since the states u(0)

3 and u
(0)
4 are

not touched at all.

1 It should be noted that the perturbed Hamilton operator, Ĥ = Ĥ0 − λ · z, is
not bounded, so that in principle also tunneling through the barrier to the result-
ing continuum states should be considered. However the probability for these
tunneling processes is exponentially small and, as one calls it, non-perturbative.
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The relevant eigenstates (correct linear combinations) are

u
(0)
± :=

1√
2

(
u

(0)
1 ± u

(0)
2

)
;

they have an electric dipole moment

e ·
〈
u

(0)
±
∣∣∣zu(0)
± 〉 = ±3e · a0 ,

which orients parallel or antiparallel to the electric field, where one obtains
an induced energy splitting.

Only for H-atoms (i.e., for A/r potentials) can a linear Stark effect be
obtained, since for other atoms the states with l = 0 are no longer degen-
erate with l = 1. For those atoms second-order perturbation theory yields
a quadratic Stark effect; in this case the electric dipole moment itself is “in-
duced”, i.e., ∝ F . As a consequence the energy splitting is now ∝ F 2 and the
ground state of the atom is always reduced in energy, as mentioned above.

32.3 Application II: Atoms in a Magnetic Field;
Zeeman Effect

In the following we shall use an electronic shell model.
Under the influence of a (not too strong) magnetic field the f(= 2J + 1)-

fold degenerate states
|ψN,L,S,J,MJ 〉

split according to their azimuthal quantum number

MJ = −J,−J + 1, . . . , J .

In fact, in first-order degenerate perturbation theory the task is to diagonalize
(with the correct linear combinations of the states |MJ〉 :=

∣∣∣ψ(0)
N,L,S,J,MJ

〉
)

the f × f -matrix
VMJ ,M ′

J
:= 〈MJ |Ĥ1|M ′J〉

induced by the Zeeman perturbation operator

Ĥ1 := −μBHz ·
(
L̂z + 2Ŝz

)
.

It can be shown that this matrix is already diagonal; i.e., with the above-
mentioned basis one already has the correct linear combinations for the Zee-
man effect.

In linear order w.r.t. Hz we obtain

EN,L,S,J,Mj = E
(0)
N,L,S,J − gJ(L, S) · μB ·Hz ·MJ . (32.5)
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Here gJ(L, S) is the Landé factor

gJ(L, S) =
3J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
. (32.6)

In order to verify (32.6) one often uses the so-called Wigner-Eckart theo-
rem, which we only mention. (There is also an elementary “proof” using the
vector model for the addition of angular momenta.)



33 Time-dependent Perturbations

33.1 Formalism and Results; Fermi’s “Golden Rules”

Now we assume that in Schrödinger’s representation the Hamilton operator

ĤS = Ĥ0 + V̂ω exp(−iωt) + V̂−ω exp(+iωt) (33.1)

is already explicitly (monochromatically) time-dependent. Due to the “Her-
micity” of the Hamilton operator it is also necessary to postulate that

V̂−ω ≡ V̂ +
ω .

Additionally, it is assumed that the perturbation is “switched-on” at the
time t0 = 0 and that the system was at this time in the (Schrödinger) state

(
ψ

(0)
S

)
i
(t) := u

(0)
i e−iω

(0)
i t .

Here and in the following we use the abbreviations

ω
(0)
i := E

(0)
i /� and ωfi := ω

(0)
f − ω

(0)
i .

We then expand the function ψS(t), which develops out of this initial
state (i =“initial state”; f =“final state”) in the Schrödinger representation,
as follows:

ψS(t) =
∑
n

cn(t) · exp
(
−iω(0)

n t
)
· u(0)

n (r) . (33.2)

(In the “interaction representation” (label: I), related to Schrödinger’s
representation by the transformation |ψI(t)〉 := eiĤ0t/�|ψS(t)〉, we obtain
instead : ψI(t) =

∑
n cn(t) · u

(0)
n (r), and also the matrix elements of the

perturbation operator simplify to 〈(ψI)n(t)|V̂I(t)|(ψI)i(t)〉 = ei(ωn−ωi−ω)t ·〈
u

(0)
n

∣∣∣V̂ω |u(0)
i 〉 + . . . , where + . . . denotes terms, in which ω is replaced

by (−ω).)1

1 For Hermitian operators we can write 〈ψ|Â|φ〉 instead of 〈ψ|Âφ〉.
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For f �= i the Schrödinger equation yields the following result:

cf (t) = −1
�
V

(0)
fi ·

ei(ωfi−ω)t − 1
ωfi − ω

. (33.3)

Here only the linear terms in V̂ have been considered and the non-resonant
terms

∝ V̂ +
ω e+iωt , i.e., with ω → (−ω) ,

have also been neglected; V (0)
fi stands for
〈
u

(0)
f

∣∣∣V̂ω
∣∣∣u(0)
i

〉
.

By squaring the above result one obtains

|cf (t)|2 =
1
�2

∣∣∣V (0)
fi

∣∣∣
2

·
sin2 (ωfi−ω)t

2(
ωfi−ω2

2

)2 . (33.4)

This corresponds to a periodic increase, followed by a decrease, with the
Poincaré repetition time

Δt = 2π/|ωfi − ω| ,

which is extremely long near a resonance of the denominator.
Thus, with a source of radiation consisting of n uncorrelated “radiators”

of (almost) the same frequency ωα ≈ ω, e.g.,

V̂ωe−iωt →
n∑
α=1

V̂ωαei(r(α)−ωαt)

with random phases r(α), one obtains the n-fold result of (33.4) (if the fre-
quencies are identical). In contrast, if the radiation were coherent (e.g., laser
radiation), one would obtain the n2-fold result. However in that case it makes
no sense to interrupt the time-dependent perturbation series, as we did, after
the lowest order.

In fact, at this point the transition from coherent and reversible quantum
mechanics to incoherent and irreversible behavior occurs, as in statistical
physics (→ Part IV).

Thus, if one has a continuum of sources of incoherent radiation, i.e., with

∑
ωα

. . .→
∫

dωα · 
γ(ωα) . . . ,

then one obtains as transition rate Wi→f (≡ transition probability i → f
divided by the time t):

Wi→f := lim
t→∞

|cf (t)|2

t
=

2π
�2

∣∣∣V (0)
fi

∣∣∣
2

·
γ(ωfi) . (33.5)
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In the above proof we have used the identity

lim
t→∞

⎛
⎜⎝ sin2 (ωfi−ω)·t

2(
ωfi−ω2

2

)2

· t

⎞
⎟⎠ ≡ 2πδ(ωfi − ω) .

The matrix elements have been incoherently averaged, as expressed by the
‘bar’ in (33.5).

Equation (33.5) describes transitions from a discrete energetically lower
level i to an energetically higher level f by induced absorption of continuous
radiation of frequency ω with an incoherent density 
γ(ω). See also Fig. 33.1
below.

Conservation of energy, ω = ωf − ωi, is explicitly given by the δ-function
in the above formal correspondence. By permutation of f and i and the
simultaneous replacement ω → (−ω) one obtains almost the same (33.5) for
the induced emission of radiation. But there is also a spontaneous emission of
radiation, which has an emission rate ∝ |ωfi|3. This fact makes it hard (since
spontaneous emission should be avoided) to obtain the necessary occupation
of a high-energy level for X-ray lasers.

A formula similar to (33.5) is also obtained for incoherent transitions from
a discrete state i into a continuum K with the (continuous) density 
f (E) of
the final states:

Wi→K =
2π
�

∣∣∣V (0)
fi

∣∣∣
2


f (Ei + �ω) . (33.6)

Such formulae are called Fermi’s “golden rules”.
An induced absorption process is illustrated in Fig. 33.1 by means of a so-

called Feynman diagram. The corresponding induced emission process would
instead have an outgoing wiggly line to the right. Concerning translation in-
variance (which does not apply to defective or amorphous solids) the related
momentum conservation provides an example for the presence (and conse-
quences) of selection rules (see below).

33.2 Selection Rules

Selection rules arise naturally from Fermi’s “golden rules”. The “selection”
refers to the (squared) matrix elements appearing in the “golden rules”, and
refers essentially to their predicted vanishing or nonvanishing due to charac-
teristic symmetry arguments.

To give a simple but typical example we consider a perturbation with
so-called σ symmetry, i.e., V̂ ∝ z, thus ∝ cosϑ, i.e., ∝ Yl2=1,ml≡0, and an
isotropic initial state, i.e., without angular dependence, i.e.,

|i〉 ∝ Yli≡0,ml≡0 .
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Fig. 33.1. Feynman diagram for an
induced absorption process. The solid
lines with symbols i and f correspond
to an initial state |ψi〉 and a final state
|ψf 〉, e.g., to an atom with energy lev-
els Ei and Ef (> Ei) and to particles
or quasi-particles propagating from the
left with momenta pi and pf := pi+�q.
The wiggly line labelled ω represents
the radiation quantum of frequency ω
with momentum �q, which “pumps the
system” from the initial state to the fi-
nal state. Energy conservation, Ef =
Ei + � · ω, is always obeyed

As a consequence the matrix element

〈f | cosϑ|i〉

is then only nonvanishing, if

|f〉 ∝ Ylf≡1,ml≡0 , i.e., for lf − li ≡ 1 , mf ≡ mi(= 0) .

Further selection rules for other cases, e.g., for perturbations with π±-
symmetry, i.e.,

V̂ ∝ (x± iy) ,

or for multipole radiation beyond the dipole case, are obtained analogously,
corresponding to the addition rules for angular momenta.



34 Magnetism: An Essentially Quantum

Mechanical Phenomenon

34.1 Heitler and London’s Theory of the H2-Molecule;
Singlet and Triplet States; the Heisenberg Model

This chapter also serves as preparation for the subsequent section on the
interpretation of quantum mechanics. Firstly we shall treat the hydrogen
molecule according to the model of Heitler and London, which is a most-
important example.

The Hamilton operator for the two electrons is

Ĥ =
p̂2

1

2m
+
p̂2

2

2m
+

e2

4πε0
·
(
− 1
r1A
− 1
r2B

+
{

1
r12

+
1

RAB
− 1
r1B
− 1
r2A

})
. (34.1)

Here r12 is the distance between the two electrons; RAB is the separation
of the two nuclei, which can be assumed to be at fixed positions, because the
mass of the nuclei is ≈ 2000 times larger than that of the electrons; and r1B
is the distance of the first electron from nucleus B, etc.. The sum in braces,
i.e., the last four terms on the r.h.s., can be considered as a perturbation of
the first four terms.

Since the Hamilton operator does not depend on the spin and is per-
mutationly symmetrical w.r.t. 1 and 2, the eigenfunctions can be written as
products of position functions and spin functions, and they must have a well-
defined parity w.r.t. permutations of the position variables r1 and r2.

Furthermore, due to Pauli’s exclusion principle, both the position and spin
functions must have complementary permutation behavior, i.e., a symmetric
position function

Φ+(r1, r2)

(symmetric w.r.t. permutations of r1 and r2) must be multiplied by an an-
tisymmetric spin function χ−(1, 2), and vice versa.

This leads to so-called triplet products

ψtr. := Φ−(r1, r2) · χ+(1, 2) (34.2)
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and singlet products

ψsi. := Φ+(r1, r2) · χ−(1, 2) . (34.3)

The names singlet and triplet are self-explanatory, i.e., there are three or-
thonormalized triplet spin functions χ+(1, 2):

|S = 1,M = +1〉 := α(1)α(2) =↑↑
|S = 1,M = 0〉 :=

1√
2
(α(1)β(2) + β(1)α(2)) =

1√
2
(↑↓ + ↓↑)

|S = 1,M = −1〉 := β(1)β(2) =↓↓ , (34.4)

but only one orthonormal singlet spin function χ−(1, 2):

|S = 0,M = 0〉 := 1√
2
(α(1)β(2)− α(2)β(1)) =

1√
2
(↑↓ − ↓↑) . (34.5)

The functions are simultaneously eigenfunctions of the relevant operators
for the total angular momentum, i.e.

(
Ŝ1 + Ŝ2

)2

|S,M〉 = �
2S(S + 1)|S,M〉 and

((
Ŝz

)
1

+
(
Ŝz

)
2

)
|S,M〉 = �M |S,M〉 ,

with S = 1 for the triplet states and S = 0 for the singlet state (→ ex-
ercise). (What has been said in Section 30.1 about the addition of angular
momenta and the so-called Clebsch-Gordan coefficients can be most easily
demonstrated with this problem.)

Approximating the Φ± by ground state functions of the hydrogen atom:

Φ±(r1, r2) :=
uA(r1)uB(r2)± uB(r1)uA(r2)√

2(1± |SA,B|2)
, (34.6)

then, with

a) the so-called overlap integral

SA,B :=
∫

d3r1(uA(r1))∗uB(r1) , (34.7)

b) the Coulomb integral

CA,B :=
e2

4πε0

∫∫
d3r1 d3r2

u∗A(r1)u∗B(r2)uB(r2)uA(r1)
r12

, (34.8)

and
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c) the exchange integral

JA,B :=
e2

4πε0

∫∫
d3r1 d3r2

u∗A(r1)u∗B(r2)uA(r2)uB(r1)
r12

(34.9)

apart from minor corrections we obtain the following result:

Etriplet =̃ constant +
CA,B − JA,B
1− |SA,B|2

,

Esinglet =̃ constant +
CA,B + JA,B
1 + |SA,B|2

. (34.10)

Here not only the numerator but also the denominator is important; viz, sur-
prisingly the triplet product is energetically higher(!) than the singlet product
by an amount given by

ΔE=̃2 · CA,B|SA,B|
2 − JA,B

1− |SA,B|4
. (34.11)

This is a positive quantity, since CA,B is as large as O(10) eV, while JA,B
is only O(1) eV, such that because of the rather large value of |SA,B|2 the
energy difference ΔE is unexpectedly > 0. For the ground state of the hy-
drogen molecule, the quantity ΔE is in fact of the order of magnitude of
O(10) eV. (The actual functions Esinglet(RAB) and Etriplet(RAB) for the hy-
drogen molecule can be found in all relevant textbooks and should be sketched;
approximate values for the equilibrium separation and the dissociation energy
of the hydrogen molecule can be ascertained from textbooks of experimental
molecular physics.)

Because of the complementary permutation behavior of position and spin
functions these results, which are due to the interplay of the Coulomb in-
teraction and the Pauli principle, can also be obtained by an equivalent spin
operator

Ĥeff
(
Ŝ1, Ŝ2

)

(see below, (34.13)), as introduced by Dirac. This spin operator, which acts on
the spin factor attached to the position function, is just an equivalent descrip-
tion, replacing the genuine effects of Coulomb interaction plus Pauli principle,
and contained in the ansatz for the two-electron function by complementary
products, (34.2) and (34.3), together with the two-electron Hamilton operator
H of (34.1).

The above replacement of

H (p̂1, p̂2, r1, r2) by Ĥeff
(
Ŝ1, Ŝ2

)

is admittedly quite subtle. As a help towards understanding, see the following
sketch (Fig. 34.1).
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Fig. 34.1. A schematic aid to understanding the Heitler-London theory. The chemi-
cal bonding between s-states (spherical symmetry) favors symmetrical permutation
behavior of the position variables (whereas the Coulomb repulsion acts against it)
with a strong overlap between the nuclei (sketched as triangles). The spin function,
which (in its permutational behavior) is complementary to the position variables,
must be antisymmetric, i.e., a singlet. Thus one has diamagnetism as the usual
state of diatomic molecules. Paramagnetism (or ferromagnetism in a solid) is only
obtained if the overlap is strongly reduced (e.g., by non-s-symmetry, by Coulomb
repulsion, or by “merging” of the nuclei; see the next section)

Apart from a constant, the Dirac spin operator yields the same energy
spectrum as before. The operator is

Ĥeff
(
ŜA, ŜB

)
= −2 · Jeff

A,BŜA · ŜB . (34.12)

Applied to the spin functions |S,M〉 it yields the result

−Jeff
A,B ·

{
S(S + 1)− 3

2

}
|J,M〉 ,

since
2 · ŜA · ŜB ≡

(
ŜA + ŜB

)2

− ŜA
2 − ŜB

2
.

With (34.11) we have:

Jeff
A,B =

JA,B − CA,B · |SA,B|2
1− |SA,B|4

. (34.13)

The natural generalization of equation (34.12) to systems of many atoms, i.e.,
a sum over A and B of terms similar to (34.12), is called the Heisenberg model
of magnetism. One can show that it also applies to systems with S > 1

2 .1

In particular we have seen above that the effective exchange couplings
Jeff
lm entering this model result from the interplay of Coulomb interaction and

Pauli principle. Actually the two entities Jeff
A,B and JA,B can have different

sign. For example, if Jeff
lm ≤ 0 (although JA,B, as can be shown (e.g., [24],

1 To obtain further insight one should see the following section on Hund’s rule,
which shows that within an atom there can be a strong ferromagnetic coupling
between certain intra-atomic spins.
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p. 392), is always ≥ 0), one obtains diamagnetic molecules (this is the most
common case, e.g., the nitrogen molecule) and nonmagnetic or antiferromag-
netic solids. In contrast, for Jeff

lm ≥ 0 one obtains paramagnetic molecules
(e.g., the oxygen molecule, which is rather an exceptional case) and nonmag-
netic or ferromagnetic solids.

At this point quantum mechanics comes fully into play in all details
and leads to important phenomena (magnetism, superconductivity,. . . ), which
cannot be explained by classical physics. For example, Bohr and van Leeuwen
proved many years before the discovery of quantum mechanics that magnetism
cannot be explained solely by orbital angular moments (e.g., by Ampère’s cur-
rent loops; see Part II).

34.2 Hund’s Rule. Why is the O2-Molecule
Paramagnetic?

The majority of diatomic molecules are diamagnetic, in accordance with
the theory of Heitler and London for the H2-molecule, since in most cases
the outer electrons of a diatomic molecule only have a single orbital at their
disposal. According to the Pauli principle this orbital can at most be occupied
by two electrons with opposite spins, e.g.,

ψ = uA(r1)uA(r2)χ−(1, 2) .

However some diatomic molecules, e.g., O2, turn out to be paramagnetic,
which does not comply with the Heitler and London theory. If two or more
orthogonal, energetically degenerate orbitals can be occupied, e.g., two π±-
molecular orbitals in the case of the oxygen molecule or two or more of the
five 3d-orbitals in the case of a 3d-ion as Mn2+, then the two electrons can
choose between the following three possibilities.

(i) Both electrons occupy the same orbital (due to the Pauli prin-
ciple this is only possible with opposite spins); or

(ii) and (iii) they occupy different orbitals. This is possible either in a singlet
state (case (ii)) or in a triplet state (case (iii)).

Hund’s rule for the dominance of the configuration with maximum possible
multiplicity states that of these possibilities case (iii) is favored:

Case (i) is excluded on energy grounds because of the large Coulomb re-
pulsion of the electrons; this is roughly characterized by a Coulomb2 integral,
which involves one and the same orbital:

E(i) = UAA = (e2/(4πε0)) ·
∫∫

d3r1d3r2|uA(r1)|2 · |uA(r2)|2/r12

2 These intra-orbital Coulomb integrals are often called Hubbard integrals or
screened Hartree integrals.
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(note A instead of B as the second index!). In contrast we have

E(ii),(iii) = CA,B ± JA,B ,

where in general UAA is significantly larger than CA,B, which (on the other
hand) is five to ten times larger than JA,B. Case (iii), i.e., the triplet state,
is thus favored over case (i) and case (ii); the latter, because the overlap
integral SA,B vanishes in the present case, SA,B = 〈uA|uB〉 ≡ 0, such that
here the energy difference between the triplet state (iii) and the singlet state
(ii) is given by the direct (here called Hund’s rule) exchange integral JA,B;
this integral (as already stated) is always non-negative3. Furthermore, as
an intra-atomic integral the Hund’s rule exchange interaction may be signifi-
cantly stronger than the inter-atomic exchange integrals appearing in Heitler-
London molecules.

3 For the oxygen molecule the “Hund’s rule exchange” is JA,B ≈ +0.1 eV(i.e. > 0),
as opposed to Jeff

A,B < 0 in the preceding section.



35 Cooper Pairs; Superconductors

and Superfluids

The so-called super effects (“superconductivity” and “superfluidity”, and re-
cently (2004) also “supersolids”) are typical quantum mechanical phenomena.
The following will be now discussed here: (i) conventional superconductivity,
(ii) the superfluidity of He4 and He3 and (iii) so-called high-temperature
superconductivity.

i) Conventional metallic superconductors, e.g., Pb, have critical tempera-
tures Ts below roughly 10 to 20 K; for T < Ts the electric current (a)
flows without energy losses, and (b) (below a critical value) the magnetic
induction is completely expelled from the interior of the sample by the
action of supercurrents flowing at the boundary (the so-called Meissner
effect, see Part II).
It was discovered (not all that long ago) that the characteristic charge for
these effects is not = e, but = 2e, i.e., twice the elementary charge.
In fact, for the temperature range considered, in the electron liquid so-
called “Cooper pairs” form, i.e., pairs of electrons which “surround” each
other – metaphorically speaking – at a large radius R between ≈ 50 and
≈ 1000 Å (= 100nm).1

The wave function of such a Cooper pair thus (i) consists of a (spheri-
cally) symmetrical position factor Φ(|r1 − r2|), typically an s-function;
as a consequence, the remaining spin factor, (ii), must be antisymmetric.
The result is so-called singlet pairing.
Viewed as compound particles these Cooper pairs thus behave roughly as
bosons; thus they can condense into a collective state, the so-called pair
condensate, which moves without resistance through the host system. En-
ergetically the electrons use – in a highly cooperative manner – a small
interaction effect, which results from the fact that the host system can be
slightly deformed (so-called electron-phonon interaction). This has been
known since 1957 (i.e., approximately half a century after the experimen-
tal discovery(!)); 1957 was the year of the formulation of the so-called
BCS theory, named after Bardeen, Cooper and Schrieffer, [25].)

ii) Under normal pressure, He4-gas becomes a liquid at 4.2 K; on further
decrease of the temperature the normal fluid becomes superfluid at 2.17K.

1 A reminder: the characteristic atomic length is the Bohr radius a0 = 0.529 Å
(= 0.0529 nm).
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This means that below this temperature there is a component of the liquid
which flows without energy dissipation.
He4-atoms (2 protons, 2 neutrons, 2 electrons) as composite particles are
bosons. Thus, even though there is a strong interaction between the bo-
son particles, they can condense without pairing, and the transition to
superfluidity consists in the formation of such a condensate.
The case of He3 is fundamentally different. This atom consists of two
protons, only one neutron, and again two electrons; thus as a composite
particle it is a fermion. Originally one did not expect superfluidity at all
in He3. All the greater was the surprise when in 1972 Osheroff et al., [26],
found that also a He3-liquid becomes a superfluid, but admittedly at much
lower temperatures, i.e. below 2.6 mK. In fact at these low temperatures
(not yet ultralow, see Part IV) also in this liquid Cooper pairs of He3-
atoms are formed, where, however, this time the interaction favors triplet
pairing, i.e. now the position factor of a Cooper pair is antisymmetric, e.g.,
with l = 1, and the spin function is symmetric, i.e., a triplet function. As
a consequence, in the superfluid state of He3 both the expectation value of
L̂ and that of Ŝ can be different from zero at the same time, which makes
the theory very complex. In fact in 2003 a physics Nobel prize was awarded
to Anthony Legget,2 who was involved in the theory of He3-superfluidity.

iii) Finally, some words on high-temperature superconductors. This is a cer-
tain class of non-metallic superconductors with many CuO2-planes, and
values of Ts around 120 K, i.e., six times higher than usual. In these sys-
tems the electrons also seem to form pairs; the “elementary charge” of
the carriers of superconductivity is again 2e, but the underlying mech-
anism is not yet clear, although the systems have been under scrutiny
since 1986/87. Perhaps one is dealing with Bose-Einstein condensation
(see Part IV) of electron-pair aggregates3. The “phononic mechanism”
of conventional metallic superconductivity (see above) is apparently re-
placed here by electronic degrees of freedom themselves. Moreover it is
also not accidental that the planar radius of the respective Cooper pairs
is much smaller than usual.
The electronic degrees of freedom also include antiferromagnetic spin cor-
relations, which seem to play an essential role. Furthermore, the position-
space factor seems to correspond to dx2−y2 and/or dxy pairing, i.e., to
attractive and repulsive interactions, respectively, at four alternating pla-
nar axes distinguished by 90◦.

2 Nobel prize winners in 2003: Alexej A. Abrikosov, Vitalij L. Ginzburg, Anthony
J. Legget, see below.

3 There may be a relation to the crossover from Bardeen-Cooper-Schrieffer behav-
ior of (weakly coupled) ultracold molecules of fermions to Bose-Einstein conden-
sation of (strongly coupled) preformed fermion pairs, when a so-called Feshbach
resonance is crossed. See PartIV.



36 On the Interpretation

of Quantum Mechanics
(Reality?, Locality?, Retardation?)

36.1 Einstein-Podolski-Rosen Experiments

In a famous paper published in 1935 [29] Einstein, Podolski and Rosen dis-
cussed the implications of quantum mechanics, and correctly pointed out
several consequences that do not agree with common sense. For the following
two decades in Princeton, Einstein and his group tried to obtain an “ac-
ceptable” theory by augmenting quantum mechanics with so-called “hidden
variables”. Only a few years after Einstein’s death, however, John Bell at
CERN showed that this is not possible (see below).

The phenomena related to the “unacceptable consequences” involve the
notion of entangled states . In the paper of Einstein, Podolski and Rosen
entangled states are constructed from eigenstates of the position and mo-
mentum operators x̂ and p̂x. However, it is more obvious to form entangled
states from spin operators. For example, in the singlet state |S = 0,M = 0〉
of two interacting electrons, see (34.5), the spin states of the single particles
are entangled, which means that the result cannot be written as a product
of single-particle functions. For the triplet states, in (34.4), two of them,
|S = 1,M = ±1〉, are not entangled, while the third state, |S = 1,M = 0〉, is
as entangled as the singlet state.1

Thus, if one has a two-fermion s-wave decay of a system (the “source”),
with an original singlet state of that system, where two identical fermi-
ons leave the source in diametrically opposed directions, and if one finds
by measurements on these particles (each performed with a single-particle
measuring apparatus at large distances from the source) a well-defined z-
component Ŝz of the first particle (e.g., the positive value +�

2 ), then one
always finds simultaneously(!), with a similar apparatus applied to the sec-
ond diametrically-opposed particle, the negative value −�

2 , and vice versa, if
quantum mechanics is correct (which it is, according to all experience; see
Fig. 36.1).

However, since the same singlet wave function |S = 0,M = 0〉 diagonalizes
not only the z-component of the total spin,

1 For three particles, there are two different classes of entangled states, viz |ψ〉1 ∝
|↑↑↑〉+|↓↓↓〉 and |ψ〉2 ∝↑↑↓ + ↓↑↑ + ↑↓↑, and for four or more particles, there
are even more classes, which have not yet been exploited.
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Sz := Sz(1) + Sz(2) ,

but also (as can easily be shown, → exercises) the x-component

Sx := Sx(1) + Sx(2) ,

with the same eigenvalue � ·M (= 0), identical statements can also be made
for a measurement of Ŝx instead of Ŝz (this is true for a singlet state although
the operators do not commute).

These consequences of quantum mechanics seemed “unacceptable” to Ein-
stein, since they violate three important postulates, which according to Ein-
stein an “acceptable” theory should always satisfy:

a) the postulate of reality, i.e., that even before the measurement the state
of the system is already determined (i.e., it appears unacceptable that
by figuratively switching a button on the measuring equipment from
Ŝ′′z to Ŝ′′x the observed spins apparently switch from alignment (or anti-
alignment) along the z-direction to alignment (or anti-alignment) along
the x-direction;

b) the locality of the measuring process (i.e., a measurement at position 1
should not determine another property at a different location 2), and

c) retardation of the propagation of information (i.e., information from a po-
sition 1 should reach a position 2 only after a finite time (as in electrody-
namics, see Part II, with a minimum delay of Δt := |r1−r2|

c ).

Fig. 36.1. Singlet decay processes (schematically). A quantum system has decayed
from a state without any angular momentum. We assume that the decay products
are two particles, which travel diametrically away from each other in opposite di-
rections, and which are always correlated despite their separation. In particular |ψ〉
always has even symmetry w.r.t. exchange of the spatial positions of the two par-
ticles, whereas the spin function is a singlet ; i.e., if a measuring apparatus on the
r.h.s. prepares a spin state with a value �

2
in a certain direction, then a simultanous

measurement on the opposite side, performed with a similar apparatus, prepares
the value − �

2
. (This is stressed by the small line segments below the r.h.s. and

above the l.h.s. of the diagram, where we purposely do not present arrows in the
z or x direction, since any direction is possible. Purposely also no origin has been
drawn to stress that this correlation is always present.)
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In contrast, in quantum mechanics the individual state of the system
is determined (i.e., prepared) just by the measurement2. This concerns the
problem of reality.

Above all, however, quantum mechanics is non-local, i.e., |ψ〉 already con-
tains all the information for all places, so that no additional information must
be transferred from place 1 to 2 or vice versa3. This simultaneously concerns
problems 2 and 3.

Of course, Einstein’s objections must be taken very seriously, the more so
since they really pinpoint the basis of the formalism. The same applies to the
efforts, although inappropriate after all (see below), to modify Schrödinger’s
theory by adding hidden variables to obtain an acceptable theory (i.e. “real-
istic”, “local” and “retarded”). Ultimately, nine years after Einstein’s death,
it was shown by Bell, [30], a theorist at CERN, that the situation is more
complex than Einstein assumed. Bell proved that Einstein’s “acceptability”
postulates imply certain inequalities for the outcome of certain experiments
(the so-called “Bell inequalities” for certain four-site correlations), which sig-
nificantly differ from the prediction of quantum mechanics. As a consequence,
predictions of either quantum mechanics or (alternatively) the quasi-classical
“acceptability” postulates of Einstein, Podolski and Rosen, can now be veri-
fied in well-defined experiments. Up to the present time many such Bell ex-
periments have been performed, and quantum mechanics has always “won”
the competition.

36.2 The Aharonov-Bohm Effect; Berry Phases

In the following, both the non-locality of quantum mechanics and wave-
particle duality appear explicitly. We shall consider a magnetized straight
wire along the z-axis. Since we assume that the magnetization in the wire
points in the z-direction, the magnetic induction outside the wire vanishes
everywhere,

Boutside ≡ 0 .

Thus, an electron moving outside should not take any notice of the wire, as
it “passes by” according to the classical equation of motions

m · dv
dt

= e · v ×B .

2 For example, a singlet two-spin function contains a coherent superposition of
both cases (ms)(1) = +�/2 and (ms)(1) = −�/2; they only become mutually
exclusive by the (classical) measurement equipment.

3 It is perhaps not accidental that difficulties are encountered (e.g., one has to
perform renormalizations) if one attempts to unify quantum mechanics with
special relativity, which is a local theory (in contrast to general relativity, which
is, however, not even renormalizable).
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However, quantum mechanically, electrons are represented by a wave func-
tion ψ(r, t), i.e., due to this fact they also “see” the vector potential A(r)
of the magnetic field, and this is different from zero outside the wire, giving
rise to a nontrivial magnetic flux Φ0 (see below), a gauge invariant quantity,
which causes a visible interference effect. In detail: For a so-called “symmet-
rical gauge” we have

A ≡ eϕAϕ(r⊥)

where the azimuthal component

Aϕ(r⊥) =
Φ0

2πr⊥
, and r⊥ :=

√
x2 + y2 , where Φ0 = BπR2

is the magnetic flux through the cross-section of the wire.
As already mentioned, the magnetic field vanishes identically outside of

the wire, i.e.,

Bz =
d(r⊥ ·Aϕ)
r⊥dr⊥

= 0 .

However, it is not B, but A, which enters the equation of motion for the
quantum-mechanical probability amplitude

i�
dψ
dt

= Hψ =
(

�∇
i
− eA

)2

ψ/(2m) .

Hence the probability amplitude is influenced by A, and finally one ob-
serves interferences in the counting rate of electrons, which pass either side
of the wire and enter a counter behind the wire.

The results are gauge invariant, taking into account the set of three equa-
tions (24.16). The decisive fact is that the closed-loop integral

∮

W

A · dr = Φ0(�= 0) ,

which determines the interference is gauge-invariant. The wave function ef-
fectively takes the wire fully into account, including its interior, although the
integration path W is completely outside.

Aharonov-Bohm interferences have indeed been observed, e.g., by Börsch
and coworkers, [27], in 1961, thus verifying that quantum mechanics is non-
local, in contrast to classical mechanics.

In this connection we should mention the general notion of a so-called
Berry phase; this is the (position dependent) phase difference4 that results
in an experiment if the wave function not only depends on r but also on
parameters α (e.g., on an inhomogeneous magnetic field), such that these
parameters change adiabatically slowly along a closed loop. This formulation
is consciously rather lax, since the concept of a Berry phase is based on
general topological relations (e.g., parallel transport in manifolds), see [28].
4 We remind ourselves that wavefunctions ψ(r), which differ only by a global

complex factor, describe the same state.
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36.3 Quantum Computing

The subject of quantum computing is based on the fact that quantum-
mechanical wave functions are superposable and can interfere with each other:

ψ = ψ1 + ψ2, |ψ|2 = |ψ1|2 + |ψ2|2 + 2 · Re(ψ∗1 · ψ2) .5

This is a field of research which has seen great progress in the last few
years.

Firstly we should recall that classical computing is based on binary digits;
e.g., the decimal number “9” is given by 1× 23 + 1× 20, or the bit sequence
1001; as elementary “bits” one only has zero and unity; hence N -digit binary
numbers are the vertices of a 2N -dimensional hypercube. In contrast, quan-
tum computing is based on the ability to superimpose quantum mechanical
wave functions. One considers N -factor product states of the form

|Ψ〉 =
N∏
ν=1

(
c
(ν)
0

∣∣∣ψ(ν)
0

〉
+ c

(ν)
1

∣∣∣ψ(ν)
1

〉)
;

i.e., as in Heisenberg spin systems with S = 1
2 one uses the Hilbert space

HN“2-level” ,

a (tensor) product of N “2-level systems”, where the orthonormalized basis
states ∣∣∣ψ(ν)

0

〉
and

∣∣∣ψ(ν)
1

〉

are called “quantum bits” or qubits. Of course |Ψ〉 is, as usual, only defined
up to a complex factor.

The way that large amounts of computation velocity can be gained is
illustrated by the following example.

Assume that (i) the unitary operator Û , i.e., a complex rotation in Hilbert-
space, is applied to the initial state |Ψ0〉 to generate the intermediate state

|Ψ1〉 = Û |Ψ0〉 ,

before (ii) another unitary operator V̂ is applied to this intermediate state
|Ψ1〉 to generate the end state

|Ψ2〉 = V̂ |Ψ1〉 .

Now, the unitary product operator

Ŵ := V̂ Û

5 Several comprehensive reviews on quantum computing and quantum cryptogra-
phy can be found in the November issue 2005 of the German “Physik Journal”.
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directly transforms the initial state |Ψ0〉 into the final state |Ψ2〉. In general
a classical computation of the product matrix Ŵ is very complex; it costs
many additions, and (above all!) multiplication processes, since

Wi,k =
∑
j

Vi,jUj,k .

In contrast, sequential execution by some kind of “experiment”,

|Ψ0〉 → |Ψ1〉 → |Ψ2〉 ,

may under certain circumstances be a relatively easy and fast computation
for a skilled experimenter.

One could well imagine that in this way in special cases (in particular for
N →∞) even an exponentially difficult task (i.e., growing exponentially with
the number of digits, N , or with the size of the system, L) can be transformed
to a much less difficult problem, which does not grow exponentially but only
polynomially with increasing N and L.

In fact there are computation which are classically very difficult, e.g., the
decomposition of a very large number into prime factors. One can easily see
that 15 = 3 × 5 and 91 = 7 × 13; but even for a medium-sized number, e.g.
437, factorization is not easy, and for very large numbers the task, although
systematically solvable, can take days, weeks, or months, even on modern
computers. In contrast, the same problem treated by a quantum computer
with a special algorithm (the Shor algorithm), tailored for such computers
and this problem, would be solved in a much shorter time.

This is by no means without importance in daily life: it touches on the
basis of the encoding principles used by present-day personal computers for
secure messages on the internet, i.e., so-called PGP encoding (PGP =̂ “pretty
good privacy”).

According to this encoding, every user has two “keys”, one of which, the
“public key” of the receiver, is used by the sender for encoding the message.
This “public key” corresponds to the afore-mentioned “large number” Z.
But for fast decoding of the message the receiver also needs a private key,
which corresponds to the decomposition of Z into prime factors, and this key
remains known only to the receiver6.

A “spy”, knowing the computer algorithms involved and the “public key”
of the receiver, e.g., his (or her) “large number”, can thus in principle calculate
the corresponding “private key”, although this may take weeks or months and
would not matter for a lot of short-term transactions by the receiver until the
“spy” has finished his computation. But if the “spy” could use a “quantum
computer”, this would be a different matter.

6 According to this so-called PGP-concept (PGP =̂ “Pretty Good Privacy”) the
private key is only “effectively private”, see below, similar to a very large integer
being factorized by a finite-time computation.
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Fortunately, even now (i.e., in our age of classical computers), quantum
mechanics offers a totally different way of encoding, called quantum crypto-
graphy (see below) which, in contrast to the classical encoding schemes is ab-
solutely secure. However, because of the “coherency” requirement7 of quan-
tum mechanics the method suffers from the problem of range, so that at
present it can only be applied over distances smaller than typically ∼ 10 to
100 km8.

After these preliminary remarks on quantum cryptography, we return to
quantum computing.

There are other relevant examples where quantum computing would be
much more effective than classical computing, e.g., in the task of sorting an
extremely large set of data, where on a quantum computer the Grover algo-
rithm would be much faster than comparable algorithms on classical com-
puters.

One may ask oneself why under these circumstances have quantum com-
puters not yet been realized, even though intense work has been going on in
this field for many years. The difficulties are hidden in the notion of “a skilled
experimentalist”, used above, because it is necessary to ensure that, (i), dur-
ing the preparation of the initial state |ψ0〉; then, (ii), during the execution of
all operations on this state; and finally, (iii), during all measurements of the
results the coherence and superposability of all signals should be essentially
undisturbed. This implies inter alia that errors (due to the necessary auto-
matic correction) should only happen with an extremely small probability,
e.g., < 10−4, and that all experiments performed in the course of a quantum
computation should be extremely well-controlled. Additionally, the system
should be “scalable” to N 
 1.

Many different suggestions have indeed been made for producing a quan-
tum computer, one of which will be outlined in the next section.

36.4 2d Quantum Dots

Two-dimensional quantum dots can be regarded as artificial atoms with di-
ameters in the region of ∼ 100Å(= 10 nm) in a two-dimensional electron (or
hole) gas [“2DEG” (or “2DHG”)]. A two-dimensional electron gas is formed,
e.g., at the planar interface between a GaAs-semiconductor region (for z < 0)
and an Al1−xGaxAs-region (for z > 0). At the interface there is a deflexion
of the energy bands, and as a consequence an attractive potential trench
V (x, y, z) forms, which is, however, attractive only w.r.t. the z-coordinate,

7 The coherency demands do not allow, for quantum mechanical purposes, the
usual amplification of the signals, which is necessary for the transmission of
electromagnetic signals over hundreds or thousands of kilometers.

8 A quantum cryptographical encoding/decoding software has been commercially
available since the winter of 2003/2004.
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whereas parallel to the interface (in the x- and y-directions) the potential
is constant. Although the electrons are thus in a bound state w.r.t. the z
coordinate, they can move freely parallel to the interface, however, with an
effective mass m∗ that can be much smaller than the electron mass in vacuo,
me (e.g., m∗ = 0.067me).

Similarly to the case of a transistor, where one can fine tune the current
between the source and drain very sensitively via the gate voltage, it is ex-
perimentally possible to generate a local depression region of the potential
energy V (r). Often the local region of this depression is roughly circular and
can be described by a parabolic confining potential, as for a 1d-harmonic os-
cillator, but modified to 2d (the range of the confined region is x2 + y2 ≤ R2,
with R ≈ 50 Å(= 5 nm), and the magnitude of the depression is typically
−3.5meV).

As a consequence, in the resulting two-dimensional potential well one has
a finite number of bound states of the “2DEG” (so-called confined electrons).
For simplicity the confinement potential is (as already mentioned) usually
described by a parabolic potential (see below). In this way one obtains a kind
of artificial 2d-atom, or so-called 2d-quantum dot9, with a characteristic
radius R in the region of 5 nm, which, on the one hand, is microscopically
small, but conversely (in spite of the suggestive name “quantum dot”) very
large compared to a normal atom, which has a diameter in the range of
0.1 nm.

The electrons of the 2d-quantum dot are described by the following single-
particle Hamiltonian (where the spin is neglected, which makes sense10):

H =
p2
r⊥

2m∗
+

(pϕ − e ·Aϕ)2

2m∗
+
m∗ω2

0

2
r2⊥ , (36.1)

where
r⊥ :=

√
x2 + y2 and ϕ = arctan

y

x

are the usual planar polar coordinates. The azimuthal quantity Aϕ is the
only component of our vector potential belonging to the constant magnetic
induction B (= curlA11), which points in the z-direction.

If more electrons are confined to the dot one must write down a sum of
such terms, and additionally the Coulomb repulsion of the electrons and the
Pauli principle must be taken into account.

9 There are also 3d-quantum dots.
10 The effective mass m∗ is much smaller than the free-electron mass me, which

enters into the Bohr magneton μB = μ0e�

2me
. Thus in the considered “artificial

atoms” the (orbital) second term on the r.h.s. of (36.1) dominates the spin term
−g∗ ·μBŜ · (B/μ0). Here g∗ = −0.44 is the effective Landé factor of the system,
and the other quantities have their usual meaning (see above).

11 We remind ourselves that A is not unique.
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An intermediate calculation results in an even simpler expression for the
magnetic induction: with the ansatz

Aϕ ≡
B0

2
· r⊥

and the formula

Bz =
d(r⊥ · Aϕ)
r⊥ · dr⊥

(Br⊥ and Bϕ vanish) ,

one obtains
B ≡ ez ·B0 .

Again a product ansatz is helpful:

ψ(r⊥, ϕ) != R(r⊥) · eimϕ .

With this ansatz one obtains an explicit solution of the Schrödinger equation
corresponding to (36.1). Due to the 2π-periodicity w.r.t. ϕ the variable m
must of course be an integer. However, for Bz �= 0 one obtains only chiral
cylindrical symmetry (i.e., m and −m are not equivalent). This implies that
with B �= 0 there is of course a preferred chirality, i.e., clockwise or counter-
clockwise.

The equations around (36.1) are known as Fock-Darwin theory. This yields
one of the few explicit solutions of nontrivial quantum mechanical problems,
and in 2001 there was even a set of written examination questions on this
theory for teacher students (file 6 of U.K.’s exercises in winter 2003).

Finally, from such artificial atoms (i) one can create artificial molecules;
(ii) the spin state of these molecules can be calculated in a kind of Heitler-
London theory, see above; and (iii) these states can be fine-tuned in a very
controlled way as is necessary for quantum computing. In fact, one of the most
promising suggestions of quantum computation is based on these systems. (In
this context we should mention the theoretical work of Loss and DiVicenzo,
[33], plus the experiments of Vandersypen and Kouwenhoven, [34].)

36.5 Interaction-free Quantum Measurement;
“Which Path?” Experiments

In principle the Aharonov-Bohm experiment can already be considered as
a form of interaction-free quantum measurement, since the electron “mea-
sures” the presence of the magnetized wire without coming into direct contact
with it. But there is an indirect interaction via the vector potential, which is
influenced by the wire.

Interaction-free quantum measurements in another sense (see below) have
been performed more recently by Anton Zeilinger’s group at Innsbruck12 in
12 Now at the university of Vienna.
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Austria (see e.g., the paper in the journal “Spektrum der Wissenschaften”
(1997, issue 1) which has already been mentioned, [32]).

Starting with a laser beam propagating in the x-direction, the photons
of this beam are linearly polarized in the vertical (±z)-direction (polariza-
tion P0 = ±0◦); a beam splitter then follows which produces two coherent
beams propagating, e.g., in the x-direction and the y-direction, respectively
(i.e., along two different paths W1 and W2) with complementary diagonal
polarizations

P1 = ±45◦ and P2 = ±135◦ .

Thirdly, the two beams meet again at a crossing point “X”, where by inter-
ference the original polarization

P0 = ±0◦

is restored. Next, a detector follows, which is inserted at the continuation of
the path W1, but counts (per construction) only photons of polarization

PD = ±90◦ .

As a consequence, this detector will never count any photon of the beam,
since all photons leaving X have the orthogonal polarization

P0 = ±0◦ .

Thus, with such a detector one cannot state which way a photon emitted
by the source reached the crossing point.

Only when the interference is blocked, e.g., by interrupting the path W2,
will the detector start counting photons: a photon emitted by the source
reaches the point with probability 1

2 via the “non-blocked” path, i.e., with
polarization

P1 = ±45◦ ,

and is counted by the detector

PD = ±90◦ ,

again with probability 1
2 .

In this way, i.e., if the detector records a count, one not only has a state-
ment about, (i), which path the electron traveled (along W1), but also one
knows, (ii), that the alternative path W2 is blocked (possibly by a container
carrying a bomb; cf. the section on Schrödinger’s cat). Morever, this fact,
i.e., the possible presence of a bomb in path W2, has been established here
via an interaction-free quantum measurement, i.e., without making the bomb
explode.

Such experiments (and many similar ones) on the non-locality of quantum
mechanics (of course without involving any bomb) have been realized by
Zeilinger et al.13. It is obvious that this has potential applications.

13 In this connection, the recent book [32] should be mentioned.
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36.6 Quantum Cryptography

Quantum cryptography is another topical application of quantum mechanics
which has been practicable for some years (long before the advent of quan-
tum computing). Quantum cryptography should of course be contrasted to
classical cryptography, which is largely based on the PGP concept that we
described in some detail in a previous Sect. 36.3 on quantum computing.
Whereas classical cryptography is intrinsically insecure, since

a) the factorization of large integers, on which it is typically based, is always
possible in principle; i.e., if one has enough computing power and patience
(the computer may calculate for days, or weeks, or months) one can restore
the private key of the receiver by “factorizing” his (or her) public key, and

b) if this does not work in a reasonable time, a spy can find out the private
key i.e., the way the receiver decodes the contents of a message encoded
by his (or her) public key, simply by eavesdropping

– in contrast, quantum cryptography is secure (which we stress again:
although it is not based on quantum computers).

Within quantum cryptography, a private key not only becomes nonessen-
tial, rendering eavesdropping obsolete, but (almost incredibly) it is detri-
mental, because, through the act of eavesdropping, a spy will automatically
uncover his or her own presence. The reason is essentially that quantum me-
chanical measurements usually perturb the measured state, and this can be
discovered by cooperation between the sender and receiver.

In the following a well known protocol used in quantum cryptography is
described in some detail.

The sender of the message (referred to as Alice) sends signals to the
receiver (Bob) with linearly polarized photons with four different polarization
directions

P = ±0◦ , P = ±90◦ P = ±45◦ , P = ±135◦

(i.e., “horizontally/vertically/right-diagonally/left-diagonally”). The infor-
mation assignment A of the signals shall be fixed, e.g.,

A ≡ 0 for either P = ±0◦ or P = ±135◦ , and
A ≡ 1 for either P = ±90◦ or P = ±45◦ .14

If one has a preference for spin systems, or if the equipment suggests doing
so, instead of the optical polarization

either P = ±90◦ or P = ±45◦

14 In contrast to fixed assignments, random assignments are also possible, which
the sender and the receiver of the message must agree about before the process,
or during it.
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one can equivalently use the 2-spinors

either

(
1
0

)
or

1√
2

(
1
1

)
for A ≡ 1 ;

and instead of
either P = ±0◦ or P = ±135◦

the spinors

either

(
0
1

)
or

1√
2

(
1
−1

)

can be used for A ≡ 0. The two classes of spinors named by either and or
yield the eigenvectors of Ŝz and Ŝx, with eigenvalues ±�

2 .
It is important here that these different eigenvectors with the same eigen-

values of either Ŝz or Ŝx are not orthogonal, whereas according to Einstein,
Podolski and Rosen’s quasi-classical reasoning one would always tend to as-
sociate orthogonal states to alternative polarizations (Ŝz alternatively to Sx)

Thus far we have described the “public” part of the code. For the “secret”
part, Alice and Bob, by some kind of “mutual preparation algorithm” (see
the Appendix), come to an agreement, (i) as to which basis sequence b1, b2,
b3,. . . they will use in the course of the message, i.e., for the n-th bit either the
x-basis (diagonal polarization) or the z-basis (rectilinear polarization), and
(ii) which bits n of the sequence of signals contain the message. This part of
the agreement (ii) can even be published (e.g., on the internet), whereas the
secret part of the agreement, ((i), detailing which basis is chosen for the n-th
bit), remains unknown to the public.15

The details of the “preparation algorithm” are complex, but straighfor-
ward, and (as mentioned) are described in the Appendix. But the result
(which has also just been mentioned) is simple: the public community, i.e.,
also a spy (“Adam” or “Eve”), only knows that Alice and Bob use the same
basis (z or x) for the bits containing information, but they do not know which
one. As a consequence, the spy does not know whether Alice and Bob inter-
prete a signal as 0 or as 1. If for example the x-basis is used at the n-th digit
(which the spy does not know), then he (or she) does not know whether the
signal is in the first component only, or in both components. If he (or she)
chooses erroneously (with 50% probability of error) the first alternative and
received a signal in the first component (which we can assume to be positive),
then the spy does not know whether this component must be completed by
a second number. This means that he (or she) does not know whether this
second component, which has not been measured, is positive (representing
a “1”) or negative (representing a “0”); again there is 50% probability of
error. Thus, if the spy continues his (or her) activity and sends instead of the

15 The public, including the “spy”, only know that sender and receiver use the same
basis, but not which one.
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original signals, which he (or she) has tried to analyse, “substitute signals”
to Bob, these will be wrong with a high probability.

Consequently, Bob, by cooperating with Alice, can uncover the activities
of the spy. Thus the spy not only has no chance of obtaining information by
eavesdropping, but instead of being successful will necessarily reveal his (or
her) presence to Alice and Bob.

For this concept at several places we have used essentially the nonclassical
properties of the singlet state

|ψsinglet〉 ∝ |↑↓ − ↓↑〉 .

A main property of this state is the Einstein-Podolski-Rosen property of
“entanglement”.

In fact, the above method can even be simplified by using entangled source
states, e.g., where Bob and Alice receive complementary versions of the signal.
In this case all digits can be used for the message, i.e., the mutual preparation
becomes trivial with respect to the public part, (ii), but the secret part, (i),
still applies.

In this case too, the eavesdropping efforts of a spy would be unsuccessful
and only reveal his own presence. One may compare the relevant paper in
the journal “Physikalische Blätter” 1999, issue 6.

To enable quantum cryptography one must of course ensure coherence,
i.e., the ability to interfere, along the whole length of propagation of the sig-
nals. For distances which are larger than typically 10 to 100km this condition
is violated by the present glass fibre technology, since de-coherence by the
necessary restoration of the original signal strength can only be avoided up
to this sort of distance. With regard to the first commercial realization in
the winter of 2003/2004 the reader is referred to a footnote in the section on
quantum computing.



37 Quantum Mechanics:

Retrospect and Prospect

In retrospect, let us briefly look again at some of the main differences and
similarities between classical and quantum mechanics.

Classical mechanics of an N-particle system takes place in a 6N-dimen-
sional phase space of coordinates plus momenta. Observables are arbitrary
real functions of the 6N variables. The theory is deterministic and local, e.g.,
Newton’s equations apply with forces which act at the considered moment
at the respective position. Measurements can in principle be performed arbi-
trarily accurately, i.e., they only “state” the real properties of the system1.

In contrast, in quantum mechanics the state of an N-particle system is
described by an equivalence class of vectors ψ of a complex Hilbert space HR,
where the equivalence relation is given by multiplication with a globally con-
stant complex factor; i.e., one considers “rays” inHR. Already the description
of the system is thus more complicated, the more so since the intrinsic angular
momentum (spin) does not appear in classical physics and has unexpected
non-classical properties, e.g., concerning the rotation behavior. The functions
ψ must not only be (ia) square-integrable w.r.t. the position variables rj of N
particles (j = 1, . . . , N), but they must also be (ib) square-summable w.r.t.
the respective spin variables (ms)j , and (ii) for identical particles the Pauli
principle, (iia) i.e. permutation-antisymmetry for fermions (half-integer spin
quantum number, e.g., electrons or quarks), and (iib) permutation-symmetry
for bosons (integer spin quantum number, e.g., pions or gluons), must be con-
sidered. The Pauli principle has very important consequences in everyday life,
e.g., the Mendeleev (or periodic) table of elements in chemistry.

With regard to (i) one must in any case have

∑
m1=±1/2

. . .
∑

mN=±1/2

∫

r1

d3r1 . . .

∫

rN

d3rN |ψ(r1,m1; . . . ; rN ,mN )|2 != 1 .

(37.1)
The integrand in (37.1) has the meaning of a multidimensional probability

density.

1 Newtonian mechanics is thus “realistic” in the sense of Einstein, Podolski and
Rosen.
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Furthermore, quantum mechanics is only semi-deterministic:

a) On the one hand, between two measurements one has a deterministic
equation of motion, e.g., in the Schrödinger representation the equation,

i�ψ̇ = Hψ ,
and in the Heisenberg representation, which is equivalent, the equation of
motion for the operators. These equations of motion are determined by the
Hamilton operator, which corresponds largely, but not completely, to the
classical Hamilton function H(r,p), where it is “almost only” necessary
to replace the classical variables by operators, e.g., r by a multiplication
operator and

p by
�

i
∇ ;

“almost only”, but not completely, due to spin, which has no classical
analogue.
As a consequence of spin there are additions to the Hamilton operator,
in which the spin (vector) operator appears, which, (i), has an anomalous
behavior w.r.t. the g-factor (visible in the coupling to a magnetic field).
Furthermore, (ii), spin plays a decisive role in the Pauli principle, which is
in itself most important. Finally, (iii), spin is coupled to the orbital angular
momentum through the spin-orbit coupling, which is, e.g., responsible for
the spectral fine structure of atoms, molecules and nuclei.

b) On the other hand, for the results of a measurement there are only “prob-
ability statements”. The reason is essentially that observables are now
described by Hermitian operators, which once more correspond largely
(but again not completely) to quantities appearing in classical mechanics.
In general, operators are not commutable. As a consequence Heisenberg’s
uncertainty principle restricts the product

(
δÂ

)2

ψ
·
(
δB̂

)2

ψ

of expectation values, by stating that this product of the variances of two
series of measurements for non-commutable Hermitian operators Â and
B̂, with (

δÂ
)2

ψ
:= 〈ψ|Â2|ψ〉 −

(
〈ψ|Â|ψ〉

)2

,

should be

≥ 1
4

∣∣∣〈ψ|
[
Â, B̂

]
|ψ〉

∣∣∣
2

, where
[
Â, B̂

]
:= Â · B̂ − B̂ · Â

is the so-called commutator, i.e.,

[p̂, x̂] =
�

i
.

Thus, by taking square roots, with appropriate definitions of the uncer-
tainty or fuzziness of position and momentum in the state ψ, one obtains



37 Quantum Mechanics: Retrospect and Prospect 295

the somewhat unsharp formulation: position and momentum cannot si-
multaneously be precisely determined by a series of measurements,

δx̂ · δp̂ ≥ �

2
.

With the definition
δk̂ := δp̂/�

for the fuzziness of the de-Broglie wavenumber one thus obtains

δk̂ · δx̂ ≥ 1/2 ,

i.e., a relation, in which the wave properties of matter dominate (k =
2π/λ).

However, the wave aspect of matter is only one side of the coin; Heisen-
berg’s uncertainty relation covers both sides.

In fact, in quantum mechanics wave-particle duality with all its conse-
quences applies: matter not only possesses particle properties, e.g., those de-
scribed in Newtonian mechanics, but also wave properties, e.g., described by
wave equations for probability amplitudes, with the essential property of co-
herent superposition and interference of these amplitudes. At this place one
should also mention the tunnel effect.

Quantum mechanical measurements do not “state” properties of a system,
but instead they “prepare” properties.

In this respect quantum mechanics is not “realistic” but “preparing” in
the sense of Einstein, Podolski and Rosen. In particular, typically (but not
always) a measurement changes the state of a system.

The totality of these statements is the so-called Copenhagen interpretation
of quantum mechanics. After the objections of Einstein, Podolski and Rosen
in their paper of 1935 were disproved by Bell experiments, it has now been
accepted without controversy for several decades. The Copenhagen interpre-
tation is also in agreement with non-local behavior, e.g., Aharonov-Bohm
experiments. According to these experiments, the ψ-function, in contrast to
the classical particle, does not “see” the local magnetic field and the Lorentz
forces exerted by it, cf. Part II (so-called “local action”), but instead it “sees”,
through the vector potential, its non-local flux (“remote action”). Other con-
sequences of the interpretation based, e.g., on entanglement, coherence and
interferences, have only recently been systematically exploited.

After more than a century (nonrelativistic) quantum mechanics – which
has been the main theme of this part of the text – is essentially a closed
subject (as are Newtonian mechanics, Part I, and Maxwell’s electrodynamics,
Part II), but with regard to future prospects, this does not necessarily imply
that all consequences of these theories (particularly of quantum theory) have
been fully understood or exploited.
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For “John Q. Public” some aspects of quantum mechanics, e.g., spin and
the Pauli principle, are (unwittingly) of crucial importance in everyday life,
e.g., for the simple reason that the periodic table of elements, and therefore
the whole of chemistry and essential parts of biology, depend strongly on
these properties, which are not at all “classical”. Simply for this reason, at
school or university, one should thus tolerate a partial lack of understanding
of these topics; however, one should be careful about introducing potentially
wrong explanations (e.g., spinning-top models for spin, which are popular,
but essentially inadequate). Instead it may be better to admit that the reasons
for the behavior are truly complicated.

In any case, quantum mechanics is a discipline which contains considerable
scope for intellectual and philosophical discussion about the nature of matter,
radiation, interaction, and beyond.

Finally, in the sections on quantum computation and quantum crypto-
graphy we have tried to make clear that quantum mechanics is a field with
a promising future and that the next few decades might bring surprises,
perhaps not only with regard to novel applications.



38 Appendix: “Mutual Preparation

Algorithm” for Quantum Cryptography

Firstly, Alice (the sender of the message) with her private key1 generates
a sequence consisting of (+)- or (-)-symbols, which correspond to the in-
stantaneous alignment of her “transmitter”, e.g., an optical polarizer. The
instantaneous polarization can be horizontally/vertically (0◦/90◦, =̂Ŝz) or
left/right diagonally (135◦/45◦, =̂Ŝx).

Next she publicly sends to Bob (the receiver) – for their mutual prepara-
tion of the encoding of the message to follow – a data set consisting of a long
random sequence of (0)- or (1)-bits, a test message, where the bits of the
(0/1)-sequence are closely correlated to the (+/-)-sequence according to the
following rules.

The test message contains at the position n either a “1”, e.g., for vertical
polarization, P = 90◦, and for right-diagonal polarization, P = 45◦; or a “0”
for horizontal polarization and for left-diagonal polarization, P = 0◦ and
P = 135◦.

Thirdly: Bob, using the same rules, receives the test message with another
(+/-) analyzer sequence, taken from his own private key (which is not known
by any other person, not even by Alice!).

Fourthly: Thereafter Bob informs Alice publicly which sequence he actu-
ally received, i.e. he sends to Alice the message “?” (e.g., an empty bit), if his
analyzer was in the wrong polarization (e.g., if Alice transmitted a 0◦-signal
at the n-th place, whereas Bob’s analyzer was (i) positioned to 90◦, so that
no signal was received; or (ii) positioned to 135◦ or 45◦, so that the meaning
was not clear, since the incoming signal had equally strong components for
1 and 0). In the remaining cases he sends to Alice either a “1” or a “0”,
according to what he received.

Fifthly: Alice finally compares this message from Bob with her own test
message and fixes the numbers n1, n2, n3, etc., where both agree. She informs
Bob publicly about these numbers, and that her message, which she will send
next, will be completely contained in these “sensible bits” and should be
interpreted according to the known rules, whereas the remaining bits can be
skipped.

Thus it is publicly known, which are the “sensible bits”, and that at these
bits Bob’s analyzer and Alice’s polarizer have the same polarization, but

1 if existent; otherwise the sequence is generated ad hoc.
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whether this is the horizontal/vertical polarization or, instead, the left/right-
diagonal polarization is not known to anyone, except to Alice and Bob, inspite
of the fact that the communications, including the rules, were completely
public.

Although this procedure is somewhat laborious, the final result is simple,
as stated above (see Sect. 36.6).



Part IV

Thermodynamics and Statistical Physics



39 Introduction and Overview to Part IV

This is the last course in our compendium on theoretical physics. In Ther-
modynamics and Statistical Physics we shall make use of a) classical non-
relativistic mechanics as well as b) non-relativistic quantum mechanics and
c) aspects of special relativity. Whereas in the three above-mentioned sub-
jects one normally deals with just a few degrees of freedom (i.e. the number
of atoms N in the system is usually 1 or of the order of magnitude of 1), in
thermodynamics and statistical physics N is typically ≈ 1023; i.e. the num-
ber of atoms, and hence degrees of freedom, in a volume of ≈ 1 cm3 of a gas
or liquid under normal conditions is extremely large. Microscopic properties
are however mostly unimportant with regard to the collective behavior of the
system, and for a gas or liquid only a few macroscopic properties, such as
pressure p, temperature T and density 
 characterize the behavior.

Quantum mechanics usually also deals with a small number of degrees
of freedom, however with operator properties which lead to the possibility of
discrete energy levels. In addition the Pauli principle becomes very important
as soon as we are dealing with a large number of identical particles (see
below).

In classical mechanics and non-relativistic quantum mechanics we have
v2 � c2, with typical atomic velocities of the order of

|〈ψ|v̂ψ〉| ≈ c

100
.

However statistical physics also includes the behavior of a photon gas, for
example, with particles of speed c. Here of course special relativity has to be
taken into account (see Part I)1.

In that case too the relevant macroscopic degrees of freedom can be de-
scribed by a finite number of thermodynamic potentials, e.g., for a photon
gas by the internal energy U(T, V,N) and entropy S(T, V,N), or by a single
combination of both quantities, the Helmholtz free energy

F (T, V,N) := U(T, V,N)− T · S(T, V,N) ,

where T is the thermodynamic temperature of the system in degrees Kelvin
(K), V the volume and N the number of particles (number of atoms or
1 In some later chapters even aspects of general relativity come into play.
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molecules). In phenomenological thermodynamics these thermodynamic po-
tentials are subject to measurement and analysis (e.g., using differential cal-
culus), which is basically how a chemist deals with these quantities.

A physicist however is more likely to adopt the corresponding laws of
statistical physics, which inter alia make predictions about how the above
functions have to be calculated, e.g.,

U(T, V,N) =
∑
i

Ei(V,N)pi(T, V,N) .

Here {Ei ≡ Ei(V,N)} is the energy spectrum of the system, which we assume
is countable, and where the pi are thermodynamic probabilities, usually so-
called Boltzmann probabilities

pi(T, . . .) =
exp− Ei

kBT∑
j exp− Ej

kBT

,

with the Boltzmann constant kB = 1.38 . . .10−23 J/K. We note here that
a temperature T ≈ 104 K corresponds to an energy kBT of ≈ 1 eV.

Using a further quantity Z(T, V,N), the so-called partition function,
where

Z(T, V,N) :=
∑
j

exp−βEj and β :=
1

kBT
,

we obtain

U(T, V,N) ≡ − d
dβ

lnZ ;

F (T, V,N) ≡ −kBT · lnZ ;

S(T, V,N) ≡ −∂F
∂T
≡ −kB

∑
j

pj ln pj .

There are thus three specific ways of expressing the entropy S:

a) S =
U − F
T

,

b) S = −∂F
∂T

, and

c) S = −kB
∑
j

pj ln pj .

The forms a) and b) are used in chemistry, while in theoretical physics c) is
the usual form. Furthermore entropy plays an important part in information
theory (the Shannon entropy), as we shall see below.



40 Phenomenological Thermodynamics:

Temperature and Heat

40.1 Temperature

We can subjectively understand what warmer or colder mean, but it is not
easy to make a quantitative, experimentally verifiable equation out of the
inequality T1 > T2. For this purpose one requires a thermometer, e.g., a mer-
cury or gas thermometer (see below), and fixed points for a temperature
scale, e.g., to set the melting point of ice at normal pressure (=̂ 760 mm
mercury column) exactly to be 0 ◦ Celsius and the boiling point of water at
normal pressure exactly as 100 ◦ Celsius. Subdivision into equidistant inter-
vals between these two fixed points leads only to minor errors of a classical
thermometer, compared to a gas thermometer which is based on the equation
for an ideal gas:

p · V = NkBT

where p is the pressure (=̂ force per unit area), V the volume (e.g., = (height)
x (cross-sectional area)) of a gas enclosed in a cylinder of a given height with
a given uniform cross-section, and T is the temperature in Kelvin (K), which
is related to the temperature in Celsius, Θ, by:

T = 273.15 +Θ

(i.e., 0 ◦ Celsius corresponds to 273.15 Kelvin). Other temperature scales,
such as, for example, Fahrenheit and Réaumur, are not normally used in
physics. As we shall see, the Kelvin temperature T plays a particular role.

In the ideal gas equation, N is the number of molecules. The equation is
also written replacing N · kB with nMol · R0, where R0 is the universal gas
constant, nMol the number of moles,

nMol :=
N

L0
, and R0 = L0 · kB .

Experimentally it is known that chemical reactions occur in constant propor-
tions (Avogadro’s law), so that it is sensible to define the quantity mole as
a specific number of molecules, i.e., the Loschmidt number L0 given by

≈ 6.062(±0.003) · 1023 .
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(Physical chemists tend to use the universal gas constant and the number of
moles, writing

pV = nMol · R0T ,

whereas physicists generally prefer pV = N · kBT .)
In addition to ideal gases physicists deal with ideal paramagnets , which

obey Weiss’s law, named after the French physicist Pierre Weiss from the
Alsace who worked in Strasbourg before the First World War. Weiss’s law
states that the magnetic moment mH of a paramagnetic sample depends on
the external field H and the Kelvin temperature T in the following way:

mH =
C

T
H ,

where C is a constant, or
H =

mH

C
· T .

From measurements of H one can also construct a Kelvin thermometer using
this ideal law.

On the other hand an ideal ferromagnet obeys the so-called Curie-Weiss
law

H =
mH

C
· (T − Tc) where Tc

is the critical temperature or Curie temperature of the ideal ferromagnet. (For
T < Tc the sample is spontaneously magnetized, i.e., the external magnetic
field can be set to zero1.)

Real gases are usually described by the so-called van der Waals equation
of state

p = − a

v2
+
kBT

v − b ,

which we shall return to later. In this equation

v =
V

N
,

and a and b are positive constants. For a = b = 0 the equation reverts to the
ideal gas law.

A T, p-diagram for H2O (with T as abscissa and p as ordinate), which
is not presented, since it can be found in most standard textbooks, would
show three phases: solid (top left on the phase diagram), liquid (top right)
and gaseous (bottom, from bottom left to top right). The solid-liquid phase
boundary would be almost vertical with a very large negative slope. The
negative slope is one of the anomalies of the H2O system2. One sees how
1 A precise definition is given below; i.e., it turns out that the way one arrives at

zero matters, e.g., the sign.
2 At high pressures ice has at least twelve different phases. For more information,

see [36].
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steep the boundary is in that it runs from the 0 ◦C fixed point at 760 Torr
and 273.15 K almost vertically downwards directly to the triple point, which
is the meeting point of all three phase boundaries. The triple point lies at
a slightly higher temperature,

Ttriple = 273.16 K ,

but considerably lower pressure: ptriple ≈ 5 Torr. The liquid-gas phase bound-
ary starting at the triple point and running from “southwest” to “northeast”
ends at the critical point, Tc = 647 K, pc = 317 at. On approaching this point
the density difference

Δ
 := 
liquid − 
gas

decreases continuously to zero. “Rounding” the critical point one remains
topologically in the same phase, because the liquid and gas phases differ only
quantitatively but not qualitatively. They are both so-called fluid phases.

The H2O system shows two anomalies that have enormous biological con-
sequences. The first is the negative slope mentioned above. (Icebergs float on
water.) We shall return to this in connection with the Clausius-Clapeyron
equation. The second anomaly is that the greatest density of water occurs at
4 ◦C, not 0 ◦C. (Ice forms on the surface of a pond, whereas at the bottom of
the pond the water has a temperature of 4 ◦C.)

40.2 Heat

Heat is produced by friction, combustion, chemical reactions and radioactive
decay, amongst other things. The flow of heat from the Sun to the Earth
amounts to approximately 2 cal/(cm2s) (for the unit cal: see below). Fric-
tional heat (or “Joule heat”) also occurs in connection with electrical resis-
tance by so-called Ohmic processes,

dE = R · I2dt ,

where R is the Ohmic resistance and I the electrical current.
Historically heat has been regarded as a substance in its own right with

its own conservation law. The so-called heat capacity CV or Cp was defined
as the quotient

ΔQw
ΔT

,

where ΔQw is the heat received (at constant volume or constant pressure,
respectively) and ΔT is the resulting temperature change. Similarly one may
define the specific heat capacities cV and cp:

cV :=
CV
m

and cp :=
Cp
m

,
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where m is the mass of the system usually given in grammes (i.e., the molar
mass for chemists). Physicists prefer to use the corresponding heat capacities
c
(0)
V and c(0)p per atom (or per molecule).

The old-fashioned unit of heat “calorie”, cal, is defined (as in school
physics books) by: 1 cal corresponds to the amount of heat required to heat
1 g of water at normal pressure from 14.5 ◦C to 15.5 ◦C. An equivalent defi-
nition is:

(cp)|H2O;normal pressure,15 ◦C
!= 1cal/g .

Only later did one come to realize that heat is only a specific form of energy,
so that today the electro-mechanical equivalent of heat is defined by the
following equation:

1cal = 4.186 J = 4.186 Ws . (40.1)

40.3 Thermal Equilibrium and Diffusion of Heat

If two blocks of material at different temperatures are placed in contact,
then an equalization of temperature will take place, Tj → T∞, for j = 1, 2,
by a process of heat flowing from the hotter to the cooler body. If both blocks
are insulated from the outside world, then the heat content of the system,
Qw|“1+2”, is conserved, i.e.,

ΔQw|“1+2” = C1ΔT1 + C2ΔT2 ≡ (C1 + C2) ·ΔT∞ , giving

ΔT∞ ≡
C1ΔT1 + C2ΔT2

C1 + C2
.

We may generalize this by firstly defining the heat flux density jw, which
is a vector of physical dimension [cal/(cm2s)], and assume that

jw = λ · gradT (r, t) . (40.2)

This equation is usually referred to as Fick’s first law of heat diffusion. The
parameter λ is the specific heat conductivity.

Secondly let us define the heat density 
w. This is equal to the mass
density of the material 
M multiplied by the specific heat cp and the local
temperature T (r, t) at time t, and is analogous to the electrical charge density

e. For the heat content of a volume ΔV one therefore has

Qw(ΔV ) =
∫

ΔV

d3r
w .
3

3 In this part, in contrast to Part II, we no longer use more than one integral sign
for integrals in two or three dimensions.
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Since no heat has been added or removed, a conservation law applies to
the total amount of heat Qw(R3). Analogously to electrodynamics, where
from the conservation law for total electric charge a continuity law results,
viz :

∂
e
∂t

+ divje ≡ 0 ,

we have here:
∂
w
∂t

+ divjw ≡ 0 .

If one now inserts (40.2) into the continuity equation, one obtains with

div grad ≡ ∇2 =
∂

∂x2
+

∂

∂y2
+

∂

∂z2

the heat diffusion equation

∂T

∂t
= Dw∇2T , (40.3)

where the heat diffusion constant,

Dw :=
λ


Mcp
,

has the same physical dimension as all diffusion constants, [DW ] = [cm2/s].
(40.3) is usually referred to as Fick’s second law.

40.4 Solutions of the Diffusion Equation

The diffusion equation is a prime example of a parabolic partial differential
equation4. A first standard task arises from, (i), the initial value or Cauchy
problem. Here the temperature variation T (r, t = t0) is given over all space,
∀r ∈ G, but only for a single time, t = t0. Required is T (r, t) for all t ≥
t0. A second standard task, (ii), arises from the boundary value problem.
Now T (r, t) is given for all t, but only at the boundary of G, i.e., for r ∈
∂G. Required is T (r, t) over all space G. For these problems one may show
that there is essentially just a single solution. For example, if one calls the
difference between two solutions u(r, t), i.e.,

u(r, t) := T1(r, t)− T2(r, t) ,

4 There is also a formal similarity with quantum mechanics (see Part III). If in
(40.3) the time t is multiplied by i/� and Dw and T are replaced by �

2/(2m) and
ψ, respectively, one obtains the Schrödinger equation of a free particle of mass
m. Here �, i and ψ have their usual meaning.
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then because of the linearity of the problem it follows from (40.3) that

∂u

∂t
= Dw∇2u ,

and by multiplication of this differential equation with u(r, t) and subsequent
integration we obtain

I(t) :=
d

2dt

∫

G

d3ru2(r, t) =Dw ·
∫

G

d3ru(r, t) · ∇2u(r, t)

=−Dw

∫

G

d3r{∇u(r, t)}2

+Dw

∮

∂G

d2Su(r, t)(n · ∇)u(r, t) .

To obtain the last equality we have used Green’s integral theorem, which is
a variant on Gauss’s integral theorem. In case (ii), where the values of T (r, t)
are always prescribed only on ∂G, the surface integral

∝
∮

∂G

. . .

is equal to zero, i.e., I(t) ≤ 0, so that
∫

G

d3r · u2

decreases until finally u ≡ 0. Since we also have

∂

∂t
≡ 0 ,

one arrives at a problem, which has an analogy in electrostatics. In case
(i), where at t0 the temperature is fixed everywhere in G, initially one has
uniqueness:

0 = u(r, t0) = I(t0) ; thus u(r, t) ≡ 0 for all t ≥ t0 .

One often obtains solutions by using either 1) Fourier methods5 or 2)
so-called Green’s functions. We shall now treat both cases using examples of
one-dimensional standard problems:

5 It is no coincidence that L. Fourier’s methods were developed in his tract
“Théorie de la Chaleur”.
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1a)(Equilibration of the temperature for a periodic profile): At time t = t0 = 0
assume there is a spatially periodic variation in temperature

T (x, 0) = T∞ +ΔT (x) , with ΔT (x+ a) = ΔT (x) for all x ∈ G .

One may describe this by a Fourier series

ΔT (x) =
∞∑

n=−∞
bn exp (ink0x) ,

with

bn ≡
1
a

a∫

0

dx exp (−ink0x)ΔT (x) .

Here,

k0 :=
2π
λ0

,

where λ0 is the fundamental wavelength of the temperature profile. One
can easily show that the solution to this problem is

T (x, t) = T∞ +
∞∑

n=−∞, �=0

bneink0x · e−n
2 t

τ0 , where
1
τ0

= Dwk
2
0 .

According to this expression the characteristic diffusion time is related to
the fundamental wavelength. The time dependence is one of exponential
decay, where the upper harmonics, n = ±2,±3, . . ., are attenuated much
more quickly,

∝ e−n
2 t

τ0 ,

than the fundamental frequency n = ±1.
1b)A good example of a “boundary value problem” is the so-called permafrost

problem, which shall now be treated with the help of Fourier methods. At
the Earth’s surface z = 0 at a particular location in Siberia we assume
there is explicitly the following temperature profile:

T (z = 0, t) = T∞ + b1 cosω1t+ b2 cosω2t .

T∞ is the average temperature at the surface during the year,

ω1 =
2π

365d
is the annual period and

ω2 =
2π
1d

is the period of daily temperature fluctuations (i.e., the second term on
the r.h.s. describes the seasonal variation of the daytime temperature
average, averaged over the 24 hours of a day). We write

cosω1t = Ree−iω1t
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and postpone the evaluation of the real part to the very end (i.e., in effect
we omit it). Below the surface z < 0 we assume that

T (z, t) = T∞ + b1ei(k1z−ω1t) + b2ei(k2z−ω2t) ,

with complex (!) wavenumbers kj , j = 1, 2. The heat diffusion equation
then leads for a given (real) frequency ω1 or ω2 = 365ω1 to the following
formula for calculating the wavenumbers:

iωj = Dwk
2
j , giving

√
Dwkj =

√
ωj
√

i .

With √
i =

1 + i√
2

one obtains for the real part k(1)
j and imaginary part k(2)

j of the wavenum-
ber kj in each case the equation

k
(1)
j = k

(2)
j =

√
ωj√

2Dw

.

The real part k(1)
1 gives a phase shift of the temperature rise in the ground

relative to the surface, as follows: whereas for z = 0 the maximum daytime
temperature average over the year occurs on the 21st June, below the
ground (for z < 0) the temperature maximum may occur much later. The
imaginary part k(2)

1 determines the temperature variation below ground;
it is much smaller than at the surface, e.g., for the seasonal variation of
the daytime average we get instead of T∞ ± b1:

T±(z) = T∞ ± e−k
(2)
1 |z| · b1 ;

however, the average value over the year, T∞, does not depend on z. The
ground therefore only melts at the surface, whereas below a certain depth
|z|c it remains frozen throughout the year, provided that

T∞ + e−k
(2)
1 |z|c · b1

lies below 0 ◦C. It turns out that the seasonal rhythm ω1 influences the
penetration depth, not the daily time period ω2. From the measured pene-
tration depth (typically a few decimetres) one can determine the diffusion
constant Dw.

2) With regard to Green’s functions, it can be shown by direct differentiation
that the function

G(x, t) :=
e−

x2
4Dwt

√
4πDwt

is a solution to the heat diffusion equation (40.3). It represents a special
solution of general importance for this equation, since on the one hand
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for t→∞, G(x, t) propagates itself more and more, becoming flatter and
broader. On the other hand, for t → 0 + ε, with positive infinitesimal
ε6, G(x, t) becomes increasingly larger and narrower. In fact, for t→ 0+,
G(x, t) tends towards the Dirac delta function,

G(x, t→ 0+)→ δ(t) , since
e−

x2

2σ2

√
2πσ2

for t > 0

gives a Gaussian curve gσ(x) of width σ2 = 2Dwt; i.e., σ → 0 for t → 0,

but always with unit area (i.e.,
∞∫
−∞

dxgσ(x) ≡ 1 as well as
∞∫
−∞

dxx2gσ(x) ≡

σ2 , ∀σ). Both of these expressions can be obtained by using a couple
of integration tricks: the “squaring” trick and the “exponent derivative”
trick, which we cannot go into here due to lack of space.
Since the diffusion equation is a linear differential equation, the principle
of superposition holds, i.e., superposition of the functions f(x′) · G(x −
x′, t), with any weighting f(x′) and at any positions x′, is also a solution
of the diffusion equation, and thus one can satisfy the Cauchy problem
for the real axis, for given initial condition T (x, 0) = f(x), as follows:

T (x, t) =

∞∫

−∞
dx′f(x′) ·G(x− x′, t) . (40.4)

For one-dimensional problems on the real axis, with the boundary condi-
tion that for |x| → ∞ there remains only a time dependence, the Green’s
function is identical to the fundamental solution given above. If special
boundary conditions at finite x have to be satisfied, one can modify the
fundamental solution with a suitable (more or less harmless) perturbation
and thus obtain the Green’s function for the problem, as in electrostatics.

Similar results apply in three dimensions, with the analogous fundamental
solution

G3d(r, t) =:
e−

r2
4Dwt

(4πDwt)3/2
.

These conclusions to this chapter have been largely “mathematical”. How-
ever, one should not forget that diffusion is a very general “physical” process;
we shall return to the results from this topic later, when treating the kinetic
theory of gases.

6 One also writes t→ 0+.



41 The First and Second Laws

of Thermodynamics

41.1 Introduction: Work

An increment of heat absorbed by a system is written here as δQ and not
dQ, in order to emphasize the fact that, in contrast to the variables of state
U and S (see below), it is not a total differential. The same applies to work
A, where we write its increment as δA, and not as dA.

Some formulae:

α) Compressional work :
The incremental work done during compression of a fluid (gas or liquid),
is given by δA = −pdV . [Work is given by the scalar product of the
applied force and the distance over which it acts, i.e., δA = F · dz =(
pΔS(2)

)
·
(
−dV/ΔS(2)

)
= −pdV .]

β) Magnetic work :
In order to increase the magnetic dipole momentmH of a magnetic sample
(e.g., a fluid system of paramagnetic molecules) in a magnetic field H we
must do an amount of work

δA = H · dmH .

(For a proof : see below.)
Explanation: Magnetic moment is actually a vector quantity like magnetic
field H. However, we shall not concern ourselves with directional aspects
here. Nevertheless the following remarks are in order. A magnetic dipole
moment mH at r′ produces a magnetic field H:

H(m)(r) = −grad
mH · (r − r′)
4πμ0|r − r′|3

,

where μ0 is the vacuum permeability. On the other hand, in a field H
a magnetic dipole experiences forces and torques given by

F (m) = (mH · ∇)H and D(m) = mH ×H .

This is already a somewhat complicated situation which becomes even
more complicated, when in a magnetically polarizable material we have
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to take the difference between the magnetic field H and the magnetic
induction B into account. As a reminder, B, not H , is “divergence free”,
i.e.,

B = μ0H + J ,

where J is the magnetic polarization, which is related directly to the
dipole moment mH by the expression

mH =
∫

V

d3rJ = V · J ,

where V is the volume of our homogeneously magnetized system.

In the literature we often find the term “magnetization” instead of “magnetic
polarization” used for J or even for mH , even though, in the mksA system,
the term magnetization is reserved for the vector

M := J/μ0 .

One should not allow this multiplicity of terminology or different conventions
for one and the same quantity dmH to confuse the issue. Ultimately it “boils
down” to the pseudo-problem of μ0 and the normalization of volume. In any
case we shall intentionally write here the precise form

δA = H · dmH (and not = H · dM) .

In order to verify the first relation, we proceed as follows. The inside of
a coil carrying a current is filled with material of interest, and the work done
on changing the current is calculated. (This is well known exercise.) The work
is divided into two parts, the first of which changes the vacuum field energy
density μ0H

2

2 , while the second causes a change in magnetic moment. This is
based on the law of conservation of energy applied to Maxwell’s theory. For
changes in w, the volume density of the electromagnetic field energy, we have

δw ≡ E · δD +H · δB − j ·E · δt ,

where E is the electric field, j the current density and D the dielectric
polarization; i.e., the relevant term is the last-but-one expression,

H · δB , with δB = μ0δH + δJ ,

i.e., here the term ∝ δJ is essential for the material, whereas the term ∝ δH,
as mentioned, only enhances the field-energy.

If we introduce the particle number N as a variable, then its conjugated
quantity is μ, the chemical potential, and for the work done on our material
system we have:

δA = −pdV +HdmH + μdN =:
∑
i

fidXI , (41.1)

where dXi is the differential of the work variables. The quantities dV , dmH

and dN (i.e., dXi) are extensive variables, viz they double when the system
size is doubled, while p, H and μ (i.e., fi) are intensive variables.
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41.2 First and Second Laws: Equivalent Formulations

a) The First Law of Thermodynamics states that there exists a certain vari-
able of state U(T, V,mH , N), the so-called internal energy U(T,Xi), such
that (neither the infinitesimal increment δQ of the heat gained nor the in-
finitesimal increment δA of the work done alone, but) the sum, δQ+ δA,
forms the total differential of the function U , i.e.,

δQ+ δA ≡ dU =
∂U

∂T
dT +

∂U

∂V
dV +

∂U

∂mH
dmH +

∂U

∂N
dN ,

or more generally

=
∂U

∂T
dT +

∑
i

∂U

∂Xi
dXi .

(This means that the integrals
∫
W

δQ and
∫
W

δA may indeed depend on the

integration path W , but not their sum
∫
W

(δQ+ δA) =
∫
W

dU . For a closed

integration path both
∮
δQ and

∮
δA may thus be non-zero, but their sum

is always zero:
∮

(δQ+ δA) =
∮

dU ≡ 0.)
b) As preparation for the Second Law we shall introduce the term irre-

versibility: Heat can either flow reversibly (i.e., without frictional heat
or any other losses occurring) or irreversibly (i.e., with frictional heat),
and as we shall see immediately this is a very important difference. In
contrast, the formula δA = −pdV + . . . is valid independently of the type
of process leading to a change of state variable.
The Second Law states that a variable of state S(T, V,mH , N) exists, the
so-called entropy, generally S(T,Xi), such that

dS ≥ δQ

T
, (41.2)

where the equality sign holds exactly when heat is transferred reversibly.

What is the significance of entropy? As a provisional answer we could say that
it is a quantitative measure for the complexity of a system. Disordered sys-
tems (such as gases, etc.) are generally more complex than regularly ordered
systems (such as crystalline substances) and, therefore, they have a higher
entropy.

There is also the following important difference between energy and en-
tropy: The energy of a system is a well defined quantity only apart from an
additive constant, whereas the entropy is completely defined. We shall see
later that

S

kB
≡ −

∑
j

pj · ln pj ,

where pj are the probabilities for the orthogonal system states, i.e.,

pj ≥ 0 and
∑
j

pj ≡ 1 .
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We shall also mention here the so-called Third Law of Thermodynamics
or Nernst’s Heat Theorem: The limit of the entropy as T tends to zero,
S(T → 0, Xi), is also zero, except if the ground state is degenerate.1 As
a consequence, which will be explained in more detail later, the absolute
zero of temperature T = 0 (in degrees Kelvin) cannot be reached in a finite
number of steps.

The Third Law follows essentially from the above statistical-physical for-
mula for the entropy including basic quantum mechanics, i.e., an energy gap
between the (g0-fold) ground state and the lowest excited state (g1-fold).
Therefore, it is superfluous in essence. However, one should be aware of the
above consequence. At the time Nernst’s Heat Theorem was proposed (in
1905) neither the statistical formula nor the above-mentioned consequence
was known.

There are important consequences from the first two laws with regard to
the coefficients of the associated, so-called Pfaff forms or first order differential
forms. We shall write, for example,

δQ+ δA = dU =
∑
i

ai(x1, . . . , xf )dxi , with xi = T, V,mH , N .

The differential forms for dU are “total”, i.e., they possess a stem function
U(x1, .., xf ), such that, e.g.,

ai =
∂U

∂xi
.

Therefore, similar to the so-called holonomous subsidiary conditions in me-
chanics, see Part I, the following integrability conditions are valid:

∂ai
∂xk

=
∂ak
∂xi

for all i, k = 1, . . . , f .

Analogous relations are valid for S.
All this will be treated in more depth in later sections. We shall begin as

follows.

41.3 Some Typical Applications: CV and ∂U
∂V

;
The Maxwell Relation

We may write

dU(T, V ) =
∂U

∂T
dT +

∂U

∂V
dV = δQ+ δA .

1 If, for example, the ground state of the system is spin-degenerate, which presup-
poses that H ≡ 0 for all atoms, according to the previous formula we would then
have S(T → 0) = kBN ln 2.
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The heat capacity at constant volume (dV = 0) and constant N (dN = 0),
since δA = 0, is thus given by

CV (T, V,N) =
∂U(T, V,N)

∂T
.

Since
∂

∂V

(
∂U

∂T

)
=

∂

∂T

(
∂U

∂V

)
,

we may also write
∂CV (T, V,N)

∂V
=

∂

∂T

(
∂U

∂V

)
.

A well-known experiment by Gay-Lussac, where an ideal gas streams out
of a cylinder through a valve, produces no thermal effects, i.e.,

∂

∂T

(
∂U

∂V

)
= 0 .

This means that for an ideal gas the internal energy does not depend on the
volume, U(T, V ) ≡ U(T ) and CV = CV (T ), for fixed N .

According to the Second Law

dS =
δQ|reversible

T
=

dU − δA|rev
T

=
dU + pdV

T
=
∂U

∂T

dT
T

+
(
∂U

∂V
+ p

)
dV
T

,

i.e.,
∂S

∂T
=

1
T

∂U

∂T
and

∂S

∂V
=

1
T

(
∂U

∂V
+ p

)
.

By equating mixed derivatives,

∂2S

∂V ∂T
=

∂2S

∂T∂V
,

after a short calculation this gives the so-called Maxwell relation

∂U

∂V
≡ T ∂p

∂T
− p . (41.3)

As a consequence, the caloric equation of state, U(T, V,N), is not re-
quired for calculating ∂U

∂V ; it is sufficient that the thermal equation of state,
p(T, V,N), is known.

If we consider the van der Waals equation (see below), which is perhaps
the most important equation of state for describing the behavior of real gases:

p = − a

v2
+
kBT

v − b ,

it follows with

v :=
V

N
and u :=

U

N
that

∂U

∂V
=
∂u

∂v
= T

∂p

∂T
− p = +

a

v2
> 0 .
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The consequence of this is that when a real gas streams out of a pressurized
cylinder (Gay-Lussac experiment with a real gas) then U tends to increase,
whereas in the case of thermal isolation, i.e., for constant U , the temperature
T must decrease:

dT
dV |U

= −∂U/∂V
∂U/∂T

∝ − a

v2
.

(In order to calculate the temperature change for a volume increase at con-
stant U we have used the following relation:

0 != dU =
∂U

∂T
dT +

∂U

∂V
dV ,

and therefore
dT
dV |U

= −
∂U
∂V
∂U
∂T

. (41.4)

The negative sign on the r.h.s. of this equation should not be overlooked.)

41.4 General Maxwell Relations

A set of Maxwell relations is obtained in an analogous way for other extensive
variables Xi (reminder: δA =

∑
i fidXi). In addition to

∂U

∂V
= T

∂p

∂T
−p we also have

∂U

∂mH
= H−T ∂H

∂T
and

∂U

∂N
= μ−T ∂μ

∂T
,

and in general
∂U

∂Xi
= fi − T

∂fi
∂T

. (41.5)

41.5 The Heat Capacity Differences
Cp − CV and CH − Cm

In order to calculate the difference Cp−CV , we begin with the three relations

Cp =
δQ|p
dT

=
dU − δA

dT
, dU =

∂U

∂T
dT +

∂U

∂V
dV and δA = −pdV ,

and obtain: Cp =
δQ|p
dT

=
dU − δA

dT
=
∂U

∂T
+
(
∂U

∂V
+ p

)(
dV
dT

)

|p
.

Therefore,

Cp ≡ CV +
(
∂U

∂V
+ p

)(
dV
dT

)

|p
, or Cp − CV =

(
∂U

∂V
+ p

)(
dV
dT

)

|p
.
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Using the above Maxwell relation we then obtain

Cp − Cv = T
∂p

∂T
·
(

dV
dT

)

|p
, and finally Cp − CV = −T ∂p

∂T
·
∂p
∂T
∂p
∂V

.

Analogously for CH − Cm we obtain:

CH − Cm = T
∂H

∂T
·

∂H
∂T
∂H
∂mH

.

These are general results from which we can learn several things, for
example, that the difference Cp −CV is proportional to the isothermal com-
pressibility

κT := − 1
V

∂V

∂p
.

For incompressible systems the difference Cp − CV is therefore zero, and for
solids it is generally very small.

In the magnetic case, instead of compressibility κT , the magnetic suscep-
tibility χ = ∂mH

∂H is the equivalent quantity.
For an ideal gas, from the thermal equation of state,

p =
N

V
kBT ,

one obtains the compact result

Cp − CV = NkB .

(Chemists write: Cp − CV = nMolR0). It is left to the reader to obtain the
analogous expression for an ideal paramagnetic material.

41.6 Enthalpy and the Joule-Thomson Experiment;
Liquefaction of Air

In what follows, instead of the internal energy U(T, V, . . .) we shall introduce
a new variable of state, the enthalpy I(T, p, . . .). This is obtained from the
internal energy through a type of Legendre transformation, in a similar way
to the Hamilton function in mechanics, which is obtained by a Legendre
transform from the Lagrange function. Firstly, we shall write

I = U + p · V

and then eliminate V using the thermal equation of state

p = p(T, V,N, . . .) ,
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resulting in I(T, p,mH , N, . . .). We can also proceed with other extensive
variables, e.g., mH , where one retains at least one extensive variable, usually
N , such that I ∝ N , and then obtains “enthalpies” in which the extensive
variables Xi(= V , mH or N) are replaced wholly (or partially, see above) by
the intensive variables fi = p, H , μ etc., giving the enthalpy

I(T, p,H,N, . . .) = U + pV −mHH ,

or generally

I(T, f1, . . . , fk, Xk+1, . . .) = U(T,X1, . . . , Xk, Xk+1, . . .)−
k∑
i=1

fiXi .

We can proceed in a similar manner with the work done. Instead of ex-
tensive work

δA =
∑
i

fidXi ,

we define a quantity the intensive work

δA′ := δA− d

(∑
i

fiXi

)
,

such that
δA′ = −

∑
i

Xidfi

is valid. The intensive work δA′ is just as “good” or “bad” as the extensive
work δA. For example, we can visualize the expression for intensive work

δA′ = +V dp

by bringing an additional weight onto the movable piston of a cylinder con-
taining a fluid, letting the pressure rise by moving heavy loads from below
onto the piston. As a second example consider the magnetic case, where the
expression for intensive magnetic work

δA′ = −mHdH

is the change in energy of a magnetic dipole mH in a variable magnetic field,

H → H + dH ,

at constant magnetic moment.
From the above we obtain the following equivalent formulation of the first

law.
A variable of state, called enthalpy I(T, p,H,N, . . .), exists whose total

differential is equal to the sum

δQ+ δA′ .
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The second law can also be transformed by expressing the entropy (wholly
or partially) as a function of intensive variables: e.g., S(T, p,H,N, . . .). The
Maxwell relations can be extended to cover this case, e.g.,

∂I

∂p
= V − T ∂V

∂T
,

∂I

∂H
= T

∂H

∂T
−H ,

or, in general
∂I

∂fj
= T

∂Xj

∂T
−Xj . (41.6)

We now come to the Joule-Thomson effect, which deals with the station-
ary flow of a fluid through a pipe of uniform cross-sectional area (S)1 on
the input side of a so-called throttle valve, Vthr. On the output side there is
also a pipe of uniform cross-section (S)2, where (S)2 �= (S)1. We shall see
that, as a result, p1 �= p2. We shall consider stationary conditions where the
temperatures T on each side of the throttle valve Vthr are everywhere the
same. Furthermore the pipe is thermally insulated (δQ = 0). In the region
of Vthr itself irreversible processes involving turbulence may occur. However
we are not interested in these processes themselves, only in the regions of
stationary flow well away from the throttle valve. A schematic diagram is
shown in Fig. 41.1.

We shall now show that it is not the internal energy U(= N · u) of the
fluid which remains constant in this stationary flow process, but the specific
enthalpy,

i(x) :=
I(T, p(x), N)

N
,

in contrast to the Gay-Lussac experiment. Here x represents the length co-
ordinate in the pipe, where the region of the throttle valve is not included.

In order to prove the statement for i(x) we must remember that at any
time t the same number of fluid particles

dN1 = dN2

Fig. 41.1. Joule-Thomson process. A fluid (liquid or gas) flowing in a stationary
manner in a pipe passes through a throttle valve. The pressure is p1 on the left and
p2(< p1) on the right of the valve. There are equal numbers of molecules on average
in the shaded volumes left and right of the valve. In contrast to p, the temperatures
are everywhere the same on both sides of the valve
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pass through the cross-sections Si at given positions xi left and right of the
throttle valve in a given time interval dt. Under adiabatic conditions the
difference in internal energy

δU := U2 − U1

for the two shaded sets Si · dxi in Fig. 41.1, containing the same number of
particles, is identical to δA, i.e.,

δA = −p1 · S1 · dx1 + p2 · S2 · dx2 ,

since on the input side (left) the fluid works against the pressure while on
the output side (right) work is done on the fluid. Because of the thermal
isolation, δQ = 0, we thus have:

dU = −p1dV1 + p2dV2 ≡ (−p1v1 + p2v2)dN ;

i.e., we have shown that

u2 + p2v2 = u1 + p1v1 , or i2 = i1 ,

viz the specific enthalpy of the gas is unchanged.2

The Joule-Thomson process has very important technical consequences,
since it forms the basis for present-day cryotechnology and the Linde gas
liquefaction process.

In order to illustrate this, let us make a quantitative calculation of the
Joule-Thomson cooling effect (or heating effect (!), as we will see below for
an important exceptional case):

(
dT
dp

)

i

= −
∂i
∂p

∂i
∂T

.

(This can be described by
− ∂i

∂p

c
(0)
p

, with the molecular heat capacity c(0)p := Cp

N ;

an analogous relation applies to the Gay-Lussac process.)
Using the van der Waals equation

p = − a

v2
+
kBT

v − b ,

see next section, for a real gas together with the Maxwell relation

∂i

∂p
= v − T ∂v

∂T
and

(
∂v

∂T

)

p

= −
∂p
∂T
∂p
∂v

,

2 If the temperature is different on each side of the throttle valve, we have a situ-
ation corresponding to the hotly discussed topic of non-equilibrium transport
phenomena (the so-called Keldysh theory).
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one obtains (
dT
dp

)

i

=
1

c
(0)
p

2a
kBT

(v−b)2
v2 − b

1− 2a
vkBT

(v−b)2
v2

. (41.7)

The first term of the van der Waals equation, − a
v2 , represents a negative

internal pressure which corresponds to the long-range attractive r−6 term of
the Lennard-Jones potential (see below). The parameter b in the term kBT

v−b ,
the so-called co-volume, corresponds to a short-range hard-core repulsion
∝ r−12:

b ≈ 4πσ3

3
.

σ is the characteristic radius of the Lennard-Jones potentials, which are usu-
ally written as3

VL.-J.(r) = 4ε ·
((σ

r

)12

−
(σ
r

)6
)
. (41.8)

In the gaseous state, v 
 b, and (41.7) simplifies to

(
dT
dp

)

i

≈ v

c
(0)
p

(
T Inv.

T

1− T Inv.

T

)
,

where the so-called inversion temperature

T Inv. :=
2a
kBv

.

As long as T < T Inv., which is normally the case because the inversion tem-
perature usually (but not always!) lies above room temperature, we obtain
a cooling effect for a pressure drop across the throttle valve, whereas for
T > T Inv. a heating effect would occur.

In order to improve the efficiency of Joule-Thomson cooling, a counter-
current principle is used. The cooled fluid is fed back over the fluid to be
cooled in a heat exchanger and successively cooled until it eventually lique-
fies. Air contains 78.08% nitrogen (N2), 20.95% oxygen (O2), 0.93% argon
(Ar) and less than 0.01% of other noble gases (Ne, He, Kr, Xe) and hydro-
gen; these are the proportions of permanent gases. A further 0.03% consists
of non-permanent components (H2O, CO and CO2, SO2, CH4, O3, etc.).
The liquefaction of air sets in at 90 K at normal pressure. For nitrogen the
liquefaction temperature is 77 K; for hydrogen 20 K and helium 4.2 K. The
inversion temperature for helium is only 20 K; thus in order to liquefy helium
using this method, one must first pre-cool it to a temperature

T < T Inv. = 20 K .

(He above 20 K is an example of the “exceptional case” mentioned above.)
3 see (4), Chap. 3, in [37].
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41.7 Adiabatic Expansion of an Ideal Gas

The Gay-Lussac and Joule-Thomson effects take place at constant U(T, V,N)
and constant

i(T, P ) :=
U + pV

N
,

respectively. These subsidiary conditions do not have a special name, but
calorific effects which take place under conditions of thermal insulation (with
no heat loss, δQ ≡ 0), i.e., where the entropy S(T, V,N) is constant, are
called adiabatic.

In the following we shall consider the adiabatic expansion of an ideal gas.
We remind ourselves firstly that for an isothermal change of state of an ideal
gas Boyle-Mariotte’s law is valid:

pV = NkBT = constant .

On the other hand, for an adiabatic change, we shall show that

pV κ = constant , where κ :=
Cp
CV

.

We may write (
dT
dV

)

S

= −
∂S
∂V
∂S
∂T

=
∂U
∂V + p

CV
,

since

dS =
dU − δA

T
=
CvdT
T

+

(
∂U
∂V + p

)
dV

T
.

Using the Maxwell relation

∂U

∂V
+ p = T

∂p

∂T
,

we obtain (
dT
dV

)

S

=
T ∂p
∂T

CV
.

In addition, we have for an ideal gas:

(Cp − CV ) =
(
∂U

∂V
+ p

)(
dV
dT

)

p

≡ p
(

dV
dT

)

p

= p
V

T
= NkB ,

so that finally we obtain
(

dT
dV

)

S

= −Cp − CV
CV

· T
V
.
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Using the abbreviation

κ̃ :=
Cp − CV
CV

,

we may therefore write

dT
T

+ κ̃
dV
V

= 0 , i.e.,

d

(
ln
T

T0
+ ln

(
V

V0

)κ̃)
= 0 , also

ln
T

T0
+ ln

(
V

V0

)κ̃
= constant , and

T · V κ̃ = constant .

With
κ :=

Cp
CV

= 1 + κ̃ and p =
NkBT

V

we finally obtain:
pV κ = constant .

In a V, T diagram one describes the lines
{(

dT
dV

)

S

≡ constant
}

as adiabatics. For an ideal gas, since κ̃ > 0, they are steeper than isotherms
T = constant. In a V, p diagram the isotherms and adiabatics also form
a non-trivial coordinate network with negative slope, where, since κ > 1, the
adiabatics show a more strongly negative slope than the isotherms. This will
become important below and gives rise to Fig. 46.2.

One can also treat the adiabatic expansion of a photon gas in a similar
way.



42 Phase Changes, van der Waals Theory

and Related Topics

As we have seen through the above example of the Joule-Thomson effect, the
van der Waals equation provides a useful means of introducing the topic of
liquefaction. This equation will now be discussed systematically in its own
right.

42.1 Van der Waals Theory

In textbooks on chemistry the van der Waals equation is usually written as
(
p+

A

V 2

)
· (V −B) = nMolR0T .

In physics however one favors the equivalent form:

p = − a

v2
+
kBT

v − b , (42.1)

with
a :=

A

N
, v :=

V

N
, NkB = nMolR0 , b :=

B

N
.

The meaning of the terms have already been explained in connection with
Lennard-Jones potentials (see (41.8)).

Consider the following p, v-diagram with three typical isotherms (i.e., p
versus v at constant T , see Fig. 42.1):

a) At high temperatures, well above Tc, the behavior approximates that of
an ideal gas,

p ≈ kBT

v
,

i.e. with negative first derivative

dp
dv

;

but in the second derivative,
d2p

dv2
,
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there is already a slight depression in the region of v ≈ vc, which corre-
sponds later to the critical density. This becomes more pronounced as the
temperature is lowered.

b) At exactly Tc, for the so-called critical isotherm, which is defined by both
derivatives being simultaneously zero:

dp
dv |Tc,pc

≡ d2p

dv2 |Tc,pc

≡ 0 .

In addition the critical atomic density 
c = v−1
c is also determined by Tc

and pc.
c) An isotherm in the so-called coexistence region,

T ≡ T3 < Tc .

This region is characterized such that in an interval

v
(3)
1 < v < v

(3)
2

the slope
dp
dv

of the formal solution p(T3, v) of (42.1) is no longer negative, but becomes
positive. In this region the solution is thermodynamically unstable, since
an increase in pressure would increase the volume, not cause a decrease.
The bounding points v(3)

i of the region of instability for i = 1, 2 (e.g., the
lowest point on the third curve in Fig. 42.1) define the so-called “spin-
odal line”, a fictitious curve along which the above-mentioned isothermal
compressibility diverges.
On the other hand, more important are the coexistence lines, which are
given by pi(v) for the liquid and vapor states, respectively (i = 1, 2).
These can be found in every relevant textbook.

Fig. 42.1. Three typical solutions to van
der Waals’ equation are shown, from top
to bottom: p = −0.05/v2 + T/(v − 0.05)
for, (i), T = 4; (ii) T ≡ Tc = 3; and, (iii),
T = 2
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The solution for p(T3, v) is stable outside the spinodal. At sufficiently
small v, or sufficiently large v, respectively, i.e., for

v < vliquid
1 or v > vvapor

2 ,

the system is in the liquid or vapor state, respectively. One obtains the bound-
ing points of the transition,

vliquid
1 and vvapor

2 ,

by means of a so-called Maxwell construction, defining the coexistence region.
Here one joins both bounding points of the curve (42.1) by a straight line
which defines the saturation vapor pressure ps(T3) for the temperature T =
T3:

p(T3, v
liquid
1 ) = p(T3, v

vapor
2 ) = ps(T3) .

This straight line section is divided approximately in the middle by the solu-
tion curve in such a way that (this is the definition of the Maxwell construc-
tion) both parts above the right part and below the left part of the straight
line up to the curve are exactly equal in area. The construction is described
in Fig. 42.2.

This means that the integral of the work done,
∮
vdp or −

∮
pdv ,

for the closed path from
(vliquid

1 , ps) ,

firstly along the straight line towards

(vvapor
2 , ps)

and then back along the solution curve p(T3, v) to the van der Waals’ equation
(42.1), is exactly zero, which implies, as we shall see later, that our fluid

Fig. 42.2. Maxwell construction. The fig-
ure shows the fictitious function p(V ) =
−(V + 1) · V · (V − 1), which corresponds
qualitatively to the Maxwell theory; i.e., the
l.h.s. and r.h.s. represent the marginal values
of the liquid and vapor phases, respectively.
The saturation-pressure line is represented by
the “Maxwell segment”, i.e., the straight line
p ≡ 0 between V = −1 and V = +1, where
according to Maxwell’s construction the ar-
eas above and below the straight line on the
r.h.s. and the l.h.s. are identical
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system must possess the same value of the chemical potential μ in both the
liquid and vapor states:

μ1(ps, T ) = μ2(ps, T ) .

If v lies between both bounding values, the value of v gives the ratio of the
fluid system that is either in the liquid or the vapor state:

v = x · vliquid
1 + (1 − x) · vvapor

2 , where 0 ≤ x ≤ 1 .

Only this straight line (= genuine “Maxwell part”) of the coexistence curve
and the condition μ1 = μ2 then still have a meaning, even though the van
der Waals curve itself loses its validity. This is due to the increasing influence
of thermal density fluctuations which occur in particular on approaching the
critical point

T = Tc, p = pc, v = vc .

Near this point according to the van der Waals theory the following Taylor
expansion would be valid (with terms that can be neglected written as + . . .):

−(p− pc) = A · (T − Tc) · (v − vc) +B · (v − vc)3 + . . . , (42.2)

since for T ≡ Tc there is a saddle-point with negative slope, and for T > Tc
the slope is always negative, whereas for p = ps < pc the equation p ≡ ps
leads to three real solutions. The coefficients A and B of the above Taylor
expansion are therefore positive.

42.2 Magnetic Phase Changes; The Arrott Equation

In magnetism the so-called Arrott equation,

H = A · (T − T0) ·mh +B · (mh)3 (42.3)

has analogous properties to the van der Waals equation in the neighborhood
of the critical point, (42.2).

T0 is the Curie temperature. As in the van der Waals equation, the coef-
ficients A and B are positive. For T ≡ T0, i.e., on the critical isotherm,

H = B · (mh)δ ,

with a critical exponent δ = 3. For T 
 T0 we have

H = A · (T − T0) ·mH ,

i.e., so-called Curie-Weiss behavior. Finally, for T < T0 and positive ΔH
we have a linear increase in H , if mH increases linearly from the so-called
spontaneous boundary value m

(0)
H that arises for H = 0+, together with
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a discontinuous transition for negative ΔH . This corresponds to a coexis-
tence region of positively and negatively magnetized domains, respectively,
along a straight line section on the x-axis, which corresponds to the Maxwell
straight line, i.e., for

−m(0)
H < mH < m

(0)
H .

Therefore, one can also perform a Maxwell construction here, but the result,
the axis H ≡ 0, is trivial, due to reasons of symmetry. However, the fact
that the Maxwell line corresponds to a domain structure with H ≡ 0, and
thus a corresponding droplet structure in the case of a fluid, is by no means
trivial.

The spontaneous magnetization m
(0)
H follows from (42.3) with H ≡ 0 for

T < T0, and behaves as
m

(0)
H ∝ (T0 − T )β ,

with a critical exponent

β =
1
2
.

Finally, one can also show that the magnetic susceptibility

χ =
dmH

dH

(
=
(

dH
dmH

)−1
)
,

is divergent, viz for T > T0 as

χ =
1

A · (T − T0)
.

On the other hand, for T < T0 it behaves as

χ =
1

2A · (T0 − T )
,

i.e., generally as
χ ∝ |T − T0|γ , with γ = 1

Fig. 42.3. The Arrott equation. The figure
shows three typical solutions to the Arrott
equation, which are discussed in the text. The
equation is H = A · (T −T0) ·M +B ·M3 and
is plotted for three cases: (i), T = 3, T0 = 1;
(ii), T = T0 = 1, and (iii), T = −0.5, T0 = 1.
In all cases we have assumed A ≡ 1



332 42 Phase Changes, van der Waals Theory and Related Topics

and different coefficients for T < Tc and T > Tc. The values given above for

β

(
=

1
2

)
, γ(= 1) and δ(= 3)

are so-called molecular field exponents. Near the critical point itself they must
be modified (see below).

42.3 Critical Behavior; Ising Model;
Magnetism and Lattice Gas

Molecular field theory (and thus the van der Waals expressions) are no longer
applicable in the neighborhood of the critical point, because thermal fluc-
tuations become increasingly important, such that they may no longer be
neglected. The spontaneous magnetization is then given by

mH ∝ (T0 − T )β with β ≈ 1
3

(
not :

1
2

)

for a three-dimensional system, and

β ≡ 1
8

in a two-dimensional space. As a consequence of thermal fluctuations, instead
of the Arrott equation, for T ≥ T0 the following critical equation of state
holds1:

H = a · |T − T0|γmH + b · |mH |δ + . . . , (42.4)

where

γ ≈ 4
3

and δ ≈ 5 for d = 3 , and

γ ≡ 7
4

and δ ≡ 15 for d = 2 .

However, independent of the dimensionality the following scaling law applies:

δ =
γ + β

β
,

i.e., the critical exponents are indeed non-trivial and assume values dependent
on d, but – independently of d – all of them can be traced back to two values,
e.g., β and γ.2

1 Here the interested reader might consider the exercises (file 8, problem 2) of
winter 1997, [2],

2 The “ scaling behavior ” rests on the fact that in the neighborhood of Tc there
is only a single dominating length scale in the system, the so-called thermal
correlation length ξ(T ) (see e.g. Chap. 6 in [38]).



42.3 Critical Behavior; Ising Model; Magnetism and Lattice Gas 333

The (not only qualitative) similarity between magnetism and phase
changes on liquefaction is particularly apparent when it comes to the Ising
model. In this model one considers a lattice with sites l and m, on which
a discrete degree of freedom sl, which can only assume one of the values
sl = ±1, is located. The Hamilton function (energy function) of the system
is written:

H = −
∑
l,m

Jl,mslsm −
∑
l

hlsl (Ising model) . (42.5)

The standard interpretation of this system is the magnetic interpretation,
where the sl are atomic magnetic moments: sl = ±1 correspond to the spin
angular momentum

sz = ±�

2
.

The energy parameters Jl,m are “ exchange integrals ” of the order of 0.1 eV,
corresponding to temperatures around 1000 Kelvin. The parameters hl cor-
respond to external or internal magnetic fields at the position rl.

However, a lattice-gas interpretation is also possible, in which case l and
m are lattice sites with the following property: sl = ±1 means that the site
l is either occupied or unoccupied, and Jl,m is the energy with which atoms
on the sites rl and rm attract (Jl,m > 0) or repel (Jl,m < 0) each other.

The similarity between these diverse phenomena is therefore not only
qualitative.

One obtains the above-mentioned molecular field approximation by re-
placing the Hamilton function in the Ising model, (42.5), by the following
expression for an (optimized3) single-spin approximation:

H ≈−→ HMF :=−
∑
l

(∑
m

2Jl,m〈sm〉T + h

)
· sl

+
∑
l,m

Jl,m · 〈sl〉T 〈sl〉T . (42.6)

Here, 〈sm〉T is a thermodynamic expectation value which must be de-
termined in a self-consistent fashion. In the transition from (42.5) to (42.6),
which looks more complicated than it is, one has dismantled the cumbersome
expression slsm, as follows:

slsm ≡ 〈sl〉T sm + sl〈sm〉T − 〈sl〉T 〈sm〉T + (sl − 〈sl〉T ) · (sm − 〈sm〉T ) ,

where we neglect the last term in this identity, i.e., the “ fluctuations ”, so
that from the complicated non-linear expression a comparatively simple self-

3 Here the optimization property, which involves a certain Bogoliubov inequality,
is not treated.
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consistent linear approximation is obtained:

hl → hl +
∑
m

2Jl,m〈sm〉T .

Here, sl is formally an operator, whereas 〈sl〉T is a real number.
Analogous molecular field approximations can also be introduced into

other problems. A good review of applications in the theory of phase transi-
tions is found in [41].
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43.1 Aim

The aim of this section is to achieve a deeper understanding on a microscopic
level of both the thermal equation of state p(T, V,N) and the calorific equa-
tion of state U(T, V,N) for a fluid system, not only for classical fluids, but
also for relativistic fluids by additionally taking Bose and Fermi statistics
(i.e., intrinsic quantum mechanical effects) into account.

Firstly, we shall make a few remarks about the history of the ideal gas
equation. The Boyle-Mariotte law in the form p · V = f(T ) had already
been proposed in 1660, but essential modifications were made much later.
For example, the quantity “mole” was only introduced in 1811 by Avogadro.
Dalton showed that the total pressure of a gas mixture is made up additatively
from the partial pressures of the individual gases, and the law

V (ΘC)
V0 ◦C

=
273.15 +ΘC

273.15
,

which forms the basis for the concept of absolute (or Kelvin) temperature,
was founded much later after careful measurements by Gay-Lussac († 1850).

43.2 The General Bernoulli Pressure Formula

The Bernoulli formula applies to non-interacting (i.e., “ideal”) relativistic
and non-relativistic gases, and is not only valid for ideal Maxwell-Boltzmann
gases , but also for ideal Fermi and Bose gases. It is written (as will be shown
later):

p =
(
N

V

)
· 1
3
〈
m(v)v2

〉
T
. (43.1)

m(v) =
m0√
1− v2

c2

is the relativistic mass, with m0 as rest mass, c the velocity of light and v the
particle velocity. The thermal average 〈. . .〉T is defined from the distribution
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function F (r,v) which still has to be determined:

〈A(r,v)〉T :=
∫∫

d3rd3vA(r,v) · F (r,v)∫∫
d3rd3vF (r,v)

. (43.2)

F (r,v)Δ3rΔ3v is the number of gas molecules averaged over time with r ∈
Δ3r and v ∈ Δ3v, provided that the volumes Δ3r and Δ3v are sufficiently
small, but not too small, so that a continuum approximation is still possible.

In order to verify (43.1) consider an element of area Δ2S of a plane wall
with normal n = ex. Let ΔN be the number of gas molecules with directions
∈ [ϑ, ϑ+Δϑ) and velocities ∈ [v, v+Δv) which collide with Δ2S in a time Δt,
i.e., we consider an inclined cylinder of baseΔ2Sn and height vxΔt containing
molecules which impact against Δ2S at an angle of incidence ∈ [ϑ, ϑ+ Δϑ)
in a time Δt, where

cos2 ϑ =
v2
x

v2
x + v2

y + v2
z

, for vx > 0

(note that v is parallel to the side faces of the cylinder). These molecules
are elastically reflected from the wall and transfer momentum ΔP to it. The
pressure p depends on ΔP , as follows:

p =
ΔP/Δt

Δ2S
, and ΔP =

∑
′′i∈Δt′′

2mi(vx)i , i.e, ΔP ∝ Δ2S ·Δt ,

with a well-defined proportionality factor. In this way one obtains explicitly:

p =

∞∫

vx=0

dvx

∞∫

vy=−∞
dvy

∞∫

vz=−∞
dvz2mv2

xF (r,v) , or

p =
∫

R3(v)

d3vF (r,v)mv2
x .

Now we replace v2
x by v2/3, and for a spatially constant potential energy we

consider the spatial dependence of the distribution function,

F (r,v) =
(
N

V

)
· g(v) , with

∫

R3(v)

d3vg(v) = 1 ;

this gives (43.1).

a) We shall now discuss the consequences of the Bernoulli pressure formula.
For a non-relativistic ideal gas

〈mv2〉T = 〈m0v
2〉T =: 2 · 〈εkin., Transl.〉T ,
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with the translational part of the kinetic energy. Thus, we have

p =
2
3
nV · 〈εkin., Transl.〉T , where nV :=

N

V
;

i.e., p ≡ 2Ukin.,Transl.

3V
.

On the other hand, for a classical ideal gas:

p = nV kBT .

Therefore, we have

〈εkin., Transl.〉T =
3
2
kBT .

This identity is even valid for interacting particles, as can be shown with
some effort. Furthermore it is remarkable that the distribution function
F (r,v) is not required at this point. We shall see later in the framework
of classical physics that

F (r,v) ∝ nV · exp
(
−βmv

2

2

)

is valid, with the important abbreviation

β :=
1

kBT
.

This is the Maxwell-Boltzmann velocity distribution, which is in agree-
ment with a more general canonical Boltzmann-Gibbs expression for the
thermodynamic probabilities pj for the states of a comparatively small
quantum mechanical system with discrete energy levels Ej , embedded in
a very large so-called microcanonical ensemble of molecules (see below)
which interact weakly with the small system, such that through this inter-
action only the Kelvin temperature T is prescribed (i.e., these molecules
only function as a “thermostat”). This Boltzmann-Gibbs formula states:

pj ∝ exp(−βEj) .

The expression

p ≡ 2Ukin.,Transl.

3V
is (as mentioned) not only valid for a classical ideal gas (ideal gases are so
dilute that they can be regarded as interaction-free), but also for a non-
relativistic ideal Bose and Fermi gas. These are gases of indistinguishable
quantum-mechanical particles obeying Bose-Einstein and Fermi statistics,
respectively (see Part III). In Bose-Einstein statistics any number of par-
ticles can be in the same single-particle state, whereas in Fermi statistics
a maximum of one particle can be in the same single-particle state.
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In the following we shall give some examples. Most importantly we should
mention that photons are bosons, whereas electrons are fermions. Other
examples are pions and nucleons (i.e., protons or neutrons) in nuclear
physics; gluons and quarks in high-energy physics and as an example from
condensed-matter physics, He4 atoms (two protons and two neutrons in
the atomic nucleus plus two electrons in the electron shell) andHe3 atoms
(two protons but only one neutron in the nucleus plus two electrons). In
each case the first of these particles is a boson, whereas the second is
a fermion.
In the nonrelativistic case, the distribution function is now given by:

F (r,v) =
1

exp
[
β
(
mv2

2 − μ(T )
)]
∓ 1

, (43.3)

with −1 for bosons and +1 for fermions. The chemical potential μ(T ),
which is positive at low enough temperatures both for fermions and in
the Maxwell-Boltzmann case (where ∓1 can be replaced by 0, since the
exponential term dominates). In contrast, μ is always ≤ 0 for bosons.
Usually, μ can be found from the following condition for the particle
density: ∫

F (r,v)d3v ≡ nV (r) .

Here for bosons we consider for the time being only the normal case
μ(T ) < 0, such that the integration is unproblematical.

b) We now come to ultrarelativistic behavior and photon gases. The Bernoulli
equation, (43.1), is valid even for a relativistic dependence of mass, i.e.,

p =
nV
3

〈
m0v

2

√
1− v2

c2

〉

T

.

Ultrarelativistic behavior occurs if one can replace v2 in the numerator by
c2, i.e., if the particles almost possess the speed of light. One then obtains

p ≈nV
3

〈
m0c

2

√
1− v2

c2

〉

T

and

p ≈U(T, V )
3V

, with U(T, V ) =

〈
m0c

2
N∑
j=1

1√
1− v2j

c2

〉

T

,

where the summation is carried out over allN particles. Now one performs
the simultaneous limit of m0 → 0 and vj → c, and thus obtains for
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a photon gas in a cavity of volume V the result

p ≡ U

3V
.

Photons travel with the velocity of light v ≡ c, have zero rest mass and
behave as relativistic bosons with (due to m0 → 0) vanishing chemical
potential μ(T ).
A single photon of frequency ν has an energy h ·ν. At a temperature T the
contribution to the internal energy from photons with frequencies in the
interval [ν, ν + dν) for a gas volume V (photon gas → black-body (cavity)
radiation) is:

dU(T, V ) =
V · 8πν2dν · hν

c3 ·
[
exp

(
hν
kBT

)
− 1

] ,

which is Planck’s radiation formula (see Part III), which we state here
without proof (see also below).
By integrating all frequencies from 0 to∞we obtain the Stefan-Boltzmann
law

U = V σT 4 ,

where σ is a universal constant. The radiation pressure of a photon gas
is thus given by

p =
U

3V
=
σT 4

3
.

c) We shall now discuss the internal energy U(T, V,N) for a classical ideal
gas. Previously we have indeed only treated the translational part of the
kinetic energy, but for diatomic or multi-atomic ideal gases there are addi-
tional contributions to the energy. The potential energy of the interaction
between molecules is, however, still zero, except during direct collisions,
whose probability we shall neglect. So far we have only the Maxwell rela-
tion

∂U

∂V
= T

∂p

∂T
− p = 0 .

This means that although we know

p =
N

V
kBT and thus ∂U/∂V = 0 ,

it is not yet fully clear how the internal energy depends on T . For
a monatomic ideal gas, however,

U ≡ Ukin., transl. .

From the Bernoulli formula it follows that

U ≡ 3
2
NkBT .
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However, for an ideal gas consisting of diatomic molecules the following
is valid for an individual molecule

ε � m0

2
〈
v2
s

〉
T

+ εrot. + εvibr. ,

where vs is the velocity of the center of mass, εrot. is the rotational part
of the kinetic energy and εvibr. the vibrational part of the energy of the
molecule. (The atoms of a diatomic molecule can vibrate relative to the
center of mass.) The rotational energy is given by

εrot. =
〈
L2
⊥
〉
T
/(2Θ⊥) .1

A classical statistical mechanics calculation gives

〈εrot.〉T = kBT ,

which we quote here without proof (→ exercises). There are thus two ex-
tra degrees of freedom due to the two independent transverse rotational
modes about axes perpendicular to the line joining the two atoms. Fur-
thermore, vibrations of the atom at a frequency

ω =
√

k

mred.
,

where k is the “spring constant” and

mred. =
m1m2

m1 +m2

the reduced mass (i.e. in this case mred = matom
2 ), give two further de-

grees of freedom corresponding to vibrational kinetic and potential energy
contributions, respectively. In total we therefore expect the relation

U(T ) = NkBT ·
(

3 + f

2

)

to hold, with f = 4. At room temperature, however, it turns out that this
result holds with f = 2. This is due to effects which can only be under-
stood in terms of quantum mechanics: For both rotation and vibration,
there is a discrete energy gap between the ground state and the excited
state,

(ΔE)rot. and (ΔE)vibr. .

Quantitatively it is usually such that at room temperature the vibrational
degrees of freedom are still “ frozen-in ”, because at room temperature

1 The analogous longitudinal contribution
˙
L2

||
¸

T
/(2Θ||) would be ∞ (i.e., it is

frozen-in, see below), because Θ|| = 0.



43.3 Formula for Pressure in an Interacting System 341

kBT � (ΔE)vibr. ,

whereas the rotational degrees of freedom are already fully “ activated ”,
since

kBT 
 (ΔE)rot. .

In the region of room temperature, for a monatomic ideal gas the internal
energy is given by

U(T ) =
3
2
NkBT ,

whereas for a diatomic molecular gas

U(T ) =
5
2
NkBT .2

This will be discussed further in the chapter on Statistical Physics.

43.3 Formula for Pressure in an Interacting System

At this point we shall simply mention a formula for the pressure in a classical
fluid system where there are interactions between the monatomic particles.
This is frequently used in computer simulations and originates from Robert
Clausius. Proof is based on the so-called virial theorem. The formula is men-
tioned here without proof:

p =
2
3
Ukin. transl.

V
+

1
6

〈∑N
i,j=1 F i,j · (ri − rJ )

〉
T

V
.

In this expression F i,j is the internal interaction force exerted on particle i
due to particle j. This force is exerted in the direction of the line joining the
two particles, in a similar way to Coulomb and gravitational forces.

2 Only for T � 1000K for a diatomic molecular gas would the vibrational degrees
of freedom also come into play, such that U(T ) = 7

2
NkBT .
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44.1 Introduction; Boltzmann-Gibbs Probabilities

Consider a quantum mechanical system (confined in a large volume), for
which all energy values are discrete. Then

Ĥψj = Ejψj ,

where Ĥ is the Hamilton operator and ψl the complete set of orthogonal, nor-
malized eigenfunctions of Ĥ . The observables of the system are represented by
Hermitian1 operators Â, i.e., with real eigenvalues. For example, the spatial
representation of the operator p̂ is given by the differential operator

p̂ =
�

i
∇

and the space operator r̂ by the corresponding multiplication operator. � =
h/(2π) is the reduced Planck’s constant, and i the square root of minus one
(the imaginary unit). The eigenvalues of Â are real, as well as the expectation
values

〈ψj |Â ψj〉 ,
which are the averages of the results of an extremely comprehensive series of
measurements of Â in the state ψj . One can calculate these expectation val-
ues, i.e., primary experimental quantities, theoretically via the scalar product
given above, for example, in the one-particle spatial representation, without
spin, as follows:

〈ψj |Â ψj〉 =
∫

d3rψ∗j (r, t)Â(p̂, r̂)ψj(r, t) , where

〈ψj |ψj〉 =
∫

d3rψ∗j (r, t)ψj(r, t) ≡ 1 .

The thermal expectation value at a temperature T is then
〈
Â
〉
T

=
∑
j

pj · 〈ψj |Âψj〉 , (44.1)

1 more precisely: by self-adjoint operators, which are a) Hermitian and b) possess
a complete system of eigenvectors.
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with the Boltzmann-Gibbs probabilities

pj =
e−

Ej
kB T

∑
l

e−
El

kBT

.

Proof of the above expression will be deferred, since it relies on a so-called
“ microcanonical ensemble ”, and the entropy of an ideal gas in this ensemble
will first be calculated.

In contrast to quantum mechanics, where probability amplitudes are added
(i.e., ψ = c1ψ1 + c2ψ2 + . . .), the thermal average is incoherent. This follows
explicitly from (44.1). This equation has the following interpretation: the sys-
tem is with probability pj in the quantum mechanical pure state ψj2, and
the related quantum mechanical expectation values for j = 1, 2, . . ., which
are bilinear expressions in ψj , are then added like intensities as in incoher-
ent optics, and not like amplitudes as in quantum mechanics. It is therefore
important to note that quantum mechanical coherence is destroyed by ther-
malization. This limits the possibilities of “quantum computing” discussed in
Part III (Quantum Mechanics).

The sum in the denominator of (44.1),

Z(T ) :=
∑
l

e−
El

kBT ,

is the partition function. This is an important function, as shown in the
following section.

44.2 The Harmonic Oscillator and Planck’s Formula

The partition function Z(T ) can in fact be used to calculate “ almost any-
thing ”! Firstly, we shall consider a quantum mechanical harmonic oscillator.
The Hamilton operator is

Ĥ =
p̂2

2m
+
mω2

0

2
x̂2

with energy eigenvalues

En =
(
n+

1
2

)
· �ω0 , with n = 0, 1, 2, . . . .

Therefore

Z(T ) =
∞∑
n0

e−β·(n+ 1
2 )·�ω0 , with β =

1
kBT

.

2 or the corresponding equivalence class obtained by multiplication with a complex
number
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Thus

Z(T ) = e
β�ω0

2 · Z̃(β) , with Z̃(β) :=
∞∑
n=0

e−n·β�ω0 .

From Z(T ) we obtain, for example:

U(T ) = 〈Ĥ〉T =
∞∑
n=0

pn · En =
∞∑
n=0

(
n+

1
2

)
�ω0 · pn

= �ω0 ·

⎛
⎜⎜⎝

⎧
⎪⎪⎨
⎪⎪⎩

∞∑
n=0

ne−(n+ 1
2 )β�ω0

∞∑
n=0

e−(n+ 1
2 )β�ω0

⎫
⎪⎪⎬
⎪⎪⎭

+
1
2

⎞
⎟⎟⎠

= �ω0 ×

⎛
⎜⎜⎝

⎧⎪⎪⎨
⎪⎪⎩

∞∑
n=0

ne−nβ�ω0

∞∑
n=0

e−nβ�ω0

⎫⎪⎪⎬
⎪⎪⎭

+
1
2

⎞
⎟⎟⎠

= − d
dβ

ln Z̃(β) +
�ω0

2
.

But Z̃(β), which is required at this point, is very easy to calculate as it is an
infinite geometric series:

Z̃(β) =
∞∑
n=0

e−nβ�ω0 ≡ 1
1− e−β�ω0

.

Finally we obtain

U(T ) = �ω0 ·
(

e−β�ω0

1− e−β�ω0
+

1
2

)
= �ω0 ·

(
1

eβ�ω0 − 1
+

1
2

)

= Ũ(T ) +
�ω0

2
, with Ũ(T ) =

�ω0

eβ�ω0 − 1
.

This expression corresponds to the Planck radiation formula mentioned pre-
viously.

As we have already outlined in Part III, Planck (1900) proceeded from the
opposite point of view. Experiments had shown that at high temperatures
Ũ = kBT appeared to be correct (Rayleigh-Jeans) while at low temperatures

Ũ(T ) = �ω0e−β�ω0

(Wien). Planck firstly showed that the expression

Ũ(T ) =
�ω0

eβ�ω0 − 1
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(or more precisely: the related expression for entropy) not only interpo-
lated between those limits, but also reproduced all relevant experiments in-
between. He then hit upon energy quantization and the sequence

En = n�ω0 ,

at that time without the zero-point energy

�ω0

2
.

Indeed, the expression

Ũ(T ) =
�ω0

eβ�ω0 − 1
describes the experimentally observed behavior at both high and low tem-
peratures, for example, for kBT 
 �ω0 (high T ) we have:

(
e

�ω0
kB T − 1

)
≈ �ω0

kBT
.

The expression

Ũ(T ) =
�ω0

eβ�ω0 − 1
is valid for a single harmonic oscillator of frequency

ν =
ω0

2π
.

One can regard �ω0 as the excitation energy of an individual quantum of
this electrodynamic oscillation mode (→ photons). In solids other vibrational
quanta of this kind exist (phonons, magnons, plasmons etc., see below), which
are regarded as “ quasi-particles ”. They have zero chemical potential μ, such
that the factor

〈n〉T :=
(
eβ�ω0 − 1

)−1

can be interpreted as the thermal expectation value for the number of quasi-
particles n. Thus

U(T ) = �ω0 ·
(
〈n〉T +

1
2

)
.

(Cf. one of the last sections in Part II, Sect. 21.1, dealing with dispersion, or
Sect. 53.5 below.)

To summarize, plane electromagnetic waves of wavenumber k = 2π/λ
travelling with the speed of light c in a cavity of volume V , together with the
relation

λ = c/ν = 2πc/ω0

between wavelength λ and frequency ν (or angular frequency ω0) can be in-
terpreted as the vibrational modes of a radiation field. Formally this field has
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the character of an ensemble of oscillators, the particles (or quasi-particles)
of the field, called photons (or the like). Therefore from Ũ(T ) one obtains
Planck’s radiation formula by multiplying the result for a single oscillator
with

V · 2 · d3k/(2π)3 = V · 8πν2dν/c3 .

(The factor 2 arises because every electromagnetic wave, since it is transverse,
must have two linearly independent polarization directions.)

If there is a small hole (or aperture) of area Δ2S in the outer boundary
of the cavity, it can be shown that in a time Δt the amount of energy that
escapes from the cavity as radiation is given by

ΔIE :=
∫ ∞

0

c

4
· uT (ω0)dω0 ·Δ2SΔt .

One can thus define a related spectral energy flux density jE(ω0) of the cavity
radiation

jE(ω0) =
c

4
· uT (ω0) . (44.2)

(The density uT (ω0) corresponds to the quantity Ũ(T ).) This expression is
utilized in bolometry, where one tries to determine the energy flux and tem-
perature from a hole in the cavity wall3.

3 A corresponding exercise can be found on the internet, see [2], winter 1997, file 8.



45 The Transition

to Classical Statistical Physics

45.1 The Integral over Phase Space; Identical Particles
in Classical Statistical Physics

The transition to classical statistical physics is obtained by replacing sums
of the form ∑

l

pl · g(El)

by integrals over the phase space of the system. For f degrees of freedom we
obtain:

∫

p1

∫

x1

. . .

∫

pf

∫

xf

dp1dx1 · . . . · dpfdxf
hf

· g(H(p1, . . . , pf , x1, . . . , xf )) ,

where h is Planck’s constant. Here the quasi-classical dimensionless measure
of integration

dp1dx1 · . . . · dpfdxf
hf

is, so to speak, quantized in units of hf ; one can show that this result is
invariant for Hamilton motion and corresponds exactly to the factor

V · d3k/(2π)3

(see below) in the Planck formula. It is also obtained with f = 3 and the de
Broglie relation

p = �k , as well as V = Δ3x .

With regard to phase-space quantization it is appropriate to mention here
Heisenberg’s uncertainty principle in the form

ΔxΔpx ∼ h .

The factor
V · d3k/(2π)3

indeed follows by taking a wave-field approach à la de Broglie:

ψ(x) ∝ eik·r ,
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and replacing the system volume by a box of equal size with periodic boundary
conditions, which practically does not alter the volume properties, but makes
counting the eigenmodes easier. For a one-dimensional system of size L, due
to

ψ(x + L) ≡ ψ(x) , we have: k ≡ 2πn
L

,

where n is integer. Thus
∫ ∞
−∞

dn · . . . = L

2π
·
∫ ∞
−∞

dk · . . . ,

and in three dimensions
∫

d3n · . . . = V

(2π)3
·
∫

d3k · . . . .

To summarize, the transition from a statistical treatment of quantum sys-
tems to classical statistical physics corresponds completely with the wave pic-
ture of matter of Louis de Broglie, which was indeed fundamental for the
introduction of Schrödinger’s equation (→ Quantum Mechanics). The fac-
tors h−f cancel each other out when calculating expectation values,

〈
Â(p,x)

〉
T

=
∫∫

dpdxÂ(p̂, x̂)∫∫
dpdx

;

but for calculating the entropy (see below) they give non-trivial contributions.
There is a further (perhaps even more important) “ legacy ” from quan-

tum mechanics: the effective indistinguishability of identical particles. For N
identical particles, whether fermions or bosons, one must introduce a permu-
tation factor 1/N ! in front of the integral in phase space (and of course put
f = 3N). Sackur and Tetrode (1913) pointed out long before quantum me-
chanics had been introduced that the basic property of additivity of entropy,
which had been required since Boltzmann, is only obtained by including this
permutation factor, even for the case of an ideal gas (see below). The fact that
even from the viewpoint of classical physics the molecules of an ideal gas are
indistinguishable is an astonishing suggestion, because one could indeed have
the idea of painting them in N different colors to make them distinguishable.
This could involve a negligible amount of work, but it would significantly
change the entropy of the system (see again later).

45.2 The Rotational Energy of a Diatomic Molecule

The rotational behavior of diatomic molecules will now be discussed in more
detail. This section refers in general to elongated molecules, i.e. where the
longitudinal moment of inertia of the molecule Θ|| is negligible compared
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to the transverse moment of inertia Θ⊥. In addition the ellipsoid describing
the anisotropy of the moment of inertia is assumed here to be a rotational
ellipsoid (→ Part I).

The rotational energy of such a molecule, on rotation about an axis per-
pendicular to the molecular axis, is found from the Hamiltonian

Ĥ =
L̂2

2Θ⊥
.

Due to quantization of the angular momentum the partition function is
given by

Z(T ) =
∞∑
l=0

(2l + 1) · e−β
�
2l·(l+1)
2Θ⊥ .

The factor (2l + 1) describes the degeneracy of the angular momentum, i.e.
the states

Yl,ml
(ϑ, ϕ) , for ml = −l,−l+ 1, . . . ,+l ,

have the same eigenvalues,
�

2l · (l + 1) ,

of the operator L̂2.
At very low temperatures,

kBT �
�

2·
2Θ⊥

,

rotation is quenched due to the finite energy gap

Δ :=
�

2

Θ⊥

between the ground state (l = 0) and the (triplet) first excited state (l = 1).
The characteristic freezing temperature Δ/kB lies typically at approximately
50 K.

At high temperatures, e.g. room temperature, rotations with l 
 1 are
almost equally strongly excited, so that we can approximate the sum

Z(T ) =
∞∑
l=0

(2l+ 1) · e−β
�
2l·(l+1)
2Θ⊥

by the integral
∞∫

l=0

dl · 2l · e−β
L̂2

2Θ⊥ .

Substituting (still for l
 1) l→ L
�
, it follows that

2l · dl ≈ 1
π

d2L

�2
.
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We thus arrive at exactly the classical result with two additional degrees of
freedom per molecule and an energy kBT

2 per degree of freedom. This last
result is called the law of equipartition of energy and is valid for canonical
variables pi and qi which occur as bilinear terms in the classical Hamilton
function.

The vibrations of diatomic molecules also involve two additional degrees
of freedom per molecule (kinetic plus potential energy), but at room temper-
ature they are generally still frozen-in, in contrast to the rotational degrees
of freedom.

The low-temperature behavior of diatomic molecules is thus determined
by quantum mechanics. For example,

U(T ) = [E0g0e−βE0 + E1g1e−βE1 + . . .]/[g0e−βE0 + g1e−βE1 + . . .] ,

with degeneracy factors gk, k = 0, 1, 2 . . ., where we write E0 = 0. The high-
temperature behavior follows classical statistical physics, for example,

U(T ) = f · kBT
2

.

The transition region satisfies the relation

kBT ≈ (E1 − E0) ;

the transition itself can be calculated numerically using the Euler-MacLaurin
summation formula.1 (Remarkably, it is non-monotonic.)

With the above integral expression for classical statistical physics we also
automatically obtain as special cases:

a) the Maxwell-Boltzmann velocity distribution:

F (v)d3v ∝ e−β
mv2

2 4πv2dv .

(The proportionality constant is obtained from the identity
∫
R3 d3x e

− x2

2σ2

(2πσ2)
3
2

= 1.)

b) the barometric pressure equation:

n(z)
n(0)

=
p(z)
p(0)

= exp(−βmgz) .

Alternative derivations for both the Maxwell-Boltzmann velocity distribution
and the barometric formula can be found in many textbooks, which provide
plausible verification of the more general Boltzmann-Gibbs distribution. This
means that one can arrive at these results by avoiding the transition from
a microcanonical to a canonical or grand canonical ensemble, for example,
if one wishes to introduce the Boltzmann-Gibbs distribution into the school
curriculum.
1 More details can be found in the “Göschen” booklet on Theoretical Physics by

Döring, [39], Band V, Paragraph 16 (in German).
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46.1 Free Energy

We next define the quantity Helmholtz Free Energy

F (T, V,mH , N) := U(T, V,mH , N)− T · S(T, V,mH , N) .

The meaning of this thermodynamic variable is “available energy”, i.e., taking
into account the heat loss, given by the entropy S multiplied by the absolute
temperature T , which is subtracted from the internal energy. Indeed one
arrives at this interpretation by forming the differential of F and then using
both the first and second laws:

dF = dU − T · dS − S · dT = δA+ δQ− T · dS − S · dT ≤ δA− S · dT .

This inequality,
dF ≤ δA− S · dT ,

is actually a way of stating the first and second laws simultaneously. In par-
ticular, under isothermal conditions we have

dF ≤ δAT .

For a reversible process the equality holds. Then

dF = −pdV +HdmH + μdN − SdT , i.e.,
∂F

∂V
= −p ;

∂F

∂mH
= H ;

∂F

∂N
= μ and

∂F

∂T
= −S .

By equating the mixed second derivatives

∂2F

∂x1∂x2
=

∂2F

∂x2∂x1

one obtains further Maxwell relations:

∂S

∂V
=
∂p

∂T
,

∂p

∂mH
= −∂H

∂V
and

∂μ

∂T
= − ∂S

∂N
.
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By transforming from an extensive expression for the work done, for ex-
ample,

δA = . . .+HdmH + . . . ,

to the corresponding intensive quantity, e.g.,

δA′ := δA− d(HmH) = . . .−mHdH + . . . ,

one obtains, instead of the Helmholtz free energy F (T, V,mH , N), the Gibbs
free energy

Fg(T, V,H,N) := F (T, V,mH(T, V,H,N), N)−mHH , 1

with
dFg = −pdV + μdN −mHdH − SdT

and the corresponding relations

∂Fg
∂H

= −mH ,
∂Fg
∂T

= −S ,

etc. The second law is now

dFg ≤ δA′ − SdT .

The Gibbs free energy Fg(T, V,H,N), and not Helmholtz free energy
F (T, V,mH , N), is appropriate for Hamiltonians with a Zeeman term, e.g.,
the Ising Hamiltonian (42.5), because the magnetic field is already taken into
account in the energy values. Whereas for non-magnetic systems one can
show that

F (T, V,N) ≡ −kBT · lnZ(T, V,N) ,

for magnetic systems

Fg(T, V,H,N) ≡ −kBT · lnZ ′(T, V,H,N) , with

Z ′(T, V,H,N) ≡
∑
l

e−βEl(V,H,N) .2

46.2 On the Impossibility of Perpetual Motion
of the Second Kind

The following six statements can be regarded as equivalent formulations of
the second law of thermodynamics:
1 Similarly, for magnetic systems one may also distinguish, e.g., be-

tween a Helmholtz enthalpy IHelmholtz(T, p,mH , N) and a Gibbs enthalpy
IGibbs(T, p,H,N).

2 Here the prime is usually omitted.
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1) It is not possible to construct an ideal heat pump in which heat can flow
from a colder body to a warmer body without any work being done to
accomplish this flow. This formulation is due to Robert Clausius (1857).
In other words, energy will not flow spontaneously from a low temperature
object to a higher temperature object.

2) An alternative statement due to William Thomson, later Lord Kelvin,
is essentially that you cannot create an ideal heat engine which extracts
heat and converts it all to useful work.

Thus a perpetual motion machine of the second kind, which is a hypotheti-
cal device undergoing a cyclic process that does nothing more than convert
heat into mechanical (or other) work, clearly does not exist, since it would
contradict the second law of thermodynamics. On the other hand, as we shall
see later, a cyclically operating (or reciprocating) real heat pump is perfectly
feasible, where an amount of heat Q2 is absorbed at a low temperature T2

and a greater amount of heat Q1 = Q2 + ΔQ is given off at a higher tem-
perature T1 (> T2), but – to agree with the first law of thermodynamics –
the difference ΔQ must be provided by mechanical work done on the system
(hence the term “heat pump”).

3a)All Carnot heat engines3 (irrespective of their operating substance) have
the same maximum efficiency

η :=
ΔA

Q1
=
Q1 −Q2

Q1
, where η ≤ T1 − T2

T1

is also valid. The equal sign holds for a reversible process.
The following (apparently reciprocal) statement is also valid:

3b)All Carnot heat pumps have the same maximum efficiency

η′ :=
Q1

ΔA
=

Q1

Q1 −Q2
, with η′ ≤ T1

T1 − T2
.

The equal sign again applies for a reversible process.
The efficiencies η and η′ are defined in a reciprocal way, and in the op-
timum case also give reciprocal values. However the inequalities are not
reciprocal; the irreversibility of statistical physics expresses itself here,
since in both cases we have the inequality sign ≤, due to, for example,
frictional losses.
Figure 46.1 shows the (T, V )-diagram for a Carnot process. Depending on
whether we are considering a Carnot heat engine or a Carnot heat pump
the cycle (which comprises two isotherms and two adiabatics) runs either
clockwise or anticlockwise.

3 Usually more practical than Carnot machines are Stirling machines, for which
the adiabatics of the Carnot cycle (see below) are replaced by isochores, i.e.,
V = constant.
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Fig. 46.1. Carnot process in a (V, T ) rep-
resentation. Carnot cycle (running clock-
wise: → heat engine; running anticlockwise:
→ heat pump) in a (V, T )-diagram with
isotherms at T1 = 2 and T2 = 1.5 (arbi-
trary units) and adiabatics T · V 5/3 = 1.5
and 0.5, as for an ideal gas. Further expla-
nation is given in the text

We shall now calculate the value of the optimal efficiency for a Carnot
cycle

ηopt. = 1/η′opt.

by assuming that the working substance is an ideal gas. Firstly, there is an
isothermal expansion from the upper-left point 1 to the upper-right point
1′ in Fig. 46.1 at constant temperature T1. The heat absorbed during this
expansion is Q1. Then we have a further expansion from 1′ down to 2′,
i.e., from the upper-right to the lower-right (i.e., from T1 = 2 to T2 = 1.5),
which occurs adiabatically according to

pV κ = TV κ−1 = const. , where κ =
Cp
Cv

=
5
3
,

down to point 2′ at the lower temperature T2. Subsequently there is an
isothermal compression to the left, i.e., from 2′ → 2 at T2, with heat
released Q2. Then the closed cycle W is completed with an adiabatic
compression leading from 2 up to the initial point 1. It follows that

∮

W

dU ≡ 0 ;

on the other hand we have
∮

W

dU = Q1 −Q2 −ΔA ,

where the last term is the work done by the system.

The efficiency

η :=
ΔA

Q1
≡ Q1 −Q2

Q1



46.2 On the Impossibility of Perpetual Motion of the Second Kind 357

can now be obtained by calculating the work done during the isothermal
expansion

A1→1′ =

1′∫

1

pdV ≡ Q1 ,

since for an ideal gas
ΔU1→1′ = 0 .

Furthermore

1′∫

1

pdV = NkBT1

1′∫

1

dV
V

, i.e. Q1 = NkBT1 ln
V1′

V1
.

Similarly one can show that

Q2 = NkBT2 ln
V2′

V2
.

For the adiabatic sections of the process

(1′, T1)→ (2′, T2) and (2, T2)→ (1, T1)

we have
T1V

κ′
1′ = T2V

κ′
2′ and T1V

κ′
1 = T2V

κ′
2 ,

where
κ′ :=

CP
CV
− 1 =

2
3
.

We then obtain

V1′

V1
=
V2′

V2
and η = 1−

T2 ln V2′
V2

T1 ln V1′
V1

,

finally giving

η = 1− T2

T1
,

as stated.
We shall now return to the concept of entropy by discussing a fourth

equivalent version of the second law:

4) The quantity

S :=

2∫

1

δQrev

T

is a variable of state (where “rev” stands for “reversible”), i.e., the integral
does not depend on the path. Using this definition of the state variable
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entropy we may write:

dS ≥ δQ

T
,

with the equality symbol for reversible heat flow.

We now wish to show the equivalence between 4) and 3) by considering
a Carnot heat engine. According to 4) we have

∮
δQ

T
=
Q1

T1
− Q2

T2
,

but from 3) for a reversible process

η = 1− Q1

Q2
≡ 1− T2

T1
, i.e.,

∮
δQrev

T
≡ 0 .

For an irreversible process the amount of heat given out at the lower tem-
perature T2 is greater than in the reversible case. Thus

dS >
δQrev

T
.

One may approximate general reciprocating (or cyclic) processes by in-
troducing Carnot coordinates as indicated in Fig. 46.2 below:

Fig. 46.2. Carnot coordinates. This (V, T ) diagram shows a single curved line
segment in the upper-right hand part of the diagram and two sets of four horizontal
isotherms and four non-vertically curved adiabatics, respectively, forming a grid
N of so-called Carnot coordinates. For an asymptotic improvement of the grid
the single curve is extended to the bounding line ∂G of a two-dimensional region
G, and since the internal contributions cancel each other in a pairwise manner,
one may show analogously to Stokes’s integral theorem that the following is valid:H
∂G

δQrev

T
≡ P

Carnot processes∈N
δQrev

T
. Finally, instead of

P
...∈N

one may also write the

integral
R
G
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What actually is entropy ? Many answers seem to be rather vague: Entropy
is a measure of disorder, for example. An increase in entropy indicates loss of
information, perhaps. However the fact that entropy is a quantitative mea-
sure of information, which is very important in both physics and chemistry,
becomes clear when addressing the following questions:

– How large is the number N of microstates or configurations of a fluid
consisting of N molecules (ν = 1, . . . , N , e.g., N ∼ 1023), where each
molecule is found with a probability pj in one of f different orthogonal
states ψj (j = 1, . . . , f)?

– How large is the number N of texts of length N (= number of digits
per text) which can be transmitted through a cable, where each digit
originates from an alphabet {Aj}j=1,....,f of length f and the various Aj
occur with the probabilities (= relative frequencies) pj?

– How many times N must a language student guess the next letter of
a foreign-language text of length N , if he has no previous knowledge of
the language and only knows that it has f letters Aj with probabilities
pj, j = 1, . . . , f?

These three questions are of course identical in principle, and the answer
is (as shown below):

N = 2N ·I = e
N·S
kB , where I =

1
N

ldN

is the so-called Shannon information entropy. Apart from a normalization
factor, which arose historically, this expression is identical to the entropy used
by physicists. Whereas Shannon and other information theorists used binary
logarithms ld (logarithms to the base 2) physicists adopt natural logarithms
(to the base e = exp(1) = 2.781 . . ., lnx = (0.693 . . .) · ldx). Then we have

S

kB
=

1
N

lnN ,

which apart from unessential factors is the same as I. Proof of the above
relation between N and I (or S

kB
) is obtained by using some “permutation

gymnastics” together with the so-called Stirling approximation, i.e., as fol-
lows.



360 47 Shannon’s Information Entropy

The number of configurations is

N =
N !

N1!N2! · . . . ·Nf !

because, for a length of text N there are N ! permutations where exchange
gives in general a new text, except when the digits are exchanged amongst
each other. We then use the Stirling approximation: for

N 
 1 , N ! ∼=
√

2πN
(
N

e

)N
·
(

1 +O
(

1
N

))
;

i.e., by neglecting terms which do not increase exponentially with N , we may
write

N ! ≈
(
N

e

)N
.

Thus

N ∼=
(
N
e

)(N1+N2+...+Nf )

(
N1
e

)N1 · . . . ·
(
Nf

e

)Nf
, or

lnN ∼= −
f∑
j=1

Nj · ln
(
Nj
N

)
≡ −N

f∑
j=1

pj · ln pj ,

which gives

N ∼= eN ·
S

kB ,with
S

kB
≡ −

f∑
j=1

pj · ln pj . (47.1)

Using the same basic formula for S one can also calculate the thermody-
namic entropy S(T ), e.g., with the Boltzmann-Gibbs probabilities

pj =
e−βEj

Z(T )
,

in agreement with the expressions

Z(T ) =
∑
j

e−βEj , U(T ) = −d lnZ
dβ

, F (T ) = −kBT · lnZ(T ) ,

with F (T ) = U(T )− T · S(T ) , i.e. S(T ) ≡ −∂F
∂T

.

The relative error made in this calculation is

O
(

ln
√

2πN
N

)
,

which for N 
 1 is negligible.
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To end this section we shall mention two further, particularly neat for-
mulations of the second law:

5) A spontaneously running process in a closed system can only be reversed
by doing work on the system.

This is equivalent to stating:

6) Heat only flows spontaneously from a higher to a lower temperature. This
last formulation due to Max Planck goes back to Robert Clausius (see
above).1 At the same time he recognized that it is not easy to prove the
second law in a statistical-physical way. This is possible, but only using
stochastic methods.2

Work done on a closed system, δA > 0, always leads to the release of heat
from the system, δQ < 0, since

dU(≡ δA+ δQ) = 0 .

The entropy must therefore have increased along the “ first leg of the cycle ”,
since

∮
dS = 0. The requirement that we are dealing with a closed system,

i.e., dU = 0, is thus unnecessarily special, since one can always modify an
open system, e.g., with heat input, δQ > 0, to be a closed one by including
the heat source. In this sense, closed modified systems are the “most general ”
type of system, and we shall see in the following sections in what ways they
may play an important part.

1 We should like to thank Rainer Höllinger for pointing this out.
2 see, e.g., the script Quantenstatistik by U.K.



48 Canonical Ensembles

in Phenomenological Thermodynamics

48.1 Closed Systems and Microcanonical Ensembles

The starting point for the following considerations is a closed system, corre-
sponding to the so-called microcanonical ensemble. The appropriate function
of state is S(U, V,N). The relevant extremum principle is S != max., so that
ΔS > 0 until equilibrium is reached. Furthermore

dS =
δQrev

T
=

dU − δA
T

=
dU + pdV − μdN

T
; thus

1
T

=
(
∂S

∂U

)

V,N

,
p

T
=
(
∂S

∂V

)

U,N

and
μ

T
= −

(
∂S

∂N

)

U,V

.

The probabilities pj are given by

pj =
1
N , if U − δU < Ej ≤ U

otherwise pj = 0. Here, δU is, e.g., an instrumental uncertainty, and

N (= N (U − δU, U))

is the total number of states with

U − δU < Ej ≤ U .

We shall see below that the value of δUU is not significant unless it is extremely
small in magnitude.

48.2 The Entropy of an Ideal Gas
from the Microcanonical Ensemble

Inserting the relation

pj ≡
1
N for U − δU < Ej ≤ U ,
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otherwise ≡ 0, into the relation for S gives

S = kB · lnN , with

N = N (U − δU, U) =
V N

h3NN !
·

⎧⎪⎪⎨
⎪⎪⎩

∫

U−δU< p2
1+...+p2

N
2m ≤U

d3Np

⎫⎪⎪⎬
⎪⎪⎭

.

The braced multidimensional integral in p-space is the difference in volume
between two spherical shells in R3N (p) with radii

R1(U) :=
√

2mU and R2(U − δU) :=
√

2m · (U − δU) .

This gives

N =
V N

h3NN !
Ω(3N)(2m)3N/2 ·

{
U3N/2 − (U − δU)3N/2

}
,

where Ω(d) is the volume of a unit sphere in d-dimensional space.
Here it is important to note that the whole second term, (U − δU)3N/2,

can be neglected compared to the first one, U3N/2, except for extremely small
δU , since normally we have

(
U − δU
U

)3N/2

� 1 ,

because N is so large1, i.e., one is dealing with an exponentially small ratio.
We therefore have

N ≡ N (U) =
V NΩ(3N)(2mU)3N/2

h3NN !
and

S = kB lnN = kBN ·
(

ln
V

V0
+

3
2

ln
U

U0
+ ln

[
s0V0U

3
2
0

])
.

Here, V0 and U0 are volume and energy units (the exact value is not signifi-
cant; so they can be arbitrarily chosen). The additional factor appearing in
the formula, the “atomic entropy constant”

s′0 := ln
[
s0V0U

3
2
0

]

is obtained from the requirement that (for N 
 1)

N · ln[s0V0U
3
2
0 ] != ln

[
(2m)3N/2Ω(3N)

h3NN !
V N0 U

3N
2

0

]
.

1 E.g., one should replace U by 1 and (U − δU) by 0.9 und study the sequence
(U − δU)N for N = 1, 2, 3, 4, . . ..
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The Stirling approximation was used again, since

Ω(3N) ≈
(

2eπ
3N

) 3N
2

.

Using

N ! ∼=
(
N

e

)N

one thus obtains:

s′0 ≡ ln

[(
4πm
h2

) 3
2

· e 5
2 · V0U

3
2
0

]
.

The entropy constant therefore only depends on the type of gas via the log-
arithm of the particle mass m.

The above result is reasonable because, with the factor N , it explicitly
expresses the additivity for the entropy of an ideal gas, which (as already
mentioned) depends crucially on the permutation factor 1

N ! for identical par-
ticles. Furthermore the law

1
T

=
∂S

∂U

yields the relation between U and T :

U =
3
2
NkBT .

Similarly
p

T
=
∂S

∂V

yields pV = NkBT . Only the expression for the chemical potential μ is
somewhat less apparent, but we shall require it later: From

μ

T
= − ∂S

∂N

it follows that

μ =
5
2
kBT − T ·

S

N
≡ U + pV − T · S

N
.

Thus μ ≡ G
N , i.e. the chemical potential μ is identical to the free enthalpy

G = U + pV − T · S

per particle. This identity is generally valid for a fluid system.
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48.3 Systems in a Heat Bath: Canonical and Grand
Canonical Distributions

In the previous section we treated closed systems. Now we shall concentrate
on closed systems that consist of a large system, a so-called heat bath, to
which a small partial system (which is actually the system of interest) is
weakly coupled. For a canonical ensemble the coupling refers only to energy,
and only serves to fix the temperature. For a so-called grand canonical en-
semble on the other hand not only exchange of energy takes place with the
large system but also particles are exchanged. In this case not only the tem-
perature T of the small system is regulated by the heat bath but also the
chemical potential μ.

In the next section we shall consider how the transition from a micro-
canonical ensemble to a canonical and grand canonical ensemble is achieved
mathematically.

For a canonical ensemble the appropriate variable of state is the Helmholtz
free energy F (T, V,N). For a magnetic system it is the Gibbs free energy
Fg(T, V,H,N). They can be obtained from the corresponding partition func-
tions

Z(T, V,N) :=
∑
j

e−βEj(V,N) and Z ′(T, V,H,N) :=
∑
j

e−βEj(V,H,N) ,

where

F (T, V,N) = −kBT · lnZ(T, V,N) and
Fg(T, V,H,N) = −kBT · lnZ ′(T, V,H,N) .

In a grand canonical ensemble not only the energy fluctuates but also the
number of particles of the “small system”

Ĥψ
(k)
j = E

(k)
j ψ

(k)
j and N̂ψ

(k)
j = Nkψ

(k)
j .

One therefore has, in addition to the energy index j, a particle-number index
k. Thus, in addition to the reciprocal temperature

β =
1

kBT

the chemical potential μ appears as a further distribution parameter. Both
parameters control the expectation values, i.e.,

〈N̂〉β,μ =

〈∑
j,k

Nkp
(k)
j

〉

β,μ

and
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U = 〈Ĥ〉β,μ :=

〈∑
j,k

E
(k)
j p

(k)
j

〉

β,μ

, where

p
(k)
j (β, μ) =

e−β
“
E

(k)
j −μNk

”

Z(β, μ)
,

with the grand canonical partition function

Z(β, μ) :=
∑
j,k

e−β
“
E

(k)
j −μNk

”
.

The grand canonical Boltzmann-Gibbs distribution p(k)
j is therefore very simi-

lar to the canonical Boltzmann-Gibbs distribution. In particular the grand
canonical partition function Z is related to the grand canonical thermody-
namic potential Φ in a similar way as the free energy F (T, V,N) is related to
the usual partition function Z(T, V,N):

Φ(T, V, μ) = −kBT · lnZ(T, V, μ) .

The quantity Φ is the Gibbs grand canonical potential ; phenomenologically it
is formed from the free energy by a Legendre transformation with respect to
N :

Φ(T, V, μ) = F (T, V,N(T, V, μ))− μN , and dΦ = −pdV −Ndμ− SdT .

48.4 From Microcanonical to Canonical
and Grand Canonical Ensembles

For an ergodic2 system one can calculate the results for observables Â1, which
only involve the degrees of freedom of the small system “1”, according to the
microcanonical distribution for EI ≈ U − εi.3
2 A classical system in a given energy range U−dU < E ≤ U is called ergodic if for

almost all conformations in this energy region and almost all observables A(p, q)

the time average 1
t0

t0R
0

dtA(p(t), q(t)) for t0 → ∞ is almost identical with the

so-called ensemble average: 〈A(p, q)〉 =

R
U−dU<H(p,q)≤U

df pdf qA(p,q)

R
U−dU<H(p,q)≤U

df pdf q
. Most fluid

systems are ergodic, but important non-ergodic systems also exist, for example,
glasses and polymers, which at sufficiently low temperature often show unusual
behavior, e.g. ageing phenomena after weeks, months, years, decades or even
centuries, because the investigated conformations only pass through untypical
parts of phase space, so that for these systems application of the principles of
statistical physics becomes questionable.

3 Here and in the following we shall systematically use small letters for the small
system and large letters for the large system (or heat bath). For example, U ≈
EI + εi.



368 48 Canonical Ensembles in Phenomenological Thermodynamics

〈A1〉 =

∑
U−dU−εi<EI≤U−εi

〈ψi|Â1ψi〉N (2)(U − εi)
∑

U−dU−εi<EI≤U−εi

N (2)(U − εi)
. (48.1)

In the following we shall omit the indices 1 and (2).
We now introduce a Taylor expansion for the exponent of

N (U − εi) ,

viz :

N (U − εi) ≡ e
S(U−εi)

kB = e
S(U)
kB · e−

εi
kB
· dS
dU · e−

ε2
i d2S

2kBdU2 · . . . .

The first term is a non-trivial factor, the second term on the right-hand-side
of this equation, gives e−

εi
kBT ; one can already neglect the next and following

terms, i.e., replace the factors by 1, as one sees, for example, for N → ∞ in
the term

ε2i
kB

d2S

dU2
, with U ≈ 3

2
NkBT , thus obtaining e−

ε2
i d

3NkBdT ( 1
kBT ) → 1 ,

i.e., if one uses a monatomic ideal gas as heat bath and replaces factors

e−
const.

N

by unity. Inserting this Taylor expansion into the above formula one obtains
the Boltzmann-Gibbs distribution for a canonical system. One may proceed
similarly for the case of a grand canonical ensemble.
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We shall now calculate the saturation vapor pressure ps(T ), which has already
been discussed in the context of van der Waals’ theory; ps(T ) is the equilib-
rium vapor pressure at the interface between the liquid and vapor phase of
a fluid. We require here the quantity

dps
dT

.

There are two ways of achieving this.

a) The first method is very simple but rather formal. Inversely to what is
usually done it consists of replacing differential quotients where necessary
by quotients involving differences, i.e. the non-differentiable transition
function from gas to liquid state from the Maxwell straight line is ap-
proximated by a gently rounded, almost constant transition function in
such a way that for the flat parts of a curve one may equate quotients of
differences with corresponding differential quotients.

Having dealt with mathematical aspects, we shall now consider the physics
of the situation: We have V = N1v1 +N2v2, where v1 and v2 are the atomic
specific volumes in liquid and vapor phase respectively, andN1 andN2 are the
corresponding numbers of molecules. We therefore have ΔV = ΔN ·(v2−v1),
since N = N1 + N2 is constant. For N2 → N2 + ΔN we also have N1 →
N1 −ΔN , and thus from the first law:

ΔU = δQ+ δA = l ·ΔN − pΔV ,

with the (molecular) specific latent heat of vaporization l(T ) (≈ 530 cal/gH2O).
Using the Maxwell relation, which is essentially a consequence of the second
law, we obtain

(
∂U

∂V

)

T

=
ΔU

ΔV
= T

∂p

∂T
− p = T

dpS
dT
− ps .

Thus ∂p
∂T = . . ., or

dps(T )
dT

=
l(T )

T · (v2 − v1)
. (49.1)
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This is known as the Clausius-Clapeyron equation. We shall now derive some
consequences from this equation, and in doing so we must take the sign into
account. In the case of water boiling, everything is “normal” provided one
is not in the close vicinity of the critical point: v2 (vapor) 
 v1 (liquid), and
thus from (49.1) we obtain

dps
dT
≈ l

T · v2
, and with v2 ≈

kBT

ps
:

dps
dT
≈ l · ps
kBT 2

, i.e., ps(T ) ≈ p0 · e−
l

kBT ,

with constant p0. As a result there is a very fast drop in saturation vapor
pressure with increasing temperature.

There is no peculiarity here with regard to the sign; however, the Clausius-
Clapeyron equation (49.1) is valid not only for a boiling transition but also
for melting. For water-ice transitions, v2, the atomic specific volume of the
liquid, is 10% smaller than v1, the atomic specific volume of the ice phase1.
As a result of this,

dps
dT

=
l

T · (v2 − v1)
is now negative, in agreement with the anomalous behavior of the phase
diagram of H2O mentioned earlier.

We now come to a second derivation of the Clausius-Clapeyron equation:

b) The method is based on an ideal infinitesimal Carnot process, which one
obtains by choosing for a given liquid or gas segment in the equation of
state the line ps(T ) corresponding to the Maxwell construction as the
lower Carnot path (i.e. T2 ≡ T ), whereas one chooses the saturation
pressure line ps(T + ΔT ) as the upper Carnot path (i.e. T1 ≡ T + ΔT ).
We then find

ΔA =

⎛
⎝
∫

1

−
∫

2

⎞
⎠ psdV = ps · (v2 − v1)ΔN !=

ΔT

T
·Q1 ,

since
η =

ΔA

Q1
=
ΔT

T
.

Using

Q1 = l ·ΔN and ΔA = Δps · (v2 − v1)ΔN =
ΔT

T
·Q1 ,

the Clausius-Clapeyron equation is obtained: (49.1).
These derivations imply – as we already know – that the Maxwell relations,
the second law, and the statement on the efficiency of a Carnot process are
all equivalent, and that in the coexistence region the straight-line Maxwell
section, e.g., ps(T ), is essential.

1 Chemists would again prefer to use the specific molar volume.



50 Production of Low

and Ultralow Temperatures;
Third Law of Thermodynamics

Low temperatures are usually obtained by a process called adiabatic demag-
netization. Ultralow temperatures are achieved (in Spring 2004 the record was
Tmin = 0.45× 10−9 Kelvin) in multistage processes, e.g., firstly by adiabatic
demagnetization of electron-spin systems, then by adiabatic demagnetization
of nuclear spins, thirdly by laser cooling, and finally by evaporation methods.
(Many small steps prove to be effective.) Evaporation cooling is carried out on
atomic and molecular gas systems, mainly gases of alkali atoms, that are held
in an electromagnetic “ trap ”. The phenomenon of Bose-Einstein condensa-
tion is currently being investigated on such systems at extreme temperatures
( <∼ 10−7 K and lower powers of ten). This will be discussed later. In 2001
the Nobel Prize was awarded for investigations of the Bose-Einstein conden-
sation of ultracold gases of alkali atoms (see below). These investigations
could only be performed after it had been discovered how to obtain ultralow
temperatures in a reproducible and controllable manner.1

Next we shall consider the production of low temperatures in general. The
techniques usually depend on “ x-caloric effects ”, e.g., the magnetocaloric
effect. We shall consider the following examples:

a) Gay-Lussac’s experiment on the free expansion of a gas from a container
(see above). This occurs at a constant internal energy, such that

(
dT
dV

)

U

= −
∂U
∂V
∂U
∂T

.

With the Maxwell relation

∂U

∂V
= T

∂p

∂T
− p

and van der Waals’ equation of state

p = − a

v2
+
kBT

v − b we obtain
(

dT
dV

)

U

= − a

c
(0)
v v2

,

1 Nobel Prize winners: Cornell, Ketterle, Wiemann.
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i.e. the desired negative value (see above). In this connection we should
recall that the exact differential

dU =
∂U

∂T
dT +

∂U

∂V
dV != 0 .

b) The Joule-Thomson effect has also been discussed above. This involves
a pressure drop at constant internal enthalpy per particle. One obtains
the expression

(
dT
dp

)

I/N

= −
∂I/N
∂p

∂I/N
∂T

= . . . =
2a
kBT
− b

c
(0)
p · (1 − . . .)

,

i.e., giving a negative value above and a positive value below the so-called
inversion temperature TInv.. Thus, for T < TInv. (this is the normal case)
a drop in temperature occurs for a reduction in pressure.

c) Thirdly we shall consider the magnetocaloric effect or the phenomenon
of temperature reduction by adiabatic demagnetization, i.e., dH < 0 for
constant entropy S(T,H). Here one obtains as above:

(
dT
dH

)

S

= −
∂S
∂H
∂S
∂T

,

so that one might imagine reducing the temperature indefinitely, if the
entropy S(T,H) behaved in such a way that for T = 0 at finite H also
S(0, H) were finite, with

∂S

∂H
< 0 .

One would then only need to magnetize the magnetic sample in a first
stage (step 1) isothermally (e.g., H → 2H) and subsequently (step 2) to
demagnetize it adiabatically, i.e. at constant S, in order to reach absolute
zero T = 0 immediately in this second step. This supposed behavior of
S(T,H) is suggested by the high temperature behavior :

S(T,H) ∝ a(T )− b

H2
.

However, it would be wrong to extrapolate this behavior to low temper-
atures.

In fact, about 100 years ago the third law of thermodynamics was proposed by
the physico-chemist Walter Nernst. This is known as Nernst’s heat theorem,
which can be formulated, as follows:

Let S(T,X) be the entropy of a thermodynamic system, where X repre-
sents one or more of the variables of state, e.g., X = V , p , mj or H . Then,
for X > 0, the limit as S(T → 0, X) is zero; and the convergence to zero is
such that the absolute zero of temperature in Kelvin, T = 0, is unattainable
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Fig. 50.1. Third Law of Thermodynam-
ics (schematically). The low temperature
behavior of the entropy S between 0 and
4 units is presented vs. the absolute tem-
perature T (here between 0 and 1.2 units);
only the 2nd and 4th curve from above
(i.e., with S(T = 0) ≡ 0) are realis-
tic, whereas the 1st and 3rd lines repre-
sent false extrapolations suggested by the
high-T asymptotes

in a finite number of steps. In the case of, for example, adiabatic demagneti-
zation this results in a countably-infinite number of increasingly small steps
(see Fig. 50.1):

Figure 50.1 shows the qualitative behavior of the entropy S(T,H) of
a paramagnetic system as a function of T for two magnetic field strengths.
The first and third curves from the top correspond to extrapolations sug-
gested by high-temperature behavior; but they do not give the true behavior
for T → 0. This is instead represented by the second and fourth curves, from
which, for the same high-temperature behavior, we have for all H �= 0, as
postulated by Nernst:

S(T = 0, H) ≡ 0 .

The third law, unattainability of absolute zero in a finite number of steps
– which is not a consequence of the second law – can be relatively easily
proved using statistical physics and basic quantum mechanics, as follows.

Consider the general case with degeneracy, where, without loss of gener-
ality, E0 = 0. Let the ground state of the system be g0-fold, and the first
excited state g1-fold; let the energy difference (= E1 − E0) be Δ(X). Then
we obtain for the x-caloric effect :

(
dT
dX

)

S

= −
∂S
∂X
∂S
∂T

, where S = −∂F
∂T

and F = −kBT · lnZ ,

with the following result for the partition function:

Z = g0 + g1 · e−βΔ + . . . .

Elementary calculation gives

S(T,X)
kB

= ln g0 +
g1
g0
· Δ

kBT
· e−

Δ
kBT + . . . ,

where the dots describe terms which for kBT � Δ can be neglected. If one
assumes that only Δ, but not the degeneracy factors g0 and g1, depend on
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X , it follows strictly that
(

dT
dX

)

S

≡ T ·
∂Δ
∂X

Δ
+ . . . ,

since the exponentially small factors

∝ e−βΔ

in the numerator and denominator of this expression cancel each other out. In
any case, for T → 0 we arrive at the assertion of unattainability of absolute
zero. Furthermore, we find that the assumption, S → 0, in Nernst’s heat
theorem is unnecessary. In fact, with g0 ≡ 2 for spin degeneracy of the ground
state, one obtains:

S(T = 0, H ≡ 0) = kB ln 2(�= 0) .

In spite of this exception for H ≡ 0, the principle of unattainability of abso-
lute zero still holds, since one always starts from H �= 0, where S(0, H) = 0.

In this respect one needs to be clear how the ultralow temperatures men-
tioned in connection with Bose-Einstein condensation of an alkali atom gas
are achieved in a reasonable number of steps. The deciding factor here is that
ultimately only the translational kinetic energy of the atoms is involved, and
not energetically much higher degrees of freedom. Since we have

M
〈
v2
〉
T

2
=

3kBT
2

,

the relevant temperature is defined by the mean square velocity of the atoms,

kBT =
M ·

〈
v2
〉
T

3
,

where we must additionally take into account that the relevant mass M is
not that of an electron, but that of a Na atom, which is of the order of
0.5 × 105 larger. One can compare this behavior with that of He4, where at
normal pressure superfluidity (which can be considered as some type of Bose-
Einstein condensation for strong interaction) sets in at 2.17 K, i.e., O(1) K.
The mass of a Na atom is an order of magnitude larger than that of a He4

atom, and the interparticle distance δr in the Na gas considered is three
to four orders of magnitude larger than in the He4 liquid, so that from the
formula

kBTc ≈
�

2

2M(δr)2

one expects a factor of ∼ 10−7 to ∼ 10−9, i.e. temperatures of

O
(
10−7

)
to O

(
10−9

)
K

are accessible.
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At ultralow temperatures of this order of magnitude the phenomenon of
Bose-Einstein condensation comes into play (see Sect. 53.3).

In this case the third law only plays a part at even lower temperatures
where quantization of the translational energy would become noticeable, i.e.,
at temperatures

kBT <∼
�

2

2MeffR2
,

where R describes the size scale of the sample and Meff may be the mass
of a Na atom in the normal state above the Bose condensation (or in the
condensed phase: an effective mass). Anyhow, we should remind ourselves
that at these low temperatures and the corresponding low particle numbers
(some 104 to 105 instead of 1023) one should work with the microcanonical
ensemble, not the canonical or grand canonical ones. However one should
also remember that the basic temperature definition

M ·
〈
v2
s

〉
= 3kT

is also valid for microcanonical ensembles.



51 General Statistical Physics

(Formal Completion; the Statistical Operator;
Trace Formalism)

Is it really necessary to diagonalize the Hamilton operator Ĥ of the system
(Ĥ → Ej), if one “just” wants to calculate the partition function

Z(T ) =
∑
j

e−
Ej

kB T

of the system and obtain the thermodynamic potentials or thermal expecta-
tion values

〈
Â
〉
T

=
∑
j

e−
Ej

kB T

Z(T )
〈ψj |Âψj〉 ?

The answer to this rhetorical question is of course negative. Instead of di-
agonalizing the Hamiltonian we can make use of the so-called trace formalism.
This approach is based on the definition:

trace Â :=
∑
j

〈ψj |Âψj〉 ,

which is valid for every complete orthonormal1 basis. It is easy to show that
the expression on the r.h.s. of this equation, the sum of the diagonal elements
of the matrix

Ai,j := 〈ψi|Âψj〉 ,
is invariant with respect to a base change. It therefore follows, for example,
that

Z(T ) = trace e−βĤ ,

where
e−βĤ

is the operator, which has in the base of the eigenfunctions of Ĥ a matrix
representation with diagonal elements

e−βEj .

(In another base it can also be defined by the power series
∞∑
n=0

(−β)n

n! Ĥn.)

1 Orthonormality is not even necessary. On the other hand, operators for which
the trace exists, belong to a class of their own (trace class).
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In addition there is a Hermitian density operator 
̂, also called state oper-
ator or statistical operator, whose eigenvalues are just the probabilities pj (ψj
are the corresponding eigenstates). For example, one can write the relation

S

kB
= −

∑
j

pj ln pj

abstractly as
S

kB
= −trace{
̂ ln 
̂} ,

or even more abstractly:
S

kB
= −〈ln 
̂〉�̂ ,

just as one also uses, instead of the formula

〈Â〉 :=
∑
j

pj〈ψj |Âψj〉 ,

the more abstract formula

〈Â〉�̂ := trace
̂Â .

However, one must realize that for this additionally gained freedom of avoid-
ing diagonalizing the Hamiltonian there is the penalty of more complicated
calculations2. For example, it is easy to calculate the partition function if one
has already diagonalized Ĥ , whereas without diagonalization of it, calcula-
tion of


̂ :=
e−βĤ

tracee−βĤ

becomes very difficult. Indeed, the trace of a matrix product involves a double
sum, e.g.,

trace
̂Â =
∑
j,k


j,kAk,j .

2 A type of “conservation law for effort” holds here.



52 Ideal Bose and Fermi Gases

In the following section we shall consider identical particles, such as elemen-
tary particles and compound particles, as well as quasi-particles which are
similar to light quanta (photons, electromagnetic waves): e.g., sound quanta
(phonons, elastic waves) and spin-wave quanta (magnons). These particles or
quasi-particles are either

a) fermions (particles or quasi-particles with spin s = 1/2, 3/2, . . . in units
of �), such as electrons, protons, neutrons and He3, as well as quarks, from
which nucleons are formed (nucleons are compound particles made up of
three quarks), or

b) bosons (particles or quasi-particles with spin s = 0, 1, 2, . . . in units of
�), such as, for example, the pion, which is an elementary particle of rest
mass m0 ≈ 273 MeV/c2 consisting of two quarks; or a He4 particle; or
one of the above-named quasi-particles which all possess zero rest mass
and, as a result, vanishing chemical potential.

Fermionic quasi-particles also exist in solids. For example, in polar semi-
conductors there are the so-called polarons, which are electrons accompanied
by an attached phonon cloud. This fermionic quasi-particle possesses a non-
negligible rest mass.

If these particles or quasi-particles do not interact with each other (or
only interact weakly), the energy levels are given by:

En1,n2,... =
nmax∑
n1=0

. . .

nmax∑
nf =0

. . . (n1ε1 + n2ε2 + . . .) ,

and the number of particles is:

Nn1,n2,... =
nmax∑
n1=0

. . .

nmax∑
nf=0

. . . (n1 + n2 + . . .) .

There are thus n1 particles or quasi-particles in single-particle states of en-
ergy ε1, etc. For fermions, nmax = 1, while for bosons, nmax = ∞. These
statements are fundamental to quantum mechanics (viz Pauli’s exclusion
principle). In addition, if there is no particle interaction (i.e., in a dilute
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Bose or Fermi gas), the partition function can be factorized as follows:

Ztot(β, μ) = Z1(β, μ) · Z2(β, μ) · . . . · Zf (β, μ) · . . . ,

where β and μ are reciprocal temperature and chemical potential which de-
termine the mean values of energy and particle number respectively.

It is therefore sufficient to calculate the partition function for a single
factor, i.e., a single one-particle level. For example,

Zf (β, μ) :=
nmax∑
nf=0

e−β·(εf−μ)nf .

For fermions the sum consists of only two terms (nmax = 1); a convergence
problem does not arise here. For bosons on the other hand, since nmax is
without an upper limit1, there is an infinite geometric series, which converges
if μ < εf

2. In both cases it then follows that

Zf (β, μ) =
(
1± e−β(εf−μ)

)±1

. (52.1)

For the ±-terms we have a plus sign for fermions and a minus sign for bosons.
Only a simple calculation is now required to determine lnZf and the expec-
tation value

〈nf 〉T :=
d

d(βμ)
lnZf .

One then obtains the fundamental expression

〈nf 〉T,μ =
1

eβ(εf−μ) ± 1
, (52.2)

where the plus and minus signs refer to fermions and bosons respectively. For
a given temperature

T =
1

kBβ

and average particle number N , the chemical potential μ is determined from
the auxiliary condition:

N =
∑
j

〈nj〉T,μ ,

1 An analogy from everyday life: With regard to the problem of buying a dress,
French women are essentially fermionically inclined, because no two French
women would buy the same dress, irrespective of the cost. On the other hand,
German women are bosonically inclined, since they would all buy the same dress,
provided it is the least expensive.

2 The limiting case μ → 0− is treated below in the subsection on Bose-Einstein
condensation.
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as long as for all j we have εj < μ. (In the boson case, generally μ ≤ 0, if the
lowest single-particle energy is zero. As already mentioned, the case μ = 0 is
treated below in the chapter on Bose-Einstein condensation.)

The classical result of Boltzmann statistics is obtained in (52.2) when the
exponential term dominates the denominator, i.e., formally by replacing the
term ±1 by zero. It is often stated that different statistics are required for
fermions as opposed to bosons or classical particles, but this is not really the
case, since the derivation of (52.2) is made entirely within the framework of
the grand canonical Boltzmann-Gibbs statistics, and everything is derived
together until the difference between fermions and bosons is finally expressed
by the value of nmax prescribed by the Pauli principle (see above), which
depends on the fact that the spin angular momentum (in units of �) is an
integer for bosons (→ nmax =∞) and a half-integer for fermions (→ nmax =
1). In this respect the (non-classical) property of spin is crucial. (We have
already seen in quantum mechanics how the Pauli principle is responsible for
atomic structure and the periodic table of elements.) It is important to make
this clear in school and undergraduate university physics and not to disguise
the difficulties in the theory.3

3 e.g., one should mention that spin with all its unusual properties is a consequence
of relativistic quantum theory and that one does not even expect a graduate
physicist to be able to understand it fully.
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Condensation Phenomena

In the following sections we shall consider several applications of phenomeno-
logical thermodynamics and statistical physics ; firstly the Sommerfeld theory
of electrons in metals as an important application of the Fermi gas formal-
ism, see [40]. Actually, we are not dealing here with a dilute Fermi gas, as
prescribed by the above introduction, but at best with a Fermi liquid, since
the particle separations are as small as in a typical liquid metal. However,
the essential aspect of the formalism of the previous chapter – which is that
interactions between particles can be neglected – is still valid to a good ap-
proximation, because electrons avoid each other due to the Pauli principle. As
a result, Coulomb interactions are normally relatively unimportant, as long
as the possibility of avoidance is not prevented, e.g., in a transverse direction
or in d = 1 dimension or by a magnetic field.

53.1 Electrons in Metals (Sommerfeld Formalism)

a) The internal energy U(T, V,N) of such an electron system can be written

U(T, V,N) =

∞∫

0

dε · ε · g(ε) · 〈n(ε)〉T,μ , (53.1)

where g(ε) is the single-particle density; furthermore, dεg(ε) is equal to
the number of single-particle energies εf with values in the interval dε
(i.e., this quantity is ∝ V ).

b) Similarly, for the number of particles N :

N =

∞∫

0

dεg(ε) · 〈n(ε)〉T,μ . (53.2)

The value of the chemical potential at T = 0 is usually referred to as the
Fermi energy εF , i.e. μ(T = 0) = εF . Depending on whether we are dealing
at T = 0 with a non-relativistic electron gas or an ultrarelativistic electron
gas (εF � mec

2 or 
 mec
2, where me ≈ 0.5 MeV/c2 is the electron mass),
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we have from the Bernoulli pressure formula either

p =
2U
3V

or p =
U

3V
.

For electrons in metals, typically εF = O(5) eV, so that at room temperature
we are dealing with the non-relativistic case1.

An approximation attributable to Sommerfeld, [40], will now be described.
Firstly,

〈n(ε)〉T,μ for T = 0

is given by a step function, i.e.

〈n(ε)〉T→0,μ = 0 for ε > εF and = 1 for all ε < εF

(neglecting exponentially small errors). Furthermore we can write the inte-
grals (53.1) and (53.2), again neglecting exponentially small errors, in the
form ∞∫

0

dε
dF
dε
· 〈n(ε)〉T,μ ,

where F (ε) are stem functions,

F (ε) =

ε∫

0

dεf(ε) ,

of the factors
f(ε) := ε · g(ε) and f(ε) := g(ε)

appearing in the integrands of equations (53.1) and (53.2). Compared to

〈n(ε)〉T,μ ,

a function whose negative slope behaves in the vicinity of ε = μ as a (slightly
smoothed) Dirac δ function:

− d
dε
〈n(ε)〉T,μ ≡

1

4kBT ·
(
cosh ε−μ

2kBT

)2 (≈ δ(ε− μ)) ,

the functions F (ε), including their derivatives, can be regarded at ε ≈ μ as
approximately constant. On partial integration one then obtains2:

∞∫

0

dε
dF
dε
· 〈n(ε)〉T,μ =

∞∫

0

dεF (ε) ·
(
− d

dε
〈n(ε)〉T,μ

)
,

1 The next chapter considers ultrarelativistic applications.
2 The contributions which have been integrated out disappear, since F (0) = 0,

whereas 〈n(∞)〉T,μ = 0.
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where one inserts for F (ε) the Taylor expansion

F (ε) = F (μ) + (ε− μ) · F ′(μ) +
(ε− μ)2

2
· F ′′(μ) + . . . .

On integration, the second, odd term gives zero (again neglecting exponen-
tially small terms O(e−βεF )). The third gives

π2

6
(kBT )2 · F ′′ ,

so that, for example, from (53.2) the result

N =

μ∫

0

dεg(ε) +
π2(kBT )2

6
g′(μ) + . . .

follows, where as usual the terms denoted by dots are negligible. The integral
gives

μ∫

0

dεg(ε) = N + (μ(T )− εF ) · g(εF ) + . . . ,

so that:

μ(T ) = εF −
π2(kBT )2

6
· g
′(εF )
g(εF )

+ . . . .

From (53.1) we also obtain

U(T, V,N) =

μ∫

0

dεεg(ε) +
π2(kBT )2

6
· [εg(ε)]′|ε=μ + . . . .

Inserting the result for μ(T ), after a short calculation we thus obtain (with

U0 :=
εF∫
0

dεε · g(ε)):

U(T, V,N) = U0 +
π2(kBT )2

6
g(εF ) + . . . .

By differentiating U with respect to T it follows that
electrons in a metal give a contribution to the heat capacity:

CV =
∂U

∂T
= γkBT ,

which is linear in T and where the coefficient γ is proportional to the density
of states at the Fermi energy εF :

γ ∝ g(εF ) .
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For free electrons
g(ε) ∝ ε 1

2 ,

so that

g′(εF )
g(εF )

=
1

2ε2F
, and μ(T ) = εF ·

(
1− π2(kBT )2

12(εF )2
+ . . .

)
,

with negligible terms +. . . . This corresponds to quite a small reduction in
μ(T ) with increasing temperature T . This is quite small because at room
temperature the ratio (

kBT

εF

)2

itself is only of the order of (10−2)2, as εF ≈ 3 eVcorresponds to a temperature
of 3·104 K (i.e., hundred times larger than room temperature). In some metals
such as Ni and Pd,

(kBT )2
g′

g

is indeed of the same order of magnitude, but in these metals g′(εF ) has
a negative sign – in contrast to the case of free electrons – so that at room
temperature μ(T ) is here slightly larger than at T = 0. (However, in some
compounds γ is larger by several orders of magnitude than usual (even at zero
temperature) so that one speaks of “heavy fermions” in these compounds.)

Electrons in conventional metals behave at room temperature (or generally
for (kBT )2 � ε2F ) as a so-called degenerate Fermi gas.

The essential results of the previous paragraphs, apart from factors of the
order of O(1), can be obtained by adopting the following simplified picture:
Only the small fraction

kBT

εF

of electrons with energies around ε = μ ≈ εF are at all thermally active.
Thus, multiplying the classical result for the heat capacity

CV =
3
2
NkB by

kBT

εF
,

we obtain the above linear dependence of the heat capacity on temperature
for electrons in a metal, apart from factors of the order of O(1). In particular
g(εF ) can be approximated by

N

εF
.

In order to calculate the zero-point energy U0 one must be somewhat
more careful. Indeed,

U0 =

εF∫

0

dεε · g(ε) .
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For free electrons with spin g-factor 2 we have:

U0 = 2V

kF∫

0

d3k

(2π)3
�

2k2

2m
.

Using
d3k = 4πk2dk

we obtain the non-relativistic zero-point pressure

p0 =
2U0

3V
≡ 2

15π2
εFk

3
F , with εF =

�
2k2
F

2m
.

In the result for a classical ideal gas,

p =
N

V
kBT ,

one thus has to replace not only the thermal energy kBT by εF but also the
number density

N

V
by k3

F

(i.e. essentially by the reciprocal of the third power of the separation of two
electrons at the Fermi energy). In this way one again obtains the correct
result, apart from dimensionless constants.

The zero-point pressure of an electron gas (also referred to as degeneracy
pressure) is the phenomenon preventing the negatively charged electrons in
metals from bonding directly with the positively charged atomic nuclei. This
degeneracy pressure also plays an important part in the following section.

53.2 Some Semiquantitative Considerations on the
Development of Stars

The sun is a typical main sequence star with a radius R ≈ 106 km and
a surface temperature T ≈ 6000 K; the mass of the sun is denoted below
by M0. In contrast to the main sequence stars, so-called white dwarfs, e.g.,
Sirius B, typically have a mass M ≤ 1.4 M0 of the same order as the sun,
but radii about two orders of magnitude smaller, with R ≈ 104 km. So-called
neutron stars have somewhat larger mass, M ≥ 1.4 M0, but R ≈ 10 km, and
so-called black holes, which (roughly put) “suck in” all surrounding matter
and radiation below a critical distance, have a mass M ≥ (3 to 7) M0 or even

 M0. The attractive force due to gravitation is opposed in the interior of
the star by a corresponding repulsive force or internal pressure(see below).

Equilibrium between this internal pressure and the gravitational attrac-
tion in a spherical shell between r and r + dr is found in general from the
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following identity:

4πr2 · [p(r + dr) − p(r)] = −γM(r)
r2

4πr2dr · 
M (r) .

Here 
M (r) is the mass density, from which we obtain, after omitting the
index M , the differential equation:

dp
dr

= −γM(r)
(r)
r

,

where M(r) is the total mass up to a radius r:

M(r) =

r∫

0

dr̃4πr̃2
(r̃) .

Main sequence stars lie on a diagonal line of negative slope in a so-called
Hertzsprung-Russel diagram, this being a plot of luminosity L versus mass
M . For these stars the pressure p is determined from the ideal gas equation:

p =
N

V
kBT .

The behavior of the functionM(r) can be roughly characterized as follows:
In a small core region around the centre of a star, which we are not interested
in at present, temperatures are extremely high (107 K and higher) due to
fusion processes (hydrogen is “burnt” to form helium), whereas outside the
core in the remainder of the star including its surface region there is a roughly
constant3, relatively moderate temperature, e.g., T ≈ 6000 K. Using this
rough approximation we can replace the above differential equation by an
average relationship between pressure p, particle density

nV :=
N

V

and temperature T where

p̄ = n̄V · kBT .4

Thus,
dp
dr
≈ p̄

R
.

3 This is a crude approximation, which is nonetheless essentially true for our prob-
lem.

4 In the following the “bar” indicating an average will usually be omitted.
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Writing

̄ = n̄V ·mproton

we obtain the following sequence of equations:

p̄


̄ · c2 =
kBT

mproton · c2
!= γ

M/c2

R
=:
R(M)
R

≈ 10−6 ,

i.e. the so-called Schwarzschild radius of the sun,

R(M0) = γM0/c
2 ,

has an approximate value of only 1 km.
For main sequence stars the ratio

p̄


̄c2
=
R(M)
R

tells us how small general relativistic space curvature effects are, i.e. O(10−6).
(We shall see later that in the case of white dwarfs such effects are also small:
O(10−4); not until we come to neutron stars do the effects reach the order of
magnitude of 1.)

After exhausting the original nuclear fuel (i.e., when hydrogen in the
core region has been fully converted into helium) an accelerating sequence
of processes occurs, commencing with the conversion of helium into heav-
ier elements and ending with iron. During this sequence the temperature T
decreases gradually, and as a consequence, as we see from the above series
of equations, the radius of the star and its luminosity increase, whereas the
total mass remains approximately constant, since the core represents only
a small fraction of the total mass of the star. As a consequence, a so-called
red giant is formed, which is a type of star such as the bright twinkling
red star of Betelgeuze in the upper left part of the constellation of Orion.
Finally a so-called supernova explosion occurs, where the gas cloud of the
star is almost completely repelled and the remaining rest mass collapses
into a) a white dwarf for M <∼ 1.4M0, b) a neutron star for M >∼ 1.4M0

or c) a black hole for M >∼ (3 to 7)M0 or 
 M0
5. (These numbers must be

regarded as only very approximate, especially with regard to black holes.
The point is, however, that the gravitational attraction can be counter-
acted by the degeneracy pressure of the electron gas in a white dwarf or
the neutron gas in a neutron star, but no longer in the case of a black
hole6.)

5 e.g., 106 M0
6 or perhaps by quantum fluctuations
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a) For white dwarfs we may write (using a non-relativistic approach):

p = p
(e)
0 =

2U (e)
0

3V
≈ nV ε(e)F , 
M = mp · nV ,

ε
(e)
F ≈

�
2

2me

(
1
d2
1,2

)2

≈ �
2

2me

(
n

(e)
V

) 2
3
.

The indices (e) and (p) (see below) refer to electrons and protons respec-
tively. Now define the mixed density



(p,e)
0 :=

mp[
�

mec

]3 .

The proton mass mp occurs in the numerator of this expression. However,
in the denominator we have the third power of the Compton wavelength
of the electron, since the electrons determine the pressure and density in
a white dwarf, whereas the protons determine its mass. Thus for a white
dwarf we have (apart from numerical factors of the order of unity):

p


Mc2
≈ me

mp

(

M



(p,e)
0

) 2
3

!=
R(M)
R

≈ 10−4 , since R ≈ 104 km .

Incidentally the surface temperature of a white dwarf is possibly very
much higher than for main sequence stars, e.g., T ≈ 27000 K in a standard
case. However, for the degenerate electron gas theory to be applicable, it
is only important that the condition εF 
 kBT nevertheless holds well:

εF ≈
mpc

2

2000
≈ 105 eV , =̂109 K .

Here we have used the fact that the proton mass is approximately 2000
times that of an electron, i.e., mpc

2 ≈ 931MeV, whereas mec
2 is only

0.511MeV.
b) Neutron stars : If the imploding main-sequence star is heavier than about

1.4 times the mass of the sun, the electrons can no longer withstand the
gravitational attraction, not even using a relativistic calculation. But the
electrons react with the equally abundant protons in an inverse β-process
to become neutrons. (Normal β-decay is indeed n → p+ e+ ν̄e, with an
electron-antineutrino, ν̄e. However, the theory of equilibrium in a chemical
reaction, which we shall go into later, also allows transitions primarily
to occur in the opposite direction when an electron and proton become
squashed to a separation of the order of 10−13 cm, i.e., p+e→ n+νe). In
1987 a supernova in the Large Magellanic Cloud occurred accompanied
by a neutrino shower that scientists in Japan were able to observe. For
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such an explosion the remaining mass collapses to an object with a radius
of only about 10 km to form a neutron star. Since the moment of inertia

J =
2
5
MR2

has decreased by, say, 10 orders of magnitude, the angular velocity ω
correspondingly increases by as many orders of magnitude, due to the
law of conservation of angular momentum. Finally one thus observes the
star’s remains as a so-called pulsar with enormously high values of ω
and correspondingly large magnetic field fluctuations, which periodically
recur like a cosmic beacon as the pulsating star rotates. In any case, since
neutron and proton have approximately the same mass, we may write:

p(n−star)


Mc2
=

(

M



(n)
0

) 2
3

!=
R(M)
R

≈ 0.1 to 1 .

The curvature of space, which Albert Einstein predicted in his general
theory of relativity, then becomes important. In calculating 
0 one must
now insert the Compton wavelength of the neutron, and not that of the
electron. This is indicated by the indices (n−star) and (n).

c) Black holes: For M 
M0 even the degeneracy pressure of the neutrons is
not sufficient to compensate for gravitational attraction, and a so-called
black hole forms. In this instance the Schwarzschild radius

R(M) = γ · M
c2

has the meaning of an event horizon, which we shall not go into here.
Instead we refer you to the little RoRoRo-volume by Roman and Han-
nelore Sexl, “White Dwarfs – Black Holes”, [42], in which the relation-
ships are excellently shown in a semi-quantitative way at high-school or
undergraduate level.7

53.3 Bose-Einstein Condensation

After having considered an ideal Fermi gas we shall now deal with an ideal
(i.e. interaction-free) Bose gas. We have

N(≡ 〈N〉T,μ) =
∑

j=0,1,2,...

〈nj〉T,μ ,

7 The book by Sexl and Urbantke, [43], is more advanced. Black holes are treated
particularly thoroughly in the very “ fat ” book by Misner, Thorne and Wheeler,
[44].
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where the index j = 0, 1, 2, . . . refers to single particle modes, and

〈nj〉T,μ =
1

e
εj −μ

kB T − 1

is valid. Here, εj are the single-particle energies, where the lowest energy is
given by εj=0 ≡ 0. Dividing by the very large, but finite volume of the system
V , we obtain

nV (T, V, μ) :≡ N

V
=

V −1

e−
μ

kBT − 1
+

∞∫

0+

dεg̃(ε)

e
ε−μ
kB T − 1

. (53.3)

0+ is an arbitrarily small positive number. The integral on the right-hand-side
of the equation replaces the sum

∑
j=1,2,...

〈nj〉T,μ

in the so-called thermodynamic limit V → ∞, whereas the first term on the
right, which belongs to j = 0, gives zero in this limit, as long as the chemical
potential μ is still negative. The quantity

g̃(ε) :=
g(ε)
V

remains finite in the thermodynamic limit ; and for Bose particles (with inte-
gral spin s) the following is valid:

g̃(ε)dε = (2s+ 1) · d3k

(2π)3
.

With

d3k = 4πk2dk and ε(k) :=
�

2k2

2MB
,

where MB is the mass of the Bose particle, we obtain a result in the form

g̃(ε) = (2s+ 1) · cM · ε
1
2 ,

where cM is a constant with dimensions,

cM =
M

3
2

2
1
2 π2�3

.

Thus,

nV =
V −1

e−
μ

kB T − 1
+ (2s+ 1) · cM ·

∞∫

0+

εxdε

e
ε−μ
kB T − 1

, with x :=
1
2
.
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We shall now consider the limit μ → 0 for negative μ. The following is
strictly valid:

∞∫

0

εxdε

e
ε−μ
kB T − 1

≤
∞∫

0

εxdε

e
−μ

kBT − 1
≡ Γ (x+ 1) · ζ(x + 1) · (kBT )x+1 . (53.4)

If x > (−1), we have the gamma function

Γ (x+ 1) =

∞∫

0

txe−tdt , and ζ(s) , for s > 1 ,

the so-called Riemann zeta function

ζ(s) =
∞∑
n=1

1
ns

;

(ζ(3
2 ) is 2.612 . . .).
Thus, as long as the density remains below the critical limit nc(T ), which

results at a given temperature from the above inequality for μ → 0, every-
thing is “normal”, i.e. the first term on the right-hand-side of (53.3) can be
neglected in the thermodynamic limit, and μ (< 0) is determined from the
equation

nV (T, μ) = (2s+ 1) · cM ·
∞∫

0

ε
1
2 dε

e
ε−μ
kB T − 1

.

The critical density given above is ∝ T x+1. On the other hand, at a given
density one thus has a critical temperature Tc(nV ).

However, if at a given temperature the critical density nc(T ) is exceeded
or at a given density nV the temperature is below Tc, i.e.,

nV ≡ nc(T ) +ΔnV , with ΔnV > 0 ,

then the chemical potential remains “held” constant at zero,

μ(T, nV ) ≡ 0 , ∀T ≤ Tc .

Also,

ΔnV =
V −1

e−
μ

kB T − 1
, i.e. ≈ kBT

−V · μ , and

−μ =
kBT

V ΔnV
→ 0 for V →∞ .
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Thus in the thermodynamic limit the behavior is not smooth at Tc, but
shows a discontinuity in the derivative

dμ(T )
dT

.

One can easily ascertain the order of magnitude of the critical tempera-
ture: Whereas for metals (Fermi gases) the following relation holds between
Fermi energy and density (apart from a factor of the order of unity)

εF ≈
�

2

2me
n

2
3
V ,

for Bose particles we have

kBTc ≈
�

2

2MB
n

2
3
V

(more exactly: kBTc = �
2

2MB

n
2
3
V

2.612...). Both expressions correspond to each
other in the substitution εF → kBTc with simultaneous replacement of the
particle mass me →MB. The factor

n
2
3
V

is therefore common to both, because, e.g.,

�
2

2me
n

2
3
V

gives the characteristic value of the kinetic energy of the electrons in the re-
gion of the Fermi energy. These are the same semi-quantitative considerations
as in the previous section on star development.

The first term on the right-hand-side of equation (53.3) can be assigned
to the superfluid component. It relates to condensed particles in their ground
state. The fraction of this so-called condensate is 100% at T = 0 K, decreasing
continuously to 0% as T → Tc. The second term is the normal fluid. It
distributes itself over the single-particle excited states corresponding to grand
canonical Boltzmann-Gibbs statistics for bosons.

At normal pressure He4 becomes liquid at 4.2K and superfluid at 2.17K.
The fact that the superfluid component possesses no internal friction can be
experimentally demonstrated by the well-known “fountain effect” and other
similar effects. However, if one calculates the critical temperature Tc from
the above exact formula, one obtains 3.5 K instead of 2.17K, and at very low
temperatures only 8% of the liquid is condensed, not 100%: The reason for
these quantitative discrepancies lies in interaction effects which are neglected
in the theory of an ideal Bose gas. Pure Bose-Einstein condensation, i.e.,
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with negligible particle interaction, has only recently8 been found at ultralow
temperatures (Tc <∼ 10−7 K) in alkali gases.

The other noble gases (Ar, Kr, Xe) do not show superfluid behavior,
because they first become solid. He on the other hand remains liquid at
normal pressure even at very low temperatures, because the kinetic energy
of the atoms is too large for solidification to occur. In contrast to He4 the
He3 isotope is a fermion, not a boson. Therefore, it was a great surprise
when in 1972 Osheroff et al., [26], found superfluidityy in He3. All three
authors of that paper were awarded the physics Nobel prize of 1996 honoring
their detection that also He3 becomes superfluid, however, at temperatures
about three orders of magnitude smaller than He4: Tc = 2.6 mK9for He3.
As we shall see later, this occurs by the formation of so-called Cooper pairs
each consisting of two fermions, which themselves form a pair condensate10.
Legget was able to interpret the experiments of Osheroff et al. theoretically
and was awarded the Nobel prize in 2003 for this achievement, together with
Ginzburg and Abrikosov, who were rewarded for their work in the field of
superconductivity (see next section).

53.4 Ginzburg-Landau Theory of Superconductivity

The phenomena of superconductivity and superfluidity are in fact very closely
connected: a superconducting system can be thought of as a charged super-
fluid (see below), though the charge carriers are not of the elementary value
qe = e, as one had believed up to the introduction of the BCS theory in
195711. Instead, they correspond to qe = 2e, i.e. to Cooper pairs, which were
proposed just before the BCS theory, [25]. However, aside from that, a phe-
nomenological theory of superconductivity had already been proposed in 1950
by Ginzburg and Landau, [46], which proved to be very fruitful and correct in
all details, and which lead amongst other things to the flux line lattice theory
of Abrikosov, [47], being established, for which – as already mentioned – the
Nobel prize in 2003 was awarded (Abrikosov, Ginzburg, Legget).

In the following section we shall describe Ginzburg and Landau’s theory
of superconductivity: In this theory the superconducting condensate is de-
scribed by a complex so-called order parameter function Ψ(r, t). The name
of this function reminds one of quantum mechanics; however, the capital letter
8 Cornell, Ketterle and Wiemann were awarded the Nobel prize in 2001 for work

they had performed on the Bose-Einstein condensation of ultracold gases of alkali
atoms in 1995.

9 These are low temperatures, but not yet the ultralow ones mentioned above.
10 The complexity of the order parameter in He3 is described in a comprehensive

book by Vollhardt and Wölfle, [45].
11 Named after Bardeen, Cooper und Schrieffer. The BCS theory, see [25], was

proposed in 1957, almost half a century after the experimental discovery of the
phenomenon (1911) by Kammerlingh-Onnes in Leiden.
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suggests that Ψ is not to be thought of as probability amplitude, but rather
as a classical quantity. For stationary states the time dependence will not be
explicitly mentioned. ns(r) = |Ψ(r)|2 is the density of the superconducting
condensate (“pair density”) and

js(r) =
qe
meff

· Re {Ψ∗(−i�∇− qeA)Ψ}

=
qe
meff

·
{

�

2i
(Ψ∗∇Ψ − Ψ∇Ψ∗)− qensA

}

is the supercurrent density. Separating Ψ(r) into modulus and phase,

Ψ = |Ψ(r)| · eiφ(r) ,

we have
js = qe · ns(r) ·

�∇− qeA
meff

φ(r) ,

an expression, whose gauge-invariance12 can be explicitly seen; meff is the
effective mass of the carriers of the superconductivity.

The free energy F (T, V ) is written as a power series in |Ψ |2. Neglecting
terms which do not influence the onset of superconductivity we have:

F (T, V ) = min
Ψ,Ψ∗,A⎧

⎨
⎩
∫

V

d3r

2

[
1

2meff
| (−i�∇− qeA)Ψ |2 + α · (T − T0) · |Ψ |2

β

2
|Ψ |4 + . . .

]

+
∫

R3

d3r
(curlA)2

2μ0

⎫
⎬
⎭ . (53.5)

Here, μ0 is the permeability of free space; α and β are positive constants, and
differentiation should be carried out independently with respect to Ψ and Ψ∗

(i.e. with respect to the real part and imaginary parts of Ψ(r)), as well as
with respect to rotation of A, i.e. with respect to the magnetic induction

B = curlA .

In (53.5), the last integral over R3 is the magnetic field energy, whereas the
first integral (delimited by square brackets) represents the free energy of the
condensate. The important term,

α · (T − T0)|Ψ |2 ,

which shows a change of sign at the critical temperature T0, has been intro-
duced by the authors in an ad hoc way, and is justified by the results which
follow (see below).
12 Invariance w.r.t. gauge transformations, A → A+∇f(r);Ψ → Ψ ·exp(iqef(r)/�),

simultaneously and for any f(r).
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Similar to Lagrangian formalism in classical mechanics, minimizing the
free energy with respect to Ψ∗ provides the following Euler-Langrange equa-
tion for the variation problem (53.5):

1
2meff

(−i�∇− qeA)2Ψ(r) + α · (T − T0)Ψ + β · |Ψ |2Ψ + . . . = 0 . (53.6)

(Minimizing with respect to Ψ does not give anything new, only the complex
conjugate result.) Minimizing F with respect to A on the other hand leads
to the Maxwell equation

curl curlA = μ0js , since B = μ0H = curlA , and thus: curlH ≡ js .

Solving equation (53.6) for A ≡ 0 assuming spatially homogeneous states
and neglecting higher terms, one obtains for T ≥ T0 the trivial result Ψ ≡ 0,
while for T < 0 the non-trivial expression

|Ψ | =

√
α2

2β
(T0 − T )

results. In the first case the free energy is zero, while in the second case it is
given by

F (T, V ) = −V · α
2

4β
· (T0 − T )2 .

On passing through T0 the heat capacity

C := −∂
2F

∂T 2

therefore changes discontinuously by an amount

ΔC = V
α2

2β
.

At T = T0 a continuous phase change13 thus takes place, as for the case
of Bose-Einstein condensation, in which the order parameter Ψ increases
smoothly from zero (for T ≥ T0) to finite values (for T < T0), whereas
the heat capacity increases discontinuously, as mentioned.

Two characteristic lengths result from the Ginzburg-Landau theory of
superconductivity. These are:

a) the so-called coherence length ξ(T ) of the order parameter, and
b) the so-called penetration depth λ(T ) of the magnetic induction.

13 A discontinuous change of the specific heat is allowed by a continuous phase
transition. It is only necessary that the order parameter changes continuously.
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One obtains the coherence length ξ(T ) for the density of Cooper pairs
by assuming that Ψ = Ψ0 + δΨ(r) (where, as above, A ≡ 0 and Ψ0 =√

α
β · (T0 − T )).

Using (53.6) we obtain:

− �
2

2meff

d2(δΨ)
dx2

+
[
α · (T − T0) + 3β|Ψ0|2

]
· δΨ = 0 ,

which by assuming
δΨ(r) ∝ e−

x
ξ

leads to

ξ(T ) =

√
4meff

�2α · (T0 − T )
.

On the other hand one obtains the penetration depth λ(T ) of the magnetic
field assuming A �= 0 and Ψ ≡ Ψ0. Thus

curl curlA(= grad divA−∇2A) = μ0js = . . .− μ0 · q2e · |Ψ0|2A ,

so that with the assumption

A ∝ ey · e−
x
λ

the relation

λ(T ) =

√
β

αμ0q2e · (T0 − T )

results. Thus the magnetic induction inside a superconductor is compensated
completely to zero by surface currents, which are only non-zero in a thin layer
of width λ(T ) (Meissner-Ochsenfeld effect, 1933 ). This is valid however only
for sufficiently weak magnetic fields.

In order to handle stronger fields, according to Abrikosov we must dis-
tinguish between type I and type II superconductors, depending on whether
ξ > λ

√
2 is valid or not. The difference therefore does not depend on the tem-

perature. For type II superconductors between two critical magnetic fields
Hc1 and Hc2 it is energetically favorable for the magnetic induction to pen-
etrate inside the superconductor in the form of so-called flux tubes, whose
diameter is given by 2λ, whereas the region in the center of these flux tubes
where the superconductivity vanishes has a diameter of only 2ξ. The super-
conductivity does not disappear until the field Hc2 is exceeded.

The function Ψ(r, t) in the Ginzburg-Landau functional (53.5) corre-
sponds to the Higgs boson in the field theory of the electro-weak interac-
tion, whereas the vector potential A(r, t) corresponds to the standard fields
W± and Z occurring in this field theory. These massless particles “receive”
a massMW±,Z ≈ 90GeV/c2 via the so-called Higgs-Kibble mechanism, which



53.5 Debye Theory of the Heat Capacity of Solids 399

corresponds to the Meissner-Ochsenfeld effect in superconductivity. This cor-
respondence rests on the possibility of translating the magnetic field pene-
tration depth λ into a mass Mλ, in which one interprets λ as the Compton
wavelength of the mass,

λ =:
�

Mλc
.

It is certainly worth taking note of such relationships between low temperature
and high energy physics.

53.5 Debye Theory of the Heat Capacity of Solids

In the following consider the contributions of phonons, magnons and similar
bosonic quasiparticles to the heat capacity of a solid. Being bosonic quasi-
particles they have the particle-number expectation value

〈n(ε)〉T,μ =
1

eβ·(ε−μ) − 1
.

But since for all these quasiparticles the rest mass vanishes such that they
can be generated in arbitrary number without requiring work μdN , we also
have μ ≡ 0.

Phonons are the quanta of the sound-wave field,

u(r, t) ∝ ei(k·r−ωk·t) ,

magnons are the quanta of the spin-wave field (δm ∝ ei(k·r−ωk·t)), where the
so-called dispersion relations ωk(≡ ω(k)) for the respective wave fields are
different, i.e., as follows.

For wavelengths

λ :=
2π
k
,

which are much larger than the distance between nearest neighbors in the
system considered, we have for phonons:

ωk = cs · k + . . . ,

where cs is the longitudinal or transverse sound velocity and terms of higher
order in k are neglected. Magnons in antiferromagnetic crystals also have
a linear dispersion relation ω ∝ k, whereas magnons in ferromagnetic systems
have a quadratic dispersion,

ωk = D · k2 + . . . ,
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with so-called spin-wave stiffness D. For the excitation energy εk and the
excitation frequency ωk one always has of course the relation

εk ≡ �ωk .

For the internal energy U of the system one thus obtains (apart from an
arbitrary additive constant):

U(T, V,N) =

∞∫

0

�ω
1

e
�ω

kBT − 1
· g(ω)dω , where

g(ω)dω =
V · d3k

(2π)3
=
V · k2

2π2

(
dk
dω

)
dω , with

dk
dω

=
(

dω
dk

)−1

.

From the dispersion relation ω(k) it follows that for ω → 0:

g(ω)dω =

⎧
⎪⎨
⎪⎩

V ·(ω2+...)dω
2π2c3s

for phonons with sound velocitycs ,
V ·

“
ω

1
2 +...

”
dω

4π2D
3
2

for magnons in ferromagnets ,

where the terms + . . . indicate that the above expressions refer to the asymp-
totes for ω → 0.

For magnons in antiferromagnetic systems a similar formula to that for
phonons applies; the difference is only that the magnon contribution can be
quenched by a strong magnetic field. In any case, since for fixed k there
are two linearly independent transverse sound waves with the same sound
velocity c

(⊥)
s plus a longitudinal sound wave with higher velocity c

(|)
s , one

uses the effective sonic velocity given by

1(
c
(eff)
s

)3 :=
2(

c
(⊥)
s

)3 +
1(
c
(|)
s

)3 .

However, for accurate calculation of the contribution of phonons and
magnons to the internal energy U(T, V,N) one needs the complete behav-
ior of the density of excitations g(ω), of which, however, e.g., in the case of
phonons, only (i) the behavior at low frequencies, i.e. g(ω) ∝ ω2, and (ii) the
so-called sum rule, e.g.,

ωmax∫

0

dωg(ω) = 3N ,

are exactly known 14, where ωmax is the maximum eigenfrequency.
14 The sum rule states that the total number of eigenmodes of a system of N

coupled harmonic oscillators is 3N .



53.5 Debye Theory of the Heat Capacity of Solids 401

In the second and third decade of the twentieth century the Dutch physi-
cist Peter Debye had the brilliant idea of replacing the exact, but matter-
dependent function g(ω) by a matter-independent approximation, the so-
called Debye approximation (see below), which interpolates the essential
properties, (i) and (ii), in a simple way, such that

a) not only the low-temperature behavior of the relevant thermodynamic
quantities, e.g., of the phonon contribution to U(T, V,N),

b) but also the high-temperature behavior can be calculated exactly and
analytically,

c) and in-between a reasonable interpolation is given.

The Debye approximation extrapolates the ω2-behavior from low frequen-
cies to the whole frequency range and simultaneously introduces a cut-off
frequency ωDebye, i.e., in such a way that the above-mentioned sum rule is
satisfied.

Thus we have for phonons:

g(ω) ≈−→ gDebye(ω) =
V · ω2

2π2 (ceffs )3
, (53.7)

i.e., for all frequencies
0 ≤ ω ≤ ωDebye ,

where the cut-off frequency ωDebye is chosen in such a way that the sum rule
is satisfied, i.e.

V ω3
Debye

6π2 (ceffs )3
!= 3N .

Furthermore, the integral

U(T, V,N) =

ωDebye∫

0

dωgDebye(ω) · �ω

e
�ω

kBT − 1

can be evaluated for both low and high temperatures, i.e., for

kBT � �ωDebye and 
 �ωDebye ,

viz in the first case after neglecting exponentially small terms if the upper
limit of the integration interval, ω = ωDebye, is replaced by ∞. In this way
one finds the low-temperature behavior

U(T, V,N) =
9Nπ4

15
· �ωDebye ·

(
kBT

�ωDebye

)4

.

The low-temperature contribution of phonons to the heat capacity

CV =
∂U

∂T

is thus ∝ T 3.
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Similar behavior, U ∝ V · T 4 (the Stefan-Boltzmann law) is observed for
a photon gas, i.e., in the context of black-body radiation; however this is valid
at all temperatures, essentially since for photons (in contrast to phonons) the
value of N is not defined. Generally we can state:

a) The low-temperature contribution of phonons, i.e., of sound-wave quanta,
thus corresponds essentially to that of light-wave quanta, photons ; the
velocity of light is replaced by an effective sound-wave velocity, considering
the fact that light-waves are always transverse, whereas in addition to the
two transverse sound-wave modes there is also a longitudinal sound-wave
mode.

b) In contrast, the high-temperature phonon contribution yields Dulong and
Petits’s law; i.e., for

kBT 
 �ωDebye

one obtains the exact result:

U(T, V,N) = 3NkBT .

This result is independent of the material properties of the system con-
sidered: once more essentially universal behavior, as is common in ther-
modynamics.

In the same way one can show that magnons in ferromagnets yield a low-
temperature contribution to the internal energy

∝ V · T 5
2

which corresponds to a low-temperature contribution to the heat capacity

∝ T 3
2 .

This results from the quadratic dispersion relation, ω(k) ∝ k2, for magnons
in ferromagnets. In contrast, as already mentioned, magnons in antiferromag-
nets have a linear dispersion relation, ω(k) ∝ k, similar to phonons. Thus in
antiferromagnets the low-temperature magnon contribution to the specific
heat is ∝ T 3 as for phonons. But by application of a strong magnetic field
the magnon contribution can be suppressed.

– In an earlier section, 53.1, we saw that electrons in a metal produce a con-
tribution to the heat capacity C which is proportional to the temperature
T . For sufficiently low T this contribution always dominates over all other
contributions. However, a linear contribution, C ∝ T , is not character-
istic for metals but it also occurs in glasses below ∼ 1 K. However in
glasses this linear term is not due to the electrons but to so-called two-
level “tunneling states” of local atomic aggregates. More details cannot
be given here.
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53.6 Landau’s Theory of 2nd-order Phase Transitions

The Ginzburg-Landau theory of superconductivity, which was described in an
earlier subsection, is closely related to Landau’s theory of second-order phase
transitions [48]. The Landau theory is described in the following. One begins
with a real or complex scalar (or vectorial or tensorial) order parameter η(r),
which marks the onset of order at the critical temperature, e.g., the onset of
superconductivity. In addition, the fluctuations of the vector potential A(r)
of the magnetic induction B(r) are important.

In contrast, most phase transitions are first-order, e.g., the liquid-vapor
type or magnetic phase transition below the critical point, and of course the
transition from the liquid into the solid state, since at the phase transition
a discontinuous change in (i) density Δ
, (ii) magnetization ΔM , and/or (iii)
entropy ΔS occurs, which is related to a heat of transition

Δl = T ·ΔS .

These discontinuities always appear in first-order derivatives of the rele-
vant thermodynamic potential. For example, we have

S = −∂G(T, p,N)
∂T

or M = −∂Fg(T,H)
∂H

,

and so it is natural to define a first-order phase transition as a transition for
which at least one of the derivatives of the relevant thermodynamic potentials
is discontinuous.

In contrast, for a second-order phase transition, i.e., at the critical point
of a liquid-vapor system, or at the Curie temperature of a ferromagnet, the
Néel temperature of an antiferromagnet, or at the onset of superconductivity,
all first-order derivatives of the thermodynamic potential are continuous.

At these critical points considered by Landau’s theory, which we are going
to describe, there is thus neither a heat of transformation nor a discontinu-
ity in density, magnetization or similar quantity. In contrast discontinuities
and/or divergencies only occur for second-order (or higher) derivatives of the
thermodynamic potential, e.g., for the heat capacity

−T · ∂
2Fg(T, V,H,N, . . .)

∂T 2

and/or the magnetic susceptibility

χ = −∂
2Fg(T, V,H,N, . . .)

∂H2
.

Thus we have the following definition due to Ehrenfest:
For n-th order phase transitions at least one n-th order derivative,

∂nFg
∂Xi1 . . . ∂Xin

,
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of the relevant thermodynamic potential, e.g., of Fg(T, V,N,H, . . .), where
the Xik are one of the variables of this potential, is discontinuous and/or
divergent, whereas all derivatives of lower order are continuous.

Ehrenfest’s definition is mainly mathematical. Landau recognized that
the above examples, for which the ordered state is reached by falling below
a critical temperature Tc, are second-order phase transitions in this sense
and that here the symmetry in the ordered state always forms a subgroup
of the symmetry group of the high-temperature disordered state (e.g., in the
ferromagnetic state one only has a rotational symmetry restricted to rotations
around an axis parallel to the magnetization, whereas in the disordered phase
there is full rotational symmetry.

Further central notions introduced by Landau into the theory are

a) as mentioned, the order parameter η, i.e., a real or complex scalar or vecto-
rial (or tensorial) quantity15 which vanishes everywhere in the disordered
state, i.e., at T > Tc, increasing continuously nonetheless at T < Tc to
finite values; and

b) the conjugate field, h, associated with the order parameter, e.g., a mag-
netic field in the case of a ferromagnetic system, i.e., for η ≡M .

On the basis of phenomenological arguments Landau then assumed that
for the Helmholtz free energy F (T, V, h) of the considered systems with pos-
itive coefficients A, α and b (see below) in the vicinity of Tc, in the sense of
a Taylor expansion, the following expression should apply (where the second
term on the r.h.s., with the change of sign at Tc, is an important point of
Landau’s ansatz, formulated for a real order parameter):

F (T, V, h) =

min
η

∫

V

d3r

[
1
2

{
A · (∇η)2 + α · (T − Tc) · η2 +

b

2
η4

}
− h · η

]
. (53.8)

By minimization w.r.t. η, for ∇η != 0 plus h != 0, one then obtains similar
results as for the above Ginzburg-Landau theory of superconductivity, e.g.,

η(T ) ≡ η0(T ) := 0 at T > Tc , but

|η(T )| ≡ η0(T ) :=

√
α · (Tc − T )

b
at T < Tc ,

and for the susceptibility

χ :=
∂η

∂h |h→0
=

1
α · (T − Tc)

at T > Tc and

χ =
1

2α · (Tc − T )
at T < Tc .

15 For tensor order parameters there are considerable complications.
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A k-dependent susceptibility can also be defined. With

h(r) = hk · eik·r

and the ansatz
η(r) := η0(T ) + ηk · eik·r

we obtain for T > Tc:

χk(T ) :=
∂ηk
∂hk

=
1

2Ak2 + α · (T − Tc)

and for T < Tc:

χk(T ) =
1

2Ak2 + 2α · (Tc − T )
,

respectively.
Thus one can write

χk(T ) ∝ 1
k2 + ξ−2

,

with the so-called thermal coherence length16

ξ(T ) =

√
2A

α · (T − Tc)
and

=

√
A

α · |T − Tc|
for T > Tc and T < Tc ,

respectively. But it does not make sense to pursue this ingeniously simple
theory further, since it is as good or bad as all molecular field theories, as
described next.

53.7 Molecular Field Theories; Mean Field Approaches

In these theories complicated bilinearHamilton operators describing interact-
ing systems, for example, in the so-called Heisenberg model,

H = −
∑
l,m

Jl,mŜl · Ŝm ,

16 The concrete meaning of the thermal coherence length ξ(T ) is based on the fact
that in a snapshot of the momentary spin configuration spins at two different
places, if their separation |r − r′| is much smaller than ξ(T ), are almost always
parallel, whereas they are uncorrelated if their separation is � ξ.
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are approximated by linear molecular field operators17 e.g.,

H ≈−→ HMF := −
∑

l

{
2
∑
m

Jl,m

〈
Ŝm

〉
T

}
· Ŝl +

∑
l,m

Jl,m

〈
Ŝm

〉
T
·
〈
Ŝl

〉
T
.

(53.9)
The last term in HMF, where the factor 2 is missing, in contrast to the first
term in the summation, is actually a temperature-dependent constant, and
only needed if energies or entropies of the system are calculated. Moreover,
the sign of this term is opposite to that of the first term; in fact, the last
term is some kind of double-counting correction to the first term.

The approximations leading from Heisenberg’s model to the molecular
field theory are detailed below.

Furthermore, from molecular field theories one easily arrives at the Lan-
dau theories by a Taylor series leading from discrete sets to continua, e.g.,

S(rl)→ S(r) :=S(rl) + (r − rl) · ∇S(r)|r=rl

+
1
2!

3∑
i,k=1

(xi − (rl)i) · (xk − (rl)k) ·
∂2S(r)
∂xi∂xk |r=rl

+ . . . .

The name molecular field theory is actually quite appropriate. One can in
fact write

HMF ≡ −gμB
∑

l

HMF
l (T )Ŝl + . . . .

In this equation HMF
l (T ) is the effective magnetic field given by

2
∑
m

Jl,m

〈
Ŝm

〉
T
/(gμB) ;

g is the Landé factor,

μB =
μ0e�

2me

the Bohr magneton, and e and me are the charge and mass of an electron
respectively; μ0 and

� =
h

2π
are, as usual, the vacuum permeability and the reduced Planck constant.

Van der Waals’ theory is also a kind of molecular field theory, which in the
vicinity of the critical point is only qualitatively correct, but quantitatively
wrong. The approximation18 neglects fluctuations (i.e., the last term in the

17 Here operators are marked by the hat-symbol, whereas the thermal expectation
value 〈Ŝl〉T is a real vector.

18 One may also say incorrectness, since neglecting all fluctuations can be a very
severe approximation.
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following identity):

Ŝl · Ŝm ≡
〈
Ŝl

〉
T
· Ŝm + Ŝl ·

〈
Ŝm

〉
T

+
(
Ŝl −

〈
Ŝl

〉
T

)
·
(
Ŝm −

〈
Ŝm

〉
T

)
.

Even the factor 2 in front of
∑

m . . . is derived in this way, i.e., from

Jl,m = Jm,l .

However, neglecting fluctuations is grossly incorrect in the critical region,
which is often not small (e.g., for typical ferromagnets it amounts to the
upper ∼ 20% of the region below Tc; in contrast, for conventional 3d-
superconductivity the critical region is negligible).

Generally the neglected terms have a drastic influence on the critical
exponents. In the critical region the order parameter does not converge to
zero

∝ (Tc − T )
1
2 ,

as the Landau theory predicts, but∝ (Tc−T )β, where for a d = 3-dimensional
system the value of β is ≈ 1

3 instead of

βLandau ≡
1
2
.

We also have, both above and below Tc, with different coefficients:

χ ∝ |Tc − T |−γ , with γ = γ3d ≈
4
3

instead of the value from the Landau theory,

γLandau ≡ 1 .

Similarly we have

ξ ∝ |Tc − T |−ν , with ν = ν3d ≈
2
3

instead of the Landau value

νLandau ≡
1
2
.

For the twodimensional Ising model, a model which only differs from the
Heisenberg model by the property that the vectorial spin operators Ŝl and
Ŝm are replaced by the z-components (Ŝz)l and (Ŝz)m, the difference be-
tween the critical exponents and the Landau values is even more drastic than
in d=3, as detailed in the following.

For d = 2 the exact values of the critical exponents are actually known:

β(2d)Ising ≡
1
8
, γ(2d)Ising ≡

7
4

and ν(2d)Ising ≡ 1 ,
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and the critical temperature is reduced by the fluctuations by almost 50%
compared to the molecular field approximation. (For the d = 2-dimensional
Heisenberg model the phase transition is even completely suppressed by fluc-
tuations).

It is no coincidence19 that the quantitative values of the critical exponents
and other characteristic quantities of the critical behavior are universal in the
sense that they are (almost) independent of the details of the interactions.
For interactions which are sufficiently short-ranged, these quantities depend
only on (i) the dimensionality d of the system, and (ii) the symmetry of
the order parameter, e.g., whether one is dealing with uniaxial symmetry, as
for the Ising model, or isotropic symmetry, as for the Heisenberg model. In
this context one defines universality classes of systems with the same critical
behavior.

For different models one can also define a kind of molecular field ap-
proximation, usually called mean field approximation, by replacing a sum
of bilinear operators by a self-consistent temperature-dependent linear ap-
proximation in which fluctuations are neglected. In this context one should
mention the Hartree-Fock approximation20, see Part III, and the Hartree-
Fock-Bogoliubov approximation for the normal and superconducting states
of a system with many electrons. Without going into details we simply men-
tion that the results of all these approximations are similar to the Landau
theory. However, in the following respect the mean field theories are somewhat
more general than the Landau theory: they lead to quantitative predictions
for the order parameter, for Tc, and for Landau’s phenomenological coeffi-
cients A, α and b. In this context one should also mention the BCS theory
of superconductivity (which we do not present, see [25]), since not only the
Ginzburg-Landau theory of superconductivity can be derived from it but also
one sees in particular that the carriers of superconductivity have the charge
2e, not e.

53.8 Fluctuations

In the preceding subsections we have seen that thermal fluctuations are im-
portant in the neighborhood of the critical temperature of a second-order
phase transition, i.e. near the critical temperature of a liquid-gas transition
or for a ferromagnet. For example, it is plausible that density fluctuations
become very large if the isothermal compressibility diverges (which is the
case at Tc).
19 The reason is again the universality of the phenomena within regions of diameter
ξ, where ξ is the thermal correlation length.

20 Here the above bilinear operators are “bilinear” expressions (i.e., terms con-
structed from four operators) of the “linear” entities ĉ+i ĉj (i.e., a basis con-
structed from the products of two operators), where ĉ+i and ĉj are Fermi creation
and destruction operators, respectively.
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We also expect that the fluctuations in magnetization for a ferromagnet
are especially large when the isothermal susceptibility diverges, and that
especially strong energy fluctuations arise when the isothermal specific heat
diverges.

These qualitative insights can be formulated quantitatively as follows
(here, for simplicity, only the second and third cases are considered):

〈|ηk|2〉T − |〈ηk〉T |2 ≡ kBT · χk(T ) and (53.10)

〈H2〉T − (〈H〉T )2 ≡ kBT 2 · C(V,N,H,...) , (53.11)

where

C(V,N,H,...) =
∂U(T, V,N,H, . . .)

∂T
, with U(T, V,N,H, . . .) = 〈H〉T ,

is the isothermal heat capacity and χk(T ) the k-dependent magnetic suscep-
tibility (see below).

For simplicity our proof is only performed for k = 0 and only for the Ising
model. The quantity η is (apart from a proportionality factor) the value of
the saturation magnetization for H → 0+, i.e.,

η(T ) := Ms(T ) .

We thus assume that

H = −
∑
l,m

Jl,mslsm−h
∑
l

sl , with sl = ±1 , and define M :=
∑
l

sl ,

i.e., H = H0 − hM .
In the following, “tr” means “trace”. We then have

〈M〉T =
tr
{
M · e−β·(H0−hM)〉

}

tr
{
e−β·(H0−hM)

} ,

and hence

χ =
∂〈M〉T
∂h

= β ·

⎛
⎝tr

{
M2e−β(H0−hM)

}

tr
{
e−β(H0−hM)

} −
[

tr
{
Me−β(H0−hM)

}

tr
{
e−β(H0−hM)

}
]2
⎞
⎠ ,

which is (53.10). Equation (53.11) can be shown similarly, by differentiation
w.r.t.

β =
1

kBT

of the relation

U = 〈H〉T =
tr
{
He−βH

}
tr {e−βH} .
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A similar relation between fluctuations and response is also valid in dy-
namics – which we shall not prove here since even the formulation requires
considerable effort (→ fluctuation-dissipation theorem, [49], as given below):

Let
ΦÂ,B̂(t) :=

1
2
·
〈
ÂH(t)B̂H(0) + B̂H(0)ÂH(t)

〉
T

be the so-called fluctuation function of two observables Â and B̂, represented
by two Hermitian operators in the Heisenberg representation, e.g.,

AH(t) := ei Ht
� Âe−i Ht

� .

The Fourier transform ϕÂ,B̂(ω) of this fluctuation function is defined through
the relation

ΦÂ,B̂(t) =:
∫

eiωt dω
2π
ϕÂ,B̂(ω) .

Similarly for t > 0 the generalized dynamic susceptibility χÂ,B̂(ω) is defined
as the Fourier transform of the dynamic response function

XÂ,B̂(t− t′) :=
δ〈Â〉T (t)
δhB̂(t′)

, 21

where
H = H0 − hB(t′)B̂ ,

i.e., the Hamilton operator H0 of the system is perturbed, e.g., by an alter-
nating magnetic field hB(t′) with the associated operator B̂ = Ŝz, and the
response of the quantity Â on this perturbation is observed.

Now, the dynamic susceptibility χÂ,B̂(ω) has two components: a reactive
part

χ′
Â,B̂

and a dissipative part
χ′′
Â,B̂

,

i.e.,
χÂ,B̂(ω) = χ′

Â,B̂
(ω) + iχ′′

Â,B̂
(ω) ,

where the reactive part is an odd function and the dissipative part an even
function of ω. The dissipative part represents the losses of the response pro-
cess.

Furthermore, it is generally observed that the larger the dissipative part,
the larger the fluctuations. Again this can be formulated quantitatively us-
ing the fluctuation-dissipation theorem [49]. All expectation values and the

21 This quantity is only different from zero for t ≥ t′.
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quantities ÂH(t) etc. are taken with the unperturbed Hamiltonian H0:

ϕÂ,B̂(ω) ≡ � · coth
�ω

2kBT
· χ′′

Â,B̂
(ω) . (53.12)

In the “classical limit”, �→ 0, the product of the first two factors on the
r.h.s. of this theorem converges to

2kBT
ω

,

i.e., ∝ T as for the static behavior, in agreement with (53.10). In this limit
the theorem is also known as the Nyquist theorem; but for the true value of
� it also covers quantum fluctuations. Generally, the fluctuation-dissipation
theorem only applies to ergodic systems, i.e., if, after the onset of the pertur-
bation, the system under consideration comes to thermal equilibrium within
the time of measurement.

Again this means that without generalization the theorem does not apply
to “glassy” systems.

53.9 Monte Carlo Simulations

Many of the important relationships described in the previous sections can
be visualized directly and evaluated numerically by means of computer simu-
lations. This has been possible for several decades. In fact, so-called Monte
Carlo simulations are very well known, and as there exists a vast amount of
literature, for example [51], we shall not go into any details, but only describe
the principles of the Metropolis algorithm, [50].

One starts at time tν from a configuration X(x1, x2, . . .) of the system,
e.g., from a spin configuration (or a fluid configuration) of all spins (or all
positions plus momenta) of all N particles of the system. These configurations
have the energy E(X). Then a new state X ′ is proposed (but not yet accepted)
by some systematic procedure involving random numbers. If the proposed new
state has a lower energy,

E(X ′) < E(X) ,

then it is always accepted, i.e.,

X(tν+1) = X ′ .

In contrast, if the energy of the proposed state is enhanced or at least as high
as before, i.e., if

E(X ′) = E(X) +ΔE , with ΔE ≥ 0 ,

then the suggested state is only accepted if it is not too unfavorable. This
means precisely: a random number r ∈ [0, 1], independently and identically
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distributed in this interval, is drawn, and the proposed state is accepted iff

e−ΔE/(kBT ) ≥ r .

In the case of acceptance (or rejection, respectively), the next state is the
proposed one (or the old one),

X(tν+1) ≡ X ′ (or X(tν+1) ≡ X) .

Through this algorithm one obtains a sequence X(tν) → X(tν+1) → . . .
of random configurations of the system, a so-called Markoff chain, which
is equivalent to classical thermodynamics i.e., after n equilibration steps,
thermal averages at the considered temperature T are identical to chain-
averages,

〈f(X)〉T = M−1
n+M∑
ν≡n+1

f(X(tν)) ,

and ν is actually proportional to the time.
In fact, it can be proved that the Metropolis algorithm leads to thermal

equilibrium, again provided that the system is ergodic, i.e., that the dynamics
do not show glassy behavior.

Monte Carlo calculations are now a well-established method, and flexible
enough for dealing with a classical problem, whereas the inclusion of quantum
mechanics, i.e., at low temperatures, still poses difficulties.



54 Applications II: Phase Equilibria

in Chemical Physics

Finally, a number of sections on chemical thermodynamics will now follow.

54.1 Additivity of the Entropy; Partial Pressure;
Entropy of Mixing

For simplicity we start with a closed fluid system containing two phases. In
thermal equilibrium the entropy is maximized:

S(U1, U2, V1, V2, N1, N2)
!= max . (54.1)

Since (i) V1 + V2 = constant, (ii) N1 +N2 = constant and (iii) U1 +U2 =
constant we may write:

dS =
(
∂S

∂U1
− ∂S

∂U2

)
· dU1 +

(
∂S

∂V1
− ∂S

∂V2

)
· dV1 +

(
∂S

∂N1
− ∂S

∂N2

)
· dN1 .

Then with

∂S

∂U
=

1
T
,

∂S

∂V
=
p

T
and

∂S

∂N
= − μ

T

it follows that in thermodynamic equilibrium because dS != 0:

T1 = T2 , p1 = p2 and μ1 = μ2 .

Let the partial systems “1” and “2” be independent, i.e., the probabilities

 for the states of the system factorize:


(x“1 + 2”) = 
1(x1) · 
2(x2) .

Since
ln(a · b) = ln a+ ln b .

we obtain

S

kB
=−

∑
∀statesof“1 + 2”


(“1 + 2”) · ln 
(“1 + 2”)
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=−
∑
x1


1(x1) ·
∑
x2


2(x2) · ln 
1(x1)

−
∑
x2


2(x2) ·
∑
x1


1(x1) · ln 
2(x2) ,

and therefore with ∑
xi


i(xi) ≡ 1 we obtain :

S“1 + 2”

kB
=

2∑
i=1

Si
kB

, (54.2)

implying the additivity of the entropies of independent partial systems. This
fundamental result was already known to Boltzmann.

To define the notions of partial pressure and entropy of mixing, let us
perform a thought experiment with two complementary semipermeable mem-
branes, as follows.

Assume that the systems 1 and 2 consist of two different well-mixed fluids
(particles with attached fluid element, e.g., ideal gases with vacuum) which
are initially contained in a common rectangular 3d volume V .

For the two semipermeable membranes, which form rectangular 3d cages,
and which initially both coincide with the common boundary of V , let the first
membrane, SeM1, be permeable for particles of kind 1, but nonpermeable for
particles of kind 2; the permeability properties of the second semipermeable
membrane, SeM2, are just the opposite: the second membrane is nonperme-
able (permeable) for particles of type 1 (type 2).1

On adiabatic (loss-less) separation of the two complementary semiper-
mable cages, the two kinds of particles become separated (“de-mixed”) and
then occupy equally-sized volumes, V , such that the respective pressures pi
are well-defined. In fact, these (measurable!) pressures in the respective cages
(after separation) define the partial pressures pi.

The above statements are supported by Fig. 54.1 (see also Fig. 54.2):
Compared with the original total pressure p, the partial pressures are

reduced. Whereas for ideal gases we have p1 +p2 ≡ p (since pi = Nip
N1+N2

), this
is generally not true for interacting systems, where typically p1+p2 > p, since
through the separation an important part of the (negative) internal pressure,
i.e., the part corresponding to the attraction by particles of a different kind,
ceases to exist.

1 In Fig. 54.1 the permeabilty properties on the l.h.s. (component 1) are somewhat
different from those of the text.
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Fig. 54.1. Partial pressures and adiabatic de-mixing of the components of a fluid.
The volume in the middle of the diagram initially contains a fluid mixture with
two different components “1” and “2”. The wall on the l.h.s. is non-permeable for
both components, whereas that on the r.h.s. is semipermeable, e.g. non-permeable
only to the first component (see e.g. Fig. 54.2). The compressional work is therefore
reduced from δA = −p · dV to δA = −p1 · dV , where p1 is the partial pressure.
Moreover, by moving the l.h.s. wall to the right, the two fluid-components can be
demixed, and if afterwards the size of the volumes for the separate components is
the same as before, then S(T, p)|fluid ≡Pi=1,2 Si(T, pi)

Since the separation is done reversibly, in general we have

S“1 + 2”(p) ≡ S1(p1) + S2(p2)

(note the different pressures!), which is not in contradiction with (54.2), but
should be seen as an additional specification of the additivity of partial en-
tropies, which can apply even if the above partial pressures do not add-up
to p.

Now assume that in the original container not two, but k components
(i.e., k different ideal gases) exist. The entropy of an ideal gas as a function
of temperature, pressure and particle number has already been treated earlier.
Using these results, with

S(T, p,N1, . . . Nk) =
k∑
i=1

Si(T, pi, Ni) and

pi =
Ni
N
· p , i.e., pi = ci · p ,

with the concentrations ci = Ni

N , we have

S(T, p,N1, N2, . . . , Nk)
kB

=
k∑
i=1

Ni ·
{

ln
5kBT

2p
− ln ci +

s
(0)
i

kB

}
. (54.3)

Here s(0)i is a non-essential entropy constant, which (apart from constants
of nature) only depends on the logarithm of the mass of the molecule consid-
ered (see above).
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In (54.3) the term in − ln ci is more important. This is the entropy of
mixing. The presence of this important quantity does not contradict the ad-
ditivity of entropies; rather it is a consequence of this fundamental property,
since the partial entropies must be originally calculated with the partial pres-
sures pi = ci ·p and not the total pressure p, although this is finally introduced
via the above relation.

It was also noted earlier that in fluids the free enthalpy per particle,

gi(T, pi) =
1
N
·Gi(T, pi, Ni) ,

is identical with the chemical potential μi(T, pi), and that the entropy per
particle, si(T, pi), can be obtained by derivation w.r.t. the temperature T
from gi(T, pi), i.e.,

si(T, pi) = −∂g(T, pi)
∂T

.

From (54.3) we thus obtain for the free enthalpy per particle of type i in
a mixture of fluids:

gi(T, p) = g
(0)
i (T, p) + kBT · ln ci, (54.4)

where the function g
(0)
i (T, p) depends on temperature and pressure, which

corresponds to ci ≡ 1, i.e., to the pure compound. This result is used in the
following. It is the basis of the law of mass action, which is treated below.

54.2 Chemical Reactions; the Law of Mass Action

In the following we consider so-called uninhibited 2 chemical reaction equilib-
ria of the form

ν1A1 + ν2A2 ↔ −ν3A3 .

Here the νi are suitable positive or negative integers (the sign depends on
i, and the negative integers are always on the r.h.s., such that −ν3 ≡ |ν3|);
e.g., for the so-called detonating gas reaction, the following formula applies:
2H+O↔ H2O, whereas the corresponding inhibited reaction is 2H2 +O2 ↔
2H2O (slight differences, but remarkable effects! In the “uninhibited” case
one is dealing with O atoms, in the “inhibited” case, however, with the usual
O2 molecule.)

The standard form of these reactions that occur after mixing in fluids is:

k∑
i=1

νiAi = 0 ,

2 The term uninhibited reaction equilibrium means that the reactions considered
are in thermodynamic equilibrium, possibly after the addition of suitable cat-
alyzing agencies (e.g., Pt particles) which decrease the inhibiting barriers.
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where without lack of generality it is assumed that only νk is negative. (Of
course we choose the smallest possible integral values for the |νi|).

The concentration ratios ci then result from (54.3) and (54.4) according to
the principle that the entropy should not change in course of the equilibrium
reaction. In this way from the related free enthalpy condition one obtains the
Law of Mass Action:

cν11 · cν22 · . . . · c
νk−1
k−1

c−νk

k

≡ f(T, p) , (54.5)

where from the ideal gas equation (see the preceding subsection) for the
yield function f(T, p) with a pressure unit p0 the following general expression
results:

f(T, p) =
k∏
i=1

cνi

i ≡
k∏
i=1

(
p

p0

)−νi

· e−νi
g̃
(0)
i

(T )
kB T . (54.6)

For further simplification we have written

g
(0)
i (T, p) = g̃(0)(T ) + kBT · ln

p

p0
,

which agrees with

si = kB ln
5kBT

2p
+ . . . .

By varying pressure and/or temperature one can thus systematically shift
the reaction yield in accordance with (54.6) (e.g., increasing the pressure leads
to an increased fraction of components with negative νi).

As an application and generalization we shall presently treat the osmotic
pressure and the decrease in boiling and solidification temperatures of a liquid
by addition of sugar and de-icing salt. Firstly, however, an unusual topic.

54.3 Electron Equilibrium in Neutron Stars

Consider the quantitative answer to the following question: How many elec-
trons (or protons!) are there in a neutron star? Firstly we need to know the
fraction:

Nelectrons = Nprotons
∼= 10−5 ·Nneutrons ;

i.e., the ratio is extremely small, although different from zero. Of course, all
absolute numbers would be extremely large3.

3 How large is Ne? One can estimate this number by inserting typical values for
the radius of a neutron star (≈ 10 km) and of a neutron (≈ 10−13 cm).
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The above result is then obtained. Consider the relevant astrophysical
equilibrium reaction, which is the equilibrium inverse β-decay process:

pp+ ee↔ nn+ ννe

Here pp stands for the proton4, nn for the neutron, ee for the electron
and ννe for the electron-neutrino. (In a β-decay process a neutron emitting
an electron plus an electron-antineutrino ννe decays as follows: nn → pp +
ee+ ννe; the inverse β-decay is the fusion of a proton and an electron under
very high pressure, as high as is typical for a neutron star, or even higher,
into a neutron plus an outgoing electron-neutrino, i.e., essentially according
to the ← part of the previous reaction equation. The electron-neutrino and
electron-antineutrino are particles and antiparticles with (almost) vanishing
rest mass, i.e., negligible for the present thermodynamics (see below).) In any
case, the first reaction can actually be “equilibrated” in both directions; in
neutron stars there is thermodynamic equilibrium as above, and additionally
the temperature can be neglected, since one is dealing with a degenerate
Fermi gas.

The equilibrium condition is
∑
i

νi · μi(T, p,N1, . . . , Nk)
!= 0 ,

where the μi(T, p,N1, . . .) are the respective chemical potentials, i.e., the free
enthalpies per particle for the particle considered, and the νi the reaction
numbers (not to be confused with the neutrinos).

The chemical potentials of neutrino and anti-neutrino, as already men-
tioned, can be neglected in the present context. However, for the other parti-
cles under consideration, the chemical potential at zero temperature (and in
this approximation, our neutron stars – and also “white dwarfs ”, see above,
can always be treated at the temperatures considered, viz as a degenerate
Fermi gas) is identical with the nonrelativistic kinetic energy per particle:

μi ≈ εkin.
i =

�
2

2M
n

2
3
V ,

as was shown for the electron gas in metals (nV is the number density and
M the mass of the considered particles). Thus

− (nV )2/3neutron

Mneutron
+

{
(nV )2/3proton

Mproton
+

(nV )2/3electron

melectron

}
!= 0 . (54.7)

4 We write pp (instead of p) for the proton, nn (instead of n) for the neutron, ee
for the electron, and νν for the neutrino, to avoid confusion with the pressure p,
the particle density n or the particle number N as well as with the elementary
charge e and the reaction numbers νi mentioned above.
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However, the electron mass, me, is 2000 times smaller than the proton
mass MP (≈ neutron mass MN ), whereas the number densities of electrons
and protons are equal. Thus the second term of the previous equation can be
neglected. As a consequence

(nV )electron
(nV )neutron

≈
(
me

MN

) 3
2

≈ 10−5 ,

as stated.

54.4 Gibbs’ Phase Rule

In an earlier section we considered the case of a single component (K = 1,
e.g., H2O) which could exist in three different phases (P = 3, solid, liquid or
vapor.)

In contrast, in the second-from-last subsection we treated the case of two
or more components (K ≥ 2) reacting with each other, but in a single phase
(P = 1), according to the reaction equation

∑k
i=1 νiAi = 0.

We shall now consider the general case, and ask how many degrees of
freedom f , i.e., arbitrary real variables, can be chosen, if K different compo-
nents are in thermodynamic equilibrium for P different phases. The answer
is found in Gibbs’ phase rule:

f ≡ K − P + 2 . (54.8)

As a first application we again consider the (p, T ) phase diagram of H2O
with the three phases: solid, liquid and vapor. Within a single phase one has
f ≡ 2 (= 1 − 1 + 2) degrees of freedom, e.g., G = G(T, p); on the boundary
lines between two phases there remains only 1 degree of freedom (= 1−2+2)
(e.g., the saturation pressure is a unique function of the temperature only,
and cannot be varied by choosing additional variables), and finally at the
triple point we have f = 0, i.e., at this point all variables, temperature and
pressure are completely fixed (f = 1− 3 + 2 ≡ 0).

As a second application consider a system with K = 2, e.g., two salts.
In one solvent (i.e., for P = 1) in thermal equilibrium one would have f =
2 − 1 + 2 = 3 degrees of freedom. For example, one could vary T , p and
c1, whereas c2 = 1 − c1 would then be fixed. If there is thermodynamic
equilibrium with P = 2 phases, e.g., a solid phase plus a fluid phase, the
number of degrees of freedom is reduced to f = 2; e.g., only T and p can be
varied independently, in contrast to ci. If there is thermodynamic equilibrium
of the two components in three phases, then one has only one free variable
(f = 1).
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We shall now proceed to a proof of Gibbs’ phase rule:

a) Firstly, consider a system with P = 1. Then K+1 variables can be freely
chosen, e.g., T , p, c1, c2, . . . , ck−1, whereas ck = 1− c1− c2− . . .− ck−1 is
dependent; thus the Gibbs’ phase rule is explicitly satisfied: f = K−1+2.

b) Now let P ≥ 2 ! Then at first one should consider that for every compo-
nent, k = 1, . . . ,K, there are P −1 additional degrees of freedom, i.e. the
ratios

c
(2)
k /c

(1)
k , c

(3)
k /c

(1)
k , . . . , c

(P )
k /c

(1)
k .

Thus one has (P−1)·K additional variables. But there are also (P−1)·K
additional constraints, i.e.

μ
(2)
k

!= μ
(1)
k , . . . , μ

(P )
k

!= μ
(1)
k .

c) A last sequence of constraints must be considered:

p
(2)
k

!= p
(1)
k , . . . , p

(P )
k

!= p
(1)
k .

This gives P − 1 constraints on the pressure.

Hence

f = K − 1 + 2 + (P − 1) ·K − (P − 1) ·K − (P − 1) ≡ K − P + 2 , q.e.d.

54.5 Osmotic Pressure

Again assume, as in section 54.2, that we are dealing with a semipermeable
membrane (as commonly occurs in biological cells). Let the semipermeable
membrane be nonpermeable for the solute, 2, (=̂ salt or sugar), but permeable
for the solvent, 1.

Now consider a U-tube, which is separated into two parts at the center
by a semipermeable membrane and filled with a liquid (water) to different
heights in the respective parts.

In the left-hand part of the U-tube the water level is h; in the enriched
right-hand part (enriched by salt or sugar, Δc2 > 0) the level is enhanced,
h+Δh, with Δh > 0.

This corresponds to a pressure difference5 Δp, the so-called osmotic pres-
sure posmotic p., which is given by

Δp ≡ posmotic p. = Δc2 ·
NkBT

V
=
ΔN2

V
kBT . (54.9)

5 The solvent concentration is only slightly diminished on the right-hand side, in
favor of the enhanced solute concentration on this side, see the text.
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Fig. 54.2. Osmotic pressure (schematically). The
volume V is divided into two parts by a semiper-
meable membrane (the Y -axis between 0 and 1) .
The membrane is permeable for the solvent (− sym-
bols), but non-permeable for the solute molecules
(↗ symbols). As a result, the pressure on the r.h.s.
is enhanced by an amount called the osmotic pres-
sure Δp.

(This expression is analogous to an effective ideal gas of ΔN2 solute
molecules suspended in a solvent. For a true ideal gas the molecules would
be suspended in a vacuum; but there the pressure does not depend on the
mass of the molecule. This is also true for the present situation.)

Figure 54.2 above schematically shows a semi-permeable membrane through
which solute molecules cannot pass.

In the above derivation, it does not matter that the vacuum mass of the
molecule is replaced by an effective mass, for which, however, the value is
unimportant if the solute concentrations c2 (on the l.h.s.) and c2 +Δc2 (on
the r.h.s.) are small enough, such that only the interactions with the solvent
come into play. (These arguments make a lot of ‘microscopic’ calculations
unnecessary.)

A precise proof again uses the entropy of mixing and the partial pres-
sure pi :

si(T, pi) = si(T, p)− kB · ln ci .
Thus we have the molecular free enthalpy

gi(T, pi) = g
(0)
i (T, p) + kBT · ln ci ,

and because of the equality of chemical potential and the molecular free
enthalpy:

μi(T, p, ci) = μi(T, p) + kBT · ln ci .
The two equilibrium conditions (not three!) for each side of the semiper-

meable membrane are:

(i) μ1(T, p, c1(= 1− c2)) ≡ μ1(T, p+Δp, c1 −Δc2) , and
(ii) T1 ≡ T2(= T ) .

Thus

g
(0)
1 (T, p)+kBT ·ln(1−c2) ≡ g(0)

1 (T, p)+Δp·
(
∂g

(0)
1

∂p

)
+kBT ·ln(1−c2−Δc2) .
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With
∂g

(0)
1

∂p
= v1

and the linearizations

ln(1− c2) ≈ −c2 and ln(1− c2 −Δc2) ≈ −c2 −Δc2

we obtain for the osmotic pressure:

Δp =
kBT

v1
Δc2 ,

and finally with

v1 :=
V

N1
≈ V

N1 +N2
, for N2 � N1 : Δp ≈ ΔN2

V
kBT .

This derivation is, in principle, astonishingly simple, and becomes even
simpler by using the “effective mass” argument above; a microscopic statistical-
mechanical calculation would, in contrast, be unnecessarily complicated.

54.6 Decrease of the Melting Temperature Due
to “De-icing” Salt

In the preceding section the addition of sugar on the nonpermeable side
(nonpermeable for the sugar but not for the solvent) of a semipermeable
membrane led to a pressure difference, i.e., a higher pressure, higher by the
osmotic pressure, on the sugar-enriched side. However the temperatures were
identical on both sides of the interface.

In contrast, we now consider the changes in the melting temperature of ice
(and the boiling temperature of a liquid) by addition of soluble substances,
e.g., again some kind of salt or sugar, to the liquid phase6, i.e., the interface
is here the surface of the liquid.

We thus consider, e.g., the phase equilibria A) solid-liquid and B) liquid-
vapor, i.e., a) without addition and b) with addition of the substance consid-
ered. For simplicity we only treat case A).

In case Aa) we have:

μsolid
1 (T, p, c1 = 1) != μliquid

1 (T, p, c1 = 1) ,

whereas for Ab):

μsolid
1 (T −ΔT, p, c1 = 1) != μliquid

1 (T −ΔT, p, c1 = 1−Δc2) .
6 We assume that the added substance is only soluble in the liquid phase, but this

can be changed, if necessary.
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Forming a suitable difference we obtain

−∂μ
solid
1

∂T
ΔT = −∂μ

liquid
1

∂T
ΔT + kBT · ln(1−Δc2) ,

and with ln(1− x) ≈ −x we have:

ΔT = − kBT ·Δc2
∂μl.

1
∂T −

∂μs.
1

∂T

.

Hence one obtains, with

μ =
G

N
and

∂G

∂T
= −S , as well as

S

N
≡ s :

ΔT = −kBT ·Δc2
ss.1 − sl.1

≡ +
kBT

2 ·Δc2
ls.→l.

, (54.10)

where additionally the molecular heat of melting

ls.→l. := T ·
(
sl.1 − ss.1

)

has been introduced.
As a result we can state that the melting temperature (and analogously

the boiling temperature) of the ice (and of the heated liquid) is decreased by
the addition of salt (or sugar) to the liquid phases. In the boiling case the
relevant equation is

μl.
1(T −ΔT, p, c1 −Δc2) != μvapor

1 (T −ΔT, p, c1)) .

In this case too it is essentially the enhancement of the entropy by mixing
which is responsible for the effect.

54.7 The Vapor Pressure of Spherical Droplets

Now consider an ensemble of spherical droplets of radius R with a sufficiently
large value of R such that the number N of particles within a droplet is
 1.
Outside such droplets the saturation pressure pR is enhanced w.r.t. the value
p∞ for a planar surface, i.e., for R→∞.

For the Helmholtz free energy of a droplet we obtain

dF = −p · dV + σ · dO − S · dT , with dV = 4πR2 · dR
and dO = 8πR · dR ,

where dV is an infinitesimally small increment of volume and dO an incre-
ment of surface area of the droplet.
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The above relation for dF defines the surface tension σ, an energy per
surface area. This is best explained in the framework of the physics of soap
bubbles.7

We thus obtain for the Helmholtz free energy of the droplet:

Fdroplet(T,R) = Ndroplet · f(T,R) + 4πR2σ(T,R) .

Here f(T,R) represents the volume part of the Helmholtz free energy per
atom, and σ(T,R) is the above-mentioned surface tension, which we now
want to calculate. Thermal phase equilibrium gives

μliquid droplet =
∂G

∂N
= f + pR · vl. + 4πσ · ∂R

2

∂N

!= μvapor .

With

N ≡ 4πR3

3vl.
, hence dN = 4πR2 dR

vl.
and dR2 = 2R · dR ,

it follows that:

μliquid = f + vl. ·
(
pR +

2σ
R

)
!= μvapor ≡ kBT · ln

pR
p0

+B(T ) , 8

where p0 is an arbitrary unit pressure and B(T ) a temperature-dependent
constant of physical dimension energy per atom.

For R <∞ we thus have:

f + vl. ·
(
pR +

2σ
R

)
= kBT · ln

pR
p0

+B(T ) ,

and for R =∞:
f + vl. · p∞ = kBT · ln

p∞
p0

+B(T ) .

By subtracting the second equation from the first, we obtain:

kBT · ln
pR
p∞

= vl. ·
(

2σ
R

+ pR − p∞
)
,

and neglecting (pR − p∞)9:

pR
p∞
≈ e

vl.
kB T · 2σ

R . (54.11)

7 For the physics of soap bubbles see almost any textbook on basic experimental
physics.

8 The last term on the r.h.s. is reminiscent of the analogously defined free enthalpy
of mixing : μvapor = kBT · ln ci + . . ., with the partial pressure pi = ci · p.

9 The result reminds us (not coincidentally) of the Clausius-Clapeyron equation.
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The saturation vapor pressure outside a spherical droplet of radius R
is thus greater than above a planar surface. With decreasing radius R the
tendency of the particles to leave the liquid increases.

A more detailed calculation shows that a critical droplet radius Rc exists,
such that smaller droplets, R < Rc, shrink, whereas larger droplets, R > Rc,
increase in size. Only at Rc is there thermal equilibrium. For Rc the following
rough estimate applies:

σ · 4πR2
c ≈ kBT .

In this context the analogy with the Ising model (cf. (42.5)) is again help-
ful. For a cubic lattice with nearest-neighbor separation a and ferromagnetic
nearest-neighbour interaction J(> 0)) in an external magnetic field h0(> 0)
one has:

Ising model: H = −J
∑

|rl−rm|=a
slsm − h0

∑
l

sl , (54.12)

with sl and sm = ±1, corresponding to ↑ and ↓ spins.
We shall now consider the following situation: embedded in a ferromag-

netic “lake” of ↓ spins is a single “island” (approximately spherical) of ↑
spins. The volume V of the 3d-“island” is assumed to be

V ≈ 4πR3

3
,

while the surface area of the island is

O ≈ 4πR2 .

The energy of formation ΔE of the island in the lake is then given by

ΔE ≈ O

a2
· 2J − V

a3
· 2h0 ,

as one can easily see from a sketch.
The first term on the r.h.s. of this equation (∝ J) corresponds to the

surface tension, while the second term (∝ h) corresponds to the difference of
the chemical potentials, μR − μ∞. From ΔE

!= 0 it follows that

Rc = 3aJ/h0 .

In this way one can simultaneously illustrate nucleation processes (e.g.,
nucleation of vapor bubbles and of condensation nuclei) in the context of over-
heating or supercooling, e.g., in the context of the van der Waals equation.
The analogy is enhanced by the above lattice-gas interpretation. 10

10 A reminder: In the lattice-gas interpretation sl = ±1 means that the site l is
either occupied, (+), or unoccupied, (-).
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For all readers (not only those who understand German1 or wish to prac-
tise their knowledge of the language) for all four parts of our compendium
there are (translated) exercises to complement this book. These are sepa-
rately documented on the internet, see [2], and purposely not integrated into
this script.

In Thermodynamics and Statistical Physics both types of learning mate-
rial, i.e., textbook and corresponding exercises, have been centered around

a) Phenomenological Thermodynamics, with the four quantities

F (T, V,N, . . .) (Helmholtz free energy) ,
U(T, V,N, . . .) (internal energy) ,
S(T, V,N, . . .) (entropy)

and the absolute (or Kelvin) temperature T , and
b) Statistical Physics, for historical reasons usually called Statistical Mechan-

ics, although this name is unnecessarily restrictive.

a) and b) are closely interdependent, due essentially to the fundamental
relation

F (T, V,N, . . .) ≡ −kBT · lnZ(T, V,N, . . .) , (55.1)

where
Z(T, V,N, . . .) =

∑
i

e−
Ei(V,N,...)

kBT (55.2)

is the partition function.
This relation between a) and b), (55.1), applies for so-called canonical

ensembles, i.e., when the particle number N is fixed and the heat bath only
exchanges energy with the system considered – defining the reciprocal Kelvin
temperature

β

(
=

1
kBT

)

as conjugate parameter (conjugate to the energy).

1 Sometimes even a partial understanding may indeed be helpful.
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For a grand canonical ensemble, where the heat bath not only exchanges
energy with the system, but also particles, such that the particle number in
a volume element V fluctuates around the average N(T, μ, V ), in addition to

β

(
=

1
kBT

)
,

one obtains for the distribution a second parameter μ (the so-called chemical
potential) for the analogous quantity to the Helmholtz free energy, i.e., for
the Gibbs grand canonical thermodynamic potential :

Φ(T, μ, V, . . .) = −kBT · lnZ(T, μ, V, . . .) ,

with the grand canonical partition function:

Z(T, μ, V, . . .) =
∑
i,j

e−
Ei(V,Nj )−μNj

kB T .

The mathematical relation between the Helmholtz free energy and the
Gibbs grand canonical potential Φ is a Legendre transform, i.e.:

Φ(T, μ, V, . . .) = F (T, V,N(T, μ, V ), . . .)− μ ·N(T, μ, V ) ,

similarly to the way the internal energy U(T, V,N, . . .) and the enthalpy I
depend on each other:

I(T, p,N, . . .) = U(T, V (T, p,N, . . .), N, . . .) + p · V (T, p,N, . . .) ,

with the pressure p as the conjugate Lagrange parameter regulating fluctua-
tions in V .

These Legendre transformations are mathematically analogous to the
transition from the Lagrange function L(v, . . .)2 to the Hamilton function
H(p, . . .) in classical mechanics; incidentally (this may be used for mnemonic
purposes!) the corresponding letters are similar, i.e., V (and v) and p (and
p), although the meaning is completely different.

The relation between a) and b) can also be expressed as

U(T, V,N, . . .) ≡ 〈H(V,N, . . .)〉T .

Where
〈
Â
〉
T

is the thermodynamic expectation with the suitable canoni-

cal (and microcanonical and grand canonical) Boltzmann-Gibbs distribution,
e.g.,

〈
Â
〉
T

=
∑
i

pi(T ) · 〈ψi|Â|ψi〉 , with pi(T ) =
e−

Ei(V,N,...)
kB T

Z(T, V,N, . . .)
,

2 Actually by the Legendre transformation of −L.
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and the Hermitian operator Â represents an observable (i.e., a measurable
quantity). The ψi represent the complete system of eigenfunctions of the
Hamilton operator H; the Ei are the corresponding eigenvalues.

Concerning the entropy: This is a particularly complex quantity, whose
complexity should not simply be “glossed over” by simplifications. In fact,
the entropy is a quantitative measure for complexity, as has been stated
already. In this context one should keep in mind that there are at least three
commonly used methods of calculating this quantity:

a) by differentiating the Helmholtz free energy with respect to T :

S(T, V,N, . . .) = −∂F (T, V,N, . . .)
∂T

;

b) from the difference expression

S =
1
T
· (U − F )

following from the relation

F (T, V,N, . . .) = U(T, V,N, . . .)− T · S(T, V,N, . . .) ,

where the quantity T · S represents the heat loss. This formulation seems
to be particularly useful educationally.

c) A third possibility of quantification follows directly from statistical physics

S = −kB ·
∑
i

pi ln pi

(where this relation can even be simplified to S = −kB · 〈ln 
̂〉�̂ in the
above trace formalism.)

d) Shannon’s informational entropy3 is also helpful.

It should also have become clear that the Second Law (and even the Third
Law) can be formulated without recourse to entropy. However, the notion
of absolute temperature (Kelvin temperature) T is indispensable; it can be
quantified via the efficiency of Carnot machines and constitutes a prerequisite
for statistical physics.

Amongst other important issues, the Maxwell relations remain paramount.
Here one should firstly keep in mind how these relations follow from a differ-
ential formulation of the First and Second Laws in terms of entropy; secondly
one should keep in mind the special relation

∂U

∂V
= T

∂p

∂T
− p

3 This is essentially the same: kB is replaced by 1, and the natural logarithm is
replaced by the binary logarithm.
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and the application to the Gay-Lussac experiment, and thirdly one should
remember that one can always obtain important cross-relations by equating
mixed second-order derivatives, e.g.,

∂2F

∂xi∂xj
,

in the total differentials of the Helmholtz free energy,

dF = −pdV + μdN + . . .− SdT ,

or analogous thermodynamic potentials.
In this book we have also stressed similarities between the four different

parts. Therefore, looking back with a view on common trends, it seems that
the systematic exploitation of “coherence properties” has a promising future,
not only in optics (holography), but also in quantum mechanics (quantum
computing, etc.). Unfortunately, as discussed above, thermalization also leads
to decoherence. However, recent success in obtaining ultralow temperatures
means that this barrier may become surmountable in the not-too-distant
future.
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45. D. Vollhardt, P. Wölfle, The superfluid phases of helium 3, (Taylor & Francis,
London New York Philadephia 1990), pp 1–690

46. V.L. Ginzburg, L.D. Landau: J. Exp. Theor. Physics (U.S.S.R.) 20, 1064 (1950)
47. A. Abrikosov: Sov. Phys. JETP 5, 1174 (1957)
48. L.D. Landau, E.M. Lifshitz: Course of Theoretical Physics, volumes 5 and 9 (=

Statistical Physics, Part 1 and Part 2), 3rd edn, revised and enlarged by E.M.
Lifshitz and L.P. Pitaevskii (Pergamon Press, Oxford New York and elsewhere,
1980), pp 1–544 and 1–387

49. J. de Cloizeaux: Linear response, generalized susceptibility and dispersion the-
ory. In: Theory of condensed matter, directors F. Bassani, G. Cagliotto, J.
Ziman (International Atomic Energy Agency, Vienna 1968), pp 325–354. At
some libraries this book, which has no editors, is found under the name E.
Antoncik.

50. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller: J.
Chem. Phys. 21, 1087 (1953)

51. D.P. Landau, K. Binder: A guide to Monte Carlo simulations in statistical
physics, 2nd edn (Cambridge University Press, Cambridge UK, 2000), pp 1–
448



Index
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Joule-Thomson effect 321, 324, 372
Joule-Thomson process 319, 322

Kelvin temperature T 303, 427, 429
Kelvin thermometer (ideal gas, ideal

paramagnet) 304
Kepler

’s laws 32
’s problem (hyperbola orbits) 238
problems 50

kidney-shape (of dipole fields) 133
kilogram 7
kilopond 7
kinetic

energy 27
energy (relativistic) 103
energy: translational and rotational

parts 71
momentum 61
theory of Bose (Fermi) gases 335
theory of gases 311, 335
theory of relativistic gases 335
energy 46

Kirchhoff’s law 192
Kronecker symbol δi,j 214
Kuhn (philosophy of science) 3

ladder operators (ascending or
descending) 243

Lagrange formalism 89
Lagrange multiplier 90
Lagrangian

equations of the 1st kind 48, 91
equations of the 2nd kind 45, 48
equations of the 2nd kind with

constraints 91
for the Lorentz force 60
function 45
equations of the 2nd kind 47

Landé factor gJ(L, S) 265, 406
Landau’s theory (second-order phase

transitions) 403
Laplace identity 72

laser 199
laser cooling (ultralow temperatures)

371
latent heat (e.g., vaporization and

melting) 369
latitude ϑ 126
lattice-gas interpretation (Ising model)

332, 333, 425
law of mass action (chemical reactions)

417
least action (Hamilton’s principle) 55
left-handedness 71
Legendre polynomial 239
Legendre transform 428
Legget, Abrikosov, Ginzburg 395
Lenard (photoeffect) 208
length contraction 59
Lennard-Jones potential 323, 327
Lenz vector 39, 50, 236
light quanta (photons) 379
Linde process (liquefaction) 322
linear approximation (mean field) of

a Hamiltonian 334
linearity (e.g., of Maxwell’s equations)

120
linearity (of a theory) 21
liquefaction (Linde) 319, 322, 323
local inertial frames (Einstein) 5, 96
locality in quantum mechanics 279
locally orthogonal curvilinear coordi-

nates 126
longitude ϕ 126
Lorentz

force 27, 45, 153, 155, 217, 295
force (mksA versus cgs) 112
gauge 165, 176
transformations 56
transformations for the electromag-

netic fields 177
force 60
gauge 166
transformations 175

Loschmidt’s number L0 (the number of
molecules in a mole) 303

losses of a response process 410

Mach 5, 96, 98
macroscopic versus microscopic

properties 301
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magnetic

dipole radiation 173

dipoles m 139, 140

dipoles (not always equivalent to
Ampèrian current loops) 149

field H 139, 313

fields of steady electric currents 145

induction B 139, 149, 314

moment m 313

monopoles (non-existence) 139, 140

polarization J 139, 314

susceptibility 319, 403, 409

work 313

magnetism 271

magnetization M = J/μ0 314

magnetocaloric effect 372

magnetostatics 119, 139

magnons (spin-wave quanta) 185, 379,
399, 402

main-sequence stars 388

MAPLE, MATHEMATICA 161

Markoff chain 412

mass defect 104

mathematical (versus physical)
pendulum 75

Maxwell

’s displacement current 153, 156

’s equations in Gaussian units 111

’s equations in SI units 111

’s relations (thermodynamics) 317,
318, 322, 339, 369, 370, 429

’s theory: relativistic formulation
174

-Boltzmann ideal gases 335

-Boltzmann velocity distribution
337, 352

construction 329, 331

equations 163

mean field approximation (bi-linearized)
of a Hamiltonian 334

mean field approximations 405, 408

measurable quantities (“observables”)
in quantum mechanics 215

measurable quantities (observables) in
quantum mechanics 213

measurement process 218

Meissner effect 146, 277, 398

Meissner-Ochsenfeld effect (analogy
with Higgs-Kibble mechanism)
399

Mendeleev’s system 293

Mercury (closest planet to the sun)
35

meridian ϕ 126

metric fundamental tensor 96

Metropolis algorithm 411

Michelson 3, 56, 174

microcanonical ensemble 337, 344, 363

microstates (configurations) 359

minimal substitution (p→ p− eA) 62

Minkowski

formulation of the continuity
equation 176

four-potential Ã 177

four-vectors 58, 59, 102, 175

four-vectors (classification: space-like,
light-like, time-like) 101

general remarks (if at all) 58, 96,
175

space (pseudo-euclidean) 175

mixing entropy 413, 414, 416, 421, 423

mobile phone 170

Moivre’s relation (Euler) 159

mole 303, 335

molecular

field approximation 333

field exponents 332

field theories 405, 406, 408

polarizability 134

moment of inertia 73

momentum four-vector 103

Monte Carlo simulations 411

Morley 3, 56, 174

moving point-charge (electromagnetic
fields) 177

multipole

-moment expansion (total charge,
dipole moment, quadrupole
moment,. . . ) 135

expansion 134

moments 134

potentials (monopole, dipole,
quadrupole, . . .) 133

radiation 173
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radiation: dependence on distance
and/or frequency 174

radiation: right-handed rectangular
trihedron 174

n-th order phase transitions (Ehrenfest)
403

Nabla operator 114
near-field microscopy 194, 197
near-field range 170
Nernst’s heat theorem (Third Law)

316, 372, 374
Neumann’s problem 129, 130
neutrino 418
neutron 418
neutron stars 97, 387, 389, 418
Newton

’s 3rd axiom, weak and strong forms
8

’s bucket experiment 98
’s equations of motion 5, 293
’s particle interpretation of light

184
’s third axiom 26, 38, 119

Newtonian
mechanics 174
synthesis of Kepler’s laws 33
analysis of Kepler’s laws 33, 36, 39

nodal theorem 226, 240
Noether’s theorem 49, 50
non-additivity of the partial pressures

for real gases 414
non-autonomous 86
non-degenerate perturbation theory

262
non-existence of a local maximum of

a harmonic function 129
non-integrable systems 85
non-linearity (e.g. of the chromo-

dynamic equations for nuclear
physics) 120

non-locality of quantum mechanics
(singlet decay) 281, 295

non-perturbative terms 263
non-reality of quantum mechanics

(states are “prepared”, not
“stated”) 281

normal
fluid 394

frequencies (eigenfrequencies) 63
modes 63

north anomaly 100
nuclear transitions 180
nucleation processes 425
nuclei 180
number operator 242
numerical methods (electric fields)

131
nutation 84
Nyquist theorem 411

O2 (why paramagnetic?) 275
object wave plus reference wave (in

holography) 200
observable 429
observables (“measurable quantities”)

in quantum mechanics 213, 215
octupole 173
odd normal modes 67
odd parity 67
Oersted 145
Ohmic behavior 164
Ohmic processes (Joule’s heat) 305
optical resolution 197
optical-path length 55, 187
optics (application of electrodynamics)

179
orbit 47
orbital angular momentum 244
order parameter 395, 397, 404
ordinary versus extraordinary beam

(uniaxial birefringence) 191
orthogonal curvilinear coordinates

127
orthogonality properties (of the

spherical harmonics) 136
orthonormal bases in a Hilbert space

212
orthonormalization 214
orthonormalization with δ-functions

238
osculating circle and osculating normal

of a space curve 12
Osheroff, Richardson, Lee 395
osmotic pressure 420, 422
overlap integral 272, 276

pair condensate 277, 395
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paraelectric systems 136

paramagnetic resonance 68

paramagnetism 251, 275

parametric representation of an ellipse
37

parametric resonance 28

parity 67, 224

partial pressure 413, 414, 421
particle-wave duality 184, 208

partition function Z(T, V,N) 302,
344, 351, 377, 427

Passat (trade winds) 98

passive charge 119

passive gravitational mass 8

Pauli

’s exclusion principle 249, 251, 252,
271, 293, 381, 383

’s exclusion principle (generalization:
permutation behavior of an
N-particle wave function) 252

general remarks (if at all) 249

matrices 244

pendulum (mathematical) 75

pendulum (physical) 75

penetration depth λ(T ) (superconduc-
tivity) 397

perihelion and aphelion 34

perihelion rotation 34, 35

periodically driven oscillation 18

permafrost problem (heat conduction)
309

permanent dipole moment 136

permutation factors in front of the
classical phase space element
350

perpetual motion of the second kind
(impossible) 354, 355

perturbation

theory (Schrödinger) 261

determinant 262

theory (non-degenerate versus
degenerate) 262

Pfaff forms (differential forms) 29, 316
phase

velocity versus “ray velocity”
(birefringence) 190

space (coordinates plus momenta)
293

transitions (first-order) 403

transitions (second-order, Landau
theory) 403

changes 327

phase-space integral 349

phase-space quantization (in units of
hf ) 349

phonons

CV ∝ T 3 401

(sound quanta) 185, 379, 399, 401,
402

, magnons, plasmons, . . . (quasi-
particles) 346

photon gases (p = U
3V

) 339, 347

photon gases and ultrarelativistic
behavior 338

photons

(light quanta) 4, 185, 220, 379, 402

physical dimension 126

Planck

’s constant h 179, 207, 349

’s formula (black-body radiation)
180, 184, 208, 339, 344, 345, 347

’s reduced constant � 343

general remarks (if at all) 4, 207,
361

planetary motion 31

plasmons (quanta of charge-density
waves) 185

Poincaré

’s lemma 125, 147

repetition time 268

section 86

Poinsot

’s construction (for rigid bodies)
77, 189

’s construction (in crystal optics)
189, 191

plane 78, 80

point charge 114

point mass 5, 23

Poisson brackets 50, 53

Poisson’s equation 128

polar (versus axial) vectors 71

polarizable matter 132

polarization

(electric) 133



448 Index

representation (versus effective-
charge representation) 137

contributions (to the effective
densities of charge and current)
165

polarons 379
Popper (philosophy of science) 3

position representation (“wave
mechanics”) 231

position representation (versus mo-
mentum representation or matrix
representations) 211

potential energy 14, 26–28, 46

power (relativistic) 102
power balance (dissipative versus

reactive parts) 162

Poynting vector 163, 167, 172
pre-Einstein (aether) 58
precession (of a top) 84

principal moments of inertia 77
principal quantum number n (shell

index) 237

principle
of “maximal proper time” (Einstein)

60

of d’Alembert 89
of relativity (Einstein) 58
of superposition 18, 33

probability current 228
probability statements (for the results

of measurements in quantum
mechanics) 294

profile function (of a traveling wave)
167

projectile and target 41
proper time (eigenzeit) 55, 59
proton 418

pseudo-length 59
pseudo-perpendicular 102
pseudo-rotation of the Minkowski space

(Lorentz transformation) 59,
101, 175

pseudo-scalar product 59

pulsar (neutron star) 391

quabla operator (d’Alembert) 166

quadrupoles 132, 133, 173
quality factor of a resonance 21, 161

quanta of electromagnetic waves
(photons) 4

quantization (Planck) 208
quantization of the angular momentum

243, 351
quantum

chromodynamics (QCD) 4
computing 283
cryptography 285, 289, 291
dots (2d) 285
electrodynamics (QED) 4
mechanics (Part III) 301
mechanics: does not “state”, but

“prepare” (non-reality); plus:
“non-locality” 295

well (bound states) 224
well (reflection at high energies)

229
quasi-particles 379
quasi-particles (phonons, magnons,

plasmons, . . . ) 185, 346
qubits in quantum computing 283

radiation from an oscillating electric
dipole 170

radiation from an oscillating magnetic
dipole 171

radius of curvature of a line in space
12

ray optics (geometrical optics) 185
ray optics versus wave optics 185
Rayleigh-Jeans’ law (black-body

radiation) 207, 345
rays in a complex Hilbert space (equiv-

alence classes of Hilbert vectors
distinguished by a complex factor)
211

Real Gases (as opposed to Ideal Gases)
304

reality in quantum mechanics 279
reconstruction wave (in holography)

200
red giant (stars) 389
reduced

length of a physical pendulum 75
variables (harmonic oscillator) 231
variables (hydrogen atom) 237

reference frames 95
reference wave 199
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reflectivity R and transmittivity T at
steps in the potential energy 227

reflexion (and transmission) 226
rejection (Metropolis algorithm) 412

relative motion 29

relative permeability 142

relativistic invariance of Maxwell’s
theory 155, 174

relativistic quantum field theories (like
QED or QCD) 4

relaxation frequencies 19

relaxation time 17

repetition time (Poincaré) 268

representation
(change of . . . ) 245

(= “aspect”) 245

(Schrödinger, Heisenberg, Dirac)
246

in terms of (effective) magnetic
charges 140

reproduction of wave functions with
spin by doubled rotations 252

resolution of the identity (spectral
resolution) 215

resonance 21

resonance (in alternating-current
circuits) 158, 161

response 410

rest energy (relativistic) 103

rest mass 7

retardation between cause and effect
169

retarded potentials 165, 169

reversible processes 315

reversion pendulum 76
rheonomous 45, 46, 89

Riemann zeta function 393

right-handed rectangular trihedra (in
radiation fields) 171

right-handedness 71, 149

rigid bodies 71

Ritz minimization 259
roller on an inclined plane 74, 91

rosette orbits 35, 39

rotation of wave functions with spin
251

rotational

energy (diatomic molecules) 350

energy (rigid body) 71, 73
part of the kinetic energy of

a molecule 340
Runge-Lenz vector 39, 50, 236
Rutherford 209
Rutherford scattering cross-section

41, 42
Rydberg 209, 237

s-wave decay (singlet) 279
Sackur and Tetrode (indistiguishability

in classical statistics) 350
saturation

pressure 329
magnetization 409
vapor pressure ps(T ) 369

scalar product of two Hilbert vectors
212

scaling law 332
scattering cross-section 41
scenario (in a technical sense) 85
Schrödinger

’s cat 220, 221, 288
’s equation 216, 350
’s proof of the equivalence of

his “wave mechanics” and
Heisenberg’s “matrix mechanics”
210

equation (time-independent) 223,
231

equation for the Lorentz force 217
general remarks (if at all) 4, 209
representation (aspect) 245

Schwarzschild radius 389, 391
Second Law of Thermodynamics 313,

370, 429
Second Law of Thermodynamics

(advanced discussion) 353
second-order phase transitions

(fluctuations) 408
second-order phase transitions (Landau

theory) 403
see-saw effect 28, 68
selection rules 269
self-adjoint operators (Hermitian plus

complete) 213, 215, 245, 378
semiclassical theories 187
semideterministic structure of quantum

mechanics 294
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semipermeable membrane 414, 420,
422

sensible bits (quantum cryptography)
297

sensitive dependence on the initial
conditions 85

separability of Hilbert spaces 212

separation of variables 14

Shannon’s information entropy 302,
359

Shor’s algorithm (quantum computing)
284

shortest optical path (Fermat) 187

single-spin approximation (molecular
field) 333

singlet pairing 277

singlet states: simultaneous eigenvectors
of Ŝz and Ŝx 290

singlet wave function (two spins) 272,
276

singular-continuous spectrum (as
opposed to absolute-continuous)
215

skleronomous 45, 89, 93

Slater determinant 259

Slater determinants (= antisym-
metrized product functions)
253

Snell’s law of refraction 181, 187

SNOM (scanning near-field optical
microscope) 194, 197

sodium (Fine Structure) 256

solenoid 142

solute substance 420

Sommerfeld 169, 209

Sommerfeld formalism (electrons in
metals) 383, 384

sound quanta (phonons) 379

sound waves 182

sources and vortices of a field 146

space and time (Newtonian mechanics)
4

spacetime (relativistic) 175

spate product 147

special theory of relativity (Einstein)
4, 174

specific heat capacity 305

specific heat conductivity 306

spectral range 179

spectral resolution 213

spherical
coordinates 126

harmonics 136, 235, 239
multipole moments 136

pendulum 46, 49, 86
symmetry 123

waves 168

harmonics 173
spin

-orbit interaction 249–251, 255, 294
-statistics theorem 249, 253

-wave quanta (magnons) 379
general remarks (if at all) 294

magnetism 151
momentum 244, 249

magnetism 151

spinning top 78, 83
spinodal line (van der Waals theory)

328

spinors 244, 249

spontaneous
emission 269

long-range order 136
magnetization 331, 332, 409

magnetization (ferromagnet) 304
stability of the motion of a torque-free

top 79
star development 387

Stark effect (external electric field)
263

Stark effect (linear versus quadratic)
263, 264

state reduction (through a measure-
ment) 219

stationary states 223

statistical operator (density operator)
377, 378

Stefan-Boltzmann’s law 339, 402
Steiner’s theorem 71, 74

Stern-Gerlach 249
Stieltje’s integral 215

Stirling heat engines (versus Carnot)
355

Stirling’s approximation 359
Stokes’s integral theorem 115, 116

Stokes’s interface loop 144
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string loop construction of the ellipse
36

string theory 4
strong topology 214
sum rule (Debye theory) 400
super effects 277
superconductivity 146, 395
superconductivity: Ginzburg-Landau

theory 395
superconductors and superfluids 277
supercurrent density 396
superfluid component 394
superfluidity 277, 395
supernova explosion (stars) 389
superposition 21, 119, 120, 125, 169,

311
supersymmetry 4
surface tension 424, 425
susceptibility

electric 134
magnetic 409
dynamic 410
magnetic 319, 403
reactive versus dissipative parts 410

swing ellipsoid 80
symmetry reasons (aid for diagonaliza-

tion) 65
symplectic invariance of Hamiltonian

mechanics and of electrodynamics
171

synchrotron radiation 171, 172
systems of units in electromagnetism

109

target (in scattering phenomena) 41
technical friction factor 15
temperature 303
test functions 113, 214
test message (quantum cryptography)

297
thermal

fluctuations 332
(versus caloric) equation of state

317
coherence length ξ(T ) 405
equilibrium 306

thermodynamic temperature T (Kelvin)
301

thermostat 337

Third Law of Thermodynamics 316,
371, 372, 429

Thomson: impossibility of an ideal heat
machine 355

throttle valve (Joule-Thomson) 321
time dilatation 59
time-ordering operator (Dyson) 247
torque on electric dipoles 25
torque-free top 78
total Pfaffian form 29
trace formalism 377
trade winds (Passat) 98
transfer matrix method 228
transformation between mksa and cgs

units 111
transformer 158, 159
transient time 169
transition to chaos 80
translational and rotational parts of

the kinetic energy 71
translational part of the kinetic energy

337, 339
transversality (of electromagnetic

waves) 167
traps (ultralow temperatures) 371
traveling wave 167
triangulation 116
triple point 305, 419
triplet pairing (in He3) 278
triplet wave functions (two spins) 271,

272, 276
true charges (as opposed to effective

ones) 137
true force (as opposed to inertial forces)

95
tunneling

states (two levels) 402
through a barrier 229
transmittivity 229

two-level systems in quantum
computing 283

two-particle problems 29
two-spinors 249
type II superconductors (vortex lattice)

398

ultralow temperatures 371, 374
ultrarelativistic behavior and photon

gases 338
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ultraviolet (spectral range) 179
unattainability of T = 0 in a finite

number of steps 372, 373
undulator 173
uniaxial crystals (normal birefringence)

190
uniqueness of the solution for

a capacitor problem 129
unitarity relation 226, 227
unitary

equivalence 245
operators 245, 283
vector space (pre-Hilbert space)

212
operators 53

units in electromagnetism 109
units of length and time 6
universal gas constant (R0 = Lo · kB)

303
universality classes 408

vacuum light velocity 169
vacuum permeability 111, 250
van der Waals equation of state 304,

317, 322, 330, 425
van der Waals theory 327, 369
vapor pressure outside a droplet 423
variational

derivative 48
parameter 47
principle of “least action”
principle of “maximal proper time”

(Einstein) 60
vector model (quantization of the

angular-momentum) 257
vector potential 60, 147
velocity

definition 11
of light in vacuo 111
transformation (non-relativistic

versus relativistic) 58

vibrational part of the energy of
a molecule 340

vibrations of diatomic molecules 352
virtual displacement 89
virtual orbits 47–49
vortices and sources of a field 146

wave
-particle duality 184, 208, 220, 281
equations 179
optics 185
particle duality 219

waveguide 184
weak topology 113
weather pattern and Coriolis force 97
Weiss’s law (paramagnetism) 304
which path? 287
white dwarfs (stars) 387, 389
Wien’s “ultraviolet behavior” (black-

body radiation) 207, 345
wiggler 173
work

in mechanics 27
in thermodynamics 313
of a force of constraint 93

world aether (= aether), pre-Einstein
58

x-caloric effects 371
X-ray bremsstrahlung 179

yield function (law of mass action,
chemical physics) 417

Young 184

Zeeman effect (external magnetic field)
250, 264

Zeeman term (in the Hamiltonian)
354

zero-point pressure (“degeneracy
pressure”) 387
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