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Preface

Our book, Compendium of Theoretical Physics, contains the topics

• mechanics,

• electrodynamics,

• quantum mechanics, and

• statistical physics and thermodynamics,

which constitute the “canonical curriculum” of theoretical physics, taught
at the undergraduate level at most universities. It is oriented mainly toward
students of higher levels who are interested in a clearly arranged and co-
herent presentation of the curriculum, or who are preparing for their degree
examinations. Moreover, this book is also suited as an accompanying and
complementary textbook for students within the first semesters. For them,
it aims to provide a useful guideline to reclassify the content of the various
physics courses. Finally, physicists working in industry or research may also
benefit from this overview of theoretical physics.

There are, of course, many good textbooks for the above topics (some
suggestions can be found in our commented literature list). This book is
therefore not to be regarded as a substitute for these books; no student can
get by without an extensive study of the curriculum using other, didactically
and historically well-edited presentations of theoretical physics. However, it
seemed necessary to us to write this book in order to offer a complementary
approach to theoretical physics, in which the composition, the structure, and,
last but not least, the elegance of physical theories are emphasized and easy to
recognize. We hope that this is achieved, among other things, by dispensing
with historical-phenomenological explanations.

Throughout, we pursue an axiomatic-deductive approach in that we start
the discussion of each theory with its fundamental equations. Subsequently,
we derive the various physical relationships and laws in logical (rather than
chronological) order. Our aim is to emphasize the connections between the
individual theories by consistently using a standardized presentation and no-
tation. Think, for example, of the Hamilton formalism: it constitutes a funda-
mental concept not only in quantum mechanics but also in statistical physics.



VIII Preface

In the first chapter, Mechanics, we present the often overemphasized New-
tonian approach to mechanics next to the Lagrange and Hamilton formula-
tions. Each of these equivalent representations distinguishes itself by spe-
cific advantages: whereas Newton’s approach is most easily accessible using
the concept of force and by finding the equations of motions, only the La-
grange and Hamilton formalisms provide a suitable platform for a deeper
understanding of mechanics and other theoretical concepts. For example, the
Lagrange formalism is better suited to seeing the relationship between sym-
metries and conservation laws. Accordingly, the first three sections of this
chapter deal with these three approaches and their connections in equitable
fashion. Furthermore, in the section Relativistic Mechanics, we introduce the
correct Lorentz tensor notation in order to ease the transition to the relativis-
tic theory of electrodynamics, in which the disciplined use of this notation
turns out to be very useful and convenient.

The advantage of our deductive method may be particularly apparent in
the second chapter, Electrodynamics. In contrast to many other textbooks,
we start with Maxwell’s equations in their most general form. This allows us
immediately to see very clearly the structure of this theory. We quickly find
the general solutions to Maxwell’s equations using the very important concept
of gauge invariance. From this, the various laws of electrodynamics follow
naturally in a clean and concise manner. For example, the solutions in empty
space, or the special cases of electro- and magnetostatics, are easily deduced.
Based on our results of relativistic mechanics, we apply the covariant notation
to electrodynamics and discuss the Lagrange and Hamilton formalism with
respect to the field theoretical character of the theory.

In contrast to the other chapters we begin Quantum Mechanics with a
mathematical introduction in which some areas of linear algebra are recapit-
ulated using Dirac’s notation. In particular, the concepts of operators and
eigenvalue problems are discussed. These are of fundamental importance
in quantum mechanics. We then present the general structure of quantum
theory, where the fundamental concepts are established and discussed in a
representation-independent manner. Generally, throughout the whole chap-
ter, we try to avoid overemphasizing a particular representation.

Similarly to mechanics, there are different approaches in statistical me-
chanics/thermodynamics to describe many-particle systems. First, we have
the statistical ansatz that combines (quantum) mechanical laws with a statis-
tical principle. This results in a microscopic description in form of ensemble
theories. By contrast, thermodynamics is a purely phenomenological theory
based on purely macroscopic experiences. A third approach is given by in-
formation theory where a system is considered from the viewpoint of lack
of information. In order to highlight the inherent connections of these three
concepts, we discuss all of them in our chapter Statistical Physics and Ther-
modynamics and show their mutual equivalence.



Preface IX

Throughout this book important equations and relationships are sum-
marized in boxes containing definitions and theorems. We hope that this
facilitates structured learning and makes finding fundamental results easier.
Furthermore, we have arranged connected argumentations optically; in prin-
ciple, the reader should always be able to recognize the end of an argument.
At the end of each section we have placed a short summary as well as some
applications with solutions. These applications are intended to reaffirm, and
sometimes enhance, the understanding of the subject matter. Finally, in the
appendix, a short compilation of important and often-used mathematical for-
mulae are given.

It should be obvious that we make no claim of completeness. Instead,
the topics of the four chapters are chosen such that, on the one hand, they
contain the fundamental ideas and concepts and, on the other hand, cover the
areas we have found, quite subjectively, most relevant for examinations and
day-to-day work. To complement this book, we make some further literature
suggestions in the appendix.

Overall, we hope that we have written a book that works as a broker
between textbooks, lecture notes, and formula compilations. It would make
us very happy if it helped you to better understand the concepts of theoretical
physics.

Cologne and Newcastle Armin Wachter
October 2005 Henning Hoeber
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1. Mechanics

The subject of classical mechanics is the dynamics of material bodies. Up to
the beginning of the 20th century, classical mechanics was seen as the fun-
damental theory of the interaction of material objects. However, the validity
of classical mechanics was drastically reduced with the advent of the theory
of special relativity in 1905 and with quantum theory in the 1920s; classical
mechanics is now to be considered as the limiting case of velocities that are
small compared to the speed of light and of energies that are large compared
to those on the atomic scale.

One of the most striking characteristics of classical mechanics is the vari-
ety of methods available to solve any one given problem. Equivalent formu-
lations of mechanics are

• Newtonian mechanics,

• the d’Alembert principle,

• the Lagrange equations and generalized coordinates,

• Hamilton’s principle, and

• Hamilton-Jacobi theory.

In principle, it is possible to solve a given problem with each of these methods.
However, we shall see that some of these approaches are much better suited
to solve some problems than others. For example, problems with restrained
freedom of motion (such as the motion of pearls on a string) are easily tackled
in the Lagrangian formulation of mechanics and somewhat cumbersome in
Newton’s approach. In addition, some of the above methods reveal deeper
connections, particularly between symmetries and conservation laws. Finally,
some formal structures of mechanics, such as the Poisson bracket and the
Hamilton-Jacobi equation, are of particular interest when performing the
transition from classical to quantum mechanics.

In the first section of this chapter we lay the foundations of Newtonian
mechanics and discuss some immediate implications. Furthermore, we study
how Newtonian mechanics must be modified in accelerated coordinate sys-
tems. This leads us to the important concepts of inertial systems and Galilei
invariance.
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The next two sections deal with the Lagrangian and the Hamiltonian for-
mulations of classical mechanics as two examples of alternatives to the New-
tonian approach. These formulations lead to great simplifications for systems
subject to certain constraints. In the Newtonian formulation these constraints
are taken into account by introducing constraining forces into Newton’s equa-
tions of motion, whereas in Lagrange’s and Hamilton’s formalisms they can
be eliminated through a suitable choice of generalized coordinates, velocities,
and momenta. Additionally, these approaches offer a deeper insight into the
structure of mechanics and its relation to other physical theories.

In Section 1.4 we discuss the dynamics of rigid bodies. In this context
it proves convenient to introduce different coordinate systems in which the
kinematic quantities can be formulated in an orderly and transparent fashion.

The important class of central forces is the subject of Section 1.5. Fol-
lowing a discussion of the reduction of two-particle systems to effective one-
particle systems, we turn to the equation of motion in central potentials and
determine the possible trajectories in 1/r-potentials. Furthermore, we discuss
the scattering of particles. Although this type of problem is more relevant to
high-energy physics, and therefore needs to be formulated in a quantum the-
oretical sense, many of the concepts and structures of scattering theory can
already be formulated classically, allowing us to build on these results in later
chapters.

This chapter’s last section deals with the relativistic generalization of
Newtonian mechanics. Our starting point is the experimental observation
that the velocity of light is identical in all inertial systems. From this it follows
that space and time are not absolute but, contrary to Newton’s formulation
of mechanics, depend on the reference frame.

1.1 Newtonian Mechanics

In this section we discuss the fundamental terminology and concepts of New-
tonian mechanics. A brief recapitulation of some important mathematical
results relevant for the description of particle positions is followed by the
presentation of Newton’s axioms. A number of physical consequences and
conservation laws are derived from these axioms, the understanding of which
is of great importance for all following sections. Furthermore, we look at the
motion of particles in accelerated coordinate systems and show how Newton’s
equations of motion are modified in these. In this context, we will see that
there is a close relation between Galilei invariance and the concept of iner-
tial systems. Finally, we deal with the dynamical properties of many-particle
systems and derive various conservation laws for closed systems of this kind.
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1.1.1 Coordinate Systems and Vectors

In order to avoid confusion in what follows, it is useful to begin our discussion
of Newtonian mechanics by looking briefly at some mathematical concepts
that the reader is undoubtedly already familiar with.

To describe a mechanical system we use, as generally common, the con-
cept of an idealized mathematical mass point (particle), whose position in
space is represented by a basis-independent vector x in a three-dimensional,
real vector space. To quantify this position, one needs a coordinate system,
determined by its origin, and three linearly independent basis vectors. The
choice of such a basis system is generally suggested by the dynamics of the
particular physical system under consideration. If not otherwise stated, we
use a Cartesian coordinate system with canonical basis. For this we write

K : {e1, e2, e3} ,

with

eiej = δij (orthonormality relation)

and∑
j

eiej = 1 (completeness relation) .

The position x of a particle can now be uniquely specified by the projections
xi of x onto the axes of K along the unit vectors ei:

x =
∑

i

eixi , xi = xei . (1.1)

The xi are called the coordinates of x with respect to K. Often, one col-
lects the three coordinates into a coordinate triplet and writes in short-hand
notation

x =

⎛
⎝ x1

x2
x3

⎞
⎠ . (1.2)

We will follow this convention. However, keep in mind that the basis-
independent physical vector x in (1.1) and the basis-dependent triplet x
in (1.2) represent two mathematically different objects. The meaning of x,
either a physical vector or the projection onto a particular coordinate system,
should always be clear from the context.

Temporal differentiation of vectors. Another important aspect in this
context is the temporal differentiation of a vector x. We adhere to the general
convention, using a single dot for the first derivative, two dots for the second
derivative, and so on. If we wish to study the change in time of x relative
to two time-dependent coordinate systems, say K : {e1, e2, e3} and K′ :
{e′

1, e
′
2, e

′
3}, whose basis vectors change with time, it is not so much the total

temporal derivative
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ẋ =
∑

i

(ėixi + eiẋi) =
∑

i

(ė′
ix

′
i + e′

iẋ
′
i) ,

which is of interest, but rather the change in time as seen from K or from K′.
For clarity we define the symbols D and D′ to denote the following derivatives:

Dx =
∑

i

eiẋi , D′x =
∑

i

e′
iẋ

′
i . (1.3)

Rotating coordinate systems. Consider two coordinate systems K :
{e1, e2, e3} and K′ : {e′

1, e
′
2, e

′
3} with the same origin but rotating relative to

one another (i.e., their basis vectors are rotating relative to one another). The
transition from K to K′ is effected by a proper orthogonal rotation matrix
such that

ei =
∑

j

e′
jRji , e′

i =
∑

j

ejR
T
ji , Rij = e′

iej (1.4)

and

RRT = RTR = 1 , det R = 1 . (1.5)

Given these relations, the coordinates x′
i of a vector x with respect to K′ can

be obtained from the coordinates xi of the vector with respect to K in the
following way:

x =
∑

i

eixi =
∑
i,j

e′
jRjixi =

∑
j

e′
jx

′
j =⇒ x′

j =
∑

i

Rjixi .

The last equation can be put into the matrix notation

x′ = Rx ,

where again one should keep in mind that this is a relation between the basis-
dependent coordinate triplets in K and in K′ and not between two physically
different vectors.

1.1.2 Newton’s Axioms

We now turn to our discussion of the structure of Newtonian mechanics.
Before introducing Newton’s axioms, it is necessary to introduce three basic
mechanical quantities, as well as the concepts of momentum and inertial
system.

Definition: Basic mechanical entities
in the SI- (or MKS-)system

All mechanical quantities can be derived from the following three basic
entities:

�
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• Length, with the unit meter: m.

• Time, with the unit second: s.

• Mass, with the unit kilogram: kg.

We use the Système International d’Unités (SI).

In the Newtonian formulation of classical mechanics, the mechanical state of
a system is uniquely determined by the simultaneous specification of all the
particles’ positions and velocities at any particular time. Given this informa-
tion, the system’s state at any future time can be predicted from Newton’s
equations of motion. These equations follow from Newton’s axioms, which
describe a particle’s motion using the concept of momentum.

Definition: Momentum p

A particle’s momentum is given by the product of its inertial mass and its
momentary velocity vector:

p(t) = m(t)ẋ(t) .

Thus, p always points in the same direction as ẋ.

The motion of a particle is called linearly uniform if its velocity vector is con-
stant.

As we have already stated, the motion of particles is described within
given reference frames. It turns out that the equations of motion have different
forms in different reference frames. In Newton’s formulation of mechanics we
always assume the existence of inertial systems in which the equations of
motion have their simple well-defined form.

Definition: Inertial System

A frame of reference, with respect to which

• space is homogeneous and isotropic,

• time is homogeneous,

is called an inertial system.

Homogeneity and isotropy of space imply that no point and no direction in
space are particularly favored. Homogeneity of time means, similarly, that
there is no moment in time that is particularly favored. From this it follows
that reference frames

• that are shifted in space relative to an inertial system,

• that are moving at constant velocity relative to an inertial system,

• that are rotated relative to an inertial system,
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• whose time origin is shifted relative to that of an inertial system

are also inertial systems. Thus, the above definition does not single out one
particular reference frame, but leads to a whole class of inertial systems that
are all connected by the four transformations. They constitute the group
of Galilei transformations. We shall study this group in more detail in the
following subsection and connect it to the fundamental principle of Galilei
invariance.

We are now prepared to present the fundamental axioms, formulated by
Sir Isaac Newton, which form the basis of all of Newtonian mechanics.

Theorem 1.1: Newton’s axioms

Inertial law (lex prima)
The momentum of a free particle, i.e., a particle on which no force acts, is
conserved in any inertial system (momentum conservation law):

F = 0 ⇐⇒ p(t) = const .

Equation of motion and definition of force (lex secunda)
In an inertial system, the rate of change of momentum of a particle is caused
by a force F acting on it, such that

F =
dp

dt
. (1.6)

Law of interaction (lex tertia)
The forces F ij and F ji with which two particles i and j act upon one
another obey

F ij = −F ji .

Thus, these forces are equal in strength and opposite in direction (Actio =
Reactio).

Principle of superposition (lex quarta)
Forces are vectors and are thus superimposed linearly:

F =
∑

i

F i .

These four axioms imply

• the existence of an absolute time in all inertial systems and

• that the total mass of a closed system is a conserved quantity.

Looking ahead, we mention here that both of these assumptions are dropped
in the framework of special relativity (Section 1.6).

To lex prima. The first of Newton’s axioms, a special case of the second
axiom, allows us to construct an inertial system. To this end, consider the
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trajectories of three identical particles on which no forces act, and which
are thus moving linearly uniformly away from some common point of origin
along the axes of a Cartesian coordinate system. Time can then be fixed
by demanding that a force-free particle travel the same distances within the
same time intervals.

To lex secunda. Newton’s second axiom plays the role of a force definition
as well as that of a law. Given the force, (1.6) represents the dynamical
equation of motion. For the special but most commonly considered case of
constant mass, one obtains the more familiar form of this equation:

F =
d
dt

p = m
d
dt

ẋ = mẍ , m = const . (1.7)

For the majority of physical problems the force vector is a function only of
the particle’s position, its velocity, and time: F = F (x, ẋ, t).

The fundamental problem of classical mechanics consists of determining
the trajectory x(t) of a particle, given the force vector. In the Newtonian
formalism this is achieved by solving the three (generally nonlinear) coupled
ordinary differential equations of second order (1.7). Since the fundamental
law of Newtonian mechanics is of second order in time, it is necessary to spec-
ify exactly two initial conditions in order to uniquely determine the particle’s
trajectory.

Inertial and heavy (gravitational) mass. According to Newton’s second
law, a force acting on a particle results in an acceleration proportional to the
particle’s mass. This mass, thus defined, is called the inertial mass of the
particle. In addition, there exists a second form of mass. In Subsection 1.5.3
we consider the gravitational force F G, which a heavy mass m experiences
due to the presence of another heavy mass M :

F G = −γmM
x

x3 .

It has been experimentally shown that these two kinds of mass are propor-
tional to one another. Thus, it is practical to choose the units such that both
masses coincide.1 This insight, equality of inertial and gravitational mass, is
the starting point of Einstein’s equivalence principle and the theory of general
relativity.

To lex tertia. The third axiom deals with physical processes in which two or
more particles interact with one another. Due to this law, a system consisting
of many particles can, given certain constraints, be regarded effectively as a
single particle.

1 Proceeding in this manner, one finds the experimental value of Newton’s gravi-
tational constant as γ = (6.67259 ± 0.00085) × 10−11 m3kg−1s−2.
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1.1.3 Physical Consequences, Conservation Laws

Newton’s axioms lead quite directly to a set of important conservation laws,
which we now discuss. To start, we define several additional basic mechanical
quantities.

Definition: Work W , power P , and kinetic energy T

• The amount of work W done by a force F against the inertial mass of a
particle along the trajectory Γx = {x(t), t ∈ [t1 : t2]} is given by

W (x1,x2, Γx) = W (t1, t2, Γx) =

x2∫
x1,Γx

F (x, ẋ, t)dx

=

t2∫
t1

F (x, ẋ, t)ẋdt , [W ] = Nm .

• The power P is defined as

P (t) =
dW

dt
= F (x, ẋ, t) · ẋ(t) , [P ] =

Nm
s

= W (Watt) .

• The kinetic energy T is given by

T (t) =
p2(t)
2m

=
mẋ2(t)

2
, [T ] = kg

m2

s2
= J (Joule) .

From this, we immediately find: the total work done by a force against
the inertial mass of a particle is equal to the difference of the kinetic
energies at the end and the start of the trajectory:

W (t) =

t2∫
t1

F (x, ẋ, t)ẋdt =
m

2
[
ẋ(t2)2 − ẋ(t1)2

]

=
1

2m

[
p2(t2) − p2(t1)

]
= T2 − T1 .

Conservative forces and energy conservation. The differential work
done by shifting a particle by dx is given by

dW = F (x, ẋ, t)dx .

In general, dW is not a total differential, so that∮
dW �= 0 .

Forces that do not depend explicitly on time nor on the velocity, and for which
F (x)dx is a total differential, constitute the important class of conservative
forces.
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Theorem 1.2: Conservative forces

The following statements are equivalent:

• F (x) is a conservative force.

• F (x) has vanishing curl: ∇ × F = 0.

• F (x) is the gradient of a scalar field, the potential V (x), such that

F (x) = −∇V (x) =⇒ V (x) = −
x∫

x0

dxF (x) .

Here, the potential is only defined up to an arbitrary constant, which we
can choose in such a way as to obtain a particularly simple form for V .

• The work is independent of the particle’s trajectory; it depends only on
its initial and final positions:

W (x1,x2, Γx) = W (x1,x2) = −
t2∫

t1

∇V (x)ẋdt

= − [V (x2) − V (x1)] .

• The differential work dW = F (x)dx is a total differential.

From this theorem and the definition of kinetic energy, we obtain the impor-
tant result:

Theorem 1.3: Energy conservation in conservative systems

The total energy E of a particle moving in a conservative force field is
conserved:

E = T + V = const .

If the energy of a conservative system is known at any particular time, we
can use this information as one of the necessary initial conditions needed to
define a unique solution of the equations of motion.

One-dimensional motion, conservative forces. One-dimensional mo-
tion in a conservative force field can always be reduced to an integral. From

E =
1
2
mẋ2 + V (x) =⇒ ẋ = ±

√
2
m

[E − V (x)] ,

we obtain2

2 Note that the particle can only be found in regions for which E ≥ V (x). We shall
provide a discussion of this relation in the context of central forces, Subsection
1.5.2.
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t − t0 = ±
x∫

x0

dx′
(

2
m

[E − V (x′)]
)− 1

2

, (1.8)

where the sign is determined by the initial condition ẋ(t0) >
< 0. The linear

harmonic oscillator is an example of this case. With V (x) = kx2/2, we find

t − t0 = ±
√

m

k
arcsin

[
x

(
k

2E

) 1
2
]

and, with x0 = x(t0) = 0, ẋ(t0) > 0,

x =

√
2E

k
sin [ω(t − t0)] , ω =

√
k

m
.

Angular momentum and torque. In addition to the force F and the
momentum p, we define two other fundamental quantities:

Definition: Angular momentum l and torque N

The angular momentum is defined as the axial vector

l(t) = x(t) × p(t) , [l] = kg
m2

s
.

Its temporal derivative defines the torque:

N(t) = l̇(t) = x(t) × ṗ(t) , [N ] = kg
m2

s2
.

Thus, angular momentum is conserved if the torque vanishes.

We see that for angular momentum conservation either F = 0 or F ||x must
be satisfied. In the first case, the coordinate system can always be shifted by
a constant vector such that l = 0. The second case leads to central forces:

Theorem 1.4: Central forces and angular momentum conservation

A central force depends only on the particle’s position vector x and acts in
the direction of x:

F = F (x) = xf(x) , f arbitrary scalar field .

The angular momentum of a central force is conserved.

Conservative central forces. Central forces are not necessarily conserva-
tive. However, in practice it is only the class of conservative central forces we
encounter in physical applications. For these, we have

x × F = −x × ∇V (x) = 0 .

In polar coordinates this equation reads
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∂V

∂ϕ
= 0 ,

∂V

∂θ
= 0 .

This gives V (x) = V (|x|).

Theorem 1.5: Rotationally symmetric potentials

For conservative central forces, the potential V exhibits rotational invari-
ance (central symmetry):

V (x) = V (|x|) .

Conversely, if V = V (|x|), we see from

F = −∇V = − dV

d|x|
x

|x|
that F is a conservative central force.

Examples of the above are given by the gravitational force and the Coulomb
interaction. We consider the equations of motions for this type of force in
more detail in Section 1.5.

Homogeneous potentials. Another important class of potentials is defined
as follows:

Definition: Homogeneous potential

A homogeneous potential is a rotationally symmetric potential of the form

V (x) = V (|x|) = α|x|d , d ∈ R .

For a single particle, we have

d
dt

(mxẋ) = m(ẋ2 + xẍ) = 2T + xF . (1.9)

Averaging this equation over a time interval τ yields

m

τ
[x(τ)ẋ(τ) − x(0)ẋ(0)] = 2 〈T 〉 + 〈xF 〉 , 〈T 〉 =

1
τ

τ∫
0

dtT .

If the particle’s motion is periodic within the interval [0 : τ ], i.e., x(τ) = x(0),
ẋ(τ) = ẋ(0), the left-hand side of (1.9) vanishes, and one obtains

〈T 〉 = −1
2

〈xF 〉 (virial theorem) . (1.10)

Thus, specifically for homogeneous potentials, we find

Theorem 1.6: Virial theorem for homogeneous potentials

For homogeneous potentials, V (x) = α|x|d, F = −∇V (x), we have
�
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〈xF 〉 = −α

τ

τ∫
0

dtx∇|x|d = −α

τ

τ∫
0

dtd|x|d = −d 〈V 〉

and therefore

〈T 〉 =
d

2
〈V 〉 .

Even if the particle’s motion is not periodic, one arrives at (1.10), provided
that the position and velocity coordinates are bounded from above, so that
the left-hand side of (1.9) vanishes for sufficiently large τ .

Theorem 1.7: Scale transformations for homogeneous potentials

Let V (x) = α|x|d. Then

m
d2x

dt2
= −∇V (x) = −αd|x|d−2x .

Performing a scale transformation of the form

x = λx′ , t = λ(2−d)/2t′ ,

it follows that
d2x

dt2
= λd−1 d2x′

dt′2
, ∇V (x) = λd−1∇′V (x′)

=⇒ m
d2x′

dt′2
= −∇′V (x′) .

Thus, Newton’s equation of motion is form-invariant under such scale trans-
formations.
Suppose that T and T ′ are specific times (such as oscillation periods) and
let R and R′ be some specific lengths (e.g., amplitudes) of two forms of
motion that are related by the above scale transformation. Then,

V (x) = α|x|d =⇒
(

T ′

T

)2

=
(

R′

R

)2−d

.

In particular, for the gravitational and for the Coulomb force with d = −1,
we find(

T ′

T

)2

=
(

R′

R

)3

,

so that the squares of the periods of two particles around a force center behave
similarly to the cubes of the two distances to the center. This is Kepler’s third
law (see Subsection 1.5.3).
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1.1.4 Accelerated Coordinate Systems and Inertial Systems,
Galilei Invariance

Newton’s equations of motion refer to inertial systems moving linearly uni-
formly relative to one another. The question we want to tackle in this subsec-
tion is: what is the equation of motion of a particle in a noninertial system
K′ that is accelerated relative to the inertial system K (see Fig. 1.1)?

space-fixed system K body-fixed system K′

x0(t)

x(t) z(t)
ω(t)

Fig. 1.1. Definition of space-fixed and body-fixed system.

For the following discussion, and that of rigid bodies in Section 1.4, we
introduce the term space-fixed system for the inertial system K, whereas the
accelerated system K′ is called the body-fixed system. In the most general
case, the accelerated motion of K′ relative to K consists of a rotation around
the origin of K, and a translational motion described by the vector x0(t). We
shall treat these two cases consecutively by looking first at a pure rotation
and subsequently adding in the translational motion.

Rotating coordinate systems. As already mentioned in Subsection 1.1.1,
two coordinate systems K : {e1, e2, e3} and K′ : {e′

1, e
′
2, e

′
3} rotating relative

to one another are connected via a time-dependent (3×3)-matrix R satisfying
the relations (1.4) and (1.5). Differentiating the orthogonality relation in (1.5)
with respect to time, we obtain

ṘTR + RTṘ = 0 .

This implies that Ω = RTṘ is skew symmetric:

Ω = RTṘ =

⎛
⎝ 0 ω3 −ω2

−ω3 0 ω1
ω2 −ω1 0

⎞
⎠ , Ωjk =

∑
i

εijkωi , ωi ∈ R . (1.11)

This relation is invertible, and we find
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ωi =
1
2

∑
j,k

εijkΩjk . (1.12)

As we will see in a moment, these are the space-fixed components of a time-
dependent vector ω =

∑
i eiωi, which describes the rotation axis of K′ rela-

tive to K. For this reason, ω is termed momentary rotation axis or momentary
angular velocity. Since the bases of K and K′ are time-dependent relative to
one another, we use the notation introduced in Subsection 1.1.1 for the tem-
poral derivative of a vector x with respect to K and K′ [see (1.3)]. For an
arbitrary vector x, we calculate

D′x =
∑

i

e′
iẋ

′
i =

∑
i,j

e′
i

(
Rij ẋj + Ṙijxj

)
=

∑
j

ej ẋj +
∑
k,i,j

ekRT
kiṘijxj = Dx +

∑
k,j

ekΩkjxj

= Dx −
∑
k,i,j

ekεkijωixj = Dx − ω × x ,

which yields

Theorem 1.8: Theorem of Coriolis

Let ω denote the momentary angular velocity of a system K′ that is rotating
relative to a system K, and let Dx and D′x be the temporal derivatives of
a vector x with respect to K and K′. We then have

D′x = Dx − ω × x .

From this, it follows that the temporal derivative of the angular velocity is
independent of the reference frame:

D′ω = Dω .

To clarify this theorem, consider the simple case for which D′x = 0 =⇒
Dx = ω×x. In the reference system K, the vector x changes by δx = ω×xδt
in the time δt. This vector is orthogonal to ω and x. Thus, in K, the change
of x is achieved by a (right-handed) rotation of x by the amount |ω|δt around
an axis parallel to ω. This is why we call ω “momentary angular velocity”.

Equation of motion in accelerated reference systems. We now con-
sider the most general relative motion of two reference systems K and K′

(see Fig. 1.1), where K is again taken to be an inertial system. The vectors
x(t) and z(t) describe the trajectories of a particle as seen from K and K′,
respectively. Furthermore, x0 shall denote the origin of K′ relative to K, so
that

z(t) = x(t) − x0(t) .

Since K is an inertial system, Newton’s equation holds:
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mD2x = F . (1.13)

To find the corresponding equation of motion in the accelerated system K′,
we make use of the theorem of Coriolis and calculate as follows:

F

m
= D2x = D2z + D2x0

= D (D′z + ω × z) + D2x0

= D′2z + (D′ω) × z + 2ω × D′z + ω × (ω × z) + D2x0 .

From this, we can easily read off the equation of motion, which is the equiv-
alent of (1.13) in the accelerated system K′:

Theorem 1.9: Newton’s equation of motion
in accelerated systems

Let x and z respectively denote the particle’s trajectories in a system K
and in a system K′ accelerated relative to K. The equations of motion in
these reference systems are

mD2x = F

mD′2z = F + F T + F z + F L + F C ,

with

F T = −mD2x0 (translational force)

F F = −mω × (ω × z) (centrifugal force)

F L = −m(D′ω) × z (linear force)

F C = −2mω × D′z (Coriolis force) .

Thus, in addition to the original force F , there are four pseudo forces in ac-
celerated reference systems. Of these, F T is due to the translational motion
of the coordinate origin x0, whereas the remaining three stem from the rota-
tional motion.

Galilei invariance of the equations of motion. Using the above result,
we can now take a closer look at the concept of inertial systems, which we
discussed qualitatively in Subsection 1.1.2. According to Newton’s second
axiom, the equation of motion is form-invariant in all inertial systems. This
is clearly equivalent to the condition

D2x0 = 0 , ω = 0 ,

since then all pseudo forces vanish. The condition can be satisfied most gen-
erally by letting

x0(t) = vt + q , R(t) = R , v, q, R = const .
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In other words: relative to K, the system K′ can only be rotated by a fixed
amount and move with constant velocity. If, additionally, the force F is not
explicitly time-dependent, the time origin of K′ may also be shifted relative to
that of K. As one can see, demanding form invariance of Newton’s equations of
motion leads to the four points, listed in Subsection 1.1.2, which characterize
inertial systems. Thus, we find the fundamental law:

Theorem 1.10: Inertial systems and Galilei invariance

Inertial systems are connected via coordinate transformations of the form

xi −→ x′
i = Rijxj + vit + qi , t −→ t′ = t + t0 ,

with

R, v, q, t0 = const , RRT = 1 , det R = 1 .

These transformations form a proper orthochronous Lie group with 10 pa-
rameters. It is called the group of Galilei transformations.
Newton’s laws are form-invariant in all inertial systems. We say: Newtonian
mechanics is Galilei-invariant. In inertial systems, force-free particles move
linearly uniformly.

Consequently, in mechanics, we cannot distinguish between the state of total
stationarity and one of uniform motion.

It is a general principle in physics, not just in classical mechanics, that
a symmetry of a system corresponds to some conserved physical quantity.
Since the Galilei group is described by 10 parameters, we deduce that in the
absence of external forces the motion of a system of particles is characterized
by 10 conserved quantities. As we shall see in the following subsection, and
in Subsection 1.2.2, these are momentum, angular momentum, energy, and
the center of mass movement.
Absolute time. The form of the Galilei group shows that time plays a
special role in nonrelativistic mechanics. Time differences are invariant under
Galilei transformations. In this sense, time has an absolute character. In
contrast, the spatial distance between two points where a particle is located
at two different times due to its movement will not be identical in two different
inertial systems, since the particle’s velocities in the two frames will differ.
Therefore, space is not absolute.
Foucault’s pendulum. As an example for the use of Newton’s equations of
motion in accelerated coordinate systems, we study the effect of the earth’s
rotation on the oscillation plane of a pendulum. Figure 1.2 determines the
axes of the inertial system3 K and that of the relative to K accelerated system
K′ (earth-fixed system). We consider a mathematical pendulum consisting of
3 Strictly speaking, this system is not an inertial system, in particular due to

its accelerated motion around the sun. However, this can be neglected for the
argument that follows.
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x

y

z

ω

q

z1

z2

z3

z1

z2

z3

λ

ω

F P

F G

m

L

space-fixed system K

body-fixed system K′

Fig. 1.2. Determination of space-fixed and body-fixed systems on the earth’s sur-
face.

a massless rope of length L, fixed at the top, so that it can rotate freely in
all directions, and to which a particle of mass m is attached at the other end.
The coordinate triplet of the angular velocity ω in K′ reads

ω = ω

⎛
⎝ 0

cos λ
sin λ

⎞
⎠ , ω ≈ 2π

24 h
.

Following Theorem 1.9, we have

mz̈ = F G(z) + F P(z)
+F T(q) + F F(ω,z) + F L(ω,z) + F C(ω,z) ,

where the coordinate triplets of the gravitational force F G and the centripetal
force F P of the pendulum in K′ are given by

F G = −mg

⎛
⎝ 0

0
1

⎞
⎠ , F P =

⎛
⎝− z1

L S
− z2

L S
S3

⎞
⎠ .

At this stage, the tensions S and S3 of the rope are unknown. Given that
ω2 	 1 and ω̇ ≈ 0, we can neglect the centrifugal and linear forces F F and
F L. The translational force F T points in the direction of the z3-axis and
thus diminishes the strength of the gravitational force on the earth’s surface,
depending on the geographical latitude. F T can therefore be absorbed in the
gravitational constant g, and we are left with the equation

mz̈ = F G + F P(z) − 2mω × ż

or
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mz̈1 = −z1

L
S − 2mω(ż3 cos λ − ż2 sin λ)

mz̈2 = −z2

L
S − 2mωż1 sin λ

mz̈3 = −mg + S3 + 2mωż1 cos λ .

If we consider only small deviations from the vertical z3-axis, we have
S ≈ mg , ż3 	 ż2, so that the pendulum’s z1z2-motion becomes

z̈1 = − g

L
z1 + 2ω′ż2 , ω′ = ω sin λ

z̈2 = − g

L
z2 − 2ω′ż1 .

The parametrization

z1(t) = u1(t) cos ω′t + u2(t) sinω′t
z2(t) = u2(t) cos ω′t − u1(t) sinω′t

leads to

cos ω′t
(
ü1 +

g

L
u1

)
+ sin ω′t

(
ü2 +

g

L
u2

)
= 0

=⇒ üi +
g

L
ui = 0 , i = 1, 2 .

These are the equations of motion of a simple pendulum, solved by

ui(t) = ai cos Ωt + bi sin Ωt , Ω =
√

g

L
, i = 1, 2 ,

where the four integration constants a1, b1, a2, b2 are fixed by initial con-
ditions. We see that the pendulum oscillates with frequency Ω =

√
g/L

around its equilibrium, whereas its oscillation plane rotates with frequency
ω′ = 2π/24 h · sin λ. This type of motion results in rosetta trajectories, whose
exact form depends on the chosen initial conditions. The left-hand picture
of Fig. 1.3 shows the trajectory of a pendulum that was released at its max-
imal amplitude. In the right-hand picture, the pendulum is pushed out of

z1

z2

z1

z2

Fig. 1.3. Different rosetta trajectories of Foucault’s pendulum.
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its equilibrium position. Obviously, at the equator (λ = 0) the rotation of
the earth cannot be demonstrated using a Foucault pendulum. At this loca-
tion the pendulum moves along the same type of trajectory as in an inertial
frame (within the above approximation), which is an ellipse parametrized by
zi(t) = ui(t) , i = 1, 2.

1.1.5 N-Particle Systems

We now extend our considerations to systems containing many particles and
discuss their kinematic properties. The forces acting on such systems can be
classified as follows:

• Inner forces: They act exclusively between the particles in the system.
To simplify the subsequent discussion, we shall assume that these forces
are conservative and central two-particle forces that can be derived from
potentials Vij , such that

F ij = F ij(xi − xj) = −∇iVij(|xi − xj |) .

• External forces: By this, we mean all other forces acting externally on the
system. If no external forces are present, the system is called closed.

Given these definitions, Newton’s equations of motion for an N -particle sys-
tem are

miẍi =
∑
j �=i

F ij + F i , i = 1, . . . , N . (1.14)

Before we study the corresponding kinematical quantities, such as momen-
tum, angular momentum, and energy, it is useful to introduce the notion of
center of mass:

Definition: Center of mass xC of an N-particle system

xC(t) =
1
M

N∑
i=1

mixi(t) , M =
N∑

i=1

mi .

In case of a continuous mass distribution ρ(x, t), these equations are replaced
by

xC(t) =
1
M

∫
xρ(x, t)d3x , M =

∫
ρ(x, t)d3x = const .

Total momentum p and center of mass xC. If we add the individual
equations in (1.14), the contributions of the inner forces are cancelled out
due to the principle of “actio=reactio”, so that

ṗ =
∑

i

ṗi =
∑

i

miẍi =
1
2

∑
i,j

(F ij + F ji) +
∑

i

F i =
∑

i

F i .
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Thus, the total momentum p is determined solely by the external forces.
If there are no external forces at all, the total momentum is conserved. In
addition, we have

M ẋC = p ,

so that the center of mass is moving as if all mass were contained in it, and as
if all external forces were acting directly on it. In the case of closed systems,
this implies that the motion of the center of mass is linearly uniform.

Total angular momentum l and torque N . For the total angular mo-
mentum and the torque, we obtain

l =
∑

i

li =
∑

i

mixi × ẋi

N = l̇ =
∑

i

mixi × ẍi =
1
2

∑
i,j

(xi − xj) × F ij︸ ︷︷ ︸
= 0 for Fij central

+
∑

i

xi × F i .

Accordingly, the total angular momentum of the system is also a conserved
quantity. Decomposing the position vector xi into the center of mass vector
xC and a vector xC

i relative to the center of mass, i.e., xi = xC +xC
i , we can

use
∑

i mix
C
i = 0 and find the angular momentum to be

l =
∑

i

mixi × ẋi =
∑

i

mi(xC + xC
i ) × (ẋC + ẋC

i )

=
∑

i

mi

[
(xC × ẋC) + (xC × ẋC

i ) + (xC
i × ẋC) + (xC

i × ẋC
i )

]
= lC +

∑
i

xC
i × pC

i , lC = xC × pC .

So, the total angular momentum is composed of the center of mass’s angular
momentum with respect to the origin of the coordinate system, and the sum
of the particles’ angular momenta with respect to the center of mass xC.

Total energy. Scalar multiplication of (1.14) with ẋi and summation over
all i yield

d
dt

(
1
2

∑
i

miẋ
2
i

)
=

1
2

∑
i,j

(ẋi − ẋj)F ij +
∑

i

ẋiF i

=⇒ d
dt

(T + Vinner) =
∑

i

ẋiF i ,

where

T =
1
2

∑
i

miẋ
2
i , Vinner =

1
2

∑
i,j

Vij(|xi − xj |)

are the total kinetic and inner potential energy, respectively. Thus, the total
change of the inner energy of the system is equal to the power of the external
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forces. For closed systems this means that the total energy is conserved. If
the external forces are also described by potentials, we have∑

i

ẋiF i = −dVext

dt
=⇒ d

dt
(T + Vinner + Vext) = 0 ,

so that total energy is again conserved. Using the above vector decomposition
xi = xC + xC

i , the total kinetic energy can be written as

T =
1
2

∑
i

miẋ
2
i =

1
2

∑
i

mi(ẋC + ẋC
i )2 =

M

2
ẋ2

C +
1
2

∑
i

mi

(
ẋC

i

)2
.

Just as for angular momentum, this expression consists of the kinetic energy
of the center of mass, plus the kinetic energy of the system’s movement around
the center of mass.

Theorem 1.11: Conserved quantities in N-particle systems

For an N -particle system with no external forces, the following quantities
are conserved:

p = const (momentum law)

MxC − tp = const (center of mass law)

l = const (angular momentum law)

E = T + V = const (energy law) .

Such a system has 10 conserved quantities, corresponding to the 10 parame-
ters of the Galilei group.

Summary

• All dynamic variables of a particle are functions of its position and
momentum vectors x, p.

• The temporal evolution of a particle in an inertial system is given by
Newton’s equation F = dp/dt, where F is the vector of the force
acting on the particle.

• Depending on the form of the force, we can formulate conservation laws
for specific dynamical quantities.

• Newton’s equations of motion are Galilei-invariant, i.e., they are valid
in inertial systems that are related to one another via Galilei trans-
formations. In accelerated (noninertial) reference systems, additional

�



22 1. Mechanics

pseudo forces arise in the equations of motions. They result from the
translational and rotational motion of the coordinate system.

• In closed systems, total momentum, total angular momentum, and total
energy are conserved.

Applications

1. Rocket problem. Consider a rocket moving linearly uniformly with ve-
locity v relative to an inertial system K in the absence of external force fields.
Its total mass consists of the mass of the rocket with empty fuel tank, M0,
and that of the fuel, m0. At time t0 the rocket starts ejecting gas in flight di-
rection with an ejection rate α = dm/dt = const, and with constant velocity
ω relative to the rocket. When does the rocket come to a complete stop?

Solution. The mass of the rocket at time t is given by

M(t) = M0 + m0 − αt .

Thus, its momentum P is

P (t) = M(t)ẋ(t) =⇒ Ṗ = Ṁẋ + Mẍ = (M0 + m0 − αt)ẍ − αẋ .

For the fuel momentum p, we find

dp(t) = dm(t)[ω + ẋ(t)] =⇒ ṗ = α(ω + ẋ) .

Given the absence of external forces, it follows that

F = Ṗ + ṗ = 0

⇐⇒ (M0 + m0 − αt)ẍ = −αω

⇐⇒
ẋ(t)∫
v

dẋ = −αω

t∫
0

dt

M0 + m0 − αt

⇐⇒ ẋ(t) − v = ω ln
(

1 − αt

M0 + m0

)
.

From this, the time t1 at which the rocket comes to a complete stop, ẋ(t1) = 0,
is found to be

t1 =
M0 + m0

α

(
1 − e−v/ω

)
.

Since fuel is limited, the additional constraint m0 ≥ αt1 is also taken into
account.
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2. Damped harmonic oscillator. Consider a one-dimensional spring, fixed
at one end and with a mass m attached at the other end, which is allowed to
move along a rail. Additionally, a frictional force proportional to the mass’s
velocity applies. Find Newton’s equation of motion and its solution.

Solution. According to Hooke’s law, the force of the spring on the mass m
is proportional to the displacement of the mass from its equilibrium. Putting
the origin of our reference frame into this point of equilibrium, the restoring
force FS due to the spring and the corresponding potential VS are given by

FS = − d
dx

VS(x) , VS(x) =
k

2
x2 , k > 0 , (1.15)

where k denotes the spring constant. For the frictional force, we make the
simple ansatz

FF = −cẋ , c > 0 ,

with c being the constant friction coefficient. The equation of motion for this
nonconservative problem reads

mẍ = FS + FF =⇒ ẍ + 2γẋ + ω2
0x = 0 , γ =

c

2m
, ω2

0 =
k

m
. (1.16)

To solve this differential equation of the one-dimensional damped harmonic
oscillator, we let

x(t) = eiΩtf(t) ,

which, when inserted into (1.16), leads to the following equation for Ω and
the function f :

f̈ + ḟ(2γ + 2iΩ) + f(ω2
0 + 2iγΩ − Ω2) = 0 . (1.17)

The problem is much simplified if the last bracket vanishes. This can be
achieved by setting

Ω1,2 = iγ ±
√

ω2
0 − γ2 .

Depending on the value of the square root, three cases now need to be dis-
tinguished:

• Weak damping: ω2
0 > γ2. Setting f(t) = 1, we find two linearly indepen-

dent solutions to (1.16):

x1(t) = e−γteiω′t , x2(t) = e−γte−iω′t , ω′ =
√

ω2
0 − γ2 .

The general solution is therefore given by

x(t) = e−γt (a cos ω′t + b sin ω′t) ,

where a and b are two integration constants to be determined from initial
conditions, e.g., x(0) = x0 , ẋ(0) = v0.
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• Strong damping: ω2
0 < γ2. As above, for f(t) = 1, one has two solutions,

x1(t) = e−(γ+ω′)t , x2(t) = e−(γ−ω′)t , ω′ =
√

γ2 − ω2
0 ,

which can be combined linearly to give the most general solution

x(t) = e−γt
(
ae−ω′t + beω′t

)
.

• Critical damping: ω2
0 = γ2. In this case, setting f(t) = 1 yields

x1(t) = e−γt .

Since now the first bracket in (1.17) also vanishes, a second solution follows
from f(t) = t as

x2(t) = te−γt .

In total, we have

x(t) = e−γt(a + bt) .

Figure 1.4 shows different solutions depending of ω2
0 − γ2, where the ini-

tial condition x(0) = −ẋ(0) has been chosen throughout. In the absence of
friction, γ = 0, (1.16) reduces to the equation of the undamped harmonic
oscillator, whose general solution is, according to the above case of weak
damping, given by

x(t) = a cos ω0t + b sin ω0t .

t

x(t)

t

x(t)

t

x(t)

ω2
0 > γ2

ω2
0 < γ2 ω2

0 = γ2

Fig. 1.4. Different types of solutions to the damped harmonic oscillator.
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The harmonic oscillator is a kind of showpiece of physics, as small deviations
from equilibrium can always be viewed as harmonic oscillations and therefore
be described by a potential of the form (1.15).

3. Forced oscillation of an oscillator. Consider the motion of a damped
harmonic oscillator whose oscillation is forced by a time-dependent external
force f(t):

mẍ + 2γmẋ + mω2
0x = f(t) .

Solution. To find the solution to this problem we use the method of Green
functions, which we will also find of great use in electrodynamics. According
to this, the most general solution for inhomogeneous linear equations of this
type can be written in the form

x(t) = xhom(t) +
∫

G(t, t′)f(t′)dt′ ,

where xhom(t) is the general solution of the corresponding homogeneous prob-
lem, and G(t, t′) is the Green function that, from the above, must satisfy

mG̈(t, t′) + 2γmĠ(t, t′) + mω2
0G(t, t′) = δ(t′ − t) . (1.18)

Once the Green function has been found, it immediately determines the so-
lution to all inhomogeneous problems. Taking the Fourier decompositions

G(t, t′) =
1√
2π

∫
dωG̃(ω)eiω(t−t′)

δ(t − t′) =
1
2π

∫
dωeiω(t−t′)

and inserting these terms into (1.18), we find

G̃(ω) = − 1
m

√
2π

1
ω2 − 2iγω − ω2

0

= − 1
m

√
2π

1
(ω − iγ + ω′)(ω − iγ − ω′)

, ω′ =
√

ω2
0 − γ2

and therefore

G(t, t′) = − 1
2πm

∫
dω

eiω(t−t′)

(ω − iγ + ω′)(ω − iγ − ω′)
. (1.19)

This integral can best be solved in the complex ω-plane using Cauchy’s the-
orem (see Fig. 1.5), where the following items need to be kept in mind:

• The integrand of (1.19) has two poles of first order for ω2
0 �= γ2 and one

pole of second order for ω2
0 = γ2 in the upper half-plane.

• For t− t′ > 0, the path C along the upper contour must be chosen, so that
the contribution of the half-circle is damped exponentially and vanishes in
the limit R → ∞. Similarly, for t − t′ < 0, we need to choose the lower
contour of integration along C ′.
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iγ − ω′ iγ + ω′

Re ω

Im ω

C′

t < t′

C

t > t′

Fig. 1.5. Determination of the integration path within the ω-integration in (1.19).

Thus, for t − t′ < 0, the integration does not contribute at all. This is in
accordance with the causality principle, which states that a system, at time
t, can only be influenced by the past (t′ < t). For t − t′ > 0, we obtain

• Weak damping: ω2
0 > γ2.

G(t, t′) =
1

mω′ e
−γ(t−t′) sin[ω′(t − t′)] , ω′ =

√
ω2

0 − γ2 .

• Strong damping: ω2
0 < γ2.

G(t, t′) =
1

mω′ e
−γ(t−t′) sinh[ω′(t − t′)] , ω′ =

√
γ2 − ω2

0 .

• Critical damping: ω2
0 = γ2.

G(t, t′) =
t − t′

m
e−γ(t−t′) .

1.2 Lagrangian Mechanics

In the problems we have encountered so far, our starting point has been the
Newtonian equations of motion. Using these, we have deduced the relevant
physical information. For this approach to work, it is necessary to know the
entire set of forces acting on the system under study. However, in many cases,
the determination of these forces can be extremely hard, in particular, if the
system’s dynamics is restricted by constraints. Consider, for example, a par-
ticle moving in the earth’s gravitational field along a given trajectory (slide).
Here, the restriction of freedom of movement would have to be described by
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constraining forces that ensure that the particle moves along the trajectory.
Furthermore, in Subsection 1.1.4 we have seen that the validity of Newton’s
axioms is only given in inertial systems. In accelerated systems the equations
of motion tend to be rather more complicated.

In the Lagrange formulation of mechanics, no attempt is made at deter-
mining the external forces. Instead, their effect is taken into account by refor-
mulating the physical problem in an appropriately chosen geometry (configu-
ration manifold). This results in the Lagrange equations of motion formulated
in terms of generalized coordinates. Furthermore, the Lagrange equations are
chosen in such a way as to be valid in all coordinate systems. This makes
them a lot more flexible to use than Newton’s equations.

Lagrange’s equations can be derived in many different ways. To start,
we use the d’Alembert principle of virtual displacements. It states that the
total sum of work done on the system by the constraining forces vanishes.
Additionally, we show how to derive the Lagrange formalism from Hamilton’s
principle, which is an extremal principle of fundamental importance through-
out the whole of physics. On our way to this, it will be necessary to take a
closer look at some concepts of variational calculus.

1.2.1 Constraining Forces, d’Alembert’s Principle,
and Lagrange Equations

We consider an N -particle system whose motion is constrained such that less
than 3N degrees of freedom remain. One distinguishes between the following
types of constraints:

• Holonomic constraints: they can be written as independent equations of
the type

fk(x1, . . . ,xN , t) = 0 , k = 1, . . . , s . (1.20)

In the case of s holonomic constraints, the 3N coordinates of xi can be
reduced to n = 3N − s independent generalized coordinates qj , which im-
plicitly contain the following conditions:

xi = xi(q1, . . . , qn, t) , i = 1, . . . , N , n = 3N − s . (1.21)

• Nonholonomic constraints: they do not allow a parametrization of type
(1.20). If an N -particle system contains s holonomic, as well as r non-
holonomic constraints, the qj are no longer independent. Rather, they are
interconnected via nonintegrable constraints in differential form, for exam-
ple, ∑

j

aljdqj + altdt = 0 , l = 1, . . . , r . (1.22)

• Rheonomic constraints: they are explicitly time-dependent.
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• Scleronomic constraints: they are not explicitly time-dependent.

In the following, when considering nonholonomic constraints, we shall restrict
ourselves to the special case of (1.22). The following considerations are then
valid for holonomic and nonholonomic systems in the above sense.

According to (1.21), the velocity of the ith particle written in terms of
the generalized coordinates is

ẋi =
n∑

j=1

∂xi

∂qj
q̇j +

∂xi

∂t
= ẋi(q1, . . . , qn, q̇1, . . . , q̇n, t) , (1.23)

where the q̇j = dqj/dt are called generalized velocities.

Virtual displacements and d’Alembert principle. An infinitesimal dis-
placement δxi of the ith particle is called virtual if it occurs at fixed time
t (dt = 0) and is consistent with the given holonomic and nonholonomic
constraints:

δxi =
n∑

j=1

∂xi

∂qj
δqj ,

n∑
j=1

aljδqj = 0 , l = 1, . . . , r . (1.24)

We call such a displacement “virtual”, to distinguish it from a real displace-
ment that occurs during a time interval dt, and for which the forces and
constraints may change. Let us first consider an N -particle system in equi-
librium (miẍi = 0). For the sum of virtual displacements, we then have

N∑
i=1

F iδxi = 0 , (1.25)

where, in the sum, each term vanishes individually. Splitting the forces F i

such that

F i = F e
i + F c

i ,

where F e
i denote the external forces, and F c

i the constraining forces that are
responsible for upholding the constraints, (1.25) turns into∑

i

F e
iδxi +

∑
i

F c
iδxi = 0 .

In many cases, e.g., movement on surfaces, the virtual displacement δxi is
perpendicular to the constraining force F c

i acting on the ith particle, so that
no work is performed by any constraining force at all (δxiF

c
i = 0). There are,

however, examples where the individual displacements do perform work. The
principle of virtual work states that the sum of all work performed by the
constraining forces vanishes.4

4 This is no longer true if frictional forces are present; such systems will not be
considered here.
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Theorem 1.12: Principle of virtual work
(equilibrium principle of statics)

An N -particle system is in equilibrium if the sum of all virtual work per-
formed by the constraining forces vanishes:

N∑
i=1

F c
iδxi = 0 =⇒

N∑
i=1

F e
iδxi = 0 .

Using a trick introduced by d’Alembert, the above can be transformed
into a similar principle that encompasses the general motion of a system;
d’Alembert thought of the system with the equations of motion F i = ṗi

as being a system in equilibrium with forces F i and compensating opposing
forces −ṗi. This reduces the dynamical problem to a static one.

Theorem 1.13: d’Alembert’s principle

Due to (F i − ṗi)δxi = (F e
i +F c

i − ṗi)δxi = 0 and
N∑

i=1
F c

iδxi = 0, it follows

that
N∑

i=1

(F e
i − ṗi) δxi = 0 .

As one can see, the constraining forces are completely eliminated through this
principle. In general, d’Alembert’s principle does not follow from Newton’s
laws. Instead, it must be seen as an additional axiom of classical mechanics.
The Lagrangian formalism is based on this principle. Taking into account
(1.24), d’Alembert’s principle leads to

n∑
j=1

δqj

N∑
i=1

mi

[
d
dt

(
ẋi

∂xi

∂qj

)
− ẋi

d
dt

∂xi

∂qj

]
=

n∑
j=1

Qjδqj . (1.26)

Herein, Qj denotes the generalized force.

Definition: Generalized force Qj

Qj =
N∑

i=1

F e
i

∂xi

∂qj
.

Since the qj do not, in general, have the dimension of length, the Qj do not
generally have the dimension of a force. However, the product Qjδqj is always
work. Using the relation

∂xi

∂qj
=

∂ẋi

∂q̇j
,

d
dt

(
ẋi

∂xi

∂qj

)
=

1
2

d
dt

∂ẋ2
i

∂q̇j
,

d
dt

∂xi

∂qj
=

∂ẋi

∂qj
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following from (1.23), we find from (1.26) that
n∑

j=1

δqj

(
d
dt

∂T

∂q̇j
− ∂T

∂qj
− Qj

)
= 0 , n = 3N − s , (1.27)

where

T =
N∑

i=1

mi

2
ẋ2

i (q1, . . . , qn, q̇1, . . . , q̇n, t)

is the total kinetic energy of the system. Equation (1.27) describes the time
dependence of the generalized coordinates qj . Thanks to d’Alembert’s prin-
ciple, the constraining forces are no longer present; they are hidden in the
generalized coordinates.

In the case of purely holonomic constraining forces, all virtual displace-
ments are independent from one another, so that each bracket term of the
sum (1.27) can be set to zero. However, we assume that our N -particle sys-
tem is subject to s holonomic and r nonholonomic constraints of the type
(1.22). Of the total of n virtual displacements δqj , r are then dependent of
one another via

n∑
j=1

aljδqj = 0 , l = 1, . . . , r (dt = 0) ,

whereas the remaining n − r displacements are independent. To reduce the
number of the displacements δqj to that of the independent ones, we introduce
the Lagrange multipliers λl , l = 1, . . . , r, which can be chosen freely. In
general, these are time-dependent functions that may also depend on the
generalized coordinates and velocities. Using these multipliers, we rewrite
the previous relation as

n∑
j=1

δqj

r∑
l=1

λlalj = 0 . (1.28)

The difference of (1.27) and (1.28) yields
n∑

j=1

δqj

(
d
dt

∂T

∂q̇j
− ∂T

∂qj
− Qj −

r∑
l=1

λlalj

)
= 0 .

For the independent δqj , the corresponding coefficients (bracket terms) can
be set identically zero. Furthermore, we can choose the Lagrange multipliers
such that the coefficients of the dependent differentials also vanish. Thus, one
obtains

d
dt

∂T

∂q̇j
− ∂T

∂qj
− Qj −

r∑
l=1

λlalj = 0 , j = 1, . . . , n . (1.29)

These are the Lagrange equations of type I. If the external forces are all
conservative, we find that



1.2 Lagrangian Mechanics 31

F e
i = −∇iV (x1, . . . ,xN ) =⇒ Qj = −∂V

∂qj
,

∂V

∂q̇j
= 0 .

All in all, we have5

Theorem 1.14: Lagrange equations of type I for conservative
forces with s holonomic and r nonholonomic constraints

The Lagrange function of a conservative N -particle system is given by

L = T − V =
N∑

i=1

mi

2
ẋ2

i (q1, . . . , qn, q̇1, . . . , q̇n, t) − V (q1, . . . , qn) .

From this, one obtains the equations of motion (Lagrange equations) in
terms of generalized coordinates for the case of s holonomic and r nonholo-
nomic constraints:

d
dt

∂L

∂q̇j
− ∂L

∂qj
−

r∑
l=1

λlalj = 0 , j = 1, . . . , 3N − s = n , (1.30)

n∑
j=1

alj q̇j + alt = 0 , l = 1, . . . , r .

The Lagrange equations constitute a system of coupled ordinary differential
equations of second order for the time dependence of the generalized coor-
dinates. In combination with the r nonholonomic constraints following from
(1.22), which are now to be regarded as differential equations, we have a total
of n + r equations for the n generalized coordinates and the r Lagrange mul-
tipliers. In the case of purely holonomic constraints, Theorem 1.14 reduces
to n Lagrange equations for the n generalized coordinates.

Theorem 1.15: Lagrange equations of type II for conservative
forces with s holonomic constraints

d
dt

∂L

∂q̇j
− ∂L

∂qj
= 0 , j = 1, . . . , 3N − s = n .

An important corollary, whose proof we postpone to Application 4, is as fol-
lows:

Theorem 1.16: Invariance of the Lagrange equations
under coordinate transformations

The Lagrange equations are form-invariant under the coordinate transfor-
�

5 Note that (1.30) is not an equation to determine L (i.e., not a differential equation
in L). Rather, it is a functional equation from which we obtain the equations
determining the generalized coordinates.
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mations q → Q(q, t). Thus, from the validity of

d
dt

∂L

∂q̇j
− ∂L

∂qj
= 0 , j = 1, . . . , 3N − s = n ,

it follows that the Lagrange equations also hold for

L′(Q, Q̇, t) = L[q(Q, t), q̇(Q, Q̇, t), t] .

Equivalence of Lagrange and Newtonian formalism. In the absence
of constraining forces, the Lagrange formalism for an N -particle system must
yield Newtons equations of motion. If we choose Cartesian coordinates as the
generalized ones, q = x, we can see this (in vector notation) as follows:

L = T − V =
N∑

i=1

mi

2
ẋ2

i − V (x1, . . . ,xN , t)

=⇒ ∇xiL = −∇xiV = F i ,
d
dt

∇ẋiL = miẍi .

Therefore, the Lagrange equations are

d
dt

∇ẋiL = ∇xiL ⇐⇒ miẍi = F i , i = 1, . . . , N .

Interpretation of the Lagrange multipliers. We are free to interpret
the constraining forces F c

i as additional external forces F ∗
i applied in such a

way that the motion of the system remains unchanged. The constraints are
then eliminated, and we obtain the Lagrange equations

d
dt

∂L

∂q̇j
− ∂L

∂qj
= Q∗

j .

Comparison with Theorem 1.14 yields

Q∗
j =

r∑
l=1

λlalj ,

i.e., the Lagrange multipliers determine the generalized constraining forces.

Generalized potential. As one can see from (1.29), Theorems 1.14 and
1.15 are still valid if the generalized forces Qj can be expressed in terms of a
generalized potential V (q1, . . . , qn, q̇1, . . . , q̇n, t), such that

Qj = −∂V

∂qj
+

d
dt

∂V

∂q̇j
. (1.31)

An example of this case is given by the velocity-dependent Lorentz force

QL(x, ẋ, t) = F e
L(x, ẋ, t) = q

(
E(x, t) +

ẋ

c
× B(x, t)

)
,
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which describes the motion of a particle of charge q in an electromagnetic
field E, B (c=velocity of light). It is obtained from (1.31), if

V (x, ẋ, t) = qφ(x, t) − q

c
A(x, t)ẋ ,

where the scalar and vector potentials φ and A are coupled with the fields E
and B via (see Subsection 2.2.1)

B = ∇ × A , E = −1
c

∂A

∂t
− ∇φ .

1.2.2 Conservation Laws

In this subsection we consider transformations of the generalized coordinates,
velocities, and of time which leave the Lagrange function invariant, or that
yield an equivalent Lagrange function. Such transformations are called sym-
metry transformations. Following a theorem of E. Noether (see Subsection
2.8.3), each symmetry property of a system corresponds to a conservation
law. We show this here with the help of the conservation laws of a closed
system of N point particles, which we know from Theorem 1.11. The corre-
sponding Lagrange function reads

L(xi, ẋi, t) =
N∑

i=1

1
2
miẋ

2
i − V , V =

∑
i,j

V (|xi − xj |) .

Conservation of energy, homogeneity of time. If the time shift

t → t′ = t + δt , δxi = δẋi = 0

is to be a symmetry transformation of the Lagrange function, the following
must hold:

δL = L(x, ẋ, t + δt) − L(x, ẋ, t) =
∂L

∂t
δt = 0 =⇒ ∂L

∂t
= 0 .

On the other hand, we generally have for the Lagrange function (in vector
notation)

dL

dt
=

∂L

∂t
+

∑
i

ẋi∇xiL +
∑

i

ẍi∇ẋiL .

Taking into account the Lagrange equations

∇xiL − d
dt

∇ẋiL = 0 ,

it follows that

d
dt

(
L −

∑
i

ẋi∇ẋiL

)
=

∂L

∂t
.

In the case at hand, we have ∂L/∂t = 0, so that
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i

ẋi∇ẋi
L − L = const .

Because∑
i

ẋi∇ẋiL =
∑

i

ẋi∇ẋiT =
∑

i

miẋ
2
i = 2T ,

we finally find the conservation of the total energy:

T + V = E = const .

Conservation of total momentum, homogeneity of space. Consider
next the transformation

xi −→ x′
i = xi + δx , δt = 0 .

In the same way as above, one obtains

δL = L(xi + δxi, ẋi, t) − L(xi, ẋi, t) = δx
∑

i

∇xiL = 0 .

Since δx is an arbitrary displacement, it follows that∑
i

∇xi
L = 0 =⇒ d

dt

∑
i

∇ẋi
L = 0 =⇒ p =

∑
i

pi = const .

Invariance of the Lagrange function under displacement of all particles by
the same amount δx is thus tantamount to conservation of the system’s total
momentum.

Conservation of total angular momentum, isotropy of space. For an
infinitesimal rotation of the type

δxi = δφ × xi , δẋi = δφ × ẋi , δt = 0

to be a symmetry transformation, the following must hold:

δL =
∑

i

δxi∇xi
L +

∑
i

δẋi∇ẋi
L = 0 .

This gives the conservation of the total angular momentum:

δφ
∑

i

(xi × ṗi + ẋi × pi) = δφ
d
dt

∑
i

(xi × pi) = 0

=⇒ l =
∑

i

li = const .

Center of mass law, invariance under uniform motion. In the case of
the transformation

xi −→ x′
i = xi + vt , v = const , δt = 0 ,

the transformed Lagrange function is given by
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L′ = L + v
∑

i

miẋi +
v2

2

∑
i

mi

=⇒ δL =
d
dt

(MxCv) +
1
2
Mv2 . (1.32)

Two Lagrange functions differing only by a constant or a time derivative are
equivalent and lead to the same equations of motion. On the other hand, we
can also write for δL

δL =
∑

i

(δxi∇xiL + δẋi∇ẋiL) =
∑

i

(vtṗi + vpi)

=
d
dt

(
vt

∑
i

pi

)
. (1.33)

Comparing (1.32) and (1.33), we obtain the center of mass law

MxC − t
∑

i

pi = const .

Overall, we see that the symmetry transformations we have considered here
are equivalent to the 10 conserved quantities of Theorem 1.11.

Theorem 1.17: Symmetries and conservation laws

Invariance of the Lagrange function under a symmetry transformation is
equivalent to a conserved quantity:

• Invariance under time shifts: conservation of total energy.

• Invariance under spatial translations: conservation of total momentum.

• Invariance under spatial rotations: conservation of total angular momen-
tum.

• Invariance under uniform motion: center of mass law.

1.2.3 Hamilton Principle and Action Functional

With Newtonian mechanics and the Lagrange formalism based on d’Alem-
bert’s principle, we have already encountered two approaches to particle me-
chanics. In this subsection we formulate another principle, the Hamilton prin-
ciple, which is an alternative axiomatic formulation of classical mechanics.
Furthermore, we show that the Lagrange equations of type II also follow
from this principle.

Action functional. The action functional is defined as the integral over
all possible trajectories a given system of particles may take. Hamilton’s
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principle is a statement about the actual trajectory along which the motion
of the system really takes place:

Theorem 1.18: Hamilton’s principle for conservative
holonomic systems

Consider the Lagrange function L(q1, . . . , qn, q̇1, . . . , q̇n, t) = T − V of a
conservative system with holonomic constraints. Its solutions are those for
which the corresponding action functional, i.e., the time integral of the
Lagrange function, along the actual trajectory is extremal:

S[q] =

t2∫
t1

dtL[q(t), q̇(t), t] −→ extremal .

This is equivalent to the condition of vanishing variation δS along the actual
trajectory.

Obviously, Hamilton’s principle describes an optimization problem. However,
we are not faced with the determination of the extrema of a function as in
ordinary differential calculus, but, rather, we need to determine functions
for which a given functional becomes extremal. This is the subject of varia-
tional calculus, which we consider briefly before continuing our discussion of
Hamiltonian mechanics.

Variational problem with fixed endpoints. An example of variational
problems is given by the brachystochrone, where the form of a curve between
two fixed endpoints is sought, on which a mass particle moving under the
influence of gravity alone (no friction) is to reach the endpoint as fast as
possible (see Application 5). In problems of this kind, it is often the case that
the structure of the functional subject to optimization is given by

S[y1, . . . , yn] =

x2∫
x1

dxF (y1, . . . , yn, y′
1, . . . , y

′
n, x) , (1.34)

where F depends only on the functions yj(x), their first derivatives y′
j(x), and

the independent variable x. We consider only the case where the endpoints
of the functions yj remain fixed,

[x1,y(x1)] , [x2,y(x2)] fixed , y = (y1, . . . , yn) ,

and seek a Taylor expansion of (1.34). To this end, we vary the functions yj

with the help of auxiliary functions hj that vanish at the endpoints:

y(x) −→ γ(x) = y(x) + δy(x) , δy(x) = εh(x) , h(x1) = h(x2) = 0 .

For arbitrarily small |ε|, all varied functions γ lie in an arbitrarily small
neighborhood of y, and we can write

S[γ] = S[y] + δS + . . . ,
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with

δS =
dS[γ]

dε

∣∣∣∣
ε=0

ε

= ε

x2∫
x1

dx [h∇γF (γ,γ′, x) + h′∇γ′F (γ,γ′, x)]ε=0

= ε

x2∫
x1

dx h

[
∇γF (γ,γ′, x) − d

dx
∇γ′F (γ,γ′, x)

]
ε=0

+ε
[
h∇γ′F (γ,γ′, x)|ε=0

]x2

x1

= ε

x2∫
x1

dx h

[
∇yF (y,y′, x) − d

dx
∇y′F (y,y′, x)

]

+ε [h∇y′F (y,y′, x)]x2

x1
.

Since the auxiliary functions are zero at the endpoints, the last term vanishes.
Now suppose y is an extremum of the action functional. Then, δS = 0, so
that the second last term also vanishes. Therefore, we find

Theorem 1.19: Variational formula and Euler-Lagrange equations
for fixed endpoints

To a linear approximation, the variation of the action functional with fixed
endpoints is given by

S[y + δy] = S[y] + δS + . . . ,

with

δS =

x2∫
x1

dxδy

[
∇yF (y,y′, x) − d

dx
∇y′F (y,y′, x)

]
.

From this, the Euler-Lagrange equations (ELE) follow as a necessary con-
dition for the action functional to be extremal:

∂F (y,y′, x)
∂yj

− d
dx

∂F (y,y′, x)
∂y′

j

= 0 , j = 1, . . . , n .

Note that this is a necessary but not a sufficient criterion [analogous to the
criterion f ′(x) = 0 in ordinary differential calculus].

In the case of purely holonomic constraints, the ELE are identical to the
Lagrange equations of Theorem 1.15 if F is replaced by the Lagrange function
L and the functions yj(x) are interpreted as the generalized coordinates qj(t).
Thus, we have
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Theorem 1.20: Hamilton’s principle and Lagrange equations
of type II

From Hamilton’s principle it follows that the actual trajectory of a con-
servative N -particle system with purely holonomic constraints obeys the
Lagrange equations of type II:

S =

t2∫
t1

dtL −→ extremal =⇒ d
dt

∂L

∂q̇j
− ∂L

∂qj
= 0 .

Recall that the Lagrange equations are invariant under coordinate transfor-
mations. Accordingly, Hamilton’s principle is also independent of the coor-
dinate system in which L is expressed. Furthermore, note that Hamilton’s
formalism does not yield new physics compared to the Lagrange formalism.
However, the Hamiltonian formulation of mechanics is of great importance
since it represents a generally valid principle of physics, applied not just in
mechanics, but particularly also in the formulation of modern field theories.

Equivalence of d’Alembert’s and Hamilton’s principles. If we con-
sider a holonomic system and its motion in a finite time interval [t1 : t2],
d’Alembert’s principle can be rewritten as∑

i

(F e
i − miẍi)δxi = 0

=⇒ d
dt

∑
i

miẋiδxi =
∑

i

F e
iδxi + δ

∑
i

mi

2
ẋ2

i = δW + δT ,

where δT is the virtual change in kinetic energy. Integration of this relation
over [t1 : t2] and using δxi(t2) = δxi(t1) = 0, we find

t2∫
t1

(δW + δT )dt =
∑

i

mi [ẋi(t2)δxi(t2) − xi(t1)δxi(t1)] = 0 .

Restricting ourselves to the special case of conservative forces, the virtual
work done by the externally applied forces can be written as

δW =
∑

i

F e
iδxi = −

∑
i

δxi∇iV (x1, . . . ,xN ) = −δV ,

so that
t2∫

t1

(δW + δT )dt =

t2∫
t1

δ(T − V )dt =

t2∫
t1

δLdt = 0 .

Since the endpoints are held fixed, we can pull out the variation in front of
the integral:
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δ

t2∫
t1

Ldt = δS = 0 .

This shows the equivalence of the d’Alembert and the Hamilton principles
for conservative holonomic systems.

Nonconservative systems with holonomic constraints. Using the gen-
eralized forces, we can also formulate Hamilton’s principle for the case of
nonconservative systems. The requirement of stationarity

δS =

t2∫
t1

dtδ(T + W ) = 0 ,

with

δW =
N∑

i=1

F e
iδxi =

n∑
j=1

Qjδqj

and

δT =
n∑

j=1

δqj

(
∂T

∂qj
− d

dt

∂T

∂q̇j

)
,

then immediately yields (1.27).

Equivalent Lagrange functions, gauge transformations. It is easily
seen that with any Lagrange function L, the class of Lagrange functions

L′ = αL +
d
dt

F (q, t)

leads to the same stationary trajectory. This is due to the fact that adding
the total temporal differential of a scalar function F (q, t) simply means the
addition of a constant term for the new action S′:

S′ =

t2∫
t1

dt

(
αL +

d
dt

F (q, t)
)

= αS + F [q(t2), t2] − F [q(t1), t1]

= αS + const .

Transformations of this kind, which transform the Lagrange function such
that physical results remain unchanged, are called gauge transformations.
We shall encounter these transformations again in electrodynamics and in
quantum mechanics, where they play a fundamental role (just as in theoretical
high-energy physics, which are generally formulated as gauge theories).
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Summary

• d’Alembert’s principle states that the total sum of work done by the
constraining forces vanishes. This postulate can be used to derive the
Lagrange formalism.

• The Lagrange equations are a coupled system of ordinary first-order
differential equations. Alternatively to Newton’s equation of motion, they
describe the dynamics of a mechanical system where the constraining
forces no longer appear explicitly, but are absorbed in appropriately
chosen coordinates. Here, the generalized coordinates and velocities
act as pairs of variables.

• Lagrange’s equations are valid in all coordinate systems (form invari-
ance).

• The conservation laws of mechanics follow naturally from the symme-
tries of a mechanical system.

• Lagrange’s equations follow from Hamilton’s principle of an extremal
action functional.

Applications

4. Invariance of the Lagrange equations under arbitrary coordinate
transformations. Show that Lagrange’s equations are invariant under the
coordinate transformations

qi −→ Qi = Qi(q, t) .

Solution. We have
d
dt

∂L

∂q̇i
− ∂L

∂qi
= 0 , qi = qi(Q, t) , q̇i = q̇i(Q, Q̇, t) .

Because

q̇i =
∑

j

∂qi(Q, t)
∂Qj

Q̇j +
∂qi

∂t
,

it follows that
∂qi

∂Qj
=

∂q̇i

∂Q̇j

.

Starting from the transformed Lagrange function L′(Q, Q̇, t), we now calcu-
late the Lagrange equations in the new coordinates. To this end, we need
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∂L′

∂Qi
=

∑
j

(
∂L

∂qj

∂qj

∂Qi
+

∂L

∂q̇j

∂q̇j

∂Qi

)
∂L′

∂Q̇i

=
∑

j

∂L

∂q̇j

∂q̇j

∂Q̇i

=
∑

j

∂L

∂q̇j

∂qj

∂Qi

d
dt

∂L′

∂Q̇i

=
∑

j

d
dt

(
∂L

∂q̇j

)
∂qj

∂Qi
+

∑
j

∂L

∂q̇j

d
dt

(
∂qj

∂Qi

)

=⇒ d
dt

∂L′

∂Q̇i

− ∂L′

∂Qi
=

∑
j

(
d
dt

∂L

∂q̇j
− ∂L

∂qj

)
∂qj

∂Qi

+
∑

j

(
d
dt

∂qj

∂Qi
− ∂q̇j

∂Qi

)
∂L

∂q̇j
.

The first sum vanishes since the Lagrange equations hold in the old coordinate
system. The second sum is also zero since

∂q̇j

∂Qi
=

∑
l

∂2qj

∂Qi∂Ql
Q̇l +

∂2qj

∂Qi∂t
=

d
dt

∂qj

∂Qi
.

5. Brachystochrone. This is the standard example of variational calculus.
Determine the curve on which a particle moves in the gravitational field
between fixed endpoints, such that it reaches the final point as fast as possible.
Assume frictionless motion.

Solution. We choose a coordinate system such that the startpoint and end-
point coincide with the coordinates (0, h) and (a, 0). The particle’s position
vector is

x(t) =
(

x(t)
y[x(t)]

)
,

where y(x) describes the trajectory we seek. To find the functional S subject
to minimization, we use energy conservation:

T =
m

2
ẋ2 =

m

2
ẋ2 [1 + y′2(x)

]
, V = mgy(x)

=⇒ E = T + V =
m

2
ẋ2 [1 + y′2(x)

]
+ mgy(x) = mgh = const

=⇒ dx

dt
=

√
2g(h − y)
1 + y′2

=⇒ τ =

τ∫
0

dt = S[y] =

a∫
0

dxF (y, y′, x) , F (y, y′, x) =
1√
2g

√
1 + y′2

h − y
.

To find the ELE, we need the following derivatives:
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∂F

∂y
=

1
2
√

2g

√
1 + y′2

(h − y)3/2

∂F

∂y′ =
1√
2g

y′√
(1 + y′2)(h − y)

d
dx

∂F

∂y′ =
1√
2g

y′′(h − y) + y′2

2 (1 + y′2)

[(1 + y′2)(h − y)]3/2 .

It follows that

y′′(h − y) =
1
2
(1 + y′2) .

This equation no longer depends on x and can be solved, for example, using
the substitution y′ = p(y), y′′ = (dp/dy)p. However, we proceed differently
and exploit the following identity:(

∂F

∂y
− d

dx

∂F

∂y′

)
=

d
dx

(
F − y′ ∂F

∂y′

)
,

which holds since F does not depend on x. Along solutions of the ELE, this
yields

H = y′ ∂F

∂y′ − F = const .

In the next section we will encounter this relationship again as conservation
of the Hamilton function. Thus, we have

− 1√
2g

1√
(1 + y′2)(h − y)

= c = const

=⇒ dy

dx
= −

√
e − (h − y)

h − y
, e =

1
2gc2

=⇒ x = −
y(x)∫
h

dy

√
h − y

e − (h − y)
.

Using the substitution

y = h − e sin2 ψ =⇒ dy = −2e sin ψ cos ψdψ ,

it follows that

x = 2e

ψ∫
0

dψ sin2 ψ = e

(
ψ − 1

2
sin 2ψ

)
.

Overall, we obtain a parametrization [x(ψ), y(ψ)] of cycloids with one free
parameter e, which has to be fixed via the constraint y(x = a) = 0. Figure
1.6 shows three possible types of solutions depending on the ratio a/h.
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h

a < π
2 h

h

a = π
2 h

h

a > π
2 h

x

y

x

y

x

y

Fig. 1.6. Different types of solutions to the Brachystochrone problem.

6. Mathematical double-pendulum. A planar mathematical double-
pendulum with lengths l1 = l2 = l and masses m1 = m2 = m is moving
frictionless in the gravitational field (Fig. 1.7). Determine the oscillation fre-
quencies for small oscillations away from the vertical.

Solution. The position vectors of the masses expressed by the generalized
coordinates ϕ and θ are given by

x1(t) = l

(
cos ϕ(t)
sin ϕ(t)

)
, x2(t) = l

(
cos ϕ(t) + cos θ(t)
sin ϕ(t) + sin θ(t)

)
,

where the purely holonomic constraints

x2
1 − l2 = 0 , (x2 − x1)2 − l2 = 0

are already incorporated. For the kinetic and potential energies, we find

T = T1 + T2 =
m

2
l2
[
2ϕ̇2 + θ̇2 + 2ϕ̇θ̇(cos ϕ cos θ + sin ϕ sin θ)

]
V = V1 + V2 = −mgl(2 cos ϕ + cos θ) .

Accordingly, the Lagrange function reads

L = T − V =
m

2
l2
[
2ϕ̇2 + θ̇2 + 2ϕ̇θ̇ cos(ϕ − θ)

]
+ mgl(2 cos ϕ + cos θ) .

The Lagrange equations are obtained from the following derivatives:
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l

l

m

m

x

y

ϕ

θ

Fig. 1.7. Two-dimensional mathematical double-pendulum.

∂L

∂ϕ
= −ml2ϕ̇θ̇ sin(ϕ − θ) − 2mgl sin ϕ

∂L

∂ϕ̇
= 2ml2ϕ̇ + ml2θ̇ cos(ϕ − θ)

d
dt

∂L

∂ϕ̇
= 2ml2ϕ̈ + ml2θ̈ cos(ϕ − θ) − ml2θ̇(ϕ̇ − θ̇) sin(ϕ − θ)

∂L

∂θ
= ml2ϕ̇θ̇ sin(ϕ − θ) − mgl sin θ

∂L

∂θ̇
= ml2θ̇ + ml2ϕ̇ cos(ϕ − θ)

d
dt

∂L

∂θ̇
= ml2θ̈ + ml2ϕ̈ cos(ϕ − θ) − ml2ϕ̇(ϕ̇ − θ̇) sin(ϕ − θ)

=⇒
⎧⎨
⎩

2lϕ̈ + lθ̈ cos(ϕ − θ) + lθ̇2 sin(ϕ − θ) = −2g sin ϕ

lθ̈ + lϕ̈ cos(ϕ − θ) − lϕ̇2 sin(ϕ − θ) = −g sin θ .

Since we only wish to consider small oscillations such that sin ϕ ≈ ϕ,
cos(ϕ − θ) ≈ 1, ϕ̇2, θ̇2 	 1, it follows that

2ϕ̈ + θ̈ = −2
g

l
ϕ

θ̈ + ϕ̈ = −g

l
θ .

The ansatz

ϕ(t) = αeiωt , θ(t) = βeiωt

leads to(
2
g

l
− 2ω2

)
α − ω2β = 0

−ω2α +
(g

l
− ω2

)
β = 0 .
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For this system of linear equations in α and β to have nontrivial solutions,
the coefficient determinant must vanish:∣∣∣∣∣∣

2
g

l
− 2ω2 −ω2

−ω2 g

l
− ω2

∣∣∣∣∣∣ = 0 =⇒ ω2
1,2 =

g

l
(2 ±

√
2) .

Inserting this into the above system of equations, one obtains

1. ω2 =
g

l
(2 +

√
2) =⇒ β = −

√
2α

2. ω2 =
g

l
(2 −

√
2) =⇒ β =

√
2α .

Thus, in the first case, ω =
√

g
l (2 +

√
2), and the pendula oscillate in op-

posite directions. In the second case, both pendula oscillate with frequency

ω =
√

g
l (2 − √

2) in the same direction.

7. Small oscillations and normal modes. In this application, we demon-
strate the general mathematical framework corresponding to Application 6
for coupled oscillations given by a Lagrange function of the form

L = L(q, q̇) = T (q, q̇) − V (q) , (1.35)

where the potential depends only on the coordinates. To start, note that the
kinetic energy can generally be written as

T = c(q, t) +
∑

i

bi(q, t)q̇i +
1
2

∑
i,j

aij(q, t)q̇iq̇j , aij = aji ,

which becomes apparent by squaring (1.23). If the relations between qi and
xj are time-independent, the kinetic energy is a homogeneous quadratic form:

T =
1
2

∑
i,j

aij(q)q̇iq̇j . (1.36)

Using this expression, find a condition for equilibrium, derive the Lagrange
equations for small oscillations and determine the corresponding eigenmodes.

Solution. From (1.35) and (1.36), one obtains the Lagrange equations∑
i,j

∂aki

∂qj
q̇iq̇j +

∑
i

akiq̈i − 1
2

∑
i,j

∂aij

∂qk
q̇iq̇j +

∂V

∂qk
= 0 .

For a system in equilibrium (q̇i = q̈i = 0), we have the equilibrium conditions

∂V

∂qi

∣∣∣∣
q0

= 0
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stating that the potential energy must be stationary in q0.6 For simplicity,
we assume that q0 = 0 and expand the potential as well as the kinetic energy
in the following form:

V (q) ≈ V (0) +
∑

i

∂V

∂qi

∣∣∣∣
0︸ ︷︷ ︸

=0

qi +
1
2

∑
i,j

∂2V

∂qi∂qj

∣∣∣∣
0

qiqj

T (q, q̇) ≈ 1
2

∑
i,j

aij(0)q̇iq̇j .

Close to its equilibrium the system is therefore described by the Lagrange
function

L = T − V =
1
2

∑
i,j

Aij q̇iq̇j − 1
2

∑
i,j

Bijqiqj − V (0) ,

with

Aij = aij(0) , Bij =
∂2V

∂qi∂qj

∣∣∣∣
0

,

which yields the following Lagrange equations:∑
i

Akiq̈i +
∑

i

Bkiqi = 0 .

Considering only eigenoscillations, for which all qj oscillate with the same
frequency ω, the ansatz

qj(t) = Qjeiωt

leads to the time-independent eigenvalue equation

(B − λA)Q = 0 , λ = ω2 , (1.37)

which only has nontrivial solutions if the corresponding coefficient determi-
nant vanishes:

det(B − λA) = 0 .

This equation determines the possible eigenfrequencies ω of the system and,
via (1.37), the corresponding eigenvectors Q. If we consider the normalized
eigenvectors as the columns of the (orthogonal) transformation matrix D, it
is possible to show that

DTBD =

⎛
⎜⎝ λ1 0

. . .
0 λn

⎞
⎟⎠ , DTAD = I .

6 More precisely, the potential must have a local minimum in q0 for the system to
be in stable equilibrium.
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This means: D generates a principal axis transformation that simultaneously
diagonalizes the matrices A and B, and therefore also the Lagrange function

L =
1
2
q̇TAq̇ − 1

2
qTBq − V (0) .

1.3 Hamiltonian Mechanics

In this section we consider Hamilton’s formulation of mechanics. It comple-
ments Newton’s approach (Section 1.1) and that of Lagrange (Section 1.2)
by providing a further concept for describing mechanical systems. Compared
to the other two approaches, the Hamilton formulation distinguishes itself
in that it reveals a close formal connection between classical mechanics and
quantum mechanics. Indeed, quantum mechanics (and also statistical physics)
are based mostly on Hamilton’s formalism.

We start with a derivation of Hamilton’s equations of motion, which, in
contrast to Newton’s and Lagrange’s equations, are differential equations of
first order. Following this, we discuss conservation laws and introduce the new
notation of Poisson brackets, through which the formal equivalence of clas-
sical mechanics and quantum mechanics becomes particularly apparent. Our
subsequent discussion of canonical transformations leads to the Hamilton-
Jacobi equation, which defines a particular canonical transformation, such
that all transformed coordinates and momenta are conserved.

1.3.1 Hamilton Equations

The Lagrange function L leads to equations of motion in which the general-
ized coordinates qj and their velocities q̇j are the relevant pairs of variables.
In Hamilton’s theory the equations of motion are given instead by the gener-
alized coordinates and the associated generalized momenta. These are defined
as follows:

Definition: Generalized momentum pj

pj =
∂L

∂q̇j
. (1.38)

This definition forms implicit equations for the q̇j in terms of the qj , pj , t:

q̇j = q̇j(q1, . . . , qn, p1, . . . , pn, t) .

We consider only the case of all constraints being given by s = 3N − n
holonomic conditions. To perform the transformation of variables,
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L(qi, q̇i, t) −→ H

(
qi,

∂L

∂q̇i
, t

)
,

we use the Legendre transformation

H = H(q1, . . . , qn, p1, . . . , pn, t) =
n∑

i=1

piq̇i − L

and, respecting (1.38), evaluate the derivatives

∂H

∂pj
= q̇j +

n∑
i=1

pi
∂q̇i

∂pj
−

n∑
i=1

∂L

∂q̇i

∂q̇i

∂pj
= q̇j

∂H

∂qj
=

n∑
i=1

pi
∂q̇i

∂qj
− ∂L

∂qj
−

n∑
i=1

∂L

∂q̇i

∂q̇i

∂qj
= − ∂L

∂qj
= −ṗj .

This yields

Theorem 1.21: Hamilton equations for s holonomic constraints

The Hamilton function of an N -particle system with n generalized coordi-
nates and momenta is given by

H =
n∑

i=1

piq̇i − L(q1, . . . , qn, p1, . . . , pn, t) .

From this, we obtain the equations of motion (Hamilton’s equations) for
the generalized coordinates and momenta in the case of s holonomic con-
straints:

∂H

∂pj
= q̇j ,

∂H

∂qj
= −ṗj , j = 1, . . . , 3N − s = n .

The temporal derivatives of L and H are related as follows:

−∂L

∂t
=

∂H

∂t
.

These are the fundamental equations of Hamilton’s formulation of mechanics,
which are also called canonical equations. They form a system of 2n ordi-
nary differential equations of first order for the n generalized coordinates and
their momenta. For a system of N particles with n = 3N − s degrees of free-
dom, they describe the motion of the system in an abstract 2n-dimensional
space, called phase space, which is spanned by the generalized coordinates
and momenta. The following table shows the main results of Lagrangian and
Hamiltonian mechanics.
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Formulation Variables Function Equations

Lagrange (qj , q̇j) L = T − V
d
dt

∂L

∂q̇j
− ∂L

∂qj
= 0

Hamilton (qj , pj) H =
∑
i

piq̇i − L
∂H

∂pj
= q̇j ,

∂H

∂qj
= −ṗj

1.3.2 Conservation Laws

From Hamilton’s equations one obtains the following conservation laws:

Theorem 1.22: Momentum conservation

If H does not depend explicitly on the generalized coordinate qj , the cor-
responding momentum pj is conserved:

∂H

∂qj
= 0 =⇒ pj = const .

Such a coordinate is called cyclic.

Differentiating the Hamilton function with respect to time,

dH

dt
=

n∑
j=1

(
∂H

∂qj
q̇j +

∂H

∂pj
ṗj

)
+

∂H

∂t
,

and using the Hamilton equations yields

dH

dt
=

∂H

∂t
.

Thus, we have

Theorem 1.23: Conservation of the Hamilton function

If H (or L) does not depend explicitly on t, then H (or the corresponding
Lagrange equations) is constant along the solutions of Hamilton’s equa-
tions:

∂H

∂t
= 0 =⇒ H = const .

Energy conservation and interpretation of the Hamilton function.
In the case of scleronomic and holonomic constraints, xi = xi(q1, . . . , qn), and
conservative external forces, ∂V/∂q̇j = 0, the conservation of the Hamilton
function can be interpreted as energy conservation, since, in this particular
case, we have

pj =
∂L

∂q̇j
=

∂T

∂q̇j
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and

T =
N∑

i=1

mi

2
ẋ2

i =
N∑

i=1

mi

2

n∑
k,l=1

∂xi

∂qk

∂xi

∂ql
q̇k q̇l =⇒

n∑
j=1

∂T

∂q̇j
q̇j = 2T ,

so that

H =
n∑

j=1

∂L

∂q̇j
q̇j − L =

n∑
j=1

∂T

∂q̇j
q̇j − L = 2T − (T − V ) = T + V = E .

Theorem 1.24: Energy conservation

For holonomic systems, which do not depend explicitly on time, the Hamil-
ton function is identical with the total energy and is a conserved quantity.

H(q,p) = T + V = E = const .

Complete mechanical information. In Newtonian mechanics we saw that
all dynamical variables of a system are functions of the position and momen-
tum vectors. Lagrange theory is formulated in an n-dimensional space of the
generalized coordinates (configuration space). In the context of Hamiltonian
theory we see that the motion of the system can also be described by the
canonical conjugate variables q and p, i.e., by points in phase space or in the
extended phase space, which also contains time t. The state of a mechanical
system is then determined by the conjugate variables at any given time, and
by an evolution equation in time. Since the state of a system at a later time
is uniquely determined by the state at an earlier time, the evolution equation
must be a differential equation of first order in time. Hamilton’s equations are
just of this type. By contrast, Lagrange’s equations are second-order differ-
ential equations in time, so that one needs two initial conditions, e.g., qj(t0)
and q̇j(t0), per generalized coordinate to uniquely determine the state of the
system. Thus, the advantage of the canonical formalism lies in the fact that
the system’s state can be uniquely determined at any time if the canonical
variables are known at a particular time. If we consider the canonical vari-
ables as a point π in phase space, the evolution of a mechanical system is
described by a suitable function F [π(t), t] for which π̇(t) = F [π(t), t].

1.3.3 Poisson Bracket

Since any quantity F in mechanics can be written as a function of the con-
jugate variables and of time, we can write an equation of motion as follows:

F = F (q,p, t) =⇒ dF

dt
=

∑
i

(
∂F

∂qi
q̇i +

∂F

∂pi
ṗi

)
+

∂F

∂t

=
∑

i

(
∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi

)
+

∂F

∂t
. (1.39)
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This formula can be simplified somewhat with the help of the following defi-
nition:

Definition: Poisson bracket

For at least once differentiable functions F and G in the variables x and
y, we define the following mapping, called Poisson bracket:

{F, G}x,y =
∑

i

(
∂F

∂xi

∂G

∂yi
− ∂F

∂yi

∂G

∂xi

)
. (1.40)

It has the following properties:

• Anticommutativity: {F, G} = − {G, F}.

• Linearity and distributivity:

{αF1 + βF2, G} = α {F1, G} + β {F2, G} .

• Identities:

{F, G1G2} = {F, G1} G2 + G1 {F, G2}
{F, {G, J}} + {G, {J, F}} + {J, {F, G}} = 0 (Jacobi identity) .

Using this notation, (1.39) can be written as

dF

dt
= {F, H}q,p +

∂F

∂t
,

and it follows:

Theorem 1.25: Equation of motion, conserved quantities,
and Poisson theorem

The equation of motion for a mechanical quantity F (q,p, t) is

dF

dt
= {F, H}q,p +

∂F

∂t
.

If F is a conserved quantity, dF/dt = 0, and not explicitly time-dependent,
it follows that

{F, H}q,p = 0 .

The reverse is equally true. Furthermore, if F and G are two such conserved
quantities, then {F, G}q,p is also conserved. This statement is the Poisson
theorem. It follows from the Jacobi identity.

Noting that qi and pi are independent variables,

∂qi

∂qj
= δij ,

∂pi

∂pj
= δij ,

∂qi

∂pj
=

∂pi

∂qj
= 0 ,
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we see that (1.40) can also be applied to them, and we obtain the canonical
equations in the new notation:

q̇i = {qi, H}q,p , ṗi = {pi, H}q,p .

For the Poisson brackets of momenta and coordinates, one similarly finds

{qi, pk}q,p = δik , {qi, qk}q,p = {pi, pk}q,p = 0 . (1.41)

Hamilton theory and quantum mechanics. The algebraic properties of
the Poisson bracket form the basis of their use and of their transcription to
quantum mechanics. In quantum theory, physical quantities are described
by linear Hermitean operators, and the Poisson bracket is replaced by the
commutator, which shares all the algebraic properties of the Poisson bracket:

{F, G} −→ −ih̄[F ,G] = −ih̄(FG − GF ) .

One can indeed regard mechanics and quantum mechanics as two different
realizations of the same algebraic structure that is defined by the Poisson
bracket. An example of this correspondence principle is given by Heisenberg’s
equation of motion in quantum mechanics,

ih̄
dF

dt
= [F ,H] +

∂F

∂t
,

which is obtained from the equation of motion in Theorem 1.25 by the above
replacement.

1.3.4 Canonical Transformations

Having developed the formal structure of the Hamiltonian formalism, we now
ask whether it is possible to find transformations under which the canoni-
cal equations are invariant. Naturally, we would like to find transformations
of this kind that particularly simplify Hamilton’s equations. For example,
it would be useful to have a transformation that yields a Hamilton func-
tion dependent only on the conjugate momenta (see next subsection). In
this case, all coordinates would be cyclic, thus making all momenta in this
representation-invariant. We define:

Definition: Canonical transformation

A coordinate transformation

qi −→ Qi = Qi(q,p, t) , pi −→ Pi = Pi(q,p, t)

is called canonical if the form of the transformed canonical equations re-
mains unchanged:

H = H(q,p, t) : q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi

H ′ = H ′(Q,P , t) : Q̇i =
∂H ′

∂Pi
, Ṗi = −∂H ′

∂Qi
.
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A necessary condition for a transformation to be canonical is that the old and
new Hamilton functions obey the Hamilton principle, i.e.,

δ

t2∫
t1

(∑
i

piq̇i − H(q,p, t)

)
dt = δ

t2∫
t1

(∑
i

PiQ̇i − H ′(Q,P , t)

)
dt = 0

or

δ

t2∫
t1

[∑
i

(
piq̇i − PiQ̇i

)
+ (H ′ − H)

]
dt = 0 .

Disregarding the trivial possibility of a simple multiplication of H and pi by
a constant, the difference between the integrands in the old and new action
can only consist of the total time differential dF/dt. Thus, we can write

dF =
∑

i

(pidqi − PidQi) + (H ′ − H)dt . (1.42)

The function F is called the generating function (or generator) of the canon-
ical transformation. It is a function of the 4n + 1 variables q, p, Q, P , and
t, of which 2n depend upon each other via the above transformations; they
can be eliminated in favor of 2n + 1 independent variables. Thus, F can take
on one of the following forms:

F1(q,Q, t) , F2(q,P , t) , F3(Q,p, t) , F4(p,P , t) . (1.43)

Obviously, (1.42) is just the total differential of

F1 = F1(q,Q, t) =
∑

i

(piqi − PiQi) + H ′ − H ,

from which it follows that

H ′ = H +
∂F1

∂t
, pi =

∂F1

∂qi
, Pi = −∂F1

∂Qi
.

With the help of the last two relations, the qi and pi can be expressed as
functions of the new variables: qi = qi(Q,P , t), pi = pi(Q,P , t). Inserting
these into the right-hand side of the first equation, we obtain the transformed
Hamilton function in the new variables.

All other dependencies given in (1.43) are obtained via Legendre trans-
formations of F1. For F2, one finds the relations

d

(
F1 +

∑
i

QiPi

)
=

∑
i

(pidqi + QidPi) + (H ′ − H)dt

=⇒ F2 = F2(q,P , t) = F1 +
∑

i

PiQi

=⇒ H ′ = H +
∂F2

∂t
, pi =

∂F2

∂qi
, Qi =

∂F2

∂Pi
, (1.44)
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and for F3

d

(
F1 −

∑
i

qipi

)
= −

∑
i

(qidpi + PidQi) + (H ′ − H)dt

=⇒ F3 = F3(Q,p, t) = F1 −
∑

i

piqi

=⇒ H ′ = H +
∂F3

∂t
, qi = −∂F3

∂pi
, Pi = −∂F3

∂Qi
,

and finally for F4

d

(
F1 −

∑
i

qipi +
∑

i

PiQi

)
= −

∑
i

(qidpi − QidPi) + (H ′ − H)dt

=⇒ F4 = F4(p,P , t) = F1 −
∑

i

piqi +
∑

i

PiQi

=⇒ H ′ = H +
∂F4

∂t
, qi = −∂F4

∂pi
, Qi =

∂F4

∂Pi
.

We see that there are four different types of canonical transformations, whose
generators depend on other 2n + 1 independent variables. In practice, it is
often not so simple to find the right generator that yields a significant simpli-
fication of the problem at hand. Sometimes this is only possible for problems
where the solution is also easily obtained in a different manner. The actual
advantage of the characterization of canonical transformations through gen-
erators is given by the insights we can gain into the structure of Hamiltonian
mechanics.

Infinitesimal canonical transformations. As a specific example of a
canonical transformation, we consider the generating function

F2 = F2(q,P , ε) =
∑

i

qiPi + εf(q,P ) + O(ε2) , ε continuous .

It is composed of the identity mapping and a suitable function f(q,P ) that
defines the infinitesimal transformation. According to (1.44), we have

Qi =
∂F2

∂Pi
= qi + ε

∂f

∂Pi
+ O(ε2) , pi =

∂F2

∂qi
= Pi + ε

∂f

∂qi
+ O(ε2) .

Since ε∂f/∂Pi and ε∂f/∂qi are of first order in ε, we can replace the variables
Pi by their zeroth-order approximations pi, so that

δqi = Qi − qi = ε
∂f(q,p)

∂pi
, δpi = Pi − pi = −ε

∂f(q,p)
∂qi

.

This can also be written as

δqi = ε {qi, f}q,p , δpi = ε {pi, f}q,p .
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Specifically, if we set ε = dt and f = H, so that

F2(q,P , δt) =
∑

i

qiPi + H(q,p)dt ,

we again obtain Hamilton’s equations:

δqi = dt {qi, H}q,p = q̇idt = dqi , δpi = dt {pi, H}q,p = ṗidt = dpi .

These equations signify that the transformation generated by H shifts the
coordinates and momenta qi, pi at time t to their values at time t + dt.
Thus, the Hamilton function is the generator of the infinitesimal canonical
transformation that corresponds to the actual trajectory in the interval dt.
Invariance of the Poisson bracket under canonical transformations.
We are now in a position to see the fundamental importance of the Poisson
bracket, to wit, its invariance under canonical transformations. To this end,
we first show the invariance of the relations (1.41) between canonical vari-
ables. Restricting ourselves to time-independent transformations, we have

Ṗi =
∑

j

(
∂Pi

∂qj
q̇j +

∂Pi

∂pj
ṗj

)
=

∑
j

(
∂Pi

∂qj

∂H

∂pj
− ∂Pi

∂pj

∂H

∂qj

)

=
∑
j,k

[(
∂Pi

∂qj

∂Pk

∂pj
− ∂Pi

∂qj

∂Pk

∂qj

)
∂H

∂Pk
+

(
∂Pi

∂qj

∂Qk

∂pj
− ∂Pi

∂pj

∂Qk

∂qj

)
∂H

∂Qk

]

=
∑

k

∂H

∂Pk
{Pi, Pk}q,p +

∑
k

∂H

∂Qk
{Pi, Qk}q,p .

It follows that

{Pi, Pk}q,p = 0 , {Qi, Pk}q,p = δik .

The proof for

{Qi, Qk}q,p = 0

is carried out analogously. Using the last two relations, we can now write

{F, G}Q,P =
∑

i

(
∂F

∂Qi

∂G

∂Pi
− ∂F

∂Pi

∂G

∂Qi

)

=
∑
i,j,k

[
∂F

∂qj

∂G

∂qk

(
∂qj

∂Qi

∂qk

∂Pi
− ∂qj

∂Pi

∂qk

∂Qi

)

+
∂F

∂qj

∂G

∂pk

(
∂qj

∂Qi

∂pk

∂Pi
− ∂qj

∂Pi

∂pk

∂Qi

)

+
∂F

∂pj

∂G

∂qk

(
∂pj

∂Qi

∂qk

∂Pi
− ∂pj

∂Pi

∂qk

∂Qi

)

+
∂F

∂pj

∂G

∂pk

(
∂pj

∂Qi

∂pk

∂Pi
− ∂pj

∂Pi

∂pk

∂Qi

)]

=
∑

j

(
∂F

∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)
= {F, G}q,p ,
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which shows the invariance of the Poisson bracket under canonical transfor-
mations. The proof for time-dependent transformations can be conducted in
similar fashion.

Theorem 1.26: Canonical transformations and Poisson bracket

A transformation

qi −→ Qi = Qi(q, q̇, t) , pi −→ Pi = Qi(q, q̇, t)

of the canonical variables (q,p) is canonical if, and only if,

{Pi, Pj}q,p = {Qi, Qj}q,p = 0 , {Pi, Qj}q,p = δij .

The Poisson bracket is invariant under canonical transformations:

{F, G}q,p = {F, G}Q,P .

It is therefore generally written without reference to a specific pair of canon-
ical variables.

1.3.5 Hamilton-Jacobi Equation

We now consider a canonical transformation with a generator of type
F2(q,P , t) that is designed to have the property that all of the transformed
coordinates and momenta are constant. This is most easily obtained by de-
manding that the transformed Hamilton function disappears:

H ′ = H +
∂F2

∂t
= 0 =⇒ Q̇i =

∂H ′

∂Pi
= 0 , Ṗi = −∂H ′

∂Qi
= 0 . (1.45)

Differentiating F2 with respect to time, and using the fact that [see (1.44)]

Qi =
∂F2

∂Pi
, pi =

∂F2

∂qi
,

we can write
dF2

dt
=

∑
i

(
∂F2

∂qi
q̇i +

∂F2

∂Pi
Ṗi

)
+

∂F2

∂t
=

∑
i

(
piq̇i + QiṖi

)
− H

=
∑

i

piq̇i − H = L .

It follows that

F2 =
∫

L(q, q̇, t)dt + const .

Thus, the generator of the canonical transformation that forces the Hamilton
function to vanish is, up to a constant, identical to the action functional S
along the trajectory. However, this cannot be used to determine the solution,
since the coordinates and momenta are just the unknowns of the problem. So,
writing S instead of F2 in (1.45), we obtain the Hamilton-Jacobi equation:
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Theorem 1.27: Hamilton-Jacobi equation

The Hamilton-Jacobi equation

∂S

∂t
+ H

(
qi,

∂S

∂qi
, t

)
= 0 ,

S = S(qi, βi, t) , βi = Pi = const , i = 1, . . . , n

is a first-order partial differential equation in the n+1 variables q and t. It is
equivalent to the system of 2n first-order ordinary Hamiltonian differential
equations. S is the generator that transforms the Hamilton function H into
constant coordinates Q and momenta P . It is called Hamilton’s principal
function.

Once S has been determined using this equation, the coordinates and mo-
menta are obtained from the purely algebraic relations

Qi =
∂S

∂βi
:= αi , pi =

∂S

∂qi
=⇒ qi = qi(α,β, t) , pi = pi(α,β, t) .

Here, the 2n integration constants

α = Q = const , β = P = const

need to be determined from the initial conditions q(t0), p(t0).

Solution via separation of variables. If the Hamilton function is not
explicitly time-dependent, we know from Theorem 1.23 that H = γ = const.
In this case, the ansatz

S(q,β, t) = S0(q,β) − γ(β)t

reduces the Hamilton-Jacobi equation to

H

(
qi,

∂S0

∂qi

)
= γ ,

where S0 is called the abbreviated action functional or Hamilton’s character-
istic function. For scleronomic systems, γ equals the total energy. Assuming
further that the coordinate q1 appears only in the combination

φ1

(
q1,

∂S0

∂q1

)
,

so that φ1 is independent of all other coordinates, we have

H

[
φ1

(
q1,

∂S0

∂q1

)
, qi�=1,

∂S0

∂qi�=1

]
= γ ,

and the separation ansatz

S0(q,β, t) = S1(q1, β1) + S′(qi�=1, αi�=1)

leads to
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H

[
φ1

(
q1,

∂S1

∂q1

)
, qi�=1,

∂S′

∂qi�=1

]
= γ .

Assuming that we have found a solution S0, the previous equation with S0
inserted must hold for all values of q1. However, since this coordinate only
appears in the function φ1, we can deduce that φ1 is a constant. Thus, from
the original partial differential equation with n independent variables, we
obtain an ordinary differential equation in q1,

φ1

(
q1,

∂S1

∂q1

)
= β1 ,

and a partial differential equation with n − 1 independent variables:

H

(
φ1 = β1, qi�=1,

∂S′

∂qq �=1

)
= γ .

If this method can be applied successively to all coordinates, the Hamilton-
Jacobi equation can be reduced to n ordinary differential equations,

φi

(
qi,

∂Si

∂qi

)
= αi , H(φi = βi) = γ ,

and the general solution is the sum of all Si. Finally, we consider the above
method for the case of a cyclic coordinate q1. The function φ1 is then given
by ∂S1/∂q1, and it follows that S1(q1, β1) = β1q1, where the constant is equal
to the momentum: p1 = β1.

Hamilton-Jacobi equation and quantum mechanics. Given the one-
dimensional Hamilton function

H(q, p) =
p2

2m
+ V (q) = E ,

we find the Hamilton-Jacobi equation

1
2m

(
∂S0

∂q

)2

+ V (q) = E .

In Chapter 3 we shall see that the corresponding quantum mechanical Hamil-
ton operator obeys the Schrödinger equation

− h̄2

2m

∂2ψ

∂q2 + V (q)ψ = Eψ ,

with the wave function ψ. Inserting the time-independent wave function

ψ = eiS0/h̄ ,

we see that

1
2m

(
∂S0

∂q

)2

− ih̄
2m

∂S2
0

∂q2 + V (q) = E .
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Obviously, in the limit h̄ → 0, this again results in the above Hamilton-Jacobi
equation.

Summary

• From the Lagrange equations, one obtains Hamilton’s equations via a
Legendre transformation. They constitute a system of coupled ordinary
first-order differential equations in the generalized coordinates and
the generalized momenta.

• In the Hamiltonian formalism, the dynamics of a mechanical system is
uniquely determined by the generalized coordinates and momenta at any
one time, as well as by the Hamilton function.

• The Poisson bracket allows a deeper algebraic understanding of Hamil-
tonian mechanics. It is invariant under canonical transformations.

• The action functional is the generator of the motion.

• The condition for a Hamilton function with purely cyclic coordinates
leads to the Hamilton-Jacobi equation. It is a partial differential
equation of first order.

Applications

8. Independence of the generator from boundary conditions. Show
that the variation of the action

S =

t2∫
t1

dt

(∑
i

PiQ̇i − H ′(Q,P , t) +
dF1

dt

)

=

t2∫
t1

dt

(∑
i

PiQ̇i − H ′(Q,P , t)

)
+ F1(q,Q, t)|t2t1

determines the new Hamilton function uniquely, independently of the bound-
ary conditions. Show that the transformation is canonical.

Solution. Noting that the startpoint and endpoint [t1, q(t1)], [t2, q(t2)] are
fixed, the action’s variation is given by

δS =

t2∫
t1

dt
∑

i

(
Q̇iδPi + PiδQ̇i − ∂H ′

∂Qi
δQi − ∂H ′

∂Pi
δPi

)
+

∑
i

∂F1

∂Qi
δQi

∣∣∣∣t2
t1

.

Partial integration of the δQ̇i-terms yields
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δS =

t2∫
t1

dt

[∑
i

(
Q̇i − ∂H ′

∂Pi

)
δPi −

∑
i

(
Ṗi +

∂H ′

∂Qi

)
δQi

]

+
∑

i

(
Pi +

∂F1

∂Qi

)
δQi

∣∣∣∣∣
t2

t1

.

We see that the last term vanishes independently of δQi at its endpoints
t1,2, since the bracket is already zero. Thus, we obtain Hamilton’s equations
in the new variables Qj and Pj , since they (and also their variations) are
independent from one another.
9. Poisson bracket of the angular momentum. Determine the Poisson
bracket of momentum and angular momentum of a single particle in Cartesian
coordinates, as well as the Poisson bracket of the components of the angular
momentum.
Solution. According to (1.40), for any function G(q,p, t) of canonically con-
jugate variables qj and pj , we have {G, pj} = ∂G/∂qj . We use this relation
as follows:

{lx, px} =
∂

∂x
(ypz − zpy) = 0

{lx, py} =
∂

∂y
(ypz − zpy) = pz

{lx, pz} =
∂

∂z
(ypz − zpy) = −py .

In total, we obtain

{li, pj} = εijkpk .

For the components of the angular momentum, one finds

{lx, lx} = {ly, ly} = {lz, lz} = 0
{lx, ly} = {ypz − zpy, zpx − xpz}

= {ypz, zpx} − {zpy, zpx} − {ypz, xpz} + {zpy, xpz}
= {ypz, zpx} + {zpy, xpz} = y {pz, z} px + x {z, pz} py

= −ypx + xpy = lz .

Calculating the remaining Poisson brackets leads to

{li, lj} = εijklk .

We see that no two components of angular momentum can simultaneously
appear as canonical momenta, since their Poisson bracket does not vanish
(Theorem 1.26). However, one can easily show that{

l2, li
}

= 0 ,

so that the absolute value of angular momentum and one of its components
can simultaneously be canonical momenta. We will encounter this result in
quantum mechanics again.
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10. Hamilton-Jacobi equation. Using the Hamilton-Jacobi equation, solve
the following systems:

a. Free particle.

b. Harmonic oscillator.

Solution.

To a. In this simple case, from the Hamilton function

H =
1

2m

(
p2
1 + p2

2 + p2
3
)

and the separation

S(q, β, t) = S0(q, β) − Et ,

we find the Hamilton-Jacobi equation

1
2m

[(
∂S0

∂q1

)2

+
(

∂S0

∂q2

)2

+
(

∂S0

∂q3

)2
]

= E .

All three coordinates are cyclic, so that this equation can be totally separated.
The solution is

S0(q, β) =
∑

i

βiqi , βi = pi ,
1

2m

∑
i

β2
i = E .

To b. Consider, to start, the more general one-dimensional Hamilton func-
tion

H(q, p) =
p2

2m
+ V (q) .

Using the separation

S(q, β, t) = S0(q, β) − βt , β = E ,

we obtain the Hamilton-Jacobi equation(
∂S0

∂q

)2

+ 2mV (q) = 2mβ ,

which is solved by

S0(q, β) =

q∫
q0

dq′√2m[β − V (q′)] .

Furthermore, we have

α =
∂S

∂β
=

q∫
q0

dq′ m√
2m[β − V (q′)]

− t

p =
∂S

∂q
=

√
2m[β − V (q)] .
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For the particular case of the harmonic oscillator, V (q) = kq2/2, the first
relation yields the solution

q(t) =

√
2β

k
sin

[√
k

m
(t − α′)

]
,

with integration constants α′ and β to be determined by initial conditions.
Expanding to three dimensions,

H(q,p) =
1

2m

∑
i

p2
i +

1
2

∑
i

kiq
2
i ,

and using

S(q,β, t) = S(q,β) − E(β)t

yield the Hamilton-Jacobi equation∑
i

(
∂S0

∂qi

)2

+
∑

i

mkiq
2
i = 2mE(β) .

It is solvable by the ansatz

S0(q,β) =
∑

i

S0,i(qi, βi)

separating it into three one-dimensional equations(
∂S0,i

∂qi

)2

+ mkiq
2
i = 2mβi ,

∑
i

βi = E ,

which are the same as we have already solved above.

1.4 Motion of Rigid Bodies

So far, we have limited our discussion to that of individual particles or bodies
whose spatial extent can be regarded as negligible. In this section we shall
discuss the physical implications for bodies whose spatial structure cannot
be disregarded.

The general motion of an N -particle system (body) can be described by
the motion of an arbitrary point q (rotation center), and the motion of all
particles around this point. We distinguish two classes of bodies:

• Laminar bodies, which can change their geometry with time, for example,
fluids and gases.

• Rigid bodies, for which every particle position xi obeys the condition

|xi(t) − xj(t)| = const ∀ i, j, t

(e.g., stones, houses), so that their form does not change with time.
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In the following, we restrict ourselves to rigid bodies. After a general dis-
cussion of the dynamics of rigid bodies, we turn our attention to that of a
purely rotational movement around a fixed point and show how the dynam-
ical quantities for these types of problems can be written in terms of the
inertial tensor of the body. Furthermore, we use the Euler angles to derive
the Lagrange equations for the general dynamics of rigid bodies.

1.4.1 General Motion of Rigid Bodies

For the following discussion we need two coordinate systems (see Fig. 1.8),
which we have already made use of in Subsection 1.1.4.

space-fixed system K
body-fixed system K′

q(t)

xi(t) zi

ω(t)

Fig. 1.8. Definition of space-fixed and body-fixed system.

• Space-fixed system: K : {e1, e2, e3}. This system is assumed to be an in-
ertial system, in terms of which the rigid body performs an accelerated
movement. The particle coordinates of a body in this system are given by
xi.

• Body-fixed system: K′ : {e′
1, e

′
2, e

′
3}. This accelerated system with origin

in the rotation center q is linked with the rigid body; in this system, the
body is at rest. The corresponding time-independent particle vectors shall
be denoted by zi. They are related to xi via

xi(t) = q(t) + zi .

Just as in Subsection 1.1.4, we use the notation

Dx =
∑

i

eiẋi , D′x =
∑

i

e′
iẋ

′
i

in order to avoid confusion. Using D′zi = 0 and Theorem 1.8, we now calcu-
late the kinematic quantities of total momentum, total angular momentum,
total torque, and total kinetic energy of the body, where
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zC =
1
M

∑
i

mizi , M =
∑

i

mi

denotes the center of mass of the body in the body-fixed system.

Total momentum p:

p =
∑

i

miẋi = M q̇ + M żC .

Total angular momentum l:

l =
∑

i

mixi × Dxi

=
∑

i

mi(q + zi) × (Dq + Dzi)

= Mq × Dq + MzC × Dq + Mq × (ω × zC) +
∑

i

mizi × (ω × zi)︸ ︷︷ ︸
lrot

.

Total torque N :

N =
∑

i

mixi × D2xi

=
∑

i

mi(q + zi) × (
D2q + D2zi

)
= Mq × D2q + MzC × D2q + Mq × D2zC

+
∑

i

mizi × [(D′ω) × zi + ω × (ω × zi)]︸ ︷︷ ︸
Nrot

.

Total kinetic energy T :

T =
1
2

∑
i

mi(Dxi)2

=
1
2

∑
i

mi

[
(Dq)2 + 2(Dq)(Dzi) + (Dzi)2

]
=

M

2
(Dq)2 + M(Dq)(ω × zC) +

1
2

∑
i

mi(ω × zi)2︸ ︷︷ ︸
Trot

. (1.46)

The vast majority of problems arising in practice fall into one of two cate-
gories. First, the rotation center coincides with the body’s center of mass:
zC = 0. Second, the rotation axis is fixed (think of a pendulum or a top),
so that the origin of the space-fixed system can be shifted to coincide with
the rotation center (q = 0). In the first case, the quantities p, l, N , and T
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can each be decomposed into a purely rotational contribution, and a second
one describing the sole rotation around the rotation center (without mixing
terms). In the second case, the quantities p, l, N , and T are identical to their
rotational parts.

1.4.2 Rotation of Rigid Bodies Around a Point

In the following, we concentrate on the purely rotational motion of the rigid
body around a fixed rotation center, and shift the origin of the space-fixed
system into this point (q = 0). Our aim is to find simpler expressions for lrot,
N rot, and T rot. To this end, we introduce the inertial tensor, whose name
and meaning will become apparent soon.

Definition: Inertial tensor and inertial moments

The body-fixed inertial tensor of a rigid body is defined as the symmetric
(3×3)-matrix

Θab =
∑

i

mi

(
z2

i δab − ziazib

)
, Θab =

∫
d3zρ(z)

(
z2δab − zazb

)
,

where the latter equation is to be used in the case of a continuous mass
distribution ρ(z). The diagonal elements of the matrix are termed inertial
moments and the off-diagonals are called deviation moments.

Obviously, Θ depends only on the geometry of the rigid body and not on the
type of motion. For the rotational part lrot (rotational angular momentum)
of the total angular momentum, we can now write

lrot =
∑
i

mizi × (ω × zi)

=
∑
i

mi

[
z2

i ω − (ziω)zi

]
(vector equation)

=⇒ lrot = Θω (coordinate equation in K′) .

This leads on to the rotational part N rot (rotational torque) of the total
torque:

N rot = Dlrot = D′lrot + ω × lrot (vector equation)

=⇒ N rot = Θω̇ + ω × lrot (coordinate equation in K′).

For the rotational part Trot (rotational energy) of the total kinetic energy, we
find

Trot =
1
2

∑
i

mi(ω × zi)2

=
1
2

∑
i

mi

[
z2

i ω
2 − (ziω)2

]
(vector equation)

=⇒ Trot =
1
2
ωTΘω (coordinate equation in K′).
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Theorem 1.28: Rotational momentum, torque, and energy

Denoting by ω the momentary angular velocity of a rigid body rotating
relative to an inertial system K, and by Θ its inertial tensor in the body-
fixed system K′, the rotational angular momentum, rotational torque, and
rotational energy in coordinate representation with respect to K′ are given
by

lrot = Θω , N rot = Θω̇ + ω × lrot , Trot =
1
2
ωTΘω .

Steiner’s theorem. We now derive the relationship between the inertial
tensor Θ in the body-fixed system K′, with origin in the rotation center,
and the inertial tensor ΘC relative to the body-fixed center of mass system
KC that is parallel to K′ with origin in ∆ = 1

M

∑
i zimi. For this, we shall

assume a continuous mass density in order to get rid of the particle index.
The inertial tensor Θ in terms of the KC-vectors Zi = zi − ∆, and with∫

d3Zρ(Z) = M ,

∫
d3ZZρ(Z) = 0

reads

Θab =
∫

d3zρ(z)
[
z2δab − zazb

]
=

∫
d3Zρ(Z) [(Z + ∆)(Z + ∆)δab − (Za + ∆a)(Zb + ∆b)]

=
∫

d3Zρ(Z)
[(

Z2 + ∆2) δab − (ZaZb + ∆a∆b)
]

.

From this, we find the following theorem:

Theorem 1.29: Theorem of Steiner

The relation between the inertial tensor in the body-fixed system K′, and
that in the body-fixed center of mass system KC that is parallel to K′ and
separated from it by a distance ∆, is

Θab = ΘC
ab + M

(
∆2δab − ∆a∆b

)
.

The difference between Θ and ΘC is exactly the inertial tensor of a particle
with mass M , which is at distance ∆ from the center of mass. So, if we know
the inertial tensor of a rigid body relative to its center of mass, we can easily
calculate the inertial tensor for any other point via Steiner’s law.

Principal inertial moments and principal axes. The form of the inertial
tensor Θ clearly depends on the choice of the body-fixed reference system
K′ : {e′

1, e
′
2, e

′
3}. Since the inertial tensor is real and symmetric in any system,

there always exists a body-fixed system K′′ : {e′′
1 , e′′

2 , e′′
3}, in which the inertial
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tensor Ξ is diagonal. The transformation from K′ to such a principal axis
system K′′ (with the same origin) is given by an orthogonal rotation matrix
D and the similarity transformation

Ξ = DΘDT =

⎛
⎝Ξ1 0 0

0 Ξ2 0
0 0 Ξ3

⎞
⎠ ,

where D is determined by the characteristic equation of Θ:

Θe′′
i = Ξie

′′
i , 0 ≤ Ξi ∈ R , i = 1, 2, 3 =⇒ Dij = e′′

i e′
j .

The orthonormal eigenvectors of Θ (the basis vectors of K′′), i.e., e′′
i , are

called principal axes; the eigenvalues of Θ, i.e., Ξi, are called principal mo-
ments.

1.4.3 Euler Angles and Lagrange Equations

We now come to the Lagrange equations for the general motion of a rigid
body. From the above discussion, it is clear that the most general motion is
described by six degrees of freedom corresponding to the three coordinates of
the rotation center q, as well as the three coordinates of the angular velocity
ω.7

Our problem, in order to derive the Lagrange function, is to find six
independent generalized coordinates that determine the motion of the body
uniquely. Three of these are clearly given by the coordinates q1, q2, and q3 of
the vector q. If we choose a principal axis system for our body-fixed reference
system with origin in the center of mass (zC = 0), we can use (1.46) and
Theorem 1.28 to find

T =
M

2
(
q̇2
1 + q̇2

2 + q̇2
3
)

+
A

2
ω′2

1 +
B

2
ω′2

2 +
C

2
ω′2

3 , (1.47)

where A, B, and C denote the principal moments, and ω′
i the coordinates of

ω with respect to K′. Furthermore, we have the Euler equations

N ′
rot,1 = Aω̇′

1 + (C − B)ω′
2ω

′
3

N ′
rot,2 = Bω̇′

1 + (A − C)ω′
1ω

′
3

N ′
rot,3 = Cω̇′

1 + (B − A)ω′
1ω

′
2 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (1.48)

Our next task is to replace the body-fixed components ω′
i of (1.47) by three

generalized coordinates that describe the purely rotational motion of the
body. There are several ways of doing this. We use Euler’s method and express
the general rotation by a succession of three independent rotations. If the
axes of the space-fixed system K and that of the body-fixed system K′ are

7 Of course, the rigid body can by subject to more constraints (other than its
rigidity), and this can reduce the number of degrees of freedom further.
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parallel at some initial time, one can visualize the rotation of K′ relative to
K as follows. Initially, a rotation of K by an angle φ around its third axis is
performed. Subsequently, this interim system is rotated by an angle θ around
its second axis. Finally, this system is rotated by an angle ψ around its third
axis. In this way, each rotation can be parametrized by three independent
quantities.

Definition: Euler angles

Let K and K′ be two orthonormal systems. The (time-dependent) rotation
matrix R that turns K into K′ can be written in terms of the Euler angles
φ, θ, and ψ as follows:

R =

⎛
⎝ cos ψ sin ψ 0

− sin ψ cos ψ 0
0 0 1

⎞
⎠

⎛
⎝ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎞
⎠

⎛
⎝ cos φ sin φ 0

− sin φ cos φ 0
0 0 1

⎞
⎠ ,

with

0 ≤ ψ ≤ 2π , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π .

The angles are uniquely defined by this rotation if |R33| �= 1.

Note that the order of the individual rotations does matter. Using the rela-
tions (1.11) and (1.12), we can now calculate the components of ω in the
space-fixed system K. After some manipulations, we find

ω1 = −θ̇ sin φ + ψ̇ sin θ cos φ

ω2 = θ̇ cos φ + ψ̇ sin θ sin φ

ω3 = φ̇ + ψ̇ cos θ .

The corresponding components in the body-fixed system K′ are obtained
from ω′

i =
∑

j Rijωj as

ω′
1 = θ̇ sin ψ − φ̇ sin θ cos ψ

ω′
2 = θ̇ cos ψ + φ̇ sin θ sin ψ

ω′
3 = ψ̇ + φ̇ cos θ .

Thus, our set of six independent generalized coordinates is {q1, q2, q3, φ, θ, ψ},
and we can write the Lagrange function of the rigid body as follows:

L(q1, q2, q3, φ, θ, ψ) =
M

2
(
q̇2
1 + q̇2

2 + q̇2
3
)

+
A

2

(
θ̇ sin ψ − φ̇ sin θ cos ψ

)2

+
B

2

(
θ̇ cos ψ + φ̇ sin θ sin ψ

)2

+
C

2

(
ψ̇ + φ̇ cos θ

)2
− V .
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In the case of V = 0, the Lagrange equations for the angles are

Aω̇′
1 = (B − C)ω′

2ω
′
3 , Bω̇′

2 = (C − A)ω′
1ω

′
3 , Cω̇′

3 = (A − B)ω′
1ω

′
2 ,

and if N rot = 0, these equations are identical with the Euler equations (1.48).

Summary

• The motion of a rigid body can be split into a translational motion of
an arbitrary point and a rotation of the body around this point.

• The dynamical quantities of the rotational motion can be expressed in
terms of the inertial tensor. It is independent of the dynamics and
depends only on the geometry of the body.

• Steiner’s theorem states that knowledge of the inertial tensor in the
center of mass reference system allows for a simple calculation of the
inertial tensor for any arbitrary point.

• A purely rotational motion of the rigid body can be parametrized in
terms of three independent Euler angles.

Applications

11. Physical pendulum. A solid cube of side length a and mass M rotates
frictionless around one of its edges under the influence of gravity (Fig. 1.9).
Calculate the oscillation frequency of the cube for small deviations from its
equilibrium.

z1

z3

∆

ϕ

x

y

z

body-fixed system

KC-system

space-fixed system

Fig. 1.9. Determination of the space-fixed and body-fixed system, as well as the
body-fixed center of mass system of a rotating cube.
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Solution. Since the rotation axis (and consequently the rotation center q
somewhere along that axis) is fixed, we shift both the space-fixed system and
the body-fixed system to one of the cube’s corners bordering on the rotation
axis. This means that q = 0 and T = Trot. The body-fixed components of ω
and ∆ are

ω = ϕ̇

⎛
⎝ 0

0
1

⎞
⎠ , ∆ =

a

2

⎛
⎝ 1

1
1

⎞
⎠ .

We need the inertial tensor Θ with respect to the body-fixed system. We
obtain it via the inertial tensor ΘC of the body-fixed center of mass system
using Steiner’s law:

ΘC
11 = ρ

a
2∫

− a
2

dZ1

a
2∫

− a
2

dZ2

a
2∫

− a
2

dZ3(Z3
2 + Z2

3 ) =
Ma2

6
, ρ =

M

a3

= ΘC
22 = ΘC

33

ΘC
ij �=i = 0 .

Obviously, the KC-system is a principal axis system. Using Theorem 1.29,
we find

Θ =
Ma2

12

⎛
⎝ 8 −3 −3

−3 8 −3
−3 −3 8

⎞
⎠ .

The kinetic energy of the system is given by

T = Trot =
Ma2

3
ϕ̇2 .

The potential energy is equal to that of the center of mass,

V = −Mg
a√
2

cos ϕ ,

where a/
√

2 denotes the distance between the center of mass and the rotation
axis. Energy conservation yields an equation of motion for ϕ:

E = Trot + V =
Ma2

3
ϕ̇2 − Mg

a√
2

cos ϕ = const .

Differentiation with respect to time gives

2Ma2

3
ϕ̇ϕ̈ +

Mga√
2

ϕ̇ sin ϕ = 0 ⇐⇒ ϕ̈ +
3g

2
√

2a
sin ϕ = 0 .

For small deviations we have sin ϕ ≈ ϕ and therefore

ϕ̈ +
g

L′ ϕ = 0 , L′ =
2
√

2a

3
< a .
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This equation of motion is equivalent to that of a planar mathematical pen-
dulum consisting of a point mass hanging from a massless rod of reduced
length L′. Its general solution is given by

ϕ(t) = a cos ωt + b sin ωt , ω =
√

g

L′ ,

where the integration constants a and b are determined by initial conditions,
for example, ϕ(0) = ϕ0 , ϕ̇(0) = ω0.

12. Hollow cylinder rolling down a slope. Consider a massive but hollow
cylinder with inner radius a, outer radius b, length h, and mass M rolling
down a slope under the influence of gravity (Fig. 1.10). Determine and solve
the equation of motion.

x

y

ϕ

α

q

z1

z2

z3

a
b

h

space-fixed

body-fixed

Fig. 1.10. Determination of the space-fixed and body-fixed systems of a rolling
hollow cylinder.

Solution. For the body-fixed components of ω, we have

ω = ϕ̇

⎛
⎝ 0

0
1

⎞
⎠ .

Since ω only has a z3-component, we only need to calculate Θ33 of the body-
fixed inertial tensor in order to determine Trot. Introducing cylindrical co-
ordinates,

z1 = r cos φ , z2 = r sin φ , z3 = z , d3z = rdrdφdz ,

one finds

Θ33 = ρ

b∫
a

rdr

2π∫
0

dφ

h∫
0

dzr2 =
ρ

2
πh(b4 − a4) , ρ =

M

πh(b2 − a2)

=
M

2
(b2 + a2)



72 1. Mechanics

=⇒ Trot =
M

4
(b2 + a2)ϕ̇2 .

Taking into account the rolling constraint

q̇ = −bϕ̇ ,

the kinetic and potential energy of the system follows as

T =
M

2
q̇2 + Trot =

M

4
(3b2 + a2)ϕ̇2 , V = Mgq sin α = −Mgbϕ sin α .

Energy conservation yields

E = T + V =
M

4
(3b2 + a2)ϕ̇2 − Mgbϕ sin α = const .

Differentiation with respect to time results in

M

2
(3b2 + a2)ϕ̈ − Mgb sin α = 0 ⇐⇒ ϕ̈ − 2gb sin α

3b2 + a2 = 0 ,

which is equivalent to

q̈ + g sin α′ = 0 , sin α′ =
2b2

3b2 + a2 sin α < sin α .

This equation is of the same form as that of a point mass rolling down a
slope with reduced angle of inclination α′. Its general solution is evaluated
by twofold integration over time as

q(t) = −g

2
sin α′t2 + v0t + q0 = −bϕ(t) ,

where the integration constants v0 and q0 are fixed via initial conditions.

1.5 Central Forces

In this section we discuss the class of central force problems, which are of
great importance not just in classical mechanics. In preparation for sub-
sequent sections, we initially deal with two-particle systems and show that
their dynamics can, under certain circumstances, be separated into a uniform
motion of the center of mass and an effective one-particle motion. We then
deduce the radial equation of motion in conservative central force fields and
determine the particle trajectory in 1/r-potentials. An example of this type
is given by the gravitational potential, whose form is derived using Kepler’s
laws. The last two subsections deal with the scattering of particles in central
potentials.
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1.5.1 Two-Particle Systems

With a view to following subsections, we first consider the dynamics of two-
particle systems in the absence of any external forces. We assume that the
particles exert an inner conservative force on one another that depends only
on their distance. Newton’s equations for the two particles are then given by

m1ẍ1 = −∇1V (x1 − x2)

m2ẍ2 = −∇2V (x1 − x2) = ∇1V (x1 − x2) .

}
(1.49)

Introducing the relative and center of mass coordinates,

xR = x1 − x2 , xC =
m1x1 + m2x2

M
,

as well as the reduced mass and the total mass,

µ =
m1m2

m1 + m2
, M = m1 + m2 ,

and subtracting the two equations (1.49) gives the relative motion of the
particles:

µẍR = ṗR = −∇RV (xR) , pR = µẋR .

Bar the substitutions m ↔ µ, x ↔ xR, and p ↔ pR, there is formally no
difference between the relative motion of the two-particle system and the
absolute motion of a single particle. We can therefore interpret the relative
motion as an effective motion of a single particle of reduced mass µ. Adding
the two equations (1.49), we find the motion of the center of mass as

M ẍC = ṗC = 0 =⇒ ẋC = const , pC = M ẋC .

Thus, the center of mass of the two-particle system performs a uniform motion
at constant velocity.

Since Newtonian mechanics is Galilei-invariant, we may switch to an in-
ertial system that moves along with the center of mass. In this center of mass
system, denoted by a star ∗, the equations for relative and center of mass
motion are given by

µẍ∗
R = −∇RV (x∗

R) , x = xC + x∗ , x∗
C = 0 .

If the mass of the second particle is very much larger than that of the first
– this is true, for example, in the case of planets orbiting the sun (see the
following two subsections) – we find

m2 � m1 =⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M → m2

µ → m1

x∗
C → x∗

2 = 0

x∗
R → x∗

1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=⇒ m1ẍ
∗
1 = −∇1V (x∗

1) , x∗
2 = 0 .
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In this case, we can view the motion of the two-particle system from the rest
system of the heavier particle and apply Newton’s equation of motion to the
lighter particle.

1.5.2 Conservative Central Problems, 1/r-Potentials

This subsection deals with the general motion of particles in 1/r-potentials.
Following Theorem 1.4, the angular momentum of a particle in a central force
field is a conserved quantity. From this, two statements can be deduced:

1. Since the direction of the angular momentum is conserved, the motion of
the particles must lie in a plane. We can therefore choose the coordinate
system with its origin in the force center, such that the motion is confined
for all times to the xy-plane. In polar coordinates, this means

x(t) = r(t)

⎛
⎝ cos ϕ(t)

sin ϕ(t)
0

⎞
⎠

ẋ(t) = ṙ

⎛
⎝ cos ϕ

sin ϕ
0

⎞
⎠ + rϕ̇

⎛
⎝− sin ϕ

cos ϕ
0

⎞
⎠

ẍ(t) = (r̈ − rϕ̇2)

⎛
⎝ cos ϕ

sin ϕ
0

⎞
⎠ + (2ṙϕ̇ + rϕ̈)

⎛
⎝− sin ϕ

cos ϕ
0

⎞
⎠

l(t) = mx × ẋ = m

⎛
⎝ 0

0
r2ϕ̇

⎞
⎠ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.50)

2. Conservation of the absolute value of the angular momentum implies that

|l| = mr2ϕ̇ = const =⇒ r2dϕ = const ,

which means that the line connecting the force center and the particle
covers equal areas in equal times. This is the content of Kepler’s second
law, which we consider in detail in the next subsection.

In addition to the conservation of angular momentum, the total energy of the
system is also conserved:

E =
m

2
(ṙ2 + r2ϕ̇2) + V (r) =

m

2
ṙ2 +

l2

2mr2 + V (r) = const .

This relation corresponds to energy conservation of a one-dimensional particle
in the effective potential

Veff(r) = V (r) +
l2

2mr2 .

The last term is equivalent to a (fictitious) centrifugal force that pushes the
particle away from the center of motion. This term is therefore called the
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centrifugal barrier. Since we are dealing with a one-dimensional problem, we
can immediately write down the corresponding equation of motion, analogous
to (1.8):

Theorem 1.30: Radial equation of motion
in a conservative central force field

The equation of motion of a particle in a conservative central force is given
by

ṙ = ±
√

2
m

[E − Veff(r)]

⇐⇒ dt =
±dr√

2
m [E − Veff(r)]

, Veff(r) = V (r) +
l2

2mr2 . (1.51)

The two signs distinguish between the two possible directions of velocity.

In terms of r, the particle can only be found in regions for which E−Veff(r) ≥
0. Consider, for example, the effective potential of Fig. 1.11. The particle can

Veff(r)

E

r1 r2 r3
r

Fig. 1.11. Effective potential.

either oscillate indefinitely between the points of return r1 and r2, or it can be
found in the region r ≥ r3, eventually escaping from the force field, r → ∞.
The sign in the radial equation of motion is determined by the initial condi-
tions, for example, of the type

r1 ≤ r ≤ r2 , ṙ(0) = v0
>
< 0 ,

and remains fixed until the particle reaches the next point of return. If we
are more interested in the geometrical form of the particle trajectory, it is
more instructive to rewrite (1.51) as

dϕ =
l

mr2 dt = ± ldr

r2
√

2m[E − Veff(r)]
.
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Particle trajectories in 1/r-potentials. Starting from the previous rela-
tion, we will now study all possible trajectories of particles in Coulomb-like
potentials V (r) = α/r, i.e.,

ϕ − ϕ0 = ±
r∫

r0

ldr′

r′2
√

2m
(
E − α

r′
) − l2

r′2

. (1.52)

If we set ϕ0 = 0, this standard integral is solved to be

ϕ(r) = − arcsin
l2/r′ + mα

mαε

∣∣∣∣r
r0

,

with

ε = ±
√

1 +
2El2

mα2 . (1.53)

Fixing r0 to arcsin l2/r0+mα
mαε = −π/2 finally yields conic sections in polar

coordinates:

r(ϕ) =
k

1 + ε cos ϕ
, k = − l2

mα
. (1.54)

The sign in (1.53) must be chosen such that r > 0 is always satisfied in (1.54).
The following cases can be distinguished:

Attractive case: α < 0 =⇒ k > 0.

• E < 0 =⇒ |ε| < 1 =⇒ r = k
1+|ε| cos ϕ > 0 for ϕ ∈ [0 : π]. In the upper

half-plane, ϕ runs through the interval [0 : π]. The geometrical form of the
curve is an ellipse (Fig. 1.12a) with large and small axes given by a = k

1−ε2 ,

b = k√
1−ε2

[see Fig. 1.13 and (1.55) in the next subsection]. r oscillates
between the points of return r1 = k

1−ε and r2 = k
1+ε . For ε = 0, the ellipse

turns into a circle of radius R = r1 = r2 = 1.

• E > 0 =⇒ |ε| > 1 =⇒ r = k
1+|ε| cos ϕ > 0 for ϕ ∈ [0 : ϕmax[ ,

cos ϕmax = −1/|ε|. The trajectory is a hyperbola (Fig. 1.12b).

• E = 0 =⇒ |ε| = 1 =⇒ r = k
1+cos ϕ > 0 for ϕ ∈ [0 : π[. The trajectory is a

parabola (Fig. 1.12c).

Repulsive case: α > 0 =⇒ E > 0 , k < 0 , |ε| > 1
=⇒ r = −|k|

1−|ε| cos ϕ > 0 for ϕ ∈ [0 : ϕmax[ , cos ϕmax = 1/|ε|. Again, the
trajectory is a hyperbola (Fig. 1.12d).

Of all possible cases, only the attractive one with α < 0 and E < 0 leads
to a bounded elliptic motion. In all other cases, the particle approaches the
force center from infinitely far away only to shoot off into the distance again.
In the case of elliptic motion, the quantity ε is called eccentricity. It is a
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r

ϕ
r
ϕ

ϕmax

r

ϕ
r

ϕ ϕmax

a b

c d

Fig. 1.12. Possible trajectories in a Coulomb potential. a, b, and c correspond to
the attractive case and d to the repulsive one.

measure of the deviation of the particle’s elliptical trajectory from a pure
circle (ε = 0).8 For the half-axes, in terms of physical quantities, we find

a =
α

2E
, b =

l√
2m|E| .

Thus, the energy is independent of the absolute value of angular momentum
and solely determined by the large half-axis a.

Eccentricity and Runge-Lenz vector. We briefly show an alternative
derivation of (1.54). For this, consider the vector l×p. Using ṗ = αx/r3 and
r = |x|, we calculate its derivative with respect to time:

d
dt

(l × p) = l × ṗ =
α

r3 l × x = −mα

r3

[
x(xẋ) − ẋr2] = mα

d
dt

(x

r

)
.

For the vector of eccentricity, it follows that

ε =
l × p

mα
− x

r
= const .

8 The eccentricity of the moon’s motion around the earth and of the earth’s motion
around the sun is ε = 0.055 and ε = 0.017, respectively, so that their trajectories
are very close to circular.
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This is an additional integral of motion called the Runge-Lenz vector. It is
perpendicular to angular momentum and thus lies in the plane of motion.
Squaring this relation, one finds after some steps

ε2 =
2l2

mα2

(
p2

2m
+

α

r

)
+ 1 =⇒ ε = ±

√
1 +

2El2

mα2 .

The equation of motion (1.54) can be obtained from

εx =
(l × p)x

mα
− r = − l2

mα
− r and εx = εr cos ϕ ,

such that

r(ϕ) = − l2/mα

1 + ε cos ϕ
.

The existence of the additional constant of motion can be used to show
that the orbits in 1/r-potentials for bounded particles are closed. Generally,
Bertrand’s theorem states that the only central forces for which this holds
are the inverse square law and Hooke’s law.9

Runge-Lenz vector in quantum mechanics. Note that the relation be-
tween ε and the four conserved quantities E and l together with ε · l = 0
implies that there are five independent constants of motion. In the context
of quantum mechanics (Subsection 3.5.5), we shall find that the spectrum of
the hydrogen atom exhibits an “accidental degeneracy”: states with the same
principal quantum number n and different orbital angular quantum numbers
l are degenerate. This indicates that the Hamilton operator H has other
symmetries besides rotational invariance and one can construct an operator
from the components of the quantum analogue of the Runge-Lenz vector that
commutes with H. The effect of this operator is to raise the value of l by
one, thus explaining the degeneracy of l at each n.

1.5.3 Kepler’s Laws and Gravitational Potential

The gravitational force between two point masses m and M ,

F G(x) = −∇VG(|x|) , VG(|x|) = VG(r) = −γ
mM

r
,

is a specific example of attractive 1/r-potentials of the type we have just
discussed. From our discussion so far, we can immediately deduce Kepler’s
three laws:10

1. Every planet of the solar system moves on an elliptical trajectory around
the sun, which is one of the focal points of the ellipse.

9 The interested reader is referred to [6].
10 Within these laws, the interaction of the planets among each other as well as the

motion of the sun are neglected.
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2. The connecting vector between the sun and a planet covers equal areas in
equal times.

3. The squares of the orbit periods are proportional to the cubes of the larger
half-axis of two planets’ trajectories.

We shall now follow the reverse path and show that the form of the gravita-
tional force can be deduced completely from Kepler’s three laws.

Although the sun and the planets have a spatial structure, it is valid to
consider them here as being point particles since the distance between sun
and planet is so much larger than their extent. We shall see at the end of the
following discussion that this point of view is exact if the sun and the planets
are spherical objects.

Choosing an inertial system with origin in the sun (this is allowed since
the sun’s mass is so much larger than that of the planets), we see from
Kepler’s first law that the trajectory of a planet lies in a plane, and therefore
the direction of its angular momentum relative to the sun is conserved. We
can again choose our inertial system such that the relations (1.50) hold.
Kepler’s second law implies conservation of the absolute value of the angular
momentum:

l = mr2ϕ̇ = const .

Thus, the force between sun and planets is central,

d(r2ϕ̇)
dt

= r(2ṙϕ̇ + rϕ̈) = 0 ,

and we can write

F G = m(r̈ − rϕ̇2)

⎛
⎝ cos ϕ

sin ϕ
0

⎞
⎠ .

From the geometrical form of the ellipse (see Fig. 1.13), we obtain the desired
relation between r and ϕ. The ellipse is defined as the set of points that have
the same distance from the two focal points B and B′. Denoting by a the
large, and by b the small half-axis, the ellipse is parametrized by r + r′ = 2a.
After a little algebra, this results in

r =
k

1 + ε cos ϕ
, k =

b2

a
, ε =

√
a2 − b2

a
< 1 (1.55)

=⇒ ṙ =
ε

k
r2ϕ̇ sin ϕ =

ε

k
h sin ϕ , h = r2ϕ̇

=⇒ r̈ =
ε

k
hϕ̇ cos ϕ =

ε

k

h2

r2 cos ϕ =
h2

kr2

(
k

r
− 1

)
.

For F G, we find

F G(x) = m

[
h2

kr3

(
k

r
− 1

)
− h2

r4

]
x = −m

h2

k

x

|x|3
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rr′

a a

a

b

B′ B

Fig. 1.13. Definition of an ellipse.

and

F G(x) = −∇VG(x) , VG(x) = −m
h2

k

1
|x| .

Using Kepler’s third law, we can now show that the quantity h2/k is planet-
independent since the area F of the ellipse is given by (T=period of the
orbit)

F = πab =

T∫
0

dt
ϕ̇r2

2
=

Th

2
,

so that
T 2

a3 =
4π2a2b2

a3h2 =
4π2b2

ah2 = 4π2 k

h2 = const .

Because of the principle “actio=reactio”, h2/k must be proportional to the
sun’s mass M . In total, we have

Theorem 1.31: Gravitational potential VG

The gravitational potential between two point masses m and M is obtained
from Kepler’s laws as

VG(|x|) = VG(r) = −γ
mM

r
, γ = 6.67 · 10−11 Nm2

kg2 .

γ is a natural constant, called the gravitational constant, which must be
determined experimentally.

Gravitational potential of a hollow sphere. In the following, we calcu-
late the gravitational potential of a hollow sphere with inner radius a, outer
radius b, and homogeneous mass distribution ρ(x, t) = ρ = 3M

4π(b3−a3) (Fig.
1.14). To this end, we imagine a probe particle of mass m at distance r to
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r

R
x

θ

b

a

dM

m

Fig. 1.14. Hollow sphere.

the center of the sphere. In polar coordinates, the potential energy dV due
to the mass element dM is given by

dV (r) = −γ
mdM(x, θ, ϕ)

R(r, x, θ)
,

with

dM(x, θ, ϕ) = ρx2dx sin θdθdϕ

R(r, x, θ) =
√

r2 + x2 − 2rx cos θ =⇒ sin θdθ =
RdR

rx
.

To find the total potential, we need to integrate over x, θ, and ϕ:

V (r) = −γmρ

b∫
a

dx

2π∫
0

dϕ

π∫
0

dθ
x2 sin θ

R(r, x, θ)

= −A

r

b∫
a

dxx

Rmax(r,x)∫
Rmin(r,x)

dR , A = 2πγmρ .

Now, there are three cases to be distinguished:

1. r ≥ b: in this case, Rmin = r − x and Rmax = r + x, so that

V1(r) = −2
A

r

b∫
a

dxx2 = −2
3

A

r

(
b3 − a3) = −γ

mM

r
.

2. r ≤ a: Rmin = x − r, Rmax = x + r. It follows that

V2(r) = −2A

b∫
a

dxx = −A
(
b2 − a2) .
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3. a ≤ r ≤ b: in this case, the potential can be thought of as composed of a
hollow sphere with radii a and r (first case) and a spherical shell with radii
r and b (second case):

V3(r) = −A

(
b2 − 2

3
a3

r
− 1

3
r2
)

.

From the first case, we see that for r > b, a hollow sphere with homogeneous
mass distribution is gravitationally equivalent to a point particle of the same
mass.

Gravitational potential on the earth’s surface. For physical problems
in the vicinity of the earth’s surface we have

r = R + r′ , r′ 	 R ,

where R = 6.35 · 106 m is the radius of the earth and r′ is the radial distance
of the particle to the surface. The gravitational potential of the earth can
therefore be expanded in R, and with the earth’s mass M = 5.98 · 1024 kg,
we find

VG(r) = −γmM

r
= −mgR + mgr′ + . . . , g ≈ 9.8

N
kg

= 9.8
m
s2

.

Here, g denotes the gravitational acceleration. Since the term mgR is just an
irrelevant constant, it can be ignored, giving the gravitational potential with
respect to the earth’s surface as

VGS(r′) ≈ mgr′ .

1.5.4 Elastic One-Particle Scattering by a Fixed Target

The interactions of microscopic objects such as molecules, atoms, nuclei, and
elementary particles are difficult to investigate, since they are not directly
accessible to our senses. Thus, we need methods that enlarge the effects and
make them visible to us. The scattering of particles by one another provides
such an indirect measurement method. Knowing the positions and velocities
of the particles before and after the scattering takes place, one can draw
conclusions with respect to the underlying scattering forces. In practice, this
proceeds by trial and error, in that one calculates the effect of a few physi-
cally plausible types of interaction and then compares theoretical predictions
to experimental results. Although such scattering processes often require a
quantum mechanical treatment (see Section 3.10), in many cases, a purely
classical description provides a very good approximation.

In this subsection we consider the scattering of particles on a fixed tar-
get (force center). The subsequent subsection deals with the more general
situation of two-particle scattering, where particles (or particle beams) are
fired at one another from opposite directions. We shall always assume that
the interactions can be described by rotationally symmetric potentials that
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fall off fast enough, so that both particles can be regarded as quasi-free long
before and long after the scattering process.

For one-particle scattering one is generally confronted with the situation
shown in Fig. 1.15. A particle is moving linearly in the z-direction with con-

z

y

b

pI

pF

π − θmin

θmin

χ

rmin

detector

Fig. 1.15. One-particle scattering against a fixed scattering center.

stant initial momentum pI = mv0 at vertical distance b toward the scattering
center. Within a relatively localized area, the particle is deflected, and then
continues in a linear motion with final momentum pF until it is registered
by a detector situated far away from the scattering zone. For the scattering
angle χ, we have

cos χ =
pIpF

|pI||pF| . (1.56)

The entire process is determined macroscopically by the initial velocity v0,
the impact parameter b, and the interaction potential V (r).

We now put the origin of our coordinate system into the scattering center,
and look at the dynamics of the scattering process using polar coordinates(

y
z

)
= r

(
sin θ
cos θ

)
.

• Initial conditions:

r(0) = ∞ , θ(0) = π , ṙ(0) = −v0 , θ̇(0) = 0 .

• Conservation of total energy:

E =
p2

2m
+ V (r) =

m

2

(
ṙ2 + r2θ̇2

)
+ V (r) =

m

2
v2
0 = const .

In particular, the absolute values of the particle’s momentum long before
and long after the scattering [V (r = ∞) = 0] are identical: |pI| = |pF|.
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• Conservation of total angular momentum:

|l| = l = mr2θ̇ = mbv0 = const =⇒ dt =
mr2

l
dθ .

• Particle trajectory: the trajectory is symmetric with respect to the rmin-
axis. The scattering angle χ is therefore

χ = 2θmin − π ,

and for rmin, we have

ṙ(rmin) =
dr

dt
(rmin) = 0 =⇒ dr

dθ
(rmin) = 0 . (1.57)

Taking into account these points, we can now evaluate θmin, and consequently
χ:

m

2
v2
0 =

l2

2mr4

(
dr

dθ

)2

+
l2

2mr2 + V (r)

=⇒
(

dθ

dr

)2

= − 1
r2

[
1 − r2

b2

(
1 − 2V (r)

mv2
0

)]−1

=⇒ θ − θ0 = ±
r∫

r0

dr′

r′

∣∣∣∣1 − r′2

b2

(
1 − 2V (r′)

mv2
0

)∣∣∣∣−1/2

.

Obviously, the sign of the square root in the integrand is the same as the
sign of dθ/dr or dr/dθ, which, for θmin ≤ θ ≤ π, is positive. Setting θ0 = π ,
θ = θmin , r0 = ∞ , r = rmin, we find

Theorem 1.32: Scattering angle χ

χ = 2θmin − π

θmin = θmin(b, v0) = π −
∞∫

rmin

dr

r

∣∣∣∣1 − r2

b2

(
1 − 2V (r)

mv2
0

)∣∣∣∣−1/2

.

According to (1.57), the minimal distance rmin = rmin(b, v0) is determined
by the zeros of the integrand.

A scattering experiment will generally not be set up as a single particle hit-
ting a target. Rather, one has a beam of similar particles moving with the
same velocity v0 toward the scattering center. Since this beam shows a small
but finite cross section, different particles will generally have different impact
parameters and will therefore be deflected at different angles. This circum-
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Rdχ

χ

b

db

R

R sin χ

db b

dϕ
b|db|dϕ

R sin χdϕ

Fig. 1.16. Particle beam of one-particle scattering. Left: perpendicular to beam
direction. Right: in the beam’s direction.

stance is clarified in Fig. 1.16. All particles entering the segment b|db|dϕ will
hit the solid angle R2dΩ = R2 sin χdχdϕ, where they are registered by a
detector. Thus, the detector actually measures the cross section, which is
defined as follows:

Definition: Scattering cross section dσ

dσ =
(Number of scattered particles toward dΩ)/s

(Number of incoming particles)/s/m2 =
Ib|db|dϕ

I
,

with I = particle current

=⇒ dσ = b|db|dϕ = b(χ)
∣∣∣∣ db

dχ

∣∣∣∣ dϕdχ . (1.58)

The differential cross section is obtained by normalizing dσ to the unit sphere
solid angle element dΩ:

Definition: Differential scattering cross section dσ/dΩ
for one-particle scattering

dσ

dΩ
=

1
sin χ

b(χ)
∣∣∣∣ db

dχ

∣∣∣∣ . (1.59)

Thinking in terms of the experiment, one obtains the differential cross section
by dividing the measured cross section by the detector surface. The differ-
ential cross section is therefore independent of the detector’s geometry. Note
that (1.58) and (1.59) are also valid for potentials that are not rotationally
symmetric. However, things are then a little more complicated as the impact
parameter b depends also on the azimuth angle ϕ. Integration of dσ/dΩ over
dΩ yields the total cross section σtot:
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Definition: Total cross section σtot

σtot =
∫

dΩ
dσ

dΩ
=

(Number of scattered particles)/s
(Number of incoming particles)/s/m2 . (1.60)

Like dσ, the quantity σtot has the dimension of area. It equals the (fictitious)
area of the scattering center that projectiles have to cross to be deflected at
all.

1.5.5 Elastic Two-Particle Scattering

We now turn to the more realistic case where a fixed scattering center no
longer exists. Instead, particles are shot against one another. As already dis-
cussed in Subsection 1.5.1, we can split the two-particle dynamics into a
relative motion,

µẍR = −∇V (|xR|) , xR = x1 − x2 , µ =
m1m2

M
, M = m1 + m2 ,

and a center of mass motion,

M ẋC = const =⇒ EC =
M

2
ẋ2

C = const , xC =
m1x1 + m2x2

M
.

The relative motion corresponds to an effective one-particle problem and can
be regarded as the scattering of a single particle with reduced mass µ on a
fixed target at xR = 0. For this, the same conservation laws hold as discussed
in the preceding subsection:

• ER = µ
2 ẋ2

R + V (xR) = const =⇒ |pI
R| = |pF

R| , pR = µẋR

• lR = µxR × ẋR = const .

Of course, from the conservation of the center of mass and the relative energy,
overall energy conservation also follows:

E = EC + ER =
m1

2
ẋ2

1 +
m2

2
ẋ2

2 + V (|x1 − x2|) = const .

The uniform center of mass motion does not influence the dynamics of the
scattering process and is simply a consequence of the choice of our space-fixed
inertial system from which the scattering is observed (Galilei invariance). We
can therefore use the center of mass system, denoted by a star ∗, in which
the center of mass rests at all times:

xi = xC + x∗
i , x∗

C = 0 .

The center of mass system can be advantageous compared to the laboratory
system (where the second particle is at rest long before the scattering takes
place), as it allows for a simpler relation between scattering angle χ and
impact parameter b. Using m1ẋ

∗
1 + m2ẋ

∗
2 = 0, the center of mass momenta

p∗
i = miẋ

∗
i obey
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p∗
1 = −p∗

2 =
m1m2

m1 + m2

(
ẋ∗

1 +
m1

m2
ẋ∗

1

)
=

m1m2

m1 + m2
(ẋ∗

1 − ẋ∗
2) = pR .

Figure 1.17 shows the process of two-particle scattering in the center of mass
reference system. The particles are moving from infinity toward one another

χ

χ

b

pI
R

−pI
R

pF
R

−pF
R

Fig. 1.17. Two-particle scattering in the center of mass system.

with initial momenta pI∗
1 = −pI∗

2 = pI
R. After the scattering, the momenta

pF∗
1 = −pF∗

2 = pF
R are rotated by the scattering angle χ relative to their

initial values [see (1.56)]:

cos χ =
pI

RpF
R

|pI
R|2 .

In the center of mass system, the relation between the impact parameter b
and the scattering angle χ can therefore simply be obtained from (1.59) by
replacing m → µ.

Theorem 1.33: Differential cross section
for two-particle scattering in the center of mass system

dσ

dΩ∗ =
1

sin χ
b(χ)

∣∣∣∣ db

dχ

∣∣∣∣ , with b(χ) from Theorem 1.32 and m → µ.

Here, the velocity parameter v0 is the relative velocity of the two particles
long before the scattering.

Two-particle scattering in the laboratory system. Using the equations
for two-particle scattering in the center of mass frame, we can easily obtain
the corresponding relations in the laboratory system (Fig. 1.18), where the
second particle is at rest long before the scattering:
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pI
2 = 0 =⇒ ẋC =

m1ẋ1(0)
m1 + m2

=
1

m2
pI

R .

θ1

θ2

pI
1

pF
1

pF
2

Fig. 1.18. Two-particle scattering in the laboratory system.

The relations between the initial and the final momenta in the two frames
are

pI
1 = m1[ẋC + ẋ∗

1(0)] =
m1

m2
pI

R + p∗I
1 =

(
m1

m2
+ 1

)
pI

R

pI
2 = m2[ẋC + ẋ∗

2(0)] = pI
R + p∗I

2 = 0

pF
1 = m1[ẋC + ẋ∗

1(∞)] =
m1

m2
pI

R + p∗F
1 =

m1

m2
pI

R + pF
R

pF
2 = m2[ẋC + ẋ∗

2(∞)] = pI
R + p∗F

2 = pI
R − pF

R .

This allows us to express the scattering angles θ1 and θ2 in the laboratory
frame by the scattering angle χ in the center of mass frame:

cos θ1 =
pI

1p
F
1

|pI
1||pF

1 | =

(
m1
m2

+ 1
)

pI
R

(
m1
m2

pI
R + pF

R

)
(

m1
m2

+ 1
)

|pI
R|
√(

m1
m2

)2 (
pI

R

)2 +
(
pF

R

)2 + 2m1
m2

pI
RpF

R

=
m1
m2

+ cos χ√(
m1
m2

)2
+ 1 + 2m1

m2
cos χ

cos θ2 =
pI

1p
F
2

|pI
1||pF

2 | =

(
m1
m2

+ 1
)

pI
R(pI

R − pF
R)(

m1
m2

+ 1
)

|pI
R||pI

R − pF
R|

=
1 − cos χ√
2 − 2 cos χ

= sin
χ

2

=⇒ θ2 =
π − χ

2
.
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Theorem 1.34: Relation between the differential cross section
in the laboratory system and in the center of mass system

dσ

dΩL
=

dσ

dΩ∗
dΩ∗

dΩL
=

dσ

dΩ∗

(
d cos θ1

d cos χ

)−1

=
dσ

dΩ∗

[(
m1
m2

)2
+ 1 + 2m1

m2
cos χ(θ1)

]3/2

m1
m2

cos χ(θ1) + 1
,

with

cos θ1 =
m1
m2

+ cos χ√(
m1
m2

)2
+ 1 + 2m1

m2
cos χ

and

dΩ∗ = sinχdχdϕ = solid angle element in the center of mass system,

dΩL = sin θ1dθ1dϕ =
solid angle element in the laboratory system,
into which the particles are scattered.

(The azimuthal angle dependencies in both frames are identical: ϕL = ϕ.)

Note that for m2 � m1, the differential cross sections dσ/dΩL and dσ/dΩ∗

are identical and correspond to the differential cross section dσ/dΩ of one-
particle scattering. The transformation from the center of mass to the labo-
ratory system can be graphically visualized as follows:

• m1/m2 < 1: θ1 is restricted to the range [0 : π] in the laboratory frame.
The same is true for the scattering angle χ in the center of mass system
(Fig. 1.19). In this range, the mapping χ(θ1) is bijective.

pF
1 pF

R pF
2

m1
m2

pI
R pI

R

θ1 χ θ2

Fig. 1.19. Relationship between two-particle scattering in the center of mass and
laboratory system for m1 < m2.

• m1/m2 > 1: θ1 is restricted to the range [0 : θmax] for χ ∈ [0 : π] with
sin θmax = m2/m1. For each θ1, there are now two possible values of χ
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(Fig. 1.20). To uniquely determine χ, we therefore need θ1 and the final
momentum |pF

1 | of the first particle.

pF
1 pF

R

pF
R

pF
2

m1
m2

pI
R pI

R

θ1 θmax χ

or
χ

θ2

Fig. 1.20. Relationship between two-particle scattering in the center of mass and
laboratory system for m1 > m2.

Summary

• The relevant parameters of one-particle scattering are the differen-
tial and the total cross section, as they are most easily determined
experimentally. The differential cross section describes the angular dis-
tribution of the scattered particles, whereas the total cross section is the
area of the scattering center that projectiles must pass through in order
to be deflected.

• The mutual scattering of particles (two-particle scattering) can be
separated into a relative motion and a uniform center of mass motion.
The center of mass motion does not influence the dynamics of the scat-
tering, so that the relative motion corresponds to an effective one-particle
problem.

• Viewed in the center of mass system, the scattering relations of the
two-particle system can be obtained from those of the one-particle scat-
tering by substituting m −→ µ. The corresponding relations in the lab-
oratory system, in which the second particle is at rest long before
the scattering takes place, follow easily from those of the center of mass
system.

Applications

13. Perihelion precession. The gravitational potential of the sun is mod-
ified by general relativistic corrections as follows:
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V (r) =
α

r
+

a

r2 , α < 0 , a > 0 .

Show that this potential results in a rotation of the planets’ elliptical orbits.
Solution. The radial equation of motion (1.51) or (1.52) in polar coordinates
is (with ϕ0 = 0)

ϕ = ±
r∫

r0

ldr′

r′2
√

2m
(
E − α

r′ − a
r′2

) − l
r′2

= − 1√
d

arcsin
λ/r + mα

mαγ
+ c ,

where m is the mass of the planet and

d =
2ma

l2
+ 1 , γ = ±

√
1 +

2E

mα2 (2ma + l2) .

Choosing an appropriate integration constant c, we find

r =
k

1 + γ cos(
√

dϕ)
, k = − λ2

mα
. (1.61)

Up to the factor
√

d, (1.61) is form-identical with the elliptical orbit equation
(1.54). However, since

√
d > 1, the minimal distance rmin = k/(1 + |γ|) to

the sun is not reached after ∆ϕ = 2π as in the pure Coulombic potential, but
after ∆ϕ = 2π/

√
d. This results in a rotation of the ellipse called perihelion

precession (Fig. 1.21).

r

ϕ

Fig. 1.21. Rotation of a planet’s ellipse due to an additional 1
r2 -term in the grav-

itational potential.

14. Elastic scattering of spheres. Two hard spheres with masses
m1 = m2 = m and radii R1 = R2 = R are scattered elastically against
each other. Calculate the differential cross section in both the center of mass
system and the laboratory system. What is the total cross section?
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Solution. Consider first the scattering of one of the spheres on a fixed second
sphere (Fig. 1.22). Since the scattering is elastic, we can obtain the relation

2Rb

θmin
z

y

v0 •

•

Fig. 1.22. Elastic scattering of a sphere against a fixed sphere.

between the scattering angle χ and the impact parameter b from purely ge-
ometrical considerations:

θmin = π − arcsin
b

2R

=⇒ χ = 2θmin − π = 2 arccos
b

2R

=⇒ b = 2R cos
χ

2

=⇒
∣∣∣∣ db

dχ

∣∣∣∣ = R sin
χ

2
.

Using (1.59), the differential cross section of the one-particle scattering is
therefore given by

dσ

dΩ
=

2R2 sin χ
2 cos χ

2

sin χ
= R2 =

dσ

dΩ∗ = const .

Since dσ/dΩ is mass-independent, Theorem 1.33 states that this is equal to
the differential cross section for two-particle scattering in the center of mass
system. The total cross section is obtained using (1.60):

σtot = R2

2π∫
0

dϕ

π∫
0

dχ sin χ = 4πR2 .

The differential cross section in the laboratory system is found from Theorem
1.34 as
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dσ

dΩL
= R2 [2 + 2 cos χ]3/2

1 + cos χ
= 2R2

√
2 + 2 cos χ = 4R2 cos θ1 .

Note that for the calculation of the total cross section σtot,L, which is of course
identical to the total cross section of one-particle scattering, the integration
over θ1 has an upper limit at the first zero of dσ/dΩL:

σtot,L = 8πR2

π
2∫

0

dθ1 sin θ1 cos θ1 = 4πR2 .

15. Rutherford scattering. Assuming a Coulomb potential V (r) = α/r,
calculate the differential cross section for electron-proton scattering in the
laboratory and in the center of mass reference frame.

Solution. As in the previous application, we start by studying the simpler
case of one-particle scattering by a fixed target. We take the proton, with
m2 = mp, to be fixed and scatter the electron (m1 = me) on it. The rela-
tion between the scattering angle and the impact parameter is provided by
Theorem 1.32,

θmin =
χ + π

2
= π −

∞∫
rmin

dr

r

∣∣∣∣1 − r2

b2

(
1 − 2α

mev2
0r

)∣∣∣∣−1/2

,

where rmin is the singularity of the integrand. The substitution u = 1/r =⇒
dr = −r2du gives

θmin = π −
umin∫
0

du

∣∣∣∣u2 +
2α

meb2v2
0
u − 1

b2

∣∣∣∣−1/2

. (1.62)

Another substitution

u2 +
2α

meb2v2
0
u − 1

b2 = −
[

1
b2 +

(
α

meb2v2
0

)2
]

(1 − ω2)

=⇒ ω =
(

u +
α

meb2v2
0

)[
1
b2 +

(
α

meb2v2
0

)2
]−1/2

yields

θmin = π +

ω(umin)∫
ω(0)

dΩ(1 − ω2)−1/2 = π + arccos ω(0) − arccos ω(umin) .

Since umin is a zero of the integrand in (1.62), ω(umin) = 1 and therefore
arccos ω(umin) = 0. This results in
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cos
χ − π

2
= sin

χ

2
= ω(0) =

α

meb2v2
0

[
1
b2 +

(
α

meb2v2
0

)2
]−1/2

=⇒ sin2 χ

2
=

(
1 +

b2m2
ev

4
0

α2

)−1

=⇒ b(χ) =
|α|

mev2
0

cot
χ

2

=⇒
∣∣∣∣ db

dχ

∣∣∣∣ =
|α|

2mev2
0

1
sin2 χ

2

.

From this, the differential cross section for the one-particle scattering adds
up to

dσ

dΩ
=

α2

4m2
ev

4
0

1
sin4 χ

2

. (1.63)

This expression is monotonically decreasing in the energy mev
2
0/2 of the

electrons, as well as in the scattering angle χ, and diverges for χ = 0. This
is a consequence of the large reach of the Coulomb potential. Remarkably,
there is no difference between the attractive (α < 0) and the repulsive case
(α > 0). The total cross section is

σtot =
πα2

2m2
ev

4
0

π∫
0

dχ sin χ

sin4 χ
2

= − πα2

m2
ev

4
0

1
sin2 χ

2

∣∣∣∣∣
π

0

−→ ∞ .

The divergent behavior is also due to the long reach of the 1/r-scattering
potential. The differential cross section in the center of mass system is found
by replacing me → µ = memp/(me + mp) to be

dσ

dΩ∗ =
α2

4µ2v4
0

1
sin4 χ

2

,

with v0 as the initial relative velocity of electron and proton. Since the ratio
of the electron and proton masses is

me

mp
≈ 5.4 · 10−4 	 1 ,

we have, to lowest order, me/mp ≈ 0, µ ≈ me, so that we can write

dσ

dΩ
≈ dσ

dΩ∗ ≈ dσ

dΩL
.
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1.6 Relativistic Mechanics

At the beginning of the 20th century, physicists believed the entire universe
to be filled by a medium called ether, which enables the propagation of light.
From this ether hypothesis, it follows that the velocity of light in inertial sys-
tems moving with different velocity relative to the ether must be different,
too. However, even high-precision experiments (e.g., Michelson-Morley exper-
iment) at the time were unable to detect this effect. Instead, all experimental
results indicated that light has the same velocity in all inertial systems.

In 1905, Albert Einstein published his theory of special relativity, in which
he rejected the ether hypothesis totally and proposed axiomatically the con-
stance of the velocity of light. The theory of special relativity – originally for-
mulated within the framework of electrodynamics – provides a self-consistent
theory that encompasses Newtonian mechanics as the limiting case of small
velocities compared to that of light.

We start this section with a discussion of the basic assumptions and meth-
ods of special relativity. In this discussion, Lorentz transformations will turn
out to be fundamental. We show that the causality principle (i.e., the chrono-
logical order of past, present, and future events) remains valid. Furthermore,
we derive the adequate definitions of relativistic kinematic four-quantities,
which ensure a form-invariant formulation of relativistic mechanics. The last
part of this section deals with the Lagrange formulation of relativistic me-
chanics.

1.6.1 Axioms, Minkowski Space, Lorentz Transformations

Special relativity is based on the following axioms:

• Constance of velocity of light: the velocity of light in vacuum is
the same for all uniformly moving reference frames and is given by
c ≈ 3 · 108 m/s.

• Principle of relativity: the laws of physics are equally valid in all inertial
systems.

The relativity principle incorporates the concepts of homogeneity of space and
time, according to which there is no specially favored point in space or time,
and the isotropy of space stating that there is no favored direction in space.
In the context of mechanics, the correspondence principle can be considered
as a further axiom. It claims that, in the limit v/c → 0, the laws of relativistic
mechanics turn into the corresponding laws of Newtonian mechanics.

As a consequence of the first axiom, the Newtonian assumption of an
absolute time has to be dropped. In this respect, it is advantageous to repre-
sent physical events mathematically within a four-dimensional space in which
time t (or the product of time and the velocity of light, ct) is regarded as an
extra dimension and on an equal footing with the spatial coordinates. This
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space is called Minkowski space. Before we turn to it, we shall agree upon
the following conventions, which allow a more readable formulation of special
relativity:

• Two indices, one of which is an upper and the other a lower index, are
summed over, so that summation signs can be dropped. Sums with two
identical indices, which are both upper or both lower indices, are not de-
fined (Einstein’s summation convention).

• Vectors with an upper index are called contravariant. Vectors with a lower
index are called covariant. Although there is little need to distinguish be-
tween covariant and contravariant indices in the context of relativistic me-
chanics, we start using this notation here. Its full power will become ap-
parent in the context of the form-invariant formulation of electrodynamics
(Section 2.3).

• For matrices, the first index indicates the row and the second one the
column.

Definition: Minkowski space

Minkowski space is a four-dimensional linear vector space over the body of
real numbers. Its elements x are represented by four-component coordinate
vectors or four-vectors (in the following also simply: vectors),

(xµ(t)) =
(

ct
x(t)

)
=

⎛
⎜⎜⎝

ct
x(t)
y(t)
z(t)

⎞
⎟⎟⎠ .

Note the notation: xµ , µ = 0, 1, 2, 3, stands for the µth contravariant
coordinate of x.
Metric of Minkowski space
The scalar product of two four-vectors is defined as

(xµ) · (yν) = xµgµνyν = xµyµ

(xµ) · (yν) = xµgµνxν = xµyµ

(gµν) = (gµν) =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , gµ

ν = gν
µ = δµ

ν . (1.64)

The following relations result from this:

• gµαgαν = δµ
ν ,

�
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• xµ = gµνxν , xµ = gµνxν , i.e., co- and contravariant vectors differ just
by the sign of the spatial components,

• xµyµ = xµyµ.

gµν is the (non-Euclidean) metric tensor of Minkowski space.

Contrary to the three-dimensional Euclidean case, the norm of a four-vector
is not positive definite, and the following cases can occur:

xµxµ = c2t2 − x2

⎧⎨
⎩

> 0
= 0
< 0 .

Now, we consider two inertial systems K and K′ moving with constant velocity
relative to one another. We assume that, at any one time, a light signal is
sent out in all directions. Due to the relativity principle, the propagation
of this signal should be perceived in both systems as a uniformly spreading
spherical wave. If xµ

0 and x′µ
0 denote the space-time origin of the light signal

in the systems K and K′, and, accordingly, xµ and x′µ denote a point of the
wave front at a later time, the postulate of constant velocity of light can be
expressed as

(x − x0)µ(x − x0)µ = c2(t − t0)2 − (x − x0)2

= c2(t′ − t′0)
2 − (x′ − x′

0)
2

= (x′ − x′
0)

µ(x′ − x′
0)µ = 0 .

This means that the four-dimensional distance of any two light vectors is zero
in any inertial system. As a consequence of the homogeneity of space-time and
the isotropy of space, this statement is generalized, in that the geometrical
structure of four-dimensional space-time is given by the invariance of the
distance of any two arbitrary four-vectors:

(x − y)µ(x − y)µ = (x′ − y′)µ(x′ − y′)µ .

Thus, of all the transformations relating K and K′, only those are physi-
cally meaningful that respect this equation. These are the Lorentz transfor-
mations, linear mappings that correspond to translations and rotations in
four-dimensional Minkowski space.

Theorem 1.35: Lorentz transformations

Lorentz transformations describe the relativistic transition from one inertial
system, K, to another, K′. They are defined by the transformations

xµ → x′µ = Λµ
νxν + aµ , aµ = space-time translations

of contravariant vectors. The distance conservation

(x − y)µ(x − y)µ = (x′ − y′)µ(x′ − y′)µ

�
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implies that

Λµ
αgµνΛν

β = gαβ (1.65)

as well as the transformational behavior of covariant four-vectors,

x′
µ = gµνx′ν = gµν (Λν

αxα + aν) = xβ [Λ−1]βµ + aµ ,

with

[Λ−1]βµ = gµνΛν
αgαβ = Λµ

β , [Λ−1]βµΛµ
γ = gµνΛν

αgαβΛµ
γ = δβ

γ .

In matrix notation, the condition (1.65) reads ΛTgΛ = g and corresponds
to the condition RTR = 1 for rotational matrices in the three-dimensional
Euclidean case. Lorentz transformations with aµ = 0 constitute the homoge-
neous Lorentz group. Here, not only the distance, but also the scalar product
of any two vectors remains unchanged:

xµyµ = x′µy′
µ .

In the general case (aµ) �= 0, one obtains the inhomogeneous Lorentz group
or Poincaré group. The homogeneous Lorentz group can be classified further
into

homogeneous transformations: det(Λ) = ±1 , Λ0
0 = ±1

↪→ orthochronous transformations: det(Λ) = ±1 , Λ0
0 = +1

↪→ proper transformations: det(Λ) = +1 , Λ0
0 = +1.

Proper transformations are described by three constant (spatial) rotation
angles and three constant boost angles. They leave the direction of time, as
well as of the three spatial axes unchanged. Together with the space-time
translations aµ they form the 10-parameter proper orthochronous Poincaré
group (compare to Theorem 1.10).

Examples of proper Lorentz transformations.

• Rotations in space.

Λ(R) = (Λ(R)µ
ν) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0
0
0

R

⎞
⎟⎟⎟⎟⎠

• Special boosts:

Λ(1) = (Λ(1)µ
ν) =

⎛
⎜⎜⎝

cosh α sinhα 0 0
sinhα cosh α 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠
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Λ(2) = (Λ(2)µ
ν) =

⎛
⎜⎜⎝

cosh α 0 sinhα 0
0 1 0 0

sinhα 0 cosh α 0
0 0 0 1

⎞
⎟⎟⎠

Λ(3) = (Λ(3)µ
ν) =

⎛
⎜⎜⎝

cosh α 0 0 sinhα
0 1 0 0
0 0 1 0

sinhα 0 0 cosh α

⎞
⎟⎟⎠ .

The Λ(i) describe the transition from one inertial system K to another
K′, where K′ is moving relative to K with constant velocity along the ith
spatial axis.

To understand the boost angle α, consider a system K′ moving relative to K
with constant velocity v (measured in K) along the x-axis. Suppose an event
happens at the spatial origin of system K′ at time t′, which is given in the
two systems by the vectors

(xµ) =

⎛
⎜⎜⎝

ct
vt
0
0

⎞
⎟⎟⎠ , (x′µ) =

⎛
⎜⎜⎝

ct′

0
0
0

⎞
⎟⎟⎠ .

Using Λ(1), we find

ct′ = ct cosh α + vt sinhα , 0 = ct sinhα + vt cosh α , (1.66)

from which it follows that

tanhα = −β =⇒ cosh α =
±1√
1 − β2

, sinhα =
∓β√
1 − β2

, β =
v

c
.

To determine the signs we consider the nonrelativistic limiting case β → 0,
expand coshα and sinhα to lowest order in β,

cosh α ≈ ±1 , sinhα ≈ ∓β ,

and insert these expressions into (1.66):

ct′ ≈ ±ct ∓ βvt , 0 ≈ ∓βct ± vt = ∓vt ± vt .

Respecting the correspondence principle ct′
β→0−→ ct, one finally obtains

cosh α =
+1√
1 − β2

, sinhα =
−β√
1 − β2

.

1.6.2 Relativistic Effects

In the following, we discuss some physical consequences arising from the struc-
ture of Lorentz transformations. We shall always assume that K′ is moving
relative to K with constant velocity v in the x-direction.11

11 Note that lower indices do not imply a covariant µ-notation here. Instead, they
simply denote different contravariant components.
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Time dilation. An observer resting in K emits two light pulses at location
x1 and at times t1 and t2. In system K′ this corresponds to the times

t′1 = t1 cosh α +
x1

c
sinhα , t′2 = t2 cosh α +

x1

c
sinhα .

It follows that

∆t′ = t′2 − t′1 =
∆t√
1 − β2

≥ ∆t = t2 − t1 .

This means that time intervals in systems moving relative to an observer
seem elongated to him.

Length contraction. Consider a pole of length ∆x = x2 −x1 aligned along
the x-axis in system K. An observer in system K′ moving relative to K mea-
sures the length of the pole by noting the pole’s start and end positions at
the same time. Thus, we have

x′
2 − x′

1 = ∆x′ = c∆t sinhα + ∆x cosh α .

Simultaneity of the measurements in the system K′ implies

c∆t′ = 0 = c∆t cosh α + ∆x sinhα =⇒ c∆t = −∆x tanhα ,

so that

∆x′ = ∆x(− sinhα tanhα + cosh α) = ∆x
√

1 − β2 ≤ ∆x .

Therefore, an observer perceives the length of objects moving relative to him
as being shortened. Since it is irrelevant which system, K or K′, is regarded
as being in motion, time dilation and length contraction are observed in both
systems.

Addition of relativistic velocities. We consider a particle moving with
velocity ω in K and ask for its velocity ω′ in K′. We have

ω′
x = c

dx′1

dx′0 = c
dx0 sinhα + dx1 cosh α

dx0 cosh α + dx1 sinhα
= c

tanhα + dx1

dx0

1 + dx1

dx0 tanhα
= c

−v
c + 1

cωx

1 − v
c2 ωx

=⇒ ω′
x =

ωx − v

1 − v
c2 ωx

,

ω′
y,z = c

dx′2,3

dx′0 = c
dx2,3

dx0 cosh α + dx1 sinhα
=

c

cosh α

dx2,3

dx0

1 + dx1

dx0 tanhα

=
c

cosh α

1
cωy,z

1 + ωx

c tanhα

=⇒ ω′
y,z =

ωy,z(1 − β2)
1 − v

c2 ωx

or
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ω′ =
1

1 − v
c2 ωx

⎛
⎝ ωx − v

ωy

√
1 − β2

ωz

√
1 − β2

⎞
⎠ .

Obviously, this relation is only physically meaningful for relative velocities
for which |v| ≤ c and |ω| ≤ c. Furthermore, one easily finds that for any
possible combination of v, |ω| ≤ c, there is no possible velocity in K′ larger
than the velocity of light. In particular, we have

ω =

⎛
⎝ c

0
0

⎞
⎠ =⇒ ω′ =

⎛
⎝ c

0
0

⎞
⎠ and v = c =⇒ ω′ = −

⎛
⎝ c

0
0

⎞
⎠ .

Thus, the velocity of light is the upper boundary for any type of particle
motion.

1.6.3 Causality Principle, Space-, Light- and Time-like Vectors

In Newtonian mechanics, the causality principle states that an event E2 can
only occur after the event E1 that causes it, so that t2−t1 ≥ 0. If the causality
principle is also to hold in relativistic mechanics, this relation must not be
reversed in any inertial system. Consider, therefore, two events

(xµ
1 ) =

⎛
⎜⎜⎝

ct1
x1
0
0

⎞
⎟⎟⎠ , (xµ

2 ) =

⎛
⎜⎜⎝

ct2
x2
0
0

⎞
⎟⎟⎠

in K, of which xµ
2 is the reaction of xµ

1 , i.e.,

t2 > t1 , c(t2 − t1) ≥ |x2 − x1| ≥ x2 − x1 .

In system K′ moving relative to K with velocity v, one finds (coshα ≥ 1,
| tanhα| ≤ 1)

c(t′2 − t′1) = c(t2 − t1) cosh α + (x2 − x1) sinhα

= [c(t2 − t1) + (x2 − x1) tanhα] cosh α

≥ c(t2 − t1)(1 + tanhα) ≥ 0 .

We can therefore conclude that the causality principle is still valid in rela-
tivistic mechanics. In particular, in any inertial system the chronological se-
quence past-present-future is maintained. Figure 1.23 shows these three time
domains in Minkowski space, where one spatial dimension is suppressed. The
past, present, and future of an event E are separated by light cones, whose
surfaces are generated by vectors, for which

dxµdxµ = 0 ⇐⇒ |ẋ| = c .

Vectors of this kind are called light-like, as they describe a propagation with
the speed of light. Events that can influence E (past), or which can be caused



102 1. Mechanics
t

x

y
past

future

present
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time-like

light-like
space-like

Fig. 1.23. Classification of the three temporal domains past, present, and future.

by E (future) lie on or inside the lower and upper light cones, respectively.
The inner area is described by time-like vectors with the property

dxµdxµ > 0 ⇐⇒ |ẋ| < c .

The complementary domain to that past and future of E is the present of E.
It is given by the outer part of the light cone described by space-like vectors
with

dxµdxµ < 0 ⇐⇒ |ẋ| > c .

This is the area of events that can neither be the cause of, nor the reaction
to, E.

1.6.4 Lorentz-Covariant12 Formulation of Relativistic Mechanics

According to the principle of relativity, there must exist a Lorentz-covariant
formulation of relativistic mechanics, so that all physical laws have the same
form in all inertial systems, just as in Newtonian mechanics. However, this
can only be guaranteed if the corresponding quantities (velocity, momentum,
force, etc.) transform as four-vectors. Obviously, this constraint does not
apply to the derivative of a four-vector xµ with respect to its 0th component,
as the time differential dx0 = cdt is not a Lorentz scalar, i.e., it is not invariant
under arbitrary Lorentz transformations:
12 In this book, as in many other textbooks, the transformational behavior of rela-

tivistic four-quantities is called “Lorentz-covariant”, regardless of the subtle dif-
ference between “covariant” and “contravariant”. The same holds for relativistic
equations whose form remains unchanged under Lorentz transformations. Quan-
tities and equations are called “Lorentz-invariant” if their value is unchanged by
Lorentz transformations (Lorentz scalar).
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dx′µ

dx′0 �= Λµ
ν
dxν

dx0 .

Since, on the other hand, c constitutes the upper velocity limit for any phys-
ical motion, xµ is a time-like vector, so that at each time t, there exists an
inertial system in which the particle is at rest (momentary rest system). This
implies that

dxµdxµ = c2dt2 − dx2 = c2dt′2 − dx′2 = dx′µdx′
µ = c2dτ2 > 0 , (1.67)

where dτ is the time differential of the rest system (eigentime differential).
Dividing the last equation by dτ2 yields

dxµ

dτ

dxµ

dτ
= c2

(
dt

dτ

)2

−
(

dx

dτ

)2

=
dx′µ

dτ

dx′
µ

dτ

= c2
(

dt′

dτ

)2

−
(

dx′

dτ

)2

= c2 .

According to this, dxµ/dτ is a time-like four-vector of length c, thus trans-
forming under arbitrary Lorentz transformations Λ as

dx′µ

dτ
= Λµ

ν
dxν

dτ
. (1.68)

Using this and (1.67), we find

Theorem 1.36: Eigentime differential dτ

The eigentime differential

dτ = dt

√
1 − 1

c2

(
dx

dt

)2

= dt′
√

1 − 1
c2

(
dx′

dt′

)2

= . . .

is a Lorentz scalar that defines the time scale in the rest system of an object
moving relative to inertial systems K, K′, . . . .

This equation expresses again the time dilation in differential form and gen-
eralized to accelerated motion. Due to its transformational behavior (1.68),
dxµ/dτ is called four-velocity. It is related to the physical velocity ẋ via

Definition: Four-velocity uµ, physical velocity ẋ

(uµ) =
(

dxµ

dτ

)
=

dt

dτ

(
dxµ

dt

)
=

1√
1 − ẋ2

c2

(
c
ẋ

)
.

The derivative of a four-vector with respect to the eigentime τ always yields
another four-vector, so that the remaining quantities of Lorentz-covariant
relativistic mechanics can be easily constructed. Momentum is defined in
analogy to Newtonian mechanics as
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Definition: Four-momentum pµ, physical momentum p

(pµ) = m0(uµ)

=
m0√
1 − ẋ2

c2

(
dxµ

dt

)
=

(
cm
p

)
, p = mẋ , (1.69)

where m0 is a Lorentz scalar, i.e., the mass of the particle, measured in its rest
system (rest mass). This definition implies that the mass m is not constant,
but instead depends explicitly on the velocity. It behaves as

m = m(t) =
m0√
1 − ẋ2

c2

.

Correspondingly, we define force as

Definition: Four-force Fµ, physical force F

(Fµ) =
(

dpµ

dτ

)
=

1√
1 − ẋ2

c2

(
dpµ

dt

)

=
1√

1 − ẋ2

c2

(
cdm

dt

F

)
, F =

dp

dt
. (1.70)

Equation (1.70) is also the Lorentz-covariant equation of motion of relativis-
tic mechanics. It is easy to verify that, in addition to the relativity principle,
(1.69) and (1.70) also obey the correspondence principle: for small velocities,
|ẋ| 	 c, they yield the corresponding equations of Newtonian mechanics.

It is not always possible to provide a complete covariant formulation of
a mechanical problem via (1.70), since not all types of forces can be written
as four-vectors. An example is the gravitational force. It is a “static far field
force” and assumes an infinitely large propagation velocity, thus being in
conflict with the first axiom of special relativity. Another example is given
by the constraining forces of a rigid body, as they only contain the spatial
components of four-vectors. Therefore, the whole area of the dynamics of
rigid bodies has no relativistic analogue.

Physical consequences. A particle moving in a conservative force field
obeys

F =
dp

dt
=

d
dt

⎛
⎝ m0ẋ√

1 − ẋ2

c2

⎞
⎠ = −∇V (x) .

Multiplication with ẋ yields
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d
dt

⎛
⎝ m0ẋ√

1 − ẋ2

c2

⎞
⎠ ẋ =

d
dt

⎛
⎝ m0c

2√
1 − ẋ2

c2

⎞
⎠ = −∇V (x)ẋ = − d

dt
V (x) .

From this, we find

Theorem 1.37: Relativistic energy conservation
in conservative force fields

mc2 + V (x) = E = const .

For small velocities, ẋ2/c2 	 1, this relation becomes

m0c
2 +

m0

2
ẋ2 + . . . + V (x) = E ,

which, bar the irrelevant constant m0c
2, is equal to classical energy conser-

vation. We therefore define

Definition: Kinetic energy T

T = mc2 − m0c
2 =

m0c
2√

1 − ẋ2

c2

− m0c
2 .

The term m0c
2 is called the rest energy of the particle. Note that the classi-

cally valid relation

dT

dt
= mẋẍ = F ẋ

also holds in relativistic mechanics, since

F ẋ = m0ẋ
d
dt

⎛
⎝ ẋ√

1 − ẋ2

c2

⎞
⎠ =

m0ẋẍ

c2
(
1 − ẋ2

c2

)3/2 =
d
dt

(mc2) =
dT

dt
.

In the absence of external forces, Theorem 1.37 reduces to the famous Einstein
equation

E = mc2 = p0c .

It states that energy and mass are equivalent and can be transformed into
one another. Combining this with (1.69) yields

Theorem 1.38: Relativistic energy-momentum relation
for a free particle

pµpµ = p02 − p2 = m2
0c

2 ⇐⇒ E2 = m2
0c

4 + p2c2 .

At this stage, we must point out that the definitions of four-momentum and
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four-force are unique if we demand maximal similarity to Newtonian me-
chanics and take into account the relativity and correspondence principle.
However, the definitions of the physical three-quantities p and F do not
necessarily follow uniquely from the corresponding four-vectors. Rather, they
are a consequence of experimental experience. For example, in particle ac-
celerators, one observes that more and more energy is needed to accelerate
a particle close to the velocity of light. This indicates that the mass of the
particle grows with velocity, so that the definition (1.69) is more meaningful
than p = m0dx/dt. Another observation is provided by the mass defect, stat-
ing that the mass of an atom is smaller than the total sum of its constituents.
Obviously, this implies that a part of the constituent mass appears as bind-
ing energy, which means it is absorbed within the atomic nucleus. With the
chosen definition of the physical force (1.70), this mass-energy equivalence
is predicted automatically. The fact that, up to the replacement m0 → m,
the relativistic kinematic three-quantities are formally identical to the cor-
responding Newtonian quantities (simplicity of the theory) has led us, in
conjunction with experimental consistency, to the above definitions.

At the end of this subsection we consider the interaction of relativistic
particles in the absence of external forces. Energy and momentum conserva-
tion can then be combined into a single equation for the four-momentum of
the particles:∑

i

pµ
i =

∑
j

p′µ
j . (1.71)

Here, pµ
i and p′µ

j are the four-momenta of the initial and final states. Due to
the energy-mass equivalence, this equation is valid in a very general sense:
during the interaction process particles can be created and annihilated. Ac-
cording to Theorem 1.38, it follows that all particles must obey the mass
shell conditions

pµ
i pµ,i = m2

i c
2 , p′µ

j p′
µ,j = m′2

j c2 , (1.72)

where mi and m′
j are the rest masses of the particles in the initial and final

states. Many physical effects, such as the mass defect (Application 18) or
the Compton effect (Application 19), can be explained as four-momentum
conservation.

1.6.5 Lagrange Formulation of Relativistic Mechanics

Following the successful generalization of Newton’s equation to a form in
accordance with special relativity, we now turn to the Lagrange formulation
of relativistic mechanics. The simplest way of finding a relativistic Lagrange
function is to use the Hamilton principle, Theorem 1.18, and to search for
a Lagrange function L for which the Lagrange equations yield the correct
relativistic equations of motion. If we assume that the force can be obtained
from a generalized potential according to (1.31),
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F (x, ẋ, t) = −∇Vx(x, ẋ, t) +
d
dt

∇ẋV (x, ẋ, t) ,

then the following ansatz for the Lagrange function of a single particle in this
force field leads to the desired result:

L = −m0c
2

√
1 − ẋ2

c2 − V . (1.73)

This can be immediately verified by observing that

∇xL = −∇xV , ∇ẋL =
m0ẋ√
1 − ẋ2

c2

− ∇ẋV

=⇒ d
dt

⎛
⎝ m0ẋ√

1 − ẋ2

c2

⎞
⎠ = −∇xV +

d
dt

∇ẋV = F .

Keep in mind that (1.73) is no longer given by L = T − V . The above can
easily be generalized to the case of many particles. In addition, we can use
any set of generalized coordinates qi instead of the Cartesian coordinates
xj . As before, the Hamilton function H and the generalized momenta pi are
defined as

H =
n∑

i=1

piq̇i − L , pi =
∂L

∂q̇i
,

so that Theorems 1.22 and 1.23 are still valid. Additionally, restricting our-
selves to conservative forces (∂V/∂q̇i = 0), the Hamilton function is again
equal to the total energy of the system. For example, for a single particle we
can use Theorem 1.37 to find

H = ẋ∇ẋL − L =
m0c

2√
1 − ẋ2

c2

+ V = E = const .

Lorentz-covariant Lagrange formulation. The above three-dimensional
Lagrange method yields the correct relativistic equations of motion within
a given inertial system. However, this is not a four-dimensional Lorentz-
covariant formulation with the same form in any inertial system. To arrive
at such a formalism, we need to start with the Lorentz-invariant Hamilton
principle

S =
∫

dτL̃ −→ extremal ,

from which, for example, the Lagrange equations for a single particle,

d
dτ

∂L̃

∂uµ
− ∂L̃

∂xµ
= 0 , (1.74)
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can be derived. Here, L̃ is the Lorentz-invariant Lagrange function, dτ the
eigentime differential, xµ the position four-vector, and uµ the four-velocity of
the particle. In the case of a free particle, L̃ is to be chosen such that (1.74)
yields the covariant equation of motion

dpµ

dτ
= m0

duµ

dτ
= 0 .

This is true for

L̃ =
m0

2
uαuα =

m0

2
uαgαβuβ ,

since

∂L̃

∂xµ
= 0 ,

∂L̃

∂uµ
=

m0

2
(gµβuβ + uαgαµ) = m0gµαuα = m0uµ

=⇒ m0
duµ

dτ
= 0 ⇐⇒ m0

duµ

dτ
= 0 .

In the previous subsection, we have already noted the impossibility of a co-
variant formulation in the presence of the gravitational force or other “far
field forces”. However, a force worth mentioning that indeed allows for a co-
variant formulation is the Lorentz force. It describes the motion of a charged
particle in an external electromagnetic field. We will discuss this issue within
electrodynamics in Sections 2.3 and 2.8.

Summary

• Special relativity is based on two axioms, the constance of the ve-
locity of light and the relativity principle. In this theory, time rep-
resents an additional dimension in Minkowski space, on equal footing to
the three spatial dimensions, and not, as in Newtonian mechanics, just
an external parameter.

• The transition from one inertial system to another is described by
Lorentz transformations. They imply various relativistic effects such
as time dilation and length contraction.

• The addition formulae for relativistic velocities show that the velocity of
light is the upper bound for any kind of particle motion.

• Using the concept of four-vectors, relativistic mechanics can be formu-
lated in a Lorentz-covariant fashion, as demanded by the principle of
relativity. In this formulation, the momentary rest system as well as
the eigentime differential play an important role.

• For small velocities |ẋ| 	 c, the laws of relativistic mechanics turn
into the corresponding laws of Newtonian mechanics (correspondence
principle).

�
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• The Lagrange formulation of relativistic mechanics proceeds by using the
Hamilton principle and searching for a Lagrange function for which the
Lagrange equations yield the correct equations of motion.

Applications

16. Twin paradox. Consider a rocket starting at time t = 0 from earth
and accelerating uniformly with 20-fold acceleration of gravity to 0.9c. Sub-
sequently, the rocket continues with constant velocity for a year and then
decelerates at the same rate as before to velocity zero. Its return to earth
proceeds in similar manner. All values refer to the earth system. Compare
the total flight times measured in the earth and the rocket system.

Solution. The rocket’s flight contains two acceleration and two deceleration
phases, for which (c = 3 · 108 m/s, g = 10 m/s2)

ẋ(t) = ±g′t , g′ = 20g = 200
m
s2

, ∆ẋ = ±0.9c

=⇒ ∆t1 = 1.35 · 106 s = 15.6 days ,

and two constant phases with

ẋ(t) = ±0.9c , ∆t2 = 365 days .

The total travel time in the earth system is therefore given by

T = 4∆t1 + 2∆t2 = 792.4 days .

The corresponding times for all phases in the rocket system are obtained
using Theorem 1.36:

∆τ1 =

∆t1∫
0

dt

√
1 − g′2

c2 t2 =
1
2

[
t

√
1 − g′2

c2 t2 +
c

g′ arcsin
(

g′

c
t

)]∆t1

0

= 1.13 · 106 s = 13.1 days

∆τ2 =

∆t2∫
0

dt
√

1 − 0.81 = 159.1 days .

The total flight time in the rocket system is therefore

τ = 4∆τ1 + 2∆τ2 = 370.6 days .

According to this, when returning to earth, the astronaut has aged less than
half compared to someone who stayed back on earth. However, this statement
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implies a paradox, since, due to the relativity principle, we can equally con-
sider the rocket being at rest while the earth moves away and back to it. The
astronaut would then have aged faster than an earthling. The solution of this
paradox is that only the astronaut has effectively undergone an (absolute)
acceleration so that he has not been in an inertial system all the time.

17. Transition to the momentary rest system. Consider a rocket mov-
ing at constant acceleration a measured in its rest system K′. Show that its
velocity in the system K, at which the rocket starts at t = 0 in the x-direction,
is given by

ẋ =
c√

1 + c2

a2t2

.

Solution. We need the momentary Lorentz transformation

(Λµ
ν) =

⎛
⎜⎜⎝

cosh α sinhα 0 0
sinhα cosh α 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

which transfers K into K′. For this, we must have

u′µ = Λµ
νuν , (uµ) =

dt

dτ

⎛
⎜⎜⎝

c
ẋ
0
0

⎞
⎟⎟⎠ , (u′µ) =

⎛
⎜⎜⎝

c
0
0
0

⎞
⎟⎟⎠

=⇒ cosh α =
dt

dτ
, sinhα = − ẋ

c

dt

dτ
.

The acceleration bµ in K is given by

(bµ) =
d
dτ

(uµ) =
d2t

dτ2

⎛
⎜⎜⎝

c
ẋ
0
0

⎞
⎟⎟⎠ +

dt

dτ

⎛
⎜⎜⎝

0
dẋ
dτ
0
0

⎞
⎟⎟⎠

=
d2t

dτ2

⎛
⎜⎜⎝

c
ẋ
0
0

⎞
⎟⎟⎠ +

(
dt

dτ

)2

⎛
⎜⎜⎝

0
ẍ
0
0

⎞
⎟⎟⎠ .

From this, the x-component of the rocket’s four-acceleration in its rest system
follows as

b′1 = Λ1
νbν = ẍ

(
dt

dτ

)3

=
ẍ(

1 − ẋ2

c2

)3/2 .

For ẋ = c/
√

1 + c2

a2t2 , this implies

b′1 = a .
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18. Mass defect. Consider a nucleus of mass M at rest, decaying into two
lighter nuclei of rest masses m1 and m2. What are the energies of the decay
products?

Solution. The four-momentum pµ of the nucleus before the decay and the
four-momenta p′µ

1 , p′µ
2 of the two decay products are

(pµ) =
(

Mc
0

)
, (p′µ

1 ) =
(

p′
10

p′
1

)
, (p′µ

2 ) =
(

p′
20

p′
2

)
,

where the mass shell condition (1.72) for the resting nucleus is already in-
corporated. Four-momentum conservation (1.71) and the mass shell condi-
tions for the decay products yield a set of four equations for the quantities
p′
10, p

′
20,p

′
1,p

′
2:

p′
10 + p′

20 = Mc

p′
1 + p′

2 = 0

p′2
10 − p′2

1 = m2
1c

2

p′2
20 − p′2

2 = m2
2c

2 .

From this, the energy of the decay products follows as

p′2
10 − p′2

20 = (m2
1 − m2

2)c
2

⇐⇒ (p′
10 + p′

20)(p
′
10 − p′

20) = Mc(p′
10 − p′

20) = (m2
1 − m2

2)c
2

=⇒

⎧⎪⎨
⎪⎩

p′
10 =

E1

c
= (M2 + m2

1 − m2
2)

c

2M

p′
20 =

E2

c
= (M2 − m2

1 + m2
2)

c

2M
.

Writing the first two conditions of the above four equations as√
m2

1c
2 + p′2

1 +
√

m2
2c

2 + p′2
1 = Mc ,

we find for |p′
1| > 0

M > m1 + m2 ,

i.e., the rest mass of the original nucleus is larger than the sum of the rest
masses of the end products. The difference M − (m1 + m2) is called mass
defect; it is transformed into kinetic energy of the final nuclei during the
decay.

19. Compton effect. Consider a photon (with rest mass 0) hitting an elec-
tron at rest. Calculate the photon’s momentum after its scattering on the
electron in dependence of its original momentum and scattering angle (Fig.
1.24).
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k

k′

p′

θ

Fig. 1.24. Scattering of a photon on an electron at rest.

Solution. The four-momenta of the photon, kµ, k′µ, and that of the electron,
pµ, p′µ, before and after the scattering are

(kµ) =
( |k|

k

)
, (pµ) =

(
mec
0

)
, (k′µ) =

( |k′|
k′

)
, (p′µ) =

(
p′
0

p′

)
,

where the mass shell conditions are already incorporated in kµ, pµ, and k′µ.
Four-momentum conservation and the mass shell condition for the scattered
electron yield the equation system

|k| + mec = |k′| + p′
0

k = k′ + p′

p′2
0 − p′2 = m2

ec
2 ,

from which it follows that

p′2
0 = m2

ec
2 + p′2 = m2

ec
2 + (k − k′)2

⇐⇒ (|k| + mec − |k′|)2 = m2
ec

2 + (k − k′)2 .

Using kk′ = |k||k′| cos θ finally leads to

1
|k′| =

1
|k| +

1
mec

(1 − cos θ) .



2. Electrodynamics

Electrodynamics is a classical field theory dealing with electromagnetic phe-
nomena. The theory was founded, along with others, on observations going
back to the second half of the 18th century, when Coulomb investigated the
forces between charged particles. Around 50 years later Faraday studied the
interactions between currents and magnetic fields. Today’s modern form of
electrodynamics is based on the four equations formulated in 1864 by James
Clerk Maxwell, from which all electromagnetic effects can be deduced. The
connection between the motion of charged particles and the electromagnetic
fields is given by the Lorentz force equation.

From a mathematical viewpoint, electrodynamics is an extremely elegant
and economical theory. Moreover, contrary to Newtonian mechanics, electro-
dynamics is a relativistic theory, which explicitly contains the upper limit
c for the propagation of information. Accordingly, particles, whose distance
vector is space-like, cannot interact with one another. Similar to Newtonian
mechanics, electrodynamics makes ample use of the concept of point particles.
However, classical electrodynamics is not valid to arbitrarily small distances.
Rather, it has to be interpreted as the limiting case of a modern quantum
field theory, so-called quantum electrodynamics.

At the start of this chapter, Section 2.1, we present the formal struc-
ture of electrodynamics. The fundamental equations of the theory, Maxwell’s
equations and the Lorentz force, are introduced, interpreted, and their phe-
nomenological basis explained.

Section 2.2 deals with the general solution of Maxwell’s equations. We
introduce the scalar and vector potentials in such a way that they automat-
ically satisfy the two homogeneous Maxwell equations. With their help, the
remaining two inhomogeneous Maxwell equations are written as two inhomo-
geneous potential equations. Using the gauge freedoms we have for choosing
the potentials, these two equations can be decoupled and solved relatively eas-
ily. As solutions to the inhomogeneous equations, one obtains the so-called
retarded potentials, which explicitly reflect the finite propagation velocity of
signals.

Since electrodynamics is a relativistic theory, it can be formulated so that
its relativistic form invariance becomes apparent. This is the subject of Sec-
tion 2.3. We show that all electrodynamic quantities can be suitably combined
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to relativistic four-vectors, which transform in a well-defined manner under
Lorentz transformations.

Section 2.4 follows up Section 2.2 and shows how to calculate retarded
potentials for arbitrarily moving point charges or spatially confined charge
and current densities. In particular, we shall find that only accelerated charges
emit radiation.

In case of exclusively static (time-independent) charge and current densi-
ties, Maxwell’s equations decouple into two sets of equations. They constitute
the basis of electrostatics and magnetostatics, and these special cases of elec-
trodynamics are discussed in Section 2.5.

Section 2.6 is dedicated to electrodynamics in matter. In principle,
Maxwell’s equations are valid in vacuum as well as in matter of any kind.
However, in the latter case, given the large number of charged particles in a
medium (and their variation on atomic length scale), it is sensible to refor-
mulate Maxwell’s equations in terms of macroscopic fields. To this end, we
introduce two additional, matter-dependent fields, which are related to the
macroscopic fields via phenomenological material equations.

In Section 2.7, we discuss the propagation of electromagnetic waves in con-
ducting and nonconducting media. We investigate, in particular, the reflec-
tion and refraction of electromagnetic waves on the boundary of two different
media. An interesting effect is the dissemination of wave packets in disper-
sive media due to the varying propagational velocities of the wave packet’s
Fourier components.

In the last section of this chapter, Section 2.8, we introduce the Lagrangian
formulation of electrodynamics. Its importance does not lie in its practical
ability to find solutions to given problems (as in mechanics). Rather, it allows
for a deeper understanding of fundamental symmetry principles, in particular
that of gauge symmetry and its implications. The formulation presented here
is to be found in all (quantum) field theories of modern physics.

2.1 Formalism of Electrodynamics

In this section the general formalism of electrodynamics is introduced. We
begin our discussion with Maxwell’s equations and the Lorentz force, which
establishes a connection between electrodynamics and mechanics. Further-
more, we study the continuity equation stating that charge is conserved in
any closed system. Subsequently, the Maxwell equations are interpreted with
respect to their mathematical meaning and phenomenological implications.
This section concludes with a derivation of energy and momentum conserva-
tion in electrodynamics.

2.1.1 Maxwell’s Equations and Lorentz Force

Electromagnetic phenomena are described by two fundamental vector fields:



2.1 Formalism of Electrodynamics 115

• the electric field vector E(x, t) and

• the magnetic induction field vector B(x, t).1

These fields are caused by

• the electric charge density ρ(x, t) and

• the electric current density vector j(x, t).

The fields E and B are coupled to the quantities ρ and j via a system of
first-order partial differential equations, which we take (axiomatically) as the
starting point of the theory.

Theorem 2.1: Maxwell equations

∇E(x, t) = 4πρ(x, t) (I)

∇ × E(x, t) +
1
c

∂B(x, t)
∂t

= 0 (II)

∇B(x, t) = 0 (III)

∇ × B(x, t) − 1
c

∂E(x, t)
∂t

=
4π

c
j(x, t) . (IV)

In this chapter, we use exclusively the Gaussian unit system; it will be dis-
cussed further at the end of this section.

The theory of electrodynamics is completed by noting the force exerted
on a charged particle moving in an electromagnetic field:

Theorem 2.2: Lorentz force

The electromagnetic force on a particle with charge q moving with velocity
ẋ through the fields E and B is

F L(x, t) = q

(
E(x, t) +

ẋ(t)
c

× B(x, t)
)

. (2.1)

The first term in this equation describes the force originating from a pure
electric field and is always pointed in the direction of the field E. The force
due to the magnetic field, given by the second term, is perpendicular to the
field B and to the velocity ẋ of the charge. Thus, magnetic forces do not
perform any work on the particle.

Interpretation of the Lorentz force. Most problems in electrodynamics
fall into one of two groups. First, given the charge and current densities,

1 In the following, we use the terms “magnetic induction field” and “magnetic field”
synonymously, although the latter is actually reserved for the (macroscopic) field
H. See footnote 15 on page 190.
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we may wish to determine the fields. Alternatively, given the fields, we may
wish to study their effect on a test charge interacting with them. At first it
may seem that these two problems are completely uncoupled. However, the
fields in (2.1) are given by the superposition of all fields present. Thus, if we
consider a test charge, we also need to consider the effect of the fields created
by this charge itself, in addition to the fields already present before the test
charge was introduced. In a totally self-consistent formalism the effect of
this feedback system would have to be included. However, it is possible to
show that these effects are generally small enough to be discarded: letting λ
denote the characteristic length scale of a given problem, feedback effects can
be neglected if

λ ~

< e2

mec2 = 2.8 · 10−15 m ,

where e is the charge and me the mass of the electron. Therefore, only on a
very small length scale do these effects become significant.2 In the following
we will always neglect them.

Continuity equation. Another important equation in electrodynamics of
fundamental importance is the continuity equation. It reflects the experi-
mental fact that any change of charge in a closed system of volume V is
accompanied by a flow of charge through the surface F of the volume (charge
conservation):

d
dt

∫
V

dV ρ(x, t) = −
∮
F

dFj(x, t) .

By combining the divergence of (IV) with (I) we see that the continuity
equation (in differential form) is indeed respected by Maxwell’s equations.

Theorem 2.3: Continuity equation

Maxwell’s equations are in agreement with the fundamental law of charge
conservation

∂ρ(x, t)
∂t

+ ∇j(x, t) = 0 .

2.1.2 Interpretation of Maxwell’s Equations

The four Maxwell equations reflect experimental results, which are usually
formulated in the form of the following laws:

2 See the discussion of the self-energy in Subsection 2.5.1.
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(I) Gauss’s law.

∇E(x, t) = 4πρ(x, t) ⇐⇒
∮
F

E(x, t)dF = 4πQ(t) ,

with

Q(t) =
∫
V

ρ(x, t)dV .

This states that the total electric flux through the surface F enclosing a
volume V is proportional to the total charge Q contained in V .

(II) Faraday’s induction law.

∇ × E(x, t) +
1
c

∂B(x, t)
∂t

= 0

⇐⇒ V (t) =
∮
C

E(x, t)dl = −1
c

∫
F

dF
∂B(x, t)

∂t
. (2.2)

This states that a temporally varying magnetic field produces an electric field
that circulates around the direction of the magnetic change. These induced
currents are directed in such a manner as to weaken their own cause (Lenz’s
law). In other words: the temporal change of the magnetic field through
a constant surface F leads to an electromotive force (voltage) V , which is
determined by the contour integral of the induced electric field along the
boundary C of F . Imagine a conducting loop enclosing the surface F (Fig.
2.1). A change of the magnetic field through F induces an electric field,
which leads to a movement of the free charges within the conductor, i.e.,
to an electric current. One obtains the resulting voltage by cutting off the
conductor and measuring the quantity V =

∫ 2
1 dlE at the cutoff points 1 and

2. Note that Faraday’s law is in actual fact more general, covering also the
case of

1
2

F

B

Fig. 2.1. Conducting loop within a magnetic field.
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V (t) =
∮
C′

E′(x′, t)dl′ = −1
c

dΦm(t)
dt

,

where

Φm(t) =
∫

F (t)

dF (t)B(x, t)

is the magnetic flux through the (not necessarily constant) surface F .3 Here,
primed quantities refer to the rest system of the conductor. We shall consider
this case in connection with the Lorentz-covariant formulation of electrody-
namics in Application 25.

(III) Absence of magnetic monopoles.

∇B(x, t) = 0 ⇐⇒
∮
F

B(x, t)dF = 0 .

This states that the total magnetic flux through a surface F enclosing a
volume vanishes. In other words: there are no magnetic monopoles, i.e., no
sources or sinks for magnetic fields. In contrast to electric fields, magnetic
field lines are always closed curves.4

(IV) Maxwell’s displacement current and Ampère’s law.

∇ × B(x, t) − 1
c

∂E(x, t)
∂t

=
4π

c
j(x, t) .

This equation contains two parts. The first, Maxwell’s displacement current

−1
c

∂E(x, t)
∂t

, (2.3)

was introduced by Maxwell as an additional term in (IV) when he realized
that without it the complete set of equations would be in contradiction to the
continuity equation. Furthermore, this term is necessary to explain electro-
magnetic radiation phenomena in the vacuum. This can be seen by consider-
ing the case where neither sources nor currents are present (ρ = 0, j = 0);
given Maxwell’s equations without the displacement current in (IV), one
quickly finds that both E and B are free of sources and rotations and thus
vanish. It is only through the addition of (2.3) in (IV) that time-dependent
electromagnetic fields become nonvanishing rotational fields, thus making
their propagation in the vacuum possible. The second part, Ampère’s or Oer-
sted’s law, reads

3 Imagine, for example, that the conducting loop is moved out of the magnetic
field or that it is rotating around an axis perpendicular to the magnetic field.

4 Note, in this context, that Maxwell’s equations are not all independent. Taking,
for example, the divergence of (II) leads to ∇B(x, t) = f(x), with a scalar
function f , that is determined experimentally to be 0.



2.1 Formalism of Electrodynamics 119

∇ × B(x, t) =
4π

c
j(x, t) ⇐⇒

∮
C

B(x, t)dl =
4π

c
I(t) , (2.4)

with

I(t) =
∫
F

j(x, t)dF (electric current).

This law is a generalization of Ampère’s law of magnetostatics and can be
obtained in the quasi-static approximation, where the displacement current
is neglected. According to this law, a current induces a magnetic field whose
closed field lines circulate around the current (Fig. 2.2).

I(t)

B(x, t)

Fig. 2.2. Magnetic field induced by a current.

Uniqueness of the solutions. According to Helmholtz’s integration law,
any vector field V defined over a onefold joint domain with a piecewise
smooth boundary can be decomposed into a divergence-free and a curl-free
part. Such a decomposition is unique, once the boundaries of both terms have
been fixed. In particular, it is unique at infinity up to an additive constant
as long as V falls off asymptotically at least as fast as 1/r. In this case, we
have

V (x) =
1
4π

⎡
⎢⎢⎢⎢⎣∇ ×

∫
d3x′ ∇′ × V (x′)

|x − x′|︸ ︷︷ ︸
divergence-free

−∇
∫

d3x′ ∇′V (x′)
|x − x′|︸ ︷︷ ︸

curl-free

⎤
⎥⎥⎥⎥⎦ . (2.5)

In other words: given the boundary conditions (or, equivalently, a fast enough
asymptotic fall-off), as well as the sources and rotations of a vector field, this
field is uniquely determined. Since we do not expect to find fields created
from charges and currents at very large distances, it seems reasonable to
assume that E and B fall off as 1/r2 toward infinity and thus are uniquely
determined by Maxwell’s equations.
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Superposition principle. One of the most important characteristics of the
Maxwell equations is their linearity. Just as for normal differential equations,
linearity implies the principle of superposition, so that solutions of Maxwell’s
equations may be combined linearly to form new solutions. In particular, the
most general solution is obtained from the general solution of the homoge-
neous equations plus one specific solution to the inhomogeneous equations.
We will come back to this point in Section 2.2.

2.1.3 Energy and Momentum Conservation

It is intuitively clear that electromagnetic fields contain energy. In this sub-
section we determine the energy and momentum densities of electromagnetic
fields by considering a system of point-like charges qi situated at xi, and elec-
tromagnetic fields E and B. Using the δ-function, we can write the charge
and current densities as5

ρ(x, t) =
∑

i

qiδ(x − xi) , j(x, t) =
∑

i

qiẋiδ(x − xi) .

Energy conservation. Following (2.1) the force on particle i is given by

F L(xi, t) = qi

(
E(xi, t) +

ẋi

c
× B(xi, t)

)
.

The electric part of F L is exerting work on the particle, so that the mechanical
energy Emech is changed:

dEmech

dt
=

∑
i

F L(xi, t)ẋi =
∑

i

qiẋiE(xi, t) =
∫

d3xj(x, t)E(x, t) .

Using (IV), this can be written as

dEmech

dt
=

c

4π

∫
d3xE∇ × B − 1

4π

∫
d3xE

∂E

∂t
. (2.6)

This energy balance equation implicitly contains the energy of the electro-
magnetic field Eem. To see this we subtract from (2.6) a total of 0 in form of
(II) multiplied by cB/4π. This yields

dEmech

dt
=

c

4π

∫
d3x(E∇ × B − B∇ × E) −

∫
d3x

∂

∂t

(
E2 + B2

8π

)

= − c

4π

∮
F

(E × B)dF − ∂

∂t

∫
d3x

(
E2 + B2

8π

)
, (2.7)

where we have used the identity

5 There are some fundamental problems with the electrodynamic concept of “point
charges” and the use of the δ-function to describe them; they are discussed in
Subsection 2.5.1.
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∇(p × q) = q∇ × p − p∇ × q

and Stokes’s law. In order to interpret the individual terms in (2.7) we con-
sider first the case of an infinitely large volume assuming that the fields fall
off toward infinity faster than 1/r. In this case (2.7) simplifies to

dEmech

dt
= − ∂

∂t

∫
d3x

(
E2 + B2

8π

)
.

This suggests identifying

E2 + B2

8π

with the energy density εem of the electromagnetic field. Now, using Gauss’s
law, we find from (2.7) for finite volumes

dEmech

dt
= −

∫
d3x

(
∇S +

∂εem
∂t

)
, (2.8)

where

S =
c

4π
(E × B)

defines the Poynting vector, which we identify with the energy density of the
electromagnetic field. Since (2.8) is valid for arbitrary volumes, we obtain

Theorem 2.4: Energy law of electrodynamics
(Poynting theorem)

In a system consisting of charges and electromagnetic fields, the following
energy balance equation holds:

∂εmech

∂t
+

∂εem
∂t

= −∇S ,

with
∂εmech(x, t)

∂t
= j(x, t)E(x, t)

Temporal derivative of the
mechanical energy density

εem =
E2(x, t) + B2(x, t)

8π
Electromagnetic energy density

S(x, t) =
c

4π
E(x, t) × B(x, t)

Poynting vector,
energy current density.

Poynting’s theorem is a kind of a continuity equation for the energy of the
system. It states that the temporal change of the total energy (mechanical
plus electromagnetic) in a volume V is equal to the energy flux through the
surface boundary F of V :

d
dt

(Emech + Eem) = −
∮
F

SdF .
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If the volume V is chosen sufficiently large, so that all charges and fields
lie inside F , then the right-hand side vanishes and we obtain the energy
conservation law for closed systems:

Emech + Eem = const . (2.9)

Momentum conservation. The derivation of the law of momentum con-
servation proceeds along the same lines as that of energy conservation. Here,
our starting point is the temporal change of the mechanical momentum:

dP mech

dt
=

∑
i

dP mech,i

dt
=

∑
i

F L,i(xi, t)

=
∫

d3x

(
ρ(x, t)E(x, t) +

j(x, t)
c

× B(x, t)
)

.

Expressing ρ and j in terms of E and B and then symmetrizing the equation
by adding [compare to (II) and (III)]

1
4π

(
∇ × E +

1
c

∂B

∂t

)
× E +

1
4π

B(∇B) = 0 ,

we find
dP mech

dt
= − 1

4πc

∂

∂t

∫
d3x(E × B) +

1
4π

∫
d3x[E(∇E) + B(∇B)

−E × (∇ × E) − B × (∇ × B)] .

The integrand of the first term,

1
4πc

(E × B) =
S

c2 ,

is identified with the momentum density gem of the electromagnetic field. The
components of the integrand of the second term can be written one by one
as the divergence of a vector field, so that we finally obtain

Theorem 2.5: Momentum law of electrodynamics

In a system consisting of charged particles and electromagnetic fields, we
have the momentum balance equation[

∂gmech

∂t

]
i

+
[
∂gem

∂t

]
i

= ∇T i , (2.10)

with

∂gmech(x, t)
∂t

= ρ(x, t)E(x, t) +
j(x, t)

c
× B(x, t)

Temp. derivative
of the mechanical
momentum density

�
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gem(x, t) =
S(x, t)

c2
Electromagnetic
momentum density

T i = (Ti1, Ti2, Ti3)

Tik =
1
4π

[
EiEk + BiBk − δik

2
(
E2 + B2)] Maxwell’s

stress tensor.

Integrating (2.10) over a sufficiently large volume, which contains all particles
and fields, we find the momentum conservation law for closed systems

P mech + P em = const .

This is analogous to the energy law (2.9). In the following we shall often be
considering E and B fields oscillating in time. In this case, it is sensible to
consider the averages of εem and S over a single oscillatory period since this
eliminates the oscillating terms.

Definition: Time-averaged electromagnetic energy density εem
and energy current density S

For oscillating fields of the form

E(x, t) = Re
[
E(x)e−iωt

]
, B(x, t) = Re

[
B(x)e−iωt

]
,

it is useful to consider the time-averaged quantities εem and S defined as

εem =
1
T

t+T∫
t

dtεem =
|E(x)|2 + |B(x)|2

16π
, T =

2π

ω
(2.11)

S =
1
T

t+T∫
t

dtS =
c

8π
Re[E(x) × B∗(x)] . (2.12)

2.1.4 Physical Units

Maxwell’s equations (I) to (IV) describe the functional relationships between
the charge and current densities ρ and j as well as the fields E and B.
However, the constants of proportionality appear a little arbitrary and depend
on the chosen unit system. Before making such a choice, Maxwell’s equations
could be written as
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∇E(x, t) = 4πk1ρ(x, t)

∇ × E(x, t) + k2
∂B(x, t)

∂t
= 0

∇B(x, t) = 0

∇ × B(x, t) − k3
∂E(x, t)

∂t
= 4πk4j(x, t) ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)

with four constants k1, . . . , k4. Assuming that the continuity equation holds
in any unit system and is always given by

∂ρ

∂t
+ ∇j = 0 , (2.14)

the combination of the first and the last equation of (2.13) with (2.14) yields
the condition

k1k3 = k4 .

Another constraint follows from the experimental fact that the propagational
velocity of electromagnetic waves in vacuum is equal to the velocity of light.
The corresponding wave equations are obtained by the combination of the
two curl equations of (2.13) as

∇2
(

E
B

)
− k2k3

∂2

∂t2

(
E
B

)
= 0

and thus yields the constraint

k2k3 =
1
c2 .

All in all, we find that only two of our four constants of proportionality are
in fact independent. Their choice uniquely defines a unit system. The most
common choices are the MKSA-system (meter, kilogram, second, Ampère)
and the Gauss system:

System k1 k2 k3 k4

MKSA
1

4πε0
1 ε0µ0

µ0

4π

Gauss 1
1
c

1
c

1
c

The quantities ε0 = 8.854 · 10−12 A2s4m−3kg−1 and µ0 = 1/ε0c
2 are termed

dielectric constant of the vacuum and permeability constant of the vacuum,
respectively.

The MKSA-system is simply the MKS-system of mechanics, supple-
mented by the fundamental quantity “current”. Its unit “A (Ampère)” is
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defined via the force that two current-carrying conductors exert upon one
another at a certain distance. Since the electric current in a conductor is
equal to the charge dq that flows through its cross section per unit time dt,

I(t) =
dq

dt
,

the composed unit of charge, “C (Coulomb)” is

1 C = 1 As .

In the Gauss system, the three fundamental units of centimeter, gram, and
second are supplemented by the charge unit “ESU” (electrostatic unit).
Again, this is defined via the force that two static charges of one ESU exert
upon one another over a certain distance. Here the unit of current is com-
posed of the units ESU and second.6 In macroscopic experimental physics,
the MKSA-system is mostly used due to practical reasons, whereas in atomic,
nuclear, and many textbooks of theoretical physics, the Gauss system is pre-
ferred. The main advantage of the latter, relative to the MKSA-system (or
others), lies in the fact that it exhibits the relativistic structure of electrody-
namics most clearly through factors of v/c. As we shall see in later sections,
E and B fields are transformed into one another when changing the refer-
ence frame. In the Gauss system this is reflected quite naturally since E and
B have identical units. Due to these considerations, we shall adhere to the
Gauss system throughout the whole chapter.

Summary

• Electromagnetic phenomena are due to two types of sources, the charge
density ρ and the current density vector j, which cause the electro-
magnetic fields E and B. These quantities are coupled via a system of
first-order partial differential equations called Maxwell’s equations.

• Maxwell’s equations and the Lorentz force define the theory of classical
electrodynamics.

• Maxwell’s equations are consistent with charge conservation in a closed
system, as expressed by the continuity equation.

• Between the mechanical and electromagnetic energy and the mo-
mentum densities there exist balance equations, which can be for-
mulated as continuity equations. The sum of mechanical and electromag-
netic energy, as well as that of mechanical and electromagnetic momen-
tum, are conserved inside a closed system of fields and charges.

�

6 The conversion between different unit systems is discussed in detail in [12].
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• In this chapter we always use the Gauss unit system as it exhibits the
relativistic structure of electrodynamics most clearly.

Applications

20. Magnetic monopoles. Suppose that, in addition to the electric charge
and current densities ρ = ρe and j = je, there were magnetic counterparts
ρm and jm, so that Maxwell’s equations were to take on the symmetric form

∇E = 4πρe

∇ × E +
1
c

∂B

∂t
= −4π

c
jm

∇B = 4πρm

∇ × B − 1
c

∂E

∂t
=

4π

c
je .

Given the existence of magnetic monopoles and by only assuming that the
ratio of electric and magnetic charges of all particles is the same, show that
Maxwell’s equations (I) to (IV) would still be valid.
Tip: study the above equations under the duality transformation⎛

⎜⎜⎜⎜⎜⎜⎝

E′

B′

ρ′
e

ρ′
m

j′
e

j′
m

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

cos α − sin α 0 0 0 0
sin α cos α 0 0 0 0

0 0 cos α − sin α 0 0
0 0 sinα cos α 0 0
0 0 0 0 cos α − sin α
0 0 0 0 sin α cos α

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

E
B
ρe
ρm
je
jm

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Solution. It is straightforward to verify that the symmetrized Maxwell equa-
tions are invariant under this duality transformation. Since the electromag-
netic charge ratio is taken to be constant for all particles, one may choose
the angle α in such a way that

ρ′
m = ρe

(
sin α +

ρm

ρe
cos α

)
= 0

and

|j′
m| = |je|

(
sin α +

|jm|
|je| cos α

)
= |je|

(
sin α +

ρm

ρe
cos α

)
= 0 .

For this particular choice of α, the symmetrized Maxwell equations reduce to
the previous equations (I) to (IV). In other words, if magnetic monopoles ex-
isted, such that the electromagnetic charge ratio of all particles was identical,
one could choose the magnetic charge to vanish identically. Thus, the inter-
esting question in connection with magnetic monopoles is whether there exist
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particles with differing electromagnetic charge ratios. If this were the case,
one would have to allow a magnetic charge and to discuss the above sym-
metrized set of equations. In addition, a magnetic charge of this type would
explain, as first pointed out by Dirac, the quantization of electric charge.7

21. Conducting loop with plate condenser. Consider a plate condenser
connected via a conducting loop in a homogeneous magnetic field, as shown
in Fig. 2.3. The magnetic field vector points into the plane of the paper, and
its absolute value is growing with time. Which of the two condenser plates is
charged positively?

++++++++++++++++

----------------

I

B

F

Fig. 2.3. Conducting loop with plate condenser in an external magnetic field. The
arrows indicate the direction of the induced current and the induced magnetic field,
given that the external field points into the plane of the paper and is growing with
time.

Solution. Due to Faraday’s induction law, a current is induced in the con-
ductor around which a magnetic field circulates (Ampère’s law) and directed
in such a way as to weaken its origin, i.e., the growth of the external magnetic
field (Lenz’s law). Thus, the current circulates in mathematically positive di-
rection (counterclockwise) and the top condenser plate is charged negatively.8

Mathematically, we can see this as follows: looking at the voltage in the math-
ematically positive direction with the normal vector of the plane F pointing
out of the plane of the paper, we find

BF = −|B||F | =⇒ V = −1
c

∂B

∂t
F = +

1
c

∂|B|
∂t

|F | > 0 .

Therefore, a positive voltage is induced; the current flows in the mathemati-
cally positive direction.

7 Practically all particles have a charge, which is an integer multiple of the ele-
mentary charge e of the electron.

8 Note: the direction of the current is opposite to the flow of the negatively charged
free electrons (technical current direction).
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2.2 Solutions of Maxwell’s Equations in the Form
of Potentials

Maxwell’s equations are a system of four coupled first-order differential equa-
tions for the fields E and B. By introducing a vector potential A and a scalar
potential φ, these equations can be reduced to two differential equations of
the second order. Often it is easier to evaluate these potential fields first and
then derive the fields E and B from these. However, it turns out that the
potentials are not uniquely defined; whole classes of potentials related to one
another by gauge transformations yield the same electromagnetic fields. Such
transformations play an important role in modern formulations of quantum
field theories.

This section deals with the general solution of Maxwell’s equations in the
form of potentials. After their introduction, we discuss gauge transformations
and associated gauge conditions. Finally, we derive solutions to Maxwell’s
equations in terms of retarded potentials, first, the general homogeneous and,
second, a specific inhomogeneous solution.

2.2.1 Scalar and Vector Potential

The potentials A and φ are defined as follows:

Definition: Vector potential A and scalar potential φ

B(x, t) = ∇ × A(x, t)

E(x, t) +
1
c

∂A(x, t)
∂t

= −∇φ(x, t) .

⎫⎪⎬
⎪⎭ (2.15)

It is easy to verify by insertion that through these definitions, the homoge-
neous Maxwell equations (II) and (III) are satisfied automatically. For the
two remaining inhomogeneous equations (I) and (IV), we find the potential
equations

∇2φ(x, t) +
1
c

∂

∂t
∇A(x, t) = −4πρ(x, t) (2.16)

∇2A(x, t) − 1
c2

∂2A(x, t)
∂t2

− ∇
(

∇A(x, t) +
1
c

∂φ(x, t)
∂t

)
= −4π

c
j(x, t) . (2.17)

The problem of finding the six components of the fields E and B has been
transformed into finding the four components of A and φ. Nevertheless, thus
far, (2.16) and (2.17) do not seem to yield a simplification since they are
still coupled equations in the potential fields. However, the potentials exhibit
certain gauge freedoms, which we can use to adjust the vector potential in
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such a way that (2.16) and (2.17) decouple. This is demonstrated in the
following subsection.

2.2.2 Gauge Transformations

Gauge transformations in electrodynamics are defined as follows:

Definition: Gauge transformations

Transformations of the form

A(x, t) −→ A′(x, t) = A(x, t) + ∇χ(x, t)

φ(x, t) −→ φ′(x, t) = φ(x, t) − 1
c

∂χ(x, t)
∂t

,

with an arbitrary scalar function χ(x, t), are called gauge transformations.
They leave the electromagnetic fields E and B invariant.

Notice that all field equations, and therefore all physical predictions, are in-
variant under gauge transformations. As the potentials are not directly ob-
servable, they are often described as unphysical. However, this is only true
on a classical level. In the context of quantum theory, we shall encounter sit-
uations in which the vector potential itself plays an important physical role
(quantization of the magnetic flux, Bohm-Aharanov effect, Subsection 3.6.2).

The choice of the gauge transformation, i.e., the gauge function χ, depends
on the problem at hand. In the following we consider two of the most com-
monly used gauges, which simplify significantly the inhomogeneous potential
equations (2.16) and (2.17).

Coulomb gauge. The Coulomb gauge is defined by the following condition:

Definition: Coulomb gauge (transverse gauge)

∇A(x, t) = 0 .

In this gauge the potential equations (2.16) and (2.17) become

∇2φ(x, t) = −4πρ(x, t) (Poisson equation) (2.18)

∇2A(x, t) − 1
c2

∂2A(x, t)
∂t2

= −4π

c
j(x, t) +

1
c
∇∂φ(x, t)

∂t
. (2.19)

The solution of the Poisson equation (2.18) is given by the instantaneous
Coulomb potential

φ(x, t) =
∫

ρ(x′, t)
|x − x′|d

3x′ . (2.20)

Note that both sides of this equation contain the same temporal argument,
which implies that a charge at location x′ has an instantaneous effect (i.e.,
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no time delay) on the potential φ at location x. In other words, the Coulomb
gauge is not relativistically invariant.

It is not immediately clear that the Coulomb gauge leads to a decoupling
of (2.16) and (2.17). In order to see this, we use Helmholtz’s integration law
(2.5) to write the current density vector j as

j(x, t) = jT + jL ,

where

jT(x, t) =
1
4π

∇ ×
∫

d3x′ ∇′ × j(x′, t)
|x − x′| (2.21)

jL(x, t) = − 1
4π

∇
∫

d3x′ ∇′j(x′, t)
|x − x′| (2.22)

denotes the transverse and the longitudinal components of j, respectively.
Combining (2.20) with the continuity equation,

∇∂φ(x, t)
∂t

= −∇
∫ ∇′j(x′, t)

|x − x′| d3x′ ,

and comparing this with (2.22), it follows that

∇∂φ

∂t
= 4πjL .

The right-hand side of (2.19) is therefore proportional to the transverse cur-
rent density (2.21), so that (2.19) can be rewritten as the inhomogeneous
wave equation

∇2A − 1
c2

∂2A

∂t2
= −4π

c
jT .

This explains why the Coulomb gauge is also called the “transverse gauge”.

Lorentz gauge. The second class of gauge transformations we consider is
defined by

Definition: Lorentz gauge

∇A(x, t) = −1
c

∂φ(x, t)
∂t

.

This transformation leads to the symmetric and decoupled inhomogeneous
wave equations in A and φ,(

∇2 − 1
c2

∂2

∂t2

)
φ(x, t) = −4πρ(x, t)(

∇2 − 1
c2

∂2

∂t2

)
A(x, t) = −4π

c
j(x, t) .

The advantage of the Lorentz gauge compared to the Coulomb gauge is its
relativistic invariance. We will show this explicitly in Subsection 2.3.2.
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Existence of the gauges. To show that both types of gauge transforma-
tions always exist, we now determine the corresponding gauge functions χ.

• Coulomb gauge: we wish to find a function χ such that

∇A′ = ∇A + ∇2χ = 0 =⇒ ∇2χ = −∇A .

This, again, is the Poisson equation, which is solved by

χ(x, t) =
1
4π

∫ ∇′A(x′, t)
|x − x′| d3x′ .

• Lorentz gauge: here the function χ must be chosen such that

∇A′ +
1
c

∂φ′

∂t
= ∇A + ∇2χ +

1
c

∂φ

∂t
− 1

c2

∂2χ

∂t2
= 0

=⇒
(

∇2 − 1
c2

∂2

∂t2

)
χ = −

(
∇A +

1
c

∂φ

∂t

)
.

The solution χ of this inhomogeneous wave equation is not unique since
an arbitrary solution Λ of the corresponding homogeneous equation(

∇2 − 1
c2

∂2

∂t2

)
Λ = 0

can be added to χ. This equation defines a particular type of restricted
gauge transformations. It can always be used to achieve
φ(x, t) = 0.

Theorem 2.6: Maxwell’s equations using potential functions

Using a vector potential A and a scalar potential φ, Maxwell’s equations
can be written as two coupled second-order differential equations (potential
equations). The potentials have certain gauge freedoms, which can be used
to decouple these two equations. In Coulomb gauge

∇A(x, t) = 0 ,

the potential equations read

∇2φ(x, t) = −4πρ(x, t)

∇2A(x, t) − 1
c2

∂2A(x, t)
∂t2

= −4π

c
jT(x, t) ,

with

jT(x, t) =
1
4π

∇ ×
∫

d3x′ ∇′ × j(x′, t)
|x − x′| .

�
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The corresponding relations in Lorentz gauge

∇A(x, t) = −1
c

∂φ(x, t)
∂t

(2.23)

are given by(
∇2 − 1

c2

∂2

∂t2

)
φ(x, t) = −4πρ(x, t)(

∇2 − 1
c2

∂2

∂t2

)
A(x, t) = −4π

c
j(x, t) .

⎫⎪⎪⎬
⎪⎪⎭ (2.24)

General solution of Maxwell’s equations. Using gauge transformations
we were able to significantly simplify the problem of solving Maxwell’s equa-
tions. The wave equations (2.24) for the scalar potential and the components
of the vector potential are of the same structure,(

∇2 − 1
c2

∂2

∂t2

)
g(x, t) = −4πf(x, t) , (2.25)

where f is a known source or current function. This is a linear equation, with
its solution given by the superposition of the general homogeneous and a
particular inhomogeneous solution, such that the overall solution must satisfy
the Lorentz gauge.

In the following two subsections we derive the general solution of the
homogeneous and a particular solution of the inhomogeneous wave equation
(2.24) in the Lorentz gauge (2.23).

2.2.3 General Solution of the Homogeneous Wave Equations

In the homogeneous case, (2.25) reduces to(
∇2 − 1

c2

∂2

∂t2

)
ghom(x, t) = 0 . (2.26)

To find its solution we decompose the function ghom into its complex Fourier
components,

ghom(x, t) =
1√
2π

4

∫
d3k

∫
dωei(kx−ωt)g̃(k, ω) , (2.27)

and insert this expression into (2.26):(
k2 − ω2

c2

)
g̃(k, ω) = 0 .

According to this, g̃ must vanish everywhere, except at ω = ±c|k|. Therefore,
we can write

g̃(k, ω) = g̃1(k)δ(ω − c|k|) + g̃2(k)δ(ω + c|k|) ,
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where g̃1, g̃2 are arbitrarily selectable complex coefficient functions. Now,
(2.27) becomes

ghom(x, t) =
1

(2π)2

∫
d3k

(
g̃1(k)ei[kx−ω(k)t] + g̃2(k)ei[kx+ω(k)t]

)
, (2.28)

with

ω(k) = c|k| .

This is the general homogeneous solution of (2.26). As the potentials A and
φ are real, we only need to consider the real part of (2.28), so that9

Theorem 2.7: Solutions of the homogeneous wave equations

The most general form of the solutions of the homogeneous wave equations
(2.24) is given by

φhom(x, t) = Re
∫

d3kφ̃(k)ei[kx−ω(k)t] , ω(k) = c|k|

Ahom,i(x, t) = Re
∫

d3kÃi(k)ei[kx−ω(k)t] , i = 1, 2, 3 .

The complex Fourier coefficients φ̃, Ãi are determined by initial condi-
tions, for example, φ(x, 0) = φ0(x), φ̇(x, 0) = ψ0(x), A(x, 0) = A0(x),
Ȧ(x, 0) = B0(x), as well as by the Lorentz condition (2.23).

The solutions φhom and Ahom represent waves. These are investigated in de-
tail in Section 2.7.

2.2.4 Specific Solution of the Inhomogeneous Wave Equation,
Retarded Potentials

The solution of the inhomogeneous equation (2.25) can be written most gen-
erally as

g(x, t) =
∫

d3x′
∫

dt′G(x, t, x′, t′)f(x′, t′) (2.29)

if G, the Green function of our problem, satisfies(
∇2 − 1

c2

∂2

∂t2

)
G(x, t, x′, t′) = −4πδ(x − x′)δ(t − t′) . (2.30)

To determine G, we use the Fourier-transformed equivalent of (2.30). With

G(x, t, x′, t′) =
∫

d3k

∫
dωG̃(k, ω)eik(x−x′)eiω(t−t′) (2.31)

and
9 Because Re(a1 +ia2)e±iωt = a1 cos ωt∓a2 sin ωt, it is sufficient to restrict oneself

to the solution with e−iωt.
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δ(x − x′)δ(t − t′) =
1

(2π)4

∫
d3k

∫
dωeik(x−x′)eiω(t−t′) ,

one finds(
−k2 +

ω2

c2

)
G̃(k, ω) = − 1

4π3

=⇒ G̃(k, ω) =
1

4π3

1
k2 − ω2

c2

=
1

8π3

c

k

(
1

ω + ck
− 1

ω − ck

)
, k = |k| .

For (2.31), this implies that

G(x, t, x′, t′) =
c

(2π)3

∫
d3k

eik∆x

k

×
∫

dωeiω∆t

(
1

ω + ck
− 1

ω − ck

)
, (2.32)

with

∆x = x − x′ , ∆t = t − t′ .

Obviously, the integrand in (2.32) has two poles of first order at ω = ∓ck.
To determine the ω-integral, we make use of Cauchy’s theorem and proceed
in similar fashion as for the forced harmonic oscillator in Application 3. This
means we choose a closed semicircle with radius R in the complex ω-plane
(see Fig. 1.5). As in Application 3, we have to remember that for ∆t > 0
(∆t < 0) the upper path C (lower path C ′) must be chosen. Additionally,
due to the principle of causality, we must demand that the integration in
(2.29) does not contribute for ∆t < 0, i.e.,

G(x, t, x′, t′) = 0 ∀ t < t′ .

This condition can be mathematically realized by shifting the poles into the
upper half-plane. This means performing the replacements ck −→ ck∓iε with
0 < ε 	 1 in (2.32), since for ∆t < 0 the integration in the lower half-plane
is then identical to zero. For ∆t > 0 and in the limit ε → 0, it follows that

G(x, t, x′, t′) =
c

2π2

∫
d3k

eik∆x

k
sin(ck∆t)

=
c

π

∞∫
0

dkk sin(ck∆t)

1∫
−1

d cos θeik|∆x| cos θ

=
2c

π|∆x|

∞∫
0

dk sin(ck∆t) sin(k|∆x|) . (2.33)

Since the integrand in (2.33) is even, we can extend the integration range to
[−∞ : ∞]. Substituting κ = ck, we find
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G(x, t, x′, t′) =
1

2π|∆x|

∞∫
−∞

dκ

[
eiκ

(
∆t− |∆x|

c

)
− eiκ

(
∆t+ |∆x|

c

)]

=
1

|∆x|
[
δ

(
∆t − |∆x|

c

)
− δ

(
∆t +

|∆x|
c

)]
,

where only the first term contributes since, for ∆t > 0, the argument of the
second δ-function never vanishes. The explicit form of the Green function is
therefore given by

G(x, t, x′, t′) =
δ
(
t′ − t + |x−x′|

c

)
|x − x′| . (2.34)

This function is also called the retarded Green function since it honors the
causality requirement that an effect observed at time t and location x is
due to a disturbance at location x′ at an earlier time t′ = t − |x − x′|/c.
Substituting (2.34) in (2.29), one finally obtains the retarded solution of
(2.25) in the absence of boundary conditions:

g(x, t) =
∫

d3x′
∫

dt′
f(x′, t′)
|x − x′|δ

(
t′ − t +

|x − x′|
c

)
.

Therefore, we have

Theorem 2.8: Solution of the inhomogeneous wave equations
in terms of retarded potentials

Specific solutions of the inhomogeneous potential equations (2.24) are given
by the retarded potentials

φret(x, t) =
∫

d3x′
∫

dt′
ρ(x′, t′)
|x − x′|δ(t

′ − tret)

=
∫

d3x′ ρ(x′, tret)
|x − x′| (2.35)

Aret(x, t) =
1
c

∫
d3x′

∫
dt′

j(x′, t′)
|x − x′|δ(t

′ − tret)

=
1
c

∫
d3x′ j(x′, tret)

|x − x′| , (2.36)

with

tret = t − |x − x′|
c

(retarded time) .

These solutions are in agreement with the theory of special relativity since
they account for the fact that a change in the charge and current density
requires the time |x−x′|/c to propagate from the source of disturbance x′

to the measurement point x.
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As will be shown in Application 22, φret and Aret automatically satisfy the
Lorentz condition (2.23). Note also that boundary conditions are incorporated
by adding suitably chosen homogeneous solutions φhom and Ahom, which
must also satisfy the Lorentz condition.

If in (2.35) and (2.36) the retarded time tret is replaced by
tav = t + |x − x′|/c, one obtains the advanced potentials φav and Aav. They
are also specific solutions of the inhomogeneous wave equations (2.24). How-
ever, these solutions on their own are not in agreement with our causal-
ity requirement. The difference between retarded and advanced solutions,
(φret,Aret)−(φav,Aav), is a solution of the homogeneous wave equation and,
therefore, is already contained in (φhom,Ahom).

Summary

• By introducing a vector potential and a scalar potential, Maxwell’s
equations can be transformed into two coupled partial differential equa-
tions of second order (potential equations).

• These potentials are not unique. They possess certain gauge freedoms,
which can be used to completely decouple the potential equations. The
most commonly used gauges are the Coulomb gauge and the Lorentz
gauge. The Coulomb gauge is not Lorentz-invariant.

• In the Lorentz gauge, one obtains two inhomogeneous wave equa-
tions. Their most general solution is composed of the homogeneous so-
lution given by a superposition of plane monochromatic waves and a
specific inhomogeneous solution given in terms of retarded potentials,
which satisfy the principle of causality.

• The Maxwell and potential equations are gauge-invariant.

Applications

22. Retarded potentials and Lorentz condition. Show that the re-
tarded potentials (2.35) and (2.36) satisfy the Lorentz condition (2.23).

Solution. We need to show the validity of the relation

∇Aret(x, t) = −1
c

∂

∂t
φret(x, t)

⇐⇒
∫

d3x′∇̂
(

j(x′, tret)
|x − x′|

)
= −

∫
d3x′ ∂

∂tret

(
ρ(x′, tret)
|x − x′|

)
, (2.37)

with
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tret = t − |x − x′|
c

.

Herein, ∇̂ denotes the total vectorial derivative with respect to x. For the
derivation of the above relation, we need the continuity equation

∇′j(x′, tret) = −∂ρ(x′, tret)
∂tret

as well as the identities

∇tret =
1
c
∇|x − x′| = −1

c
∇′|x − x′| = −∇′tret

and

∇̂j(x′, tret) =
∂j(x′, tret)

∂tret
∇tret = −∂j(x′, tret)

∂tret
∇′tret

= −∇̂′
j(x′, tret) + ∇′j(x′, tret)

= −∇̂′
j(x′, tret) − ∂ρ(x′, tret)

∂tret
.

With these, the integrand on the left-hand side of (2.37) can be transformed
as follows:

∇̂
(

j(x′, tret)
|x − x′|

)
=

|x − x′|∇̂j(x′, tret) − j(x′, tret)∇|x − x′|
|x − x′|2

=
−|x − x′|∇̂′

j(x′, tret) + j(x′, tret)∇′|x − x′|
|x − x′|2

− 1
|x − x′|

∂ρ(x′, t)
∂tret

= −∇̂′
(

j(x′, tret)
|x − x′|

)
− ∂

∂tret

(
ρ(x′, tret)
|x − x′|

)
. (2.38)

Inserting (2.38) in (2.37) and using the fact that, due to Gauss’s theorem,
the divergence term vanishes, the above assertion follows.

23. Vector potential of a closed current. Consider a thin wire bent into
two semicircles with radii a and b as shown in Fig. 2.4. Suppose a temporally
varying current I(t) flows through the closed loop. Calculate the retarded
vector potential at the origin x = 0.

Solution. For a current flowing through a conductor we have

jd3x = j|dl|dF = Idl = It(s)ds , t(s) =
dl

ds
,

where dl is a line element, dF the cross-sectional area, and t(s) the tangential
vector of the conductor, parametrized by s. The retarded vector potentials
of the individual segments of the conducting wire can then be written as
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a b
x

y

I(t)
1

2

3 4

Fig. 2.4. Current-carrying loop bent into two semicircles.

Aret,i(0, t) =
1
c

s2∫
s1

ds
I(tret)ti(s)
|0 − li(s)| , ti(s) =

dli(s)
ds

, tret = t − |li(s)|
c

,

with

l1(s) = b

⎛
⎝ cos s

sin s
0

⎞
⎠ , s1 = 0, s2 = π

l2(s) = a

⎛
⎝ cos s

sin s
0

⎞
⎠ , s1 = π, s2 = 0

l3(s) =

⎛
⎝ s

0
0

⎞
⎠ , s1 = −b, s2 = −a

l4(s) =

⎛
⎝ s

0
0

⎞
⎠ , s1 = a, s2 = b .

This gives

Aret,1(0, t) =
2I

(
t − b

c

)
c

⎛
⎝ 1

0
0

⎞
⎠

Aret,2(0, t) = −2I
(
t − a

c

)
c

⎛
⎝ 1

0
0

⎞
⎠

Aret,3(0, t) = −1
c

⎛
⎝ 1

0
0

⎞
⎠ −a∫

−b

ds
I
(
t + s

c

)
s

Aret,4(0, t) =
1
c

⎛
⎝ 1

0
0

⎞
⎠ b∫

a

ds
I
(
t − s

c

)
s

.

In total, we have



2.3 Lorentz-Covariant Formulation of Electrodynamics 139

Aret(0, t) =
4∑

i=1

Aret,i(0, t)

=
2
c

⎛
⎝ 1

0
0

⎞
⎠

⎡
⎣I

(
t − b

c

)
− I

(
t − a

c

)
+

b∫
a

ds
I
(
t − s

c

)
s

⎤
⎦ .

2.3 Lorentz-Covariant10 Formulation of Electrodynamics

Contrary to Newtonian mechanics, it has been experimentally verified that
electrodynamics satisfies the principles of special relativity. For example, this
is apparent by the fact that the electric charge of a particle, as opposed to
its mass, is independent of its velocity. Accordingly, the form of Maxwell’s
equations (and the Lorentz force) does not change under Lorentz transfor-
mations. This can be shown explicitly by writing Maxwell’s equations in a
manifestly Lorentz-covariant form, which is the subject of this section.

Following a brief mathematical interlude on the transformational prop-
erties of Lorentz tensors, we use the electromagnetic field strength tensor
to bring Maxwell’s equations into a manifestly covariant notation and dis-
cuss the properties of electromagnetic fields under Lorentz transformations.
Furthermore, we show that the Lorentz force yields the correct relativistic de-
scription of particle motion. Finally, we use the covariantly generalized form
of Maxwell’s stress tensor to rewrite the energy and momentum conservation
discussed previously in Subsection 2.1.3.

2.3.1 Lorentz Tensors

In connection with our discussion of relativistic mechanics, we have already
touched upon some elements of special relativity (Subsection 1.6.1). We now
extend this formalism by putting Lorentz transformations onto a broader
mathematical foundation. This will help us rewrite electrodynamics in a co-
variant notation.

Definition: Contravariant tensor of rank n

A contravariant tensor of rank n is the totality Tα1...αn of all n-fold indexed
quantities (all indices are upper indices), which, under Lorentz transforma-
tions Λα

β , behave as

T ′α1...αn = Λα1
β1 . . . Λαn

βnT β1...βn .

Note that the matrix Λα
β is not a tensor as it is not defined in an inertial

system. Rather, it describes the transition between two inertial systems.

10 See footnote 12 on page 102.
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With the help of the metric tensor gαα′ [see (1.64)], covariant quantities (with
lower indices) can be constructed from contravariant tensors via

Tα1...αn = gα1β1 . . . gαnβnT β1...βn .

Using Theorem 1.35, the covariant tensors are seen to transform as

T ′
α1...αn

= gα1β1 . . . gαnβn
T ′β1...βn

= gα1β1 . . . gαnβnΛβ1
γ1 . . . Λβn

γnT γ1...γn

= gα1β1 . . . gαnβnΛβ1
γ1 . . . Λβn

γngγ1ε1 . . . gγnεnTε1...εn

= Tε1...εn [Λ−1]ε1α1
[Λ−1]εn

αn
,

with

[Λ−1]εα = gαβΛβ
γgγε .

In addition to co- and contravariant tensors, we also have mixed tensors,
whose indices are both upper and lower. Their transformational behavior
can be deduced from those of co- and contravariant tensors. For example, a
mixed tensor of rank 2 (one co- and one contravariant index) transforms as

T ′α
β = T ′αγgγβ = Λα

µΛγ
νTµνgγβ = Λα

µΛγ
νTµ

εg
ενgγβ

= Λα
µTµ

ε[Λ−1]εβ .

Given two tensors A and B, the following algebraic operations are defined:

• Addition: aAα1...αn +bBβ1...βn is a contravariant tensor of rank n, provided
that a and b are Lorentz scalars.

• Multiplication: Aα1...αnBβ1...βm is a contravariant tensor of rank n + m.

• Contraction: Aα1...αn

β1...βm
Bβ1...βmγ1...γr is a contravariant tensor of rank

n + r. Compared to multiplication, the number of degrees is reduced by
the number of indices that are being summed over.

Tensor fields and differential operators. The above can be extended in a
straightforward manner to tensor fields, which are functions of the space-time
four-vector xµ.

Definition: Contravariant tensor field of rank n

A contravariant tensor field of rank n is the totality Tα1...αn(xµ) of all n-
fold indexed functions of xµ (all indices are upper indices), which, under
Lorentz transformations Λα

β , behave as

T ′α1...αn(x′µ) = Λα1
β1 . . . Λαn

βnT β1...βn([Λ−1]µνx′ν) .

Note that the argument is transformed as well.

Tensor fields11 can be differentiated with respect to their arguments. Using
xν = [Λ−1]νµx′µ, we find for the partial derivative ∂/∂xα

11 In the following, we will not distinguish linguistically between “tensor” and “ten-
sor field”.
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∂xν

∂x′µ = [Λ−1]νµ =⇒ ∂

∂x′µ =
∂

∂xν

∂xν

∂x′µ =
∂

∂xν
[Λ−1]νµ .

Therefore,

∂

∂xµ
= ∂µ

transforms as a covariant and
∂

∂xµ
= ∂µ

as a contravariant four-vector. Furthermore, the d’Alembert operator

� = ∂µ∂µ =
1
c2

∂2

∂t2
− ∇2

is a Lorentz scalar.

2.3.2 Lorentz-Covariant Formulation of Maxwell’s Equations

Since the continuity equation

∂ρ(x, t)
∂t

+ ∇j(x, t) = 0

follows from Maxwell’s equations, which we know are Lorentz-covariant, this
equation itself must be invariant under Lorentz transformations. This implies
that the charge density ρ(x, t) and the current density vector j(x, t) form the
four-vector

(jµ(x)) =
(

cρ(x, t)
j(x, t)

)
, x = (xµ) ,

such that the continuity equation can be written in the manifestly invariant
form

∂µjµ(x) = 0 .

Since the charge density is the temporal component of a four-vector, we see
that dq = d3xρ = d3xj0/c and, therefore, the charge q of a particle is a
Lorentz scalar (unlike its mass).

Consider now the inhomogeneous Maxwell equations (I) and (IV). Their
right-hand sides form a four-vector jµ, whereas the left-hand sides contain
partial derivatives. The simplest manifestly covariant ansatz for these equa-
tions is therefore given by

∂µFµν = 4πjµ , (Fµν) =

⎛
⎜⎜⎝

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎞
⎟⎟⎠ , (2.39)
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where the first Maxwell equation is obtained from ν = 0 and the last from
ν = i. As (I) and (IV) yield a total of 6 equations, Fµν must be an antisym-
metric contravariant tensor of rank 2. To see this we return to the potential
equations (2.24),

�φ(x, t) = 4πρ(x, t) , �A(x, t) =
4π

c
j(x, t) , (2.40)

in Lorentz gauge (2.23),

∇A(x, t) = −1
c

∂φ(x, t)
∂t

. (2.41)

Since the right-hand sides of (2.40) again form the four-vector jµ and the
d’Alembert operator � is a Lorentz scalar, it follows that the potentials φ
and A must also combine to give the four-vector potential

(Aµ(x)) =
(

φ(x, t)
A(x, t)

)
,

so that (2.40) and (2.41) can be brought into the manifestly covariant form

�Aµ(x) =
4π

c
jµ(x) , ∂µAµ(x) = 0 .

By expressing the definitions (2.15) for the potentials in terms of the con-
travariant quantities ∂µ and Aν , a comparison with (2.39) shows that

Fµν = ∂µAν − ∂νAµ .

This means that Fµν is indeed a contravariant tensor of rank 2. The re-
maining homogeneous Maxwell equations (II) and (III) can also be expressed
covariantly by introducing the pseudo tensor of rank 2,

Gµν =
1
2
εµναβFαβ ,

which is the dual of Fµν . Equations (II) and (III) can then be combined to

∂µGµν = 0 ,

where

εµναβ =

⎧⎨
⎩

+1 for (µναβ) an even permutation of (0123)
−1 for (µναβ) an odd permutation of (0123)
0 otherwise

denotes the Levi-Civita symbol.

Theorem 2.9: Maxwell’s equations in Lorentz-covariant form

Since electrodynamics is in agreement with special relativity, the pairs ρ
and j as well as φ and A can be combined to give the four-vectors

(jµ) =
(

cρ
j

)
, (Aµ) =

(
φ
A

)
.

�
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The Lorentz-covariant Maxwell equations read

∂µFµν(x) =
4π

c
jν

⎧⎨
⎩

ν = 0 : ∇E = 4πρ

ν = i : ∇ × B − 1
c

∂E

∂t
=

4π

c
j

∂µGµν(x) = 0

⎧⎨
⎩

ν = 0 : ∇B = 0

ν = i : ∇ × E +
1
c

∂B

∂t
= 0 ,

with

(Fµν) =

⎛
⎜⎜⎝

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎞
⎟⎟⎠ , Fµν = ∂µAν − ∂νAµ

and

Gµν =
1
2
εµναβFαβ .

The totally antisymmetric tensor Fµν is called the field strength tensor and
the totally antisymmetric pseudo tensor Gµν is called the dual field strength
tensor.

The homogeneous Maxwell equations can also be written as

∂αF βγ + ∂γFαβ + ∂βF γα = 0 .

This equation is also form-invariant because each of the terms transforms like
a mixed tensor of rank 3 (with one co- and two contravariant indices).

2.3.3 Transformational Behavior of Electromagnetic Fields

The transformational properties of E and B are determined by the trans-
formational behavior F ′µν = Λµ

αΛν
βFαβ of the second-rank field strength

tensor Fµν . In the case of a general Lorentz transformation from an inertial
system K to an inertial system K′ moving with velocity v (measured in K),
the fields E and B transform as

E′ = γ
(
E +

v

c
× B

)
− γ2

γ + 1
v(vE)

c2 , γ =
1√

1 − v2

c2

B′ = γ
(
B − v

c
× E

)
− γ2

γ + 1
v(vB)

c2

or

E′
‖ = E‖ , B′

‖ = B‖

E′
⊥ = γ

(
E⊥ +

v

c
× B

)
, B′

⊥ = γ
(
B⊥ − v

c
× E

)
,

⎫⎬
⎭ (2.42)
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where ‖ and ⊥ denote the field components parallel and perpendicular to
v, respectively. From this we see that the fields E and B do not transform
independently. A pure E or B field in a system K is transformed into a
combination of electric and magnetic fields in another system K′. Therefore,
since the distinction between E and B fields depends on the chosen inertial
system, it makes more sense to speak of the electromagnetic field Fµν , rather
than of E and B independently.

Lorentz invariants. As explained in Subsection 2.3.1, each tensor of rank
2 can be contracted with itself (in several ways) to form a set of Lorentz
scalars. Some of them are

TµνT νµ , TµνT ν
γT γµ , TµνT νγTγεT

εµ , . . . .

In case of the electromagnetic field strength tensor Fµν , the cubic invariant
vanishes. The other invariants yield

FµνF νµ = 2
(
E2 − B2) = I1 = invariant

FµνF νγFγεF
εµ = 2

(
E2 − B2)2

+ 4(EB)2 = invariant
=⇒ (EB) = invariant .

For the E and B fields, this implies:

• If E ⊥ B holds in any one inertial system, then this relation holds in all
inertial systems.
If I1 > 0, there exists an inertial system in which B = 0.
If I1 < 0, there exists an inertial system in which E = 0.

• The first item is even true in opposite direction: if E = 0 or B = 0 holds
in any one inertial system, then E ⊥ B holds in all inertial systems.

• If |E| = |B| holds in any one inertial system, then it is true in all inertial
systems.

2.3.4 Lorentz Force and Covariance

Having shown the compatibility of Maxwell’s equations with special relativ-
ity by using a Lorentz-covariant formulation, we still have to perform this
exercise for the Lorentz force F L and the corresponding equation of motion.
Here, we can only initially assume that it is valid in the nonrelativistic limit
|ẋ|/c → 0, i.e.,

d
dt

m0ẋ = F L = q

(
E +

ẋ

c
× B

)
, (2.43)

where q denotes the charge, ẋ the velocity, and m0 the rest mass of the par-
ticle. From Subsection 1.6.4, we know that the covariant equation of motion
of relativistic mechanics is given by
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dpµ

dτ
=

1√
1 − ẋ2

c2

dpµ

dt
= Fµ ,

with

(pµ) =
(

cm
mẋ

)
, (Fµ) =

1√
1 − ẋ2

c2

(
cdm

dt

F

)
.

In the above,

dτ = dt

√
1 − ẋ2

c2 , m =
m0√
1 − ẋ2

c2

are the eigentime differential and the relativistic mass of the particle, respec-
tively. Since the expression (2.43) is linear in the fields E and B as well as
in the particle velocity ẋ, its simplest possible covariant ansatz reads

dpµ

dτ
=

q

c
Fµν dxν

dτ
,

dxµ

dτ
= four-velocity . (2.44)

Note that both sides are contravariant four-vectors, since q and c are Lorentz
scalars. Expressing this equation in terms of the three-vectors E, B, and ẋ,
we find

µ = 0 :
d
dt

m0c
2√

1 − ẋ2

c2

= qEẋ

µ = i :
d
dt

m0ẋ√
1 − ẋ2

c2

= q

(
E +

ẋ

c
× B

)
.

Obviously, the spatial µ-components give the right nonrelativistic relation-
ship (2.43). We therefore conclude that the ansatz (2.44) is the correct rel-
ativistic generalization of (2.43). Additionally, if m0 is replaced by m in the
equation of motion, the Lorentz force F L also holds for relativistic velocities.
The equation for the µ = 0 component is a conservation law: the temporal
change of the particle’s energy is equal to the power transferred from the
electromagnetic field to the particle.

Theorem 2.10: Covariant equation of motion, Lorentz force

In covariant notation, the relativistic generalization of Newton’s equation
of motion for a particle in an electromagnetic field is

dpµ

dτ
=

q

c
Fµν dxν

dτ
.

�
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The spatial components of this equation are

d
dt

m0ẋ√
1 − ẋ2

c2

= F L = q

(
E +

ẋ

c
× B

)
,

i.e., F L yields the correct particle motion to all orders of |ẋ|/c.

2.3.5 Energy and Momentum Conservation

In the derivation of the momentum law of electrodynamics (Theorem 2.5),
we introduced the Maxwell stress tensor

Tik =
1
4π

[
EiEk + BiBk − δik

2
(
E2 + B2)] . (2.45)

Its relativistic version is given by the second-rank tensor

Tµν =
1
4π

(
gµαFαβF βν +

1
4
gµνFαβFαβ

)
, (2.46)

whose spatial components are the negative of the above three-stress tensor.
Using the electromagnetic energy and momentum densities εem and gem, it
can be written as the matrix

(Tµν) =

⎛
⎜⎜⎝

E2 + B2

8π

[
E × B

4π

]T

E × B

4π
−(Tik)

⎞
⎟⎟⎠ =

(
εem [cgem]T

cgem −(Tik)

)
,

with Tik from (2.45). Now, with the help of some tensor algebra, one can show
that the differential energy and momentum conservation laws of Theorems
2.4 and 2.5 are incorporated in the following Lorentz-covariant relation:

∂µTµν = −1
c
F νρjρ

{
ν = 0 : energy conservation, Theorem 2.4

ν = i : momentum conservation, Theorem 2.5.

For a system free of charges, this implies

0 = ∂µTµν =
1
c
∂tT

0ν + ∂iT
iν .

By integrating this equation over a sufficiently large volume, the second term
on the right-hand side vanishes and we obtain

pν
em =

1
c

∫
d3xT 0ν = const .

Thus, the four-momentum (pµ
em) =

(
Eem/c
P em

)
contains the energy and the

momentum of the electromagnetic field and is a conserved quantity for a
closed system containing no charges.
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Summary

• Electrodynamics is a relativistic field theory. Using the electromag-
netic field strength tensor and the dual field strength tensor,
Maxwell’s equations can be written in manifestly Lorentz-covariant form.

• This is because charge and current density as well as scalar and vector
potential can both be combined to four-vectors.

• Lorentz covariance of the theory implies that E and B fields are trans-
formed into one another when changing the inertial system. In other
words, the distinction between E and B depends on the chosen refer-
ence system.

• The Lorentz force yields the correct description for the movement of
charged particles in electromagnetic fields to all orders of |ẋ|/c.

• Using the Maxwell stress tensor, the conservation laws for energy and
momentum can be merged into a single Lorentz-covariant equation.

Applications

24. Uniformly moving charge. Calculate the electromagnetic field of a
charge q moving in an inertial system K at constant velocity v in direction
of x.

Solution. A simple and elegant way of solving this problem is to move to
the rest system K′ of the charge. In this reference frame, the fields E′ and
B′, as well as the potentials φ′ and A′, can be written down immediately:

(I): ∇′E′(x′, t′) = 4πqδ(x′)

(IV): ∇′ × B′(x′, t′) − 1
c

∂E(x′, t′)
∂t′

= 0

⎫⎪⎬
⎪⎭ =⇒

⎧⎨
⎩ E′(x′, t′) = q

x′

|x′|3
B′(x′, t′) = 0

=⇒ (A′µ(x′)) =

⎛
⎜⎜⎝

φ′(x′, t′)
A′

x(x′, t′)
A′

y(x′, t′)
A′

z(x
′, t′)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

q
|x′|
0
0
0

⎞
⎟⎟⎠ .

To return to the original system K, we use the Lorentz transformation (see
Subsection 1.6.1)

(Λ(1)µ
ν)−1 =

⎛
⎜⎜⎝

γ γv
c 0 0

γv
c γ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , γ =

1√
1 − v2

c2

.
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For the potentials in K, it follows that

(Aµ(x′)) =

⎛
⎜⎜⎝

φ(x′, t′)
Ax(x′, t′)
Ay(x′, t′)
Az(x′, t′)

⎞
⎟⎟⎠ = γ

⎛
⎜⎜⎝

q
|x′|
vq

c|x′|
0
0

⎞
⎟⎟⎠ ,

with⎛
⎜⎜⎝

ct′

x′

y′

z′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

γ −γv
c 0 0

−γv
c γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ct
x
y
z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

γ(ct − vx
c )

γ(x − vt)
y
z

⎞
⎟⎟⎠

=⇒ φ(x, t) =
γq√

γ2(x − vt)2 + y2 + z2
, A(x, t) =

v

c
φ(x, t)

⎛
⎝ 1

0
0

⎞
⎠ .

Finally, for the E and B fields in K, we obtain

B(x, t) = ∇ × A(x, t) =
vγq

c[γ2(x − vt)2 + y2 + z2]3/2

⎛
⎝ 0

z
−y

⎞
⎠

E(x, t) = −∇φ(x, t) − 1
c

∂A(x, t)
∂t

=
γq

[γ2(x − vt)2 + y2 + z2]3/2

⎛
⎝ x − vt

y
z

⎞
⎠ .

25. Generalized Faraday’s induction law. In Subsection 2.1.2, we dis-
cussed Faraday’s induction law∮

C

E(x, t)dl = −1
c

∫
F

dF
∂B(x, t)

∂t
,

where C is a closed contour, for example, that of a conducting loop, and
F is its surface area. Using this law and combining it with (2.42), show
that Lorentz covariance of electrodynamics implies the generalized Faraday’s
induction law

V (t) =
∮
C′

E′(x′, t)dl′ = −1
c

d
dt

∫
F (t)

dFB(x, t) = −1
c

dΦm(t)
dt

,

where primed quantities refer to the rest system of the conducting loop.
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dl dF = v × dldt
vdt

C

Fig. 2.5. Conducting loop moving with constant velocity v.

Solution. In the unprimed observational reference frame we have
dΦm

dt
=

∫
F (t)

dF
∂B

∂t
+

∫
dF

dt
B = −c

∮
C(t)

Edl +
∫

dF

dt
B .

Assuming that the conductor moves at constant velocity v (see Fig. 2.5), we
have dF = v × dldt. This implies that

dΦm

dt
= −c

∮
C(t)

dl
(
E +

v

c
× B

)

= −c

∮
C(t)

(dl‖ + dl⊥)
(
E‖ + E⊥ +

v

c
× B

)
, (2.47)

where ‖ and ⊥ respectively indicate the components parallel and perpendic-
ular to the velocity vector v. Now, by using (2.42) and

dl‖ =
1
γ

dl′‖ , dl⊥ = dl′⊥ , γ =
1√

1 − v2

c2

,

the right-hand side of (2.47) can be expressed in terms of the primed quan-
tities:

dΦm

dt
= −c

∮
C′

(
1
γ

dl′‖ + dl′⊥

)(
E‖ + E⊥ +

v

c
× B

)

= −c

∮
C′

(dl′‖ + dl′⊥)
[

1
γ

E‖ +
1
γ

γ
(
E⊥ +

v

c
× B

)]

= − c

γ

∮
C′

dl′(E′
‖ + E′

⊥) .

This finally results in
dΦm

dt
=

1
γ

dΦm

dt′
= − c

γ

∮
C′

dl′E′(x′, t′)
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⇐⇒ dΦm(t)
dt

= −c

∮
C′

dl′E′(x′, t) .

2.4 Radiation Theory

This section deals with electromagnetic radiation phenomena induced by tem-
porally varying charges and currents. Generally, for arbitrary distributions,
the calculation of the corresponding electromagnetic fields via retarded po-
tentials is only possible using a numerical approach, since each point x′ is
associated with a retarded time tret, which, moreover, depends explicitly on
x′. Therefore, we consider here only the case of accelerated point charges and
charge distributions with a small extent, for which an analytical determina-
tion of the retarded potentials is possible.

We start by calculating the retarded potentials for arbitrarily moving
point charges (Liénard-Wiechert potentials) and then derive the correspond-
ing electromagnetic fields E and B. As it turns out, each of them can be
written as a sum of two terms, one of which corresponds to a uniformly
moving charge and the other to an accelerated motion. We also calculate the
energy and power that are radiated by the accelerational parts of these fields.
Finally, we consider the radiation fields of small charge and current density
distributions in the dipole approximation.

2.4.1 Liénard-Wiechert Potentials

A point charge q moving along the trajectory x0(t) with velocity ẋ0(t) pos-
sesses the charge and current density distributions

ρ(x, t) = qδ[x − x0(t)] , j(x, t) = qẋ0δ[x − x0(t)] .

Inserting these quantities into the retarded potentials (2.35) and carrying out
the spatial integration gives

φ(x, t) = q

∫
dt′

1
|x − x0(t′)|δ

(
t′ − t +

|x − x0(t′)|
c

)

A(x, t) =
q

c

∫
dt′

ẋ0(t′)
|x − x0(t′)|δ

(
t′ − t +

|x − x0(t′)|
c

)
.

For the temporal integration one has to take into account that the argument
of the δ-function is a function of the integration variable t′. In this case the
following identity holds:∫

dt′g(t′)δ[f(t′)] =
∑

k

g(tk)∣∣∣ df
dt′

∣∣∣
tk

, tk=zeros of f .

Using this, we find
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Theorem 2.11: Liénard-Wiechert potentials for an arbitrarily
moving point charge

The retarded potentials of a point charge q moving along an arbitrary
trajectory x0(t) with velocity ẋ0(t) are given by the Liénard-Wiechert po-
tentials

φ(x, t) =
q

R(tret) − 1
cR(tret)ẋ0(tret)

A(x, t) =
q

c

ẋ0(tret)
R(tret) − 1

cR(tret)ẋ0(tret)
,

R(tret) = x − x0(tret) , R(tret) = |R(tret)| . (2.48)

Here, R(tret) denotes the distance vector between the observation point x
and the particle’s location x0 at the retarded time

tret = t − |x − x0(tret)|
c

= t − R(tret)
c

. (2.49)

Before we turn to the calculation of the E and B fields, we show how this
result can be obtained in a more elegant way by using the Lorentz-covariant
formalism. We start by first noting that

(Rµ) =
(

R
R

)
=

(
c(t − tret)

|x − x0(tret)|
)

is a four-vector since, according to (2.48) and (2.49), we have in any inertial
system

RµRµ = c2(tret − t)2 − R2(tret) = 0 .

The retarded potentials can be easily specified in the (primed) momentary
rest system of the particle:

φ′(x′, t′) =
q

|x′ − x′
0(t

′
ret)|

=
q

R′(t′ret)
, A′(x′, t′) = 0 ,

or

A′µ = q
u′µ

R′
νu′ν , (u′µ) =

⎛
⎜⎜⎝

c
0
0
0

⎞
⎟⎟⎠ , (2.50)

where u′µ is the four-velocity in the rest system. Both sides of (2.50) transform
as a contravariant four-vector, so that this equation is form-invariant and thus
valid in any inertial system. Transforming back to the original (unprimed)
inertial system we find

Aµ = q
uµ

Rνuν
, (uµ) =

1√
1 − ẋ2

0
c2

(
c

ẋ0

)
,
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which yields the same potentials as in Theorem 2.11.
Determination of the electromagnetic fields. To calculate

E = −∇φ − 1
c

∂A

∂t
, B = ∇ × A (2.51)

from Theorem 2.11, we must know ∂tret/∂t and ∇tret, since the Liénard-
Wiechert potentials are given in terms of the retarded time tret, which addi-
tionally depends on x. To obtain ∂tret/∂t and ∇tret, we calculate as follows:

∂R2

∂tret
= 2R

∂R

∂tret
= 2R

∂R

∂tret
= −2Rẋ0

=⇒ ∂R

∂t
=

∂R

∂tret

∂tret
∂t

= −Rẋ0

R

∂tret
∂t

(2.52)

R(tret) = c(t − tret) =⇒ ∂R

∂t
= c

(
1 − ∂tret

∂t

)
. (2.53)

Combining (2.52) and (2.53), we obtain
∂tret
∂t

=
1

1 − nβ
, with n =

R

R
, β =

ẋ0

c
. (2.54)

Differentiating R with respect to its components yields on the one hand

∇R = ∇c(t − tret) = −c∇tret ,

and on the other

∇R = ∇|x − x0(tret)| =
R

R
+

∂R

∂tret
∇tret = n − nẋ0∇tret ,

so that

∇tret =
1
c

n

nβ − 1
. (2.55)

Using (2.54) and (2.55) (taken at time tret), we can now perform the calcu-
lations in (2.51). After a few steps, we arrive at

Theorem 2.12: E and B fields of an arbitrarily
moving point charge

The electromagnetic fields of an arbitrarily moving point charge q with
velocity ẋ0 are given by

E(x, t) = q

[
(n − β)(1 − β2)

R2(1 − nβ)3

]
tret

+
q

c

[
n × [(n − β) × β̇]

R(1 − nβ)3

]
tret

= E0(x, t) + Ea(x, t)

B(x, t) = n × E0(x, t) + n × Ea(x, t)

= B0(x, t) + Ba(x, t) ,

�
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with

n =
R

R
, β =

ẋ0

c
.

The magnetic field is perpendicular to the electric field as well as to the
vector connecting the observation point and the retarded particle position.

In this theorem the E and B fields are both given as the sum of two terms.
The first terms are independent of the particle acceleration β̇ and behave as
1/R2 for large distances, whereas the second terms fall off as 1/R and vanish
for β̇ = 0. Therefore, E0 and B0 are the fields of a uniformly moving charge.
We can verify this explicitly by considering a point charge q moving along the
x-axis with constant velocity v. Putting the observation point at the origin,
we find

x0(t) =

⎛
⎝ vt

0
0

⎞
⎠ , x = 0 , R(tret) = vtret , n =

⎛
⎝−1

0
0

⎞
⎠ , β =

⎛
⎝ v

c
0
0

⎞
⎠

=⇒ E0(0, t) = − q

γ2v2t2ret
(
1 + v

c

)2

⎛
⎝ 1

0
0

⎞
⎠ , γ =

1√
1 − β2

.

The retarded time is calculated as

tret = t − |x − x0(tret)|
c

= t − vtret
c

=⇒ tret =
t

1 + v
c

,

so that

E0(0, t) = − q

γ2v2t2

⎛
⎝ 1

0
0

⎞
⎠ , B0(0, t) = n × E(0, t) = 0 .

These are the same as the fields we found in Application 24 for x = 0. There
we calculated the E and B fields of a uniformly moving point charge in
x-direction using the Lorentz-covariant formalism.

2.4.2 Radiation Energy

In this subsection, we calculate the power P radiated by a moving point
charge, where all quantities are taken at the retarded time tret. Consider
an area element R2dΩ through which we have the energy flux or power
dP = SnR2dΩ:

dP

dΩ
=

dE

dtdΩ
= R2Sn =

cR2

4π
n(E × B) .

Inserting this equation into the fields from Theorem 2.12 and analyzing the
asymptotic R behavior of the individual terms, we realize that only the com-



154 2. Electrodynamics

bination Ea × Ba yields a nonvanishing contribution. In other words, only
accelerated charges emit radiation. Therefore, we have

dP

dΩ
=

cR2

4π
n(Ea × Ba) =

q2

4πc

(
n × [(n − β) × β̇]

)2

(1 − nβ)6
.

From the charge’s point of view, it is useful to consider the energy emitted in
the retarded time interval dtret. Taking into account (2.54), this is given by

dP ′

dΩ
=

dP

dΩ

∂t

∂tret
=

q2

4πc

(
n × [(n − β) × β̇]

)2

(1 − nβ)5
. (2.56)

To simplify this equation, we first consider the two limiting cases β 	 1 and
β ‖ β̇ and also set

cos θ =
nβ

β
, cos θ′ =

nβ̇

β̇
.

First limit: β 	 1. In this case, (2.56) reduces to

dP ′

dΩ
=

dP

dΩ
=

q2

4πc
β̇

2
sin2 θ′ . (2.57)

This term is independent of the direction of the particle’s velocity. The angu-
lar component of the radiated power is depicted in Fig. 2.6. Performing the
angular integration in (2.57), we find the Larmor formula

P =
2q2

3c
β̇

2
. (2.58)

θ′
n

β̇

Fig. 2.6. Radiated power dP/dΩ of an accelerated point charge in the limit
β � 1. θ′ denotes the angle between the particle acceleration β̇ and the direc-
tion of radiation, n.
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Second limit: β ‖ β̇. Now, θ = θ′, and (2.56) becomes

dP

dΩ
=

q2

4πc
β̇

2 sin2 θ

(1 − β cos θ)5
.

The direction of maximal radiation emission is determined as
d

d cos θ

dP

dΩ
= 0 =⇒ cos θmax =

1
3β

(√
15β2 + 1 − 1

)
.

This means that the radiation cone is inclined more and more forward as the
particle’s velocity increases (Fig. 2.7).

θ

n

β, β̇ β, β̇

Fig. 2.7. Radiated power dP/dΩ of an accelerated point charge in the limit β ‖ β̇
for β = 0.5 (left) and β = 0.81 (right). For a scaled comparison, the right plot must
be magnified by a factor of 100.

Lorentz-invariant generalization. Using the results of the first limiting
case and applying the Lorentz-covariant formalism to it, we can easily cal-
culate the radiated power of a point charge moving with arbitrary velocity.
Since the energy E as well as the time t are 0-components of four-vectors,
the expression P = dE/dt is a Lorentz scalar. To generalize the first limiting
case to arbitrary β, it is therefore sufficient to find a Lorentz scalar that
turns into (2.58) for β 	 1. Consequently, we write (2.58) in terms of the
nonrelativistic momentum pnr and generalize the result in invariant manner

by replacing pnr and dt with the four-momentum (pµ) = cm0√
1−β2

(
1
β

)
and

the eigentime dτ = dt
√

1 − β2:

P =
2q2

3m2
0c

3

dpnr

dt

dpnr

dt
−→ − 2q2

3m2
0c

3

dpµ

dτ

dpµ

dτ
.

The right-hand side of this equation is clearly a Lorentz scalar and can be seen
to converge to (2.58) for β 	 1. Therefore, for arbitrary particle velocities
we have
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Theorem 2.13: Radiation power of an arbitrarily
moving point charge

The radiation power of a point charge q moving with arbitrary velocity ẋ0
is given by

P =
2q2

3c
γ6

[
β̇

2 − (β × β̇)2
]

, β =
ẋ0

c
, γ =

1√
1 − β2

.

This equation implies that only accelerated charges emit radiation.

The radiation power P of an accelerated point charge reduces its kinetic en-
ergy. Therefore, one also speaks of radiation losses. These losses occur, for ex-
ample, in linear or circular particle accelerators. Röntgen radiation is another
example of radiation losses. The latter is created by applying a large voltage
across the anode and cathode of an electron tube. When running through
this potential difference, the electrons are accelerated and hit the anode with
high energy. During their collision the electrons are very quickly decelerated
(|β̇| is large), thus emitting electromagnetic energy (“Bremsstrahlung”).

2.4.3 Dipole Radiation

We now wish to calculate the radiation field of a system with temporally
varying charge and current densities confined to an area with radius R0:

ρ(x, t), j(x, t) =

{
arbitrary for |x| ≤ R0

0 for |x| > R0 .

Due to the linearity of Maxwell’s equations, it will suffice to consider a single
temporal Fourier component of these distributions that is varying sinusoidally
in time,

ρ(x, t) = ρ(x)e−iωt , j(x, t) = j(x)e−iωt ,

where physical quantities are obtained by taking the real parts. The corre-
sponding retarded vector potential is given by

Aret(x, t) =
1
c

∫
d3x

j(x′, tret)
|x − x′| = Aret(x)e−iωt ,

with

Aret(x) =
1
c

∫
d3x′ j(x′)eik|x−x′|

|x − x′| , k =
ω

c
. (2.59)

Due to (IV) and (2.15), the E and B fields in the outer area |x| > R0 are
given by

B(x, t) = B(x)e−iωt , B(x) = ∇ × Aret(x)

E(x, t) = E(x)e−iωt , E(x) =
i
k

∇ × B(x) .

⎫⎪⎬
⎪⎭ (2.60)
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To evaluate (2.59) further, we assume that R0 	 |x| and R0 	 λ, where
λ = 2π/k is the wavelength of the radiation field described by (2.60). With

this assumption, we can expand the term eik|x−x′|
|x−x′| in (2.59) as follows:

|x − x′| = |x|
(

1 +
x′2

x2 − 2
xx′

x2

)1/2

≈ |x|
(

1 − 2
xx′

x2

)1/2

≈ |x|
(

1 − xx′

x2

)

≈ |x|
(

1 +
xx′

x2

)−1

(2.61)

=⇒ eik|x−x′|

|x − x′| ≈ eik|x|e−ikxx′/|x|

|x|
(

1 +
xx′

x2

)
≈ eikr

r
e−iknx′

, (2.62)

with

r = |x| , n =
x

|x| .

Due to 2π/k � R0 ⇐⇒ k 	 2π/R0, we can use the long wavelength or dipole
approximation

e−iknx′ ≈ 1 − iknx′ + . . . ≈ 1 . (2.63)

Within this approximation, (2.59) becomes

Aret(x) =
1
c

eikr

r

∫
d3x′j(x′) .

Using the continuity equation

∇j(x, t) = −∂ρ(x, t)
∂t

=⇒ ∇j(x) = iωρ(x) , (2.64)

and the identity (j∇′)x′ = j, we can rewrite the integrand of this equation
as ∫

d3x′j(x′) =
∫

d3x′[j(x′)∇′]x′ = −
∫

d3x′x′[∇′j(x′)]

= −iω
∫

d3x′x′ρ(x′) .

Therefore, we find

Aret(x) = −ikp
eikr

r
, (2.65)

where

p =
∫

d3x′x′ρ(x′) , p(t) =
∫

d3x′x′ρ(x′)e−iωt
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is the electric dipole moment of the charge distribution. We see that (2.65)
describes an outgoing spherical wave whose wave number k = ω/c is de-
termined by the frequency of the charge distribution. Inserting (2.65) into
(2.60), one finally obtains

Theorem 2.14: E and B fields of temporally oscillating
charge and current densities

Consider a current and a charge density distribution confined to the area
r = |x| < R0:

ρ(x, t) = Re
[
ρ(x)e−iωt

]
, j(x, t) = Re

[
j(x)e−iωt

]
.

For R0 	 r and R0 	 2πc/ω, the corresponding electromagnetic fields, in
dipole approximation, are given by

B(x, t) = Re
[
B(x)e−iωt

]
, E(x, t) = Re

[
E(x)e−iωt

]
,

with

B(x) =
eikr

r
k2

(
1 − 1

ikr

)
(n × p)

E(x) =
eikr

r

{
k2[(n × p) × n] +

1
r

(
1
r

− ik
)

[3n(np) − p]
}

.

⎫⎪⎪⎬
⎪⎪⎭ (2.66)

Here, n = x/|x|, and

p =
∫

d3x′x′ρ(x′) , p(t) = pe−iωt (2.67)

is the electric dipole moment of the charge distribution.

The electric field E has a longitudinal and a transverse component relative
to the propagation direction n, whereas the magnetic field B is transversely
polarized to n. It is instructive to consider two special cases:

• Far or radiation zone: R0 	 λ 	 r. In this case, (2.66) simplifies to

B(x) =
eikr

r
k2(n × p) , E(x) =

eikr

r
k2(n × p) × n = B(x, t) × n .

E and B together with n form an orthogonal trihedral (in this order). The
time-averaged energy current density is calculated as

S =
c

8π
Re(E × B∗) =

ck4

8πr2 [(n × p)(n × p∗)]n ,

and points in the direction of n, i.e., away from the oscillating charge
density and radially outward. For the time-averaged radiation power, it
follows that

dP

dΩ
= r2nS =

ck4

8π
(n × p)(n × p∗) . (2.68)
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The 1/r-behavior of E and B is a characteristic of radiation fields. It
implies that the radiation power becomes independent of r in the limit
r → ∞, i.e., that radiation is effectively emitted.

• Near zone: R0 	 r 	 λ. Here we have

kr 	 1 =⇒ 1
krrm

� 1
rm

, eikr ≈ 1 ,

and (2.66) reduces to

B(x) =
ik
r2 (n × p) , E(x) =

3n(np) − p

r3 .

If we ignore the term e−iωt, the electric field is identical to that of an elec-
trostatic dipole (see Subsection 2.5.2). The magnetic field is smaller than
the electric one by a factor kr 	 1, so that the near fields are predomi-
nantly electric.

Taking into account the next-to-leading-order term −iknx′ in (2.63), the
fields (2.66) are supplemented by magnetic dipole and electric quadrupole
fields. In general, the various types of radiation fields are denoted by E1
(electric dipole field), E2 (electric quadrupole field), M1 (magnetic dipole
field), and so on.

Summary

• Liénard-Wiechert potentials describe the retarded potentials of an
arbitrarily moving point charge. The corresponding E and B fields are
each composed of two terms. The first terms are the fields of a uniformly
moving charge, while the second ones are proportional to the particle
acceleration.

• Only the accelerational parts contribute to the radiation power of an
arbitrarily moving charge, which means that only accelerated charges
emit radiation.

• An interesting special case is given by spatially confined and tempo-
rally oscillating charge and current density distributions. In this case the
corresponding electromagnetic fields can easily be calculated within the
dipole approximation.

Applications

26. Linear dipole antenna. Consider a linear dipole antenna of length L
oriented along the z-axis from z = −L/2 to z = L/2 through which flows
an electric current (Fig. 2.8). The current is known to be I0 at the antenna’s
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∼

z

y

x

n

−L
2

L
2

θ

ϕ

Fig. 2.8. Dipole antenna. The alternating current means both wires are charged
alternately positive and negative.

center and to fall off linearly toward both ends:

I(z)e−iωt = I0

(
1 − 2|z|

L

)
e−iωt , L 	 λ =

2πc

ω
.

What is the time-averaged radiation power the antenna emits in the far zone?

Solution. Using the continuity equation (2.64), we find the linear charge
density ρ′(z) (i.e., the charge per unit length) to be

ρ′(z) = − i
ω

dI(z)
dz

= ±2iI0

ωL
,

where the upper (lower) sign holds for positive (negative) z. The dipole mo-
ment (2.67) is parallel to the z-axis and is given by

p =

L/2∫
−L/2

dzzρ′(z) =
iI0L

2ω
.

The time-averaged angular distribution (2.68) of the radiation power in the

far zone is found using n =

⎛
⎝ cos ϕ sin θ

sin ϕ sin θ
cos θ

⎞
⎠:

dP

dΩ
=

I2
0 (ωL)2

32πc3 sin2 θ .

Integrating this equation over the angle yields the total radiation power

P =
I2
0 (ωL)2

12c3 .
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27. Circular motion of a point charge. What is the far zone radiation
power of a point charge q moving with constant angular velocity ω on a
circular orbit with radius r0 (r0 	 λ = 2πc/ω) in the xy-plane?

Solution. The charge density is given by

ρ(x, t) = qδ[x − x0(t)] , x0(t) = r0

⎛
⎝ cos ωt

sin ωt
0

⎞
⎠ .

This yields the dipole moment

p(t) = q

∫
d3x′x′δ[x′ − x0(t)] = qx0(t) = Re

[
pe−iωt

]
, p = qr0

⎛
⎝ 1

i
0

⎞
⎠ ,

which already has the correct time dependency as assumed in (2.67). By

inserting p in (2.68) and using n =

⎛
⎝ cos ϕ sin θ

sin ϕ sin θ
cos θ

⎞
⎠, we finally find

dP

dΩ
=

ω4q2r2
0

8πc3

(
1 + cos2 θ

)
=⇒ P =

ω4q2r2
0

3c3 .

2.5 Time-Independent Electrodynamics

If we are dealing with static charge and current densities, then the four
Maxwell equations decompose into two decoupled systems of equations. These
form the basis of electrostatics and magnetostatics. In many textbooks of
electrodynamics these static equations are discussed and phenomenologically
motivated prior to the general equations. Following our axiomatic-deductive
approach, we choose the opposite strategy and consider the static case as a
special case of (I) to (IV) from the beginning. This allows us to derive many
of the static physical laws from the results of previous sections by simply
eliminating all time dependencies.

After deriving the electrostatic and magnetostatic relationships, we dis-
cuss the multipole expansion of static potentials for large distances. Further-
more, we consider boundary problems associated with electric conductors
within electrostatics using Green function calculus as well as other calcula-
tion methods. At the end of this section, we turn to a standard example of
magnetostatic field distribution problems.

2.5.1 Electrostatics and Magnetostatics

If charge and current densities are constant in time, then all time dependen-
cies disappear from Maxwell’s equations and we are left with the static case
of electrodynamics:
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Definition: Static case of electrodynamics
(electrostatics, magnetostatics)

In the static case of electrodynamics, Maxwell’s equations (I) to (IV) de-
couple into two differential equation systems:

∇E(x) = 4πρ(x)

∇ × E(x) = 0

}
electrostatics (2.69)

∇B(x) = 0

∇ × B(x) =
4π

c
j(x)

⎫⎪⎬
⎪⎭magnetostatics . (2.70)

The first system constitutes the basis of electrostatics and the second one
that of magnetostatics. Since the charge density is time-independent, the
continuity equation simplifies to

∇j(x) = 0 .

Thus, there is no overall charge flux.

Since the static case is a special case of electrodynamics, many of the impli-
cations following from (2.69) and (2.70) can be derived from the general
electrodynamical relationships of previous sections. We shall do this by going
consecutively through these sections in ascending order. From Section 2.2 all
definitions and theorems can be carried over by simply eliminating all time
dependencies.

Definition: Static scalar potential φ
and static vector potential A

In the static case the scalar and vector potentials φ and A are defined
implicitly by

E(x) = −∇φ(x) , B(x) = ∇ × A(x) .

E are B invariant under the gauge transformations

A(x) −→ A′(x) = A(x) + ∇χ(x)
φ(x) −→ φ′(x) = φ(x) + const .

In the static case the Coulomb and Lorentz gauges are identical and, there-
fore, lead to the same potential equations with solutions provided by Theo-
rems 2.7 and 2.8:
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Theorem 2.15: Static Maxwell equations in form of potentials

In the static case the Coulomb and Lorentz gauge ∇A(x) = 0 leads to the
potential equations

∇2φ(x) = −4πρ(x) (static Poisson equation)

∇2A(x) = −4π

c
j(x) .

Their general solution is

φhom(x) = Re
∫

d3kφ̃(k)eikx , Ahom,i(x) = Re
∫

d3kÃi(k)eikx .

An inhomogeneous solution of the potential equations is given by

φ(x) =
∫

d3x′ ρ(x′)
|x − x′| , A(x) =

1
c

∫
d3x′ j(x′)

|x − x′| . (2.71)

Due to the absence of time, it does not make sense to denote the inhomo-
geneous solution by “retarded potential”. Combining the last equation with
B = ∇ × A yields

Theorem 2.16: Biot Savart’s law

Given the current density, the magnetic induction field is calculated as

B(x) =
1
c

∫
d3x′j(x′) × x − x′

|x − x′|3 .

It is clear that the Lorentz-covariant formulation of electrodynamics (Section
2.3) cannot by transferred to the static case, since time and space are no
longer on equal footing. Therefore, the static case can only refer to one par-
ticular inertial system. In Section 2.4, only the first two Theorems 2.11 and
2.12 have static analogues, which we summarize as follows:

Theorem 2.17: Potentials and fields of a static point charge q
at rest at x0 (Coulomb law)

φ(x) =
q

|x − x0| , E(x) = q
x − x0

|x − x0|3 , A(x) = 0 , B(x) = 0 .

As expected, the potentials of this theorem are a special case of (2.71) for
ρ(x) = qδ(x − x0) and j(x) = 0. The subsequent Theorems 2.13 and 2.14 in
Section 2.4 all deal with moving charges and, therefore, do not contribute to
the static case.

Electrostatic field energy and self-energy problem. Now, we consider
a charge distribution ρ(x) at rest. According to Theorem 2.4, the correspond-
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ing electromagnetic (or in this case: electrostatic) field energy reads

Eem =
1
8π

∫
d3xE2(x)

=
1
8π

∫
d3x[∇φ(x)]∇φ(x) =

1
2

∫
d3xρ(x)φ(x) ,

where φ is the electrostatic potential generated by the charge density itself.
Inserting φ from Theorem 2.15 into this equation yields

Eem =
1
2

∫
d3x

∫
d3x′ ρ(x)ρ(x′)

|x − x′| . (2.72)

Note that this equation is only sensible for a continuous charge distribution.
For a set of discrete point charges qi at locations xi,

ρ(x) =
∑

i

qiδ(x − xi) ,

(2.72) turns into

Eem =
1
2

∑
i,j

∫
d3x

∫
d3x′ qiqjδ(x − xi)δ(x′ − xj)

|x − x′|

=
1
2

∑
i,j

qiqj

|xi − xj | . (2.73)

In this sum terms with i = j diverge. They correspond to the self-energy
of the charges qi due to their own fields at their positions xi. The reason
for this unphysical behavior lies in the concept of point charges and in the
use of δ-functions. Electrodynamics – as a classical field theory – is not valid
down to arbitrarily small distances. With respect to a broad estimation of
the range of validity of electrodynamics, it is reasonable to assume that the
self-energy of a particle is comparable to its rest energy. Assuming further
that the particle, say an electron, has a finite radius R0, then its self-energy
is of magnitude e2/R0 and we can estimate R0 via

e2

R0
≈ mec

2 =⇒ R0 ≈ e2

mec2 = 2.8 · 10−15 m ,

where e is the charge and me the rest mass of the electron. This is called
the classical electron radius. However, from quantum mechanics, we know
that quantum effects are significant on a much larger length scale of mag-
nitude h̄2/(mee

2) = 0.5 · 10−10 m (Bohr’s radius). Thus, we have to accept
that the self-energy problem cannot be solved within electrodynamics. The
adequate framework is given by quantum electrodynamics, a quantum field
theory, which combines classical electrodynamics and relativistic quantum
mechanics.

By subtracting the unphysical self-energy contributions from (2.73), we
obtain the potential energy of a discrete charge distribution composed of the
interaction energies between different charges:
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Eem =
1
2

∑
i�=j

qiqj

|xi − xj | .

2.5.2 Multipole Expansion of Static Potentials and Fields

In the following, we consider static charge and current density distributions
that are spatially confined to |x| ≤ R0. Given this constraint, it is possi-
ble to evaluate in an approximate manner the corresponding potentials and
fields at large distances |x| � R0 using the technique of multipole expansion.
According to Theorem 2.15, the scalar and vector potentials have the same
1/|x − x′|-dependency, which we expand around x′ = 0 as follows:

1
|x − x′| =

1
|x| +

∑
i

x′
i

∂

∂x′
i

1
|x − x′|

∣∣∣∣∣
x′=0

+
1
2

∑
i,j

x′
ix

′
j

∂

∂x′
i

∂

∂x′
j

1
|x − x′|

∣∣∣∣∣∣
x′=0

+ . . . .

Using

∂

∂x′
i

1
|x − x′|

∣∣∣∣
x′=0

= − ∂

∂xi

1
|x − x′|

∣∣∣∣
x′=0

= − ∂

∂xi

1
|x| ,

it follows that
1

|x − x′| =
1

|x| +
∑

i

x′
ixi

|x|3 +
1
2

∑
i,j

x′
ix

′
j

(
3xixj

|x|5 − δij

|x|3
)

+ . . . . (2.74)

Electrostatic multipole expansion. Inserting this expansion into (2.71),
we obtain for φ in the first three leading orders:

• Electric monopole moment (charge):

φ0(x) =
1

|x|
∫

d3x′ρ(x′) =
Q

|x| , Q =
∫

d3x′ρ(x′) .

Therefore, when viewed from a large distance, a static charge distribution
behaves as a point charge.

• Electric dipole moment:

φ1(x) =
x

|x|3
∫

d3x′x′ρ(x′) =
xp

|x|3 , p =
∫

d3x′x′ρ(x′) ,

where p denotes the electric dipole moment of the charge distribution.

• Electric quadrupole moment:

φ2(x) =
∑
i,j

3xixj − |x|2δij

2|x|5
∫

d3x′x′
ix

′
jρ(x′) .



166 2. Electrodynamics

This expression can be simplified by subtracting a total of 0 written as∑
i,j

3xixj − |x|2δij

6|x|5
∫

d3x′|x′|2δijρ(x′) .

We then have

φ2(x) =
∑
i,j

3xixj − |x|2δij

6|x|5
∫

d3x′(3x′
ix

′
j − |x′|2δij)ρ(x′)

=
∑
i,j

3xixj − |x|2δij

6|x|5 Qij , (2.75)

where

Qij =
∫

d3x′(3x′
ix

′
j − |x′|2δij)ρ(x′)

defines the electric quadrupole moment. Since Qij has vanishing trace, the
second term in (2.75) is zero and we finally arrive at

φ2(x) =
∑
i,j

xixj

2|x|5 Qij .

Theorem 2.18: Multipole expansion of the scalar potential

For large distances |x| � R0, the scalar potential of a static charge distri-
bution ρ(x) spatially confined to |x| ≤ R0 can be expanded as

φ(x) =
Q

|x| +
xp

|x|3 +
1
2

∑
i,j

xixj

|x|5 Qij + . . . , (2.76)

with

Q =
∫

d3x′ρ(x′) (electric monopole moment, charge)

p =
∫

d3x′x′ρ(x′) (electric dipole moment)

Qij =
∫

d3x′(3x′
ix

′
j − |x′|2δij)ρ(x′) (electric quadrupole moment) .

The electric fields corresponding to the monopole and dipole moments are

EMo(x) = Q
x

|x|3 , EDi(x) =
3x(xp) − p|x|2

|x|5 .

Under orthogonal transformations, the matrix Qij behaves as a tensor of rank
2 and has 9 components. Only five of these are independent due to their sym-
metry properties Qij = Qji, Q11 + Q22 + Q33 = 0. Transforming Qij to its
principal axis system further reduces the number of independent components
to two.

The next leading-order term of the expansion (2.76) contains the octupole
moment. It consists of a third-rank tensor with 27 components, of which
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also just a few are independent. If higher moments need to be calculated, the
multipole expansion in spherical coordinates provides a much easier approach.
This is discussed in Application 28.

Magnetostatic multipole expansion. Taking into account the first two
terms in (2.74), we find from (2.71) for A:

• Magnetic monopole moment:

A0(x) =
1

c|x|
∫

d3x′j(x′) .

Since ∇j = 0, any scalar- or vector-like function f(x′) satisfies

0 =
∫

d3x′f(x′)∇′j(x′) = −
∫

d3x′[∇′f(x′)]j(x′) . (2.77)

Setting f(x′) = x′, it follows that
∫

d3x′j = 0 =⇒ A0(x) = 0. This means
the current density distribution j has no monopole component.

• Magnetic dipole moment:

A1(x) =
1

c|x|3
∫

d3x′(xx′)j(x′) .

Using the integral relation (2.77), this expression can be transformed as
follows:

f(x′) = x′
kx′

l =⇒
∫

d3x′(x′
ljk + x′

kjl) = 0

=⇒
∫

d3x′x′
ljk =

1
2

∫
d3x′(x′

ljk − x′
kjl)

=⇒
∑

l

∫
d3x′xlx

′
ljk =

1
2

∑
l

∫
d3x′(xlx

′
ljk − xlx

′
kjl)

=⇒
∫

d3x′(xx′)j =
1
2

∫
d3x′ [(xx′)j − x′(xj)]

= −1
2
x ×

∫
d3x′x′ × j (2.78)

=⇒ A1(x) =
µ × x

|x|3 , µ =
1
2c

∫
d3x′x′ × j ,

where µ denotes the magnetic dipole moment.

Theorem 2.19: Multipole expansion of the vector potential

For large distances |x| � R0, the vector potential of a static current density
distribution j(x) spatially confined to |x| ≤ R0 can be expanded as

A(x) =
µ × x

|x|3 + . . . ,

�
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with

µ =
1
2c

∫
d3x′x′ × j(x′) (magnetic dipole moment) .

Contrary to the scalar potential, the vector potential has no monopole
component. The corresponding magnetic dipole field is

BDi(x) =
3x(xµ) − µ|x|2

|x|5 .

It has the same structure as the electric dipole field.

If the charge or current density distribution has a certain spatial symmetry,
some moments in the multipole expansion of φ and A vanish. For example,
if there is an equal number of negative and positive charges, then the electric
monopole must vanish. Also, if for every dipole, there exists an equal-valued
dipole in the opposite direction, then the electric dipole moment vanishes,
and so on.

Magnetic dipole in an external magnetic field. We now calculate the
force and torque on a magnetic dipole in an external magnetic field B. We
again assume that the current density distribution j is spatially confined
around x = 0 and, additionally, we assume that the magnetic field is only
weakly varying in space. Expanding the magnetic field around the origin,

B(x′) = B(0) + (x′∇)B(x)|x=0 + . . . ,

we can write for the force F acting on the current density distribution:

F =
1
c

∫
d3x′j(x′) × B(x′)

=
1
c

∫
d3x′j(x′)︸ ︷︷ ︸

=0

×B(0) +
1
c

∫
d3x′j(x′) × (x′∇)B(x)|x=0

=
1
c

∫
d3x′j(x′) × (x′∇)B(x)|x=0

=
1
c

[∫
d3x′(∇x′)j(x′)

]
× B(x)|x=0 .

This equation can be evaluated further with the help of (2.78), where x is
replaced by the ∇ operator, which also represents a constant vector with
respect to the x′-integration. It then follows that

F = − 1
2c

[
∇ ×

∫
d3x′x′ × j(x′)

]
× B(x)|x=0

= −(∇ × µ) × B(x)|x=0 = ∇[µB(x)]|x=0 − µ [∇B(x)]|x=0︸ ︷︷ ︸
=0

= ∇[µB(x)]|x=0 .
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To lowest order, the torque N on µ is given by

N =
1
c

∫
d3x′x′ × [j(x′) × B(0)]

=
1
c

∫
d3x′ {[x′B(0)]j(x′) − [x′j(x′)]B(0)}

=
1
c

∫
d3x′[x′B(0)]j(x′) − B(0)

c

∫
d3x′x′j(x′) . (2.79)

Using

∇(x′2j) = 2x′j + x′2∇j = 2x′j

and Gauss’s law, we see that the second term in (2.79) vanishes. A second
application of (2.78) finally yields

N =
1
c

∫
d3x′[x′B(0)]j(x′) = −B(0) ×

∫
d3x′ x

′ × j(x′)
2c

= µ × B(0).

Theorem 2.20: Magnetic dipole in an external magnetic field

Consider a magnetic dipole µ of a static charge current distribution con-
fined around x = 0 within a spatially weakly varying magnetic field B.
The force and torque on µ are given by

F = ∇[µB(x)]|x=0 , N = µ × B(0) .

The energy of the magnetic dipole is

W = −
∫

dxF = −µB(0) .

2.5.3 Boundary Problems in Electrostatics I

In electrostatics one is often confronted with the following problem: given a
volume V bounded by a surface F and with an internal static charge dis-
tribution ρ, what are the scalar potential φ and the corresponding electric
field E inside V ? If there is no confining area (or if the volume is infinitely
large), we can immediately write down the solution from the static Poisson
equation:

φ(x) =
∫

d3x′ ρ(x′)
|x − x′| . (2.80)

However, the presence of a confining area implies certain boundary condi-
tions, which have to be taken into account. In this case, to ensure compliance
with the boundary conditions, a homogeneous solution must be added to the
inhomogeneous one (2.80).
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In the following, we deal with the solution of such boundary problems
where the boundary is an electric conductor. By this we mean materials
(normally metals) in which freely moving electrons are present. Those charges
generally lead to time-dependent fields. However, after a time, a closed system
will reach an equilibrium state, which we are interested in. Inside electric
conductors this means E = 0. Otherwise, there will be forces acting on the
charges that result in charge displacements, which are contradictory to the
static case.12

We start our discussion with the following question: what continuity con-
ditions must an electric field E obey at conducting surfaces? To answer this,
we consider a conducting body with a boundary surface, in which we put a
volume element ∆V or an area element ∆F with height h (Fig. 2.9). Applying

∆V

∆F

n

E2

E1 = 0

h

h

δF

δl

Fig. 2.9. Integration domain at a surface of an electric conductor.

Gauss’s law on the divergence equation and Stokes’s law on the curl equation
of (2.69), then, in the limit h → 0, only those area elements δF and those line
elements δl contribute, which are parallel to the boundary surface. Therefore,
we obtain

(E2 − E1)nδF = 4πδq , (E2 − E1)tδl = 0 .

Due to E1 = 0, it follows

Theorem 2.21: Continuity conditions at conductors

At the boundary surface F of a conductor, the electrostatic field E and the
corresponding scalar potential φ obey the following continuity conditions:

• The tangential components of E are zero:

E(x)t = 0 ⇐⇒ φ(x) = const , x ∈ F .
�

12 Strictly speaking, this statement is only true for electric fields averaged over many
atomic length units. However, for our purposes, this point can be neglected. It
is discussed in the next section.
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• The normal component of E is proportional to the surface charge density
σ (charge/unit area) of the conductor:

E(x)n = 4πσ(x) ⇐⇒ ∂φ

∂n
(x) = −4πσ(x) , x ∈ F .

Here, n is the normal vector pointing into the vacuum, and t represents a
tangential vector of the boundary surface. ∂/∂n is an abbreviation for n∇.

If the conductor’s surface charge density is given, the charge distribution is
known everywhere. This is because ρ is supposed to be known inside V and,
inside the conductor, we have ρ = ∇E/4π = 0 due to E = 0. In this case,
the solution can again be determined with the help of (2.80).

Dirichlet and Neumann boundary conditions. It is often the case that
only the surface potential is given, instead of the surface charge density. It
is then advantageous to rewrite the static Poisson equation in integral form,
in which the surface potential and its normal derivative appear explicitly. To
this end, we use the second Green identity (A.2). Inserting ψ(x′) = 1/|x−x′|
into this equation and interpreting φ as the electrostatic potential, then, using
∇′2|x − x′|−1 = −4πδ(x − x′) and ∇′2φ(x′) = −4πρ(x′), we find∫

V

d3x′
[
−4πφ(x′)δ(x − x′) +

4π

|x − x′|ρ(x′)
]

=
∮
F

dF ′
[
φ(x′)

∂

∂n′
1

|x − x′| − 1
|x − x′|

∂φ(x′)
∂n′

]
.

If the observation point x lies inside V , it follows further that

φ(x) =
∫
V

d3x′ ρ(x′)
|x − x′|

+
1
4π

∮
F

dF ′
[

1
|x − x′|

∂φ(x′)
∂n′ − φ(x′)

∂

∂n′
1

|x − x′|
]

; (2.81)

otherwise φ(x) = 0. As we mentioned at the start of this subsection, in the
limit V → ∞ this equation turns into the known expression (2.80). If, on the
other hand, we have ρ(x) = 0 inside the whole volume V , then φ(x) is solely
determined by its values and derivatives on the surface F . Now, given (2.81),
one distinguishes between two types of boundary conditions:

• Dirichlet boundary condition:13 φ(x)|x∈F = φ0(x).

• Neumann boundary condition:
∂φ(x)

∂n

∣∣∣∣
x∈F

= −4πσ(x).

13 Note that this boundary condition is a generalization of the first condition in
Theorem 2.21, since here φ does not (unlike for metals) need to be constant on
the surface.
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Each of these conditions leads to unique solutions. This can be seen as fol-
lows: assume there are two solutions φ1 and φ2 of the Poisson equation
∇2φ = −4πρ, both of which obey a Dirichlet or Neumann boundary con-
dition. Then, for u = φ1 − φ2, we have

∇2u(x)
∣∣
x∈V

= 0 , u(x)|x∈F = 0 ,
∂u(x)

∂n

∣∣∣∣
x∈F

= 0 . (2.82)

Due to the first Green identity (A.1), we further have with ψ = φ = u∫
V

d3x
[
u∇2u + (∇u)2

]
=

∮
F

dFu
∂u

∂n
=⇒

∫
V

d3x(∇u)2 = 0

=⇒ ∇u = 0 ,

i.e., u is constant inside V . Combining this with (2.82), it follows that for
the Dirichlet boundary condition: φ1 = φ2 and for the Neumann condition:
φ1 = φ2 +const. An example for the uniqueness of these solutions is given by
the Faraday cage. It consists of an arbitrarily formed closed metal surface,
inside which no charges are present, i.e.,

∇2φ(x)
∣∣
x∈V

= 0 , φ(x)|x∈F = const .

Obviously, the expression φ(x)|x∈V = const is a solution and, due to unique-
ness, it is already the desired one.

Formal solution of electrostatic boundary problems via Green func-
tions. In general, there exists no solution if both a Dirichlet and a Neumann
boundary condition are simultaneously present, as they both have unique so-
lutions generally differing from one another. In this respect, the integral form
(2.81) is disadvantageous, as it contains both types of boundary conditions.
Therefore, we shall rewrite this equation such that one of these boundary con-
ditions is eliminated. In the derivation of (2.81), we have set ψ(x′) = 1/|x−x′|
in the second Green identity, since it is a solution of ∇′2ψ(x′) = −4πδ(x−x′).
However, this ψ is just a special Green function G solving the equation

∇′2G(x, x′) = −4πδ(x − x′) .

The general solution is given by

G(x, x′) =
1

|x − x′| + g(x,x′) ,

where g fulfills the Laplace equation

∇′2g(x,x′) = 0

inside V . Now, repeating our derivation starting from the second Green iden-
tity with ψ = G, we obtain
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φ(x) =
∫
V

d3x′ρ(x′)G(x,x′)

+
1
4π

∮
F

dF ′
[
G(x, x′)

∂φ(x′)
∂n′ − φ(x′)

∂G(x,x′)
∂n′

]
.

With the help of the function g, we are now free to choose G on the surface,
such that one of the two boundary conditions vanishes:

• Dirichlet boundary condition: here, we set

G(x, x′)|x′∈F = 0 .

Then,

φ(x) =
∫
V

d3x′ρ(x′)G(x,x′) − 1
4π

∮
F

dF ′φ(x′)
∂G(x,x′)

∂n′

is a solution of the problem, provided that we have a solution of Laplace’s
equation with the boundary condition

g(x,x′)|x′∈F = − 1
|x − x′| .

• Neumann boundary condition: similar to the Dirichlet problem, it is
tempting to set ∂G/∂n′|x′∈F = 0. However, this approach is incompatible
with

∇′2G(x, x′) = −4πδ(x − x′) =⇒
∮
F

dF ′ ∂G

∂n′ = −4π .

Therefore, the correct ansatz is

∂G

∂n′

∣∣∣∣
x′∈F

= −4π

F
.

Provided that we are able to find a solution to Laplace’s equation with the
boundary condition

∂g(x,x′)
∂n′

∣∣∣∣
x′∈F

= −4π

F
− ∂

∂n′
1

|x − x′| ,

the expression

φ(x) =
∫
V

d3x′ρ(x′)G(x,x′) +
1
4π

∮
F

dF ′G(x, x′)
∂φ(x′)

∂n′ + 〈φ〉F

is a solution of the Neumann problem, where 〈φ〉F = 1
F

∮
F

dF ′φ(x′) de-
notes the average value of φ on the surface F .
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Theorem 2.22: Boundary problems in electrostatics

Consider a volume V confined by a surface F . Inside V , the charge density
ρ is known. Furthermore, let

G(x, x′) =
1

|x − x′| + g(x,x′) .

One usually distinguishes between two types of boundary problems:

• Dirichlet problem: the electrostatic potential φ is given on F :
φ(x)|x∈F = φ0(x). In this case, the solution inside V is given by

φ(x)|x∈V =
∫
V

d3x′ρ(x′)G(x,x′) − 1
4π

∮
F

dF ′φ(x′)
∂G(x,x′)

∂n′ ,

with

∇′2g(x,x′)
∣∣
x′∈V

= 0 , g(x,x′)|x′∈F = − 1
|x − x′| . (2.83)

• Neumann problem: the normal derivative of φ is given on F :
∂φ(x)

∂n

∣∣∣
x∈F

= −4πσ(x). The corresponding solution inside V reads

φ(x) =
∫
V

d3x′ρ(x′)G(x,x′) +
1
4π

∮
F

dF ′G(x, x′)
∂φ(x′)

∂n′ + 〈φ〉F ,

with

∇′2g(x,x′)
∣∣
x′∈V

= 0 ,
∂g(x,x′)

∂n′

∣∣∣∣
x′∈F

= −4π

F
− ∂

∂n′
1

|x − x′| .(2.84)

On the one hand, using Green function calculus leads to a simplification,
since boundary conditions no longer depend on special Dirichlet or Neumann
boundary values. On the other hand, it often turns out to be very difficult
to find a function g (and therefore G) with the correct boundary behavior
(2.83) or (2.84).

The function g(x,x′) solves the Laplace equation inside the volume V .
It therefore represents the potential of a charge distribution lying outside V .
This external charge distribution is conditioned such that the Green function
can take on the values G = 0 or ∂G/∂n′ = −4π/F on the boundary surface
F . For many boundary problems with relatively simple geometry, we can
therefore proceed by determining a charge distribution outside V , which,
in conjunction with the charges inside V , yields a potential fulfilling the
boundary conditions on F . This is the method of mirror charges, which,
along with other methods, is considered in the next subsection.
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2.5.4 Boundary Problems in Electrostatics II

In this subsection we study two standard examples of electrostatic boundary
problems that are discussed in many textbooks on electrodynamics. The first
example illustrates the use of the method of mirror charges. The second one
deals with the solution of Laplace’s equation in spherical coordinates.

Point charge in front of a grounded metal sphere. Consider a grounded
metal sphere with radius R in the field of a point charge situated at distance
a > R to the sphere’s center (Fig. 2.10). We look for the electrostatic po-

x

y

R

b

q′n

xn

ex

a

q

Fig. 2.10. Grounded metal sphere in front of a point charge.

tential outside the sphere (i.e., inside V ) as well as for the influenced charge
density σ on the sphere’s surface. Due to the grounding, the sphere’s poten-
tial is equal to that of earth (φ0 = 0). Inside V , we have to solve the Poisson
equation

∇2φ(x) = −4πδ(x − aex) ,

with the Dirichlet boundary condition

φ(x)||x|=R = 0 . (2.85)

We will use the method of mirror charges and try to place a suitable charge
distribution outside V (i.e., inside the sphere), such that the boundary condi-
tion (2.85) is fulfilled. Due to symmetry reasons, we make an ansatz in which
the mirror charge is a point charge q′ located at distance b < R on the x-axis,
so that

φ(x) =
q

|xn − aex| +
q′

|xn − bex| , xn = x .

On the sphere’s surface, it follows that

φ(x)||x|=R =
q

R
∣∣n − a

Rex

∣∣ +
q′

b
∣∣R

b n − ex

∣∣ .
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The Dirichlet boundary condition is fulfilled if we set

b =
R2

a
, q′ = −Rq

a
.

Therefore, the electrostatic potential inside and outside the sphere is given
by

φ(x) =

⎧⎪⎨
⎪⎩

q

|xn − aex| − Rq

a
∣∣∣xn − R2

a ex

∣∣∣ for x ∈ V

0 for x �∈ V .

(2.86)

Using

∂φ

∂x

∣∣∣∣
x=R

= −4πσ(x) ,

we obtain the influenced charge density on the sphere’s surface (i.e., the
amount of charge transferred from the earth to the sphere’s surface) as

σ(γ) = − q

4πaR

(
1 − R2

a2

)
[
1 − 2R

a cos γ + R2

a2

]3/2 ,

where γ denotes the angle between n and ex. As expected, this distribution
has a maximum at γ = 0, i.e., in the direction of the point charge q. Integra-
tion of σ over the whole surface of the sphere yields the mirror charge q′, in
accordance with Gauss’s law.

Based on these results, we can extend our problem by asking for the
electrostatic potential of an isolated metal sphere with radius R and charge
Q in the field of a point charge q situated at distance a > R to the sphere’s
center. With this in mind, we initially consider the grounded case again, for
which we already know the distribution of the influenced charge q′. Now,
we remove the grounding and place the rest charge Q − q′ onto the isolated
sphere. Since the sphere has already reached an equilibrium state with respect
to the forces between q′ and q, the rest charge will be distributed uniformly
over the sphere’s surface. Inside V , the charge Q − q′ will therefore act in
such a way as to be concentrated at the sphere’s center.14 Thus, inside V , an
extra term has to be added to the potential of (2.86), resulting in

φ(x)|x∈V =
q

|xn − aex| − Rq

a
∣∣∣xn − R2

a ex

∣∣∣ +
Q + Rq

a

|x| .

14 This can be shown in complete analogy to the calculation of the gravitational
potential of a hollow sphere in Subsection 1.5.3 with the masses replaced by
charges and the gravitational force by the Coulomb force.
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Metal sphere in a homogeneous electric field, Laplace equation in
spherical coordinates. Before tackling the problem, we turn briefly to
the solution of Laplace’s equation in spherical coordinates. This is useful
whenever dealing with spherically symmetric problems, where no charges are
present inside the volume V . In spherical coordinates, the Laplace equation
is

1
r

∂2

∂r2 (rφ) +
1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1
r2 sin2 θ

∂2φ

∂ϕ2 = 0 .

Using the ansatz

φ(x) =
U(r)

r
P (θ)Q(ϕ) ,

it follows that

PQ
d2U

dr2 +
UQ

r2 sin θ

d
dθ

(
sin θ

dP

dθ

)
+

UP

r2 sin2 θ

d2Q

dϕ2 = 0 .

Multiplying this equation by r2 sin2 θ/(UPQ) yields

r2 sin2 θ

[
1
U

d2U

dr2 +
1

r2 sin θP

d
dθ

(
sin θ

dP

dθ

)]
+

1
Q

d2Q

dϕ2 = 0 . (2.87)

The last term has only a ϕ-dependency and is therefore constant:

1
Q

d2Q

dϕ2 = −m2 = const .

Similar considerations lead to two separate equations in U and P :

d2U

dr2 − l(l + 1)
r2 U = 0 , l = const

1
sin θ

d
dθ

(
sin θ

dP

dθ

)
+

[
l(l + 1) − m2

sin2 θ

]
P = 0 .

⎫⎪⎪⎬
⎪⎪⎭ (2.88)

Without proof, we assert that, for physically meaningful solutions, the con-
stants l and m can only take on the integer values

l = 0, 1, 2, . . . , m = −l, −l + 1, . . . , l − 1, l .

The solutions of (2.88) are given by

U(r) = Arl+1 + Br−l , Q(ϕ) = e±imϕ .

Substituting x = cos θ in (2.87) leads to the Legendre differential equation
(see Section A.6)

d
dx

(
(1 − x2)

dP

dx

)
+

(
l(l + 1) − m2

1 − x2

)
P = 0 ,

which is solved by the Legendre functions Pl,m(x). Overall, we obtain
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Theorem 2.23: Solution of Laplace’s equation
in spherical coordinates

The solution of Laplace’s equation ∇2φ(x) = 0 in spherical coordinates is
given by

φ(x) =
∞∑

l=0

l∑
m=−l

[
Almrl + Blmr−l−1] eimϕPl,m(cos θ) .

If the problem has azimuthal symmetry (no ϕ-dependency), then m = 0
and

φ(x) =
∞∑

l=0

[
Alr

l + Blr
−l−1]Pl(cos θ) . (2.89)

Pl = Pl,0 denote the Legendre polynomials.

After these initial considerations, we now turn to the following problem: what
is the potential outside a grounded metal sphere that is placed in a homo-
geneous electric field E0 = E0ez? If we put the origin of our coordinate
system at the sphere’s center this problem becomes azimuthally symmetric,
so that (2.89) can be applied. The coefficients Al and Bl are determined by
the following boundary conditions:

• At z → ∞, the electric field is equal to the original homogeneous field:

φ(z → ∞) = −E0r cos θ =⇒ A1 = −E0 , Al �=1 = 0 .

• The potential vanishes on the sphere’s surface:

φ(R, θ) = 0 =⇒ B1 = E0R
3 , Bl �=1 = 0 .

Therefore, we have

φ(r, θ) =

⎧⎨
⎩E0 cos θ

(
−r +

R3

r2

)
for r > R

0 for r < R .

The corresponding electric field for x = 0 is displayed in Fig. 2.11. For the
influenced surface charge density, we obtain

σ(θ) = − 1
4π

∂φ

∂r

∣∣∣∣
r=R

=
3
4π

E0 cos θ .

The integral of σ over the whole surface of the sphere vanishes, which means
that no charge is influenced overall. Hence, there is no need to distinguish
between a grounded and an isolated sphere in this type of problem.
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z

y

Fig. 2.11. Electric field resulting from a metal sphere placed in a field that was
originally homogeneous in the z-direction.

2.5.5 Field Distributions in Magnetostatics

In magnetostatics, we first consider the case of boundary problems similar to
those of electrostatics. To this end, we assume that no currents are present
inside the volume V . Therefore, we have ∇ × B = 0, and B can be written
as the gradient of a scalar field:

B(x) = ∇ψ(x) , j(x) = 0 , x ∈ V .

From this and ∇B = 0, we again find that the Laplace equation holds inside
V ,

∇2ψ(x) = 0 .

Given certain Dirichlet or Neumann boundary conditions, the solutions to
this equation can, in principle, be constructed in the same way as discussed
in the previous two subsections.

Within electrostatics, we have assumed that the confining area of V is
a conductor, so that, inside it, the electrostatic field vanishes (if we ignore
the electric fields stemming from the bounded charges within the conductor
crystal and compensating each other on a macroscopic level). In magnetostat-
ics, the analogous situation would be a boundary surface, inside which the
magnetostatic field vanishes. However, this scenario is unrealistic, since the
bounded charges are associated with electric and magnetic dipoles, resulting
in a nonvanishing electric current on a macroscopic level. In turn, this current
produces a nonvanishing B field inside the confining material. Therefore, the
determination of boundary conditions in magnetostatics requires a discussion
of polarization and magnetization of matter, which is the subject of the next
section.
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Magnetic field of a current-carrying coil. We now turn our attention
to a typical magnetostatic field distribution problem, the determination of
the magnetic field of an (infinitely) long current-carrying coil. To prepare, we
consider a circular thin wire with radius R, through which a constant electric
current I flows (Fig. 2.12, left). We ask for the induced magnetic field B far

x

z

y

R

I

x

z

Fig. 2.12. Circular current-carrying conducting loop (left) and its magnetic dipole
field (right).

away from the conductor, as well as at an arbitrary point on the z-axis. To
answer the first question, we can utilize Theorem 2.19 since the conducting
loop behaves like a magnetic dipole for large distances |x| � R. Using

d3x′j(x′) = It(s)ds , t(s) =
dl(s)
ds

= R

⎛
⎝− sin s

cos s
0

⎞
⎠ , l(s) = R

⎛
⎝ cos s

sin s
0

⎞
⎠ ,

we evaluate this dipole to be

µ =
I

2c

2π∫
0

dsl(s) × t(s) =
πIR2

c

⎛
⎝ 0

0
1

⎞
⎠ .

The magnetic dipole field is

B(x) =
IπR2

c

3zx − ez|x|2
|x|5 , |x| � R .

Its shape is depicted on the right-hand side of Fig. 2.12. The second question
can be easily solved using Biot-Savart’s law, Theorem 2.16:
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B(0, 0, z) =
I

c

2π∫
0

dst(s) × zez − l(s)
|zez − l(s)|3 =

2πIR2

c
√

R2 + z23

⎛
⎝ 0

0
1

⎞
⎠ . (2.90)

Now we consider a current-carrying coil of length L. This is wound around
the z-axis and for simplicity is considered to be composed of N circular
conductors placed on top of each other (Fig. 2.13, left). Looking at the right-

..

.

..

.

..

.

..

.

..

.

L
2

−L
2

z z

l B
Nl windings

Fig. 2.13. Left: idealized coil composed of circular conducting segments placed on
top of each other. Right: determination of the integration path for the evaluation
of the magnetic field strength inside the coil.

hand side of Fig. 2.12, it is intuitively clear that inside the coil and in the
limit L → ∞, a magnetic field emerges in the z-direction, whereas the field
outside the coil vanishes. Moreover, we assert (without proof) that the inner
field is homogeneous. Its value at the origin can be obtained by inserting the
z-coordinates of the individual conducting loops into (2.90) and summing up
these contributions. If the conducting loops lie close together, the sum can
be replaced by an integral,∑

−→ n

∫
dz , n =

N

L
, N = winding number,

so that

B(0) =
2πIR2n

c

⎛
⎝ 0

0
1

⎞
⎠ L/2∫

−L/2

dz√
R2 + z23 =

2πILn

c
√

R2 + L2

4

⎛
⎝ 0

0
1

⎞
⎠

L→∞=
4πIn

c

⎛
⎝ 0

0
1

⎞
⎠ = B(

√
x2 + y2 < R, z) . (2.91)

Note that we also arrive at this result with the help of Ampère’s law (2.4).
If we choose the integration path as indicated on the right-hand side of Fig.
2.13, it encompasses Nl windings along the partial length l, i.e., the current
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I flows Nl times through the integration domain. Neglecting the external
magnetic field, we find∮

Bdl = |B|l =
4πINl

c
=⇒ |B| =

4πINl

cl
=

4πIn

c
.

Summary

• For the case of time-independent charge and current density distribu-
tions, Maxwell’s equations decompose into two decoupled differential
equation systems. They are the basic equations of electrostatics and
magnetostatics.

• The relationships of previous sections can be carried over to the static
case by eliminating all time dependencies. The Coulomb and Lorentz
gauges are identical and lead to the static Poisson equation in the
scalar and vector potentials.

• If the static charge and current density distributions are spatially con-
fined, then, for large distances, the corresponding scalar and vector po-
tentials can be expanded in powers of 1/|x| (multipole expansion).
Contrary to the scalar potential, the vector potential has no monopole
part, in accordance with (III).

• Within electrostatics, one usually distinguishes between two types of
boundary problems, called the Dirichlet and Neumann boundary
conditions. They correspond to different continuity conditions of the E
field at (conducting) boundary surfaces. Each of these boundary condi-
tions leads to a unique solution that can be formally determined using
Green function calculus. From this calculus, one obtains the method of
mirror charges, which is often of great practical use.

• Due to the permanent polarization and magnetization of matter, magne-
tostatic boundary problems can be discussed only with a detailed knowl-
edge of the confining material.

• Inside a long current-carrying coil, the induced magnetic field is propor-
tional to the current strength, as well as to the coil’s winding density.

Applications

28. Multipole expansion in spherical representation. What is the mul-
tipole expansion of the electrostatic potential φ in spherical representation,
and how are the individual spherical moments related to the Cartesian ones?
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Solution. Using spherical coordinates

x = r

⎛
⎝ cos ϕ sin θ

sin ϕ sin θ
cos θ

⎞
⎠ , x′ = r′

⎛
⎝ cos ϕ′ sin θ′

sin ϕ′ sin θ′

cos θ′

⎞
⎠ ,

we have according to (A.15)

1
|x − x′| =

∞∑
l=0

l∑
m=−l

4π

2l + 1
r′l

rl+1 Y ∗
l,m(θ′, ϕ′)Yl,m(θ, ϕ) ,

which, in conjunction with (2.71), yields the following representation of the
scalar potential:

φ(x) =
∞∑

l=0

l∑
−l

4π

2l + 1
ql,m

rl+1 Yl,m(θ, ϕ) .

The expansion coefficients

ql,m =
∫

d3x′r′lρ(x′)Y ∗
l,m(θ′, ϕ′)

are the electric multipole moments in spherical representation. In the case of
a real charge density, the moments with m < 0 are related, using (A.13), via
ql,−m = (−1)mq∗

l,m to the corresponding moments with m > 0. Expressing
the first few moments in Cartesian coordinates,

q0,0 =
1
4π

∫
d3x′ρ(x′) =

1
4π

Q

q1,1 = −
√

3
8π

∫
d3x′(x′ − iy′)ρ(x′) = −

√
3
8π

(px − ipy)

q1,0 =

√
3
4π

∫
d3x′z′ρ(x′) =

√
3
4π

pz ,

we see the relationship between spherical and Cartesian moments: the spher-
ical l=0-moment corresponds to the Cartesian monopole moment, the spher-
ical l=1-moments contain the Cartesian dipole moments, and so on.

29. Capacity of a plate condenser. Consider a condenser consisting of
two conducting plates of area F placed at distance d parallel to each other
(Fig. 2.14). One of the plates has charge Q and the other −Q. If the electric
field outside the condenser can be neglected, what is the potential difference
(voltage) between the plates?

Solution. At both condenser plates, we have the boundary conditions

exE(x = 0) = exE(x = d) =
4πQ

F
=⇒ ∂φ

∂x

∣∣∣∣
x=0

=
∂φ

∂x

∣∣∣∣
x=d

= −4πQ

F
.

Obviously, the ansatz
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Fig. 2.14. Charged plate condenser.

φ(x) = −4πQ

F
x =⇒ E(x) =

4πQ

F

⎛
⎝ 1

0
0

⎞
⎠

obeys these conditions (and ∇2φ = 0 inside the condenser). From this, the
voltage follows as

V =
4πQ

F

d∫
0

dx = −[φ(x = d) − φ(x = 0)] =
Q

C
, C =

F

4πd
, (2.92)

where C denotes the capacity of the condenser. This quantity depends only
on the condenser’s geometry and describes its capacity of charge at a given
voltage. Even if the condenser’s charges vary in time, (2.92) remains valid
under certain circumstances, namely if the induction term 1

c
∂B
∂t in (II) can be

neglected (quasi-static approximation). In this case, (I) and (II) are identical
in form to the electrostatic equations (2.69).

30. Self-inductivity of a coil. Consider a cylindrically winded coil with
winding number N and length L, through which a temporally varying current
I(t) flows. Using Faraday’s induction law, calculate the induced voltage at
the ends of the coil in the quasi-static approximation.

Solution. If the displacement current 1
c

∂E
∂t can be neglected in (IV) (quasi-

static approximation), then (III) and (IV) are form-identical to the magne-
tostatic equations (2.70). In this approximation, due to (2.91), we have for
the magnetic field inside the coil

B(t) =
4πI(t)N

cL

⎛
⎝ 0

0
1

⎞
⎠ .

The voltage at the ends of the coil equals the N -fold of the voltage, which is
produced inside one single conducting loop by the magnetic field. Therefore,
in conjunction with (2.2), it follows that
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V (t) = −N

c

∫
F

dF
∂B(t)

∂t
= −S

dI

dt
, S =

4π2R2N2

c2L
.

The quantity S is called self-inductivity and depends only on the coil’s ge-
ometry.

2.6 Electrodynamics in Matter

Maxwell’s equations and the Lorentz force law are fundamental laws of nature
with a large range of validity. In particular, they are also valid in matter. In
this case, the fundamental microscopic fields E and B are induced by freely
moving charges, as well as by the intrinsic dipole moments of bound particles
(such as electrons, protons, and neutrons). However, due to the large number
of particles in matter (≈ 1023), Maxwell’s equations (I) to (IV) are practically
unsolvable. If one is interested in electromagnetic phenomena in matter on a
macroscopic length scale, it is sensible to assume that a detailed knowledge
of the charge and current density distributions, as well as of the fields E and
B, is not necessary. Of interest are only the macroscopic quantities averaged
over many atomic length units.

This section deals with the formulation of macroscopic electrodynamics
in matter. We show how to describe macroscopic phenomena by using the
macroscopic Maxwell equations, where the fundamental microscopic distribu-
tions and fields are replaced by suitably chosen spatially averaged expressions.
These equations describe the properties of matter in terms of polarization and
magnetization, and we will see that, in many cases, a linear relation can be
found empirically between these quantities and the macroscopic fields. At the
end of this section, we discuss the continuity conditions for macroscopic fields
at boundaries.

2.6.1 Macroscopic Maxwell Equations

To derive a macroscopic formulation of electrodynamics, we first need a suit-
able spatial averaging procedure for the microscopic quantities ρ, j, E, and
B. A meaningful ansatz is given by

Definition: Macroscopic average 〈· · ·〉
The macroscopic average 〈G(x, t)〉 of an arbitrary field G(x, t) is given by
its convolution with a suitable function f(x),

〈G(x, t)〉 =
∫

d3x′G(x′, t)f(x − x′) ,

where f possesses the following properties:
�
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• f(x) is localized at x = 0.

• If a denotes the microscopic length scale (such as atomic distance) and
b is the macroscopic length scale (for example, 1 cm), the width ∆ of f
satisfies a 	 ∆ 	 b.

This definition guarantees that, on the one hand, atomic fluctuations are aver-
aged out and, on the other hand, the actually interesting spatial dependencies
on the macroscopic level remain unaffected. Furthermore, the averaging pro-
cedure commutes with partial derivatives. For the temporal derivative this is
obvious. For the spatial ones it follows from

∂ 〈G(x, t)〉
∂x

=
∫

d3x′G(x′, t)
∂f(x − x′)

∂x

= −
∫

d3x′G(x′, t)
∂f(x − x′)

∂x′

=
∫

d3x′ ∂G(x′, t)
∂x′ f(x − x′)

=
〈

∂G(x, t)
∂x

〉
.

By applying this averaging procedure to the homogeneous Maxwell equations
(II) and (III), we obtain the macroscopic equations

∇ × 〈E(x, t)〉 +
1
c

∂ 〈B(x, t)〉
∂t

= 0 , ∇ 〈B(x, t)〉 = 0 .

The corresponding averaging of the inhomogeneous Maxwell equations (I)
and (IV) requires some extra considerations: as noted in this section’s intro-
duction, the charges in matter are made up of two parts. One part results
from the particles bound within atoms and molecules, the latter being elec-
trically neutral overall. The second part is due to charges, which can move
almost freely within the crystal lattice. For this reason, we can split both the
charge and current density into a bound neutral (nt) and a free (fr) part:

ρ(x, t) = ρnt(x, t) + ρfr(x, t) , ρnt(x, t) =
∑

i

ρi[x − xi(t), t] (2.93)

j(x, t) = jnt(x, t) + jfr(x, t) , jnt(x, t) =
∑

i

ji[x − xi(t), t] . (2.94)

Herein, the component ρi of ρnt denotes the charge density of a neutral unit
at location xi, for example, the charge density of the nucleus and the electron
cloud of an overall neutral atom. For this, we have∫

d3x′ρi(x′, t) = 0 .

Since bound as well as free charges are conserved quantities, we have two
continuity equations:
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∂ρfr(x, t)
∂t

+ ∇jfr(x, t) = 0 ,
∂ρnt(x, t)

∂t
+ ∇jnt(x, t) = 0 . (2.95)

Expanding the convolutional function f and keeping terms only up to first
order give

f(x − x′) ≈ f(x) + x′∇′ f(x − x′)|x′=0 = f(x) − x′∇f(x) ,

while the averaging of ρnt yields

〈ρnt(x, t)〉 =
∑

i

∫
d3x′ρi(x′ − xi)f(x − x′)

=
∑

i

∫
d3x′′ρi(x′′)f(x − xi − x′′)

=
∑

i

f(x − xi)
∫

d3x′′ρi(x′′)︸ ︷︷ ︸
0

−
∑

i

∇f(x − xi)
∫

d3x′′x′′ρi(x′′)

= −
∑

i

pi∇f(x − xi) , pi =
∫

d3x′′x′′ρi(x′′) ,

where pi is the electric dipole moment of the neutral charge density ρi. Fur-
ther manipulation leads to

〈ρnt(x, t)〉 = −
∑

i

pi∇f(x − xi)

= −∇
∫

d3x′′ ∑
i

piδ(x′′ − xi)f(x − x′′)

= −∇ 〈P (x, t)〉 . (2.96)

Here,

〈P (x, t)〉 =

〈∑
i

piδ(x − xi)

〉
=

mean electric dipole moment
volume

denotes the mean polarization, i.e., the mean density of the electric dipole
moment of the neutral charge density. We are now in a position to apply
the averaging procedure to the first Maxwell equation (I). Using (2.93) and
(2.96), we find

∇ 〈E(x, t)〉 = 4π 〈ρfr(x, t)〉 − 4π∇ 〈P (x, t)〉 .

In order to apply the averaging to the remaining Maxwell equation (IV), a
calculation for 〈jnt〉 is carried out, similar to that for 〈ρnt〉. We again consider
the linear approximation of the convolutional function f , so that
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〈jnt(x, t)〉 =
∑

i

∫
d3x′ji(x′ − xi)f(x − x′)

=
∑

i

∫
d3x′′ji(x′′)f(x − xi − x′′)

=
∑

i

f(x − xi)
∫

d3x′′ji(x′′)

−
∑

i

∫
d3x′′ji(x′′)(x′′∇)f(x − xi) . (2.97)

Using ji = (ji∇′′)x′′ and (2.95), we can rewrite the first term as∑
i

f(x − xi)
∫

d3x′′ji(x′′) =
∑

i

f(x − xi)
∫

d3x′′(ji∇′′)x′′

= −
∑

f(x − xi)
∫

d3x′′(∇′′ji)x′′

=
∑

i

f(x − xi)
∫

d3x′′ ∂ρi

∂t
x′′

=
∂ 〈P (x, t)〉

∂t
.

To simplify the second term in (2.97), we initially concentrate on a single term
of the sum and a single component (ji)k = jk. Ignoring possible quadrupole
moments, we find∫

d3x′′jk(x′′∇) =
∫

d3x′′jk

∑
l

x′′
l ∂l

=
∑
l,n

∫
d3x′′x′′

l ∂′′
n(x′′

kjn)∂l −
∑

l

∫
d3x′′x′′

l x′′
k(∇′′j)︸ ︷︷ ︸

quadrupole ≈ 0

∂l

= −
∑

l

∫
d3x′′x′′

kjl∂l .

If we use the integral relation∫
d3x′′g(x′′)∇′′j(x′′) = −

∫
d3x′′[∇′′g(x′′)]j(x′′) ,

it follows further that

g(x′′) = x′′
kx′′

l =⇒
∫

d3x′′(x′′
l jk + x′′

kjl) = −
∫

d3x′′x′′
kx′′

l ∇′′j︸ ︷︷ ︸
quadrupole ≈ 0
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=⇒
∫

d3x′′jk(x′′∇) =
1
2

∑
l

∫
d3x′′(x′′

l jk∂l − x′′
kjl∂l)

=
1
2

(∫
d3x′′[x′′ × j(x′′)] × ∇

)
k

.

Consequently, the second term in (2.97) can finally be written as

−
∑

i

∫
d3x′′ji(x′′)(x′′∇)f(x − xi) = −c

∑
i

µi × ∇f(x − xi) ,

where

µi =
1
2c

∫
d3x′′x′′ × ji(x′′)

denotes the magnetic dipole moment of the neutral current ji. Overall, we
find the following expression for 〈jnt〉:

〈jnt(x, t)〉 =
∂ 〈P (x, t)〉

∂t
+ c∇ × 〈M(x, t)〉 . (2.98)

The term

〈M(x, t)〉 =

〈∑
i

µiδ(x − xi)

〉
=

mean magnetic dipole moment
volume

is the mean magnetization, i.e., the mean density of the magnetic dipole
moments of the neutral currents. By using (2.94) and (2.98), the averaging
procedure of Maxwell’s equation (IV) yields

∇ 〈B(x, t)〉 − 1
c

∂ 〈E(x, t)〉
∂t

=
4π

c
〈jfr(x, t)〉 +

4π

c

∂ 〈P (x, t)〉
∂t

+ 4π∇ × 〈M(x, t)〉 .

We summarize:

Theorem 2.24: Macroscopic Maxwell equations

The macroscopic Maxwell equations in matter are

∇ 〈D(x, t)〉 = 4π 〈ρfr(x, t)〉 (I’)

∇ × 〈E(x, t)〉 +
1
c

∂ 〈B(x, t)〉
∂t

= 0 (II’)

∇ 〈B(x, t)〉 = 0 (III’)

∇ × 〈H(x, t)〉 − 1
c

∂ 〈D(x, t)〉
∂t

=
4π

c
〈jfr(x, t)〉 , (IV’)

where
�
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〈D〉 = 〈E〉 + 4π 〈P 〉 , 〈P 〉
⎧⎨
⎩=

mean electric dipole moment
volume

= mean polarization

denotes the electric displacement or electric induction and

〈H〉 = 〈B〉 − 4π 〈M〉 , 〈M〉
⎧⎨
⎩=

mean magnetic dipole moment
volume

= mean magnetization

denotes the magnetic field strength. 〈P 〉 and 〈M〉 are related to the neutral
charge and current density distributions 〈ρnt〉 and 〈jnt〉 via

〈ρnt(x, t)〉 = −∇ 〈P (x, t)〉
〈jnt(x, t)〉 =

∂ 〈P (x, t)〉
∂t

+ c∇ × 〈M(x, t)〉 .

The macroscopic Maxwell equations (I’) to (IV’) imply the macroscopic
continuity equation

∂ 〈ρfr(x, t)〉
∂t

+ ∇ 〈jfr(x, t)〉 = 0 .

For a better understanding of this theorem, consider the following points:

• The macroscopic Maxwell equations are written solely in terms of macro-
scopically averaged quantities.

• The electric induction vector 〈D〉 is composed of two parts. The first contri-
bution is the mean electric field 〈E〉 (externally applied, as well as induced
by the free charges). The second contribution is due to the mean polariza-
tion vector 〈P 〉 of the medium, which generally depends on the external
field 〈E〉.

• The magnetic field vector 〈H〉 is described by the mean magnetic field
〈B〉 (applied externally, as well as induced by the free currents) minus the
mean magnetization 〈M〉 of the medium, which generally depends on the
external field 〈B〉.15

• The macroscopic Maxwell equations have a similar structure to their micro-
scopic counterparts (I) to (IV). However, in contrast to (I) to (IV), they are
phenomenologically inspired rather than of a fundamental nature. In par-
ticular, they cannot be formulated Lorentz-covariantly but are only valid
in the specific inertial system in which the medium is at rest on average.

15 Note that there is a semantic inconsistency here: the fundamental magnetic field
B is given the unfortunate name of “magnetic induction”, whereas the matter
field H is called “magnetic field”. This is contrary to the naming conventions
for E and D. It would have been better to have the reverse terminology for B
and H.
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Macroscopic Lorentz force. Of course, our averaging procedure can also
be applied to the Lorentz force. This yields the mean force 〈F L〉, which is
exerted on a charge q by the mean fields 〈E〉 and 〈B〉:

〈F L(x, t)〉 = q

(
〈E(x, t)〉 +

ẋ

c
× 〈B(x, t)〉

)
.

Macroscopic energy. As the macroscopic Lorentz force 〈F L〉 is structurally
similar to the microscopic force F L, we can use the same derivation as in
Subsection 2.1.3 to obtain the macroscopic energy balance equation

∂ 〈εmech〉
∂t

+
∂ 〈εem〉

∂t
= −∇ 〈S〉 ,

with
∂ 〈εmech〉

∂t
= 〈jfr〉 〈E〉

∂ 〈εem〉
∂t

=
〈E〉 〈Ḋ〉 + 〈H〉 〈Ḃ〉

4π

〈S〉 =
c

4π
〈E〉 × 〈H〉 .

⎫⎪⎬
⎪⎭ (2.99)

Notation. For macroscopic relationships, it is common practice to drop the
averaging brackets as well as the index fr. In the following, we shall adopt this
convention, keeping in mind the fact that the microscopic and macroscopic
expressions have very different interpretations.

2.6.2 Material Equations

In order to be able to apply Maxwell’s equations in matter, we need explicit
expressions for the polarization and the magnetization in terms of the macro-
scopic electromagnetic fields. Clearly, these relations will depend mainly on
the microscopic structure of the material under consideration and are there-
fore found in the framework of quantum mechanics and quantum statistics.
However, even within electrodynamics, we can make some phenomenologi-
cally motivated attempts, whose validity can be verified experimentally. If
we restrict ourselves to isotropic (no preferred direction in space) and ho-
mogeneous (no preferred location in space) materials, a meaningful ansatz
is16

P (x, t) = P 0 +
∫

d3x′dt′α(|x − x′|, t − t′)E(x′, t′)

M(x, t) = M0 +
∫

d3x′dt′β(|x − x′|, t − t′)B(x′, t′) ,

16 For P (or M , respectively), a term proportional to B (or E, respectively) is not
possible due to their conflicting behavior under a parity transformation.
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where α and β are scalar functions of time and space. In most cases, the space
dependency of α and β is relevant only on microscopic length scales (a few
atomic length units) and, therefore, is much smaller than the macroscopic
scale considered here. Neglecting this dependency, we have

P (x, t) = P 0 +
∫

dt′α(t − t′)E(x, t′)

M(x, t) = M0 +
∫

dt′β(t − t′)B(x, t′) .

⎫⎪⎪⎬
⎪⎪⎭ (2.100)

This ansatz honors the phenomenon of hysteresis, which is observed in ferro-
electric and ferromagnetic materials, where the polarization and magnetiza-
tion depend on the “prehistory” of the applied E and B fields. If we disregard
these types of material, it turns out that for a large range of field strengths
and even for alternating fields of not-too-high frequency, the ansatz (2.100)
can be replaced by the following linear relationships between P and E and
between M and B:

P = χeE , M = χmB . (2.101)

Here, χe and χm respectively denote the electric susceptibility and the mag-
netic susceptibility of the material. Using this, we find simple relations be-
tween the fields E and D as well as B and H:

D = εE , ε = 1 + 4πχe

B = µH , µ = 1 + 4πχm .

}
(2.102)

The material constants ε and µ are respectively called the dielectric constant
and the permeability constant. In the following, we disregard more compli-
cated functional dependencies and concentrate solely on the linear relations
(2.101) and (2.102). Generally, one distinguishes between the following elec-
tric materials:

• Dielectric: electric dipoles are induced by applying an external electric
field. They result from displacements of the electron clouds relative to the
atomic nuclei, as well as from the displacement of positive ions relative to
the negative ones.

• Paraelectric: these materials have permanent electric dipoles. In the ab-
sence of electric fields, these dipoles are distributed randomly due to the
heat-induced motion. They become aligned by applying an external elec-
tric field. Contrary to dielectric materials, the electric susceptibility χe is
temperature-dependent.

• Ferroelectric: these materials also have permanent electric dipoles, which
become aligned by applying an external electric field. With growing field
strength, the polarization grows very rapidly, reaches a saturation value,
and does not vanish when the field is switched off. The polarization van-
ishes completely only when an opposite field is applied (electric hysteresis).
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Above a critical temperature this behavior disappears and the material be-
comes paraelectric.

For dielectric and paramagnetic substances, we always have χe > 0 and ε > 0.
Similar to electric materials, magnetic materials are classified as follows:

• Diamagnetic: these substances are characterized by χm < 0. Magnetic
dipoles are induced by applying an external magnetic field. According to
Lenz’s rule, these dipoles are oriented in such a way that they oppose the
external magnetic field (therefore, χm < 0).

• Paramagnetic: paramagnets have permanent magnetic dipoles, which are
aligned in the presence of an external magnetic field. In the absence of
magnetic fields, the dipoles are randomly distributed. Contrary to diamag-
netic materials, the magnetic susceptibility χm is positive and temperature-
dependent.

• Ferromagnetic: ferromagnetic substances have permanent magnetic dipoles,
which are also aligned when an external magnetic field is applied. The rela-
tionship between magnetization and magnetic field is not linear; similarly
to ferroelectric materials, there exist magnetic hysteresis effects. Above a
critical temperature the ferromagnetic properties disappear and the mate-
rial becomes paramagnetic.

2.6.3 Continuity Conditions at Boundaries

We shall now investigate the behavior of the macroscopic fields E, B, D,
and H at a boundary surface that separates two different media 1 and 2. To
this end, we can adopt the arguments of Subsection 2.5.3 by placing a volume
element ∆V or surface element ∆F of height h into the separating boundary
plane (Fig. 2.15). By applying Gauss’s law to (I’) and (III’), and taking the
limit h → 0, we obtain

(D2 − D1)n = 4πσ , σ =
δq

δF
(B2 − B1)n = 0 ,

medium 2

medium 1

∆V ∆F

δF
δl

h h

n
t

Fig. 2.15. Integration domains at a surface separating two different media.
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where n is the normal vector pointing into medium 2 and σ is the surface
charge density of the boundary plane. Applying Stokes’s law to (IV’) yields∫

∆F

dF∇ × H =
∮
C

dsH =
1
c

∫
∆F

dF
∂D

∂t
+

4π

c

∫
∆F

dFj .

Assuming that ∂D/∂t is finite at the boundary plane, this contribution van-
ishes as h tends to zero, so that

t(H2 − H1) =
4π

c
J , J =

i

δl
.

Here, t is a tangential vector of the boundary surface, i the current flowing
perpendicularly to t through ∆F , and J the corresponding surface current
density [current/length=(charge/surface)×velocity]. The corresponding cal-
culation for (II’) leads to

t(E2 − E1) = 0 .

Theorem 2.25: Boundary conditions at surfaces

At a surface separating two different materials, the following continuity
conditions for the macroscopic electromagnetic fields hold:

n(D2 − D1) = 4πσ , σ = surface charge density
n(B2 − B1) = 0

t(H2 − H1) =
4π

c
J , J = surface current (perpendicular to n and t)

t(E2 − E1) = 0 ,

where n is the normal vector pointing into medium 2 and t is a tangential
vector of the boundary plane.

Summary

• Macroscopic electrodynamic phenomena in matter are described by the
macroscopic Maxwell equations. These are given in terms of the
fields E = 〈E〉, B = 〈B〉, D = 〈D〉, and H = 〈H〉 as well as the free
charge and current density distributions ρ = 〈ρfr〉 and j = 〈jfr〉, which
are obtained by averaging over sufficiently many atomic length units.

• Contrary to Maxwell’s microscopic equations (I) to (IV), these equations
are not fundamental but motivated phenomenologically.

• The neutral charge and current density distributions bound in the mate-
rial are described by the polarization P = 〈P 〉 and the magnetization
M = 〈M〉. They are related to the fields D and H.

�
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• For a large class of materials, approximate linear relationships exist be-
tween P and E, as well as between M and B. Using the dielectric
constant ε and the permeability µ, they can be expressed as D = εE
and B = µH.

• Application of Gauss’s and Stokes’s law to the macroscopic Maxwell
equations yields boundary conditions for the macroscopic electromag-
netic fields at a boundary surface.

Applications

31. Dielectric sphere in a homogeneous electric field. Consider a
charge-free sphere, of radius R and dielectric constant ε, that is placed in
a homogeneous electric field E0 = E0ez. Calculate the electrostatic potential
inside and outside the sphere, as well as the corresponding electric field E.
Solution. By assumption, there are no free charges inside (region I) and
outside (region II) the sphere. Therefore, we need to solve the Laplace equa-
tion in both regions, taking into account the relevant boundary conditions.
Putting the origin of our coordinate system at the sphere’s center, our prob-
lem becomes azimuthally symmetric, so that, according to Theorem 2.23, we
can make the following ansatz:

φI(x) =
∞∑

l=0

Alr
lPl(cos θ)

φII(x) =
∞∑

l=0

[
Blr

l + Clr
−l−1]Pl(cos θ) .

(Due to the absence of charges inside the sphere, the inner potential cannot
become singular at the origin.) The coefficients Al, Bl, and Cl are obtained
from the following boundary conditions:

• In the limit |x| → ∞, the E field is equal to the initial field:

∇φII||x|→∞ = −E0 =⇒ B1 = −E0 , Bl �=1 = 0 .

• The tangential components of E are continuous at the sphere’s surface:
∂φI

∂θ

∣∣∣∣
r=R

=
∂φII

∂θ

∣∣∣∣
r=R

=⇒ A1 = −E0 +
C1

R3 , Al =
Cl

R2l+1 , l �= 1 .

• The normal components of D are continuous at the sphere’s surface:

ε
∂φI

∂r

∣∣∣∣
r=R

=
∂φII

∂r

∣∣∣∣
r=R

=⇒

⎧⎪⎨
⎪⎩

εA1 = −E0 − 2C1

R3

εlAl = −(l + 1)
Cl

R2l+1 , l �= 1 .
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From this, it follows that

A1 = −E0
3

ε + 2
, C1 = E0R

3 ε − 1
ε + 2

, Al �=1 = Cl �=1 = 0 ,

and the potential reads

φI(x) = −E0
3

ε + 2
r cos θ

φII(x) = −E0r cos θ + E0
ε − 1
ε + 2

R3

r2 cos θ .

The corresponding E field is shown in Fig. 2.16. Inside the sphere is a con-
stant electric field of strength EI = 3

ε+2E0 < E0 in the z-direction. Out-
side the sphere we have the initial field plus the field of an electric dipole
p = E0R

3(ε − 1)/(ε + 2) pointing in the z-direction.

z

y

I

II

Fig. 2.16. Electric field resulting from a dielectric sphere placed in a field that was
originally homogeneous in the z-direction.

32. Permeable hollow sphere in a homogeneous magnetic field. Con-
sider a hollow sphere with inner radius a, outer radius b, and permeabil-
ity constant µ, which is placed in an initially homogeneous magnetic field
B0 = B0ez (see left-hand side of Fig. 2.17). What is the magnetic field B in
the regions I, II, and III?

Solution. Since there are no currents, we have ∇×B = 0 in all three areas,
so that B can be written as the gradient of a scalar field ψ:

B(x) = −∇ψ(x) .

Because ∇B = 0, this leads to the Laplace equation
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z

y

a
b

B0

I
II

III

z

y

Fig. 2.17. Magnetic field resulting from a highly permeable sphere placed in a field
that was originally homogeneous in the z-direction.

∇2ψ(x) = 0 .

Therefore, we make the following ansatz for the scalar potential ψ:

ψI(x) =
∞∑

l=0

αlr
lPl(cos θ)

ψII(x) =
∞∑

l=0

[
βlr

l + γlr
−l−1]Pl(cos θ)

ψIII(x) = −B0r cos θ +
∞∑

l=0

δlr
−l−1Pl(cos θ) ,

where the condition B(|x| → ∞) = B0 is already satisfied. The constants
αl, βl, γl, and δl are obtained from the following continuity conditions:

• The tangential components of H are continuous at r = a and r = b:

∂ψI

∂θ

∣∣∣∣
r=a

=
1
µ

∂ψII

∂θ

∣∣∣∣
r=a

,
1
µ

∂ψII

∂θ

∣∣∣∣
r=b

=
∂ψIII

∂θ

∣∣∣∣
r=b

.

• The normal components of B are continuous at r = a and r = b:

∂ψI

∂r

∣∣∣∣
r=a

=
∂ψII

∂r

∣∣∣∣
r=a

,
∂ψII

∂r

∣∣∣∣
r=b

=
∂ψIII

∂r

∣∣∣∣
r=b

.

After some manipulation, we find

α1 = − 9µB0

(2µ + 1)(µ + 2) − 2a3

b3 (µ − 1)2
, αl �=1 = 0
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β1 = − 3(2µ + 1)B0

(2µ + 1)(µ + 2) − 2a3

b3 (µ − 1)2
, βl �=1 = 0

γ1 = − 3a3(µ − 1)B0

(2µ + 1)(µ + 2) − 2a3

b3 (µ − 1)2
, γl �=1 = 0

δ1 =
(2µ + 1)(µ − 1)(b3 − a3)B0

(2µ + 1)(µ + 2) − 2a3

b3 (µ − 1)2
, δl �=1 = 0 .

Outside the sphere the potential is equivalent to that of the initial field B0
plus the field of a magnetic dipole of size δ1 pointing in the z-direction. In
the inner region is a constant magnetic field of size −α1 in the z-direction.
In particular, for µ � 1, we have

α1 = − 9B0

2µ
(
1 − a3

b3

) .

According to this, inside a highly permeable hollow sphere the magnetic field
is strongly reduced, even if the width of the sphere’s shell is relatively small.
This magnetic screening effect shown on the right-hand side of Fig. 2.17 is
analogous to the electric screening within a Faraday cage.

2.7 Electromagnetic Waves

This section deals with the propagation of electromagnetic waves. Starting
from the macroscopic Maxwell equations, the properties of plane monochro-
matic waves in nonconducting media are derived. Taking into account the
continuity relations at boundary planes of different types of media, we de-
rive the reflection and refraction laws. Furthermore, we consider wave packets
consisting of a superposition of plane waves and their “widening” in disper-
sive media. Next, we expand our discussion to include the wave propagation
in conducting media. Here, we will encounter complex wave vectors lead-
ing to damping phenomena. At the end of this section we discuss the wave
propagation in a cylindrical hollow conductor.

2.7.1 Plane Waves in Nonconducting Media

Consider a nonconducting homogeneous isotropic medium characterized by
the dielectric constant ε and the permeability constant µ. In the following we
assume that both quantities are real and positive. They may depend on the
wave frequency ω. With

D = εE , B = µH ,

the source-free (ρ = 0, j = 0) macroscopic Maxwell equations are
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ε∇E = 0 , ∇ × E +
1
c

∂B

∂t
= 0

∇B = 0 , ∇ × B

µ
− ε

c

∂E

∂t
= 0 .

⎫⎪⎪⎬
⎪⎪⎭ (2.103)

For ε = µ = 1, they also formally describe the vacuum case. However, as we
have noted previously, in a vacuum the microscopic fields E and B have a
different interpretation than the averaged macroscopic quantities. Combining
the curl equations while honoring the divergence equations, we obtain the
following wave equations symmetric in E and B:

∇2E − 1
v2

∂2E

∂t2
= 0 , ∇2B − 1

v2

∂2B

∂t2
= 0 , v =

c√
εµ

, (2.104)

where the frequency-dependent quantity v has the dimension of velocity. To
solve these equations for a particular frequency ω, we make the ansatz

E(x, t) = E0ei(kx−ωt) , B(x, t) = B0ei(kx−ωt) . (2.105)

These fields describe plane monochromatic, i.e., unifrequent, waves propa-
gating in the direction of the wave vector k. Note that the physical fields are
given by their real parts. Inserting these equations into (2.104), we obtain a
relation between ω and k called the dispersion relation:

ω2 =
c2k2

εµ
=

c2k2

n2 , n =
√

εµ , (2.106)

where n is the frequency-dependent refraction index of the medium. By as-
sumption, n, as well as ω, and k are real,17 whereas the amplitude vectors
E0,B0 are generally complex-valued. Equation (2.106) does not yet define
the solutions (2.105) uniquely. If we insert (2.105) into the Maxwell equations
(2.103), we obtain the additional constraints

kE0 = 0 , k × E0 =
ω

c
B0

kB0 = 0 , k × B0 = −εµ
ω

c
E0 ,

implying that

k ⊥ E0,B0 , B0 =
c

ω
k × E0 . (2.107)

This means that k,E0,B0 form an orthogonal trihedral (in this order).
Therefore, (2.105) describes transverse waves whose directions of oscillation,
E0,B0, are perpendicular to their direction of propagation, k.

Energy and momentum. Taking into account (2.99), the equations for
the time-averaged quantities S and εem, analogous to those of (2.11) and
(2.12), are

17 A complex n (and, consequently, a complex k) leads to exponentially damped
waves (dissipation).
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S =
c

8πµ
Re [E0 × B∗

0] =
c

8π

√
ε

µ
|E0|2k̂ , k̂ =

k

|k|
εem =

1
16π

[
ε|E0|2 +

1
µ

|B0|2
]

=
ε

8π
|E0|2 .

The ratio of these two quantities determines the velocity of the energy flux
in the direction of propagation:

S

εem
=

c√
εµ

k̂ = vk̂ .

Therefore, we can identify v as the phase velocity vϕ that describes the ve-
locity of wave trains with constant phase in the direction of k:

kx − ωt = const =⇒ |k|(|x| − vϕt) = const , vϕ =
ω

|k| .

In addition to frequency ω and phase velocity vϕ, another characteristic of
plane monochromatic waves is the wavelength λ. This is the length between
points of equal phase (in the direction of propagation) at fixed time:

|k|(|x| + λ) = |k||x| + 2π =⇒ λ =
2π

|k| .

Polarization. Due to the linearity of the wave equations, a linear combi-
nation (superposition) of their solutions yields a new solution. We wish to
consider the following two specific solutions with the same frequency ω:

E1(x, t) = E1e1ei(kx−ωt) , B1(x, t) =
c

ω
k × E1(x, t)

E2(x, t) = E2e2ei(kx−ωt) , B2(x, t) =
c

ω
k × E2(x, t) ,

where e1 and e2 are real orthogonal unit vectors. These fields describe linearly
polarized waves because their direction of oscillation is along the direction of
the polarization vectors ei or k̂ × ei for all times. Superimposing these two
E fields yields the new solution

E(x, t) = (e1E1 + e2E2)ei(kx−ωt) = (e1|E1|eiδ1 + e2|E2|eiδ2)ei(kx−ωt) ,

whose physical part is given by

ReE(x, t) = e1|E1| cos(kx − ωt + δ1) + e2|E2| cos(kx − ωt + δ2).(2.108)

(Similar considerations hold for the B fields.) Depending on the values of
the phases δ1, δ2, and of the amplitudes |E1|, |E2|, the last expression can be
classified by three polarization states:

• Elliptical polarization: δ1 �= δ2. This is the most general case. Considering
a fixed location, the electrical field vector ReE(x = const, t) rotates on an
ellipse in a plane spanned by e1 and e2 and with period T = 2π/ω.
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• Circular polarization: δ2 = δ1 ± π/2, |E1| = |E2|. In this special case,
(2.108) becomes

ReE(x, t) = |E1| [e1 cos(kx − ωt + δ1) ∓ e2 sin(kx − ωt + δ1)] .

This means that ReE(x = const, t) describes a circle of radius |E1|. De-
pending on the sign of δ2 − δ1 = ±π/2, the direction of circulation is
(+): positive (left circular polarization, positive helicity),
(−): negative (right circular polarization, negative helicity).

• Linear polarization: δ1 = δ2. Equation (2.108) now reads

ReE(x, t) = (e1|E1| + e2|E2|) cos(kx − ωt + δ1) ,

and ReE(x = const, t) moves along a straight line in the e1e2-plane.

Theorem 2.26: Plane waves in nonconducting media

Plane monochromatic waves in nonconducting media (ε, µ real) are given
by the real parts of the transverse fields

E(x, t) = E0ei(kx−ωt) , B(x, t) = B0ei(kx−ωt) ,

with

ω2 =
c2k2

n2 , n =
√

εµ , k ⊥ E0B0 , B0 =
c

ω
k × E0 ,

ω, k, n real , E0,B0 complex .

Characteristics of these waves are: the frequency ω (related to the wave
vector k via the dispersion relation of the medium), the phase velocity
vϕ = ω/|k|, and the wavelength λ = 2π/|k|. The superposition of two
linearly polarized waves yields elliptically polarized waves. Special cases of
elliptical polarization are linear and circular polarization.

2.7.2 Reflection and Refraction

In this subsection we investigate the behavior of plane monochromatic waves
at a boundary plane aligned in the xy-plane and separating two media with
different refraction indices n =

√
εµ and n′ =

√
ε′µ′ (see Fig. 2.18). We make

the following simple ansatz for the E and B fields of the incoming, reflected,
and refracted waves:

• Incoming waves:

E(x, t) = E0ei(kx−ωt) , B(x, t) =
c

ω
k × E(x, t)

k ⊥ E0 , ω2 =
c2k2

n2 .
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ϕ ϕ′′

ϕ′

k k′′

k′n
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√
ε′µ′

n =
√

εµ

Fig. 2.18. Reflection and refraction of electromagnetic waves at a boundary plane
separating two different media.

• Refracted waves:

E′(x, t) = E0ei(k′x−ω′t) , B′(x, t) =
c

ω′ k
′ × E′(x, t)

k′ ⊥ E′
0 , ω′2 =

c2k′2

n′2 .

• Reflected waves:

E′′(x, t) = E′′
0ei(k′′x−ω′′t) , B′′(x, t) =

c

ω′′ k
′′ × E′′(x, t)

k′′ ⊥ E′′
0 , ω′′2 =

c2k′′2

n2 .

This ansatz satisfies the wave equations (2.104), as well as the orthogonality
conditions (2.107) for each medium. Additionally, according to Theorem 2.25,
the tangential (t) and normal (n) components of the fields must obey certain
continuity conditions at the boundary plane (z = 0). In the absence of surface
charges and currents, these conditions are

[Et, Ht, Bn, Dn]z=0 continuous . (2.109)

Is is easily seen that these conditions can only be satisfied for all times (up to
integer multiples of 2π, which can be neglected without restricting generality)
if

[kx − ωt = k′x − ω′t = k′′x − ω′′t]z=0 .

For x = 0 this implies

ω = ω′ = ω′′ =⇒ |k| = |k′′| ,

and for t = 0

[kx = k′x = k′′x]z=0 .



2.7 Electromagnetic Waves 203

This last relation means that all wave vectors must lie in a plane spanned
by the wave vector k of the incoming wave and the normal vector n of the
boundary plane. Defining the angles ϕ, ϕ′ and ϕ′′ as shown in Fig. 2.18,

ky = |k| sin ϕ , k′
y = |k′| sin ϕ′ , k′′

y = |k| sin ϕ′′ ,

we find

Theorem 2.27: Reflection and refraction laws

If a unifrequent plane wave hits a boundary separating two different media
characterized by the refraction coefficients n and n′, the following holds:

• Incoming, reflected, and refracted waves have the same frequency.

• The absolute values of the wave vectors of incoming and reflected waves
are equal.

• The angles of incidence and reflection are identical:

ϕ = ϕ′′ (reflection law) .

• The angles of incidence and refraction are related to the media’s refrac-
tion indices via

sin ϕ′

sin ϕ
=

n

n′ (refraction law) .

Total reflection. If the electromagnetic wave is moving from an optically
denser medium to an optically thinner one (n > n′), the refraction law tells
us that

sin ϕ =
n′

n
sin ϕ′ < 1 .

This means there exists an angle of incidence,

ϕTR = arcsin
n′

n
,

for which the refraction angle is π/2, so that the refracted wave travels along
the boundary plane. For larger angles, ϕ > ϕTR, the incoming wave is totally
reflected (see Application 33). By experimentally determining the limiting
angle ϕTR at which total refraction begins to occur, the refraction index of
an unknown medium can be obtained.

Intensity relations. In contrast to the reflection and refraction laws, the
intensity and polarization of the reflected and refracted waves depend criti-
cally on the vector character of the waves. To see this, we write the continuity
conditions (2.109) once again in explicit form:
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(E0 + E′′
0 − E′

0)t = 0[
1
µ

(k × E0 + k′′ × E′′
0) − 1

µ′ k
′ × E′

0

]
t = 0

(k × E0 + k′′ × E′′
0 − k′ × E′

0)n = 0

[ε(E0 + E′′
0) − ε′E′

0]n = 0 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.110)

where n =

⎛
⎝ 0

0
1

⎞
⎠ is the normal vector and t =

⎛
⎝ t1

t2
0

⎞
⎠ a tangential vector of

the boundary plane. For further evaluation of these equations, it is instruc-
tive to consider two special cases in which the incoming waves are linearly
polarized in different directions:

a. Perpendicular polarization: the polarization vector of the incoming
electric field is perpendicular to the plane of incidence spanned by n and
k (see Fig. 2.19). In this case our ansatz for the vector quantities of the E
fields is

k =

⎛
⎝ 0

k2
k3

⎞
⎠ , k′ =

⎛
⎝ 0

k2
k′
3

⎞
⎠ , k′′ =

⎛
⎝ 0

k2
−k3

⎞
⎠

E0 =

⎛
⎝E1

0
0

⎞
⎠ , E′

0 =

⎛
⎝E′

1
E′

2
E′

3

⎞
⎠E′′

0 =

⎛
⎝E′′

1
E′′

2
E′′

3

⎞
⎠ ,

with
0 = k2E

′
2 + k′

3E
′
3 (k′E′

0 = 0)

0 = k2E
′′
2 − k3E

′′
3 (k′′E′′

0 = 0) .

}
(2.111)

z

y

ϕ ϕ

ϕ′

k k′′

k′

E E′′

E′

n
n′ =

√
ε′µ′

n =
√

εµ

Fig. 2.19. Reflection and refraction of electromagnetic waves whose E field is
polarized perpendicular to the plane of incidence.
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The first and last relations in (2.110) imply that

0 = E′′
2 − E′

2

0 = εE′′
3 − ε′E′

3

which, in conjunction with (2.111), forms a homogeneous system of equa-
tions for the four unknowns E′

2, E
′
3, E

′′
2 , E′′

3 . The only solution is the trivial
one:

E′
2 = E′

3 = E′′
2 = E′′

3 = 0 .

Consequently, reflected and refracted waves are polarized in the same way
as the incoming wave. The remaining equations in (2.110) form an inho-
mogeneous system of equations in E′

1, E
′′
1 , and k′

3, which yield the Fresnel
formulae for electromagnetic waves polarized perpendicular to the plane of
incidence:

E′
1

E1
=

2n cos ϕ

n cos ϕ + µ
µ′

√
n′2 − n2 sin2 ϕ

E′′
1

E1
=

n cos ϕ − µ
µ′

√
n′2 − n2 sin2 ϕ

n cos ϕ + µ
µ′

√
n′2 − n2 sin2 ϕ

. (2.112)

b. Parallel polarization: the polarization vector of the incoming electric
field is parallel to the plane of incidence spanned by n and k (see Fig.
2.20). Here, we choose

k = k

⎛
⎝ 0

sin ϕ
cos ϕ

⎞
⎠ , k′ = k′

⎛
⎝ 0

sin ϕ′

cos ϕ′

⎞
⎠ , k′′ = k

⎛
⎝ 0

sin ϕ
− cos ϕ

⎞
⎠ ,

z

y

ϕ ϕ

ϕ′

k k′′

k′

E E′′

E′

n
n′ =

√
ε′µ′

n =
√

εµ

Fig. 2.20. Reflection and refraction of electromagnetic waves whose E field is
polarized parallel to the plane of incidence.
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E0 = E0

⎛
⎝ 0

− cos ϕ
sin ϕ

⎞
⎠ , E′

0 = E′
0

⎛
⎝ 0

− cos ϕ′

sin ϕ′

⎞
⎠ , E′′

0 = E′′
0

⎛
⎝ 0

cos ϕ
sin ϕ

⎞
⎠ .

The tangential equations in (2.110) then yield an inhomogeneous system
for E′

0 and E′′
0 ,

cos ϕ′E′
0 + cos ϕE′′

0 = cos ϕE0

k′

µ′ E
′
0 − k

µ
E′′

0 =
k

µ
E0 ,

whose solution is given by

E′
0

E0
=

2nn′ cos ϕ
µ
µ′ n′2 cos ϕ + n

√
n′2 − n2 sin2 ϕ

E′′
0

E0
=

µ
µ′ n

′2 cos ϕ − n
√

n′2 − n2 sin2 ϕ

µ
µ′ n′2 cos ϕ + n

√
n′2 − n2 sin2 ϕ

. (2.113)

These are the Fresnel formulae for the case of parallel polarization.

Brewster angle. In case b, there is an angle, called the Brewster angle, for
which the amplitude of the reflected wave in (2.113) vanishes. If µ = µ′, this
angle is

ϕB = arctan
n′

n
.

Note that in case a, (2.112) can never be zero. Since nonpolarized waves can
be split into both polarizations a and b, there are no reflected waves with E′′

0
parallel to the incident plane if the angle of incidence is equal to the Brewster
angle. In this case the reflected waves are linearly polarized perpendicular to
the plane of incidence. This effect can be used to create linearly polarized
light.

2.7.3 Superposition of Waves, Wave Packets

The previous subsection handled the unrealistic case of (idealized) electro-
magnetic waves with distinct frequency and well-defined wave vector. How-
ever, in practice, one deals with light pulses of finite (even if small) frequency
and wavelength ranges. Since the wave equations (2.104) are linear, light
pulses (wave packets) with a given frequency range can be constructed by
superposition of monochromatic waves, and the following phenomena can be
observed:

• If the medium is dispersive, i.e., the (real) refraction index is frequency-
dependent, the phase velocities of each of the superimposed waves are
different. This implies that the individual wave components propagate at
different speeds, thereby changing their relative phases. This leads to a
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deformation of the wave packet that grows in time. In addition, the wave
components are refracted differently at a boundary plane of two different
media.18

• In a dispersive medium, the wave packet propagation velocity, called the
group velocity vg, is generally different to the phase velocities vϕ of the
individual waves. The group velocity determines the energy transport and
the velocity of the signal of the wave packet.

• In a dissipative medium, i.e., the refraction index is complex, damping
effects occur. It is then possible for the group velocity to become even
larger than the velocity of light, c. However, since the propagation of the
wave packet is bounded by absorption, the inequality vg > c does not
contradict special relativity, which states that c is the maximal velocity of
any kind of signals.

To better understand the concept of “group velocity”, we consider the propa-
gation of a wave packet in an arbitrary medium. For simplification, we set the
direction of propagation along the z-axis and consider just one component,
ψ, of the E field. Its most general form is then given by

ψ(z, t) =
1√
2π

∞∫
−∞

dkA(k)ei[kz−ω(k)t] . (2.114)

Additionally, we assume the following, very general, dispersion relation be-
tween ω and k:

ω =
ck

n(ω)
⇐⇒ ω = ω(k) .

For t = 0, (2.114) is simply the Fourier representation of the function ψ(z, 0),
with Fourier components

A(k) =
1√
2π

∞∫
−∞

dzψ(z, 0)e−ikz . (2.115)

If A(k) has a sharp maximum around k0, we can expand ω(k) in a Taylor
expansion around k0:

ω(k) = ω(k0) +
dω

dk

∣∣∣∣
k0

(k − k0) +
1
2

d2ω

dk2

∣∣∣∣
k0

(k − k0)2 + . . .

= ω0 + vg(k − k0) + γ(k − k0)2 + . . . , (2.116)

with

18 This effect is responsible for the spectral decomposition of light within a prism.
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ω0 = ω(k0)

vg =
dω

dk

∣∣∣∣
k0

(group velocity)

γ =
1
2

d2ω

dk2

∣∣∣∣
k0

(dispersion parameter) .

Inserting the linear approximation of (2.116) into (2.114), we obtain

ψ(z, t) ≈ 1√
2π

ei(vgk0−ω0)t

∞∫
−∞

dkA(k)ei(kz−vgkt)

≈ ei(vgk0−ω0)tψ(z − vgt, 0) .

The intensity of this wave is

|ψ(z, t)|2 = |ψ(z − vgt, 0)|2 .

Thus, in the linear approximation, the wave packet moves with group velocity
vg in the z-direction without changing its shape, i.e., without dispersion.
For linear dispersion relations ω ∼ |k| (nondispersive media) such as in a
vacuum, this approximation is exact. In the dispersive case, beyond the linear
approximation, one finds that the wave packet changes its shape, i.e., it flows
apart. This effect is described to lowest order by the dispersion parameter γ,
while the group velocity determines the velocity of the wave packet’s center
of mass.

Wave packet in a dispersive medium. To illustrate dispersion effects, we
now calculate (without any approximation) the z-directional propagation of a
one-dimensional light pulse in a medium governed by the following dispersion
relation:

ω(k) = ν

(
1 +

a2k2

2

)
.

Here, ν denotes a constant frequency and a a constant length. As we shall see
below, a can be regarded as a characteristic wavelength for the occurrence of
dispersion effects. For the light pulse’s initial shape, we assume the following
Gaussian distribution:

ψ(z, 0) = e− z2

2∆2 eik0z .

According to (2.115), the distribution of the corresponding Fourier ampli-
tudes is given by

A(k) =
1√
2π

∞∫
−∞

dze− z2

2∆2 e−i(k−k0)z = ∆e− ∆2(k−k0)2

2 .

Using (2.114), the shape of the light pulse at a later time t evaluates to
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ψ(z, t) =
1√
2π

∞∫
−∞

dkA(k)ei[kz−ω(k)t]

=
∆√
2π

∞∫
−∞

dke− ∆2(k−k0)2

2 ei
[
kz−ν

(
1+ a2k2

2

)
t
]

=
∆√
2π

e
−
(

∆2k2
0

2 +iνt

) ∞∫
−∞

dke− α(t)
2 k2+k(∆2k0+iz) , (2.117)

with

α(t) = ∆2 + iνa2t .

The integration in (2.117) can be performed using quadratic completion and
yields

ψ(z, t) =
∆√
α(t)

exp
(

− (z − νa2tk0)2

2α(t)

)
exp

[
ik0z − iν

(
1 +

a2k2
0

2

)
t

]
.

The intensity of the wave packet is

|ψ(z, t)|2 = ψ∗(z, t)ψ(z, t) =
∆√
β(t)

exp
(

− (z − νa2tk0)2

β(t)

)
,

with

β(t) = ∆2 +
ν2a4t2

∆2 .

The width of the wave packet is described by the time-dependent quantity
β, which grows in time (Fig. 2.21). Its rate of change per time unit is found
by differentiation of β with respect to t:

z

|ψ(z, t)|2

vgt

Fig. 2.21. Widening of a wave packet in a dispersive medium.
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β′(t) =
2ν2a4t

∆2 .

From this, one sees that ∆ � a is a necessary criterion for a small deforma-
tion and an (almost) dispersion-free propagation of the wave packet in the
medium.

2.7.4 Plane Waves in Conducting Media

The propagation of electromagnetic waves in conducting media differs some-
what from the nonconducting case. For conductors, in addition to the macro-
scopic Maxwell equations, one must also take into account Ohm’s law

j = σE ,

where σ denotes the conductibility of the conductor. Therefore, we have

ε∇E = 0 , ∇ × E +
µ

c

∂H

∂t
= 0

µ∇H = 0 , ∇ × H − ε

c

∂E

∂t
=

4πσ

c
E .

By combining the two curl equations, we find the telegraph equations, which
are symmetric in E and H:

∇2E − εµ

c

∂2E

∂t2
− 4πµσ

c2

∂E

∂t
= 0 , ∇2H − εµ

c

∂2H

∂t2
− 4πµσ

c2

∂H

∂t
= 0 .

To solve these equations we proceed along similar lines to Subsection 2.7.1
and make the ansatz

E(x, t) = E0ei(kx−ωt) , H(x, t) = H0ei(kx−ωt) . (2.118)

This gives the dispersion relation

k2 =
ω2

c2 µη =
ω2

c2 p2 , η = ε +
4πiσ

ω
, p =

√
µη ,

where η is the generalized dielectric constant and p the generalized refraction
index. Thus, in the case of conducting media, the wave vector is complex, so
that we expect damped propagation. For example, consider a wave propaga-
ting in the x-direction and set k = α + iβ. The exponential part of the wave
function can then be written as

ei(kx−ωt) = e−βxei(αx−ωt) , β > 0 .

This means the wave’s amplitude falls off exponentially in the direction of
propagation and β can be regarded as a measure for the wave’s penetration
depth into the medium. The orthogonality relations corresponding to (2.107)
are found by inserting (2.118) into the above Maxwell equations:

kE0 = 0 , k × E0 =
ωµ

c
H0

kH0 = 0 , k × H0 = −ωη

c
E0
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=⇒ k ⊥ E0,H0 , H0 =
c

ωµ
k × E0 .

Accordingly, the electromagnetic waves in conducting media are also trans-
verse and k, E0, and H0 form, as before, an orthogonal trihedral (in this
order).

2.7.5 Cylindrical Hollow Conductor

By hollow conductors we mean long metal bodies with open ends, whereas
bodies with closed ends are called cavity resonators. In the following we dis-
cuss the propagation of electromagnetic waves in a cylindrical hollow conduc-
tor with constant cross section along the z-axis (Fig. 2.22). The surface S of

z

Fig. 2.22. Hollow conductor with cylindrical symmetry.

this body is assumed to be an ideal conductor. The internal space is filled by
a dispersive medium with dielectric constant ε and permeability constant µ.
Due to the problem’s cylindrical geometry, we only expect waves propagating
along the positive and negative z-axis. Therefore, our ansatz is

E(x, t) = E(x, y)e±ikz−iωt , B(x, t) = B(x, y)e±ikz−iωt . (2.119)

Before inserting these fields into the wave equations (2.104), it is advanta-
geous to decompose them into components parallel and perpendicular to the
z-axis:

E(x, t) = [Ez(x) + Et(x)] e−iωt ,

with

Ez = (ezE)ez =

⎛
⎝ 0

0
Ez

⎞
⎠ , Et = (ez × E) × ez =

⎛
⎝Ex

Ey

0

⎞
⎠ .

Corresponding considerations hold for B. After a few intermediate calcu-
lations and taking into account the explicit z-dependency (2.119), we find
the following expressions for the transverse fields from the curl equations in
(2.103):

Et =
1
γ2

[
∇t

(
∂Ez

∂z

)
− i

ω

c
(ez × ∇t)Bz

]
Bt =

1
γ2

[
∇t

(
∂Bz

∂z

)
+ i

ω

c
εµ(ez × ∇t)Ez

]
,

⎫⎪⎪⎬
⎪⎪⎭ (2.120)
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with

γ2 =
ω2

c2 εµ − k2 , ∇t = ∇ − ∂

∂z
.

This means the transverse fields are solely determined by the longitudinal
ones, so that it is sufficient to solve the wave equations (2.104) for the longi-
tudinal fields Ez and Bz:(

∂2

∂x2 +
∂2

∂y2 + γ2
)(

Ez

Bz

)
= 0 . (2.121)

Since the cylinder’s surface is assumed to be an ideal conductor, we have the
boundary conditions

nB = 0 , n × E = 0 ,

where n denotes the normal vector of S. These conditions are equivalent to
the constraints

Ez|x∈S = 0 , n∇Bz|x∈S = 0 . (2.122)

As one can see, Ez and Bz have to obey the same wave equation (2.121) but
with different boundary conditions (2.122). In general, this cannot be fulfilled
by both fields simultaneously. Consequently, one distinguishes among three
types of solutions:

• Transverse magnetic modes (TM): the eigenvalue equation (2.121) is solved
for Ez with the boundary condition Ez|x∈S = 0, leading to a specific
eigenvalue spectrum γ2

TM. The solution of the eigenvalue equation in Bz is
chosen to be the trivial one: Bz = 0 ∀ x.

• Transverse electric modes (TE): equation (2.121) is solved for Bz with
the boundary condition n∇Bz|x∈S = 0, leading to another specific eigen-
value spectrum γ2

TE. The solution in Ez is chosen to be the trivial one:
Ez = 0 ∀ x.

• Transverse electric and magnetic modes (TEM): these modes are charac-
terized by vanishing longitudinal components of the electric and magnetic
field: Ez = Bz = 0 ∀ x. From (2.120), we see that nonvanishing transverse
fields must obey the constraint

γ2
TEM =

ω2

c2 εµ − k2 = 0 .

However, this is just the dispersion relation for a dispersive medium.
In other words: TEM-waves propagate as if they were in an unconfined
medium.
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Summary

• The wave propagation in nonconducting media is described by wave equa-
tions that are symmetric in E and B. Their solutions are composed of
plane monochromatic waves, whose wave vectors and frequencies are
related to one another via a medium-dependent dispersion relation.

• By superimposing two differently polarized waves, one generally obtains
elliptically polarized light. Special cases of elliptical polarization are
circular and linear polarization.

• If a monochromatic wave hits a boundary plane separating two different
optical media, the incoming, reflected, and refracted parts are related via
the reflection and refraction laws.

• In dispersive media, the various monochromatic waves of a wave packet
have different phase velocities, resulting in an increasing deformation
of the wave packet in time. The overall movement, i.e., the center of mass
movement of the wave packet is governed by its group velocity.

• The telegraph equations are symmetric in E and H and describe the
propagation of electromagnetic waves in conducting media. Here, the
wave vectors are complex and lead to damped propagation (dissipa-
tion).

• The propagation of electromagnetic waves in cylindrical hollow con-
ductors is uniquely determined by their longitudinal E and B compo-
nents in conjunction with the corresponding continuity conditions. One
distinguishes among three types of solutions, namely transverse mag-
netic modes (TM), transverse electric modes (TE), and transverse
electric and magnetic modes (TEM).

Applications

33. Total reflection. Show that the time-averaged energy flux nS through
a boundary plane vanishes in the case of total reflection, ϕ > ϕTR.

Solution. Referring to Fig. 2.18, we have

k′ = k′

⎛
⎝ 0

sin ϕ′

cos ϕ′

⎞
⎠ , n =

⎛
⎝ 0

0
1

⎞
⎠ .

In the case of total reflection, it holds that

sin ϕ′ = α > 1 ,

i.e., ϕ′ is complex and cos ϕ′ is purely imaginary:
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cos ϕ′ =
√

1 − sin2 ϕ′ = i
√

sin2 ϕ′ − 1 .

The time-averaged normal component of the energy flux follows as

nS =
c

8πµ
Re[n(E′ × B′∗)] =

c2

8πωµ
Re[nk′|E′

0|2] .

Since nk′ = k′ cos ϕ′ is purely imaginary, we arrive at nS = 0.

34. Cavity resonator with circular cross section. Determine the oscil-
lation modes of an ideal hollow metal volume with circular cross section. The
cross-sectional radius is R, the length of the resonator is L, and the internal
space is filled by a dispersive medium (ε, µ).

Solution. Due to the closed ends at z = 0 and z = L, electromagnetic
waves are reflected at the ends and result in standing waves along the z-axis.
Therefore, in the case of TM-waves, we make the following ansatz for the
longitudinal parts:

Bz(x) = 0 , Ez(x) = ψ(x, y) cos
(pπz

L

)
, p = 1, 2, . . . .

The transverse parts are obtained as

Et(x) = − pπ

Lγ2 sin
(pπz

L

)
∇tψ , Bt(x) =

iεµω

cγ2 cos
(pπz

L

)
ez × ∇tψ ,

with

γ2 =
ω2

c2 εµ −
(pπ

L

)2
.

Note that this ansatz automatically honors the boundary conditions
Et(z = 0) = Et(z = L) at the closed ends. For TE-modes, we choose

Ez(x) = 0 , Bz(x) = ψ(x, y) sin
(pπz

L

)
, p = 1, 2, . . . ,

from which the transverse components follow as

Et(x) = − iω
cγ2 sin

(pπz

L

)
ez × ∇tψ , Bt(x) =

pπ

Lγ2 cos
(pπz

L

)
∇tψ .

Again, the corresponding boundary conditions at the closed ends,
Bz(z = 0) = Bz(z = L), are already taken into account. To solve the wave
equation(

∂2

∂x2 +
∂2

∂y2 + γ2
)

ψ(x, y) = 0 , (2.123)

we use cylindrical coordinates as suggested by the problem’s geometry,

x = r cos ϕ , y = r sin ϕ ,

so that (2.123) turns into
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∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂ϕ2 + γ2
)

ψ(r, ϕ) = 0 .

The ansatz

ψ(r, ϕ) = J(r)eimϕ , m = 0,±1,±2, . . . ,

leads to
d2J

dr2 +
1
r

dJ

dr
+

(
γ2 − m2

r2

)
J = 0 .

Using the substitution x = γr, this equation can be cast into the Bessel
differential equation (see Section A.5)

d2J

dx2 +
1
x

dJ

dx
+

(
1 − m2

x2

)
J = 0 ,

which is solved by the Bessel functions

Jm(x) =
(x

2

)m ∞∑
i=0

(−1)i

i!(i + m)!

(x

2

)2i

.

For TM-modes, we therefore obtain the longitudinal components

Ez(x) = Jm(γr)eimϕ cos
(pπz

L

)
, Bz = 0 .

The corresponding boundary condition at the surface shell yields the con-
straint

Ez(x)|√
x2+y2=R

= 0 =⇒ Jm(γR) = 0 .

Therefore, the allowed eigenvalues γ of the wave equation are determined by
the zeros of the Bessel functions (indicated by n). For rotational symmetric
eigenoscillations (m = 0), they are given by

γm=0,n=0R = 2.405 , γm=0,n=1R = 5.520 , γm=0,n=2R = 8.654 , . . . .

The eigenfrequencies belonging to γmn are

ω2
mnp =

c√
εµ

√
γ2

mn +
(pπ

L

)2
.

For TE-modes, we have the longitudinal fields

Ez(x) = 0 , Bz(x) = Jm(γr)eimϕ sin
(pπz

L

)
,

with the following constraint:

n∇Bz(x, y)|√
x2+y2=R

= 0 =⇒ dJm(x)
dx

= 0
∣∣∣∣
x=γR

= 0 .

It relates the allowed γ with the zeros of the first derivative of the Bessel
functions. For m = 0, the first few zeros read

x0,n = γ0,nR = 3.832 , 7.016 , 10.173 , . . . .

In general, the xmn lead to TE-eigenfrequencies ωmnp, which are different
from the TM-eigenfrequencies.
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2.8 Lagrange Formalism in Electrodynamics

The Lagrange and Hamilton formalisms play a less dominant role in electro-
dynamics than, for example, in classical mechanics. In classical mechanics,
the Lagrange function provides a direct route to the equations of motion.
However, in electrodynamics, these equations are already given in the form
of Maxwell’s equations. Nevertheless, the Lagrange formalism yields an al-
ternative approach to electrodynamics, which is of particular interest with
a view to the construction of other field theories. In this section we there-
fore present the most important results of Lagrangian electrodynamics. First,
the Lagrange formulation of the equations of motion of a particle within a
given electromagnetic field are considered. This formalism is then extended
to the fields themselves. Furthermore, we discuss the conservation laws ema-
nating from the formalism and close by considering the relationship between
symmetries and the principle of gauge invariance.

2.8.1 Lagrange and Hamilton Functions of a Charged Particle

According to Theorem 2.10, we have the following relativistic equation of
motion for a particle of rest mass m0 and charge q moving through the
electromagnetic fields E and B:

d
dt

m0ẋ√
1 − ẋ2

c2

= ṗ = F L = q

(
E +

ẋ

c
× B

)
.

Expressing the fields in terms of scalar and vector potentials leads to

d
dt

m0ẋ√
1 − ẋ2

c2

= q

[
−∇φ − 1

c

∂A

∂t
+

ẋ

c
× (∇ × A)

]

= q

[
−∇φ − 1

c

∂A

∂t
+

1
c
∇(Aẋ) − 1

c
(ẋ∇)A

]

= q∇
(

Aẋ

c
− φ

)
− q

c

dA

dt
. (2.124)

Comparing this expression with the Lagrange equation in vector form,

∇xL − d
dt

∇ẋL = 0 ,

we see that (2.124) is obtained from the Lagrange function

L = −m0c
2

√
1 − ẋ2

c2 − qφ +
q

c
Aẋ . (2.125)

From this, the generalized momentum P of the particle is found to be

P = ∇ẋL = p +
q

c
A =

m0ẋ√
1 − ẋ2

c2

+
q

c
A . (2.126)
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Therefore, the corresponding Hamilton function is given by

H = P ẋ − L =
m0c

2√
1 − ẋ2

c2

+ qφ .

With the help of (2.126), we eliminate ẋ in favor of P and finally obtain

H =

√
m2

0c
4 + c2

(
P − q

c
A
)2

+ qφ .

Theorem 2.28: Lagrange and Hamilton functions of a charge q
in an electromagnetic field

L = −m0c
2

√
1 − ẋ2

c2 − qφ +
q

c
Aẋ

H =

√
m2

0c
4 + c2

(
P − q

c
A
)2

+ qφ .

From Subsection 1.6.5, we know that the relativistic Lagrange function of a
free particle is given by

Lfree = −m0c
2

√
1 − ẋ2

c2 .

Therefore, we conclude that the Lagrange function

L′ = L − Lfree = −qφ +
q

c
Aẋ = − q

γc
uµAµ , γ =

1√
1 − ẋ2

c2

describes the interaction of the particle with an electromagnetic field.

2.8.2 Lagrange Density of the Electromagnetic Field

We now show how the relativistic Lagrange formalism of point particles can
be applied to continuous fields. To this end, consider initially a system of fields
φi(x) that depend on the four-vectors xµ. Our starting point is the Lagrange
function L, which we generalize to the Lagrange density L(φi, ∂µφi, x) of the
fields φi. The action S is obtained by integrating over the four-dimensional
space-time:

S =
∫

d4xL(φi, ∂µφi, x) .

At this stage it is reasonable to introduce some constraints on the form of the
Lagrange density. First, we need to guarantee that our formalism leads to the
right equations of motion – in the case of electrodynamics these are Maxwell’s
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equations. This implies that the Lagrange density can contain derivatives of
the fields only up to first order. Second, we wish to consider only local field
theories so that the Lagrange density can depend on the fields at only one
single location x. Finally, L should be altered at most by a total divergence
under gauge transformations, so that the action remains invariant.

Lagrange equations. Let us first consider the variation of the action by
the variation δφ of an arbitrary field component φ(x):

δS =
∫

d4x

[
∂L
∂φ

δφ +
∂L

∂(∂µφ)
δ(∂µφ)

]

=
∫

d4x

[
∂L
∂φ

− ∂µ
∂L

∂(∂µφ)

]
δφ +

∫
d4x∂µ

[
∂L

∂(∂µφ)
δφ

]
. (2.127)

In analogy to Subsection 1.2.3, φ(x) is assumed to be fixed on the space-time
hyperplane at infinity (“fixed endpoints”) or to vanish there:

δφ(x)||xµ|→∞ = [φ′(x) − φ(x)]|xµ|→∞ = 0 .

Since the last term of (2.127) is a total divergence, it can be transformed,
using the four-dimensional Gauss theorem, into the surface integral∫

d4x∂µ

[
∂L

∂(∂µφ)
δφ

]
=

∮
dσµ

[
∂L

∂(∂µφ)
δφ

]
,

which, according to our assumption, vanishes. Therefore, demanding station-
arity of the action yields the following Lagrange equation for the field φ:

δS = 0 =⇒ ∂L
∂φ

− ∂µ
∂L

∂(∂µφ)
= 0 . (2.128)

Lagrange density of the electromagnetic field. Due to the above con-
straints on the Lagrange density, one can show that L can contain only
Lorentz scalars of the form

∂µAν∂µAν , ∂µAν∂νAµ , (∂µAµ)2 , AµAµ , jµAµ .

These terms must be combined in the Lagrange function such that (2.128)
yields the inhomogeneous Maxwell equations (see Theorem 2.9)19

∂µFµν =
4π

c
jν .

In Application 35, we show that the following Lagrange density satisfies this
condition:

Theorem 2.29: Lagrange density of the electromagnetic field

L = − 1
16π

FµνFµν − 1
c
jµAµ + total divergence .

19 Due to the definition of F µν , the homogeneous Maxwell equations ∂µGµν = 0
are satisfied automatically.
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Gauge invariance. Applying the gauge transformation

Aµ −→ A′µ = Aµ − ∂µχ ,

we find that L′ contains an additional term jµ∂µχ/c compared to L. However,
this term can be expressed as a total divergence, provided that the current
is conserved:

jµ∂µχ = ∂µ(jµχ) .

In other words, conservation of the four-current jµ is necessary and sufficient
for the theory to be gauge-invariant.

Hamilton formalism. Having found a formal analogy between the La-
grange formalism of a particle and that of electromagnetic fields, we now
look for a generalization of the Hamilton function

H =
∑

i

piq̇i − L

for fields. We consider the Hamilton density

H =
∂L

∂(∂φ
∂t )

∂φ

∂t
− L

and generalize it to a contravariant tensor of rank 2, called the energy-
momentum tensor:

Θµν =
∂L

∂(∂µφ)
∂νφ − gµνL . (2.129)

Note that in the present form, and in conjunction with Theorem 2.29, this
tensor is not identical with Tµν from (2.46) in Subsection 2.3.5. In partic-
ular, Θµν is not necessarily symmetric, as required by angular momentum
conservation. However, we can always add to Θµν a term

Θ̄µν = ∂κϕκµν ,

with

ϕκµν = −ϕµκν , ∂µ∂κϕκµν = 0 .

In the case of electrodynamics, this term is given by

Θ̄µν =
1
4π

∂κ(FκµAν) ,

so that the symmetrized energy-momentum tensor of electrodynamics,

Θµν + Θ̄µν = Tµν =
1
4π

(
gµκFκλFλν +

1
4
gµνFκλFκλ

)
,

is now indeed identical with the stress tensor (2.46).
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2.8.3 Conservation Laws and the Noether Theorem

Proceeding in a similar manner to Subsection 1.2.2, we shall now show the
relation between symmetries and conservation laws. For this purpose, we
initially consider a single scalar field φ(x) and calculate the variation of the
action under a very general simultaneous variation of x and φ:

xµ −→ x′µ = xµ + δxµ , φ(x) −→ φ′(x′) = φ(x) + ∆φ(x) .

Here, we stress that ∆φ is the total variation of φ at two different space-time
points. It is connected via

∆φ(x) = φ′(x′) − φ(x′) + φ(x′) − φ(x) = δφ + (∂νφ)δxν

δφ(x)||xµ|→∞ = 0 ,

}
(2.130)

with the variation δφ of φ at the same space-time point. The last relation
again reflects that φ is fixed at the space-time boundary. To evaluate the
variation

δS =
∫

δ(d4x)L +
∫

d4xδL ,

we still need to know the functional determinant

d4x′ =
∣∣∣∣det

[
∂x′µ

∂xν

]∣∣∣∣ d4x = |det[δµ
ν + ∂ν(δxµ)]|d4x = [1 + ∂µ(δxµ)]d4x

=⇒ δ(d4x) = ∂µ(δxµ)d4x.

Overall, we find

δS =
∫

d4xL∂µ(δxµ) +
∫

d4x

[
(∂µL)δxµ +

∂L
∂φ

δφ +
∂L

∂(∂µφ)
∂µ(δφ)

]

=
∫

d4x

[
∂L
∂φ

− ∂µ
∂L

∂(∂µφ)

]
δφ + δSσ ,

with

δSσ =
∫

d4x∂µ(Lδxµ) +
∫

d4x∂µ

[
∂L

∂(∂µφ)
δφ

]

=
∫

d4x∂µ(Lδxµ) +
∫

d4x∂µ

[
∂L

∂(∂µφ)
(∆φ − (∂νφ)δxν)

]

=
∫

d4x∂µ

{
∂L

∂(∂µφ)
∆φ +

[
Lgµν − ∂L

∂(∂µφ)
(∂νφ)

]
δxν

}

=
∫

d4x∂µ

{
∂L

∂(∂µφ)
∆φ − Θµνδxν

}
,

where partial integration, (2.130), and the energy-momentum tensor (2.129)
have been used. Now, let us consider an infinitesimal transformation of the
kind20

20 In the presence of more than one field, the second relation must be replaced by
∆φi = Ψiaδεa.
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δxν = Xνa(x)δεa , ∆φ = Ψa(x)δεa ,

with a matrix X, a vector Ψ , and the infinitesimal parameters εa. Then,
assuming that the transformed field satisfies the Lagrange equation (2.128),
the invariance condition of the action leads to the current conservation law

∂µjµ
a = 0 ⇐⇒ ∂0j

0
a = −∇ja , jµ

a =
∂L

∂(∂µφ)
Ψa − ΘµνXνa ,

where jµ
a represents the Noether current for each index a. Furthermore, in-

tegration of this relation over a sufficiently large spatial volume yields the
corresponding charge conservation law:

1
c

d
dt

∫
d3xj0

a = −
∫

d3x∇ja = −
∮

dFja = 0

=⇒ Qa =
∫

d3xj0
a = const .

Theorem 2.30: Noether’s theorem

The invariance of the action S =
∫

d4xL(φ, ∂µφ, x) under the transforma-
tions

xµ −→ x′µ = xµ + δxµ , δxν = Xνa(x)δεa

φ(x) −→ φ′(x′) = φ(x) + ∆φ(x) , ∆φ(x) = Ψa(x)δεa

implies conservation of the Noether currents

jµ
a =

∂L
∂(∂µφ)

Ψa − ΘµνXνa , ∂µjµ
a = 0

and of the charges

Qa =
∫

d3xj0
a ,

d
dt

Qa = 0 .

As an example of this theorem, consider a transformation that shifts the ori-
gin of time and space:

Xνa = δνa , Ψa = 0 =⇒ δxν = εν , ∆φ = 0 .

This immediately leads to

jµ
a = −Θµ

a ,

∫
Θ0

ad3x = const .

From our previous discussion, we know that
∫

Θ0
νd3x is the four-momentum

of the field. This means that the invariance of the action integral under
space-time translations leads to conservation of momentum and energy of
the electromagnetic field. This is totally analogous to our findings in classical
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mechanics. In a similar manner, we could derive the conservation of angu-
lar momentum and the center of mass law from the invariance of the action
under rotations of xµ and under translations of xµ with constant velocity.

2.8.4 Internal Symmetries and Gauge Principle

The 10 classical conservation laws follow from the invariance of the action
under transformations concerning space and time. If one is dealing with more
than one field component, then additional symmetries under internal trans-
formations with δxµ = 0 are possible (internal symmetries). In this case,
the invariance of the action is tantamount to the invariance of the Lagrange
density, up to a possible total divergence.

In the following, we consider the simple example of a two-component
field and discuss the invariance of the Lagrange density under rotations of
these two components. We start with a global gauge transformation, which
transforms both components at all locations in the same way. Following this,
we shall see what implications arise if we demand that the theory is invariant
even under local gauge transformations. This will lead us to the principle of
local gauge invariance, which is of great importance, particularly in high-
energy physics.
Global gauge invariance. As our starting point we choose the Lagrange
density

L = (∂µφ)(∂µφ∗) − m2φφ∗ , (2.131)

which depends on the two-component scalar fields

φ =
1√
2
(φ1 + iφ2) , φ∗ =

1√
2
(φ1 − iφ2) .

This describes, for example, the relativistic motion of a free electron with
two internal states (spin up and spin down). The Lagrange equations yield
the Klein-Gordon equations

(∂µ∂µ + m2)φ = 0 , (∂µ∂µ + m2)φ∗ = 0 ,

which are relativistic generalizations of the Schrödinger equation. In addition
to the space-time symmetries mentioned above, the Lagrange density (2.131)
has an additional symmetry in that it is invariant under the internal global
transformations

φ(x) −→ φ′(x) = e−iqΛφ(x) ≈ φ(x)(1 − iqΛ)

φ∗(x) −→ φ′∗(x) = eiqΛφ∗(x) ≈ φ∗(x)(1 + iqΛ)

}
, δxµ = 0 ,

where q and Λ are real constants. In the above notation we have

Xνa = 0 , Ψ = −iqφ , Ψ∗ = iqφ∗ , δε = Λ ,

from which the corresponding conserved Noether current follows:

jµ =
∂L

∂(∂µφ)
Ψ +

∂L
∂(∂µφ∗)

Ψ∗ = iq(φ∗∂µφ − φ∂µφ∗) .
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Local gauge invariance. Next, we demand that the theory also remain
invariant if we perform a local instead of a global gauge transformation. To
this end, we replace the constant Λ by a function Λ(x). Using

φ′(x) = [1 − iqΛ(x)]φ(x) , φ′∗(x) = [1 + iqΛ(x)]φ∗(x) ,

and

∂µφ′ = (1 − iqΛ)∂µφ − iqφ∂µΛ , ∂µφ′∗ = (1 + iqΛ)∂µφ∗ + iqφ∗∂µΛ ,

we see that the terms ∂µφ and ∂µφ∗ transform differently to φ and φ∗. Con-
sequently, the Lagrange density (2.131) can no longer be invariant under
these transformations. Inserting in the primed quantities and exploiting the
Lagrange equations for φ and φ∗ lead to the change

δL = −iqΛ∂µ

[
∂L

∂(∂µφ)
φ

]
− iq

∂L
∂(∂µφ)

φ∂µΛ − (φ → φ∗)

in the Lagrange density. The first term is a total divergence and causes no
change in the action. Therefore, we are left with

δL = −iq [φ(∂µφ∗)∂µΛ − φ∗(∂µφ)∂µΛ] = jµ∂µΛ .

However, a way to rescue the local gauge invariance of this theory is to add
two additional terms

L1 = −jµAµ = −iq(φ∗∂µφ − φ∂µφ∗)Aµ

L2 = q2AµAµφ∗φ

to L and to define a rule for the transformational behavior of the four-vector
Aµ under local gauge transformations:

Aµ(x) −→ A′
µ(x) = Aµ(x) + ∂µΛ(x) .

Using these directives, we find, as desired,

δL + δL1 + δL2 = 0 .

We see that local gauge invariance of the theory is ensured only if the current
jµ is coupled to a new field Aµ. The strength of the coupling is given by the
coupling constant q, which, in turn, is identified with the charge q of the field
φ. Our theory is completed by allowing a kinetic quadratic term for the field
Aµ, which, of course, must also satisfy local gauge invariance. From previous
considerations we already know that

L3 = − 1
16π

FµνFµν , Fµν = ∂µAν − ∂νAµ

satisfies this condition. The complete locally gauge-invariant Lagrange den-
sity is therefore given by

L = (∂µ + iqAµ)φ(∂µ − iqAµ)φ∗ − m2φ∗φ − 1
16π

FµνFµν . (2.132)
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In summary, we obtain the following remarkable result: to extend global
gauge invariance of our theory to local gauge invariance, we must introduce
an electromagnetic field Aµ called the gauge potential, with a particular trans-
formational behavior, and couple it to the Noether current jµ. This is the
content of the gauge principle. By adding a quadratic term in Aµ, the gauge
potential itself becomes a dynamical object of the theory.

Introducing the gauge-covariant derivatives

Dµ = ∂µ + iqAµ , D∗µ = ∂µ − iqAµ ,

with

D′
µφ′ = (1 − iqΛ)Dµφ , D′∗µφ′∗ = (1 + iqΛ)Dµφ∗ ,

we can write (2.132) as

L = (Dµφ)(D∗µφ∗) − m2φ∗φ − 1
16π

FµνFµν .

The Lagrange equations for the fields Aµ lead to

∂νFµν = −4πjµ ,

where

jµ = iq(φ∗Dµφ − φD∗µφ∗)

is the conserved Noether current of the locally gauge-invariant theory. Finally,
note that adding a term of the type

m2AµAµ

breaks gauge invariance. Therefore, we conclude that the electromagnetic
field is massless.

Theorem 2.31: Gauge principle

The Lagrange density of a complex scalar field

L = (∂µφ)(∂µφ∗) − m2φ∗φ

is invariant under the local gauge transformations

φ′(x) = e−iqΛ(x)φ(x) , φ′∗(x) = eiqΛ(x)φ∗(x)

if

• a vector field Aµ(x) is introduced, which transforms as

Aµ −→ A′
µ = Aµ + ∂µΛ ,

• and the derivatives ∂µ and ∂∗
µ are replaced by the covariant derivatives

Dµ = ∂µ + iqAµ and D∗
µ = ∂µ − iqAµ .

�
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The locally gauge-invariant Lagrange density is then given by

L = DµφD∗µφ∗ − m2φ∗φ − 1
16π

FµνFµν .

Demanding local gauge invariance leads necessarily to the existence of the
electromagnetic field.

Summary

• The dynamics of a charged particle in an electromagnetic field can be
described using a Lagrange or a Hamilton function.

• The Lagrange formalism (with few degrees of freedom) can be extended
to continuous systems (with infinitely many degrees of freedom) by re-
placing the Lagrange function with the Lagrange density. In analogy
to the example of point mechanics, the corresponding Lagrange equations
describe the dynamics of continuous systems. In the case of electrody-
namics, these lead to the Maxwell equations.

• The invariance of the action under transformations of the space-time
four-vector and the fields in the Lagrange density yields a set of conser-
vation laws. This is the content of the Noether theorem, which also
holds for internal symmetries.

• Demanding invariance of the Lagrange theory under local gauge trans-
forms leads to the existence of gauge fields.

Applications

35. Lagrange equations. Calculate the Lagrangian equations of motions
following from the Lagrange density of the electromagnetic field, as well as
from the Lagrange density of a real scalar particle.

Solution. The Lagrange density of the electromagnetic field is

L = − 1
16π

FαβFαβ − 1
c
Aαjα

= − 1
16π

gαγgβρ(∂γAρ − ∂ρAγ)(∂αAβ − ∂βAα) − 1
c
Aαjα .

From this, we calculate

∂L
∂Aν

= −1
c
jν

and
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∂L
∂(∂µAν)

= − 1
16π

gαγgβρ

[
(δγ

µδρ
ν − δρ

µδγ
ν )Fαβ + (δα

µδβ
ν − δβ

µδα
ν )F γρ

]
= − 1

16π
(Fµν − Fνµ + Fµν − Fνµ) = − 1

4π
Fµν .

It follows that

∂µFµν =
4π

c
jν .

The Lagrange density of a real scalar field is

L = (∂αφ)(∂αφ) − m2φ2 = gαβ(∂αφ)(∂βφ) − m2φ2 .

Evaluating

∂L
∂φ

= −2m2φ

and
∂L

∂(∂µφ)
= gαβ(δµ

α∂βφ + δµ
β∂αφ) = 2∂µφ ,

we arrive at

(∂µ∂µ + m2)φ = 0 .



3. Quantum Mechanics

Quantum mechanics describes microscopic phenomena on atomic length
scales (∼ 10−10 m). It was developed in the 1920s by Max Planck, Niels
Bohr, Erwin Schrödinger, Werner Heisenberg, and others, when it was re-
vealed that the behavior of the microcosmos differs fundamentally from that
of the macroscopic world. Two of the main characteristics of the microscopic
world are, first, the indistinguishability of wave-like and particle-like behavior
of corpuscular phenomena. Depending on the experimental setup, particles,
such as electrons, can be interpreted as point-like bodies or as waves. And,
second, dynamical quantities of a bound system such as energy or angular
momentum can take on only certain quantized values that are discrete multi-
ples of a particular constant. Through the introduction of novel mathematical
concepts (novel to physics), and by leaving behind the classical conceptions
of the end of the 19th century, quantum theory could be formulated in such
a way as to describe the new discoveries, and it was able to make predictions
that were subsequently corroborated by experiment. As a nonrelativistic the-
ory – it was only in the 1930s that Paul Dirac successfully attempted a for-
mulation of relativistic quantum mechanics – its range of validity is confined
to one of velocities small compared to that of light, and of binding energies
small compared to the constituent masses of bound systems. Nevertheless,
even today, this theory still remains the physical-mathematical foundation
for the development of atomic and elementary particle theories, as well as for
quantum field theories that describe the interaction of elementary particles
through the exchange of virtual field quanta.

Contrary to all classical theories describing particle behavior, quantum
mechanics is of probabilistic nature and makes predictions about probabili-
ties of physical systems. Each state is described by an abstract vector in a
Hilbert space that represents the probability amplitude for all possible con-
figurations of the state. The time development of these vectors, on the other
hand, is completely deterministic and follows a partial differential equation
called the Schrödinger equation. This is the fundamental equation of nonrela-
tivistic quantum mechanics. Quantization of the theory, in short, is achieved
by representing the erstwhile classical dynamical quantities such as energy
and momentum by operators. As a consequence of the probabilistic concept,
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quantum mechanical measurements differ fundamentally from classical ones.
They are closely connected to the eigenvalue problem of Hermitean operators.

In the first section of this chapter we introduce the mathematical formal-
ism of the theory, due mostly to Paul Dirac. It consists mainly of elements
of linear algebra although sometimes using a new notation. We discuss the
representation of quantum mechanical states as bra and ket vectors, as well
as the eigenvalue problem of linear operators.

Section 3.2 deals with the physical foundation of quantum theory. We
introduce the quantum mechanical postulates and discuss them in a gen-
eral frame. We will see that quantum theory can be written in infinitely
many abstract representations called pictures. These are all related by uni-
tary transformations. Choosing a particular basis within such a picture yields
a specific representation of the theory. Within pictures these representations
are also connected by unitary transformations.

In Section 3.3 we consider, as first concrete applications, some one-
dimensional systems for which the Schrödinger equation is exactly soluble,
and in which typical quantum effects can be studied easily. We will encounter
the effect of a wave packet dispersing with time. This effect has already been
studied in the context of electrodynamics and will now be reinterpreted quan-
tum mechanically.

Angular momentum plays a particularly special role in three-dimensional
quantum mechanics and is the topic of Section 3.4. It is generally defined via
commutator relations. Accordingly, the quantum mechanical counterpart of
the ordinary classical angular momentum is a special case of a generic type
of angular momentum quantum operator. We introduce a further operator
of this kind, called spin, which has no classical counterpart and can be inter-
preted as the intrinsic rotation of a particle. Finally, we discuss the addition
(also called coupling) of quantum mechanical angular momenta.

In Section 3.5 we discuss three-dimensional quantum systems with central
symmetry. For such systems the angular part of the Schrödinger equation can
be separated and leads to eigensolutions of the angular momentum operator.
It remains to solve the radial Schrödinger equation, and we shall do so for
some simple systems such as the naive hydrogen atom.

In Section 3.6 we discuss quantum mechanical implications of electro-
magnetic phenomena. From the laws of electrodynamics we shall deduce the
quantum description of electron movement in external electromagnetic fields.
Expanding the electrodynamical gauge principle to quantum mechanics leads
to interesting new phenomena that can be verified experimentally. Addition-
ally, we discuss the Stern-Gerlach experiment, which provides a belated jus-
tification for the spin-dynamical degree of freedom.

Since most quantum mechanical systems cannot be solved exactly, one
generally has to resort to approximative methods. For static bound systems
the time-independent perturbation theory is a suitable approximation, and
we introduce it in Section 3.7. It will allow us to discuss adequately a more
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realistic version of the hydrogen atom by taking into account the coupling
between angular momentum and spin of the electron (fine structure splitting),
as well as the coupling between electron and nucleus spin (hyperfine structure
splitting).

Section 3.8 deals with atomic transitions. They are a consequence of the
interaction between atoms and electromagnetic radiation (emission and ab-
sorption), which causes atomic electrons to change their quantum state. These
systems are also not exactly soluble, and they lead us to consider time-
dependent perturbation theory. With its help, we calculate matrix elements
(transition rates) of some atomic transitions in the dipole approximation.

In contrast to classical mechanics, where identical particles can always be
distinguished by their different trajectories, quantum mechanics knows of two
types of particles: distinguishable and identical ones. This has implications
for quantum mechanical many-particle systems, which are studied in Section
3.9.

In the last section of this chapter we consider the scattering of particles.
The idea is to describe the scattering process by an asymptotic wave function
that splits into an incoming and a scattered part. The amplitude of the
scattered wave then allows us to calculate the differential cross section of the
process.

3.1 Mathematical Foundations of Quantum Mechanics

In this section we introduce some mathematical concepts of relevance to
quantum mechanics. In general, these are taken from linear algebra, and we
therefore assume most readers to be familiar with the terrain. Consequently,
we review only the bare minimum, at the same time introducing Dirac’s
notation of bras and kets. In addition to the central concept of Hilbert spaces,
we discuss linear operators and their eigenvalue problems. At the end of this
section we take a look at vectors and operators in particular representations
(basis systems).

3.1.1 Hilbert Space

In general, each quantum mechanical state is assigned a particular kind of
vector that, following Dirac’s notation, is called the ket vector or simply ket
and is denoted by the symbol | ·〉 . To distinguish among different kets one
inserts into this symbol one or more indices that can take on discrete or
continuous values. The set of all kets forms a vector space, the so-called
Hilbert space. With its help, it is possible to formulate quantum mechanics
in a general, representation-independent manner.
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Definition: Hilbert space H
A Hilbert space H is a linear vector space defined on the body of complex
numbers with a Hermitean scalar product. Two relations are defined on
Hilbert spaces:

• If |v〉 ∈ H and λ ∈ C , then λ |v〉 is also an element of the Hilbert space.

• If |v〉 , |u〉 ∈ H , then |v〉 + |u〉 ∈ H (principle of superposition).

Metric of the Hilbert space
The scalar product of a ket |u〉 with a ket |v〉 is generally a complex number
〈v||u〉 = 〈v|u〉 with the following attributes:

• The scalar product of |v〉 and |u〉 is the complex conjugate of the scalar
product of |u〉 with |v〉 :

〈v|u〉 = 〈u| v〉∗
. (3.1)

• Each vector has a real and positive square norm:

〈u| u〉 ≥ 0 (= 0 if, and only if, |u〉 = 0) .

• The scalar product 〈v|u〉 is linear in |u〉 and antilinear in |v〉 :

〈v| (λ1 |u1〉 + λ2 |u2〉 ) = λ1 〈v|u1〉 + λ2 〈v|u2〉
(〈v1| λ1 + 〈v2| λ2) |u〉 = λ∗

1 〈v1|u〉 + λ∗
2 〈v2|u〉 , λ1,2 ∈ C .

The above implies the Schwarz inequality

| 〈v|u〉 |2 ≤ 〈v| v〉 〈u| u〉 .

The identity holds if |v〉 and |u〉 are proportional to one another, i.e.,
|v〉 = λ |u〉 .

In quantum mechanics one deals with finite- and infinite-dimensional Hilbert
spaces, depending on the system under consideration. In the following we shall
generally assume, without giving a proof, that the space we are handling is
complete with regard to the norm | 〈u| u〉 | defined by the scalar product.

Dual space. It is well known from linear algebra that each vector space can
be assigned a dual vector space whose elements are all linear functions χ(|u〉 )
of the kets |u〉 , and for which the superposition principle also holds. Such
vectors are called bra vectors, or simply bras, and they are represented by the
symbol 〈 ·| . The scalar product of two ket vectors |v〉 and |u〉 can therefore
be interpreted as the value of the linear function v applied to the ket |u〉 :

〈v|u〉 = v(|u〉 ) .

A unique antilinear relation called conjugation defines a ket vector for each
bra, and vice versa:
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|u〉 =
∑

i

λi | i〉 ←→ 〈u| =
∑

i

〈 i| λ∗
i . (3.2)

To understand the following sections it will be sufficient to regard the scalar
product as a functional relation between two vectors of the Hilbert space:
〈 ·| ·〉 : H × H → C .

Definition: Orthonormal basis, projection operator

• Two vectors |n〉 and |m〉 are orthonormal if 〈n| m〉 = δnm.

• A minimal set of orthonormal vectors {|n〉 , n = 1, 2, . . .} is called an
orthonormal basis of a subspace of H if any vector |u〉 of this space can
be written as a linear combination of the form

|u〉 =
∑

n

|n〉 cn , cn = 〈n| u〉

=
∑

n

|n〉 〈n| u〉

= P{n} |u〉 , P{n} =
∑

n

|n〉 〈n| = 1 .

A similar relation holds for bra vectors:

〈v| =
∑

n

〈v|n〉 〈n| = 〈v| P{n} .

P{n} defines the unit operator. It consists of the sum of projection operators
Pn = |n〉 〈n| that project onto the basis vector |n〉 .

Using the unit operator, the scalar product of two vectors |v〉 and |u〉 can
be written as

〈v|u〉 = 〈v| P{n}P{n} |u〉 =
∑
n,m

〈v|n〉 〈n| m〉 〈m|u〉

=
∑

n

〈v|n〉 〈n| u〉 .

This leads to the completeness relation

〈u| u〉 =
∑

n

| 〈n| u〉 |2 .

With the help of this relation, one can verify explicitly whether a particular
set of orthonormal vectors forms a basis set.

Improper Hilbert vectors. We shall see in later sections that it is also
necessary to consider vectors whose norm is not finite and which depend on
at least one continuous index. These improper Hilbert vectors do not, in all
stringency, belong to H. However, linear combinations of the form
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|ω〉 =

ν2∫
ν1

λ(ν) |ν〉 dν

are indeed elements of the Hilbert space, satisfying all the corresponding
attributes. For these types of vectors, the above definitions and relations
need to be extended in the following way:

Definition: Orthonormal basis, projection operator
(for continuous indices)

• Two improper Hilbert vectors |µ〉 , |ν〉 are orthonormal if 〈µ| ν〉 =
δ(µ − ν).

• A minimal set of orthonormal improper Hilbert vectors {|ν〉 , ν ∈ R} is
called orthonormal basis of a subspace of H if any proper vector |u〉 of
this subspace can be written as an integral over ν such that

|u〉 =
∫

dν |ν〉 λ(ν) , λ(ν) = 〈ν|u〉

=
∫

dν |ν〉 〈ν|u〉

= P{ν} |u〉 , P{ν} =
∫

dν |ν〉 〈ν| = 1 .

Using this definition, the scalar product 〈v|u〉 is obtained in complete anal-
ogy to the finite discrete case:

〈v|u〉 = 〈v| P{ν}P{ν} |u〉
=

∫
dν

∫
dν′ 〈v| ν〉 〈ν| ν′〉 〈ν′|u〉

=
∫

dν

∫
dν′ 〈v| ν〉 δ(ν − ν′) 〈ν| ν′〉 〈ν′|u〉

=
∫

dν 〈v| ν〉 〈ν|u〉 .

The completeness relation is

〈u| u〉 =
∫

dν| 〈ν|u〉 |2 .

Combined systems. In the context of N -particle systems, we will need the
combination of particles from different vector spaces. To this end, we define

Definition: Tensor product of two vector spaces

Let ε1 and ε2 be two vector spaces and
∣∣u(1)

〉 ∈ ε1,
∣∣u(2)

〉 ∈ ε2. The
kets

∣∣u(1)
〉 ⊗ ∣∣u(2)

〉
=

∣∣u(1); u(2)
〉

span the tensor space ε1 ⊗ ε2 that, per
definition, has the following properties:

�
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• dim(ε1⊗ε2) = dim(ε1) ·dim(ε2) (as long as ε1,2 are finite-dimensional).

• Commutativity:
∣∣u(1); u(2)

〉
=

∣∣u(2); u(1)
〉

.

• Distributivity of addition:∣∣∣u(1)
〉

= λ
∣∣∣v(1)

〉
+ µ

∣∣∣w(1)
〉

=⇒
∣∣∣u(1); u(2)

〉
= λ

∣∣∣v(1); u(2)
〉

+ µ
∣∣∣w(1); u(2)

〉
and ∣∣∣u(2)

〉
= λ

∣∣∣v(2)
〉

+ µ
∣∣∣w(2)

〉
=⇒

∣∣∣u(1); u(2)
〉

= λ
∣∣∣u(1); v(2)

〉
+ µ

∣∣∣u(1); w(2)
〉

.

Let A(1) and A(2) denote two operators (see next subsection) on vector
spaces ε1 and ε2, respectively. We have:

A(1)
∣∣u(1)

〉
=

∣∣v(1)
〉

=⇒ A(1)
∣∣u(1); u(2)

〉
=

∣∣v(1); u(2)
〉

A(2)
∣∣u(2)

〉
=

∣∣v(2)
〉

=⇒ A(2)
∣∣u(1); u(2)

〉
=

∣∣u(1); v(2)
〉

.

For the commutator (see page 234), we find

[A(1),A(2)] = A(1)A(2) − A(2)A(1) = 0 ,

which states that the operators on ε1 commute with those on ε2. Similar
relations hold for the dual tensor space.

3.1.2 Linear Operators1

Linear operators play a central role in quantum mechanics, and they are
closely related to physical quantities. In addition, changes of the state of a
system, particularly those caused by measurements, are represented by linear
operators.

Definition: Linear operator A

A linear operator A assigns each ket (bra) of a subspace of the Hilbert
space H, the domain, a ket (bra) of a subspace of H, the co-domain:

A |u〉 = |v〉 , 〈u′| A = 〈v′| .
�

1 To avoid confusion with classical quantities, quantum mechanical operators are
always represented by boldfaced capital letters. This holds equally for vector-like
operators (e.g., angular momentum L), and for scalar-like operators (e.g., the
three Cartesian components of angular momentum: Lx, Ly, Lz).
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It has the following properties:

A(λ1 |u1〉 + λ2 |u2〉 ) = λ1A |u1〉 + λ2A |u2〉
(〈u1| λ1 + 〈u′

2| λ2)A = (〈u′
1| A)λ1 + (〈u′

2| A)λ2 .

Two operators are identical if they are defined on the same domain and
if each state is projected by these operators onto the same state of the
co-domain.

Thus, u(A |v〉 ) is a linear function of |v〉 since both u and A are linear. It
follows that

u(A |v〉 ) = (〈u| A) |v〉 = 〈u| A |v 〉 .

The order of applying u and A on |v〉 is not important, and the brackets can
be dropped. The most important algebraic operations that can be performed
with operators are

• Multiplication with a constant c:

(cA) |u〉 = c(A |u〉 ) , 〈u′| (cA) = (〈u′| A)c .

• Operator sum S = A + B:

S |u〉 = A |u〉 + B |u〉 , 〈u′| S = 〈u′| A + 〈u′| B .

• Operator product P = AB:

P |u〉 = A(B |u〉 ) , 〈u′| P = (〈u′| A)B .

Here, the domain of A must include the co-domain of B.

Commutator. Contrary to the sum, the product of two linear operators A
and B is not, in general, commutative, and the commutator

[A, B] = AB − BA

does not necessarily vanish. Some useful rules obtained from the definition of
the commutator are as follows:

[A, B] = −[B,A]
[A, B + C] = [A, B] + [A, C]

[A, BC] = [A, B]C + B[A, C]
0 = [A, [B,C]] + [B, [C,A]] + [C, [A, B]]

[A, Bn] =
n−1∑
s=0

Bs[A, B]Bn−s−1 .



3.1 Mathematical Foundations of Quantum Mechanics 235

Hermitean and unitary operators. From the one-to-one relation (3.2)
between bras and kets, we can find an analogous relation, called adjunction,
between operators of the Hilbert space and the space dual to it:

|v〉 = A |u〉 ←→ 〈v| = 〈u| A† .

This relation defines the linear operator A† which is the Hermitean conjugate,
or adjoint, operator to A. Using the definition of the scalar product (3.1), we
find the conjugation

〈u| A |v 〉 =
〈
v|A† |u〉∗

and therefore

(A†)† = A , (cA)† = c∗A† , c ∈ C ,

(A + B)† = A† + B† , (AB)† = B†A† .

Forming the adjoint of an operator corresponds to performing the conjugation
between bras and kets, or finding the complex conjugate of a complex number.

Definition: Hermitean, anti-Hermitean operators

• A linear operator H is called Hermitean if it is identical to its adjoint:
H = H†.

• A linear operator I is called anti-Hermitean if it is identical to the neg-
ative of its adjoint: I = −I†.

This definition implies that

• Any linear operator A can be written uniquely as the sum of a Hermitean
and an anti-Hermitean operator:

A = HA + IA , HA =
A + A†

2
, IA =

A − A†

2
.

• Any linear combination of Hermitean operators with real coefficients is
Hermitean.

Another important class of operators is given by

Definition: Unitary operators

An operator U is called unitary if it is equal to the inverse of its adjoint:

UU † = U †U = 1 .

It follows that

• The product of two unitary operators is a unitary operator.
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• Unitary operators leave the scalar product of vectors to which they are
applied invariant.

• If U is the infinitesimal unitary transformation

U = 1 + iεF , |ε| 	 1 ,

then

UU † = 1 = (1 + iεF )(1 − iεF †) =⇒ F = F † ,

i.e., the operator F is Hermitean.

• If F is Hermitean, then eiF is unitary.

3.1.3 Eigenvalue Problems

Many problems of quantum mechanics can be formulated as eigenvalue prob-
lems.

Definition: Eigenvectors, eigenvalues

Let A be a linear operator. The complex number a for which

A |u〉 = a |u〉
is called the eigenvalue of A, and the ket |u〉 is called the eigenket or eigen-
state to the eigenvalue a. Similarly, 〈u′| is the eigenbra to the eigenvalue
a′ if

〈u′| A = 〈u′| a′ .

Some consequences are as follows:

• If |u〉 is an eigenket of A, any multiple c |u〉 of this vector is an eigenket
of A to the same eigenvalue.

• If there are several linearly independent eigenkets to the same eigenvalue
a, any linear combination of these kets is an eigenvector of A to this eigen-
value. Thus, the set of eigenkets of A to a particular eigenvalue a forms a
vector space, the subspace to the eigenvalue a. The level of degeneracy of
a is given by the dimension of this subspace.

• Any eigenvector of A with eigenvalue a is also an eigenvector of f(A) with
eigenvalue f(a): A |u〉 = a |u〉 =⇒ f(A) |u〉 = f(a) |u〉 .

Similar properties hold for the eigenbras of A. The totality of all eigenvalues
of an operator is called the eigenvalue spectrum of the operator.

The eigenvalue problem of Hermitean operators is particularly important
since, in quantum mechanics, physically measurable quantities are generally
identified with Hermitean operators.
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Theorem 3.1: Eigenvalue problem of Hermitean operators

If A is a Hermitean operator on the Hilbert space H, then

1. The ket- and bra-eigenvalue spectra are identical.

2. All eigenvalues are real.

3. Any bra vector that is the conjugate of an eigenket of A is an eigenbra
with the same eigenvalue, and vice versa. In other words: the subspace of
the eigenbras to a particular eigenvalue is the dual space of the subspace
of the eigenkets with the same eigenvalue.

4. Eigenvectors to different eigenvalues are orthogonal.

Proof.

To 2. If

A = A† and A |u〉 = a |u〉 ,

it follows that

〈u| A |u 〉 = 〈u| A |u 〉∗ = a 〈u| u〉 .

Since 〈u| u〉 is real, a is also real. The proof for the eigenvalues of the eigenbras
is completely analogous.

To 1 and 3. Since all eigenvalues are real, it follows from A |u〉 = a |u〉
that 〈u| A = 〈u| a. Both statements follow from this.

To 4. Let

A |u〉 = a |u〉 , A |v〉 = b |v〉 , a �= b .

By scalar multiplication of the first equation with 〈v| , of the second equation
with |u〉 , and subsequent subtraction of the resulting relations, we find

(a − b) 〈v|u〉 = 0 =⇒ 〈v|u〉 = 0 .

Continuous spectrum. So far we have assumed that the eigenvectors be-
long to the Hilbert space or, equivalently, that the eigenvalue spectrum is
discrete. Generally, however, the spectrum consists of a discrete and a con-
tinuous part, where the latter corresponds to eigenvectors that do not have a
finite norm, and therefore do not belong to the Hilbert space. Nevertheless,
by normalizing these improper Hilbert vectors to the δ-function, they can be
smoothly included into the eigenvalue problem so that all statements of the
previous theorem remain valid.

Observables, completeness. Consider, as an example, the following very
general eigenvalue spectrum of a Hermitean operator A:
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A |nr〉 = an |nr〉 , A |ν, ρ, r〉 = a(ν, ρ) |ν, ρ, r〉 ,
n, r ∈
ν, ρ ∈ R
an, a(ν, ρ) ∈ R .

It consists of a discrete part {an} and a continuous part {a(ν, ρ)}. The eigen-
kets to the eigenvalue an are |nr〉 , whereas the eigenkets to the eigenvalue
a(ν, ρ) are given by |ν, ρ, r〉 . The corresponding degeneracies are given by the
running index r. The eigenvectors can be normalized such that the following
orthonormality relations hold:

〈n, r|n′, r′〉 = δnn′δrr′

〈n, r| ν′, ρ′, r′〉 = 0
〈ν, ρ, r| ν′, ρ′, r′〉 = δ(ν − ν′)δ(ρ − ρ′)δrr′ .

If these vectors span the complete space, we can expand (as a series or an
integral) any vector with finite norm using this basis. In this case, the vectors
are said to form a complete system, and the Hermitean operator is called an
observable. Often, it can only be shown for the case of Hermitean operators
with a discrete spectrum that the basis system is complete. The proof for op-
erators with a mixed or purely continuous spectrum is usually quite complex.
In the following we shall always take it for granted that the eigenket system
of Hermitean operators with a discrete or continuous spectrum is a complete
system. The unit operator to the above basis system is

P = P{n,r} + P{ν,ρ,r}

=
∑
n,r

|nr〉 〈nr| +
∑

r

∫
dν

∫
dρ |ν, ρ, r〉 〈ν, ρ, r| ,

and the expansion of a ket |u〉 is given by

|u〉 = P |u〉
=

∑
n,r

|nr〉 〈nr|u〉 +
∑

r

∫
dν

∫
dρ |ν, ρ, r〉 〈ν, ρ, r|u〉 .

For the basis system at hand, the completeness relation reads

〈u| u〉 =
∑
n,r

| 〈nr|u〉 |2 +
∑

r

∫
dν

∫
dρ| 〈ν, ρ, r|u〉 |2 .

In the next section we shall identify observables with measurable physical
quantities. For this reason the following theorem is particularly important:

Theorem 3.2: Commuting observables

Two observables A and B commute if, and only if, they have at least one
common orthonormal basis.



3.1 Mathematical Foundations of Quantum Mechanics 239

Proof. Let {|n〉} be a complete orthonormal system of A with
A |n〉 = an |n〉 . It follows that

A = P{n}AP{n} =
∑
n,n′

|n〉 〈n| A |n′ 〉 〈n′| =
∑

n

|n〉 an 〈n|

B = P{n}BP{n} =
∑
n,n′

|n〉 〈n| B |n′ 〉 〈n′| .

Therefore,

AB =
∑

n,n′,n′′
|n〉 an 〈n| n′〉 〈n′|B |n′′ 〉 〈n′′|

=
∑
n,n′

|n〉 an 〈n| B |n′ 〉 〈n′|

BA =
∑

n,n′,n′′
|n〉 〈n| B |n′ 〉 〈n′|n′′〉 an′′ 〈n′′|

=
∑
n,n′

|n〉 〈n| B |n′ 〉 an′ 〈n′| .

Using [A, B] = 0, we find

〈n| B |n′ 〉 (an − an′) = 0 .

If there is no degeneracy (an �= an′ for n �= n′), then

〈n| B |n′ 〉 = 0 for n �= n′ , (3.3)

so that each eigenvector of A is also eigenvector of B. If some eigenvalues
an are degenerate, one can always choose basis vectors such that (3.3) is
satisfied. This completes the proof in forward direction. On the other hand,
if |n〉 are also eigenvectors of B, we have

B |n〉 = bn |n〉 =⇒ 〈n| B |n′ 〉 = bnδnn′ =⇒ [A, B] = 0 .

3.1.4 Representation of Vectors and Linear Operators

Let us consider an arbitrary complete, discrete and nondegenerate eigenvalue
spectrum {|n〉} of a Hermitean operator Q:

Q |n〉 = qn |n〉 , 〈m|n〉 = δmn , PQ =
∑

n

|n〉 〈n| = 1 .

Then, any kets, bras, and operators of the Hilbert space can be expanded in
the eigenkets {|n〉} as follows:

|u〉 = PQ |u〉 =
∑

n

|n〉 〈n| u〉

〈v| = 〈v| PQ =
∑

n

〈v|n〉 〈n| =
∑

n

〈n| v〉∗ 〈n|

A = PQAPQ =
∑
n,m

|n〉 〈n| A |m 〉 〈m| .
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The projections 〈n| u〉 and 〈v|n〉 onto the basis vectors, as well as 〈n| A |m 〉,
can be interpreted as elements of coordinate vectors (|u〉 )Q, (〈v| )Q and ma-
trices (A)Q that represent the abstract quantities |u〉 , 〈v| , and A in the
Q-representation:

(|u〉 )Q =

⎛
⎜⎝ 〈1|u〉

〈2|u〉
...

⎞
⎟⎠ , (〈v| )Q = (〈v| 1〉 , 〈v| 2〉 , . . .)

(A)Q =

⎛
⎜⎝ 〈1|A |1 〉 〈1|A |2 〉 . . .

〈2|A |1 〉 〈2|A |2 〉 . . .
...

...
...

⎞
⎟⎠ .

We have the following properties:

• The bra-row matrix (〈u| )Q, which is the conjugate of the ket-column
matrix (|u〉 )Q, is the complex conjugate of the transposed ket matrix:
〈u| n〉 = 〈n| u〉∗.

• The adjoint matrix (A†)Q of the square operator matrix (A)Q is obtained
by complex conjugation and transposition of the original matrix:

(A†)
Q

mn =
〈
m|A† |n〉

= 〈n| A |m 〉∗ =
[
(A)Q

nm

]∗
.

It is easy to see that the algebraic operations of vectors and operators are
the same as those of the matrices that represent them. The extension to the
continuous case is unproblematic. The matrices then have continuous indices,
and the sums in the matrix operations must be replaced by integrals.

Note that the observable Q has a particularly simple form in the Q-
representation since there it is given by a diagonal matrix in which all off-
diagonal elements vanish. The same is true for any function f(Q), and, fol-
lowing Theorem 3.2, for any observable commuting with Q (whereby the
degeneracy of eigenvalues may have to be used to choose a suitable basis
system).

Change of representation. We consider two basis systems consisting of
the eigenvectors {|n〉 , n = 1, 2, . . .} of an observable Q and {|χ〉 , χ ∈ R} of
an observable Θ:

Q |n〉 = qn |n〉 , 〈n| m〉 = δnm , PQ =
∑

n

|n〉 〈n| = 1

Θ |χ〉 = θ(χ) |χ〉 , 〈χ|χ′〉 = δ(χ − χ′) , PΘ =
∫

dχ |χ〉 〈χ| = 1 .

The basis vectors of one representation can be expanded in the basis of the
other representation as

|n〉 = PΘ |n〉 =
∫

dχ |χ〉 〈χ|n〉 , |χ〉 = PQ |χ〉 =
∑

n

|n〉 〈n| χ〉 .
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The expansion coefficients 〈χ|n〉 and 〈n| χ〉 can be interpreted as the ele-
ments of matrices S(χ, n) and T (n, χ), which, in this particular case, have
a continuous as well as a discrete index. Due to 〈χ|n〉 = 〈n| χ〉∗, we find
T = S†. In addition,

〈χ|χ′〉 =
∑

n

〈χ|n〉 〈n| χ′〉 = δ(χ − χ′)

〈n| n′〉 =
∫

dχ 〈n| χ〉 〈χ|n′〉 = δnn′

=⇒ SS† = 1 , TT † = S†S = 1 ,

which means that S is unitary. Now, suppose a ket |u〉 and an operator A
are given in the Q-representation:

|u〉 =
∑

n

|n〉 〈n| u〉 , A =
∑
n,n′

|n〉 〈n| A |n′ 〉 〈n′| .

It follows that in the Θ-representation

|u〉 =
∑

n

∫
dχ |χ〉 〈χ|n〉 〈n| u〉

⇐⇒ (|u〉 )Θ = S(|u〉 )Q and accordingly (〈v| )Θ = (〈v| )QS†

and

A =
∑
n,n′

∫
dχ

∫
dχ′ |χ〉 〈χ|n〉 〈n| A |n′ 〉 〈n′|χ′〉 〈χ′|

⇐⇒ (A)Θ = S(A)QS† .

Thus, the transition from matrices in the Q-representation to those in the
Θ-representation is given by a unitary transformation S. The elements of this
matrix have the following properties:

• As a function of the column index n, the elements 〈χ|n〉 of the χth row
are the components of the row vector (〈χ| )Q, which is the eigenbra 〈χ| of
Θ in the Q-representation.

• As a function of the row index χ, the elements of the the nth column are
the components of the column vector (|n〉 )Θ, which is the eigenket |n〉 of
Q in the Θ-representation.

The solution of the eigenvalue problem of an operator Θ in the Q-representa-
tion is therefore mathematically equivalent to determining the transformation
S that diagonalizes the matrix (Θ)Q.
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Summary

• Proper ket vectors are elements of the Hilbert space, a linear vector
space of at most countable infinite dimension. They possess a finite norm
with regard to the Hilbert metric. Bra vectors are conjugate to the kets
and are elements of the dual Hilbert space.

• Improper Hilbert vectors that do not have a finite norm can be
normalized to the δ-function. They satisfy an analogous set of relations
as proper Hilbert vectors.

• The notion of operators plays a central role in quantum mechanics. Of
particular interest are Hermitean operators, which always have real
eigenvalues. Their eigenvectors are mutually orthogonal. If the eigenbasis
of a Hermitean operator is complete, the operator is called an observ-
able.

• Two observables commute if, and only if, they possess a common or-
thonormal basis.

• Expanding kets and operators in the same basis of the Hilbert space, the
expansion coefficients describe these quantities in the representation
of this particular basis.

Applications

36. Properties of projection operators. Consider a finite-dimensional
subspace of the Hilbert space that is spanned by the orthonormal system
|a1〉 , . . . , |an〉 . Show that the operator

P{a} =
n∑

i=1

|ai〉 〈ai|

satisfies all typical properties of projection operators:

a. P{a} is linear,

b. P2
{a} = P{a},

c. P{a} is Hermitean: P†
{a} = P{a}.

What are the eigenvalues and eigenvectors of P{a}?

Solution.

To a. We have
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P{a}(λ1 |ψ1〉 + λ2 |ψ2〉 ) =
n∑

i=1

|ai〉 〈ai|λ1ψ1 + λ2ψ2〉

=
n∑

i=1

|ai〉 〈ai|λ1ψ1〉 +
n∑

i=1

|ai〉 〈ai|λ2ψ2〉

= λ1

n∑
i=1

|ai〉 〈ai|ψ1〉 + λ2

n∑
i=1

|ai〉 〈ai|ψ2〉

= λ1P{a} |ψ1〉 + λ2P{a} |ψ2〉 .

Therefore, P{a} is linear.

To b.

P2
{a} =

n∑
i,j=1

|ai〉 〈ai| aj〉 〈aj | =
n∑

i,j=1

|ai〉 δij 〈aj | =
n∑

i=1

|ai〉 〈ai| = P{a}.

To c.〈
ψ1

∣∣∣∣∣
n∑

i=1

|ai〉 〈ai|
∣∣∣∣∣ψ2

〉
=

n∑
i=1

〈ψ1| ai〉 〈ai|ψ2〉 =
n∑

i=1

〈ψ2| ai〉∗ 〈ai|ψ1〉∗

=

〈
ψ2

∣∣∣∣∣
n∑

i=1

|ai〉 〈ai|
∣∣∣∣∣ψ1

〉∗

=⇒ P{a} = P†
{a} .

Clearly,

P{a} |aj〉 =
n∑

i=1

|ai〉 〈ai| aj〉 =
n∑

i=1

δij |ai〉 = |aj〉 .

Thus, P{a} has the eigenvectors |ai〉 with eigenvalues one.

37. Commuting operators. Verify that the following Hermitean operators
commute and specify a simultaneous eigenbasis:

Ω =

⎛
⎝ 1 0 1

0 0 0
1 0 1

⎞
⎠ , Λ =

⎛
⎝ 2 1 1

1 0 −1
1 −1 2

⎞
⎠ .

In addition, show that both matrices are diagonal in this basis representation.

Solution. We immediately see that

ΩΛ = ΛΩ =

⎛
⎝ 3 0 3

0 0 0
3 0 3

⎞
⎠ =⇒ [Ω,Λ] = 0 .

To determine the eigenbases, we need to solve the eigenvalue problems
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Ωx = ωx , Λx = λx . (3.4)

For Ω we find∣∣∣∣∣∣
1 − ω 0 1

0 −ω 0
1 0 1 − ω

∣∣∣∣∣∣ = −ω2(ω − 2) = 0

=⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ω1 = 0 : e1 =
1√
3

⎛
⎝ 1

1
−1

⎞
⎠ , ω2 = 0 : e2 =

1√
3

⎛
⎝ 1

−1
−1

⎞
⎠

ω3 = 2 : e3 =
1√
2

⎛
⎝ 1

0
1

⎞
⎠ ,

whereas for Λ∣∣∣∣∣∣
2 − λ 1 1

1 −λ −1
1 −1 2 − λ

∣∣∣∣∣∣ = −(λ − 2)(λ + 1)(λ − 3) = 0

=⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ1 = 2 : f1 =
1√
3

⎛
⎝ 1

1
−1

⎞
⎠ , λ2 = −1 : f2 =

1√
6

⎛
⎝ 1

−2
−1

⎞
⎠

λ3 = 3 : f3 =
1√
2

⎛
⎝ 1

0
1

⎞
⎠ .

As a simultaneous basis system {gi} of Ω and Λ we can take

g1 = e1 = f1 =
1√
3

⎛
⎝ 1

1
−1

⎞
⎠

g2 = f2 =
1

2
√

2
(−e1 + 3e2) =

1√
6

⎛
⎝ 1

−2
−1

⎞
⎠

g3 = e3 = f3 =
1√
2

⎛
⎝ 1

0
1

⎞
⎠ ,

where we note that g2 is a linear combination of the eigenvectors e1 and e2 of
Ω to the same eigenvalue. Transforming the eigenvalue equations (3.4) given
in the canonical basis into the g-basis, we have

Ω′x′ = ωx′ , Λ′x′ = Λx′ , with A′ = RAR−1 , x′ = Rx ,

where the transformation matrix R is given by



3.2 Formulation of Quantum Theory 245

R−1 =
1√
6

⎛
⎝

√
2 1

√
3√

2 −2 0
−√

2 −1
√

3

⎞
⎠ , R =

1√
6

⎛
⎝

√
2

√
2 −√

2
1 −2 −1√
3 0

√
3

⎞
⎠ .

Thus, we find for Ω′ and Λ′

Ω′ =

⎛
⎝ 0 0 0

0 0 0
0 0 2

⎞
⎠ , Λ′ =

⎛
⎝ 2 0 0

0 −1 0
0 0 3

⎞
⎠ .

3.2 Formulation of Quantum Theory

Using the mathematical formalism developed in the previous section, we now
turn to the formulation of quantum theory. Following a brief motivation based
on some experiments indicating the inability of classical mechanics to describe
certain microscopic phenomena, we present the postulates of quantum me-
chanics in axiomatic form. In this context, the concept of measurement plays a
central role as quantum mechanical measurements differ fundamentally from
classical ones. Furthermore, we investigate some general aspects concerning
the temporal evolution of quantum systems (Schrödinger equation). This sec-
tion ends with considerations about representations and pictures of quantum
theory.

3.2.1 Limits of Classical Physics

Two properties of the microscopic world that fundamentally contradict the
classical view of nature can be viewed as the primary reason for the develop-
ment of quantum mechanics toward the end of the 19th century:

• the quantized nature of physical quantities such as energy and momentum,

• the wave-particle duality.

Representative for many experimental manifestations of these two phenom-
ena (black-body radiation, Franck-Hertz experiment, Stern-Gerlach experi-
ment, Zeeman effect, atomic spectroscopy, Compton effect, etc.), we pick out
two specific experiments:

Photoelectric effect. When an alkali metal placed in a vacuum is radiated
with ultraviolet light, it emits electrons if the frequency of the light is above
a particular (material-dependent) threshold frequency. The strength of the
induced electric current is proportional to the intensity of the radiation ab-
sorbed by the metal. However, the energy of these electrons is independent
of the radiation intensity and, in contradiction to classical physics, depends
only on the frequency. Einstein found an explanation for this observation
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by postulating that the radiation is formed by light quanta (photons) with
energy

E = hν or E = h̄ω , ω = 2πν ,

where ν is the frequency of the light and

h = 6.62 · 10−27 erg · s , h̄ =
h

2π

is Planck’s action quantum. Accordingly, an electron absorbing a light quan-
tum receives an amount of energy hν that is used partially to detach the
electron from the metal: separation work W . The remaining energy is trans-
formed into kinetic energy of the electron:

Ee =
1
2
mev

2 = hν − W .

Bending of matter particles. When a homogeneous electron beam that
has passed through a crystal is captured on a screen, one sees an interference
pattern with a sequence of intensity minima and maxima, quite analogous to
the deflection of electromagnetic waves. The same holds for the deflection of
mono-energetic beams of helium atoms, hydrogen molecules, neutrons, and so
on. Obviously, and in contradiction to classical expectations, particles exhibit
attributes that leave room for a wave interpretation. On the other hand, when
one tries to detect the particles at the location of the screen, one can only
ever detect proper particles hitting the screen one by one. Accordingly, at
a sufficiently small radiation time, the interference pattern is discontinuous
and indeed results from the bounces of each single particle on the screen.

A satisfying noncontradictory interpretation of these and many other phe-
nomena is obtained if the strictly classical distinction between corpuscular
and wave-like phenomena is abandoned and replaced by the postulate that
each particle is described by a wave function ψ(x, t) whose intensity |ψ(x, t)|2
is a measure of the probability of finding the particle at time t at location
x. This is the content of the statistical interpretation of the wave-particle
duality. One important consequence of this wave-mechanical view is the su-
perposition principle, according to which different states can be linearly su-
perimposed as in wave optics. As we shall see in the next sections, this result
is fundamental to the theoretical foundation of quantum mechanics where
states exist in an abstract vector space, the Hilbert space. Wave mechanics
then arises as a special representation of quantum mechanics, called coordi-
nate representation.

Another principle that quantum theory has to obey is the correspondence
principle. It states that quantum mechanics must, in some sense, converge to
the classical theory when the extent of matter waves becomes small. In this
case, we can regard matter waves as being point-like so that they behave like
classical particles following exact trajectories. This corresponds to the limit
h̄ → 0 and is analogous to the limiting case of wave optics λ→0−→ geometrical
optics.
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3.2.2 Postulates of Quantum Mechanics

In the following, we present the postulates of nonrelativistic quantum me-
chanics. To highlight differences between quantum and classical mechanics,
these postulates are opposed by the corresponding classical laws in the Hamil-
ton formalism.

Theorem 3.3: Postulates of quantum mechanics

Classical mechanics Quantum mechanics

The classical state of a system
at time t is given by the generalized
coordinates q1(t), . . ., qN (t) and mo-
menta p1(t), . . . , pN (t) defined on a
real state space.

I. The quantum mechanical state of
a system is given by a non-null vec-
tor, the state vector |ψ(t)〉 , defined
on a complex unitary Hilbert space.
Vectors differing only by a constant
factor describe the same state.

Each classical dynamical variable ω
is a function of qi and pi on the state
space:
ω = ω(q1, . . . , qN , p1, . . . , pN ).

II. Physical observables are quan-
tities that can be measured ex-
perimentally. They are generally
described by linear Hermitean op-
erators so that, in particular, their
eigenvalues are real.

The generalized coordinates and
momenta obey the Poisson brackets

{qi, qk} = {pi, pk} = 0 ,

{qi, pk} = δik .

III. The independent classical quan-
tities xi and pi are represented by
Hermitean operators2 Xi and P i

for which the following commutation
rules hold:

[Xi,Xj ] = [P i,P j ] = 0 ,

[Xi,P j ] = ih̄δij , i, j = 1, 2, 3 .

The Hermitean operators corre-
sponding to the classical variables
ω(xi, pi) are

Ω(Xi,P i) = ω(xi → Xi, pi → P i).

However, there are observables with
no classical counterpart. �

2 See footnote 1 on page 233.
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A measurement of a dynamical vari-
able ω yields:
ω(q1, . . . , qN , pi, . . . , pN ). The mea-
surement does not necessarily influ-
ence the state of the particle.

IV. If the system is in the state
|ψ〉 , a measurement of the dynami-
cal variable represented by Ω yields
one of the eigenvalues ω of Ω with
the probability

W (ω) =
〈ψ|Pω |ψ 〉

〈ψ|ψ〉 ,

where Pω projects onto the eigen-
space corresponding to the eigen-
value ω. A necessary consequence of
this (ideal) measurement is that the
state changes from |ψ〉 to Pω |ψ〉 .

The state variables qi and pi obey
Hamilton’s equations:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

V. The state vector |ψ(t)〉 obeys the
Schrödinger equation

ih̄
d
dt

|ψ(t)〉 = H |ψ(t)〉 .

H is the operator of total energy,
called the Hamilton operator. In the
simplest case, it can be obtained via
the correspondence principle

H = H(x → Xi, pi → P i)

from the Hamilton function of the
corresponding classical system.

To I. This postulate emphasizes the importance of Hilbert spaces in quan-
tum mechanics. Since Hilbert spaces are closed with respect to addition,
adding two vectors results in another possible state. This is the principle of
superposition, which is related to quantum mechanical interference effects.
Vectors differing only by a multiplicative constant are equivalent. Each state
|ψ〉 is therefore associated with a one-dimensional subspace of the Hilbert
space, called beam. It is generated by the projection operator Pψ = |ψ〉 〈ψ| .
Here, |ψ〉 is a pure state as opposed to mixed states, that we will discuss
in the context of statistical physics. In general, a quantum physical state
is described by a vector |ψ(t)〉 that is a linear combination of proper and
improper Hilbert vectors. Proper vectors are normalizable to unity, whereas
improper vectors can only by normalized to the δ-function. However, |ψ(t)〉
can always be normalized to unity so that it is a proper Hilbert vector in any
case.

To II. Axiom II shows the importance of the theory of linear operators dis-
cussed in Subsection 3.1.2. They constitute the quantum mechanical objects
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that act on state vectors. Note, however, that these vectors are not them-
selves observables. It is the real eigenvalues of the operators that we measure
in experiments (see Subsection 3.2.3).

To III. This commutation rule has already been motivated in classical me-
chanics. The Poisson bracket obeys the same algebra as the commutator.
Hamiltonian mechanics and quantum mechanics can therefore be interpreted
as two realizations of the same algebraic structure. The replacement xi → Xi,
pi → P i can be ambiguous. This is partially due to the fact that the coor-
dinate operator (position operator) does not commute with the momentum
operator. Consider, for example, the classical quantity ω = xipi = pixi. We
can derive two operators from it: Ω = XiP i and Ω = P iXi �= XiP i. In
most cases the mixed terms in Xi and P i can be symmetrized, which here
yields Ω = (XiP i + P iXi)/2. The symmetry is also necessary to make Ω
Hermitean. Another ambiguity is due to the fact that the above replacement
is not invariant under coordinate transformations of the classical quantities.
Therefore, it is agreed that operator replacements are made based on Carte-
sian classical quantities.

To IV. In quantum mechanics, we can no longer speak of particle “trajec-
tories”. Statements about quantum systems are purely statistical and are
interpreted as the result of measurements of many identical systems. In ad-
dition, a measurement of a system leads to a noncausal change of it such
that immediately after the measurement the system is in a (more or less)
well-defined state. This is called state reduction. We shall discuss this axiom
further in Subsection 3.2.3.

To V. The Schrödinger equation is the dynamical foundation of quantum
mechanics in the Schrödinger picture. In this picture, the operators are gener-
ally time-independent, whereas the states depend on time. A thorough discus-
sion of the Schrödinger equation follows in Subsection 3.2.4. Given an initial
state |ψ(t0)〉 , this equation fully describes the temporal evolution |ψ(t)〉 of
a system as long as no measurement is performed. In this form, the equation
is more general than the Schrödinger equation of wave mechanics as it does
not refer to a special representation (i.e., a special basis system).

Extension of the postulates. The above postulates are not sufficient to
fully develop nonrelativistic quantum mechanics. In Section 3.4 we add a
postulate by introducing a purely quantum mechanical degree of freedom
called spin. In Section 3.9 we extend the postulates to N -particle systems.

3.2.3 Quantum Mechanical Measurement

To predict the result of a measurement of a quantity corresponding to the op-
erator Ω in a statistical sense, postulate IV tells us to calculate its orthonor-
mal eigenvectors |ωi〉 and its eigenvalues ωi, as well as the corresponding
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projection operators Pωi
. The probability of finding the eigenvalue ωi from

this measurement is then given by

W (ωi) =
〈ψ|Pωi

|ψ 〉
〈ψ|ψ〉 =

| 〈ωi|ψ〉 |2
〈ψ|ψ〉 , Pωi = |ωi〉 〈ωi| . (3.5)

If the state vector |ψ〉 is a linear combination of the eigenvectors of Ω, i.e.,
|ψ〉 =

∑
j αj |ωj〉 , it follows that

W (ωi) =
|∑

j

αj 〈ωi|ωj〉 |2∑
j

|αj |2 =
|αi|2∑

j

|αj |2 .

In particular, we see that for |ψ〉 = |ωj〉 : W (ωi) = δij , which means that
the measurement always (with probability one) yields the value ωj . In case
of degeneracy, we have analogously to (3.5)

W (ωi) =
〈ψ|Pωi |ψ 〉

〈ψ|ψ〉 =

∑
r

| 〈ωi, r|ψ〉 |2

〈ψ|ψ〉 , Pωi =
∑

r

|ωi, r〉 〈ωi, r| . (3.6)

If the spectrum of Ω is degenerate and continuous, the quantity W (ω) is
interpreted as a probability density. The probability W [ω1, ω2] of measuring
a value in the interval [ω1 : ω2] is then given by

W [ω1, ω2] =

ω2∫
ω1

dωW (ω) =

ω2∫
ω1

dω 〈ψ|Pω |ψ 〉

〈ψ|ψ〉 =

∑
r

ω2∫
ω1

dω| 〈ω, r|ψ〉 |2

〈ψ|ψ〉 ,

with Pω and W (ω) from (3.6).

Ideal measurement and state reduction. The statement of postulate
IV, i.e., the collapse of the state vector from |ψ〉 to Pω |ψ〉 , is valid only for
ideal measurements. In fact, one can use this to define an ideal measurement
as follows:

Definition: Ideal measurement and reduction of the state vector

If the result of an ideal measurement on a system with the state vector |ψ〉
is given by the eigenvalue ω, then, immediately after the experiment, the
system is found in the state Pω |ψ〉 . This is called the projection postulate.

Thus, the ideal measurement functions like a perfect filter, letting pass only
that part of |ψ〉 that corresponds to the eigenstate of the eigenvalue ω. If the
measurement is not ideal, the filter will not be perfect, and a certain amount
of distortion will occur. An ideal measurement can be used to prepare a state
such that a following measurement of the same operator on the state yields
a sharp measurement (with probability one).
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Normalization. In the following, we shall assume that physical state vectors
are always normalized to unity: 〈ψ|ψ〉 = 1.
Statistical properties of observables. Often we are not so much inter-
ested in the probability density W (ω) of an operator Ω, but we wish to
determine its statistical average 〈Ω〉. This is achieved by performing a large
number of equal measurements on identically prepared systems. Its calcula-
tion proceeds as follows:

〈Ω〉 =
∑

i

W (ωi)ωi =
∑

i

〈ψ|ωi〉 〈ωi|ψ〉ωi =
∑

i

〈ψ|Ω |ωi 〉 〈ωi|ψ〉 ,

where Ω |ωi〉 = ωi |ωi〉 has been used. Noting that
∑

i |ωi〉 〈ωi| = 1, we find

Theorem 3.4: Expectation value 〈Ω〉 of an operator Ω

The expectation value of an observable Ω in a state |ψ〉 is given by

〈Ω〉 = 〈ψ|Ω |ψ 〉 .

To calculate 〈Ω〉 we just need to know the state vector |ψ〉 , as well as the
operator Ω, in a particular basis (for example, as column vectors and ma-
trices), but not its eigenvectors and eigenvalues. Generally, the expectation
value 〈Ω〉 of an operator Ω is accompanied by an amount of uncertainty.
This is usually quantified by the mean-square deviation, defined as

∆Ω =
[〈

Ω2〉 − 〈Ω〉2
]1/2

.

For eigenstates of Ω we clearly have ∆Ω = 0.
Compatibility of observables. The question naturally arises whether it
is possible to prepare a state such that it yields sharp measurement results
for two different observables Ω and Λ.3 This is only possible if the operators
possess a common set of eigenvectors that, according to Theorem 3.2, is
equivalent to [Ω,Λ] = 0. To characterize or to prepare the state of a quantum
system most precisely, one performs measurements of as many simultaneously
commuting observables (compatible observables) as possible. If the common
orthonormal system of these observables is not unique, one keeps adding a
further observable that commutes with all others, and so on.

Definition: Complete set of observables

A set of observables A, B,C, . . . forms a complete set of commuting observ-
ables if all the observables commute among one another and if their basis
system is uniquely determined. To each set of eigenvalues a, b, c, . . . there
exists (up to a constant) a unique common eigenvector |a, b, c, . . .〉 .

3 In the following sense: three measurements are performed: initially, a measure-
ment of Ω and then one of Λ. A repeat measurement of Ω should yield the same
result as the first one.
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Heisenberg’s uncertainty principle. In the following, we show that the
product of the uncertainties of two observables is bounded from below.4 Let
A and B denote two Hermitean operators with

∆A =
[〈

A2〉 − 〈A〉2
]1/2

, ∆B =
[〈

B2〉 − 〈B〉2
]1/2

.

For the new variables

Â = A − 〈A〉 , B̂ = B − 〈B〉 ,

we find

∆A = ∆Â =
〈
Â2

〉1/2
, ∆B = ∆B̂ =

〈
B̂2

〉1/2

and, using the Schwarz inequality,

(∆A)2(∆B)2 =
〈

ψ| Â2 |ψ
〉〈

ψ| B̂2 |ψ
〉

≥
∣∣∣〈ψ| ÂB̂ |ψ

〉∣∣∣2 .

Splitting the operator ÂB̂ into its Hermitean and its anti-Hermitean parts
yields

(∆A)2(∆B)2 ≥ 1
4

∣∣∣〈ψ| {Â, B̂} |ψ
〉

+
〈

ψ| [Â, B̂] |ψ
〉∣∣∣2 ,

where {Â, B̂} = ÂB̂ + B̂Â is the anticommutator. Since {Â, B̂} is Her-
mitean, its expectation value is real, whereas [Â, B̂] = [A, B] is anti-
Hermitean and has a purely imaginary expectation value. This means

(∆A)2(∆B)2 ≥ 1
4

〈
ψ| {Â, B̂} |ψ

〉2
+

1
4

∣∣∣〈ψ| [A, B] |ψ
〉∣∣∣2 .

Theorem 3.5: Heisenberg’s uncertainty principle

Let A and B denote two Hermitean operators. Heisenberg’s uncertainty
principle states that

∆A · ∆B ≥ 1
2

∣∣∣〈[A, B]
〉∣∣∣ .

Note that the equality holds only if
〈

ψ| {Â, B̂} |ψ
〉

= 0 and Â |ψ〉 = cB̂ |ψ〉 .
An interesting special case of the uncertainty principle is that of canonical
conjugate operators such as coordinates and momenta, for which
[Xi,P i] = ih̄. For these variables, Theorem 3.5 is independent of the state:

∆Xi · ∆Pi ≥ h̄

2
.

4 Recall that the state vector |ψ〉 is normalized to unity.
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3.2.4 Schrödinger Picture and Schrödinger Equation

Postulate V describes the temporal evolution of a quantum system within a
particular picture of quantum theory, called the Schrödinger picture. Since
physical observables such as expectation values are invariant under unitary
transformations, we can define an infinite number of pictures, all of which
are connected by unitary transformations.

In this subsection we discuss the Schrödinger picture in which states are
time-dependent, whereas operators can at most be explicitly dependent on
time. Two more pictures that are also commonly used are the Heisenberg
picture and the Dirac picture. These pictures are considered in the next sub-
section.

Schrödinger equation and temporal evolution operator. If the state
|ψ〉 of a quantum system is known at a particular time (prepared in the
above sense), the temporal evolution of the system in the Schrödinger picture
is uniquely determined by the Schrödinger equation

ih̄
d
dt

|ψ(t)〉 = H(t) |ψ(t)〉 , (3.7)

as long as the system is not perturbed in the relevant time interval (for
example, by a measurement). The Hamilton operator may depend explicitly
on time, i.e., dH/dt = ∂H/∂t, say due to the presence of time-dependent
fields. The general solution of this equation can be written in the form

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , U(t0, t0) = 1 ,

where U(t, t0) is the temporal evolution operator. Inserting this expres-
sion into (3.7), we obtain an operator equation that is equivalent to the
Schrödinger equation,

ih̄
d
dt

U(t, t0) = H(t)U(t, t0) , (3.8)

from which it follows that

U(t + ∆t, t) = 1 − i
h̄

∆tH(t) , ∆t 	 1 .

Since the Hamilton operator H is Hermitean, U(t + ∆t, t) is an infinites-
imal unitary operator. The full operator U(t, t0) is obtained as a series of
infinitesimal unitary transformations

U(t, t0) = lim
∆t→0

U(t, t − ∆t)U(t − ∆t, t − 2∆t) · · ·U(t0 + ∆t, t0)

and is therefore also unitary. The unitarity of the evolution operator U or,
equally, the Hermitecity of the Hamilton operator H follows necessarily from
the condition that the norm of the state vector |ψ〉 is constant in time. This,
in turn, is necessary to formulate probability statements.
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Theorem 3.6: Conservation of the norm

Due to the Hermitecity of the Hamilton operator H and, consequently,
the unitarity of the time evolution operator U , the norm of a state vector
|ψ(t)〉 is constant in time:

〈ψ(t)|ψ(t)〉 =
〈
ψ(t0)|U †(t, t0)U(t, t0) |ψ(t0)

〉
= 〈ψ(t0)|ψ(t0)〉 .

Formally, (3.8) is an ordinary differential equation of the first order. Note,
however, that the naive solution ansatz

U(t, t0) = exp

⎛
⎝− i

h̄

t∫
t0

H(t′)dt′

⎞
⎠

is not correct since the exponential function contains an arbitrary number
of powers of

∫
H(t′)dt′ that generally do not commute with one another:

[H(t),H(t′)] �= 0.5 In the following, we consider an important exception to
this rule.

Conservative Hamilton operator, time-independent Schrödinger
equation. Due to (3.8), for the special case of a closed conservative sys-
tem for which ∂H/∂t = 0, we can write the temporal evolution operator U
as

U(t, t0) = e−iH(t−t0)/h̄ .

We would like to find an explicit expression for U and |ψ〉 in terms of the
energy eigenstates |En〉 , i.e., the normalized eigenkets of H that obey the
time-independent Schrödinger equation

H |En〉 = En |En〉 .

Expanding |ψ(t)〉 in these eigenkets,

|ψ(t)〉 =
∑

n

|En〉 〈En|ψ(t)〉 =
∑

n

an(t) |En〉 , an(t) = 〈En|ψ(t)〉 ,

and inserting this expression into (3.7), we obtain the equation

ih̄ȧn(t) = Enan(t) ,

which is solved by

5 With the help of the time-ordering operator T it is, in fact, possible to find a
formal solution of this type, namely

U(t, t0) = T

⎧⎨
⎩exp

⎛
⎝− i

h̄

t∫
t0

H(t′)dt′

⎞
⎠
⎫⎬
⎭ .

Here, the various expressions are arranged in chronological order.
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an(t) = an(t0)e−iEn(t−t0)/h̄ .

It follows that

〈En|ψ(t)〉 = 〈En|ψ(t0)〉 e−iEn(t−t0)/h̄

=⇒ |ψ(t)〉 =
∑

n

|En〉 〈En|ψ(t0)〉 e−iEn(t−t0)/h̄ .

Theorem 3.7: General solution of the Schrödinger equation
for conservative systems

ih̄
d
dt

|ψ(t)〉 = H |ψ(t)〉 =⇒ |ψ(t)〉 = U(t, t0) |ψ(t0)〉 ,

with

U(t, t0) =
∑

n

|En〉 〈En| e−iEn(t−t0)/h̄ , H |En〉 = En |En〉 .

Accordingly, in case of degeneracy, we have

U(t, t0) =
∑
n,r

|En, r〉 〈En, r| e−iEn(t−t0)/h̄ ,

and in the continuous case the sums have to be replaced with integrals. The
states |En〉 e−iEn(t−t0)/h̄ are the stationary solutions of the time-dependent
Schrödinger equation. They vary periodically in time, and their frequency ω
satisfies Einstein’s relation E = h̄ω. For these states the probability distri-
bution W (λ) of a variable Λ is independent of time since

W (λ, t) = | 〈λ| E(t)〉 |2 =
∣∣∣〈λ| E〉 e−iE(t−t0)/h̄

∣∣∣2 = | 〈λ| E〉 |2 = W (λ, t0) .

3.2.5 Other Pictures of Quantum Theory

In the previous subsection we have been using a particular approach to quan-
tum mechanics, namely the Schrödinger picture. In this picture the dynamics
of the system is described by rotations of the state vector in the Hilbert space,
while keeping the basis vectors fixed. Since the scalar product is invariant
under unitary transformations, we can use other pictures, for example, one
where the state vector remains fixed in time, but the basis system is rotat-
ing. This is called the Heisenberg picture. Herein, observables are described
by time-dependent operators, whereas states appear fixed in time. Yet an-
other picture is the Dirac picture in which state vectors and basis vectors are
both time-dependent in a particular way. This turns out to be very useful
in perturbation theory. In the following, we shall take a closer look at the
Heisenberg and the Dirac pictures.
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Heisenberg picture. The Heisenberg picture is defined as follows:

Definition: Heisenberg picture

Let |ψS(t)〉 = U(t, t0) |ψS(t0)〉 denote a state vector, and AS an operator
in the Schrödinger picture. The corresponding quantities |ψH〉 and AH in
the Heisenberg picture are then defined by

|ψH〉 = U †(t, t0) |ψS(t)〉 = |ψS(t0)〉
AH(t) = U †(t, t0)ASU(t, t0) .

Thus, in the Heisenberg picture, states are independent of time, whereas op-
erators are time-dependent even if AS is not explicitly a function of time.
The temporal evolution of AH is easily found:

ih̄
d
dt

AH(t) = ih̄
dU †

dt
ASU + ih̄U † ∂AS

∂t
U + ih̄U †AS

dU

dt

= −U †HSASU + ih̄U † ∂AS

∂t
U + U †ASHSU

= U †[AS,HS]U + ih̄U † ∂AS

∂t
U .

Here, we have used (3.8) and its adjoint. Because of ∂AH
∂t = U † ∂AS

∂t U and6

U †ASHSU = U †ASUU †HSU = AHHH, we obtain

Theorem 3.8: Heisenberg equation and conserved quantities

In the Heisenberg picture, the relation corresponding to the Schrödinger
equation is given by

ih̄
dAH

dt
= [AH,HH] + ih̄

∂AH

∂t
(Heisenberg equation) .

Using

d 〈AH〉
dt

=
〈

ψH

∣∣∣∣dAH

dt

∣∣∣∣ψH

〉
,

d |ψH〉
dt

= 0 ,

we obtain the Heisenberg equation for expectation values

d 〈A〉
dt

=
1
ih̄

〈[A,H]〉 +
〈

∂A

∂t

〉
. (3.9)

Due to the invariance of the scalar product, this equation is independent
of the chosen picture so that the index H can be dropped.
Furthermore, we see a simple rule for conserved quantities: an observable A
that is not explicitly time-dependent, and that commutes with the Hamil-
ton operator H, is a conserved quantity.

6 This relation holds since ∂AS
∂t

is a function of observables, and therefore trans-
forms as any other operator.
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If the operator A is not explicitly time-dependent, (3.9) reduces to the Ehren-
fest theorem

d 〈A〉
dt

=
1
ih̄

〈[A,H]〉 . (3.10)

We can use this equation to show an uncertainty principle relating energy
and time. Consider, to this end, a system with a time-independent Hamilton
operator H, as well as a time-independent observable A. Denoting by ∆A
and ∆E the mean-square deviations of their expectation values, Theorem 3.5
yields

∆A · ∆E ≥ 1
2
| 〈[A, H]〉 | ,

and therefore,

∆A · ∆E ≥ h̄

2
d 〈A〉

dt
.

Rearranging this equation, we obtain

Theorem 3.9: Energy-time uncertainty

∆τ · ∆E ≥ h̄

2
, ∆τ =

∆A
d〈A〉
dt

.

Here, ∆τ is the time interval in which the expectation value of A changes by
the amount ∆A. It represents the minimal time span required for a noticeable
change of 〈A〉 and can be regarded as a characteristic time for the evolution
of the system. The above relation tells us that the energy of a system that is
in a fixed state over a time ∆τ has an uncertainty ∆E ≥ h̄/(2∆τ). Another
way of looking at this is that violations ∆E of classical energy conservation
are possible within the time interval ∆τ ∼ h̄/∆E. Note that the time-energy
uncertainty is qualitatively different from the uncertainty relations of Theo-
rem 3.5 since ∆τ is not a dynamic variable, but just an external evolution
parameter.

Dirac picture. Another picture that is often used when the Hamilton op-
erator shows a time dependency is the Dirac or interaction picture. Here, the
Hamilton operator HS of the Schrödinger picture is split into two Hermitean
parts,

HS(t) = H
(0)
S + H ′

S(t) ,

where the unperturbed part H
(0)
S is time-independent, and the perturbation

H ′
S(t) is time-dependent. To solve the Schrödinger equation

ih̄
d
dt

U(t, t0) = HS(t)U(t, t0) ,

the unitary operator U is written as the product of two unitary operators,
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U(t, t0) = U (0)(t, t0)U ′(t, t0) , U (0)(t0, t0) = U ′(t0, t0) = 1 ,

where U (0) is the solution of the unperturbed Schrödinger equation

ih̄U̇ (0) = H
(0)
S U (0) .

The Dirac picture is now defined as follows:

Definition: Dirac picture

Let the Hamilton operator, a state vector, and an operator be given by
HS(t) = H

(0)
S + H ′

S(t), |ψS(t)〉 and AS in the Schrödinger picture. If
U (0)(t, t0) is a unitary operator, for which ih̄U̇ (0) = H

(0)
S U (0), the corre-

sponding quantities in the Dirac picture are given by

|ψI(t)〉 = U (0)†(t, t0) |ψS(t)〉
AI(t) = U (0)†(t, t0)ASU (0)(t, t0) .

With part of the time dependency in the state vector, and part of it in
the operator, the Dirac picture is halfway between the Schrödinger and the
Heisenberg one. We also have

ih̄
d
dt

|ψI(t)〉 = ih̄
(

U̇ (0)† |ψS(t)〉 + U (0)† d
dt

|ψS(t)〉
)

= −U (0)†H(0)
S |ψS(t)〉 + U (0)†HS |ψS(t)〉

= U (0)†H ′
S |ψS(t)〉 = U (0)†H ′

SU (0) |ψI〉 = H ′
I |ψI〉

and therefore,

Theorem 3.10: State and operator equations
in the Dirac picture

In the Dirac picture the evolution equations are

ih̄
d
dt

|ψI(t)〉 = H ′
I |ψI(t)〉 (state equation)

or, using |ψI(t)〉 = U ′(t, t0) |ψI(t0)〉 ,

ih̄
d
dt

U ′ = H ′
IU

′

and

ih̄
dAI

dt
= [AI,H

(0)
I ] + ih̄

∂AI

∂t
(operator equation) .

The last equation can be derived in similar fashion as we have done for the
Heisenberg equation.

Accordingly, the time-dependent states |ψI〉 obey a Schrödinger equation that
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contains the perturbation H ′
I, whereas the time-dependent operators obey a

Heisenberg equation with the unperturbed Hamilton operator H
(0)
I .

3.2.6 Representations in Quantum Mechanics

Using vectors in an abstract Hilbert space, we have, up to now, developed
quantum mechanics in a basis- or representation-independent manner. How-
ever, if we wish to obtain components of the vector, we must choose a basis
system that spans the complete vector space. Such a representation is given
by the eigenvectors of a complete set of commuting observables. The pro-
jections of the state vector |ψ〉 onto a system {|q〉} of basis vectors yield a
component vector that quantifies the state in the q-representation, whereas
operators are represented by the elements of the Hermitean matrix 〈q| A |q′〉 .
By projecting the vector |ψ〉 onto a particular basis we transform the abstract
Schrödinger equation (or the operator equations of motion) into differential
equations and algebraic relations, which, when solved, yield quantitative in-
formation verifiable by experiment.

In any picture of quantum mechanics there is an infinite set of possible
representations related via unitary transformations.7 However, representa-
tions in which the operator matrices are diagonal are clearly particularly
useful since the Schrödinger equation is much easier to solve in these. If, for
example, the Hamilton operator is a function only of coordinates and mo-
menta, H = H(X,P ), we have a reasonable choice between the coordinate
representation and the momentum representation. Which of these we choose
will depend on the form of the potential V . Both representations are allowed
as both, the coordinate operators (position operators) Xi, as well as the mo-
mentum operators P i, i = 1, 2, 3, each define a complete set of commuting
observables (disregarding spin), according to postulate III.

Coordinate representation (wave mechanics). The coordinate repre-
sentation is defined as the representation in which the position operator is
diagonal. Since it has a continuous spectrum, the one-dimensional case of this
condition is given by

Definition: Coordinate representation

〈x|X |x′ 〉 = xδ(x − x′) , PX =
∫

dx |x〉 〈x| , ψ(x, t) = 〈x|ψ(t)〉 .

PX denotes the unit operator in this representation. In conjunction with the
commutation rules [X,P ] = ih̄, this leads to a corresponding relation for the
momentum operator:

ih̄δ(x − x′) = 〈x|XP − PX |x′ 〉 = (x − x′) 〈x|P |x′ 〉
7 These are not to be confused with transformations relating different pictures of

the theory.
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=⇒ 〈x|P |x′ 〉 = ih̄
d

dx′ δ(x − x′) = −ih̄
d
dx

δ(x − x′) .

Now, we have

|ψ(t)〉 = PX |ψ(t)〉 =
∫

dx |x〉 〈x|ψ(t)〉 =
∫

dx |x〉 ψ(x, t) ,

where ψ(x, t) = 〈x|ψ(t)〉 are the components of the state vector |ψ(t)〉 in
the coordinate representation. This expression is called the coordinate wave
function or simply wave function. Applying X and P to |ψ〉 , we find

X |ψ(t)〉 = PXXPX |ψ(t)〉
=

∫
dx

∫
dx′ |x〉 〈x|X |x′ 〉 〈x′|ψ(t)〉

=
∫

dx |x〉 xψ(x, t)

P |ψ(t)〉 = PXPPX |ψ(t)〉
=

∫
dx

∫
dx′ |x〉 〈x|P |x′ 〉 〈x′|ψ(t)〉

= ih̄
∫

dx |x〉
∫

dx′
(

d
dx′ δ(x − x′)

)
ψ(x′, t)

= −ih̄
∫

dx |x〉
∫

dx′δ(x − x′)
d

dx′ ψ(x′, t)

= −ih̄
∫

dx |x〉 d
dx

ψ(x, t) ,

which yields the following correspondence relations for operators in the co-
ordinate representation:

Theorem 3.11: Operators in coordinate representation

X −→ XX = x , P −→ P X = −ih̄
d
dx

,

Ω(X,P ) −→ ΩX = Ω

(
X → x,P → −ih̄

d
dx

)
.

Accordingly, the Schrödinger equation and expectation values in the coordi-
nate representation are given by

ih̄
d
dt

ψ(x, t) = HXψ(x, t) (3.11)

〈Ω〉 =
∫

dxψ∗(x, t)ΩXψ(x, t) = 〈ψ|ΩX |ψ 〉 = 〈ΩX〉 . (3.12)

Proper Hilbert vectors with a finite norm correspond to wave functions for
which
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〈ψ|ψ〉 =
∫

dx|ψ(x, t)|2 =
∫

dx|ψ(x, 0)|2 < ∞ .

They span the Hilbert space of square-integrable functions.

N-particle systems. The generalization of the above to systems with N
degrees of freedom is unproblematic.8 In this case we have the corresponding
relations

〈x1, . . . , xN |Xi |x′
1, . . . , x

′
N 〉 = xiδ(x1 − x′

1) · · · δ(xN − x′
N )

〈x1, . . . , xN |P i |x′
1, . . . , x

′
N 〉 = ih̄δ(x1 − x′

1) · · · d
dx′

i

δ(xi − x′
i)

× · · · δ(xN − x′
N )

PX =
∫

dx1 · · ·dxN |x1, . . . , xN 〉 〈x1, . . . , xN |

and

|ψ(t)〉 = PX |ψ(t)〉 =
∫

dx1 · · ·dxN |x1, . . . , xN 〉 ψ(x1, . . . , xN , t) ,

with

ψ(x1, . . . , xN , t) = 〈x1, . . . , xN |ψ(t)〉 .

In particular, for expectation values, we have

〈Ω〉 =
∫

dx1 · · ·dxNψ∗(x1, . . . , xN , t)ΩXψ(x1, . . . , xN ) .

Momentum representation. In the momentum representation the matrix
describing momentum is diagonal (as above, we consider the one-dimensional
case):

Definition: Momentum representation

〈p|P |p′ 〉 = pδ(p − p′) , PP =
∫

dp |p〉 〈p| , ϕ(p, t) = 〈p|ψ(t)〉 .

In this representation the matrix elements of the position operator are

ih̄δ(p − p′) = 〈p|XP − PX |p′ 〉 = (p′ − p) 〈p|X |p′ 〉

=⇒ 〈p|X |p′ 〉 = −ih̄
d

dp′ δ(p − p′) = ih̄
d
dp

δ(p − p′) .

In analogy to the coordinate representation we have

|ψ(t)〉 = PP |ψ(t)〉 =
∫

dp |p〉 〈p|ψ(t)〉 =
∫

dp |p〉 ϕ(p, t) .

8 Note that the description of a one-dimensional N -particle system is mathemati-
cally equivalent to N one-dimensional systems.
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The expression ϕ(p, t) = 〈p|ψ(t)〉 describes the component of |ψ(t)〉 in the
momentum basis and is therefore called the momentum wave function. The
operator assignments corresponding to those of the coordinate representation
follow from

X |ψ(t)〉 = PP XPP |ψ(t)〉
=

∫
dp

∫
dp′ |p〉 〈p|X |p′ 〉 〈p′|ψ(t)〉

= ih̄
∫

dp |p〉 d
dp

ϕ(p, t)

P |ψ(t)〉 = PP PPP |ψ(t)〉
=

∫
dp

∫
dp′ |p〉 〈p|P |p′ 〉 〈p′|ψ(t)〉

=
∫

dp |p〉 pϕ(p, t) ,

and we find

Theorem 3.12: Operators in momentum representation

X −→ XP = ih̄
d
dp

, P −→ P P = p ,

Ω(X,P ) −→ ΩP = Ω

(
X → ih̄

d
dp

,P → p

)
.

Furthermore, in momentum representation, we see that (3.11) and (3.12) are
replaced by

ih̄
d
dt

ϕ(p, t) = HP ϕ(p, t)

and

〈Ω〉 =
∫

dpϕ∗(p, t)ΩP ϕ(p, t) = 〈ϕ| ΩP |ϕ 〉 = 〈ΩP 〉 .

The generalization to the N -dimensional case in this representation follows
along the same line as in coordinate representation and boils down to the
replacements∫

dp −→
∫

dp1 · · ·dpN

|p〉 −→ |p1, . . . , pN 〉
ϕ(p, t) −→ ϕ(p1, . . . , pN , t) .

Transformation from coordinate to momentum representation. We
have a special relation between the coordinate and momentum representa-
tions: the wave functions of one representation are just Fourier transforms of
the other. To see this, we write
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ψ(x, t) = 〈x|ψ(t)〉 =
∫

dp 〈x| p〉 〈p|ψ(t)〉 =
∫

dp 〈x| p〉 ϕ(p, t) ,

where the expansion coefficients 〈x| p〉 satisfy

p 〈x| p〉 = 〈x|P |p 〉
=

∫
dx′ 〈x|P |x′ 〉 〈x′| p〉

= ih̄
∫

dx′
(

d
dx′ δ

′(x − x′)
)

〈x′| p〉 = −ih̄
d
dx

〈x| p〉 .

This is a differential equation in 〈x| p〉 that is solved by 〈x| p〉 ∼ eipx/h̄.
Therefore, one finds

Theorem 3.13: Relation between coordinate and momentum
representations, De Broglie relation

The wave functions in the coordinate and the momentum representation
are related by Fourier transformations:

ψ(x, t) =

√
h̄

2π

∫
dkeikxϕ(k, t) =

1√
2πh̄

∫
dpeipx/h̄ϕ(p, t)

ϕ(k, t) =
1√
2πh̄

∫
dxe−ikxψ(x, t) .

The wave number k and the momentum p obey the De Broglie relation

p = h̄k .

Summary

• Any quantum mechanical state is described by a proper Hilbert vector
whose temporal evolution is governed by the Schrödinger equation.

• An ideal quantum mechanical measurement of an observable Ω
yields one of its eigenvalues ω. The measurement process reduces the
quantum system to an eigenstate of Ω that belongs to ω (state reduc-
tion). The simultaneous measurement of two noncommuting observables
leads to uncertainties governed by the Heisenberg uncertainty prin-
ciple.

• Apart from the most commonly used Schrödinger picture, there are in-
finitely many equivalent pictures of quantum mechanics that are all con-
nected by unitary transformations. Of particular interest are the Heisen-
berg picture and the Dirac or interaction picture.

�
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• Within a given picture the choice of a complete basis system defines a
particular representation in which the physical quantities (state vectors
and observables) are described by column vectors and quadratic matrices.
All representations are equivalent and also connected by unitary trans-
formations. Two commonly used representations are the coordinate and
the momentum representations. Since position and momentum op-
erator are canonical conjugates, there is a special relationship between
coordinate wave functions and momentum wave functions: they
are Fourier transform pairs.

Applications

38. Ehrenfest equations. Prove the validity of the Ehrenfest equations

d 〈X〉
dt

=
〈

∂H

∂P

〉
,

d 〈P 〉
dt

= −
〈

∂H

∂X

〉
for a quantum mechanical particle in a scalar, space-dependent potential by
using the Ehrenfest theorem.

Solution. Following (3.10), we have for

H =
P 2

2m
+ V (X)

the representation-independent relations

d 〈X〉
dt

=
1

2mih̄
〈
[X,P 2]

〉
(3.13)

d 〈P 〉
dt

=
1
ih̄

〈[P , V (X)]〉 . (3.14)

If we use

[X,P 2] = P [X,P ] + [X,P ]P = 2ih̄P ,

(3.13) becomes

d 〈X〉
dt

=
〈P 〉
m

=
〈

∂H

∂P

〉
.

To solve (3.14), we choose the coordinate representation:

P −→ −ih̄∇ , V (X) −→ V (x) .

In this representation it is easy to check that

[∇, V (x)]ψ(x, t) = ∇(V (x)ψ(x, t)) − V (x)∇ψ(x, t) = (∇V (x))ψ(x, t) ,

so that, independently of the representation, we can conclude that
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[∇, V (X)] = ∇V (X)

=⇒ d 〈P 〉
dt

= − 〈∇V (X)〉 = −
〈

∂H

∂X

〉
.

Note the formal analogy of the Ehrenfest equations with the Hamilton equa-
tions of classical mechanics.

39. Measurement probabilities. Consider the following Hermitean oper-
ators:

Lx =
1√
2

⎛
⎝ 0 1 0

1 0 1
0 1 0

⎞
⎠ , Ly =

1√
2

⎛
⎝ 0 −i 0

i 0 −i
0 i 0

⎞
⎠ , Lz =

⎛
⎝ 1 0 0

0 0 0
0 0 −1

⎞
⎠ .

a. What are the possible eigenvalues lz and eigenvectors of Lz?

b. Verify Heisenberg’s uncertainty principle of the operators Lx and Ly for
the eigenstate of Lz with lz = 1.

c. What are the possible results of measurements and their probabilities for
Lx if the system is in the eigenstate of Lz with lz = −1?

Solution.

To a. From the form of Lz we see immediately that the eigenvalues and
eigenvectors are given by

lz = +1 : e+ =

⎛
⎝ 1

0
0

⎞
⎠ , lz = 0 : e0 =

⎛
⎝ 0

1
0

⎞
⎠ , lz = −1 : e− =

⎛
⎝ 0

0
1

⎞
⎠ .

To b. For the state e+ we first need to calculate

〈Lx〉 = e†
+Lxe+ = 0 ,

〈
L2

x

〉
= e†

+L2
xe+ =

1
2

=⇒ ∆Lx =
√

〈L2
x〉 − 〈Lx〉2 =

1√
2

〈Ly〉 = e†
+Lye+ = 0 ,

〈
L2

y

〉
= e†

+L2
ye+ =

1
2

=⇒ ∆Ly =
√〈

L2
y

〉 − 〈Ly〉2 =
1√
2

| 〈[Lx,Ly]〉 | = |e†
+[Lx,Ly]e+| = e†

+Lze+ = 1 .

Thus, we have

∆Lx · ∆Ly =
1
2

=
1
2
| 〈[Lx,Ly]〉 | .
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To c. To find the possible results of a measurement of Lx, we evaluate the
eigenvalues and eigenvectors of Lx:

Lxx = lxx ⇐⇒ (Lx − lxI)x = 0

=⇒

∣∣∣∣∣∣∣
−lx

1√
2

0
1√
2

−lx
1√
2

0 1√
2

−lx

∣∣∣∣∣∣∣ = −lx(lx + 1)(lx − 1) = 0 .

From this, we find

lx = 1 : f+ =
1
2

⎛
⎝ 1√

2
1

⎞
⎠ , lx = 0 : f0 =

1√
2

⎛
⎝ 1

0
−1

⎞
⎠ ,

lx = −1 : f− =
1
2

⎛
⎝ 1

−√
2

1

⎞
⎠ .

Next, we need to expand the state e− in the eigenbasis of Lx:

e− = f+ 〈f+| e−〉 + f0 〈f0| e−〉 + f− 〈f−| e−〉 .

The absolute values of the expansion coefficients are the relative probabilities
of the measurement:

W (lx = 1) = | 〈f+| e−〉 |2 =
1
4

Wlx = 0) = | 〈f0| e−〉 |2 =
1
2

W (lx = −1) = | 〈f−| e−〉 |2 =
1
4

.

And, as expected, the sum of probabilities is one:

W (lx = 1) + W (lx = 0) + W (lx = −1) = 1 .

3.3 One-Dimensional Systems

Having established the general structure of quantum theory, we now turn
our attention to the simplest type of problems: a single particle in one di-
mension. Although this type of setup might seem somewhat oversimplified,
such systems are instructive with a view to more complex, three-dimensional
problems, and, of course, they are the easiest to solve.

We have already seen that it is advantageous, in solving the Schrödinger
equation, to choose a representation in which the structure of the problem
is simplified as much as possible. In some cases it might also be possible to
proceed purely algebraically. In the following we discuss three examples of
one-dimensional systems:
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• Free particle and wave packets: solution in momentum space.

• Potential step and potential well: solution in coordinate space.

• Harmonic oscillator: algebraic solution.

The most common method for solving the Schrödinger equation proceeds
by setting up the differential equation in coordinate space and using wave
mechanics. Therefore, we start with a general discussion of this method.

3.3.1 Aspects of the Schrödinger Equation in Coordinate Space

In Subsection 3.2.6 we found that the dynamics of a one-dimensional non-
relativistic system in the absence of particle spin is given by the differential
equation

ih̄
d
dt

ψ(x, t) = HXψ(x, t) , (3.15)

where HX is of the form

HX =
P 2

X

2m
+ V (XX , t) = − h̄2

2m

d2

dx2 + V (x, t) , V ∈ R , (3.16)

with an interaction potential V . In this representation, we interpret |ψ(x, t)|2
as the probability density of finding the particle at time t and at position x
if we perform a measurement on the system. In other words: measuring the
position of N identically prepared, noninteracting particles each described by
ψ, N |ψ(x, t)|2dx equals the number of particles that are found in the range
[x : x + dx] at time t. This is the Born interpretation of quantum mechanics.

An important theorem, of which we will make use later, is

Theorem 3.14: Continuity equation in coordinate space

The continuity equation follows from the Schrödinger equation (3.15),
(3.16), and its adjoint:

d
dt

|ψ(x, t)|2 +
d
dx

j(x, t) = 0 ,

where

j(x, t) =
h̄

2im

(
ψ∗ dψ

dx
− ψ

dψ∗

dx

)
(3.17)

is the probability current density or particle current density.

According to this theorem, a change of the probability density within a cer-
tain x-range induces a particle flux:

d
dt

b∫
a

dx|ψ(x, t)|2 = j(a, t) − j(b, t) .
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Time-independent Schrödinger equation. Following Subsection 3.2.4,
the time dependency of the Schrödinger equation for a conservative Hamilton
operator can be separated in coordinate space by the ansatz
ψ(x, t) = Ψ(x)e−iωt, ω = E/h̄, which leads from (3.15) and (3.16) to the
time-independent eigenvalue equation(

− h̄2

2m

d2

dx2 + V (x)
)

Ψ(x) = EΨ(x)

or
d2Ψ(x)

dx2 = [U(x) − ε] Ψ(x) , U(x) =
2mV (x)

h̄2 , ε =
2mE

h̄2 . (3.18)

Continuity conditions. In general, we also wish to consider potentials with
finite discontinuities (steps). Let x = a be the location of such a step of the
potential U(x). The solution Ψ(x) is then still continuously differentiable in
a since we see from (3.18) that in the surrounding [a − δ : a + δ], δ 	 1

Ψ ′(a + δ) − Ψ ′(a − δ) =

a+δ∫
a−δ

dx
d
dx

Ψ ′(x) =

a+δ∫
a−δ

dx [U(x) − ε] Ψ(x) = 0 ,

where we have used the continuity of Ψ at x = a. Thus, Ψ and Ψ ′ are both
continuous in a.9

Symmetry considerations. Symmetries can often be used to simplify the
problem at hand. To see how this works, we define the parity operator P :

P q(x) = q(−x) .

Its eigenvalues are +1 for even, and −1 for odd functions q. Now, let
PV (x) = V (x). Since the kinetic part of the Hamilton operator contains
only the second derivative with respect to the coordinate, the operators H
and P commute. Applying the parity operator on

HΨ(x) = EΨ(x) , (3.19)

we have

HΨ(−x) = EΨ(−x) .

Given a solution Ψ(x), we see that Ψ(−x) is also a solution of (3.19). These
two functions can be combined to give two new solutions,

Ψ±(x) = Ψ(x) ± Ψ(−x) , PΨ± = ±Ψ± ,

which are simultaneous eigenstates of H and P . Thus, for symmetric poten-
tials, the basis states can always be split into even and odd functions.

9 For infinite steps (for example, a δ-potential), this argument no longer holds (see
Application 41).
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Qualitative discussion of the spectrum. In our subsequent investiga-
tions of the time-independent Schrödinger equation we will come across a set
of characteristics of the solutions that are generally valid. For a given poten-
tial we should always ask whether it allows bound states as well as scattered
states. Just as in classical mechanics, both types of solutions are possible,
depending on the type of interaction and the energy of the particle (think
of the Kepler problem with its bound elliptical states and its hyperbolic
scattered states). However, for bound states, quantum mechanical solutions
display a phenomenon unknown to classical mechanics: quantum mechani-
cal bound states are necessarily discrete. Without proof, this behavior can
be understood by the following consideration: for a box-shaped potential V
with V (x ∈ [−a : a]) = −V0 < 0, V (x /∈ [−a : a]) = 0, there exist two points
of return, namely the walls of the box, between which a classical particle can
oscillate with arbitrary energy. However, quantum mechanically, the particle
can also be found behind the walls of the box with nonvanishing probability,
i.e., in the classically forbidden zone. In these regions the wave function of
the time-independent Schrödinger equation has to fall off exponentially. The
conditions of continuity for the wave function at the boundaries of classically
allowed (oscillatory) and forbidden (exponential) zones imply that solutions
only exist for very specific, discrete energies.

Using the previously introduced simple examples, we shall now verify the
following points explicitly:

• The bound spectrum is discrete, and there always exists at least one bound
state called the ground state. Its wave function has no zero crossing.

• In the one-dimensional case, bound states are not degenerate.

• If, in case of a symmetric potential, there exist more than one bound state,
they are given intermittently by even and odd wave functions, and the
number of zero crossings increases by one for each new solution.

3.3.2 Widening of a Free Wave Packet

The most simple one-dimensional problem is that of a free particle. Its clas-
sical Hamilton function is

H(x, p) =
p2

2m
,

where m denotes the particle mass. Since the only dynamic variable is mo-
mentum, we choose the momentum representation for the solution of this
problem. Herein, the Schrödinger equation has the form

ih̄
d
dt

ϕ(p, t) =
p2

2m
ϕ(p, t)

or
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ih̄
d
dt

ϕ(k, t) =
h̄2k2

2m
ϕ(k, t) .

Its general solution is given by

ϕ(k, t) = φ(k)e−iωt , ω =
h̄k2

2m
,

where φ(k) is an arbitrary function of k obeying the normalization condition

〈φ(k)|φ(k)〉 = 〈ϕ(k, t)|ϕ(k, t)〉 =
1
h̄

for physical particles with finite momentum width. The corresponding solu-
tion in coordinate space is found using Theorem 3.13 as

ψ(x, t) =

√
h̄

2π

∫
dkϕ(k, t)eikx =

√
h̄

2π

∫
dkφ(k)ei(kx−ωt) .

We now wish to discuss the temporal evolution of the wave function ψ. We
assume that, at time t = 0, it is given by the normalized Gauss function

ψ(x, 0) =
1√

∆π1/4
e− x2

2∆2 eik0x , k0 > 0 , (3.20)

describing a particle with average momentum 〈P 〉 = h̄k0. Following Theorem
3.13, we have

φ(k) =
1√

2h̄∆π3/4

∫
dxe− x2

2∆2 e−i(k−k0)x =
√

∆√
h̄π1/4

e− ∆2(k−k0)2

2 .

For the coordinate wave function we find

ψ(x, t) =
√

∆√
2π3/4

∫
dke− ∆2

2 (k−k0)2eikxe− ih̄k2t
2m

=
√

∆√
α(t)π1/4

exp

(
−
(
x − h̄k0t

m

)2

2α(t)

)
exp

[
ik0

(
x − h̄k0t

2m

)]
, (3.21)

with

α(t) = ∆2 + i
h̄t

m
.

Finally, the probability density |ψ(x, t)|2 is obtained as

|ψ(x, t)|2 = ψ∗(x, t)ψ(x, t) =
1√

πβ(t)
exp

(
−
(
x − h̄k0t

m

)2

β(t)

)
,

with

β(t) = ∆2 +
h̄2t2

∆2m2 .

Obviously, |ψ(x, t)|2 is also given by a Gaussian distribution whose width
β(t) increases with time. The center of mass of the wave packet moves with
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velocity h̄k0/m = p0/m. Using this example, we can verify explicitly the
Heisenberg uncertainty principle for position and momentum:

〈X〉 =
1√
πβ

∫
dxx exp

(
−
(
x − h̄k0t

m

)2

β

)
=

h̄k0t

m

〈
X2〉 =

1√
πβ

∫
dxx2 exp

(
−
(
x − h̄k0t

m

)2

β

)
=

β

2
+

h̄2k2
0t

2

m2

〈P 〉 =
∆√
π

∫
dkke−∆2(k−k0)2 = h̄k0

〈
P 2〉 =

∆h̄√
π

∫
dkk2e−∆2(k−k0)2 =

h̄2

2∆2 + h̄2k2
0 .

=⇒ ∆X · ∆P =
h̄
√

β(t)
2∆

≥ h̄

2
.

3.3.3 Potential Step

Consider a particle moving under the influence of the step potential

V (x) = V0Θ(x) , Θ(x) =

{
0 for x < 0

1 for x ≥ 0

}
, V0 > 0

(see Fig. 3.1). To solve this problem, we initially determine the eigenfunctions

x

V

V0

I II

Fig. 3.1. One-dimensional potential step.

and eigenvalues for a particle with fixed momentum that are the solutions
of the stationary Schrödinger equation (3.18) in coordinate representation.
Subsequently, we turn to the more realistic case of the scattering of a wave
packet at this potential step.
Solution of the Schrödinger equation for given momentum. For the
stationary solutions in zones I and II, we need to distinguish between the
following two cases:
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Case 1: ε > U0. In both zones, the general solution is given as a superposi-
tion of sine and cosine oscillations, and we make the following ansatz:

ΨI(x) = Aeik1x + Be−ik1x , k1 =
√

ε

ΨII(x) = Ceik2x , k2 =
√

ε − U0 =
√

k2
1 − U0 .

In principle, ΨII could also contain an additional term proportional to e−ik2x

that corresponds to an incoming wave from +∞ in the negative x-direction.
But restricting ourselves to the case of an incoming wave only from the left,
and a transmitted wave in zone II only to the right, this term does not
contribute. The constants A, B, and C can be found using the continuity
conditions

ΨI(0) = ΨII(0)

Ψ ′
I(0) = Ψ ′

II(0)

}
=⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B = A
k1 −

√
k2
1 − U0

k1 +
√

k2
1 − U0

C = A
2k1

k1 +
√

k2
1 − U0

.

Case 2: 0 ≤ ε ≤ U0. In zone II, we expect the solution to decay exponentially,
so we put

ΨI(x) = Aeik1x + Be−ik1x , k1 =
√

ε

ΨII(x) = Ce−k2x , k2 =
√

U0 − ε =
√

U0 − k2
1 .

An exponentially growing term ek2x in zone II can be eliminated as unphysical
since its norm diverges. For the constants, we find

B = A
ik1 + k2

ik1 − k2
= A

ik1 +
√

U0 − k2
1

ik1 −
√

U0 − k2
1

C = A
2ik1

ik1 − k2
= A

2ik1

ik1 −
√

U0 − k2
1

.

In both cases, the solution is composed of an incoming wave ψI, a reflected
wave ψR, and a transmitted wave ψT. The character of the solution is there-
fore significantly different from the corresponding classical scenario. Classi-
cally, in the first case, a particle would continue on its way without being
reflected, but slower from x = 0 onward. In the second case, a classical parti-
cle would be totally reflected. The fact that there is a nonzero probability of
finding a quantum mechanical particle behind the potential wall when ε < U0
is called the tunnel effect.

Two interesting quantities characterizing a scattering process are the re-
flection and transmission coefficients. They are defined as follows:

Definition: Reflection and transmission coefficients R, T

Let jI, jR, jT be the current densities of incoming, reflected, and transmit-
ted wave functions, respectively. We define

�
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R =
∣∣∣∣jRjI

∣∣∣∣ , T =
∣∣∣∣jTjI

∣∣∣∣ , T = 1 − R .

The third relation is a statement of global current conservation and follows
from Theorem 3.14. The reflection and transmission coefficients describe the
proportion of the reflected and the transmitted particle flux relative to the
incoming flux. For the potential step, they are given by

Case 1:

R =
∣∣∣∣BA

∣∣∣∣2 =
2k2

1 − U0 − 2k1
√

k2
1 − U0

2k2
1 − U0 + 2k1

√
k2
1 − U0

T =
∣∣∣∣CA

∣∣∣∣2
√

k2
1 − U0

k1
=

4k1
√

k2
1 − U0

2k2
1 − U0 + 2k1

√
k2
1 − U0

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.22)

Case 2: R = 1 , T = 0.

If, in the first case, ε is much larger than U0, we have practically no reflection,
so that the incoming wave from the left propagates without disturbance to the
right. In the second case, note that, although there is a nonzero probability
of finding the particle in zone II, there is no overall movement in the positive
x-direction.

Scattering of a wave packet. To describe the motion of a physical particle,
we need to take the solutions of the Schrödinger equation, combine them to
a wave packet, and trace its evolution in time. Often, in experiments, the
wave packet has a relatively narrow momentum distribution corresponding
to a large uncertainty in the particle’s localization. The case we have been
looking at so far, with solutions spread out over all space, can therefore be
regarded as the limit of vanishing momentum uncertainty and is also a good
approximation for small momentum distributions. These considerations hold
independently of the shape of the potential so that we have

Theorem 3.15: Reflection and transmission coefficients
of a wave packet

The reflected and transmitted parts of a wave packet with small momentum
distribution depend only on the average momentum value.

We shall verify the correctness of this statement by showing that, in case of
a sharp momentum, the reflection and transmission coefficients are identical
to the probabilities

R′ =

0∫
−∞

dx|ψ(x, t → ∞)|2 , T ′ =

∞∫
0

dx|ψ(x, t → ∞)|2
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of finding the particle to the left of (zone I) and to the right of (zone II) the
potential step in the limit t → ∞. To this end, we assume the particle is
initially described by the following Gaussian distribution [see (3.20)]:

ψ(x, 0) = ΨI(x) =
1√

∆π1/4
e− (x+a)2

2∆2 eik0(x+a) , a � ∆ � 1 .

Here, we choose a � ∆, so that to start all the wave packet is far left of
the potential step. Assuming that k2

0 > U0 (1. case), the general solution of
(3.18) with fixed momentum is of the form

Ψk1(x) = A

{[
eik1x +

(
B(k1)

A

)
e−ik1x

]
Θ(−x)

+
(

C(k1)
A

)
eik2(k1)xΘ(x)

}
.

Bar a constant, the projection 〈Ψk1 |ΨI〉 is given by

φ(k1) = 〈Ψk1 |ΨI〉

= A∗
{∫

dx

[
e−ik1x +

(
B

A

)∗
eik1x

]
Θ(−x)ΨI(x)

+
∫

dx

(
C

A

)∗
e−ik2xΘ(x)ΨI(x)

}
.

The third integral can be neglected to a very good approximation since,
by assumption, ΨI(x) vanishes for x ≥ 0. The second integral also vanishes
as ΨI has a distinct maximum in momentum space around k0 > 0 and is
therefore orthogonal to negative momentum states. Thus, φ is just the Fourier
transform of ΨI:

φ(k1) ≈ A∗
∫

dxe−ik1xΨI(x)

=
A∗

√
∆π1/4

∫
dxe−ik1xeik0(x+a)e− (x+a)2

2∆2

=
A∗√2π∆

π1/4 eik1ae− ∆2
2 (k1−k0)2 .

As we shall see,

A = A∗ =
1√
2π

provides the correct normalization. For ψ(x, t), we now find

ψ(x, t) ≈
∫

dk1φ(k1)Ψk1(x)e−i E(k1)t

h̄

=
√

∆√
2π3/4

∫
dk1eik1ae− ∆2

2 (k1−k0)2e− ih̄k2
1t

2m

×
[(

eik1x +
B

A
e−ik1x

)
Θ(−x) +

C

A
eik2xΘ(x)

]
. (3.23)
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If we use (3.21), the first term yields

Θ(−x)G(−a, k0, t) = ψI(x, t) ,

with

G(−a, k0, t) =
√

∆√
α(t)π1/4

exp

(
−
(
x + a − h̄k0t

m

)2

2α(t)

)

× exp
[
ik0

(
x + a − h̄k0t

2m

)]
.

It describes a wave packet coming from x = −a and moving in positive
direction toward the potential. For large times, its center of mass is given by
〈X〉 = −a + h̄k0t/m ≈ h̄k0t/m > 0, so that the product Θ(−x)G(−a, k0, t)
vanishes in the limit t → ∞. For t = 0, we have ψI(x, 0) = ΨI(x), which
justifies our choice of the normalization constant A. The second term yields

Θ(−x)
B(k0)

A
G(a,−k0, t) = ψR(x, t) , (3.24)

where the ratio B/A could be pulled out of the integral due to the vanishing
dispersion of the momentum φ(k1) around k0. ψR(x, t) describes the reflected
wave packet, which comes originally from x = +a and moves in the negative
direction. For large t, we have 〈X〉 = a − h̄k0t/m ≈ −h̄k0t/m < 0, so that
the factor Θ(−x) in (3.24) can be dropped. Thus,

R′ ≈
0∫

−∞
dx|ψ(x, t → ∞)|2 ≈

∞∫
−∞

dx|ψR(x, t → ∞)|2

≈
∣∣∣∣B(k0)

A

∣∣∣∣2
∞∫

−∞
dx|G(a,−k0, t → ∞)|2 =

∣∣∣∣B(k0)
A

∣∣∣∣2 .

The third term in (3.23) describes the transmitted part ψT of ψ. Its calcula-
tion is not necessary in order to determine T ′ as we can use the conservation
of the norm as well as the orthonormality of ψR and ψT to find

〈ψI|ψI〉 = 〈ψR + ψT|ψR + ψT〉 = R′ + T ′ = 1

=⇒ T ′ ≈
∣∣∣∣C(k0)

A

∣∣∣∣2
√

k2
0 − U0

k0
.

So, R′ and T ′ are indeed equal to the reflection and transmission coefficients
R and T from (3.22) for a particle with fixed momentum.

3.3.4 Potential Well

Consider a particle moving in the square potential well
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V (x) =

{
0 for −a ≤ x ≤ a

V0 else

}
, V0 > 0

(see Fig. 3.2). To solve this problem, we again start with the time-independent

x

V

−a a

V0

I II III

Fig. 3.2. One-dimensional potential well.

Schrödinger equation (3.18) in coordinate representation. Depending on the
size of ε, two cases need to be considered:

Bound states: ε < U0.

ΨI(x) = Aek1x , k1 =
√

U0 − ε =
√

U0 − k2
2

ΨII(x) = B cos(k2x) + C sin(k2x) , k2 =
√

ε

ΨIII(x) = De−k1x .

Here, ΨII is chosen in trigonometric form for convenience. The constants
are obtained using the continuity conditions for the solution and its first
derivative at the boundaries:

Ae−k1a = B cos(k2a) − C sin(k2a)
k1Ae−ik1a = k2 [B sin(k2a) + C cos(k2a)]

De−k1a = B cos(k2a) + C sin(k2a)
−k1De−k1a = k2 [−B sin(k2a) + C cos(k2a)] .

Combining the two first and the two last equations, we find

k1 = k2
B sin(k2a) + C cos(k2a)
B cos(k2a) − C sin(k2a)

= k2
B sin(k2a) − C cos(k2a)
B cos(k2a) + C sin(k2a)

,

which results in the condition BC = 0. This means either C = 0, and the
solutions are even in x (positive parity), or we have B = 0, and the solutions
are odd in x (negative parity). Clearly, this is a direct consequence of the
symmetry of the potential. For even solutions, we have the condition
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tan k2a =
k1

k2
=

√
U0 − k2

2

k2

or

tan y =

√
U ′

0 − y2

y
, y = k2a , U ′

0 = a2U0 .

In Fig. 3.3, the functions tan y and
√

U ′
0 − y2/y are plotted versus y. The

allowed values of y are the intersections of the two curves. We see that there
are more and more bound states the higher the walls of the potential well
are. But, in any case, there exists always at least one bound state, the ground
state. For odd solutions, the corresponding constraint is

U ′
0

small

U ′
0

large

0 π 2π 3π 4π
y

Fig. 3.3. Graphical determination of intersections of tan y and
√

U ′
0 − y2/y for the

case of even bound solutions.

U ′
0

small

U ′
0

large

0 π 2π 3π 4π
y

Fig. 3.4. Graphical determination of intersections of tan(y+π/2) and
√

U ′
0 − y2/y

for the case of odd bound solutions.
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− cot y = tan
(
y +

π

2

)
=

√
U ′

0 − y2

y
,

which is shown graphically in Fig. 3.4. Here, it may happen that there is no
bound state solution at all if the potential well is too flat. Considering the
solutions we have found, as well as Figs. 3.3 and 3.4, the following can be
ascertained: the wave function of the ground state is even and has no zero
crossing. At higher excitations the symmetry of the wave function alternates
between even and odd, while the number of zero crossings increases by one
with each energy level.

Unbound states: ε ≥ U0. Here, we shall consider only incoming waves
moving from left to right. The general solution then reads

ΨI(x) = Aeik1x + Be−ik1x , k1 =
√

ε − U0 =
√

k2
2 − U0

ΨII(x) = Ceik2x + De−ik2x , k2 =
√

ε

ΨIII(x) = Eeik1x ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.25)

where the constants follow from the continuity conditions

Ae−ik1a + Beik1a = Ce−ik2a + Deik2a

k1
(
Ae−ik1a − Beik1a

)
= k2

(
Ce−ik2a − Deik2a

)
Ceik2a + De−ik2a = Eeik1a

k2
(
Ceik2a − De−ik2a

)
= k1Eeik1a .

This system can be solved to obtain the reflection and transmission coeffi-
cients as

R =
(k2

1 − k2
2)

2 sin2 2k2a

4k2
1k

2
2 + (k2

1 − k2
2)2 sin2 2k2a

T =
4k2

1k
2
2

4k2
1k

2
2 + (k2

1 − k2
2)2 sin2 2k2a

.

As in the previous example, there is practically no reflection if ε � U0. If
sin 2k2a = 0, i.e.,

ε =
(nπ

2a

)2
, n = 1, 2, . . . ,

the reflection coefficient even vanishes exactly.

3.3.5 Harmonic Oscillator

Sometimes it is easier to solve a quantum mechanical problem algebraically,
i.e., in a representation-independent manner. The harmonic oscillator, whose
classical Hamilton function is

H(x, p) =
p2

2m
+ V (x) , V (x) =

mω2

2
x2 ,
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provides an example for this approach. Its representation-independent Schrö-
dinger equation reads

ih̄
d
dt

|ψ(t)〉 = H(X,P ) |ψ(t)〉

H(X,P ) = H =
P 2

2m
+

mω2

2
X2 .

Introducing the lowering and raising operators

A =
1√
2h̄

(√
mωX +

i√
mω

P

)
(lowering operator)

A† =
1√
2h̄

(√
mωX − i√

mω
P

)
(raising operator),

it follows that

H = h̄ω

(
A†A +

1
2

)
and

[A, A†] = 1 , [H,A] = −h̄ωA , [H,A†] = h̄ωA† .

Obviously, the evaluation of the spectrum of the Hermitean Hamilton oper-
ator H from the eigenvalue equation

H |n〉 = En |n〉 , En = h̄ω

(
n +

1
2

)
is equivalent to the determination of the spectrum of the Hermitean operator
N = A†A from

N |n〉 = n |n〉 ,

where N denotes the occupation number operator. The eigenvector and eigen-
values of N are obtained from the following observations.

• The above commutation rules imply that

NA |n〉 = A(N − 1) |n〉 = (n − 1)A |n〉
NA† |n〉 = A†(N + 1) |n〉 = (n + 1)A† |n〉 .

So, if |n〉 is an eigenstate of N with eigenvalue n, then A |n〉 and A† |n〉
are also eigenstates but with eigenvalues n−1 and n+1, respectively. Thus,
using the raising and lowering operators, one can construct neighboring
states and energies of |n〉 in ascending and descending directions. This
finally results in a complete discrete set of eigenstates and corresponding
energies.
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• All energy eigenvalues are positive:

En = 〈n| H |n 〉 = h̄ω

(
1
2

+
〈
n| A†A |n〉)

= h̄ω

(
1
2

+
∑
m

〈
n| A† |m〉 〈m|A |n 〉

)

= h̄ω

(
1
2

+
∑
m

| 〈m|A |n 〉 |2
)

> 0 .

• If |0〉 is the state with the smallest energy eigenvalue E0 = h̄ω/2 (ground-
state energy), it must be true that

A |0〉 = 0 .

In coordinate representation this yields the differential equation

1√
2h̄

(√
mωx +

h̄√
mω

d
dx

)
Ψ0(x) = 0 ,

whose normalized solution is

Ψ0(x) =

√
b

π1/4 e− b2
2 x2

, b2 =
mω

h̄
.

• From

A† |n〉 = αn+1 |n + 1〉 , A |n〉 = βn−1 |n − 1〉 ,

we obtain the coefficients

|αn+1|2 =
〈
n| AA† |n〉

= 〈n| N + 1 |n 〉 = n + 1

|βn−1|2 =
〈
n| A†A |n〉

= 〈n| N |n 〉 = n .

Here, any phases can be neglected, so that

|n + 1〉 =
1√

n + 1
A† |n〉 , |n − 1〉 =

1√
n

A |n〉 .

Iterating the first relation leads to

|n〉 =
1√
n!

(A†)n |0〉 , n ∈ N .

In coordinate representation this becomes

Ψn(x̂) =
1√
2nn!

(
x̂ − d

dx̂

)n

Ψ0(x̂) , x̂ =
√

mω

h̄
x .
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Summary

• Due to their simplicity, one-dimensional systems are well-suited to ex-
plore the main characteristics of quantum theory. For example, we saw
that the width of a particle wave packet changes with time and spreads
out.

• The behavior of a wave packet moving toward a potential step depends
on its energy in the following manner: if the energy is larger than the
potential step, part of the packet is reflected (reflection coefficient
R) and the remainder is transmitted (transmission coefficient T ). If
the energy of the incoming wave packet is smaller than the potential, no
transmission occurs (T = 0). Nevertheless, the wave packet also pene-
trates the classically forbidden zone. To calculate R and T , it is often
sufficient to consider static solutions with infinite spatial extension,
as they provide a good approximation of realistic experimental setups
(small momentum uncertainty).

• The solutions for particles in a potential well can be classified as follows:
for particle energies larger than the well, we find unbound states (con-
tinuous spectrum) that contain both reflected and transmitted parts.
If the energy is smaller, there exist bound states, but only for specific
(quantized) values of the particle energy (discrete spectrum).

• The harmonic oscillator is a good example for problems that can be
solved virtually without recourse to a particular representation.

Applications

40. Potential barrier. Consider a one-dimensional particle of mass m and
energy E moving from x = −∞ toward the potential barrier

V (x) =

{
V0 for −a ≤ x ≤ a

0 else

}
, V0 > 0

as shown in Fig. 3.5. Evaluate the transmission coefficient T for both cases,
0 ≤ E ≤ V0 and E > V0.
Solution. The stationary Schrödinger equation for this problem is

d2Ψ

dx2 = [U(x) − ε]Ψ(x) , U(x) =
2mV (x)

h̄2 , ε =
2mE

h̄2 .

It is solved by the ansatz

ΨI(x) = Aeiκ1x + Be−iκ1x , κ1 =
√

ε

ΨII(x) = Ceiκ2x + De−iκ2x , κ2 =
√

ε − U0

ΨIII(x) = Eeiκ1x .
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x−a a

V0

V

I II III

Fig. 3.5. One-dimensional potential barrier.

This is identical in form to the ansatz (3.25) of unbound states for the po-
tential well if we make the substitutions

k1 −→ κ1 , k2 −→ κ2 .

The transmission coefficient can therefore be obtained from the same prob-
lem, and we obtain

1. case: ε ≥ U0.

T =
4ε(ε − U0)

4ε(ε − U0) + U2
0 sin2(2a

√
ε − U0)

.

2. case: 0 ≤ ε < U0.

T =
4ε(U0 − ε)

4ε(U0 − ε) + U2
0 sinh2(2a

√
U0 − ε)

.

In the first case, the transmission coefficient approaches unity for ε � U0.
For the specific eigenvalues

ε = U0 +
(nπ

2a

)2
, n = 1, 2, . . . ,

T is exactly one, and there is no reflection at all. In the second case and for
fixed energy ε, T decreases with increasing potential height U0 and potential
width a.

41. δ-potential. Consider a particle of mass m and energy E, coming from
x = −∞ and moving toward the δ-potential

V (x) = V0δ(x − x0) .

What are the solutions of the Schrödinger equation? Show that for V0 < 0,
there is exactly one bound state.

Solution. The Schrödinger equation is

d2Ψ

dx2 = [U(x) − ε]Ψ(x) , U(x) = U0δ(x − x0) , (3.26)

with
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U0 =
2mV0

h̄2 , ε =
2mE

h̄2 .

Since we are dealing with an infinite discontinuity at x0, the first derivatives
of the wave functions in zones I (x < x0) and II (x ≥ x0) must satisfy the
following condition resulting from (3.26):

Ψ ′(x0 + δ) − Ψ ′(x0 − δ) =

x0+δ∫
x0−δ

dx
d
dx

Ψ ′(x)

= U0

x0+δ∫
x0−δ

dxδ(x − x0)Ψ(x) − ε

x0+δ∫
x0−δ

dxΨ(x)

=⇒ Ψ ′(x0 + δ) − Ψ ′(x0 − δ) = U0Ψ(x0) .

For ε ≥ 0, our ansatz for the solution is

ΨI(x) = Aeikx + Be−ikx , k =
√

ε

ΨII(x) = Ceikx .

The constants follow from the continuity conditions

Aeikx0 + Be−ikx0 = Ceikx0

ik(Ceikx0 − Aeikx0 + Be−ikx0) = U0Ceikx0

as

B = A
U0e2ikx0

2ik − U0
, C = A

2ik
2ik − U0

.

The transmission and reflection coefficients are therefore

T =
∣∣∣∣CA

∣∣∣∣2 =
4k2

4k2 + U2
0

, R = 1 − T =
U2

0

4k2 + U2
0

,

respectively. For U0 < 0, one can also have bound states (ε < 0). A physically
meaningful ansatz for this is given by

ΨI(x) = Aekx , k =
√−ε

ΨII(x) = Be−kx .

The corresponding continuity conditions yield the equations

B = Ae2kx0 , B = −A
ke2kx0

U0 + k
.

Obviously, they can simultaneously be satisfied only if k = −U0/2, which
means that there exists only one bound state.



284 3. Quantum Mechanics

3.4 Quantum Mechanical Angular Momenta

Many three-dimensional problems in quantum mechanics have central sym-
metry. They are therefore most easily solved by replacing the Cartesian co-
ordinates by spherical ones. In this context, quantum mechanical angular
momentum operators play a very important role. In preparation for subse-
quent sections where we will deal with the three-dimensional Schrödinger
equation, we consider in this section the properties of angular momentum
operators. In particular, we solve its eigenvalue problem and discuss the ad-
dition (coupling) of angular momentum.

3.4.1 General Properties of Angular Momentum Operators

In analogy to classical mechanics, the quantum mechanical angular momen-
tum is given by

L = X × P .

In Cartesian coordinates, it has the following components:

Lx = −ih̄
(

y
∂

∂z
− z

∂

∂y

)
Ly = −ih̄

(
z

∂

∂x
− x

∂

∂z

)
Lz = −ih̄

(
x

∂

∂y
− y

∂

∂x

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.27)

This leads to commutation rules such as

[Lx,Ly] = ih̄Lz, , [Lz,Lx] = ih̄Ly, , [Ly,Lz] = ih̄Lx

and, more generally,

[Li,Lj ] = ih̄εijkLk .

As we will show later, there exist other operators obeying the same commu-
tative laws. Therefore, we shall treat the term “angular momentum” more
generally by the following definition:

Definition: Angular momentum J

A Hermitean vector operator J is called angular momentum if its compo-
nents obey the commutator algebra

[J i,J j ] = ih̄εijkJk , [J i,J
2] = 0 . (3.28)

The last relation follows automatically from the first.

Accordingly, the angular momentum L, which we defined in analogy to clas-
sical mechanics, should be viewed as a special case. In the following, we call
this particular operator orbital angular momentum.
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Due to the Hermitecity of J (and therefore also of its components), the
norm of the state vector J i |ψ〉 obeys

0 ≤ 〈ψJ i|J iψ〉 =
〈
ψ|J2

i |ψ 〉
.

This means that the operators J2
i and J2 have nonnegative eigenvalues. Since

the components J i commute with J2, there exists a system of common eigen-
vectors of J2 and of one of the angular momentum components, say, for exam-
ple, Jz. Without giving a proof, we assume that this basis system is complete
(if this wasn’t so, J would not qualify as an observable). Let us summarize
the solution of the eigenvalue problem of J2 and Jz by the following theorem
and then proceed to a proof of the statements:

Theorem 3.16: Eigenvalue problem of the angular momentum
operator J

Let |j, m〉 denote the vectors of the common eigenbasis of J2 and Jz. The
eigenvalue equations are given by

J2 |j, m〉 = h̄2j(j + 1) |j, m〉 , Jz |j, m〉 = h̄m |j, m〉 .

Then, the following holds:

1. The possible values of the quantum number j of J2 are

j = 0,
1
2
, 1,

3
2
, 2, . . . .

2. The possible values of the quantum number m of Jz are

m = −j,−j + 1, . . . , j − 1, j .

This means that j has (2j + 1)-fold degeneracy.

3. Supposing that the states |j, j〉 and |j,−j〉 are normalized to unity (they
describe states with angular momenta in direction of and in opposite
direction to the z-axis), the normalized states with quanta (j, m) are
given by

|j, m〉 = h̄m−j

√
(j + m)!

(2j)!(j − m)!
J j−m

− |j, j〉

= h̄−m−j

√
(j − m)!

(2j)!(j + m)!
J j+m

+ |j,−j〉 ,

with

J+ = Jx + iJy , J− = J†
+ = Jx − iJy .
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Proof.
To 2. The operators J+ and J− obey the relations

[Jz,J±] = ±h̄J± , [J+,J−] = 2h̄Jz , [J2,J±] = 0

and

J2 =
1
2

(J+J− + J−J+) + J2
z

J+J− = J2 − J2
z + h̄Jz

J−J+ = J2 − J2
z − h̄Jz .

This implies that

〈j, m|J−J+ |j, m 〉 = h̄2(j − m)(j + m + 1) 〈j, m| j, m〉
〈j, m|J+J− |j, m 〉 = h̄2(j + m)(j − m + 1) 〈j, m| j, m〉 .

⎫⎬
⎭ (3.29)

These expressions are the squares of the norms of the states J+ |j, m〉 and
J− |j, m〉 and are therefore nonnegative. It follows that m is restricted to

−j ≤ m ≤ j . (3.30)

Applying the operators J2 and Jz to the states J+ |j, m〉 and J− |j, m〉
yields

J2J+ |j, m〉 = J+J2 |j, m〉 = h̄2j(j + 1)J+ |j, m〉
JzJ+ |j, m〉 = (J+Jz + h̄J+) |j, m〉 = h̄(m + 1)J+ |j, m〉

and

J2J− |j, m〉 = h̄2j(j + 1)J− |j, m〉
JzJ− |j, m〉 = h̄(m − 1)J− |j, m〉 .

So, if |j, m〉 is an eigenstate of J2 and Jz with eigenvalues h̄2j(j+1) and h̄m,
we see that J± |j, m〉 are themselves eigenstates with eigenvalues h̄2j(j + 1)
and h̄(m ± 1). Therefore, analogously to the harmonic oscillator formalism
in Subsection 3.3.5, the operators J+ and J− are ladder operators that,
by repeated application to a given state |j, m〉 , generate all other states
|j,−j〉 , |j,−j + 1〉 , . . . , |j, j − 1〉 , |j, j〉 belonging to the same j. In so doing,
we have to consider the additional constraints

J+ |j, j〉 = 0 , J− |j,−j〉 = 0

following from (3.30).
To 1. The possible values of j are found by the following reasoning: repeated
p-fold application of J+ to the state |j, m〉 takes us to a state |j, j〉 , so that
m + p = j. On the other hand, q-fold application of J− to |j, m〉 yields the
state |j,−j〉 , so that m − q = −j. Thus, the sum of the nonnegative integers
p and q,

p + q = j − m + j + m = 2j ,

is also nonnegative and an integer. This implies the constraint of point 1.
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To 3. Equation (3.29) yields

J+ |j, m〉 = h̄
√

(j − m)(j + m + 1) |j, m + 1〉
J− |j, m〉 = h̄

√
(j + m)(j − m + 1) |j, m − 1〉 .

⎫⎬
⎭ (3.31)

Iterating these relations, we find the third conjecture.

3.4.2 Orbital Angular Momentum

Using the results from the previous subsection, we now turn to the eigen-
value problem of the orbital angular momentum operator L in coordinate
representation. Introducing spherical coordinates r, ϕ, θ,

x = r cos ϕ sin θ , y = r sin ϕ sin θ , z = r cos θ ,

the corresponding components of L are derived from (3.27) as

Lx = ih̄
(

sin ϕ
∂

∂θ
+ cos ϕ cot θ

∂

∂ϕ

)

Ly = ih̄
(

− cos ϕ
∂

∂θ
+ sin ϕ cot θ

∂

∂ϕ

)

Lz = −ih̄
∂

∂ϕ
.

From this, we find

L2 = −h̄2
(

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)

L± = Lx ± iLy = h̄e±iϕ
(

± ∂

∂θ
+ i cot θ

∂

∂ϕ

)
. (3.32)

As before, and due to the importance of the orbital angular momentum op-
erator, we first summarize the results for the eigenvalue problem of L2 and
Lz in concise form, before going into more detail:

Theorem 3.17: Eigenvalue problem of the orbital angular
momentum L in spherical coordinate representation

The solutions of the eigenvalue problem

L2Yl,m(θ, ϕ) = h̄2l(l + 1)Yl,m(θ, ϕ)

LzYl,m(θ, ϕ) = h̄mYl,m(θ, ϕ)

are given by the spherical harmonics
�
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Yl,m(θ, ϕ) =
(−1)l

2ll!

√
(2l + 1)!

4π

√
(l + m)!

(2l)!(l − m)!

×eimϕ sin−m θ
dl−m

d(cos θ)l−m
sin2l θ .

They form a complete orthonormal system of square-integrable functions
on the unit sphere,∫

Y ∗
l,m(θ, ϕ)Yl′,m′(θ, ϕ)dΩ = δll′δmm′ ,

where the scalar product contains the integration measure

dΩ = dϕ sin θdθ

denoting the spherical surface element. The quantum numbers l (orbital
quantum number) and m (magnetic quantum number) are restricted to the
integer values

l = 0, 1, 2, . . . , m = −l, . . . , l .

Proof. Because of the form of Lz, the function Yl,m has to be of the type

Yl,m(θ, ϕ) = fl,m(θ)eimϕ ,

where m and therefore also l must be integers, so that Yl,m(θ, ϕ) is unique
under the replacement ϕ → ϕ + 2π. For the eigenfunction with the largest
value of m, m = l, it clearly must hold that

L+Yl,l(θ, ϕ) = 0 .

If we use (3.32), this yields the differential equation(
∂

∂θ
− l cot θ

)
fl,l(θ) = 0 .

Its solution is given by

fl,l(θ) = cl sinl θ .

The value of the constant cl follows from the normalization condition

1 =

2π∫
0

dϕ

π∫
0

dθ sin θY ∗
l,l(θ, ϕ)Yl,l(θ, ϕ) = 2π|cl|2

π∫
0

dθ sin2l+1 θ

=⇒ |cl| =
1√
4π

√
(2l + 1)!
2ll!

.

All other eigenfunctions belonging to the orbital quantum number l are found
using Theorem 3.16:
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Yl,m(θ, ϕ) = h̄m−l

√
(l + m)!

(2l)!(l − m)!
Ll−m

− Yl,l(θ, ϕ) .

Performing the calculations, we obtain the spherical functions as stated in
Theorem 3.17 if the phase of cl is chosen conventionally as

cl

|cl| = (−1)l .

Some properties of the spherical harmonics are given in Section A.6.

3.4.3 Spin

As we will show in Subsection 3.6.3, it is necessary to qualify most quantum
mechanical particles by a new degree of freedom called spin. Since it has
no classical analogue, it is not possible to deduce its form from the third
quantum mechanical postulate. Rather, one proceeds quite intuitively using
the available information from experiments. It turns out that spin has to be
thought of as an intrinsic angular momentum of a particle, also governed by
the angular momentum algebra (3.28). Furthermore, spin is decoupled from
all other degrees of freedom of a particle, so that the spin operator commutes
with all other dynamical quantities.

In the following, we restrict our discussion to the eigenvalue problem of
an electron spin operator S whose quantum numbers s and ms are given
by s = 1/2 and ms = ±1/2. The results for particles with higher spin follow
quite analogously, as shown in Application 42. The electron spin operator has
two basis states corresponding to the quantum numbers (s = 1/2, ms = 1/2)
and (s = 1/2, ms = −1/2). For simplicity, we denote these states with |+〉
(spin up) and |−〉 (spin down):∣∣∣∣ 1

2
,
1
2

〉
= |+〉 ,

∣∣∣∣ 1
2
,−1

2

〉
= |−〉 .

By definition, these vectors satisfy the eigenvalue equations

S2 |±〉 =
3h̄2

4
|±〉 , Sz |±〉 = ± h̄

2
|±〉 .

Using a matrix representation, in which the spin states |+〉 and |−〉 are
represented by the column vectors (spinors)

χ(+) =
(

1
0

)
, χ(−) =

(
0
1

)
,

the matrices for S2 and Sz are given by

S2 =
3h̄2

4
I , Sz =

h̄

2

(
1 0
0 −1

)
,
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where I denotes the (2×2)-unit matrix. The components Sx and Sy are found
using the ladder operators S±, which, from (3.31), have the following effect
on the basis states:

S+χ(+) = 0 , S+χ(−) = h̄χ(+) =⇒ S+ = h̄

(
0 1
0 0

)

S−χ(+) = h̄χ(−) , S−χ(−) = 0 =⇒ S− = h̄

(
0 0
1 0

)
.

This yields

Sx =
1
2
(S+ + S−) =

h̄

2

(
0 1
1 0

)
, Sy =

1
2i

(S+ − S−) =
h̄

2

(
0 −i
i 0

)
.

In the matrix representation, it is conventional to write the electron spin
operator as

S =
h̄

2
σ ,

where σ is composed of the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Some of these matrices’ properties are

[σi,σj ] = 2iεijkσk , {σi,σj} = 2Iδij , σ2
i = I .

3.4.4 Addition of Angular Momenta

Consider the eigenvalue problem of the sum of two angular momentum op-
erators

J = J1 + J2 , Jz = J1z + J2z ,

where J1 and J2 respectively denote the angular momenta of systems 1 and
2 that compose the combined system. The common eigenbasis of the simul-
taneously commuting operators J2

1,J1z,J
2
2,J2z is composed of the tensor

products of the eigenstates of J2
1,J1z and J2

2,J2z:

|j1m1〉 ⊗ |j2, m2〉 = |j1, m1; j2, m2〉 .

On the other hand, we know that the operators J2
1,J

2
2,J

2,Jz also form a
complete set of commuting observables, so that we can build an eigenbasis
of these operators, whose elements we will denote by |j1, j2, J, M〉 .10 They
obey the eigenvalue equations

10 Note the use of the semicolon in the product basis states in order to help distin-
guish between the product basis and the total angular momentum basis.
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J2
1 |j1, j2, J, M〉 = h̄2j1(j1 + 1) |j1, j2, J, M〉

J2
2 |j1, j2, J, M〉 = h̄2j2(j2 + 1) |j1, j2, J, M〉

J2 |j1, j2, J, M〉 = h̄2J(J + 1) |j1, j2, J, M〉
Jz |j1, j2, J, M〉 = h̄M |j1, j2, J, M〉 , M = m1 + m2 .

Using our knowledge from the preceding subsection, we can conclude that,
given j1 and j2, the quantum number J can only take on the values

J = |j1 − j2|, . . . , j1 + j2 − 1, j1 + j2 ,

whereas M must be one of

M = m1 + m2 = −J, . . . , J − 1, J .

The following dimensional argument underpins this reasoning: the number of
eigenproduct states is (2j1 + 1)(2j2 + 1), and this is equal to the number of
eigenstates of the total angular momentum:11

j1+j2∑
J=j1−j2

(2J + 1) =
2j2∑
n=0

[2(j1 − j2 + n) + 1] = (2j1 + 1)(2j2 + 1) .

The completeness of the product basis allows for an expansion of the total
angular momentum eigenstates in the states of this basis:

|j1, j2, J, M〉 =
∑

m1,m2

|j1, m1; j2, m2〉 〈j1, m1; j2, m2| j1, j2, J, M〉 . (3.33)

The expansion coefficients

〈j1, m1; j2, m2| j1, j2, J, M〉 = 〈j1, m1; j2, m2|J, M〉
are called Clebsch-Gordan-(CG-)coefficients or vector addition coefficients.12

Some of their properties are

1. 〈j1, m1; j2, m2|J, M〉 �= 0 =⇒ |j1 − j2| ≤ J ≤ j1 + j2.

2. 〈j1, m1; j2, m2|J, M〉 �= 0 =⇒ M = m1 + m2.

3. By convention, the CG-coefficients are taken to be real.

4. 〈j1, m1; j2, m2|J, J〉 is positive by convention.

5. 〈j1, m1; j2, m2|J, M〉 = (−1)j1+j2−J 〈j1,−m1; j2,−m2|J,−M〉.
6. As coefficients of a unitary transformation, the CG-coefficients obey the

following orthogonality relations:∑
m1,m2

〈j1, m1; j2, m2|J, M〉 〈j1, m1; j2, m2|J ′, M ′〉 = δJJ′δMM ′

11 Without restricting generality, we assume that j1 ≥ j2.
12 Since the indices j1 and j2 occur in the bra vector, they can be suppressed in

the ket.
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J,M

〈j1, m1; j2, m2|J, M〉 〈j1, m
′
1, j2, m

′
2|J, M〉 = δm1m′

1
δm2m′

2
.

The explicit calculation of the CG-coefficients can be quite cumbersome. In
some simple cases, however, the linear combination (3.33) can be written
down directly (see next subsection). For this, note that the state with quan-
tum numbers J = j1 + j2, M = J is given by

|j1, j2, j1 + j2, j1 + j2〉 = |j1, j1; j2, j2〉 ,

since, with the help of

J2 = J2
1 + J2

2 + 2J1zJ2z + J1+J2− + J1−J2+ ,

we find

J2 |j1, j2, J, J〉 = h̄2(j1(j1 + 1) + j2(j2 + 1) + 2j1j2) |j1, j1; j2, j2〉
= h̄2J(J + 1) |j1, j2, J, J〉

and

Jz |j1, j2, J, J〉 = h̄(j1 + j2) |j1, j1; j2, j2〉 = h̄J |j1, j2, J, J〉 .

Using the lowering operator J− = J1− + J2−, we obtain the other states
|j1, j2, J, J − 1〉 , . . . , |j1, j2, J,−J〉 . The state |j1, j2, j1 + j2 − 1, j1 + j2 − 1〉
is now uniquely determined from its orthogonality to |j1, j2, j1 + j2, j1 + j2 − 1〉
in conjunction with the CG-phase constraint No. 4. If we use J−, all other
states with J = j1 + j2 − 1 can then be constructed. And so on.

Theorem 3.18: Addition of angular momenta

Let J1 and J2 be two angular momentum operators of a particle,
J = J1 + J2 and Jz = J1z + J2z the total angular momentum and its
z-component. Then, the operators J2

1,J
2
2,J

2,Jz have a common complete
basis system. Its elements |j1, j2, J, M〉 can be expanded in the product
basis states |j1, m1; j2, m2〉 of J2

1,J1z and J2
2,J2z as follows:

|j1, j2, J, M〉 =
∑

m1,m2

|j1, m1; j2, m2〉 〈j1, m1; j2, m2|J, M〉︸ ︷︷ ︸
CG-coefficients

.

For given j1 and j2, the eigenvalues of the total angular momentum operator
are confined to

J = |j1 − j2|, . . . , j1 + j2 , M = m1 + m2 = −J, . . . , J .

3.4.5 Spin-Orbit and Spin-Spin Coupling

Two useful examples for the addition of angular momenta, which will be
discussed now, are the coupling of the orbital angular momentum with the
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electron spin and the coupling of two electron spins. We will return to the
results obtained here in our discussion of the hydrogen atom in Subsections
3.7.3 to 3.7.5.

Spin-orbit coupling. Consider the eigenvalue problem of the total angular
momentum

J = L + S , Jz = Lz + Sz ,

which is composed of the orbital angular momentum L and the electron spin
S of a particle. The quantum numbers of L, S, and J are denoted by (l, m),
(s = 1/2, ms = ±1/2), and (J, M), respectively. For each l > 0, there are only
two possible values of J : J = l ± 1/2. Since ms can take on only the values
±1/2, each vector of the total angular momentum basis is composed of exactly
two product basis vectors. Using the spin basis notation

∣∣ 1
2 ,± 1

2

〉
= |±〉 , they

are ∣∣∣∣ l, 1
2
, l +

1
2
, M

〉
= α

∣∣∣∣ l, M − 1
2
; +

〉
+ β

∣∣∣∣ l, M +
1
2
; −

〉
∣∣∣∣ l, 1

2
, l − 1

2
, M

〉
= α′

∣∣∣∣ l, M − 1
2
; +

〉
+ β′

∣∣∣∣ l, M +
1
2
; −

〉
,

where M is a half-integer. The orthonormality condition of these states yields
three equations for the expansion coefficients:

α2 + β2 = 1
α′2 + β′2 = 1

αα′ + ββ′ = 0 .

A fourth condition is, for example, given by

J2
∣∣∣∣ l, 1

2
, l +

1
2
, M

〉
= h̄2

(
l +

1
2

)(
l +

3
2

) ∣∣∣∣ l, 1
2
, l +

1
2
, M

〉
,

such that

β

α
=

√
l + 1

2 − M

l + 1
2 + M

,

where

J2 = L2 + S2 + 2LzSz + L+S− + L−S+ .

Using the CG-phase convention, we finally obtain∣∣∣∣ l, 1
2
, l ± 1

2
, M

〉
=

1√
2l + 1

(
±
√

l +
1
2

± M

∣∣∣∣ l, M − 1
2
; +

〉

+

√
l +

1
2

∓ M

∣∣∣∣ l, M +
1
2
; −

〉)
. (3.34)

This equation also holds for l = 0 =⇒ J = 1/2. In this case, we have
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1
2
,
1
2
,
1
2

〉
= |0, 0; +〉 ,

∣∣∣∣0,
1
2
,
1
2
,−1

2

〉
= |0, 0; −〉 .

Spin-spin coupling. The problem simplifies significantly if we consider the
total spin

S = S1 + S2 , Sz = S1z + S2z

of two electron spins S1 and S2 (s1,2 = 1/2, m1,2 = ±1/2). The total angular
momentum quantum numbers S and M can then have only the values

S = 0 =⇒ M = 0 or S = 1 =⇒ M = −1, 0, 1 ,

and we can write down the expansion in product spin states as follows:∣∣∣∣ 1
2
,
1
2
, 1, 1

〉
= |+; +〉∣∣∣∣ 1

2
,
1
2
, 1, 0

〉
=

1√
2

(|+;−〉 + |−; +〉 )∣∣∣∣ 1
2
,
1
2
, 1,−1

〉
= |−; −〉∣∣∣∣ 1

2
,
1
2
, 0, 0

〉
=

1√
2

(|+;−〉 − |−; +〉 ) .

Summary

• Any Hermitean operator J satisfying a particular commutator algebra is
called angular momentum. The operators J2 and Jz have a com-
mon set of basis vectors |j, m〉 , with j = 0, 1/2, 1, 3/2, . . . and
m = −j,−j + 1, . . . , j − 1, j.

• The orbital angular momentum L is an example of an operator sat-
isfying this algebra. In coordinate representation, the eigenstates | l, m〉
of L2 and Lz are the spherical harmonics Yl,m, l an integer. The
electron spin S is another example. It allows for only two eigenvalues
s = 1/2, ms = ±1/2. In matrix representation, the eigenstates of S2 and
Sz are called spinors.

• For the addition of two angular momenta, J = J1+J2, one basis is given
by the tensor product of eigenstates of J2

1,J1z and J2
2,J2z. Another

basis (total angular momentum basis) is given by the eigenstates
of J2

1,J
2
2,J

2,J2
z. Both basis systems are related by a unitary transfor-

mation (Clebsch-Gordan coefficients). The quantum numbers J, M
of J2 and Jz are restricted to the values J = |j1 − j2|, . . . , j1 + j2,
M = m1 + m2 = −J, . . . , J .
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Applications

42. Spin-1 algebra. What are the components of an s=1 spin operator S
in matrix representation if its eigenstates |1, 1〉 , |1, 0〉 , and |1,−1〉 are given
by the vectors

χ(+) =

⎛
⎝ 1

0
0

⎞
⎠ , χ(0) =

⎛
⎝ 0

1
0

⎞
⎠ , χ(−) =

⎛
⎝ 0

0
1

⎞
⎠ .

Solution. The components of S are given by Hermitean (3×3)-matrices. Per
definition, the actions of S2 and Sz on the basis states are

S2χ(+) = 2h̄2χ(+) , S2χ(0) = 2h̄2χ(0) , S2χ(−) = 2h̄2χ(−)

Szχ(+) = h̄χ(+) , Szχ(0) = 0 , Szχ(−) = −h̄χ(−) .

This gives

S2 = 2h̄2I , Sz = h̄

⎛
⎝ 1 0 0

0 0 0
0 0 −1

⎞
⎠ ,

where I denotes the (3×3)-unit matrix. The corresponding matrices for Sx

and Sy are obtained by using the ladder operators S+ and S−, which, ac-
cording to (3.31), operate on the basis states in the following way:

S+χ(+) = 0 , S+χ(0) =
√

2h̄χ(+) , S+χ(−) =
√

2h̄χ(0)

=⇒ S+ =
√

2h̄

⎛
⎝ 0 1 0

0 0 1
0 0 0

⎞
⎠

and

S−χ(+) =
√

2h̄χ(0) , S−χ(0) =
√

2h̄χ(−) , S−χ(−) = 0

=⇒ S− =
√

2h̄

⎛
⎝ 0 0 0

1 0 0
0 1 0

⎞
⎠ .

Thus, we find

Sx =
1
2
(S+ + S−) =

h̄√
2

⎛
⎝ 0 1 0

1 0 1
0 1 0

⎞
⎠

Sy =
1
2i

(S+ − S−) =
h̄√
2

⎛
⎝ 0 −i 0

i 0 −i
0 i 0

⎞
⎠ .
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43. Temporal evolution of a spin-1/2 system. As we will show in Sub-
section 3.6.3, the Hamilton operator describing the interaction between the
spin S of an electron with charge e and mass me, and an external magnetic
field B is given by

H = − e

mec
SB .

Consider a localized electron whose only degree of freedom is its spin. Let
the particle be in an eigenstate of Sx with eigenvalue h̄/2 at time t = 0. At
this time, we switch on a magnetic field B = Bez that affects the particle
for a duration T , whence the field is rotated instantaneously to the y-axis:
B = Bey. After a second time unit T , a measurement of Sx is performed.
What is the probability of finding the value h̄/2?

Solution. In matrix representation, the temporal evolution of the electron
can be described by the spinor

ψ(t) = ψ+(t)χ(+) + ψ−(t)χ(−) =
(

ψ+(t)
ψ−(t)

)
,

with

χ(+) =
(

1
0

)
, χ(−) =

(
0
1

)
.

Thus, within the time interval 0 ≤ t ≤ T , the Schrödinger equation is given
by

ih̄
d
dt

(
ψ+
ψ−

)
= h̄ω

(
1 0
0 −1

)(
ψ+
ψ−

)
, ω = − eB

2mec

and has the solution(
ψ+(t)
ψ−(t)

)
1

=
(

a0e−iωt

b0eiωt

)
.

The constants a0 and b0 are determined from the normalization

a2
0 + b2

0 = 1

and the initial condition

Sxψ(0) =
h̄

2
ψ(0)

as

a0 = b0 =
1√
2

.

Within the time interval T ≤ t ≤ 2T , the Schrödinger equation reads

ih̄
d
dt

(
ψ+
ψ−

)
= h̄ω

(
0 −i
i 0

)(
ψ+
ψ−

)
.

Its solution is given by
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ψ+(t)
ψ−(t)

)
2

=
(

aeiωt + be−iωt

−iaeiωt + ibe−iωt

)
,

where the continuity condition(
ψ+(T )
ψ−(T )

)
1

=
(

ψ+(T )
ψ−(T )

)
2

constrains the constants a and b to

a =
1

2
√

2

(
e−2iωT + i

)
, b =

1
2
√

2

(
1 − ie2iωT

)
.

At time 2T , the electron state is therefore given by(
ψ+(2T )
ψ−(2T )

)
2

=
1

2
√

2

(
1 − i + e−2iωT + ie2iωT

1 − i + e2iωT + ie−2iωT

)
. (3.35)

The probability of now finding the eigenvalue h̄/2 of Sx is given by the
projection of (3.35) onto the corresponding eigenstate of Sx:

W

(
sx =

1
2

)
=

∣∣∣∣ 1√
2
(1, 1)

1
2
√

2

(
1 − i + e−2iωT + ie2iωT

1 − i + e2iωT + ie−2iωT

)∣∣∣∣2
=

1
2
(1 + cos2 2ωT ) .

Accordingly,

W

(
sx = −1

2

)
=

∣∣∣∣ 1√
2
(1,−1)

1
2
√

2

(
1 − i + e−2iωT + ie2iωT

1 − i + e2iωT + ie−2iωT

)∣∣∣∣2
=

1
2

sin2 2ωT

= 1 − W

(
sx =

1
2

)
is the probability of finding the value −h̄/2.

3.5 Schrödinger Equation in Three Dimensions

In Cartesian coordinates, the three-dimensional Schrödinger equation for a
particle in a time-independent scalar potential is given by

ih̄
d
dt

ψ(x, t) = Hψ(x, t) , H = − h̄2

2m
∇2 + V (x) .

Using the ansatz

ψ(x, t) = Ψ(x)e−iωt ,

we find, analogously to the one-dimensional case, the time-independent
Schrödinger equation
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HΨ(x) = EΨ(x) , E = h̄ω .

If the potential can be written in the form

V (x) = V1(x) + V2(y) + V3(z) ,

the solution of this problem becomes quite simple, since the coordinates x,
y, z are then separable and the general solution can be factorized,

Ψ(x) = u1(x)u2(y)u3(z) ,

where the functions ui are each solutions to the one-dimensional Schrödinger
equation(

− h̄2

2m

d2

dξ2 + Vi(ξ)
)

ui(ξ) = Eiui(ξ) , i = 1, 2, 3 ,

with

E = E1 + E2 + E3 .

If two or more of the potentials Vi are identical, the corresponding equations
lead to the same eigenvalues, and we have degeneracy.

In the following, we consider systems with central symmetry. For this case,
we work in the polar coordinate representation, as this allows a separation
of the angular from the radial part, which greatly simplifies the problem.
Before looking at this, we show briefly how two-particle problems can be
reformulated as effective one-particle problems.

3.5.1 Two-Particle Systems and Separation
of the Center of Mass Dynamics

Let the Hamilton operator of a two-particle system in Cartesian coordinate
representation be given by

H =
P 2

1

2m1
+

P 2
2

2m2
+ V (x1,x2) ,

where

P 1 = −ih̄∇1 , P 2 = −ih̄∇2 , [P 1,P 2] = 0

are the momenta of the two particles. If the potential depends only on the
relative distance of the two particles,

V (x1,x2) = V (x1 − x2) ,

the six-dimensional problem can be reduced to two three-dimensional ones.
The first of these represents the constant movement of the center of mass, and
the second describes the relative motion of an effective one-particle system.
Recall how this is done in classical mechanics (see Subsection 1.5.1). There,
we introduced center of mass and relative coordinates
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xS =
m1x1 + m2x2

M
, xR = x1 − x2 ,

as well as center of mass- and relative momenta

pS = p1 + p2 = M ẋS , pR =
m2p1 − m1p2

M
= µẋR ,

with

M = m1 + m2 (total mass) , µ =
m1m2

m1 + m2
(reduced mass) .

This decouples Newton’s equations of motion into two equations, one for
the center of mass, the other for the relative motion. For the corresponding
quantum mechanical case, we need to make the substitutions

P S = P 1 + P 2 = −ih̄∇S , P R =
m2P 1 − m1P 2

M
= −ih̄∇R ,

for which we have the commutation rules

[P S,P R] = 0 , [xSi
,P Sj

] = [xRi
,P Rj

] = ih̄δij

as well as
P 2

1

2m1
+

P 2
2

2m2
=

P 2
S

2M
+

P 2
R

2µ
.

The time-independent Schrödinger equation is then of the following form:(
P 2

S

2M
+

P 2
R

2µ
+ V (xR)

)
Ψ(xS,xR) = EΨ(xS,xR) .

The ansatz

Ψ(xS,xR) = ΨS(xS)ΨR(xR)

decouples this equation into two separate Schrödinger equations for the center
of mass and the relative motion:

HSΨS(xS) = ESΨS(xS) , HS =
P 2

S

2M

HRΨR(xR) = ERΨR(xR) , HR =
P 2

R

2µ
+ V (xR) , [HS,HR] = 0 .

The first of these equations describes the motion of a particle with total mass
M , whereas the second corresponds to the dynamics of a particle with reduced
mass µ in a potential V . Just as in classical mechanics, we see that, up to
the replacements m ↔ µ and x ↔ xR, there exists no difference between
describing the relative motion of a two-particle system and the (absolute)
motion of a one-particle system.
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3.5.2 Radial Schrödinger Equation

If the potential V is centrally symmetric, V (x) = V (|x|), the Hamilton oper-
ator displays spherical symmetry (i.e., it is invariant under spatial rotations).
This makes it advantageous to use spherical coordinates:

x = r cos ϕ sin θ , y = r sin ϕ sin θ , z = r cos θ .

It is straightforward to see that the square of the momentum operator P , in
spherical coordinates, is given by

P 2 = −h̄2∇2 = P 2
r +

L2

r2 ,

where

P r = −ih̄
1
r

∂

∂r
r = −ih̄

(
∂

∂r
+

1
r

)
is the radial momentum (not to be confused with the relative momentum P R),
and L is the particle’s orbital momentum, which we discussed in Subsection
3.4.2. The time-independent Schrödinger equation of the one-particle system
then becomes

HΨ(r, θ, ϕ) = EΨ(r, θ, ϕ) , H =
(

P 2
r

2m
+

L2

2mr2 + V (r)
)

. (3.36)

Before attempting to solve this equation, we need to see under which condi-
tions P r (and therefore H) is Hermitean. For this to hold, we must have

0 = 〈Ψ |P r |Ψ 〉 − 〈Ψ |P r |Ψ 〉∗

= −ih̄

2π∫
0

dϕ

π∫
0

dθ sin θ

∞∫
0

drr

(
Ψ∗ ∂

∂r
(rΨ) + Ψ

∂

∂r
(rΨ∗)

)

= −ih̄

2π∫
0

dϕ

π∫
0

dθ sin θ

∞∫
0

dr
∂

∂r
|rΨ |2 .

For square-integrable functions, we know that rΨ
r→∞−→ 0, so the integral over

r equals its value at the origin. This means that P r is Hermitean only if we
choose square-integrable functions Ψ for which

lim
r→0

rΨ = 0 (3.37)

is satisfied. Furthermore, we also need to investigate if (3.36) is equivalent
to the Schrödinger equation for all possible r, including the origin. One can
indeed show that this is true if Ψ satisfies the above Hermitecity condition.
Now, we have

[H,L2] = [H,Lz] = [L2,Lz] = 0 .
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Since there are no other quantities that commute with these, the operators
H,L2, and Lz constitute a complete set of commuting observables. They
must therefore have a common unique set of basis vectors. This is given by
the spherical harmonics Yl,m, i.e., the basis states of L2 and Lz, and functions
gl(r) depending only on the radius r:

Ψ(r, θ, ϕ) = gl(r)Yl,m(θ, ϕ) .

Inserting this expression into (3.36), we find, in conjunction with the Her-
mitecity condition (3.37),

Theorem 3.19: Radial equation for centrally symmetric potentials[
− h̄2

2m

(
d2

dr2 +
2
r

d
dr

)
+

h̄2l(l + 1)
2mr2 + V (r)

]
gl(r) = Egl(r) , (3.38)

where

lim
r→0

rgl(r) = 0 .

Substituting ul(r) = rgl(r) yields(
− h̄2

2m

d2

dr2 +
h̄2l(l + 1)

2mr2 + V (r)
)

ul(r) = Eul(r) , ul(r = 0) = 0. (3.39)

Some immediate implications are

• Of all solutions ul only those that are normalizable to unity or the δ-
function are physically meaningful.

• If the potential diverges at the origin more slowly than 1/r2: lim
r→0

r2V (r) = 0

(which is true for most potentials), then, around the origin, ul satisfies the
equation

d2ul

dr2 − l(l + 1)
r2 ul = 0 ,

whose solutions are ul(r) ∼ rl+1 (regular solution) and ul(r) ∼ r−l.

• If, for r → ∞, the potential converges to zero faster than 1/r: lim
r→∞ rV (r) = 0,

then we have for large r

d2u

dr2 +
2mE

h̄2 u = 0 .

The solutions to this equation behave asymptotically like

E < 0 : u(r) ∼ e−kr, ekr

E > 0 : u(r) ∼ eikr, e−ikr , k2 =
∣∣∣∣2mE

h̄2

∣∣∣∣ .
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3.5.3 Free Particles

As a first application we consider the simplest system, namely that of a free
particle. The corresponding radial Schrödinger equation is[

− h̄2

2m

(
d2

dr2 +
2
r

d
dr

)
+

h̄2l(l + 1)
2mr2 − E

]
gl(r) = 0 .

Using the dimensionless variables

k2 =
2mE

h̄2 , ρ = kr ,

this becomes the spherical Bessel differential equation (see Section A.5)(
d2

dρ2 +
2
ρ

d
dρ

+ 1 − l(l + 1)
ρ2

)
gl(ρ) = 0 . (3.40)

Its solutions are the spherical Bessel functions whose form and asymptotic
behavior are given by

jl(ρ) = (−ρ)l

(
1
ρ

d
dρ

)l sin ρ

ρ
∼

⎧⎪⎪⎨
⎪⎪⎩

ρl

(2l + 1)!!
for ρ → 0

sin(ρ − lπ/2)
ρ

for ρ → ∞

nl(ρ) = (−ρ)l

(
1
ρ

d
dρ

)l cos ρ

ρ
∼

⎧⎪⎪⎨
⎪⎪⎩

(2l − 1)!!
ρl+1 for ρ → 0

cos(ρ − lπ/2)
ρ

for ρ → ∞ .

Specific combinations of these functions called Hankel functions are of par-
ticular interest:

h
(+)
l (ρ) = nl(ρ) + ijl(ρ)

ρ→∞−→ ei(ρ− lπ
2 )

ρ

h
(−)
l (ρ) = nl(ρ) − ijl(ρ)

ρ→∞−→ e−i(ρ− lπ
2 )

ρ
.

Their asymptotic behavior for k2 > 0 corresponds to outgoing and incoming
spherical waves, respectively. Depending on the sign of E, we distinguish the
following two cases:

• E < 0: here, h
(+)
l is the only bounded solution of (3.40). However, at the

origin, it has a pole of order l + 1. Therefore, the eigenvalue problem has
no solution, which means that, in accordance with our expectation, there
are no eigenstates of a free particle with negative energy.

• E ≥ 0: in this case, the Bessel equation has exactly one solution, which
is bounded everywhere, namely jl(ρ). The total solution of the time-
independent Schrödinger equation is therefore given by

Ψl,m(r, θ, ϕ) = jl(kr)Yl,m(θ, ϕ) . (3.41)
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Note that the above considerations can also be used for the case of a potential
V (r) that can be split into regions of constant potential values Vi. In this case,
E is to be replaced by E − Vi in each region.

Expansion of plane waves in spherical harmonics. Other than by
spherical waves (3.41), a free particle with (infinitely degenerate) energy
E = h̄2k2/2m can also be described by plane waves eikr. They represent
a particle with momentum h̄k, whereas (3.41) corresponds to a particle with
a particular angular momentum. Since spherical harmonics constitute a com-
plete basis system, the countable number of spherical wave functions to a
particular wave number k spans the space of eigenfunctions with energy
E = h̄2k2/2m. Thus, the plane wave eikr can be expanded in these func-
tions:

eikr =
∞∑

l=0

l∑
m=−l

al,m(k)jl(kr)Yl,m(θ, ϕ) .

Putting the z-axis in the direction of k, we have

eikr = eikr cos θ , Lzeikr cos θ = 0 .

This implies that the expansion is independent of ϕ and restricted to terms
with m = 0. If we use (A.14) and al = al,0, it follows that

eiuρ =
∞∑

l=0

aljl(ρ)Pl(u) , u = cos θ , (3.42)

where Pl = Pl,0 are the Legendre polynomials (see Section A.6). To determine
the expansion coefficients al, we proceed as follows: differentiation of (3.42)
yields

iueiuρ =
∞∑

l=0

al
djl

dρ
Pl(u) .

On the other hand, according to (A.11), we have

iueiuρ = i
∞∑

l=0

aljluPl = i
∞∑

l=0

(
l + 1
2l + 3

al+1jl+1 +
l

2l − 1
al−1jl−1

)
Pl .

Comparing the coefficients of Pl in the previous two expansions and using
(A.9) and (A.10) we obtain

l

(
1

2l + 1
al − i

2l − 1
al−1

)
jl−1 = (l + 1)

(
1

2l + 1
al +

i
2l + 3

al+1

)
jl+1

and, therefore,
1

2l + 3
al+1 =

i
2l + 1

al =⇒ al = (2l + 1)ila0 .

Using jl(0) = δl0 and P0(u) = 1, we see from the expansion of eiuρ for ρ = 0
that a0 = 1. This finally leads to



304 3. Quantum Mechanics

Theorem 3.20: Expansion of a plane wave in spherical harmonics

Let the wave vector k define the z-direction. We then have

eikr = eikr cos θ =
∞∑

l=0

(2l + 1)iljl(kr)Pl(cos θ)

=
∞∑

l=0

√
4π(2l + 1)iljl(kr)Yl,0(θ, ϕ) .

3.5.4 Spherically Symmetric Potential Well

Consider the following spherically symmetric potential function (Fig. 3.6):

V (r) =

{−V0 for r < a

0 for r ≥ a

}
, V0 > 0 .

In the inner area I, the sole solution of the radial Schrödinger equation (3.38),
which is regular at the origin, is given by

g
(I)
l (k1r) = Aljl(k1r) , k1 =

√
2m(E + V0)

h̄2 .

In area II, we need to distinguish two cases:

Bound states: E < 0. Here, we have

g
(II)
l (ik2r) = Blh

(+)
l (ik2r) , k2 =

√−2mE

h̄2

as the only solution bounded at infinity. The continuity conditions at r = a,

g
(I)
l (k1a) = g

(II)
l (ik2a) ,

d
dr

g
(I)
l (k1r)

∣∣∣∣
r=a

=
d
dr

g
(II)
l (ik2r)

∣∣∣∣
r=a

,

r

V

a

−V0

I II

Fig. 3.6. Spherically symmetric potential well.
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determine the ratio of the integration constants Al and Bl. These two condi-
tions can be simultaneously satisfied only for discrete values of E. They de-
termine the energy levels of the bound states of the particle. For l=0 states,
we obtain the condition

tan k1a = −k1

k2
.

Unbounded states: E > 0. The general solution is a linear combination of
the spherical Bessel functions, for which we can make the following ansatz:

g
(II)
l (k2r) = Bl [jl(k2r) cos δl + nl(k2r) sin δl] , k2 =

√
2mE

h̄2 .

For l = 0, the corresponding continuity conditions constrain the phase δ0 to

tan(k2a + δ0) =
k2

k1
tan k1a . (3.43)

3.5.5 Naive Hydrogen Atom

The standard example of a two-particle system is the hydrogen atom. It is
built of a positively charged proton and an electron that circles around it. We
initially choose to treat the more general case of hydrogen-like atoms. They
also contain just one electron, whereas the nucleus may consist of more than
one proton (and neutron). Furthermore, we disregard effects due to the spins
of the nucleus or the electron; they are discussed in Subsections 3.7.3 to 3.7.5.
Our starting point is the electrostatic Coulomb potential

V (r) = −Ze2

r

acting between electron and nucleus, where e is the elementary charge of the
electron and Z is the charge number of the nucleus. The radial Schrödinger
equation for the relative motion of electron and nucleus follows from (3.39):(

− h̄2

2µ

d2

dr2 +
h̄2l(l + 1)

2µr2 − Ze2

r

)
ul(r) = Eul(r) , µ =

memk

me + mk
.

Here, me denotes the mass of the electron and mk that of the nucleus.13

Restricting ourselves to the case of bound states with E < 0, it is useful to
introduce the dimensionless quantities

ρ =
(

−8µE

h̄2

)1/2

r , λ =
Ze2

h̄

(
− µ

2E

)1/2
= Zαe

(
−µc2

2E

)1/2

,

with the fine structure constant

13 Note that the mass of the proton is around 1840 times greater than that of
the electron, so that for all hydrogen-like atoms, we can use the approximation
µ ≈ me.
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αe =
e2

h̄c
≈ 1

137
.

The radial Schrödinger equation then turns into the simple form(
d2

dρ2 − l(l + 1)
ρ2 +

λ

ρ
− 1

4

)
ul(ρ) = 0 . (3.44)

For the case ρ → 0, this is reduced to(
d2

dρ2 − l(l + 1)
ρ2

)
ul(ρ) = 0 ,

whose regular solution is proportional to ρl+1. On the other hand, for ρ → ∞,
we have the equation(

d2

dρ2 − 1
4

)
u(ρ) = 0 .

Its normalizable solution, which falls off at infinity, behaves as e−ρ/2. Putting
it all together, we are led to the following ansatz as a solution of (3.44):

ul(ρ) = e−ρ/2ρl+1H(ρ) .

Inserting this in the above, we find the differential equation

ρH ′′ + (2l + 2 − ρ)H ′ + (λ − l − 1)H = 0 . (3.45)

The power-type expansion

H(ρ) =
∞∑

i=0

aiρ
i

yields
∞∑

i=0

[(i + 1)(i + 2l + 2)ai+1 + (λ − l − 1 − i)ai] ρi = 0 ,

and we obtain a recursive formula for the expansion coefficients ai:

ai+1 =
i + l + 1 − λ

(i + 1)(i + 2l + 2)
ai .

For ul to display the required asymptotic behavior at infinity, the expansion
needs to terminate at some i = n′, i.e.,

λ = n′ + l + 1 . (3.46)

This is just the quantization condition for λ and therefore also for the energy
levels of the bound states to a given angular momentum (l, m). Convention-
ally, one introduces the quantity

n = n′ + l + 1 ,

called the principal quantum number. With this notation, to each n > 0, there
corresponds a radial state
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un,l(ρ) = e−ρ/2ρl+1
n−l−1∑

i=0

(−1)i (n − l − 1)!(2l + 1)!
(n − l − 1 − i)!(2l + 1 + i)!i!

ρi

= e−ρ/2ρl+1 (n − l − 1)!(2l + 1)!
[(n + l)!]2

L2l+1
n−l−1(ρ) , (3.47)

where

Lk
p(ρ) =

p∑
i=0

(−1)i [(p + k)!]2

(p − i)!(k + i)!i!
ρi

are the Laguerre polynomials. The energy levels belonging to (3.47) are given
by

En = −Z2e4µ

2h̄2n2
=

E1

n2 , E1 = −Z2e4µ

2h̄2 = −1
2
µc2Z2α2

e . (3.48)

We see that En does not depend on l, so that, for given n, all states with
l < n and −l ≤ m ≤ l have the same energy; they are degenerate. The degree
of degeneracy is14

n−1∑
l=0

(2l + 1) = n2 .

In atomic spectroscopy, it is conventional to denote the states defined by l
by the letters (s, p, d, f, g, . . .) in ascending order and to precede these with
the principal quantum number n. The magnetic quantum number m, which
determines the orientation of the system, is usually suppressed. Figure 3.7
shows the energy levels of the hydrogen atom (term scheme). 1s is the non-
degenerate ground state. The first excited level is fourfold degenerate and
contains one 2s and three 2p states. The second excited level contains one 3s,
three 3p, and five 3d states and is ninefold degenerate, and so on. In Subsec-
tions 3.7.3 to 3.7.5, we show that if we include the spin degrees of freedom
of electron and proton as well as relativistic corrections, the spectrum of this
“naive” system splits into further lines, thus breaking the degeneracy seen
here.

Transforming back to the original relative coordinate r, (3.47) yields the
first few normalized radial wave functions of the hydrogen atom as

g1,0(r) = 2
(

Z

r0

)3/2

e−Zr/r0

g2,0(r) = 2
(

Z

2r0

)3/2 (
1 − Zr

2r0

)
e−Zr/2r0

g2,1(r) =
1√
3

(
Z

2r0

)3/2
Zr

r0
e−Zr/2r0

14 Actually, the degree of degeneracy is 2n2 due to the two spin directions of the
electron, which we have neglected so far.
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E1

E1/4

E1/9
E1/16

0
continuous spectrum

s(l = 0) p(l = 1) d(l = 2) f(l = 3)

1s

2s

3s
4s

2p

3p
4p

3d
4d 4f

Fig. 3.7. Term scheme of the “naive hydrogen atom”.

g3,0(r) = 2
(

Z

3r0

)3/2 (
1 − 2Zr

3r0
+

2Z2r2

27r2
0

)
e−Zr/3r0

g3,1(r) =
4
√

2
3

(
Z

3r0

)3/2
Zr

3r0

(
1 − Zr

6r0

)
e−Zr/3r0

g3,2(r) =
2
√

2
27

√
5

(
Z

3r0

)3/2 (
Zr

r0

)2

e−Zr/3r0 ,

where

r0 =
h̄

µcαe

denotes the Bohr radius. Some resulting expectation values, whose calculation
we present in Application 45, are

〈nlm| r |nlm 〉 = 〈r〉nl =
r0

2Z

[
3n2 − l(l + 1)

]
(3.49)

〈
nlm| r2 |nlm

〉
=

〈
r2〉

nl
=

r2
0n

2

2Z2

[
5n2 + 1 − 3l(l + 1)

]
〈

nlm

∣∣∣∣1r
∣∣∣∣nlm

〉
=

〈
1
r

〉
nl

=
Z

r0n2〈
nlm

∣∣∣∣ 1
r2

∣∣∣∣nlm

〉
=

〈
1
r2

〉
nl

=
Z2

r2
0n

3
(
l + 1

2

)
〈

nlm

∣∣∣∣ 1
r3

∣∣∣∣nlm

〉
=

〈
1
r3

〉
nl

=
Z3

r3
0n

3l
(
l + 1

2

)
(l + 1)

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.50)
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If l is maximal, l = n−1, the average quadratic radial distance of the electron
from the nucleus is given by

∆r =
√

〈r2〉 − 〈r〉2 =
〈r〉√

2n + 1
.

For large n, the quantity ∆r/ 〈r〉 becomes very small, and the electron is
practically confined to the surface of a sphere with radius R = n2r0/Z, where
the corresponding energy E = −Z2e2/(2r0n

2) = −Ze2/2R is equal to the
kinetic energy of a classical electron circling around the nucleus with radius
R. This is an example of the correspondence principle that we mentioned in
Subsection 3.2.1 and that states that the laws of quantum mechanics converge
toward the corresponding laws of the classical theory in the limit of large
quantum numbers or in the limit h̄ → 0.

Summary

• If, for a three-dimensional two-particle problem, the potential is a func-
tion only of the relative distance of the two particles, the Schrödinger
equation can be separated into two decoupled equations, just as for the
classical mechanical problem of this type. One equation describes the
center of mass motion and the other the relative motion of the
particles. The latter can be viewed as an equation for an effective one-
particle problem within the potential.

• For centrally symmetric potentials, we use the polar coordinate rep-
resentation to separate the radial part of the wave function from the
angular part. The solution to the angular part is given by spherical har-
monics, the eigenfunctions of the orbital angular momentum. The so-
lutions to the radial part are obtained from the radial equation for
centrally symmetric potentials.

• For free particles or areas of constant potential, the radial equation be-
comes the spherical Bessel differential equation whose solutions are
the spherical Bessel functions.

• Using a simplistic (naive) approach, the bound states of hydrogen-
like atoms are characterized by three quantum numbers: the principal
quantum number n, the orbital quantum number l < n, and the
magnetic quantum number m = −l, . . . , l. The binding energies de-
pend only on the principal quantum number n and are therefore n2-fold
degenerate if we disregard the two spin orientations of the electron.
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Applications

44. Three-dimensional anisotropic oscillator. Determine the energy
eigenvalues of a three-dimensional anisotropic oscillator whose stationary
Schrödinger equation in coordinate representation is given by

HΨ(x) = EΨ(x) , H = − h̄2

2m
∇2 +

m

2
(
ω2

1x2 + ω2
2y2 + ω2

3z2) . (3.51)

Solution. The product ansatz

Ψ(x, y, z) = u1(x)u2(y)u3(z)

takes us from (3.51) to(
− h̄2

2m
u′′

1(x) +
m

2
ω2

1x2u1(x) − E1u1(x)
)

u2(y)u3(z)

+
(

− h̄2

2m
u′′

2(y) +
m

2
ω2

2y2u2(y) − E2u2(y)
)

u1(x)u3(z)

+
(

− h̄2

2m
u′′

3(z) +
m

2
ω2

3z2u3(z) − E3u3(z)
)

u1(x)u2(y) = 0 , (3.52)

with

E = E1 + E2 + E3 .

For (3.52) to hold, we see that the brackets must be identically zero:(
− h̄2

2m
u′′

i (ξ) +
m

2
ω2

i ξ2ui(ξ)
)

= Eiui(ξ) , i = 1, 2, 3 .

Thus, the problem reduces to three equations each of which describe a one-
dimensional oscillator. This problem has already been discussed in Subsection
3.3.5, so that we can use those results here to obtain the total energy of the
system as

E = h̄ω1

(
n1 +

1
2

)
+ h̄ω2

(
n2 +

1
2

)
+ h̄ω3

(
n3 +

1
2

)
.

The ground-state wave function (n1 = n2 = n3 = 0) is given by

Ψ0,0,0(x) =
√

b1b2b3

π3/4 e− 1
2 (b21x2+b22y2+b23z2) , b2

i =
mωi

h̄
.

45. Expectation values for the hydrogen atom. With the help of the
radial Schrödinger equation, show that for hydrogen-like atoms we have

(s + 1)
Z2

r2
0n

2 〈rs〉nl − (2s + 1)
Z

r0

〈
rs−1〉

nl

+
s

4
[
(2l + 1)2 − s2] 〈rs−2〉

nl
= 0 . (3.53)
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Solution. For hydrogen-like atoms, we know from (3.39) that

u′′(r) − l(l + 1)
r2 u(r) +

2Z

r0r
u(r) − Z2

r2
0n

2 u(r) = 0 , u(r) = un,l(r) . (3.54)

Therefore,
∞∫
0

drrsu(r)u′′(r) = l(l + 1)

∞∫
0

drrs−2u2(r) − 2Z

r0

∞∫
0

drrs−1u2(r)

+
Z2

r2
0n

2

∞∫
0

drrsu2(r)

= l(l + 1)
〈
rs−2〉

nl
− 2Z

r0

〈
rs−1〉

nl
+

Z2

r2
0n

2 〈rs〉nl . (3.55)

On the other hand, we can use partial integration to find
∞∫
0

drrsu(r)u′′(r) = −s

∞∫
0

drrs−1u(r)u′(r) −
∞∫
0

drrsu′2(r)

= −s

∞∫
0

drrs−1u(r)u′(r)

+
2

s + 1

∞∫
0

drrs+1u′(r)u′′(r) , (3.56)

where the last term can be rewritten using (3.54):
∞∫
0

drrs+1u′(r)u′′(r) = l(l + 1)

∞∫
0

drrs−1u(r)u′(r) − 2Z

r0

∞∫
0

drrsu(r)u′(r)

+
Z2

r2
0n

2

∞∫
0

drrs+1u(r)u′(r) . (3.57)

Taking into account
∞∫
0

drrku(r)u′(r) = −k

2

∞∫
0

drrk−1u2(r) = −k

2
〈
rk−1〉 ,

the combination of (3.55), (3.56), and (3.57) yields (3.53).

3.6 Electromagnetic Interactions

In Subsection 3.5.5 we discussed the interaction of an electron with an elec-
trostatic Coulomb potential using the hydrogen atom as an example. This
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subsection deals more generally with the dynamics of an electron in an elec-
tromagnetic field. In this context, the important concept of gauge invariance
will be introduced, from which some interesting quantum effects can be de-
duced. At the end of this subsection we provide an a posteriori explanation
for the electron spin, which we have already encountered several times pre-
viously.

3.6.1 Electron in an Electromagnetic Field

For the following discussion, it may be useful to recall the results of Sections
2.1 and 2.2. Our starting point for the quantum mechanical discussion of
the electron motion in an external electromagnetic field is the corresponding
classical equation of motion of an electron with mass me and charge e:

meẍ = e

(
E(x, t) +

ẋ

c
× B(x, t)

)
. (3.58)

The electric and magnetic fields E, B are related via

B = ∇ × A , E = −1
c

∂A

∂t
− ∇φ ,

with the scalar potential φ and the vector potential A. Equation (3.58) can
be deduced from the laws of Hamiltonian mechanics if the Hamiltonian is
chosen as

H =
1

2me

(
p − e

c
A
)2

+ eφ =
1

2me

(
p2 − 2e

c
pA +

e2

c2 A2
)

+ eφ .

We then find

∇xH = − e

mec
∇x(pA) +

e2

2mec2 ∇x(A2) + e∇xφ = −ṗ

∇pH =
1

me
p − e

mec
A = ẋ

and, therefore,

meẍ = ṗ − e

c

(
(ẋ∇)A +

∂A

∂t

)
, ∇ = ∇x

=
e

mec
[(p∇)A + p × (∇ × A)]

− e2

2mec2 [2(A∇)A + 2A × (∇ × A)]

−e∇φ − e

c

[
(ẋ∇)A +

∂A

∂t

]

=
e

c

{[(
1

me
p − e

mec
A

)
∇

]
A +

(
1

me
p +

e

mec
A

)
× (∇ × A)

}
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−e∇φ − e

c

(
(ẋ∇)A +

∂A

∂t

)
=

e

c
ẋ × B + eE .

The transition to quantum mechanics is performed by the usual operator
replacements, and we obtain

Theorem 3.21: Electron in an external electromagnetic field

Let A and φ be the vector and the scalar potential of the electromagnetic
fields E and B. In coordinate representation, the Hamilton operator for an
electron interacting with E and B is given by

H =
1

2me

(
h̄

i
∇ − e

c
A(x, t)

)2

+ eφ(x, t) .

In Coulomb gauge, ∇A = 0, this becomes

H = − h̄2

2me
∇2 +

ieh̄
mec

A∇ +
e2

2mec2 A2 + eφ . (3.59)

If we assume that the magnetic field only has a component in the z-
direction,

B = ∇ × A = B

⎛
⎝ 0

0
1

⎞
⎠ , with A =

B

2

⎛
⎝−y

x
0

⎞
⎠ = −1

2
x × B ,

the second and third terms of (3.59) become

ieh̄
mec

A∇Ψ =
ieh̄

2mec
B(x × ∇)Ψ = −MBΨ , M =

e

2mec
L

e2

2mec2 A2Ψ =
e2

8mec2

[
x2B2 − (xB)2

]
Ψ =

e2B2

8mec2 (x2 + y2)Ψ ,

where M can be interpreted as the magnetic dipole moment of the electron
with orbital momentum L.

Given the strengths of magnetic fields B that are usually achieved in the labo-
ratory (≈ 10−4 Gauss), the quadratic term in A is several orders of magnitude
smaller than the linear term and can safely be dropped.
Normal Zeeman effect. As an application of Theorem 3.21, we consider
again the naive hydrogen atom as discussed in Subsection 3.5.5 but now in a
constant external magnetic field in the z-direction, B = Bez. If we neglect
the A2-term, the Schrödinger equation is given by

(H(0) + H(1))Ψ = (E(0) + E(1))Ψ ,

with

H(0) = − h̄2

2µ
∇2 + eφ , φ(x) = −Ze

|x| , H(1) = − eB

2µc
Lz .
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Since the solutions Ψn,l,m of the hydrogen equation

H(0)Ψn,l,m = E(0)Ψn,l,m , E(0) = E(0)
n = −µc2Z2α2

e

2n2

are also eigenstates of Lz, we obtain E(1) directly from

H(1)Ψn,l,m = E(1)Ψn,l,m

as

E(1) = E
(1)
lm = − eB

2µc
h̄m .

Thus, in the presence of a constant magnetic field, the (2l+1)-fold degenerate
levels belonging to a fixed value of l split into 2l + 1 equidistant levels (Fig.
3.8).

l = 1

l = 2

m

+2
+1

0
−1
−2

+1
0

−1
Fig. 3.8. Splitting of the naive l=1- and l=2-hydrogen levels in the presence of an
external magnetic field (normal Zeeman effect).

3.6.2 Gauge Invariance of the Schrödinger Equation

Unlike Maxwell’s equations, the Schrödinger equation

ih̄
∂ψ(x, t)

∂t
=

[
1

2m

(
h̄

i
∇ − e

c
A(x, t)

)2

+ eφ(x, t)

]
ψ(x, t) (3.60)

is not invariant under gauge transformations of the kind

A −→ A′ = A + ∇χ , φ −→ φ′ = φ − 1
c

∂χ

∂t
.

However, its gauge invariance can be restored if the wave function ψ is mul-
tiplied with a suitably chosen phase factor:

ψ(x, t) −→ ψ′(x, t) = eiΛ(x,t)ψ(x, t) .
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Substituting A, φ, and ψ by the primed quantities A′, φ′, and ψ′ in (3.60),
we find

ih̄e−iΛ
(

−i
∂Λ

∂t
ψ′ +

∂ψ′

∂t

)
=

1
2m

(
h̄

i
∇ − e

c
A′ +

e

c
∇χ

)(
h̄

i
∇ − e

c
A′ +

e

c
∇χ

)
e−iΛψ′

+e

(
φ′ +

1
c

∂χ

∂t

)
e−iΛψ′

=
1

2m

(
h̄

i
∇ − e

c
A′ +

e

c
∇χ

)
e−iΛ

(
h̄

i
∇ − e

c
A′ +

e

c
∇χ − h̄∇Λ

)
ψ′

+e

(
φ′ +

1
c

∂χ

∂t

)
e−iΛψ′

=
1

2m
e−iΛ

(
h̄

i
∇ − e

c
A′ +

e

c
∇χ − h̄∇Λ

)2

ψ′

+e

(
φ′ +

1
c

∂χ

∂t

)
e−iΛψ′ . (3.61)

If we choose

Λ(x, t) =
e

h̄c
χ(x, t) ,

(3.61) transforms into an equation of the same form as the original Schrödinger
equation (3.60):

ih̄
∂ψ′(x, t)

∂t
=

[
1

2m

(
h̄

i
∇ − e

c
A′(x, t)

)2

+ eφ′(x, t)

]
ψ′(x, t) . (3.62)

Thus, as desired, (3.60) is indeed gauge-invariant under the above gauge
transformations.

In a situation without magnetic fields (B = 0), there are two choices to
describe the motion of an electron in a purely electric potential φ. Either one
solves the Schrödinger equation

ih̄
∂ψ

∂t
=

(
− h̄2

2me
∇2 + eφ

)
ψ , (3.63)

in which the vector potential is not present at all, or one considers gauge
invariance and solves the more general equation (3.62), setting

A′ = ∇χ . (3.64)

The wave function ψ′ is then related to ψ from (3.63) via

ψ′(x, t) = eie/(h̄c)χ(x,t)ψ(x, t) .

As only the square of its absolute value is experimentally accessible, it would
seem that the phase factor in the wave function is of no importance. However,
there are situations in which the wave function itself, and thus its phase, plays
an important role. Two examples of that kind are now presented.
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Quantization of the magnetic flux. Consider a torus-shaped supercon-
ductor in an external constant magnetic field below its critical temperature
Tc (Fig. 3.9). Due to the Meissner effect, the magnetic field is pushed out of

T > Tc T < Tc

Fig. 3.9. Flux line distribution of an external magnetic field in the presence of
a superconducting medium above its critical temperature Tc (left) and below Tc
(right).

the torus, so that its inside becomes field-free. According to (3.64), the phase
factor χ of the wave function of an electron in the torus is

χ(x, t) =

x∫
x0

dx′A(x′, t) ,

where x0 is an arbitrary fixed point inside the torus and A(= A′) denotes
the vector potential of the magnetic field outside the torus. However, this
path integral is not unique due to the hole in the torus through which the
magnetic field enters. Consider, for example, two paths 1 and 2 differing
from one another by one extra winding around the torus. The difference in
the integral is then∫

1

dx′A(x′, t) −
∫
2

dx′A(x′, t) =
∮

dx′A(x′, t) =
∫
F

dF∇′ × A(x′, t)

=
∫
F

dFB(x′, t) = Φm ,

where Φm is just the magnetic flux through the area spanned by the paths
1 and 2. For the wave function to be unique, and therefore physically mean-
ingful, it must not feel the difference between the two paths. This leads to a
quantization of the magnetic flux:

Φm =
2πh̄c

e
n , n = 0,±1,±2, . . . .
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Such a quantization is indeed experimentally verifiable, but with a slight
modification:

Φm =
2πh̄c

2e
n .

The factor of 2 is explained by Cooper’s theory, according to which two elec-
trons in a superconducting metal form correlated states (Cooper pairs).

Bohm-Aharanov effect. Another experiment that shows the phase depen-
dency from the magnetic flux is shown in Fig. 3.10. Behind both slits of this

electron
source

path 1

path 2

magn.
flux

screen
Fig. 3.10. Experimental setup for measuring the relative phase of electron waves
that move along two different paths enclosing a magnetic flux.

double-slit experiment, there is an electric coil inducing a magnetic flux. The
interference pattern observed on the screen is caused by the superposition of
the wave functions following paths 1 and 2:

ψ′ = ψ′
1 + ψ′

2 = ψ1 exp

⎛
⎝ ie

h̄c

∫
1

dx′A

⎞
⎠ + ψ2 exp

⎛
⎝ ie

h̄c

∫
2

dx′A

⎞
⎠

=
[
ψ1 exp

(
ie
h̄c

Φm

)
+ ψ2

]
exp

⎛
⎝ ie

h̄c

∫
2

dx′A

⎞
⎠ .

Therefore, when the current flows through the coil, the relative phase of
the two wave functions differs from that of the no-current case by a factor
exp

( ie
h̄cΦm

)
. This effect was first predicted by Bohm and Aharanov and has

subsequently been verified experimentally.

3.6.3 Stern-Gerlach Experiment

At the end of this section we return to the electron spin operator that we
introduced, somewhat ad-hoc, in Subsection 3.4.3. To better motivate its
introduction, we present an experiment first performed by Stern and Gerlach.



318 3. Quantum Mechanics

Consider a homogeneous beam of hydrogen atoms propagating through a
strongly inhomogeneous magnetic field B = B(z)ez in the z-direction (Fig.
3.11).15 If an atom in the beam has a magnetic moment M , its potential

N

S

x

y

z

screen

Fig. 3.11. Experimental setup to prove the existence of an intrinsic angular mo-
mentum (spin) of electrons.

energy in the magnetic field is

V (z) = −MB = −MzB(z) .

Thus, classically, a force in the z-direction applies to the atom,

Fz = −∂V

∂z
= Mz

∂B

∂z
,

so that the atom is deflected from its original path. Since Mz can take on
any real value in some interval around zero, one would expect to see the ray
smeared out in a fan-like manner. However, from the quantum mechanical
viewpoint, following Theorem 3.21, the operator Mz has discrete eigenvalues:

h̄e

2mec
m , m = −l, . . . , l .

So if the atoms are all in the same state, we would expect the jet to split
into 2l + 1 equidistant jets. In particular, for atoms in the ground state
(n = 1, l = 0), no splitting is expected at all. But what is found experimen-
tally is that the jet splits into two. Obviously, this implies that on top of the
magnetic moment resulting from the movement of the electrons around the
proton, there has to be an additional dipole moment that does not vanish,
even when the orbital angular momentum is null. The angular momentum
operator corresponding to this effect is the already-mentioned electron spin
S whose quantum numbers s = 1/2 and ms = ±1/2 follow from the splitting
15 This experiment was originally carried out with silver atoms, but the following

argument also holds for the simpler hydrogen atoms.
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of the hydrogen jet into two. The size of the electron’s magnetic moment can
also be deduced from this experiment and is given by

M (e) =
ege

2mec
S , ge ≈ 2 , (3.65)

where ge is the gyromagnetic ratio of the electron. Similar experiments can be
carried out to verify that the proton has an electron-like spin S with s = 1/2,
too, accompanied by a much smaller magnetic dipole moment (e=electron
charge)

M (p) =
egp

2mpc
S , gp ≈ 5.56 .

The interaction between M (e) and M (p) is responsible for the hyperfine split-
ting of the hydrogen atom, which we will discuss in Subsection 3.7.5.

Summary

• The Hamilton operator for an electron in an external electromagnetic
field is obtained by the usual operator replacements, starting from the
classical equation of motion of the electron. One of the terms in the
Hamilton operator can be interpreted as the magnetic dipole moment
of the electron that is caused by its orbital angular momentum.

• Multiplication of the electron wave function with a suitable phase fac-
tor (gauge transformation) makes the Schrödinger equation invariant
under gauge transformations of the electromagnetic field.

• The phase factor has experimentally verifiable implications as exemplified
by the quantization of the magnetic flux and the Bohm-Aharanov
effect.

• The Stern-Gerlach experiment shows that the electron and proton
have intrinsic angular momenta (spins) confined to two values. Each of
these spins is linked to a magnetic dipole moment. That of the proton is
smaller than that of the electron by a factor of mp/me ≈ 2000.

Applications

46. Continuity equation. Show that for a system satisfying the Schrödin-
ger equation

ih̄
d
dt

ψ(x, t) = Hψ(x, t) , H =
1

2m

(
P − e

c
A(x, t)

)2
+ eφ(x, t) , (3.66)

the continuity equation
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d
dt

(ψ∗ψ) + ∇j = 0

holds, with the current density j

j =
h̄

2im

(
ψ∗∇ψ − ψ∇ψ∗ − 2ie

h̄c
Aψ∗ψ

)
.

Solution. Multiplying (3.66) by ψ∗ and the adjoint equation by ψ, followed
by subtraction of the two, we find

ih̄
d
dt

(ψ∗ψ) +
h̄2

2m
[ψ∗∇2ψ − ψ∇2ψ∗

−2ie
h̄c

(ψ∗A∇ψ + ψA∇ψ∗ + ψ∗ψ∇A)] = 0

=⇒ ih̄
d
dt

(ψ∗ψ) +
h̄2

2m
∇

(
ψ∗∇ψ − ψ∇ψ∗ − 2ie

h̄c
Aψ∗ψ

)
= 0

=⇒ d
dt

(ψ∗ψ) + ∇j = 0 , j =
h̄

2im

(
ψ∗∇ψ − ψ∇ψ∗ − 2ie

h̄c
Aψ∗ψ

)
.

Note that no gauge condition was used in this derivation.

47. Electron in a constant magnetic field. Suppose an electron of mass
me and charge e moves in a constant magnetic field B = Bez. What are the
stationary solutions to the corresponding Schrödinger equation?

Solution. According to Theorem 3.21 with A given by

A =
B

2

⎛
⎝−y

x
0

⎞
⎠ , ∇A = 0 ,

the Hamilton operator reads

H = − h̄2

2me
∇2 − eB

2mec
Lz +

e2B2

8mec2

(
x2 + y2) .

The form of the “potential” e2B2

8mec2 (x2 + y2) suggests the use of cylindrical
coordinates to separate the variables:

x = r cos ϕ , y = r sin ϕ .

The differential operators Lz and ∇2 are then given by

Lz = −ih̄
∂

∂ϕ
, ∇2 =

∂2

∂z2 +
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂ϕ2 ,

and the Hamilton operator is

H = − h̄2

2me

(
∂2

∂z2 +
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂ϕ2

)
+

ih̄eB

2mec

∂

∂ϕ
+

e2B2

8mc2 r2 .

Since [H,Lz] = 0, it is useful to write the eigenstates of H as
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Ψ(r, ϕ, z) = u(r)v(ϕ)w(z) , v(ϕ) = eimϕ , w(z) = eikz ,

where v(ϕ) is an eigenfunction of Lz with eigenvalue h̄m. With this, the
stationary Schrödinger equation becomes a differential equation in u:

u′′(r) +
u′(r)

r
+

(
2meE

h̄2 +
meB

h̄c
− e2B2

4h̄2c2
r2 − k2 − m2

r2

)
u(r) = 0. (3.67)

Introducing the new variables

x =

√
− eB

2h̄c
r , Λ =

4mec

h̄eB

(
h̄2k2

2me
− E

)
− 2m ,

we find

u′′(x) +
1
x

u′(x) +
(

Λ − x2 − m2

x2

)
u(x) = 0 .

We see that u has the following asymptotic behavior for large and small x:

x → ∞ : u′′(x) − x2u(x) = 0 =⇒ u(x) ∼ e−x2/2

x → 0 : u′′(x) +
1
x

u′(x) − m2

x2 u(x) = 0 =⇒ u(x) ∼ x|m| .

Therefore, in order to solve (3.67), we make the following ansatz:

u(x) = G(x)e−x2/2x|m| .

This yields the differential equation

G′′(x) +
(

2|m| + 1
x

− 2x

)
G′(x) + (Λ − 2 − 2|m|)G(x) = 0 .

Substituting y = x2, we finally find

yG′′(y) + (|m| + 1 − y)G′(y) +
Λ − 2 − 2|m|

4
G(y) = 0 ,

which is of the same form as (3.45) with the replacements

l −→ |m| − 1
2

, λ −→ Λ

4
.

Comparison with (3.46) directly leads to the energy eigenvalues of our prob-
lem:

Λ

4
− |m| + 1

2
= n′ = 0, 1, 2, . . .

⇐⇒ En′ =
h̄2k2

2me
− h̄eB

2mec
(2n′ + |m| + 1 + m) .

By comparison with (3.47), the corresponding unnormalized eigenfunctions
are given by

G(y) = L
|m|
n′ (y) .
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3.7 Perturbation Theory and Real Hydrogen Atom

Most quantum mechanical problems are not solvable exactly in analytic
form. However, given certain conditions, one can make use of approxima-
tion schemes that come very close to an exact solution. In this section we
discuss such a method, namely time-independent perturbation theory. It is
used particularly for the case of bound states and time-independent Hamil-
ton operators.

The section begins with a general discussion of time-independent pertur-
bation theory for nondegenerate and degenerate cases. We then consider two
realistic applications, the Stark and the anomalous Zeeman effect. Further-
more, we will see how the hydrogen atom, naively discussed in Subsection
3.5.5, can be treated in a more realistic fashion leading to fine structure and
hyperfine structure splitting.

3.7.1 Time-Independent Perturbation Theory

Consider the time-independent Schrödinger equation

(H(0) + H ′) |n〉 = En |n〉 . (3.68)

Suppose a complete set of nondegenerate and orthonormal eigenvectors
∣∣n(0)

〉
of H(0), together with their eigenvalues E

(0)
n , have already been found:

H(0)
∣∣∣n(0)

〉
= E(0)

n

∣∣∣n(0)
〉

.

We assume H ′ is “small” compared to H(0), where we shall define later what
we mean by this. Conventionally, H(0) is called the unperturbed Hamilton
operator and H ′ the perturbation operator or simply perturbation. To solve
(3.68) we introduce a fictitious perturbation parameter λ that will be removed
or set to unity later on. This allows us to rewrite (3.68) as

(H(0) + λH ′) |n〉 = En |n〉 ,

where the smallness of H ′ is meant to be reflected in the parameter λ. Now it
seems reasonable to assume that it is possible for En and |n〉 to be expanded
as a series in powers of λ such that

En = E(0)
n + λE(1)

n + λ2E(2)
n + . . . (3.69)

|n〉 =
∣∣∣n(0)

〉
+ λ

∣∣∣n(1)
〉

+ λ2
∣∣∣n(2)

〉
+ . . . ,

where the perturbed quantities converge smoothly to the unperturbed values
for λ → 0:

λ → 0 =⇒ |n〉 →
∣∣∣n(0)

〉
, En → E(0)

n .

Since the basis states
∣∣n(0)

〉
of the unperturbed problem form a complete

set, the kets
∣∣n(r)

〉
, r > 0, can be expanded in this basis,
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〉

=
∑
m

C(r)
m

∣∣∣m(0)
〉

,

and we find

|n〉 =
∣∣∣n(0)

〉
+ λ

∑
m

C(1)
m

∣∣∣m(0)
〉

+ λ2
∑
m

C(2)
m

∣∣∣m(0)
〉

+ . . .

or, rescaling C
(r)
m suitably,

|n〉 =
∣∣∣n(0)

〉
+ λ

∑
m�=n

C(1)
m

∣∣∣m(0)
〉

+ λ2
∑
m�=n

C(2)
m

∣∣∣m(0)
〉

+ . . . . (3.70)

Inserting (3.69) and (3.70) into the original equation (3.68), and ordering the
terms in powers of λ, one finds the following equations in lowest orders:

0th order:

H(0)
∣∣∣n(0)

〉
= E(0)

n

∣∣∣n(0)
〉

.

1st order:

H(0)
∑
m�=n

C(1)
m

∣∣∣m(0)
〉

+ H ′
∣∣∣n(0)

〉
= E(0)

n

∑
m�=n

C(1)
m

∣∣∣m(0)
〉

+E(1)
n

∣∣∣n(0)
〉

. (3.71)

2nd order:

H(0)
∑
m�=n

C(2)
m

∣∣∣m(0)
〉

+ H ′ ∑
m�=n

C(1)
m

∣∣∣m(0)
〉

= E(0)
n

∑
m�=n

C(2)
m

∣∣∣m(0)
〉

+E(1)
n

∑
m�=n

C(1)
m

∣∣∣m(0)
〉

+E(2)
n

∣∣∣n(0)
〉

. (3.72)

Obviously, the lowest order naturally returns the equation for the unper-
turbed case. Multiplying (3.71) from the left by

〈
n(0)

∣∣ , we obtain

E(1)
n =

〈
n(0)

∣∣∣H ′
∣∣∣n(0)

〉
.

Thus, to first order, the energy correction to the unperturbed energy E
(0)
n

is given by the expectation value of the perturbation operator H ′ in the
corresponding unperturbed state

∣∣n(0)
〉
. The expansion coefficients C

(1)
m are

obtained by multiplying (3.71) from the left by
〈
k(0)

∣∣ �= 〈
n(0)

∣∣ :∑
m�=n

C(1)
m E(0)

m δkm +
〈

k(0)
∣∣∣H ′

∣∣∣n(0)
〉

= E(0)
n

∑
m�=n

C(1)
m δkm

=⇒ C(1)
m =

〈
m(0)

∣∣H ′ ∣∣n(0)
〉

E
(0)
n − E

(0)
m

.
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Therefore, the unnormalized states of the perturbed problem to first order
are given by (setting λ = 1)

|n〉 =
∣∣∣n(0)

〉
+

∑
m�=n

〈
m(0)

∣∣H ′ ∣∣n(0)
〉

E
(0)
n − E

(0)
m

∣∣∣m(0)
〉

. (3.73)

To obtain the second-order relations, one proceeds in just the same way. Here,
we give only the second-order energy correction that is obtained from (3.72)
by multiplication with

〈
n(0)

∣∣ :
E(2)

n =
∑
m�=n

| 〈m(0)
∣∣H ′ ∣∣n(0)

〉 |2
E

(0)
n − E

(0)
m

.

With the help of (3.73), we now return to the issue of the “smallness” of H ′

and check the validity of the perturbation expansion. For
∣∣n(1)

〉
to be small

relative to
∣∣n(0)

〉
, a necessary condition is given by the inequality∣∣∣∣∣

〈
m(0)

∣∣H ′ ∣∣n(0)
〉

E
(0)
n − E

(0)
m

∣∣∣∣∣ 	 1 ,

which depends on three factors, namely

• the absolute size of the the perturbation H ′,

• the matrix elements of H ′ for unperturbed states,

• the energy differences between unperturbed states.

For degenerate states, E
(0)
n = E

(0)
m , we see that it is problematic to uncondi-

tionally satisfy the above constraint. It can only be satisfied if, in addition to
the denominator, the numerator given by the nondiagonal matrix elements
of H ′ also vanishes. More precisely: the eigenvectors of H(0) to the same
energy eigenvalue have to simultaneously form an eigenbasis of H ′. But this
can always be achieved as for these vectors, H(0) is not just diagonal but
even proportional to the unit matrix. Since H ′ commutes with the unit ma-
trix, H ′ can be diagonalized in the degenerate subspace without destroying
the diagonality of H(0). Once again: even if the totality of eigenvectors of
H(0) spans an infinitely dimensional space, the simultaneous diagonalization
of H(0) and H ′ generally affects only a small finite-dimensional subspace,
which is the one spanned by the eigenkets of H(0) corresponding to the same
eigenvalue.

Theorem 3.22: Time-independent perturbation theory

Consider the time-independent Schrödinger equation

(H(0) + H ′) |n〉 = En |n〉 ,

with a small perturbation operator H ′. Suppose that for the unperturbed
problem

�
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H(0)
∣∣∣n(0)

〉
= E(0)

n

∣∣∣n(0)
〉

,

a complete set of nondegenerate normalized solution kets and their ener-
gies are known. The correction energies to first and second order are then
respectively given by

E(1)
n =

〈
n(0)

∣∣∣H ′
∣∣∣n(0)

〉
, E(2)

n =
∑
m�=n

| 〈m(0)
∣∣H ′ ∣∣n(0)

〉 |2
E

(0)
n − E

(0)
m

. (3.74)

In case of a degenerate energy eigenvalue, a basis has to be chosen for the
corresponding degenerate subspace that diagonalizes H ′.

Note that problems in perturbation theory can often be simplified by taking
into account symmetries. Suppose, for example, that

[Ω,H ′] = 0 , Ω |α, ω〉 = ω |α, ω〉 .

It then follows that

0 = 〈α1ω1|ΩH ′ − H ′Ω |α2, ω2 〉 = (ω1 − ω2) 〈α1, ω1|H ′ |α2, ω2 〉 ,

and this gives the selection rule

ω1 �= ω2 =⇒ 〈α1, ω1|H ′ |α2, ω2 〉 = 0 . (3.75)

Furthermore, if we can find an operator Ω for which

H ′
∣∣∣n(0)

〉
= [Ω,H(0)]

∣∣∣n(0)
〉

,

the sum in (3.74) for E
(2)
n can be reduced to calculating just three matrix

elements. Using the completeness of the unperturbed eigenkets, we have

E(2)
n =

∑
m�=n

〈
n(0)

∣∣H ′ ∣∣m(0)
〉 〈

m(0)
∣∣ΩH(0) − H(0)Ω

∣∣n(0)
〉

E
(0)
n − E

(0)
m

=
∑
m�=n

〈
n(0)

∣∣∣H ′
∣∣∣m(0)

〉〈
m(0)

∣∣∣Ω ∣∣∣n(0)
〉

=
〈

n(0)
∣∣∣H ′Ω

∣∣∣n(0)
〉

−
〈

n(0)
∣∣∣H ′

∣∣∣n(0)
〉〈

n(0)
∣∣∣Ω ∣∣∣n(0)

〉
. (3.76)

3.7.2 Stark Effect

As a first application of time-independent perturbation theory, we consider
again the naive hydrogen atom, but now in a constant electric field of size
ε and applied in the z-direction (Stark effect). The Hamilton operator in
coordinate representation is given by

H = H(0) + H ′ , H(0) = − h̄2

2µ
∇2 − Ze2

r
, H ′ = −eεz .
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The eigenfunctions of H(0) are

Ψn,l,m(r, θ, ϕ) = gn,l(r)Yl,m(θ, ϕ) .

The energy shift of the nondegenerate ground state (n = 1) to first order
vanishes since Ψ1,0,0 is of definite parity, so that |Ψ1,0,0|2 is an even function,
whereas z is odd:

E
(1)
1,0,0 = eε 〈100| z |100 〉 = eε

∫
drr2dΩ|Ψ1,0,0(r)|2z = 0 .

Thus, the hydrogen atom in its ground state possesses no permanent dipole
moment. However, for the energy shift to second order we expect a nonzero
contribution, since the external electric field deforms the surrounding electron
sphere, thus inducing a dipole moment that interacts with that field:

E
(2)
1,0,0 = e2ε2

∑
n>1,l,m

| 〈nlm| z |100 〉 |2
E

(0)
1 − E

(0)
n

.

Now, we can show that, in coordinate representation, the operator

Ω =
µr0eε

Zh̄2

(
r2

2
+

r0r

Z

)
cos θ

suffices

H ′ |100〉 = [Ω,H(0)] |100〉 .

Using this and (3.76), we obtain

E
(2)
1,0,0 = 〈100|H ′Ω |100 〉 − 0

= −µr0e
2ε2

Zh̄2
1
π

(
Z

r0

)3 ∫
drr2dΩe−2Zr/r0

(
r3

2
+

r0r
2

Z

)
cos2 θ

= −9
4

ε2r3
0

Z4 .

Next, we consider the Stark effect for the degenerate n=2 level of the hydro-
gen atom. It has the following four states with the same energy:

Ψ2,0,0 = 2
(

Z

2r0

)3/2 (
1 − Zr

2r0

)
e−Zr/2r0Y0,0

Ψ2,1,0 =
1√
3

(
Z

2r0

)3/2
Zr

r0
e−Zr/2r0Y1,0

Ψ2,1,1 =
1√
3

(
Z

2r0

)3/2
Zr

r0
e−Zr/2r0Y1,1

Ψ2,1,−1 =
1√
3

(
Z

2r0

)3/2
Zr

r0
e−Zr/2r0Y1,−1 .

First, we need to use these states to create basis vectors
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α1Ψ2,0,0 + α2Ψ2,1,0 + α3Ψ2,1,1 + α4Ψ2,1,−1 ,

which diagonalize H ′. Of the total of 16 matrix elements 〈2lm|H ′ |2l′m′ 〉,
the diagonal components do not contribute, since all four states are of definite
parity. Also, H ′ commutes with Lz so that, due to (3.75), all matrix elements
with m �= m′ also vanish. The eigenvalue problem that remains to be solved
is ⎛

⎜⎜⎝
0 ∆ 0 0
∆ 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

α1
α2
α3
α4

⎞
⎟⎟⎠ = E(1)

⎛
⎜⎜⎝

α1
α2
α3
α4

⎞
⎟⎟⎠ ,

with

∆ = −eε 〈200| z |210 〉 =
3eεr0

Z
.

Its solutions are

E(1) = ±∆ : α =
1√
2

⎛
⎜⎜⎝

1
±1
0
0

⎞
⎟⎟⎠ , E(1) = 0 : α =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ .

Thus, the unperturbed n=2 states that are stable when perturbed with H ′,
together with their energy shifts to first order, are given by

1√
2

(Ψ2,0,0 + Ψ2,1,0) , E(1) =
3eεr0

Z

1√
2

(Ψ2,0,0 − Ψ2,1,0) , E(1) = −3eεr0

Z

Ψ2,1,1 , E(1) = 0

Ψ2,1,−1 , E(1) = 0 .

3.7.3 Fine Structure Splitting

We shall now attempt a more realistic description of hydrogen-like atoms.
Our starting point is the unperturbed Hamilton operator

H(0) =
P 2

2µ
− Ze2

r
,

where the relative momentum P = P R in the center of mass system (P S = 0)
is related to the electron and nucleus momenta in the following way:

P 2

2µ
=

P 2
e

2me
+

P 2
k

2mk
.

To start, we shall take into account relativistic kinematic effects to lowest
order by replacing P 2

e/2me + P 2
k/2mk with
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√
P 2

ec
2 + m2

ec
4 +

P 2
k

2mk
≈ mec

2 +
P 2

e

2me
+

P 2
k

2mk
− P 4

e

8m3
ec

2

≈ mec
2 +

P 2

2µ
− P 4

8µ3c2 .

The first term on the right-hand side is an irrelevant constant; the second
one yields the known nonrelativistic expression. The third term leads to the
relativistic correction

HT = − P 4
e

8µ3c2 ,

which we treat as a small perturbation to H(0). Since the operator HT is rota-
tionally invariant, it has diagonal form in the (nlm)-basis of the unperturbed
problem. In other words: the (nlm)-basis is stable under this perturbation,
and we need no longer worry about the degeneracy of the unperturbed energy
levels. The energy shift to first order is therefore simply given by

E
(1)
T = − 1

8µ3c2

〈
nlm| P 4 |nlm

〉
.

Using

P 4 = 4µ2
(

P 2

2µ

)2

= 4µ2
(

H(0) +
Ze2

r

)2

and (3.50), we find

E
(1)
T = − 1

2µc2

(
E2

n + 2EnZe2
〈

1
r

〉
nlm

+ Z2e4
〈

1
r2

〉
nlm

)

=
Z4α4

eµc2

2

(
3

4n4 − 1
n3

(
l + 1

2

)) .

Another effect is due to the spin of the electron, which we have neglected so
far. Classically, its origin can be understood as follows: suppose an electron
seen in the rest system of the nucleus is moving with velocity v. Then the
nucleus has the velocity −v in the rest system of the electron and, according
to Biot-Savart’s law, Theorem 2.16, induces a magnetic field

B =
Ze

c

v × x

|x|3 = − Ze

mec|x|3 x × p .

This field interacts with the magnetic moment M (e) of the electron, resulting
in the energy contribution

HSB = −M (e)B .

From our quantum mechanical point of view, this and (3.65) yield the per-
turbation operator for the spin-orbit interaction:

HSB = − e

mec
SB =

Ze2

m2
ec

2r3 LS , r = |x| .
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However, this is not the correct expression. It must be reduced by a factor of 2
due to relativistic effects, as well as the fact that the electron does not move
in a straight line around the nucleus (Thomas precession). Neglecting the
difference between me and µ, the correct perturbation operator is therefore
given by

HSB =
Ze2

2µ2c2r3 LS .

For the calculation of the energy levels, we have to diagonalize HSB in the
subspace of the kets corresponding to the unperturbed energies E

(0)
n . This

subspace has dimension 2(2l + 1), where the factor of 2 takes into account
the two spin orientations of the electron. The problem can be simplified by
noting that

J = L + S =⇒ J2 = L2 + S2 + 2LS

=⇒ HSB =
Ze2

4µ2c2r3

[
J2 − L2 − S2] .

Now we can use the eigenstates of the total angular momentum
∣∣ l, 1

2 , J, M
〉

that we found in Subsection 3.4.5 and for which HSB is already diagonal.
According to (3.34), the two possible total angular momenta J = l ± 1/2,
l > 0 correspond to energies:

E
(1)
SB =

〈
n, l,

1
2
, l ± 1

2
, M

∣∣∣∣HSB

∣∣∣∣n, l,
1
2
, l ± 1

2
, M

〉

=
〈

n, l,
1
2
, l ± 1

2
, M

∣∣∣∣ 1
r3

∣∣∣∣n, l,
1
2
, l ± 1

2
, M

〉

×Ze2h̄2

4µ2c2

[(
l ± 1

2

)(
l ± 1

2
+ 1

)
− l(l + 1) − 3

4

]

=
{

l + 1
2 ± M

2l + 1

〈
n, l, M − 1

2
; +

∣∣∣∣ 1
r3

∣∣∣∣n, l, M − 1
2
; +

〉

+
l + 1

2 ∓ M

2l + 1

〈
n, l, M +

1
2
; −

∣∣∣∣ 1
r3

∣∣∣∣n, l, M +
1
2
; −

〉}

×Ze2h̄2

4µ2c2

[(
l ± 1

2

)(
l ± 1

2
+ 1

)
− l(l + 1) − 3

4

]

=
Ze2h̄2

4µ2c2

〈
1
r3

〉
nl

{
l

−l − 1

}
.

Due to the orthogonality of the spherical harmonics and the electron’s spin
basis states, the matrix elements〈

n, l, M ± 1
2
; ∓

∣∣∣∣ 1
r3

∣∣∣∣n, l, M ∓ 1
2
; ±

〉
vanish. Finally, using (3.50), we find
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E
(1)
SB =

Z4α4
eµc2

4

{
l

−l − 1

}
n3l

(
l + 1

2

)
(l + 1)

. (3.77)

Combining the two energy shifts E
(1)
T and E

(1)
SB , we obtain the fine structure

shift or fine structure splitting

E
(1)
FS = E

(1)
T + E

(1)
SB =

Z4α4
eµc2

2n3

(
3
4n

− 1
J + 1

2

)
, J = l ± 1

2
. (3.78)

Note that this derivation was made for l > 0. If l = 0, then
〈 1

r3

〉
nl

diverges
and LS vanishes. However, if we insert l = 0 in (3.78), we obtain a finite
result. In the context of a full relativistic treatment of this problem (Dirac
theory), it can be shown that this is indeed the correct result for the energy
shift for l = 0.

The energy splittings induced by E
(1)
SB and E

(1)
FS are depicted in Fig. 3.12.

Interestingly, we see from (3.78) that the corrections conspire such that the

2s1/2, 2p1/2, 2p3/2

n = 2, l = 0, s = 1
2

2p1/2

2s1/2

2p3/2

2s1/2, 2p1/2

2p3/2

spin-orbit
splitting

spin-orbit and
rel. correction

Fig. 3.12. Splittings of the n=2,l=0-hydrogen levels, taking into account the spin-
orbit interaction as well as relativistic corrections.

states 2s1/2 and 2p1/2 overlay exactly. However, in 1947 Lamb and Retherford
devised a high-precision experiment that showed there is a small deviation
between the states 2s1/2 and 2p1/2. This effect, known as the Lamb shift,
can only be understood in the context of quantum electrodynamics, which
explains the small shift as due to the interaction of the electron with its own
radiation field.

3.7.4 Anomalous Zeeman Effect

We wish to study the effect of the spin-orbit coupling for hydrogen-like atoms
in a constant magnetic field B = Bez in the z-direction. To this end, we
consider the unperturbed Hamilton operator
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H(0) =
P 2

2µ
− Ze2

r
+

Ze2

2m2
ec

2r3 LS

and

HAZ = − e

2mec
(L + 2S)B = − eB

2mec
(Lz + 2Sz) = − eB

2mec
(Jz + Sz)

as a small perturbation. The latter takes into account the interaction of the
external magnetic field with the magnetic dipole moment of the electron due
to the orbital angular momentum, as well as the magnetic dipole moment of
the electron spin. The form of H(0) forces us again to use the total angular
momentum eigenstates from (3.34) to calculate the energy shifts. With these,
we find

E
(1)
AZ =

〈
n, l,

1
2
, l ± 1

2
, M

∣∣∣∣HAZ

∣∣∣∣n, l,
1
2
, l ± 1

2
, M

〉

= − eB

2mec

{
h̄M +

〈
n, l,

1
2
, l ± 1

2
, M

∣∣∣∣Sz

∣∣∣∣n, l,
1
2
, l ± 1

2
, M

〉}

= − eB

2mec

{
h̄M +

l + 1
2 ± M

2l + 1

〈
n, l, M − 1

2
; +

∣∣∣∣Sz

∣∣∣∣n, l, M − 1
2
; +

〉

+
l + 1

2 ∓ M

2l + 1

〈
n, l, M +

1
2
; −

∣∣∣∣Sz

∣∣∣∣n, l, M +
1
2
; −

〉}

=⇒ E
(1)
AZ = −eBh̄M

2mec

(
1 ± 1

2l + 1

)
, J = l ± 1

2
.

Thus, states with fixed J = l ± 1/2 are split into 2j equidistant lines sep-
arated by eBh̄

2mec
2l+2
2l+1 , resp. eBh̄

2mec
2l

2l+1 (see Fig. 3.13). When these shifts were

.

.

.

.

.

.

l, s = 1
2

J = l − 1
2

J = l + 1
2

M

l + 1
2

l − 1
2

−l − 1
2

l − 1
2

l − 3
2

−l + 1
2

Fig. 3.13. Splitting of hydrogen levels belonging to the total angular momentum
quantum numbers J = l±1/2 in the presence of an external magnetic field (anoma-
lous Zeeman effect).
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discovered, the electron spin had not yet been introduced so that they were
given the name anomalous Zeeman effect.

3.7.5 Hyperfine Splitting

For states with orbital angular momentum l = 0, (3.78) tells us that there is
no fine structure splitting for hydrogen-like atoms. However, precision exper-
iments show that even this state is split into two levels. This can be explained
by the magnetic dipole moment (and its associated spin) of the nucleus, which
we have so far neglected. The magnetic dipole moment operator is

M (k) =
Zegk

2mkc
I , I = nucleus spin ,

and it interacts with the electron’s magnetic dipole moment

M (e) =
e

mec
S(e) .

Considering only l=0-states of the hydrogen atom (Z = 1 , gk = gp ,
I = S(p)), it can be shown that the perturbation operator due to the mag-
netic moments of electron and proton is given by16

HHF =
4gpm2

ec
2α4

e

3mpn3h̄2 S(e)S(p) .

Since the spins are completely decoupled from the other degrees of freedom,
we only need to find a spin basis that diagonalizes HHF, in order to calculate
the energy shifts. To this end, we proceed in analogy to the LS-coupling and
write

S = S(e) + S(p) =⇒ S2 = S(e)2 + S(p)2 + 2S(e)S(p)

=⇒ HHF =
4gpm2

ec
2α4

e

6mpn3h̄2

[
S2 − S(e)2 − S(p)2

]
.

Now we can use the total spin basis from Subsection 3.4.5, for which HHF is
diagonal. For the three triplet states with total spin S = 1, we find

E
(1)
HF =

gpm2
ec

2α4
e

3mpn3

and for the singlet state with S = 0,

E
(1)
HF = −gpm2

ec
2α4

e

mpn3 .

The energy difference between the triplet and singlet states for n = 1 , l = 0
is

16 For l>0-states the spin-spin coupling is negligible compared to the spin-orbit
coupling, due to the much larger mass of the nucleus.
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∆E
(1)
HF =

4gpm2
ec

2α4
e

3mp
= 5.857 · 10−12 MeV .

The radiation frequency corresponding to this transition is

ν =
∆E

(1)
HF

2πh̄
≈ 1420 MHz ,

which lies in the microwave range (λ ≈ 21 cm). This frequency plays an
important role in radio astronomy as it allows predictions about the densities
of atomic hydrogen gas in distant galaxies.

Summary

• Many stationary problems that are not solvable analytically can be tack-
led using time-independent perturbation theory to find approxi-
mate solutions. The corrections to the unperturbed states and energies
are obtained from matrix elements of the perturbation operator between
unperturbed states. If an unperturbed energy eigenvalue is degenerate,
the perturbation operator has to be diagonalized in the subspace spanned
by the eigenstates corresponding to that particular energy.

• Realistic examples of time-independent perturbation theory are the
Stark effect, the fine structure splitting, and the hyperfine struc-
ture splitting.

• The fine structure splitting of hydrogen-like atoms is due to two effects:
(i) a relativistic kinematic correction (P 4-term) and (ii) the interaction
of the intrinsic dipole moment of the electron with the magnetic field
caused by the motion of the electron. The latter is best described using
total angular momentum eigenstates.

• The hyperfine structure is due to the interaction of the magnetic moments
of the nucleus and the electron spin. For l=0-states it is best described
using the total spin eigenbasis.

Applications

48. Naive helium atom. Consider a helium atom consisting of two protons
(Z = 2) and two electrons. To a very good approximation, the nucleus is
infinitely heavy compared to the surrounding electrons. In the rest system of
the nucleus we then have a two-particle problem whose Hamilton operator is
given by

H = H1 + H2 + V , Hi =
P 2

i

2me
− 2e2

|xi| , V (x1,x2) =
e2

|x1 − x2| ,
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where relativistic effects as well as effects due to the spins are neglected. V de-
scribes the repulsive interaction between the two electrons. Using this ansatz,
calculate the ground-state energy of the system to first-order perturbation
theory, where V is treated as a small perturbation.

Solution. The stationary Schrödinger equation of the unperturbed problem
(0th order) is

(H1 + H2)Ψ(x1,x2) = E(0)Ψ(x1,x2) .

To solve this, we use the product ansatz

Ψ(x1,x2) = Ψ1(x1)Ψ2(x2) .

This yields two decoupled equations for hydrogen-like atoms,

HiΨi(xi) = E
(0)
i Ψi(xi) , E(0) = E

(0)
1 + E

(0)
2 ,

whose solutions are given by

Ψi(x) = Ψni,li,mi(x) = gni,li(r)Yli,mi(θ, ϕ) , E
(0)
i = −2mec

2α2
e

n2
i

.

For the nondegenerate ground-state energy of the helium atom (n1 = n2 = 1)
to 0th order, we obtain

E
(0)
1,1 = −4mec

2α2
e = −108.8 eV .

For comparison: the experimental value is −78.98 eV. To find the first-order
correction, we need to evaluate the integral

E
(1)
1,1 =

∫
d3x1

∫
d3x2|Ψ1,0,0(x1)|2|Ψ1,0,0(x2)|2 e2

|x1 − x2|

=
e2

π2

(
2
r0

)6 ∫
dr1r

2
1e

−4r1/r0

∫
dr2r

2
2e

−4r2/r0

×
∫

dΩ1

∫
dΩ2

1
|x1 − x2| .

Since the expression∫
dΩ2

|x1 − x2|
depends only on |x1|, we only need to calculate it for a single vector, for
example, x1 = r1ez. Introducing spherical coordinates for x2,

x2 = r2

⎛
⎝ cos ϕ cos θ

sin ϕ cos θ
sin θ

⎞
⎠ ,

we find
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∫
dΩ2

|x1 − x2| =

2π∫
0

dϕ

1∫
−1

d cos θ(r2
1 + r2

2 − 2r1r2 cos θ)−1/2

= − 2π

r1r2

(√
r2
1 + r2

2 − 2r1r2 −
√

r2
1 + r2

2 + 2r1r2

)
=

2π

r1r2
(r1 + r2 − |r1 − r2|)

=⇒ E
(1)
1,1 = 8e2

(
2
r0

)6 ∞∫
0

dr1r1e−4r/r0

×
⎡
⎣2

r1∫
0

dr2r
2
2e

−4r2/r0 + 2r1

∞∫
r1

dr2r2e−4r2/r0

⎤
⎦

=
5
4
mec

2α2
e = 34 eV .

In total, we obtain a ground-state energy of the helium atom to first order of

E1,1 ≈ E
(0)
1,1 + E

(1)
1,1 = −74.8 eV .

3.8 Atomic Transitions

In this section we discuss transitions between atomic, hydrogen-like energy
levels, accompanied by absorption and emission of radiation. In this context,
we are particularly interested in the interaction between atoms and electro-
magnetic fields, where the fields are either external (induced transitions) or
created spontaneously (spontaneous transitions). Whereas in Section 3.7 we
discussed atomic effects due to the presence of constant electromagnetic fields
(Stark effect, Zeeman effect), we now look at oscillating, time-dependent fields
whose response is described by time-dependent perturbation theory.

The section starts with a general discussion of time-dependent perturba-
tions. We derive Fermi’s golden rule, which gives the transition probability
between two atomic levels in the presence of a periodic perturbation. The
discussion is then extended to the case of spontaneous emissions. These, how-
ever, can only fully be treated using quantum electrodynamics, where they
are explained as quantum fluctuations of the electromagnetic field around its
macroscopic zero mean. We shall see that certain atomic transition probabil-
ities vanish in the dipole approximation, and this leads us to formulate dipole
selection rules. Finally, we discuss as an example the intensity ratio of the
two transitions 2p3/2 → 1s1/2 and 2p1/2 → 1s1/2 as well as the transition
rate of 2p1/2 → 1s1/2.
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3.8.1 Time-Dependent Perturbation Theory

Our starting point is the full Schrödinger equation

ih̄
d
dt

|ψ(t)〉 = H(t) |ψ(t)〉 , H(t) = H(0) + λH ′(t) .

Here, H(0) denotes the time-independent unperturbed part, whereas H ′(t)
is a time-dependent perturbation. As in Subsection 3.7.1, we use a fictitious
perturbation parameter λ, which will be removed later on. For the unper-
turbed problem we assume that a complete basis in terms of eigenfunctions
has already been found:

ih̄
d
dt

∣∣∣n(0)(t)
〉

= H(0)
∣∣n(0)(t)

〉
∣∣n(0)(t)

〉
= e−iωnt

∣∣n(0)
〉

, ωn =
E

(0)
n

h̄
.

⎫⎪⎪⎬
⎪⎪⎭ (3.79)

We now pose the following problem: suppose the system is in an unperturbed
eigenstate

∣∣ i(0)〉 at time t = 0. What is the probability of finding this system
at a later time t in the unperturbed state

∣∣f (0)
〉
? To answer this, we start by

expanding |ψ(t)〉 in the unperturbed states,

|ψ(t)〉 =
∑

n

cni(t)e−iωnt
∣∣∣n(0)

〉
,

where the expansion coefficients cni satisfy the initial condition

cni(0) = δni .

Inserting this expansion into (3.79), we find

ih̄
∑

n

[ċni − iωncni] e−iωnt
∣∣∣n(0)

〉
=

∑
n

[
E(0)

n + λH ′(t)
]
cnie−iωnt

∣∣∣n(0)
〉

=⇒ ih̄
∑

n

ċnie−iωnt
∣∣∣n(0)

〉
=

∑
n

λH ′cnie−iωnt
∣∣∣n(0)

〉
.

Multiplying the last relation with
〈
f (0)

∣∣ eiωf t, we obtain the following differ-
ential equations:

ih̄ċfi(t) =
∑

n

〈
f (0)

∣∣∣λH ′(t)
∣∣∣n(0)

〉
eiωfntcni(t) , ωfn = ωf − ωn . (3.80)

This system can be solved iteratively at different orders of λ by succes-
sively substituting lower-order solutions into the right-hand side. To ze-
roth order, we ignore the right-hand side of (3.80), as the matrix element〈
f (0)

∣∣λH ′ ∣∣n(0)
〉

is itself of first order. As expected, we then have

ċfi(t) = 0 =⇒ c
(0)
fi (t) = cfi(0) = δfi .
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If no external perturbation is present, the system remains in the state
∣∣ i(0)〉

for all time. Inserting c
(0)
ni on the right-hand side of (3.80) (and with λ = 1)

yields to first order

ċfi(t) = − i
h̄

〈
f (0)

∣∣∣H ′(t)
∣∣∣i(0)〉 eiωfit

=⇒ c
(1)
fi (t) = δfi − i

h̄

t∫
0

dt′
〈

f (0)
∣∣∣H ′(t′)

∣∣∣i(0)〉 eiωfit
′
.

Higher orders are obtained in a similar fashion. All in all, we find

cfi(t) = δfi

− i
h̄

t∫
0

dt′
〈

f (0)
∣∣∣H ′(t′)

∣∣∣i(0)〉 eiωfit
′

+
(−i

h̄

)2 t∫
0

dt′
t′∫

0

dt′′
∑

n

〈
f (0)

∣∣∣H ′(t′)
∣∣∣n(0)

〉

×
〈

n(0)
∣∣∣H ′(t′′)

∣∣∣i(0)〉 eiωfnt′
eiωnit

′′

+ . . . . (3.81)

Note that this perturbation expansion only makes sense if, for f �= i, we
have

∣∣∣c(1)
fi (t)

∣∣∣ 	 1. Otherwise, the calculation becomes inconsistent due to

c
(0)
fi (t) = δfi. From the expansion coefficients or transition amplitudes cfi(t)

we obtain the transition probabilities for the transition
∣∣ i(0)〉 t−→ ∣∣f (0)

〉
as

Wfi(t) = |cfi(t)|2 .

Interpretation of the expansion terms. The terms contributing to the
transition amplitudes (3.81) allow us to interpret the interaction between
the system and the perturbation in a simple way. To this end, we use the
interaction picture rather than the Schrödinger picture (see Subsection 3.2.5).
The relationship between these two is

|ψS(t)〉 = U |ψI,S(t0)〉 = U (0) |ψI(t)〉
|ψI(t)〉 = U ′ |ψI,S(t0)〉

ih̄U̇ =
[
H

(0)
S + λH ′

S(t)
]
U , U = U (0)U ′

ih̄U̇
(0)

= H
(0)
S U (0)

ih̄U̇ ′ = λH ′
I(t)U

′ .

The interaction picture has the advantage that the whole temporal evolution
of the system is determined solely by the perturbation term H ′

I. Integration
of the last equation yields
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U ′(t, t0) = I − i
h̄

t∫
t0

dt′λH ′
I(t

′)U ′(t′, t0) ,

where I denotes the unit operator. The iterative solution of this equation to
different orders of λ gives (λ = 1)

U ′(t, t0) = I (0th order)

− i
h̄

t∫
t0

H ′
I(t

′)dt′ (1st order)

+
(−i

h̄

)2 t∫
t0

dt′
t′∫

t0

dt′′H ′
I(t

′)H ′
I(t

′′) (2nd order)

+ . . . .

Multiplying this from the left with U (0)(t, t0) and writing H ′
I in terms of H ′

S,
we obtain the temporal evolution of the system in the Schrödinger picture at
different orders as

|ψS(t)〉 = U(t, t0) |ψS(t0)〉 ,

with

U(t, t0) = U (0)(t, t0)

− i
h̄

t∫
t0

dt′U (0)(t, t′)H ′
S(t′)U (0)(t′, t0)

+
(−i

h̄

)2 t∫
t0

dt′
t′∫

t0

dt′′U (0)(t, t′)H ′
S(t′)U (0)(t′, t′′)

×H ′
S(t′′)U (0)(t′′, t0)

+ . . . . (3.82)

The first term on the right-hand side represents the 0th order and de-
scribes the unperturbed propagation of the system. Reading all subsequent
terms from right to left, the first-order term, for example, states the fol-
lowing: the system propagates unperturbed from t0 to t′. Then it interacts
with the perturbation, followed again by an unperturbed propagation up to
time t. The integral over t′ expresses a sum over all possible intermediary
times at which the interaction with the perturbation can occur. Accordingly,
the pth-order term contains p interaction contacts of the system at times
t ≥ t′′ ≥ . . . ≥ t(p), all of which are integrated up. In between these times the
system propagates unperturbed. Figure 3.14 gives a pictorial representation
of this interpretation.
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time

t0 t0 t0 t0

t t t t

U = U (0) + t′ H ′ + U (0) + . . .

U (0)

U (0)

H ′

H ′

U (0)

U (0)

t′

t′′

Fig. 3.14. Graphical representation of terms contributing to the perturbation ex-
pansion (3.82).

Note that the transition amplitude cfi(t) is the projection of the state

U(t, t0)
∣∣∣ i(0)S

〉
onto the unperturbed state e−iωf t

∣∣∣f (0)
S

〉
at time t,

cfi(t) =
〈

f (0)
∣∣∣ eiωf tU(t, t0)

∣∣∣i(0)〉 ,

and we easily see that this expression reduces to (3.81) for t0 = 0.

Theorem 3.23: Time-dependent perturbation theory

Consider the time-dependent Schrödinger equation

ih̄
d
dt

|ψ(t)〉 =
[
H(0) + H ′(t)

]
|ψ(t)〉 ,

with H ′ as a small, time-dependent perturbation. Assume that for the
unperturbed system

ih̄
d
dt

∣∣∣n(0)(t)
〉

= H(0)
∣∣∣n(0)(t)

〉
,
∣∣∣n(0)(t)

〉
= e−iωnt

∣∣∣n(0)
〉
, ωn =

E
(0)
n

h̄

a complete set of eigenkets is known. The probability amplitude cfi(t) of
the transition

∣∣ i(0)〉 t−→ ∣∣f (0)
〉

is then given by

cfi(t) = δfi (0th order)

− i
h̄

t∫
0

dt′
〈

f (0)
∣∣∣H ′(t′)

∣∣∣i(0)〉 eiωfit
′

(1st order)

�
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+
(−i

h̄

)2 t∫
0

dt′
t′∫

0

dt′′
∑

n

〈
f (0)

∣∣∣H ′(t′)
∣∣∣n(0)

〉

× 〈
n(0)

∣∣H ′(t′′)
∣∣i(0) 〉 eiωfnt′

eiωnit
′′

(2nd order)

+ . . . .

The expansion terms of order p can be interpreted as p-fold interac-
tion contacts of the unperturbed system with the perturbation at times
t′ ≥ t′′ ≥ . . . ≥ t(p), all of which are integrated over.

Periodic perturbations and Fermi’s golden rule. Other than adiabatic
and instantaneous perturbations, we are mainly interested in periodic per-
turbations of the form17

H ′(t) = H′e±iωt .

These occur, for example, during the emission and absorption within atoms.
In this case, using Theorem 3.23, we obtain the transition amplitude to first
order (f �= i) as

cfi(t) = − i
h̄

t∫
0

dt′
〈

f (0)
∣∣∣H′

∣∣∣i(0)〉 ei(ωfi±ω)t

= − i
h̄

〈
f (0)

∣∣∣H′
∣∣∣i(0)〉 ei(ωfi±ω)t − 1

i(ωfi ± ω)

and the corresponding transition probability as

Wfi(t) =
1
h̄2

∣∣∣〈f (0)
∣∣∣H′

∣∣∣i(0)〉∣∣∣2 4 sin2 [(ωfi ± ω) t
2

]
(ωfi ± ω)2

.

In Fig. 3.15 the expression sin2 (∆t
2

)
/∆2 is plotted as a function of ∆. It

has a strongly damped oscillatory behavior around a distinct maximum at
∆ = 0. For large t this behavior can be related to the δ-function since

∞∫
−∞

d∆f(∆)
4

∆2 sin2
(

∆t

2

)
t→∞≈ 2f(0)t

∞∫
−∞

dy
sin2 y

y2 = 2πtf(0)

=⇒ lim
t→∞

4
∆2 sin2

(
∆t

2

)
= 2πtδ(∆) .

Thus, in the limit of large times, we find for the transition amplitude

17 Note that H ′ is not Hermitean in this form. However, this is of no consequence
for what follows and simplifies the mathematical treatment.
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− 6π
t

− 4π
t

− 2π
t

0 2π
t

4π
t

6π
t

∆

sin2( ∆t
2 )

∆2

Fig. 3.15. sin2
(

∆t
2

)
/∆2 as a function of ∆.

lim
t→∞ Wfi(t) =

2πt

h̄2

∣∣∣〈f (0)
∣∣∣H′

∣∣∣i(0)〉∣∣∣2 δ(ωfi ± ω) .

Theorem 3.24: Fermi’s golden rule

In the presence of a periodic perturbation of the form

H ′(t) = H′e±iωt ,

the transition rate Pfi, f �= i (transition probability per time), for large
times and to first order is given by

Pfi = lim
t→∞

Wfi(t)
t

=
2π

h̄2

∣∣∣〈f (0)
∣∣∣H′

∣∣∣i(0)〉∣∣∣2 δ(ωfi ± ω)

=
2π

h̄

∣∣∣〈f (0)
∣∣∣H′

∣∣∣i(0)〉∣∣∣2 δ
(
E

(0)
f − E

(0)
i ± h̄ω

)
.

Clearly, in this theorem, the δ-function expresses an energy conservation rule:
induced emission or absorption within an atom is only possible if the radi-
ated light has exactly the frequency corresponding to the energy difference of
the final and initial states. For induced absorption this difference is positive
(⇒ negative sign); for induced emission it is negative (⇒ positive sign). When
we need to apply Fermi’s golden rule, it turns out that there is always an
integral over the δ-function, so that in any case we have a well-defined math-
ematical expression.
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3.8.2 Spontaneous Emission and Phase Space of Photons

In the framework of quantum mechanics there is no explanation for the
spontaneous emission within atoms, as an atom will remain in its initial
state

∣∣ i(0)〉 for all times if no perturbation is present. Within quantum elec-
trodynamics the external electromagnetic field itself is also quantized. It is
then possible to explain spontaneous emission by allowing for electromag-
netic quantum fluctuations around the macroscopic zero mean of the field.
In quantum electrodynamics, photons are regarded as the field quanta of
the electromagnetic field and thus also have a particle-like character. They
possess the energy E = h̄ω, the momentum p = h̄k, and due to the dis-
persion relation ω = c|k|, a vanishing rest mass m0 in the sense of special
relativity (see Theorem 1.38). Photons also have spin s = 1, a fact that is
coupled to the polarization ε(λ) of light. However, due to εk = 0, there exist
only two independent possible polarization vectors and therefore only two
(instead of three) possible spin states (helicity λ = ±1). In the absence of
external fields we have a zero-photon, or better: the vacuum state. Sponta-
neous emission must then mean that a zero-photon state is transformed into
a one-photon state. In other words, the perturbation operator must contain
a photon-creation operator.

In experiments, the emitted photons with momenta h̄k are measured by
a detector that always has a limited resolution, so that all photons within a
certain momentum interval [h̄k : h̄(k+∆k)] are actually counted. Therefore,
the transition rate has to be summed over this interval in momentum space:

Rfi =
∑
∆k

Pfi . (3.83)

To determine the number of photon states within this region, imagine that
the photons are confined to a box of volume18 V = L3. To each photon with
energy E = h̄ω, momentum p = h̄k, and helicity λ, we associate a plane
wave of the form

A(x, t) = A0ε(λ)
(
e−i(kx−ωt) + ei(kx−ωt)

)
,

where only the first term is relevant for photon emission and only the second
for photon absorption. The normalization constant A0 can be determined
from the constraint that the mean energy 〈E〉 of the wave A,

〈E〉 =
∫
V

d3xεem , εem =
1
T

T∫
0

dt
|E|2 + |B|2

8π
, T =

2π

ω

(see Theorem 2.4 and the definition on page 123) is just that of a single
photon, i.e., h̄ω. It then follows that

18 This setup circumvents possible problems with the normalization of wave func-
tions of free particles (photons). Later on, we will take the limit V → ∞.
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A0 =
(

2πc2h̄

ωV

)1/2

.

Furthermore, we impose periodic boundary conditions at the edges of the
box:

A(x + L, y, z, t) = A(x, y, z, t) , and so on.

This automatically leads to quantized wave numbers:

ki =
2π

L
ni , ni = 0,±1 . . . , ∆k = ∆kx∆ky∆kz =

(2π)3

V
∆nx∆ny∆nz .

Now the sum in (3.83) is evaluated in the limit V → ∞ as

Rfi =
∑
∆k

Pfi =
∫

d3nPfi =
V

(2π)3

∫
d3kPfi .

If we restrict ourselves to those components in Theorem 3.21 that are lin-
ear in A (dropping the interaction of the photon-B field with the intrinsic
dipole moment of the outer electron: −M (e)B = − e

mecSB), the perturbation
operator for spontaneous emission of a photon is given by

H ′(t) = H′eiωt , H′ = − eA0

mec
e−ikxε(λ)P .

Using Fermi’s golden rule, we find for the transition rate

Rfi =
V

(2πh̄)2

∫
d|k||k|2

∫
dΩk

∣∣∣〈f (0)
∣∣∣H′

∣∣∣i(0)〉∣∣∣2 δ(ωfi + ω)

=
V

(2πh̄)2
1
c3

∫
dωω2

∫
dΩk

∣∣∣〈f (0)
∣∣∣H′

∣∣∣i(0)〉∣∣∣2 δ(ωfi + ω)

=
V

(2πh̄)2
ω2

c3

∫
dΩk

∣∣∣〈f (0)
∣∣∣H′

∣∣∣i(0)〉∣∣∣2∣∣∣∣
ω=−ωfi

,

where dΩk is the solid angle element in momentum space.

Theorem 3.25: Transition rate for spontaneous photon emission

Rfi =
αeω

2πm2
ec

2

∫
dΩk|Mfi|2

∣∣∣∣
ω=−ωfi

, Mfi =
〈

f (0)
∣∣∣ e−ikxε(λ)P

∣∣∣i(0)〉 .

If the experiment does not distinguish between the polarization states of the
photon, the summation must be extended to include these.

3.8.3 Selection Rules in the Dipole Approximation

We now look at transitions of hydrogen-like atoms and, in particular, at the
matrix element
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Mfi =
〈

f (0)
∣∣∣ e−ikxεP

∣∣∣i(0)〉 .

We wish to determine which transitions are allowed, i.e., for which transitions
the matrix element yields a nonvanishing result. To this end, we first note
that within the whole area of extension of the electronic wave function, the
exponent of the photon wave fulfills19

|k| =
ω

c
=

E

h̄c
≈ mecZ

2α2
e

2h̄
(see (3.48))

|x| <~
h̄

mecZαe
(see (3.49))

=⇒ kx ≤ |k||x| <~
αeZ

2
.

Thus, for αeZ 	 1, the exponential can be expanded as

e−ikx = 1 − ikx + . . . .

In the following, we restrict our analysis to the dipole approximation in which
only the first term in the expansion is kept, so that

Mfi ≈
〈

f (0)
∣∣∣ εP ∣∣∣i(0)〉 .

For the unperturbed Hamilton operator we choose

H(0) =
P 2

2me
+ a(r)LS + V (r) , a(r) =

Ze2

2m2
ec

2r3 , V (r) = −Ze2

r
,

so that the unperturbed eigenstates are given by the
∣∣n, l, 1

2 , J, M
〉
-basis. For

the calculation of Mfi it is advantageous to choose the following representa-
tion of P :

P =
ime

h̄

[
P 2

2me
+ V (r),x

]
=

ime

h̄

[
H(0) − a(r)LS,x

]
.

With this we find

Mfi =
ime

h̄

〈
n′, l′,

1
2
, J ′, M ′

∣∣∣∣ ε [H(0) − a(r)LS,x
] ∣∣∣∣n, l,

1
2
, J, M

〉

=
ime

h̄

{
(En′ − En)

〈
n′, l′,

1
2
, J ′, M ′

∣∣∣∣ εx
∣∣∣∣n, l,

1
2
, J, M

〉
−1

2
[j′(j′ + 1) − l′(l′ + 1) − j(j + 1) + l(l + 1)]

×
〈

n′, l′,
1
2
, J ′, M ′

∣∣∣∣ a(r)εx
∣∣∣∣n, l,

1
2
, J, M

〉}
. (3.84)

Strictly speaking, En has two parts: first, the energy of the naive hydrogen
atom (3.48), and second, the correction energy of the spin-orbit coupling
19 From now on we won’t distinguish between the reduced mass µ and the electron

mass me.
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(3.77). However, for the case at hand, the latter can be ignored. The expres-
sion (3.84) can be further simplified by noting that

x = −
√

8π

3
r

2
[Y1,1(θ, ϕ) − Y1,−1(θ, ϕ)]

y =

√
8π

3
ir
2

[Y1,1(θ, ϕ) + Y1,−1(θ, ϕ)]

z =

√
4π

3
rY1,0(θ, ϕ)

=⇒ εx = r

√
4π

3

⎡
⎢⎢⎢⎣−ε1 + iε2√

2︸ ︷︷ ︸
e1

Y1,1 +
ε1 + iε2√

2︸ ︷︷ ︸
e−1

Y1,−1 + ε3︸︷︷︸
e0

Y1,0

⎤
⎥⎥⎥⎦ .

The transition matrix element now becomes

Mfi =

√
4π

3
ime

h̄

1∑
q=−1

〈
l′,

1
2
, J ′, M ′

∣∣∣∣ eqY1,q

∣∣∣∣l, 1
2
, J, M

〉

×
⎧⎨
⎩(En′ − En)

∞∫
0

drr3g∗
n′,l′(r)gn,l(r)

−1
2

[j′(j′ + 1) − l′(l′ + 1) − j(j + 1) + l(l + 1)]

×
∞∫
0

drr3a(r)g∗
n′,l′(r)gn,l(r)

⎫⎬
⎭ . (3.85)

Using (3.34), the angular part of (3.85) evaluates to
1∑

q=−1

〈
l′,

1
2
, J ′, M ′

∣∣∣∣ εqY1,q

∣∣∣∣l, 1
2
, J, M

〉

=
1∑

q=−1

{
c1(l′)c1(l)

〈
l′, M ′ − 1

2
; +

∣∣∣∣ εqY1,q

∣∣∣∣l, M − 1
2
; +

〉

+ c2(l′)c2(l)
〈

l′, M ′ +
1
2
; −

∣∣∣∣ εqY1,q

∣∣∣∣l, M +
1
2
; −

〉}

=
1∑

q=−1

{
c1(l′)c1(l)

∫
dΩY ∗

l′,M ′− 1
2
εqY1,qYl,M− 1

2

+ c2(l′)c2(l)
∫

dΩY ∗
l′,M ′+ 1

2
εqY1,qYl,M+ 1

2

}
, (3.86)

with
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c1(l) = ±
√

l + 1
2 ± M

2l + 1
, c2(l) =

√
l + 1

2 ∓ M

2l + 1
for J = l ± 1

2
. (3.87)

We can draw the following conclusions from this:

• Since the spherical harmonics in (3.86) have a definite parity, Yl,m(−e) =
(−1)lYl,m(e), we have

(−1)l′(−1)1(−1)l = 1 ⇐⇒ l′ + l + 1 = even .

This means the parity of the atomic state has to change when undergoing
a transition.

• Using the addition theorem for spherical harmonics,

Yl1,m1Yl2,m2 =
l1+l2∑

L=|l1−l2|
〈 l1, m1; l2, m2|L, m1 + m2〉YL,m1+m2 ,

we find∫
dΩY ∗

l′,M ′± 1
2
Y1,qYl,M± 1

2

=
l+1∑

L=|l−1|

〈
1, q; l, M ± 1

2

∣∣∣∣L, q + M ± 1
2

〉
δl′LδM ′,M+q

=⇒ l′ = |l − 1|, l, l + 1 , M ′ = M + q .

Due to the first conclusion, l′ = l is excluded, so that in total ∆l = ±1 and
∆M = 0,±1 remain as the only possibilities.

Theorem 3.26: Selection rules for atomic transitions
in the dipole approximation

For atomic transitions of hydrogen-like atoms, the following transition rules
hold in the dipole approximation:

∆l = ±1 , ∆M = 0,±1 .

3.8.4 Intensity Rules

In this subsection we calculate the ratio of transition rates (intensity ratio)
of the two allowed transitions 2p3/2 → 1s1/2 and 2p1/2 → 1s1/2 for hydrogen-
like atoms. Ignoring the second term in (3.85), which is due to the spin-orbit
coupling, the integration over the radial part yields the same result for both
transitions so that these terms cancel one another. As we will see shortly,
the same holds for the integration over the phase space in Theorem 3.25
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if we assume that the experiment does not distinguish between the total
angular momentum orientations of the initial and final states, i.e., that all
possible orientations are measured. With all this, the intensity ratio of the
two transitions is then solely determined by the ratio of the angular parts:

R(2p3/2 → 1s1/2)
R(2p1/2 → 1s1/2)

=

2
∑

M′ = − 3
2 , . . . , 3

2
M = − 1

2 , 1
2

q = −1, 0, 1

∣∣〈1, 1
2 , 3

2 , M ′∣∣ εqY1,q

∣∣0, 1
2 , 1

2 , M
〉∣∣2

2
∑

M′ = − 1
2 , 1

2
M = − 1

2 , 1
2

q = −1, 0, 1

∣∣〈1, 1
2 , 1

2 , M ′∣∣ εqY1,q

∣∣0, 1
2 , 1

2 , M
〉∣∣2 .

Here the sums run over all possible total angular momenta of the initial and
final states as well as over q. The factor of 2 in the numerator and denominator
reflects the two possible polarization states of the photon. If we use (3.86)
and (3.87), the matrix elements in the numerator are〈

1,
1
2
,
3
2
, M ′

∣∣∣∣Y1,q

∣∣∣∣0,
1
2
,
1
2
, M

〉

=
1√
4π

⎧⎨
⎩
√

3
2 + M ′

3

√
1
2

+ MδM, 1
2
δM ′− 1

2 ,q

+

√
3
2 − M ′

3

√
1
2

− MδM,− 1
2
δM ′+ 1

2 ,q

⎫⎬
⎭

=

√
2 + q

12π
δM, 1

2
δM ′,q+ 1

2
+

√
2 − q

12π
δM,− 1

2
δM ′,q− 1

2

and those of the denominator are〈
1,

1
2
,
1
2
, M ′

∣∣∣∣Y1,q

∣∣∣∣0,
1
2
,
1
2
, M

〉

=
1√
4π

⎧⎨
⎩−

√
3
2 − M ′

3

√
1
2

+ MδM, 1
2
δM ′− 1

2 ,q

+

√
3
2 + M ′

3

√
1
2

− MδM,− 1
2
δM ′+ 1

2 ,q

⎫⎬
⎭

= −
√

1 − q

12π
δM, 1

2
δM ′,q+ 1

2
+

√
1 + q

12π
δM,− 1

2
δM ′,q− 1

2
.

The ratio is therefore given by
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R(2p3/2 → 1s1/2)
R(2p1/2 → 1s1/2)

=

2
∑

M′ = − 3
2 , . . . , 3

2
M = − 1

2 , 1
2

q = −1, 0, 1

|εq|2
(

2+q
12π δM ′,q+ 1

2
δM, 1

2
+ 2−q

12π δM,− 1
2
δM ′,q− 1

2

)

2
∑

M′ = − 1
2 , . . . , 1

2
M = − 1

2 , 1
2

q = −1, 0, 1

|εq|2
(

1−q
12π δM ′,q+ 1

2
δM, 1

2
+ 1+q

12π δM,− 1
2
δM ′,q− 1

2

)

=
2/(3π)
2/(6π)

, (3.88)

where we have used the fact, that |ε−1|2 + |ε0|2 + |ε+1|2 = 1. As we see, the
εq-dependencies vanish due to the summation over M and M ′, so that the
phase space integrations in the numerator and denominator are indeed the
same and could be dropped right from the beginning. The final result is

R(2p3/2 → 1s1/2)
R(2p1/2 → 1s1/2)

= 2 .

As the 2p3/2-state allows more possible total angular momentum values than
the 2p1/2-state, the intensity of the transition 2p3/2 → 1s1/2 is twice that of
the transition 2p1/2 → 1s1/2, as long as the contribution of the LS-coupling
is ignored.

3.8.5 2p3/2 → 1s1/2-Transition

At the end of this section we calculate the transition rate for 2p3/2 → 1s1/2,
again ignoring the LS-coupling as in the previous subsection. The radial part
of the transition matrix element (3.85) is∣∣∣∣∣∣

∞∫
0

drr3g∗
2,1(r)g1,0(r)

∣∣∣∣∣∣
2

=
215

39

r2
0

Z2 .

The angular part has already been evaluated and is just the numerator of
(3.88). However, this result needs to be multiplied by a factor of 1/3 because,
according to Theorem 3.26, to a given M = ±1 there are three (and not four)
possible M ′-values, which all statistically contribute one third to the total
number of excited 2p3/2-atoms:

2
3

∑
M′ = − 3

2 , . . . , 3
2

M = − 1
2 , 1

2
q = −1, 0, 1

∣∣∣∣
〈

1,
1
2
,
3
2
, M ′

∣∣∣∣ εqY1,q

∣∣∣∣0,
1
2
,
1
2
, M

〉∣∣∣∣2 =
2
9π

.

Thus, the transition matrix element reads
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|Mfi|2 =
218

312

r2
0m

2
eω

2
fi

Z2 .

Inserting this expression into Theorem 3.25 and noting that the radiation
frequency is

ωfi =
E1 − E2

h̄
= −mec

2Z2α2
e

2h̄

(
1 − 1

4

)
= −3mec

2Z2α2
e

8h̄
,

we finally get

R(2p3/2 → 1s1/2) = − αeωfi

2πm2
ec

2 4π
218

312

r2
0m

2
eω

2
fi

Z2 , r0 =
h̄

mecαe

=
210

39

α5
emec

2Z4

h̄
≈ 0.8 · 109Z4 s−1 .

Summary

• Using time-dependent perturbation theory we can solve quantum
mechanical problems containing a small time-dependent perturbation.
In particular, we can calculate transition rates between unperturbed
atomic states in the presence of periodic perturbation fields (Fermi’s
golden rule).

• In contrast to induced transitions for which the perturbations are ex-
ternally applied fields, spontaneous transitions are created by quan-
tum fluctuations of electromagnetic fields. This effect can only be prop-
erly explained within quantum electrodynamics. To determine the corre-
sponding transition rates, one has to integrate the individual rates over
the phase space of photons.

• In the dipole approximation the transition rates and their matrix
elements can be calculated in a straightforward fashion. One obtains a
set of dipole selection rules as a necessary criterion for a nonvanishing
transition probability.

• Examples for the calculation of transition rates are the intensity ratio of
the transitions 2p3/2 → 1s1/2 and 2p1/2 → 1s1/2 as well as the transition
rate of 2p3/2 → 1s1/2.

Applications

49. Lightelectric effect. Consider a hydrogen-like atom exposed to elec-
tromagnetic radiation

A(x, t) = A0εei(kx−ωt) .
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If the energy h̄ω of this radiation is larger than the binding energy of the
outer electron in the atom, the atom is ionized, and the electron moves freely
with kinetic energy

p2
f

2me
= h̄ω + E

(0)
i = h̄(ω + ωi) .

Calculate the transition rate for the freed electron to be found in the an-
gle element dΩ in direction pf if, prior to being ionized, the atom is in its
ground state. Disregard relativistic effects and effects due to the spins (“naive
hydrogen atom”).

Solution. The perturbation operator has the form

H ′(t) = H′e−iωt , H′ = − eA0

mec
eikxεP .

The electron wave functions of the initial and final states are

Ψ
(0)
i (x) = Ψ1,0,0(x) =

2√
4π

(
Z

r0

)3/2

e−Zr/r0

Ψ
(0)
f (x) =

1√
V

eipf x/h̄ ,

where Ψ
(0)
f has been normalized to unity within a box of volume V = L3. In

the dipole approximation and using Fermi’s golden rule, the transition rate
Pfi is given by

Pfi =
2π

h̄

(
eA0

mec

)2

|Mfi|2δ
(

p2
f

2me
− h̄(ωi + ω)

)
,

with

Mfi =
〈

Ψ
(0)
f

∣∣∣ εP ∣∣∣Ψ (0)
i

〉
=

〈
Ψ

(0)
i

∣∣∣ εP ∣∣∣Ψ (0)
f

〉∗

= Nεpf

∫
d3xe−Zr/r0e−ipf x/h̄

and

N =
1√
πV

(
Z

r0

)3/2

.

Choosing the z-axis along pf , we further have

Mfi = Nεpf

∞∫
0

drr2

2π∫
0

dϕ

1∫
−1

d cos θe−Zr/r0e−ipf r cos θ/h̄ (3.89)

= 2πih̄Nε
pf

pf

∞∫
0

drr
[
e−r(Z/r0+ipf /h̄) − e−r(Z/r0−ipf /h̄)

]
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= 2πih̄Nε
pf

pf

⎡
⎢⎣ 1(

Z
r0

+ i
h̄pf

)2 − 1(
Z
r0

− i
h̄pf

)2

⎤
⎥⎦

=
8
√

π
V

(
r0
Z

)3/2
εpf[

1 +
(pf r0

h̄Z

)2
]2

=⇒ Pfi =
128π2r3

0e
2A2

0

h̄V m2
ec

2Z3

|εpf |2[
1 +

(pf r0
h̄Z

)2
]4 δ

(
p2

f

2me
− h̄(ωi + ω)

)
.

Since in experiments the resolution of any detector is limited, we need to
integrate over all electron states within a certain range around the pf -state.
To this end, we proceed as with the photons in Subsection 3.8.2 and impose
periodic boundary conditions for the box. This results in quantized momenta:

p′
f =

2πh̄

L
n , nx, ny, nz = 0,±1, . . . .

The transition rate is now given by summation over all possible electron states
and can be approximated, as with the photons previously, by an integral:

RfidΩ = dΩ
V

(2πh̄)3

∫
dp′

fp′2
f Pf ′i .

If we use

δ

(
p′2

f

2me
− h̄(ωi + ω)

)
= δ

(
p′2

f

2me
− p2

f

2me

)
=

me

p′
f

δ(p′
f − pf ) ,

it follows that

RfidΩ =
16r3

0e
2A2

0pf |εpf |2

πh̄4mec2Z3
[
1 +

(pf r0
h̄Z

)2
]4 dΩ .

Apparently, this rate depends on the amplitude of the absorbed photon field,
the angle between the photon polarization ε and the electron momentum pf ,
and finally on the absolute value pf (or the photon frequency ω). But it is
independent of the direction of the incoming radiation. This is a consequence
of working in the dipole approximation: eikx ≈ 1. Note, however, that the
corresponding results in the nonapproximated case can be easily obtained by
the replacement

pf −→ pf − h̄k

from (3.89) onward. Integrating Rfi over all angles, we obtain the total ion-
ization rate. For convenience, we put the z-axis in direction of ε and find
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Rtot
fi =

16r3
0e

2A2
0p

3
f

πh̄4mec2Z3
[
1 +

(pf r0
h̄Z

)2
]4

2π∫
0

dϕ

1∫
−1

d cos θ cos2 θ

=
64r3

0e
2A2

0p
3
f

3h̄4mec2Z3
[
1 +

(pf r0
h̄Z

)2
]4 .

3.9 N -Particle Systems

So far, we have been considering one- and three-dimensional systems with
few degrees of freedom. In this section we study the implications of quantum
mechanics for many-particle systems. We shall be interested particularly in
the different attributes of distinguishable and identical particles. As we will
see, the quantum mechanical treatment of systems consisting of identical
particles yields new and surprising types of behavior that have no analogy in
classical mechanics. On our way to such an analysis we shall first consider a
system of distinguishable particles and review some of their properties with
respect to the interpretation of quantum mechanical measurements.

3.9.1 Distinguishable Particles

Consider a three-dimensional system of N spinless particles that we take to be
distinguishable, so that they differ in at least one of their intrinsic properties,
such as mass or charge. In classical mechanics these particles are described
by their coordinate and momentum vectors (x1,p1), . . .,(xN ,pN ). We ar-
rive at the corresponding quantum mechanical description by the operator
replacements (postulate III)

xi −→ Xi , pi −→ P i ,

where the coordinate and momentum operators obey the canonical commu-
tation relations

[Xik,P j l] = ih̄δijδkl , [Xik,Xj l] = [P ik,P j l] = 0 .

In some cases, such as the harmonic oscillator, Subsection 3.3.5, it is possible
to deduce all the physics from these commutation relations. But, most often,
one uses a particular basis given by the simultaneous eigenkets

|ω1〉 ⊗ · · · ⊗ |ωN 〉 = |ω1, . . . , ωN 〉
of commuting observables Ωi(Xi,P i), i = 1, . . . , N (Ω-basis), which spans
the N -particle Hilbert space:

H = H1 ⊗ · · · ⊗ HN .
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If the system is described by the state vector |ψ〉 , the probability of an
experimental measurement yielding the first particle in state ω1, the second
particle in state ω2, and so on (discrete, nondegenerate case) is

W (ω1, . . . , ωN ) = |〈ω1, . . . , ωN |ψ〉|2 ,

provided that |ψ〉 is normalized to unity:

1 = 〈ψ|ψ〉 =
∑

ω1,...,ωN

W (ω1, . . . , ωN ) .

Accordingly, the probability of finding the first particle in state ω1, the second
in state ω2, and the remaining particles in an arbitrary state is

W (ω1, ω2, rest arbitrary) =
∑

ω3,...,ωN

W (ω1, . . . , ωN ) .

Choosing the continuous coordinate representation, the corresponding rela-
tions are

|x1〉 ⊗ · · · ⊗ |xN 〉 = |x1, . . . ,xN 〉
ψ(x1, . . . ,xN ) = 〈x1, . . . ,xN |ψ〉
W (x1, . . . ,xN ) = |ψ(x1, . . . ,xN )|2

1 = 〈ψ|ψ〉 =
∫

d3x1 · · ·d3xNW (x1, . . . ,xN )

W (x1,x2, rest arbitrary) =
∫

d3x3 · · ·d3xNW (x1, . . . ,xN ) .

Here, W (x1,x2, rest arbitrary) is the probability density of finding the first
particle in volume element [x1 : x1 + d3x], the second in volume element
[x2 : x2+d3x], and the remaining particles anywhere. The temporal evolution
of the coordinate wave function ψ is given by the Schrödinger equation

ih̄
d
dt

ψ(x1, . . . ,xN , t) = H

(
Xi → xi,P i → h̄

i
∇i

)
ψ(x1, . . . ,xN , t) .

3.9.2 Identical Particles and the Pauli Principle

In classical mechanics it is always possible, in principle, to distinguish be-
tween two particles, even if they have the same intrinsic properties, by fol-
lowing their distinct trajectories – but, clearly, without interfering with them.
This implies that two configurations (sets of many particles) that differ only
by the exchange of two identical particles are physically different in the clas-
sical sense. In quantum mechanics there is no such way of distinguishing two
particles, since they do not have a well-defined trajectory, but are instead
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described by a probabilistic wave function.20 Therefore, two configurations
obtained by the exchange of two identical particles must be regarded quan-
tum mechanically as physically equivalent and be described by the same state
vector.

To understand this better, consider a system of two identical particles in
coordinate representation. Since two states differing only by a phase α are
physically equivalent, the above constraint for the exchange x1 ↔ x2 implies
that

ψ(x1,x2)
x1↔x2−→ αψ(x2,x1)

x1↔x2−→ α2ψ(x1,x2) .

Since a twofold application of this operator has to return us to the original
wave function, we see that α = ±1. Thus, the wave function can be either
symmetric (α = +1) or antisymmetric (α = −1) under exchange of two
particles. If the identical particles have a spin, this degree of freedom also
needs to be taken into account, so that

ψ(x1, m1,x2, m2) = ±1ψ(x2, m2,x1, m1) .

Whether we need to choose the symmetric or the antisymmetric version
depends on the type of particles under consideration. More precisely, it de-
pends on the particle spin. Within quantum field theory, it can be shown
that identical particles with integer spin quantum number21 s (bosons) are
described by symmetric wave functions, whereas particles with half-integer
spin (fermions) have antisymmetric wave functions.22 The generalization to
N particles is unproblematic, and we obtain

Theorem 3.27: Symmetrization rule

The states of a system consisting of N particles are necessarily symmetric
(→ bosons) or antisymmetric (→ fermions) under exchange of two particles.
In other words: if P is a permutation of 1, . . . , N ,

P =
(

1 . . . N
P1 . . . PN

)
,

we have for fermions (half-integer spin)

ψ(x1, m1, . . . ,xN , mN ) = ε(P )ψ(xP1 , mP1 , . . . ,xPN
, mPN

)

and for bosons (integer spin)
�

20 The only special case in which identical particles can be distinguished quantum
mechanically is given when their respective areas of nonvanishing probabilities
are totally disjunct. Think, for example, of two electrons cased in two different
boxes, or one of them being on earth and the other on the moon.

21 Recall that s fulfills the eigenvalue equation S2ψ = h̄2s(s + 1)ψ.
22 Another way of putting this is: fermions obey Fermi-Dirac statistics, bosons obey

Bose-Einstein statistics.



3.9 N -Particle Systems 355

ψ(x1, m1, . . . ,xN , mN ) = ψ(xP1 , mP1 , . . . ,xPN
, mPN

) ,

where ε(P ) = +1 for even permutations and ε(P ) = −1 for odd permuta-
tions.

The symmetrization rule has a far-reaching consequence: suppose a measure-
ment of an observable Ω on a fermionic two-particle system yields the values
ω1 and ω2. Immediately after the measurement, its antisymmetric state vec-
tor is then given by

|ψ〉 =
1√
2

(|ω1, ω2〉 − |ω2, ω1〉 ) .

Now setting ω1 = ω2, we have |ψ〉 = 0. This yields

Theorem 3.28: Pauli’s exclusion principle

Two identical fermions cannot be in the same quantum state.

This principle has many interesting implications in statistical mechanics, in
our understanding of the structure and chemical properties of atoms, and in
many other topics.

Bosonic and fermionic Hilbert spaces. We return again to the system
of two identical particles. If we choose the Ω-basis for its representation
and assume that Ω has a discrete, nondegenerate spectrum, the two-particle
Hilbert space H1 ⊗ H2 consists of all vectors of the form |ω1, ω2〉 . For each
pair of vectors |ω1, ω2〉 and |ω2, ω1〉 , there exists exactly one bosonic vector

|ω1, ω2, S〉 =
1√
2

(|ω1, ω2〉 + |ω2, ω1〉 )

and one orthogonal fermionic vector

|ω1, ω2, A〉 =
1√
2

(|ω1, ω2〉 − |ω2, ω1〉 ) ,

and vice versa. If ω1 = ω2, the vector |ω1, ω1〉 is already symmetric and
therefore bosonic; due to the Pauli principle, there exists no corresponding
fermionic state. Therefore, the two-particle Hilbert space consists of the sum
of a symmetric (S) and an antisymmetric (A) Hilbert space

H1 ⊗ H2 = H(S) ⊕ H(A) ,

where the dimension of H(S) is slightly larger than half the dimension of
H1 ⊗ H2. If a bosonic (fermionic) two-particle system is given by the ket
|ψS〉 (|ψA〉 ), we interpret

WS(ω1, ω2) = |〈ω1, ω2, S|ψS〉|2

=
1
2

|〈ω1, ω2|ψS〉 + 〈ω2, ω1|ψS〉|2

= 2 |〈ω1, ω2|ψS〉|2
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and

WA(ω1, ω2) = |〈ω1, ω2, A|ψA〉|2

=
1
2

|〈ω1, ω2|ψA〉 − 〈ω2, ω1|ψA〉|2

= 2 |〈ω1, ω2|ψA〉|2

as the probability of finding one of the two particles in the state ω1 and the
other in the state ω2 when a measurement is performed.23 The normalization
of |ψS,A〉 is determined by

1 = 〈ψS,A|ψS,A〉 =
∑
diff.

WS,A(ω1, ω2)

= 2
∑
diff.

|〈ω1, ω2|ψS,A〉|2 ,

where we only sum physically different states. In the continuous coordinate
basis, the corresponding relations are

|x1,x2, S,A〉 =
1√
2

(|x1,x2〉 ± |x2,x1〉 )

WS,A(x1,x2) = |〈x1,x2, S,A|ψS,A〉|2 = 2 |〈x1,x2|ψS,A〉|2

1 =
1
2

∫
d3x1d3x2WS,A(x1,x2) =

∫
d3x1d3x2 |〈x1,x2|ψS,A〉|2 .

Here the factor of 1/2 takes into account the double counting of equiva-
lent states. (States with x1 = x2 for which the factor of 1/2 does not ap-
ply only contribute an infinitesimal amount to the integration in the x1x2-
hyperspace.)

3.9.3 Fermionic Pressure

The meaning of the Pauli principle can best be demonstrated using an N -
particle system of free electrons enclosed in a box of dimension L. The cor-
responding stationary Schrödinger equation

N∑
i=1

HiΨ = EΨ , Hi = − h̄2

2me
∇2

i

can be solved using the ansatz

Ψ =
N∏

i=1

Ψki(xi, mi) , E =
N∑

i=1

Ei ,

with
23 Note that 〈a, b| ψS〉 = 〈 b, a| ψS〉 and 〈a, b| ψA〉 = − 〈 b, a| ψA〉.
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Ψki
(x, m) = sin(kixx) sin(kiyy) sin(kizz)χi(m) .

χ(m) denotes the two-component electron spinor. Since the particles are con-
fined, the wave function vanishes at the walls of the box, i.e., the wave vectors
are quantized as

ki =
π

L
ni , ni = (nix, niy, niz) , nix, niy, niz = 1, 2, . . . .

Since electrons are fermions, the total wave function still has to be made
antisymmetric. This can be achieved using the Slater determinant (this is
true whenever the wave function factorizes).24

Ψ(x1, m1, . . . ,xN , mN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
Ψk1(x1, m1) . . . Ψk1(xN , mN )
Ψk2(x1, m1) . . . Ψk2(xN , mN )

...
...

...
ΨkN

(x1, m1) . . . ΨkN
(xN , mN )

∣∣∣∣∣∣∣∣∣
.

As we can see, the exchange of two particles corresponds to the exchange
of two columns, which results in an additional sign to the determinant. Due
to the form of the determinant, the antisymmetric wave function vanishes if
two particles have the same spin direction (mi = mj) and come close to one
another (xi ≈ xj). This means that the probability density for finding both
particles close together is small. In other words: the symmetrization rule
effectively works like a repulsive force between the particles. Additionally,
the wave function also vanishes if two particles are in the same state (Pauli
principle): (ki, mi) = (kj , mj). The state of smallest energy is therefore not
simply given by the case of all N particles having the smallest possible wave
vector |ki| = π/L. Rather, each wave vector ki can only be “populated” with
two electrons: one electron with spin up (m = 1/2) and another with spin
down (m = −1/2). Thus, the ground-state energy is given by summing all
lowest particle energies,

E = 2
h̄2

2me

(π

L

)2 ∑
|n|≤nF

n2 ,

where nF denotes an a priori unknown maximal value. If N is sufficiently
large, a good approximation is given by demanding that all triplets (nx, ny, nz)
lie within the positive octant of a sphere of radius nF. The number of these
triplets is then (due to the double occupancy)

N

2
=

1
8

∫
|n|≤nF

d3n =
1
8

4π

3
n3

F =⇒ nF =
(

3N

π

)1/3

.

For the ground-state energy of the total system, it follows that
24 The Slater determinant can also be used to symmetrize bosonic wave functions.

In this case, all signs within the determinant’s expansion have to be chosen
positive.
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E = 2
h̄2

2me

(π

L

)2 1
8

∫
|n|≤nF

d3nn2

= 2
h̄2

2me

(π

L

)2 1
8
4π

nF∫
0

dnn4

=
π3h̄2

10meL2

(
3N

π

)5/3

.

Note that the energy grows more than linearly with the particle number
N . Therefore, the energy per particle E/N itself increases with the particle
number and decreases with the volume L3 of the box confining them.

Summary

• Contrary to classical mechanics, where particles can always be distin-
guished by their different trajectories, quantum mechanical systems can
consist of distinguishable and identical particles. The latter are phys-
ically equivalent in all manner and are therefore described by the same
state vector.

• The symmetrization rule states that the wave function of identical
bosons (integer spin) or fermions (half-integer spin) is symmetric or
antisymmetric under the exchange of two particles.

• This law yields Pauli’s exclusion principle, which states that no two
fermions can be in the same quantum state.

Applications

50. Population of different particle configurations. Consider a system
of three particles, each of which can be in one of the three states |a〉 , |b〉 , and
|c〉 . Show that the total possible number of different system configurations
is given by

a. 27 for nondistinguishable particles,

b. 10 for identical bosons,

c. 1 for identical fermions.

Solution.

To a. For indistinguishable particles the most general state vector is
|ω1, ω2, ω3〉 , where all three indices can take on the values a, b, or c. Each of
these cases represents a different physical state. In total, this gives 3·3·3 = 27
different configurations.
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To b. The most general state vector that is symmetric under exchange of
any two particles is

|ω1ω2ω3〉 + |ω1ω3ω2〉 + |ω2ω1ω3〉 + |ω2ω3ω1〉 + |ω3ω1ω2〉 + |ω3ω2ω1〉 ,

where, again, ωi can take on any of the three possible values. If all three
indices are different, we have 1 configuration. If two equal indices are present,
there are 6 configurations, and if all three indices are the same, there are 3
different cases. In total, we have 1+6+3 = 10 distinguishable configurations.

To c. For fermions the state vector must be antisymmetric under exchange
of any two particles. The most general state is

|ω1ω2ω3〉 − |ω1ω3ω2〉 − |ω2ω1ω3〉 + |ω2ω3ω1〉 + |ω3ω1ω2〉 − |ω3ω2ω1〉 .

According to Pauli’s principle, all three indices must be different. Since the
exchange of two indices just results in an irrelevant change of sign, we only
have a single configuration.

51. Identical two-particle system. Two identical one-dimensional par-
ticles of mass m are confined to the region 0 ≤ x ≤ L within a box. A
measurement of the energy of the system yields the values

(a) E =
h̄2π2

mL2 , (b) E =
5h̄2π2

mL2 .

What are the system’s wave functions if the particles are identical spin-1/2
fermions or identical spin-0 bosons? (Assume that the spin does not affect
the energy measurement.)

Solution. The normalized solution for spin-1/2 fermions is

Ψ(x1, m1, x2, m2) = Ψk1(x1, m1)Ψk2(x2, m2) ,

with

Ψki(x, m) =

√
2
L

sin(kix)χi(m)

and for spin-0 bosons

Ψ(x1, x2) = Ψk1(x1)Ψk2(x2) , Ψki(x) =

√
2
L

sin(kix) ,

where the wave vectors ki are quantized as

ki = ki(n) =
nπ

L
, n = 1, 2, . . . .

The total energy of the two-particle system is

E =
h̄2

2m

[
k1(n1)2 + k2(n2)2

]
=

h̄2π2

2mL2 (n2
1 + n2

2) .

In case a, both particles are in the ground state (n1 = n2 = 1). Thus, the
identical fermions must be distinguishable by their spins due to the Pauli
principle, and the total antisymmetric wave function reads
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Ψ (A)(x1, +, x2,−) =
1√
2

∣∣∣∣ Ψk1(1)(x1, +) Ψk1(1)(x2,−)
Ψk2(1)(x1, +) Ψk2(1)(x2,−)

∣∣∣∣
= − 1√

2

∣∣∣∣ Ψk1(1)(x1,−) Ψk1(1)(x2, +)
Ψk2(1)(x1,−) Ψk2(1)(x2, +)

∣∣∣∣
=

√
2

L
sin(πx1/L) sin(πx2/L)

× [χ1(+)χ2(−) − χ1(−)χ2(+)] .

For identical bosons the symmetric wave function is

Ψ (S)(x1, x2) = Ψk1(1)(x1)Ψk1(1)(x2) =
2
L

sin(πx1/L) sin(πx2/L) .

In case b, we have either n1 = 1, n2 = 2 or n1 = 2, n2 = 1. For identical
fermions this results in the following four configurations and corresponding
wave functions:

(i)+(ii) Both spins are parallel:

Ψ (A)(x1,±, x2,±) =
1√
2

∣∣∣∣ Ψk1(1)(x1,±) Ψk1(1)(x2,±)
Ψk2(2)(x1,±) Ψk2(2)(x2,±)

∣∣∣∣
= − 1√

2

∣∣∣∣ Ψk1(2)(x1,±) Ψk1(2)(x2,±)
Ψk2(1)(x1,±) Ψk2(1)(x2,±)

∣∣∣∣
=

√
2

L
[sin(2πx1/L) sin(πx2/L)

− sin(πx1/L) sin(2πx2/L)]χ1(±)χ2(±) .

(iii) The particle with n = 1 has spin up, that with n = 2 spin down:

Ψ (A)(x1, +, x2,−) =
1√
2

∣∣∣∣ Ψk1(1)(x1, +) Ψk1(1)(x2,−)
Ψk2(2)(x1, +) Ψk2(2)(x2,−)

∣∣∣∣
= − 1√

2

∣∣∣∣ Ψk1(1)(x1,−) Ψk1(1)(x2, +)
Ψk2(2)(x1,−) Ψk2(2)(x2, +)

∣∣∣∣
=

√
2

L
[sin(πx1/L) sin(2πx2/L)χ1(+)χ2(−)

− sin(2πx1/L) sin(πx2/L)χ1(−)χ2(+)] .

(iv) The particle with n = 1 has spin down, that with n = 2 spin up:

Ψ (A)(x1, +, x2,−) =
1√
2

∣∣∣∣ Ψk1(2)(x1, +) Ψk1(2)(x2,−)
Ψk2(1)(x1, +) Ψk2(1)(x2,−)

∣∣∣∣
= − 1√

2

∣∣∣∣ Ψk1(2)(x1,−) Ψk1(2)(x2, +)
Ψk2(1)(x1,−) Ψk2(1)(x2, +)

∣∣∣∣
=

√
2

L
[sin(2πx1/L) sin(πx2/L)χ1(+)χ2(−)

− sin(πx1/L) sin(2πx2/L)χ1(−)χ2(+)] .
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For identical bosons we have

Ψ (S)(x1, x2) =
√

2
L

[sin(πx1/L) sin(2πx2/L) + sin(2πx1/L) sin(πx2/L)] .

3.10 Scattering Theory

One of the most successful methods of understanding the structure of parti-
cles and their interactions is given by the study of scattering processes. Just
as in the classical theory, one is particularly interested in cross sections. In
the quantum case, these are closely related to the asymptotic behavior of the
stationary solutions of the Schrödinger equation.

We begin our discussion with quantum mechanical scattering on a fixed
center or potential, where the corresponding calculation of the differential
cross section is traced back to the scattering amplitude of the scattered par-
ticles. We then discuss the method of scattering phases, which lends itself to
the case of centrally symmetric interactions of the projectile and the scat-
tering potential. To this end, we use a partial wave decomposition of the
scattering amplitude, which splits the process into components of different
angular momentum modes. Subsequently, we consider the more general case
of particle-particle scattering using the center of mass and the laboratory
reference frame. Here we will again see the differences between the handling
of identical and distinguishable particles.

In the following, we restrict ourselves to time-independent potentials
V (x), which fall off faster than 1/|x| when approaching infinity, so that the
incoming and outgoing particles can both be taken as asymptotically free.

3.10.1 Scattering Amplitude and Cross Section

The problem of quantum mechanical scattering of particles on a fixed target
(scattering center) is the same as in Subsections 1.5.4 and 1.5.5 for the case of
classical particles. Figure 3.16 shows a graphical representation of the setup.
A beam of particles with mean momentum 〈P 〉 = h̄kez and moving in the
positive z-direction onto a fixed local target at x = 0 is deflected (scattered).
Just as in classical mechanics, we wish to determine the number of scattered
particles at a large distance to the scatterer within a solid angle element
dΩ as measured by a detector. The relevant quantity is the differential cross
section dσ/dΩ defined as

dσ

dΩ
dΩ =

(number of scattered particles toward dΩ)/s
(number of incoming particles)/s/m2 .

For us to calculate dσ/dΩ, each particle would actually have to be de-
scribed by a wave packet propagating in time. And in the asymptotic region
|x| → ∞, t → ±∞, the incoming and scattered part would have to be isolated
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z
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r

detector

dΩ

θ

Fig. 3.16. Scattering of particles on a fixed scattering center.

to obtain the final differential cross section. However, in Subsection 3.3.3 we
already showed that the characteristic scattering quantities can all be ob-
tained from the static case (Theorem 3.15), and this result carries over to the
three-dimensional problem; the more we narrow the incoming wave packets
in momentum space, the wider the corresponding wave packets become in
coordinate space. Eventually, they turn into the solutions of the stationary
Schrödinger equation with sharp momentum,

(∇2 + k2)Ψk(x) =
2m

h̄2 V (x)Ψk(x) , k =

⎛
⎝ 0

0
k

⎞
⎠ , k2 =

2mE

h̄2 . (3.90)

In this limit, the incoming and outgoing waves coexist, so that the actual
scattering process is no longer bounded in time but extends over the whole
time axis. As we will show shortly, in the limit |x| = r → ∞, the eigenfunc-
tions Ψk can be split into two parts,

Ψk
r→∞−→ Ψin + Ψsc , Ψin(x) = eikz , Ψsc(x) = f(θ, ϕ)

eikr

r
, (3.91)

where Ψin denotes the incident wave, which is a solution of the free Schrödinger
equation, and Ψsc is the scattered wave moving away from the center of the
scattering potential. f is the scattering amplitude, which contains all the infor-
mation of the scattering process. If jin(k,x) and jsc(k,x) denote the proba-
bility densities corresponding to Ψin and Ψsc, defined by the three-dimensional
equivalent of (3.17),

j =
h̄

2im
(Ψ∗∇Ψ − Ψ∇Ψ∗) ,

then
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r2dΩjsc(k,x)nsc , nsc =

⎛
⎝ cos ϕ sin θ

sin ϕ sin θ
cos θ

⎞
⎠

is the probability per time to find a particle in the solid angle element dΩ.
Correspondingly, the incoming particle current density in the z-direction is
given by

jin(k,x)nin , nin =

⎛
⎝ 0

0
1

⎞
⎠ .

With this notation, the differential scattering amplitude becomes

dσ

dΩ
= lim

|x|→∞
r2jsc(k,x)nsc

jin(k,x)nz
= |f(θ, ϕ)|2 ,

where we have used

jinnin =
h̄

2mi

(
Ψ∗

in
∂

∂z
Ψin − Ψin

∂

∂z
Ψ∗

in

)
=

h̄k

m

jscnsc =
h̄

2mi
(Ψ∗

scnsc∇Ψsc − Ψscnsc∇Ψ∗
sc)

=
h̄

2mi
|f(θ, ϕ)|2

(
e−ikr

r

∂

∂r

eikr

r
− eikr

r

∂

∂r

e−ikr

r

)

=
h̄k

mr2 |f(θ, ϕ)|2 .

We must still prove the validity of (3.91). Using the method of Green func-
tions, we write (3.90) as an integral equation,

Ψk(x) = Ψin(x) +
∫

d3x′G(x − x′)V (x′)Ψk(x′) , (3.92)

where G(x − x′) is the Green function satisfying(∇2 + k2)G(x − x′) =
2m

h̄2 δ(x − x′) . (3.93)

Its physical solution is given by

G(x − x′) = − 2m

4πh̄2
eik|x−x′|

|x − x′| ,

and we find

Ψk(x) = eikz − 2m

4πh̄2

∫
d3x′ e

ik|x−x′|

|x − x′| V (x′)Ψk(x′) . (3.94)

In general, the effective reach of the scattering potential is restricted to a
small area r0, whereas the particles are detected at a large distance to the
scattering center,

|x′| ≤ r0 	 |x| → ∞ ,
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so that we can expand eik|x−x′|
|x−x′| just as in (2.61) and (2.62) in Subsection

2.4.3:

eik|x−x′|

|x − x′|
|x|→∞−→ eik|x|e−ikxx′/|x|

|x|
(

1 +
xx′

x2

)
≈ eikr

r
e−iknscx′

. (3.95)

Here, r = |x|, and nsc = x/|x| denotes the unit vector in direction of the
scattered particles. Inserting (3.95) into (3.94) completes the proof:

Ψk(x) r→∞−→ eikz + f(θ, ϕ)
eikr

r
, (3.96)

with25

f(θ, ϕ) = − m

2πh̄2

∫
d3x′e−iknscx′

V (x′)Ψk(x′) .

To be able to calculate the scattering amplitude, we need to know what the
wave function Ψk is. This can be found by iteratively solving the integral
equation (3.92) to different orders in the potential V :

Ψk(x) = Ψin(x) (0th order)

+
∫

d3x′G(x − x′)V (x′)Ψin(x′) (1st order)

+
∫

d3x′
∫

d3x′′

×G(x − x′)V (x′)G(x′ − x′′)V (x′′)Ψin(x′′) (2nd order)
+ . . . .

This expansion is called the Born series. Working only to lowest order defines
the Born approximation and leads to the scattering amplitude

f(θ, ϕ) = − m

2πh̄2

∫
d3x′ei∆x′

V (x′) , ∆ = k(nin − nsc) .

Theorem 3.29: Scattering amplitude and differential cross section

Consider the scattering of particles moving along the z-axis with average
momentum 〈P 〉 = h̄kez toward a scattering potential V (x). If the effec-
tive reach r0 of the potential is small compared to the distance r of the
scattering center to the detector, r0 	 r, the asymptotic solution of the
time-independent Schrödinger equation can be written as

�

25 Note that the second solution to the differential equation (3.93),

G(x − x′) = − 2m

4πh̄2
e−ik|x−x′|

|x − x′| ,

does not apply to the case at hand, since it would lead to the unphysical situation
of an incoming spherical wave in (3.96).
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Ψk(x) r→∞−→ eikz︸︷︷︸
Ψin

+ f(θ, ϕ)
eikr

r︸ ︷︷ ︸
Ψsc

,

where the scattering amplitude f is given by

f(θ, ϕ) = − m

2πh̄2

∫
d3x′e−iknscx′

V (x′)Ψk(x′) . (3.97)

The differential cross section is
dσ

dΩ
= |f(θ, ϕ)|2 .

In the Born approximation, (3.97) is reduced to

f(θ, ϕ) = f(∆) = − 2m

4πh̄2

∫
d3x′ei∆x′

V (x′) , ∆ = k(nin − nsc) .

Ignoring a constant factor, this is just the Fourier transform of the potential
V as a function of the transferred momentum h̄∆. For centrally symmet-
rical potentials, V (x) = V (|x|), the scattering amplitude is independent of
ϕ, so that f = f(θ) = f(|∆|).

Coulomb scattering. As an example of this theorem we calculate the dif-
ferential cross section in Born approximation for the scattering of particles
with mass m and charge Z1e on a Coulomb potential of charge Z2e. For rea-
sons that will become clear in a minute, we first consider the more general
case of a Yukawa potential:

V (r) = g
e−βr

r
.

Due to its rotational symmetry, it is sufficient to calculate f(|∆|) for ∆ = ez.
Using spherical coordinates,

x′ = r cos ϕ sin θ , y′ = r sin ϕ sin θ , z′ = r cos θ ,

we find

f(|∆|) = − 2m

4πh̄2 2πg

∞∫
0

drr2 e−βr

r

1∫
−1

d cos θei∆r cos θ

= −mg

h̄2

∞∫
0

drre−βr 1
i∆r

(
ei∆r − e−i∆r

)
(3.98)

=
img

h̄2∆

(
1

β − i∆
− 1

β + i∆

)
= −2mg

h̄2
1

β2 + ∆2 ,
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where

∆2 = k2(n2
in + n2

sc − 2ninnsc) = 2k2(1 − cos θ) = 4k2 sin2 θ

2
.

Setting

g = Z1Z2e
2 , β = 0 ,

we find for the differential cross section of Coulomb scattering the well-known
Rutherford scattering amplitude [see (1.63)]

dσ

dΩ
=

(
2mZ1Z2e

2

4h̄2k2 sin2 θ
2

)2

=

(
Z1Z2e

2

4E sin2 θ
2

)2

. (3.99)

Now it is clear why we started with the Yukawa potential: we need the screen-
ing factor β, so that the r integration in (3.98) converges. Strangely, (3.99)
does not just hold in Born approximation but is, in fact, true exactly.

3.10.2 Phase Shift Analysis for Centrally Symmetric Potentials

For centrally symmetric potentials the angular momentum is a conserved
quantity, and it is advantageous to expand the scattering amplitude f = f(θ)
in the Legendre polynomials

Pl(cos θ) =

√
4π

2l + 1
Yl,0(θ) , Yl,0(θ) = Yl,0(θ, ϕ) .

This allows us to study the scattering process for each l individually. Using
Theorem 3.20, we find for the asymptotic form of the wave function Ψk

Ψk(x) r→∞−→ eikz + f(θ)
eikr

r
=

∞∑
l=0

[
(2l + 1)iljl(kr) + al

eikr

r

]
Pl(cos θ) .

Since jl behaves asymptotically as

jl(kr) r→∞−→ sin(kr − lπ/2)
kr

,

we can rewrite this equation in such a way that incoming and outgoing waves
are separated:

Ψk(x) r→∞−→ eikr

r

∑
l

[
(2l + 1)il

2ik
e−ilπ/2 + al

]
Pl(cos θ)

−e−ikr

r

∑
l

(2l + 1)il

2ik
eilπ/2Pl(cos θ) . (3.100)

On the other hand, Ψk can generally be expanded as

Ψk(x) =
∞∑

l=0

Algl(r)Yl,0(θ) =
∞∑

l=0

Al

√
2l + 1

4π
gl(r)Pl(cos θ) .
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At infinity, the radial part of this reduces asymptotically to the regular solu-
tion jl(kr) for free particles, up to an additional phase shift δl called scattering
phase, which contains all the information about the scattering process in the
angular momentum l-sector:

gl(r)
r→∞−→ sin(kr − lπ/2 + δl)

kr
.

Thus, we have

Ψk(x) r→∞−→ eikr

r

∑
l

Al

√
2l + 1

4π

eiδl

2ik
e−ilπ/2Pl(cos θ)

−e−ikr

r

∑
l

Al

√
2l + 1

4π

e−iδl

2ik
eilπ/2Pl(cos θ) . (3.101)

Comparing the coefficients in (3.100) and (3.101), we see that

Al =
√

4π(2l + 1)ileiδl , al =
2l + 1

k
eiδl sin δl .

Finally, this gives us the partial wave expansion of the scattering amplitude:

f(θ) =
1
k

∑
l

(2l + 1)eiδl sin δlPl(cos θ) .

From this result, we obtain an interesting relationship between the total cross
section and the scattering amplitude, known as optical theorem:

σ =
∫

dΩ|f(θ)|2 =
1
k2

∫
dΩ

∣∣∣∣∣∑
l

√
4π(2l + 1)eiδl sin δlYl,0(θ)

∣∣∣∣∣
2

=
1
k2

∑
l

4π(2l + 1) sin2 δl =
4π

k
Imf(θ = 0) .

According to this, the total cross section is equal to the imaginary part of
the scattering amplitude in the forward direction.

To calculate the scattering phases for a given scattering potential, we con-
sider the radial Schrödinger equation (3.39) with and without the potential
term,

u′′
l (r) − l(l + 1)

r2 ul(r) + k2ul(r) =
2m

h̄2 V (r)ul(r)

v′′
l (r) − l(l + 1)

r2 vl(r) + k2vl(r) = 0 ,

where we denote the free wave functions by vl, and those for the scatter-
ing case by ul. Multiplying the first equation by vl, the second by ul, and
subtracting both, we find

d
dr

[u′
l(r)vl(r) − v′

l(r)ul(r)] =
2m

h̄2 V (r)ul(r)vl(r)
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or

[u′
l(r)vl(r) − v′

l(r)ul(r)]
∞
0 =

2m

h̄2

∞∫
0

drV (r)ul(r)vl(r) . (3.102)

Due to the asymptotic behavior of ul and vl,26

r → 0 : ul(r), vl(r) ∼ rl+1

r → ∞ :

⎧⎪⎪⎨
⎪⎪⎩

ul(r) = Al(δl)
sin(kr − lπ/2 + δl)

k

vl(r) = Al(δl = 0)
sin(kr − lπ/2)

k
,

it follows from (3.102) that

eiδl sin δl = − 1
4π(2l + 1)i2l

2mk

h̄2

∞∫
0

drV (r)ul(r)vl(r)

and with vl(r) = Al(δl = 0)rjl(kr)

eiδl sin δl = − 1√
4π(2l + 1)il

2mk

h̄2

∞∫
0

drV (r)ul(r)rjl(kr) . (3.103)

If V (r) is sufficiently small, ul differs only marginally from the solution vl

of the free radial Schrödinger equation, and the scattering phase δl is close
to zero. In this case, ul can be replaced by vl in (3.103), which, in the Born
approximation (i.e., to 0th order), yields

eiδl sin δl = −2mk

h̄2

∞∫
0

drV (r)r2j2
l (kr) .

Theorem 3.30: Partial wave decomposition
of the scattering amplitude and optical theorem

Consider a centrally symmetric potential V (r) with lim
r→0

r2V (r) = 0 and

lim
r→∞ rV (r) = 0. The scattering amplitude f can be expanded in Legendre
polynomials,

f(θ) =
1
k

∑
l

(2l + 1)eiδl sin δlPl(cos θ) ,

where δl denote the scattering phases. They contain the complete informa-
tion of the scattering process in the corresponding l-sectors and obey the
relation

�
26 We are assuming that lim

r→0
r2V (r) = 0 and, as before, lim

r→∞
rV (r) = 0.
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eiδl sin δl = − 1√
4π(2l + 1)il

2mk

h̄2

∞∫
0

drV (r)ul(r)rjl(kr) . (3.104)

Here, ul are the solutions to the radial Schrödinger equation with a potential
V . In the Born approximation these solutions are replaced by those of the
free case, such that (3.104) becomes

eiδl sin δl = −2mk

h̄2

∞∫
0

drV (r)r2j2
l (kr) .

The total cross section obeys the optical theorem:

σ =
∫

dΩ|f(θ)|2 =
1
k2

∑
l

4π(2l + 1) sin2 δl =
4π

k
Imf(θ = 0) .

If the scattering potential is restricted to a finite range r0, V (r > r0) = 0,
the infinite range of integration in (3.104) can be replaced by a finite one.
Furthermore, taking into account the asymptotic behavior of the spherical
Bessel functions jl(kr) in the limit k → 0,

jl(ρ)
ρ→0−→ ρl

(2l + 1)!!
,

(3.104) becomes

eiδl sin δl
k→0−→ − 1√

4π(2l + 1)il
2mkl+1

h̄2(2l + 1)!!

r0∫
0

drV (r)ul(r)rl+1 .

We see that for small energies the lowest partial waves l = 0, 1, . . . are domi-
nant. The differential cross section for this case can be written as

dσ

dΩ

k→0−→ 1
k2

[
sin2 δ0 + 6 sin δ0 sin δ1 cos(δ0 − δ1) cos θ

+ 9 sin2 δ1 cos2 θ + . . .
]

.

To lowest order it is isotropic, i.e., independent of the scattering angle θ. In
the Born approximation, the scattering phases behave like

sin δl
k→0≈ δl ∼ −k2l+1 . (3.105)

It turns out that this limiting type of behavior holds for a fairly large class
of potentials and is also not restricted to the Born approximation.

3.10.3 Resonance Scattering

The term resonance scattering is used for those cases where the differential
cross section at a particular energy, called resonance energy, is dominated by
a certain partial wave l = L:
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dσ

dΩ
≈ dσL

dΩ
=

2L + 1
k2 |TL|2P 2

L(cos θ) , TL = eiδL sin δL =
1
2i

(
e2iδL − 1

)
.

Clearly, this implies that the corresponding partial wave amplitude TL has a
large local maximum at this energy. In fact, we speak of a resonance only if
the resonant scattering phase δL runs through a half-integer multiple of π:

δL =
(

n +
1
2

)
π , n = 0, 1, . . . .

Figure 3.17 shows a typical resonance situation. As the energy increases, the

E

δL

π

Esin2 δL
E

π
2

E0

Fig. 3.17. Partial wave cross section and corresponding scattering phase.

scattering phase δL quickly grows from 0 to π [more generally: from nπ to
(n + 1)π] while passing through π/2 at the resonance energy E0. At this
energy the cross section is maximal. To understand how the differential cross
section depends on the energy in the vicinity of the resonance energy E0, we
expand δL around E0:

δL(E) ≈ δL(E0) + (E − E0)δ′
L(E0) .

In so doing, we have to ensure that the relations
∣∣e2iδL(E)

∣∣ = 1 and
e2iδL(E0) = −1 remain unaffected. This can be achieved by

e2iδL(E) ≈ eiδL(E0)ei(E−E0)δ′
L(E0)

e−iδL(E0)e−i(E−E0)δ′
L
(E0)

≈ −1 + i(E − E0)δ′
L(E0)

1 − i(E − E0)δ′
L(E0)

.
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It then follows that

TL(E) ≈ −
Γ
2

E − E0 + iΓ
2

,
Γ

2
=

1
δ′
L(E0)

,

and we obtain

Theorem 3.31: Breit-Wigner equation

In the vicinity of a resonance energy E0, the cross section is dominated by
the cross section contribution σL of the resonant partial wave. It is given
by

σL(E) =
4π(2l + 1)

k2 sin2 δl(E) =
4π(2l + 1)

k2

(
Γ
2

)2

(E − E0)2 +
(

Γ
2

)2 ,

with the resonance width Γ :
Γ

2
=

1
δ′
L(E0)

.

Generally, scattering resonance occurs when the effective potential in the ra-
dial Schrödinger equation (scattering potential plus centrifugal barrier) is
strongly attractive at small distances and repulsive at large distances. Con-
sider, for example, the deep spherically symmetric potential well

V (r) =

{−V0 for r < a

0 for r ≥ a

}
, V0 > 0 .

The corresponding effective potential Veff for l > 0 is shown in Fig. 3.18.
Ignoring tunnel processes, a particle with energy 0 < E0 < Vmax can form a
bound state within the attractive region. But at some stage, since tunneling is
of course present, the particle will escape to r → ∞. Similarly, a free particle
coming from infinity can tunnel through the centrifugal barrier and form a
meta-stable state in the attractive region. With growing l, the centrifugal term
starts to dominate, so that the tunneling probability and with it the resonance
width become smaller. Accordingly, the lifetime T of the meta-stable state
becomes larger. Generally, due to Heisenberg’s uncertainty principle, we have

T ∼ h̄

Γ
.

For l = 0 no repulsive barrier is present, and if V = Veff is purely attractive,
there can only be true bound states with negative energy and infinite lifetime.
Here, states that come most closely to resonances are those with energies near
to zero (see Application 53).

3.10.4 Particle-Particle Scattering

In a typical scattering experiment one collides a target of some particle type 2
with a mono-energetic beam consisting of particles of type 1. One then counts
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r

Veff

V (r)

Vc(r) ∼ l(l+1)
r2

Vmax

E0

−V0

Fig. 3.18. Effective potential (solid line), composed of a deep potential well (dotted
line) and the centrifugal barrier (dashed line).

the number of particles of one of these types, say type 1, which are scattered
in a particular solid angle element. In the following, we shall assume that
the interaction potential between the two types of particles depends only on
their relative distance. In this case, we have a two-particle problem with a
Hamilton operator of the form

H =
P 2

1

2m1
+

P 2
2

2m2
+ V (x1 − x2) .

In the absence of external forces, the center of mass motion is that of a
free particle and can be separated by the use of center of mass and relative
coordinates. The remaining relative motion is determined by(

− h̄2

2µ
∇2 + V (x)

)
Ψ(x) = EΨ(x) , µ =

m1m2

m1 + m2
, x = x1 − x2 ,

with the reduced mass µ and the distance vector x of both particles. In the
center of mass system, where the center of mass is at rest, one obtains the
scattering amplitude from the asymptotic behavior of the wave function of
relative motion,

Ψ(x) = eikz + f(θ, ϕ)
eikr

r
,

where θ and ϕ are the scattering angles in that frame. To calculate the scatter-
ing amplitude, the differential cross section, and the partial wave expansion,
we can carry over the results from Subsections 3.10.1 and 3.10.2, in particu-
lar Theorems 3.29 and 3.30, by simply substituting m by µ and dΩ by the
solid angle element dΩ∗ of the center of mass frame. For the center of mass
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momenta of the particles before (pI∗
1 ,pI∗

2 ) and after (pF∗
1 ,pF∗

2 ) scattering, we
have the situation as shown in Fig. 3.19a: Particles 1 and 2 move toward one

pI∗
1

pF∗
2

pI∗
2

pF∗
1

θ

π − θ

y

x
z

pI
1

pF
2

pF
1

θL

a b

Fig. 3.19. Particle-particle scattering in the center of mass system (a) and in the
laboratory system (b).

another with equal and opposite initial momenta pI∗
1 = −pI∗

2 , are scattered,
and carry on with final momenta pF∗

1 = −pF∗
2 .

To move from the center of mass to the laboratory frame (Fig. 3.19b),
where the second particle is at rest long before the scattering (pI

2 = 0), we
need to move to the left with velocity pI∗

2 /m2. In this system each center of
mass momentum has a component in the positive z-direction, just as in the
classical case. The transformation is the same as described in Subsection 1.5.5
with the replacements χ → θ, θ1 → θL. Using Theorem 1.34, we therefore
have

Theorem 3.32: Particle-particle scattering

For the particle-particle scattering in the center of mass system, the results
from Theorems 3.29 and 3.30 are valid with the replacements m → µ and
dΩ → dΩ∗. The relation between the differential cross sections in the center
of mass reference frame, dσ/dΩ∗, and in the laboratory system, dσ/dΩL,
is given by

dσ

dΩL
=

dσ

dΩ∗

[(
m1
m2

)2
+ 1 + 2m1

m2
cos θ(θL)

]3/2

m1
m2

cos θ(θL) + 1
,

with

cos θL =
m1
m2

+ cos θ√(
m1
m2

)2
+ 1 + 2m1

m2
cos θ

, ϕL = ϕ

and

dΩ∗ = sin θdθdϕ = solid angle element in the center of mass system,

dΩL = sin θLdθLdϕ =
solid angle element in the laboratory system,
in which the projectiles are scattered.
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Scattering of distinguishable particles. For particle-particle scattering
of distinguishable particles, the differential cross section in the center of mass
system for particle 1 to be scattered in the direction of (θ, ϕ) and particle 2
in the direction of (π − θ, ϕ + π) is

dσ

dΩ∗ = |f(θ, ϕ)|2 .

Conversely,

dσ

dΩ∗ = |f(π − θ, ϕ + π)|2

is the differential cross section for particle 1 to be scattered in the direction of
(π−θ, ϕ+π) and particle 2 in the direction of (θ, ϕ). If the detector measures
all particles without differentiating between particles of type 1 and 2, we need
to add the partial cross sections to obtain the full differential cross section

dσ

dΩ∗ = |f(θ, ϕ)|2 + |f(π − θ, ϕ + π)|2 (3.106)

for one of the particles to be scattered in the direction of (θ, ϕ).

Scattering of identical spin-0 bosons. For the scattering of identical
particles, we must take into account the symmetrization rule. In particular,
for zero-spin bosons, for example, π mesons, the total wave function and its
asymptotic solution must be symmetric:

Ψ(x) r→∞−→ eikz + e−ikz + [f(θ, ϕ) + f(π − θ, ϕ + π)]
eikr

r
.

Calculating the current densities of the incoming and outgoing particles by
using this symmetrized form, we find the cross section to be

dσ

dΩ∗ = |f(θ, ϕ) + f(π − θ, ϕ + π)|2 . (3.107)

Note the difference between (3.106) and (3.107): in (3.106), the individual
cross sections are added, whereas in (3.107) the scattering amplitudes are
summed.

Scattering of spin-1/2 fermions. For identical spin-1/2 fermions, for ex-
ample, electrons, the total wave function must be antisymmetric. As long as
there are no explicitly spin-dependent terms in the Hamilton operator, the
wave function is composed of symmetrized and antisymmetrized spatial and
spin wave functions:

Ψ (±)(x, m1, m2) =
{

eikz ± e−ikz + [f(θ, ϕ) ± f(π − θ, ϕ + π)]
eikr

r

}
×χ

(
S
A

)
(m1, m2) , m1, m2 = ±1

2
.

Here,
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χ(S)(+,+) = χ1(+)χ2(+)

χ(S)(+,−) =
1√
2

(χ1(+)χ2(−) + χ1(−)χ2(+)) = χ(S)(−,+)

χ(S)(−,−) = χ1(−)χ2(−)

χ(A)(+,−) =
1√
2

(χ1(+)χ2(−) − χ1(−)χ2(+)) = −χ(A)(−,+)

denote the spinors corresponding to total spin S = 1 (triplet) and S = 0
(singlet). For the differential cross section this implies

dσ

dΩ∗ =

{ |f(θ, ϕ) + f(π − θ, ϕ + π)|2 triplet state

|f(θ, ϕ) − f(π − θ, ϕ + π)|2 singlet state .

If both particle beams are totally unpolarized, so that each of the four possible
spin configurations has the same weight, the total cross section is given by
the arithmetic mean of the cross sections of the three triplet states and of
the one singlet state:

dσ

dΩ∗ =
3
4
|f(θ, ϕ) + f(π − θ, ϕ + π)|2 +

1
4
|f(θ, ϕ) − f(π − θ, ϕ + π)|2 .

Summary

• To describe quantum mechanical scattering processes, it is sufficient to
consider the static solutions of the corresponding Schrödinger equation.
The asymptotic wave function of particles scattered on a fixed target is
composed of an incoming plane wave and a spherical wave moving away
from the scattering center. The latter contains the scattering ampli-
tude, which encompasses all information about the scattering process.

• The differential cross section is given by the probability current densities
(in beam direction) of the incoming and the scattered parts and is equal
to the absolute square value of the scattering amplitude.

• The calculation of the differential cross section for Coulomb scattering in
the Born approximation, and also exactly, gives the familiar classical
Rutherford scattering formula.

• For centrally symmetric scattering potentials the scattering process can
be studied for each angular momentum l-sector separately by decompos-
ing the scattering amplitude into Legendre polynomials (partial wave
expansion). This expansion comprises scattering phases, which rep-
resent the phase shifts of the asymptotic wave functions relative to the
solutions for free particles. The partial wave expansion leads to the op-
tical theorem, according to which the total cross section is equal to the
imaginary part of the scattering amplitude in the forward direction.

�
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• Resonance scattering occurs if the differential cross section is dom-
inated by a certain partial wave at some particular energy. The reso-
nance width is obtained from the Breit-Wigner formula. In general,
scattering resonances result in meta-stable states with positive energy,
which are formed in the attractive part of the effective potential screened
by the centrifugal barrier.

• As in classical mechanics, the particle-particle scattering can be traced
back to an effective one-particle scattering by separating the center of
mass movement. The relations between the differential cross sections in
the center of mass and in the laboratory system are the same as for
classical scattering.

• If, in the case of distinguishable particles, the detector registers both
types of particles, the differential cross sections for the scattering pro-
cesses particle 1 → (θ, ϕ) and particle 2 → (π − θ, ϕ + π) and vice versa
have to be added. In the case of identical particles, the corresponding
scattering amplitudes must be summed or subtracted.

Applications

52. Scattering on a hard sphere. Consider the scattering on a hard sphere
given by the potential

V (r) =

{
0 for r ≤ a

∞ for r > a .

Find the behavior of the various scattering phases for small energies. What
is the differential and the total cross section for the angular momentum l=0-
sector?

Solution. The physical solution of the radial Schrödinger equation
(3.38) for the outer area is

gl(r) = Aljl(kr) + Blnl(kr) .

On the surface of the sphere, the wave function must vanish for reasons of
continuity, so that

gl(a) = 0 =⇒ Bl

Al
= − jl(ka)

nl(ka)
.

The usual constraint that gl reduces to the regular solution for free particles
up to the scattering phase δl,

gl(r)
r→∞−→ sin(kr − lπ/2 + δl)

kr
,
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yields the desired relation for δl:

Al sin(kr − lπ/2) + Bl cos(kr − lπ/2) = Cl sin(kr − lπ/2 + δl)
= Cl[sin(kr − lπ/2) cos δl

+ cos(kr − lπ/2) sin δl]

=⇒ tan δl = − jl(ka)
nl(ka)

.

For small energies, we find

jl(ka)
k→0≈ (ka)l

(2l + 1)!!
, nl(ka)

k→0≈ (2l − 1)!!
(ka)l+1 ,

and this leads to the characteristic behavior

δl
k→0≈ tan δl ≈ − (2l − 1)!!

(2l + 1)!!
(ka)2l+1

already mentioned in (3.105). It is consistent with our expectation that for
small energies, higher l-sectors can be neglected. Using Theorem 3.30, we find
for l = 0

δ0 = arctan
(

− sin ka

cos ka

)
= −ka =⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f0(θ) = −1
k

e−ika sin ka

dσ0

dΩ
=

sin2 ka

k2

σ0 =
4π

k2 sin2 ka .

53. Scattering on a spherically symmetric potential well. Consider
the scattering of s-waves at a spherically symmetric potential well of the form

V (r) =

{−V0 for r < a

0 for r ≥ a

}
, V0 > 0 .

Show that for small particle energies, the scattering phase δ0 is resonant for
wave numbers

k1 =

(
n + 1

2

)
π

a
, n = 0, 1, . . .

within the inner area of the well. What are the corresponding resonance
widths?

Solution. As shown in Subsection 3.5.4, the solutions of the radial Schrödin-
ger equation for a spherically symmetric potential well and unbound states
(E > 0) are

ul(r) =

⎧⎪⎪⎨
⎪⎪⎩

Alrjl(k1r) , k1 =

√
2m(E + V0)

h̄2 for r < a

Bl[rjl(k2r) cos δl + rnl(k2r) sin δl] , k2 =
√

2mE

h̄2 for r ≥ a .
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For large distances, this takes on the asymptotic form

ul(r)
r→∞∼ sin(k2r − lπ/2)

k2
cos δl +

cos(k2r − lπ/2)
k2

sin δl

=
sin(k2r + lπ/2 + δl)

k2
,

so that δl can directly be identified with the scattering phases. For small par-
ticle energies, the scattering takes place mainly in s-states (l = 0), for which
we already know the corresponding relation between energy and scattering
phase [see (3.43)]:

tan(k2a + δ0) =
k2

k1
tan k1a

=⇒ δ0 = arctan
(

k2

k1
tan k1a

)
− k2a

k2→0≈ arctan
(

k2

k1
tan k1a

)
.

From this, we see that the resonance energies are at

k1,n =

(
n + 1

2

)
π

a
or En =

h̄2 (n + 1
2

)2
π2

2ma2 − V0 .

To determine the corresponding widths, we need the derivative of δ0 at En:

δ′
0(En) =

(
K2
K1

)′
tan(k1a) + K2

K1
k′
1a

(
1 − tan2 k1a

)
1 −

(
K2
K1

)2
tan2 k1a

∣∣∣∣∣∣∣
k1,2=k1,2(En)

=
ak′

1(En)k1(En)
k2(En)

=
ma

h̄2k2(En)

=⇒ Γn

2
=

1
δ′
0(En)

=
h̄2k2(En)

ma
.

For V0 = h̄2π2/(8ma2), the lowest resonant s-state has a resonance energy
of E0 = 0. This null-energy state can be interpreted as a pseudo meta-stable
bound state in a purely attractive potential and is closest to a true scattering
resonance. If the potential well is lowered further, a second null-state occurs
at V0 = 9h̄2π2/(8ma2), and so on. The succeeding states with larger reso-
nance energy are virtual states, which have little to do with true scattering
resonances.



4. Statistical Physics and Thermodynamics

The fundament for the theoretical description of macroscopic systems (gases,
liquids, and solids) as we know it today was laid in the 18th century. Empirical
laws found by Davy, Mayer, Joule, and many more since then are, still today,
the basis of thermodynamics as first formulated in a consistent fashion by
Lord Kelvin in 1850. Around this time, scientists became more and more
convinced that matter has substructure in form of atoms and molecules,
and they began with microscopic investigations of macroscopic systems. The
development of quantum mechanics at the start of the 20th century finally
delivered the adequate formalism for a realistic description of such systems.

Today, microscopic interactions between individual particles are under-
stood, in principle, their description being given by classical and quantum
mechanics. Nevertheless, without additional statistical assumptions, it is not
possible to apply these laws on macroscopic systems. The reasons are mani-
fold:

• To specify the state of a system, it would be necessary to determine on
the order of 1023 degrees of freedom. This is not only unpractical but also
theoretically impossible due to Heisenberg’s uncertainty principle.

• Even if the initial state of such a large number of individual particles and all
the equations of motion were known, it would still take today’s computers
an unacceptably long time to solve for the evolution of all particles.

• For large numbers of particles, qualitatively new phenomena arise, which
necessitate a deeper understanding of the interactions than that provided
purely by classical or quantum mechanics. An example is the abrupt con-
densation of a gas into a liquid state with qualitatively new properties.

From our everyday practical experience, we already know that it is not neces-
sary to have a detailed microscopic understanding of the individual particles
and their motion in time if all we aspire to is the macroscopic description of
the system. If we consider, for example, a gas in a fixed volume, we know
that in the absence of externally induced changes, the temperature and pres-
sure of the gas will remain unchanged, although microscopically we expect
the system to change continuously. This observation constitutes the starting
point of statistical physics. Here, the picture of a single macroscopic system
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evolving in time is replaced by another, where a very large number of ficti-
tious, macroscopically identical but microscopically different states coexist,
which are weighted with their respective occupation probabilities.

In this chapter we discuss statistical physics and thermodynamics. We
stress that we consider only systems in equilibrium that are characterized by
time-independent macroscopic properties. The time evolution of states from
nonequilibrium to equilibrium states is the topic of kinetic theory and will not
be touched upon. Normally, we will be looking at systems consisting of a large
number of particles (N ≈ 1023) contained within a large volume (V ≈ 1023

molecular volumes). We therefore often consider the thermodynamic limit,
which is defined by the following limiting process:

N → ∞ , V → ∞ ,
N

V
= const .

The first section of this chapter addresses the fundamental ideas of statistical
physics. In particular, the probabilistic concept of a statistical ensemble is
introduced, and its temporal evolution with a view to the classification of
equilibrium systems is discussed.

The following two sections, 4.2 and 4.3, are concerned with three partic-
ular types of ensembles: the microcanonical, canonical, and grand canonical
ensembles. All of them describe equilibrium systems but with different, exter-
nally given boundary conditions. Within the context of the microcanonical
ensemble, we introduce the concept of entropy, which is of fundamental im-
portance in statistical physics as well as in thermodynamics. An important
result of these sections will be that all the ensembles yield equivalent descrip-
tions of macroscopic systems in the thermodynamic limit.

Next to the statistical approach another possible way of describing macro-
scopic systems and defining entropy is provided by information theory, which
describes a system from the point of view of its information content. This
will be discussed in Section 4.4. Entropy, in this context, is a measure of our
lack of knowledge of a system, and we will see that this is equivalent to the
statistical definition.

Section 4.5 deals with the phenomenological theory of thermodynamics.
Starting from the three thermodynamic laws, we discuss equilibrium and
stability conditions of open systems by introducing suitable thermodynamic
potentials as well as the description of state changes with the help of thermic
coefficients. Furthermore, we look at heat machines particularly with respect
to their general realizability.

In Section 4.6 we discuss classical Maxwell-Boltzmann statistics. Starting
from either the classical Hamilton function or the quantum mechanical Hamil-
ton operator, this type of statistics describes the behavior of many-particle
systems without taking into account the quantum nature of individual parti-
cles, i.e., their bosonic or fermionic character. We consider the “proper classi-
cal” limit, discuss the virial and equipartition theorems for “proper classical”
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systems, and finish with a discussion of the harmonic oscillator system and
ideal spin systems in different ensembles.

The last section of this chapter is reserved for quantum statistics, which
yields the complete quantum mechanical description of statistical systems
while also taking into account the quantum nature of particles. We compare
Fermi-Dirac, Bose-Einstein, and Maxwell-Boltzmann statistics and derive the
state equations of ideal Fermi and Bose gases. This will lead us to some
interesting new effects that do not occur in Maxwell-Boltzmann statistics.

It should be emphasized once again that this chapter deals solely with
equilibrium systems. For the treatment of nonequilibrium states (phase tran-
sitions, kinetic energy, etc.), we refer to the literature list given in the ap-
pendix.

Annotation. For convenience, in Chapter 4, we will generally use the nota-
tion(

∂f

∂E

)
V,N

for the partial differentiation of a function f . This means that f – as a
function of the variables E, V , and N – is differentiated with respect to E
while V and N are held fixed. If the variables E, V , and N are transformed
into new variables, say T , P , and µ, then we also use the convenient and
unmathematical notation f(T, P, µ), although f(T, P, µ) describes a different
functional relationship than f(E, V, N).

4.1 Foundations of Statistical Physics

Statistical physics attempts to describe macroscopic systems by combining
microscopically valid physical laws of interactions with a statistical viewpoint.
This allows one to make predictions about the macroscopic behavior of such
systems. Thus, statistical physics can be regarded as a fundamental theory
that provides a deeper level of explanation for the purely phenomenologically
motivated laws of thermodynamics.

In this section we discuss the basic ideas underlying all of statistical
physics. The most important conceptual step consists of replacing the tempo-
ral evolution of a single microstate by a statistical description in which all pos-
sible microstates exist simultaneously and are weighted with their respective
probabilities of occurrence. This ensemble propagates as a whole through the
phase space and is described classically by a density and quantum mechan-
ically by a density operator. Furthermore, we show which constraints these
densities must obey, either classically or quantum mechanically, for them
to describe equilibrium systems that are characterized by time-independent
macroscopic properties.
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4.1.1 States, Phase Space, Ensembles, and Probabilities

Within statistical physics, two types of states are used to describe physi-
cal systems, microstates and macrostates. A microstate encompasses detailed
information about the movement of all the system’s individual particles. Gen-
erally, the states of these particles are determined by the laws of quantum
mechanics, and the overall system state can be described by a quantum
state vector |ψ(n1, . . . , nf )〉 , where n1, . . . , nf represents a system-specific
set of f quantum numbers. This description can be called complete in that
the temporal evolution of a state vector |ψ〉 known at a particular time is
uniquely determined through the quantum mechanical equations of motion.
If we enumerate all possible quantum states of the system in a suitable way
(r = 1, 2, 3, . . .), a specific microstate is uniquely identified by the index r:

Quantum mechanical microstate: r = (n1, . . . , nf ) . (4.1)

Although quantum mechanics generally provides the adequate frame for the
specification of a system, classical physics is often a good and useful approx-
imation giving important insights into the dynamics of the system. Herein,
the microstate of an N -particle system is given by the 3N generalized coor-
dinates and 3N generalized momenta of all individual particles at any one
time. The temporal evolution of the system is then also uniquely defined by
the classical equations of motion.

Classical microstate: r = (q1, . . . , q3N , p1, . . . , p3N ) . (4.2)

A very important concept for the description of classical systems is that of
the phase space, which is spanned by the 6N generalized coordinates and
momenta. It implies that assigning the 6N particle values is equivalent to
the specification of a single point in the phase space. Now, contrary to (4.1),
there are continuous quantities on the right-hand side of (4.2). But for a sta-
tistical treatment of a system, it is necessary that the states r are countable.
Therefore, it is reasonable to discretize the phase space into cells, such that
each cell contains exactly one microstate. The size of the cells must be de-
termined by comparison with quantum mechanics. Studying simple quantum
systems (for example, the harmonic oscillator; see Application 54) shows that
a quantum mechanical state in phase space corresponds to a phase space vol-
ume of size (2πh̄)3N = h3N . We therefore think of phase space as subdivided
into cells with

cell size = h3N .

Numbering these cells (r = 1, 2, . . .), we can now, as in quantum mechanics,
define a microstate exactly by simply specifying its discrete index r.

The second way of describing the state of a system is provided by the
macrostate. It is fully specified by the relevant macroscopic quantities, such as
pressure and temperature. In principle, the macrostate of the system should



4.1 Foundations of Statistical Physics 383

be uniquely determined by the microstate. However, as stated in the intro-
duction to this section, it is neither possible nor meaningful to attempt to
describe and to trace the microstate of a system containing something like
1023 particles. For the same reason, it is not possible to follow the process
of measuring within a microcanonical calculation since this implies averaging
over a suitable proportion of the temporal evolution of the microstate or of
the corresponding phase space trajectory.

Around 1900, Gibbs developed what is now known as ensemble theory. It
replaces the picture of a single temporally evolving microstate by a picture
in which all microstates a system can possibly evolve through exist all at
once at some fixed time, and constitute the initial situation for many sim-
ilar macrosystems. These fictitious systems constitute a statistical ensemble
whose elements propagate independently of one another and do not interact
among themselves. Classically, this corresponds to the coexistence of all ac-
cessible phase space points assembled into one phase space trajectory. The
ensemble concept is the basis of statistical physics. It is founded on the fol-
lowing two assumptions.

The first assumption is the equivalence of time and ensemble average of a
macroscopic system in statistical equilibrium. Here, “statistical equilibrium”
is taken to be a state in which the measurement of macroscopic quantities such
as pressure and temperature is time-independent. To see what this means,
consider a gas enclosed in a fixed volume. If this system is heated from the
outside, we intuitively expect the system not to be in an equilibrium state
immediately after it has been heated. However, after some system charac-
teristic time, the relaxation time, the system will have returned to a state
of equilibrium at its original temperature. In phase space terminology, the
equivalence of time and ensemble average implies that the phase space trajec-
tory of a system contains all phase space points that are in accordance with
the system-specific physics or, put differently, that each possible microstate
will have been reached after sufficiently long time (ergodic hypothesis).1 In
contrast, the term “statistical equilibrium” implies that the phase space tra-
jectory (or phase space density) is invariant with time; see Fig. 4.1.

Having familiarized ourselves with the ensemble concept, it should now be
plausible that none of the states (systems) within an ensemble is favored over
the others. This is the second fundamental postulate of statistical physics.

Theorem 4.1: Fundamental postulates of statistical physics

1. postulate: in an isolated system in equilibrium, time and ensemble
average are equivalent.

�

1 It is known that nonergodic systems exist; we shall not be studying them here.
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Fig. 4.1. Temporal evolution of the phase space trajectory of a system in disequi-
librium (above) and in equilibrium (below).

2. postulate: the probability of finding a randomly picked element of the
ensemble in a particular microstate is proportional to the overall number
of ensemble elements in exactly this microstate. Put differently, all mi-
crostates are equally probable. This is called the postulate of a priori equal
probabilities.

We emphasize that no deeper theoretical explanation is available for these
postulates. They are justified a posteriori by checking for consistency between
experiment and predictions following from the postulates. The two postulates
express the probabilistic nature of statistical physics: the detailed structure
of particular microstates are not of interest, but only the number of different
possible microstates within the statistical ensemble.

Generally, for most problems, some properties of a physical system are
given. For example, the total energy may be held fixed. In this case, the
system can only be in microstates consistent with this total energy (accessible
microstates), and the statistical ensemble consists just of all macrosystems
with this energy. Thus, the macrostate of a system is uniquely determined
by the relative probabilities Pr of all accessible microstates:

Macrostate: {Pr} = (P1, P2, . . .) .

The above two hypotheses can therefore be summarized as follows: macro-
scopic quantities of a system in equilibrium are determined by the ensemble
averages of all accessible microstates, where each microstate is weighted with
its relative probability.
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Theorem 4.2: Ensemble average

Let Pr be the probability of finding an equilibrium system in a microstate
for which the macroscopic quantity A has the stationary value Ar. The
ensemble average A of A is then

A =
∑

r

PrAr , (4.3)

where the probabilities Pr are normalized as∑
r

Pr = 1 , 0 ≤ Pr ≤ 1 .

The sum in (4.3) runs over all accessible microstates, where the term “acces-
sible” depends on the choice of A. It also requires a very large number M of
equivalent systems, of which Mr are in the microstate r:

Pr = lim
M sufficiently large

Mr

M
.

Furthermore, we see from (4.3) that only probability distributions satisfying
dPr/dt = 0 lead to time-independent ensemble averages.

4.1.2 Classical Statistical Physics: Probability Density

The goal of statistical physics is to determine the number of ensemble mem-
bers in different microstates and therefore in different regions of phase space.
If we assume that the number M of elements in the ensemble is very large,
we can describe the system by a probability density ρ that determines how
the M elements are distributed in phase space. If

dΓ = dq1 · · ·dq3Ndp1 · · ·dp3N

is a volume element of this phase space, it contains exactly

dM =
1

h3N
ρ(q, p, t)dΓ

elements. The probability that a randomly picked point in phase space falls
within the volume element dΓ is given by

dM

M
=

1
h3N

ρdΓ

M
.

The total number of ensemble elements is, of course,

M =
∫

dM =
1

h3N

∫
dΓρ(q, p, t) .

In what follows we will always assume that the phase space density is nor-
malized to the total number M of ensemble elements. The ensemble average
of a classical observable A(q, p) is then given by
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A =
1

h3N

∫
dΓρ(q, p, t)A(q, p) . (4.4)

If we assume further that A is not explicitly time-dependent, as is the case of
isolated systems, (4.4) shows again that only densities with ∂ρ/∂t = 0 yield
stationary ensemble averages.

4.1.3 Quantum Statistics: Density Operator

In quantum mechanics, observables are represented by Hermitean operators
A, and measurements of A lead to expectation values

〈A〉 = 〈ψ|A |ψ 〉 . (4.5)

A quantum mechanical state is prepared by measuring a complete set of
commuting observables. These pure states are described by Hilbert vectors
in a complex Hilbert space. However, generally, pure states are an idealiza-
tion. Particularly for large systems, it is impossible to perform a complete
preparation. The more general case is that of a mixed state, for which the set
of measured observables is not complete. In this case the state is no longer
describable by a Hilbert vector. It is then useful to consider an ensemble of
pure states |ψr〉 and their relative probabilities Pr. According to (4.3) and
(4.5), the quantum mechanical ensemble average is2

A =
∑

r

Pr 〈ψr|A |ψr 〉 ,

where the two averaging procedures in this equation are fundamentally dif-
ferent. The quantum mechanical average leads to the well-known interference
phenomena within quantum theory. By contrast, the ensemble average is an
average over incoherent states |ψr〉 , so that no interference effects can arise
(see Application 55). Now, if we suppose that the states |ψr〉 are normal-
ized (but not necessarily orthogonal), then A can be expanded in a complete
orthonormal basis |ui〉 with

∑
i |ui〉 〈ui| = 1 as follows:

A =
∑
r,i,j

〈ψr|uj〉 〈uj |A |ui 〉 〈ui|ψr〉Pr

=
∑
i,j

{∑
r

Pr 〈ui|ψr〉 〈ψr|uj〉
}

〈uj |A |ui 〉

=
∑
i,j

ρijAji = tr(ρA) .

The quantity

2 We denote by A the combined average of quantum mechanical expectation value
and ensemble averaging.
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ρ =
∑

r

|ψr〉 Pr 〈ψr|

is called the density operator and

Aji = 〈uj |A |ui 〉 , ρij =
∑

r

Pr 〈ui|ψr〉 〈ψr|uj〉 = 〈ui|ρ |uj 〉

are the matrix elements of A and ρ in the u-basis. The following properties
of ρ can be noted:

• ρ is Hermitean.

• If W (α, ψr) and W (α,ρ) are the probabilities of finding the eigenvalue α
when performing a measurement of an observable A on a system in a pure
state |ψr〉 or in a mixed state characterized by ρ, it follows that [compare
to (3.5)]

W (α,ρ) =
∑

r

PrW (α, ψr) =
∑

r

Pr 〈ψr|Pα |ψr 〉 = tr(ρPα) ,

where Pα is the projection operator onto the eigenspace of A with eigen-
value α.

• ρ is normalized:

tr(ρ) =
∑

r

Pr = 1 .

• ρ is positive definite since for any |v〉 , we have

〈v|ρ |v 〉 =
∑

r

〈v|ψr〉Pr 〈ψr| v〉 =
∑

r

Pr| 〈v|ψr〉 |2 ≥ 0 .

Therefore, ρ is a positive definite Hermitean operator whose complete discrete
eigenspectrum lies between 0 and 1.

Theorem 4.3: Density operator

A statistical quantum mechanical state is completely described by the Her-
mitean density operator

ρ =
∑

r

|ψr〉 Pr 〈ψr| , tr(ρ) = 1 .

The sum is to be taken over all pure states |ψr〉 . For a measurement of the
observable A, the probability of finding the eigenvalue α is given by

W (α,ρ) = tr(ρPα) .

The expectation value of A is the ensemble average

A = tr(ρA) .
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The above formalism can also be used in the case of pure states. If it is known
with certainty that the system is in a pure state |ψ〉 , the operator ρ reduces
to the projection operator

ρ = Pψ = |ψ〉 〈ψ| ,

and we obtain

ρ2 = ρ =⇒ tr
(
ρ2) = 1 .

If, on the other hand, ρ2 = ρ, we find

ρ2 =
∑
r,m

|ψr〉 Pr 〈ψr|ψm〉Pm 〈ψm| =
∑

r

P 2
r |ψr〉 〈ψr|

=
∑

r

Pr |ψr〉 〈ψr| = ρ .

Since the probabilities Pr are normalized, the condition P 2
r = Pr for all r can

only be satisfied if one of the Pr is identical 1 and all others vanish. Therefore,
ρ2 = ρ or tr

(
ρ2

)
= 1 is a necessary and sufficient criterion for ρ to describe

a pure state.

Quantum mechanical measurement of a statistical system. In Sub-
section 3.2.3 we discussed the process of a measurement on pure states. Per-
forming a measurement of an observable A on a system in a pure and nor-
malized state |ψ〉 will collapse the system with probability 〈ψ|Pα |ψ 〉 into
the normalized state Pα| ψ〉√

〈 ψ|Pα|ψ 〉 . For the mixed case, the density operator

after the measurement is therefore given by

ρ′
r =

∑
α

Pα |ψ〉√〈ψ|Pα |ψ 〉 〈ψ|Pα |ψ 〉 〈ψ| Pα√〈ψ|Pα |ψ 〉 ,

with probability Pr. Thus, the complete statistical operator is

ρ′ =
∑

r

Prρ
′
r =

∑
α

PαρPα .

Theorem 4.4: Quantum mechanical measurement
and density operator

Let ρ be the density operator of a mixed state prior to a measurement of
an observable A. Then, immediately after the measurement, the system is
described by the density operator

ρ′ =
∑
α

PαρPα .

The sum is to be taken over all eigenvalues α of A.
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4.1.4 Temporal Evolution of an Ensemble

We have already seen, classically and quantum mechanically, that we need
∂ρ/∂t = 0 to hold for the ensemble average to be time-independent, as we
expect it to be for systems in equilibrium. In this subsection we investigate
more generally the temporal behavior of the classical probability density and
of the quantum mechanical density operator. For these we derive equations of
motion that will help us to specify more precisely the condition of stationarity.

Classical picture: Liouville equation. In the ensemble interpretation a
system is represented by a statistical ensemble. The members of this ensemble
are identical imaginary macroscopic systems. To each of these corresponds a
phase space point that propagates independently in time through phase space.
Now consider a fixed volume element dΓ of this phase space. The number of
elements it contains will generally vary with time since the coordinates and
momenta of the ensemble members also vary in accordance with Hamilton’s
equations

∂H

∂pi
= q̇i ,

∂H

∂qi
= −ṗi . (4.6)

However, since points in phase space cannot be created or annihilated,3 we
can write down a continuity equation, which states that the rate of change
of the density within the volume element dΓ is proportional to the flux of
points through the surface dω of this volume element (see Fig. 4.2):

∂

∂t

∫
Γ

dΓρ = −
∮
ω

dωρ(vn) .

Here, v denotes the velocity of the phase space points, and n is a normal
vector pointing outward from the surface element dω. Using (4.6) and the

q

p

n

v

dω

Fig. 4.2. Temporal flux of phase space points through a phase space volume ele-
ment.

3 During their movement, two different points in phase space can never overlap
since Hamilton’s equations have unique solutions.
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generalized Gauss theorem, it follows that

∂ρ

∂t
+ ∇(ρv) = 0 , (4.7)

with

∇(ρv) =
∑

i

[
∂

∂qi
(ρq̇i) +

∂

∂pi
(ρṗi)

]

=
∑

i

[
∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi
+ ρ

(
∂2H

∂qi∂pi
− ∂2H

∂pi∂qi

)]
= {ρ, H} . (4.8)

For the total temporal derivative of ρ, we find4

dρ

dt
=

∂ρ

∂t
+

∑
i

[
∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi

]

=
∂ρ

∂t
+ {ρ, H} . (4.9)

Combining (4.7), (4.8), and (4.9), we finally obtain

Theorem 4.5: Liouville’s equation

The total temporal derivative of the phase space density vanishes:

dρ

dt
=

∂ρ

∂t
+ {ρ, H} = 0 .

This theorem implies that for an observer travelling on a phase space element
of an ensemble, the phase space density is time-invariant. In other words: the
ensemble moves through phase space like an incompressible fluid. For a sta-
tionary ensemble, ∂ρ/∂t = 0, Liouville’s theorem implies the condition

{ρ, H} = 0 . (4.10)

Thus, a stationary ensemble is a constant of motion. The simplest way of
satisfying this condition is to choose a phase space density that is constant
in some subspace Ω of Γ and zero elsewhere. In such an ensemble all mi-
crostates are uniformly distributed over Ω, so that the ensemble average of
an observable A is given by

A =
1

Ωh3N

∫
Ω

A(p, q)dΓ , Ω =
1

h3N

∫
Ω

dΓ .

A slightly less restrictive possibility to fulfill the condition (4.10) is a phase
space density that explicitly depends on q and p via a constant of motion
h(q, p):

4 See Theorem 1.25 and its discussion.
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ρ(q, p) = ρ[h(q, p)] .

In this case, we have

∂ρ

∂qi
=

∂ρ

∂h

∂h

∂qi
= 0 ,

∂ρ

∂pi
=

∂ρ

∂h

∂h

∂pi
= 0 =⇒ {ρ, H} = 0 .

From mechanics, we know that there are seven constants of motion, not
counting the center of mass motion. These are energy, momentum, and an-
gular momentum (see Theorem 1.11). For very large systems, we can assume
that it is always possible to find a coordinate transformation that results in
zero momentum and angular momentum. In the following, we shall therefore
restrict ourselves to stationary ensembles that are functions of the generalized
coordinates via Hamilton’s function H(q, p) = E, only.

Quantum mechanical picture: Von Neumann equation. In order to
find the quantum mechanical analogue of Liouville’s equation, we work in the
Schrödinger representation (see Subsection 3.2.4) and, with the help of

H |ψ〉 = ih̄
d
dt

|ψ〉 , 〈ψ| H = −ih̄
d
dt

〈ψ|
and dPr/dt = 0, calculate as follows:

ih̄
dρ

dt
= ih̄

d
dt

∑
r

|ψr〉 Pr 〈ψr|

=
∑

r

(H |ψr〉 Pr 〈ψr| − |ψr〉 Pr 〈ψr| H) = [H,ρ] .

Theorem 4.6: Von Neumann equation

The temporal evolution of the density operator is given by

dρ

dt
= − i

h̄
[H,ρ] .

The solution of this generalized Schrödinger equation is

ρ(t) = e−iHt/h̄ρ(0)eiHt/h̄ .

In analogy to the classical case, the density matrix is stationary if

ih̄
dρ

dt
= [H,ρ] = 0 . (4.11)

From this, the time dependency of operators follows as

ih̄
d
dt

A = ih̄
d
dt

tr(ρA) = tr
(

[H,ρ]A + ih̄ρ
∂A

∂t

)
= ih̄

∂A

∂t
.

As expected, given stationarity, measurements of not explicitly time-depen-
dent observables yield time-independent results. In the following, we will
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honor the condition of stationarity (4.11) by considering density operators of
the type

ρ = ρ(H,x) , (4.12)

where x is a set of time-independent observables (e.g., particle number oper-
ator N) that commute with H.

From our above considerations, we can already obtain some quite insight-
ful statements about the general form of the density operator and the clas-
sical probability density: suppose we have two subsystems with independent
distributions ρ1 and ρ2. For the combined system, we must have

ρ12 = ρ1ρ2 =⇒ lnρ12 = lnρ1 + lnρ2 . (4.13)

Thus, the logarithm of the density operator is a linear function of the additive
conserved quantities. Next, suppose that the particle number N and the
energy E of both systems are given and fixed. This implies that the density
operators of the subsystems are constant, and their microstates are uniformly
distributed (microcanonical ensemble). If the subsystems can exchange energy
between one another (canonical ensemble), then, due to (4.13), we must have

ρ1,2 ∼ e−β1,2H .

If both energy and particles can be exchanged (grand canonical ensemble),
then (4.13) implies that

ρ1,2 ∼ e−β1,2H+α1,2N .

The signs of α1,2 and β1,2 are arbitrary. Overall, we see that the general
form of the density matrices can be inferred directly from the stationarity
condition (4.12) and the assumption of (4.13). In the following two sections
we will derive the three above ensembles in a different manner.

Special role of energy. It is apparently very easy to calculate the density
operator in the energy eigenbasis {|ψr〉} since, for this case, the density
matrix is diagonal if, as assumed, ρ and H commute:

[H,ρ] = 0 =⇒ ρmn = 〈ψn|ρ(H) |ψm 〉 = ρ(En)δnm .

We shall practically always be working in this basis. However, it should be
clear that all results are basis-independent.

Summary

• By using the concept of a statistical ensemble, statistical physics by-
passes the practically impossible description of microstates of a macro-
scopic system. The statistical ensemble consists of a large number of
identical (fictitious) macrostates based on different microstates. There-
fore, the original problem is reduced to determining the number of pos-
sible microstates that yield a particular macrostate.

�
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• The macrostate of a system is defined by a set of relative occupation
probabilities of the different microstates of the ensemble. This is the
ensemble interpretation of statistical physics.

• The time average and ensemble average of a system in statistical
equilibrium (stationary system) are identical.

• Statistical ensembles are described using a probability density (clas-
sically) or a density operator (quantum mechanically).

• For stationary systems, the Poisson bracket of the probability density
and the Hamilton function (classically) or the commutator of the density
operator and the Hamilton operator (quantum mechanically) vanishes.

Applications

54. Classical phase space of the harmonic oscillator. Determine the
phase space trajectory of a classical one-dimensional harmonic oscillator, as
well as the phase space volume enclosed by E − δE and E. How large is this
volume if δE is the distance of two successive energy levels of the quantum
mechanical oscillator?

Solution. The classical Hamilton function of this problem is given by

H(q, p) =
k

2
q2 +

p2

2m
.

The corresponding Hamilton equations are solved by

q(t) = A cos(ωt + ϕ) , p(t) = −mωA sin(ωt + ϕ) , ω =

√
k

m
.

Using

H(q, p) = E =
mω2A2

2
= const ,

we can rewrite this into a phase space trajectory:

(q, p) =

(√
2E

mω2 cos(ωt + ϕ),−
√

2mE sin(ωt + ϕ)

)

=⇒ q2

(2E/mω2)
+

p2

2mE
= 1 .

This expression corresponds to an ellipse with an area of 2πE/ω. Note that
after one period T = 2π/ω, each point of the ellipse has been traversed, so
that the ergodic hypothesis is exactly fulfilled. Now we assume that the energy
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of the oscillator is somewhat blurred and confined to the area [E − δE : E].
The phase space trajectory is then confined to the volume∫

E−δE≤H≤E

dqdp =
∫

E−δE≤H≤E

dΓ =
2πδE

ω
.

Using the quantum mechanical energy eigenvalues

En = h̄ω

(
n +

1
2

)
,

the number of eigenstates within the allowed energy interval and for large
energies is practically identical to δE/h̄ω. In this case, the phase space volume
of an energy eigenstate is

ν =
(2πδE/ω)
(δE/h̄ω)

= 2πh̄ = h .

If we have a system of N harmonic oscillators, this becomes ν = hN . When
counting the microstates within a phase space volume element, we therefore
need to divide this volume by ν.

55. Postulate of a priori random phases. The quantum mechanical ex-
pectation value of an observable A in a basis {|ψr〉} is formally obtained
from

A =
∑

r

Pr 〈ψr|A |ψr 〉 , (4.14)

where Pr is the occupation probability of the pure state |ψr〉 . Now consider
a system held at constant energy. Then, in (4.14), only those states will
contribute that are consistent with this energy. If the kets |ψr〉 are the energy
eigenstates of the system, then, following the second statistical postulate, the
probabilities Pr are all equal: Pr = P = const. Using this, derive the postulate
of a priori random phases by transforming from the energy eigenbasis to
another basis (of the same Hilbert space).

Solution. We assume that the energy eigenbasis {|ψr〉} can be expanded in
a basis {|n〉} as

|ψr〉 =
∑

n

|n〉 anr , anr = 〈n| ψr〉 .

For the average value of A in a mixed state, we then have

A =
∑

r,n,m

P 〈ψr|n〉 〈n| A |m 〉 〈m|ψr〉

=
∑
r,n

Pa∗
nranr 〈n| A |n 〉 +

∑
r,n,m

Pa∗
nramr 〈n| A |m 〉 (1 − δnm) .

For n �= m, comparison with (4.14) leads to the condition
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r

a∗
nramr = 0 ⇐⇒

∑
r

|anr||amr|ei(φmr−φnr) = 0 ,

which can only be satisfied if it is postulated that the phases φ are randomly
distributed over the ensemble:

a∗
nramr = 0 , n �= m .

This postulate of random phases implies that the states |ψr〉 must be inco-
herent superpositions, so that correlations between the individual ensemble
members are excluded. For mixed states, this condition must be added to the
postulate of a priori equal probabilities.

4.2 Ensemble Theory I:
Microcanonical Ensemble and Entropy

In the preceding section we established that a statistical ensemble in equilib-
rium is described by a probability density or a density operator that depends
only on conserved quantities, such as the energy or the total number of par-
ticles. Three such ensembles commonly used in statistical physics are

• Microcanonical ensemble: it describes an isolated system in equilibrium at
constant energy E.

• Canonical ensemble: the system may exchange energy with its environment,
while its temperature is held fixed.

• Grand canonical ensemble: temperature and chemical potential are held
fixed, and the system may exchange energy and particles with its environ-
ment.

In this section we consider the microcanonical ensemble; canonical and grand
canonical ensemble are discussed in the next section. We also introduce en-
tropy, which is one of the most important concepts of statistical physics. It is
closely related to the microcanonical partition function.5 A discussion of the
principle of maximal entropy for equilibrium states follows. This principle will
finally lead us to the formulation of equilibrium conditions by introducing the
concepts of temperature and generalized forces.

4.2.1 Microcanonical Ensemble

The microcanonical ensemble describes a closed system at constant energy
E. The ensemble elements consist of a very large number of microstates, all
of which have energy E and which are consistent with a possibly given set of
external parameters, such as volume V or total number of particles N . We
5 Sometimes the partition function is also called “sum-over-states”, reflecting its

German origin “Zustandssumme”.
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denote the complete set of parameters by x = (V, N, . . .). Now, the second
statistical postulate states that all microstates are equally likely to occur and
therefore the probability Pr(E, x) of finding the macrostate in a particular
microstate r is constant and independent of r:

Pr(E, x) =

⎧⎨
⎩

1
Ω(E, x)

for all accessible microstates with Er = E

0 else .

Ω is the microcanonical partition function. It equals the total number of
accessible microstates (“sum-over-states”), i.e.,

Ω = Ω(E, x) =
∑

r:Er(x)=E

1 . (4.15)

Since the energy E can only ever be measured with a finite precision δE (for
theoretical and practical reasons), it is reasonable to rewrite (4.15) as

Ω(E, x) =
∑

r:E−δE≤Er(x)≤E

1 .

However, for this to make sense, we still have to show that, in the thermo-
dynamical limit, the uncertainty δE can be chosen such that the partition
function Ω is independent thereof. We define

Definition: Microcanonical ensemble

The microcanonical ensemble determines the equilibrium state of a closed
system at given energy E and possibly given external parameters x:

Pr(E, x) =
1

Ω(E, x)
,
∑

r

Pr(E, x) = 1

Ω(E, x) =

⎧⎪⎪⎨
⎪⎪⎩

∑
r:E−δE≤Er(x)≤E

1 (quantum mechanically)

1
h3N N !

∫
E−δE≤H(q,p,x)≤E

dΓ (classically) .

To allow the inclusion of identical particles in the above, we have attached an
additional factor 1/N ! to the classical partition function. From the quantum
mechanical viewpoint, this factor is necessary since arbitrary permutations
of identical (and therefore indistinguishable) particles do not yield new en-
semble members.6

In the quantum mechanical density operator formalism, the microcanon-
ical probabilities Pr correspond to the degenerate energy eigenstates |ψr〉
6 If more than one particle type is present, the factor 1/N ! must be replaced by

1/
(∏

i
Ni!

)
with

∑
i
Ni = N . In Application 57 we show that omission of the

factor 1/N ! results in contradictions within thermodynamical relations (Gibbs
paradox).
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of H with energy E. According to Theorem 4.3, the microcanonical density
operator is therefore given by

ρ =
1
Ω

∑
r

|ψr〉 〈ψr| =

⎧⎨
⎩

1
Ω

for all accessible microstates

0 else

and is diagonal in any representation.

Density of microcanonical states. Without taking into account any
specifics, we shall derive a rough estimate of how the microcanonical par-
tition function depends on energy. Let us define, to this end, the following
quantities:

Definition: Phase space volume ω and phase space density g

ω(E) =
∑

r:Er≤E

1
classically−→ 1

h3NN !

∫
H(q,p)≤E

dΓ

g(E) =
∂ω(E)

∂E
= lim

δE→0

Ω(E)
δE

. (4.16)

According to this, the phase space volume determines the number of mi-
crostates with energy less than or equal to E, whereas the phase space density
gives the number of states per unit energy interval.

If the energy E of the system is not too small, it is plausible that the
energy is distributed evenly over the f degrees of freedom of the system,
so that each degree of freedom corresponds to the same amount of energy
ε = E/f . Furthermore, we can assume that the phase space volume ω1(ε)
of any degree of freedom, i.e., the possible values of a degree of freedom
contributing the energy amount ε or less to the total system, is approximately
proportional to ε:

ω1(ε) ∼ εα , α ≈ 1 .

For the total phase space volume, this gives

ω(E) ∼ [ω1(ε)]f = εf , ε =
E

f
.

Therefore, the number of states in the energy interval [E − δE : E] reads

Ω(E) = ω(E) − ω(E − δE) =
∂ω

∂E
δE ∼ fωf−1

1
∂ω1

∂E
δE . (4.17)

For macroscopic systems, f and with it also the exponent of this equation is
of the order of 1023. This means that Ω grows extremely fast with the energy
of the system. We shall see that this is in fact a general property of partition
functions. Taking the logarithm of (4.17), it follows that
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lnΩ ≈ (f − 1) lnω1 + ln
(

f
∂ω1

∂E
δE

)
.

The two terms on the right-hand side are of the order of f and of ln f , so that,
for large f , the second term is negligible compared to the first. Therefore, we
find

lnΩ(E) ≈ lnω(E) ≈ ln g(E) ≈ f lnω1(ε) ≈ O(f) .

To summarize

Theorem 4.7: Energy dependency
of the microcanonical partition function

For macroscopic systems (large number of degrees of freedom, f) the quan-
tities

lnΩ(E) , lnω(E) , ln g(E)

are equivalent. Approximately, we have

Ω(E) ∼ Ef .

This theorem shows that for macroscopic systems, the partition function Ω
is practically independent of the energy uncertainty δE. Put differently: for
any interval [E −δE : E], practically all microstates are very close to E, even
on the scale set by δE (see Application 56).

4.2.2 Principle of Maximal Entropy

Entropy is a concept of central importance to statistical physics. It is related
in the following manner to the microcanonical partition function:

Definition: Entropy S

The statistical entropy of a system in equilibrium is defined by the Boltz-
mann equation

S(E, x) = k lnΩ(E, x) , (4.18)

where the constant of proportionality

k = 1.38054 · 10−23 J
K

(K = Kelvin)

is called the Boltzmann constant.

We now show that the entropy of a closed system in equilibrium is maximal.
Let x be an extensive7 macroscopic quantity that can have different values

7 Quantities are called extensive if they are proportional to the number of particles
N . Quantities independent of N are called intensive.
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independently of the energy E of the system. According to the second statis-
tical postulate, all microstates Ω(E, x) = exp [S(E, x)/k] are equally likely.
The probability W (x) of finding the system in a state that is in accordance
with x is therefore proportional to the number Ω(E, x) of microstates with
this value:

W (x) ∼ exp
(

S(E, x)
k

)
.

We expand lnW (x) around an arbitrary value x̃:

lnW (x) = lnW (x̃) +
1
k

∂S

∂x

∣∣∣∣
x=x̃

(x − x̃) +
1
2k

∂2S

∂x2

∣∣∣∣
x=x̃

(x − x̃)2 + . . . . (4.19)

Assuming that x̃ yields the maximum of W (x),

∂S

∂x

∣∣∣∣
x=x̃

= 0 ,

we can write W (x) as a normalized Gaussian distribution

W (x) =
1√

2π∆x
exp

(
− (x − x̃)2

2(∆x)2

)
,

∞∫
−∞

W (x)dx = 1 ,

where

∆x =

√
− k

∂2S
∂x2

∣∣
x=x̃

is the variance (1σ-deviation) of the distribution. Since for large N the vari-
ance is relatively small, we are justified in dropping higher-order terms in the
expansion (4.19). It also means that practically all microstates lie close to
the maximum. Thus, for the expectation value x, it follows that x = x̃.

Theorem 4.8: Law of maximal entropy

Let x be an extensive macroscopic quantity independent of the energy E.
For a closed system in equilibrium, its expectation value is determined by
the maximum condition

S(E, x) = maximal ⇐⇒ ∂S

∂x

∣∣∣∣
x=x

= 0 .

Entropy is defined only for equilibrium states. Therefore, the question natu-
rally arises how it is possible for S to become maximal without ever not being
in a state of equilibrium. The following argument allows for the definition of
the entropy of macroscopic states away from equilibrium. Divide the system
into subsystems that are each in a local equilibrium state, and assume that
the relaxation times of the subsystems are small with respect to the obser-
vation time. It is then possible to evaluate the subsystem entropies so that,
due to the additiveness of entropy, the total entropy can be defined.
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4.2.3 Equilibrium Conditions and Generalized Forces

Using Theorem 4.8, we can now find equilibrium conditions for systems that
are in contact with one another and can therefore exchange, for example, en-
ergy, volume, or particles. To this end, we consider quite generally an isolated
system divided into two subsystems 1 and 2 by a partitioning wall. Due to
the isolation, the total energy of the system is constant,

E1 + E2 = E = const ,

so that we can work in the formalism of the microcanonical ensemble. Fur-
thermore, we allow the systems 1 and 2 to exchange one external parameter
x, whose total value is also conserved:

x = x1 + x2 = const .

In this context, we note in advance that one distinguishes two types of energy
exchange:

• Heat exchange or thermic exchange: energy exchange at constant external
parameters.

• Mechanical energy exchange at thermic isolation, solely caused by an ex-
change of external parameters.

According to this, most generally, energy exchange is a combined exchange
of heat and mechanical energy.

We now wish to answer the question: which value x1 does system 1 have in
equilibrium? Following Theorem 4.8, the corresponding maximum condition
is

S(x1) = S1(E1, x1) + S2(E − E1, x − x1)

0 = dS =
∂S1

∂x1
dx1 +

∂S2

∂x2
dx2 +

∂S1

∂E1
dE1 +

∂S2

∂E2
dE2

=
∂S1

∂x1
dx1 − ∂S2

∂x2
dx1 +

∂S1

∂E1
dE1 − ∂S2

∂E2
dE1 , (4.20)

where the derivatives are taken at x1 and x2 = x−x1, respectively. If we ini-
tially restrict ourselves to the case that the dividing wall allows only thermic
contact, i.e., dx1 = 0, (4.20) reduces to

dS =
(

∂S1

∂E1
− ∂S2

∂E2

)
dE1 = 0 .

We define

Definition: Temperature T

The temperature T of an equilibrium system with energy E is defined as8

1
T (E, x)

=
(

∂S

∂E

)
x

=
∂S(E, x)

∂E
= k

∂ lnΩ(E, x)
∂E

. (4.21)
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For the total system in thermic equilibrium, we therefore have

T1 = T2 . (4.22)

Now, if we also allow both systems to exchange the parameter x (exchange
of heat and mechanical energy), (4.20) can be simplified by the following
definition:

Definition: Generalized force X

The generalized force X is the conjugate force to the external parameter x:

X = T

(
∂S

∂x

)
E

= T
∂S(E, x)

∂x
= kT

∂ lnΩ(E, x)
∂x

. (4.23)

With this definition, (4.20) becomes

0 = dS =
(

X1

T1
− X2

T2

)
dx1 +

(
1
T1

− 1
T2

)
dE1 . (4.24)

To interpret this equation correctly, one has to bear in mind that the variation
dE1 is generally not independent of dx1. This is due to the two possible
exchanges of energy, introduced above. We will show later that for reversible
exchange processes, the following relation holds:

dE = −Xdx

(
generally: dE = −

∑
i

Xidxi

)
.

Using this result, it follows from (4.24) that(
X1

T1
− X2

T2
− X1

T1
+

X1

T2

)
dx1 = 0 =⇒ X1 = X2 .

Since both temperatures are equal [see (4.22)], we finally arrive at

Theorem 4.9: Equilibrium conditions of a closed two-part system

An isolated system built from two subsystems 1 and 2 is in equilibrium
with respect to energy exchange and the exchange of an external exten-
sive parameter x if the temperatures and the generalized forces of both
subsystems obey the following conditions:

T1 = T2 (equilibrium at thermic exchange)

X1 = X2 (equilibrium at x-exchange) .

8 Note the bracket notation, which is explained on page 381 and which will be
repeatedly used in the following. Furthermore, the quantity kT corresponds to
the energy per degree of freedom, since, following Theorem 4.7, we have

1
kT

=
∂ ln Ω

∂E
= f

∂ ln E

∂E
=

f

E
.
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In addition to temperature T , we shall frequently need two more intensive
quantities, namely

P = T

(
∂S

∂V

)
E,N

(pressure)

µ = −T

(
∂S

∂N

)
E,V

(chemical potential) .

These are the conjugate forces to the extensive parameters volume V and
number of particles N .

To illustrate the meaning of Theorem 4.9, consider a gas enclosed in a
glass box with a movable piston. Suppose the gas is heated for a while and,
simultaneously, the piston is pushed down, compressing the gas into a smaller
volume. Once the process is stopped and the gas is left to its own devices,
it will attempt to regain equilibrium. According to Theorem 4.9, this implies
an exchange of heat via the glass walls as well as an exchange of volume via
the piston, until the temperatures and pressures of the gas and its external
environment are equal. It is therefore correct to view temperature differences
and pressure differences as the driving forces for heat exchange and volume
exchange. This justifies the term “generalized forces”.
Statistical physics and thermodynamics. At the end of this section
we wish to emphasize the fundamental nature of the definition of entropy
(4.18). It provides the connection between the microscopic view of statistical
physics and the macroscopic view of thermodynamics. Knowing the micro-
canonical partition function of an equilibrium system is equivalent to knowing
the macroscopic state variable entropy. And knowing either of these allows
the determination of all other macroscopic thermodynamical state variables,
such as temperature, pressure, chemical potential, and so on (see Section 4.5).
Therefore, we can write down the following simple scheme in order to derive
the thermodynamical relations from a given Hamilton operator or Hamilton
function:

H(x) −→ Er(x) −→ Ω(E, x) −→ S(E, x) −→
{

thermodyn.
relations

}
. (4.25)

Summary

• The microcanonical ensemble describes an equilibrium system at
given energy E. It is composed of many similar systems, all of which
are consistent with this energy and possibly other given external param-
eters within an uncertainty tolerance δE. All members of the ensemble
are equiprobable.

• The corresponding microcanonical partition function grows ex-
tremely fast with E, so that it is independent of the exact size of the
tolerance δE.

�
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• The relation between statistical physics and thermodynamics is given by
the Boltzmann equation, which relates the microcanonical partition
function with the macroscopic quantity entropy.

• For a closed system in equilibrium, the entropy is maximal (principle
of maximal entropy).

• This principle yields equilibrium conditions for interacting systems
(thermic and/or mechanical exchange).

Applications

56. Ideal gas I: Phase space volume, microcanonical partition func-
tion, and state equation. Consider an ideal gas consisting of N indistin-
guishable noninteracting particles of mass m in a volume L3 = V .

a. By comparing the classical and quantum mechanical phase space volumes
ω(E), show that the size of the classical phase space cell is h3N .

b. Using the phase space density, compute the microcanonical partition func-
tion Ω(E) and verify that it is independent of the size of the energy un-
certainty δE.

c. Determine the caloric state equation E = E(T, V,N) and the thermic state
equation P = P (T, V,N) of the ideal gas.

Solution.

To a. The classical Hamilton function of the system is given by

H(q, p) =
N∑

i=1

p2
i

2m
=

3N∑
i=1

p2
i

2m
= E = const .

This yields the classical phase space volume

ω(E) =
1

ν3NN !

∫
∑

i

p2
i
≤2mE

dΓ =
V N

ν3NN !

∫
∑

i

p2
i
≤2mE

dp , (4.26)

where ν3n is the size of the phase space cell that we wish to determine. To
find the quantum mechanical anologon, we use the fact that the N particles
are confined to a volume L3 = V , so that each of the 3N Cartesian momenta
are restricted to the quantized values

pi =
πh̄

L
ni , ni = 0, 1, . . . .

The energy eigenvalues are therefore
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En =
3N∑
i=1

π2h̄2

2mL2 n2
i .

Next, we assume that the energy states are so close that the sum ω(E) =∑
n:En≤E

1 can be replaced by an integral. This is true if the particle momenta

are much larger than the smallest possible quantum of momentum. For the
quantum mechanical phase space volume, this implies

ω(E) =
1

23N

∫
En≤E

dn ,

where the factor 1/23N also allows negative values of n. Replacing dni by
dpi, we find

ω(E) =
V N

(2πh̄)3N

∫
∑

i

p2
i
≤2mE

dp . (4.27)

Taking into account the indistinguishability of the particles by attaching a
factor 1/N ! and then comparing this relation with the classical result (4.26),
we see that

ν = h .

In Application 54, we already obtained the same result studying the one-
dimensional harmonic oscillator.

To b. To find the microcanonical partition function, we need to evaluate the
integral in (4.27). It represents the volume K of a 3N -dimensional sphere
with radius R =

√
2mE and is given by9

K =
π3N/2( 3N

2

)
!
R3N .

Thus, we find

ω(E, V, N) =
1

N !

(
V

h3

)N

K =
1

N !

(
V

h3

)N
π3N/2( 3N

2

)
!
(2mE)3N/2 ,

where the correction factor 1/N ! is taken into account. Using Stirling’s rela-
tion

lnN !
N�1≈ N(lnN − 1) , (4.28)

we further have

9 Strictly speaking, this result is correct only for even values of N . If N is odd,
we can simply add or subtract a single particle; for large N , this cannot be of
importance.
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lnω(E, V, N) = N

{
ln

[
V

N

(
4πm

3h2

E

N

)3/2
]

+
5
2

}
. (4.29)

With this equation, we can verify that the microcanonical partition function
Ω is independent of δE. According to (4.16),

Ω(E, V, N) ≈ δEg(E) = δE
∂ω(E, V, N)

∂E
=

3N

2
δE

E
ω(E, V, N)

=⇒ lnΩ ≈ lnω + ln
(

3N

2

)
+ ln

(
δE

E

)
.

Now, we can safely assume that δE is small compared to the energy E;
typically, we have δE/E = O(1/

√
N). Therefore, the last two O(lnN)-terms

can be neglected compared to lnω = O(N). This shows that the energy
width δE is of no physical consequence. For very large N , the number of
microstates grows so fast with growing energy that the major contribution
to the partition function always comes from states close to the hypersurface
of energy E. We can therefore sum over all states between 0 and E without
the additional states making a noticeable contribution.
To c. From the microcanonical partition function, one obtains the caloric
and thermic equations of state as

1
T

=
(

∂S

∂E

)
V,N

= k

(
∂ lnΩ

∂E

)
V,N

=
3Nk

2E
=⇒ E =

3
2
NkT (4.30)

P

T
=

(
∂S

∂V

)
E,N

= k

(
∂ lnΩ

∂V

)
E,N

=
Nk

V
=⇒ P =

NkT

V
. (4.31)

Inserting the first equation into (4.29), we find the Sackur-Tetrode equation
for the microcanonical partition function of the ideal gas:

lnω(T, V,N) = lnΩ(T, V,N) = N

{
ln

[
V

N

(
2πmkT

h2

)3/2
]

+
5
2

}
(4.32)

or

lnΩ(T, V,N) = N

(
lnV − lnN +

3
2

lnT + σ

)
, (4.33)

with

σ =
3
2

ln
(

2πmk

h2

)
+

5
2

.

From (4.33), we see that for very small temperatures, the entropy diverges to
infinity. However, this is in contradiction to the third law of thermodynamics
(see Subsection 4.5.1). Replacing the sum by an integral (which we did in
our calculation of the phase space volume) is therefore not valid at zero
temperature, where the lowest state with p = 0 becomes very dominant.
The correct way of approaching this issue is provided by quantum statistics
(Section 4.7), which will resolve this contradiction.
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57. Ideal gas II: Gibbs paradox. Consider an ideal gas of N identical
atoms in a volume V . Inserting a partition wall divides the gas into two
volumes V1 and V2. If this is done in a reversible fashion, we must have

S = S1 + S2 , (4.34)

where S is the entropy of the total volume before and S1 and S2 are the
entropies of the two subvolumes after the wall has been inserted. Show that
(4.34) is satisfied only if the Gibbs factor 1/N ! is used in the microcanonical
partition function.
Solution. To start, we note that the particle density is constant throughout:

ρ =
N

V
=

N1

V1
=

N2

V2
= const .

Using (4.33), in which 1/N ! is taken into account, we find

Si = Nik

(
lnVi − ln ρ − lnVi +

3
2

lnT + σ

)

= Nik

(
− ln ρ +

3
2

lnT + σ

)

=⇒ S1 + S2 = Nk

(
− ln ρ +

3
2

lnT + σ

)

= Nk

(
lnV − lnN +

3
2

lnT + σ

)
= S .

To make the corresponding calculation without 1/N !, we need an equation
analogous to (4.33) with 1/N ! missing. This results in

Si = Nik

(
lnV +

3
2

lnT + σ − 1
)

and

S1 + S2 = Nk

(
lnV +

3
2

lnT + σ − 1
)

�= S .

This contradiction was Gibbs’s reason for introducing the factor 1/N ! long
before it was justified by quantum statistics.

4.3 Ensemble Theory II:
Canonical and Grand Canonical Ensembles

In the previous section we saw how the macroscopic state of a system in
equilibrium with constant energy is related to the microcanonical ensemble.
Using this as our starting point for this section, we consider two more types
of ensembles, called canonical and grand canonical ensemble. We will also
show that all three ensembles yield consistent and equivalent descriptions of
systems in thermodynamical equilibrium.
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4.3.1 Canonical Ensemble

Generally, it is almost impossible to control the energy of a physical system
since it is hard to keep it totally isolated. A much more practical concept is
the less stringent requirement of constant temperature. This quantity is not
only measured easily (e.g., with the help of a thermometer), but can also be
controlled very precisely by bringing the system into touch with a heat bath.

In statistical physics, systems with a given temperature are described by
the canonical ensemble, whose occupation probabilities can be deduced by the
following reasoning: consider a closed system consisting of two subsystems 1
and 2 in thermic contact. Suppose the second system is a lot larger than the
first, so that the temperature of the composite system is practically controlled
by system 2 (see Fig. 4.3). For this to hold, it is necessary that the energy E

system 1
(T, Er)

system 2
(T, E − Er)

Fig. 4.3. Physical system in contact with a much larger heat bath that controls
the temperature of both systems.

of the combined system is much larger than the possible energy levels Er of
the small system 1:

Er 	 E . (4.35)

In other words, system 2 has to be macroscopically large, whereas system 1 is
not subject to this condition. Since, by design, the total energy of the system
is constant,

Er + E2 = E ,

we can describe the combined system with the help of the microcanonical
ensemble. Of the total of Ω(E, x) states, there are Ω2(E − Er, x) states for
which system 1 is in a particular microstate with energy Er. Since, due to the
second statistical postulate, all microstates are equally probable, the prob-
ability Pr(T, x) for system 1 to be in the microstate r at temperature T is
proportional to Ω2(E − Er, x):

Pr(T, x) ∼ Ω2(E − Er, x) .

Now, we expand the logarithm of Ω2(E − Er, x) around E, expecting a fast
convergence due to (4.35):
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lnΩ2(E − Er, x) = lnΩ2(E, x) +
∂ lnΩ2

∂E
(E − Er) + . . .

≈ const − Er

kT
.

From this, we find the (normalized) probability distribution

Pr(T, x) =
1

Z(T, x)
e−βEr(x) , β =

1
kT

,

where

Z(T, x) =
∑

r

e−βEr(x)

denotes the canonical partition function.

Probability distribution of the energy. Pr(T, x) is the probability for
a system with given temperature T to be in a particular microstate r. In
order to determine the probability W (Er) to find an arbitrary microstate
with energy Er, we have to take into account the degeneracy of the Hamilton
operator of the system. For a given temperature, the probability Pr(T, x)
depends only on the energy. Thus, we can use the phase space density g(Er)
from (4.16), which actually determines the degeneracy of the energy level Er,
to rewrite W (Er) as

W (Er) = g(Er)Pr(T, x) =
g(Er)

Z
e−βEr

Z(T, x) =
∑

r

g(Er)e−βEr .

In case of densely distributed energy levels, these equations become

W (E)dE =
g(E)

Z(T, x)
e−βEdE , Z(T, x) =

∞∫
0

dEg(E)e−βE . (4.36)

The right-hand equation of (4.36) shows that the canonical partition function
Z is just the Laplace transform of the phase space density g, so that

g(E) =
1

2πi

c+i∞∫
c−i∞

dβZ(β, x)eβE , Re(β) = c > 0 .

Here, β is a complex variable, and the integration is carried out parallel to
the imaginary axis along c > 0.

Characteristic energy. The average energy E of the canonical ensemble is
given by

E(T, x) = −
(

∂ lnZ

∂β

)
x

.

The corresponding mean-square deviation is
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(∆E)2 = E2 − E
2

=
(

∂2 lnZ

∂β2

)
x

= −
(

∂E

∂β

)
x

= kT 2
(

∂E

∂T

)
x

= kT 2Cx ,

where Cx =
(
∂E/∂T

)
x

is the specific heat at fixed external parameters x.10

Thus, we find√
(∆E)2

E
∼ O

(
1√
N

)
. (4.37)

This shows that practically all systems in the canonical ensemble and in the
limit N → ∞ are in a state with energy E. We conclude that the energy
distribution W (E) has a sharp maximum around the average value E, which
can be obtained from the following maximum condition:

∂W

∂E

∣∣∣∣
E=E

= 0 =⇒ ∂

∂E
ln g(E)

∣∣∣∣
E=E

= β =⇒ ∂S

∂E

∣∣∣∣
E=E

=
1
T

.

In the last relation, we have used the identity S = k ln g.11

In the thermodynamic limit, we see that the microcanonical and canonical
ensembles describe the same physical situation. In both descriptions, the en-
ergy has a sharp value, although in the canonical ensemble only the system’s
temperature is held fixed. However, for small systems with relatively few de-
grees of freedom, the two ensembles represent very different situations. In this
case, the mean-square deviation (4.37) is no longer negligible, so that, within
the canonical ensemble, a physical system with fixed temperature undergoes
very large energy fluctuations.

Free energy. Using

∂2 ln g(E)

∂E
2 =

1
k

(
∂2S

∂E
2

)
x

=
(

∂

∂E

)
x

(
1

kT

)
=

(
∂E

∂T

)−1

x

(
∂

∂T

)
x

(
1

kT

)

= − 1
kT 2Cx

,

the expansion of ln[ZW (E)] around the maximum E gives

ln[ZW (E)] = −βE + ln g(E) = −βE +
S

k
− (E − E)2

2kT 2Cx
,

so that

W (E) =
1
Z

e−β(E−TS) exp
(

− (E − E)2

2kT 2Cx

)
.

10 In the canonical ensemble, the external parameters are most often taken to be
x = (V, N). In this case, Cx = CV is the specific heat at constant volume and
constant number of particles.

11 Remember that S is the entropy of the small system 1 (rather than that of the
combined system 1+2).
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Applying the normalization condition
∫

dEW (E) = 1, we find for the canon-
ical partition function

−kT lnZ(T, x) = (E − TS) − 1
2
kT ln

(
2πkT 2Cx

)
.

The last term on the right-hand side of this equation is of the order O(lnN)
and can be neglected compared to the other terms of order O(N) if N → ∞.
This yields

−kT lnZ(T, x) = (E − TS) .

Theorem 4.10: Canonical ensemble

The canonical ensemble describes the equilibrium state of a system at fixed
temperature T :

Pr(T, x) =
1

Z(T, x)
e−βEr(x) , Z(T, x) =

∑
r

e−βEr(x) , β =
1

kT
.

All average values of state variables can be calculated from this. For exam-
ple, the thermodynamic energy is given by

E(T, x) =
∑

r

Pr(T, x)Er(x) = −
(

∂ lnZ

∂β

)
x

.

In the thermodynamic limit, the energy fluctuations in the canonical en-
semble are negligibly small. The connection to thermodynamics is provided
by

−kT lnZ(T, x) = F (T, x) = E − TS ,

where F is the free energy. The term e−βE is called the Boltzmann factor.

Interpreting the states |ψr〉 from Theorem 4.3 as the energy eigenstates of
the Hamilton operator H with energy Er, the canonical density operator can
be written as

ρ =
1
Z

∑
r

|ψr〉 e−βEr 〈ψr| =
e−βH

Z

∑
r

|ψr〉 〈ψr| =
e−βH

tr (e−βH)
, (4.38)

where we have used

Z =
∑

r

e−βEr =
∑

r

〈
ψr| e−βH |ψr

〉
= tr

(
e−βH

)
in the denominator. The corresponding density matrix is diagonal in the
energy eigenbasis:

ρnm = 〈ψn|ρ |ψm 〉 =
e−βEn∑

n
e−βEn

δnm . (4.39)
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4.3.2 Grand Canonical Ensemble

The canonical ensemble was introduced to describe physical situations where
the rather restrictive condition of constant energy, used in the microcanoni-
cal formalism, is replaced by the experimentally easier controllable condition
of constant temperature. We now relax the conditions even further by al-
lowing both energy and particle exchange, while the corresponding intensive
quantities temperature and chemical potential are held fixed. This case will
prove to be relevant particularly for processes in quantum field theory and
in chemistry, where particles can be generated and destroyed. The statistical
description of this scenario is provided by the grand canonical ensemble. Its
occupation probabilities can best be determined by using the same argument
as applied to the canonical ensemble and by introducing a controlling heat
bath and particle reservoir.

Consider, therefore, a small system 1 in contact with a much larger system
2 with which it can exchange energy and particles (Fig. 4.4). Thus, the large

system 1
(T, Er, Ns)

system 2
(T, E − Er, N − Ns)

Fig. 4.4. Physical system in contact with a much larger heat and particle bath
that controls temperature and chemical potential of both systems.

system controls the temperature T and the chemical potential µ of the small
system. Although energy and particles can be exchanged, the total values
must remain constant,

Er + E2 = E = const , Ns + N2 = N = const ,

and we assume that

Er 	 E , Ns 	 N . (4.40)

The question we wish to answer is: what is the probability Pr,s(T, µ, x) for
the small system 1 in equilibrium, at given temperature T and given chemical
potential µ, to be in the microstate (r,Ns)?12 As before, our starting point
is the second statistical postulate, which states that all microstates of the
isolated combined system are equally likely. Of these Ω(E, N) possible states,
there are Ω2(E − Er, N − Ns) states for which system 1 is in a particular
microstate with (Er, Ns). Thus, the probability Pr,s(T, µ, x) is given by
12 Note that in r we collect all quantum numbers, while holding fixed the number

of particles Ns.
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Pr,s(T, µ, x) ∼ Ω2(E − Er, N − Ns) .

If we use (4.40), the expansion of lnPr,s around the point (E, N) yields

lnΩ2(E − Er, N − Ns) = lnΩ2(E, N) +
∂ lnΩ2

∂E
(E − Er)

+
∂ lnΩ2

∂N
(N − Ns) + . . .

≈ const − ∂ lnΩ2

∂E
Er − ∂ lnΩ2

∂N
Ns .

With

β =
∂Ω2

∂E
, −βµ =

∂ lnΩ2

∂N
,

we finally obtain the (normalized) probability distribution

Pr,s(T, µ, x) =
1

Y (T, µ, x)
e−β(Er(Ns)−µNs)

=
1

Y (T, µ, x)
zNse−βEr(Ns) ,

where

Y (T, µ, x) =
∑
r,s

e−β(Er(Ns)−µNs)

is the grand canonical partition function and

z = eβµ

is the fugacity.

Characteristic energy and particle number. The average energy E and
average particle number N are calculated in now-customary fashion:

E(T, µ, x) = −
(

∂ lnY

∂β

)
z,x

, N(T, µ, x) =
1
β

(
∂ lnY

∂µ

)
T,x

.

The relative deviation of the particle number is

(∆N)2

N
2 =

N2 − N
2

N
2 =

1

N
2
β2

(
∂2 lnY

∂µ2

)
T,x

=
kT

N
2

(
∂N

∂µ

)
T,x

. (4.41)

To simplify this equation further, we shall assume that x represents the vol-
ume V (this is the most common case) and make use of the thermodynamic
relation (see Subsection 4.5.2)

dµ =
V

N
dP − S

N
dT .

With this, we find(
∂µ

∂v

)
T

= v

(
∂P

∂v

)
T

, v =
V

N
=⇒ −N

2

V

(
∂µ

∂N

)
T,V

= V

(
∂P

∂V

)
T,N

,
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so that (4.41) can be written as

(∆N)2

N
2 = −kT

V 2 κT , κT =
(

∂V

∂P

)
T,N

,

where κT is the isothermic compressibility. We see that the particle density
fluctuates as O

(
1/

√
N
)
, which is negligibly small for large particle numbers.

A similar calculation for the energy fluctuation (x = V ) yields

(∆E)2 = −
(

∂E

∂β

)
V,µ

= kT 2
(

∂E

∂T

)
V,µ

= kT 2

[(
∂E

∂T

)
V,N

+
(

∂E

∂N

)
T,V

(
∂N

∂T

)
V,µ

]
. (4.42)

Using one of the Maxwell relations [see the last row of (4.59) in Subsection
4.5.2](

∂N

∂T

)
V,µ

= − ∂2J

∂T∂µ
= − ∂2J

∂µ∂T
=

(
∂S

∂µ

)
T,V

,

we can simplify (4.42) as follows:

(∆E)2 = kT 2CV + kT 2
(

∂E

∂N

)
T,V

(
∂S

∂E

)
T,V

(
∂E

∂µ

)
T,V

= (∆E)2kan + kT

(
∂E

∂N

)2

T,V

(
∂N

∂µ

)
T,V

= (∆E)2kan +
(

∂E

∂N

)2

T,V

(∆N)2 .

We see that the energy fluctuations in the grand canonical ensemble are
identical to those in the canonical ensemble with an extra term stemming
from the particle fluctuations. We wish to point out that there are situations
where the energy and particle fluctuations can deviate from the O

(
1/

√
N
)

behavior. This happens close to phase transitions, where the compressibility
κT can grow exponentially. κT is then of the order of O(N).

In the thermodynamical limit, practically all members of the grand canon-
ical ensemble have the same energy E = E and the same number of particles
N = N . With regard to the results of the previous subsection, we can there-
fore conclude that microcanonical, canonical, and grand canonical ensembles
yield equivalent descriptions of macroscopic systems in equilibrium.

Grand canonical potential. The grand canonical partition function can
also be written as

Y (T, z, x) =
∞∑

N=1

zNZ(T,N, x) , (4.43)
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where Z(T,N, x) is the canonical partition function of the N -particle state.
The upper limit of summation can be shifted to infinity since only systems
with particle number Ns much smaller than the total number of particles of
the combined system particle+reservoir contribute significantly to the sum.
Now, from (4.43), we see that the probability WE(N) of finding the system
with energy E and particle number N is given by

WE(N) =
1
Y

zNZ(T,N, x) =
1
Y

e−β(E−TS−µN) .

Since this distribution has a sharp maximum around the average value N in
the thermodynamical limit, the grand canonical partition function must be
equivalent to the canonical totality with N particles. It therefore follows that

Y (T, z, x) = zNZ(T, N, x) =⇒ −kT lnY = E − TS − µN .

Theorem 4.11: Grand canonical ensemble

The grand canonical ensemble describes the equilibrium state of a system
with given temperature T and chemical potential µ:

Pr,s(T, µ, x) =
1

Y (T, µ, x)
e−β(Er(Ns)−µNs)

Y (T, µ, x) =
∑
r,s

e−β(Er(Ns)−µNs)

=
∞∑

N=1

zNZ(T,N, x) , z = eβµ .

All expectation values can be obtained from the grand canonical partition
function. In particular, the thermodynamic energy and average particle
number are

E(T, µ, x) =
∑
r,s

Pr,s(T, µ, x)Er(Ns, x) = −
(

∂ lnY

∂β

)
z,x

N(T, µ, x) =
∑
r,s

Pr,s(T, µ, x)Ns =
1
β

(
∂ lnY

∂µ

)
T,x

.

In the thermodynamical limit the energy and particle fluctuations of the
grand canonical ensemble are vanishingly small (away from phase transi-
tions). The connection to thermodynamics is given by

−kT lnY (Tµ, x) = J(T, µ, x) = E − TS − µN ,

where J is the grand canonical potential.

In the energy basis, the relations for the density operator corresponding to
(4.38) and (4.39) are
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ρ =
e−β(H−µN)

tr
(
e−β(H−µN)

) , ρnm =
e−β(En−µN)∑

n
e−β(En−µN) δnm .

4.3.3 Comparison of the Ensembles

Following the results of this and the previous sections, we see a simple prin-
ciple emerge that relates the microcanonical, canonical, and grand canonical
ensembles: they are all connected via Laplace transformations. The canonical
partition function Z is given by the sum over the “microcanonical partition
functions” g(E) [phase space density, degeneracy function; see (4.16)], each
weighted with a Boltzmann factor e−βE :

Z(T,N, x) =
∑
E

g(E)e−βE(N,x) .

Unlike in the microcanonical ensemble, the energy is not fixed. Instead, the
temperature T is constant and this determines the average energy E. The
grand canonical partition function Y is obtained by summing all canonical
partition functions Z at given temperatures T , volume V , and particle num-
ber N , each weighted with a factor eβµN :

Y (Tµ, x) =
∑
N

eβµNZ(T,N, x) . (4.44)

Here, the system can exchange energy and particles with its environment.
The temperature T and the chemical potential µ are constant and determine
the average energy E and average particle number N . For systems of non-
interacting particles, the canonical partition function factorizes, so that for
indistinguishable particles, we find

Z(T,N, x) =
1

N !
ZN (T, 1, x) . (4.45)

Inserting this into (4.44) yields

Y (T, µ, x) =
∑
N

1
N !

[
eβµZ(T, 1, x)

]N
= exp

[
eβµZ(T, 1, x)

]
.

In principle, all of these ensembles can be equally well used to describe the
thermodynamic properties of a system. Which one is chosen is often a matter
of ease. As we have seen, the fluctuations of the energy and the particle num-
ber are negligible in the limit N → ∞, so that expectation values of observ-
ables are sharp and therefore all three ensembles give equivalent descriptions.
Clearly, the equivalence of the ensembles no longer holds for microscopically
small systems with few degrees of freedom. For example, in the canonical
ensemble, the probability distribution of a single particle is proportional to
the Boltzmann factor and thus very broad:√

(∆E)2

E
= O(1) .
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The canonical and grand canonical partition functions are each related to a
thermodynamic potential (free energy and grand canonical potential) just as
the microcanonical partition function is related to entropy. In Section 4.5,
we will show that each of these potentials contains the complete thermo-
dynamic information of a system in equilibrium. We can therefore expand
our schematic diagram (4.25) from the end of the previous section for the
determination of thermodynamic relations as follows:

H(N, x) → Er(N, x) →
⎧⎨
⎩

Ω(E, N, x) → S(E, N, x)
Z(T,N, x) → F (T,N, x)
Y (T, µ, x) → J(T, µ, x)

⎫⎬
⎭ →

⎧⎨
⎩

thermody-
namical
relations

⎫⎬
⎭ .

How these calculations are done in detail is the subject of Section 4.5.

Summary

• The canonical ensemble describes an equilibrium system at given tem-
perature T . It is composed of many similar (but not necessarily macro-
scopic) systems with different energies Er, each weighted by the Boltz-
mann factor e−Er/kT .

• The grand canonical ensemble describes an equilibrium system at
given temperature T and given chemical potential µ. The ensemble
members are a large number of similar (but not necessarily macroscopic)
systems with different energies Er and different particle numbers Ns,
each weighted with the factor e−(Er−µNs)/kT .

• In the thermodynamic limit, the energy and particle number fluctu-
ations of the canonical and grand canonical ensembles are negligibly
small. Therefore, microcanonical, canonical, and grand canonical ensem-
bles yield equivalent descriptions of macroscopic systems.

• The canonical partition function is related to the free energy, whereas
the grand canonical partition function is related to the grand canonical
potential.

• Microcanonical, canonical, and grand canonical ensembles are related via
Laplace transformations.

Applications

58. Ideal gas III: Canonical and grand canonical ensembles. Us-
ing the ideal gas, show that in the thermodynamic limit (where N = N and
E = E), microcanonical, canonical, and grand canonical ensembles are equiv-
alent. Proceed by
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• calculating the canonical and grand canonical partition functions and the
corresponding potentials,

• determining the corresponding entropies using the relations [see (4.59) in
Subsection 4.5.2]

S(T, V,N) = −
(

∂F

∂T

)
V,N

, S(T, V, µ) = −
(

∂J

∂T

)
µ,V

(4.46)

and comparing them to the microcanonical entropy (4.32).

Solution. The canonical partition function is

Z(T, V,N) =
∑

r

exp

(
−

3N∑
i=1

p2
i

2mkT

)
,

where

r = (x1, . . . , x3N , p1, . . . , p3N )

specifies a classical microstate of the ideal gas. We can replace the sum over
microstates by an integral over the phase space,∑

r

−→ 1
N !h3N

∫
dΓ ,

where the indistinguishability of the particles is taken into account by the
Gibbs factor 1/N !. It follows that

Z(T, V,N) =
1

N !h3N

∫
dΓ exp

(
−

3N∑
i=1

p2
i

2mkT

)

=
V N

N !h3N

⎡
⎣ ∞∫
−∞

dp exp
(

− p2

2mkT

)⎤
⎦3N

=
V N

N !

(
2πmkT

h2

)3N/2

=
ZN

1

N !
, (4.47)

where

Z1 = Z(T, V, 1) = V

(
2πmkT

h2

)3/2

is the one-particle partition function. With the help of Stirling’s formula
(4.28), the free energy adds up to

F (T, V,N) = −NkT ln

[
V

N

(
2πmkT

h2

)3/2
]

− NkT .

Using the first equation from (4.46), we find
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S(T, V,N) = Nk ln

[
V

N

(
2πmkT

h2

)3/2
]

+
5
2
Nk .

This relation is identical to the microcanonical entropy following from (4.32).
For the calculation of the grand canonical partition function and its potential,
we use the result (4.47) and proceed as follows:

Y (T, V, µ) =
∑
N

e
Nµ
kT Z(T, V,N) =

∑
N

1
N !

(
Z1eµ/kT

)N

= exp
(
Z1eµ/kT

)

= exp

[
V

(
2πmkT

h2

)3/2

eµ/kT

]
(4.48)

=⇒ J(T, V, µ) = −kTV

(
2πmkT

h2

)3/2

eµ/kT .

Using the second equation from (4.46), this results in

S(T, V, µ) = kV

(
2πmkT

h2

)3/2

eµ/kT

(
5
2

− µ

kT

)
.

To compare this expression with (4.32), we need to eliminate µ. For this, we
calculate

N = kT

(
∂ lnY

∂µ

)
T

= V

(
2πmkT

h2

)3/2

eµ/kT

=⇒ µ

kT
= ln

[
N

V

(
2πmkT

h2

)−3/2
]

=⇒ S(T, V,N) = Nk

{
ln

[
V

N

(
2πmkT

h2

)3/2
]

+
5
2

}
.

This equation is also in agreement with (4.32).

59. Maxwell’s velocity distribution. Calculate the velocity distribution
for an atom of an ideal gas confined to a volume V .

Solution. From the viewpoint of the atom of interest, the remaining atoms
of the gas can be seen as a heat bath that keeps its temperature at constant
value. We shall therefore use the canonical ensemble. Following (4.47), the
one-particle partition function is

Z(T, V, 1) = Z1 =
V

h3

∫
d3p exp

(
− p2

2mkT

)
= V

(
2πmkT

h2

)3/2

.

The average momentum is calculated as

p =
V

h3Z1

∫
d3pp exp

(
− p2

2mkT

)
.
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This shows that

W (p)d3p =
V

h3Z1
exp

(
− p2

2mkT

)
d3p

is the probability of finding the atom with a momentum in the interval
[p : p + d3p] and that

W (p)dp =
V

h3Z1
exp

(
− p2

2mkT

)
4πp2dp

is the probability that the atom has an absolute momentum in the interval
[p : p+dp]. Setting p = mv, the normalized Maxwell velocity distribution for
a single atom is found to be

W (v) = 4π
( m

2πkT

)3/2
v2 exp

(
−mv2

2kT

)
.

4.4 Entropy and Information Theory

In this section we discuss information theory as developed by Shannon. The
goal of this theory is to make predictions based on incomplete information.
This is clearly similar to what we have been trying to do so far in the frame-
work of statistical physics. Thus, it will come as no surprise that the meth-
ods of information theory, if correctly interpreted, can be used in statistical
physics.

Having shown that Shannon entropy is equivalent to statistical entropy,
we return to the three ensembles discussed in the previous sections and show
how these ensembles arise naturally as solutions to a variational problem of
the Shannon entropy.

4.4.1 Information Theory and Shannon Entropy

The macrostate of a system is defined via a set of probabilities {P1, P2, . . .} =
{P} of microstates. The allocation of a set of probabilities to a set of occur-
rences (microstates) can be said to represent information.
Derivation of the Shannon entropy. Shannon showed quite generally
that a measure of information or of lack of information is given by an entropy
function S({P}), which is defined by the following conditions:

• S({P}) is a continuous-differentiable and unique function of the (normal-
ized) probabilities {P}.

• For N equiprobable states, Pi = 1/N , the entropy is a monotonously grow-
ing function of N . For this specific case, we introduce the notation

I(N) = S

({
Pi =

1
N

})
.
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• The uncertainty associated with a set of probabilities remains unchanged
if the states are grouped into subsets. Suppose such a partitioning is as
follows:

w1 =
n1∑
i=1

Pi , w2 =
n2∑

i=n1+1

Pi , . . . , wk =
nk=N∑

i=nk−1+1

Pi .

Then, we have

S({P}) = S({w}) +
k∑

j=1

wjS

({P}
wj

)
.

The second term necessarily contains a factor wj as this is the probability
of an event actually being part of the group wj .

To find S({P}), we start by looking at the case of identical probabilities,

P1 =
1

nm
, . . . , Pn·m =

1
nm

, n, m ∈ N ,

which are grouped into m equally sized subsets:

w1 =
n∑

i=1

Pi =
1
m

, . . . , wm =
nm∑

i=(m−1)n+1

Pi =
1
m

.

The last of Shannon’s conditions implies that

I(nm) = I(m) +
m∑

j=1

1
m

I(n) = I(m) + I(n) .

Since S({P}) is continuous, we can differentiate with respect to n. Letting
p = nm, we find

m
d
dp

I(p) =
d
dn

I(n) .

Multiplication of both sides by n yields

p
d
dp

I(p) = n
d
dn

I(n) = const .

This term has to be a constant since we can change p without variation of n.
So we finally arrive at

I(n) = k lnn , k = const . (4.49)

Next, consider the case of identical probabilities that are grouped into subsets
of different sizes:

Pi =
1
n

, ωj =
αj

n
,
∑

j

αj = n , n, αj ∈ N .

Using (4.49) and Shannon’s third condition, we see that
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I(n) = S({w}) +
∑

j

(αj

n

)
I(αj)

=⇒ S({w}) =
∑

j

(αj

n

)
[I(n) − I(αj)] = −k

∑
j

(αj

n

)
[lnαj − lnn]

= −k
∑

j

(αj

n

)
ln

(αj

n

)
= −k

∑
j

wj lnwj .

Substituting wi → Pi, we can therefore define:

Definition: Shannon entropy

The Shannon entropy of a system with relative probabilities {P1, P2, . . .}
is defined as

S = −k
∑

i

Pi lnPi , k > 0 ,
∑

i

Pi = 1 .

The quantity − lnPi is called surprise.

Note that Pi = 0 implies that Pi lnPi is identical to zero. This means that
impossible events do not contribute to the entropy. The constant k in the
above definition is generally set to 1 or to 1/ ln 2 (information theory). It is
now easy to see that Shannon entropy and statistical entropy are equivalent
if k is identified with the Boltzmann constant: if all Pi are set to the constant
microcanonical probability 1/Ω, the entropy becomes

S = k
∑

i

1
Ω

lnΩ = k lnΩ . (4.50)

Properties of the Shannon entropy. The Shannon entropy has the fol-
lowing properties:

• The entropy is nonnegative since k is a positive constant.

• If any one of the probabilities is one, Pi = 1, implying that all other prob-
abilities are identically zero, then S is identical to zero. This corresponds
to an experiment with a unique outcome.

• For a set of equiprobable states, Pi = P , the entropy S is maximal since
with

∑
i dPi = 0, we have

dS = −k
∑

i

(lnPi + 1)dPi = −k lnP
∑

i

dPi − k
∑

i

dPi = 0 .

• For independent events, the entropy S is an additive quantity:

S12 = −k
∑
i,j

PiPj ln(PiPj)
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= −k
∑
i,j

(PiPj lnPi + PiPj lnPj)

= S1

∑
j

Pj + S2

∑
i

Pi = S1 + S2 .

• If {P} corresponds to a mixed state with the density matrix

ρ =
∑

i

| i〉 Pi 〈 i| ,

the Shannon entropy is given by

S(ρ) = −k
∑

i

Pi lnPi = −ktr (ρ lnρ) .

We now prove that Shannon entropy is maximal for an equilibrium distribu-
tion. Consider the density operator of a given equilibrium distribution {P},

ρ =
∑

n

|n〉 Pn 〈n| ,

and, additionally, another arbitrary distribution {P ′} with the corresponding
density matrix

ρ′ =
∑
n′

|n′〉 P ′
n′ 〈n′| ,

where it is assumed that both basis systems {|n〉} and {|n′〉} span the
same Hilbert space. Next, we introduce a function known as Boltzmann’s
H-function,

H = tr [ρ′(lnρ − lnρ′)] ,

into which we insert the identity operators
∑

n′ |n′〉 〈n′| and
∑

n |n〉 〈n| :
H =

∑
n′

P ′
n′ [〈n′| lnρ |n′ 〉 − lnP ′

n′ 〈n′|n′〉]

=
∑
n,n′

P ′
n′ [〈n′| lnρ |n 〉 〈n| n′〉 − lnP ′

n′ 〈n′|n〉 〈n| n′〉]

=
∑
n,n′

P ′
n′ | 〈n| n′〉 |2(lnPn − lnP ′

n′)

=
∑
n,n′

P ′
n′ | 〈n| n′〉 |2 ln

(
Pn

P ′
n′

)
. (4.51)

Using lnx ≤ x − 1 yields

H ≤
∑
n,n′

| 〈n| n′〉 |2(Pn − P ′
n′) = tr(ρ − ρ′) = 0 . (4.52)

Inserting the microcanonical probabilities Pn = 1/Ω into the equilibrium
distribution ρ and using (4.50), we find that
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H = − lnΩ
∑
n′

P ′
n′

∑
n

| 〈n| n′〉 |2 −
∑
n′

P ′
n′ lnP ′

n′
∑

n

| 〈n| n′〉 |2

= −S

k
+

S′

k
≤ 0

=⇒ S ≥ S′ .

Thus, we have found13

Theorem 4.12: Shannon’s entropy law

The Shannon entropy of a closed system in equilibrium is maximal:

S = maximal .

This theorem provides the connection between information theory and sta-
tistical physics. In the following subsection, we will see how the ensembles
are obtained by maximizing Shannon’s entropy, taking into account certain
boundary conditions.

4.4.2 Variation of the Entropy

Prior to reconsidering the microcanonical, canonical, and grand canonical
ensembles, we consider more generally an equilibrium system that is charac-
terized by the following averages:∑

i

PiA
(1)
i = A(1) ,

∑
i

PiA
(2)
i = A(2) , . . . .

To find the corresponding set of probabilities {P}, we follow Theorem 4.12
and determine the stationary points of the Shannon entropy with the above
boundary conditions. To this end, we use the method of Lagrange parameters,
which yields the following variation condition:

δF (P1, P2, . . .) = 0 ,

with

F (P1, P2, . . .) = −k
∑

i

Pi lnPi − β1

∑
i

PiA
(1)
i − β2

∑
i

PiA
(2)
i + . . . .

This results in

−k(lnPi + 1) − β1A
(1)
i − β2A

(2)
i − . . . = 0

=⇒ Pi =
1
Φ

exp

⎛
⎝−

∑
j

βjA
(j)
i

⎞
⎠ , Φ =

∑
i

exp

⎛
⎝−

∑
j

βjA
(j)
i

⎞
⎠ ,

13 In Application 61 we will use the extremum condition (4.52) for the canonical
and grand canonical distributions to find similar minimum principles for the free
energy and the grand canonical potential.
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where βj have been rescaled in the last step. Note that the extremal points
are indeed maxima since

δ2F (P1, P2, . . .) = −k
∑

i

(δPi)2

Pi
< 0 .

The Lagrange parameters βj must be chosen such that the above boundary
conditions are satisfied. Differentiation of the general partition function Φ
gives

∂ lnΦ

∂βm
= − 1

Φ

∑
i

A
(m)
i exp

⎛
⎝−

∑
j

βjA
(j)
i

⎞
⎠ = −A(m) (4.53)

∂2 lnΦ

∂β2
m

= A(m)2 − A(m)
2

=
(
∆A(m)

)2
.

Since the order of differentiation is interchangeable, it follows from (4.53)
that

∂A(m)

∂βn
= − ∂2 lnΦ

∂βn∂βm
= − ∂2 lnΦ

∂βm∂βn
=

∂A(n)

∂βm
.

These equations are known as Maxwell’s integrability conditions, and we shall
be using them extensively in the following. For the entropy, we find

S = −k
∑

i

Pi lnPi

= − k

Φ

∑
i

exp

⎛
⎝−

∑
j

βjA
(j)
i

⎞
⎠

⎛
⎝− lnΦ −

∑
j

βjA
(j)
i

⎞
⎠

= k lnΦ + k
∑

j

βjA(j) . (4.54)

Using

∂ lnΦ

∂A(m)
=

1
Φ

∑
i

exp

⎛
⎝−

∑
j

βjA
(j)
i

⎞
⎠

⎛
⎝−

∑
j

A
(j)
i

∂βj

∂A(m)

⎞
⎠

= −
∑

j

A(j) ∂βj

∂A(m)

and (4.54) finally leads to

∂S

∂A(m)
= k

⎛
⎝ ∂ lnΦ

∂A(m)
+ βm +

∑
j

A(j) ∂βj

∂A(m)

⎞
⎠ = kβm .
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Theorem 4.13: Principle of maximal entropy
and partition function

The principle of maximal entropy with general boundary conditions of the
type∑

i

PiA
(1)
i = A(1) ,

∑
i

PiA
(2)
i = A(2) , . . .

yields the (normalized) probability distribution

Pi =
1
Φ

exp

⎛
⎝−

∑
j

βjA
(j)
i

⎞
⎠ ,

∑
i

Pi = 1 ,

with the partition function

Φ =
∑

i

exp

⎛
⎝−

∑
j

βjA
(j)
i

⎞
⎠

and entropy

S = k lnΦ + k
∑

j

βjA(j) .

Furthermore, we have the relations

A(m) = −∂ lnΦ

∂βm
,
(
∆A(m)

)2
=

∂2 lnΦ

∂β2
m

,
∂S

∂A(m)
= kβm

as well as Maxwell’s integrability conditions

∂A(m)

∂βn
=

∂A(n)

∂βm
.

With the help of this theorem, we can now easily deduce the probabilities for
any ensemble, given its respective boundary conditions:

Generalized grand canonical ensemble. Let us first consider the gener-
alized grand canonical ensemble that is subject to the conditions∑

i

PiEi = E ,
∑

i

PiNi = N ,
∑

i

PiA
(j)
i = A(j) , j = 1, 2, . . . .

The corresponding probabilities are

Pi =
1
Φ

exp

⎛
⎝−βEEi − βNNi −

∑
j

βjA
(j)
i

⎞
⎠ ,

with the generalized grand canonical partition function
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Φ =
∑

i

exp

⎛
⎝−βEEi − βNNi −

∑
j

βjA
(j)
i

⎞
⎠ .

The entropy is

S = k lnΦ + kβEE + kβNN + k
∑

j

βjA(j) .

Its derivatives with respect to the averages are given by

∂S

∂E
= kβE ,

∂S

∂N
= kβN ,

∂S

∂A(j)
= kβj .

Replacing the Lagrange parameters βE , βN , and βj by the quantities T , µ,
and β′

j , respectively, such that

βE =
1

kT
, βN = − µ

kT
, βj =

β′
j

kT
,

we can write the grand canonical potential as

−kT lnΦ = E − TS − µN +
∑

j

β′
jA

(j) .

Now it is straightforward to deduce the corresponding relations for the grand
canonical, canonical, and microcanonical ensembles by successively dropping
the redundant boundary conditions from the equations of the generalized
grand canonical ensemble.

Grand canonical ensemble.

Constraints:
∑

i

PiEi = E ,
∑

i

PiNi = N

=⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pi =
1
Y

e−βEEi−βN Ni , Y =
∑

i

e−βEEi−βN Ni

S = k lnY + kβEE + kβNN

−kT lnY = E − TS − µN .

Canonical ensemble.

Constraints:
∑

i

PiEi = E

=⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pi =
1
Z

e−βEEi , Z =
∑

i

e−βEEi

S = k lnZ + kβEE

−kT lnZ = E − TS .
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Microcanonical ensemble.

No constraints in form of averages

=⇒
⎧⎨
⎩ Pi =

1
Ω

, Ω =
∑

i

1

S = k lnΩ .

Obviously, the information theoretical approach leads to the same ensemble
equations as the statistical one (Sections 4.2 and 4.3). This shows the equiv-
alence of the Shannon and the statistical entropy. Many textbooks prefer to
use Shannon’s ansatz rather than the statistical approach due to its formal
convenience and transparency. We have decided to present both approaches
in order to highlight their fundamental relationship.

Gibbs’s fundamental form. To end this section, we consider the energy
exchange of an equilibrium system with its environment where we work in
the canonical ensemble. The exchange of energy can be engineered either by
a change of the relative probabilities Pi or by a change of the energy values
Ei, which in turn is caused by a (slow) change of the external parameters xj .
Due to

E =
∑

i

PiEi ,

we have

dE =
∑

i

(dPiEi + PidEi) =
∑

i

dPiEi +
∑

i

Pi

∑
j

∂Ei

∂xj
dxj

=
∑

i

dPiEi −
∑

j

Xjdxj , (4.55)

where the quantities

Xj = −
∑

i

Pi
∂Ei

∂xj
= − ∂E

∂xj
=

(
∂S

∂E

)−1
∂S

∂xj
= T

∂S

∂xj

are the conjugate generalized forces to xj [compare to (4.21) and (4.23)].
Using the canonical probabilities Pi = e−βEi/Z, the change in entropy is
given by (

∑
i dPi = 0)

dS = −kd

(∑
i

Pi lnPi

)
= −k

∑
i

dPi(lnPi + 1) = −k
∑

i

dPi lnPi

= kβ
∑

i

dPiEi .

With this, (4.55) finally turns into

dE =
1

kβ
dS −

∑
j

Xjdxj = TdS −
∑

j

Xjdxj . (4.56)
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This is called Gibbs’s fundamental form. We shall derive it in another way in
the next section. It is fundamental to thermodynamics in that all thermody-
namical relations can be obtained from it.

Summary

• Shannon’s entropy is the central concept of information theory. It
is a measure of the incomplete information inherent to a physical system.

• Shannon’s entropy is maximal for a system in equilibrium.

• The principle of maximal entropy can be used to formulate a variational
principle that yields results in agreement with those of statistical physics.

• The different definitions of entropy (information theoretical, statistical,
and thermodynamical) are equivalent.

Applications

60. Master equation and Boltzmann’s H-theorem. Consider the case
of time-dependent probabilities and find an equation for their temporal evolu-
tion (master equation). Using this equation, calculate Boltzmann’s H-function

H =
∑

r

Pr lnPr = lnP

and study its time dependence.

Solution. Recall the discussion of atomic transitions in Section 3.8 and
consider a small time-dependent perturbation H ′ of the Hamilton operator
H(t) = H(0) +H ′(t), with H ′ 	 H(0). The perturbation induces transition
probabilities Wrs between states r and s of equal energy, where we have the
symmetry Wrs = Wsr. Thus, it follows that

dPr

dt
=

∑
s

(PsWsr − PrWrs) =
∑

s

Wrs(Ps − Pr) .

This is the master equation. Note that it is not invariant under time re-
versal t → −t, which implies that it describes an irreversible process. For
Boltzmann’s H-function, we find

dH
dt

=
∑

r

(
dPr

dt
lnPr +

dPr

dt

)
=

∑
r,s

Wrs (Ps − Pr) (lnPr + 1) .

Interchanging the summation indices and then adding both expressions yields

dH
dt

= −1
2

∑
r,s

Wrs(Pr − Ps)(lnPr − lnPs) . (4.57)
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Now, ln Pr is a monotonously growing function of Pr, so that if Pr > Ps, then
lnPr > lnPs, too, and vice versa. This implies

(Pr − Ps)(lnPr − lnPs) ≥ 0 .

Since Wrs is always positive, each term in the sum (4.57) must also be posi-
tive. We therefore find

dH
dt

≤ 0 .

This is Boltzmann’s H-theorem [compare to (4.52)]. Since H and entropy
are related via S = −kH, this theorem also implies that the entropy only
ever increases. The equality holds only if Pr = Ps for all states for which
transitions are possible, and this is equivalent to all possible states satisfying
Pr = const. Obviously, this is true for an equilibrium system and corresponds
to the second postulate of statistical physics. Thus, we have shown once again
that entropy is maximal in equilibrium.
61. Extremum conditions in the canonical and grand canonical en-
sembles. Using Boltzmann’s H-function, derive the extremum conditions
of the free energy F = E − TS and of the grand canonical potential
J = E − TS − µN for an equilibrium system in contact with a heat bath
(former case) and with a heat and particle bath.
Solution. Inserting the canonical distribution Pn = e−βEn/Z into (4.51),
we find

kH = −k
∑
n,n′

P ′
n′ | 〈n| n′〉 |2(lnZ + βEn) + S′

= −k lnZ − kβtr(ρ′H) + S′ = −k lnZ − kβE′ + S′ ≤ 0 .

This yields

−kT lnZ = F = E − TS ≤ E′ − TS′ .

Thus, the free energy of an equilibrium system with given temperature is
minimal. Repeating the derivation for the grand canonical distribution by
inserting the probabilities Pn = e−β(En−µNn)/Y into (4.51), we find

kH = −k
∑
n,n′

P ′
n′ | 〈n| n′〉 |2(lnY + βEn − βµNn) + S′

= −k lnY − kβtr(ρ′H) + kβµtr(ρ′N) + S′

= −k lnY − kβE′ + βµN ′ + S′ ≤ 0 .

It follows that

−kT lnY = J = E − TS − µN ≤ E′ − TS′ − µN ′ .

This means: at given temperature and chemical potential, the grand canonical
potential of an equilibrium system is minimal. In the framework of thermo-
dynamics, Section 4.5, we will derive these extremum conditions in a different
way.
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4.5 Thermodynamics

Thermodynamics is concerned with the macroscopic description of systems
in equilibrium. The theory was formulated toward the middle of the 19th
century, at a time when the microscopic structure of matter had not yet been
fully exposed and when a statistical approach in form of ensemble theories
was not yet available. Thermodynamics is therefore a purely phenomenolog-
ical theory, whose fundamental laws are based on experimental experience
and are axiomatically postulated. In particular, the existence of an entropy
function S and its extremal property is postulated. Its exact form is only
verifiable indirectly through experiment. We have mentioned before that sta-
tistical physics and thermodynamics are closely connected: statistical physics
provides the microscopic explanation for the macroscopically derived con-
cepts and definitions of thermodynamics. This connection is manifest in the
Boltzmann equation S = k lnΩ.

This section deals with the theory of thermodynamics. To start, we intro-
duce and discuss the three laws of thermodynamics. Next, we look at ther-
modynamic potentials, which describe macroscopic systems by various sets of
independent state variables. Thermic coefficients are introduced to describe
changes of states, and relations are derived between them. Equilibrium con-
ditions for open systems are found from the thermodynamic potentials in the
form of extremum conditions. They are related to stability conditions of the
thermic coefficients. Finally, we discuss heat machines and use the first two
laws of thermodynamics to find criteria for their realizability.

Before we start, we give a short summary of key terms in thermodynamics,
some of which may have already been used in the context of statistical physics
in prior sections.

• Any macroscopic system is a thermodynamic system. Its thermodynamic
state is described by a set of thermodynamic state variables. These are
macroscopic measurable quantities such as temperature T , pressure P , etc.,
which possess a well-defined value.

• A system is in thermodynamic equilibrium if its thermodynamic state is
time-independent.

• An equation of state is a functional relation between the thermodynamic
state variables of the equilibrium system. In particular, we call

P = P (T, V,N) thermic state equation
E = E(T, V,N) caloric state equation .

• A change of state of a system is said to be quasi-static if the external
parameters change so slowly that the system moves through a set of equi-
librium states. Furthermore, the change of the system is called reversible
if a reversal of the temporal direction of change of the external parameters
results in the system moving through the same states in reverse order. If
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this does not hold, the system change is called irreversible. Any reversible
system change is therefore also quasi-static, but the reverse is in general
not true.

• The following types of system changes are specifically defined:

Adiabatic: no exchange of heat: ∆Q = 0

Isentropic: no exchange of entropy: ∆S = 0

Isochore: no exchange of volume: ∆V = 0

Isothermic: no exchange of temperature: ∆T = 0

Isobaric: no exchange of pressure: ∆P = 0 .

• If a system is described by an intensive state variable, we know from statis-
tical physics that the corresponding extensive quantity is specified only as
an average value. However, for a macroscopic system, this average is very
sharp and can, in practice, also be regarded as a state variable. We will do
this in the following by using the symbols E and N instead of E and N . In
this context, we also note that in many textbooks, the statistical average
of the energy E is denoted by inner energy U .

4.5.1 Laws of Thermodynamics

Thermodynamics is based on the following empirical laws:

Laws of thermodynamics

First law
For any system, the energy E is an extensive state variable that is conserved
if the system is closed. If a system exchanges energy with its environment,
the total differential dE is given by

dE = d̂Q + d̂W .

Here, d̂Q denotes the total amount of heat the system has absorbed, and
d̂W is the total mechanical work done on the system.

Second law
Part 1: there exists an extensive state variable, entropy S, and an in-
tensive quantity, the absolute temperature T , with the following property:
for a nonisolated system, which absorbs the heat d̂Q during a quasi-static
process, we have

dS =
d̂Q

T
for reversible processes

dS >
d̂Q

T
for irreversible processes .

�
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Part 2: the entropy of an isolated system can only increase with time and
is maximal at equilibrium: ∆S ≥ 0.

Third law (Nernst’s heat law)
At absolute zero temperature T = 0, the entropy of an equilibrium system
approaches zero: S

T→0−→ 0.

To the first law. The first law distinguishes two different types of energy.
First, mechanical work d̂W , for which examples are a change of volume or
number of particles. Second, the system can absorb energy in the form of
heat d̂Q without work being done on the system.

For the infinitesimal changes d̂Q and d̂W , we have introduced the symbol
d̂, which indicates that Q and W are not state variables and do not have
well-defined values in an equilibrium state. For example, consider a cyclic
process (cycle), in which a system returns to its original state via a particular
set of intermediate states. For such a process, the total change of any state
variable is identical to zero, which means for the case of energy∮

dE = 0 .

However, the changes of heat and work are related by (see Subsection 4.5.5)∮
d̂Q = −

∮
d̂W �= 0 .

In other words: the change of heat and mechanical work depends on the type
of exchange process at hand, whereas the total change of energy is completely
determined by just the initial and final states. Thus, contrary to dE, the
quantities d̂Q and d̂W are not total differentials.

To the second law. During a quasi-static change of a system, the exter-
nal parameters are changed so slowly that all intermediate states are also
equilibrium states. In this case, the work done on the system is given by

d̂W = −
∑

i

Xidxi , Xi = generalized force .

Using the first and second laws, this gives Gibbs’s fundamental form [compare
to (4.56)]:

Theorem 4.14: Gibbs’s fundamental form

For any quasi-static change of state,

dE = d̂Q + d̂W ≤ TdS −
∑

i

Xidxi .

The identity holds for reversible processes.

For reversible processes, this equation solved for dS is
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dS =
dE

T
+

∑
i

Xi

T
dxi .

On the other hand, taking the total differential of the entropy,

dS =
∂S(E, x)

∂E
dE +

∑
i

∂S(E, x)
∂xi

dxi ,

and comparing the last two equations, we find

1
T

=
∂S(E, x)

∂E
, Xi = T

∂S(E, x)
∂xi

.

These expressions correspond exactly to the definitions of temperature (4.21)
and to those of the generalized forces (4.23) of statistical physics. Thus, we see
explicitly the equivalence of the statistical and the thermodynamic concepts
of “entropy”, “temperature” and “generalized forces”. In particular, we can
carry over Theorem 4.9 of Subsection 4.2.3 on the equilibrium conditions of
a closed two-part system without any changes.

In thermodynamics, the temperature scale is defined by setting a partic-
ular reference temperature. One conventionally chooses the triple point of
water, where all three phases of water (vapor, water, and ice) are in equi-
librium. This is taken as Tt = 273.16 K (Kelvin). Accordingly, 1 K is the
1/273.16th part of the temperature difference between T = 0 and T = Tt.
This convention fixes the Boltzmann constant to be k = 1.38054 · 10−23 J/K.

The second part of the second law defines a direction of time, since ∆S ≥ 0
implies dS/dt ≥ 0. However, we know that entropy can be explained micro-
scopically using the laws of (quantum) mechanics, and these are theories that
remain invariant under time reversal. It is still a matter of debate how the
thermodynamic direction of time can be explained quantum mechanically,
so we will take ∆S ≥ 0 as a simple experimental result. Note that even in
electrodynamics and quantum mechanics we introduced, by hand, a preferred
direction of time by choosing retarded rather than advanced potentials (Sub-
section 2.2.4) and by choosing outgoing rather than incoming spherical waves
(Subsection 3.10.1).

To the third law. This law defines not only entropy differences, as the
second law, but also entropy itself. Experimental support comes from mea-
surements of the specific heat, which should also vanish at zero temperature.
This has been verified for all investigated systems so far.

4.5.2 Thermodynamic Potentials

As mentioned previously, a state equation describes the functional interde-
pendence of different state variables of a thermodynamic system. It is often
the case that we wish to eliminate some quantities and keep others, for ex-
ample, because they are more easily accessible in experiment. In general,
each set of extensive system variables (S, x1, x2, . . .) is related to a conjugate
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set of intensive quantities (T,X1, X2, . . .), so that the adequate variables can
be chosen freely from either set, e.g., (T, x1, X2, x3, . . .). We now determine
the state equations for the following sets of independent state variables (the
generalization to other combinations is straightforward):

(S, V, N) , (T, V,N) , (S, P, N) , (T, P,N) , (T, V, µ) . (4.58)

Our starting point is Gibbs’s fundamental form (see Theorem 4.14)

dE = TdS + µdN − PdV ,

with entropy S, volume V , and particle number N as the only independent
state variables. All other total differentials are obtained from this using Leg-
endre transformations with the corresponding independent pairs of variables
as given in (4.58).

Definition: Thermodynamic potentials

• Energy E (independent state variables: S, V, N):

dE = TdS − PdV + µdN

=⇒ E = E(S, V, N) .

• Free energy F (independent state variables: T, V,N):

dF = d(E − TS) = −SdT − PdV + µdN

=⇒ F = F (T, V,N) = E − TS .

• Enthalpy H (independent state variables: S, P, N):

dH = d(E + PV ) = TdS + V dP + µdN

=⇒ H = H(S, P, N) = E + PV .

• Free enthalpy G (independent state variables: T, P,N):

dG = d(H − TS) = −SdT + V dP + µdN

=⇒ G = G(T, P,N) = E − TS + PV .

• Grand canonical potential J (independent state variables: T, V, µ):

dJ = d(F − µN) = −SdT − PdV − Ndµ

=⇒ J = J(T, V, µ) = E − TS − µN .

The state variables E, F , H, G, and J are called thermodynamic potentials
if they are given as a function of the corresponding natural variables.

As an example, to obtain the free enthalpy, one would have to take the cor-
responding functional relations E(T, P,N), S(T, P,N), and V (T, P,N) and
insert them into the definition G = E − TS + PV .
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Thermodynamic forces. Writing down the total differentials for each of
the above-mentioned potentials and comparing them with the corresponding
definition equations yield the associated thermodynamical forces. They are(

∂E

∂S

)
V,N

= T ,

(
∂E

∂V

)
S,N

= −P ,

(
∂E

∂N

)
S,V

= µ(
∂F

∂T

)
V,N

= −S ,

(
∂F

∂V

)
T,N

= −P ,

(
∂F

∂N

)
T,V

= µ(
∂H

∂S

)
P,N

= T ,

(
∂H

∂P

)
S,N

= V ,

(
∂H

∂N

)
S,P

= µ(
∂G

∂T

)
P,N

= −S ,

(
∂G

∂P

)
T,N

= V ,

(
∂G

∂N

)
T,P

= µ(
∂J

∂T

)
V,µ

= −S ,

(
∂J

∂V

)
T,µ

= −P ,

(
∂J

∂µ

)
T,V

= −N .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.59)

Maxwell relations. From the interchangeability of partial differentiations
of a function f(x, y), i.e., ∂2f/∂x∂y = ∂2f/∂y∂x, we obtain a set of three
relations for each row of (4.59). These are called Maxwell relations. Here, we
give just one relation for each of the first four rows; they correspond to the
case of constant particle number N :(

∂T

∂V

)
S,N

= −
(

∂P

∂S

)
V,N(

∂S

∂V

)
T,N

=
(

∂P

∂T

)
V,N(

∂T

∂P

)
S,N

=
(

∂V

∂S

)
P,N

−
(

∂S

∂P

)
T,N

=
(

∂V

∂T

)
P,N

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.60)

Gibbs-Duhem relations. There is a particularly simple relation between
the chemical potential µ and the free enthalpy G. Since free enthalpy is
extensive, we must have

G(T, P,N) = Ng(T, P ) ,

where g is some intensive quantity. From this and using (4.59), we obtain the
Gibbs-Duhem relation

µ =
(

∂G

∂N

)
T,P

= g(T, P ) =
G

N
=⇒ G = µN .

Inserting this, for example, into the free energy F and into the grand canonical
potential J , we obtain two further Gibbs-Duhem relations as

F = µN − PV , J = −PV . (4.61)
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Complete thermodynamic information. Clearly, knowledge of just one
of the thermodynamic potentials as a function of its natural variables yields
all other potentials (via Legendre transformations) and thus all other thermo-
dynamic state variables. Therefore, each and any of the potentials contains
the complete thermodynamic information of the system under consideration.
As an example, we consider the free enthalpy H = H(S, P, N) and show how
to obtain the caloric state equation E = E(T, V,N). Generally, one starts
with the partial derivatives of the potential:

T =
(

∂H

∂S

)
P,N

= T (S, P, N) .

Solving this equation for S, we obtain S(T, P,N). Furthermore, we have

V =
(

∂H

∂P

)
S,N

= V (S, P, N) = V [S(T, P,N), P, N ] = V (T, P,N) .

This equation solved for P yields P (T, V,N). Now, inserting S(T, P,N) and
P (T, V,N) into H(S, P, N), it follows that

H(S, P, N) = H{S[T, P (T, V,N), N ], P (T, V,N), N} = H(T, V,N)

and, therefore, finally

E = H(T, V,N) − P (T, V,N)V = E(T, V,N) .

Incidentally, from S(T, P,N), P (T, V,N), and E(T, V,N), we can also obtain
the free energy as a function of its natural variables:

F = E(T, V,N) − TS[T, P (T, V,N), N ] = F (T, V,N) .

4.5.3 State Changes and Thermic Coefficients

From an experimental point of view, one obtains information about the re-
lations of macroscopic quantities by studying their behavior when changing
other quantities. To this end, one defines thermic coefficients, which are most
accessible to such experimentation:14

Expansion coefficient: α =
1
V

(
∂V

∂T

)
P

= − 1
V

(
∂S

∂P

)
T

Pressure coefficient: β =
(

∂P

∂T

)
V

=
(

∂S

∂V

)
T

Isobaric heat capacity: CP = T

(
∂S

∂T

)
P

=
(

∂H

∂T

)
P

Isochore heat capacity: CV = T

(
∂S

∂T

)
V

=
(

∂E

∂T

)
V

.

14 In the following, we suppress the fixed particle number N .
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The first two of these relations consist of second derivatives of the thermo-
dynamic potentials and are contained in the Maxwell relations (4.60). The
last two contain first derivatives and are obtained from the total differen-
tials of dH and dE, as given above in the definitions of the thermodynamic
potentials. In addition, we introduce the following compressibilities:

Isothermic compressibility: κT = − 1
V

(
∂V

∂P

)
T

Adiabatic compressibility: κS = − 1
V

(
∂V

∂P

)
S

.

There are varying degrees of difficulty in measuring these quantities. It is
therefore useful to derive some relations between them. For example, swap-
ping the fixed and free variable in the pressure coefficient following the rule
(A.4), we find

β =
α

κT
. (4.62)

Another relation is obtained using S = S(T, P ) = S[T, V (T, P )]:

T

(
∂S

∂T

)
P

= T

(
∂S

∂T

)
V

+ T

(
∂S

∂V

)
T

(
∂V

∂T

)
P

=⇒ CP − CV = T

(
∂S

∂V

)
T

(
∂V

∂T

)
P

.

Following rule (A.4) and the second Maxwell relation given in (4.60), we can
rewrite this as(

∂S

∂V

)
T

=
(

∂P

∂T

)
V

= −
(

∂P

∂V

)
T

(
∂V

∂T

)
P

=⇒ CP − CV = −T

(
∂P

∂V

)
T

(
∂V

∂T

)2

P

=
α2TV

κT
. (4.63)

From V = V (S, P ) = V [T (S, P ), P ], we can obtain a third relation in a
similar fashion:(

∂V

∂P

)
S

=
(

∂V

∂T

)
P

(
∂T

∂P

)
S

+
(

∂V

∂P

)
T

=⇒ κT − κS =
1
V

(
∂V

∂T

)
P

(
∂T

∂P

)
S

.

If we use the third of Maxwell relations (4.60) and the chain rule (A.6), this
equation becomes(

∂T

∂P

)
S

=
(

∂V

∂S

)
P

=
(

∂V

∂T

)
P

(
∂T

∂S

)
P
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=⇒ κT − κS =
1
V

(
∂V

∂T

)2

P

(
∂T

∂S

)
P

=
α2TV

CP
. (4.64)

Finally, combining (4.63) and (4.64) gives another set of relations:

CP =
α2TV

κT − κS
, CV =

α2TV κS

(κT − κS)κT
,

CP

CV
=

κT

κS
.

4.5.4 Equilibrium and Stability

We shall now investigate how equilibrium conditions for nonclosed (open)
systems can be formulated. We assume that such systems can exchange heat
and mechanical energy in the form of volume V and particles N with their
environment in a quasi-static manner. (The generalization to other forms of
mechanical exchange is unproblematic.) Our starting point is Gibbs’s funda-
mental form following from the first part of the second thermodynamical law
(see Theorem 4.14):

TdS ≥ dE − µdN + PdV . (4.65)

Consider first the case of a closed system, so that dE = dV = dN = 0. It
follows that

(dS)E,V,N ≥ 0 .

This means the entropy of a closed system with constant energy, constant
particle number, and constant volume never decreases and is maximal at
equilibrium. This is exactly the content of the second part of the second
thermodynamical law. Thus, the second part is a necessary conclusion from
the first. Next suppose the system is held externally at constant entropy and
is otherwise isolated (dS = dN = dV = 0). Then, we find from (4.65)

(dE)S,V,N ≤ 0 .

So: the energy of an isolated system held at constant entropy never increases
and is minimal in equilibrium. We continue with a system that is externally
held at fixed temperature and is mechanically isolated, so that (dT = dN =
dV = 0). Using (4.65) as before, we see that

TdS ≥ dE − µdN + PdV

≥ d(E − TS) + TdS + SdT − µdN + PdV

=⇒ 0 ≥ dF + SdT − µdN + PdV

=⇒ (dF )T,V,N ≤ 0 .

The free energy of a mechanically isolated system at constant temperature
never increases and is minimal at equilibrium. In the same way as demon-
strated, the corresponding relations for any open system with some other
constant parameters can be deduced. For dS = dP = dN = 0, we have
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TdS ≥ dE − µdN + PdV

≥ d(E + PV ) − V dP − µdN

=⇒ 0 ≥ dH − V dP − µdN

=⇒ (dH)S,P,N ≤ 0 .

For dT = dP = dN = 0, we find

TdS ≥ dE − µdN + PdV

≥ d(E − TS + PV ) + TdS + SdT − V dP − µdN

=⇒ 0 ≥ dG + SdT − V dP − µdN

=⇒ (dG)T,P,N ≤ 0 ,

and finally for dT = dµ = dV = 0, we see that

TdS ≥ dE − µdN + PdV

≥ d(E − TS − µN) + SdT + TdS + Ndµ + PdV

=⇒ 0 ≥ dJ + SdT + Ndµ + PdV

=⇒ (dJ)T,V,µ ≤ 0 .

The following simple rules emerge:

Theorem 4.15: Equilibrium conditions
and thermodynamic potentials

If the natural variables of a certain thermodynamic potential are held con-
stant, this potential never increases and has a minimum in the equilibrium
state:

E, V, N constant =⇒ (dS)E,V,N ≥ 0 (closed system: maximum)

S, V, N constant =⇒ (dE)S,V,N ≤ 0

T, V,N constant =⇒ (dF )T,V,N ≤ 0

S, P, N constant =⇒ (dH)S,P,N ≤ 0

T, P,N constant =⇒ (dG)T,P,N ≤ 0

T, V, µ constant =⇒ (dJ)T,V,µ ≤ 0 .

As an example for the minimum principle of the free energy, consider a gas
in a cylinder with constant temperature, constant particle number, as well
as constant volume. Inside the cylinder, we have a freely movable piston,
which splits the volume V into two parts V1 and V2 with pressures P1 and
P2. We seek the equilibrium position of the piston when it is released at an
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arbitrary starting position. The corresponding equilibrium condition reads
(dV2 = −dV1)

(dF )T,V,N =
(

∂F

∂V1

)
T,N

dV1 +
(

∂F

∂V2

)
T,N

dV2

=

[(
∂F

∂V1

)
T,N

−
(

∂F

∂V2

)
T,N

]
dV1 = 0 .

As expected, this gives us(
∂F

∂V1

)
T,N

=
(

∂F

∂V2

)
T,N

⇐⇒ P1 = P2 .

Stability. The minimum conditions of thermodynamic potentials in Theo-
rem 4.15 are necessary but not sufficient to determine an equilibrium state.
Consider, for example, the energy E(S, V ) and a small variation of S and V .
For a stable equilibrium, we need to require not only dE = 0, but also

d2E > 0 .

Going through the variation, we obtain

E(S + dS, V + dV ) = E(S, V ) +
(

∂E

∂S

)
V

dS +
(

∂E

∂V

)
S

dV

+
[(

∂2S

∂S2

)
V

(dS)2 + 2
∂2S

∂S∂V
dSdV

+
(

∂2E

∂V 2

)
S

(dV )2
]

+ . . .

=⇒
(

∂2E

∂S2

)
V

(dS)2 + 2
∂2E

∂S∂V
dSdV +

(
∂2E

∂V 2

)
S

(dV )2 > 0 .

For an arbitrary quadratic form ax2 + 2bxy + cy2 to be positive, we must
have a > 0, c > 0, and (ac − b2) > 0. In the present case, this implies(

∂2E

∂S2

)
V

=
(

∂T

∂S

)
V

=
T

CV
> 0 =⇒ CV > 0 (4.66)

(
∂2E

∂V 2

)
S

= −
(

∂P

∂V

)
S

=
1

V κS
> 0 =⇒ κS > 0 (4.67)

(
∂2E

∂S2

)
V

(
∂2E

∂V 2

)
S

−
(

∂2E

∂S∂V

)2

=
T

V CV κS
−

(
∂T

∂V

)2

S

> 0

=⇒ T

V CV κS
>

(
∂T

∂V

)2

S

.

In the same way, the condition d2F > 0, for example, leads to the inequality
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∂2F

∂V 2

)
T

= −
(

∂P

∂V

)
T

=
1

V κT
> 0 =⇒ κT > 0 . (4.68)

The conditions (4.66), (4.67), and (4.68) imply that a system can be in equi-
librium only if

• the temperature increases, while the system is heated at constant volume
(CV > 0),

• the volume decreases, while the system is compressed at constant entropy
(κS > 0),

• the volume decreases, while the system is compressed at constant temper-
ature (κT > 0).

These are specific examples of the Le Chatelier principle, which states that
spontaneous changes of an equilibrium system induces processes that are
inclined to return the system to its equilibrium state. From CV , κT > 0, it
also follows that CP > 0 due to (4.63). And from κT > 0 and (4.62), one sees
that α and β have the same sign; normally they are positive. An exception
is water at its freezing point.

4.5.5 Heat Machines and Cyclic Processes

Historically, thermodynamics started with the study of heat machines. These
are devices that transform heat into different forms of energy. Given their
technological importance as well as their historical importance in the context
of the industrial revolution, we shall now take a closer look at some properties
of heat machines, restricting ourselves to cyclic machines, which, having run
through a set of processes, return to their original state.

Perpetuum mobile of first and second type. Consider the closed system
depicted in Fig. 4.5. It consists of a heat reservoir R at constant temperature
T , a heat machine M, and a work storage S. Within one cycle, the machine
withdraws a certain amount of heat ∆Q from the reservoir, transforms it
into work ∆W , and deposits this into the work storage. Since the machine is
now back in its initial state, we have ∆EM = 0. According to the first law of
thermodynamics, this implies

R, T M S
∆Q ∆W

Fig. 4.5. Schematical representation of a heat machine M transforming absorbed
heat ∆Q into work ∆W .
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∆EM = ∆Q − ∆W = 0 =⇒ ∆Q = ∆W .

This means that the machine cannot produce more work than it has taken
out in the form of heat. In other words: the first law implies the impossibility
of a perpetuum mobile of the first type. On the other hand, the machine is
also not able to produce just as much work as it has absorbed in the form
of heat, as this contradicts the second law of thermodynamics. To see this,
we look at the changes in entropy of R, M, and S after one cycle. Since the
reservoir loses an amount of heat ∆Q, we have

∆SR ≥ −∆Q

T
= −∆W

T
.

When the machine returns to its original state, we have

∆SM = 0 .

Now, it is reasonable to assume that the work storage consists of very few
degrees of freedom. For example, it could be a spring with just one degree of
freedom. Its change in entropy will then be much smaller than that of R:

∆SS ≈ 0 .

According to the second law, the total change in entropy of the closed system
as a whole must be larger than or equal to zero, such that

∆SR + ∆SM + ∆SS ≥ −∆W

T
≥ 0 =⇒ ∆W ≤ 0 .

From this, we conclude that there are no machines whose sole action is to
transform an amount of heat ∆Q into work ∆W = ∆Q (perpetuum mobile
of the second type). This is Kelvin’s formulation of the second law of thermo-
dynamics. An equivalent statement is Clausius’s formulation of the second
law: there are no machines whose sole action is to absorb the heat ∆Q from
a colder heat reservoir and to deposit it to a warmer one. This claim can
be easily checked by considering the balances of energy and entropy for the
system R1 + M + R2.

Heat machines and efficiency. For any functional heat machine, i.e., one
in accordance with the first and second laws of thermodynamics, the total
amount of entropy during a single cycle must not decrease. Starting from
the above-sketched system, this can be achieved by adding a further heat
reservoir into which the machine deposits a part of the absorbed heat, so
that the entropy of this reservoir increases by the amount required. Such a
system is shown in Fig. 4.6. From the first law, we now have

∆EM = ∆Q1 − ∆Q2 − ∆W = 0 =⇒ ∆Q2 = ∆Q1 − ∆W . (4.69)

The entropy differences of the system components are

∆SR1 ≥ −∆Q1

T1
, ∆SR2 ≥ ∆Q2

T2
, ∆SM = 0 , ∆SS ≈ 0 .
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R1, T1 M R2, T2
∆Q1 ∆Q2

∆W

S

T1 > T2

Fig. 4.6. Schematical representation of a realizable heat machine M giving out a
part ∆Q2 of the absorbed heat ∆Q1 and transforming the rest into work ∆W .

The second law imposes the condition

∆SR1 + ∆SR2 + ∆SM + ∆SS ≥ ∆Q1

(
1
T2

− 1
T1

)
− ∆W

T2
≥ 0 .

Therefore, the maximal (positive) amount of work that M can do is bounded
from above by

∆W ≤ ∆Q1

(
T1 − T2

T1

)
, T1 > T2 . (4.70)

In practice, the heat reservoir R1 is not infinitely large, so that the heat ∆Q1
extracted from it must be continuously replenished, for example, by burning
coal or oil. Therefore, the efficiency η of a heat machine is usually defined as

η =
generated work
invested heat

=
∆W

∆Q1
=

∆Q1 − ∆Q2

∆Q1
.

For realizable heat machines, we then have

η ≤ ηideal =
T1 − T2

T1
,

where the ideal efficiency ηideal is possible only for reversible processes. In
practice, realistic efficiencies are found to be around η = 30%.

Of course, the process shown in Fig. 4.6 can also be reversed, so that the
machine M, while performing the work ∆W , extracts heat ∆Q2 from the
reservoir R2 and supplies heat ∆Q1 to the reservoir R1 (see Fig. 4.7). In this
case, the signs of ∆Q1, ∆Q2, and ∆W are reversed, so that the absolute
value equation of (4.70) turns into

∆W ≥ ∆Q1

(
T1 − T2

T1

)
, T1 > T2

or, using (4.69),

∆W ≥ ∆Q2

(
T1 − T2

T2

)
, T1 > T2 .
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R1, T1 M R2, T2
∆Q1 ∆Q2

∆W

S

T1 > T2

Fig. 4.7. Schematical representation of a realizable heat machine M, which, by
performing the work ∆W , absorbs the heat ∆Q2 and transforms it into the heat
∆Q1 > ∆Q2 (heat pump, refrigerator).

In the case of a refrigerator, the benefit is given by the heat ∆Q2 extracted
from R2, whereas for the heat pump, it is the heat ∆Q1 transported to R1.
For the refrigerator, we therefore define

η =
∆Q2

∆W
≤ ηideal =

T2

T1 − T2

and for the heat pump

η =
∆Q1

∆W
≤ ηideal =

T1

T1 − T2
.

Carnot cycle. Carnot engines are ideal heat machines, which only ever run
cyclically through reversible processes, so that their efficiency is equal to their
ideal efficiency. Such a machine can be constructed (at least theoretically) as
follows: let x denote an external parameter of the machine M. Then a change
in x is equivalent to an amount of work done by M. Suppose the initial state of
M is given by x = xa and T = T2, where T2 is the temperature of the cooler
heat reservoir R2. The machine now runs reversibly through the following
four steps:

1. Adiabatic step: x is changed slowly, while M is kept thermically isolated
until M reaches the temperature T1 > T2 (xa → xb, T2 → T1).

2. Isothermic step: M is brought into thermic contact with the warmer reser-
voir R1 of temperature T1. x is changed further, so that M absorbs the
heat ∆Q1 from R1, while the temperature T1 is held fixed (xb → xc).

3. Adiabatic step: M is isolated thermically once again. x is changed in such
a way that the temperature of M turns from T1 back to T2 (xc → xd,
T1 → T2).

4. Isothermic step: M is brought into thermic contact with the colder reservoir
R2 of temperature T2. The parameter x is altered until it returns to its
original value xa, while M gives up the heat ∆Q2 to R2 at fixed temperature
T2.
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Now the cycle is closed, and the machine is back in its original state. The
energy and entropy balances of the machine are as follows:

∆SM = 0 +
∆Q1

T1
+ 0 − ∆Q2

T2
= 0 =⇒ ∆Q1

T1
=

∆Q2

T2

∆EM = ∆Q1 − ∆Q2 − ∆W = 0 =⇒ ∆W = ∆Q1 − ∆Q2 ,

where

∆W =

xb∫
xa

dxX +

xc∫
xb

dxX +

xd∫
xc

dxX +

xa∫
xd

dxX =
∮

dxX

is the work done by the system. The entropy change of the combined system
consisting of the reservoirs R1 and R2, the machine M, and the work storage
S, is (∆SS ≈ 0)

∆S = −∆Q1

T1
+

∆Q2

T2
= 0 .

This means the Carnot cycle is indeed reversible. It can therefore be run in
reverse order and thus be used for a refrigerator or a heat pump.

Consider, as an example of a Carnot process, a (not necessarily ideal) gas,
which is enclosed in a cylinder with a movable piston (Fig. 4.8). In this case,

Isolator T1 Isolator T2

Va → Vb Vb → Vc Vc → Vd Vd → Va

Fig. 4.8. Carnot cycle of a gas-filled cylinder with a movable piston.

the volume V is the external parameter. The four steps of the Carnot cycle
can be represented in a PV -diagram as shown in Fig. 4.9. The work done by
the gas during a full cycle is equal to the area enclosed by the isothermals
and the adiabatics.

Summary

• Thermodynamics describes the behavior of macroscopic systems in
equilibrium using a strictly macroscopic point of view. It is based on the
three empirically motivated laws of thermodynamics.

�
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T1

T2

a

b

c

d

∆Q1

∆Q2

P

V

Fig. 4.9. Schematical representation of a Carnot cycle for a gas in terms of a
PV -diagram. The four steps are represented by two isothermals (∆T = 0) and
two adiabatics (∆S = 0). The area enclosed by these curves equals the work done
within the cycle.

• The thermodynamic potentials, given as functions of their natural
variables, are state equations with which equilibrium states of open sys-
tems can be formulated as simple minimum principles. The partial deriva-
tives of the potentials lead to the thermodynamic forces and to the
Maxwell relations.

• Each of the potentials contains the complete thermodynamic information
of a system.

• State changes are described by thermic coefficients. Stability criteria
related to the minimum conditions of the thermodynamic potentials re-
strict the behavior of these coefficients.

• The first two laws of thermodynamics forbid the existence of perpetuum
mobiles of the first and second type. Realizable heat machines can
only transform part of the absorbed heat into work. The rest of the heat
is necessarily lost to the environment, so that the overall entropy does
not decrease.

• A Carnot cycle describes the mechanism of heat machines in which all
steps of a cycle are performed reversibly, so that they reach their ideal
efficiency.
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Applications

62. Complete thermodynamic information. Show that the state equa-
tions

P = P (T, V ) , CV (T, V0) (4.71)

contain the complete thermodynamic information, i.e., that these equations
yield the thermodynamic potential E(S, V ). Verify this statement by means
of the ideal gas, for which

P (T, V ) =
TNk

V
, CV (T, V0) = CV =

3
2
Nk

are given. N is held constant. What is the isobaric heat capacity CP of the
ideal gas?

Solution. Differentiating the second Maxwell relation in (4.60) with respect
to V at constant T , we obtain(

∂CV

∂V

)
T

= T

(
∂2P

∂T 2

)
V

.

Combining this with (4.71) leads to

CV (T, V ) = CV (T, V0) + T

V∫
V0

dV ′ ∂
2P (T, V ′)

∂T 2 . (4.72)

The same Maxwell relation also yields

dS =
(

∂S

∂T

)
V

dT +
(

∂S

∂V

)
T

dV =
CV

T
dT +

(
∂P

∂T

)
V

dV

=⇒ dE = TdS − PdV = CV dT +
[
T

(
∂P

∂T

)
V

− P

]
dV .

Since the right-hand side of this equation is known due to (4.71) and (4.72),
we obtain the functions S(T, V ) and E(T, V ) up to a constant as

E(T, V ) =
∫

dTCV +
∫

dV

[
T

(
∂P

∂T

)
V

− P

]
+ const

S(T, V ) =
∫

dT
CV

T
+

∫
dV

(
∂P

∂T

)
V

+ const .

Eliminating T from these equations results in E(S, V ) and S(E, V ). For the
ideal gas, the last two equations yield

E(T, V ) = E(T ) =
3
2
NkT

S(T, V ) =
3
2
Nk lnT + Nk lnV + const . (4.73)
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This gives [compare to (4.29)]

S(E, V ) = Nk

{
ln

[
V

(
2c1E

3Nk

)3/2
]

+ c2

}
, c1, c2 = const .

The heat capacity CP is now easily calculated:

S(T, P ) = S[T, V (T, P )]

= Nk

(
3
2

lnT + ln(TkN) − lnP + const
)

(4.74)

=⇒ CP = T

(
∂S

∂T

)
P

=
5
2
Nk .

63. Adiabatic expansion of the ideal gas.

a. Show that for the adiabatic expansion of an ideal gas, we have

PV γ = const , γ =
CP

CV
.

b. Consider an ideal gas with volume V1 and temperature T1. Calculate its
temperature T2 if the gas is expanded adiabatically to volume V2.

Solution.

To a. We have(
∂V

∂P

)
S

=
(

∂V

∂T

)
S

(
∂T

∂P

)
S

. (4.75)

From (4.73), we obtain the total differential

dS =
(

∂S

∂T

)
V

dT +
(

∂S

∂V

)
T

dV =
CV

T
dT +

Nk

V
dV

and therefore(
∂V

∂T

)
S

= −V CV

NkT
. (4.76)

On the other hand, we find another total differential from (4.74),

dS =
(

∂S

∂T

)
P

dT +
(

∂S

∂P

)
T

dP =
CP

T
dT − Nk

P
dP ,

so that(
∂T

∂P

)
S

=
NkT

PCP
.

With (4.75), we now see that(
∂V

∂P

)
S

= − 1
γ

V

P
=⇒ γ

∫
dV

V
= −

∫
dP

P
=⇒ PV γ = const .
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To b. From (4.76), it follows that
V2∫

V1

dV

V
= −3

2

T2∫
T1

dT

T
=⇒ ln

(
V2

V1

)
= −3

2
ln

(
T2

T1

)
=⇒ T2 = T1

(
V2

V1

)−2/3

.

4.6 Classical Maxwell-Boltzmann Statistics

Statistical physics encompasses two ways of describing many-particle systems:
the classical and the quantum statistical approach. The classical approach is
represented by classical Maxwell-Boltzmann statistics, whereas the quantum
statistical one is described by Fermi-Dirac and Bose-Einstein statistics. These
three types of statistics differ mainly by the way in which the microstates of
a system are counted.

Classical Maxwell-Boltzmann statistics considers classical systems in
which the particles are found on well-defined trajectories in phase space.
From the quantum mechanical point of view, this is equivalent to an inde-
pendent movement of the wave packets of distinguishable particles, so that
the N -particle wave function is a simple tensor product of N one-particle
wave functions. For the calculation of the corresponding partition functions,
one can use the purely classical energies of the Hamilton function but also
the energy eigenvalues of the quantum mechanical Hamilton operator; some
examples are to be found in the applications of the previous sections.

By contrast, Fermi-Dirac and Bose-Einstein statistics take full account of
quantum effects. In particular, the fermionic and bosonic character of identi-
cal particles is incorporated by using appropriate antisymmetric or symmetric
wave functions. This, of course, has a considerable effect on the counting of
microstates. We shall look at these types of statistics in the next section.

In this section we discuss two particular systems in the context of classical
Maxwell-Boltzmann statistics, the N -particle oscillator and the N -particle
dipole system. In both examples, we will use the corresponding classical
Hamilton function H (“proper classical system”) as well as the Hamilton
operator H. To start, however, we investigate the conditions under which
classical Maxwell-Boltzmann statistics is valid and deduce the equipartition
theorem for “proper classical systems”.

4.6.1 Classical Limit

In classical mechanics, momenta and coordinates of an N -particle system are
all simultaneously specifiable. By contrast, due to Heisenberg’s uncertainty
principle, this no longer holds in quantum mechanics. Therefore, the classical
approximation is valid if

∆q∆p � h . (4.77)
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Consider, for example, an ideal gas of N identical particles in a box. For a
single particle with average momentum p and average separation r to the
other particles, the above condition (4.77) corresponds to

p r � h

or, using the average de Broglie wavelength λ = h/p,

r � λ .

Since λ can be interpreted as a measure for the quantum mechanical extent of
the particles in space, the classical description is possible if the particles’ wave
functions do not overlap; they are then distinguishable by their positions.
Now, we assume further, that each particle takes up an average volume r̄3.
Then, due to (4.30), the average energy and momentum of the ideal gas are

p̄2

2m
≈ Ē =

3
2
kT , p̄ ≈ (3mkT )1/2 ,

and the average wavelength becomes

λ̄ ≈ h

(3mkT )1/2 .

Classical Maxwell-Boltzmann is therefore valid if

r̄ ≈
(

V

N

)1/3

� h

(3mkT )1/2 .

This corresponds to the following conditions:

• N is small.

• T is large.

• m is not very small.

On the other hand,

r <~ λ

implies that the state of the gas in the box is given by an N -particle wave
function that cannot be factorized into N one-particle wave functions. This
is the case of quantum statistics, to which we return in the next section.

4.6.2 Virial and Equipartition Theorems

In this subsection we derive some general properties for average values of
classical systems. To this end, we consider a three-dimensional N -particle
system with constant energy E, which is described by a Hamilton function
H(q, p). Letting xi be an arbitrary component of {q1, . . . , q3N , p1, . . . , p3N}
and using the microcanonical ensemble, we calculate as follows:
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xi
∂H

∂xj
=

1
Ω(E)

∫
E−δE≤H(q,p)≤E

dΓxi
∂H

∂xj
=

δE

Ω(E)
∂

∂E

∫
H(q,p)≤E

dΓxi
∂H

∂xj
.

Due to ∂E/∂xj = 0, the integral can be transformed into∫
H(q,p)≤E

dΓxi
∂H

∂xj
=

∫
H(q,p)≤E

dΓxi
∂

∂xj
[H(q, p) − E]

=
∫

H(q,p)≤E

dΓ
∂

∂xj
{xi[H(q, p) − E]}

−δij

∫
H(q,p)≤E

dΓ [H(q, p) − E] . (4.78)

The second last term of this equation contains the expression

xi[H(q, p) − E]|(xj)2
(xj)1

,

where (xj)1 and (xj)2 are the extremal values of the coordinate xj . Since a
phase space value (q1, . . . , q3N , p1, . . . , p3N ) with any one arbitrary extremal
coordinate has to lie on the energy-hyperplane H(q, p) = E, the second last
term in (4.78) vanishes. Overall , we find

xi
∂H

∂xj
=

δij

g(E)
∂

∂E

∫
H(q,p)≤E

dΓ [E − H(q, p)] =
δij

g(E)

∫
H(q,p)≤E

dΓ

=
δij

g(E)
ω(E) = δij

ω(E)
∂ω(E)

∂E

= δij

(
∂

∂E
lnω(E)

)−1

= kδij

(
∂S

∂E

)−1

= δijkT .

Theorem 4.16: Virial and equipartition theorems

For a proper classical three-dimensional N -particle system with the Hamil-
ton function H(q, p), we have the following ensemble averages:

xi
∂H

∂xj
= δijkT , xi ∈ {q1, . . . , q3N , p1, . . . , p3N} .

In particular,

pi
∂H

∂pi
= piq̇i = kT , qi

∂H

∂qi
= −qiṗi = qiFi = kT .

The average value of the kinetic energy is therefore
�
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T =
1
2

3N∑
i=1

piq̇i =
1
2
pq̇ =

3
2
NkT ,

and, for the virial of the forces, we find

3N∑
i=1

qiFi = qF = −3NkT .

The last two relations yield

T = −1
2
qF =

3
2
NkT (virial theorem) .

For homogeneous potentials, V (q) = α|q|d, F = −∇qV (q), the average
values of T and E are

T =
d

2
V =

3
2
NkT =⇒ E =

3d + 6
2d

NkT (equipartition theorem) .

This last equation is termed “equipartition theorem” as it shows that the en-
ergy E is evenly distributed on average over the system’s degrees of freedom.
The reader may recall that whereas here we have deduced the virial theo-
rem for ensemble averages, in mechanics we found a similar relation for time
averages (Subsection 1.1.1, Theorem 1.6).

4.6.3 Harmonic Oscillator

We consider an oscillator system consisting of N one-dimensional distinguish-
able harmonic oscillators and evaluate the corresponding thermodynamical
relations.

I: Harmonic oscillator in the microcanonical ensemble. As our start-
ing point for the description in the microcanonical ensemble, we choose a
quantum oscillator system with constant particle number N and constant
energy

E = h̄ω

(
M +

N

2

)
.

To find its microcanonical partition function Ω(E, N), we need to calculate
the number of possibilities to distribute M quanta across N oscillators. The
combinatoric result is given by

Ω(E, N) =
N(N + M − 1)!

M !N !
=

(N + M − 1)!
M !(N − 1)!

.

From this and using M = E/(h̄ω) − N/2 as well as Stirling’s formula (4.28),
we find the entropy of the system as
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S(E, N) = k

(
E

h̄ω
+

N

2

)
ln

(
E

h̄ω
+

N

2

)

−k

(
E

h̄ω
− N

2

)
ln

(
E

h̄ω
− N

2

)
− Nk lnN ,

from which we obtain the relations
1
T

=
(

∂S

∂E

)
N

=
k

h̄ω
[ln(M + N) − lnM ]

=⇒ M =
N

eβh̄ω − 1

=⇒ E(T,N) = h̄ω

(
N

eβh̄ω − 1
+

N

2

)
=

Nh̄ω

2
coth

(
βh̄ω

2

)
(4.79)

=⇒ S(T,N) = −Nk ln
(
eβh̄ω − 1

)
+

Nkβh̄ω

1 − e−βh̄ω

= −Nk ln
[
2 sinh

(
βh̄ω

2

)]
+

Nkβh̄ω

2 tanh
(

βh̄ω
2

) . (4.80)

Considering the classical limit βh̄ω → 0 ⇐⇒ T → ∞, we see that

S(T,N) = Nk [1 − ln(βh̄ω)] , E(T,N) = NkT , (4.81)

which is in accordance with the equipartition theorem with d = 2 and
N → N/3. In contrast, for very low temperatures (T → 0), we find

E =
Nh̄ω

2
.

II: Harmonic oscillator in the canonical ensemble. Next, we consider
the same oscillator system in the canonical ensemble. The canonical one-
particle partition function of an oscillator with energy

En = h̄ω

(
n +

1
2

)
is

Z(T, 1) = Z1(T ) =
∞∑

n=0

e−βEn = e−βh̄ω/2
∞∑

n=0

(
e−βh̄ω

)n
=

e−βh̄ω/2

1 − e−βh̄ω

=
1

2 sinh
(

βh̄ω
2

) . (4.82)

This gives us the following N -particle partition function as well as the free
energy (distinguishable particles!):

Z(T,N) = Z1(T )N =⇒ F (T,N) = NkT ln
[
2 sinh

(
βh̄ω

2

)]
.

The equations for entropy and energy are then
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S(T,N) = −
(

∂F

∂T

)
N

= k lnZ − kβ
∂ lnZ

∂β

= −Nk ln
[
2 sinh

(
βh̄ω

2

)]
+

Nkβh̄ω

2 tanh
(

βh̄ω
2

)
E(T,N) = F (T,N) + TS(T,N) =

Nh̄ω

2 tanh
(

βh̄ω
2

) ,

in agreement with the microcanonical results (4.79) and (4.80). For compar-
ison, we also evaluate the corresponding relations for a classical oscillator
system with energy

E = H(q, p) =
N∑

i=1

(
p2

i

2m
+

mω2

2
q2
i

)
.

The canonical partition function is

Z(T,N) =
1

hN

∫
dΓ e−βH

=
1

hN

N∏
i=1

[∫
dqi exp

(
−βmω2q2

i

2

)∫
dpi exp

(
−βp2

i

2m

)]
= Z(T, 1)N ,

with

Z(T, 1) = Z1(T ) =
1
h

∫
dq exp

(
−βmω2q2

2

)∫
dp exp

(
−βp2

2m

)
=

kT

h̄ω
.

The free energy follows as

F (T,N) = −NkT ln
(

kT

h̄ω

)
.

Entropy and energy evaluate to [see (4.81)]

S(T,N) = Nk

[
ln

(
kT

h̄ω

)
+ 1

]
, E(T,N) = NkT .

III: Harmonic oscillator in the grand canonical ensemble. We have
seen that the canonical partition function of an oscillator system consisting
of N distinguishable particles factorizes in the following way:

Z(T,N) = φ(T )N , φ(T ) =

⎧⎪⎪⎨
⎪⎪⎩

kT

h̄ω
classically

1
2 sinh

(
h̄ω
2kT

) quantum mech.

⎫⎪⎪⎬
⎪⎪⎭ (4.83)

Therefore, the grand canonical partition function is
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Y (T, µ) =
∞∑

N=0

[zφ(T )]N =
1

1 − zφ(T )
, z = eβµ ,

which converges if zφ(T ) < 1. From the grand canonical potential, we can
obtain the thermodynamical relation

J(T, µ) = kT ln [1 − zφ(T )] .

This gives

N(T, µ) = −
(

∂J

∂µ

)
T

=
zφ(T )

1 − zφ(T )
=⇒ z =

N

φ(T )(N + 1)

S(T, µ) = −
(

∂J

∂T

)
µ

= −k ln[1 − zφ(T )] +
zkTφ′(T )
1 − zφ(T )

− Nk ln z

E(T, µ) = J(T, µ) + TS(T, µ) + NkT ln z =
zkT 2φ′(T )
1 − zφ(T )

.

For large N , we have

zφ(T ) ≈ 1 − 1
N

, 1 − zφ(T ) ≈ 1
N

, ln z = − lnφ(T ) ,

so that we can write

S(T,N) = Nk

(
Tφ′(T )
φ(T )

+ lnφ(T )
)

, E(T,N) = NkT 2 φ′(T )
φ(T )

.

If we now substitute φ(T ) by (4.83), we can recover the familiar results for
the classical case (4.81) as well as for the quantum mechanical one, (4.79)
and (4.80).

IV: Harmonic oscillator in the canonical density operator formal-
ism. In the energy basis {|n〉} with

H |n〉 = En |n〉 , En = h̄ω

(
n +

1
2

)
,

the canonical density matrix of the one-particle oscillator is trivial:

〈n| ρ |m 〉 =

〈
n| e−βH |m〉

Z1
=

e−βEm 〈n| m〉
Z1

=
e−βEn

Z1
δnm .

The corresponding one-particle partition function is

Z1 = tr
(
e−βH

)
=

∞∑
n=0

〈
n| e−βEn |n〉

=
∞∑

n=0

e−βEn =
1

2 sinh
(

βh̄ω
2

) ,

which, as expected, is in agreement with (4.82). To demonstrate the strength
of the quantum mechanical density matrix formalism, we show how to cal-
culate the matrix elements of ρ in the coordinate representation. For this,
we require the energy eigenfunctions of the quantum mechanical oscillator in
this representation. They are given by (see Subsection 3.3.5)
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Ψn(q) =
(mω

πh̄

)1/4 Hn(x)√
2nn!

e−x2/2 , x = q

√
mω

h̄
.

To calculate 〈q′|ρ |q 〉, we use the integral representation of the Hermite poly-
nomials,

Hn(x) = (−1)nex2
(

d
dx

)n

e−x2
=

ex2

√
π

∞∫
−∞

du(−2iu)ne−u2+2ixu ,

and write

〈q′|ρ |q 〉 =
∑

n

〈q′|n〉 Pn 〈n| q〉

=
1
Z1

∑
n

ψn(q′)ψ∗
n(q)e−βh̄ω(n+ 1

2 )

=
1
Z1

(mω

πh̄

)1/2
e− x2+x′2

2

∑
n

1
2nn!

Hn(x)Hn(x′)e−βh̄ω(n+ 1
2 )

=
1

Z1π

(mω

πh̄

)1/2
e

x2+x′2
2

∞∫
−∞

du

∞∫
−∞

dve−u2+2ixue−v2+2ix′v

×
∞∑

n=0

(−2uv)n

n!
e−βh̄ω(n+ 1

2 ) .

The sum over n can be carried out directly and yields
∞∑

n=0

(−2uv)n

n!
e−βh̄ω(n+ 1

2 ) = e−βh̄ω/2e−2uv exp(−βh̄ω) .

For the matrix elements, we then find

〈q′|ρ |q 〉 =
1

Z1π

(mω

πh̄

)1/2
e

x2+x′2
2 e−βh̄ω/2

∞∫
−∞

du

∞∫
−∞

dv

× exp
[−u2 + 2ixu − v2 + 2ix′v − 2uv exp(−βh̄ω)

]
. (4.84)

To further simplify this equation, we use
∞∫

−∞
dx1 · · ·

∞∫
−∞

dxn exp

⎛
⎝−1

2

n∑
j,k=1

ajkxjxk + i
n∑

k=1

bkxk

⎞
⎠

=
(2π)n/2
√

det A
exp

(
−1

2
A−1

jk bjbk

)
,

which holds for invertible, symmetric matrices A. In our case,

A = 2
(

1 e−βh̄ω

e−βh̄ω 1

)
, det A = 4

(
1 − e−2βh̄ω

)
,
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so that (4.84) becomes

〈q′|ρ |q 〉 =
1
Z1

(mω

πh̄

)1/2 e−βh̄ω/2

(1 − e−2βh̄ω)1/2

× exp
(

x2 + x′2

2
− x2 + x′2 − 2xx′e−βh̄ω

1 − e−2βh̄ω

)

=
1
Z1

(
mω

2πh̄ sinh(βh̄ω)

)1/2

× exp
(

−x2 + x′2

2
coth(βh̄ω) +

xx′

sinh(βh̄ω)

)

=
1
Z1

(
mω

2πh̄ sinh(βh̄ω)

)1/2

× exp
{

−mω

4h̄

[
(q + q′)2 tanh

(
βh̄ω

2

)

+(q − q′)2 coth
(

βh̄ω

2

)]}
.

The diagonal elements of this density matrix yield the average density dis-
tribution of a quantum mechanical oscillator with temperature T :

〈q|ρ |q 〉 =
[
mω

πh̄
tanh

(
βh̄ω

2

)]1/2

exp
[
−mω

h̄
tanh

(
βh̄ω

2

)
q2
]

.

This is a Gaussian distribution. In the classical limit βh̄ω 	 1, it simplifies
to

〈q|ρ |q 〉 ≈
(

mω2

2πkT

)1/2

exp
(

−mω2q2

2kT

)
,

which is the result we also obtain starting from the classical phase space
density. On the other hand, for the pure quantum case βh̄ω � 1, we find

〈q|ρ |q 〉 ≈
(mω

πh̄

)1/2
exp

(
−mωq2

h̄

)
.

Note that this expression is identical to the probability density |Ψ0(q)|2 of an
oscillator in its ground state.

4.6.4 Ideal Spin Systems and Paramagnetism

This subsection deals with systems consisting of N localized magnetic dipoles
of charge e and mass m (solid crystal) in an external magnetic field. As we
know from Subsection 2.5.2, each dipole is subject to a torque that tries to
align it in the direction of the field. However, for T > 0, this does not result in
total magnetization (minimal energy, all dipoles aligned) since the dipoles are
also subject to thermic movements that attempt to bring the system into a



458 4. Statistical Physics and Thermodynamics

state of maximal entropy. Apparently, the two opposing limiting cases are that
of vanishing thermic motion at T → 0 and that of vanishing magnetization
at T → ∞. Quantum mechanically, the magnetic moment M is generally
related to the angular momentum J via

M =
ge

2mc
J (g = gyromagnetic ratio)

(compare to Section 3.6), where the possible eigenvalues j, m of J and Jz

are given by15

J |j, m〉 = h̄2j(j + 1) |j, m〉 , j = 0,
1
2
, 1,

3
2
, . . .

Jz |j, m〉 = h̄m |j, m〉 , m = −j,−j + 1, . . . , j − 1, j .

If we apply a magnetic field B = Bez in the z-direction, the energy ε of each
magnetic dipole is

ε = −MB = −gµBmB , µB =
eh̄

2mc
,

where µB denotes the Bohr magneton.
In the following, we use the microcanonical ensemble to consider a system

of spin-1/2 particles for which g = 2 and j = 1/2. Such a system exhibits the
interesting phenomenon of negative temperature. Subsequently, we use the
canonical ensemble to discuss systems with arbitrary j. This leads us to the
law of Curie.

I: Paramagnetism (j = 1/2) in the microcanonical ensemble. Con-
sider a system of N spin-1/2 dipoles, whose magnetic moments are either
parallel or antiparallel to an external magnetic field of strength B in the z-
direction (m = ±1/2). Let N+ (N−) be the number of dipoles with energy
+µBB (−µBB). We then have

N = N+ + N− , n = N+ − N− =⇒

⎧⎪⎨
⎪⎩

N+ =
N + n

2

N− =
N − n

2
.

With this, the constant total energy of the isolated system can be written as

E = nµBB .

Determining the possible number of microstates corresponding to this energy
is a simple combinatoric problem: N particles can be arranged in N ! different
ways. However, N+! (N−!) exchanges of the N+ (N−) particles with each
other does not yield new microstates. The total number of possible states is
therefore given by

15 The differentiation between the mass m and the magnetic quantum number m
is left to the reader.
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lnΩ(E, N) =
S(E, N)

k
=

N !
N+!N−!

= N lnN − N+ lnN+ − N− lnN−

= −
[
N+ ln

(
N+

N

)
+ N− ln

(
N−
N

)]

= −
[
N + n

2
ln

(
N + n

2N

)
+

N − n

2
ln

(
N − n

2N

)]

= N ln 2 − N + n

2
ln

(
1 +

n

N

)
− N − n

2
ln

(
1 − n

N

)
,

where we have used Stirling’s formula (4.28). Since the particles are localized
and hence distinguishable, it is not necessary to take into account the Gibbs
factor 1/N !. It is now easy to see that the entropy is maximal for a system
with equal number of dipoles pointing either way: n = 0. This corresponds
to a system of N noninteracting particles with two possible states each, i.e.,
2N states in total.

Now, let ∆E = 2µBB denote the energy gap of the system. Then, its
temperature, energy, and specific heat evaluate to

1
T

=
(

∂S

∂E

)
N,B

=
1

µBB

(
∂S

∂n

)
N,B

=
k

∆E
ln

(
N−
N+

)

=⇒ N−
N+

= exp
(

∆E

kT

)
,

N−
N

=
1

1 + exp
(−∆E

kT

) ,
N+

N
=

1
1 + exp

(
∆E
kT

)
=⇒ E(T,N,B) = −NµBB tanh

(
∆E

2kT

)

=⇒ C(T,N, B) =
(

∂E

∂T

)
N,B

= Nk

(
∆E

2kT

)2

cosh−2
(

∆E

2kT

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.85)

Here, N+/N and N−/N are the relative probabilities of finding a randomly
selected dipole with energy +µBB and −µBB, respectively.

Let us take a closer look at the temperature. At zero temperature T = 0,
all dipoles are in a state of minimal energy −µBB, and we find S = 0, as
expected for a totally ordered system. If the system is fed with energy, the
entropy grows, eventually approaching its maximum at n = 0 and T = ∞, in
accordance with our expectation for maximal disorder. However, it is possible
to inject even more energy into the system. The upper level will then contain
more states than the lower one. The entropy has to drop again since order is
now being reintroduced, and the temperature becomes negative. So far, we
have only allowed positive temperatures (such systems are called normal) in
order to prevent partition functions from becoming ill-defined. This is the
case if the energy of the system can be chosen arbitrarily large, as can be
seen most easily in the canonical ensemble. However, if the energy of the
system is constrained by an upper bound, such a restriction is no longer
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necessary, as with the case at hand. In the region E > 0 and T < 0, the
system is anomalous, since there, the magnetization is opposed to the external
field. Such a situation, in which more particles are present in the upper half
of the system, is called inversion. Lasers, for example, can be forced into
an inverted state by pumping. Purcell and Pound first created an inverted
state of nuclear spins within crystals of type LiF. They achieved this by
applying a strong magnetic field and after a long enough relaxation time
rapidly switching the field direction. The spins are not able to follow the
field at once, so that a state of nonequilibrium emerges, in which the energy
is higher than that of the equilibrium state, which is reached a little bit
later. It takes around 10−5 seconds for the nuclear spin system to reach
internal equilibrium with negative magnetization and negative temperature.
Five minutes later the system is finally back in a state of equilibrium between
the spins and the lattice with positive energy. Note that it is the spins that
are in a temporary state of negative temperature, whereas the lattice remains
at positive temperature throughout.

Figure 4.10 shows the energy and specific heat (4.85) of our dipole system.
A specific heat with such a characteristic peak is called the Schottky effect;
it is typical for systems with an energy gap.

E
NµBB

kT
µBB

0
6

-1

C
Nk

kT
µBB

0
6

0.5

Fig. 4.10. Energy (left) and specific heat (right) of an ideal spin system with
j = 1/2 [see (4.85)].

II: Paramagnetism (j arbitrary) in the canonical ensemble. For the
special case of j = 1/2, the canonical partition function of the N -dipole
system is calculated as follows:

Z(T,N,B) =
∑

n

e−βEn =

⎛
⎝ ∑

m=± 1
2

exp(2βµBBm)

⎞
⎠N

= Z1(T, B)N ,

with
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Z1(T,B) =
∑

m=± 1
2

exp(2βµBBm) = 2 cosh(βµBB) .

From this, we can easily verify the previously calculated results within the
microcanonical ensemble. Instead, let us consider the more general case of
arbitrary spin j. The one-particle partition function is then given by

Z1(T,B) =
j∑

m=−j

exp(βgµBmB) =
j∑

m=−j

exp
(

mx

j

)
, x = βgµBBj

=
exp

(
(j+1)x

j

)
− exp(−x)

exp
(

x
j

)
− 1

=
exp

(
x
2j

) [
exp

(
(2j+1)x

2j

)
− exp

(
− (2j+1)x

2j

)]
exp

(
x
2j

) [
exp

(
x
2j

)
− exp

(
− x

2j

)]

=
sinh

[
x
(
1 + 1

2j

)]
sinh

(
x
2j

) .

The average magnetization of the system follows as

Mz(T,N,B) = NgµBm =
N

β

∂

∂B
lnZ1 = NgµBjBj(x) ,

where

Bj(x) =
(

1 +
1
2j

)
coth

[
x

(
1 +

1
2j

)]
− 1

2j
coth

(
x

2j

)
is the Brillouin function of jth order. Figure 4.11 shows this function for
several values of j. For large x, i.e., for strong magnetic fields or low temper-
atures, Bj(x) tends to its maximal value of 1 for all j. This corresponds to
the case of maximal magnetization called saturation. For weak fields or high
temperatures, x 	 1, we can expand the Brillouin function as

Bj(x) =
x

3

(
1 +

1
j

)
+ O(x3) .

This gives

Mz ≈ Ng2µ2
BBj(j + 1)
3kT

,

from which we obtain the magnetic susceptibility

χm =
Mz

B
=

Cj

T
, Cj =

Ng2µ2
Bj(j + 1)
3k

.

This is Curie’s law, which states that the magnetic susceptibility is propor-
tional to 1/T . The above simple model of a magnetizable solid crystal is in
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x0
10

Bj(x)

1 j = 1/2

j = ∞

Fig. 4.11. Brillouin functions for j = 1/2, 1, 3/2, 5/2, 5, ∞.

rather good agreement with experimental results. In the case of only two
possible magnetizations, j = 1/2, g = 2, we find

Mz = NµBB1/2(x) = NµB tanhx .

So, for x � 1, we have Mz ≈ NµB and for x 	 1: Mz ≈ NµBx.

III: Paramagnetism (j = 1/2) in the canonical density operator
formalism. As above, we start by considering a single particle with g = 2
and J = h̄/2 · σ, in an external magnetic field B = Bez. The corresponding
Hamilton operator is

H = −µBBσz .

The representation-independent canonical density operator is calculated us-
ing σ2

z = I and tr(σz) = 0:

eβµBBσz = exσz , x = βµBB

=
∞∑

i=0

xiσi
z

i!
= I

∞∑
i=0

x2i

(2i)!
+ σz

∞∑
i=1

x2i−1

(2i − 1)!

= I cosh x + σz sinhx

=⇒ tr
(
eβµBBσz

)
= 2 cosh x

=⇒ ρ =
eβµBBσz

tr (eβµBBσz )
=

1
2
(I + σz tanhx) .

From this, the expectation value of the spin operator follows as

σz = tr(ρσz) = tanhx ,

and the the total energy of the N -particle system is

E = −NµBBσz = −NµBB tanh(βµBB) ,
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which is in agreement with the first equation of (4.85). Note that we did
not use a specific representation of the σ-matrices in calculating σz (see
Application 64).

Summary

• Classical Maxwell-Boltzmann statistics does not take into account
the quantum nature of particles. This approximation is valid for large
temperatures, small number of particles, and not too small particle mass.

• For “proper classical systems”, which are described by classical Hamilton
functions, the virial and the equipartition theorem hold.

• Using the one-dimensional N -particle oscillator system, different aspects
of the classical Boltzmann statistics can be studied nicely. In particular,
we see that the equipartition theorem does not hold if the quantum
mechanical Hamilton operator is used.

• The ideal spin system of N noninteracting dipoles is a model of param-
agnetic systems. It exhibits the phenomenon of negative temperature,
which, for example, is used in lasers, and explains Curie’s law for the
susceptibility of paramagnets.

Applications

64. Canonical density matrix of the electron in a magnetic field
using particular representations. Calculate the canonical density matrix
of an electron (g = 2, j = 1/2) in a magnetic field B = Bez in two different
representations, where (a) σz or (b) σx is diagonal.

Solution.

To a. The σ-matrices in the representation, in which σz is diagonal, are
given by

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Therefore, the canonical density matrix is

ρ =
1

ex + e−x

(
ex 0
0 e−x

)
, x = βµBB ,

and it follows that

σz = tr(ρσz) =
ex − e−x

ex + e−x
= tanh(βµBB) .
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To b. To diagonalize σx, we need a similarity transformation σ′
x = UσxU−1,

with

U =
1√
2

(
1 1

−1 1

)
, U−1 =

1√
2

(
1 −1
1 1

)
.

For σ′
x, σ′

z, and ρ′, we obtain

σ′
x = U

(
0 1
1 0

)
U−1 =

(
1 0
0 −1

)

σ′
z = U

(
1 0
0 −1

)
U−1 =

(
0 −1

−1 0

)

ρ′ = U

(
ex 0
0 e−x

)
U−1 =

1
2

(
1 − tanhx

− tanhx 1

)
.

With these transformed matrices, the expectation value of σ′
z becomes

σ′
z = tr(ρ′σ′

z) = tanh(βµBB) .

This example shows explicitly that expectation values are representation-
independent.

65. Canonical density matrix of a free particle in coordinate rep-
resentation. Evaluate the canonical density matrix of a free particle in co-
ordinate representation.

Solution. In coordinate representation, the Hamilton operator of a free par-
ticle with mass m is

H = − h̄2

2m
∇2 .

Its eigenfunctions normalized to a volume V = L3 are

Ψn(x) =
1

L3/2 eik·x , En =
h̄2k2

2m
, k =

2π

n
n , ni = 0,±1,±2, . . . .

We therefore have

〈x| e−βH |x′〉 =
∑
n

〈x|Ψn〉 e−βEn 〈Ψn|x′〉

=
∑
n

e−βEnΨn(x)Ψ∗
n(x′)

=
1
L3

∑
k

exp
(

−βh̄2

2m
k2 + ik(x − x′)

)

≈ 1
(2π)3

∫
exp

(
−βh̄2

2m
k2 + ik(x − x′)

)
d3k

=
(

m

2πβh̄2

)3/2

exp
(

− m

2βh̄2 (x − x′)2
)

.
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Here, we have replaced the sum by an integral and used quadratic completion.
With

tr
(
e−βH

)
=

∫
d3x

〈
x| e−βH |x〉

= V

(
m

2πβh̄2

)3/2

,

we find

〈x|ρ |x′ 〉 =

〈
x| e−βH |x′ 〉
tr (e−βH)

=
1
V

exp
(

− m

2βh̄2 (x − x′)2
)

.

As expected, the matrix elements are symmetric under exchange of x and x′.
We can also understand that the diagonal elements 〈x|ρ |x 〉 are independent
of x since they represent the probability of finding the particle close to x.
Note that the wave packet’s extent is a purely quantum effect. In the limit of
large temperatures, the extent becomes smaller and eventually turns into the
δ-function coinciding with the classical solution. Finally, we use the density
matrix ρ to calculate the energy:

H = − ∂

∂β
ln tr

(
e−βH

)
= − ∂

∂β

[
lnV +

3
2

ln
(

m

2πβh̄2

)]
=

3
2
kT .

4.7 Quantum Statistics

Following on from the previous section, where we discussed the classical
Maxwell-Boltzmann statistics, we now turn our attention to quantum statis-
tics. Here, the quantum nature of particles (bosonic or fermionic) is taken
into account. As before, we restrict ourselves to systems of noninteracting
particles, i.e., to ideal systems.

Using results from Section 3.9, we begin our discussion by reviewing some
of the properties of systems composed of either fermionic or bosonic particles
and introduce the occupation number formalism. With its help, many of the
results of Fermi-Dirac, Bose-Einstein, and also Maxwell-Boltzmann statistics
can be conveniently presented. We then look at the ideal Fermi gas and
calculate its state equations for the classical limit of a very high temperature
as well as for the purely quantum mechanical case of a very low temperature.
Importantly, we shall find that due to Pauli’s exclusion principle, there exist
excited states of Fermi particles even at zero temperature T = 0, whose
energy is below the Fermi energy. Following this, we discuss the ideal Bose gas
and derive its equations of state in a similar way as we did for the Fermi gas.
At very low temperatures below a critical value, we shall find an interesting
phenomenon, the Bose-Einstein condensation.
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4.7.1 General Formalism

Consider a quantum system containing N noninteracting particles, so that
its Hamilton operator H can be split into a sum of N one-particle operators
Hi:

H =
N∑

i=1

Hi .

Having solved the eigenvalue problem of the one-particle operator,

Hi |ki〉 = Ei |ki〉 ,

the total energy of the system follows as

E =
∑

i

Ei .

The state vector of the complete system can be constructed via the tensor
product of the normalized one-particle states |ki〉 . The detail of this con-
struction depends on the nature of the particles at hand.

Fermi-Dirac statistics. If the particles are identical and have half-integer
spin (fermions), we know from our previous discussion of quantum me-
chanical N -particle systems in Section 3.9 that the state of the system
|k1, k2, . . . , kn, A〉 must be antisymmetric with respect to the interchange
of the degrees of freedom of any two particles. This antisymmetry can be
achieved by the following construction:

|k1, k2, . . . , kN , A〉 =
1√
N !

∑
P

ε(P ) |kP1〉 |kP2〉 · · · |kPN
〉

=
1√
N !

∑
P

ε(P ) |kP1 , kP2 , . . . , kPN
〉 , (4.86)

where

P =
(

1 . . . N
P1 . . . PN

)
, ε(P ) =

{
+1 for P even

−1 for P odd

denotes a permutation of 1, . . . , N . The factor 1/
√

N ! in (4.86) is necessary
since there are N ! such possible permutations. Note that due to Pauli’s prin-
ciple, all quantum numbers ki are different. For fermionic states, we therefore
have the following normalization:16

〈k′
1, . . . , k

′
N , A| k1, . . . , kN , A〉

=
1

N !

∑
P

ε(P )
∑
P ′

ε(P ′)
〈

k′
P ′

1
, . . . , k′

P ′
N

∣∣∣ kP1 , . . . , kPN

〉

16 We assume that the ki are discrete quantum numbers (bound states).
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=
∑
P

ε(P ) 〈k′
1, . . . , k

′
N | kP1 , . . . , kPN

〉

=
∑
P

ε(P )δk′
1kP1

· · · δk′
N

kPN
. (4.87)

Here, we have used the fact that the double summation over all permutations
is equal to N ! times the onefold sum over all permutations.

Bose-Einstein statistics. For identical particles with integer spin (bosons),
the N -particle state is symmetric under exchange of the degrees of freedom
of any two particles and is given by

|k1, . . . , kN , S〉 =
1√

N !n1! · · ·nN !

∑
P

|kP1 , . . . , kPN
〉 .

Contrary to the fermionic case, there are no restrictions on the occupation
numbers. If ni particles have the same quantum numbers, the ni! permuta-
tions of the particles’ quantum numbers do not yield a new physical state; this
is taken into account by the normalization factor. The bosonic normalization
corresponding to (4.87) is

〈k′
1, . . . , k

′
N , S| k1, . . . , kN , S〉

=
1√

n′
1! · · ·n′

N !n1! · · ·nN !

∑
P

δk′
1kP1

· · · δk′
N

kPN
.

Maxwell-Boltzmann statistics. If the N particles can be treated as dis-
tinguishable, the total state of the system is

|k1, k2, . . . , kN 〉 = |k1〉 |k2〉 · · · |kN 〉 ,

with the normalization

〈k′
1, . . . , k

′
N | k1, . . . , kN 〉 = δk′

1k1 · · · δk′
N

kN
,

where the exchange of two different quantum numbers results in a new phys-
ical state. In the following, we will see that the Maxwell-Boltzmann statistics
can often be used to describe approximately systems of identical particles,
as we have already done in some of the preceding sections. In this case, the
indistinguishability has to be taken into account by the ad-hoc introduction
of Gibbs’s correction factor 1/N !, whereas in Fermi-Dirac and Bose-Einstein
statistics, this factor follows naturally from the normalization of the state
vectors.

Occupation number formalism. For what follows, it is best to represent
the fermionic and bosonic system kets by occupation numbers of the one-
particle states. If we order the possible quantum numbers ki of the one-
particle states in ascending order, the set of occupation numbers {n0, n1, . . .}
with

∑∞
k=0 nk = N in conjunction with the particle type qualification defines

the N -particle state uniquely, and we can write
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|n0, n1, . . . ,S,A〉 = |k1, k2, . . . , kN , S,A〉 .

The left-hand side should be read as: n0 particles are in the lowest possible
one-particle state |0〉 , n1 in the next-highest one-particle state |1〉 , and so
on. Using this identity, we also have

H |n0, n1, . . . ,S,A〉 = E |n0, n1, . . . ,S,A〉 , E =
∞∑

k=0
nkEk

N |n0, n1, . . . ,S,A〉 = N |n0, n1, . . . ,S,A〉 , N =
∞∑

k=0
nk .

⎫⎪⎪⎬
⎪⎪⎭ (4.88)

The last equation can be taken as the definition of the particle operator N .
It determines all matrix elements of N in the |n0, n1, . . . ,S,A〉 -basis. In the
same vein, we can define the occupation number operator nk by

nk |n0, n1, . . . ,S,A〉 = nk |n0, n1, . . . ,S,A〉 ,

with

nk =

{
0, 1 for fermions

0, 1, 2, . . . for bosons .

The normalization for the occupation number kets is

〈n′
0, n

′
1, . . . ,S,A|n0, n1, . . . ,S,A〉 = δn′

0n0δn′
1n1 · · · .

According to this, two states are identical if all their occupation numbers
coincide. Following (4.88), the matrix elements of the canonical density op-
erator in the |n0, n1, . . . ,S,A〉 -basis are obtained as

〈n′
0, n

′
1, . . . ,S,A|ρ |n0, n1, . . . ,S,A 〉

=
1
Z

〈
n′

0, n
′
1, . . . ,S,A| e−βH |n0, n1, . . . ,S,A

〉
=

1
Z

exp

(
−β

∑
k

nkEk

)
δn′

0n0δn′
1n1 · · · ,

with

Z =
′∑

n0,n1,...

exp

(
−β

∑
k

nkEk

)
.

The corresponding relations for the grand canonical density matrix are

〈n′
0, n

′
1, . . . ,S,A|ρ |n0, n1, . . . ,S,A 〉

=
1
Y

〈
n′

0, n
′
1, . . . ,S,A| e−β(H−µN) |n0, n1, . . . ,S,A

〉
=

1
Y

exp

(
−β

∑
k

nk(Ek − µ)

)
δn′

0n0δn′
1n1 · · · ,

with
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Y =
∑

n0,n1,...

exp

(
−β

∑
k

nk(Ek − µ)

)
.

The symbol ′ in the canonical partition function indicates that the sum is
only taken over occupation numbers for which

∑
k nk = N . In contrast, there

is no such restriction for the grand canonical partition function. The diagonal
elements of the density matrix can be interpreted as the probability W to
find the set of occupation numbers {n0, n1, . . .} in the N -particle system:

W (n0, n1, . . .) = 〈n0, n1, . . . ,S,A|ρ |n0, n1, . . . ,S,A 〉 .

Since there is no restriction in the grand canonical partition function with
regard to the sum, it can be simplified further in the following way: for the
bosonic case, we have

Y =
∞∑

n0,n1,...=0

[
e−β(E0−µ)

]n0
[
e−β(E1−µ)

]n1 · · ·

=
∏
k

∞∑
nk=0

[
e−β(Ek−µ)

]nk

=
∏
k

1
1 − ze−βEk

, z = eβµ .

For the fermionic case, the partition function becomes

Y =
1∑

n0,n1,...=0

[
e−β(E0−µ)

]n0
[
e−β(E1−µ)

]n1 · · ·

=
∏
k

1∑
nk=0

[
e−β(Ek−µ)

]nk

=
∏
k

(
1 + ze−βEk

)
.

For completeness, we briefly discuss the corresponding expressions when using
Maxwell-Boltzmann statistics in the occupation number formalism. For this
case, the occupation numbers {n0, n1, . . .} do not determine the system state
|k1, k2, . . . , kN 〉 uniquely since it is not clear which particle is in which one-
particle state. But, since all states in agreement with the set of occupation
numbers {n0, n1, . . .} have the same energy and thus the same probability,
we only need to determine the number of these states. Now, there are N !
possible ways to number the N particles. However, if nk of these are in a
state |k〉 , permutations of these particles do not lead to new physical states
even on a classical level. Each set {n0, n1, . . .} must therefore be given the
weight N !/(n0!n1! · · ·), and the canonical partition function can be written
as

Z =
1

N !

′∑
n0,n1,...

N !
n0!n1! · · · exp

(
−β

∑
k

nkEk

)
,

where the Gibbs factor 1/N ! for identical particles has been introduced by
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hand.17 For the grand canonical partition function (again identical particles),
we find

Y =
∞∑

n0,n1,...=0

1
n0!n1! · · ·

[
e−β(E0−µ)

]n0
[
e−β(E1−µ)

]n1 · · ·

=
∏
k

∞∑
nk=0

1
nk!

[
e−β(Ek−µ)

]nk

=
∏
k

exp
[
ze−βEk

]
.

Theorem 4.17: Grand canonical partition function for
Bose-Einstein, Fermi-Dirac, and Maxwell-Boltzmann statistics

Given a system of N noninteracting identical particles, let Ek be the possi-
ble energies of the one-particle states. The grand canonical partition func-
tion is then given by [see (4.61)]

lnY (T, V, µ) =
PV

kT
=

1
σ

∑
k

ln
[
1 + σze−βEk

]
,

with σ depending on the statistics as follows:

σ =

⎧⎪⎪⎨
⎪⎪⎩

−1 Bose-Einstein statistics

+1 Fermi-Dirac statistics

0 Maxwell-Boltzmann statistics .

The case σ = 0 must be treated as the limiting case of σ → 0. Average
energy and particle number are obtained from this as

E(T, V, µ) = −
(

∂ lnY

∂β

)
z,V

=
∑

k

Ek
1
z eβEk + σ

=
∑

k

nkEk

N(T, V, µ) =
1
β

(
∂ lnY

∂µ

)
T,V

= z

(
∂ lnY

∂z

)
T,V

=
∑

k

nk ,

where the average occupation numbers are given by
�

17 Note that this equation reproduces the result (4.45):

Z =
1

N !

′∑
n0,n1,...

N !
n0!n1! · · ·

[
e−βE0

]n0 [e−βE1
]n1 · · ·

=
1

N !

[∑
k

e−βEk

]N

=
1

N !
ZN

1 .



4.7 Quantum Statistics 471

nk =
ze−βEk

1 + σze−βEk
=

1
1
z eβEk + σ

.

For fermions, we have 0 ≤ nk ≤ 1, whereas for bosons, the occupation
numbers are not bounded from above. For bosons, this implies that the
chemical potential is always smaller than the smallest one-particle energy
E0. The limit T → 0 in the case of bosons has to be treated separately and
leads to Bose-Einstein condensation.

In terms of the occupation numbers, the grand canonical partition function
is

lnY = − 1
σ

∑
k

ln(1 − σnk) .

Using

E − µN =
∑

k

nk(Ek − µ) = kT
∑

k

nk ln
(

1 − σnk

nk

)
,

the entropy is obtained as

S = k lnY +
1
T

(E − µN)

= −k

σ

∑
k

[
ln(1 − σnk) − σnk ln

(
1 − σnk

nk

)]

= −k
∑

k

[
nk lnnk +

1
σ

(1 − σnk) ln(1 − σnk)
]

.

Consequently, unoccupied states do not contribute to entropy. This is also
true for fermions with nk = 1. This type of behavior is also seen in the
uncertainty of the occupation numbers,

(∆nk)2 = kT
∂nk

∂µ
= nk(1 − σnk) ,

which vanishes for nk = 0 and for fermions also for nk = 1. Note that for
nk � 1 (bosons), the errors are proportional to nk, in contrast to the classical√

nk-behavior.

State equations of the ideal quantum gas. We can simplify the partition
function from Theorem 4.17 by replacing the sum over one-particle states by
an integral. To this end, we proceed analogously to our discussion of the ideal
classical gas in the microcanonical ensemble (Application 56) and write

∑
k

−→ V

h3

s∑
m=−s

∫
d3p =

4πgsV

h3

∫
p2dp =

∫
g(ε)dε ,

with the energy density
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g(ε) =
4πgsV

h3 p2(ε)
(

∂ε

∂p

)−1

.

Here, the sum over possible spin degrees of freedom is taken into account by
the degeneracy factor gs = (2s + 1). If we restrict ourselves to two special
cases, nonrelativistic (NR) and ultrarelativistic (UR) particles, with

εNR =
p2

2m
, εUR = cp ,

the corresponding energy densities are given by

g(ε) =

⎧⎪⎪⎨
⎪⎪⎩

CNR
√

ε , CNR =
2πgsV (2m)3/2

h3

CURε2 , CUR =
4πgsV

c3h3 .

Introducing the distribution function

f(ε, T, µ) =
1

1
z eβε + σ

,

we can obtain the grand canonical partition function and the average values
of N and E from the following integrals:

lnY (T, V, µ) =
1
σ

∫
dεg(ε) ln

(
1 + σze−βε

)
N(T, V, µ) =

∫
dN =

∫
dεf(ε, T, µ)g(ε)

E(T, V, µ) =
∫

εdN =
∫

dεεf(ε, T, µ)g(ε) .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.89)

In Subsections 4.7.2 and 4.7.3, we shall calculate these integrals explicitly.
However, before we move on to this, we can already derive some useful rela-
tions for the above two special energy cases. For the nonrelativistic case, the
grand canonical partition function is

lnY =
CNR

σ

∞∫
0

dεε1/2 ln
(
1 + σze−βε

)
. (4.90)

This yields the expectation values

N = CNR

∞∫
0

ε1/2dε
1
z eβε + σ

, E = CNR

∞∫
0

ε3/2dε
1
z eβε + σ

.

Due to PV = kT lnY , we find

PV =
2
3

CNR

σ
kT

⎛
⎝[

ε3/2 ln
(
1 + σze−βε

)]∞

0
+ σβ

∞∫
0

ε3/2dε
1
z eβε + σ

⎞
⎠

=
2
3
E ,
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where we have used partial integration. This is the same relation as the one
we found earlier for the ideal Boltzmann gas [see (4.30) and (4.31)]. The
corresponding relations for the ultrarelativistic case are

lnY =
CUR

σ

∞∫
0

dεε2 ln
(
1 + σze−βε

)

N = CUR

∞∫
0

ε2dε
1
z eβε + σ

, E = CUR

∞∫
0

ε3dε
1
z eβε + σ

,

and, using a similar line of calculation as above, we obtain

PV =
1
3
E .

Theorem 4.18: Energy-momentum relations
of the ideal quantum gas

Independently of the type of statistics (Fermi-Dirac, Bose-Einstein,
Maxwell-Boltzmann), an ideal quantum gas obeys

PV =

⎧⎪⎨
⎪⎩

2
3
E nonrelativistic

1
3
E ultrarelativistic .

Equation of state for the classical limit. In the case of

z = eβµ 	 1 ,

we can easily derive some further relations. For this, we set x = βε and
expand the logarithm in (4.90) up to second order around z = 0. This yields

lnY =
CNR

σβ3/2

∞∫
0

dxx1/2
(

σze−x − σ2z2

2
e−2x

)

=
CNR

σβ3/2

(
σz − σ2z2

25/2

) ∞∫
0

dxx1/2e−x

=
√

π

2
CNR

β3/2 z
(
1 − σz

25/2

)

= gsV

(
2πmkT

h2

)3/2

z
(
1 − σz

25/2

)
. (4.91)

The first term in this equation is just the grand canonical partition function
of the ideal classical gas and is in agreement with (4.48) from Application
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58, as long as the degeneracy factor gs is attributed for. The average particle
number is found from (4.91) as

N = z

(
∂ lnY

∂z

)
T,V

= gsV

(
2πmkT

h2

)3/2

z
[(

1 − σz

25/2

)
− σz

25/2

]
, (4.92)

so that

lnY = N + gsV

(
2πmkT

h2

)3/2
σz2

25/2 .

Since (4.91) is of second order, we can insert in this equation the first-order
term from (4.92):

z2 =
N2

g2
sV 2

(
2πmkT

h2

)−3

.

This results in

Theorem 4.19: State equation of the ideal quantum gas
in the classical limit

In the classical limit z 	 1, the equation of state of the classical gas obeys
an expansion of the type

E =
3
2
PV =

3
2
kT lnY =

3
2
NkT

[
1 +

σN

gsV 25/2

(
h2

2πmkT

)3/2

+ . . .

]
.

The first-order correction is large for small temperatures. In the case of
fermions, it implies an increased pressure (at constant density) and thus an
effective mutual repulsion of the fermions. On the other hand, for bosons,
the pressure is reduced, so that the bosons effectively attract each other.

To obtain any more useful results, it is necessary to solve the integrals (4.89)
explicitly. This is the subject of the following two subsections on ideal Fermi
and Bose gases.

4.7.2 Ideal Fermi Gas

Our starting point for this discussion is the Fermi-Dirac (FD) distribution
function

fFD(ε, T, µ) =
1

1
z eβε + 1

as well as the nonrelativistic energy density

g(ε) = CNR
√

ε , CNR =
2πgsV (2m)3/2

h3 ,

which will be used to evaluate the integrals (4.89). In Fig. 4.12, the be-
havior of the distribution function fFD is shown qualitatively for different
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T = 0

T � 0

T > 0

1

µ0

fFD

ε

Fig. 4.12. Fermi-Dirac distribution functions for different temperatures.

temperatures. At absolute zero temperature, fFD is a step function; all one-
particle states below the Fermi energy EF = µ are occupied, whereas all other
states with ε > EF are empty. As the temperature increases, more and more
fermions are found in states of higher excitation, and the step-like character
of the distribution function smears out more and more. Using partial integra-
tion and the substitution x = βε, the integrals in (4.89) can be transformed
into the following expressions:

lnY (T, V, µ) =
CNR

β3/2

2
3

∞∫
0

x3/2dx
1
z ex + 1

=
gsV

λ3 f5/2(z)

N(T, V, µ) =
CNR

β3/2

∞∫
0

x1/2dx
1
z ex + 1

=
gsV

λ3 f3/2(z)

E(T, V, µ) =
CNR

β5/2

∞∫
0

x3/2dx
1
z ex + 1

=
3
2

gsV

λ3β
f5/2(z)

=
3
2
NkT

f5/2(z)
f3/2(z)

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.93)

with

λ =
(

h2

2πmkT

)1/2

and the Fermi-Dirac functions

fν(z) =
1

Γ (ν)

∞∫
0

xν−1dx
1
z ex + 1

, zf ′
ν(z) = fν−1(z) .

Generally, one wants to eliminate the fugacity z in (4.93) using the relation
for N . Given the integral representation of the functions fν(z), this is not so
easy. We shall therefore consider some special cases for which the elimination
of z is possible.
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Classical limit: T � 0 ⇐⇒ z 	 1. For small z, the functions fν can be
expressed as a Taylor expansion:

fν(z) =
∞∑

n=1

(−1)n+1 zn

nν
. (4.94)

Substituting this expansion into the middle equation of (4.93) and setting

z =
∞∑

l=1

aly
l , y =

Nλ3

gsV
,

we see that

y =
∑

l

aly
l − 1

23/2

∑
l,l′

alal′y
l+l′ +

1
33/2

∑
l,l′,l′′

alal′al′′y
l+l′+l′′ + . . .

= a1y +
(

a2 − a2
1

23/2

)
y2 +

(
a3 − 2a1a2

23/2 +
a3
1

33/2

)
y3 + . . . .

This gives the first expansion coefficients of z:

a1 = 1 , a2 =
1

23/2 , a3 =
1
4

− 1
33/2 .

Inserting this into the last equation of (4.93), we find a virial expansion of
the form

E(T, V,N) =
3
2
NkT

∞∑
l=1

bl

(
Nλ3

gsV

)l−1

,

with the first few coefficients

b1 = 1 , b2 =
1

25/2 , b3 =
1
8

− 2
35/2 .

If we disregard all but the first term, we rediscover the caloric equation of
state (4.30) of the ideal classical gas, whereas taking into account the first
two terms leads back to Theorem 4.19.

Totally degenerate Fermi gas: T = 0 ⇐⇒ z → ∞. In the case of the to-
tally degenerate Fermi gas, the expansion (4.94) does not converge. However,
here we can use the fact that the distribution function is step-like:

fFD(ε, 0, µ) =
1

1
z eε/kT + 1

=

{
1 for ε ≤ µ0

0 for ε > µ0

}
, µ0 = µ(T = 0) = EF .

With this, we calculate

N = CNR

EF∫
0

dε
√

ε =
2
3
CNRE

3/2
F =

4πgsV (2m)3/2

3h3 E
3/2
F .
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For the Fermi energy or the chemical potential, we find

EF = µ0 =
h2

2m

(
3N

4πgsV

)2/3

.

The ground-state energy follows as

E = CNR

EF∫
0

dεε3/2 =
2
5
CNRE

5/2
F =

4πgsV (2m)3/2

5h3 E
5/2
F .

Theorem 4.20: Totally degenerate Fermi gas

For the totally degenerate Fermi gas, the average energy (ground-state en-
ergy) is given by

E(T = 0, V, N) =
3
5
NEF .

Due to Pauli’s exclusion principle, not all particles are in the ground state.
Rather, all states below the Fermi energy

EF =
h2

2m

(
3N

4πgsV

)2/3

are occupied.

The case T = 0 is of practical interest since for many quantum statistical sys-
tems, typical excitation temperatures are far above the normal system tem-
peratures, so that those systems are quite well described by their properties
at zero temperature. Typical values for Fermi temperatures TF = EF/k are
0.3 K in fluid 3He, 5 · 104 K for conductive electrons in simple metals, 3 · 109

K in white dwarfs, and 3 · 1012 K in neutron stars.

Degenerate Fermi gas: 0 < T 	 TF ⇐⇒ z � 1. As before, for a degener-
ate Fermi gas, the expansion (4.94) does not converge. However, we already
know that the distribution function fFD varies only slowly with the energy,
with the exception of the small range around ε ≈ µ. In other words: ∂fFD/∂ε
has a sharp maximum around ε = µ,

∂fFD

∂ε

∣∣∣∣
ε=µ

= − 1
4kT

,

and is very close to a δ-function. Consider, therefore, the function

F (ε) =

ε∫
0

dε′g(ε′) .

With this and using partial integration, we find that the average particle
number evaluates to
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N =

∞∫
0

dεfFD(ε)F ′(ε) = −
∞∫
0

dεf ′
FD(ε)F (ε) .

Expansion of F (ε) around µ,

F (ε) = F (µ) + F ′(µ)(ε − µ) +
1
2
F ′′(µ)(ε − µ)2 + . . . ,

gives

N = I0F (µ) + I1F
′(µ) + I2F

′′(µ) + . . . ,

with

I0 = −
∞∫
0

dεf ′
FD(ε) , I1 = −

∞∫
0

dε(ε − µ)f ′
FD(ε)

I2 = −1
2

∞∫
0

dε(ε − µ)2f ′
FD(ε) .

Since we are only considering low temperatures, we can move the lower in-
tegration limits of I0, I1, and I2 to −∞. Then, I0 is one, and I1 vanishes as
(ε − µ)f ′

FD(ε) is an odd function in x = β(ε − µ). We are left with

I2 =
1

2β2

∞∫
−∞

dx
x2ex

(ex + 1)2
=

π2

6β2 ,

so that

N = F (µ) +
π2

6β2 F ′′(µ) + . . . =

µ∫
0

dεg(ε) +
π2

6β2 g′(µ) + . . . ≈
EF∫
0

dεg(ε)

=⇒ g(µ)(EF − µ) ≈ π2

6β2 g′(µ) .

With g(ε) = CNR
√

ε, we finally see that

µ(T ) ≈ EF

2
+

√
E2

F

4
− π2

12β2 ≈ EF

(
1 − π2

12β2E2
F

)
.

The average energy is

E =

∞∫
0

dεεfFD(ε)g(ε) ≈
µ∫

0

dεεg(ε) +
π2

6β2

[
d
dε

εg(ε)
]

ε=µ

≈
EF∫
0

dεεg(ε) +

µ∫
EF

dεεg(ε) +
π2

4β2 g(EF)
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≈ 3
5
NEF + (µ − EF)EFg(EF) +

π2

4β2 g(EF)

≈ 3
5
NEF +

π2

6β2 g(EF) =
3
5
NEF

[
1 +

5π2

12

(
kT

EF

)2
]

.

Theorem 4.21: Degenerate Fermi gas

For T 	 TF = EF/k, we have the following correction to the ground-state
energy:

E(T, V,N) =
3
5
NEF

[
1 +

5π2

12

(
kT

EF

)2

+ . . .

]
.

The specific heat is

CV (T, V,N) =
(

∂E

∂T

)
V

=
Nkπ2

2
T

TF
,

which is much smaller than the classical specific heat CV = 3Nk/2.

According to (4.61) and Theorem 4.18, the entropy of the degenerate gas is
given by

S =
1
T

(E − F ) =
1
T

(
5
3
E − µN

)
=

Nkπ2

2
T

TF
.

Contrary to the entropy of the classical gas [see (4.32) in Application 56], this
is in agreement with the third law of thermodynamics: T → 0 =⇒ S → 0.

Before finishing this subsection, we note that the above-presented expan-
sion of

∞∫
0

dεfFD(ε)g(ε)

can be generalized for z � 1 and, following Sommerfeld, results in the fol-
lowing expansions of fν(z) in ln z:

f5/2(z) =
8

15
√

π
(ln z)5/2

[
1 +

5π2

8
(ln z)−2 + . . .

]

f3/2(z) =
4

3
√

π
(ln z)3/2

[
1 +

π2

8
(ln z)−2 + . . .

]

f1/2(z) =
2√
π

(ln z)1/2
[
1 − π2

24
(ln z)−2 + . . .

]
.

Generally, only the first few terms need be considered, as the ratio of two
subsequent terms is of the order of (kT/µ)2.
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4.7.3 Ideal Bose Gas

We now discuss the ideal Bose gas and proceed analogously to the preceding
subsection. Our starting points are the sums for lnY , E, and N given in
Theorem 4.17 and the integrals (4.89), in conjunction with the Bose-Einstein
(BE) distribution function

fBE(ε, T, µ) =
1

1
z eβε − 1

and the nonrelativistic energy density

g(ε) = CNR
√

ε , CNR =
2πgsV (2m)3/2

h3 .

Since nk =
(
eβ(Ek−µ) − 1

)−1 ≥ 0, the Bose gas obeys

µ ≤ Ek
E0=0=⇒ µ ≤ 0 , 0 < z ≤ 1

at all temperatures. The occupation number of the ground state is

n0 =
z

1 − z

and can grow arbitrarily large, in contrast to that of the Fermi gas. Clearly,
this is not taken into account when naively replacing the sums of Theorem
4.17 by the integrals of (4.89) since the energy density g(ε) vanishes for ε = 0
and this would result in a zero weighting of the ground state. Let us instead
split off the ground state from the sums and approximate only the remaining
expressions by integrals:

lnY = −
∫

dεg(ε) ln
(
1 − ze−βε

) − ln(1 − z)

N =
∫

dεf(ε, T, µ)g(ε) + N0 , N0 = n0 =
z

1 − z

E =
∫

dεεf(ε, T, µ)g(ε) .

Note that in the classical limit z 	 1, N0 can be disregarded, whereas for
z ≈ 1, this term contributes significantly. However, the term − ln(1 − z) =
ln(1+N0) is at most of the order of O(lnN) and can therefore be dropped for
all values 0 < z ≤ 1. As before, we now substitute x = βE in these integrals
and use partial integration. This gives the bosonic expressions corresponding
to (4.93):

lnY (T, V, µ) =
gsV

λ3 g5/2(z)

N(T, V, µ) =
gsV

λ3 g3/2(z) + N0

E(T, V, µ) =
3
2

gsV

λ3β
g5/2(z)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, λ =
(

h2

2πmkT

)1/2

, (4.95)
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with the Bose-Einstein functions

gν(z) =
1

Γ (ν)

∞∫
0

xν−1dx
1
z ex − 1

, zg′
ν(z) = gν−1(z) . (4.96)

Classical limit: T � 0 ⇐⇒ z 	 1. For small z, we can use the expansion

gν(z) =
∞∑

n=1

zn

nν
.

With its help, the middle equation of (4.95) can be expanded in z as in the
fermionic case and, on insertion into the last equation of (4.95), yields the
virial expansion

E(T, V,N) =
3
2
NkT

∞∑
l=1

bl

(
Nλ3

gsV

)l−1

, (4.97)

with the coefficients

b1 = 1 , b2 = − 1
25/2 , b3 =

1
8

− 2
35/2 .

The specific heat is

CV (T, V,N) =
(

∂E

∂T

)
N,V

=
3
2
Nk

∞∑
l=1

5 − 3l

2
bl

(
Nλ3

gsV

)l−1

,

which, for T → ∞, converges to its classical value of CV = 3Nk/2 as ex-
pected. Note that the second term in the expansion is positive, so that for
large but finite temperatures the specific heat is larger than its classical value.
On the other hand, we already know that CV must go to zero for T → 0.
We therefore conclude that there must exist a critical temperature Tc, for
which CV is maximal. As it turns out, the derivative of the specific heat with
respect to the temperature is divergent at this point, which indicates a phase
transition of second order.

Bose-Einstein condensation: T small ⇐⇒ z ≈ 1. For small temperatures,
the expansion (4.97) is no longer valid. In this case, we rewrite the middle
equation of (4.95) as

N = Nε + N0 , Nε =
gsV

λ3 g3/2(z) ,

where N0 and Nε denote the number of particles in the ground state and in
excited states, respectively. Since the function g3/2(z) grows monotonically
in the interval 0 < z ≤ 1, the number of excited states is restricted to the
range

0 ≤ Nε ≤ Nmax
ε =

gsV

λ3 g3/2(1) , g3/2(1) = 2.612 .

Therefore, for the two special cases z < 1 and z = 1, we can conclude:
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Theorem 4.22: Bose-Einstein condensation

Depending on the fugacity z, the ideal Bose gas exhibits the following
behavior:

• For z < 1, the term N0 = z/(1 − z) does not contribute in the thermo-
dynamic limit, and the fugacity is obtained from

N ≈ Nε =
gsV

λ3 g3/2(z) .

This means that all particles are in excited states.

• For z = 1, the number N0 can be arbitrarily large and contributes sig-
nificantly to the total number of particles. We then have

N > Nmax
ε =

gsV

λ3 g3/2(1) . (4.98)

In this case, not all particles can be in excited states. Rather,
N0 = N − Nmax

ε particles condensate into the ground state.

Now we wish to study the phenomenon of Bose-Einstein condensation in more
detail. According to (4.98), the condition for condensation to occur for a sys-
tem with a constant number of particles and constant volume is given by

T < Tc =
h2

2πmk

(
N

gsV g3/2(1)

)2/3

.

In general, for temperatures T < Tc, the system will consist of a mixture of
both phases since we have

Nε

N
=

⎧⎪⎪⎨
⎪⎪⎩

1 for T ≥ Tc(
T

Tc

)3/2

for T < Tc

N0

N
=

⎧⎪⎪⎨
⎪⎪⎩

0 for T ≥ Tc

1 −
(

T

Tc

)3/2

for T < Tc .

These relations are shown in Fig. 4.13. If we use the first equation in (4.95),
the pressure is calculated as

P (T, V,N) =
kT

V
lnY =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

NkT

V

g5/2(z)
g3/2(z)

for T > Tc

NkTc

V

g5/2(1)
g3/2(1)

≈ 0.5134
NkTc

V
for T = Tc

gskT

λ3 g5/2(1) for T < Tc ,
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N0
N

Nε
N

T
Tc1

1

0
Fig. 4.13. Comparison of the numbers of bosonic ground states and excited states
as a function of the temperature.

where we have used that for T ≥ Tc

N0 ≈ 0 =⇒ Nλ3

gsV
= g3/2(z) . (4.99)

We see that at the critical point, the pressure is only half the size of that
of the classical gas. Furthermore, below Tc, the pressure is independent of
N and V . This is due to the fact that particles in the ground state do not
contribute to the pressure at all. Next, we turn to the specific heat. Using

E = kT 2
(

∂ lnY

∂T

)
z,V

=
3
2
kT

gsV

λ3 g5/2(z) ,

we find
CV

Nk
=

1
Nk

(
∂E

∂T

)
N,V

.

For T < Tc, z = 1, independently of T . We obtain

CV

Nk
=

3
2

gsV

N
g5/2(1)

d
dT

(
T

λ3

)
=

15
4

gsV

Nλ3 g5/2(1) ∼ T 3/2 .

On the other hand, for T ≥ Tc, z is temperature-dependent. In this case,
using (4.96) and (4.99), we find

CV

Nk
=

3
2

gsV

N

d
dT

(
T

λ3 g5/2(z)
)

=
15
4

gsV

Nλ3 g5/2(z) +
3
2

gsV

N

T

λ3 g′
5/2(z)

dz

dT

=
15
4

g5/2(z)
g3/2(z)

+
3
2

T

z

dz

dT
.

The derivative dz/dT can be converted into

dz

dT

1
z
g1/2(z) =

dz

dT
g′
3/2(z) =

dz

dT

dg3/2

dT

dT

dz
=

d
dT

(
Nλ3

gsV

)
= − 3

2T
g3/2(z)

so that overall
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CV

Nk
=

15
4

g5/2(z)
g3/2(z)

− 9
4

g3/2(z)
g1/2(z)

.

From this, the classical limit (z → 0 , T � Tc) is found to be

CV = Nk

(
15
4

− 9
4

)
=

3
2
Nk .

At the critical point (z → 1 , T = Tc), the function g1/2 diverges, so that the
specific heat is given by

CV =
15
4

g5/2(1)
g3/2(1)

Nk = 1.925Nk .

This is significantly larger than the value of the classical ideal Boltzmann gas
(CV = 3Nk/2). Note that CV , but not dCV /dT , is continuous at the critical
point.

Summary

• In contrast to Maxwell-Boltzmann statistics, quantum statistics takes
into account the fermionic or bosonic character of particles.

• In quantum statistics, the occupation number formalism turns out
to be very useful for systems of noninteracting particles. Here, the N -
particle quantum state is specified by the occupation numbers of all pos-
sible one-particle states. This formalism yields relatively simple relations
for the grand canonical partition function, the average energy, as well as
the average particle number. For some specific cases, such as the classical
limit (large T ) and the purely quantum case (small T ), we can eliminate
the fugacity from these formulae.

• For an ideal Fermi gas, Pauli’s exclusion principle implies that even
at absolute zero temperature not all particles are in the ground state.
Rather, all states with energy smaller than the Fermi energy are occu-
pied.

• An ideal Bose gas exhibits Bose-Einstein condensation at small
temperatures. This is due to the fact that excited states can only be
occupied by a limited number of particles, so that all remaining particles
are forced to condensate into the ground state.

Applications

66. Ideal photon gas. Calculate the free energy, the entropy, the energy,
and the pressure of an ideal photon gas.
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Solution. Photons are massless spin-1 particles and are therefore described
by Bose-Einstein statistics. For these particles, the ultrarelativistic momen-
tum-energy relation

ε = c|p| = h̄ω , p = h̄k , ω = c|k|
holds, where ω denotes the frequency, and k is the wave vector of the light
particles. Since photons can be absorbed and emitted by atoms, the total
number of photons is not constant, so that µ = 0. The free energy is therefore

F = µN − PV = −PV .

On the other hand, using Theorem 4.17, we also have

PV = kT lnY = −kT
∑

k

ln
(
1 − eβEk

)
,

where the sum is taken over all possible wave vectors k. Using the ultrarela-
tivistic energy density

gUR(ε) = CURε2 , CUR =
4πgsV

c3h3 ,

we can write the sum as an integral:

F = kT

∞∫
0

dεg(ε) ln
(
1 − e−βε

)
= kT

8πV

c3h3

∞∫
0

dεε2 ln
(
1 − e−βε

)
.

Here, the degeneracy factor gs is two (rather than three as for other spin-
1 particles) due to the transversality of the electromagnetic field. Partially
integrating and substituting x = βε, we find

F (T, V ) = − (kT )4V
3π2h̄3c3

∞∫
0

dxx3

ex − 1︸ ︷︷ ︸
π4/15

= −4σ

3c
V T 4 , σ =

π2k4

60h̄3c2
,

where σ is also called the Boltzmann constant. From the free energy, we obtain
the other quantities as

P (T, V ) = −
(

∂F

∂V

)
T

= P (T ) =
4σ

3c
T 4 (Boltzmann law)

S(T, V ) = −
(

∂F

∂T

)
V

=
16σ

3c
V T 3

E(T, V ) = F + TS =
4σ

c
V T 4 = 3PV .

67. Ideal phonon gas. Calculate the specific heat of a solid in a model
where the movement of the atoms around their equilibrium positions is de-
scribed by quantized harmonic oscillations.
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Solution. We need to describe N atoms of a crystalline solid. In the har-
monic approximation, the movement of the atoms around their equilibria
is given by a Taylor expansion of the potential energy up to and includ-
ing the quadratic term. Since the linear term vanishes at equilibrium, the
classical Hamilton function of the system consists of a constant ground-
state energy, the kinetic energy T = m

2

∑3N
i=1 ẋ2

i and the potential energy
V =

∑3N
i,j=1 Aijxixj . As we have seen in Application 7 in Section 1.2, this

type of Hamilton function can always be transformed to normal form, so that
the normal coordinates represent the normal vibrations of the lattice. These
normal coordinates of the 3N decoupled linear harmonic oscillators can be
formally quantized. The quantized lattice vibrations called phonons can be
interpreted as an ideal ultrarelativistic Bose gas with the energy density

gUR(ε) = CURε2 , CUR =
12πV

c3h3 , ε = h̄ω (gs = 3) .

Since phonons can be created in any number, their chemical potential is zero,
and thus z = 1.

Einstein model. We initially calculate the specific heat in the Einstein ap-
proximation, in which the 3N oscillators are independent and have identical
frequency ωE. We have encountered this type of problem before in Subsection
4.6.3. According to (4.79), the energy of our system is given by

E =
3Nh̄ωE

2 tanh
(

βh̄ωE
2

) .

The specific heat is therefore

CV =
(

∂E

∂T

)
V

=
3Nh̄2ω2

E

kT 2

eβh̄ωE

(eβh̄ωE − 1)2
= 3Nk

x2ex

(ex − 1)2
,

with

x =
h̄ωE

kT
.

For large temperatures, x 	 1, we find

CV = 3Nk (Dulong and Petit’s law).

For small temperatures, x � 1, it follows that

CV = 3Nkx2e−x .

Whereas the high-temperature result is verified experimentally, one observes
a T 3-behavior for small temperatures, which is not explained in the simple
Einstein model.
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Debye model. In the Debye model, the single Einstein frequency ωE is re-
placed by a continuous spectrum of oscillation modes. They can be calculated
in a similar manner as the photon spectrum. The number of modes in the
frequency interval [ω : ω + dω] is given by

gUR(ω)dω =
12πV

c3 ω2dω .

The maximal frequency (Debye frequency) ωD can be obtained from
ωD∫
0

g(ω)dω = 3N

as

ω3
D =

3Nc3

4πV
.

This takes into account the fact that oscillations on the lattice are not possible
with wavelengths smaller than the lattice constant. Such a constraint did not
apply to the phonon gas. According to Theorem 4.17, the average energy is

E(T, V ) =
∑

k

h̄ωk

eβh̄ωk − 1
.

In the limit V → ∞, this can be written as an integral,

E(T, V ) =

ωD∫
0

dωgUR(ω)
h̄ω

eβh̄ω − 1
= 3NkTD(xD) , xD = βh̄ωD ,

where

D(xD) =
3

x3
D

xD∫
0

dx
x3

ex − 1
=

⎧⎪⎪⎨
⎪⎪⎩

1 − 3xD

8
+

x2
D

20
+ . . . for xD 	 1

π4

5x3
D

+ O (
e−xD

)
for xD � 1

denotes the Debye function. Using

xD =
h̄ωD

kT
=

TD

T
, TD =

h̄ωD

k
,

we find the energy

E = 3NkTD(xD) = 3NkT

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 3
8

TD

T
+

1
20

(
TD

T

)2

+ · · · for T � TD

π4

5

(
T

TD

)3

+ O
(
e−TD/T

)
for T 	 TD

and the specific heat
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CV

Nk
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3 − 3
20

(
TD

T

)2

+ · · · for T � TD

12π4

5

(
T

TD

)3

+ O(e−TD/T ) for T 	 TD .

Thus, the Debye model is indeed capable of explaining the T 3-behavior of
the specific heat at small temperatures.



Appendix A. Mathematical Appendix

This appendix recapitulates some basic mathematical relations from analy-
sis and vector analysis frequently used in this book. Throughout, we apply
minimal mathematical stringency in order to allow the reader to quickly find
relevant formulae.

A.1 Vector Operations

Vector operators. In Cartesian representation with canonical orthonormal
basis {ex, ey, ez}, the three-dimensional vector operations gradient, diver-
gence, and rotation (or curl) are defined as

Gradient: ∇ψ = ex
∂ψ

∂x
+ ey

∂ψ

∂y
+ ez

∂ψ

∂z

Divergence: ∇A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

Curl: ∇ × A = ex

(
∂Az

∂y
− ∂Ay

∂z

)
+ ey

(
∂Ax

∂z
− ∂Az

∂x

)
+ ez

(
∂Ay

∂x
− ∂Ax

∂y

)
,

where A = Ax(x, y, z)ex +Ay(x, y, z)ey +Az(x, y, z)ez denotes a vector field
and ψ = ψ(x, y, z) a scalar field. If the Cartesian coordinates depend on
cylindrical coordinates through (Fig. A.1, right)

x = r cos ϕ , y = r sin ϕ , z = z ,

it holds that
∂

∂x
= cos ϕ

∂

∂r
− sin ϕ

r

∂

∂ϕ

∂

∂y
= sinϕ

∂

∂r
+

cos ϕ

r

∂

∂ϕ

∂

∂z
=

∂

∂z
.

In the case of a dependency on spherical coordinates,
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. .
x

y

z

θ

ϕ

r

x

y

z

z

ϕ

r

Fig. A.1. Relationship between Cartesian and spherical coordinates (left) and be-
tween Cartesian and cylindrical coordinates (right).

x = r cos ϕ sin θ , y = r sin ϕ sin θ , z = r cos θ ,

we have (Fig. A.1, left)

∂

∂x
= cos ϕ sin θ

∂

∂r
− sin ϕ

r sin θ

∂

∂ϕ
+

cos ϕ cos θ

r

∂

∂θ

∂

∂y
= sinϕ sin θ

∂

∂r
+

cos ϕ

r sin θ

∂

∂ϕ
+

sin ϕ cos θ

r

∂

∂θ

∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
.

The corresponding equations for gradient, divergence, and curl in other basis
systems, for example, the spherical basis {er, eθ, eϕ} or the cylindrical basis
{er, eϕ, ez}, are not used in this book and hence not discussed here.

Frequently used formulae of vector calculus and analysis are

A(B × C) = B(C × A) = C(A × B)
A × (B × C) = B(AC) − C(AB)

(A × B)(C × D) = (AC)(BD) − (AD)(BC)
∇ × ∇ψ = 0

∇(∇ × A) = 0
∇ × (∇ × A) = ∇(∇A) − ∇2A

∇(ψφ) = ψ∇φ + φ∇ψ

∇(ψA) = ψ∇A + A∇ψ

∇ × (ψA) = ψ∇ × A − A × ∇ψ

∇(A × B) = B(∇ × A) − A(∇ × B)
∇ × (A × B) = (B∇)A − B(∇A) − (A∇)B + A(∇B)

∇(AB) = (B∇)A + B × (∇ × A) + (A∇)B + A × (∇ × B).
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A.2 Integral Theorems

Gauss’s law. Let A(x) be a vector field and V a volume with a closed
surface F , whose normal dF = dFn is perpendicularly directed outward at
each surface point. Then,∫

V

dV ∇A =
∮
F

dFA .

In particular, for A = cψ or A = c × B, c = const, it follows that∫
V

dV ∇ψ =
∮
F

dFψ ,

∫
V

dV ∇ × B =
∮
F

dF × B .

Stokes’s law. Let A(x) be a vector field and C a closed curve with a directed
circulation (curve element: dl), over which a regular surface F with oriented
normal dF = dFn is spanned. Then,∫

F

dF∇ × A =
∮
C

dlA .

Replacing A by cψ or c × B leads to∫
F

dF × ∇ψ =
∮
C

dlψ ,

∫
F

(dF × ∇) × B =
∮
C

dl × B .

Here, the orientation of F must be chosen such that the direction of circula-
tion of C forms a right screw with the normal n of F (Fig. A.2).

n

C

F

Fig. A.2. A curve C with directed circulation, over which a surface F is spanned.

First Green identity. Setting A = φ∇ψ, it follows from ∇(φ∇ψ) =
φ∇2ψ + ∇φ∇ψ and Gauss’s theorem∫

V

dV (φ∇2ψ + ∇φ∇ψ) =
∮

dFφ∇ψ . (A.1)
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Second Green identity. Writing (A.1) again with φ and ψ interchanged,
and then subtracting this equation from (A.1), yields∫

V

dV (φ∇2ψ − ψ∇2φ) =
∮
F

dF (φ∇ψ − ψ∇φ) . (A.2)

A.3 Partial Differential Quotients

Total differentials. In the following, we consider a function f(x, y) of the
variables x and y, which is at least twice differentiable, so that

∂2f

∂x∂y
=

∂2f

∂y∂x
(A.3)

(the extension to more than two variables is unproblematic). The differential
df is called the total differential of f if

df = f(x + dx, y + dy) − f(x, y) =
(

∂f

∂x

)
y

dx +
(

∂f

∂y

)
x

dy .

Obviously, this expression is equivalent to the path independency of line
integrals over df ,

(x2,y2)∫
(x1, y1)

C1

df =

(x2,y2)∫
(x1, y1)

C2

df ⇐⇒
∮

df = 0 ,

since after summing over the differences df , only the values at the endpoints
remain. Due to (A.3), for any expression

df = A(x, y)dx + B(x, y)dy ,

it follows the forward direction of the statement

df is total differential ⇐⇒
(

∂A

∂y

)
x

=
(

∂B

∂x

)
y

.

The reverse direction can be shown with the help of Stokes’s law:

∮
C

df =
∮
C

dlV =
∫
F

dF∇ × V =
∫
F

dF

⎛
⎝ 0

0
∂B
∂x − ∂A

∂y

⎞
⎠ ,

with

dl = dxex + dyey , V = Aex + Bey .
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Transformation of partial differential quotients. From

df =
(

∂f

∂x

)
y

dx +
(

∂f

∂y

)
x

dy ,

we can derive some useful relations between differential quotients. For exam-
ple, holding the variable y fixed (dy = 0), it follows that(

∂f

∂x

)
y

=
(

∂x

∂f

)−1

y

.

If f is held fixed (df = 0), we obtain(
∂f

∂y

)
x

= −
(

∂f

∂x

)
y

(
∂x

∂y

)
f

. (A.4)

Using this relation, fixed and free variables can be exchanged among one
another. Turning to another variable, e.g., y → g(x, y), we find from

df =
(

∂f

∂x

)
g

dx +
(

∂f

∂g

)
x

[(
∂g

∂x

)
y

dx +
(

∂g

∂y

)
x

dy

]
(A.5)

that for dy = 0(
∂f

∂x

)
y

=
(

∂f

∂x

)
g

+
(

∂f

∂g

)
x

(
∂g

∂x

)
y

.

This equation is used to choose a new fixed variable. For dx = 0, we obtain
from (A.5) the partial version of the chain rule:(

∂f

∂y

)
x

=
(

∂f

∂g

)
x

(
∂g

∂y

)
x

. (A.6)

Furthermore, due to (A.4) and (A.6), we have(
∂f

∂g

)
x

(
∂g

∂f

)
y

=
(

∂f

∂x

)
g

(
∂x

∂g

)
f

(
∂g

∂y

)
f

(
∂y

∂f

)
g

=
(

∂x

∂y

)
f

(
∂y

∂x

)
g

.

With this, the pairs of variables (f, g) and (x, y) can be exchanged.

A.4 Complete Function Systems, Fourier Analysis

Let {gn(x), n = 0, 1, 2, . . .} be a complete, real, or complex discrete function
system, which is orthonormal with respect to the scalar product

〈gi, gj〉 =

a+2L∫
a

dxgi(x)g∗
j (x)
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within the interval [a : a + 2L], i.e., 〈gi, gj〉 = δij . Assume further, a function
f possesses the following properties:

• f and f ′ are piecewise continuous within [a : a + 2L].

• f has a finite number of finite steps.

• f is periodic: f(x) = f(x + 2L).

Then, f can be expanded as

f(x) =
∑

n

angn(x) , an = 〈f, gn〉 =

a+2L∫
a

dxf(x)g∗
n(x) .

Fourier series. The complex functions

gn(x) =
1√
2L

exp
(

inπ

L
x

)
, n = 0,±1,±2 . . .

form a complete orthonormal system in the above sense. Using these func-
tions, the series expansion (Fourier series) of a function f reads

f(x) =
1√
2L

∞∑
n=−∞

an exp
(

inπ

L
x

)
,

with

an =
1√
2L

a+2L∫
a

dxf(x) exp
(

− inπ

L
x

)
.

In particular, we have for the δ-function

δ(x − x′) =
∞∑

n=−∞

exp(ikn(x − x′))
2L

, kn =
nπ

L
. (A.7)

Fourier integrals. Enlarging the periodicity interval to infinity, L → ∞,
(A.7) turns into

δ(x − x′) =

∞∫
−∞

dk
exp(ik(x − x′))

2π
=

∞∫
−∞

dk
exp(ikx)√

2π

(
exp(ikx′)√

2π

)∗
,

or, due to the symmetry in k and x,

δ(k − k′) =

∞∫
−∞

dx
exp(ikx)√

2π

(
exp(ik′x)√

2π

)∗
.

Obviously, the functions

g(k, x) =
exp(ikx)√

2π
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form a complete continuous function system normalized to the δ-function.
Therefore, the Fourier integral expansion for an arbitrary function f reads

f(x) =

∞∫
−∞

dx′δ(x − x′)f(x′) =

∞∫
−∞

dkg(k, x)

∞∫
−∞

dx′f(x′)g(k, x′)∗

=
1√
2π

∞∫
−∞

dka(k) exp(ikx) ,

with

a(k) =
1√
2π

∞∫
−∞

dxf(x) exp(−ikx) .

The generalization to n dimensions is

f(x) =
1

(2π)n/2

∫
dnka(k) exp(ikx) , x =

⎛
⎜⎝ x1

...
xn

⎞
⎟⎠ , k =

⎛
⎜⎝ k1

...
kn

⎞
⎟⎠

a(k) =
1

(2π)n/2

∫
dnxf(x) exp(−ikx) .

A.5 Bessel Functions, Spherical Bessel Functions

Bessel functions. The Bessel differential equation is given by[
d2

dx2 +
1
x

d
dx

+
(

1 − m2

x2

)]
f(x) = 0 , m ∈ R .

Its solutions are the Bessel functions Jm and J−m, with

Jm(x) =
(x

2

)m ∞∑
i=0

(−1)i

i!Γ (m + i + 1)

(x

2

)2i

.

If m is an integer, it holds that

Jm(x) =
(x

2

)m ∞∑
i=0

(−1)i

i!(m + i)!

(x

2

)2i

, J−m(x) = (−1)mJm(x) .

Spherical Bessel functions. The spherical Bessel differential equation
reads[

d2

dx2 +
2
x

d
dx

+ 1 − l(l + 1)
x2

]
f(x) = 0 , l = 0, 1, 2, . . . .

Its solutions are given by the spherical Bessel functions jl, nl (the latter are
also called Neumann functions) and therefore also the Hankel functions h

(±)
l :
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jl(x) =
( π

2x

)1/2
Jl+1/2(x)

nl(x) = (−1)l
( π

2x

)1/2
J−l−1/2(x)

h
(±)
l (x) = nl(x) ± ijl(x) .

Their explicit forms are

jl(x) = Rl(x)
sin x

x
+ Sl(x)

cos x

x

nl(x) = Rl(x)
cos x

x
− Sl(x)

sin x

x

h
(±)
l (x) = [Rl(x) ± iSl(x)]

e±ix

x
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A.8)

with

Rl(x) + iSl(x) =
l∑

s=0

is−l

2ss!
(l + s)!
(l − s)!

x−s , Rl, Sl ∈ R .

Rl and Sl are polynomials in 1/x of order l with real coefficients and parity
(−1)l and −(−1)l, respectively. For any linear combination fl = ajl + bnl,
a, b fixed, we have the recursion formulae

(2l + 1)fl(x) = x [fl+1(x) + fl−1(x)] (A.9)

fl−1 =
[

d
dx

+
l + 1

x

]
fl =

1
xl+1

d
dx

(
xl+1fl

)
fl =

[
− d

dx
+

l − 1
x

]
fl−1 = −xl−1 d

dx

(
fl−1

xl−1

)
,

which implies that

fl =

[
xl

(
− 1

x

d
dx

)l
]

f0 .

From (A.8), the first spherical functions are obtained as

j0(x) =
sin x

x
, j1(x) =

sin x

x2 − cos x

x

n0(x) =
cos x

x
, n1(x) =

cos x

x2 +
sin x

x

h
(±)
0 (x) =

e±ix

x
, h

(±)
1 (x) =

(
1
x2 ∓ i

x

)
e±ix

x
.
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A.6 Legendre Functions, Legendre Polynomials,
Spherical Harmonics

Legendre functions. The Legendre differential equation reads[
(1 − x2)

d2

dx2 − 2x
d
dx

+ l(l + 1) − m2

1 − x2

]
f(x) = 0 ,

with l = 0, 1, 2, . . ., m = 0, . . . ,±l. Its limited solutions within the interval
[−1 : 1] are the Legendre functions

Pl,m(x) =
(1 − x2)m/2

2ll!
dl+m

dxl+m
(x2 − 1)l . (A.10)

Pl,m is the product of (1−x)m/2 with a polynomial of order l−m and parity
(−1)l−m, which has l − m zeros within the interval [−1 : 1]. We have the
following recursion formulae (P−1,... = 0):

(2l + 1)xPl,m = (l + 1 − m)Pl+1,m + (l + m)Pl−1,m (A.11)

(1 − x2)
d
dx

Pl,m = −lxPl,m + (l + m)Pl−1,m

= (l + 1)xPl,m − (l + 1 − m)Pl+1,m

as well as the orthonormality relations
1∫

−1

dxPl,m(x)Pl′,m(x) =
2

2l + 1
(l + m)!
(l − m)!

δll′ .

Legendre polynomials. In the case of m = 0, we obtain the Legendre
polynomials from (A.10) as

Pl(x) = Pl,0(x) =
1

2ll!
dl

dxl
(x2 − 1)l .

Pl is a polynomial of order l with parity (−1)l and possesses l zeros within the
interval [−1 : 1]. The Legendre polynomials can be obtained by expanding
the functions (1 − 2xy + y2)−1/2 in powers of y:

1√
1 − 2xy + y2

=
∞∑

l=0

ylPl(x) , |y| < 1 . (A.12)

The first five Legendre polynomials read

P0(x) = 1 , P1(x) = x , P2(x) =
1
2
(3x2 − 1)

P3(x) =
1
2
(5x3 − 3x) , P4(x) =

1
8
(35x4 − 30x2 + 3) .
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Spherical harmonics. The spherical harmonics Yl,m are defined as the
eigenfunctions of the quantum mechanical angular momentum operators L2

and Lz:

L2Yl,m = h̄2l(l + 1)Yl,m , l = 0, 1, 2, . . .

LzYl,m = h̄mYl,m , m = 0, . . . ,±l .

Their explicit forms are given by

Yl,m(θ, ϕ) =
(−1)l

2ll!

√
(2l + 1)!

4π

√
(l + m)!

(2l)!(l − m)!

×eimϕ sin−m θ
dl−m

d(cos θ)l−m
sin2l θ .

They form a complete orthonormal function system on the unit circle. This
means the following orthonormality and completeness relations hold:∫

Y ∗
l,mYl′,m′dΩ =

2π∫
0

dϕ

π∫
0

dθ sin θY ∗
l,m(θ, ϕ)Yl′,m′(θ, ϕ) = δll′δmm′

∞∑
l=0

l∑
m=−l

Y ∗
l,m(θ, ϕ)Yl,m(θ′, ϕ′) =

δ(ϕ − ϕ′)δ(cos θ − cos θ′)
sin θ

= δ(Ω − Ω′).

Further properties are

• Parity:

Yl,m(π − θ, ϕ + π) = (−1)lYl,m(θ, ϕ) .

• Complex conjugation:

Y ∗
l,m(θ, ϕ) = (−1)mYl,−m(θ, ϕ) . (A.13)

• Relationship with Legendre functions:

Yl,m(θ, ϕ) =

√
2l + 1

4π

(l − m)!
(l + m)!

Pl,m(cos θ)eimϕ , m ≥ 0 . (A.14)

• Addition theorem: using

x = r

⎛
⎝ cos ϕ sin θ

sin ϕ sin θ
cos θ

⎞
⎠ , x′ = r′

⎛
⎝ cos ϕ′ sin θ′

sin ϕ′ sin θ′

cos θ′

⎞
⎠

and

xx′ = rr′ cos α , cos α = sin θ sin θ′ cos(ϕ − ϕ′) + cos θ cos θ′ ,

it follows that
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Pl(cos α) =
4π

2l + 1

l∑
m=−l

Y ∗
l,m(θ′, ϕ′)Yl,m(θ, ϕ) .

From this and respecting (A.12), we obtain

1
|x − x′| =

1

r

√
1 − 2 r′

r cos α +
(

r′
r

)2
=

1
r

∞∑
l=0

(
r′

r

)l

Pl(cos α)

=
∞∑

l=0

l∑
m=−l

4π

2l + 1
r′l

rl+1 Y ∗
l,m(θ′, ϕ′)Yl,m(θ, ϕ) . (A.15)

The first spherical harmonics are

Y0,0(θ, ϕ) =
1√
4π

, Y1,1(θ, ϕ) = −
√

3
8π

eiϕ sin θ

Y1,0(θ, ϕ) =

√
3
4π

cos θ , Y2,2(θ, ϕ) =

√
15
32π

e2iϕ sin2 θ sin θ cos θ

Y2,1(θ, ϕ) = −
√

15
8π

eiϕ , Y2,0(θ, ϕ) =

√
5

16π

(
3 cos2 θ − 1

)
.
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[8] F. Scheck: Mechanics, Springer, 2004.

A very nice and comprehensive book. In addition to the material covered
here, this volume gives a readable introduction to the geometric aspects of
mechanics as well as to the topics of stability and chaos. As Scheck says:
“Mechanics is in no way a closed and archived topic.”

[9] L. Hand and J. Finch: Analytical Mechanics, Cambridge University
Press, 1998.

A good introductory alternative to Goldstein, which also covers chaos theory
at a basic level.

[10] H. Iro: A Modern Approach to Classical Mechanics, World Scientific,
2003.
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way to the KAM theorem.
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Yet another good introductory text that covers similar material to Gold-
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[12] J.D. Jackson: Classical Electrodynamics, Wiley and Sons, 1999.

One of the classics of this topic, which will have to be in any physicist’s
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[13] J.R. Oppenheimer: Lectures on Electrodynamics, Gordon and Breach
Science Publishers, 1970.

These are lecture notes from lectures given by Oppenheimer between 1939
and 1947 in the United States. Its structure is similar to our second chapter,
as Maxwell’s equations are the starting point of the book. This allows Op-
penheimer to move very swiftly to a discussion of more complex problems of
electrodynamics (such as the self-energy of the electron). The second part of
the book deals with relativity and discusses electrodynamics in this context.

[14] D. Griffiths: Introduction to Electrodynamics, Prentice Hall, 1998.

Very readable and didactic introduction for the undergraduate.

[15] J. Schwinger: Classical Electrodynamics, Perseus Books, 1998.
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An advanced textbook – probably not the place to start with electrodynamics,
but if you’ve got a good grounding, this makes for interesting reading.

[16] L.H. Ryder: Quantum Field Theory, Cambridge University Press, 1996.

For the reader wishing to make the transition from classical theories to
modern quantum field theories, we suggest this book. Our discussion of the
Noether theorem follows Ryder.

B.4 Quantum Mechanics

[17] S. Gasiorowicz: Quantum Physics, Wiley and Sons, 2003.

A very nice introduction to quantum mechanics. The mathematical com-
plexity is kept to a minimum. Quantum mechanical principles are discussed
mainly in the context of wave mechanics; at relevant sections, the algebraic
structure of quantum theory is explained. The emphasis of this book lies in
the many examples and applications.

[18] D. Griffiths: Introduction to Quantum Mechanics, Prentice Hall, 2004.

Very readable and didactic introduction for the undergraduate.

[19] D. Bohm: Quantum Theory, Dover Publications, 1989.

A classic. Very didactic and also contains an extensive discussion of measure-
ment theory.

[20] E.S. Abers: Quantum Mechanics, Prentice Hall, 2003.

A recent textbook that is very comprehensive. Can be used to go all the way
from an introduction to an advanced level.

[21] A. Messiah: Quantum Mechanics, Volumes 1–2, Dover Publications,
2000.

This is a two-in-one reprint of one of the most comprehensive classics of the
quantum theory literature. The first part starts with a phenomenologically
based motivation of wave mechanics. The author then moves the text onto
a more abstract level revealing in a didactic manner more and more of the
representation-independent algebraic structure of quantum physics. The sec-
ond part contains many worked standard examples of quantum mechanics.
There is also an extensive discussion of symmetry principles and approxima-
tion schemes. Finally, the author discusses relativistic quantum theory at a
fairly high mathematical level.

[22] J.J. Sakurai: Modern Quantum Mechanics, Addison-Wesley, 1993.
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This book contains a modern presentation of quantum mechanics. Sakurai
explains clearly the symmetry principles, which also form the foundation
of modern quantum field theories. A book for the slightly more advanced
reader.

[23] P.A.M. Dirac: The Principles of Quantum Mechanics, Oxford University
Press, 1982.

It’s never a bad idea to go back to the originals.

[24] R. Shankar: Principles of Quantum Mechanics, Plenum Press, 1994.

A didactically very pleasing book. We borrowed from it the idea of having an
introductory section on mathematical aspects of quantum mechanics using
Dirac’s notation. It also contains a nice introduction to the path integral
method, which the author considers mandatory for an introductory text on
quantum mechanics.

[25] A. Sudbery: Quantum Mechanics and the Particles of Nature, Cambridge
University Press, 1989.

This book has the subtitle An outline for mathematicians. However, we nev-
ertheless (or maybe: because of this) find this book very recommendable for
physicists. The principles of quantum mechanics are explained using an ax-
iomatic approach and whenever possible, Sudbery uses symmetry principles
to simplify calculations. For example, the Runge-Lenz vector is used to cal-
culate the spectrum of the hydrogen atom. Sudbery also has a discussion of
quantum meta-physics.

B.5 Statistical Physics and Thermodynamics

[26] B.K. Agarwal, M. Eisner: Statistical Mechanics, Wiley and Sons, 1988.

In only 260 pages the authors manage to present clearly the concepts of
Gibbs statistical mechanics. Thermodynamics is not a separate chapter, but is
embedded throughout in the text. We liked the early introduction of quantum
statistics.

[27] D. ter Haar: Elements of Statistical Mechanics, Butterworth-Heineman,
1995.

Very well-motivated introduction to statistical physics using the Gibbs ansatz.
Also contains a detailed discussion of the Boltzmann H-theorem.

[28] D. ter Haar, H. Wergeland: Elements of Thermodynamics, Addison-
Wesley, 1966.

A very clear text on the principles of thermodynamics.

[29] K. Huang: Statistical Mechanics, Wiley and Sons, 1987.
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A three-part textbook (thermodynamics, statistical physics, and special
themes), where the last part goes beyond our content. One of the classics,
which has been of great help to us.

[30] J. Kestin, J.R. Dorfman: A Course in Statistical and Thermodynamics,
Academic Press, 1971.

A very nice introductory text. Contains thermodynamics and statistical
physics for noninteracting systems. The relevant quantum mechanics is also
presented.

[31] R. Kubo et al.: Statistical Mechanics, an Advanced Course with Problems
and Solutions, North Holland Publishing Company, 1988.

Each chapter consists of a short presentation of the most important results,
followed by an extensive collection of examples and solutions. All of the stan-
dard problems are solved here. Obviously good for students.

[32] R.K. Pathria: Statistical Mechanics, Butterworth-Heineman, 1996.

About the same content and structure as Huang’s book and equally well
readable. One of the books we liked best.

[33] F. Reif: Fundamentals of Statistical and Thermal Physics, Mc-Graw Hill,
New York, 1965.

Quite extensive and didactic discussion of all the topics we treat. Very well-
suited to get started on statistical physics.

[34] H.S. Robertson: Statistical Thermophysics, Prentice Hall, 1993.

The author chooses Shannon’s information theory as the starting point for
his discussion of Gibbs’s ensemble theory. Criticisms of this approach are
discussed. The book contains many examples, nicely presented, which are
not necessarily part of the standard repertoire.
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abbreviated action functional 57
absolute time 16
accessible microstate 384
actio=reactio 6
action functional 35
– abbreviated 57
action quantum, Planck’s 246
adiabatic compressibility 437
adjoint operator 235
adjunction 235
advanced potential 136
Aharanov-Bohm effect 317
Ampère 124
Ampère’s law 118
angular momentum 10, 20, 64
– of rotational movement 66
– quantum mechanical 284, 287
angular momentum conservation 10,

35, 84
angular momentum law 21
angular velocity, momentary 14
anomalous Zeeman effect 330
anti-Hermitean operator 235
anticommutator 252
approximation, harmonic 486
– quasi-static 119, 184

Bertrand’s theorem 78
Bessel differential equation 215, 495
– spherical 302, 495
Bessel function 215, 495
– spherical 302, 495
Biot Savart’s law 163
Bohm-Aharanov effect 317
Bohr’s magneton 458
Bohr’s radius 164, 308
Boltzmann constant 398, 485
Boltzmann equation 398
Boltzmann factor 410
Boltzmann law 485
Boltzmann’s H-function 422, 428

Boltzmann’s H-theorem 428
Born approximation 365, 369
Born interpretation of quantum

mechanics 267
Born series 364
Bose gas 480
Bose-Einstein condensation 482
Bose-Einstein statistics 354, 449, 467,

470
boson 354, 374, 467
bra vector 230
brachystochrone 41
Breit-Wigner equation 371
Brewster angle 206
Brillouin function 461

canonical conjugation 50, 252
canonical ensemble 392, 410, 426
canonical equations 48
canonical partition function 408
canonical transformation 52
– infinitesimal 54
capacity 184
Carnot cycle 444
causality principle 26, 101
cavity resonator 214
center of mass 19
– of wave packet 270
center of mass coordinate 73, 298
center of mass law 21, 35
center of mass momentum 299
center of mass motion 73, 86, 299
center of mass system 20, 87, 89, 373
centrally symmetric potential 11
centrifugal barrier 75, 371
centrifugal force 15
centripetal force 17
change of representation 240
characteristic function, Hamilton’s 57
charge 125
charge conservation 116
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charge density 115, 120
– macroscopic 189
– oscillating 158
– static 162
charge, electric 115, 117
– magnetic 126
chemical potential 402
classical electron radius 164
Clausius’s form of the second

thermodyn. law 442
Clebsch-Gordan coefficient 292
commutator 52, 234
commutator algebra 284
commuting observable 238
compatible observable 251
completeness relation 3, 231
compressibility, adiabatic 437
– isothermic 413, 437
Compton effect 111
conjugation 230
– canonical 50, 252
conservative force 9
constraining force 28
– generalized 32
constraint 27
continuity equation 116, 319
– Lorentz-invariant 141
– macroscopic 190
contravariance 96
Cooper pairs 317
Cooper’s theory 317
coordinate representation 259, 260,

263
coordinate system 3
– accelerated 15
– body-fixed 13, 63
– rotating 4, 13
– space-fixed 13, 63
coordinate wave function 260
coordinate, cyclic 49
Coriolis force 15
correction energy 325
correspondence principle 52, 95, 246,

248, 309
Coulomb 125
Coulomb gauge 129
Coulomb law 163
Coulomb potential 76, 129, 305
Coulomb scattering 365
coupling constant 223
covariance 96, 102
cross section 85
– differential 85, 87, 89, 373

– total 86, 369
Curie’s law 461
current conservation 221, 273
current density 115, 120
– longitudinal 130
– macroscopic 189
– oscillating 158
– static 162
– transverse 130
current, electric 119
– Noether’s 221
cycle, Carnot’s 444
cyclic coordinate 49
cycloid 42

d’Alembert operator 141
d’Alembert’s principle 29, 38
De Broglie relation 263
Debye frequency 487
Debye function 487
Debye model 487
degeneracy 236
– in hydrogen atom 307
density operator 387, 388
derivative, gauge-covariant 224
deviation moment 65
diamagnetic 193
dielectric 192
dielectric constant 124, 192
– generalized 210
differential cross section 85, 87, 89,

364, 373
differential quotient 493
differential, total 492
dipole approximation 157, 344
dipole moment, electric 158, 166, 190
– magnetic 168, 169, 190, 313
Dirac picture 258
Dirichlet boundary condition 174
dispersion parameter 208
dispersion relation 199, 207, 210
dispersive medium 206
displacement current, Maxwell’s 118
displacement, electric 190
– virtual 28
dissipative medium 207
distinguishable particles 352
distribution function 472
– Bose-Einstein’s 480
– Fermi-Dirac’s 474
dual field strength tensor 143
dual Hilbert space 230
Dulong and Petit’s law 486
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eccentricity 77
effective motion 73
effective potential 74, 371
efficiency 442
– ideal 443
Ehrenfest equation 264
Ehrenfest theorem 257
eigenfrequency 46, 215
eigenoscillation 46, 215
eigentime differential 103
eigenvalue 46, 67, 236
eigenvalue problem 46, 212, 236, 237
eigenvalue spectrum 212, 236
eigenvector 46, 67, 236
Einstein model 486
Einstein’s summation convention 96
electric charge 115, 117
electric current 119
electric dipole moment 158, 166, 190
electric displacement 190
electric field 115
– macroscopic 189
– static 162
electric flux 117
electric induction 117, 190
electric monopole moment 166
electric quadrupole moment 166
electric screening 172
electric susceptibility 192
electromotive force 117
electrostatic field energy 163
electrostatics 162
energy 20, 434
– free 429, 434
– inner 431
– kinetic 8, 64
– of rotational movement 66
– potential 9
– relativistic 105
energy conservation 9, 35, 50, 83, 86
– relativistic 105
energy current density 121
– time-averaged 123
energy density 121
– time-averaged 123
energy law 21
energy law of electrodynamics 121,

146
energy-momentum tensor 219
ensemble 383
– canonical 392, 410, 426
– generalized grand canonical 425
– grand canonical 414, 426

– microcanonical 392, 396, 427
ensemble average 385, 387
ensemble theory 383
enthalpy 434
– free 434
entropy 398
– Shannon’s 421
entropy law 399, 425, 431
– Shannon’s 423
equilibrium 45
– local 399
– stable 440
– statistical 383
– thermodynamic 430, 439
equilibrium principle of statics 29
equilibrium system 380
equipartition theorem 451
ergodic hypothesis 383
ESU 125
ether 95
Euler angles 68
Euler equations 67
Euler-Lagrange equation 37
exchange process 400
– irreversible 431
– reversible 401, 431
exclusion principle, Pauli’s 355
expansion coefficient 436
expectation value 251, 387
extended phase space 50
extensive quantity 398

far zone 158
Faraday cage 172
Faraday’s induction law 117
– generalized 148
Fermi energy 477
Fermi gas 477, 479
Fermi temperature 477
Fermi’s golden rule 341
Fermi-Dirac statistics 354, 449, 466,

470
fermion 354, 374, 466
ferroelectric 192
ferromagnetic 193
field energy, electrostatic 163
field strength tensor 143
– dual 143
fine structure constant 305
fine structure splitting 330
flux, electric 117
– magnetic 118, 316
force 6
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– conservative 9
– electromotive 117
– external 19
– generalized 29, 401
– inner 19
– relativistic 104
– thermodynamic 435
Foucault’s pendulum 16
four-force 104
four-momentum 104
four-vector 96
– light-like 101
– space-like 102
– time-like 102
four-velocity 103
Fourier integral 494
Fourier series 494
free energy 410, 429, 434
free enthalpy 434
frequency 201
Fresnel formula 205, 206
friction coefficient 23
fugacity 412
fundamental form, Gibbs’s 427, 432

Galilei invariance 16
Galilei transformation 16
gas, ideal 403, 406, 416
– quantum statistical 471
gauge function 131
gauge invariance 129, 131
– of Schrödinger equation 314
gauge potential 224
gauge principle 224
gauge transformation 39, 129, 314
– global 222
– local 223
– restricted 131
gauge, transverse 129
gauge-covariant derivative 224
Gauss system 124
Gauss’s law 117, 491
general relativity 7
generalized constraining force 32
generalized force 29, 401
generalized grand canonical ensemble

425
generalized grand canonical partition

function 425
generalized momentum 47
generalized potential 32
generalized velocity 28
Gibbs factor 396, 406, 467

Gibbs paradox 406
Gibbs’s fundamental form 427, 432
Gibbs-Duhem relation 435
global gauge transformation 222
golden rule, Fermi’s 341
grand canonical ensemble 392, 414,

426
grand canonical partition function

412, 470
grand canonical potential 414, 429,

434
gravitational acceleration 82
gravitational constant 7, 80
gravitational force 7, 80, 82
Green function 25, 133, 172, 363
– retarded 135
Green identity 491, 492
group velocity 207, 208
gyromagnetic ratio 319, 458

Hamilton density 219
Hamilton equations 48
Hamilton operator 248, 254
Hamilton’s characteristic function 57
Hamilton’s principal function 57
Hamilton’s principle 36, 38
Hamilton-Jacobi equation 57
Hankel function 302, 495
harmonic approximation 486
harmonic oscillator 23, 25
– Maxwell-Boltzmann statistics 393,

452–455
– quantum mechanical 278, 310
heat 431
– specific 409
heat capacity, isobaric 436
– isochore 436
heat exchange 400
heat law, Nernst’s 432
heat machine 442
– ideal 444
heat pump 444
heavy mass 7
Heisenberg equation 256
Heisenberg picture 256
Heisenberg’s uncertainty principle

252, 271
– for energy and time 257
helicity 201, 342
helium atom 333
Helmholtz’s integration law 119
Hermitean operator 235, 247
Hilbert space 230, 247, 261, 355
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– dual 230
Hilbert vector 229, 230
– improper 231, 237
hollow conductor 211
homogeneity of space-time 33, 95
homogeneous potential 11
Hooke’s law 23
hydrogen atom 305, 310, 325
hyperfine splitting 332
hysteresis 192

ideal gas 403, 406, 416
– adiabatic expansion 448
– quantum statistical 471
ideal heat machine 444
ideal measurement 250
ideal spin system 458, 460, 462
identical particles 354
impact parameter 83
improper Hilbert vector 231
induced transition 335
induction law, Faraday’s 117, 148
induction, electric 117, 190
– magnetic 119
inertial law 6
inertial mass 7
inertial moment 65
inertial system 5, 16
inertial tensor 65
influenced charge 176, 178
inner energy 431
integrability condition, Maxwell’s 425
integration law, Helmholtz’s 119
intensive quantity 398
interaction picture 257, 337
interference, quantum mechanical

246, 386
inversion 460
ionization 350
ionization rate, total 351
irreversible state change 431
isobaric heat capacity 436
isochore heat capacity 436
isothermic compressibility 413, 437
isotropy of space 34, 95

Jacobi identity 51
Joule 8

Kelvin 398
Kelvin’s form of the second thermodyn.

law 442
Kepler’s laws 78
ket vector 229

kilogram 5
kinetic energy 8, 64
kinetic theory 380
Klein-Gordon equation 222

laboratory system 89, 373
Lagrange density 217
– of electromagnetic field 218
Lagrange equation 31, 38, 218
Lagrange function 31
– Lorentz-invariant 108
– relativistic 106
Lagrange multiplier 30, 32
Laguerre polynomial 307
Lamb shift 330
Laplace equation 172
– in spherical coordinates 178
Larmor formula 154
laws of thermodynamics 431
Le Chatelier principle 441
Legendre differential equation 177,

497
Legendre function 177, 497
Legendre polynomial 178, 497
length 5
length contraction 100
Lenz’s law 117
Levi-Civita symbol 142
Liénard-Wiechert potential 151
light cone 101
lightelectric effect 349
linear force 15
Liouville’s equation 390
local equilibrium 399
local gauge transformation 223
Lorentz boost 98
Lorentz contravariance 96
Lorentz covariance 96, 102
Lorentz force 32, 115, 145
– macroscopic 191
Lorentz gauge 130
Lorentz group 98
Lorentz invariance 102
Lorentz scalar 102
Lorentz tensor (field) 139, 140
Lorentz transformation 97
lowering operator 279, 286

macrostates 382
magnetic charge 126
magnetic dipole moment 168, 169,

190, 313
magnetic field 115
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– macroscopic 189
– static 162
magnetic flux 118
– quantized 316
magnetic induction 119
magnetic monopole 118, 126
magnetic monopole moment 168
magnetic quantum number 288
magnetic screening 198
magnetic susceptibility 192
magnetization 190
magnetostatics 162
mass 5
– heavy 7
– inertial 7
– reduced 73
– relativistic 104
mass defect 106, 111
mass point 3
mass shell condition 106
master equation 428
mathematical pendulum 16, 43, 71
Maxwell equations 115
– Lorentz-covariant 142
– macroscopic 189
– static 162
Maxwell relation 435
Maxwell’s displacement current 118
Maxwell’s integrability condition 425
Maxwell’s stress tensor 123, 146
Maxwell’s velocity distribution 418
Maxwell-Boltzmann statistics 449,

469, 470
measurement, quantum mechanical

249, 388
– ideal 250
mechanical energy exchange 400
mechanical state 5
Meissner effect 316
meta-stable state 371
meter 5
metric tensor 97
microcanonical ensemble 392, 396, 427
microcanonical partition function

396, 398
microstate 382
Minkowski space 96
mirror charge 175
mixed state 248, 386
MKS(A)-system 4, 124
momentary angular velocity 14
momentary rest system 103, 110
momentary rotation axis 14

momentum 5, 19, 64
– generalized 47
– quantum mechanical 260, 262
– relativistic 104
momentum conservation 35, 49
momentum density 122
momentum law 21
momentum law of electrodynamics

122, 146
momentum representation 261–263
momentum uncertainty 273
momentum wave function 262
monochromatic wave 199
monopole moment, electric 166
– magnetic 168
monopole, magnetic 118, 126
motion, effective 73
multipole expansion 166, 167, 182

near zone 159
negative temperature 459
Nernst’s heat law 432
Neumann boundary condition 174
von Neumann equation 391
Neumann function 495
Newton’s axioms 6
Newton’s equation of motion 6, 7
– in accelerated systems 15
Noether current 221
Noether’s theorem 221
norm conservation 254
normal mode 45
normal Zeeman effect 313
null-energy state 378

observable 238, 247
– commuting 238
– compatible 251
– complete set 251
occupation number formalism 467
occupation number operator 279, 468
octupole moment 166
Oersted’s law 118
Ohm’s law 210
operator, linear 233
– adjoint 235
– anti-Hermitean 235
– Hermitean 235, 247
– unitary 235
optical theorem 368
orbital quantum number 288
orthonormality relation 3, 238
oscillation 23, 43, 46, 69
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oscillator, harmonic 23, 25
– Maxwell-Boltzmann statistics 393,

452–455
– quantum mechanical 278, 310

paraelectric 192
paramagnetic 193
paramagnetism 458, 460, 462
parity operator 268
partial wave amplitude 370
partial wave decomposition 368
particle 3
– distinguishable 352
– identical 354
particle current density 363
particle operator 468
partition function 425
– canonical 408
– generalized grand canonical 425
– grand canonical 412, 470
– microcanonical 396, 398
Pauli matrices 290
Pauli’s exclusion principle 355
pendulum, Foucault’s 16
– mathematical 16, 43, 71
– physical 69
penetration depth 210
perihelion precession 90
periodic perturbation 341
permeability constant 124, 192
perpetuum mobile 441
perturbation 322, 324, 339
– periodic 341
perturbation theory, time-dependent

339
– time-independent 324
phase space 48, 50, 382
– extended 50
– of photons 342
phase space density 397
phase space trajectory 383
phase space volume 397
phase transition 481
phase velocity 200
phonon gas 485
photoelectric effect 245
photon 111, 342
photon gas 484
physical pendulum 69
Planck’s action quantum 246
Poincaré group 98
point charge 151, 152, 156, 161
Poisson bracket 51

Poisson equation 129
– static 163
Poisson theorem 51
polarization 190, 342
– circular 201
– elliptical 200
– linear 201
– parallel 205
– perpendicular 204
position uncertainty 273
postulate of a priori random phases

394
postulates of quantum mechanics 247
– of statistical physics 383
potential 9
– advanced 136
– centrally symmetric 11
– effective 74, 371
– generalized 32
– grand canonical 414, 429, 434
– homogeneous 11
– retarded 135
– rotationally symmetric 11
– thermodynamic 434, 439
potential energy 9
potential equation 128, 131
– Lorentz-covariant 142
– static 163
power 8
Poynting theorem 121
Poynting vector 121
pressure 402
pressure coefficient 436
principal axis 66
principal axis system 67
principal axis transformation 47, 66
principal function, Hamilton’s 57
principal inertial moment 66
principal quantum number 306
probability amplitude 339
probability density, statistical 385
– quantum mechanical 250, 353
probability, statistical 385, 387
– quantum mechanical 248, 250, 265,

353, 356
projection operator 231, 232, 242
projection postulate 250
pseudo forces 15
pure state 248, 386

quadrupole moment, electric 166
quantization 245
quantum electrodynamics 164, 330,

342
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quantum mechanical state 247
quantum number, magnetic 288
quasi-static approximation 119, 184
quasi-static state change 430

radial equation of motion 75
radial momentum 300
radial Schrödinger equation 301, 305
radiation loss 156
radiation power 156
radiation zone 158
radius, Bohr’s 164, 308
– classical (of electron) 164
raising operator 279, 286
reduced mass 73, 299
reflection coefficient 272
reflection law 203
refraction index 199
– generalized 210
refraction law 203
refrigerator 444
relative coordinate 73, 298
relative momentum 299
relative motion 73, 86, 299
relativity principle 95
relaxation time 383
representation, change of 240
resonance energy 369
resonance scattering 369
resonance width 371
rest mass 104
rest system, momentary 103, 110
restricted gauge transformation 131
retarded Green function 135
retarded potential 135, 151
retarded time 135, 151
reversible exchange process 401
reversible state change 430
rosetta trajectory 18
rotation axis, momentary 14
rotation center 62
rotationally symmetric potential 11
Runge-Lenz vector 77
Rutherford scattering 93, 366

Sackur-Tetrode equation 405
saturation 461
scalar potential 128
– static 162
scale transformation 12
scattering amplitude 362, 368
scattering angle 84
scattering phase 368

scattering phase analysis 368
scattering resonance 371
Schottky effect 460
Schrödinger equation 248, 253, 267,

297
– radial 301, 305
– time-independent 254, 268, 297
Schrödinger picture 249, 253
screening factor 366
screening, electric 172
– magnetic 198
second 5
selection rule 325, 346
self-energy problem 163
self-inductivity 185
separation work 246
Shannon entropy 421
Shannon’s entropy law 423
SI-system 4
singlet 375
Slater determinant 357
space-time homogeneity 33, 95
specific heat 409
spherical harmonic 287, 303, 498
spin 289, 295
spin system, ideal 458, 460, 462
spin-orbit coupling 293
spin-orbit interaction 328
spin-spin coupling 294
spin-spin interaction 332
spinor 289, 296
spontaneous transition 335
spring constant 23
stable equilibrium 440
standing wave 214
Stark effect 325
state change 430
– adiabatic 431
– irreversible 431
– isentropic 431
– isobaric 431
– isochore 431
– isothermic 431
– quasi-static 430
– reversible 430
state equation 430
– caloric 430
– of ideal quantum gas 471, 474
– thermic 430
state reduction 249, 250
state, mixed 248, 386
– mechanical 5
– meta-stable 371
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– pure 248, 386
– quantum mechanical 247
– thermodynamic 430
– virtual 378
stationary solution 255
statistical ensemble 383
statistical equilibrium 383
statistical postulates 383
Steiner’s theorem 66
Stern-Gerlach experiment 317
Stokes’s law 491
stress tensor, Maxwell’s 123, 146
summation convention, Einstein’s 96
superposition principle 6, 120, 200,

230, 248
susceptibility 192
symmetrization rule 354
symmetry transformation 33

TE-wave 212, 215
telegraph equation 210
TEM-wave 212
temperature 400
– negative 459
temperature scale 433
temporal evolution operator 253
tensor product 232
tensor space 232
term scheme 307
thermic exchange 400
thermodynamic equilibrium 430
thermodynamic force 435
thermodynamic laws 431
thermodynamic limit 380
thermodynamic potential 434, 439
thermometer 407
Thomas precession 329
time 5
– absolute 16
– retarded 135, 151
time dilation 100
time-dependent perturbation theory

339
time-independent perturbation theory

324
time-ordering operator 254
TM-wave 212, 215
torque 10, 20, 64
– of rotational movement 66
total cross section 86, 369
total differential 492
total ionization rate 351
total reflection 203, 213

transition amplitude 337, 339
transition probability 341
transition rate 341, 343
transition, induced 335
– spontaneous 335
translational force 15
transmission coefficient 272
transverse gauge 129
transverse wave 199
triplet 375
tunnel effect 272
twin paradox 109

uncertainty principle, Heisenberg’s
252, 271

– for energy and time 257
unit operator 231
unitary operator 235

variational calculus 36, 37
vector potential 128
– static 162
velocity 5
– generalized 28
– relativistic 100, 103
virial 451
virial theorem 11, 451
virtual displacement 28
virtual state 378
virtual work 29
voltage 117

Watt 8
wave equation 124, 130
– homogeneous 133
– inhomogeneous 135
– macroscopic 199
wave frequency 201
wave function, quantum mechanical

260, 262
wave packet 207, 208, 270
– center of mass 270
– scattering 273, 362
wave vector 201, 263
wave, electromagnetic 199
– plane 303
– quantum mechanical 246
– standing 214
– transverse 199
wave-particle duality 245
– statistical interpretation 246
wavelength 201
work 8, 431
– virtual 29
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Yukawa potential 365

Zeeman effect, anomalous 330
– normal 313
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