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PREFACE

Inr this book we have tried to present a concise swnmary of most of the material
covered in an undergraduate program in physics. Each topic is developed from
fundamental principles and then applied to the solution of illustrative problems.
These problems are of the type used by American graduate schools in their
comprehensive physics examinations and in the Graduate Record Examination.
"This book should therefore be especially uselul to someone who is preparing for
such a comprehensive examination. We hope it will also be uselul to students who
are currently in an undergraduate physics program, and to engineers and
scientists who are interested in more advanced treatments of subjects they
encountered in their introductory physics courses.

We have tried to make our presentation as self-contained as possible. Of
course, each of our chapters is too brief to he considered as a replacement for a
monograph or textbook on its subject. However, if the goal is a review of a wide
variety of physical ideas and applications in a reasonable amount of time, then
brevity is necessary. Furthermore, by treating different subject arcas of physics
within the same volume, we have emphasized the important basic ideas that are
common to these different areas. T'his makes the review process more efficient
and deepens our appreciation of the unity of physics.

We believe that a book of this sort is most useful if its size and cost are both
kept reasonably small." We have therefore included very little factual material
of the kind that would be covered in introductory courses in atomic, nuclear, or
solid-state physics. This factual material is an important component of a physics
education, but it is not easily summarized. Moreover, in the interest of brevity
we have assumed that the reader has a good understanding of vector algebra and
calculus, and of the elementary properties of differential equations.

Most of this text uses the cgs Gaussian system of units. This is the system
used in most graduate-level work in physics and in most of the research
literature. Of course, the physical description of any system should be
independent of units. Thus, a student who prefers to work in a different system
of units should be able to transcribe all our expressions into his or her units with
no change in essential physical content.



vi

Preface

The idea for this book developed out of an informal seminar offered during
the past ten years to help first-year physics graduate students at the University
of Minnesota prepare for our Graduate Written Examination. Most of our
illustrative examples are taken from previous Univeisity of l\lﬁnnesota: examina-
tions. We have also included problems {rom the comprechensive examinations
given at several other universities.
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CHAPTER 1

Books that attempt to survey all of physics traditionally begin with classical
mechanics. There are several good reasons for following this tradition. Most of
our physical intuition is based on mechanical medels, most of the important
concepts of physics have their simplest realization in mechanical systems, and the
newer ideas of relativity and quantum mechanics are perhaps best appreciated in
terms of their contrast with the views of classical mechanics.

" 1.1 NEWTON'S SECOND LAW OF MOTION

If the force f acts on a point particle of mass nt, then

dp dv d'r (1.12)
= e = g Jda
dt dt dt*
Here p and v are the momentum and velocity of the particle relative to an
inertial frame of reference, and r is a vector from a fixed point 0 in that frame of
reference (o the location of the particle. From (1.1a) we can derive

dv
'T=r><f=mr><?=}l—t(mr><v)
d dl
= "{E(l' X ]}) = 7! (1“))

T is the torque on the particle and [ = r X p is its angular momentum, both
defined relative to the point 0.

Now consider a system of particles. The lorce f; on particle / can be written
as

=14+ Y {(joni) (1.2)
FEd)

f7* is the external force on particle 7, and I( j on #) is the force on particle i due
to particle j. Newton’s third law of motion asserts that

f(joni)= —1(i onj) (1.3)
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If we now sum (1.1a) and (1.1b) over all the particles and use (1.2) and (1.3), we

find that
d

d
PS5 = Tp= P

(1.4a)
dt

d d

TE;T:‘=E ili=Ele
The derivation of (1.4b) also requires that we assume that f( j on ) is directed
along the line joining particles 7 and j. Both the total torque 7 and the total
angular momentum L, ., in (1.4b) must be defined with respect to the‘ same
point. This point may be any point fixed in an inertial frame of r-eferenf:e (i.e., at
rest in such a frame or moving with uniform velocity relative to it), or it may be
the point that moves with the mass center of the system,! located at

Zmiri Em:‘ri
=t = 1.5
Ren Z’".‘ M (1.5)

(1.4b)

fot

Usually we need to relate P, and L, to the motion of the system. For P,
we have

" odr, d

d d
--—l = — - = —R
P, = ZP-’ = Zi:m;‘ & di ;mr'ri dt(fum:RcM) M, g oM

(1.6a)

The relationship between angular momentum and angular vel_ocity -is more
complicated. It is discussed in Section 1.8 below. Our present conSId-eratlons will
be limited to uniform rigid bodies rotating about an axis F:lbOUt which the body
has rotational symmetry, or an axis which. is perpendicular to a plane of
reflection symmetry, In these cases we can write

L=1]w

Here w is the angular speed of the body (in radians per unit time), and [ is the
moment of inertia of the body about the rotation axis, defined by

(1.6b)

(L.7)

The integration goes over every mass element dm of the body, and s is the

W = fdmsz

perpendicular distance of the mass element dm from the rotation axis. Equations -

(1.4) and (1.6) can be combined to yield

ﬂ'JVCI.IVI dERCM (l 83)
F= A/Itul_;;;_- - leun e
2
'T=Ifi=ff"€‘ (1.8b)
di dt®

where w = d8/di. We purposely avoid writing (1.8b) as a vector equation since 1t .

applies only to the case of rotation about a principal axis {see Section 1.8).

YAnother valid (but lesy useful) choice is any point accelerating toward ar away [rom the mass center,
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1.2 SOME COMMONLY ENCOUNTERED FORCES

FIGURE 1.1 The gravitational
__forca on m, is that of a point
‘Particle of mass m, located
@l the center of the sphere.
The total mass within the

‘Uotted sphere of radius r Is

1.2.1 Friction —

Suppose that an object is in contact with a surface. The force that the surface
exerts on the object can be resolved into a perpendicular component N and a
tangential component f. If the object slides along the surface, it is often a good
approximation to assume that the magnitudes of f and N are related by

f= N (I.Qa)

f; is called the coefficient of kinetic or sliding friction. The direction of f is
usually assumed to be opposite to the velocity of the object relative to the surface.
If the object is at rest on the surface the value of f depends on the other forces
acting, but cannot exceed a critical value given by

fsuN (1.9b)

#i, is called the coefficient of static friction. The values of g, and p ; are usually
assumed to depend only on the nature of the surfaces in contact, and to be
independent of the area of contact and the magnitude of N. If a problem refers
to a “smooth” surface, this implies that p, = p, = 0 = , so that the force that
such a surface exerts on an object is exactly perpendicular to the surface.

1.2.2 Gravitation
The gravitational force on a point mass m,; due to another point mass m, is

(ry = 1) r 7
7 = —Gmm,— = —Gmm,—;
. 2

F(onlduc I Gmlmg 3

(1.10)

where G is the fundamental gravitational constant and r is the vector from mass
my to mass m;. We can also use (1.10) to find the force on a point mass m, due to
a spherically symmetric mass distribution. In this case r is the vector to m, from the
center of the continuous mass distribution, and m, is the total mass within a
distance r from the center (see Figure 1.1). In particular, if m, is wholly outside
the continuous distribution, m, is the total spherical mass.

Now suppose the continuous mass distribution is the earth (assumed spheri-
cal), and we want the gravitational force on a point particle m, slightly above its
surface. Then r points from the center of the earth, so an observer near the
particle would say that the force on m, is vertically downward. If the height of
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FIGURE 1.2 Three springs

suspanded from a ceiling: (a)
the unstretched spring; (b)
mass m in equilibrium under
the combined forces of grav-
Ity and the spring; and {(c)
the mass displaced a dis-
iance x from equilibrium.

-

the particle above the earth is small compared to the radius of the earth, (1.10)
becomes

Gm,
R 3

4

F= —m,( )?= —m, gt = mg (1.11)
Thus, we can describe the gravitational field near t})le surfat:t? of the ear'th as
uniform, of magnitude g (= 32.2 ft/s* = 9.8 m/s%) and.dlrec:ced vertu':ally
downward. The total gravitational force and torque on a finite object are given
by

F,,, = [dng =g [dn= Mg (1.12a)

Tgl‘:w =f[' X dmg = (fdmr) b4 g =AC[IDIRC|\4! )4 g
= Reu X(Mm:g) = Rgy X Fgmv (1.12b)

Equation (1.12b) shows that we get the correct value of the gravit-ational torque
on an object if we assume that the entire gravitational force (weight) a:cts'at a
single point of the object, its mass center. This implies t!mt the gr_av.ltatlon-al
torque on an object, defined with respect to its mass center, is zero. This is true in
general only for a uniform gravitational field.

1.2.3 Hooke’s Law Springs

Suppose that a Hooke’s law (or ideal) spring has an unstretched leng:ch i, and
spring constant 4. If the spring is stretched or compressed to length / it exerts a
restoring force of magnitude

F=Fkl-1 (1.13)

Now consider the situation shown in Figure 1.2. Since the mass in Figure 1.25 is
in equilibrium, the upward [orce due to the spring must equal the downward

Py W?W%W
=
é S - |
c = =
) B S -
] B i =]
o tog S
: 5 2
5 2
S S
p
5

n

ia) (b} fel

PROBLEM 1.2.1

PROBLEM 1.2.2
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force due to gravity. Thus,
(I ~1)—mg=0

In Figure 1.2¢ the mass m has been given an additional upward displacement x,
sa that the length of the spring is now / — x. The upward force due to the spring
is now &(/ — x — /) while the downward gravitational force is still mg. Thus, the
net upward force on the mass is

F=k{l—x~1,}—mg= —kx - (1.14)

The minus sign in —Av implies that an upward displacement of the mass results
in a downward net force on the mass, and vice versa. We see that & governs the

restoring force for oscillations about equilibrium, The equation of motion of the
mass is

O F =i = —ky {1.15a)

whose general solution

. TR
x(t)y=4 sin( V — 1+ ¢
m

describes oscillations about equilibrium (x = 0), with constant amplitude 4 and
initial phase ¢. 4 and ¢ depend on the initial conditions under which the mass j
set into oscillation. The circular frequency

. (A, ¢, constants) {1.15h)

k
w= 1 — (1.15¢)
m
depends only on the materials of which the system is made, In particular, it is
independent of the amplitude of the oscillations.

A heavy object, when placed on a rubber pad that is to be used as a shock
absorber, compresses the pad by 1 cm. If the ohject is given a vertical tap, it will
oscillate. Ignoring the damping, estimate the oscillation frequency.

Let £ be the spring constant of the rubber, and let X, (=1 em) be the
equilibrium displacement. At equilibrium the upward force on the object is kv,
and the downward force is mg. Thus, kv, = mg, k= mg/x,. The circular
frequency of small oscillations about equilibrium is w = Jh/m = ve/x,

= y980/1 rad/s. Thus, the frequency is (1 /27 )y/980 cycles/s = 4,98 Hz.

An automobile, with nobody inside, has a mass of 1000 kg, and has ground
clearance 18 cm. After four persons with total mass 300 kg get into the car, the
ground clearance is only 12 em, They drive off. At what speed will the car, with
its four passengers, bounce in resonance while moving along a road that is
straight, level, and smooth, except for a transverse tar patch every 15 m? For
simplicity assume that the shock absorbers are ineffective, and also that the fore
and aft suspensions have the same bouncing frequency.

Adding passenger weight of 300g Newtons causes a 6-cm deflection. Thus,
k=300 kg X 9.8 m/s*/.06 m = 5000 X 9.8 kg/s*. Since the total mass of the
loaded car is 1300 kg, the circular frequency is

w={k/M = {5000 X 9.8 kg,/s%/1300 kg = {5000 X 9.8,/1300 s~ .
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PROBLEM 1.2.3

PROBLEM 1.2.4

Thus, the period of the oscillations is

1 27 1300
T LT T T st xss ¢

If the car has a speed of
15m 15 /5000 x 9.8

r 2r Y 1300
the impulses due to the tar patch will be at the resonant frequency.

m/s = 14.7m/s = 52.8 km/h

U:

A stick of length / is held so that one end rests on a smooth plane, making an
angle 8 with the plane. The stick is then released. How far will the left end of the
stick have moved by the time the stick hits the plane?

The external forces acting on the stick {gravity and the surface contact
force) are both vertical. Thus, F,, has no horizontal component, a1:1d the
acceleration of the mass center of the stick is vertical. Since the horizontal
component of the velocity of the mass center is initially zero, it rer.nains ZEro as
the stick falls. This implies that the mass center of the stick falls vertically, so that
by the time the stick is horizonta! the left-hand end will have moved by

(I/2)[1 — cos A].

A thin stick of length L and mass m is supported at its ends by vertical strings so :

as to be in a horizontal position. One of the strings is cut at tin?e L. .

(2) Find the downward acceleration of the center of the stick at time ¢ + 0
(where § — 0). _

At time ¢ + 8, the external forces acting on the stick are shown in thF
free-body diagram (Figure 1.36). The total external torque a}aout the lef.t end is
mgL/2. Thus, the angular acceleration, a, of the stick about its left end is

T mgl /2 B 3g

T T (/3)mi? 2L
The linear acceleration, a, of the center of the stick is then
ol

vertically downward.

(b) Find the sideward acceleration of the center of the stick. At time ¢ + gj
all the external forces acting on the stick are vertical. Thus, the total external
force has no horizontal component, and the sideward acceleration of the stick 15

Zero.

|GUAE 1.3 (a) The stick im-
mediately after the
‘right-hand string has been
ut. {b) The forces acling on
‘the string at that instant.

PROBLEM 1.2.5
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U I
fa}
e—— L —
fx
? tb)
mg

(c) Find the tension f, in the remaining string.
Newton’s second law applied to the stick gives

mg—j;=ma=m-%g
fi= img

An hourglass with vertical sides is placed on a critically damped balance, the
sand trickling through the hole. What does the balance read? Discuss the
direction of deflection of the balance during all stages of the Aow.

Let the mass of the hourglass plus sand be M, and let F, be the upward
force that the balance pan exerts on the hourglass. According to Newton’s third
law, F, is also the foree that the hourglass exerts on the balance pan and thus F,
determines the reading on the balance scale. If 7 is the height of the center of
mass of the hourglass plus sand, then

F)—~ Mg = Mj

Thus, il j =0, F, = Mg, but if J is positive (negative), F, will be greater (less)
than Adg.

Suppose that all the sand is at rest in the upper portion of the hourglass for
t <ty At ¢t =1, the sand starts to fall, and reaches a steady stream at ¢ = (.
The steady stream continues until ¢ = {3, when the flow starts to wane and comes
to a stop at ¢ = ¢,, Thus, for < t, and ¢ > ty the sand is at rest, j =0 = ¥
and F, = Mg. Between t =1¢, and ¢ = ty, 3 <0, but 3= 0 (since the sand is
falling at a constant rate) so that F, still equals Afg. Between { = ¢, and ¢ = ¢,
we are going from a situation in which j = 0 to one in which 3 < 0. Thus,
¥ < O between ¢, and ¢,, so that F, < Mg, Conversely, between ¢ = tyand ¢ =/,
we arc going from a situation in which 7 <0 to one in which j = 0. Thus,
J > 0 between ¢, and ¢y, so that £, > Mp. To summarize: the balance reads

Mg fori <,
<Mg fort,<t<1t

Mg fort <t x4,
> Mg fort,<t<t

Mg fort>1,

3

The transitions between the different fow conditions described above will be
smooth, since the momentum fAux will not change discontinuously.
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PROBLEM 1.2.6 A right circular cylinder has a density that is a function of distance from the
symmetry axis. It rests on a frictionless surface. A string is wrapped around the
periphery of the cylinder and a constant force F is applied to the string for a
time T, in the horizontal direction.

PROBLEM 1.2.7

4

(2) Describe qualitatively the translational and rotational motien of the
aljost,
~ Since the surface is frictionless, the force that it exerts on the cylinder has no
horizontal component. Thus, the horizontal component of the total external force
is Fwhen 0 < ¢ < T, and zero when 7 < {. The axis of the cylinder, therefore,
has acceleration F/M when 0 < ¢ < T, and zero when T < ¢, so that its speed,

u, is given by

v= —1, for0<tsT
M
F
= —T, forT st
M

In the interval 0 < ¢ < T, the external torque about the axis is FR, so the
angular acceleration is ¢« = FR/I for 0 < ¢ < T, and zero for T < ¢. Thus, the
angular speed of rotation of the cylinder about its axis is

FR
W= —1t, for0=t< T
I
FR
-——-—I'T, for "= ¢

(b) Find a specific geometry for the object so that the kinetic energy is
equally divided between translational and rotational motion.
The translational part of the kinetic energy is

1 1 F o\
—2-M'02 = — M| —t

2 M
The rotational part is “
—1—Iw2= lI(E{—t)z :
2 2 1
If these are to be equal, we must have
W oM S e

hile the ball rotates about
S center with angular speed
- N and 1 are components
f the torce that the surface
%erts an the ball.

The only way this can occur is if all the mass of the cylinder is at distance R from
the axis. Thus, the cylinder must consist of a thin layer of material around an

empty core.

Some Commeonly Encouniered Forces 9

A bowling ball of mass Af and radius R is thrown onto a surface with speed #,.
The coeflicient of kinetic friction between the ball and the surface is . Initially,
the ball is sliding without rolling. What will be its speed when it rolls without
sliding?

The friction force f slows the speed of the mass center of the ball and
increases the angular speed of the ball around its mass center:

dv
M i —Mgp (horizontal component of external force)
d
ngw = AMgpR (torque of external force about mass center)
Thus,
v =y gt
Mgp Rt MguRi
w =, + =
I 7

Pure rolling will occur when- ¢ = wR, because then the point ol contact of the
ball with the surface will have zero speed relative to the surface. This occurs at a
time { satisfying

Mgp R?
— gt = ——1
Up — SW 7
%y
L= m
. MR*
1 -
8t ‘ 7
The speed of the mass center at this time is
' 2 MR?
U= - ) = ]
o T & MRE] T+ MR
gl + ——

To complete the solution we need the moment of inertia of a uniform sphere
about a diameter. Suppose that the center of the sphere is at the origin of a
rectangular coordinate system. The moment of tnertia of the sphere about the z
axis 1is

= fdm(.rg -{-_;!2)

The symmetry of the sphere implies that

fdmxﬂ = fde’z = fn'mz:2 = %fdm (x2 4+ 3% + 27)

[=nhg
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PROBLEM 1.2.8

FIGURE t.5 {a) The sled
being pulled to the right with
ihe ball on top. (b) Free-body
diagram of the ball. (c)
Free-body diagram of the
sled.

so that we can write

2 2 M n . 2
_z a 24 =l resin@ drd@de - r*
c{;m—D:EWfr

Finally, the mass-center speed when the ball begins to roll without sliding is given
by

AR? 5
PR NTMR  MRE T T
A ball of mass m and radius r rests on a sled of mass M, which in turn rests on a
frictionless plane, If the coefficient of friction between the ball and sled is t what
is the maximum horizontal force F that can be exerted on the sled without
causing the ball to slide?

Let A be the acceleration (positive to the right) of the sled relative to the

plane, and a the acceleration (positive to the right) of the ball also relative to the

plane. Free-body diagrams of the ball and sled indicate all the forces acting on .

them. Newton’s second law applied to each object yields

=
Q[
o

mg
fb)

Impuisive Forces 1

ball about its mass center, so that
fr=Tla=2m%

where a is the angular acceleration of the ball about its mass center. If the bal

rolls on the sled, the points of the ball and sled that are in contact must be at res
relative to each other, so that

a+ar=4
2 A—a 2
fr: -5—mr2( " ), = gfﬂ(A"“'ﬂ)

and when this is combined with f= ma, we see that 4 = ta, and
F=ma+ MA = (%M’ + m)a
But we also know that < pN = umg, Thus, ma < pmg, a < pg, and
F< (%AJ-{- m)p.g

Thus, = (ZM + m)y.é is the maximum horizontal pull on the sled consisten
with pure rolling (no sliding) of the ball.

3 IMPULSIVE FORCES

We can rewrite (1.8} in integrated form as follows:

ty

fnxt = chxt dt = Plot(t2) - Ptm(‘tl) (1.16&]
4
4]

cht = chxt di = Llul(ZQ) - le(tl) (116]3)
4

Thus, the external lnear impulse, &, equals the change in total linear momen-
tum, and the external angular impulse, J,, equals the change in total angular
momentum.

Now suppose that the time interval At = ¢, — ¢, approaches zero, but that
the time average values of F,,, and 1, become infinitely large, in such a way
that the impulses (1.16a) and (1.16b) remain finite. Then the changes in linear
and angular momentum will be finite. However, the linear and angular displace-
menls that occur during At involve an additional power? of A¢, and so they
vanish as A¢ — 0. Forces and torques that act so powerfully but so hriefly that
they produce finite changes in linear and angular momenta, while the system
undergoes negligible displacement, are said to be impulsive, They are usually
simple to handle, since their only effect is to produce discontinuous changes in
linear or angular momenta.

*For example, if the force is canstant during A, we have
AP = FAt

A IA’ lFA:A
.x-—2rx( l)—2( m) t

Thus, il 7+ At is finite as A — 0, (F- At} At will vanish as A7 — 0,
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PROBLEM 1.3.1

PROBLEM 1.3.2

FIGURE 1.6 The stationary
electron is on the y axis,
while the proton moves
along the x axis with speed
V.

A long narrow uniform stick of length / and mass M rests on a smooth horizontal -

surface. At time £ = 0 it is struck a sharp horizontal blow near one end, in a
direction perpendicular to the length of the stick, giving it a linear impulse &,
Describe its subsequent motion.

Before ¢ = 0 the stick was at rest, so P, and L, were zero. Immediately
after ¢t =0, P, equals . Since the horizontal surface is smooth, no further

horizontal forces act on the stick, so that P, remains equal to . Hence, the
mass center of the stick moves with constant velocity
V.., = Pﬂ = £
MMM
in the direction of the impulse. The angular impulse relative to the mass center of
the stick has magnitude #1/2 and is directed perpendicular to the surface. It
equals the angular momentumn of the stick relative to its mass center after the
impulse. Thus, the angular speed of the stick about its mass center is given by

L g2 flj2 6f

T T LMPET M

m:

The motion of the stick after the impulse consists of a uniform translation of the
center of the stick with linear speed £/, while the stick rotates about its center
with angular speed 6,%/A4l.

A proton of mass M moves with constant speed V' along a nearly straight-line
orbit that passes a distance # {rom an electron of mass m. Estimate the amount of

kinetic energy acquired by the electron during the encounter, and the angle of -
deflection ® of the proton’s velocity. You may assume that ® will be small, and -

that the movement of the electron is negligible during the period when most of
the energy is transferred.

Let us use a dimensional argument to anticipate the dependence of ® on m, '
M, b, ¥, and the charge e. Since the motion of the electron is neglected, m is

irrelevant, The deflection angle © is dimensionless. Since the only dimensionless

quantity that can be formed from M, b, ¥, and ¢ is (e2/b)/(MV*), we conclude

that ® must be a function of this combination of variables.

Since we are told that ® will be small, we will calculate the momentum:

transler to the electron by assuming that the orbit of the proton is perfectly

straight (Figure 1.6). When the proton is a distance x [rom the origin, the

Coulomb force it exerts on the electron is

- on electron, | _ .2 Xt — by
due to proton |x% — w)®

B
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[k, (1.10)]. The impulse felt by the electron is

Xt — by XX — 4% dx
! frdi-—t’ f [\ +b .5/- f [T +b 3/2 I,r

2¢*
B VJ f [+~ " m?

The x integral is eonveniently done using the substitution x = b tan 8. Since the
initial electron momentum was zero, the final electron momentum is p=JF=
—(2¢*/7b) 3, and the final electron kinetic energy is

b 2¢!

1
KE = —mp?=— = —
2 " 2m ml

This result is useful in the theory of energy loss of charged particles moving
through matter,

The impulse on the proton is opposite to the impulse on the electron. Thus,
the final velocity of the proton is appr cmmately F% + (2¢2/MVb) 3. This implies
that the direction of motion of the proton is deflected through an angle

2¢°
0 = arctan| ———
( MV ]

which must be small if our itial assumption of a straight-line orbit is to be
accurate, In Section 1.12, we will see that the exact result in this case is

MV

These two expressions for © are approximately equal when © is small,

2
6B=2 arctan( )

4 CONSERVA TION OF LINEAR MOMENTUM,
NGULAR MOMENTUM, AND MECHANICAL ENERGY

If the external force and/or torque are equal to zero, (1.4a) and (1.4b) tell us
that the linear and/or angular momentum are independent of time.
From Newton’s second law for a point particle we can derive
] dv m d i, di{l
CVEm— oy o= —— = —| —p?
di 7 a3y ( 2™ )
[ - v is the rate at which [ does work on the particle, and (1. 17a) shows that it

equals the rate of change of the particle’s kinetic energy. If we integrate (1.17a)
fromt=1 10t=1, weget

1y y N d 1
ff-vdt ff-dr=f;;(§mug) d!
[ T, [ )

"

(I.17a)

L o
= -é—nw“(t,,) — Emv“(lu) (1.17h)

and the work done on the particle when it moves [rom r, to r, equals its change
in kinetic energy.
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If the system is conservative, the total work done on a particle when it moves
around any closed curve is zero:

f -dr=0 (1.18a)

ny closed
urve

Now consider two points (r,,r,), and any two paths co.nnecting them. .Wgz can
combine these two paths to make a closed curve, to which (1.18a) applies. This

means that

}f - dr + 7f cdr =10

(pn:Tt 1 (palf\ 3}
T ry
ft ar+|= [i oax|=0
rn rll
{path 1} {path 2}
Ty LY
Jt car= [t
rll rﬂ'
{path 1) {path 2)

so that the work done on the particle when it moves from r, to T is independent
of the path from r, to r,. In this case we choose a reference point ry, and define

the potential energy at point r, by

p independent of the 1.18h
Ule,) = — f Fodr ( path between ry and r, (1.18b)
Then we can write
L Ts Ty
o feede= [toar— [§dr=Ul,) - Ulr,)
Ta Ty To
and (1.17b) becomes .
La?(1) + Ulr,) = tmo(1,) + Ulr,) (1.19) -

Thus, the mechanical energy, defined as the sum of the kinetic and potential -

energies, is independent of time.

If we know the potential energy function U{r,)}, we can recover the force :

field f(r,) by calculating the gradient of (1.18b) with respe\ct tor,,
f(rﬁ) = .—vruU(rﬂ)

If we change the reference point from r,, to r§, the effect on.U(rn) in (1.18b) is tlhc :Z
addition of U(r}) — Ulry)s which is independent of r,. This has no effect on the.
gradient of U(r,) with respect to r,, which verifies that the force field f(r,) does

not depend on the reference point r, chosen for defining the potential energy.

A particle moving in a central force field experiences a force whose positio

dependence is given by

t(r) = g(r)? (1.21) :

Here r is the vector from the “force center” to the location of the particle. (le‘l:
pravitational force on particle 1 exerted by particle 2, given by (1.10), can be

(1.20)

ESREY
MaTiTuTe
ODFERVATO
HAC (01

EMNZENADA, BATA

e
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regarded as a central force with the location of particle 2 as the force center.) We
can casily verify that every central force is conservative, since

jg(”)?' dr = j.g(r) dr
T A

which depends only on r, and r,, and not on the integration path from ry to r,.
For the particular case of the gravitational force (1.10), g(r) is given by

myin,

g(r)= -G6—;

o

and (1.18b) becomes

p m,m 1 1
Ule,) = - _[(‘-—G ]22) dr = -Gm]mg{;—- - _}

a

In this case it is usual to choose the reference point r, to be at infinity, so that
1/ry =0 and
m iy

Ulr,) = -G (1.22)

r

a

It can be easily verified that if we apply (1.20) to (1.22), we recover the original
gravitational force field (1.10).

If f is the force on a particle due to a uniform gravitational field (1.11), the
potential energy is

T, T,

Ulr,) = ~ fmg.dr:mgfg.dr=mg(zn_zu) (1.23)

o By

Thus, the change in potential cnergy equals mg times the change in height. We
can also use (1.23) for a finite object, if we interpret m as its total mass and
2, — 2, as the change in height of the mass center.

Any one-dimensional force field f(x) is conservative if the force depends on
x alone. In the particular case of a harmonic restoring force (1.14), we have

x==x
’ |
Ulx) = = [ (—k)dr = —ia? (1.24)
x=0 '
Here we have followed the usual practice of using the equilibrium position,
x =0, as the zero of potential energy.
Conservation of mechanical energy is especially useful when we need to

solve for u(¢) or for the elapsed time, [dr/v(r). To calculate the kinetic energy of
a finite object, it is convenient to use the formula

T= —;fdm(l.{ +3)° = %M(R)E + -%fdm(é)z (1.25)

where R is the vector to the mass center of the object, and s locates each particle
of the ohject relative to its mass center. The second term in (1.25) would be the
kinetic energy of the object as seen by an observer who moves with the mass
center. If the motion of the object about its mass center consists of rigid-body
rotation with angular speed w about a principal axis with moment of inertia f ,
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FIGURE 1.7 Locating a point
in an object relative to its
mass centar,

PROBLEM 1.4.1

PROBLEM 1.4.2

t=0_1is ML%(t=0_) = AMI% = AMoL?. Immediately after ¢ =0, we
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PROBLEM 1.4.3  Consider the stick in Problem 1.2.3, What is the speed of the right end at the
instant it strikes the table?

The mechanical energy of the stick is conserved as it falls, since the force
that the surface exerts on the left end s perpendicular to the velocity of that end,
so that f - r = 0 and no work is done by f. Let us choose the condition of zero
potential energy to occur when the stick lies horizontally on the surface, Initially,
the kinetic energy is zero and the potential energy is mg({/2)sin 4. Thus, the
initial (and constant) mechanical energy is mg(l/2)sin§, When the stick hits
the surface its potential energy is zero, so that the mechanical energy equals the
kinetic energy

then (1.25) becomes { m

mga sinfl = Evém + ~2—wa

T'=§M(R)? + L10? | (1.26)

At the instant the stick hits the surface, its motion consists of pure rotation about
its stationary left end. Thus, vy = lw/2, and we have

A massless ice skater is holding two weights each 50 em from his body, and
rotating four times a second around a vertical axis. He then extends each of the
weights to 1 m from his body. How many times a second does he rotate?

. . - milwi\? 1 o ml? )
Since no external torque acts, angular momentum is conserved: ng sinfl = 7 7 + 3 Tg—ml W= -?w‘
Li=ILw =L,=[u, ‘
05V% o, 3
=, 1, /] = bl . | w= 1 -—sinf
Wy 111/7, “’1(1.0) 4 {

and the speed of the right end of the stick is
e = lw = 3g/sin §

PROBLEM 1.4.4, A yo-yo of mass m and moment of inertia 7 (about its spin axis) {alls from rest.
As it falls, the string unwinds from the inner shaft of radius . Assuming no
energy dissipation, find the speed o of the mass center of the jo-yo as a function
of the vertical distance of fall,

If the yo-yo falls a distance 5, its potential energy decreases by mgs, and so
its kinetic energy increases by mgs (the string does no work on the yo-yo). But the
kinetic energy is given by

so his final angular speed is one revolution per second.

A simple pendulum of length L suddenly doubles its length as it passes through
its vertical position. Find the change in amplitude and frequency of motion,

The external forces acting on the pendulum are gravity and the support
force at the pivot. The support force has zero torque about the pivot, Further-
more, when the pendulum is vertical the line of action of the gravitational force
also passes through the pivot, so that gravity also has zero torque about the pivot,
Thus, during the extension of the pendulum there is no external torque about the
pivot, so the angular momentum about the pivot is conserved,

% — 2 o L r 1 fuye 1 Iy
. ate=0 T= ’é-mv“-!- Efw“-—" -2—mv‘+ -2—1(})-) = E(m+ F)v“
" * Thus, when the yo-yo has [allen a distance 5,
" l Iy, 2us5
E(m + —b—_,) U~ = mgs, v = [ (I/m.bE)

Before ¢ = 0, 8(t) = 4sin w!, with w = g /L. The angular momentum at

have 0(t) = A’sin w't, with w’ = g /2L . The angular momentum at ¢ = 0,1s
M2LY(t = 0,)= 44" M%) = A'My8gL® . Thus, angular momentum con-
servation implies that AMyel® = A'M 8g¢L*, so we conclude that

A w

r_ W o= ——

2y2 V2

Note that the total mechanijcal cnergy of the pendulum is not conserved during

the extension of the pendulum, since the forces that act op the pendulum during
the extension do some work,
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PROBLEM 1.45 A uniform stick of length / is pivoted at one end, and released from rest in a°

PROBLEM 1.4.6

horizontal position. How long will it take for it to swing down to the vertica
position?

We use energy conservation to calculate the angular speed as a functi‘on o
6. Take the condition of zero potential energy to occur when the stick is:
horizontal. Since the stick is released [rom rest, its kinetic energy is also 2€10 when.:
the stick is horizontal, so the total mechanical energy is zero. th.sn th.e stick h.as__:
fallen to angle 6, its potential energy is —mg(//2)sin 8, whi_cqh implies th.at its
kinetic energy is -+mg(//2)sinfl. We equate this to (1/2)/6%, where [ is th
moment of inertia of the stick about its pivoted end:

{ [, 1/1 .
mgy sinfl = —I§% = —( gmlz) 62

2 2
dt 30 9 . i do
P A B 3¢ ysind

Thus, the time T required to go from § = 0 to # = 90° is

} \/T "f 46
dt=T=f — ——
e 3g ,L, Vsind
]

3z

This integral over # can be expressed in terms of a complete elliptic integral o
the first kind.

i

2.622

Because of increasing air pollution, the mean air temperature on earth wil
probably rise, making for longer growing seasons and {csult.lng in taller shrub
and trees, with a consequent increase in the moment'of lncrt.la qf the earth.
(a) Assume that this growth is equivalent to rais.lng a thin ring of mass i lt_
a height / above the ground, Calculate the fractional change AT/T i thy
length of the day. Assume that the earth is a sphere and that the vegetation 1
concentrated around the equator. . -
Let the original moment of inertia about the earthq’s axis bc_I(,. When wi
raise a mass m from R to R + /i, we increase the momerit of inertia by

m(R + h)* — mR® = 2mRh

Thus if w; and w, are the initial and final angular speeds, angular momentqm
conservation requires that

RE 1.8 A laop of chain
fg in a horizontal plane
<mooth cone of half-an-

PROBLEM 1.4.7
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(b) Does the total kinetic energy increase, decrease, or remain the same?

Initially, the kinetic energy is (1/ Dl =L/ (21;). Finally, it is (1/2)(1,
+ Zm_.!‘iflt)mf2 = L*/(21, + 2mRh)). Since angular momentum L is conserved, we
have

(K.E); L*/21, I, + 2mRh .
= >

(K.E),  I2/(2(1, + 2mRh)) 1,

and the kinetic energy decreases as a result of the increase in moment of inertia.

A single closed loop of chain of mass m and length / rests on the surface of a
smooth, frictionless cone. The chain lies in a horizontal plane. The half-angle of
the cone is a. Determine the tension in the chain.

Let the tension be T If the chain length increased by dl, the elastic potential
energy would increase by T'dl. The radius would increase by dl/2, the height
would decrease by d//(27 tana), so the gravitational potential energy would

decrease by mgdl/(27 tan a). Thus, the total potential energy change associated
with the length change o/ is
m
£ ) dl

27 tan o

aw=|T-
At equilibrium this should be zero, since otherwise stretching or contracting the
chain would be associated with an increase in kinetic energy. Thus,

mg
27 tan o

T =

9 COLLISIONS BETWEEN PARTICLES

L= Iy = (I, + 2mRh)w;

If 7; and 7} are the initial and final rotation periods,

T, =2n/uwy, T=2n/w;
-1,  2n/w —27/w; o = I, + 2mRh B
T; - 27/ w; Wy I

AT/T = 2mRh/I,

In collision problems it is assumed that the colliding particles interact for such a
short time that the impulse due to external forces is negligible. Thus, the total
linear momentum of the system is the same immediately before and after the
collision. The simplest way to impose the constraint of constant total linear
momentum is to work in a coordinate system in which the total linear momentum
is zero, the mass-center system. If the total kinetic energy of the particles is
unchanged by the collision, the collision is said to be elastic. For an inelastic
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FIGURE 1.10 Two masses
colliding in one dimension.

PROBLEM 1.5.1

M - m

3 o @@ T
@ @ @

—— u
+ m+ ALY m M ® @ m o+ A
e O

b} (d)

collision the Q-value is defined to be the increase in total kinetic energy (so @ =0
for an elastic collision). . ’

In an elastic collision in one dimension, an incident particle with sp.et?d. ]
and mass m strikes a .stationary particle of mass M. What fraction Cl'f the u‘nual )
kinetic energy of the incident particle is transferred to the target particle? Figure
1.10a shows the situation before the collision, as viewed from the laboratory. The
mass center ol the two particles moves to the right, re]ativ.e to‘the Iaborfitory :
with speed m/(m + M) - v. Figure 1.10b shows this same situation, but viewed
by an observer moving to the right with the speed of the mass center. Note that -

the relative velocity of the two particles still equals », but the total momentum is -

now zero. The total kinetic energy in this mass-center system is
1 M L | m )2 1 mM )2
| —— Ml —p) =
zm(m+M”) * 3 (m+M 2 m+ M

After the collision, the total momentum in the mass-center system s still zero, so

the speeds of m and A are still in the ratio A{/m, and their motion is oppositely ~

directed. If their relative speed is o', their total kinetic ene:rgy2 is 12/ 2 X .
mM(2")?/(m + M). Since the collision is elastic, it must be that (2')* = »* The

solution »’ = » would correspond to the initial situation, or the particles would :

move past cach other without interacting. The only other way of conserving

momentum and energy is to set »' = —w», This is depicted in Figure. 1.10¢. .
Finally, we make the transition back to the laboratory system b).r addmg the
mass-center velocity (m/(m + M) +v to the right) to each- veI.oc1ty of Flgurc._;
1.10¢. The result is shown in Figure 1.10d. Thus, the final kinetic energy of the

target particle is (1/2)M{2mv/(m + M))?*, and the fraction of the energy of the
incident particle transferred to the target particle is

1 2m 2

EM( mA M) AmM
1, - M)
-Q-mv‘ (m + )

Inspection of Figure 1.104 shows that in all cases the target particle méves to :ll;lg
right, but whether the incident particle moves to the right or to the left after A
collision depends on whether its mass is greater or less t.han the mass of the tarf5 ;
particle. In particular, if the incident and target particles have the same m

the speed of the incident particle after the collision is zero, and it transfers all of

its kinetic energy to the target particle.

A ball of mass m is dropped down an elevator shaft. Just before it hits the /tog ?}1;
the elevator, it has downward speed v and the elevator has upward speed I, bot!

PROBLEM 1.5.2

FROBLEM 1.5.3
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measured relative to the shaft, What is the upward speed of the ball (relative to

the shaft}) immediately after it makes an elastic collision with the top of the
elevator?

Let us view the ball from the elevator. Immediately belore the collision it
has downward speed v + V. Immediately after the collision it has upward speed

v + V. Thus, the upward speed immediately alter the collision, as seen from the
shaft, is (v + V) + V=0 + 2V,

The ball in the previous problem is dropped at the instant when the top of the
rising elevator is below it by a distance 4. Flow high will the ball rebound?

Suppose that it takes time ¢ for the ball to hit the elevator. During this time
the ball falls a distance (1,/2)gt? and the elevator rises a distance ¥, and so
(1/2)gt* + Vi = h. The ¢ > 0 solution of this equation is

VP24 2gh — 7

, 4
Then the downward speed, z, of the ball just before it hits the top of the elevator

is
v=gl=yV2+2gh — V

According to the result of Problem 1.5.1, the upward speed of the ball after the

collision is
v+ 2V = V4 2gh + TV
so the increase in mechanical energy of the ball, as a result of the collision, is
g[m + 7] - g[m ~ V]" = 2mVT ¥ 20k
Thus, the ball will rebound to a height of
_ 2mb Ve 4 2gh _ 2V + 2gh

z —_—
mg g
above the point at which it was released.

A uniform rod of length / and mass M lies on a smooth horizontal surface. A
bullet of mass m, traveling with speed » in a direction perpendicular to the rod,
strikes the end of the rod and becomes embedded there. Describe the subsequent
motion of the system.

Let us view the collision in the mass-center system, which moves with speed
m/(m + M) -v. In Figure 1.11a (which is analogous to Figure 1.104), the rod
and bullet approach each other. OF course, in this mass-center system, the mass
center appears to be stationary. After the bullet comes to rest in the rod, the
combined system rotates about the still stationary mass center (Figure 1.114).
Since the external angular impulse s negligible during the collision, the total
angular momentum is conserved. Before the collision, its magnitude is

’ M A M m mo |
- m =4 M u(iil+1‘f_2_)+ (m—#—;‘laf)u(m+ﬂf12)

mAf !
m+ M UE
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FIGURE 1.11 (a) Before the
collision, as seen in the
mass-center system. The
symbol @ locates the sta-
tionary center of mass. (b)
immediately after the colli-
sion, the system rotates
about the still stationary
mass center.

1.6 PROBLEMS IN WHICH THE MOTION
IS SPECIFIED AND THE FORCES MUST BE DETERMINED

VN
_____ —y = ]
_I'P...'.*:_A.f_i__..__ 1
®- ® |
Af i 2
m+ M 2 l
@) 70 S, S @
Sy
- w
M m v
m + M oo+ M
fa) {b)

rotates about its mass center, and [ is the total moment of inertia, This |
composed of two parts:

M [y
I{bullet) = m Py
P 0
I(Stlck) = 'l'-z"ﬁfﬂ + M m 5

This last expression is an example of the use of the parallel axis theorem.
Altogether, 7 = 1/12 X M(M + 4m)I*/(M + m), and

mM !
o mtM2 _ bm
CTTT M A dm\ (M + 4m)l
— M| —— ]!
12 m+ M

In the laboratory, it appears as if the mass center of the system moves with
constant velocity (speed m/(m + M) - v), while the system rotates with constan
angular speed w about the mass center.,

According to (1.1a) the force exerted on an object equals the rate at which ;
momentum changes. If we know the motion of the object, we can calculate the
rate of change of momentum and, hence, the force acting on it. ;

4The parallef axis theorem states that I, the moment of inertia of an object about an axis A, is given by -
Iy = Ioy + Md®

; . : . { is the
where fgyy s the moment of inertia of the object about an axis parallel to 4 through the miass center, .; o
perpendicular distance between the two axes, and Af is the total mass of the object, This theorem 1 >
derived from the definition (1.7) of the moment of inertia.

iz The water ap-
the wall per-
joutar to it, and ends up

movingfparallel to it.

PROBLEM 1.6.1

PROBLEM 1.6.2

RE 1.13 The chain at the
anl it is released.
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Wall
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A stream of water of constant cross-sectional area A4 and speed v strikes a wall
and spreads out sideways. What pressure does it exert on the wall?

In time 4 the mass of water striking the wall is vdt - 4 - p, where p is the
density. Before it strikes, the component of momentum of this water perpendicu-
lar to the wall is vt Ap - v. After it strikes, the water moves parallel to the wall,
so the perpendicular component of its momentum is zero. Thus, in time ¢, the
wall changes the momentum of the water by pAv® di. The rate at which the wall
delivers momentum to the water is p4v?, and this is the force that the wall exerts
on the water. According to Newton’s third law, it is also the force that the water
exerts on the wall. Thus, the pressure is pv?.

A chain of mass m and length { is suspended above a platform scale, with the
lowest link just touching the platform. The chain is released. What is the scale
reading when the last link hits the platform? Assume that each link falls
independently of the others.

When the last links hit the platform, their speed is y2¢/. Consider a time
interval dt. The mass of chain hitting during dt is (m/!) - |2gl d and the

momentum delivered to the scale is y2¢/ - (m/!) - V2gl di = 2mgdt. Thus, the




24 Classical Mechanics

1.7 USE OF NON-INERTIAL REFERENCE FRAMES

impact force as the last link hits is 2mg. At this time the weight of chain on the
scale is mg, so that the total scale reading is 3mg.

PROBLEM 1.7.1

FIGURE 1.14 Point O is fixed
in an inertial frame. Point P
accelerales relative to O with
constant acceleration a.

In Section 1.1 we stated that Newton'’s second law of motion is valid if we locate
the particle relative to a point fixed in an inertial frame. Sometimes, howcvc_r, the
forces and constraints acting on the system under study are most conveniently
expressed in a noninertial reference frame. In these cases it may be advantageous
to use this noninertial frame, even though (1.1) must then be replaced by
something somewhat more complicated.

1.7.1 Uniformly
Acceleraled Reference Frames

In Figure 1.14, 0 is a fixed point in an inertial reference frame. Point P
undergoes constant acceleration relative to 0, Thus,

d®s
e = a (constant)
d'vr  d* ) d?r’ .
—— R ——— = ——— a
i
Substituting this into (1.1), we get
dr

(1.27)

F—ma=m 7z .
We can interpret (1.27) as telling us that we can still use Newton’s second law of
motion when the masses are located relative to a uniformly accelerated coordi-
nate system, provided that we add a fictitious force —ma to the' rez}} force F
acting on each particle. This would be the effect of a uniform gravitational ﬁel;}
whose strength and direction are given by —a [cf. (1.11)]. Thus, we can use
Newton’s second law with a uniformly accelerated reference frame provided that
we add the fictitious uniform gravitational field —a to any real fields acting on
the system.

A helium-filled balloon is tied by a length of string to the floor of a closed
automnobile, which accelerates to the right with constant acceleration 4. What
will be the orientation of the string? )

The fictitious gravitational field experienced in the accelerating car has
magnitude A and points to the left. This must be added vectorially to the real

IGURE 1,16 The forces

Ng on the balloon. The
ure gradient in the sur-
ounding air causes the
8 that the air exerts on
balloon to vary over {he
rface of the balloop.
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gravitational field, that has magnitude g and points downward. The total
effective gravitational field points to the left of downward, by an angle fl =
arctan (g/4). The balloon string points in the effective “up” direction, so it
points to the 7ight of the upward vertical by the same angle.

This problem can also be solved by an analysis of the forces acting on the
balloon (see Figure 1.16). Gravity acts downward with a force of magnitude mg.

The string pulls at an angle # to the vertical. Let the magnitude of the string
force be f, so that

f, = f(—cos 85 — sin 83)
To calculate the force on the balloon due to the surrounding air, we use
Archimedes’ principle. Imagine that the helium-filled balloon is replaced by air
enclosed within an imaginary surface of the same size and shape as the balloon.
Let the mass of the air be m,. The surrounding air exerts a force across the
imaginary surface that serves to support the weight of the air and to give it an

acceleration to the right of magnitude A. Thus, the force exerted by the
surrounding air across the imaginary surface is '

f, = m, gy + m A%

and this is also the force that the surrounding air exerts on the balloon. Then the
total force acting on the balloon is

R(m,4 — fsin@) + j(m,g — fcos § — mg)
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PROBLEM 1.7.2

PROBLEM 1.7.3

FIGURE 1.17 (a) The box
sliding down the plane; (b}
free-body diagram showing
the external forces acting on
the box and its contents; (c)
the components of the total
effective gravitational fleld.

which must be set equal to m times the acceleration of the balloon AX. This leads
to

m A — fsinfl = mAd
m,g — fcos 8 = mg

from which we caleulate

fsind = (m, —m)4
feos @ = (m, — m)g
tanf = A /g

in agreement with the result that we reached much more quickly using the
effective gravitational field equivalent to the accelerated reference frame.

A small mass attached to a vertical spring undergoes simple harmonic oscillationg
in a laboratory at rest on the earth’s surface (assumed to be an inert.ial frame)
The measured oscillation frequency of the mass is w. Now the system is mounte
in an elevator accelerating upward with acceleration 4. What will be the new
oscillation frequency? _

If we work in a reference frame accelerating upward with acceleration A
the total effective gravitational field is downward and of magnitude g + 4. Usiq__
this total effective gravitational field, we can analyze the motion of the mass
using Newton’s second law of motion. This leads to an oscillation frequency o
w = Jlx/—m as before. Thus, the acceleration of the elevator has no effect on th
oscillation frequency. However, the equilibrium length of the spring (see Section
1.2.3) would be increased from [, + mg/k to I, + m(g + A)/k.

A box of mass M s sliding down a plane inclined at an angle # to the horizontal
The coefficient of friction between the box and the plane is g. A Pendulum bo
of mass m is hung by a string from the top of the hollow cavity in the box anc

]

fa)

(M + mlg
(&)

PROBLEM 1.7.4

URE 1,18 The &, p’ axes
nlal_e with angular speed w

L]
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comes to equilibrium. Find the angle ¢ that the pendulum makes with the
normal to the inclined plane.
First, we find the acceleration a of the box along the plane. Since there is no

acceleration perpendicular to the plane, N = (M + m)g cos #. The component
of the net force down the plane is

(M + m)gsind — f= (M + m)g(sinf — p cos §)
so that a is given by
' a=g(sinf — pcosf)

Now we go into a reference frame accelerating down the plane with the box. The
total effective gravitational field is

g(—3cos 8 + Zsinf) — %g(sinf — pcos ) = g cos 8(pr —3)

At equilibrium the string hangs in the direction of this effective gravitational
field. The angle ¢ defined in Figure 1.17 is thus

(gcff)x

¢ = arctan
(_gcft')_)'

= arctan p

A car is started from rest with one of its doors fully open (perpendicular to the
body of the car). If the hinges of the door are toward the front of the car, the
door will slam shut as the car picks up speed. The acceleration A of the car is
constant, and the distance between the mass center of the door and the hinge axis
is d. The radius of gyration of the door is r, (= m ). Obtain a formula for the
time needed for the door to close.

Go into a reference frame accelerating with the car. This produces a
fictitious gravitational field of strength 4, pointing toward the rear of the car.
Thus, the closing door is analogous to a falling pendulum that has been released
from rest in a horizontal position. This was Problem 1.4.5. The time required for
the door to swing through an angle #/2 is

9 1?'/2
f 1 df
T=/— —— f.,p.18
2gd -fo/sinﬁ (cf., p. 18)

1.7.2 Uniformly Rotating
Reference Frames '

Suppose that ¥ and 3 are unit vectors attached to an inertial reference frame
and %' and j’ are rotating with angular velocity w2 = w (see Figure 1.18), Thus
dr dﬁ’

dt di

3

?

— nr —_ ae
=w XX =wXy
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PROBLEM 1.7.5A

A vector r can be analyzed into its components (x, y) along %, §, or into i

14
components x’, y' along X', 3/,

r=x%+ =2+
Then the velocity v is given by B i the
dr  dx' dy’ ax’ . dy’ lane.
— = A P A a——
& at T a a7
dvf d-}”
= — 3+ =3+ w0 X(&F P
e AR »'¥)
dr  dx' dy’ -
— = —%+ —j 4+ wXr 1.28
di i’ dt (

The first two terms on the right-hand side of (1.28) give the vel_oci}ty of thy
endpoint of r, as seen by an observer rotating with %, 3. This quantity is usually
denoted by d*r/dt. Thus, :

dr  d¥r -
——= — 4w X 1.29
dt a T ( :
Differentiating a second time leads to
d’r  d [ d*r d* { d*r d*r :
—_— = | — Xr|l=—|—7—4+wXr|+toX|— +wXr|
i a\a T erT a\a " ° dt
d**r d*r d*w
= — X 1.30
=— + 2w X dt+w><(w>(r)+ 5 X (

We now assume that  is constant, so d*w/dl = 0. Thus, Newton’s second law
for a particle of mass m acted upon by a real force F is expressed as
d*2%y d*r
: F—2mw X ——mwX
dt* dl
The two effective forces appearing on the right-hand side of (1.31) are called
respectively, the Coriolis force and the centrifugal force. N :
The calculation of the right-hand side of (1.31) is usually facilitated by
choosing a set of unit vectors fixed in the rotating coordinate system, If w :and'
are expressed in terms of these vectors, the cross products in (1.31) can easily b
worked out. This is illustrated in the examples that {ollow.

- (1.31

m (@ Xr)

A plumb bob is hung from a string tied to the top of the leaning tower of Pisa. A
equilibrium, does the string point toward the center o'f the earth? If not, wher
does it point? Assume that the earth is a sphere of radius . n

Choose a coordinate system whose origin is at the center of the earth, thh. its
£ axis pointing to Pisa'and its # axis in the plane defined by Z and the rotation
axis of the earth. The latitude of Pisa is 8. We see from Figure 1.19 that

w=w(Zsinf — %cosd)

If r locates 2 plumb bob in the vicinity of Pisa, then r = R2. Thus,
wR(Zsinf — Rcosf) X 2= wRcos B

w R cos 9(2 sinff — #cosf) X = w?Rcos §(—Rsinf — 2‘"‘958‘

wXr

i

wX{wXr)

\arries a coordinate

FPROBLEM 1.7.58

PROBLEM 1.7.6A
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Since the bob is assumed to be stationary relative to the rotating earth, d¥r/dl = 0.

If we designate by f, the force that the string exerts on the bob, the total effective
force on the bob is

f, — mgZ + mw?R(2 cos®  + % sinf cos §)
At equilibrium this is zero, so that
w?

) m
—f; = —2m(g — 'R cos’f) + E—Q—R sin 20

Thus, the bob hangs south of vertical by an angle

w?
— R sin28

w’R sin 24
= arctan| ————

arctan ;
£ — w'R cos*l 28

arctan(.00173) = 00173 radians = 0.1°

Now suppose that the point of support of the string is traveling north at a
constant speed of 60 mph. Even if the string is protected from air currents, the
motion will result in an additional displacement. What is it?

The northbound motion implies that

d*r .
= TR (2 = 60 mph)
Thus, we must add the Coriolis force '
d*r
~2mw X ek —2mw(2sinf — % cos @) X (—of)

2mwv sin 83

and —f, acquires a component in the § (eastward) direction. The angle ¢ of
eastward tilt of the string is approximately

2vw sin 2vw sin

W = arctan o=
g

00028 radian
g

.016°

At the Ford bridge, between Minneapolis and St. Paul, the Mississippi River
flows due south at a speed of » =2 m/s, and is 280 m wide. What is the
difference in height of the water on the opposite banks of the river?
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PROBLEM 1.7.68

The main idea is to calculate the direction of the total cfective vertical, T
plane of the river surface will be perpendicular to this effective vertical. (Refer-
Figure 1.19.) We have

w=w(fsinf — %cosh)

d*r .
- "
r= Rz
The total effective force on a particle of mass m flowing with the river is
d*r
—mg2 — 2mw X—?J—t—“mm X(w Xr)

= —mgz — 2mw(Zsind — Fcos ) X v} + mw’R(%sind + 3 cos 0)cos§

mw’R

= —2m{g — w’R cos®@) + % sin 20 — 32muw sin 8
(cf. our work on p. 28). Here the downward direction of total effective gravity i
tipped toward the west, by an angle of approximately i

2muw sin ¢ 2pw sin
arctan p - =
m(g — w'R cos”f) g

If the width of the river is D, this tipping of the horizontal plane will cause th
west bank of the river to be higher by

2ue sin
————D =59 mm

than the east bank (f = 45° N).

Some distance downstream, the river flows east, with approximately the same

width and speed. What is the effect that now dominates the difference between

the water heights on the two banks? e
Here we have

d*r .
a7
d*r B A~ ~ .
—2me X = —2muw(2sinf — £cosf) X § = 2muew(+2sinf + Scosf)

and the total effective gravitational field is
w*R )
—Em(g — w’R cos? f — 2uw cos 3) + im > sin28 + 2vwsin f

Since wk > 2 m/s, the centrifugal term dominates in the coefficient of 1. Thus,
the downward direction of total effective gravity is tipped toward the south by an
angle of approximately w®R sin26/2g, which causes the south bank of the river
to be higher than the north bank by

w R sin 28

D=048m
2g

PROBLEM 1.7.7

PROBLEM 1.7.8
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An object of mass 1 g is weighed on an accurate spring balance, first at
Minneapolis (latitude 45° N) and then at the North Pole. Estimate the difference
in the readings of the spring balance. Assume that the earth has a spherically
symmetric mass distribution,

Let F, be the force that the spring exerts on the mass. At latitude 6 the
equilibrium condition for the mass is

F +(—mg2) ~ mw X{(w X R) =0
with w = w[Zsinf — X cos #], R = RZ. Working out the cross products we get
F, = (—mg + mwR cos® 0)2 + mwR cos 8 sin 03

and the magnitude of F, is

I

E m\/( —g + 'R cos? 6')2 +(w’R cos f sin #)°

= m\/(sz cos#)* + g% — 2g0°R cos’

At the North Pole (latitude 90°), this is F(90°) = mg. At Minneapolis (latitude
45° N) thisis

B M) = mf [ 2B 4 g gurn R [ R
e =m 4+ g5 — gw°R =m - +
iy V2 £ ¢ & g oy

w’R

Thus,

w’R
F(90°) — F(45° N) = mg - = 1.7 dynes
£

In the South Atlantic in 1914, during the battle of the Falkland Islands, the
British naval gunners saw most of their shells fall almost 100 m to the left of their
targets even though they had carefully adjusted their sights by practicing off the
coast of England. What had they forgotten to allow for? Ignore acrodynamic
effects.

The Coriolis acceleration of the shell is —2w X d*r/dt, where d*r/dt is the
velocity of the shell relative to the rotating earth, Suppose that the shell is fired
almost horizontally, at an angle ¢ to the right of North (see Figure 1.20). Thus,

v* = v*(ficos  + £sing)
= v*([2cos 6 — % sinf]cos ¢ + Hsin o)

W= ws

and the Coriolis force is
F,= —2mw X v* = —2mwv*(—Jsinfcosd — Ising)
= 2mwv*(%sing -+ Hsinf cos ¢)

The X component of F, is independent of latitude 6. In the northern hemisphere,
¢ > 0 and sin @ > 0. If the shell is fired in a northerly direction, cos ¢ >0andF,
has an easterly component. If the shell is fired in a southerly direction, cos ¢ < 0

and F, has a westerly component. In both cases F, pushes the shell to the right.
However, in the southern hemisphere < 0 and sin @ < 0, In this case the above
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FIGURE 1.20 v* is the velac-
ity of the shell as measured
from the rotating Earth.

PROBLEM 1.7.9

argument shows that F, pushes the shell to the left. Thus, guns that are calibrated
in the northern hemisphere will fire shells that fall to the left of the target when
fired in the southern hemisphere.

A bug of mass 1 g crawls out along a straight radial scratch on a phon‘ograpl_ ;
record rotating at 331 rpm (clockwise as viewed from above). The bug is 6 cm
from the center of the record and crawling at the rate of 1 cm/s, :
{a) What is the net frictional force (magnitude a.md Flirection) on thc.bug
Suppose that the bug is crawling along the %’ axis, with speed v’ relative t
that axis. Then :

d*r d**r v
n e _
r= v, —I=vx, o = {)
The angular velocity of the record is @ = —w2. Then the equation of motion o
the bug is
d*%r d*r
=0=1 - X— —mwX(wXr
m—s 0=TF ~ 2mw = ( )

F = 2mwv'(—2 X 3') + mw0't2 X (2 X &)
= —2mwr'y + mw'E X = —2mwe’y — m*v'i7
If we use m=1 g, and w= 349 rad/s (= 33% rev/m X 27 rad/rmf X
1m /60 s), we get
F = —6.98% — 73.08%' dyne

{(b) What added power must the motor expend hecause of the bug?
The velocity of the bug is
d*r

v=— -+t wXr=0% - X =v—
dt

PAOBLEM 1.7.10
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Thus, the rate at which work is being done on the bug is
F.v=—2mw'y + mwi' ') - (v'3 — wv'tj’)
= —mw'v?t + 2mw’o"t = mwy’

A two-dimensional harmonic oscillator consists of a particle of mass m confined
to a horizontal frictionless plane, and subject to harmonic forces in the x and y
directions. That is to say, if the Cartesian coordinates of the particle are x and y,
the Cartesian components of the force on the particle are given by

F.=—fk.x, Fo=—ky

Here £, and £, are constants, and are not necessarily equal.

(2) Write Newton’s second law of motion for this system, and solve to find
general expressions for x and j as functions of the time ¢ and the constants of
integration, "

The equations of motion for x(¢) and 3(¢) are

F = m¢= —k x, F; = mj = —A‘J,y

These arc satisfied by simultaneous and independent harmonic oscillations in the
x and y directions [cf. (1.15)]

k
a(t)=Acos| |/ —t+a
m

b

(b) The entire apparatus described above is now mounted on a turntable
with angular speed w rad /s about the z axis. The center of attraction (x=y3=10)
is directly on the axis of rotation. Write new equations of motion in terms of
coordinates x and y measured with respect to coordinate axes rotating with the
apparatus.

Let & and 3 be unit vectors in the plane of the turntable, rotating with the
turntable. Then

W= wz, r=x(t)3+ (1)

d*r d*?r
T 05 S k054505

dt
F=—(kx+k,55)
so the equation of motion

d*°r d*r
m px: =F—2mw><«d—l—mwx(w><r)

becomes
m(3% + 35) = —(k 2% + kJ,Jj'J) = 2mw? X (1% + j7)
—mw2 X (2 % (x% + 33))
= i‘(—kx.r + 2mwj -+ mmax)
+_j‘:( —k.5— 2mwi + mw'z_y)
and the coefficients of ¥ and j give the pair of coupled equations
i={w? - 0l)x + 20w (1.32a)
j=(0*— o)y~ 20i (1.32b)
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1.8 PRINCIPAL AXES

- Substitution in the equations of motion yields

We have introduced the notation w, = k,/m, o, = yk,/m to simplify th

formulas,
(c) Find the normal frequencies of the resulting oscillations of the particle
Let

1) = 6, (1) = e

(n'..o2 — W+ ¢2)£ + 2iwey =0

— 2iwpé +(w2 — wﬁ + ¢2)n =0

For these homogeneous equations to have a nontrivial solution, we must have.
(wzv—wf-i-tf:g)(wg—wf,-l-«i)z) —4m2¢2=0 :

This is a quadratic equation for ¢?, whose solutions are

2 2 2
4’2:“?1‘;;‘&-#&:1: 5 + w? -(wgmwf)(wz—wz)

3 9
we + ),

,» then ¢* is positive (¢ s real) for hotl
roots. However, if @ is between w, and w,, then ¢* is negative (¢ i's imaginary
for one root. An imaginary value of ¢ corresponds to an exponentially growin;
or decaying solution, and we will not have stable oscillations about x = y =0

Note that if w <w, @, or 0> @ ,w

Suppose that a rigid body rotates with angular velocity w. Then a point in th
body located at position r relative to a point 0 on the axis of rotation has
velocity v = w X r, and the total angular momentumn of the body relative to 0'i

L=fdmr>(v=fdmr><(mXr)=fdm[(r-r)m-—r(r-w)]

If we write the components of this equation along the Cartesian axes of _
coordinate system centered at 0, we get

Ly=Y1,q0 (1.33a)
B

Ip= fdm[rzaup - rurﬂ] : (1-3_31_3_')

The set of nine numbers I, are the components of the moment-of-inertia tenso
in the chosen coordinate system. It is usually convenient to choose this coordlnf.i_t.:
system to be fixed in the moving body, because then the 7., do not change with
time.

It can be shown* that it is always possible to find a set of three mutua.f_lY
perpendicular axes intersecting at 0 such that the components 7, calculated Wlth

4See, for cxample, Chapter 10 of Mechanics by K. R. Symon, Addison-Wesley Publishing Co., Inc, chrfll.l'ls
Mauss,, 1971.

PROBLEM 1.8.1
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respect to these axes form a diagonal matrix;

Ip=08,1,= auﬁf dm[r? — 12] (1.34a)
_fdm (y2+ 22) 0 0 |
I= 0 [dm (2 +27) 0 (1.34b)
0 0 [m (x4 52)

If we substitute (1.34a) into (1.33a), we see that the components of L and w
along these axes (called principal axes) satisfy the simpler relation

L,=1w, (1.35a)
or, more explicitly,
L=w,[du(y%2?) (1.35b)
L_v=wyfa’m(x2+:~:2) (1.35¢)
L, = wzfdm (22 + »%) (1.35d)

It is clear from (1.33} and (1.35) that the directions of L and  need not be
the same. However, if  lies along the # direction, then w, = w, = 0 and (1.35)
yields

L, wfd’m(yz-l-zz)

L=L =0
Thus, if w lies along the % direction, then so does L. Analogous conclusions can
be drawn if w lies along the 5 or 2 direction. If o fies along a principal axis, L. and
w pownt in the same direction. The diagonal components T « calculated with respect to
principal axes are called the principal moments of inertia. The symbol [ used in
Section 1.1 was really a principal moment of inertia corresponding to the axis of
rotation, which was a principal axis in every example considered there.

The technique for finding the principal axes and principal moments of

inertia of a given object is straightforward, but rather laborious. Fortunately, if

the object has certain symmetries we can often find some of the principal axes by
inspection.

1. If the object is symmetric with respect to reflection across a plane, any axis
perpendicular to that plane is a principal axis.

2. If an object is symmetric with respect to any rotation about an axis, then that
axis is a principal axis.

These statements can be verified by showing that 1,4 is diagonal when calculated
with respect to axes with the stated symmetry properties.

Find the principal axes and principal moments of inertia, relative to the mass
center, of a homogeneous block of mass M and sides a, 4, and «.

From reflection symmetry with respect to planes through the center of the
block and parallel to its faces, we conclude that the principal axes are perpendic-
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FIGURE 1.21 The principal

22 The principal 2
axes of the uniform rectan-

Fo 2}

: g}fh_ﬂ. ax[s of the
gular block are perpendicu- e _o_rientatnc_m ~
lar to the planes of reflection c he principal R :_/
symmetry. arbitrary.

,’J N
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ular to the faces of the block. Then
M ¢/2 572 a/2 ) .
= 2 )= — dz d de{ y* + 2° ="' M5 + (2
L= [dn(y*+ %) = — J, "_bfﬂy_af/2 (5 +2%) =" (5 -

In the body-fixed principal axis system, « and I, are constant, and so L is
also constant. To calculate the torque we use (1:1b), but the time derivative there

must be calculated relative to an inertial frame of reference. We can combine

Similarly, (1.1b) and (1.29) to write

I, = M + %) L _ 4L
LM (e + )

T = =~ +wXL (1.36a)

I et dl

I

PROBLEM 1.8.2 Find the principal axes and principal moments of inertia, relative to the mas
center, of a homogeneous cylinder of mass M, radius R, and le?gth L, 0
The axial symmetry of the cylinder guarantees that the axis of the cylinde

Since L is stationary relative to our rotating coordinate system, d*L/dl = 0 and
we get

is one principal axis. Call it the £ axis. Since the cylinder has reflection symmetry T = © X L= (R, + 200.) X(R_w, + 3w
across any plane containing the £ axis, we can choose any pair of orthogonal axes . , ,
perpendicular to the Z axis as the ¥ and $ principal axes. Then = jww (I, — 1)
Ly2 R 2
M 2 _ MR Mu? 2
.= [ dm(x? + %) = — dz [ dr-2mr- 1t = —— =% 0| — — R?
2z f ( aR2L __[/2 _0[ 2, 3 sin 2 4
Mo romoor ' . ‘ o
= 24 ) =" dz | df | dr-r(r?sin®f + 2%) This torque must be supplied by the bearings that hold the axis in place.
L .[ dm(y +z ) aR*L _f f f ( IH#=0,n,=0, and the wheel is said to be dynamically balanced. Note
L7z 0 o ot b4
MLE  MR? that if d° = 3R?, the wheel is also dynamically balanced, independent of #, In

this case all three principal moments of inertia are equal, and any axis through

the mass center is a principal axis. This is also the situation for the rectangular
block of Problem 1.8.1,if a = 4 = ¢.

12 4 7

PROBLEM 1.8.3 Suppose that a uniform wheel of radius R, thiclmess' d, and mass A{ is rotating a!
angular speed w about an axis that passes through its mass center, but makes a{;

angle ¢ with a line perpendicular to the wheel. Find thé angular momentum o

the wheel and the torque on the axis. o

We use a coordinate systemn fixed in the wheel, coinciding with the prmc-lpai

axes, The vector w makes an angle § with the # axis, and we choose our ¥ axis s0

A A 23 The d
that w lies in the ¥ — Z plane. Then %and g

.axes are fixed in

~Y

2 2 ‘ 2 of the wheel, but g

6= wsind, L=l =M G+ |0 o me .

wy = 0’ LJ’ =0 ¥
MR?

wﬂ=wCDSB, Lg:[wm cos f + w \_/

T 2
Thus, L lies in the plane of w and 2, and if d < Y3 R, it lies between w and.
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Euler’s' equations of motion are obtained by writing (1.36a) in termy
components of vectors along a body-fixed principal axis coordinate system::

dw,
m,=1 7 + (I:: - Iﬂ,)mjw_, (1_35_5
dw, .
TJ’ = I)’J'—alt_ + (Ixx - I;:)w:wx (1.36{:
duw, :
T. = I“_d:— + (f,-y - fn)wxwy (1.3§d

These equations are useful in the analysis of torque-free motion.

PROBLEM 1.8.4 Calculate the angular momentum of a thin rectangular plate with dimensions g
b, and mass m, rotating with constant angular velocity w about a vertical axi
through a diagonal. Compute the magnitude of the torque (exerted by th
bearings) that is required to sustain this motion.

We choose the origin of our principal axis system at the mass center. Th
symmetry of the plate implies that one principal axis will be perpendicular to t ‘
plate, and that the other two will be parallel to the edges of the plate, Th
components of w in this coordinate system are

a b
G0 = e 2+’ Er R
FIGURE 1.24 (a) A thin rect- w “
angular plate rotating about
a diagonal; (b) the £ and 2 .
principal axes of the plate.
fa}
b
7
o
o
% (b}

Principal Axes 39

The components of the moment of inertia tensor are

m m b mb
I,= |dm(y*+2%) = — dx 2= — - g. — = —
= [n (5 27) ab_—Lz _!;2 T W 1T
m{a® + b?) ma*
I, =—" I = —
7 12 : 12
- a/2 b/
I,= -—fdmxy= 0=17, I.=—|dmxz= 2 fxait f zdz =10
-a/2 ~b/2
"The components of the angular momentum are given by
L= Yl
B
Written out in matrix form, this becomes )
I b? 0 0 [ a 1T muwb’a |
* 19 Tw 9 ] - 7
12 . a* + b 12/a® + 4
L | o a’ + b 0
i == O = 0
) 12 .
I 0 0 a* b mwa’h
. ol YT PP
N 3 1200 vat+ 62 1 L 120+ 47 |
Thus,

" mwab [ b - .]
= = — ¥ + af
12Va® + 32

Since L rotates with the plate, the torque that must be supplied by the
bearings is

L

dL L muw’ab ; )
= —— = ){ = - I, - _ :\ A
T=o = ———-—-—12(03_*_52)( ak + b2) X (—b% + a2)

m 2ab(a2—b2)l '
TR TarE Y

Note that this vanishes for @ = 4. In this case the matrix of Iis

2 -
— 0 0
12
aE
ml o — 0
6
a®
0 0 —
| 12 |

and it is easily verified that any line in the x—z plane through the mass center is a
principal axis.
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FIGURE 1.25 The light rod Is
pivoted at O.

1.9 LAGRANGE’S AND HAMILTON’S
EQUATIONS FOR A CONSERVATIVE SYSTEM

PROBLEM 1.9.1

" energy must be calculated relative to an inertial frame of reference. T

Let the generalized coordinates of a system with ¢ degrees of freedom be labele
G1> Gus- - - » G4 The Lagrangian L is defined by

L= T(‘Il: SRR FH 9'1:-- bR q.d’ "") - U({h,- v Qs t) _ (1-373
Here 7" and U are the kinetic and potential energies, respectively. The kine

generalized momentum #; conjugate to the generalized coordinate g, is defin

by
b= ;—i = % (1.3?15
Lagrange’s equations of motion are’
d d{dLy aL - (137

&=\ "

These equations are equivalent to Newton’s laws of motion, but are often easie
to write down and solve,

A bob of mass m is attached to a light rod of length /, which is pivoted at a fix
point 0. Find the motion of the bob. 5

The first step is the identification of the relevant degrees of freedom, In th
problem they must specify the orientation of the rod, and we choose them t . b
the polar coordinates # and-¢ (see Figure 1.25). Next we must express the km?tl
and potential energies in terms of # and ¢ and their time denva?wes. -Lt_:t'US
choose the condition of zero potential energy to be when the rod is horlzqntﬂ

3Far a derivation of the connection between Lagrange's equations and Newton's second law of. motion, 3
example, Chapter 9 of AMechanier by K, R, Symon, Addison-Wesley Publishing Ca., Inc., chdir‘lg..Mﬂ::
However, the most inleresting approach to Lagrange’s equations is from the ca]cu]lus.nl' ‘,r;urlaltmn!mm_‘ii
example, Chapter 2 of Clussical Mechanics by Herbert Goldsiein, Addison-Wesley Pub]l?hmg Co., Inc, e I
Mass, 1980, The variational interpretation shows immediately why Lagrange's cquations have .lhe.ﬂ‘- .

{1.37¢} lor any generalized coordinates, An excellent introduction to variational mcth'ud's in phyﬂlw 1 [;mding
in Chapter 19, Volume IT of The Feuman Lectures on Plysics, Addison-Wesley Publishing Co., Incq gl

Mass,, 1963.
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(8 = 7/2). Then
U(8, ¢) = mgl cos 8

T(0,,8,8) = sm? = Ym[(16)* +(I5in 05)7]
L(0,,6,9) = Imi?[6% + ¢ singﬁ] — mgl cos f

dL 1% i 0 aL 0
Py = E?ri) = mi“Ppsin P =
Thus, Lagrange’s equations (1.37c¢) are
d . .
Z(mfzﬁ) = ml*| ¢? sin @ cos f + % sin (1.38a)
d,. ..,
;,—t(mzéqb sin®@) = 0 (1.38h)

Equation (1.38b) implies that g, = m/’} sin?8 is a constant of the motion, In
fact, it is the vertical component of the anguldr momentum of the hob, and its
constancy is due to the absence of a component of torque about this vertical axis.
We can express ¢ in (1.38a) in terms of the constant Dy to get

. py cosf g
= —/=—— + —sinf 1.38¢c
m** sin’f ! ( )
whose solution can be expressed in terms of elliptic functions.
Often one wants to consider simple special cases, such as a motion of the

4

pendulum with constant §. If 8 =, = constant, then § = 0, and (1.38a)
becomes '

[t}x?cos g, + %Jsin g,=0

This equation can be satisfied in two ways:
1. 6, =10, and the pendulum is vertical;

2. 6, # 0. Then ¢’ cosf, + g/{ = 0 and cos 0, <0, so that 8, > w/2, and the
rod points below the horizontal plane. Furthermore, since |cos 8, < 1, such a
solution is only possible when ¢* > g/L.

Having found equilibrium values of ¢ and 0, one can investigate solutions
involving small deviations from these values. Equation {1.38c) has the form

d=/(8) (1.39a)
and the equilibrium value of # satisfies f( fy) = 0. Now write 8(¢) = 6, -+ ¥(¢)
where we expect ¢(!) to remain small. Then (1.39a) implies

i = P = (6, + ) = f{l,) +¢f(8,) + ...
=y¥f(8,)+... (1.39b)
If f'(8,) <0, we can find a harmonic solution of
¥ =¢/(0,) (1.39¢)
where Y remains at all times small enough to Jjustify retaining only the terms in

the expansion of f(f, + ) shown in (1.39b). The circular frequency of the
harmonic oscillations of Y can be obtained from (1.39¢),

w=-f"(6,) (1.40)
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PROBLEM 1.9.2

FIGURE 1.26 (a) The mass
center of the system is at the
midpoint of the stick; ()
Iccating the mass center rel-
ative to the point of support.

If we apply this method to our spherical pendulum, we have

p3 cosb g
HO) = =5 —=5 + 7 siné
: 2
P2 sinf, + 3 coss, 4 T .
f(b,) = — g ) + 7 cos G, = [1 + 3cos 00]

Thus, the oscillations about # = §, are stable, and occur with a circyl
frequency w = q.by'l + 3 cos®d,. . . o

Usually, the most difficult step in the Lagrangian mcthogi Is expressing th
kinetic energy in terms of the generalized coordinates and their derivatives. Th
use of an orthonormal set of unit vectors often makes the process more systema
and efficient. k

Find the equations of motion for plane oscillations of ‘the structure ' shoy
in Figure 1.26, The cord has length & and no mass. The stick has length ¢ an
mass M.

We choose to work with the generalized coordinates 8, and f, shown
Figure 1.26. We also erect the set of unit vectors & and 7 at thc. point of supp
First, we locate the mass center of the stick, since this will determine.{]

{a)
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gravitational potential energy, and is also needed for the kinetic energy:

a
R=b+c¢c=5[Tsind, —jcosh] + E—[.’x‘sinf?2 — jcos b,]

a a
= 2[1) sinf, + 2 sin 02] —-j‘![b cos f, + o o0 82] (1.41)
Thus, the potential energy is
a
U= MgR, = —Mg[b cos f, + 7 cos 6‘2]

We use (1.26) to determine the kinetic energy of the stick. Here w = f, and
I = {2 Ma®. Differentiating (1.41) gives

, a, . a,
R = 5‘:( b8, cos 8, + 592cos 52) +j}( blsin 0, + -2—025in 5‘2)

o~
.
Z
ha

I

. a . 2 N a. 2
(bﬂlcos g, + Eﬂgcos 02) +(b6,sin 8, + Eﬂzsin 32)
. ay?, .
= b9} +( E) 85 + ab f,cos(8, — 8,)
Thus,
. a\?, - .
T=1M|b} +( "2-) 05 + abf b,cos(8, — 6,) + é(fgﬂ/fag) ;

and

td

. 1 . as . -
L=T-U= EMr b2 + ?B;f -+ ab8 f,cos( 8, — 8,)

a
+Mg[b cos &, + 7 08 92]

The set of equations obtained by applying (1.37c) to this Lagrangian is

—d- b6, + lcztégcus(tﬁl —b,)|= - -l—aélégsin(ﬂl —f,) — gsind,
dt 2 2
(1.42a)
a1l 1. r .. £
;t- Ebﬂlcos(gl — 02) + —3-(192 = -é-bglgzsin(ﬁl = 52) — E sin @,

(1.42b)

We can simplify these equations if we restrict our attention to motions where
8,, 6;, and their derivatives are small. If we make the small-angle approximations

1 sinff =60, cosf=1~§%2
in (1.42) and keep only terms linear in 8,, f,, and their derivatives, we get
b, + Lal, = — g8, (1.43a)
b6, + 2af, = — g8, (1.43b)

To decouple these equations we look for the normal modes. These are solutions in
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which both #, and 8, oscillate with the same frequency w,
8, = Rg(glga'm)
8, = Re(£,e')

If these are substituted into (1.43), we get two homogeneous linear equations
§, and &,,

(5 1 'fz CODStaDt) port oscillates

1 this plane.

(g = b)) — $aw®, =0 (1445
- bm2§, +(g - %am2)§2 =0 (1.44% : !

If these equations are to have a solution other than &, = £, = 0, the determinap
formed from the coefficients of £, and £, must vanish,

g— b —1/2a0" _ 2 2,..2Y _ 4
det ~b® g — 2/3a0° = (g bw )(g — 2aw?) — Labw = 0

This yields a quadratic equation for w*, whose two solutions v?, and «? are.

fa)

The equation of motion is

g ) / ; . o .
(‘*’i)z = E[('Z“ + 3b) + V4a® + 6ab + Qb“] (1'4_5?‘ E(nu’zﬁ — mawlsinwt - cos §) = mawl/sinwt - sinfl - § — mglsin 0

(b) Show that for small values of # the equation reduces to that of a forced
harmonic oscillator, and find the corresponding steady-state motion. -
For small &, we neglect terms of second or higher order in # and its
(8)).= 4a(w i)Qcms w ! (1.4_55 derivatives,
(8,) .= g = 0(e,)]cos w . - (14
The most general solution of (1.43) is a linear combination of the sclutions (1.45
0.=4.(8),+4_(8)_, (i=1,2)

with the constants 4, determined by the initial conditions.

thls analysig is a pair of solutions

mi*i — maw¥ cos wi = - mgll

aw‘z

g + 79= Tcosml

This is the equation of motion of a forced oscillator. I we seek a solution
B(1) = A cos wt, we get

PROBLEM 1.9.3 A pendulum bob of mass m is suspended by a string of length / from a point

support, The point of support moves back and forth along a horizontal x axi

according to the equation

X = acos wi E

Assume that the pendulum swings only in the vertical plane containing the

axis, Let the orientation of the pendulum be described by the angle 8 with
downward vertical.

(a) Set up the Lagrangian function and write out Lagrange’s equations

Let r locate the bob relative to the origin:

g — w

This is the amplitude of the forced oscillations. It diverges as w approaches the
natural frequency of the free simple pendulum.

=

PAOBLEM1.94 A simple pendulum is hung from a block which is free to slide without friction on
a horizontal surface. Two identical springs are stretched between the block and
the walls (see Figure 1.28).

(a) Write the equations of motion of the system,

Let x be the displacement of m, to the right of its equilibrium position, and
B the angle of the pendulum to the right of the vertical. We put our origin at the
equilibrium position of m,. If r; and r, locate m, and m, relative to this origin,

r=x%+ {(Zsinf — Jcosf)

(x+ Isinf)% — lcos 83 & = (i + [0 cos 8)% + 1 sin 65 ;
T = tmi? = tm[(x + 10 cos 0)* +(10sin 0)°] = 4m[ 3 + 1262 + 246! cos
U= —mglcosd :
L=T-U=im(&*+ I°6% + 246! cos §) + mgl cos 8

= im{a’w*sin®ot + (0% — 2awisinwt - cos 8 - §) + mgl cos o =a%, 0=
dL ) L . . r,=x¥+ /(&sinf — jcosf) = ¥{x + Isin@) — Hlcos O
7] = m{*¢ — maw!sin w! - cos #; 2 = mawlsinwi - sind + § — mg[slna _

fy=3(%+ /fcosf) + 30! sin 8
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FIGURE 1.28 The mass m,
slides on a smooth surface.
The mass mj is at the end of
a light pendulum pivoted at
m,.

l—b'ﬂ.ﬂ
i

Springs
VALARN

AN
L\
i

ma

Thus, the kinetic and potential energies are
T = tm (i) + dmy(8,)* = dmyi® + dmy(5* + 126 + 230l cos ) -
U=2- Yix® + mygl(l ~ cas§)

The Lagrangian i3

L=T— U= (m, + m,)* + $m,({** + 281 cos §)
—kx? + mogl{cos § — 1)

To get the equations of motion we calculate

. ar .
%—{—‘ = (m, + my)& + myfl cos @, —EJ—H = my(1*0 + &l cos 6)
X
%£ = —Dkx, T —myiflsinf — m,glsinf
X

d .
E[(m‘ + my )k + mflcos 0] = —2kx

d , ; .
Z(Fﬂ + ilcosf) = — (%0 + g)isind

{b) Find the normal frequencies for small oscillations of th‘e system. i

We rewrite the equations of motion, retaining only terms linear in f,f} an
their derivatives. )

(m, + my)3 + mylf = — 24

1+ = —glf
To find the normal frequencies we seek a solution of.the form
x(t)=£e“‘"‘, B(t)=ne"“”

Then we get |
[2& —(m, + my)w?]£ — mylw’n =0
— wi +[g - lwzln =0

A nontrivial solution exists only when

. 2k ~(m, + my)®  —mylu®| _ 0

—w? g— {w?

[Qk —{m, + mg)mzl[g — lw?] —myle* =10

de

PAOBLEM 1.9.5

PROBLEM 1.9.5
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The normal frequencies are thus

1 9
w,= W‘/(ml +m,)g+ 2k + \/[(ml + my)g + 28] — 8m,lkg

A block of mass M, width 2/, and height 24, rolls on a fixed cylinder of radius R.
When the block is horizontal it is perfectly balanced on the cylinder. Find the
equations of motion and determine whether the horizontal orientation represents
stable or unstable equilibrium.

We choose as our generalized coordinate the angle that the block makes
with the horizontal. If the block rolls on the cylinder through angle # without
sliding, the distance between the center of the bottom of the block and the point
of contact of the block and cylinder is a « # (Figure 1.294). Figure 1.29¢ shows
how we can locate the mass center of the block relative to the center of the
cylinder, as a sum of vectors parallel to the faces of the block. By inspection of
Figure 1.29¢ we get

R=(a+d)(#sinf + Hcosf) + ab(—%cosf + §sind)
= *(a+ d)sin@ — afcos 8] + $[(a + d)cos # + afl sin 0]

The potential and kinetic energies are

U= MgR,= Mg[{a+ d)cos 0 + af sin 8] (1.46a)
M, 1. M, 1 [ M )
T=—R+ —10% = —0%(d* + a®0%) + —| — (41 + 447)|0?
9 9 g (4" +a )+ 35 )
IM 4d2+ & + 2%0?| 42 1.46b
~ ™Ml 3 2 (1.46b)

from which the Lagrangian can be constructed. The question whether # = 0 is a
position of stable equilibrium can be answered by expanding (1.46a) about
=0,

]

“

U=Mg|(a+d) l——-2—+--- +ab(f+---)

=Mg|la+d+ §° + 0(6*)

Thus, # = 0 is a local minimum of the potentiz{I energy if a > d. As |f] increases
from zero, the potential energy increases, so that the kinetic energy decreases.
Eventually, the kinetic energy will vanish, which means that the excursion away
from # = 0 has come to a stop, and then the block will begin its return toward
= 0. However, f = 0 is a local maximum of the potential energy if d > a. In
this case, as |0 increases from zero, the kinetic energy will increase, so that a
small deviation from # = 0 will grow into a large one. Thus, § = 0 is a point of
stable equilibrium if and only if a > 4.

A particle of mass 7 in the earth’s gravitational field is constrained to move in a
frictionless vertical plane which rotates about a vertical axis with constant
angular velocity w. Write the Lagrangian for this particle and find the equations
of motion. Solve these equations if, at ¢ = 0, the particle is at rest relative to the
plane, at a distance x,, from the axis of rotation and height 4 above the ground.
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FIGURE 1.29 (a) The block is
balanced on the cylinder; (b)
the block is rolled so that it
makes angle # with the cyl-
inder; (c) locating the mass
center of the block relative
to the center of the cylinder.

FIGURE 1.30 (a) Mass m
slides in the vertical plane
{hat rotates about a vertical
axis with angular speed w;
(b) location of the particle in
its ptane at time ¢, %, §, and 2
are fixed.

afl

fa) fb} fe)

The statement of the problem suggests that we use Cartesian coordinates
p, z in the rotating plane. The purticle is located relative to a fixed origin on th

axis by
r(t) = plcos wt - & + sinwt « 3] + 22
The particle velocity and kinetic energy are

#(1) = pw[—Esinwt + jcos wt] + 4% cos wt + Fsinwi] + 22

#~pwsinwt + p cos wt] + H{pw cos wt + psinwt] + 22

1 m 9 . s .2
T= Emfzma['gw‘!-i-pg-i-z‘]
|
U
g m

I fa)
h

Y o o —— —m m  ——
i

(k)

PROBLEM 1.9.7

'_31 The view of a
f.the helix as seen
one looking down

Lagrange’s and Hamilton's Equations for a Conservative System

The potential energy is U = mgz, so the Lagrangian is
: meo
L=T-U= E[p“w“ + p° +é‘] — mgz

Then we calculate

oL AL 4 i
?}E =mp, B_p = mpw®, E(mp] = mpw*
dL aL d

R = mz, o = —mg, ;;(m:) = —mg

Thus, the equations of motion can be written as

p=u’p, i=-—g

with the general solution

h(0
p(t) = p(0)cosh wi + p(- ) sinh wt

(5}

2(1) = 2(0) + 2(0)t — Lgt®
Since
p(0) = xy, z(0) = 4, p(0) = (0) = 0

we have

p(!) = xcosh wi, z(!) =h—- 'lggﬁg

as the solution with the specified initial conditions.

49

Consider a smooth wire helix with vertical axis and radius R such that z = 6. A

glass bead slides down the helix under the influence of gravity.
(a) Find z(t) by Lagrangian methods.

We will work with cylindrical coordinates z, @, p = yx* + 3*. The bead is

located relative to the origin by
r=1:2+Rp
where p is a unit vector in the x—y plane, directed away from the £ axis,
p==xcosf -+ Hsind
We also introduce a unit vector 8, perpendicular to 2 and p, deflined by

! = —3%sind +j3c‘056'

¥

=3

H)
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Since ® and j are constant vectors, differentiation with respect to & gives Let us check that this force is perpendicular to the helix, as it must be if the

helix is frictionless. Along the helix,

dp .
i —Xxsinf + jcosf =4 dp df
) dr=dz -5+ Rdp = dz| 2 + R—
d6 o d=
E=—£cos€—ysin9=—ﬁ R,
=dz|z + —
The velocity of the bead is given by b
.odr dp AP . We can now easily verify that F, - dr = 0 at all times.
=u "% + R';r}" =2+ RHE =&+ Rbd Another formulation of the equations of mation is based on the Hamiltonian.
R For a conservative system with 4 degrees of freedom, the Hamiltonian is defined
=z|2+[~—|6 by

H(gyso o qus brsees b t) = Lpigi— L (1.47)
where we have used the fact that & = z/b along the helix. Since # and B i

perpendicular unit vectors, we can write

1
T= —mi?= —m?|1 +|~—
2 2

b

Note that the right-hand side of (1.47) is not the Hamiltonian until it has been
expressed as a function of ¢,,..., 9, p;,..., py, &. To do this, it is necessary to
invert (1.37b) in order to obtain expressions for the §;, in terms of
Qs+ s Gas L1se -5 bgy t. Hamilton’s equations are derived by differentiating & of
(1.47) partially with respect to p; or ¢; (keeping all the other #s and ¢s constant).
The result is

1o~

The potential energy is given by U = mgz, so the Lagrangian is

L z 1+ ial 32 dH
= — — | 1&° — mgz
2 b 7= q; (1.48a)
which leads to b
. £ JH .
= — FTE - = (1.48b)
1+ "E' 9
' . o This set of 24 first-order equations has the same physical content as the sct of 4
as the equation of motion. The general solution is second-order equations (1.37c) that constitute Lagrange’s equations. _
1 £z The task of constructing the Hamiltonian is often made easicr by the
z(t) = z(0) + 2(0)¢t — ) ﬁtz following result:
1+ n If the kinetic energy is a homogeneous quadratic function of the gencralized
velocities, then the Hamiltonian is numerically equal to the total (kinetic -+ potential)
(b) Find the restraining forces. energy.
the bead is md?c /dt® Thus
forceﬁicsg:gl{i ctiodllle:;tg?e l:l;ﬁxtzisll] ;O;f:elsogl vcs N ;i" , 1 ::Id2 ://dt“ g :;wgz To prove this we remark that if T is a homogeneous quadratic function of the Gis
We have already calculated f. We differentiate once more to get the acceleratlon g;cx;\zr:nultlplymg every §; by any number A will have the effect of multiplying 7
d’vr  di R, R df R, . R ] ) ) )
a’t2 =——t-="(n+‘5‘ +2-.'I"EE'=Z(2+ Ig)“ég‘b_.a T(‘?i:"'sqd’;\qta'”:)\QdSt)=AQT(QI:-”:qd:qls---’qd:t)
R R If we differentiate this equation with respect to A and then set A = 1, we find
=3 24+ -—-9) —(z)z—,ﬁ
b b* aT
—6.=92T= Y p.4.
i 2, . Lgrd ;ﬁ.q,
Lo=mE| 2+ —8) —mi*—p + mg2
h b b In this case, (1.47) becomes
.
(R/B)* | R/b , gt H=2T—(T-U)=T+U=E
= mg—g——2 — mg—————0 — m| 3(0) ~ T, 1
(R/6) +1 (R/b) +1 (R/b) and the Hamiltonian and total energy are equal.
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PROBLEM 1.9.8  Write Hamilton’s equations for a one-dimensional harmonic oscillator,
Here we have only one degree of freedom, which we label x(= 7;). Sing
T'=1/2-mi* is quadratic in %, the Hamiltonian is simply

AOBLEM 1.9.9 Write Hamilton’s equations for the rotating two-dimensional oscillator of Prob-
' lem 1.7.10, using the Cartesian coordinates of the particle relative to axes fixed in
the rotating plane as generalized coordinates.

The kinetic energy is

H=T+U=EF
T 1 (), 1 d*r 2
9 = — = -ml— 4+ wEXy
_ _{}; . imwxz 2m v 2m = z
m 2 1 "
= Em[.':‘{' + i + el — 58)]"

Note that we have used & = §/m to remove from & any explicit dependeng.

on x. Hamilton’s equations (1.48) are 1 o 2
E (1.48) = Em[(i‘ —wy) +{j+ m.r)“]
_ag = _fi =i and the Lagrangian is
c?p m 2 3 9 1 9 0
L= ém[(i' —wy) +(5+ w.\')'] - ém[w_‘;xz + w_;y“]
.Bif = mwl = —} In this case the kinetic energy is not a homogen-enus quadratic function of # and
dq J. To construct the Hamiltonian, we calculate
dL gL )
Here (1.50a) just recovers the relationship between velocity and momentum, an b= Fri m{& — wy), py = T m( j + wx)
(1.50b) is equivalent to Newton's second law of motion for this problem (1.15a ! J

Hamilton’s equations (1.48) exhibit a high degree of symmetry between th
generalized coordinates and momenta. It often turns out to be convenient
exploit this symmetry by regarding the 24 numbers (915s a3 Prsoo oy b)) as
coordinates of a single point, representing the instantaneous state of the system
in phase space. As time proceeds, the point traces out a path in phase spac
determined by its initial location and Hamilton’s equations. For example, Figur

H=pi+pi—1L

i . 1 . -
= ﬁ( i+ f{f.) + Em( wixt + w_;_y") — w{xp, — p,)

Hamilton’s equations (1.48) are

1.32a shows the phase-space trajectory for a one-dimensional harmonic oscillator _Bﬁ _ b F ooy = (1.51a)
According to (1.49), the trajectory is an ellipse with scmi-axes v2mik a ap, T T erTe ~ta
y2E/(mw*) . Figure 1.325 shows a useful variation of this diagram, in which th JH
. . . by
axes arc changed to p/ V2mw and ymw/2 x. The trajectory is now a circle o == —wxr=3} (1.51b)
radius y2E/w ., It is easy to show that (1.50) implies that the point representi b, m
the instantaneous state of the oscillator moves around this circle with constan OH
angular speed w. The occurrence of trigonometric functions in the solution of the — = mx—w p=—p, (1.51c)
harmonic oscillator is associated with this circular motion in the phase space o dx
i ; H
Figure 1.324. % = mity + wp, -5, (1.51d)
FIGURE 1.32 (a) _ ) s Equations (1.51a and 1.51b) give us no new information, but (1.5!¢ and 1.51d)
Phase-space diagram for a , p are equivalent to the equations of motion (1.32) we found by using Newton'’s
one-dimensional harmonic \'\ second law in a rotating coordinate systerrt.
osclilator. The ellipse is de- JZmE

In general, clementary problems in mechanics are just as easily solved with
Lagrange’s equations (1.37) as with Hamilton’s equations (1.48). The principal
reason for introducing Hamiltonian methods into the undergraduate curriculurn
is the important role they play in quantum mechanics. For example, the
prescription for writing the Schridinger equation (5.2.7) starts with the construc-
tion of the classical Hamiltonian ( 1.47). It is even possible to use Flamilton’s
equations in quantum mechanics, although the symbols A, q; p; have to be
interpreted as “operators” rather than as numerical quantities {see Section 5.2),

termined by (1.49); (b) the &

representative point moves

in a circle with constant an- x

gular speed w. \—/ J_T__z \/T_ré_:z *
Hw

fa) ft)
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1.10 NORMAL MODE ANALYSIS OF
SMALL OSCILLATIONS ABOUT EQUILIBRIUM

In many mechanical systems, the Lagrangian has the form

n l
L{gs-- 5 4, Groveer dn) = Z: Emi‘ji_ = Ulgys---59,)
f=21
Lagrange’s equations of motion then take the form

au
= =g lanen) (= L)

At cqulllbrlum all the ; g; vanish, s the n equilibrium values of the ¢, Whlch
designate by g,, satisfy the n conditions

alu
q" 0=d;

To study motions near equilibrium, we expand U in a Taylor series about §

au
Ula1,9) = Ol ) + Dln = ) 5
ilgms
1 AU
+ — - . L — g, —
2 %(ql qr)(q_) q_)) Bqlaqj .
! g=q
zU(ql,...,l]n)+ Z 'JJ’ + ... (155
if
with _
n=q;— g (1.55
92U i
a; = =0y )
g aqlaq_} ’ :

g=4

“The “harmonic” approximation (1.55) [or U ylf:lcls equations of motion that;a

coupled second-order linear differential equations in the deviations r,
mrn= = Za:‘jrj
J

The method for solving such equations is a generalization of the method out'l_':
in Section 1.9 for decoupling (1.43a) and (1.43b). The essential idea is to atter
to find solutions (called normal modes) in which all the r; oscillate with the 52

frequency. For a systemn with n degrees of freedom thcrc will be n lmeal‘l

independent normal modes, and the most general motion of the system can’
expressed as a superposition of them. In general, finding the norrnal m
involves diagonalizing the symmetric matrix '

a..
X
(br'j)"' m

which can be a laborious procedure if n is greater than 2. However, in !
cases the symmetries of the system allow us to write down at least some ©
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normal modes by inspection, and then to find the normal frequencies by means
of a simple calculation.

The following is a convenient general procedure for finding the normal
frequency once we have guessed the form of the normal mode:

1. Let £ represent the amplitude of the mode (£ = 0 corresponds to the equi-
librium configuration).

2. Calculate the total potential energy of the system as a function of &. It will
have the form

U(¢) = Lk 8" (1.56a)

where the “effective spring constant” £ ; depends on the restoring [orces in
the system when the components move in the chosen normal mode.

3. Calculate the total kinetic energy of the system as a function of £. It will have
the form

T(‘f) = %muu’:‘g (1-56[3)

where the “effective mass” m_ g depends on the masses of the system and on
the way they move in the chosen normal mode.

4. The frequency of the normal mode is then

w= V/fcn/mufr (1‘550)

AOBLEM 1.10.1 'Two identical masses m slide on a smooth surface, are connected to the walls by
- identical springs (spring constant £) and to each other by a spring with spring
constant K. Find the two normal modes and normal frequencies,

Figure 1.33a shows the masses in equilibrium, and Figure 1.336 shows an
out-of-phase oscillation in which the masses move by the same amount but in
opposite directions. The symmetry of the system then dictates that the midpoint
of the middle spring will remain at rest. The behavior of the left-hand mass is
then the same as that of the mass illustrated in Figure 1.33¢. Here the mass m is
subjected to a harmonic restoring force of effective spring constant £ + 2K, so
the frequency with which it oscillates is (£ + 2K)/m. A similar observation is
made about the right-hand mass, so that in the motion depicted in Figure 1.336
both masses oscillate with the same frequency, and this is indeed a normal mode
of the system.

At equilibrium (Figure 1.332), the tension is the same in all three springs. In
the in-phase oscillation shown in Figure 1.334, both masses have moved to the
right of their equilibrium positions by the same amount. The spring K has the
same length and, thus, the same tension, that it had in equilibrium. The net force
on the left-hand mass is just the additional force provided by the left-hand spring
due to the stretching of this spring. If the left-hand mass has moved x to the
right, there is, therefore, a restoring forece of magnitude Av. This mass will then
execute an oscillation with frequency w = ‘[A/T Similarly, the net force on the
right-hand mass will be the additional force exerted by the right-hand spring due
to the compression of that spring, and this also produces a restoring force of
magnitude kx. Thus, the two masses oscillate at frequency w = m , maintain-
ing the separation equal to their equilibrium separation.

F'ROBLEM 1.70.2 A model of the CO, molecule assumes that the atoms are aligned and connected
by springs of equal spring constant 4. Describe the normal modes of oscillation of
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FIGURE 1.33 (a) The masses
and springs in equilibrium;
(b) out-of-phase oscillation
of the masses {note that the
center of the middle spring
remains at rest); (c) if spring
K is fixed at its center, each
half has an effective spring
constant of 2K; (d) in-phase
oscillation of the masses.
Note that the separation of
the masses is the same as in
the equilibrium configura-
tion.

fa}
{b)
N
=
§ fe)
N
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this system (along the line connecting the atoms) and find the frequencies
terms of & and the masses of the atoms,
Since there are no external forces acting on the molecule, the vibrationa
modes will leave the mass-center of the molecule at rest. One such mode’ WGuI
correspond to having the '*C remain fixed, while the '°0 atoms oscillate’
out of phase, corresponding to the pattern < x — ., This oscillation frequent
w = '!fk/m('fcn 'The other mode corresponds to the pattern — « -, with
two 'O atoms moving in phase, opposite to the motion of the '*C. If each
moves to the right by x, the C must move to the left by 2 - 16/12 + x in ords
keep the mass-center ﬁxcd Thus, the right-hand spring stretches by x + (32/ 12
~.x, while the left-hand spring compresses by x + (32/12) - x.

OBLEM 1.10.3

PROBLEM 1.10.4

150 IEC 150
04000000 o~ 000000 0
k A

4,

The potential energy associated with this displacement is

U=o 1 p 32 \* 1 . 44 A.
) (“ HETH Bk ( 2] =
The kinetic energy is
1 1 32 12 1 44 »
TrT=2-: 'z"m(mo)x + zm(nzc, lzx) = ?2' 2. -1‘2— T Masgy X
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(b}

The frequency of this mode is thus

44\
2.0 —| &
*la)

44
2. T2 o)

W= Vkurr/’"uﬂ =

12 H!‘IIiO)

What is the frequency of oscillation for each of the systems shown in Figure 1,347

(a) Springs in series. Let x(!) be the vertical displacement from equilibrium,
The kinetic energy is 7'= (1/2)mi* Each spring stretches by x/2, so the
potential energy of each spring is (1/2)k - (x/2)% = 1 / 8 kx?. Thus, the total
potential energy is U =2 X 1/8 - kx* = (L/2)(k/2) - x°. We have in g = m,
kag=(1/2)k,s0 0w = \/ku”/mcff = \k/2m.

(b) Springs in parallel. Now a displacement x of the mass stretches each
spring by x. Thus, U/ =2 X (1/2k* = (1/2)(28)x* and ke = 2k T is still
(1/2mi?, 50 w = \/kc“/mn" = 2k/m.

A nonviscous liquid of density p is in a U-tube of cross-section area 4. The length
of the fluid column is /. Find the frequency of small oscillations about the
equilibrium position with equal levels in the two columns,

Let £ be the distance that the left-hand level goes down, and, thus, the
distance that the rlght-hand level goes up. The potential energy of the conﬁgum-
tion shown in Figure 1.35 is the amount of work required to raise a column of
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PROBLEM 1.10.5

. PROBLEM 1.10.6

fluid of length £ by a distance E This is
U(§) = g- pdE - £ = gpAE?®
7 = 2gpA. The kinetic energy is

T(€) = gmd? = 4(pan)é"

and so m g = pAl Thus, the frequency of small oscillations is

Thus, £

[

he distance

oves radially
2gp4 2g uilibrium position
W= chl'f/mcﬂ' = ‘/ oAl = T élﬁing mode.

Three identical masses m are connected by three identical springs, of'sp
constant £ (Figure 1.36a). Find the frequency of the “breathing mode” of
system, in which the masses move radially, in phase.

We choose to specify the amplitude of the mode by giving the distan (1) The hemi-

that each mass moves radially away from its equilibrium position. It is clear f éqs_t;ﬂ:grguﬁﬂ}.g 1;:
Figure 1.36) that this results in a stretching (or compression) of each spring Iy Jnier of the

amount 2(v3 /2)¢ = V3¢ Thus, the potential energy of each sprig (b} The hemisphere
1/ 2k(V3 £)?, and the total potential energy is - rough angle 6.

U(£) = 3 - §(V3¢)" = 4(9k)4?

Comparison of {1.57a) and (1.56a) shows that we must take k. ; = 9%. The s,
of each mass is £, and its kinetic energy is (1 /2)m£2 The total kinetic enert

T(¢) = 3 i = 4(om)E? (1.

so that the effective mass in (1.56b) is given by m = 3m. Finally, the freque
of the breathing mode is :

/ 9% {3k
W= Vk.:rr/mcrr = "é“;; = “;

Find the period of small oscillations about equilibrium of a hemisphere of
M and radius R, rocking without slipping on a horizontal surface. '
The first step in the calculation of the potential and kinetic energy is
location of the center of mass. A straightforward integration shows that
(3/8B)R below the center of the full sphere. We also need I, the momen
inertia of the hemisphere about a horizontal axis through its mass-cente
know that this is a principal axis because it is perpendicular to a plan
reflection symmetry (see p. 35)]. We start with a full sphere of mass 2.M, w
moment of inertia about a horizontal axis through C is I, = (2/5)(2M YRA
of this is contributed by each hemisphere, so the moment of inertia o
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fb)

=)

Fidi o

fa) fb) fe).

so that k. for small oscillations is (3 /8)MgR. We use (1.26) to find. the kinetic
energy,

R = Ré[.‘%(l — 2cos ) +j‘r%sin9]
T = JMR™MZ — 3cosf) + L{ S MR2)§° =~ L(BMR?)4?

and m = (13/20)MR* Finally, we find that the frequency of small oscillations
about # = 0 is

W= (kg/my =

MOTION OF A PARTICLE IN A CENTRAL POTENTIAL

hemisphere shown in Figure 1.37a about a horizontal axis through C is {2/5)
To get Iy, we use the parallel axis theorem (see footnote p. 22):

Io= §MR? = Igy + IM(%R)

Figure 1.37c shows that the vector R, which locates the mass-center relat
the original point of contact, is '

R= R(RG —~ 4R sin 3) +j‘l(R — 3R cos 0)
Thus, the potential energy is
U(8) = Mg(R — 2R cos 0) = 2 MgR + LMgRO* + - -+,

2

3 Ton = S MR®

3d0

A particle of mass m moves in a fixed central force field given by (1.21). The
torque on the particle, defined relative to the force center, is

. T=rXf=g(r)rX7=0
so that (1.1b) implies that the angular momentum 1 of the particle is constant in
time, Since 1 = mr X v, the vector r from the force center to the particle is
always perpendicular to the fixed vector 1. Thus, the particle moves in a plane
that contains the force center and is perpendicular to 1. Let us choose a
coordinate system whose origin is at the force center, and whose x—y plane is the
plane of the orbit. If we use polar coordinates r, @ to locate the particle in this
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plane, we have

Motion of a Particle in a 1/A Potential 61

f as a function of time from which we can obtain #(¢) by one more integration:

0(1) = 0(¢,) + fmdt (1.62b)

L= —(#*+ 4% - U(r)
dL . gL v
Friakid 25 =M™ )
L . 0U aL
-;,; = mrf- — N -E—é- =
Lagrange's equations of motion are
d ..U :
E(mi) = mrfl~ — . (1.
d_ . 3
E(mr“e) = (0 (1
mr*f = | = constant (

We use / to label the constant value mr®§, since it is easily verified that it is equ
to the magnitude of the particle’s angular momentum. The quantity r*¢ is t
the rate at which r sweeps out area, Thus, (1.60) establishes Kepler’s second.
(the radius vector sweeps out equal areas in equal times), and shows that this
is true for any central force.

The total mechanical energy, which is also a constant of the motion, is

m -
E= (i + %) + U(r)

m *

= —i*+ — 4+ U(r , '

2 ’ 2mr= (r) (

This shows that we can formally consider the radial motion as if it wer

one-dimensional problem, provided that we add to the true potential U(r)
effective “centrifugal potential” /%/2mr®.

We can solve (1.61) for # = dr/dt and write the result as

dr
dt = 5 =
* m E—-Ulr) - 2mip®
If we integrate this equation, we get

4 n dr .

— — = 1.62
!u' di=1, — 1, { - — = (i

* m\" (r) 2mr®

If we can evaluate this integral as a function of its upper limit we will haye

determined r as a function of ¢ for an orbit of energy E and angular momentu?

1, subject to the initial condition r(¢y) = r,. Once 7(¢) is determined, (1_50)"31"‘35

MOTION OF A PARTICLE IN A 1/ R POTENTIAL

We now apply the results of the last section to a central field whose radial
dependence is

1
Ulry=K- — ( K = constant) {1.63)
r
If K= —Gmm,, (1.63) describes the potential experienced by a particle of mass

m moving in the gravitational field of a spherical object of mass m,. If
K = G'9,9,, (1.63) describes the Coulomb interaction between particles with
charges ¢, and ¢,; G’ is a positive constant whose numerical value depends on
the system of units being used. If the charges are opposite, ¢,¢, is negative and
the force is attractive, whereas if the charges have the same sign the force is
repulsive. In either case, if {1.63) is substituted into (1.62), the integrals can be
done analytically, and one finds that the orbit is a conic section with the force
center at one of the foci (Kepler's first law). '

The qualitative features of the motion can be determined by plotting the
“effective potential”

LR <
+ = (1.64)

2mr? r

Ucrr(f) =

as a function of r. Figure 1.38a shows the situation - when K is negative,
corresponding to the gravitational or Coulomb attraction.
The radial kinetic energy

mrt [t K
2 A - (1.65)

I
2w~ r

is zero when 7 = 0, but is positive at all other times. Figure 1.38a shows that this
implies that when £ = E| < 0, the value of r is‘constrained by r, < r < r,, Here
r, and r, are the zeros of the right-hand side of (1.65),

= —F

7, -K _ K \* i
} - (1.66)
2|E| 2|E| 2m|E|

L

They are referred to as the “turning points.” We see that when E < 0 the
particle remains at all times within a fnite distance from the force center. The
orbit is an ellipse (Figure 1.39).

We can relate the semi-axes @ and b to r, and r, by using the geometrical
properties of the ellipse, which state that r + s is constant as ” moves around
the ellipse. At points 1 and 2 in Figure 1.39, # = 0, so these are the turning
points. At point 2, r=r=a+d, s=r,=a—d Thus, a=3rn+ ),
d=i(r,—r)and r+s=20 Atpoint3, r=s=L(r+s)=a=V" +4°. 1f
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FIGURE 1.38 U, (r) from Uit (1) for a complete excursion around the orhit {the period) is thus
.64) for attractive -
giulzige 'I/fpotetntial:.ngaz:eh _ mab _ W’K” ! = glK i =9 _"f_ /2 (1.68
horizontal line corresponds T= 12 W 9m 7|} 291E m |K] a (1.68)
to motion at the specified
:22::35. 1;1; ;zd;iasl Ig?vzt:]c by ) Es In the gravitational case, where | K| = Gmm,, this becomes
the vertical distance be- | 2a
tween the horizontal line and I T = m—=a"? (1.69)
the L,,(r) curve belov\.: it. } r r2 . }/G—mz
gf' %’f};ﬁ%ﬁﬂggf (p;glr;\ts 7N IE;/—— This establishes that the square of the period of a planet is proportional to the
tractive 1/r potential. K is \_/ cube of its semi-major axis, irrespective of its mass or energy or angular
negative. (b) Repulsive 1/r momentum {Kepler’s third law).
potential. K is positive. fa) Attractive % potential; If |K|/2|E| = I/ y2m|E|, (1.66) and (1.67) imply that r, = r,, a = b, and
K is nogative, the orbit is circular. In this special case all the properties of the orbit can be
et () derived most simply by equating the gravitational attraction to m times the
centripetal acceleration in the circular orbit. -
Reference to Figure 1.38 shows that if the energy E is positive, r has no
maximum value. This is true both for attractive and repulsive 1/r potentials,
_ 5 The shape of the orbit is now a hyperbola, with the force center again at a focus.
B | An important application of positive-energy orbits is to the analysis of
G : Coulomb scattering experiments, Initially, at ¢ = — oo, the particle is infinitely
S | far from the scattering center, with a velocity v,. Since U (r) = 0 at r = oo, the
: Il total energy E is mug/2. The vector v, and the scattering center determine a
: [ - plane, and this is the plane of the orbit. Figure 1.40 illustrates typical orbits for
L 0 ’4 attractive and repulsive potentials. The impact parameter & is defined to be the
' (4] Repulsive % potential; asymptotic distance between the orbit of the particle and a parallel line passing
K is positive. through the force center. Thus, at { = — oo the angular momentum of the
particle is { = muyb, and since the force field is central this must be the angular
FIGURE 1.38 An elliptic orbit, - Hyperbolic
with the attractive force 3 P _ cattering by 1/r
canter at one focus, The dis- he impact
tance sum r - s is constant _ eter [s b and the
as P moves around the el s ngle is &. (a) At-
lipse. The points 1 and 2 are \ ?\2 0 tential, (b)
turning points of the radial t—;—f‘y . /F potential,
motion. b
1] 3

L
.

fa} Attractive % palential

we use the expression (1.66) for r, and r,, we get
—-K

- 28

o+ th—r\? {
e T -
¢ 2 2 2m|E]

The area within the elliptic orbit is @ab = #|K|!/ y8m|E|*. The time 'fﬂ..‘éiu‘ 7

a=1i(r, +n)

b
t

fb) Repulsive % potential
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momentum all along the orbit. In this way we sce that specification of the ;.
parameter b and the asymptotic speed y; at ¢ = — oo determine both the ¢
E and angular momentum /. We can then use (1.62a) and (1.62b) to obta;
_ time development of 7 and ¢ for this orbit. The minus sign on the square yqj
(1.62a} is used along the first half of the orbit (when # < 0) and the plus
along the second half. From the value of # at ¢ = o0, we can caleulat
scattering angle ©. The scattering angle as a function of £ and / (or 5) is calla th

eflection function. For a 1/r potential it is given by " PROBLEM 1.12.1

Q(E, b)) =2 a
( , )—- arctan(m)

We see that a large impact parameter corresponds to a distant orbit in whig

particle is scattered very little, while a very small impact parameter corresp

to an almost head-on collision and a scattering angle near 180°, '
The differential cross-section do/d{} is defined by

rate at which particles are scattered
da into unit solid angle about angle &

—5(0)=

incident flux

Figure 1.41 shows how this can be calculated from the deflection func
Suppose that the incident flux (particles/unit area « unit time) is /. Ther
rate at which particles are incident with impact parameters between b ap
b+ dbis 2wh db - J. These are all scattered through angles between 8(Z, §)
Q(E, b + db). The solid angle filled by these particles is '

dO(E, b
4L, b))

2usin@(E, b) |dO(E, b)| = 2w sin©(E, b) - i

Thus, the number of particles per unit solid angle per unit time with scattc
angle @ is :

2mb - db - ]

dO(E, b)
27 sin@)(E, !)) T db

and do/df}, defined by (1.71) is

do b
dfl

(@)=

dO(E, b)
sin®(E, b) T‘

FIGURE 1.41 Two orbits of
the same energy with nearby
impact parameters. The In-
teraction is repuisive.

" B{Eb + db)
b b+
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For the 1 /r deflection function (1.70), this yields

do | K/4E|
5 = “‘|—l/—l— (1.73)
dQ  sin*(©/2)

the Rutherford scattering formula.

Show that circular motion in a central potential ¥(r} = —4%/r" is unstable

against radial disturbances for n > 2.

We know that the spherical symmetry of the potential implies angular
momentum conservation, which in turn implies motion in a plane. Choose the
center of the coordinate system at the center ol attraction. Then the Lagrangian
is

L= E'(iJ +r%0%) + =
2 "
d.L . dL J nk*®
T E=m:3‘— ey
dL o JaL -
57 = mred, =5 = 0, so mr°f = { = constant
The equz;ticm of motion for r is then
d ., nk® * nk*
E(mr) = mrll* — ey i Ser

Motion in a circle corresponds to r = 7, (= constant), Thus

. n
i nk* nmk*®
!

—— ——— = (] Bt =
: T 0 a
m"t.il ruﬂl ' 4

Now consider small oscillations about circular motion. Let
r(t) =1+ p(1)
Then p(t) satisfies the equation

( ) ? ke
mpl{t) = - -
m(ry+p)  (+p)"""
I nk* N =3 a(n+ 1)4*
=|— - — + -
m r{i} r[;l +1 n T]!J'(;! rurt -2

for sufficiently small p. The first bracketed term vanishes by virtue of the
equilibrium conditions. If we replace r, in the second term by its expression in
terms of n, m, £, I, we get
) 12 {n+2)/{(n~12) i
77!" = ——-— —_— T oo\ — 2
p m (”ka).;/("..z)( )P

Thus, if n > 2 the coefficient of p on the right-hand side is positive, and a small
deviation from p = (0 will grow to become a large one. The circular motion is
unstable against a radial disturbance.
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PROBLEM 1.12.2

PRCOBLEM 1,12.3

FPROBLEM 1.12.4

The orbital speed of the earth is 30 km/s. Neptune is 30 times as far fron
sun as earth 1s, What is the orbital speed of Neptune? Assume that the orbi

circular, ) . :
Kepler’s third law states that the periods T and radii a are related by.

T Ta
/2 T a/2
af/ a3

"

Since the speed v is given by v = 27a/7, we find that

3/2
V;'l anTt an ( af) / —_ E = _l_
K ac'rn ae 8" a" 30

Thus, the orbital speed of Neptune is 30/ V30 km/s = y30 km/s.

A “24-hour satellite” is to be put in orbit around the earth, Thisis a satelllt_
would remain overhead at the same spot on the equator for all 24 hours of ey
day if its orbit were in the equatorial plane. How high must such a satel]
placed? - . . .
If the satellite has angular speed @ in a circular orbit of radiu
centripetal acceleration is w?r, so that the gravitational force of the carth

must be
mM G

T2

Thus, r = [M,G/w*]'/?. The gravitational attraction on a particle of mass
near the surface of the earth is .

2
mwy-r =

MG
mg = m—g
so that M,G = gRZ. Therefore, we can write the radius of the satellite orbit
gR; |'/°
el

If the satellite is to remain over the same point on the earth,
27 rad

“T o4t h
Thus,
1/8
9.8m/s? (6.4 X 10%m)”

(217 1 r.':a.d)2

~ 423 % 10m

24 3600 s
The height above the surface of the earth is .
h=r—R, =359 X 10'm

A projectile starts from the earth’s surface with its velocity vector II.ICI_IOZ '
angle f from the vertical direction. It moves freely under grawt.}l’. i
distance, the kinetic energy of the projectile approaches E, wl’illcl lﬂirﬂ
approaches a straight line that is a distance & from the paralle

PROBLEM 1.12.5

92 The initial di.
Of the velocity makes
. with the vertical
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the earth’s center. Ignore the rotation of the earth, and show that &
= {(E + B)/ERsin@, where B is a constant.

Energy and angular momentum are conserved. The total energy is given by
E=m"/2 - mMG/r. Let U, be the speed of the particle when r = o0 and g
is its speed at launch. Thus,

[2E [3E 2MG o | [ Mg
= —— —_ N I — = +
e m n TR ER

At launch, the angular momentum of the particle relative to the center of the
carth is mu; Rsinf. When r = oo, the angular momentum is myb. Thus,
angular momentum conservation yields

my, R sin ) = my_b

7 mMG
| b=}:RSinB= lfﬁ“-Rsinﬂ
which is the desired form, with B = mM.G/R,

A satellite is in an elliptical orbit about the earth, with an Energy per unit mass
given by 2*/2 — GM_ /r = ~GM,/2a, where v = speed, r = distance to the
center of the earth, 24 = length of major axis, M, = mass of the earth, and
(G = gravitational constant. The satellite receives an impulse that changes the
magnitude of its speed by the amount Aw, but does not change the direction of
the velocity.

(a} Show that the impulse changes the length of the major axis by
4va® Av/GM.,.

'The impulse changes the speed of the satellite without changing its location.
Thus,

mv®  GmM, GmM,
AE=Al — — —| = Ay = + 5+ Aa
2 r 2a°
dpa® - Ay

A(2q) =

= change in length of major axis

GM,

(b) Show that the empty focus of the ellipse shifts by the same amount.
Rays from the foci to a point on the ellipse make equal angles ! with the
tangent to the ellipse at that point. Since the impulse does not change the
direction of the velocity, it does not change the direction of the tangent. Nor daes

it change the location of the earth, so @ remains unchanged. Thus, the new
empty focus must be along the line from the satellite to the old empty focus.
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FIGURE 1.43 The shift of the
ampty focus when the veloe-
ity suddenly decreases in
magnitude, but with no
change in direction.

PROBLEM 1.12.6

FIGURE 1.44 When the
asteroid crosses the orbit of
the earth, its velocity has
components 30 km /s in the
radial and tangential direc-
tions.

New empty focus

5

%mpty focus

Since the sum of the distances {rom the satellite to the two foci equals: 2,
sudden change in the value of 2a causes the empty focus to move a distance.
along the line to the satellite.

The radius of the earth’s orbit is one “astronomical unit”, 1 au. The ear
orbital speed is 30 km/s.
(a) Neglecting planctary perturbations, calculate the *“‘escape spee
km /sec for an object at 1 au. That is, what is the minimum speed that an objeg
must have to escape from the solar system, starting at the earth’s orbit, -
An object of mass m at a distance R from the sun, with speed v, has totz
energy

Relative and Center-of- Mass Coordinates 69

The speed of the asteroid is

V(30)* +(30) li?— = 2/30 —k—;n—

which we have seen to be the escape speed. The asteroid has just enough energy
to escape to infinity, which means that its orbit is a parabola (boundary between
an ellipse, for £ <0, and a hyperhola, for E > 0). To get the perihelion
distance, we write the energy in terms of r and 7,

i mMG

E=1lmi®+ ~
2mr© r

We know £ = 0, and the perihelion is given by # = 0, Thus
lE
s —re—
2m MG

The angular momentum / is given by .

3

A

- [MG
[ =mR R = myMGR

WG Thus, _
= gm’ = — m*MGR R
e L
To be able to reach R = oo with » = 0, this energy £ must be = 0. Thus, 2mMG 2
escape speed o, at solar distance R is given by :
2 2MG ; RELATIVE AND CENTER-OF-MASS COORDINATES
‘ R

To calculate this quantity, we use the information given about the ¢
orbital speed. If we assume that the orbit is a circle and relate the centripe
acceleration of the earth to its gravitational attraction to the sun, we get

my;  mMG MG
R R R
where m is the mass of the earth and v, is its orbital speed. Thus, we hz}V_c

2
Ug =

km km

vf=2u§ UEEV/EUU=‘/§X3OT=42.4'—“—
(b) An asteroid crosses the earth’s orbit with velocity components U(I'

= —30 km/s (toward the sun), and s(tangential) = 30 km/s (perpendiculd
the solar direction). Describe the asteroid’s orbit. Calculate its perihelion (closes
distance to the sun).

We now consider the important case of two particles interacting with each other,

with no external forces. We assume that the potential energy is a function only of

the relative positions of the particles, U = U(r, ~ r,). An example would be the

system consisting of the sun and one of its planets. Since U/ depends only on

r, — r;, we choose to work in relative and center-of-mass coordinates
r=r,—r,

mry 4 omgry,

R =
m + m,
The inverse transformation is
+
m,
rr=R- ————r
m -+ my
m,
,=R+ ——r
my + m,

The kinetic encrgy can then be expressed in terms of R and #,

m m
.o 2.
T=—f 4+ —§]
2 2
my { . my T omyf, n, 2
= —|R-—F + — S
2 m; + my, 2 my + iy
myp+omy L, mhy, o,

e 1
L L v
2 my + my



70 Classical Mechanics

Mechanijcal Waves 71

The siring Is in
0 the x axis,

Thus, if we define the total mass, M, and the reduced mass, u, by

M=m +m, , plane.
mmq E
= e—— —
# m, + m, N

we can write the Lagrangian of the system in the form
LR,r,R,#) = tMR)* + Lu()® — Ur)

Notice that U does not depend on R. Lagrange’s equations for the comp
R and r are then

-d—(MX) = E(MI") = i(MZ) =0

dt dt dt
(1) =~ 2 (5,2,)
Su3) = = (3,2
) = e, 2,2)

We see from (1.75) that the motions of R and r separate completely, T1
particles move in such a way that their mass center moves with constant
Furthermore, the relative motion of the two particles, determined by (1.75
is formally identical to the motion of a single particle of mass p in the oole
U(r). Thus, the analysis given in Section 1.12 of the motion of a s.ingle pattic
a fixed £/r potential can immediately be applied to the relative mot
planet and the sun. If r locates the planet relative to the sun, an ol.:oser\rt_:
sun would conclude that the planet moves in an elliptical orbit with the.
one focus, such that r sweeps out equal areas in equal times. However, K
third law is no longer valid, since the period of relative motion is given b
with the particle mass m replaced by the reduced mass p of (1.74b). But
still Gm m,,. Thus, (1.69) must be replaced by

27 s
-

G(m, + m,)

he arrow rep.
orce K exerted
h . 3/2 _ th
and 7 is very nearly proportional to a*/=

The momenta conjugate to R and r are obtained by diﬂ‘ercntiating.._( lcint__;ﬁ; Eﬂ%?:egf
with respect to R and r, 0. Its vertical
aL . : Ksing. For ¢
Pr= pp = MR =mf+mf,=p, +p, ' Pproximately
aL . m,m, ( ) m, P, — MzP
= — = yr = r, —r =
Pe™ Gy T F m +my - my + my

. . - me
It can easily be verified that p, and —p, are, respectively, the mqs't'é
particles 2 and 1, as measured by an cbserver in the center-of-mass syStt

JANICAL WAVES

1.14.1 Transverse Waves on Stretched Strings

At equilibrium, the string shown in Figure 1.45 is stretched along the x axis with
tension K. We consider small iransverse motions of the string in the x-p plane.
Let y(x, t) be the vertical displacement at time -t of the point on the string a
distance x to the right of the origin. Thus, »(x, t) gives the shape of the string at
time ¢, and dy(x, t)/dt gives the (vertical) speed at time ¢ of the point on the
string labeled by x. We also assume that the slope of the string remains small, so
that |9 p(x, t)/dx| < 1. Figure 1.46 shows that in this case the vertical force
exerted by the string to the right of x on the string to the left of v is

approximately equal to K3 y(x, t)/dx. =

Newton’s second law, applied to the segment of string between x + A/2,
and x — /2, of mass ph, gives

ay h dy h
__("r+5’t)_w(x_5’t) 3%y x, t)
h = dt?
Here p is the linear density of the string, assumed to be constant. We have
neglected the gravitational force acting on the string; this is justified as long as

we consider motions in which [d%y(x, ¢)/3¢%| > g. If we take the limit of (1.77)
as & — 0, we get

K

(1.77)

a%y 3%y(x,t)
Koalnt)=p—mr—

T

H e —
1

it de 4E W AR
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or, equivalently,

8%y 1 3*p{x,t)
S =t
_ dx* c ais
with
c=yK/p
Any jy{x, t) that satisfies the wave equation (1.78a} describes a possible mq
the string.

with

r=x—¢l
s=x+c

satisfies (1.78a). Here f(r) = f(x — «t) describes a shape moving to the right with
speed ¢, while g(s) = g(x + ¢t) describes a shape moving to the left with spee
Any solution of (1.78a) can be written in the general form (1.79a). Thes
called (transverse waves, because the direction of propagation of the wa
transverse (perpendicular) to the direction of motion of the particles of the s

PROBLEM 1.14.1 At t = 0, the string shown in Figure 1.45 has shape «(x), and the point o
string labeled by x has vertical speed B(x). Find the shape of the string a
future time.

At t =0, r = s = x, and (1.79a) becomes

3(,0) = a(x} = f(x) + g(x)

The vertical speed of the string at ¢ = 0 is

dy(x, ) ar E{ )
DD g = [0+ 5 ¢

= —of '(x) + cg'(x)

Integrating this equation yields

t=0

% J B ax = = f(x) + gl)

result, We now can solve (1.80a) and (1.80b) simultaneously to get

o) =+ [ B av

s
HOEE -a:(x) + = !B(x’) dy’

f(x) =

r| -

[
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so that the subsequent motion of the string is given by

) =flx—et) +glx+ct)

=% afx —at) +alx+a)+ :_‘/: Blar) dx! __*17_\/1. Bx') dx
1 [ x-tal ) '
=3 cc(x—-ct)-i-a(.\'-f—cz‘)*!“;—x.[dﬁ‘(.\: ) dx (1.80c)

1.14.2 Energy Flux

"The rate at which energy flows to the right along the string, past the point x, is
equal to the rate at which the string to the left of x does work on the string to the
right of . This is given by '

Op(a,t) dp(x,t) -
K

S{x, 1) = — T .
(x,1) En a0 (energy flux) (1.81)
For the general solution (1.79a) we have
dr{x,t) = ar ds
= — ) 4+ ’ w st
S = L) () = 1) + ()

dy(x, dr ds
Laii). E’f’(?')+-§;g’(5)=c[_fr(’_)+g,(.f)]

and the energy flux is

S(x,t)= Kc{[f’(.t —a)]* —[eo'(x + at)]?} (1.82)

"Thus, we can regard the motions f{x — ) and g(x + ct) as carrying energy
along the string, to the right and left, respectively, with speed .

It

1.14.3 Harmonic Waves

An important special case of shapes f(r) and g(s) is provided by harmonic wave
trains:

f(]") — TiFe| Sk T wt
guﬂ“mheﬂﬂ—mhmvll (1.89)

The parameters introduced here (o describe the wave are

« = amplitude (perhaps complex) (1.84a)
A = wavelength (1.84b)
¢
T = {requency (1.84c)
297e .
WS circular frequency (1.84d)
27
~ = k = propagation vector (1.84¢)

e Gme o g e o ma- s
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PROBLEM 1.14.2

FIGURE 1.47 A point mass is
aftached to the string at x =
0. The Incident amplitude Iis
1, the reflected amplitude is
a and the transmitted ampli-
tude is 8.

From (1.84c), (1.84d), and (1.84€) we have the useful relations

Av=c¢

w=ck (
If we use (1.83) in (1.82) and time-average the flux over an integral numb
cycles, we get '

A point mass m is attached to the string of Figure 1.47 at x = 0. Suppos
harmonic wave of circular frequency w is incident on this mass from the
Calculate the fraction of the incident energy that is reflected (the reﬂectan :
the fraction transmitted (the transmittance).
The experimental conditions are described by a solution

px, 1) = Re[Beits+o0], <0
= Re[e"“‘”“") + aei(—kx-{—ml)]’ >0

The energy fluxes for x § 0 are
2

le B|? <0
= — — — X
S(x) = ~ 5K—IBP,

1 2
—Kw—[—l+[a|2], x>0
2 ¢

Thus, |a® and |B]? are the fractions of the incident flux reflected an
mitted, respectively.

To calculate a and 8, we impose the following two conditions:

1. Since the string is unbroken at x = 0, y(x, ) is continuous at x
is satisfied by (1.87) if '

B=14+a

2. The net vertical force exerted by the string on the mass m produ

acceleration, 8°)(0, ¢)/dt* Thus,

a*y(0, t) dy(x,t) B dy(x,t)
gt Ix |ooge  Ox
This condition is satisfied by (1.87) if
—mwB = hK(l — a — B)

x=0"

PROBLEM 1,14.3
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Solving (1.89a) and (1.89¢) simultaneously gives
1

“= —1 + ;24
12 Kk /mew®
=1y 28
and the reflected and transmitted fluxes are
1
reflectance = |af® = 5 (1.90a)
1+ (ZkK/mwz)
(26K /mw?)?

transmittance = |8|? = (1.90b)

1+ (2kK/muw?)”
Note that the sum of the reflectance and transmittance equals unity. This is an

expression of the conservation of encrgy. Using (1.78b), (1.85b), and (1.84¢), we
have

2kK  2kpe®  2p 1 A

mew? mw? m k  mw

1 mass of a wavelength of string

=~ 1.91
T particle mass (L91)

The ratio (1.91) gives us a criterion for judging whether a mass m is large enough
to reflect a substantial fraction of the incident energy.

Two strings with linear mass densities £, and p, are connected at x = 0 and
pulled with tension K. A wave of circular frequency w is incident from the right.
What fraction of the incident energy is reflected from the discontinuity in p?
Here the experimental conditions are described by a solution
ya,t)= Re[ﬁe"““”””], x<0 (1.92a)
2(x,t) = Re[eithstun 4 ae—fxtun] x>0 (1.92b)

"The tension X and circular frequency w are common to both strings, so &, and
k, are given by (1.78b) and (1.85b) to be

w Pt
k,=—= — 1.93
1 c, w P ( a)
w 2
ky=—= — 1.9
2 ﬂz w K ( Sb)

Ying) = Rﬂ[ﬁe“kx + wt]]

/m.,\
\ x

Yl = RL'[E'.MI + wl) + aei{—k: + wﬂ]

The two strings
X= 0. The {en-
same value K in
ut their linear Lz 01
‘are different, U_ ¥

itles
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The fluxes for x 2 0 are

1 Kuw? )
S(x) = —=—IB, x<0
2 ¢
1Kw2[ 1+ |of?] 0
=—K—|- 2 x>
so that
reflectance =

transmittance

Il
Al TS
E Ta
Y
It
=
[~

As before, y(x,¢) is continuous at x = 0. In addition, dy(x, ) /9
continuous at x = 0, if there is no point mass at the junction of the two's : h
[cf. (1.89b) with m = 0]. These conditions are satisfied by (1.92), if -

B=1+a, ko = k(1 — a)

_ki_kil_m_@
Ckot+ky o+ pg
2% 2fpy
‘B_k1+k2""\/ﬂ+ 05

whose solution is

Thus,
reflectance = M ?
o

Pq P 4/p,py

e = Tt v e + T

It is readily verified that the sum of the reflectance and transmittance is unit’
required by energy conservation. If p, = p,, so that there is no discontinu
x = 0, (1.96) gives the expected result that all the energy is transmitted. It [
from (1.95a) that if p, > p,, then « is positive. Thus, if the incident w
along the denser string, the reflected wave is in phase with it. Conversely if
incident wave is along the less dense string, the incident and reflected way

out of phase. In both cases, 8 of (1.95b) is positive, so the incident a
transmitted waves are always in phase.

1.14.4 Standing Waves
If the boundary conditions on the string are
A=) =5l ) =0 (o)
it is convenient to work with solutions of the form
1) = X(0)T()
Then (1.97) is satisfied, if
¥ 4) = X(+) =0

SROBLEM 1.14.4
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If we substitute (1.98) into the wave equation (1.78), we get
1
X*(«)T(t)= C—QX(.\-)T”(::)
A(x L Tt
.P_(H)_ = _....H(_) (1 _100)
X(x) < T(r)

The right-hand side of (1.100) is,- by construction, independent of x. If
X"(x)/A(x) is independent of x, it must be constant,

Xr(x) = —k2X(x) (& constant®) (1.101)
The general solution of (1.101) is
X(x) = de™** 4 Be~ = (1.102)
If this is to vanish at x = +L /2, then
Aet? = ---B.ez_”l'_""'2 (1.103a)
Ae /2 = — peikL/e (1.103h)
If we multiply these equations we get A* = B?| so that either 4 = Bor 4 = —B.
If A = B, then (1.103) implies that
el = —1, kL= (2n 4+ 1)w
X(x) = 24 cos(2n + 1)-7-;-?— n=0.1.2.... (1.104a)
Alternatively, if 4 = — B, we get
gl =1, kL = 2nmw
2nmy. n=1,2.. (1.104b)

X{(x) = 2idsin

Associated with each acceptable value of £, we get an equation for 7(1),
T"(t) = —k%°T(1) = —*T(t)
with general solution
T(t) = a,cosnwt + b,sin new!

Because (1.78a) is a linear partial differential equation, a sum of solutions is also
a solution. The general solution of (1.78a), subject to the boundary conditions
(1.97), is then

» Ty arei aret
#x, )= 3 cos(2n + l)m[a"cos(Qn + 1)— 4+ b,sin(2n + 1)—]
n={) L L L
N i e T [ 2nrct P 2nvrct] L 108
— + d,si ,
"_]sm( n L) ¢,cos 7 L5in I ( )

Suppose élw.t a(x) and B(x) in Problem 1.14.1 satis{y
(=)= B(=5) = alh) = Bl4) = 0

o . . o . . . . .
"Writing the constant in the farin — &% i done for later convenience. 1t will soon be shown that &, introdueed in
this way, must be real,
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PROBLEM 1.14.5

Find the shape of the string at any future time.
At ¢ = 0, we have

= X o3 2nwx
#x,0) = a{x) = Y acos(2n + 1)2— + Y ¢sin
n={) ne=]
dy(x,0 % mx =
--y-(-m)- =fB(x}=—| ) 6(2n + Vcos(2n + 1})—+ ¥ d,(2n)
at L n=0 L n=1
Thus,
L/2 , ,
2 TX
a, = — f af x")cos(2r + 1) dx’
"L
=L
g M2 (x)s 2nmwx’ 4
€, == a(x’)sin—— dv’
L _4m L
L2 ,
2me X
= x’ 2n+ 1)— dx’
e ] e )
L/2
2me 2nay’
d, =5 _[/EB(A‘ Jsin—
These equations determine the Fourier components a,, 4, ¢,, d,, which a

used in the harmonic expansion (1.105).

Suppose that a point mass m is fixed to the midpoint (x = 0) of the st
have just been considering (i.e., y(L/2,t} = y(—L/2,t) = 0). Find the
standing wave solutions.

We have seen in (1.89b) that the presence of m will cause a dlSCOﬂI.mLII
dy/dx|,_ g Thus, we seek a solution of the form

y(x, ) =sm(£(£~x))sinw£ x=0
sin(k(ﬁ + x))sin wi x<0

wave equation if @ = k¢. To find the allowed values of & (and, hence, df
impose the condition (1.89b):

I kL
—mm"sm—z— = — 2Kk cos—é—
. me® me? : kL
oy T ok 7k "FE( 2 )

This is a transcendental equation, whose solutions give the allowed valu
Note that if m << pL (the mass of the string), we get solutions of (1.108

t— =10
co 5

kL

— =2+ )7  (2=0,1,2,...)

which corresponds to the sequence of symmetric solutions (1.94a) 0:_5
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weighted string. On the other hand, if m > pL, we get solutions of (1.108) near

kL
cot—— = o
2
&L
5 = (n=1,2,...)

which forms the entire set of solutions (1.104a and 1.104b) for a string of length
L/2,
If we try to find an odd solution analogous to {1.107),

x, t) =sin{k(L - x))sinwt x>0 (1.109a)

= —sin(k(%+ x))sin wi r=<0 (1.109b)

continuity at the origin requires that

kL
sin-2-=0, KL=2nm .(n=1,2,...)
If this condition is satisfied by £, then (1.89Db) is automatically satisfied by
(1.109). The solution we have reached is precisely the same as the odd solution
(1.104) for the unweighted string. Since this odd solution has a node at x = 0,
attaching the mass m to this point has no effect on the motion.

1.14.5 Longitudinal Waves in Fluids

We consider a region of space filled with a continuous fluid. Let p(r, ¢) and
v(r, t) be, respectively, the mass density and velocity of the fluid at point r at
time ¢ If no new mass is created or destroyed within the fluid (there are no
sources or sinks), then p and v are related by’

a—":(r, £) + div[p(r, t)v(r, )] = 0

For a perfect fluid (one that can support no transverse stresses), Newton’s second
law of motion is expressed by the three equations

(1.110)

du d
| S v = Al bl ) lams) (L)

dt dr,
Here p is the pressure within the fluid, and f tepresents an external force (per
unit volume) that acts from a distance on the matter within the fluid, such as the
gravitational force of the earth. Equations (1.111) are called Euler’s equations.
Because they are nonlinear in the components of v, they are very difficult to
solve, except in some very special cases.

Let us neglect any external force f, and suppose that the pressure at any

point depends only on the fluid density at that point. Then (1.111) becomes
[6‘v } _db(p) &

—.+. = X. 7!
gt vV 2o 5‘r (a=x7,2)

(1.112)

"T'he derivation of (£.110} and (1.111) involves the application of Gauss' theorem 1o the conservation of matter
and of momentun. See, {for example, Chapter 8 of Mechanies by K. R. Symon, Addison-Wesley Fublishing Co.,
Ine., Reading, Mass., 1971.
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If p(p) is a given function (the equation of state of the fluid), then (1.1}
(1.112) represent a set of four equations for the four functions s Uy U, ang
trivial solution is a uniform fluid at rest (v, = v, =2 =0, p(r, t) = p,). W
consider small deviations [rom this uniform fluid,

v(r,t) = u(r,t)
p(r, t) =pt ¢(rs t)

If we substitute these expressions for v and p into (1,110) and (1.119), a
only terms of first order in the small quantities u and ¢, we get

3q5+ di =0

at pu IVU—
3u . d, b
=V
O Bt d "

We can get an equation for ¢ alone by subtracting the divergence of (
from the time derivative of (1.114a); -

do e e 1 8%
. P =
divVed = V< e + 3, + 922 ¢ 912
with
e dp{p)
dp
p=py

Thus, we see that the small pressure fluctuations ¢ satisfy the wave e
(1.115a), with a wave propagation speed given by (1.115b). This only
sense if dp/dp|, > 0. This condition guarantees the “springiness” of t
(i.e., a density fluctuation will result in a restoring force that tends to reduc
fluctuation). For example, if an increase in density in a small region ca
pressure to increase there, then the resultant pressure gradient would dri
away from this region of high density. Conversely, if dp/dp < 0, the press
would be unstable with respect to small deviations away from {hc 1
solution.

An explicit wavelike solution of (1.115a) is

d(r, 1) = Re[goe™ 70"

It is easily verified that (1.116) satisfies (1.115a) if « = ke. This [
describes a wave moving with speed ¢ in the direction of %, with wave |
2w /k, and frequency v = w/27 = c/A, The amplitude of ihe wave is
quantity k - r — wf is called the phase of the wave and (1.116) is calle
wave because this phase has the same value for all r on a plane perpen

to k.
By eliminating ¢ between (1.114a) and (1.114b), we pet
d@ 1 d%u
v(divu) = TG

If we attempt to get a plane wave solution of (1.117)
u(r,t) = Re[(uoe"(k"‘""’”]

OBLEM 1.14.6
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we find that we can satisly (1.117) provided that

]

(k-uy)k = —u, (1.118h)
N

This implies that k and u are parallel. Since u,, in (1.118a) gives the direction of
the fluid velocity, (1.118b) tells us that we have here a wave in which the fluid
particles move in the direction of wave propagation, This is a lengitudinal wave,
as opposed to the transverse waves on strings considered above.

Set up the equations required to calculate the {requencies of standing waves
within a rigid closed surface S.
In analogy to (1.98), we seck a solution of the form -

o(x, 2,2, 0) = ¥(x, 3, 2)T(1) (1.119)
We substitute this in {1.115) and get

0 !
T()9 (5, 7, 2) = (. 3, HT(1)

(a constant)

1 ey 1 o
W m) W) = gy = =

Thus, ¥ and T satisly
VA (x, p,2) FEY(x, 9,2) =0 (1.120a)
T{(¢) + ®T(1) =0 {1.120b)
with w = k¢, Equation (1.120a) is called the Helmholtz equation. We must
supplement it by specifying the boundary conditions that  must satisfy. The

problem specifies that the fluid is surrounded by a rigid closed surface S. Thus,
the fluid velocity u at the surface must be tangential to the surface,

u-dS§= (on the surrounding surface 5)
According to (1.114h) this implies that
V¢ -dS =0
and this is possible only if
Vi(x, 3, 2) - dS =

Equations (1.120a) and (1.121) definc an eigenvalue problem whose solution
depends only on the shape of §. The solution to the problem is a set of
elgenvalues k,, and eigenlunctions . Once this problem is solved, the frequen-
cies of the associated standing waves are given hy w, = ck,, 1, w"/ 2.

(on the surrounding surface S)

(on the surrounding surface §) (.12 1)

Find the frequencies of the standing waves inside a rigid rectangular box, whose
sides have lengths /_, Lo L.

The shape of Lhc box suggests that we attempt to separate the solution ¢ in
Cartesian coordinates:

(x, 3, 2) = A(x)B( )C(2) (1.122)
If we substitute this in (1.115a), we get
A'(x) +k24{x)=0 (1.123a)
B ( +EB(y)=0 (1.123b)
C(z) +kC(z)=0 (1.123¢)
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FIGURE 1.49 A rigid rectan-
gular box with three edges
coinciding with the coordi-
nate axes.

PROBLEM 1.14.8

Iz

Iz

with
k=5 kj’, + k2

The allowed values of £, kj, k. are obtained by imposing the b 11

condition {1.121):

A1(0) = 4(1,) =
B(0) = B({,)=0
co)=c1)=0

i

{cf. Figure 1.49). The solutions of (1.123c) that satisfy (1.124c) are
C(z) = cos k,z
with
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be replaced by

c0)=0, ¢(L)=0 (1.124d)
The solutions of (1.123c), subject to (1.124d), are
C(z) =cosk.z (1.127a)
with
n,+1/2 .
k:=(—’-—[—/)w (n.=0,1,2,...) (1.127b)
‘The open top has no effect on the (x, ») motions, so the standing wave
frequencies are Vyony, = (€/ QW)k"‘":n: with
‘ n\? n\? n,+1/2\*
by =mil =] +1-2] + —'—/" (1.127¢c)
*"ole {, { {
with n_, n,, n_ taking on the same sequence of values as in (1.126).
EMS
Y qua.l masses are attached to the ends % 7
oint of a light uniform rod, which m m A ;
mooth horizontal plane. One of the \IJ 7

asses“is struck by an impulsive force
ilar to the direction of the rod, Find
03 of velocities of the three masses
iately after the impulse,

: Answer: 5:2: —1.,

fe—ua e e I a

\\\\“\\\i\\

3

1.5. Express the rotational kinetic energy of a rigid
body in terms of its angular velocity and its
moment of inertia tensor, and show that for a

article of mass m moves on the inside
a smooth cone whose axis is vertical

n
k:

=y

T

- (n,=0,1,2,...)

se half-angle is «. Find the period of
all oscillations about a horizontal circular
istance /1 above the vertex.

given angular speed the kinetic energy is max-
imum if the direction of the angular velocity
coincides with the principal axis with largest
principal moment of inertia,

and similarly for A(x) and B( y). Thus, the eigenvalues and eigenfunct
(1.120a) and (1.121) are

n \? n, 2 n\*
- = — = — ,ﬂ,,ﬂ-=0:1‘_‘
,{":"J": W ( l.\‘) +( 4 ) +( [ ) (nx E ,.

n.r HJ,'JT .
"pn,,,’,,‘=COS l'_,x COs _l_,,_ COs ; z

and the associated frequencies are Vuunye, = (/ 2':7)!:"‘","‘.

Repeat the previous problem, but for a box whose top is open to the atmo
Assume that the steady-state pressure inside the box is also atmospheric

The only change associated with the open top is that the pl'?SSU":i_.;
must be atmospheric at all times. This means that the density HU¢

¢(x, 3, z, 1) must vanish at z = /_, Thus, the boundary condition (1.

27 A
Answer: ]/ -
cosa | 3g

re of radius a is balanced on top of a '
Phere of radius 4, and then given an
simal sideways push so that it rolls off,
;a_ng!c between the vertical and a line
the centers at the instant the maoving
parates from the fixed one.

1
Answer: T= = Y oL uptip.
2 o n

L.6. The diagram shows a string under constant
tension 7', connecting three equal masses m
separated by equal distances 4. Find the nor-
mal frequencies of small transverse oscillations

10 ) in a plane. Neglect gravity,

Answer; arc cos( — 1 2T 1 24 y2
Answer: —f — o —7T.
20V ma 29 ma

17
the period of small oscillat.ions of a sim-
A string of length L, linear mass density p,
with tension T is attached at one end tg a

lulum whose hob swings near the 1.7

[ the carth, but whose pivot is located
ar awa . .

away from the earth. = wall. The other end is attached to a ring of

Answer: 29 d mass m which can slide without friction along

g a vertical rod. Find the equation whose solu-
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tions gives the frequencies of standing waves.
Neglect gravity. Check your answer in the
limits m << M and m > M (M = pL = mass

of string)
| T
w=Fk/—.
p

1.8. A thin rod of mass A and length L is hinged
at the bottom, and almost balanced vertically.
It starts to fall. I'ind expressions for the follow-
ing quantities as functions of r (the distance
along the rod from the hinge) and @ (the
angle between the rod and the vertical):

M
Answer: tan(kL) = —L
ik

(a) The tangential component of the force
that the part of the rod below r exerts on
the part of the rod above 7.
Mg(L —7)(3r— L) p
YT sin

(b) Suppose that the rod will break if the
tangential stress exceeds a limiting value
S. What condition (or conditions) must be
satisfied by A, L, and § to guarantee that

the stick will fall without breaking?
Answer: Mg < 128.

Answer: K, =

1.9. A shot is fired vertically upwards with speed
¥y, from a point on the rotating earth with
latitude A. Where does it land? Neglect air
resistance, and all terms higher than first order
in the angular velocity of the earth.

4  cosA
Answer: —wly'—;
3 g

west of initial position.

1.10. Protons of energy E are scattered by a spheri-
cal target nucleus of charge Z and radius R.
If the distance between the proton and the
center of the target nucleus exceeds R, it feels
only the Coulomb repulsion. If the proton
comes within R of the center of the target
nucleus, it is absorbed. Find an expression for
da/d§ as a function of the scattering angle 4.
Assume E > Ze*/R.

do
Answer: &E(G) = Rutherford scattering
formula for 8 < 0,

= O for § > §,
Ze*
2ER{1 — Ze*/R

where 0, = 2 arctan

1.11.

1.12.

1.13.

1.14.

What would happen if £ were < Ze*/R?

ot

A6+ o)

_ Anstwer:;
Answer: Rutherford scattering for al] § ~
. . . b P+ B4 et
A particle is acted upon by an attractive T - 0
central force of magnitude 4r”, SRR CRD)
i ﬂ'.' ot
(a) For what values of n can there be stable 0 TR
circular orbits concentric with the centep jo
of interaction? 0 —r——u—,
i A(b + c)’

Answer: n > —3;

(b) What is the frequency of small radia
oscillations about the circular orbits?
1 34+n :

Answer: — krf b
27 m

(¢} Tor what values of n will this radial oscil:
lation frequency be an integral multiple of

the orbital frequency? What does this im-
ply about the change of orbit with time?:
Answer: n = p* — 3, =123,

The speed of a wave propagating in a disper-
sive medium depends upon the wavelength, so
that » = p(A). Consider a “wave packet” con-
sisting of the superposition of two waves with
nearly equal wavelengths (A and A + dA).
Find an expression for the speed of the point
where these two waves are in phase with each
other. This is called the “group velocity.”

‘(c) Suppose the plate is rotating with constant
angular speed about an axis parallel to
the 2 axis, passing through the mass center.
What is the angular momentum?

B dy: b2
Answer: v, = v = )\EX" Answert L = mo| ———— 7
. . ' 4(h + ¢)
Derive the parallel axis theorem for the mo- 2 5 ¥

>

ment of inertia tensor

- + - =121,
12 3(b+¢)  4(h+ )

= JCM o aff P28 -
Ip=1Iy + 'M(R Bup RaRﬂ) (d) What is the torque acting at the instant

. sh i i
Here I, and I,f,;” refer to two coordinate own in the drawing.

systems with parallel axes, whose origins are
separated by vector R.

be?
——F,
4([1 + c)"

' Particles move in a central potential with
radial dependence given by A4 /r". For a given
asymptotic speed, the impact parameter, b,
and the distance of closest approach to the
origin, a, are related by the formula o® =
tonstant,/(a* — 7). Find a.

4 nswer: — Mo?

Consider the uniform thin bent plate of mass
M illustrated in the drawing.

(a) Locate the mass center. :
1 6% + ¢
Answer; - '

2 b+e

(b) Calculate the clements of the moment of
inertia tensor defined relative to- axes
parallel and perpendicular to the plate
with origin at the mass center. You will
probably find it easier to make use of the
parallel axis theorem (Problem 1.13):

¥

Answer: n = 5,

0 An incompressible ideal fluid is put in a bucket
which rotates with constant angular velocity w
about a vertical axis. The fluid eventually
achieves a condition of rest relative to the
rotating bucket. Calculate the shape of the

L17.

1.18.

1.19.
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0

a9
e

b+ o)’
a* ¥ A

™t - 7
2 3b+e) g+ o)

surface of the fluid,
a

W
Answer: z = —(x* + 3%} + C.
2g

A charge q with mass m is midway between
two fixed charges () with the same sign as q.
Calculate the frequency of small oscillations
of ¢ along the line of the three charges.

1 3240
Answer: — ) ——= .
20 ¥ wml?
e L i
(o) o O
Q q Q
A string of length L fixed at both ends has a

fundamental frequency »,. The string is ex-
cited with finite amplitude at a point L/4
from one end while an observer touches the
string lightly at its midpoint,

(a) In this situation, what is the lowest
frequency, that can be excited?
Answer: 2n,.

(b) What is the [requency of the next reso-
nance in this same situation?
Answer: 6w,

(a) The propagation of a shock wave is de-
termined by the total energy in the shock
and the density p of the medium. Use
dimensional analysis to determine how the
distance R(¢) traveled by the shock from
a point source in time ¢ depends on the

relevant parameters.

B\
Answer: R(t) o ( ——)
p
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(b) The frequency of a deep-water gravity nents a, 4, ¢? What is the rati
wave is given by velocities ¥/ V0.7 :
w = y2m pgtN.
. . . = = 1 _
where p is the water mass density, g is the Answer: a = 0, b=
gravitational acceleration, A is the wave- A
length. What are the values of the expo- group/ " phase 7T 2

In relativity theory, we focus our attention on events, which are occurrences at
particular points in space at particular instants in time, The time evolution of a
system is associated with sequences of events. To understand, or predict, these
sequences, we need equations of motion derived [rom physical laws. However, the
equations of motion are not expressed in terms of the events themselves. They are
expressed in terms of the numerical ecoordinates of the events, as measured with a
particular set of coordinate axes and a particular clock (a coordinate system).
These coordinates depend on the relationship between the events and the
coordinate system and, therefore, different observers using different coordinate
systerns would use different coordinates to label the same events. Correspond-
ingly, the equations of motion obeyed by these coordinates can be expected to
vary from one coordinate system to another.

According to Einstein’s principle of relativity, there exists a class of coordi-
nate systems (called Lorentz frames) that have the following remarkable property:
although observers in different Lorentz {rames disagree about the numerical
coordinates that label the same events, they all agree on the form of the equations of
motion. In this sense, the Lorentz frames are physically equivalent, since the
fundamental laws of physics, as expressed by the equations of motion, are the
same in all Lorentz frames,

Two Lorentz frames can differ from each other in any of the following ways:

1. Their coordinate axes are displaced (but at rest) relative to each other, but
their clocks are the same,

2, They have the same coordinate axes, but their clocks have a fixed time
difference.

3. They have the same clock, but their coordinate axes differ by a fixed rotation
or an inversion or both.

4. One set of coordinate axes moves relative to the other with constant velocity.

5. Any combination of the above.

Einstein also postulated that the speed of electromagnetic waves in vacuum
(¢ =3 X 10'” cm/s) is the same in all Lorentz [rames. It is consistent with our

87
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pecia

prerelativistic ideas that observers whose coordinate systerns are at rest re
each other (as in I, 2, 3 above) should agree on the speed of any th:no_
they watch. However, it is more difficult to understand how observefs. i
motion (as in 4 above) could both watch t%le same electromagnetic wy
agree about its speed. This is accomplished if we use the Lm.rentz transformg
relate the coordinates of the same event as seen by observers in Lorentz fra
relative motion. The main theme of this chapter is the way the 1ON
transformation determines all the essential kinematic results of special rely VE DILA

The dynamical part of relativity comes from the assumption that the ene
momentum also undergo a Lorentz transformation when we change frq
Lorentz frame to another.

If (2.3) is positive, the interval is said to be time-like, since there is then a Lorentz
frame in which the two events occur at the same place and differ only in time, If
(2.3) is negative, the interval is said to he space-like, since there then exists a
Lorentz frame in which the two events occur at the same time and differ only in
place.

Let events a and 4 occur at the same place in Moe’s Lorentz frame, so that
¥, = X, (and assume that ¢, > t,)- Thus, the interval between these two events is

time-like, According to (2.1d), Joe says that the time interval between these two
cvents is

2.1 LORENTZ TRANSFORMATIONS IN ONE SPATIAL DIMENSION'

1
th— 1= y[(z,, —-1) - F(x,, - :rn)] = (¢, ~t, (2.4)

Thus, the time interval between the events is shortest in the Lorentz frame in
which the events occur at the same place.

Moe and Joe are two observers in Lorentz frames, whose x axes are collinh
slide relative to each other with constant speed ». The origins of the ty
coincide at a time that both Moe and Joe agree to call the zeros o’f thei
scales. Now Moe and Joe observe the same event. Moe says that it oce
location x and at time ¢; Joe says it occurs at location x’ and at
According to the theory of special relativity, the Lorentz transformatnog_
these pairs of coordinates is

HOBLEM2.2.1 A particle travels a distance [, relative to the laboratory during its haif-life
: (measured in its own rest frame). How fast is it moving relative to the laboratory?

The time interval elapsed, as measured in the laboratory, is yr. Thus, the
speed » as measured in the laboratory is

L v\ L
= — = 1.—-—(_) _—
YT 5 T

]
x = 'y(x’ + ;ct’)

o = .},( ot + Exr) Solving for v we get
A

y=yhe=a

v L/cr

5
ey o

Note that L /7 can be arbitrarily large, but » will not excecd c,
An example of this phenomenon is provided by a p-meson which is formed
by a cosmic-ray interaction at the top of the atmosphere, and then travels about

10 km to reach the ground during its 2 X 1075 second half-life. In this case
L/eT = 100/6, and (2.3) gives

The constant y used here is defined by
I

_—r
vl -(u/c)2

The inverse of the transformation (2.1a, b) is

v
x' = 'y(:c - —ct)

i

v

J (100/6)
i; -= / = = 908
Ct,zy(ﬁ__x) ¢ Y1 +(00s6)
¢ = :
According to (2.1c), events at Joe's origin (where x’ = 0) appear to'M ROBLEM 2.2 2 According to an ohserver on the earth, a certain star is / light-years away., A

satisfy the relation x = v, This is consistent with the statement that JU
with speed v relative to Moe. Conversely, (2.1a) tells us that Moe ma
Speec;\onj ggLas?;:rtgx;{)DZvents, which we label a and 5. It is easily verifi d
(2.1) and (2.2} imply that , i

(et = et,) = (= x,)" = (etf = et} = (x} = 1)’
Thus, although Moe and Joe disagree about the distance between the even

about the time interval between them, they agree about the value th 5
(Ax)? This is called the (square of) the mwariant inlerval between tht_: :

spaceship travels from the earth to the star at a uniform speed and takes / years
to get there by the pilot’s measure of time. What is the speed of the spaceship
relative to the earth?

This is another application of (2.5). A distance of */ light-years” really
means that L = ¢/, The ship travels this distance in a time T = / measured on
the ship. Thus, L/cr = el/el = 1, and (2.5) implies that v/c=1/2.

ORENTZ CONTRACTION

Consider a point fixed on Joe’s x axis (&' = L), According to (2.1a and b}, Moe
says that it has coordinates

H ivi ; i hat suppo
'A good introduction to the principles of special relativity and to the experimental cwdt.n;z:k'lwﬁﬂ
is presented in Specinl Relativity by A. P, French, W, W, Norton and Company, Inc,, New ' 18
also contains a useful bibliography of other texts in this feid,

x=yL + yur’

U
L=yt YL
R0
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PROBLEM 2.3.1

2.4 LORENTZ TRANSFORMATION
OF VELOCITY AND ACCELERATION

If we eliminate ¢/, we get Moe’s version of the motion of Joe’s fixed pojng
x=1p +—

This implies that if Joe says that the distance between two fixed poin
Maoe will say that the distance between these two points is AL/y, which
Thus, an object is longest in the Lorentz frame in which it is at rest.

Atoms are arranged in a cubic lattice with a number density of n; a
when the lattice is at rest. What number density would be observed if t
were moving with speed 27 _
The Lorentz contraction of the lattice along its direction of motio
one linear dimension by a factor 1/v. It does not affect the two perpen
dimensions. Thus, the number density of the moving lattice is '

n=yny=

Moe and Joe from Section 2.1, who are in Lorentz frames with constant
velocity, both watch the motion of the same particle. Moe summar
observations with a Function x(¢}, from which he calgulates by differentia
particle velocity dx(¢t)/dt and acceleration d Y1) /di. Corresl?qndingly Jo
*/(17), dx’(t")/dt’ and dx’(t")/di™ for his version of the position, velocity
acceleration of the particle. We want to relate Moe’s and Joe’s measure

velocity and acceleration.
We start by differentiating (2.1a) with respect to {":

j‘r:\-;zf:—)=%W{[.\f’—i—yt’]= é}—(tf_)“]-
We can get another expression for dx/dt’ by using (2.1b),
de(e)  dtodx(t) ( if‘f’.(‘_’)_)i‘i(_‘l
dt A d FEY dt
Comparing (2.6a) and (2.6b) leads to ‘:
dx'(t") v de'(1') ) dx(t)
+uv= (1 + P —~——-)

1

dr’ dt’ dl
de'{t)
& _ __@__1
dt v dx'(1’)
1+ ——
e=  dt’

Equation (2.7b) expresses the particle velocity measured byAM.DC iI} tel
particle velocity measured by Joe, when Joe moves in the +*% direction

Lorentz Transformation of Velocily and Acceleration 91

Moe with constant speed v. Note that if dx’({")/dt’ = ¢, then (2.7h) yields
de(t) ¢+ v
d 1+use |

Thus, an cbject moving with speed ¢ relative to Joe also moves with speed ¢
relative to Moe, irrespective of Moe’s and Joe’s relative speed. This confirms that
we have not strayed from Einstein’s second principle of relativity. Furthermore, it
is not difficult to show that if |dx’/dt’| < ¢ and v < ¢, then |dx/d!] given by
(2.7b) is also less than ¢. An object moving more slowly than ¢ in one Lorentz
frame, moves more slowly than ¢ in all Lorentz frames.

To relate Moe’s and Joe’s versions of the particle acceleration, we differenti-
ate (2.7a), again with respect to ¢';

d2x'(t") v d*(17) dv(1) v ode'\*d?x(t)
—m - 3 e, trY|lt R
dr'* ¢ d’ dt ¢ dt’ dt”
If we use (2.7b) to eliminate dx/dt, this becomes.
y2\ 32
| — —
d?x(t ¢? d*x'(t)
W _ L ax (2.6)
dt® L2 dr'(t') dt™
¢t d’

This relation is true for any two Lorentz frames. Now let us specify that Joe’s
Lorentz frame is the one in which the particle is instanianeously at rest, so that
dx’/dt’ = 0. Then (2.7b) and (2.8) imply that

dx(t)

i v {(2.9a)
Ca(t) ()

ar T\ 2 d”?

1 (d.r)2 Vrdt(r) (2.9b)

¢?\ at de’? .
We have used the symbol ], to indicate that the acceleration is measured in the
Lorentz frame in which the particle is instantaneously at rest.

An interesting application of (2.9b) is the situation in which the particle’s
acceleration relative to its instantaneous rest frame has a constant value g. Then

(2.9b) can be written

{a)
1 f dv\2pP/? = gd
o "( ‘;z)
which can be integrated to yield
de(t L=t
% = 4 g(z—U)zﬂ) - (2.10a)
I+ ——'c—
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Here ¢, is the time at which the speed of the particle is zero. One mgq

integration gives
¢? t—ty) |2 _
x(t)y=— \/1+[M] - 1] +x (2.10
g ¢ :

Momenitum and Energy 83

(In[ gL /2¢*]) /[ gL/2c*). Thus, the passenger ages much less during the trip than
does his friend who watched him from the earth.

OMENTUM AND ENERGY

with x, the position of the particle at time ¢,. The “world-line” of the particle
a hyperbola. When ¢ — ¢; << ¢/g, x(¢) is approximately equal to the nonrelatj
istic constant-acceleration expression, (1/2)g(¢ — £,)%. On the other hand, wh
t =ty 3> ¢/g, x(t) goes asymptotically to the ultrarelativistic limit, x = (¢ - ¢,

PROBLEM2.4.1 A fast luxury liner makes excursions to a star a distance L from the eart
maintaining normal gravity on board by accelerating halfway out and decelera
ing the remainder of the trip.

(a) How long will the one-way trip take according to an earthboun
observer?
The ship starts from rest at the earth (x, = ¢, = 0), and travels a distance
L/2 in time T/2 maintaining constant acceleration g with respect to its
instantaneous rest frame. Thus, (2.10b) yields

L ¢ aT\?
= 1+(— —1
2 & 2¢

I

2 Ly ? _
T=—\/ 1+—g—2 -1 (2.11a)
I Ze
(b) How long'will the one-way trip take according to a passenger on th

ship? 5
Let 7 represent the time measured on the ship (its * proper” time). Accord-:
ing to (2.4), when the ship has speed v relative to the earth,

di vy 2
dr= " = 1-(-) p
Y ¢

If we use (2.10a) to express v (= dx/dt) in terms of ¢, we get
! i !
f p(t')\? dt!
'T(f)=fdf' 1“( ( ) =f—,,,
0 ¢ o | (5’5 )“
1+ _6_

£ ¢ A%
’r(f)=-lng—+ 1+(g—)
g £ ¢

This applies for the first half of. the outward journey, when the acceleration is
+g. If we substitute 7/2 from (2.11a), we get the proper time of half the
journey, and from this we calculate the total proper time to be

T 2¢ gl gL\

—t=—In|l+ — + 1+ —] —1 2.11b
QT( 2) g " 2¢” \/( 252) ( J

For a long journey with gL/2¢%> 1, the ratio of (2.11b) to (2.11a) is

A particle moves along the x axis. Moe says that is has momentum p and energy
E; Joe says it has momentum p’ and energy E’. According to special relativity,
the relationship between the pairs ( p, £/¢) and ( p', E'/¢) is exactly the same in
form as the relationship (2.1) between the pairs (v, ¢f) and (x7, at’).

v £’
p=xlp+ _._.,) (2.12a)
€ ¢
E ! ]
— =y + —-p’) (2.12h)
€ ¢ ¢
v E
p=xlp- __) (2.12¢)
£ ¢
E’ E ]
— =y = - —p) (2.12d)
¢ ¢ ¢

The Lorentz-invariant combination of £ and p is

(B/c) = p* = (E'/a)" = ()" (2.13)
Now let Joe’s Lorentz frame be the one in which the particle is at rest (at
least momentarily). Then p* = 0. The rest mass of the particle, m, is defined by

E' = me* (2.14)

where E is the energy of the particle in the frame in which p’ = 0 (the rest
frame). Then (2.14) and (2.13) yield

9 ) me? | ®
(Efc)” ~ p*= -

E = e + m*%! (2.15a)
v me?

p=y—-——=ym (2.15b)
¢ ¢ ;

E = yme® (2.15¢)

In particular, il m = 0 (photon, neutrino), (2.15a) becomes I = cp.
The kinetic energy of a particle is defined as the difference between its total
energy £ and its rest energy me?,
9 I 1,2 3 U'! o}
T=E—me"=(y— Ume"* = | — + —— + - fme”
2¢" B¢

Lt g "( ah (2.16)
= —mp* -+ —~mw| -] + - .
2 8 ¢ )

A comparison of (2.7b), (2.15), and (2.16) with the corresponding nonrelativistic
expressions shows that relativistic eflects are unimportant when v < ¢, y = |,

T << mc?,
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PROBLEM 2.5.1

The three-dimensional generalization of (2.7) is SHOBLEM 2.5.2

(B/e) =( 82 + 0} + 2) = (E7/e)" =( 48 + 1" + p2)
The four quantities (£/¢, p,, 8, p.) are the components of the 4.y
vector, whose Lorentz-invariant length is given by (2.17). It is often cony
use (2.15) and (2.16) to express all the components of the 4-momentumy s
terms of T or p, '

I
——
-3
[
+
[ X3
o
—~—
I

(E/c,p}

BLEM 2.5.3

collision problems.

The Cambridge electron accelerator produces electrons with a kinetic ener
GeV in the laboratory. Calculate the difference between ¢, the speed of:
v the speed of the emerging electrons as observed in the laboratory sys
would this result be modified il the electrons were to be observed in a co
system moving with a speed of 2 m/s toward the emerging electron b

In problems of this sort, one can use (2,16) to express v in ter:
kinetic energy T, and then calculate v from y:

T=m*(y — 1}
8 X 10%eV = 51 x 10%eV -(y — 1)

8 , R
y=1+?1—><10“=1.57><10

»

. Lo e y> 1 ROBLEM 2.5.5
¢ ve 2y* :
¢ ¢
v=o— 5, c—v=—7 = .6lm/s
2y Y"

would observe an electron speed of

v+ w
' = —qg
1+ —
e
Thus,
w
P v,
c—v' =¢— T T = (¢—o){1—
1+ — I+ —
- ¢”

Since u/¢ = 1 and w/c = 107%, it is clear that ¢ — 2’ and ¢ — v are V¢
equal.

Momentum and Energy 85

What is the momentum (in units of MeV /¢) of an electron accelerated through a
potential difference of 2 X 10° volts?

The kinetic energy is 2 X 0% eV, so the total energy E is 2 X 10°
eV + .51 X 10% eV = 2,51 MeV. Then we have

2 i
E* = % + m%*

op = VE? —(me?)* = {(2.51)% —(.51)% MeV = 2.46 MeV
p =246 MeV /¢

An electron is moving so fast that its relativistic mass is 1000 times its rest mass,
What is its kinetic energy in eV?
E = ymc® = 1000me?, so y = 1000
T= 51X 10°eV - (y — 1) = 51 X 10% &V -(999)
= 51 X 10%eV )

Suppose that 1 g of antimatter hits the earth and annihilates. How much matter
could you lift to a height of 1 km with the energy generated in the process?

Altogether 2 g of matter are converted into energy. This yields an amount of
energy equal to me® = 2 X (3 X 10')? g em®/5% = 18 X 10™ erg. II we set this
equal to the potential energy of a mass M raised to height 4 above the earth, we
get

Mgh = 18 X 10¥erg
18 X 10™erg 18 x 10%

M= cril = 58 <
981— X hcm 981 X 10
8

1.8 X 10"

It has been observed that a few cosmic ray particles have a measured energy of
approximately 1 j (107erg or about 10'? eV). If a proton {(me* = 10? eV) has this
energy, how long would it take this proton to cross our galaxy (diameter = 10°
light-years) as measured on a clock carried with the proton? Express your answer
in seconds.

Again we calculate y from the kinetic energy:

A y-value as large as this implies that # is nearly equal to ¢. Now consider two
events, the arrival of the proton at one edge of the galaxy, and its departure out
through the opposite edge. Since an observer fixed in the galaxy says that the
proton moves with a speed nearly equal to ¢, he will say that the time interval
between the events is 10° years. An observer moving with the proton says the
time interval is shorter by a factor v,

1
— X100 yr=10""%x 10° yr = 1077 yr
Y

=107 X 3 X 10" s = 3005

;
i
;
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PROBLEM 2.5.6 'The half-life of a free neutron is about 10 min. Estimate the kinetic o Ener’
neutron that travels from here to Pluto (distance = 5 X 10 km) dusiy
half-life, Give your answer in eV,

The neutron travels at a speed close to ¢ relative to an earthbound
Thus, it appears to the earthbound observer to require a time of:
km/3 X 10° km/s) = 5/3 X 10* s to complete the trip. If an observer
with the neutron says that it requires only 10 min (600 s), it must be thy

5/3 x 10 50,000
600 1800

which is large compared to one, confirming our assumption that v = ¢, Ty,
kinetic energy of the neutron is

The (x’, t') values that Joe attributes to this signal can be obtained by using (2.1)

and {2.19),
v
y(x' +0t’) = c[}'( = \") - HA]

These signals will reach Joe’s origin (x' = 0) when
yol' = c(yt" — nd)

nic t+ o
U= ———— =l
y(c—2) c— v
Thus, if the signals are sent out by Moe separated by intervals A, they will be
received by Joe separated by intervals Af(¢ + ) /(¢ ~ 2} . If Moe’s signals have
frequency f (= 1/4), Joe receives them with frequency f', where
c—0

¢+ f (2.20)

If v > 0, then f’ < f. This describes the situation in which the receiver recedes
from the sender, so each successive pulse must travel farther belore it is received.
If the receiver approaches the sender, the same formula (2.20) can be used, but
with a negative value of »,

500
T = me*(y — 1) = 10° eV( T 1) = 2.7 X 10" ¢V

fr=

PROBLEM 2.5.7 A particle as observed in a certain reference frame has a total energy of 13
and a momentum of 5 GeV/ ¢ and a lifetime of 1079 5

(2) What is its rest mass in 1 (1 u = 931.5 I\/IeV/c")?

E? = c%® + m%? |

ROBLEM 2.6.1  Bill is moving at a constant velocity (of 80% of the velocity of light) with respect
: to Herman. As Bill and Herman pass each other, their clocks both read zero. One
year later by his clock, Herman sends a light pulse to Bill. At what time by his
(Bill's) clock does Bill receive the light pulsc?

If Herman sends out light pulses with interval A, Bill will receive them with
interval

¢+ 1+v/c 1.8
A =Ay ——— =AYy — =3A
- €= 1l —2o/c 0.2

Thus, Bill’s clock reads 3 years when he receives Herman's signal, Note that Bill
is moving away from Herman, so the interval is increased by their relative
motion.

Thus,
m = 12,000 MeV /c? = 12.88 u

(b) What is its total energy in a frame in which its momentum is equal ol

GeV/e?
cp (me®)" = y12* 4 12* GeV
= 12@ GeV

(c) What is its lifetime in the new reference frame?
In the original frame

E

Since its lifetime measured in this reference frame is 1075 s, the lifetime 0 OBLEM2.6.2 Ohserver A is on a rocket moving to the right at half the speed of light relative to
particle in its rest frame is 12,/13 X 1079 s, In the new reference frame £ observer C. Observer B is on a rocket meving to the left at half the speed of light

GeV so relative to observer C. Observer B is approaching, observer A.
19/ GeV (a} What is the speed of B as seen by A?
y = ; °Y - vz The formula (2.7h) for the addition of velocities gives
me 5, ¢ ¢
. and the particle lifetime measured there is , Pomwe ¥ Voo )
19 III whtod Iﬂ[?r(.‘ = 1 ey 2
V2 X — X 10785 =131 X 107° 14 —= H——.,(—~—)
13 £” ¢ 2
= ——¢
2.6 THE DOPPLER SHIFT 5
Suppose that Moe has at his origin a device that sends electromagnetic 513“ moves 1o the o o— " n
the right at constant intervals A. The a™ signal moves with x, ¢ values rela Moves lt? thelet © A 8
fach with a

= ¢(t — nA)
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PROBLEM 2.6.3 Three Lorentz [rames have velocities v; (/ = 1,2,3) and relative v_'elor:ltl

(b} Suppose that A sends a steady stream of photons towards .B,-

Collisions 99

of 100/s from A’s standpoint. If these all strike B’s rocket, what will B
rate at which they arrive?

We use (2.20), with v = —(4/5)¢:
c+(4/5)¢
¢ —(4/5)¢c I

fn=

S .
T X 100/5 = 300/

(c) According to observer C, at what rate will the photons strike
The time dilation formula (2.4) implies that C will see a long,
between arrivals at B than B does, longer by a factor of :

————e = i3

Y:

Thus, C says that the arrival frequency is

V3/4 X 300/s = 150y3 /s

(= (g —v)/(1 = (w/ ¢*))). Their relative rapidities are defined by .

Show that these ¥}; satisfy the following addition theorem:
Yoy =VYp+ ¥y

Let observer 1 send out a signal with frequency f,, which passes qb’s
on its way to observer 3, Observer 3 will receive it with frequency

€= Uy

i

¢+ vy

if he regards it as coming directly from observer 1, and with frcqucns)f;

)i €~ Uy £~ Ugs
: ¢+ iy €+ Uy

if he regards it as coming from observer 2. Thus,

£ Uy & Uy €= Uy

¢+ vy B ¢+ vy ¢+ by

The logarithm of this expression yields (2.21b). o e WY,
It is easy to verify that the definition (2.21a) implies that c0s

sinh(Y;;) = yy;;/¢c. Thus, the coeflicients in the Lorentz transformatio
very simply expressed in terms of the relative rapidity.

In a collision process, we start with two particles (call them 1 and 2) converging
on each other from a large initial separation. Let E; and p; (i = 1,2) be their
energies and momenta before they come close enough to interact. After the
collision, particles will move away from the region of interaction. Call them
3,4,... (although some or all of the final particles may be identical with the
incoming particles 1 and 2), and let E; and p; (i = 3,4,...) be their energies
and momenta after they are too far apart to have any further interaction with
each other. Conservation of total energy and momentum implies that

E +E,=E, +E +--- (2.22a)
Py tpP=py+py+ - (2.22h)

The total energy can be written as a sum of rest energy and kinetic energy [cl.

(2.16)],
nidal F 6”0 F mye® (2.23a)
Ey+ Ej+ oo =T+ mye® +mpe® + - (2.23h)
The Q-value of the reaction is defined by

Q= (m[ + m2)52 - (m:, +omy 4 - )52 = Thioat — T iial (2-24)

E +E =T

initial

If Q is positive the reaction is said to be exothermic; if it is negative the reaction
is said to be endothermic. An example of an endothermic reaction is proton-anti-
proton production in a proton-proton collision,

prpop+p+rp+p (2.25)
The Q-value for this reaction is —(m, + m;)c® = —2 X 938 MeV.

For a reaction to occur we must be able to satisfy energy and momentum
conservation, with both 77 .., and T, positive. The minimum value of T iciat
for which this is possible is called the threshold energy of the reaction. Suppose we
observe the collision in the center-of-mass system, This is the Lorentz frame in
which the total momentum is zero,

(Pl + Pz)cm =0= (P'J +pt )CM

The lowest energy consistent with p, -+ Pyt =0is {my+my + -0 )
and arises when particles 3,4,... are at rest. Thus, the total energy in the
center-of-mass system, (£, }on, must satisfy
(Em:)cm 2 (my + my+ - )e? (2.26a)
A similar argument implies that
(Bdom 2 (my + my)e? (2.26b)

However, we know that this is always true since the reaction is initiated by
particles 1 and 2 in relative motion, so it > 0. I1 Q > 0, s0 that m + m, >
my +m, + -+, then (2.26b), which we know to he true, implies (2.26a).
However, if Q <0, then (2.26a) is not necessarily implied by (2.26h). The
threshold energy is the minimum value of T for which (2.26a) is satisfied, and

it is obtained by using the equals sign in (2.26a). If T 15 smaller than this, it

is impossible to satisfy energy and momentum conservation, with both 7', ;,;,, and
T, Positive.

E o AW SRR T
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PROBLEM 2.7.1

The simplest way to calculate { £, )¢ i to use the fact that ( E;
(Pioial * Pot) Das the same value in all Lorentz frames [cf. (2.1'7)], Its
the center-of-mass system, where p,., = 0, is just (( £, }en/0)% Thus'_’

-]

2
Eml 2 _ (Eiot)Cfvl
- piot ) Pwt - ¢
A

any Lorentz lrame

Now assume that in the laboratory frame, particle 2 (the target) is at-_i’ ELEM 272

particle 1 (the projectile) has kinetic energy 7. Then
E, = my®, P2=0
T\*
E, =T, + mc®, Py = B - + 2Tm,

[cf. (2.18)]. Thus, in this particular Lorentz frame,

E., =T, -i-(m[ -+ mz)c2
Ty
Pt = 5 T + 27m,

If we use these expressions in the left-hand side of (2.27), we get

(Emt)CM = \/[(ml + mz)"g]g + 27‘1"“2‘72

The threshold condition for an endothermic reaction [(E,)oy = (m
+ -+ }¢*] is then

2 2
(my -+ my+ -2 ) ={m + my)

2
(7 ihreshold = 2m, ¢

my oyt mg oy Ao

2m,

For the pp production reaction (2.25), this gives a threshold energy of

A 7-meson of mass M, comes to rest and disintegrates into a p-meson £
M, and a neutrino of mass zero. Find the kinetic energy of the g-meson
Initially we have a #-meson at rest. Thus,

By, = A'Iwﬂzs P =0

i “i-kineti ROBLEM 2.7.3
Finally we have a p and a neutrino. Let 7, be the p-kinetic cnergy,

BOR

T 2
. m
Ep= TL-F-A‘.’[#GJ, p.u=p,u (T) + 2MT

Since py,, = 0, p, = ~p,. Furthermore E, = ¢f, since M, = 0. Thus, k

tor ¢

T\?
Ep =My = (T, + Mg?) +¢ (—') + 2M,T,

(M, + 2,)e* = T]" = T2 + 2, T

B EEE——
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from which we get

_ (11!,, - Af[n)zr:g

# 2M

The proton (ﬁlf[j,,c:2 = 938 MeV) has an excited state called the A (Mye? = 1236
MeV). The A can be produced in the reaction Y + £ — A. What is the minimum
energy of the y-ray beam needed for the production of A’ in a liquid hydrogen
target?

Since we end up with a single particle, the A, it will be at rest in the
center-of-mass system. The threshold condition is thus (E)an = Mac®. We can

assume that the target proton is at rest in the laboratory. Let 7, be the
laboratory energy of the y. Thus,

E =Mt p =0 E =T _ 5,
b AE P =S ¥ v» Py i
Eu=T,+ M i Puotar - p, (in the laboratory)
EUEI ) 2
( ¢ zcl)GM — (ﬁffAC)z

Etnlnl : TT : T 2
( P ) Piotal * Protat ( P g ) ( p )

= Af2.2 .
=M,c" + 2M,T,

Thus, the threshold condition is

o (Mae) = ()" _ (1236)" ~(938)’

! 20, 2 X 938

= 345 MeV

We have essentially rederived (2.29a), with m, = 0, my =AM, and m, + m,
+ 0 = A’IA.

The main accelerator at the Fermi National Laboratory can produce protons of
total energy 400 GeV. It has been proposed to build a smaller accelerator nearby

to produce protons of total encrgy 25 GeV that can collide head-on with the
protons from the main accelerator. If the reaction

brpopp+ W
is studied, what is the largest mass particle that can be produced with these
machines? Assume that Af %=1 GeV.
For a given value of (E,_ ) car» the largest mass 77 that can be produced is

(Eaden — 2 - M ¢, corresponding to {(Tgna)em = 0. To calculate (E o) ons

1o e 39
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e e, ] : hat voltage difference should an
we go to the initial situation in the labc;: atory frame, where we have  ecelerated to give it a speed of
7 a2, : eed of light?
= = — — g o= he spee
E,=400 GeV, Py € \/(400 GeV) (JU"C ) " t P Answer: 34 X 10° volts.
= V160,000 — 1 GeVﬁ EVALAC at Lawrence Berkeley
, g fory can accclerate a nucleus with 4
1 2 ay2 4 a kinetic energy of about 24 X
£, =25GeV, pp= - . \/(25 GeV) "( Mﬂ"'-) n= —v625 - What is the speed of such a nucleus?
GeV'. Answer: 948¢.
E g = 425 GeV, Pum = (V159,099 — 624) c i referred to Lorentz transforma-
2 2 5 e spatial dimension. To generalize
[(Emml)CM] - (EE‘E) — (/159,999 — /624 )2 (__Ge.V)._ imensions we first resolve an arbitrary
¢ ¢ ¢ o components parallel to and per-
(E\gtJone = 200 GeV to v:
and the most massive W that could be produced has a rest energy of 2 -
-2 X 1 GeV = 198 GeV. : I
. . . < 9)8, r,=r—{r-5)3
PROBLEM2.7.4 The apparatus for a Compton scattering experiment js arranged so (- 9) + (r - )
scattered photon and the recoil electron are detected on-l}'f if their path géncralization of (1a) and (1b) is
right angles to one another. Show that under these conditions the ener
scattered photon equals m,c?, where m, is the rest mass of the electron v
o ' 'y( o+ mct’), ro=1
v
o = y( e’ + -r"')
¢
T 1ze the derivation of (2.7) to show that
v
dr
This problem can be solved by using conservation of energy in th dr, 7 t v
tory frame. The evaluation of [( £,.)cm]? after the scattering involv di +' v dry
(o + By)° = % + o + 290 P} T
which equals p* + pf, since we are told that p, and p;, are pe'rpendic:_ dr’,
and EJ are the final electron kinetic and photon energies, one finds tha i, — 1— o2/
m.e . : ¢* di’
so that £ = m ¢?, independent of the final kinetic energy of the clectro
t although the transverse component
Invariant under a Lorentz transforma-
REVIEW PROBLEMS he transverse component of dr/d! is not.

2.1. A particle of rest mass M decays at rest into

gram shows a coordinate system in
oth the sun and the star Polaris are
ary. Photons from Polaris come down
15.an angle § with the x-direction. Now
Pose that Polaris is viewed from the earth,
_Moves with speed » in the x-direction.
he apparent angle to Polaris, as seen by

2.2. A 7" meson (rest energy = 135:0 M 4
cays in flight into two v rays, which eme

two particles whose rest masses are m, and m..
right angles to each other as sce(rjl

Calculate the kinetic energy of particle 1 as .
seen in the rest frame of particle 2. laboratory. What is the sinalles.t 7.
M?—(m, + m,,)2 tory kinetic energy for which this is:

Answer: ¢ Answer: ]Wﬁucz % {
2m, :

2.7.

2.8.

2.9.

2.10.
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an observer on earth. Hint: do Problem 2.5

first.
v
cosf + —
s

Answer: 8’ = arccos| ——5——

T OE

BRI SRR

Two particles are initially at rest and sep-
arated by a distance Ax. Due to an attractive
force between them they move towards each
other and collide in time A¢, If instead of
being initially at rest they were moving paral-
lel to each other with speed v, in a direction
perpendicular to the line between them, how
long would it take them to collide? Hint: do

Problem 2.5 first,
At

Ansteer: T
V1 — o /c”

Suppose a quasar moves away from us with
speed 0.6¢. Its lifetime, measured in its own
rest frame is 10° years. Over what total span
of earth-time would radiation from it be re-
ceived at the earth?

¢+ .6¢
— =2 % 10°

years.

Answer: 10° years X
¢ — .G¢

The energy of the first excited state of the ' Fe
nucleus is 14.4 keV. A nucleus at rest, in this
excited state, makes a transition to the ground
state by emitting a y-ray. What is the labora-
tory encrgy of this y-ray?

Answer: (144 — 2 X 107%) keV.

Consider y-ray ahsorption by an *’Fe nucleus
at rest in its ground state, leading to the 14.4
keV excited state referred to in Problem 2.9,
What must be the laboratory energy of the
incident y-rays? What does the difference be-
tween this answer and the answer to Problem
2.9 have to do with the Mossbauer effect?

Answer: (14.4 + 2 X 1075) keV.
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2.11, An astronomer compares the light she receives
from opposite ends of a diameter of the sun,
the diameter perpendicular to the axis of the
sun’s rotation. She observes a difference of
078 A in the wavelength of a 3873 A line in
sodium when she compares spectra taken at
the two ends of this diameter. The radius of
the sun is 1.4 X 10" cm. Use this information
to calculate the period of the sun’s rotation
about its axis. Answer: 4.4 X 10°% s = 51 days.

2.12, A source at the origin of a Lorentz frame
sends out spherical electromagnetic wave
fronts with frequency f, so that the nth wave
front has the equation

n
refxt 4yt 42t =cft~ —
f

A moving observer describes these vy
with coordinates x’, 3’, z', ¢’ such

x='y(x’+vt’), z=z'
o

y=y b=yl + —5.\")
¢

By calculating dn/dt’ at fixed x’_}.
that the frequency of the wave fron
sured by the moving observer i
{v/¢) cos #), where & is the angle be
velocity of the moving observer and h
tion from the source, as measured
Lorentz frame of the source. Verify
formula reduces to our 1-dimensional D
shift formuia (2.20) when § = 0 or #
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Maxwell’s Equations and the Boundary Conditionson Eand B 107

Gaussian counterparts, Since some problems are posed in terms of S1 units, the
student should develop facility in going back and forth between the two systems.!

QUATIONS AND

In this chapter, we consider a physical system consisting of electricall
matter and electromagnetic fields. It is important to keep in mind that
have real physical existence, and are not merely mathematical d
expressing the force laws between charges and currents. For example, ¢
atom radiating an electromagnetic wave train over a period of abot
‘That wave train can travel for billions of years across interstellar spac
is absorbed by another atom, perhaps long after the emitting atom
exist. There can be no doubt about the physical existence of the
electric and magnetic fields that transferred energy and momentum’
vast intervals of time and distance. '

motion; and (2) the charges are the sources of the fields, in the sense’
provide the inhomogeneous terms in Maxwell’s equations. The entire:
consistent with the requirements of special relativity. .
Several systems of units are in current use for the expression of the
electromagnetic theory. The most common are the SI (Systéme Inte:
and Gaussian systems. We must choose between them, because i_t-:wo_ul
impractical and confusing to give all the [ormulas in both systems.:
chosen Gaussian units because we believe that they do a better job of en
ing the fundamental physical relationships betwéen the different fiel
example, the physical difference between the B and H fields at any
associated with the magnetic effects of the matter in the vicinity of tha
Therefore, there is no physical reason why B and H should differ in vac
the Gaussian system, B and H are measured in the same units, and are
vacuum, In the SI system, they are measured in different units and theit |
equivalence in vacuum is much less evident. Similar remarks apply to h
D fields. Another convenience of the Gaussian system is that E flﬂd
measured in the same units; in fact, the E and B feids associated witl
wave propagating in empty space have equal magnitude. The SI S}.fs_fc
advantage that some of its units (volts, amps, ohms) are more familiar,

E
Y.CONDITIONS ON E AND B

In Gaussian units, Maxwell’s differential equations for the electromagnetic field
in free space are

divB =0 (3.1a)
divE = 4mp (3.1b)
dB
curlE + —— =10 (3.1¢)
¢ at
B 1 dE 4= (3.1d
cur Iy = -J 1d)

Here E(r, ¢) and B(r, ¢) are the eleciric and magnetic field vectors, p(r, t) is the
charge density, J(r, ¢} is the current density, and ¢ is the speed of electromagnetic
waves in vacuum (2.998 X 10'" cm/s). If matter with charge density p(r, ¢)
moves with velocity v, the associated current density is given by

J(e,2) = p(r, t)v (3.2)

The Gaussian unit of charge is the esu (electrostatic unit), There are 2.998 X
10% esu in a coulomb (C). The charge of an electron is

e=—4,803 X 107 Wesu= —1.603 X 10°9 Q.

In the Gaussian system, p has units of esu/cm?, J has units of esu/cm” 5, and E
and B both have units of esu/em?® = statvolt/cm = Gauss.
The equation expressing conservation® of charge

i + di 0 dp + di (3.3)
o v]=0= Y iv(pv) .
is obtained by adding the time derivative of (3.1b) to ¢ times the divergence of
(3.1d). Thus, Maxwell’s equations imply charge conservation, and there can be
no solution of Maxwell’s equations in which charge conservation is violated.

The integral forms of Maxwell’s equations art obtained by applying Gauss’
theorem to (3.1a and b), and Stokes’ theorem to (3.1c and d):

B-da=0 (3.4a)
any closed
volume
E-da=47Q (Gauss’ law) (3.4b)
any closed
volume

'Good discussions of the relationships between systerns of electromagnetic units are given in appendices of the
books Classical Electrudynamics by J. D. Juckson, John Wiley & Sons, New York, 1973, Electricity and Magnetism by
E. M. Purcell, McGraw-Hill, New Yaork, 1965,

Q. the equation expressing conservation of matter, {1.110),
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FIGURE 3.1 Surface 5 sep-
arates regions 1 and 2. The
unit vector h is perpendicu-
lar to § and points into re-
gion 1. In (a) a flat Gaussian
“pillbox" is cul by S, with
the flat surfaces of the box
parallel and close ta S. in (b)
a rectangular contour is cut
by 8, with | parallel and close
ta 8.

. infinitesimal vector tangential to 5.

14 ,
E.dl= _?E?fB'da (Faradaysiaw)

any clusud
curvi

B- ——f(J+

The surface integrals in (3.4c and d) go over any surface span'ﬁ'm v
curve followed by the line integrals. The direction of 41 around the curv
direction of the surface normal da must be related by the right-h;
Equation (3.4a) expresses the fact that there is no magnetic ¢ charge
to the electric charge of (3.4b). Maxwell’s displacement current 1 /4
is included in the statement (3 4d) of Ampere’s law.

In some situations it 1s useful to assume that the charge and
distributions are conlined to a two- chmensmnal surface §. In rlgure
carries a surface charge density o(esu/cm?). Equations (3.4a) and (3.4
to a small “Gaussian pillbox” cut by § yield

) - da (AmPEresIa\

any closed
curve

TA TiCS
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However, they are also satisfied by

q 27
E{r,t)= =7+ i"asin[T(z - ct)] (3.7a)
i
2m
B(r, t} = ju sin[ N (z — ci)] (3.7b)

The difference between (3.6) and (3.7} is a solution of the [ree-space (p = J = 0)
set of Maxwell equations. Usually we regard (3.7) as the superposition of two
solutions, one associated with g at the origin, since it vanishes i[ ¢ = 0, and the
other with a source of eclectromagnetic radiation far away. From now on,
whenever we discuss solutions of Maxwell's equations for some specified p, J, we
will always imply that we seck the solution that would vanish if p = J = 0.

(B, ~B,)-7i=0
(E, —E,)-f=4dno '
Here # is a unit vector perpendicular to S, pointing into region
normal component of B is continuous across any surface, but the
component of E suffers a discontinuity determined by the surface-charg
Similarly, (3.4c) and (3.4d) applied to the rectangular contour of: I
yield

(E, —E,)-1=0

4q
(B, - B,) - 1=—K-(i x1)

m
—(K x 7)1

Here K is the density (esu/cm s) of the current flowing on §, ah

For every specified p(r, ¢), J(r, ¢}, Maxwell’s equatlons (3. 1) hav infir
many solutions. The appropriate solution for a given physical situatio
determined by the boundary conditions implied by that situation. For:exal
J(r, t) = 0 and p(r, t) corresponds to a point charge fixed at the origin,
that the equations (3.1) are satisfied by

(a)

Suppose that we are in a situation in which the fields and charges are constant in
time. Then (3.1c¢) and (3.4c) become

curl E = (3.8a)

E-dr=0

any closed
curve

(3.8b)

The same argument that taok us from (1.18a) to (1.20) now allows us to express
E(r) in terms of the gradient of a scalar potential ¢(r)

E(r) = —v¢(r) (3.9)
[ (3.9) is substituted into (3.1b), we get Poisson’s equation
divvea(r) = v%(r) = ~4wp(r) (3.10)

For the remainder of this section, we assume that all the charge is confined
to the interior of a spherical surface of finite (but arbitrarily large) radius R.
Thus, for r > R, Poisson’s equation reduces to Laplace’s equation

v 2 (r) = (3.11}

The general solution of this equation is given by (5.38). We are only interested
here in E(r) fields which vanish as 7 — oo (see the last paragraph of Section 3.1).
This means that we should discard the terms in (5.38) that involve positive
powers of r, since their gradient will not vanish at r = o0. The remaining
expansion has the form

q

1
o{r) = K+ =+ —EF(r,G,q))
roor

(r>R) (3.12a)
Here K and @ are constants, and F{(r,8,$) is bounded as r = co.

We now! choose to subtract X [rom the ¢(r) in (3.12a), The new ¢(r)
{r>R)

$(r) = —+ 1.,F(r 8,p) (3.12b)

has the same physical content as the old one, since (3.12b) and (3.12a) will yield
the same E(r) when we calculate their gradients (3.9). Thus, we decide to use the
arbitrary additive constant implicit in the definition of ¢(r) to arrange for ¢(r) to
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FIGURE 3.2 The shaded area
represents a localized
charge distribution. Equa-
tion (3.18a) is an approxima-
tion to the potential at a dis-
tant point r, The vector r'
locates points within the
charge distribution,

vanish at r = co. According to (3.12b), $(r) approaches zero for large
r at least as fast as 1 /r. Correspondingly, E(r) calculated from (3.9 ;_:F
Zero as v — oo at least as fast as 1/r* It is also apparent from (3.12b) 5]
go faf'ther away from a finite charge distribution, the potential becg;s
spherically symmetric. We will soon see that the constant (in(3 12b)c"‘m :
the total charge in the charge distribution. ‘ %

The solution of (3.10) whose large-r dependence is given by (3.12h)
o) = [ 2L oy
A
The uni_ts of potential are statvolts (1 statvolt = I erg/esu =
conventional volts). We now demonstrate three lemmas that will estabf

the E(r) calculated from (3.13) and (3.9) is the only electric field

) - consisten
the given p(r) and the requirement that E(r) vanish at r = oo el

Lemma I If U(r) satisfies
curl U(r) = 0
divU(r) = 0

is finiteas r — oo

r*U(r)]
then
Ulr)=0

forallr

Proof Trom (3.142) we know that there exists a ¢(r) such
U(r) = _V;qb(r), and (3.14b) then implies that ¢(r) satisfies Lap
equation V¥ “¢(r) = 0. It follows that :

div[¢Ve] = Vo - Vo + V% = Vo - v

Let.us integrate this equation over a volume ¥ bounded by a spherical surlz
radius R, and use Gauss’ theorem:

fdiv[d)V(}J] dy = fr!:vt,b - da

Now let R become infinitely large. Equation (3.14c) implies that ¢ vanishes
large R at .least as fast as 1 /R. Thus, the quantity ¢ V¢ in the surface integra
(3.15) vanishes at least as fast as 1/R® This means that as R jncreascs
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surface integral vanishes at least as fast as 1/R. But V¢ - V¢ is nonnegative, so
if its volume integral over an infinite sphere vanishes, it must be that V¢(r)
vanishes everywhere, which demonstrates the truth of (3.14d).

Lemma 2 I U/(r) and Uy(r) satisfy

curl U,(r) = curl Uy(r) {3.16a)
div U,(r) = div U,(r) (3.16b)
U, (r)], r2U(r)]  arefiniteas r — oo (3.16c)
then
U, (r) = Uyr) forallr (3.16d)

Progf Define U(r) = Uyr) — Uy(r). This vector field obviously satisfies
the requirements of Lemma 1, which implies that it vanishes every-
where,

We see that a vector field that vanishes at infinity at least as fast as
1/r? is determined uniquely by its curl-and divergence. An explicit
demonstration of this is provided by Lemma 3.

Lemma 3 1 U(r) satisfies

curl U(r) = 4ma(r) (3.17a)
div U(r) = 4wb(r) (3.17b)
r|U(r)]  isfiniteas r — o0 (3.17c)
then
bir’ a(r’
Ulr) = ~v fl—r—(_frll dv’ | + curl me("—B! dv’ (3.17d)

This is proven by calculating” the curl and divergence of (3.17d), and showing
that they equal 4wa(r) and 4wb(r), respectively.

If we set a(r) =0 and &(r) = p(r) in (3.17), then (3.17d) gives us the
solution [(3.9) and 3.12)] for an electrostatic £ field for a specified charge
distribution. We also see from (3.17) that a field whose divergence vanishes can
be written as®a curl of a “ vector potential.” In Section 3.11 we will see that this is
true in general, and not only for fields which vanish at infinity at least as fast as
1/r%

Equation (3.12b) gave the general form of the potential [ar away [rom a
localized charge distribution. A more explicit expression is*

o) = (3.18a)
E(r) = —v¢(r)
"?%?+3(P'i)r“p+“' (3.18D)

ISee, for example, Clussical Electricity and Magnetism by M. Abraham and R. Becker, Blackie and Son, Limited,
Londoen, 1937, p. 37,

18pace Hmitations prevent us from deriving all the formulas we use in this chapler. For more complete
presentations, see Eleclricity and Magnetism by E. M. Purcell, McGraw-Hill, New Yark, 1963, or Volume IT of
The Feynman Lectures an Physics, Addison-Wesley, Reading, Mass., 1963, These two undergradunte-level texts
present the formalism of electricity and magnetism, together with interesting discussions of many physical
phenomena associated with the behavior of charged matter.
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FIGURE 3.3 (a) Dipole in uni-
{form E field. A torgue acts
on the dipole, tending to
align it with the field, but
there is no net force. (b) DI-
pole in nonuniform E field
with p paraliel to the field,
The field at the positive
charge is stronger than the
field at the negative charge,
resulting in a net force that
pulis the dipole toward the
region of stronger fleld. (c)
Dipole in nonuniform E field

with p antiparailel to the field.

Now the stronger force acts
on the negative charge, so
the dipole is pulled toward
the region of weaker fleld.

Fs+

el ®

h
19

(&)

fa)

with the monopole moment (total charge) Q and electric dipole
defined by

(total charge)

Q= [p(x!) dv'

| p= f r'p(x’) dv’ (electric dipole moment)

The multipole moments of a charge distribution are also US:B__
discussion of the forces and torques that a charge distribution experience
is placed in an externally generated electric field. If the charge is in th
of the field point labeled by r, its energy is approximately '

U= Q¢(r) —p- Elr)

where p is defined relative to the point labeled by r. In particular, (3.19a)
that if we rotate the charge distribution about r, we get the lowest ener

lines up parallel to E. In fact, one can use (3.19a) to show that the ele
exerts a torque on the charge distribution equal to

'r=p><E(r)

An important special case is when Q = 0 but,p # 0. The simples
tion of this situation is a pair of equal and opposite point charges 4,
by a distance d. Application of (3.18d) to this distribution yield
magnitude equals ¢d, and whose direction points from the negatt
positive charge, Figure 3.3 illustrates that such an “electric dipole®
following properties:

(a) In a uniform electric field the dipole experiences a torque, but n¢

(6) Ina nonuniform electric field the dipole is pulled into the region 0
field if p and E are parallel. SR

(¢) In a nonuniform electric field the dipole is pulled into the region
field if p and E are antiparallel.
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These rules can be obtained from (3.19), and hold for any charge distribu-
tion with ¢ = 0 and p # 0.

Two point charges ¢, and q? are situated 4 cm from one another. Two other
charges lie between ¢, and ¢h, on the straight line connecting them. These are: a
4-esu charge 2 cm [rom g, and a 2-esu charge ! cm from ¢,. Determine the
magnitude and signs of ¢, and g, so that E(r) at large distances r from the
charges falls off faster than 1/r* in all directions.

ol oNoNo

2 cm | ‘

3cm !

4 cm -

According to (3.18b), both the total charge and total dipolfiz moment of the
charge distribution must vanish if E is to fall off faster than 1/7° Thus, we must

have
g, *tq, tdesut+2esu=0

2X4+3%X2+4q =0

a
7 = — 1% esu, g, = — 3 esu

Note that we have calculated the dipole moment relative to the location ol g, as
origin. It is easy to verify from (3.18c, 3.18d} that if the total charge (@ equals
zero, the total dipole moment p is independent of the origin used for the
definition of r’,

Determine the charge distribution that will give risc to the potential

Pp{r) = Hy .

Verify that your answer satisfies Gauss’ law [or a sphere of finite radius centered
at the origin, Calculate the total charge in the distribution.

Since the potential falls off faster than 1/r as r — oo, it must be that the
total charge equals zero. To find p(r), we use (3.10),

1, 1 Q[Plﬁ]a“”]
_E;v olr) = il-'rrv

(7¥,, @ constant and > 0)

p(r) = -

To operate with the Laplacian on a spherically symmetric potential, we use the
expression {5.37a) for the Laplacian in spherical polar coordinates, with / = 0:

) e—-ﬂr 1 d R d E_"T 2 =nr
v W . = ”f”;:.d—r ?'“?r T = [ ’— (forr = 0)
P _ 4 r

This would lead to a total charge of

Jole) do =

o2 -
Wy e |,
47 - —a redr

J dq r

r=\)

[#a]

— Wl [ v dr = 10, :

r=0
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Thus, to achieve a total charge of zero, we add a point charge |y~
(r = 0), leading to a total charge density of :

2 gmar

«
p(r) = Wy 8(r) — —
4-17; r

To verify Gauss’ law, we calculate the flux iof E through a Sﬁh:

R LEM 3.3.1

X dqR*

fE‘da o

- ??: r= R
= 4aiW,[aR + 1]e7°R

The total charge contained within this sphere is

aE Pl

de = W, [|68(r) ———

J o dr =1, f|80) = o b
R

= Wy — M{,agfe"‘“'ra’r
0

= Wy(1 + aR)e R

so that the flux of E through the sphere is indeed equal to 47 times th
enclosed. :
ROBLEM 3.3.2

3.3 SOLVING PROBLEMS USING
THE UNIQUENESS THEOREMS OF ELECTROSTATICS

The arguments used in deriving Lemmas 1 and 2 on pages 11
applied to prove the following uniqueness theorems:

3.3.1 Dirichlet Boundary Conditions

If two functions ¢,(r) and ¢,(r) both satisfy Poisson’s equation everyW
a closed surface S,

v 3%,(r) = v%,(r) = —4mp(r)  (r within §)

and if ¢,(r) and ¢,(r) are equal everywhere on S, then ¢,(r) and ¢,(r)
everywhere within S. In other words, there is only one function th
Poisson’s equation in the interior of a closed surface and has specified
that surface. Thus, if we find any solution of this boundary-value prob
the unique solution.

3.3.2 Neumann Boundary Conditions

If two functions ¢ (r) and ¢,(r) both satisfy Poisson’s equation cvel’ywl_’e
a closed surface S, and if the normal derivatives of ¢,(r) and 4’2(1')__

58(r) in this equation is a 3-dimensional Dirac 8-function, defined by
G(r) =20
[8@)de=1

|)

ifr=0

if the integration volums ¥ contains r = 0.
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everywhere on S, then ¢(r) and ¢,(r) differ at most by a constant within 5. This
implics that there is only one E(r) that satisfies (3.1b) within a closed surface and
has a specified normal component on that surface.

The following are some examples of the use of the uniqueness theorems to
solve electrostatics problems.

A hollow conductor is placed in an externally generated electric field, Show that,
at static equilibrium, the electric field within the cavity is zero, irrespective of the
shape of the cavity or the complexity of the external field.

At static equilibrium, every point within the conducting material is at the
same potential. Otherwise, there would be an electric ficld in the conducting
material and current would flow. Now consider the cavity. Within the cavity
p(r) = 0, so ¥ %(r) = 0. On the surface of the cavity, the potential has some
constant value, say ¢ = (. Now define a function ®(r) by

o(r)=C

Obviously, ¥ 2® = 0 within the cavity, and @ has the specified value C on the
surface of the cavity. It satisfies Poisson’s equation and the boundary conditions,
and so the frst uniqueness theorem says it is the unique solution. Thus,
$(r) = ®(r) is constant within the cavity, and E(r) = —V¢(r) = 0 within the
cavity.

(for r within the cavity)

A copper sphere of radius R contains a spherical cavity of radius 2. The center of
the cavity is at a distance  from the center of the sphere, and d and « are such
that the cavity is entirely within the sphere. There is a total charge of (J on the
sphere. Find the electric field (a) within the cavity, and (b) outside the sphere.

Since ¥ %(r) = 0 within the cavity and g¢(r) is constant on the surface of the
cavity, the previous argument shows that E(r) = 0 everywhere within the cavity.

Now consider the region outside the sphere. On the surface of the spherc
(r = R), the potential has some constant value K. The potential vanishes on the
sphere at r = oo (see p. 110). There is no charge when R < r < oz, Thus, ¢(r)
must satisfy

o(R)=K
¢p(e0) =0
Vi{r)=0 (R<r< o)
The function
R

¢{r) = KT
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PROBLEM 3.3.3

FIGURE 3.4 (a) A point

charge at a distance d to the
right of an infinite con-

ducting plane. {b) The arrow
with the solid shank repre-
sents the electric field at a
peint on the midplane due to
the combined effects of 4 ¢.

‘moves infinitely far away to the right, and satisfies Poisson’s equation to the

satisfies these conditions and is thus the unique solution of the pr
determine the constant K, we apply Gauss’ law (3.4b) to a sphere éoncé
the copper sphere, but whose radius R’ is greater than R, The E fiel

KR -~
7
(R')’
The area of this large sphere is 4w(R’)? and so the total E-flux th
4wKR. Thus, (3.4b) implies that KR = Q. We conclude that the elag

outside the copper sphere is independent of the size of the cavity or ifS-luu
long as it doesn’t pierce the outer surface of the copper sphere, :

R
B(R) = -v(x—) -
r re= i’

Now suppose that a point charge ¢ is placed at the center of the cayit
the effect on the fields within the cavity and outside the sphere?

Since the total charge within a spherical surface of radius &
Q + g, the above argument shows that the field outside the coppe
given by :

+
E(r) = Q_g";.
r

(r>R)
Within the cavity the potential satisfies Poisson’s equation with a charg
corresponding to a point charge ¢ at the center of the cavity. The pote
constant on the surface of the cavity. All these conditions are uniquely

by choosing :

where s is a vector from the center of the cavity to any point within'the

The method of images is another application of the uniquenes
Suppose that a peint charge ¢ is a distance ¢ from an infinite conducti
We want to find the potential ¢(r) in the space around ¢. Thus,
function ¢(r) that has a constant value when r is on the plane, vanishes

of the plane, with p appropriate to a point charge +¢ placed as shown |
3.4a. All these conditions are automatically satisfied by the potential prt
the right of the plane by the pair of charges shown in Figure 3.44. W

\\ OBLEM 3.3.5
;I
d—;-o Oﬁ—d—-y--q—d——)no
q ' q
{a) {b)
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sure that the plane in Figure 3.4b is an equipotential since & on the plane is
everywhere perpendicular to the plane, so that it can do no work on a charge
that moves around in the plane. Since the potential produced by the two charges
in Figure 3.4b satisfies all the requirements for the physical situation shown in
Figure 3.4a, we can accept this solution as the unique solution. Thus, in
discussing the field outside a conducting plane we can ignore the plane if we add
a fictitious “image charge” —gq, at a distance 4 behind the plane.

A charge ¢ is released from rest at a distance 4 from an infinite conducting

plane. How long will it take [or the charge to strike the plane?

II the charge is a distance x from the plane, it is at a distance 2x {rom its
image. The force on the charge, attracting it to the plane, is thus q*/(2x)?, and
its equation of motion is

d*x q°
At T
To solve this equation, multiply both sides by dx/dt [cl. (1.17a)]:
dy d*x q° dv
Mo dE T T A d
d|1 dv\* d{ q*
dt "2""’( Z) Y

L fde\? %1 1
5’"(?{[) “"4-_(¥_§)

We have chosen the integration constant to satisly the initial condition that
dv/di = 0 when x = d. Now we must do a second integration,

dx
dt
} p } dx a | md?
f= — = — ——
[§] x=tl q 2

g~ {1
2m i x
The last integral is conveniently done with the aid of the substitution x = d sin".

An infinitely long charged wire of radius 7, is parallel to an infinite conducting
plane, at a distance % (/4 > ;) [rom the surface. The potential difference
between the wire and the surface is V. Derive a formula for the magnitude of the
electric field just above the surface below the wirc.

Suppose that the charge density on the wire is p esu/cm. If the conducting
plane were not present, the electric field at a distance r from the wire would be
caleulated from Gauss’ law

E(r)-2mr = 4mp

E(?').zg—p

(due to the wire alone)

If p is positive, the direction of the field is radially away from the wire. Now take
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Gaussian surface

Conducting plane

Image

into account the presence of the plane by adding an image wire, with ]
charge density —p at a distance / below the plane, parallel to the original

2p 2p
E [E—
(r) r 2h—r
The potential difference between the surface of the wire and the conduct
plane is
h h 1 1
V= | E(r)dr=2 -t —4d
-r[{ (r)dr p_,{. r 2h-—r ’
24 — 1,
=2pn| —2
o
so the charge density on the wire is
4 ¥
p= 2h—1,\ 24
2lnf —— 2In| —
To Ty

Finally, the electric field just above the plane is

i 1 4p
Elr=h)=2p| — 4+ —
(r I) P h o 2h—= 1 h

2V

2h
fln| —

o

i

3.4 MAXWELL'S EQUATIONS IN
THE PRESENCE OF MATERIAL MEDIA

On a macroscopic scale the eflect of a material medium on the E and B fields
depends on the

polarization density P(r, ¢) (electric dipole moment/unit volume),
magnetization density M(r, {) (magnetic dipole moment/unit volume}. .

Consider a volume enclosed by a surface S. Within the surface, the effect of the
polarization and magnetization densities is to augment the free charge an
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current densities, pp(r, t) and Ji.(r, &), by the effective polarization and
magnetization charge and current densities, given by

poult, 1) = —divE(r, 1) (3.20a)
Jinae(rs ) + Joar, £) = ¢ curl M(r, ¢) + %P(r, t} (3.20b)

Thus, the total charge and current densities to be used in the inhomogencous
Maxwell equations are

p(r3 Z) = pfrcc(r3 t) + ppo](rl l.")

= Preelt, 1) — divP(r, ¢) (3.21a)
J(r! t) = Jfﬂ:c(r! !) + Jm:\g(r’ t) + Jpnl(r! t)
aP(r, t
= Jruolr, t) + ccurl M(r, £) + —(éT-—) (3.21b)
These equations become )
divE = 4mp(r, t) = 47| p.(r, 1) — divP(r, 1)]
div(E + 47P) = 47p.(r, t)
B 1 dE 4« (
o o e !
cur T - Jir, )
dor dP
= — | Jiuelrs £} + ccurl M(r, ) -+ E(r, t)
¢
19 4q
curl (B — 47M) — — E(E + 47P) = — Jifr, 1)
¢ ¢
Thus, if we define two new fields D(r, ¢) and H(r, ¢} by
D(r, t).= E(r, t) + 47P(r, ¢) (3.22a)
H(r, ) = B(r, t) — 47M(r, 1) (3.22h)
the inhomogeneous Maxwell equations can be written as
divD(r, t) = 4mp,(r, t) (3.234)
1 ¢ dar
curl H(r, €) = = - De, 1) =5, 1) (3.23b)
¢ ¢
The reasoning that led to (3.5b) and (3.5d) now gives
(Dl - D2) h = 4""Tr(crl)t'rcu (3'243‘)
4o .
(H -—H,) I=—(K.XxX#}-1 (3.24h)
¢

(see Figure 3.1). In particular, if there is no free charge on the surface ol
discontinuity in Figure 3.1, the perpendicular component of D is continuous
across this surface, and if there is no sheet of free current on the surface of
discontinuity, the parallel component of H is continuous.

Since the homogeneous Maxwell equations are unaffected by the presence of
material media, the boundary conditions (3.5a) and (3.5c) on E and B continue

to apply.
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PROBLEM 3.4.1

approximate linear relations may exist between the fields:

Suppose that P(r, ¢) has a constant value P, inside a closed gy
different constant value P, outside this surface. According to (3.20a)
zero everywhere inside and outside the surface. However, this does not
the polarization has no effect, since (3.22a) and (3.24a) imply that

(B, — E,) - 7 =47 X [(0)) e + Py = P,) - 7]
Thus, the discontinuity of P across the surface can be regarded as p

polarization surface charge density (P, — P;) - &. Similarly a discontiy
across the surface results in :

free

dar
3
4o
= T([I{fruc + C(M‘l - NI]) X ﬁ] X ﬁ) s

(B, —B,) 1= [Kiee X i+ 6(M, — M,)] -1

We see that the discontinuity in M has the same effect on the B fields as
current ¢{M, — M,) X 7. Note that these equivalent polarization and
surface charges and currents are to be understood as alternatives to
(3.24a) and (3.24b). If we choose to work with D and H, the only surfz
and currents that we should use in (3.24) are the free charges and curr

In vacuum, P(r, {) = M(r, ¢t) = 0, so (3.22) implies that D(r, ¢
and H(r, t) = B(r, {). In an isotropic medium, for felds that are not'to

P=xE (3,= dielectric susceptibility)
D=¢E  (g=1 + 4mx, = dielectric constant)
M=y, H (x,, = magnetic susceptibility)
B=pH (= 1+ 47y, = permeability)
In vacuum, X, = x,=0,and e=p=1.

N turns of wire are wrapped around an iron ring in which a small ga
cut. The circum{erence of the ring is L and the width of the gap is #{
The magnetic permeability of the iron is g. Find the B field in the ga
current ¢ flows through the coil. o E
We assume that the cross section of the ring and the width of the
small enough so that the E and B fields within them are uniform and. t:
the curve of the ring. The integral form of (3.23b), applied to the dashe
in Figure 3.5, gives g

gSH(r) cdr =

g

Hfiron) X L + H{air) X W
dmr

47 NL

&

free a =

Here { is the current in the wire, so that Ni is the total current pi¢
surface spanned by the dashed contour. Since B within the gap is appre
perpendicular to the iron faces of the gap, the continuity of B, impli

B(iron) = B(air) = H{air)
= pH(iron)

all gap of
: ring of
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N turns

Thus, we have two equations for H{air) and H(iron), from which we obtain

Alnn- .
—Ni
H{air) = B(air) = £

.
M

An uncharged dielectric sphere of radius R and dielectric constant € is put into a
uniform electric field E = E,Z. Find the resultant electric field within and outside
the dielectric.

Since there is no free charge, divD = 0 everywhere. Outside the sphere,
D = E. Inside the sphere D = ¢E. In both cases, divD is proportional to div L,
and the vanishing of div D implies the vanishing of div L,

divE =0 (rz R)

and Laplace’s equation is satisfied by the potential ¢(r) both inside and outside
the sphere.

Because of the spherical boundary of the dielectric, it is convenient to
express the angular dependence of ¢ in terms of spherical harmonics"

p(r) = o(r,0,0) = X/, {r)¥(0, 0)

{,m

(3.26)

In Section 5.3.5. it is shown that if (3.26) satisfies Laplace’s equation, then the
Ji () have the form

foowlr) = (3.27)

Here a, , and b, , are numerical coeflicients chosen in order to satisly the
boundary conditions on E and D.

Since both the shape of the dielectric and the distant E field are axially
symmetric around the Z axis, the expansion in (3.26) will only require terms with
m = 0, Equivalently, we can restrict {3.26) to an expansion in Legendre poly-
nomials. We consider the regions » < R and r > R separately. Since we do not

-4 =+
ﬂl, m’ + bl, mr

A more complete discussion of the properties of spherical harmonics is given in Sections 5.3.4 and 3.3.5,
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want ¢(r) to diverge at r = 0, we omit the r~*? terms for r <

=)
o(r,8) =3 a;r'P(cos §) (r < R)
=0 '
As r — o0, we want E to approach EZ, so that ¢(r) should approa
~Egrcos 9 = — E,rP(cos #). Thus, the external form of the potentla[

&(r,0) = —E,P,(cos §) + Zbr (+DpP (cos 8) (r>°p

fe=20

The condition that D, be continuous at r = R implies that e dp
continuous there:

ey la,R"'Pcos @)
{=0
o N
= —EgP(cos8) — 3 (I + 1)b,R™U*MP (cos §)
{=0

This must be true for all §. Since the P,(cos 8) are orthogonal for diffe
the interval 0 < § < 7, (3.29) implies equality of the terms for each se;

gla RV = —(I+ 1)b,R™U*D  forl# 1
= —FE,— 20 R fori=1
Since £y = —(1/r)d¢p/ 88, it must be that d¢/ 38 is continuous at '_ "

s d d o d :
E:Da,R daP,(cos g) = —EUREPACOS g) + 121 be'””)Ié-P, c

The derivatives (d/df#t)P/{cos 8) are also orthogonal for different l
supplement (3.30a) with

a R = pRUTY, fori+1
= —E,R+ b R7?, forI=1
Equations (3.30a) and (3.30b), imply that
a,=b,=10, ifl#1

BLEM 3.4.3
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The E field obtained from the gradient of this potential is

3
E= mEUE (r<R) (3.31c)
. e—1 4 z 3z
=Enz+;-:_~—2~E0R ( = r‘;r) (r> R) (3.31d)

Note that if ¢ = 1 (electrically equivalent to no dielectric sphere present), our
solution (3.31) reduces to the constant field E = E;2 everywhere.

A spherical “electret” has radius R and uniform polarization density P (esu-
em/cm”). Calculate the potential everywhere.

Choose a coordinate system whose origin is at the center of the sphere and
whose z axis points in the direction of P. The potential for r < R is still given by
(3.28a). However, in this problem there is no external field, so the potential at
r > R is given by (3.28b), minus the —ErP/(cos #) term, The continuity of E,
gives .

by
a, = R (3.32a)
For r> B, D = E, and
g oa
D, =E,=——|3 br Y0P (cos 9)
ar| /2,
Forr<R,D=EFE+ 47P = E + 47F%,
D,=E, +4nPcosl = E, +4wPP(cos )
d
= — -5;( Y a,r'P(cos 9)) + 47PP,(cos 0)
{
The continuity of D, at r = R gives
—la, RV + 4mP8; | = (I + 1)—— (3.32h)

Rn’ +2
The simultaneous equations (3.32a and b} imply that a, = 4, = 0 unless / = 1,
and a, = (4w/3)P, b, = (4m/3)R*P. Thus, we have

T 4q
o(r) = ?Prcos 8= _.?TPZ (r<R) (3.32¢c)
4 R* 4o Eer
= '—3—P—COS = ?PRJ (r > R) (3.32d)
rd

The electric field within the sphere is constant and equal to —(4#/3)P3.
Comparison with (3. 18a) shows that the field outside the sphere is that of a dipole
-whose dipole moment is the total dipole moment of the sphere, (47/3)R*PZ.

3
T g+ QED
e—1 | “
b, = RE, ‘
e+ 2
Thus, the potential is
‘ 3
o(r,8) = —mE[,rcosB e zEﬂz (r < R)

£ —

= —FEyz + +2E0—,,cos6’ (r > R)
e—1 R?

='"'Eoz+ ZEO-’:}"’

In a conductor satisfying Ohm’s law, the current density is proportional to the
electric field,
J(r, 1)

oE(r, ) (6 = conductivity) (3.33a)

1
= —E(r, t) {p = resistivity) (3.33b)
P
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FIGURE 3.6 A segment of
uniform wire of length /,

cross-sectional area 4, con-
taining constant electric field

E and current density J

parallel to the axis of the

wire,

PROBLEM 3.5.1

(£ 2.7 A circuit de-

}_Area}l . ; gnea to measure the EMF

( internal resistance r of
atery.

E—

>y

Let us apply (3.33b) to a segment of uniform wire of constant cross section, i
which we assume there is a uniform electric field directed parallel to the axis o
the wire (cf. Figure 3.6). Let 77 be the potential difference between the ends of the
wire, so that

(3.34a)

Here i (= A7) is the total current through the wire, and is measured in esu/s in
the Gaussian system, and in C/s (= amp) in the conventional system. If we
define the resistance R of the wire by R = pl/4, then (3.34a) takes the more
familiar form '

V=R

(3.34h) PROBLEM 3.5.2
The conventional unit of resistance is the ohm (= 1 volt/1 amp). The stat-chm
equals
1 stat-volt 299.87 4.803 X 10" esu
Lesu/s  Lesu/s - 1.602 X 10-5C

v
= §.988 X 10“-;4-* =9 X 10! ohm

The application of Ohm’s law to dc circuit analysis is based on Kirchhoff’s
rules:

1. Charge is conserved, so that in a steady-state situation the sum of currents
flowing into every point of the circuit is zero.

2. The potential is a single-valued function of position in a circuit, so the sum of
potential differences around a circuit is zero,

&

A battery, or cell, in a circuit is symbolized by — -, Chemical activity iq

the battery maintains a potential difference (or EMF) & between the two
terminals. The terminal labeled by the longer line is at higher potential. In an
ideal battery, this potential difference will be maintained independent of tht_:
magnitude of the current through the battery, In real life, every battery has some
internal resistance that decreases the voltage difference across the battery termi-
nals as the current increases,

IGQ_RE 3.8 Each of the 12
esistors has a resistance of
Ohims. Corners labeled by
he same letter are at the
ama potential.

In the circuit shown in Figure 3.7, r represents the internal resistance of tht?_
battery, whose EMF is &, By changing the variable resistance R, we change thﬂ'
potential difference ¥ read by a voltmeter across the battery, and the cu.rrent ¢
read by an ammeter in series with the battery. When ¥ = 4.5 volts, i = 0.5
amps. When V= 3 volts, 1 = 1 amp. Find & and .
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If current 7 flows through 7, there is a potential drop of ir across it. The
potential difference read by the voltmeter will be V = & ~ 7. Thus, we have two
equations

45 =48— 05r .
I=&— 1.0r

which can be solved simultaneously to yield &= 6 volts, r = 3 ohms.

A current { flows through a battery connccted to diagonally opposite corners of a
cubic network of twelve rohm resistors, as shown in Figure 3.8. What is the
voltage I across the battery terminals?

The symmetry of the network implies that a current of /3 Aows along each
of the resistors w-x, and along each of the resistors »=z. The potential drop
across each of the resistors is i7/3. Furthermore, the current flowing along each
w—x resistor divides equally between the two x—p resistors connected to it. Thus,
the x—y resistors each carry a current of /6 and support a potential drop of
ir/6. The total potential drop between w and =z is, thus,

7 ] H 5
V=—r+—r+—r=—ir
3 6 3 6
and this must be the voltage across the terminals of the battery.

If the network of Figure 3.8 were put into a black box, with external
connections only made to points w and z, measurements outside the hox could
not distinguish the network from a single resistor whose resistance is 5r/6. Other
examples of electrically equivalent networks are shown in I igure 3.9.
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FIGURE 3.9 Some equivalent

networks.

PROBLEM 3.5.3 Find the current through the resistor R, in the circuit shown below.

o—AM——AM— - o AMMN—
R Rz Ry + Ha
1y
I R
Ry + R2
e
‘51
£y
& Ra + &z R
Ry + Hp
1y Ha
) + Ra
Ly A2

Replacing a component in a circuit by a simpler equivalent component is
often a uselul step in the analysis of a complicated dc network. This process can
sometimes be repeated until the entire circuit is replaced by an equivalent
resistance and battery in series. Then (3.34b) can be used to relate the total
current through the circuit to the externally applied voltage. Once we know the
total current, we can usually find the current through any portion of the cireuit,
In the following examples we demonstrate the solution of two networl problems
using Kirchhoff’s rules and the method of equivalent circuits. :

(a) Method of equivalent circuits:
The current through the battery and R is

&
R\R
Ry 4 =
R + R,
The potential drop across R, is
R.& - &R R,
&— = -
R Rle Rlﬂg + R.,Ra +-:R|R3
st 5T )
R, + R,
3
MAWW—
¥ fa ==

PROBLEM 3.5.4
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R3 I3
—A\W—o ——AM—o
- Al - o—AMWW—
m Rz - %H] + Ha 2
Mty g
3+ gri;
. . -
—

so the current through R, is
&R,
R\R, + R,Ry + R\ R,
(b} Method of Kirchhoft’s rules:
We choose as our unknowns the currents i, and i, Aowing downwards
through resistors R, and R,, respectively. Kirchhoff’s first rule (charge conserva-

tion) then determines that the current through Ry is 7, + I, as shown. Now we
apply Kirchhoff’s second rule to two closed loops:

—~— i1 + 2

i

&—(i, + i,)Ry — i,R, =0
iR, — iyRy =0

1|
L
E.,

Solving these two equations simultaneously for z, and i, gives
& R,
0 —R, &R,

R, + R, Ry RRy+RRy+RRy
R, —R,

ll=

as before. Note that when we go around a closed loop, the potential falls if we
move through a resistor in the same direction as the assumed current, and rises if
we move through the resistor in the opposite direction,

Find the current through the resistor R, in the circuit shown on the following
page.

(a) Method of equivalent cireuits.
If we put &, across this circuit, the net EMF across the equivalent resistor is
& — &, R3/(R, + Ry). Thus, the current through R, is

PR
Rt Ry, &R+ Ry) &Ry
R, + R\R, R.R,+ R,Ry + RyR,

R, +R,
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o
P

~
—_

©

9
I
|
Hy fa
A% MA-
R |
3 dnz
¢ _difiz
&1 Ry + Hp
R R
n ) + Rp R_.J__Z‘:' 'i-RR
2
= ‘éﬂa = l
Rz
R Ry R;
3 . fa + Ry + Ha
o =] [a}

If this is positive the current flows away from the positive terminal of &,.
(b} Method of Kirchhoff’s rules. )

We take our unknown currents to be 1, and 4, as shown. Kirchhoff’s secon
rule gives the two independent equations ”

£y

I

jl
ia + {3 ia
—— e

MW W
f Ra
I3 I
-

&y — 3Ry + R, =0
& + iy + )R + i,R, =0

whose solution for ¢, is .
-R, &,
i, = ""(Rl + Rz) 5’1_ . é"Q(Rl + Rz) — &Ry
- R, Ry R\R, + RoRy + R Ry

_(Rl + Rz) —R,

We could also have applied Kirchhoff’s second rule to a loop around the
periphery of the circuit,

&y = iyy = (i, + i))R — &6, =0

but this equation is not linearly independent of the loop equations we have
already used.

C_;blRCUITS WITH HARMONIC DRIVING VOLTAGE

Suppose that a resistance R, a capacitance C and an inductance L are connected
in a series across an oscillating voltage 2(1) = pros(w! + ¢y ). After transient
eflects have died down, there will be a steady-state current flowing in the circuit,
given by (1) = i, cos(w! + 6,). We wish to determine i, and £,

The current #{¢), and capacitor charge ¢(1), satisly the differential equation

di . q |
LE-_!_ R§+E=u(1) (3.35)
with {(¢) and q(t) related by
(1) = () (3.30)
We can get an equation for i(¢) alone by differentiating {3.35),
d*i di 1 A d
LF + RE + b Z[vocos(mt + )] (3.37)

The phase difference between /() and #(/) makes it more convenient to solve a
differential equation with a complex driving voltage

~

Ldgf(t) Rrr';+ i (3.30
——— 4 R+ — = —B(! .
= TRt 2)

in which #(¢) is defined by
5(1) = gttt (3.38b)

The constants L, R, C, v, w, ¢, in (3.38} are all real. Therelore, if (1) satisfies
(3.38), its real part will satisfy (3.37). It is easy to verify by direct substitution
that the steady-state solution of (3.38) can be written as

- 1
i(t) = EE(!) ' (3.39a)
with
Z=R+iX (3.39b)
i
11’ = M — ) N 9
ol ~ — (3.39¢)

The quantity Z is called the impedance of the L-f-C combination, and its
imaginary part X is called the reactance. Equation (3.39a) is reminiscent of
Ohm’s law, with Z the ac generalization of the dc resistance R. In particular, the
rules for determining the equivalent impedance of series and parallel combina-
tions,

Z=2Z + 2, (1 and 2 in series) (3.40a)

VAVA

7o —
Z, + Z,

{1 and 2 in parallel) (3.40h)
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have the same structure as the rules for equivalent dc resistances. The rules (3;
are easily derived by applying (3.39a) to the circuit combinations,

The physical current :(¢) is now obtained as the real part of (3.39a),

g g Hwi+in) ’

R+iX

i(¢t) = Rei(t) = Re :

— Rt.’ ___v(]_,,____er'(ml-l-r,’h“nrcmn(‘l'/ﬁ))

YR? + X2
)]

Wcos(wt + @5 — arctan(X/R)) .(.3.-‘

Thus, the amplitude and phase of the current are
%

I, = 3.4
VR y x? (34

X
wi+ By = wt+ ¢, — arctanE (3.42

The current /ogs the voltage by a time interval (1/w) - arctan{X/R).
example, at { = 0 the phase of the voltage is ¢, but the current does not achi
this phase until a time ¢ given by '

X
wt + ¢, — arctanE = gy

1 X
{ = —arctan—
w R

This current lag will be positive if X' > 0, which will happen when oL > 1/u
(see 3.39¢). If wl < 1/wC, so that X < 0, the lag is negative, and the curren
said to lead the voltage.

PROBLEM 3.6.7 Find the amplitude and phase of the current through the resistance R in th
circuit shown below on the left.
As we did for the dc problems, we begin by replacing the given circuit b
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This current is distributed between the impedances Z, and Z; in inverse
proportion to Z, and Z,. Thus, the current through the resistor Z, is the real
part of

! =
Zy+ Zy  Z\Zy+ ZyZ, + Z,Z,
1
— feaf lwc
=% oL R i
— e — 4w
iwlC 1wl
v, ot o pilwt—arctan(wl/R(1- W LOY

R(1 — W’LCY + iwl \/Rz(l ~ GLCY + &L

Hence, the current through R is
o, ' wl

= cos| wi — arctan ————y—

\/Rz(l ~ WPLC)* + WL? R(1 — &*LC)

it

An interesting feature of this circuit is that if w* = 1/LC the current through R
becomes

. Uy %
i(¢) L—Ecos(mt - n/2) = —Ln wt

independent of the value of R.

7 POWER CONSUMPTION IN AC CIRCUITS

simpler equivalent circuit:

:
2323 322;1 ;
¢ R Z,+ 2, Z Zat by

Thus, the total effective impedance seen by the voltage source is
pAYAS ZZy+ 2,2, + Z,Z,
Z, + 2, Z, + Z,
The total current through the source is the real part of
) = o(t) —~ 5(e) Z,+ Z,
Z VAV S AVAR AV A

LH

c

If the voltage drop across the series L-G-R combination is v(¢) while the current
is i(¢), the rate at which energy is dissipated is

Pty =w(t) xi(t)

2 r

I)O + 11

= mr——— 0S| wi b X cos| wt + — arctan--

m ( ¢D) (i)l] .R
Uﬂ2 IY

= ———|cos*{wi¢ + ¢, Jcos| arctan —
e | o) R
X

+cos(wt + ¢, )sin(wt + ¢, )sin arctanﬁ
If we average P(!) over an integral number of hall-cycles, we get

(3.43a)

2 r

— L'O .r‘
P= ——cos(arctanm)

2YR? + X? R

It is convenient to express this in terms of the root-mean-square values of (¢}
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and i(t): ) PROBLEM 3.8.1
p ; _ y
Uims = V[UUCOS(C:J! + 4;0)]2 = UO\/[COS(&U + (‘bﬂ)]" = 7_;_
. Xy iy Y
e = 1gCos| wi+ ¢y — arctan—) ——— e
: £ 2 y2(R*+ X7)

- . X
P=y X, X cos(arctanE)

R .
W .
The factor R/ VR* + X in (3.43hb) is called the power factor, If X = 0, so that
-the impedance is purely resistive, the power factor is equal to 1. However, if
R =0and X # 0, the power [actor vanishes. In this case no work is done on the
average as the current passes through the circuit. Energy is shuttled back and
forth between the voltage source, the electric field in the capacitor, and the
magnetic field in the inductor, but on the average there is no net energy drain
from the energy source.” But if the impedance of the circuit has a resistive

component, some of the energy removed from the voltage source is converted into
Joule heat, and this process is irreversible,

z rms

PROBLEM 3.8.2

3.8 PERMANENT MAGNETS

In steady-state conditions we can set up the following correspondence between
Jiee = 0 magnetism and p; . = 0 electrostatics; '

curlH=0 e curlE =0,  cf. (3.23b) and (3.1c)
divB = 0 « divD =0, cf. {(3.1a) and (3.23c)
B=H+47#M & D =L + 47P, cf. (3.22b) and (3.22a)

B=pH
p=1+4dmx,

URE 3.10 (a) The E field
joclated with a uuniiormly
ized dieleclric bar. The
‘and — charges on the
nds of the rod represent
18 effective polarization

harges associated with the
continuity In P, . (b) The
i fleld associated with a uni-

isotropic { D =¢E

e=1+ 47:‘}(,(:[' (3.2d) and (3.25c¢)

materials

‘Thus, we can make the following correspondence between electric and magnetic
quantities: '

Heo B (3.44a) ormly magnetized bar (cf.
BeD (3_441,) _._5_4_43,. 3{4gc).l(tt1:) Thei? fiel‘d
3ssociated with a uniformiy

Mo P (3 »440) magnetized bar. Note that
peE (3.44d) B = H outside the bar (where
o = 1), but the B field lines
Xm < X (3.44¢) re everywhere continuous

and use the methods and intuition we developed for electrostatics to solve ince divB = 0 everywhere.

problems in magnetostatics. In particular, from curl H = 0 we can conclude that

H can be obtained as the gradient of a single-valued scalar potential, H = — v @,
ete.

E— . . s
This assumes that the frequency is low enough so that very little energy is radiated away, This requires that

w < ¢/l wiere ¢ is the speed of light and ! is a length of the order of magnitude of the linear dimensions of the
circuit,
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A sphere of radius R, permeability g, is put into a uniform magnetic field
B = B,2. Find the resultant magnetic field, within and outside the sphere.

Using the correspondence (3.44), we see that this problem is analogous to
the problem of a dielectric sphere placed in a uniform electric field. Thus, we can
transcribe (3.31) to obtain

3
B= B2 <R
p+ 2 e (r )
p—1 JE 0 3z
=Bu?:—1v~—-1’_')‘uRJ — — (r>R)
p+1 r r

Give the relative directions and magnitudes of the B and H fields for:

(a) A long rectangular bar magnet with uniform permanent magnetization
M parallel to its long direction.

According to (3.44c), this is analogous to a long bar with uniform perma-
nent electric polarization P. We know that the electrostatic effect of the polariza-
tion is reproduced by a surface charge density P - dd. This is zero everywhere
except at the ends of the bar, where it has the values +P. Figure 3.10a shows a
sketch of the T field associated with this effective charge distribution, and (3.44a)
allows us to use this same sketch to describe the H field of the bar magnet. Note
that the convention for labeling the poles of a bar magnet is such that the H field
points away from the pole labeled “N ”, and towards the pole labeled “.5”. To
obtain the B feld, we recall that outside the magnet M = 0, and so B = H.
Moreover, divB = 0 implies that the B field lines are everywhere continuous.
These considerations lead us to the sketch of the B field given in Figure 3.10¢.

Lo

|
=

(
7

{a}



FIGURE 3.10 (continued)
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(b) A continuous iron ring, uniformly and tangentially magnetized.

Since P - di is everywhere zero in the electrostatic analog, there is no
effective polarization charge, and the E field is zero everywhere. Thus, the H
field of the ring is everywhere zero. Outside the ring, B = H = 0, and within the
iron, B=H + 47M = 47 M.

g MAGNETIC FIELDS PRODUCED BY
AEE, TIME-INDEPENDENT CURRENTS

3.9.1 The Biot-Savart Law

The steady-state version of Maxwell’s equation (3.1d) is

47
curl B(r) = —J(r) (3.45a)
¢
If this equation is coupled with (3.1a) it can be shown that

By - LD

¢ rlii

dv’ (3.45b)
F—r
A simpler form of (3.45b) can be used when the current density is confined to a
wire of small cross-sectional area. If we assumne that J is tangent to the wire, and
that 7, the current,.is the total flux of J through the wire, then (3.45b) can be
approximated by

(b}

y d ! X — !
B(r) = igSmm—r r h ) (3.45¢)
[

The integration contour is along the closed path of the wire. Note that (3.45c)
should only be used for points that are not on the wire. B(r) of (3.45¢) is infinite if
r is on the wire, a consequence of our use of an infinite current density to obtain
(3.45¢) from (3.45b). If we want the B field within a real current-carrying wire,
we must use (3.45b) and take account of the finite dimensions of the wire and the
actual distribution of current density across it.

PROBLEM 3.9.1 Tind the B field produced by current i flowing through a circular wire loop of
radius R, at points on a line perpendicular to the plane of the loop passing
through its center.

Put the loop in the xy plane, centered at the origin (see diagram on the next
page). We need B at the field point r = #2. Points on the loop are labeled by
r’' = R(%cosf + psinf), so an infinitesimal element of the loop is given by
dr’ = R(—X%sin 8 + jcos 8)df. Then

r—r =r2— R(%cos@ + Hsinf)
|r— 2 =r2+ R?
and (3.45¢) can be written
B2 = e BR(—SEsinB +5cosf) X [12 — R(Zcosf + Fsind)]

12) =~ : —
€ pmo (r*+ Rz)j/2

iR “
——— f dB[J?r cos f + r sin @ + RE(sin’f + cos"!f?)]
2+ R L

27iR? .
- ——————-—-"-'--—r—z

e(r? + R2)*/*

fel
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FIGURE 3.11 A circular loop
of wire of radius A in the
~ ¥ plane, with its center at
the origin, Current i flows
counterclockwise,

Now suppose that we want B at points in the plane of the loop., We still usg
(3.45¢) but set

r = %, r—r' =(r— Rcosf)i — Rsindp
|r =12 = (r — Rcos0)® +(Rsind)*
=r?+ R? — 2rRcos @
iR 7 dg(-—i"sinﬂ + $cosf) X [(r — Rcos 8)3 — Rsin 03]
(r? + R? — 2rcos 6)""*

=
——

s
S

fi

iR 7d9£ sin*f — cos §(r — Rcos @) |
0 (2 + R% — 2:R cos §)*

iR R—rcosf
=——2de s
(r* + R? — 2rR cos f1)

This integral can be expressed in terms of complete elliptic integrals.

3.9.2. Calculating B Fields
Using Ampere’s Law

Now we turn to the use of Ampere’s law to calculate B(r) when J(r) has a high
degree of symmetry. First of all, we note that Lemma 3 on page 111 guarantees
that J(r) determines B(r) uniquely, in problems in which B(r) vanishes at infinity,
Thus, if J(r) exhibits a geometrical symmetry, B(r) also exhibits that symmetry.
For example, suppose that J(r) is unchanged by any rotation about the 2 axis, so
that it has axial symmetry. Now consider two different Cartesian coordinate
systems sharing a common origin and 2 axis, with an angle # between their
%-axes. Since J is axially symmetric, observers working with these two dlfferent
coordinate systems would use exactly the same expressions for J(r). Thus, their
versions of (3.1a) and (3.45a) would be identical, and Lemma 3 then implies that
they would calculate the same expressions for B(r). This proves that the B field is
unchanged by a rotation through § about the £ axis, and so it also exhibits axial
symmetry. A similar argument can be made if J(r) is invariant with respect to
translations in somne direction. :

As an example of this method, consider the B field of a very long stralght.
wire with a circular cross-section, across which J is distributed with axial
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symmetry. If we are not too close to the ends of the straight section, we make
little error if we treat the wire as being infinitely long, with a current distribution
which is invariant with respect to translations along its length. Suppose that the
wire is centered on the Z axis. Then the fact that J is invariant with respect to
translations in the Z direction tells us that

JB

Fr 0, (all components of B) (3.47)

Furthermore, J points in the 2 direction, so that J = J, = 0. Then Ampere’s law
(3.45a) says that

ey A 3.48
dy 0z dy ¢ Js (3.48a)
9B, A8, aB, 4w .
i M M (3.48b)

Thus, all three Cartesian derivatives ol B. vanish. B:' is constant everywhere, and
our assumption that B, vanishes at inlinity then implies that B, vanishes
everywhere.

If we apply (3.4a) to a circular cylinder whose axis is the 2 axis, and use the
axial symmetry of B, and our result that B, = 0, we can prove that B can have
no component pointing radially away from the £ axis. Thus, B lies in a plane
perpendicular to the # axis, and is tangent to a circle in this plane centered on
the Z axis. Its magnitude is constant around the circle. Finally we can apply
Ampere's law to this circle to get

5613 ~dl = 27rB(r) = 4—W-i(r)

B(r) = ’?EL" (3.49)

r
Here i(r) is the current flowing along the wire within a circle of radius r. B
points in the same direction as the fingers of a right hand grasping the wire with
its thumb pointing in the direction of the current flow. Of course, (3.49) could
also be obtained by using the Biot-Savart law.

Another example of the use of this kind of reasoning is provided by the B
feld produced by the current distribution shown in Figure 3.12 The current is
confined to a sheet wrapped around an infinitely long cylinder (not necessarily of
circular cross-section) parallel to the 2 axis. This current density is perpendicular
to # and its magnitude is independent of z. It could be approximated by the
current carried in a long, uniform, tightly wound solenoid.

From our hypothesis that ¢]J/dz = 0, we inler that dB/dz = 0. Since
divB = 0 and dB_/dz = 0, we have

95, + 95, = 0. (3.50a)
dx dy
The vanishing of /. means that
dqr E?B], a8,
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FIGURE 3.12 A current sheet
around an infinitely lang cyl-
inder whose axis is the z
axis.

Now suppose that the charge distribution is confined to a region of space,
centered on r, so small that E and B are nearly constant throughout this region.

3.10 THE LORENTZ FORCE

|

AN
=

I*;quations (3.50a) a'ncI (3.50Db) can be regarded as telling us that the two-dim
snonal' (x al:ld b)) dn:ergencc and curl of 2B, + 7B, both vanish everywhere
two-dimensional version of the Lemma on page 110 then implies that B, = B

everywhere. It only remains to find the z-independent value of B.. Ampere’s |
for /, and ], gives p eol 5. Ampere’s lay

SRR S AN A —_
¢ J: dy dz dy
4m 9B, 9B, a8
e gz 9x  ax

Bu? J.« and J, vanish, except on the surface of the current sheet. This tells us tha
B is constant everywhere outside the sheet and everywhere inside the sheet. Sine
B_ vanishes at infinitely large distances from the £ axis, its constant value outsid
the current sheet is zero. Its constant value inside the sheet can be gotten from

(3.5d), or by applying the integral form of Ampere’s law to the rectangula
contour shown in Figure 3.12:

. 4 4
SﬁB - dl = [ B (inside) — B_{outside)] ! = —W-Kl
[

o 4o -
B (inside) = TK (3.51

with X the. current per unit length in the sheet. Thus, we have found that theB
field of an infinitely long, uniform solenoid is totally confined within the solenoid

is parallel to the axis of the solenoid, and has the constant vlaue (3.51) within th
solenoid.

The force per unit volume on charged matter, due to externally generated F and:
B fields, is

F(r, t) = p(r, ¢ )E(r, t) + -;l:-J(r, 1) x B(r, 1). (3.52;1.

Let the total charge be g, and its velocity be v. If we use (3.2) and integrate
(3.52a) over the charge distribution, we get

an g

Fo= q[E(r, 1)+ X B, z)] (3.52b)

- Suppose the patricle spe::d-’ is small compared to ¢. Then we can use (3.52b)
in Newton's second law of motion:
d v
-;t-(mv) = q[E(r, t) +— % Br, t)] (3.53a)
¢
In this equation, it is understood that r locates the particie at time 1. The rate of
change of the particle kinetic energy is obtained by taking the scalar product of
(3.53a) with v [cf. (1.17a)]:

i1
}?(5""’2)-: ov - B(r, ) (3.53b)

If » is comparable to ¢, we must use the relativistic generalization of Newton's
second law, This replaces (3.53) by

—%(ymv) = q[E(r, t) -+ ; X B(r, t) (3.54a)
d
E(Ymﬂz) = g—;—[(y — 1)me?] = gqv - E(r, t) (3.54b)

In comparing (3.53) and (3.54), it should be recalled that ymv and (y — 1)me®
are the relativistic expressions for particle momentum and kinetic cnergy [sce
(2.15b) and (2.16)]. :

Let us consider the important special case in which E = 0 everywhere. Then
(3.45b) implies that y is constant in time, which means that the particle moves at
constant speed. Constant y means that (3.54a) can be written in the form

dv q

E=Y_m;v;«;]_?,:.‘,.,ﬂ)(V (3.55a)
qB

o, = -2 (3.35b)
Yme

If, in addition, B is independent of position and time, (3.55) describes a motion in
which v rotates around —B, with angular speed ;. Superposed on this circular
motion about B is a uniform drift in the B direction (since B - dv/di = 0). The
orbit of the particle is thus a helix of constant pitch and radius. If this radius is
R, the momentum component perpendicular to B is

b= ymu, = ymwgR
gBR

A

(3.55¢)

Another important application of (3.52a) is to a current carried by a wire of
small cross-sectional area. The magnetic force is then

i
Fipg = Pl X B (3.56)
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Here i is the magnitude of the current, and the line inte

s the me gral goes argu
closed wire circuit., oun

Here |a} is the area of the loop and 4 is perpendicular to the plane of the loop, in
a direction related by the right-hand rule to the direction in which current
circulates around the loop. The energy of interaction between a magnetic dipole

A square loop with sides of length 4 carrying current /. , Is attracted to and an external B field can be expressed as

§tra1ght wire carrying current /. The long wire is in the plane of the square
15 parallel to two of its sides. The center of the square loop is a dire
D(D > b/2) from the wire. Caleulate the force of attraction and sketslii
relative directions of the currents in the loop and the long wire. :

U= —m- B(r) (3.57c)

(cf. 3.19a). The [orces and torques that a B field exerts on a magnetic dipole are
completely analogous to those that an external E field exerts on an electric dipole

(see p. 112).
5
’ " PROBLEM 8.10.2  Suppose that the charge density p,(r') and mass density p,(r’) of an object are
2 such that their ratio is constant:
! ’

3 ﬁ 41 ° pdr) nstant fpf(r ) ‘[”_ i
— 5 = COo £ = T,

! " ’

pm(r ) fpm(r') dn’ M

4

Show that the magnetic moment m and angular momentum 1 are related by
m = ¢1/2 Me.

Let v(7') be the velocity of the material at the point labeled by r’. Then
Jir’) = p{r'}v(r’), and (3.57a) yields

—q—-—[)+£’.

‘ According to (3.49), the B field produced by I, has magnitude 27, /¢cr ﬁt
distance 7 from the wire. B is perpendicular to the plane of the paper, pointin

out. The force it exerts on segment 1is 7, /¢ - b - 21,/¢(D — £/2) and is directe

1
m Z[r’ X p(r')v(r’) dv’

toward the long wire, The force that the B field of 7, exerts o ' 3 is pi ’
o n segment 3 is give = "X ovir! ') dv'
by Ii/c-b-21,/¢(D + b/2) and is directed away from the long wire. Ti 2Me fr i
forces exerted by the B field of I, on segments 2 and 4 cancel. Thus, the n £
attractive force between the long wire and the square loop i ’ "’
p is = "X v(r') dM = 1 3.57d
7l fr v{r') di e ( )
21[:’05 1 - 1 |- 21,1, b° The [actor ¢/2 M is called the gyromagnetic ratio of Lllc‘chargc distribution,
" e
D—— D+— 2 P2 —
5 + 9 | D y

‘The magnetic dipole moment of a current distribution is defined by POTENTIALS IN TIME-DEPENDENT SITUATIONS

"‘i_

It is often convenient to divide the task of solving Maxwell’s equations into two

1
m= - ' X J(v') do’ steps:

[

[cf. (3.18d)]. If current / is confined to a wire loop, this becomes 1), Find the most general E and B fields that satisly the homogeneous equations

(3.1a) and (3.1c).

;
m = —561-’ X dr’ 2. Pick out-the particular E and B fields that satisfy the inhomogeneous
2¢ equations (3.1b) and (3.1d), and the boundary conditions.

If the loop lies in a plane, this can be written as
pIanG The first task is accomplished by expressing the EE and B fields in terms of scalar

and vector potentials.
Any vector field B whose divergence is zero can be written as the curl of
another ficld A, For example, if B(r, 1) satisfies (3.1a) and (x,, 3,,2,) locates any
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fixed point, then the vector field A(r, ¢) defined by

x

1 ! '
AxEE f[B)'(x:ysz’:t)+§BJ'('r’J'U’z’,t)sz,

.

“0

¥
1
- fl:B:(x: }", 2, t) + —Q'B;(.\C, .J", Zps t):ldj’,
Jh

X

1 i
‘A)' g f B:(-\", e z:‘)—i_E‘B:(x’!.}’! zn’t)]dt’

o

’ 1
- fl:B.\-(x! .JJ) z’:t) +E'Bx(x0:)’: z’,t)]dz’

¥

1
fl:Bx(:r, ¥z, t)+ EBA,(:cO, ¥, 2, I)de’

Ju

[

C.Olv-d

A,

’ 1
- f{B)'('\’J! Js Z,ﬂ) +EBJ.(I', J’O,Z,l)]ti\"

automatically satisfies

B(r, t) = curl A{r, t)

This is easily verified by calculating the curl of A, and making use of (3.1#} ;
(3.58a) is substituted into (3.1c), we get

1 dA(r,!
curl |E(r, ¢) +————(--—l =0
e dt
This implies that the quantity in square brackets is the gradient of a scala
potential, Thus, we write :

1 dA(r, ¢
B, 1) = ~va(e ) o)

The E and B fields obtained from ¢ and A by (3.58) automatically satisfy th
homogeneous Maxwell equations, If they are substituted into the inhomogeneou
Maxwell equations, the result is :

divE — i [ 1 aA}
ivE=div|-v¢$ — — —
¢ ¢ dt
= : L9 divA
Vg =2 ivA = 4wp
1 dE 13 14
curl B ~ = —— = curl{curlA) — — —| - '——-—A
¢ ot ¢ dt ¢ i
18 1 9] 4w
= -——-V"!A—l-—q——-— 1 v — e | o= e
ol +v[d1vA* - az] ~J

FPROBLEM 3.11.1
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But (3.58a) and (3.58b) do not determine A and ¢ uniquely. If A and ¢ are
replaced in (3.58) by

Afr,t) = Alr, t) + vx(r, t) (3.60a)
&'(r, ) = o(r, t) —%ip%?i)—, (3.60b)

then the E and B fields calculated there will be the same. The replacements
(3.60) are said to define a gauge transformation, with x(r,t) the gange function. We
can always choose this function in such a way that the transformed potentials
satisfy

id
divA+——q—)=O (3.61)
¢ ot

This is called the Lorentz condition. If A and ¢ satisfy this condition, (3.39a and b)
take on the simple forms

) 1.0% )
VP~ 'C"Q" -31—2 = —4dap (3.6221)
N 1 A dor (3.62b)
VAT T ¢ J l

A convenient set of particular solutions are the refarded potentials

Ry
ple'yt — —— :
¢(r,t)=f Ir—r’ic dv’ (3.63a)
J( /L |r—r’|)
1 N T
Alr, 1) = 'Ef T r,;’ dv’ (3.63b)

Note that an event (r’,t’) in the source affects the fields at (r,!) only if
t' =t~ |r — r’|/c. The retardation Jr — r’|/¢ is the time it takes for an electro-
magnetic signal to propagate from the source point r’ to the field point r.

If the expression {3.63b) for A is used in (3.58a), the result is the Biot-Savart
law (3.45b).

Find the magnetic field associated with the vector potential defined by
b
Alr,t) = Eﬁ X r (b, 7t constant)

The most straightforward procedure is to write out the components of A,
b
A= 2,z = n.y)

A b(
=g n.x n.z)

¥

b
A= E(n,y - n,x)

M
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and then calculate the curl, to
dd. dAd, b b d dp 1 94 q d4 dA
J n A [
e =—7———F—==—n_+ —n_= bn_, ctc. - =gl—-—=——-— + — _— = 3.66b
dy dz 2 2 dt (m2,) = dr, ¢ di € Zﬂ"vﬂ ar, drg ( )
- The conclusion is that B = b7, a uniform field in the 7 direction, of Strehglh If @ = x, the B-sum becomes
PROBLEM 3.11.2 Find the charge and current distributions that would lead to dd, dA, N dd, ad, dd. a4,
: |- N - o ——
bt "\, o, N i o\ dr o
Alr, t) = =,
r = (v X curl A), (3.66c)
¢(r, 1) =0 and corresponding equations can be written for @ = p, z. Finally, if (3.58a and b)
First we calculate the E and B fields; are used to bring in the I and B ficlds, we verify that (3.66) is equivalent to the
1 A bor nonrelativistic equation of motion (3.53a).
S P TR
This is the E field of a point charge — &#/¢ at the origin, The B field is NZ'S LAW .

The integral form (3.4c) of Faraday’s law implies a connection between the sign
of the rate of change of magnetic flux and the sign of the induced EMF. Lenz’s
law provides a convenient way to remember this connection:

1
B=cwlA=—btcurly|—| =0
r

Maxwell’s equation (3.1d} then implies that J = 0.

1f current flowed in the direction of the EMF induced by a changing magnetic Nux,

In quantum mechanics, the study of the motion of a charged paritic r k _
then the B field produced by this current would eppose the change in magnetic flux.

electromagnetic fields requires the construction of the classical Hamiltonia

the system. We nqw show that . PHOBLEM 3.12.1  Determine the direction of the current induced in resistor abé when:
1 : 2 : .
H(I, J':z:f} :pv!p-at) = o PHEA(’.‘: J’,Z,f) +q¢(x! j’,Z,t (1) The switch § is OPEHCCI.
sREreE 2m ¢ x v
can serve as the Hamiltonian of a nonrelativistic particle of charge g and mas ; \v \r \v \f
m, moving in externally generated fields specified by A and ¢. The generali

coordinates are the Cartesian coordinates r,(= x, 3, z) of the particle. :
: If we use (3.64) as the Hamiltonian, the first set (1.49a) of Hamil

m% s/ a b

equations are A
aH 1 q ' !
= _.( by — —A“) =i =0, (3.6 When § is in the closed position, the direction of the current flow in X is as
0py M ¢ indicated by the arrows. This leads to a B field that points to the right through Y.
b= mu, + g A (3.6 When § opens, thi.s magm‘:tic': field coliapses. A current flow from a to b wou}cl
o T produce a B field in V" pointing to the right, which thus opposes the collapse in
The second set (1.48b) are 4 the B flux through Y.

(b} With § in the closed position, coil ¥ is brought nearer to coil X

( _ 1 ! ) This move increases the flux to the right through ¥. Induced current flowing
oH Pp cf‘" 2 q y dep from & to a would produce a B field in ¥ pointing to the left, which would
"éz = % m 'a_r;( Ty ﬂ) * QE,: oppose this increase in B flux through Y.
: (c) With § in the closed position, and X and ¥ fixed, R is decreased.
_ d o d (ms,) q ¥ _5'_{1_3 + a4, (3,668 : The effect is the same as in {b) above.
B dtj)“ T T ™ T P A dr at : '

PROBLEM 3.12.2 What are the directions of the force and torque on coil ¥ when the current 7 in
the solenocid X is increased? (see next page)

The B field in ¥ due to X points (o the left. When i is increased, this B feld
increases. To oppose the change in flux, current will be induced in ¥ in the

Note that when we calculate the total time derivative of A (r, ¢), we must t
account of the fact that r locates the particle, so that the motion of the part
contributes to the time dependence of A. Rearranging the terms in (3.66a) }
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direction indicated. This will produce a magneti '

. gnetic moment m. The torque
on Y.by.the' B field of X will tend to align m with B; thus, it wiclil h::g
direction mleated bc.low by 7. Since m points opposite to the direction of B
force on ¥ will push it into the region of weaker B field, that is, to the l'igl'it’,

PROBLEM 3.13.1

Equations (3.1¢) and (3.1d) can be manipulated to yield

¢ a 1 '
“{L}"EXB""‘:E VB-;(E-E—l—B-B)du%-_I/:E-Jdu (3.6

The last intepral is the rate at which the electromagnetic fields do work on
charge distribution. Thus, if we make the associations :

S

¢
EE XB (energy flux density)

(E-E+B-B) (energy density) PROBLEM 3.13.2

T
then (3.67) can be interpreted as saying that the rate at which electromagnet
energy flows into a closed surface § equals the rate at which the eIectromagneﬁc
energy stored within § increases, plus the rate at which energy is transferred from:
the electromagnetic field to the matter within S. Similar arguments show that

1
P=—EXB
e

is the density of momentum in the electromagnetic field, and

11 .
Ty = E[—aﬂp(ﬂ + B?) — E,E, — B,,B,,J (3.69b)

2
is the B-component of the flux of the wa-component of this momentum. This
means that 2,7, 4ds; is the rate at which the a-component of momentum flows
across the area element ds, in the direction -of ds. Equivalently, it is the
a-component of the force exerted across this area element by the electromagnetic’
field. Equation (3.69b) defines the Maxwell stress tensor. It provides a convenient
and reliable way of calculating forces in electromagnetic field problems.

FIGURE 3.13 To calculate the
orce on the capacitor plate,
we calculate the rate at

Which it receives mamentum

from the electromagnetic
fiel.

The plates of a larg.e.parallel plate capacitor are separated by a distance 4. The
surface charge densities are +g. What is the force per unit area on cach plate?.

" of the momentum component pointing away from that face, is B%/8w. 1f the
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According to Gauss’ law, the E field near the plate shown is given by
E = 470%. Since B = 0, the stress tensor is given by

-3E* 0 0
1
[T} =— 1E* 0 (3.70a)
dar B
0 0 E°
-1 0 0
=27 0 1 0 (3.70b)
0 0 1
The flux of the x component of momentum to the right is thus
o momentum
—2m0”

(unit time)(unit area)

This means that the x component of momentum flows across the dashed line in
Figure 3.13, towards the metal plate, at the rate _27:'02 per unit area, which
means that the force per unit area in the x direction exerted on the plate is 2ma”,
Note that if we tried to calculate this force by multiplying E and ¢ we would get
double the correct answer. This is because the E field at the plate is due, in part,
to the charge on the plate, and a charge does not exert a force on itself. Thus, we
must be careful, when we use the Lorentz force, to avoid this kind of sell-interac-
tion. However, the stress tensor using the actual fields gives us the true momen-
tum flux and the true forces.

The lower diagonal elements in (3.67b) imply that there is momentum flux
across the upper and lower parts of the dashed contour in Figure 3.13, and in the
+ 2 directions. However, these fluxes cancel each other, and lead to no net forces
on the plate.

‘What is the pressure on the faces of the gap of the pole pieces in Figure 3.57
The argument that led to (3.70a) shows that the flux toward each pole face,

current in the coil is Z, then the pressure on each face is thus
2

Ni

cl—-+ W
It .

This force tends to pull the faces together.

BRE;

i
| |
HY
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PROBLEM 3.13.3 A parallel plate capacitor, with circular plates of radius a, separation D is

slowly charged. Calculate the rate of change of the energy stored hetwec
plates, and the rate at which energy flows into this region from the outside

Suppose that E points upward and is increasing. Then a B field is ind
between the plates given by

If we integrate this around a circle of radius r, concentric with the plates, we:

PROBLEM 3.13.4

NDUCTANCE

inductance 149

The rate at which energy enters this region is

s d EaE 2maD = "DEBE (3.72b
a—B—" a T al. . )

in agreement with (3.72a).

Twa capacitors (€, and C,) have charges Q, and Q,, respectively. They are
then connected, plus side to plus side and minus side to minus side. What is the
change in stored electromagnetic energy?

Changing the charge on a capacitor by 40 produces an energy change of

VdQ_z%dQ= d -2%

Thus, the energy stored in a capacitor can be taken to be ¢°/2C. Initially we
had total energy

%, %
2c, " 2C,

After connection, the system is essentially a single capacitor, with capacitance
€, + G, and charge @, + @Q,. Thus, the energy change is

Qi+ ) (@ &) Q6-eL6)
2(C, + G,) 2C, 2C, 20,Co(C, + G} — -

The equal sign applies if Q,/C, = @,/C,, in which case the plates initially had
equal potential differences, and connecting them produces no change.

fcurlB-da=95B-a’l=iifE-da

ar? JE
2B = — —
¢ ot
r di
B(r)=——, pointing clockwise (37
2¢ Ot :

We have assumed here that I is spatially uniform, and have used the circ
symmetry of the problem to infer the tangential direction of 5. :
Form (3.71) we can infer that the energy stored in the B field will be s

itself in time a/c. We suppose this to be so. Then
1
U= dy = — E*wa’D
.I/: udy = o

d a*Dh OdE '
e [J = 5 3,724
dl v 4 £ at (

The energy flux at the edge of the cylindrical region is

CEB cEaBE aEBE (pointing a5)
4 drm 2 9 8p gr o EIWANE

 Suppose that we have a set of circuits carrying steady currents iy oy Bayee

Each current gives rise to a magnetic field B, B,,B,,... . The total magnetic
field is

B=B +B,+ B, -
so the total energy stored in the magnetic field is
1 1
U, = undv=-é;fB-Bdu

t
—;f(B,+B2+B3+---)-(B, +B,+ B+ ) (3.73)

The field B; due to current 7; in coil 7 is proportional to i; Thus, (3.73) is a
homogeneous quadratic form 1 m the ¢;, and can be written

1
Up=> ZMJA iy (My=a) (3.74)
Ak
The coeflicients M), defined by (3.74) depend on the geometrical configurations
of the circuits, but are independent of the magnitudeq of the currents.
The only way that U, of (3.73) can be zero is if B vanishes everywhere, This
implies that B, =B,=B, --- =0, and ¢, =1i,=14{, -+ =0. Since the

2
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PROBLEM 3.14.1

quadratic form (3.74) can vanish only if all the t; vanish, the matrix
positive definite. One consequence of this is that its detcrrnmant 18 positiy

The diagonal elements of M are called self-inductances, L; =M, an
off-diagonal elements are called mutual inductances. The self~1ndugtan
depends only on the geometry of circuit j, and not on its relation tg B
circuits. If we only have circuit j, and /; changes with time (slowly enoug
the current densities remain uniform), (3.74) implies that

d - dl z Y di
dt? dr 2JIJ iy
As the B, field changes an E field is induced, which does work on the mgyj;
charges in circuit j at the rate

_I[E-Jdu=z'j%5Eodl
= 1,8 (3

(cf. 3.67, 3.52, 3.52, and 3.45). This equation is true only if &1 points
direction of the current i;. The quantity &; defined in (3.75a) is the “E
induced in circuit ;.” Smce positive work done on the moving charges 1mph
decrease in the magnetic field energy Uy, the conservation of energy requires

_ dU, di
dr;
= — ] wd
6= —Liy,

EMF

to be induced in circuit j.

Calculate, using the dipole approximation, the mutual inductance of Lhc
circular loops shown in F}gure 3.14

Suppose that current #, flows in loop 1 as shown. The magnetic moment 0
the loop is then -

ima®

£ =1m, LY
¢

[cf. {3.57¢)], and the distant B field produced by this loop is given by
m -r wa* z
B(r) = —V(—ig—-) = -t',TV(ﬁ)
Cmat( 2 327

—
i : -
¢\

Il

In the vicinity of the Z axis this is approximately equal to

2ima® 1

A 23

314 TWO c;rcular
each of radius a,

| o the x— ¥

ith their centers
by distance D.

PROBLEM 3.14.2

inductance 151

HI

so that the B flux through loop 2 due to 7, is

2il oy2
=~ )
If ¢, changes with time, the EMF induced in loop 2 is
1d® (wa®)* di,
a4 T D a
Comparison with (3.75b) yields
2(ma?)"
M, = 2p°

Calculate the self-inductance of a coil consisting of N turns unilormly and
tightly wound around a toroid of rectangular cross section, with the dimensions
shown in the diagram. The magnetic permeability of the iron is p.

Suppo:;e that current { flows in the coil. Then Ampere’s law applied o a
circle of radius 7 (R, = r > R, ), concentric with the toroid, gives

Nt
2arH(r) = —

B(r) = kHI(r) =
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3.15 LORENTZ TRANSFORMATIONS OF THE E AND B FIELDS

The B flux through a rectangular cross section of the toroid is
F3

Ry .
DuNi ;dr DuNi [ R
@=DfB(r)dr=—L —=""In| =2
Rl

2q¢ r 27 R,

R

The EMF induced in the coil when ¢ changes is

1dd uN? | R\ di
T e T T 2w T R, | dt
so the self-inductance is
pN®D [ R,
= Inf —
2me .

FROBLEM 3.15.1

In Section 2.1 we discussed an observer, Joe, whose Lorentz frame moved wit
velocity »% relative to the Lorentz frame of Moe. The coordinates x”, ¢* that ]|
ascribed to an event were related to the coordinates x, ¢ that Moe ascribed to't
same event by the Lorentz transformation (2.1). If Moe and Joe observe the sa
electric and magnetic fields in the space around them, their measurements will b
related by®

E=E, B =B,

E;—T(E),""'"B__) B;:='}'(BJ.+—E_)
v v

El=v E,'{';BJ,) B =Y(B: —;EJ,)

Here the I/, B’ fields refer to the same space-time point as do the E, B fields. .

more general way of writing (3.76) is
Ey=E  Bi=§

|
Ei=v|E, +—v X B,

¢

1
Bl=v|B, ——vXE

¢

where {|and L refer to the direction of the relative velocity of the two observe

frame, with its plates parallel to the x—p plane. Calculate the electric and
magnetic fields measured by an observer moving in the x-direction with speed 2

YFor a more complete discussion of the behavier of E and B under Lorentz transformations, see Classt
Electrodynamies, J. D. Jackson, John Wiley & Sons, 1973, chapter 12,

URE 3.15 An aluminum
\:fotates about an axis
ough its center, Near the
amagnel produces a B
d perpendicular to the
'ﬂ_ﬂ_ﬁ' of the disk, over a

Mmall area A,
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According to (3.76), a primed observer moving with speed o in the +3% direction
would measure

E! = EJ{ =0 El=yE = dgyo (3-783)
v dayon
: ¢

Equation (3.78a) can be interpreted in terms of an increased charge density as
seen by the moving observer, due to the Lorentz contraction (Section 2.3,
Problem 2.3.1), The primed observer sees two sheets of charge moving in the — 3
direction, with surface current densities Fyevi. Equation (3.78h) is consistent
with what he would get by using (3.5d) to calculate the B field that this current
produces.

PROBLEM 3.15.2 *An aluminum disk of radius R, thickness ¢, conductivity ¢ and mass density p is
mounted on a [rictionless vertical axis, It passes between the poles of a magnet
near its rim, which produces a B field perpendicular to the plane of the disk over
a small area A of the disk. Il the initial angular speed of the disk is §,, how
many revolutions will it make before it comes to rest?

An observer on the disk, moving between the pole picces of the magnet,
would feel an E field given by (3.76b) or (3.77h):

v Rw
E'ﬂ——le;M’“—“‘—Bj‘?
¢ ¢

(we assume that the angular speed, «, is small enough so that y = 1). This
results in a current density J given by

Ruo
J=0ol'= ~~——58j
c

The Lorentz force (3.52a) produced on this current density by the B field of the
magnet is

1 RuwaddB*

F=—-JXxBdd= ———%
¢ ¢

which produces a retarding torque about the axis,

RwoddB*
r= R xF= - s
2
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Since the moment of Inertia of the disk around its axis is

1 1 7R d,
I=—MR*=—(aR%p)R? = i
2 2 2
the equation of motion of the disk is
R%:AdB* aRtdp dw
T, = — — = —
‘ c” 2 dt
dw 2048
= T oy aW
dt alkpec”
whose solution, corresponding to the specified initial conditions, is
() =@ 204B*
t)= ——u at
w oeXp| o

The number of revolutions of the disk before it comes to rest is thus

S Qo 7 20AB?
N=— t)dt = — ——t | d
2 -((“’( Y= o {EXP TR

QoR%e?
 4odB®

3.16 PLANE WAVE SOLUTIONS OF MAXWELL'S EQUATIONS
IN A HOMOGENEOUS NONCONDUCTING ISOTROPIC MEDIUM

We assume that
B = pH| u, e independent
D =¢E } ofr,!?

Jiree =0

Then (3.1) and (3.23) become

divE=divB=10

1 dB

curlE = ey
ep I n? B
P T

If we apply the vector identity
curl (curlv) = v{divv) — v*v

to the curls of (3.79b} and (3.79¢), we find that E and B satisfy the d’Alem
wave equation: o

- n* °E 0 ) n° 3°B
= =V" — T T
v ¢? gt* ¢t di-

In Section 1.14e we encountered a scalar version of the d’Alembert equat_iﬂll
connection with pressure fluctuations in fluids. There we investigated plane ¥
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solutions (1.11b). Plane wave solutions of the vector equations (3.80) have the
form

E(r, t) = Egeitr=ut) (3.81a)
B(r, t) = Byeitkr—un (3.81b)
where E; and B, are constant, and k and w satisfy
nw*
2o 42 4 22 g2
4R+ =k =— (3.82)

[

If (3.81) is to satisfy (3.79a), it must be that k - E; = k - B; = 0. Thus, the waves
are transverse (polarized perpendicular to their direction of propagation). To get

the relationship between E, and B,, we compare the curls of (3.81a and b) with
(3.79b and c):

curlE = I.k hoe EOE;(I""_M) — _E;Boef(k-r—ml)

» 2 .
) n“w .
curl B = ik X Boe:(k-r.—ut) - — Eugz(k-r—ul)
£
Thus, we see that the three vectors E;, By, k are mutually orthogonal, and that
B, = (¢k/w)E, = nE,. We summarize by writing

E(r, 1) = E 8 gtk r—un (3.83a)
B(r, t) = nE g, rut) (3.83b)
with
g X & = #, kXE =8, g, X k=§

In (3.81) and all the equations that follow it, we imply that we take the real
part of any complex expression to find the physical fields. The waves (3.81) and
(3.83) are said to be linearly polarized since the directions of E and B are constant
with respect to position and time. The wave propagates in the direction of k with
a phase velocity given by

w ¢
v=—=— (3.84a)
kn
The frequency »(= w/27) and wave length A(= 27 /k) are related by
)
yA = T= (3.84b)

Note that the amplitude of B is n times that of E, so that in vacuum, {where

n = 1), E and B have equal amplitudes. The time-average energy flux associated
with (3.83) is

¢
S = —(ReE X ReB)
4

time av

¢ ne n
= —Re(E X B*} = —|E % 3.85
—Re(E X B*) = =5 (3.85)
For circularly polarized plane waves propagating in the k direction, use
& £ 18y
E(r, () = E,——— % 2 piteer—ui) (3.86a)
g, T 18
B(r, t} = nEy——m—-e 740 (3.86b)

V2
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FIGURE 3.16 A linearly
polarized electromagnetic E
wave, with propagation vec-
tor k,

- 24

=1

H?

In (3.86), the upper (lower) signs refer to left (right)-hand circularly polari;d
radiation. An observer toward whom a right-hand circularly polarized e
propagates would see the E and B vectors rotating in a clockwise direction jn
& — &, plane. This can be verified by calculating the real parts of (3.86)

L3

. ~ ~ ~ ~ ~
special case &, = %, &, = J, £ = 5.

PROBLEM 3.16.1 Give the E and B fields for a wave propagating in a downward direction
makes an angle ¢ with the Z axis, and is linearly polarized with E in |
direction, and has wave length A. The index of refraction of the medium

By inspection of Figure 3.16, we see that
= —(%cosfl + %sinf)

n n

-3

E=D
so that )
E, =k XE =2Xcosf — Zsind
27 4 2w .
k-r =-~}:-k-r= —-—A—(zcosﬂ+xsm0)
ek 2w ¢
CTE T A

E and B are given by (3.83) to be
E= Euﬁc(ﬂwi/A)(——[: cog 4 x sin ] — ot }

B = HEO(:’(" cos  — Zsin G)E(QNE/A)(—[: cos 4 x sin ) —cl)

In an important class of problems, n is constant in specified regions of 5
but changes discontinuously as we cross certain boundary surfaces. To solve
problems we set up appropriate incident, reflected and transmitted waves 01 11
form (3.83) or (3.86) on cach side of each boundary surface. Then we app_l__Y h
required continuity conditions (3.5) or (3.24) across each surface. For wa
optical frequencies (~ 10" Hz) in dielectrics, the magnetic permeability
close to unity and we can set » = Ve, B = H.

PROBLEM 3.16.2 A beam of monochromatic light of wave length A in vacuum is inciden
normally on a nonmagnetic dielectric film of refractive index n. The fi
thickness is 4. Calculate the reflection coefficient (the fraction of the incid
energy that is reflected).
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We suppose that the film lies between the planes z = 0 and z = d, and that
the wave is incident from helow. Thus, lor z < 0, we have incident and reflected
waves

E(r, t) = _{‘(Ei.gi("":_m” —_ Ercl‘(—k:—ul))

i . 250
Br, () = §{ B =m0 4 B pitkemun)

Within the film we have waves moving in both the +32 and —# directions,

"B(r, t) ;{-(Elefw:_ur) 4 Ezer'(—k:'—ml))

. 0D<z<d
B(r, l) = "j’( Elcl(k‘:“m) - Ege"(_ "‘_“”))

and above the film we have only a transmitted wave

E(r, {) = $F,/hs=wt)
B([‘, ’) = jE’el'(.‘l':—m;)

I

z>d

Note that the frequency of the wave has the same value everywhere, but the
wavelength is different within the film,

c 27
A= - k= T (vacuum)
v £ 2a
N=o=—  k="Teuk (fim)

At z=0and z =d, E, and H (= B)) arc continuous. This leads to the
following [our simultaneous equations for E,, E, E,, and £, in terms of £,

E - E =E +E,
E,+ E =n(E, + E,)
Ee®? 4 Eye= ¥ = F ¢
n(E,c"*"’— Eﬁgmm'd) = E oM
The solution for £, is

2isin(k'd) - E,
(n® 4+ 1) - 2¢sin(k'd) — 4n cos(k'd)

E =(n"-1)

r

and the ratio of reflected to incident energy flux is

S (n® = 1)%sin2(kd)
S Bt (n? 1)*sin®(k%d) + 4n’cos®(k'd)
(n* —1)*
T 2 . of 2mnd
(n* + 1) + 4n”c0t"( N )
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3.17 SIMPLE MICROSCOPIC MODELS
OF ELECTRICAL CONDUCTIVITY AND INDEX OF REFRACTION

If the wave moves through a medium of conductivity g, (3.79-(:)
replaced by
- ep dE 4w do E
¢ —_——— =] =—
W c dt c J ¢’
We can still find plane wave solutions (3.83), but now the pmpaganon
has an imaginary part. This leads to attenuation of the wave as it
through the medium. The energy removed from the wave is dissip
losses in the conductor.”

Prop
atee

Suppose that a plane electromagnetic wave propagates through a med
containing p electrons per unit volume, free to move under the influerc 2
wave. We represent the effect on the electrons of collisions with the atom
medium by assuming that an electron with velocity v experiences a.
force —mgv. We assume that the electron velocity remains small enough
we can neglect the effect of the v/¢ X B term in the Lorentz force.. T
equation of motion of an electron is
dv

m— + mpv = —¢Li
a "

— ""C'Eu’élﬂf(l"r_m)
If we also assume that the wavelength is large compared to the amp_l_itu
oscillation of the electraon, we can ignore the time dependence of the k - rte
the phase of (3.88). The steady-state solution of (3.88} is

elt, .
v= — - gl(l:-r—wr)a
m(g— iw)
This implies a current density J given by
e%p
J=—£PV'——“’“—EEI."(I:'. wi) )
m(g — iw)
e’
= e |y
m(g — iw)
so that the conductivity o is -
2
e
o(w) = P .
m(g — iw)

time between successive collisions between the electron and the atoms..
approximately 5 X 10"s~' for copper. The presence of damping causes
current density given by (3.89a) to lag behind the electric field (3.81a) by,

I8ee, for example, Classtenl Electrodynamies, J. 1, Jackson, John Wikey & Sons, 1975, chapter 7.
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equal to (1 /w) - arctan{w/g). This is the physical significance of the imaginary
part of the conductivity (3.89Db).

Now suppose that each electron is bound harmonically to an atom, with
natural {requency Wy If we neglect damping, we get the following equation of
motion,

d..

d e
We still assume the wavelength sufficiently long so that k - r does not change
appreciably over an oscillation. Now the steady-state solution is

_ ik-r—wila
+ mugr = —eFye E,

eEE, .
(i) = ____________er(l:-r—-wf)
R )
and the current density is
J= —epv .
. a '
iwpe“E E
= p o ei(k-rmml) (390)

- 2 _ 9
m(“’u “’)

To see the effect of the purely imaginary conductivity implied by (3.90), we
substitute (3.90) into "Maxwell’s equation (3.1d) together with the solution (3.81)
for E and B, The result is

4 we’p w
+—|E,
¢

kB =

c m(w% - wz)

But (3.1c) still implies that £E, = (w/¢)B,. If we eliminate E, and B, we find

, w? dmpe?
£ =—[1- D) )
¢ m(mo - w )

We can then get the effective value of the index of refraction by using (3.84a):

(3.91)

Because the index of refraction given in (3.91) depends on w, the medium is said
to be dispersive. The origin of this term will become clearer in our discussion of
refraction in Section 4.4.1.

The plasma frequency

dpe?
w, =1 —
’ m
introduced in (3.91} is the frequency of charge-density fluctuations in a system
consisting of mobile electrons moving against a background of stationary charge

(with total charge density zero).
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3.18 ELECTROMAGNETIC WAVES IN
CAVITIES AND PIPES WITHIN PERFECT CONDUCTORS

PROBLEM 3.18.1

FIGURE 3.17 A holiow box
whose walls are perfect con-
ductors.

The E field is zero within a perfect conductor, since 2 nonzero E field woy)q
to infinite current densuy Furthermore, B can have no time-varying part Wit
a perfect conductor, since Faraday’s law (3.1c) implies that wherever theyg
time-varying B field there is also an E field. In what follows, we assume thy
time-independent B field in the conductor has been eliminated. Then |
within a perfect conductor, and the continuity conditions (3.5a,b and 3,94
imply that

:g" = 8 immediately
L outside
EEJ_ = 47?0&(:1: a
dq perfect
X H,= TK iee | conductor

Here the subscripts || and L refer to the surface of the conductor. Our pro
is to find fields that are solutions of (3.79) and (3.80) in the space aroun
conductors, but satisfy the boundary conditions (3.92) at all the surfaceso
conductors. '

Consider an empty rectangular cavity in a perfect conductor. The sides of th
cavity have lengths d,,d,,d.. Determine the space and time dependence of th
and B fields of the lowest frequency mode of oscillation.

Let us try to find a standing wave solution whose E field points along th
axis. The rectangular shape of the cavity suggests that we can satlsfy
boundary conditions with a product function of the form

E = Ey2 sin{£,x)sin(£, y)sin(w!)

L H

i

I
I
|
|
d, e —>=¥
X
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Equation (3.93a) contains no = dependence because we require that (3.792) be
satisfled. If we are also to satisfy (3.92a), E must vanish on all the vertical faces
(x=0,d,; y=0,4d,). Thus, we require that

T

k.r = d_"_v: n, = 1:2)3!' . (3.94&)
T
ky=—n, =123, (3.94D)

To find the B field associated with {3.93a) we use (3.79b),

1 9B
————=curlk

c d¢
= E [ & sin(k, x)cos(#, )
— 5k cos( & ,x )sin( k),_y) } sin(wt) -

which is satisfied by
5
B=E,— { ."ij.sin( k, x)cos( kj,y)
[

— $k cos( £ _x )sin{ kJ.)!)}cos(w{) (3.93h)

It is easily verified that this B satisfies (3.79a), that B, = 0 at x = 0 and 4, and
that B, = 0 at » = 0 and d,. Thus, (3.93a and b) S'msfy the field equatlons and
the boundary conditions, provlded that k, and £ belong to the discrete sets of
values listed in (3.94).

Since (3.93) is a solution of the wave equation (3.78), w is given by

Wi 9 I
w? = — (k2 + k2
2 E J
n
8,10 1 2

_ & ?IJ 4 HJ,

=—| =] +|-2

n d, d,

To get the mode of lowest frequency, set #, = n, = 1, and choose 4, and d, 1o
be the longest dimensions of the box. '

The procedure just described is similar to the procedures used in the
discussion ol standing waves on a string (Section 1.14d) and sound waves in a box
(Section 1.14e). In all cases we have to solve the d’Alembert equation with
space-cependent, time-independent boundary conditions. The method of sep-
aration ol variables leads to a Helmholtz spatial equation. The boundary
conditions select a discrete set of solutions to this spatial problem, and then the
d’Alembert equation associates a delinite oscillation frequency with each allowed
spatial solution. One of Erwin Schridinger’s great contributions was the recogni-
tion that a similar procedure could be used to explain the discrete set of energies
observed for bound quantum-mechanical systems [see (5.7), (5.8) and Section
5.4].

Next we consider wave propagation inside an infinitely long pipe with
rectangular cross-section. The walls of the pipe are parallel to the ¥ axis. We
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replace (3.93) by a traveling wave

E = E,2 sin( k)'.?')e"(*x""”’)
£
B= ED;[_LkaCOS(ker)

_j'kain( k),_y)] gHkx—wt)

It is easily verified that these fields satisfy the boundary conditions (3.92;
on the walls of the pipe if £ is given by (3.94b). They satisfy the ﬁe]d e
(3.79) and (3.80) if :
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and the surface current density is given by (3.92d) and (3.93b):
mixyz—d)———E ( £)

X { Ekj,sin(kxx)cos( kJ,y) — Pk cos( ,x)sin( kj,_)v) }cos( wt)
2

E
— :0 [ — 3k sin(k, x )cos( £ y)

" 4q
— %k cos( k,x)sin( £, y) } cos( wt)

JATION BY NONRELATIVISTIC ACCELERATING CHARGES

2 .2
o o n°w
B+ k= —
¢
MR
2 c? 5 'n'“n;,
W= — +
2 (M 2
n dJ_

If the wave is to propagate along the pipe without changing its amplitﬁd
(3.93) must be real. Then (3.96) implies that waves will only propagate i
mode if their frequency exceeds a cut-off frequency wn ):

w > wln,)

The lowest value of w, corresponds to n, = 1. Alternatively, we can use

express the wavelength in terms of w,

2or 27

¥

kx HQwJ 'JTEIIJ

If (3.97) is not satisfied, A is imaginary, corresponding to an expan
decaying or growing wave.

The wave (3.95) has its E vector aligned pcrpendlcular to the dircctio
propagation, but the B vector has a component in the direction of prop agatid
This is called a transverse electric wave. One can also construct waves in whie
B vector is transverse (but not the E vector). It is not possible to have bot 'u"E
B transverse if the cross section of the pipe is a simply-connected region:!

Once we have determined the E and B fields at the surface of the con
as in (3.93) or (3.95), we can determine the surface charge and currcn_t.____
by using (3.92c and d). For example, the charge density on the z = d 5u
the cavity shown in Figure 3.17 is given by (3.92¢) and (3.93a):

e
Oroel ¥y 7,2 =4d.) = . Dsin(kxx)sin(k_},y)sin(wt)

195¢ee Classical Electrodynamics, ], D. Jackson, John Wiley & Sons, 1975, Scction 8.2,

- These expressions are valid far away (R > ¢*/|§]) from a nonrelativistic charge

Equations (3.58) and (3.63) enable us to calculate the E and B fields produced by
any specified charge and current distributions. In particular, these equations can
be used'! to find the fields produced by moving point charges,

We first consider the motion of a single nonrelativistic point charge g. Let
s(¢) specify the location of ¢ at time ¢, Since electromagnetic effects propagate in
free space with finite speed ¢, the Relds at point r at time ¢ depend on the
location and motion of the charge at a “retarded” time ¢, given by

r— 1
=1 — |_f_§_£_21 (3.98)

¢
Figure 3.18 illustrates how (3.98} can be solved for the ¢’ that must be used to

determine the fields at r and ¢. Once this is done, the fields can be calculated
from

B(r, () = ﬁ?mg(t') x R(1') (3.99a)
R(t')=r - s(t’) (3.99b)
E(r, t) = B(r, 1) x R(:") (3.99¢)

(5] << ¢).

Figure 3.19 shows the geometric relations between E, B, § and R. Tt is scen
that E lies in the plane determined by § and R, whereas B is perpendicular to this
plane. The energy flux density (3.68a) far away from the accelerating charge is

S(r,t) = —E(r, t) X B(r, 1)
=Z—m B) R
==3:S?*. (3.100)

W8ee Classical Electrodynnmics, J. D. Jackson, John Wiley & Sons, 1975, chapter 14,
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FIGURE 3.18 Finding the re-

tarded time. The curve s,(t'} x*
represents the world-line of

the charge. The lines x — x*

= +¢(t— ') are on the “re-

tarded light-cone™ of (x,1{). x
The retarded time ¢ that

satisfies (3.98) is the 1’ coor-

dinate of P, the intersection r—x

We assume that the radiation has a very small effect on the motion of the
charge (we will check this later). Thus, we use the formulas for a free oscillator to
determine the acceleration and the radiation rate. Suppose that the oscillator has
amplitude 4, so that its displacement is given by

x(1) = Asinwyt, w, = yk/m

Then the acceleration is

r—x=

of the world-line of the dx .
charge with the retarded (1) = —5 = — Awjsin wyt
light-cone. J— dt*
/I / and the mean value of ¥* (averaged over a cycle) is A%w;/2. Thus, power is
racdiated away at the rate
2 ¢* - 1 f:'“’mﬁ )
P= E C—H'Efl“wn = 5 3 4° (3.1033)
The mechanical energy of an oscillator is )
. . 2 C e 1 1 1 1
Here & is the angle between $(¢) and R(¢’'). We do not distinguish betwee E=—m? 4+ —kx® = —kd? = —meuyd* (3.103h)
and R(¢’} in the denominator of (3.100), since they differ by a smalil factc 2 2 2 2
the order of |§|/¢. The fact that the power/unit area is proportional (at larg Thus, (3.103a) and (3.103b) imply that
to 1 /R* implies that t " 0
o 1 /R* implies tha h: power per unit solid angle is independent of R: . dE 1% 2E 26 w(,
_i‘{f_ g8 )Ih 2 B d 3 ¢ mwl, 3 me®
dQ dae® . . .
and we see that the energy of the oscillator decays with time according to the
The total radiated power is obtained by 1ntegrat1ng (3. 101) over all dlI‘ECtI formula’
dP ......._._q | ' _ 2 r"’mﬁ
P = 3 P
| = = {”‘m E(1) = E@) x e ™
==
z O'| ;: Thus, it takes a time ¢, ,, given by
q°|8|° )
=35 2860,y
3 [ —
3 me® "
PROBLEM 3.19.1 A particle of mass m, charge ¢, is suspended from a light spring of sprin ' 3 me? 3n2 me?
constant &, If it is set into osc1llat10n how long will it take the oscillator to radmlc L= ——In2 = —— periads :
© 2 etwy 47 e%w,

away half its energy?
for the oscillator to radiate away half its initial energy. In particular, we find
b= 2 X 10%7 periods for a 1 cm diameter copper ball charged to 1000 V and.
oscillating with a frequency of 1000 Hz. This Jong half-life confirms our
assumption that the radiation has a very small effect on the motion of the charge.

FIGURE 3.19 The polariza-
tion of the E and B radiation

fields produced by a non-rel- &
ativistic charge with acceler- \ )
ation &,

PROBLEM 3.19.2 A proton is uniformly accelerated to an energy of 20 MeV over a distance of
" 20 m. How much energy is radiated away?
Since 20 MeV < 938 MeV, we can use nonrelativistic mechanics. If the
final kinetic energy is E and the acceleration length is ¢, the accelerating force is
E/d and the magnitude of the acceleration is £/md. The power radiated away is
¢8| 2% EN?

P=——¥s—-——| —

3¢ 3 I\ md
The travel time ¢ is given by d = 1 /2ai®, 1 = \m = d\E’—"/—E . Thus, the total
energy radiated is Pt = 2y2¢* - (E/me*)*/*/(3d). For E = 20 MeV, d = 20 m,

R it

5 (t)

-1

|
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PROBLEM 3.19.3 An electron moves in a circular orbit of radius R about a nucleus of Chm‘gc

FIGURE 3.20 With a source
consisting of two point
charges, there are two
warld-lines intersecting the
retarded light-cone of (x, 1),
and thus two retarded times
i and 5.

this ig
2Y2" (4.8x107'°)" esu? 20 MeV | 3/2
3 2000 cm % 938 MeV
=34 X107 Perg=2 X 107 VeV

At what rate does it radiate?
The electron undergoes a centripetal acceleration z, given by
Ze* /R*

a, =

m
Thus, the radiated power is
2 e* Ze\*
3 3| mR?
For an electron in the smallest Bohr orbit of a hydrogen atom, R = 59
107 %m, and P is approximately 0.5 erg/s. This result is inconsistent with

observed stability of the hydrogen atom. The need to resolve this contradic
provided much of the motivation for the invention of quantum mechanics;

Now suppose that there are several accelerating charges g4, q,,...;
respective world-lines 5,(¢), s5(¢),... . The total E and B fields observed at
¢t will now be the vector sum of terms such as {3.99a and c¢), one for
contributing charge. Note, however, that the retarded times associated with
different charges will generally be different. This is illustrated in Figure 3,2
the particular case of two charges. The necessity of evaluating each accelers
at a different time complicates the analysis. But the problem simplifies if
charges are close together. If they are spread over a distance of the order o
the difference between their retarded times is of the order of L/c. We now make
the additional assumption that the accelerations change by small fractm
themselves during this time interval,

8% — <3
3

In this case we can make the approximation of using the same retarded tim

x=x'=¢ft - 1)

__J'__az;(t')
| —T" 815(t)
=1/ {
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all the charges. This is called the dipole approximation. We can then generalize
(3.101) and (3.102) to

P

3.105
i sinf ( )

5.(t)

E-(t’)l- . (3.106)

We will apply (3.105) and {3.106) to a set of charges which oscillate with a
commen frequency about fixed equilibrium positions:
s;(¢) =a; + b (3.107)

As usual, the actual position of charge ; is obtained by calculating the real part
of (3.107). By allowing the b; to be complex, we can vary the oscillation phase
from one charge to another. To obtain the time-averaged radiated power we
calculate

2

Re(g;qjsj(r))

[cf (3.85)] Note that if we write the electric dipole moment associated with the
set (3.107) as the sum of time-independent and time-varying parts,

p= 2q;5;(t) = po+ pre”™ (3.108a)
I

time avy

P, = 2ab; (3.108b)
J

then (3.105) and (3.106) can be expressed as

dP @

29 |- = chglpllzsinzﬂ (3.109)
ime avg

+

w
[P]ﬁmt:rwg = 5;’_}"‘131[2 (3110)

If we require that (3.107) should satisfy the criterion (3.104), we find we must
have
wl 2avL L '

Thus, in the case of an oscillating source, we can say that the dipole approxima-
tion is valid when the wavelength of the emitted radiation is much larger than
the dimensions of the source.

If conditions are such that the dipole approximation is not valid, or if the
dipole amplitude (3.108b) vanishes identically, then a discussion of the radiation
must include consideration of the variation of the retarded time across the source.
One way of treating this problem involves an expansion of the radiation fields in
powers of the parameter L/A. The dipole approximation described above is the

first term in the expansion. A complete discussion of this subject is given by
Jackson.'*

Clussieal Electrodynamics, J- D Jackson, John Wiley & Sons, 1975, chapters 9 and 16,
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FIGURE 3.21 &, and &, are "
two orthogonal unit vectors
in the plane of E and B.

-

Finally, we consider the energy flux measured by a detector sensitive on
a certain type of polarization. We can regard such a device as a consisting
filter which passes only the specified polarization, followed by a detector
measures total energy flux, Figure 3.21 shows the E and B vectors of Figure 3,
as seen by a viewer looking towards the source. Two orthogonal unit vecto ;
and &,, are in the plane of E and B, perpendicular to R. We can write

E (E : gl)sl (E ) @2)32
B=(B-§)s +(B- &)

. PROBLEM 3.19.4

by this filter are

(if'XR)'Eza (sz’z)‘P,é__ENi‘),é
h e°R K ¢’R 2 ¢’R °
2 & P
= R = — &
E=BX T —
and the transmitted energy flux per unit solid angle is
dpP w? g
— = linear polarization only) (3.112
dQ time avg, & Bwe J]pi ( P
[cf (3.99), (3.109)}]. 5

A similar analysis can be performed for circular polarization. Two com 1l
unit vectors

1
g = ﬁ(s, + 18,) (3.
1 i
B = o (8 - k) (3.11%
were used in (3.86) to describe left and right-hand circularly polarized radiatl
Since
g B =Er-E =1

|
m
My

&
o
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we can write E and B in the form
E = (E- )¢ +(E - &*);, (3.114a)
B= (B-E;*)E,+(B~Ef‘)§, (3.114b)

A device that transmits only left-hand circular polarized radiation will absorh the

£, components of (3.114). If it does not affect the &, components, the transmitted
fields are

(B X R)-&f (RXxE) b, .3?"'1'33
= . E, = = E, = 1~
¢’R ! £ ! R !
) o
E=Bxhk=-—_Pp
c°R

In this case, the time-averaged energy flux is determined by T X B* (cf. 3. 85).
The energy flux per unit solid angle transmitted by this fiter is then

dP w? . .
d_ﬂ time ave, ¢ a l

with & =& of (3.113a). It is clear that we can also use (3 115) il the filter
transmits only right-hand circularly polarized radiation, if £ is set equal to g of
(3.113b). Morcover, (3.115) can also be used for linear polarization, if & is set

equal to the real unit vector that points in the direction of the orientation of the
filter [cf. (3.112)].

——p, - & (3.115)

Bare

Suppose the dipole moment is given by
p(¢) = p{ % cos wt + Jsinwt)

Find the angular distribution of emitted radiation as measured by (a) a detector
sensitive only to right-hand circularly polarized radiation, and (b) a detector
sensitive only to the polarization &, illustrated in the drawing.

In this case, p, of (3.108a) is f - (¥ ). By inspection of the drawing, we
see that

& = cos #{cos pi + singp}) ~ sin #2

Ey = —simqx -+ cos pj.

N}

w7

=)

(N4 ~

H)
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For the right-hand circular polarization, we need

”~

* .
£ " Py

=

-~ Aol
g + ik,

N

(24 5)

by replacing the real charge ¢ by a
sious charge ¢” on the z-axis at z =d.

H

= —=[cosfcos p — ¢ sing + i cos # sinp — cos p] pp + (z —d)E
ﬁ [p"’-]‘(:—ﬂ')a]:vh
= 7—%—(0059— 1)(cos @ + isin ) La-e ph+ (= + d)3 o
5+ e [p 4 (24 4)]"
dP g2 2q pp+ (= —d)E
49 = - s : = m forz <0,
( d§ ) imeavg,, 167 (cos 0 = 1){cos @ + isinep)] g + e [p'“' + (= - d)g]n/- "
4,2
= “w—p'““(COS 6 —1)° the force on the charge ¢ in the previous
167¢® o

Note that the radiation pattern has a maximum in the —2Z direction:
fl = ), but that no radiation is emitted in the +2 direction (where 8 = 0)
Section 5.12 we will relate this asymmetry to the angular momentum

g,, we need

A

g -p=pb (2 + )= pcosb(cosp + isingp)

w'%pZ

Bmwe

dP
( dQ ) time vy, &

alone, that would tell someone how to construct a coordinate system of

handedness.

REVIEW PROBLEMS

7 (cos #)*

e,

B — & q
Answer: F = ! 2 (

2
&g + &) ﬁ) -

hducting plates of a capacitar are long
al cylinders of radii R, and R, (R, >
The space between the plates is filled

What is the largest potential difference
that can be maintained between the cy-
lindrical plates if the field between them is
to be less than E_ at all points?

~ E_R In| —*
R

“V
Answer: V.,

What is the largest potential difference

3.1

3.2,

An uncharged hollow conducting spherical
shell, with inner and outer radii equal to K,
and R, respectively, is placed into an otherwise
uniform electric field of strength E;. Calculate
the charge density induced on the inner and
outer surfaces of the shell, and the electric
field everywhere.
3
—Ecos f,
W .
= (1, on inner surface
. 3fcosf — Ey
E=EE,+ —F—R, |, forr > R,

r
= {, for r < R,.

Answer: ¢ = on outer surface

A conductor of arbitrary shape is surrounded
by an electric field E{r). Show that the net
force exerted by the field on the conductor is

3.3.

that can be maintained between the cyl-

given by indrical plates if no current is to flow

1 between them?
F=— oE ds R,

2 surf{ace Answer: V;mm = EEETIE—_—,
where o is the surface charge density and: R R,
the eclectric field immediately outside iR < oore
surface, Hint; Use Maxwell’s stress tenso R, ,

. . . : =E R|n| —|, ilR, > —(/—— .

Two uniform dielectrics are separated b R, 2.718...

x—y plane. The dielectric constant is &
z> 0 and g, for z < 0. A point charge
embedded in the upper dielectric, on the 22
a distance  above the interface. T it_ld
electric field at all points. Hint: For z = 0
field can be obtained by supplementing the.
charge ¢ by an image charge ¢’ on the -
at z = —d. For z < 0 the feld can be

large picce of dielectric has uniform polari-
tion P, except for a spherical hole of radius
Find the electric field within the hole and
the surrounding dielectric. Hint: Try to
__gke use of the solution given in Problem
4.3 for a uniformly polarized dielectric
Phere in empty space.
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Answer: E = ;P, within the hole
47 R3

= — -;-—[P - 3P - )7}, outside the hole.
3.7. Let us represent the electrons in an atom by a
uniform spherical cloud of total charge —Ze¢
and radius R, with a point nucleus of charge
+ Ze at its center. A uniform external fleld £
is applied. What is the induced dipole mo-
ment? Assume that the electronic charge dis-

tribution remains spherical.
Answer: P = RR,,

3.8. Let P, and P, be the static electric dipole
moments of two small objects of zero net
charge. The vector R goes from the center

of ‘object 1 to the center of ohject 2.

(a) Find the force and torque acting on object

2,

Answer:

iR (P -R)P,-R),

- R-& - RG 'R

+ PI(P2 ' R) + P’.!(Pl ‘ R)
Rﬁ
3(P, - R)(P,x R)— P, x P,
T = .
Rﬂ

(b) Apply vour formulae to the special case
P, = P: P,= PX,R = Rj.
Answer: F =0
P
=g

.

3.9. Twelve identical eapacitors are connected in
such a way that each, together with its leads,
forms one edge of a cube. Fach capacitor is
rated at 0.1 pf, with a 600 V maximum
voltage.

(a) Compute the effective capacitance be-
tween diagonally opposite corners of the
cube. Answer: 0.12 pf.

(b) Compute the maximum voltage that can
be applied to diagonally opposite corners
of the cube such that the voltage across
each capacitance does not exceed the rated

maximum. Answer: 1500V,
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3.10. Suppose you have a galvanometer with an
internal resistance of 8 ohms, which shows
full-scale deflection when it carries a current
of 4 milliamps.

(a) How could you use this galvanometer to
make a voltmeter whose full-scale deflec-
tion will be 10 volts?

Answer: Put a 2492  resistor in series
with the galvanometer.

(b) How could you use this galvanometer to
make an ammeter whose full-scale deflec-
tion will be 10 amps?

Answer: Put a 032 § resistor in parallel
with the galvanometer.

3.11. C, and G, represent two closed contours.

(a) Calculate the magnetic flux through C,
due to a steady current { flowing through
C,. Express your answer in terms of a
double line integral around C, and G,

: T, - dry
Answer: & = -95 e
¢

oA L Tl
(b) What is the mutual inductance of €, and
G dr, - d
1 r, - dry
4 M= — = = M,,.
nswer: My = — S6 95 — "

G G

3.12. Two small circular wire loops, of radii £, and
R, respectively, lie in the same plane sep-
arated by distance R. Assume that R is so
much larger than R, and R, that the dipole
approximation is valid, and calculate the mut-
ual inductance of the two loops.

1 wRiR;
Answer: TR

3.13. A proton moves with constant speed v (almost
equal to ¢) along a straight-line orbit a dis-
tance b from a stationary electron, Calculate
the impuise felt by the electron. Compare
your result with the impulse felt by the elec-
tron when the proton is nonrelativistic (Prob-
lem 3.3.2).

2¢*
Answer: w0 transverse, The same

as for a nonrelativistic proton.

3.14. A toroidal iron ring with permeability g =
1000 is wound with a uniform coil of 10 turns

per centimeter, carrying a current o
amperes. '

(a) Compute the magnitude of the B and -
fields inside the iron. g
Answer: H = 5 Gauss, B = 5000 Gg

(b} The current is turned off, but B remaj;
unchanged due to permanent magnetiz

tion of the iron. What is H? :
Answer: H

(c) The ring is cut and opened into a straigh
bar. Describe the resulting B and H fie]
qualitatively. Answer: Figure 3,10

3.15. A conducting rod of length / and resistance
moves in contact with two conducting raj]
which are connected to a ballistic galvanom
ter. A uniform magnetic field B is perpend
lar to the rod and to its direction of motior

(a) How much charge will flow through-
galvanometer when the rod moves a d
tance 47 :

Bl

Answer: —

€.

(b) What force is required to make the
move with constant speed ?

B? -y

Answery — +

€

3.16. The plates of a large capacitor cover th
planes z =0 and z = 4. Between the plat
are constant fields & = —E,% and B =8
An electron (charge — ¢) is released from res
at the origin.

{(a) Find the orbit of the electron.
Answer: x(1) =10 :
Ey| me [ eBy

N=c—|— —i
o) B, eBusm me
Ey me . eBy
{) = ¢ —— 1 — cos| —
“) =5 B,

(b) For a given £, what condition mﬁﬁf
) satislied by B, if the electron is to
the z = d plate?

Answer: By <

3.17. A circular loop of radius R carries current
a uniform magnetic field B perpendicul

L1 S

660666560006

he wire?

-section

¢ plane of the loop. An observer looking
ong the field lines says the current flow is
ockwise.

1) Are the magnetic forces directed radially

nwards or outwards?  Answer: outwards.

What is the tension (or compression} in

iBR

Answer; ——

total scattered power

incident energy [lux

4
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You may assume the wave length of the radia-
tion is long compared to the amplitade of the
oscillation of the electron, and that the elec-
tron speed remains small enough so that the
effect of the incident B field is negligible.
8 [ 2 \*
Answer: 0= —| —5

3\ men
3.19. An clectromagnetic wave with circular
frequency @ propagates in a medium of di-
clectric constant e, magnetic permeability p,
and conductivity o. Show that there is a plane
wave solution in which the amplitude of the E
and B fields decreases exponentially along the
direction of propagation, and find the char-
acteristic decay length. You can assume that o

is great enough so that 47 /(ew) > 1.

Answer: —m—ee—
V2Tuwa

3.20. The drawing shows two L-C circuits which
are coupled via their mutual inductance, M.
Find the natural oscillation frequencies of this
system. Neglect resistance. Answer:

LC + LGy + [(LiC, ~ LG)" + 4C,GM?]
2C,CA L, L, - M?)
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CHAPTER 4

4 A plane mono- z
wave incident

#2000 a screen per-

ne or more

&)

4.1 FRAUNHOFER DIFFRACTION THEORY

Optics is the study of the propagation of light, and light is a form of ele
netic radiation. Thus, the answer to every optics problem can he' fi
principle, by solving Maxwell’s equations with boundary conditions ap
to the physical system under consideration. Unfortunately, this progra
difficult to carry out for any real optical system. The subject of optics has
instead by developing approximate procedures, whose physical prediction
very nearly equal to those obtained from a full solution of Maxwell’s'cqua?i‘
Fraunhofer’s diffraction theory is one of the most useful of these procedun
essential part of this theory is that the radiant energy flux at any obse

with different parts of the system, and then squaring the magnitude o
A similar procedure is used in quantum mechanics to calculate a

derivation from Maxwell’s equations is more difficult, and is beyond the scop
this book.'! '

the distance over which there are appreciable changes in the optical pro
the media carrying the radiation. In this limit, wave optics reduces to rz
and problems can be solved by the application of well-defined geome
constructions. This situation also has a quantum analogue. We will seé_i' S 10|
5.1 that classical mechanics is obtained from quantum mechanics in the l

the potentials change appreciably.

Figure 4.1 shows a plane monochromatic light wave propagating:' !
direction, incident from below on an opaque screen lying in the x-y P

'For n thorough treatment of this subject, see Principles of Optics, 6th ed., M, Barn and E. Wolf, Perg
Elmsford, New York, 1980, chapters 8 and 11,

174

=

(=
T

Incident
radiation

incident wave has energy flux density 7, (energy/area-time) and wavelength A.
The screen is perforated by one or more holes near the origin, Let f(£) be the
energy flux per unit solid angle scattered into the direction £. Then, according to
the Fraunhofer approximation,

J(k) =1, -51( [ e (4.1)

holes

The integral in (4.1) is a two-dimensional integral over the holes in the opaque
screen, and r locates points in the holes relative to the origin. The vector k is in
the direction of observation £, and has magnitude 27 /A. The ratio J{(£)/1,,
which has the dimensions of area, is called the differential cross section, and is

. written

do . b1 . *
é(k)sjﬁn) = Y fe_"‘"dgr (4.2)

Finally, the scattering amplitude f( /I) is defined by

f(?f) = i f e~ g2y ' (4.3a)
A holes

in terms of which (4.2) can be written
il 31k 4.3b
(1) =| #(B)| (4.30)

The scattering amplitude has the dimensions of length; it is the two-dimensional
Fourier transform of the pattern of holes in the screen, Since r in (4.3a) is
confined to the x—y plane, 2 - r = 0, and the forward scattering amplitude f{2)
is given by (4.3a) to be

1(8) =

heles

1 P area of holes (4.4)

A TTA '
Let R be the distance between the region of the holes in the sereen and the

point of observation, and let a be the order of magnitude of the linear dimensions

holes




176 Optics Fraunhofer Diffraction Theory 177

of the holes. Then the Fraunhofer approximation is valid whey

VEN > a

If this condition is not satisfied, but

PROBLEM 4.1.1

a
VRA>>G'E

then Fresnel scattering theory may be used.”

Find the Fraunhofer diffraction from a rectangular slit. :
Suppose that there is one hole in the screen, covering the region

a a
2 2
b b
2 =7 =73
Then the scattering amplitude (4.3a) equals
T b/2
= (it gy

x=—af2 y=—5b/2

= -1- a_/f PRI M e~ gy = i Sih(k-‘a/z) Sin(k;‘b/f? .'
A ~n/2 -b/2 ! A k k

X Jl .

This expression drops from ab/A in the forward direction to zero as’
increases to 27/a or 27 /b, respectively.
If b > a (long narrow sht), we get a more rapid falloff of inl
increasing &, than with increasing &,. In other words, the dlﬂ"ract;o
more spread out in the x direction than in the y direction. To focus
on the x spreading, we rewrite (4.5) in terms of the polar coordinates
2a 2

—sina cos k, = -?\—sinasin[)’

x ;\ »
dfl = sinadadf

and calculate; near 8 =0, the diffracted flux per unit angl
observation distance in the y direction (see Figure 4.2). The result

il

(ma .
diffracted flux 44 sm( F a) .

da-dy  ° 'R sin o

Here R is the distance to the observing screen, and enters (4.6) throul
relation '

dy = Rsinadf

valid near 8 = 0. According to (4.6) the diffracted flux falls from ar
sine = 0 to zero at sine = AJa.

for a discussion of the distinction between Fraunhofer and Fresnel diffraction, sce [nfroduetion fo
G. R. Fowles, Holt, Rinchart and Winston, New York, 1968, chapter 4.

¥

OELEM 4.1.2 Find the Fraunholer diffraction by a circular hole of radius a.

In this case the scattering amplitude (4.3a) is given by

A 1 [ 2z ‘
7k = < f v dr ft,—-rlc-rdq;) (4.7)
0 0

(cf. Figure 4.2). The polar coordinates of r, which remains in the x—y plane, are
(m/2,¢). If we continue to use («,f3) for the polar coordinates of A we have

r=r{3cos¢ + Jsing]
= k[&sinacosB + Jsinasin # + 2 cos o]
k- r = krsin a(cos ¢ cos B + sin g sin 8]
= krsina - cos(p — B)
and (4.7) becomes

=
!

27

fa,p)=~ [rar |

: 0 0

Thus, the scattering is axially symmetric, as expected from the symmetry of the
circular hole.

The integral in (4.8) can be expressed in terms of Bessel functions. A

convenient starting point is the expression’

evr‘.i‘r.-iinu-cus(-“n—]])d(p zf(ﬂf,{]) (48)

o

L,x'.r cosgh Z

m=0 1+ 6

mb

i"f,(x)cos me (4.9a) |

A useful compilation of the propertics of Bessel [unctions, and other special functions of interest in physics, is
contained in Handbosk of Mathemotical Functions, M. Abramowitz and LA Stegun, National Bureau of Standards
Applicd Mathematics Series, 1964,
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PROBLEM 4.1.3

from which we obtain PROBLEM 4.1.4

]
ey ST

fe"’ = Pcos mep dep

1
2770

If we set m = 0, we get an integral similar to the ¢ integral in (4.8j. T

2 a
fla,B) = ‘f" T{jﬂ(-—krsina)rdr

Jo(x) =

By differentiating (4.9b) with res i g it et
. pect to x, and by integrating it ;
respect to ¢, it can be shown that sranne | P#tlal

In particular,

d
W) = = L]

enables us to do the r integration in (4.10), to obtain

Ji(kasina
fla, B) = 202250
sin &
Using the limit /,(x) — x/2, we can check that (4.11) gives the correc

x=+()
(4.4) for the forward scattering amplitude.

Ji{x) vanishes at x = 0, 3.8192, 7.016,..., etc. Thus, when a s.a.tisﬁ.es

3.812 A

= 61—

ka a 2a

the :scattering amplitude (4.11} vanishes. The angular width of the

maximum of the diffraction pattern of a circular hele of diameter D is th
to arcsin{1.22 A /D).

If two bea@s of light making a small angle # with each other are difl]

by a hole of diameter D, the central maxima of their diffraction pattern

sino =
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A plane light wave is diffracted through an irregularly shaped hole in an opaque
fAat screen placed perpendicular to the direction of propagation. Behind the
screen we measure the angular distribution of diffracted light intensity. The
Fraunhofer pattern shows point symmetry—any two points, diametrically oppo-
site from the center of the pattern, have equal intensity. Derive this result.

Let us resolve the propagation vector k into components k and k, , parallel

and perpendicular to the screen, respectively:
k=k,+k,
Since r in (4.3a) refers to points in the plane of the screen,

ky-r

1
_ —flgyr 32
N h;,Lg R

The propagation vector for the poinf on the opposite side of the center of the
pattern is

k-r

J(%)

kM= —k,+k,
A 1 . ~
k, = _ E-Hk"‘r= k #*
(E =5 [ (3]
Thus,
da Av2 2412 d_U’ T
g (B =1 AR = FEY = o (k)

over!ap if 8< a}"csin(l.22 A/D). But, if 8> arcsin(1.22 A/D), the'c
maxima of the c!lffractions will not overlap, and the illuminated spots o
viewing screen will be clearly resolved from each other, The resolution eriteri

0 > arcsin(1.22A/D) = 1.220/D  (A/D < 1)
is called the Rapleiph criterion.

A diffraction-limited telescope, designed for use in space, has an aperture o
and a focal length of 20 m. At the focus is a TV detector whose “resolitio
element”rsize is 10™% m. At what wavelength is the telescope optimal in the s
that 107" m corresponds to the diffraction limit? E
Let Aa be the angular width of the central maximum of the diffra
pattern produced by the 1-m aperture. This produces a spot whose sizé
m) X A in the focal plane. If this equals the 10=3 m resolution element;

SURE 4.3 Several identical
}.an opaque scraen.
ctors n{i=12..)
the origin to the cor-
ing points in the

holes. The vector t
peints in the jth hole

Aa = 1.22\/D = 10~ /20
Ao D 107 im .
20 122 29 X Tgp X 1W07m

4,000 A

Suppose that the opaque screen has N identical holes, located at positions
r,,ry,...,Ty. Points within the jth hole are located by r = r; + t (see Figure
4.3). Since the holes are identical, t takes on the same range of values for each

'

Fa
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hole. The integral in the scattering amplitude (4.3a) is then a sum o
one for each hole: A

N 1 X .
f(k) = X > fe““"’f*‘) 4%

j=1
N 1

— Ee—n;.rj it fg—ik-ndzt
J=1 A hole

= g(zt) ‘ funu-hnlu(/})

Thus, the presence of several identical holes means that the one
amplitude is multiplied by an interference factor

- N .
glh)= Y emn

Jj=1

-hole

which depends on the locations of the holes, but not on their individy
On the other hand, the one-hole amplitude in {4.13a) depends only on t
of the hole, and is independent of the number or locations of th
Corresponding to (4.13a), the angular distribution of the diflracted flux
written as a product of interference and one-hole diffraction patterns;

do ~ ol da(k)

=5 (k) =1g(%)]

Ditfracted inten-
“a grating with
of width equal

entar-to-center

ritten at the bot-
48 |oehole raph are values
In the forward direction, ole the principal
n . occur
ker,=k-r,=0 (all 5)
Then each term in the interference factor (4.13b) equals unity, and we ge
g(2)=N
do(2) _ aro do(2) Increasing « is due
4 i) ol ngle-slit dilfraction
ane-hioje

This is an example of constructive interference between the wave amplitudes fro
the individual holes. x

Constructive interference can occur even if % % £ if all the hol
arranged in a periodic array. For example, suppose we have a diffraction:

with NV long slits, each of width a and with distance ¢ between correspc
points of adjacent slits, Then we can write :

r,=(j—1)-4-%

7

i

k- r; (j—1)-d-kx=(j~—1)-d-ksina 1=

If the observation angle a has a value a,, such that
) 2mmw A
sing, = —— =pp—

kd d

the sum (4.13b) becomes
N

N
flay) = TS Sy oy

i=1 i=1

(m == 0,1,2,...,)

and we again have a situation of complete constructive interference. Actually
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the uniform spacing (4.16) we can evaluate g( «) for any value of w:

N Nil o
a) = g—r'(j—l)kdﬁinﬂ — L,—rjkn'smn
z{a) gl z

J
N1 1—

o (N sin
—ikdsinmyJ _
= Z (f.‘ ) - 1 — c—a'ku'sinn
J=0
Nkd
S| —sin o
. — i N— D kdsin o /2
¢ kd
S| —smao
2
Nad
SIn 81t (X
—_ E—l'(N—l)rm'siuu/R (4:.18)
md
SIn| —SsIn ¢ R
A
d _ o _
N= 5, i = 3, T 1
2
w
=
L
E
o
o
“
P
E
o ,
= -
1 1 1 I T T 1 T T T ¥ T :
00 A2 3 4 A 6% 7n BA Sx 2n 1IN 12y 153{;. 152\ sin a
54,50 Bd ©d d 50 5d Bd 5d d 5 Bd 0
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in wavelength by AA. According to {4.17), two components separated by AN will
produce mth-order principal maxima separated by

It is easy to verify that (4.18) approaches N as a approaches each 0
defined in (4.17). If we combine (4.18) with the single-slit diﬂ'racﬁon..pa&“

(4.6), we get an N-slit pattern given by AN
[ Nmd 2 o Aa, = ——
diffracted flux 442 sm( N on a) sin( —)\"sin o:) 2 d- cosa,,
do dy = Io,_rg R p - Tt will be possible to resolve these two peaks if Aw,, is caomparable to, or greater
’ sin( ——sin a) sin & than their individual widths. This requires that
. A m AN A
Figure 4.4 is a plot of (4.19) for N =5, d/A = 3, and a/A = 1. T 2 &= Nd oo
The strong peaks at the a-values given by the a,, of (4.17) are éall~ cos &, m

AX 1 1 11
A *m-N_ R, (4:21)
The quantity R,, defined by (4.21) is called the resolving power of the m'™-order
principal maximum. We saw in (4.20) that if we want a grating with sharp
principal maxima we should get a long one. We sce in (4.21) that if the grating is
to have high speciral resolving power, it should have many lines.
Next suppose that the slits are located at random points x; in an interval of
we see that the half-width & of the mth principal maximum is approximate] _ length L, so that 0 < x; < L for j=1,2,..., N. If a is small enough so that
2m A o sin @ < A/L, then each term in (4.13b) will be close to unity and we will still get
8 = Nkd cos e, = Nd cos o (for 8§ < 1) the constructive interference given by (4.15) 'fmcl illustrated in Figure 4.5a.
Thus, by using a' erating who"s'e length. Nd. i N l i Howevc?r, if si-n a> A/L, the angles (&x jsin- «) will be distribut.ed at random over
achicve very sharp principal maim agt'I,‘h' ) lsltmuc bgreatfir than A we: can the entire unit circle, Th-en_thc' Argand dlagrar.n representation of (4.13.13) is a
cally if the individual terms in (4 13.b) af resuit can clebun erstood geome sum of N unit vectors pointing in random directions (Figure 4.5¢). The different
Argand diagram (sce Fi 45 T'h ) are represented by umg vectars in slits still contribute coherently to the total scattering amplitude, but now the
& grar igure 4.5). The diagram shows that |g{a)|* goes from interference is neither completely constructive nor completely destructive.!
tc: zero as kd sina goes from 2mw to 2mw + 27w/N. The situation depicte
Figure 4.56 is an example of complete desiructive interference, as opposed to
complete constructive interference depicted in Figure 4.5a |
. A diffraction grating is sometimes used to ascertain whether the incide
radiation is monochromatic, or whether it consists of two components separated

pn’nf:z}.')a! maxima. To see how sharp these peaks are, we determine how far o
deviate from a,, before (4.18) and (4.19) vanish. By comparing
Nid
—é—sm w,, = Nmw

with
Nkd
—E—sm(rxm +8)=(Nm+ )7

PROBLEM 4.2.1 Suppose we have a large ensemble of screens, each with N holes distributed at
random and the same average number of holes per unit area. All the holes have
~ the same shape, size and orientation. Find an expression for da/d§2(£) at a given
%, but averaged over the ensemble. Assume that & is sufficiently far from the
forward direction that all phases are equally probable.
Let a bar over a quantity represent an ensemble average. We need to

FIGURE 4.5 Argand diagram - - > - - > > » - calculate
representations of the sum fa) 2 ?
(4.135) for g{k). In each - N N N
case O labels trze origin, and -ZF”\\\\ 2 \\ (B 2= e ™y =| % cos(k - r;) =i %, sin(k - r;)
N=10.In(a)sine=m\/d ——— A i=1 i=1 ’ =t !
{integral m). In (b}, sina = i
mA/d 4+ A/ Nd in (c), the ' N 2 N 2
10 phases vary in a random - =1 Y cos(k - l",-) + | 2 sin{k - I‘j)
manner, | =1 J=1
N
= ) ([cos(lt . rj)]“ + [sin(k . rj)]“)
i=1
- + 3 [cos(k - 1;)eos(k - 1) o+ sin(k - r,)sin(k - r,)]-
J#l
N
= 3y 1+ Zcos[k‘(rj—- r,)] =N
= 1 it

fc}

* For an interesting analysis of the statistical distribution of |g('i'r)|2 when the phases of the individual terms in
(+4,13b) are randorta, see the article by E, Merzbacher, J. M. Feagin and T.-H. Wu, Am. J. Plys. & (1977) 96,
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PROBLEM 4.2.2

PROBLEM 4.2.3

4.3 LIGHT FROM REAL SOURCES

Th{? ensemble average of coslk - (r; ~ r,)] vanishes since the phase k . (r
varies at random from one member of the ensemble to another. Finﬁjijf
ensemble-averaged diffracted intensity at £ is

do(k) v do( k)

dsz dﬂ one-hole
which is the formula we would get if we made the (incorrect) assumption’
each of the N holes contributes incoherently to the total diffraction pattery

Compare the angular resolutions of the following two optical systems:
(a) The 200-inch diameter telescope on Mt. Palomar for 5000 A h
(assuming that this telescope is diffraction limited). g
{b) Two radio telescopes, operated as an interferometer, 140 feet and 85 ot
in diameter, separated by 2000 miles, for 18 cm radio waves. :
According to (4.12) the 200-inch diameter telescope will be able to regol;
two sources with an angular separation Ac of

5000 X 10~ %cm

Ao = 1.22 X -
200 in X 2.54 cm/in

= 1.2 X 10”7 radians

According to (4.20), Aa for the two radio telescopes is approximately

1
Aa=20=2X—= 0 em
24 2000 miles X 1.6 X 10" cm/mile
= 6 X 107? radians (for m = 0)

Thus the radio telescopes, operated as an interferameter, have better angul
resolution than the optical telescope.

Monochromatic electromagnetic radiation is incident on a plane opaque she
with two long parallel slits. Each slit has a width equal to two wavelengths of {
radiation, and the centers of the slits are separated by five wavelengths, What
pattern of radiation is expected at large distances beyond the plane? .

We use the general [ormula (4.19) with N =2, a = 2, d = 5A:

sin(107 sinee)  sin(27 sina) |2 sin(27 sina) [*

I{a) «

I

2 cos(57 sina) -

sin{57 sin a) . sin @ sin o

interference dilfraction
between slits by a single slit -

The plane wave solution (3.83) of Maxwell’s equations provides a convenient
way of relating many optical phenomena to electromagnetic theory. For exam-
ple, the laws of reflection and refraction at the interface between media havin,
different refractive indices can be obtained by using plane waves to represent
incident, reflected, and transmitted radiation, and then applying the appropriate
boundary conditions (3.5) to the E and B fields at the interface. Fowever, it i
clear that the E and B fields produced by a real light source, such as an
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incandescent filament or a gascous discharge, have much more complex space-
and time-dependences than those given by a plane wave. The fields observed at a
given point and time are superpositions of radiation emitted independently by
many different atoms. Thus, statistical methods are required to deseribe the
results of optical intensity measurements made by macroscopic devices over finite
time intervals,

A somewhat simplified picture that exhibits the interference between the
felds of different atoms is the following:

i. Each of the N radiating atoms contributes fields

R_Eucz(k:—wl+ )

I

4
"m

B = -']‘,Btlcl’(.’r.:*wf-l—ﬂm\

ft

m=1,2,3,...,N

9. Tt takes an atom about 1078 5 to emit a wave train. Thus, the phases «,,
remain constant for a time of the order of 107 5. At optical frequencies (~ 10'?
Hz) this is long enough for about 107 oscillations of the feld.

3. The atoms radiate independently of each-other. Therefore, at any time
the phases «,, (for different m)} are uncorrelated with each other, and «,, at one
time is uncorrelated with &, a time interval ¢ later, if ¢ > 10797

The total felds at r, ¢ are thus

N
Z Em(r! t) b i‘EnzG"‘("“:—wl-FuM)

Elr, 1) =
m=1 w
= RE ek ) g (4.22a)
N ‘ N .
B(r,t)= Y B,(r,t) =3B t"u0 ) ot (4.22b)
m=1 m=1
and the energy flux at r, ¢ is
£
S(r,t) = 4—Re E(r,t) X ReB(r, 1) (4.23)
7

Now we average S(r, 1) over a time interval of about 107" 5, during which the
a,, remain constant, but w! goes through many cycles. As we saw in (3.83), this
time average of (4.23) can be written as

¢
S(r) = — Re(E X B*)
8o
;i v . LN
— EE“B{,Rﬂ’ Z PLUNE LIS E;E[,B”Rﬂ Z Cl(n,,,—n,,)g

m, n=1 n,n=1

¢ ¥ ,
= LEBR| Y 1+ T ez
B me= m#an
C
= B—E”B” N+ Y cos{a, —a,)|2 (4.24}
T

e

This gives the result of a measurement that averages the light intensity over
a 10~ "-second interval. However, most laboratory measurements of light inten-

5 . . - . . S LI .
BIf the light source is a laser, the o, remain constant for much longer periods than 10 H g, This is breause light
emission in a laser cavity involves the coblective action of many atoms, which are coupled together by the
clectromagnetic field in the cavity.

g8 Y
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PROBLEM 4.3.1

PROBLEM 4.3.2

sity average it over many 10™%-second intervals. If we average cos(a '
(4.24) over these many intervals, we get zero, since we have assumed t]-,:af
no correlation between «, and «, when m # n. Thus, a long-intery
average of (4.24) gives :

= ¢
S(r) =z. 'EEEDBON
which is an incoherent sum of the contributions from each atom.

Show that the magnitude of the flux average S(r), given by (4.24), is equal
square of the distance gone by a drunkard taking N steps, each of ma
{¢/8m)E,B,, in directions a,,..., ay.

Let the mth step be represented by the vector r,, = (¢/ 87 )E,B, -]
total displacement of the drunkard is '

N
R = Zrm=

m=1

Eni

3
8w
and the square of the magnitude of R is

N
EOB(] 2 ?m

m=

€ N ¢
R-R= -‘BH;EDBU Z ?'m ) ?H = E:;EDBO Z COS(CEm - Of”)

m, p=1 e,

¢
= a}“EnBﬂ [N + ¥ cos(e, — a,)

mwn

in apreement with (4.24).

Let ’S(r) ' signify the magnitude of S(r). According to (4.25), the mea
repeated measurements of this quantity is (¢/8w)E,B,N. Calculate the roo
mean-square (rms) dispersion of ]S(r) I about this mean.

The rms dispersion of |S(r) [ about its mean is

[y}

a

¢ ' 2
= gEU'BD ( Z COS(Gfm - an))

mEn

The mean-square sum is

(T elan-a)) = L cosla, - a,eosler, - )

m=#n ny, Ry, By, dy
My TR Ny e
[
= 5 Z [COS(OE"“ - an, + amg - ﬂ:n!)
oy Mg, iy, ty
" #'=n| ¢ ly ¥ iy

+cos(a,, ~ a, ~a, + a,,u)]

My

The mean of cos(e,, ~ &, + a, — a,) equals unity if m, = n, and 7, =1

otherwise it vanishes, Of all the m,, mz,-n,, n, sets included in the sum in (
there are N? — N ways in which. m; = n, and n, = m, (without allo
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my = n,, my = n,). A similar analysis applies to cos(a, — @, — @, + a,).
‘Thus, we conclude that

( Y. cos(a,, — an))2=N2~N

m*n

and the root-mean-square dispersion of |S| about its mean is
¢ 4
o= E;EDBOVNQ - N = gEoBoN (for large N ) (4.26)

We see from (4.25) and (4.26) that if we measured light intensity repeatedly
for- 10~ 8%-second intervals (and this is possible with modern detecting systems),
then the measurements would fluctuate about the mean (4.25) with an rms
dispersion, o, comparable to this mean. If the detecting system averaged over
» - 107 %second intervals, the mean would still be given by (4.25), but now the
rms dispersion between successive measurements would be ¢/ Vv . For example,
repeated measurements of one-second average intensities would have an rms
dispersion that is approximately {108 ‘= 10* times smaller than the long-term
average intensity.

Now consider the interference fringes observed in a Michelson interferom-
eter. This interference is produced by the superposition of two beams which have
a common origin but different path lengths. A path length difference of A/
introduces a phase difference between the beams of 20 Al/A = ¢. But if A/ is of
the order of a meter or less, then the travel times of the two beams will be
associated with the same set of atomic phases «,. Thus, the observed intensity,
averaged over ~ 107% 5, is

P
Zer‘am KR Egi(nt,,,+¢-) ngam(]_ 4+ eiu{:)‘
nt m m

2

2
|el'¢/2(el'q'»/2 - 6,—511:/2) I2

E 2 'tn
m

12 $
Y e cos?~ (4.27)
m 2
We see that the interference between the beams is constructive or destructive,
depending on the value of cos®) /2.

Suppose that the two beams in the interferométer were from different light
sources. Then (4.27) would be replaced by

Zﬂ,r’nm + Zei(ﬁm+¢)
m m

=4

2

2 2
7 n z [g‘-("m'_(ﬁmz.l.,\g,))_{_g—,‘(nml—(amﬂ-i-t!:))]

my, my

-

= I Zgium
m

Y ¢
m

2
= +

2
+2 ) cos(am‘ -a,, — ¢) {4.28)

My, Wiy

Zemm
m

Z ¢ Gy
m

Here we have used «,, and d,, to label the different atomic phases of the mth
components in the two beams. We assume that the light sources are independent,
so a«, and &, are uncorrelated. Then, if our observation averages (4.28) over
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_B a » + N
many 10™ "-second intervals, each cosine term will average to zero, Wha
is

1. ia,,

an Incoherent sum of contributions from each beam. This is independep
path-difference-related phase ¢, and there are no interference fl'lnges
beams are from different light sources. However, if (4.28) is measured ove
interval comparable to 107% s (for incandescent sources), then the thi
does not vanish and mterfcrence effects are observed. If the light soure
lasers, one can detect interference effects in measurements averaged QVE
time 1ntervals

If the beams are from the same incandescent light source, but A/ is
than a few meters, then the travel times of the two beams will differ b
than 107% 5, and thc fields at the viewing screen from the two beams w111
time, be assoc1ated with different sets of atomic phases, The situation is s
that produced by independent sources for the two beams, and no interferpy,
fringes will be produced. Of course, in a real measurement the fringes
gradually disappear as we go from Al < 1 m to Al /}\ > several mctcrs..

to have its own hnear polarization
g, = Xxcosf, -i-ysmH

and (4. 24) are replaced by
N
E(r, l) — Euei(k:—mt) Z Emﬂm"’

me= ]

N
B(r, t) = Bef*==w § 2 x § ¢

m=1

" PROBLEM 4.3.3
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and the energy flux, averaged over 107" g, is
7

c N ) =
S(r) = Ef} X(‘% X ﬁ)E()BD E ﬁ ) Ele"“'m

m=

A . —
= 2 8 EUBU E (/J ”'1)( Enlg)c'(“n] mz)
ki

iy, =1

N

Y (p-a)+ X

m=1i my#F g

Hl| f) ENI )Cos(alrll - am'_.)

As before, the m, # m, terms do not swrvive averaging over many 10~ %.second
intervals. The average value of each (- §,)* term is 1/2, since the &, are
distributed at random about any direction ji. Thus, the long-time-averaged flux
that emerges from the polarizing filter has magnitude (¢/167)E,B,, which is
one-hall the magnitude of the incident flux.

Light of intensity (¢/167)E, B, emecrges from a polaroid sheet, linearly polarized
in the p direction. What experiment could you do to determine whether the light
incident on the other side of the sheet is

(a) unpolarized, of intensity (¢/8w)E,B,, or
(b) linearly polarized parallel to p, of intensity {¢/167)E, B, or
(c) linearly polarized at 45° to p, of intensity (¢/87)E,5,?

Rotate the polaroid sheet. If (a) is true, the transmitted intensity will be
unaffected. If (b} is true, the transmitted intensity will decrease no matter which
way the sheet is rotated. If (c) is true, the transmitted intensity will decrease il the

sheet is rotated in one direction, and increase if it is rotated in the opposite
direction.

OMETRICAL OPTICS

mm——— 4
S(I‘, t) = E;EUBURe E Enl. X (z X m;) (""l_ﬂ'"n)
"y, iy

=i EBRe ): 2 . pian—an)

y o, y
ny, my

| N+ X &, B, ros(a, — @

1

Py
Since the polarization vectors £, are independent of the a,,, each term
£, cos(a " m_) will average to zcro |f we average (4 30) over many 107

obtained for lmearly polarized light.
Now suppose that the unpolarized light of (4: 29) passes through a p01ﬂ

J in the x—y plane. On the far side of the filter the fields will be
N
E(l‘, 't) = pEﬂgi(.&Z_ml) 2 p ' Eme""m

me=|

N
B(r,t) = 2 X B0 3 } - ¢

m=1

4.4.1 Fermat’s Principle of Least Time

The path taken by a light ray between points 4 and B is such that the time of
travel along this path is stationary with respect to small deviations [rom this
path.® Usually, the time along the path is an absolute minimum.

Figure 4.6a shows a light beam traveling from 4 to B alter reflection from a
plane surface. The travel time for the indicated path is

1 1 — 7
—yhl + 2P+ A (D — &)
v - v

Here v is the speed of propagation of light in the medium above the plane. 7'(x)
will be a minimum when-

a1 D—x
dx [ \/}l% + x2 l/h'l _D — r)

0 =

8 Far the relation hetween Fermat's principle and the wave and photon interpretations of opties, see The Feynman
Lectures on Physics, R, P, Feynman, R, B, Leighton, and M. Sandy, Addison-Wesley, Reading, Mass., 1964, vol. 1,
chapter 26,
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FIGURE 4.6 (a) A light path
from A to B via reflection
from a plane surface, (b) a
light path from A to B via

refraction at a plane surface,

PROBLEM 4.4.1

A g )——f ] Ageor——D—

k
1 0|8 z ks

I D — x|
“'“I"*L—D - .1:—>l

fa) {b)

7]

b

Thus,
sinfl; = sinéd,, g, =40,

and the angle of incidence equals the angle of rellection,
In Figure 4.64 the points 4 and B are on opposite sides of a plane
separating media with refractive indices n, and n,, Now the travel time i

T(x) = i+ + 2+ (D)
with ¢ the speed of light in vacuum. T'o minimize 7(x), we set
ny{D — x)
& o\ i+ (D)

n;sin @, = nysinf,

the radiation {cf. Section 3.17). Thus, if the incident light in Figure 4.
several frequency components, they will emerge at several different angl
refraction f,, even though they all had the same angle of incidence 8}
dependence of the ratio n,/n; on frequency has produced a dispersion.
incident light. We have already encountered the phenomenon of dispers!
connection with diffraction gratings (cf. 4.17).

An idealized planet has a transparent atmosphere whose index of refraction
a certain wavelength varies with height according to '

n(h) =14 Ne~t/H
where
h = distance above the planet’s spherical surface,
N = a constant, which is much smaller than unity.
H = a constant which is much smaller than the planet’s radius R.
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Find the approximate height at which a light ray can travel in a circular path
around the planet (i.e., along 4 = constant). What condition on N,H,R is
required for there to be a solution with 4 > 0? Use Fermat’s principle.

The time it takes for a light beam to circle the planet at radius r is

T = 56’1(7’)\/0;19)2 + (dr)?

N A
¢ 4 46

The Euler-Lagrange condition for this to be stationary, subject to the restrictions
(0 =r27) =1, is

d dL aL
df 3 f*’_” o
df
with
. dr 2, dr\?
r,-;@ =n(r)y\/r T

1If we carry out the differentiations, we see that a solution with r constant is
possible only if

n(r) + rﬁt—d(:—) =0

If we apply this condition to
a(r) =1+ Ne~tr=R/H
we find that

r
(r—RY/If _ N — 1]

Since r and R are comparable, and much greater than H, this equation is
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FIGURE 4.7 A bundie of rays
emerging from A and 4 B
focused at B.

approximately the same as

NR

H

= R7H

H1 NR
= n I

r— R

If / is to be positive, it must be that NR > H.

4.4.2 The Idea of a Focus

If the rays in a bundle emanating from 4 are focused at B, it must b
travel times along all the paths of the rays in the bundle are equal (Figu
the travel time along one path were less than the travel time along its neig
Fermat’s principle would require that the light follows that path alone.’
to be the real image or focus of 4.

PROBLEM 4.4.2 The index of refraction of glass can be increased by diffusing in impur.it_ié‘s
then possible to make a lens of constant thickness. Given a dis'k of radiu |
thickness 4, find the radial variation of the index of refraction n(r): that wil
bring rays emitted from 4 in the diagram below to a focus at 5. Assumg.thaté
lens is thin (d < a, b). -

o be——

Y g 5,

E 4.8 A spherical
entered at C and
R, separates ho-
8N8OUS media with re.
Y@ Indices n, and n,.
dia am refers lo a

0 which n, > n,.

Compare the two paths shown between 4 and B. The requiremnent of ¢q
time along the two paths gives

Ja?+ % +d-a(r) + V6 + 1 =a-+d-n(0) + 6

Thus

a+b— e+ 0+t

n(r) = n(0) + 7
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4.4.3 Refraction at a Spherical Surface

In Figure 4.8 a homogeneous region of refractive index n, is to the left of a
spherical surface of radius R, and a homogeneous region of refractive index #, is
to the right of this surface. Suppose that point 0" is the focus of the light emitted
from point 0. Then the travel time along paths OPO’ and 0Q0" are equal. Thus,

ns g, =0 - 0V+an,- 0V (4.35)
if
h<< s, 8,R {paraxial rays} (4.36)
then
- ,) Ao\ 1A
5, ={0Q + K = 0Qi[1 + 50 = 0Q 1+E—0—Q§
1P
5 =00+ 7 o0 . (4.37a)
) 1
5= 00 2 o0 (4.371}
s
R =0 -+ 5 EE (4.37c)
If these approximations are used in (4.35), we get
", .y Hy — 1,
og " og T Tcg
IF (4.36) is true, this last equation is also approximately equivalent to
S B B (4.38)
oV or R

Equation (4.38) is appropriate to the situation shown in Figure 4.8, in which
the center of curvature of the spherical surface is in the medium of larger r, and
in which there is a real object to the left of the spherical surface. We can continue
to use (4.38) in other situations if we obey the {ollowing conventions:

1. R is negative il the center of the spherical surface is in the region of smaller #.

2. A ncgative ohject distance OV refers to a virtual'object at a distance — OV to
the right of . This means that the light traveling in medium | appears to be
converging to a point — OV to the right of V.

ni ng
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FIGURE 4.9 An object 10 cm
from the curved surface of a
hemispherical lens, on the
axis of the lens.

PROBLEM 4.4.3

FIGURE 4.10 A thin lens with
two spherical surfaces.

3. A negative image distance O'I refers to a virtual image at a distance — O'Vt
the left of ¥, This means that the light traveling in medium 2 appears to h
diverging from a point — 'V to the left of V.

A hemispherical lens has a 4-cm radiug of curvature, and is made of glass of
refractive index 1.5. An object is placed on the axis of the lens, 10 cm from the
curved face. Where is the final image? (See Figure 4.9).

We first apply (4.38) to the refraction at the spherical surface:

1 . 1.5 1.9 -1

10 cm 0V dem
The solution of this equation gives O'V 60 cm, and the image of this firs
refraction is 60 cm to the right of the point where the axis pierces the curve
surface. This means that this image, which is the object of the refraction at th

plane surface, is 56 cm to the right of the plane surface. Thus, for this sec:o;ﬁ'
refraction, we have '

1.5 + 1 1—-1.5
—5cem @ OV o
56 cm
oV = T = +37.33 cm

The final image is 37.33 cm to the right of the plane surface of the lens.

4.4.4 Refraction by a Thin
Lens with Two Sphenca.' Surfaces

If we apply (4.38) to the two surfaces of the lens shown in Figure 4.10, and'
neglect the thickness of the lens, we obtain the lensmaker’s formula

1 1 1 1 1 :
—t =g = 1) = - = == 4.39)
o { (n ) R R, f ( )
fy

PROBLEM 4.4.4
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Here o and ¢ are the object and image distances, respectively, n is the refractive
index of the glass, R, and R, are the radii of curvature of the surfaces, and f is
the focal length of the lens. If either surface curves in the opposite direction to that
shown in Figure 4.10, the sign of the corresponding R should be negative.
Negative values of o and/or 7 imply virtual object and /or image. The lateral
magnification of the lens is given by

!

m= ——

0

(4.40)

The minus sign signifies that a real image of a real object is inverted, whereas a
virtual image of a real object is erect.

A lens must be selected to photograph a cubic spark chamber 10 inches on a side.
The image size is to be 1 cm (so as to fit three images on 35 mm film). The
distance between the spark chamber and film is 3 m. Assume, where necessary,
that the sparks and light used for illumination will be in the visible red portion of
the spectrum. )

25.4
cm

b Ttlem

{a) What focal length lens should be chosen?

If the 25.4 cm box is to have a 1 cm image, then a/b = 25.4/1; also
a+ b= 300 cm. Thus, a = 25.4/26.4-X 300 cm, b = 1/26.4 X 300 cm, and
the focal length f is given by

1 1 N 1 ab
f oa b =53
(b) If the F-stop of the lens is 5.6 (the F number is the ratio f/D, where f is
the focal length and D the diameter of the lens), compare the resolution limit
imposed by diflraction with that imposed by the 3 pm grain size.

Equation (4.12) expresses the diffraction limit of a lens in terms of its
diameter 1. We can calculate D from

= 10.9 cm

D f 13.9 cm 195
= = = 1.95 cm
(/D) ~ 58
Then (4.12) gives
A 6500 A
Ao = 1.22— =122 X = = 4.1 X 1077 radians
D 1.95 X 10 A

This corresponds to an uncertainty in position on the screen of about
41X I07% =5X10""cm =5 pm

Thus, the diffraction produced by the lens imposes a stronger limit on the
resolution of the camera than does the 3 um grain size.
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FIGURE 4.11 A paraxial ray
emanating from 0 is re-
flected from the spherical
mirror to 0’.

PROBLEM 4.4.5

1

+ -
3

| -

R

VIEW PROBLEMS
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R
48

Review Problem 197

The difference of these two equations gives us R:

7

12

— CIm.

7

An opaque screen in the x—y plane is perfo-
rated by three circular holes, each of diameter
a, with their centers at points whose {x, y)
coordinates are (d,0), (—d/2, —~d\/3v/2),
(—d/2, +dy3 /2). The screen is illuminated
from below by light of wavelength A [rom a
distant source on the —z axis. Find the distri-
bution of diffracted intensity above the x-yp
plane, as a [unction of the polar coordinates

g, ¢.
| A
{nswer: I(0, ¢) ~ |1 + 4cos”

/

T3

4.4.5 Reflection by a Spherical Mirror
The condition for a focus applied to the situation shown in Figure 4.11 gives
s +5=0V+0V
If we use approximations (4.36) and (4.37), we get
| 1 2

__+._......._=
ov o0V R

. e . . . : sin § sin ¢
R is taken positive if and only if the center of curvature is on the side from whic

the light is incident. As in Section 4.4.3, positive values of OV and/or O'F rel

to real object and /or image; negative values imply that the object and /or imag +4 cos sin & sin ¢
is virtual, The magnification is given by (4.40). ' G
Xcos| —sinfcos ¢ |}
A cook has a shiny, spherically shaped spoon. On looking into the concave side 7\‘ \
he sees his inverted image 4 cm from the spoon. Without changing the distance J Eﬂ Gin 0 |
between himself and the spoon he turns the spoon over and sees an erect image of oA
himself 3 em from the spoon. What is the radius of curvature of the spaon?- N Oma v |
sin| —sin @
A -
5 ot g _
5o Plane parallel 10-cm radar waves emerge [rom
. - — a horn antenna whose opening is a rectangle
that is 2 m wide and 1 m high. What are the
sz, R posltive N 45, R negatlve angular width and height of the central maxi-

mum in the heam?

ful f&) 1

20
1

Answer: angular width = 2 X aresin
The signs of R and s, are reversed in the two cases. The mirror equali

gives angular height = 2 X arcsin| —
_}_ + _1_ - 3 A pinhole camera is made by cutting a small
5 4 R circular hole of diameter a in one side of a
closed rectangular box, and projecting an
_1_ _ “1_ _ _2_ image on the opposite side of the box, a
5, 3 —-R distance I, away. The camera is to be used

with light of wavelength A. What is the opti-
mum pinhole size, optimum in the sense that
It produces the smallest possible image for a

4.4

4.3.

4.6.

4.7.

point source of light far away from the

camera? Answer: a = 01.22A L.

A parallel beam with A = 5890 A is incident
normal to a diffraction grating with 40
lines/mm. How many orders are visible? What

o
is the dispersive pawer 7y in the 4th order?
G
Answer: 42; 1600 rad /cm.

Light from a source slit falls on two narrow
slits 1 mm apart and 100 mm from the source.
The fringes are observed on a screen I m
away, Only the band between 4800 and 5200
A is used.

(2) What is the fringe scparation?
Answer: angular separation ~ 5 X 107
‘ rad,

linear separation ~ .5 mm.

(b) How may [ringes are clearly visible?
Answoer: about 13,

{c) How wide can the source slit be without
seriously reducing the fringe visibility?
Answer: angular width << 5 X 1074 rad,

so linear width < 2 X 1072 mm.

Newton’s rings are observed when a plano-
convex lens is placed convex side down on a
flat glass plate and illurninated from above
with monochromatic light. The first bright
ring has radius 1 mm.

(a) If the radius of the convex surface is 4 m,
what is the wave length of the light?
Answer: 5000 A

(b) If the space between the lens and the flat
plate is filled with water (rn = 4/3), what
will be the radius of the first bright ring?

Answer: B7 mm.

Tnterference effects such as beats can easily be
observed with two sound sources, such as two
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tuning forks or two loud speakers driven by
oscillators. However, interference effects can-
not be demonsirated with light from two dif-
ferent sources. What is the reason for this
difference?

4.8. A slab of birefringent crystal of thickness T
has its lower face in the x—y plane. Light
propagating in the +2 direction through the
crystal has refractive index n, if its E vector
points in the ¥ direction and refractive index
n, if its E vector points in the 3 direction.
Suppose that linearly polarized light of wave-
length A is incident on this crystal from be-
low, with its E vector making an angle of 45°
with the X axis. Show that the light emerging
from the upper crystal face is elliptically
polarized, and find the ratio of the semi-axes

of the ellipse. a(ny — n,)
Answer: tan —

49. A light ray is incident at angle  to the
normal of a plane-parallel glass plate of re-
fractive index n and thickness ¢. Find the
lateral displacement ¢ of the ray if n = 1.

Answer: d = tsin| Y| 1 - —||.
n

4,10. The concave mirror of a reflecting telescope is
50 cm in diameter and has focal length 250
cm.

(a) The moon as seen from the earth subtends
an angle of 30 min. Find the diameter of
the moon’s image formed by the mirror.

Answer: 2,18 cm,

(b) Find the diameter of the image of a star in
this instrument. (Use A = 5500 A)
Answer: 3.4 X 107 cm

4.11. A large concave mirror has a radius of 4 feet.
A man stands 40 ft. in front of the mirror.

(a) Where is his image?

Answer: 2 Eft in front of the mirror.

4.12,

4.13.

4.14.

4.,15.

(b) If the man walks toward the mir;d

mph, what is the speed of his i image
what is its percentage rate of Chang
size?

Answer: %T mph away from

mirror, 11_5%-:
Show that the lateral magnification prody;
by the spheracal refracting surface Shown
Figure 4.8 is given by

n - OV
n, - OV .

m= —

where the minus sign signifies that the j Image
is inverted relative to the object.

The lens shown is made of glass of refrac
index n = 4/3. An object is located at p'
tion 0, 27 em [rom the left-hand vertex, WH
is the image?  Answer: 60/13 em to the righ

of the right-hand vertex,

27 tm

[~} ]

3cm

The first focal point of a lens is dehined as tl'
location of the object point on the lens‘a
whose image is at infinity. Similarly, the
ond focal point of a lens is the image point
an infinitely distant object. Locate the: firs
and second focal points of the lens considere
in Problem 13. _

Answer: 18/5 cm to the left of the firs

Every section of this chapter on quantum mechanics contains references to our
previous work in mechanics, electricity and magnetism, and optics. Thus, al-
though quantum mechanics gives us a completely new way of understanding
physical reality, its concepts and methods are closely related to those we first
learn in classical physics. When confronting a problem in quantum mechanics, it
is usually a profitable first step to visualize the corresponding classical system, if
there is one. The experienced practitioner of quantum mechanics knows just how
far classical reasoning can be trusted, and where nonclassical effects will appear.,
Unfortunately, this kind of knowledge is not easily summarized, because the
classical limit of quantum mechanics is a complicated one, with many aspects.
Nevertheless, the ability to use classical and quantum concepts simultaneously,
and reliably, is a valuable one, and every student should attempt to develop it.

CLASSICAL MECHANICS VERSUS QUANTUM MECHANICS

and 12/5 cm to the right of the secon
vertex, respectivel

Prove that the distance between the obje
and its image formed by a thin convergin
lens can never be less than four times the fDCﬂ
length of the lens.

How can we tell whether it is important to take quantum mechanics into account
when we are analyzing the motion of a physical system? A simple and useful
criterion can be expressed in terms of Planck’s constant 4, or in terms of the
related constant %, defined by # = 4/27 = 1.05 X 10" erg s:

From the parameters that characterize the motion being considered, extract a
representative physical quantity, 4, whose dimensions are action (M« L*/T =
energy X time = momentum X dlstancc) Ii A = A, itis important to take quantum
effects into account; if A > &, quantum effects may be ignored. It will never
happen that 4 < 4.

We consider two examples of the application of this criterion: motion of the
earth around the sun and motion of an electron around a proton. In the former
case, suppose the earth and sun are moving at a constant separation R. If the

198
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gravitational attraction provides the centripetal acceleration, we have

mymg memg v*

R? my+ my R

G(my -+ mg)
TV TR
4= pR =mgmy ——E——
my - mg
If 4 = A, this implies
R Bo\img+ ms _ 10~ m

Mg G

Thus, any value of R that is realistic in a discussion of planetary orbits will ley
to an 4 much greater than 4. We can ignore quantum ecffects when we'd
celestial mechanics. A similar analysis applied to the motion of an electron
around a proton gives

e m,m, y?
R m,+m,R
mfml
A=pR= [ ——L4¢"R
m,+m,
If A=#h,
;12
R=F—— =053 X 107%cm
mtmp o
-

m, +m,

ground state of hydrogen.! For this state, therefore, 4 = /& and quantum effect
are important. They are not important for an electron-proton state with, say
R =~ 10,000 X 0.53 A, which would lead to an 4 value of V10,000 2 = 1004,
The classical energy of an atom with an electron moving in the orbit whos
radius is given by (5.1) would be ’ '

m,m, v? ¢? e* “e?
mm,-i—m,,Q R 2R R
mm, .
m, + m,
= = T136cV (5.2
)

The estimates in (5.1) and (5.2) suggest that in systems dominated by th
Coulomb interaction of electrons and protons, which essentially include all of

"This quantity is called the * Bohr ractius.”

PROBLEM 5.1.1

PROBLEM 5.1.2

PROBLEM 5.1.3
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atomic and molecular physics, the important lengths will be of the order of A,
and the important energies will be of the order of ¢V. With this information
alone, we can make many uselul order-of-magnitude estimates.

How much energy is released when 1 kg of nitroglycerine is detonated? (The
gram-molecular weight of nitroglycerine is 227.}

Since this is a chemical explosive, involving rearrangement of atomic and
molecular structure, we will make the rough estimate that 1 eV is liberated for
each molecule of nitroglycerine. A kilogram contains

1 mol ,. molecules ,
1000g X —— X 6 X 10 ———— = 2.6 X 10! molecules
227 g mol

Thus, the energy liberated is approximately

9 ), — 2 crg
26X 10MeV=26%x10"eVX16XI10"—
- [

=4 x 10" erg = 4 X 10° ]

What force is needed to pull apart a rod of copper, | cm® in cross-section?

Consider two facing planes of copper ions, perpendicular to the axis of the
rod. If we take the ionic spacing to be 1 A = 107" cm, then each plane will
contain 10'® jons. Let us puess that the force required to pull two adjacent ions
apartis 1 eV/ A. Thus, the total force needed to separate the planes is

1eV 1.6 X 107 "er
10'* X ~—— = 10'° X 5 d
A 107" em

= 1.6 X 10" dyne

= 6 X 10° b

In fact this number greatly exceeds the actual tensile strength of copper
(~ 2 X 10% dyne). A real copper crystal contains many delects, which substan-
tially decrease its tensile strength.” —

An equivalent way of stating the A = % criterion is that quantum elfects are
important when

R= - (= XY (5.3)

As before, R and p are distances and momenta that characterize the motion
being considered. The length %/p = A is called the de Broglie wavelength.

Suppose a particle of charge +Z¢ and mass m moves with asymptotic speed v
toward a stationary particle of charge +Z,¢, mass M. Take the “characteristic
length” of the orbit to be the distance of closest approach in a head-on collision.
Find a criterion for deciding whether quantum effects are important.

*For o detailed discussion, see R W, Lardner, Mathanatival Theary of Distocations and Fractuare, University of
Toronto Press, 1974, chapter 1. The discrepancy is explained by the presence of edge dislocations. The Tull value
is realized [or whiskers, which are near-perfect crystals.




202 Quantum Mechanics

5.2 THE FORMALISM OF QUANTUM MECHANICS

The asymptotic kinetic energy is mw?/2. At the distance R l.)f. o
approach, this will all be converted into potential energy,

m® Z,Z,e"
2 R

27, Z,e"

R =
my*

Thus, the problem can be treated by classical mechanics when

2Z,Z,e" h
R=—e——— % A =—
my“ my
Z,Zye*
2— =1
hv

The quantity 1 = Z, Z,¢*/#v is called the Sommerfeld parameter for the orbi
plays an important role in problems of scattering of charged particles, . .

A complete presentation of the formalism of quantum mechanics is beyon
scope of this review. We will limit our discussion to those aspects of the formali
needed for the applications given in the remainder of this chapter. ”

A state of a physical system is represented in quantum mechanics’
vector ¥ in an abstract “state space.” This is a complex vector space o
general, infinite dimension, Corresponding to any two state vectors @ and
the system, a positive-definite scalar product, {®@|¥) = (¥|®)* is define
is any complex number, the state vectors ¥ and ¢V represent the same phys
state of the system. A state vector ' is said to be normalized if (V) =

Physical observables are represented by Hermitian operators whichi ac
the state space on the state vectors. If 4 is such an operator, then AY symbo
the state vector obtained by acting with 4 on ¥. The scalar product of @

AV is called a“*“matrix element”,

(QAT) = (D|4]T)
The Hermitian character of 4 implies that

(DAT) = (AD|T) = (F|4AD)*

or, equivalently, ‘

(OAT) = (T|A|D)*
The “diagonal” matrix element (¥[4|¥) is called the “expectation value
operator 4 for the state ¥.” If ¥ is a normalized state vector, then (¥|4|¥
the average value of the physical cbservable represented by 4, when measurc
the state of the system represented by ¥, In general, operators represcn

different physical observables do not commute with each other.
If 4, ¥, and a number of A, satisfy the relation

AT = AT !

then ¥ is said to be an eigenstate of A4, with eigenvalue A. It is not difficul
show that the eigenvalues of a Hermitian operator are real, If (5.4) is obeye
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measurement in the state represented by ¥ of the observable represented by A
will certainly yield a value equal to A. If @ and W are both normalized, and ¥
satisfies (5.4), then ‘
| P=[T|O)’

is the probability that a measurement of 4 in the state ® will yield a value equal
to A. For example, if 4 has a set of orthonormal eigenstates ¥,

A=A,
{ ll’j|‘!’k> = ajk
and ¢ is a linear combination of the {; with numerical coefficients ¢;,

¢ = Z{;H’-’j
J

then a measurement of the observable represented by 4 in the state represented
by ¢ yields a result A, with probability

o= (bl9) ]2 = )

2

Z"}'(%]‘!’j)
J

= |'71t|2

Z 6,8,
i

Explicit calculations in quantum mechanics are most easily performed in the
“Schridinger picture.” The state W is represented by the wave function, a function
of the generalized coordinates® ¢,,..., ¢, and time ¢

¥ = ‘Ir((!'ls'-'sqzist) (5~5)

The scalar prdduct {®@|¥) is given by an integral over the generalized coordi-
nates:

(BIT) = [dgy,..., dg,@*ay, . 00y )F(g1e 00 1)

The operator corresponding to the physical observable ¢; is simply multiplication
of (5.5) by the variable ¢;; the operator corresponding to the conjugate memen-
tum p; is f/i- 8/9q;. The rules of differentiation imply that

hi d d
(pja— ab)¥ (g1, qun ) = = Ef(qk") - qka—q,j‘l’
=E E&Ir.;_qkf_.\.g_qk?}i
i\ dg; dq; dq;
e ha \r
i

This result applies to any state W, so that we can write

;]
PiGe — b = ?Bkj (5.6)

3T he student should review the discussion of generalized coordinates and their conjugate momenta given in
Section 1.9,
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5.3 ANGULAR MOMENTUM

as an operator equation. The commutation relations (5.6) apply to any set

generalized coordinates and their conjugate momenta. For example, if the syste

consists of a single particle and (g, 44, 95) are taken to be its Cartesjy
coordinates (x, ¥, ), then (5.6) becomes

h

pox = xp=

)
[)x_}’ - .ﬂ)r = 0! etc. i

To determine the time dependence of W, one starts with the class
Hamiltonian (1.9.47) expressed in terms of the ¢;, p;, and t. The p; are replaceq
by (%/1)8/8q;, and the resulting Hamiltanian operalor is used in the time-dependen
Schridinger equation: '

hod hod

Hloao g = ] 9(g1, s s t
ql! Qd i aql i aqd (QI » )

d
= lfl'b'z‘l'(qi,.. w3 Tt t)

If H does not depend explicitly on ¢, one can use the method of separation o
variables to separate the ¢ and ¢ dependence of ¥, This leads to solution
{(5.7) of the form

(gyseensqant) ="M ER(g,, 0 q0) (5.8a
where ® and E appear in the time-independent Schrsdinger equation
| hod noo
H ‘Fls---:(ldaTa‘&::---s’zTE'q“; (i ) _
=E(I)(ql,""Qhr) (58

For example, the time-independent Schrodinger equation for the one-dimen

sional harmonic oscillator is obtained by making the substitution  — £/i - d/d

in the classical harmonic oscillator Hamiltonian (1.9.49): oo
{ (hd\? mw

4 ——x?|p(x) = E(x)

om\ i dr 2
B d? mw*
2 .
_———  — =FE
oo T Ty o(x) = Ep(x)

The normalized solutions of this equation are discussed in Section 5.4.4. :

"This prescription for finding the Hamiltonian operator to use in th
Schridinger equation can only be used when the system‘has a classical counte
part, from which we can obtain a classical Hamiltonian using (1.9.47). There a
some quantum phenomena for which there are no true classical counterparts -
for example, the intrinsic spin angular momentum of an electron, In these casc
other considerations must be used to infer the Schrédinger equation.

In both classical and quantum mechanics, angular momentum conservation i’s’ﬂ_‘}
important property of systems with rotational symmetry. According to (1.113)';.'
the external torque on a classical system has no component along some direction
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7, then the component along # of the angular momentum L of the system is
conserved. The corresponding quantum mechanical statement is: if the Hamilto-
nian H of a system is invariant under rotations about 7, then the eigenstates of
H can be chosen to be eigenstates of L - fi. Constructing eigenstates of L - T is
then a useful first step in the search for eigenstates of H.

5.3.1 Commuliation Relations

Classically, if the external torque has no component along several directions, say
fi, and #,, then both L-#, and L - /i, are conserved. However, in quantum
mechanics L + i, and L - i, are operators that generally do not commute with
each other. Thus, even though H may be invariant under rotations about bath
fi, and fiy, it is not possible to find simultaneous cigenstates of #, and f,. The
uses of angular momentum in quantum mechanics are limited, therefore, by the
noncommutativity of the different components of L. As we will see below, these
operators are closely related to operators that actually rotate the state vectors.
The commutation relations between the components of L arc ultimately related
to the multiplication rule for the 3-dimensional rotation group.

In quantum mechanics there are several different kinds of angular momen-
tum operators:

1. Single-particle orbital angular momentum:

h
l=rXp=-rXxXv
?

2. Total orbital angular momentum of N particles:

N
L= Y

i=1
3. Single-particle intrinsic spin angular momentum s
4. Single-particle total angular momentum
j=1+s
etc.
The commutation relations are of the same form in all these cases, Let us use

Jor Sy J. to label the Cartesian components of any of these kinds of angular
momentum. Then

[Jos L] = Jdy = T = ik (5.102)
[ L) =g — T J. = i), (5.10b)
[J,. S =T = T, = i), (5.10c)

Since /,, J,, and J, are physical observables, the operators that represent them
are Hermitian.

A consequence of (5.10) is that the operator J - J commutes with all three
operators /.. Therefore, we can find simultaneous eigenstates of J - J and one of
the J,, say /.. These ecigenstates are conventionally labeled !, with the { and m
indices related to the eigenvalues of J - J and J. by

1 3
J - =R+ DY (le,-Q—,l,-z—,Q,... (5.11a)

Jabh = hm!, (m=—0,—1+1,...,0) (5.11b)

m nr

1
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PROBLEM 5.3.1

Moreover, if the ¢, are normalized, their relative phases can be chosen so t4

Job = (Lo+ g = a0 —m)(I+m+ D, (512,

J = (Jo = i)W = w1+ m){l = m+ 1), (5.1'2_1_,_

In the particular case of /= 1,2, (5.12) reduces to |
JWE=0,  JA,= (5.13a

J+‘Pl-i/12/n = W’llfzr J—‘!’]l;; = h’ab—x/z (5.136

Use (5 11) and (5.13) to calculate the matrices of J,, f,, and J. with respe.(.:t__t.

Y72 (m = +£1/2),
According to {5.11b),

UML) = 50,
According to {5.13),

(‘!’ljf/zux i Hbll‘;b =0

(Wl — LR = 2
Adding and subtracting these two equations gwes

WSl i) = 5

fz
(‘J’l—/iz/a].fjhbllﬁ) = 1'.5"

A similar argument can be made for (¢} Jx 5 1}1'/ a). The result can b
written

h : _
<‘1b}'1ﬁ21\]ﬂ|1[)}7|/:2> = E[Uu]m,.mu (514;[

_[o 1 _ |0 - =1 0] 5.14
"-*“[1 o]’ °J"‘[i 0]’ o [0 -1 (

The three matrices (5.14b) are called the Pauli spin matrices. The first row an
column of each correspond to m = +1/2, the second row and column to —1 /

where

5.3.2 Orthogonality of
Angular Momentum Eigenstates

We now prove the fundamental orthogonality theorem:

(qui ,,,,) =0 1O, my X something independent of m, m, (5.1:5)?
Proof Since the J, (and hence J - J) are Hermitian, we can deduce
from (5.11a) that

(DT - Juky = Why(Ly + 1) i,
(3 - Jol 4y = WL + 1)<¢,,,, Wy
= [0t + 1) = 4l + Dl lvly (610

o
!

GURE 5.1 The plane of the
rcle is perpendicular to A
§ « increases, the tip of
&) moves around the circle,
arting at r(0).
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The {,, I, values are restricted to those listed in (5.11a). Therefore, (5.16) implies
that (qul mn) = 0 unless {, = /,. A similar argument based on (5.11b) shows

that { ¢/ |1,b,,h) = 0 unless m, = m,, Next assume that /, = [, =, m; = m, = m,
and use (5 12) to show that

{ ! — (J +1=]) m (Jr Uj) "
(Gt sl¥mer) = <}'q/(l —m){{+m+ 1) h\/(l“ m)({+ m+ 1)

_ <¢;’r:|(.jx - !]_;)(Jt Jy)l\fbm)
B W= m)({+m+ 1)
(Sl S+ T = R0
R+ 1) — m(m + 1)]
LT R ALy
- ,1 [l(['*‘ 1) _m(m+ 1)] - <¢m"1bm>

Since we have shown that

)

(—l<m 1-—-1)

<¢m+ lhbm+ l) = <¢mhbm>

forall —/ < m < [ — 1, we have in effect proved the equality of the {¢/ |/
all m (for fixed ). The proof of (5.15) is complete.

m

) for

5.3.3 Conhection Between Angular
Momentum Operators and Rolations

Now suppose that a vector r is rotated about a fixed unit vector 7 (Figure 5.1)
The argument that is used to prove that v = @ X r can be modified to prove that

dr(a
d(a) =i X r(a)
_II we apply the chain rule to differentiate ¥ (r(e)) with respect to «, we get
d dr( o)
—(r(a)) = - Vi (r(a))
da da
ixXr-wi(r)
=71 X v(r)
;
= ;;-ﬁ-lt,b(r(a)) (5.17a)
) d

0

riw)

@)
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The solution of this differential equation for ¥(r(a)) is

¥(x()) = /P71y (x(0)) (

where the exponential operator in (5.17b) is defined in terms of its power ;
expansion

T m
RUGLEINSS -——(—-ai‘z-l)

I
mop M\ A

We can interpret (5.17b) as saymg that the operator exp((z/h)an - 1) rGtates.'th
function Y(r) about the axis #, through the angle —a.*
Equation (5.17a) 1mphes that il [y =0, then ¢ is unchanged by
rotation. Thus, states ¢/, with / = m = 0 are spherically symmetric.
A wave functlon Y(r) is appropriate only for a spinless particle. Fg
particle with intrinsic spin (say an electron or proton) r must be supplemented
“spinor index” ¢, which is also affected by rotation. This is accomplished |
adding an intrinsic spin angular momentum operator s to the orbital anguly
momentum operator 1 in (5. 17) Thus exp((i/h)aii - j) rotates the wave functip
of a particle with intrinsic spin. For an N-particle wave [unction, the correslaon
ing operator is exp(i/han ZAQ,JA) exp(i/han - J).
Suppose that an operator V is spherically symmetric. Then
e('/h)aﬁ'JVlP = Vg(l/ﬁ)uﬁj lﬁb (any Hb’ ﬁ’ a)
_ g/ MeiJgr = [ difh)ei-] (any i, a)
Differentiate this equation with respect to @ and set a equal to zero, to get
-JV=Vi.] (any #)

If we now set # = %, 7,% in turn, we get

JuV = IUL! (Cﬂ =X, J’J .Z)
Thus, a spherically symmetric operator commutes with all three components
the angular momentum operator. From this it follows that

J V P 4 = IU 'Ibm f‘m"Vltbm
(J ?:] )V my V(J x l}]_,,) "!x
= h“([E + m2)(12 i mE 1) Vlljmz

We see that Vv,bm has the same angular momentum propertles as 41,,, and,
therefore, the orthogonality theorem (5.15) holds, with prm replacing x})mz, i

(d’m, m;) = (‘fjmlthbm,) =

= 8, 18, m, X something independent of my,m, (520

If ¥ is invariant with respect to rotation about # only, then we can only
conclude that ¥V commutes with J,, and (5.20) is replaced by the weaker
condition :

( mlE Hjm.) J unless m = My

iFor example, use (5.17h) with A =2, a = 7/2, and ¢{0) = 1. Then r(c) = rj, and (5.17b) says that ';'
cvaluated at i equals /78072 g woaluated at 6%, Thus, $C/00/ ) ean be regarded as @ rotated threughi
—m/2 about 2 :

PROBLEM 5.3.2
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‘The Hamiltonian of a system in free space is spherically symmetric, so that
(5.20) can be applied with 7= H. Thus, il our ohjective is to find a set of states
that diagonalizes the Hamiltonian, it is advantageous to work with angular
momentum eigenstates.

An electron is in a state with z-component of spin angular momentum 4/2. An
observation designed to measure the component of spin angular momentum
along an arbitrary direction # is made. What is the probability of observing a
component of spin angular momentum 4/2 along #i?

This problem relers to two sets of states, x'/* and ¥!/% (m = +1/2), such
that

Xt =)L (5.222)
sPl/? = hmp!/? -2 (5.22h)

The answer to the problem is £ = |{ /3 X X1%2)|%. To determine this quantity we

take the scalar product of the m = 1/2 component of (5.22b) with X175

(X1%31% « s|gi73y = -~<x‘/" PIRY = (R sxIZEI2) (5.23)

The dot preduct # - s can be written
nes=ns tns +ons,

n,o—on,
= 5 J(J‘r—-zls*_r)+('2 (s +zZrJ,)-I-:15
Thus, (5.13) and (5.11b) imply that
) n, + in ” oo

n- sx{ﬁ,:, = fz--g—x_[ o+ o0 7 1,;/,3
and (5.23) bccomes

'1 " h P u

—um W) = 50 = i XY + 0 (A
(n,— )(xl_/l)/q [91a) = (1 — n ) x| (5.24)

If the x1/* and ¥'/? are normalized, then
12 2 /2017212 _
KXYE e + AR = 1
This equation and (5.24) can be satisfied by .

(XYl = (1-n) _ (I —n)

i ‘/|n_t_ - fn_r|2 + (1 — n:)! 1/2(.1 —n.)

o (HJ — in ) n.— i

(x VHW‘I/ ) = — 1 = = / J

\/ITI“, b Hi'_rl“ + (1 — n:)' 12(1 — n:)

Thus,
o + n
P = KX = "T_TT

1 —n? L+n, 1+ cost 0 (5.25
S -a) 2 9 = cosTy .25)
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where § is the angle between #i and £, Note that this implies tha; i
measurement of 5, yields /2, a subsequent measurement of s, yields 44 /2,
a probability P = 1/2 (and —#/2 with P = 1/2). Y

PROBLEM 5.3.3 Thf: Paul.i spin m‘atrices (5:14!3). obey 0,05 = 8,41 + ig,5,0,. Here 1 isa 9
unit matrix, €,5. is the Levi-Civita symbol, and summation over repeated ind;
is implied, Use this result to calculate the matrix element '

(yb’/2|e("/"‘)“?’"|t,b’/2>

y iy
of the rotation operator.
Let us use the power series (5.18). Tor the m = 2 term, we have

P A%
(5-5)° = (035 )(0558) = ValipSap = 7| L0

2 .
=13 vnvﬁ[Snﬂ +z£aﬂ},u?]
hy? y h 2'[1

Tig) T (5)

Here we have used the fact that 7 is a unit vector, so that z,2,(= v? + vj? +
= 1. Repeated application of (5.26) gives o

71 m
(- s)2m = ( 5 1
§y 2wl m=10,1,2,...
(?J , S)2m+l = E (V . U)
If these terms are used in (5.18), we get
) o 1 io: 2m
L2 i/ RYabe sy g1 /2Y —1 1
(‘lbml | ]‘lbmu ) ’EU (Qm)! 2
fos) 1 1.01 2ml
4 R . 5
20 @m+ 1)1\ 2 0o

aﬂ L.a,
cos—1 4+ {sin—0 ‘0o
2 2

o _ o a
cos— -+ v sin— isin— X (v, — @
2 < 2 2 (.\‘ j!)
Lo« X( ny ) o _ o
2 sin— u, + v, cos— — w.sin=
2 ) ’ 2 =2

This result can be used to answer the previous problem. If we put 7 in ._ ¢
x~y plane and set a = §, the resulting rotation would send £ into a vector:t
making an angle & with 2, What we previously called {x}/3|¥\/3) would now be

g g '

(P leli/ Mt | YIRS = cos + fysin— = cos—

2 2
0

2—2—-, in agreement with (5.23).

leading to P = cos
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5.3.4 Parity

We have seen that when a Hamiltonian is invariant under rotations, it is
convenient to work with states ¢! that are simultaneous eigenstates of J - J and
J.. Now suppose that the Hamiltonian is invariant under inwersion

Xy ¥, & - =X, ), —Z

Let I represent the effect of inversion on a wave function
B(ry,..r,) = d(—reen, =)

The operator I can have eigenvalues® +1. Let us label the corresponding
eigenstates with the symbol 7 (the panty):

R =mpm  (m= %)

Derivations similar to those used to obtain (5.16) and (5.20) show that if an
operator is invariant with respect to inversion, its matrix elements between states
of opposite parity vanish.

A rotation is a homogeneous linear transformation of x, 7, 2, and so every
rotation commutes with the operation of inversion. The result (5.19) then shows
that

JI=1. (a=x7,z)
This means that it is possible to find simultaneous eigenstates of J - J, /. and I;
= apy (m= 1)
J - Jun = i+ D4
PRGN

A rotationally invariant, inversion invariant Hamiltonian is diagonal in {, m,
and 7.

5.3.5 Spherical Harmonics

The spherical harmonics Y (8,$) are single-valued functions of position on the
unit sphere that are cigenstates of /, and1- 1

LY, ¢) = tmY,(0, ) (5.272)
(1, +i,)Y8,¢)= WIFm)({£m+1)Y,,(0,0) (5.27b)
1- 1748, ¢) = #2(1 + 1)Y,(8, ¢) (5.27¢)

Because of (5.27), the orthogonality theorem (5.13) can be applied. The normal-
ization of the ¥! is chosen so that the “factor independent of ” in (5.15) is
equal to unity:

(Yi¥y = [sin6d0dpVie(0,6)7:(0,9)

ny my

=5 (5.28)

Iy, dymy, miy

Any set of single-spinless-particle eigenstates ! (r) have their (#, ¢) dependence

5This is equivalent to the assertion that any [unction  can be written as the sum of functions 1/2{¢ + f] and
L /2 — I{], which are, respectively, even and odd under inversion.
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given by the Y%
o (r) = u(r)¥, (8, ¢)
Tf (5.15) is to hold, the radial function «(r) must be

If we apply (5.17b) to Y (8, ¢) with i = %, we get
Y/(8, a) = /MLy (8,0) = e"°Y,(6,0) (5.30)-
(8, ¢) is a single-valued function of position on the unit sphere, it must’

be independent of ¢ when # = 0. The only way that (5.30) can be consistent
with this requirement is to have YY8 = 0,¢) vanish unless m = 0. For the-

Since V!

m

m
normalization used in (5.28}, this leads to

2{+ 1

47
- According to (5.30), the Y/(8, ¢) functions are independent of ¢. Sometimes the

appears in (5.31). _
ned in terms of Yi(8, ¢) by’

1”(6 =0, ‘P) = am,l)

nr

Y¥! are defined in such a way that a factor i’
The Legendre polynomial P,(cos &) can be dehi
20+ 1

dar

¥4(6,0) =

Thus, P(cos0) = P(1) = L. The orthogonality theorem (5.28) applied to Y{ can

be written in terms of the P, as

1
IIP,‘(.\')P,,__(.\:) de = TR

The parity of Y8, ) is (— D4
Yi(m—0,6+7)=(-1)'F,
vi(-#) = (-1,

m

In atomic and nuclear spectroscopy the letters s, p,
single-particle states with orbital angular momenta

5.3.6 Laplacian in
Spherical Polar Coordinates
From the identity
h d d\h d d

a9
l- - e — e

fl

a* a* a°

|
|
o=
[ 3+
=
e
(=]
t
K
+
[
H
&

2 - Dy — P —ET
dy* 23 dydz Jay gz

[}
-

- . Lt 1
and from the corresponding identities for / j and /;
expression for 1 - 1:

1-1=02+0+1
d

v ”

2o Oy — 1 i
v 21 dr, "”ar,,ar,,

P/(cos 8) (5.32)

(5.20)

independent of m.

(5.33).

81,,1,_,

(4, 9) |
(7) (5.34)

d,f,g,... areused to label
0,1,2,3,4,.... '

d d

, we can derive the [ollotvm_

62

(5.31)
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In (5.35) we have used the notation r, to stand for x, 7, z, and we imply
summation over repeated indices. Now consider the effect of 7, - d/dr, on a
monomial " pfrz's

r ixn,yn_,zﬂz 1 .‘....?.... _|_J,..f)_ .+ ZE— t"‘)r"!z":
" dr, dx 3y 0z
* = (n_+ n, -+ n,)x"eptizts

If we write x" y"s2" in spherical polar coordinates, we get an expression of the
form r™* %4 f(f, ¢), where f(f, ¢) does not depend on r. Since

J R, N1 d [ n,Au,kn f
rE.\ gz —:—3—; H shn (4, )]

= (ﬂ.‘r + h, + H:)T"'.I-";.anf(ov q))
= (n, +u,+ u )Jatplozt

we see that r, - d/dr, and r + d/dr have the same effect on any monomial and,
therefore, on any pelynomial in x, 3, z:

d d
’},a = (5.36a)
A similar alggument shows that
a? , 0
ntrpm = r‘:,}-;g (5.36h)
Using (5.36a) and (5.36b) in (5.35), we find
1-1= —#*riv? - 2r—?- —-rgi
dr ar*
, d* 2 0 111
Visog ooy (5.37a)
Thus, the effect of ¥? on a function w(r} Y(#, ¢) is
V() Y0, ¢) = ;r; + %% - —"'“:; D\ () 7(0.9) (5.370)
I d 4 {1+ 1)
=lE T T w(r}vi(8,¢) (5.37c)
1l a1+ 1)
= —lom — o [0, 9) (5.37d)

If w(r)¥,( 0, ¢) satisfies Laplace’s equation (3.17a) then w(r) must satisly
d* I+ 1)
i rw(r) =0
whose general solution is

w(r) = ar' + bpr~U*H (a, b constant)
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PROBLEM 5.3.4

PROBLEM 5,3.5

Thus, any solution {r) of Laplace’s equation has the expansion

Hb(r) = [al ! + bl m! “(M.!)]Y;:;(B! (nb) (5,3

I om

The constants a, ,, &, ,, in (5.38) are determined by the boundary conditions on
$(r) (see, for example, Section 3.4).

5.3.7 Addition of Angular Momentia

‘The vector addition of two angular momenta, {, and /,, leads to a series of posslbl ;
tolal angular momenta L:

L=|,~g||1—-l|+1,...l+l (539)

L, !, and {, are sald to satisfy the triangle relations, since, if (5.39) is true, L, [
and I, could be the lengths of the sides of a triangle. If /, and /, a
single-particle orbital angular momenta, the two-particle states with total an
lar momenta given by (5.39) would all have the same parity, (—1)1"%, Many-
particle states with total orbital angular momenta L = 0,1,2,3,4,... are desi
nated by the capital letters, S, P, D, F,G,.... :

The nucleus ®Li has a 07 state. It is energetically possible for this state to deca
into a deuteron (a 1 * state) and an a-particle (a 0" state), yet this decay does not
occur. Why not?
Suppose that the O state of °Li has decayed into a deuteron and ; an
-partxcle. The total angular momentum of zero could then be regarclcd a8
arising from the vector coupling of three angular momenta:

({, = 0 from the a-particle) X (/, = 1 from the deuteron)

X ({ [rom relative motion).

According to the triangle relation (5.39), the only way in which we can achie:
the total angular momentum L =0 is to have /=1 for the relative orbit
angular momentum, But then the total parity would be

{+1 from the even-parity &) X (+ ! from the even-parity deuteron)
X ( (—1)’ from the relative motion)

[c.f. {5.34}]. Hence, if { = 1, the (a + deuteron) state has odd or negative pari
and would not be populated by the decay of an even-parity °Li state. There is n0
way in which a 0% state of °Li can decay into an a-particle and a deuteron
consistent with the conservation of total angular momentum and parity.

(a) Prove that the function

4. BOUND STATE SOLUTIONS OF
E ONE-PARTICLE SCHRODINGER EQUATION

Bound Stafe Solutions of the One- Particle Schrbdinger Equation 215
Thus,
L:‘lb(?l? ?2) = [lz(]') + 12(2)]‘11(?1! ?'2)
!
= L {[Lri)]nHG) - L) L@r6)]")
m=—1/
i
=h Y (m—m)¥ (F)VH(5)
m=—1
=0
!
(L.r i l'.L_r)"Ib(;-IJ ?2) = Z {[([x(]‘) _-t Ily(l))lrrrrl(rl)] " r'.!)

m=—1

— (@) F @) 73] ")
=h Z {\/([ Fm)(i+m+1) Yn‘:il(?l)Yn:H("’)

m=—1
—TEm)TF m+ 1) YRR

=0
This proves that L (#, %) = 0 for a = x, y, z. We have scen on p. 208 that
this guarantees the rotational invariance of (7, 7,).
(b) Use this result to prove the spherical harmonic addition theorem

, 204 1
Z DY (7)) = ———Pilcos wp) (5.40)
me=~{ 4
Here w,, is the angle between 7; and 7,.
Let us subject both 7, and 7, to the rotation that sends 7, into the £ axis and
7, into the x—z plane. Then the new value of @, will be 0, and the new polar
coordinates of 7, will be {w;,,0). The invariance of the sum in (5.40) implies that

Z }’":"" rZ) = Z m Y;J;H(MIZ!D)

m=—1{ me —{

According to (5.31), only the m = 0 term in the right-hand side is non-zero, and
(5.32) implies that the value of this term is

20+ 1 20+ 1
i x TP[(C,OS W)

which proves the validity of (5.40).

Y(7,7) = E Y7V, (7)

m=—{

is spherically symmetric, i.e., it is unchanged by simultaneous rotation of 7, _E_‘_hd
L.
From the definition | = #/7 - r X v, it {ollows that

=1 (L =—(L,Fi)

5.4.1 One-Dimensional Square Well

The potentif;ll well is shown in Figure 5.2. The zero of the vertical energy scale is
taken to be at the bottom of the well. The time-independent Schrédinger
equation (5.8b) for a particlc of mass m moving in this potential well is

d%(x)

— o o V(W) = B () (5.41)
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FIGURE 5.2 A one-dimen- Vix} re 5.3 Graphical solu- \
sional square-well potential. { (5.46) for =100 B
and mi® / (21%) = 0.45 714
- Vg p—— -1, The solid line repre- |
s the leit-hand side of  _ _\
6) and the dashed iine
x right-hand side, both AN
_L L 4tied as functions of £. A= \\\
¢ 2 m the three circled inter- 2 T
) {lons we infer that there - —————
' {hree even-parity bound ] i ] l I T —moer] E (MeV)
g5, at energies ol ap- 0 10 20 30 40 50 60 70 80 90 100
. - dmalely 4.15, 36.67 and  ~!”
with ‘48 MeV above the bottom -2~
L he well. -
P(x)=0, forls|< 3 (5.42 _af-
. -
L ) H —6
=V, for |¥| > 7 (5.425) . T -
If J(x) is to describe a bound state, it must be normalizable, ' - T |
i ;
f |$(x)|* dx = a finite number (5.43)
— Do

We must satisly (5.41) and (5.43) with a (x) which is continuous and has'a

continuous derivative. This is a transcendental equation for E, whose solutions may be obtained

We can easily find solutions of {5.41) valid for |x| < L/2 and for |x| > L/Z’, numerically or graphically (c.L. .Figure 5.3). Once a solution C_’f (5.46) has been
since F(x) is constant in each region, We must combine the solutions valid in found, (5-43) and (5«44)_ determmt‘: the corresponding non.‘nahzable wave IUI?C"
these two regions in such a way that the resulting y¥(x) is continuous and has a tion. It is easy to generalize [rom Figure 5.3 that the well will have n even-parity
continuous derivative at x = +L/2. If this is done, we get two types o bound states il
bound-state solutions: ' L, LAV, Y

(a) even parity (Y(—x} = $(x)), (n—1)'w" < T

Y(x) = e "4 cos( kx) x| < L (b) odd parity (f(-~x) = —(x))
] = 2 L
: L P(x) = ¢ P sin( k), |x] < — (5.47a)
= cos| — | e7*W, [¥| =2 — 2
i ] 2 KX L 47b
Here & and « are defined by =8N |e ™, Xz E - (5.47D)
2mE o KLY ‘ L
b=V (5.45a = —sin| |, vs -3 (5.47c)
2m ‘ - Here & and x are still defined by (5.46), but the condition for continuity of {/{x}
k= T(Vﬁ - ) (5.45 at |x| = L/2 is now
' e kL K
The expressions given in (5.44a) and (5.44b) are obviously equal at |x| = L/_ 2 cot| —| =~
Their derivatives will be equal if ' 2 v

kL K
tan| =1 = % = - (5.48)
mL*E Yo . 46 The normalizable wave functions (5.44) and (5.47), which desc::ibe siates in
an 287 “VE ! (. o which the particle is bound in the well, are not the only physically uselul

cigenstates of the Schrddinger equation. In Section 5.9 we will see that there are
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_symmetric potential,

also eigenstates describing unbound particles, i.fa., particles which h'ave enoug
energy to escape to x = £ 00. There are such eigenstates corresponf}lng t.u every
energy greater than the depth of the well. These.are refen:rcd to as t:ontn*}mm_.l
solutions, since this part of the energy spectrum 1s a continuum. The c.ontmul}m
solutions are needed if we want to predict what will happen to a parflcle whm
comes in from x = + o0 {or x = —c0) and is scat:cered by the potential well:

The potential F(x) defined in (5.42) is a particular example of a reflection

V(x) = V(—x) (5.49 .
The bound state eigenfunctions of any reflection-symmetric poteptial can he
chosen to be parity cigenstates, that is to say, can be chosen to be either evenp
odd under the operation x & —x.

5.4.2 One-Dimensional Square
Well with Infinitely High Walls

If we allow ¥, in (5.46) to become infinite, we sce that the energies of the even
parity states are given by :

mLE 1
\ E}F.En =\|n+ E T (5.503)
2 b 1y* n=0,1,2,... (5.50b
E = _—mL"" (n + E)
omE, (204 1)7w (550‘:

ky = o L

The corresponding interior wave function (5.44a) has spatial dependence give
by
L

Thus, the wave functions vanish at the walls of the well (x = +L/2). Simi
the energies of the odd parity states are given by (5.48) to be

cos(k,x) = cos( [2n + 1] E) (551)

mL? . .
-—‘zf., E,, = ni (5.5221):.
lh
E =3f2_”;z n=1,2,3,... (5.52b)
¢ mL* 5
2nw (5.52c
A’H - L

with wave functions

2n77x) (5‘53

which also vanish at the walls of the well. I'or many purposes it is useful t
wave functions normalized to unity over the width of the potential,
L2

[ (x) [P dx = 1

-L/2

sin(k,x) = sin(
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This is accomplished by replacing (5.51) and (5.53) by

2 T
y(x)=1y — cos( [2n + 1]-—) , n=20,1,2,... (5.55a)
L L
and
(x) 2 gin| 2T 1,2,3 {5.55b
Y lx) = Lsm AL n=1,2,3,... .55b)
respectively.

A particle of mass m is contained in a one-dimensional impenetrable box
extending from x = —L/2 to x = +L/2, The particle is in its ground state. The
walls of the box are now moved out symmetrically and instantaneously, to form a
box extending from x = —L to x = +L.

{a) Calculate the probability that, after this sudden expansion, the particle
will be in the ground state,

Before {(and immediately after) the sudden expansion, the wave function of
the particle is

() 2 ( mX L
s = —_ — 2
e o ), sy
L
~o, x> =
2
The ground state wave function in the expanded box is
( 2 TX L
= _ _ Yl <
¥, x) oL cos( EL)’ |x] <

Thus, the probability that the initial state of the particle will become the ground
state of the expanded box is

L 2 L/3 .
fl,b*( )i (x) de| = icos(iﬂ.i—r) Ecos(E) dx
- L ! ‘ —L/2 L 2L L L
w/4 2 9
22 82
=|— cos(f)cos(28) df| = (——) = 0.7205
—m/4 . 37

(b) What is the probability that the initial state of the particle will become
the first excited state of the expanded box?

In this case,
1 wx
b=y 7 Sin(f), %] < L

f B - TEwE f(.”.;_)( ™) =

since the integrand is an odd function of x. Thus, the probability of ending up in
the first excited state of the expanded box is zero.

(c) What is the expectation value of the energy of the particle after the rapid
expansion? (Answer without calculation.)

Then
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PROBLEM 5.4.2

During the rapid expansion, the particle cannot transfer energy to the wally
Thus, the expectation value of the energy is the same as it was before th,
expansion, namely: i

far?
E,= — . (5.50b
0 znlL)_ [Cf (5 )]
(d) Now consider a situation in which the particle is in the ground state o
the original box, extending from x = —L/2 to x = +L/2. The walls of the by

again move out to x = £ L, but this time they move very slowly. What is th
expectation value of the energy after this slow expansion? :

If the box expands sufficiently slowly, the state of the particle will contimy
ously adjust in such a way that.it is always in the ground state. Thus, when th,
walls reach x = +1I, the state will be an eigenstate of the expanded box wit
energy E, = fz"vr"/?m(?L)‘ = /%72 /8mL?, and this will be the expectation value
of the energy. The difference between this answer and the one obtained in (c) i is
due to the work done by the particle against the slowly moving walls.

In some cases it is useful to put the walls of the box at x =0 and x =L
The well is then no longer symmetric, and the energy eigenstates will no longe
be parity cigenstates. To find the energy eigenstates, we again require that the
wave function vanish at the infinitely high walls of the well. The result can be
written

] =1,2,3,...
sz(n'n‘)ﬂ hle?

" oom\ L =2mL2]

L

1t is casily verified that the sequence of energies given by (5.56b) is the same as
the sequence given by (5.50b) and (5.52b).

Suppose that the initial positions of the walls of the box in the previous problem.

were at x =0 and x = L. Now the box is suddenly expanded by having its

right-hand wall move to x = 2L,
(a) What is the probability that, after this sudden expansion, the parucie_;

will be in the ground state?
Now we have

P, (x) = 2 sin(iri), 0<x<7

=(, X = L
2 T
1,bf(x)= Q—Lsm( 2L) 0<x=<2L
so the probability of ending up in the ground state is
e N tolt 2 (ax I fmx ‘
_{[Ipf(x)gb,-(x)dx = .{ Esm(f) zsm(é-z) dx

a/2 2

W2 : 44/2\?

=|— in(28)sin(8) 40| =| —— | = 0.3603
- _([sm(? )sm( ) Py _
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(b) What is the probability of ending up in the first excited state of the
expanded box?
P,;(x) is the same as before, but now we use

1Tl )

2L 2L
ol 1 L 2
fl{/f Y {x)dx ﬁf[ s'm )dx
_ 1
T2

Note that these results are different from those we [ound when both walls of the
box expanded simultaneously.

5.4.3 One-Dimensional .
d-Function Interaction '

Suppose that the potential is an attractive 8-function at the origin, so that the
Schradinger cquation is

hﬂ dEl!J
— o= = (x) = G3(x)P(x) = Ed(x) (5.57)
2m dx®
Here 8(x) is the Dirac 8-function, defined® to have the properties
8{x}=0, fx=0 (5.58a)
[o(x)av=1, ifa<Oandb>0 (5.58)
and G is a positive constant. When x # 0, (5.56) becomes
I odhy
——— == () = Eg(x)
2m dx

whose even-parity normalized solutions can be written as

1,[’(\) = g " (.\' > O) (559&1)
= E'FKJ ("\. S 0) - (5‘5913)
with
2m
k=1 7w X (-E) (5.59¢)
X
To find «, we integrate (5.57) from v = —¢ to +¢, and then allow ¢ to approach
Zero:
12 d‘)lp( ) £ &
Toam 4 Tt ('h_Gfs(‘)‘!’(-‘)d\—l?f‘!’(t)d\

- —€ —E
2

= o W) = W(=e)] ~ GY(0) = Ex 2e X B(0)  (560)

%This is the one-dimensional version af the three-dimensional §-function defined in the footnote on p. 114,
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PROBLEM 5.4.3

The prime represents differentiation, and ¥ (0) is the average value of V(Y6
the interval —e < x < & If we allow ¢ to approach, zero in (5.60), we find t

2mG

i}
fIa.

lim [¢/(e) = ¥/(=&)] = - —7¥(0) (5.61

(5.59) in (5.61), we get

mG

£=
R | mG\? mG*
Emmm\®) TR (.2

We see that the attractive 8-potential has a single even-parity bound state. N
that a 8-function potential at the origin has no effect on the odd-parity stat
since a particle in an odd-parity state never is at the origin. If Y(—x) = —{(x
then Y(0) = 0 and the right-hand side of (5.61) vanishes even if G > 0.

Find the energies of the bound states of the potential
V(x) = —G8(x),

=w’

—asx=a

|x| > a

which consists of a §-function in the middle of an infinite square well,
This problem is somewhat analogous to the point mass at the midpoint of

stretched string (Problem 1.14.5), For odd-parity states, the &-function has no
effect and so (5.52b) applies. Let us take the even-parity wave function to be-

Yix) = sin(k(x - a)),
sin(k{ —x — a)),

This state is continuous at » = 0, and vanishes at the infinite walls at x = fa.If
we apply the condition (5.61), we find

x>0

*r<0

Il

2mG
2k cos( —ka) = = Y sin( — 4a)
]
, R* L h® (
tan(a)-—E—-;n—GEX a)

This can be regarded as a transcendental equation for ka. There are infinitely
many solutions, and the nth solution &, yields an energy E, = #°k;/2m above
the flat inside part of the well.

\“-

5.4.4 Harmonic Osclliator Potential

The Schrodinger equation for an oscillator with frequency w = k/m has be¢
given in (5.9). The eigenvalues and normalized eigenfunctions are :

E =fuX (n 4 43) (5-545

"
e Y i P I T R
Wfl 2 "n ! H f.’, P IRl Ik |

(5.64b

P (x) =

PROBLEM 5.4.4
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Here k, is a Hermite polynomial. Since #,(—y) = (—1)"4,( »), it follows {rom
(5.64b) that the parity of ¥, is (—1)". Note that the energy scale is determined
by hw, and the distance scale by y&/mw .

The Hamiltonian for two interacting spin- § identical fermions in one dimension
is
2 2
no o h me 2
—  —(xy — %) (5.65)

2m  2m 2 -
What is the energy spectrum and what are the corresponding eigenfunctions?

Since the interaction between the particles is a function of their separation, it
will be convenient to work in relative and mass-center coordinates, x and A:

X=X, — X, (5.66a)
X, +x,
Y=""2 (5.66b)
2
The corresponding momenta are given by (1.76): -
p=3(p— ) (5.67a)
P =1}l + pQ (5’671))

P is the total momentum of the two particles, as measured in the laboratory, and

+p are thé momenta of the individual particles as measured by an observer

moving with the mass center. If we express H in terms of these new coordinates
and momenta, we get

PE 2

L

2M 20 2

Here M{= 2m) is the total mass and p(= m/2) is the reduced mass (1.74b).

The Hamiltonian (5.68) is separable’ with respect to the relative and

mass-center degrees of freedom. An eigenfunction of (5.68) is

w2 w
—_— X

n(V2w)"

— X

H= (5.68)

Wi (%, X)=e®%, 7 PRIV GV OR (5.69a)
’ t

(K{x +x mw —me{xg—x ¥ S

= piKlx+ 2)/21,&" ‘/2_}‘! ("'2 — ""1) ¢ (xa—5,F /22
' {5.69b)

and the corresponding energy cigenvalue is
W K?

Ei,= i + h X (ﬁw))((n+%) (5.70)

According to (5.66), interchanging ¥, and x, has the effect of replacing x by
—x, but has no effect on X. These operations cause (5.69a) to be multiplied by
(—1)" Thus, the even-r states are symmetric with respect to permutation of the
positions of the two particles. If the particles are fermions, these symmetric

"Let # = H| + H,, where H, and F, refer to different degrees of freedom. Then i fh) = Eypy and
Hyby = Eypy, it [ollows that Hebdy = (£, + Ey)éqdy. Thus, we can find cigenstates of the separable
Hamiltonian by taking products of the cigenstates of the component Hamiltonians £, and .
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mg =0, +1}.

“orbital” states must be multiplied by an antisymmetric two-particle spi
state (which corresponds to § = 0, mgy = 0). On the other hand, odd-n orbit
states are antisymmetric with respect to permutation of the paositions of the part
cles, so they must be multiplied by symmetric two-particle spin states (§ =

5.4.5 Spherically Symmetric Potential

The Schrédinger equation for a particle moving in three-dimensional space i5'3
partial differential equation in three variables
i®

~ gV U0 [400) = B4 )

However, if the potential energy is spherically symmetric (U(r) = U{r)), this
equation separates in spherical polar coordinates. We seek solutions of the form

(5.71

u,(r) -

i — ! ! = 0, 1,2, %
"Ibm(r) r Ym(gl q’) {m = ___[, ""'l+ 1"”, l (5-72)
and use {5.37d) to calculate the effect of ¥ 2 Then instead of having to confront
the partial differential equation (5.71), we neced only solve a set of uncoupled
ordinary differential equations (one for each /):

d>  I{{+1 2
i —;—2"—)‘ - f_ZLU(T) + £ u,(r) =0
(] . :
E>0 (5.73a)
2uE
k= —r
fzo.
or
a2 {l+1) 2
i Ul —w () =0 |
E<0 (5.73b):
2u(—£) .
K= ,
h®
We suppose that U(r) obeys the following conditions: E
r*U(r) = 0 (5.74a)
r=0
rU(r) = 0 (5.74b):
r— oo :
As a consequence of (5.74a), the behavior of u,(r) near the origin is either
u,(r) = er’'  (regular) (5.75a).
r—+0
or _
u,(r) —>0ar"" (irregular) (5.7513)__

We are usually constrained to use the regular solution; otherwise W (r) [rofl?_-'
{(5.72) would be singular at the origin. As a consequence of (5.74b) the bchaviolf-
of u/r) near r = co is either '

u(r) = Boet*  (E>0) (5.76a)

or

Ulr) = By (E<0) (5.76b).
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If we are seeking a bound-state solution of (5.73), it must be normalizable,
o

f[u,.(r)]gdr

0

is [inite, (5.77)
and the only one of the four possible asymptotic forms (5.76) consistent with this
is B.¢7. Thus, £ must be negative, and it must be chosen so that the solution
of {5.73b) that is regular as » — 0 behaves at r = oo like ¢7*". This will ocour at
a discrete set of eigenenergies E ;. The subscript n is called the principal
quantum number, and is used to label the different eigenfunctions of {5.73b) with
the same value of /.

In Section 5.10, when we discuss scattering, we will make use of the positive
energy solutions of (5.73a).

Find the condition that must be satisfied by the spherically symmetric square well

potential :

Uir)= -7, (>0  (r<a)

=0 ' {r > a)

il it is just barely deep enough to contain one bound state.

The centrifugal potential term A%/ + 1)/r* in (5.73b)} makes the total

effective radial potential deepest in the { = 0 states, Thus, if there is to be only

one bound ‘state, it will be an /= 0 state. The radial Schrodinger equation
(5.73b) becomes

(5.78a)
(5.78b)

d? 21, .
b e — i |y (r) = 0 (r<a) (5.79a)
dr= h-

d* )

el wy(r) =0 (r> a) (5.79b}

We require that u,(r) vanish at r = 0 and be a decaying exponential at r = oo,
Thus the acceptable solutions of (5.78) are proportional to

u{r) = asin(fr) (r <a) (5.80a)
2ul,
b= “,, 0 _ 2
fl-.
ug(r) = Be™™  (r>a) (5.80b)

The requirements of continuity of u(r) and uy(r) at r = a can be satisfied by
equating the interior and exterior logarithmic derivatives u{/u, calculated at
r = a from (5.80),

I
l

k cot{ ka)

2ua’
tan ”—(V[,+E) = -

e (-7, < E<0)

(5.81)

This is a transcendental equation for £ whose solutions give the energies of
possible { = 0 bound states. If one of these solutions is £ = 0, then (5.81) implies
that

2pa”
ﬁE

Thus, the smallest value of ¥Fye*® that admits an /=0 bound state is
Vyat = (hw/2)* /2.

it
1432(2"-{_1)53 ”=0:l)2!"-
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PROBLEM 5.4.5

PROBLEM 5.4.6

5.4.6 Coulomb Potential Ur)= —-ze? s r

In this case the bound-state eigenfunctions and eigenvalues are given b

t,,(r) _ (_2_)"’ (n—1~ 1) . —(r/na)( Qr) IL I-H( 2r)-
. i) [

r ha 2n[(n + [)!]3 na n+1 -n_z;
£ Ze? ]
n 24 X;;E, H=1,2,...

ek F 2 [=0,1,2,...,n -1
with L.57}(x) an associated Laguerre polynomial, and the constant a defineq
e

f;Q

1

AT

1=

In the case of an elf:ctron moving in the field of a i‘ixed proton, ft is the l:_ el
mass m,, and the distance and energy scales are given by d electry

712
o= me* = 033A [cf. (5.1)]
e® m,e‘*
2a, = -__Hzﬁz = 13.6 eV [cf. (5.2)]

1f we wish to apply this analys;
Y815 to the hyd . -
the reduced electron-proton mass m,m, /(;prig;n)zjttom, then g in (5.83) mug;__b

AE = py =t 12400V A
A A(A)

1.24 eV micron

i

A (microns)

How many photons do i i
es a radio station emit in one second i
[ : : when br
with a power of 100 kilowatts in the 300-meter band? Padeastin
Each photon has energy

_he  12400eVA 194
=53 = ——— = -8
A 300 x 100A 3 *107%eV

‘Thus, photons are emitted at the rate of

\"-‘

10° _{ % Iev v 1 photon ,
s lex1079] 7 1.24 ) = 1.5 X 10™ photons/s
— X 107 %ev
3

%l:: !7.1 -—};tﬂf ton= 2 transition in .hyclrogen gives rise to the “Hg” spectral line.
i ;_:gg ! 1;;"::tm a discharge containing hydrogen and helium js found to have a
i 86 A away from the Ha line. This is attributed to a transition in
singly-ionized helium atoms (He™).

(a) Find the principal quantum numbers of the levels involved in He*,
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According to (5.82b) and (5.84b), the energy of the Ha transition is

4
puet [ 1 1
Ei—E=—| —— = 5.86
1T 2fz~(2~ 3~) (5.862)
For a transition between »’ and n” levels in He™,
4 u+£4 1 1
il (5.86b)

Enu - Enr G
28\ (w)* ()

Since pyy and py,+ are nearly equal, the energy differences in (5.86a) and (5.86h)
will be nearly equal if

1 1 4 1 i 242 2\

—_— e — — x —_— — R— — —

22 32 (n,)Q (?1”)2 R') n
which is obviously satisfied if n’ = 4 and #”" = 6.
(b) Now use these data and the fact that the proton-electron mass ratio is

1836, to calculate the Rydberg constant for an irifinitely heavy nucleus,

m,e"

R =2

Equations (5.86a) and (5.86b) imply that

5 ¢t m,m,
Ey~Ey=——————
S 3628 m, +om,

4
3 € dmym,

E;—Ey = —— e —
*T 36 28 dm, + m,
Thus,
Ay — Mg | 1 36 28| 1 1 1 1
= — = e [ a— e ——— e ————
he E,—E, E;,—E 5 ¢ |m, m, m, 4m,

36 24 3 36 24 3 1

5 &' 4m, 5 me' 4 1836

2.68 A 36 3 1 1
R_=136eV

12400eVA 5 4 1836 R, .

PROBLEM 5.4.7 'The radial wave function of an electron in the ground state of a one-electron

atom is 2(Z/ay)%~#"/™ where Z is the charge of the nucleus. Suppose that
through beta decay the nuclear charge is instantanecously increased by onc. What
is the probability that the electron is in the ground state of the new atom?
Immediately after the decay, the electron radial wave function is
z /2
u(r) =2 —| ¢ F/%)

o
whereas the ground-state radial wave function is
Z+1\*?

&y

e—((z+ yr/ay)

um(r) = 2



228 Quantum Mechanics

PROBLEM 5.4.8

PROBLEM 5.4.9

Thus, the probability that the new atom is in its ground state is

Density of States 229

-5 DENSITY OF STATES

= : Z(Z+ OV P[F _o . I
w(r)u, (r)ridr| = 16 - g~ REEN ot dr
[ 1|/
Z(z+1) P a, )3 2]2_ Z(Z+1)
i (2z+1 zZ(z+1)+1

Atoms are made up of nuclei, consisting of protons and neutrons with masses
Me? = 940 Mev, and electrons with mass m ¢ = 0.5 Mev. Suppose that we lived
in a hypothetical world in which the electron mass was m,62 = 100 Mev, but the
proton and neutron masses were unchanged. We also pretend that, in th
hypothetical world, there is no weak interaction like the one in our world that
results in B-decay N—=> P+ e + 3, P> N+ e¥ 4 »,

(a) In our world, materials tend to have densities in the range 1-10 g/cm?,
What is the range of densities in the hypothetical world? (Ignore reduced-mass
effects.) : _
In the new world, nuclei still contribute most of the mass of an atom,
However, according to (5.84), atomic dimensions in the hypothetical world will-
be smaller by a factor of about (0.5 Mev /100 Mev), so material densities will be
greater by a factor of about (100 /0.5)° = 8 % 10° Thus, we expect densities o
be of the order of 107-10% g/em’ in the hypothetical world. g

(b) Chemical reactions occur at temperatures of the order of 1000 K. What:
are the corresponding temperatures in the hypothetical world? :

Accarding to (5.82b) and (5.83), atomic energies will be about 200 times
greater in the hypothetical world. This will lead to reaction temperatures of the:
order of 200 X 1000 K = 2 x 10° K.

(c) Would the Planck radiation law be changed in the hypothetical world -
and, if so, how? :

Since the Planck radiation law does not involve the electron mass, it would
be the same in the hypothetical world as in ours. :

(d) Show that if the beta decay interaction were allowed, the hypothetical
world would have no atoms. o

Since M, + M, > M, in the hypothetical world, all protons would capture.
clectrons and become neutrons: g + ¢~ — N -+ .

The Lyman-a transition in atomic hydrogen has a wavelength of 1215 A and a
transition rate of 0.6 X 10? ™', Estimate the minimum AMN/A.

According to the Heisenberg uncertainty principle, if a state has lifetime T,
its energy is uncertain by an amount :

h

AE = —

n

Since A = hc/E, a small uncertainty AX implies that
AM A e AE
" Allog A} = A{—log E) = — 7
1 k2 A
T E t  2mer

A 1215 A ‘
I-A‘ x (0.6 X 10°s7') = 4 X 107"

A | 27-3 X 10BA/s

The use of Fourier series is based on the observation that a large class of
functions can be expanded over the interval —L/2 < x < L/2 in terms of the
denumerable set of functions

[l
¢ (x) = A g2/ L (n=10,+1,+2,...) (5.87)

We say, somewhat loosely, that the ¢,(x) of (5.87) form a complete set of [unctions
over the interval —L/2 < x < L/2. Similarly, the functions

T
q!)"lnr":(x’ 7 Z) = IT gr(,!fr/L)(ﬂ_,.\--l—nl_r-l-n_,:) (5883)

(ngyn,,n.=0,£1,+2,...) (5.88D)

form a complete set of functions in a cube of volume V' = L* centered at the

origin. The functions ¢, , , defined in (5.88) are single-particle linear momen-
3 afiytly .

tum eigenstates: .

h

P 1’!! n.n -V ([’n [ hk ql]n non (5893)
LI b ) =0rte Mgtz
with
x [ n.r‘«‘ ¥ [ nJ" H / “.: ( 8 )

It is convenient to regard the three numbers £, &, . as Cartesian coordi-
nates of a point in “k-space”. Each function (5.89) of our complete set corre-
sponds to a point on a cubic lattice in A-space. The cubes have sides of length
27 /L, and volume (27/L)". Thus, we can say that each of our functions ¢, , ,
has associated with it a -space volume of (27/ L)?, and the number of functions
(5.89) whose k vector lies within d°% is equal to

W dk v .
= = = d :
2.“. 3 (277_).] (5 90&)
L

We can also introduce spherical polar coordinates in A-space. Since o I =
k2 dkdﬂ&, we conclude that the number of functions (5.88) with & within 4k of
ko, and & within solid angle 4%, of £, is
V '
dN = —— ki dkdQ, {5.90b)
(27)

If we need the n}lmbcr of functions (5.88) with kﬂwithin dk ol k,, irrespective of
the direction of £, we can integrate (5.90b) over & to get

|4 V
AN = —— k3 dk | dQ = — ki dk 5.90
(271-)'5 01 f kT pgeho (5.90c)
It is also useful to express (5.90a) in terms of p = /k:
v 14 Vd'p
PN S S (5.91)

h3

(20)° K (2mh)’

Since Vd”p is a volume in phase space, we can interpret (5.91) by saying that
cach [unction of our complete set (5.88) has associated with it a phase space
volume of A%
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So far we have counted only the number of spaiial states i

Approximation Methods 231

Tnomentum intervals. If the particle has intrinsic spin, there will be
internal states associated with each spatial state. If the number of thes z

states is g, then (5.90) should be replaced by " e

dN vV
d&k -8 (2‘?1‘)3
aN 14

dhdQ, g(gw)“k‘_’

dv Vs
& 2270

‘ We sc!metirnes need expressions for the number of single-particle stafes
unit (kinetic) energy interval, These can be obtained by multiplying the exp
sions (5.92) by dk/dE. For example, we can have:

‘1. nonrelativistic spinless particle (g = 1}:

P A de 1 2m\¥2
E:—-:——’ A — | e E1/2
om  2m i~ 2|7
dN V [ 2m\3/°
—_— = —| El/?
dE  4x?| A? 0
2. nonrelativistic electron (g =2 X 1 + 1 = 2):
dN Vo {2m\3?
[ — — - EI/2
dE 42| A °

3. Neutrinos, photons, and ultrarelativistic electrons (g = 2):

™ T
E=c*p* + m** — me® = ¢p = hok

p > me)

, dk E*®

ko = 3

Z (1)

dN V Eg
dE Dar? (ﬁc)ﬂ

Electrons and neutrinos require g = 2 because they have intrinsic spin #/2
Photons of momentum 7tk have two independent states of polarization, so the
also require that we use g = 2 (see Section 5.12).
These derivations have counted the number of independent states per uni
momentum or energy interval in a cube of volume V, It can be shown® that th
expressions (5.90) and (5.93) are correct for a volume of any shape, as long as th
phase space volume is large enough to hold many states, ' :

.

.

"W, Ledermann, Proc. Aoy, Sve. (London) A182, 362 (1944).

PPROXIMATION METHODS

' 5.6.1 Rayleigh-Ritz Variational Principle

Let E, be the lowest cigenvalue of H. If ¢ is any state of the system (not
necessarily an eigenstate), then

(IHW)
oy S

The cquality holds only if v is an eigenstate Y, corresponding to the eigenvalue
E,. Moreover, the ratio in (5.94) is stationary with respect to small variations
about . This means that if ¢ differs from ¥, by a small amount A9, then
(5.94) will differ from E, by a number of order A2, Thus, if ¢ is a fairly good
approximation to g, (5.94) will probably yield an excellent approximation
to E,.

Il { contains parameters &, we can get the best approximation to £, by

calculating _
_ {¥(@)|Hy(a))
— (@f(a))

and minimizing it with respect to a. This minimum value of E(a) is still, of
course, preater than or equal to Ey. Unfortunately, this method is unable to tell
us how much greater [ E(a)] ;. is than £, )

(5.94)

E(a) (5.95)

1t is known that the stable jon H ™ exists (two electrons bound to a proton). The
simplest approximation to its ground state consists of two electrons moving in a
1s (n=1, [ = 0) orbit. Estimate the ground state energy of H™ using this
approximate state as a trial function, and see if you can prove the stability of the

PROBLEM 5.6.7

H .jon.
Useful information:
172
U ey =|—5 ¢~ {r/m) (normalized H-atom ground state) {5.96a)
0
i
(W)= 19u(r) = — (5.96b)
r a,
o 1
<\b1;(r)|v H’f:(r)) =% (5.96¢)
0
[@rdr [, (][9] LR (5.96d)
1 1 ‘l‘ _ r,i 8&0 B
Use
1
\P(rnr2§ a) = ;T;_g“-’_(r' )/ (5.97)

as a variational wave function, with a as the variational parameter, This state is
normalized for any value of a.
The Hamiltonian is
2 2
2

H (5.98)
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PH. Shull and P. O. Lowdin, /. Chem. Phys. 25, 1035 {1956).

According to (5.96b and c),

2 g2 9t

<”b(r“r2; a)l';.l_ + r:l‘nb(rnrzi ﬂ)) = 7
Vi 3 2

(blerm )24 Ly )y 2 o L

2m  Zm
If we also use (5.96d), we can caiculate that

<"J(r|»r2§ a)lHl‘P(rnrz; ﬂ))

E(a) =
<1P(r|,r2; ﬂ)l‘lb(rl)rQ; ﬂ))
_ Rt 262 5.7
ma” a Ez—

If we minimize this expression with respect to a, we get

d d| 11
0=—E(a) = — w1l
da da | ma* 8a
3 2h 112
ma’ 8a*
Thus,
16 #*
a=—-—-—.
11 me?
16 #° 121 met
M m?)~ 6 & =5

Note that (5.99a) is larger than the single-electron value of 4%/me2 This can be
rfagarded as a consequence of the mutual repulsion of the two electrons. Altern
tively, we can say that each electron partially screens the nuclear charge, leading
to an effective Z in (5.83) of 11/16. , .
. According to (5.84b), the energy of a hydrogen atom in its ground state,
with a srac:cmcll electron at rest infinitely far away, is —1/2 - met/h? =
—128/256 - mell/)'zz. The H™ ion will be stable only if its energy is less than
- 128/256 - me* /A*, and, unfortunately, the inequality we have found in (5.99h)
is not strong encugh to tell us whether this is so.
We can get a better variational wave function if we allow the two electro
to be in different single-particle states, with different values of &, This leads” to a

variational upper bound of —0.5133me* /4%, which is « . :
stability of H~. / , which is «enough to prove the

5.6.2 Rayleigh-Schrodinger
Perturbation Theory

This method can be applied when the Hamiltonian can be put in the form
H=H, +\V (5.100)

H; must be sufﬁgientiy stmple for us to be able to find exact eigenvalues g; a_fld

PROBLEM 5.6.2
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eigenfunctions ¢;,
(5.101a)

(5.101b)

Hyb; = e,
<‘f’f|¢j> = ai’j

and AV must be small (in a sense to be defined below).
Let E; and y; be exact eigenvalues and eigenfunctions of /7, such that, as

we allow A to approach zero,

%J\jn‘bi
Er_ — &
A0
Then
E =¢ + A DAV ;) + O(N*) (5.10221)
AV b
Y=+ A D ‘pj(d’ﬁ 42 + O(N) (5.102b)
Y B — &
i) !

In general, the convergence of the series (5.102) will be rapid if the off-diagonal
matrix elements (¢;|AF|$;) are small compared to the corresponding unper-

turbed energy differences.
This method fails if some of the g, are equal. Suppose that e is a d-fold

degenerate cigenvalue, i.e., there are d states ¢y, such that

I-I[)(br‘rv= Er'q')iu (a= 132!"'!d)
Then the first step in the analysis is to find the eigenvalues and eigenvectors of
the matrix M3 = (§;]AV|d;p). The cigenvalues of this matrix provide the
first-order corrections to the degenerate unperturbed eigenvalue ;.

Treat the electron-electron interaction in the helium atom as a perturbation, and
caleulate the ground state energy to first order.

We take
P28 P 2t
H,= e S T A S
2m 7 2m r2
o2
AV =+
Iry = rof

The spatial part of the lowest eigenstate of H, is'
1

5]
i
2

[cf. (5.96a), keeping in mind that the nuclear charge here is 2e]. The correspond-

e~ Ay )y

b, = ‘bln(rl)‘f’ls(rz) =

ing unperturbed eigenvalue is 2 X (—4me' /20"y = —4me’ /K, The first-order
correction to the energy is then
) ; EE b CE ﬂ—(‘]/"ui("l‘*'”s) \ \ ( )
P ||y == - dir o drr 5.103
( ll1|r1_'_r2|l U) (H(])3 iy lrl r, 1 2
gl —
2

Wl the footnote on p. 223,
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PROBLEM 5.6.3

. antlsymmetrlc with respect to interchange of the electron spin variables, a sing}

To evaluate the integral we apply the spherical harmonic addition
(5.40) to a multipole expansion of the interaction: e
1 w i

= Z TIPI(COSC‘HE)

vy = 1| 7S

mri

=Z 1+

=0 ">

E] Y

mw= —1

%
2+ 1 Yo *(R)

Because the factor exp(—4(r, + rr,) /a) is invariant under separate rotations

r; and r,, only the { = 0 term in (5.104) survives the angular integration
(5.103). The result is

g? (47:‘)2.92 = - ” "1.
(Dol ——|P) = 775 f ri dr f ry dry e~ 0Nate) 5
Iry = rl vr( __9_) n=0 gy T
2
1024 o °
= — - 2" f rldre= /%0 f ri dry e~/ M
ag Lo J
n= a=h
5e 5 met
i E—— ——éuu
kay, 4 PROBLEM 5.6.4
Thus, the approximate helium ground state energy is
4me‘* N 5 me? 11 me*
B4R 4R

correct to first order in the electron-electron interaction.

Estimate the energy difference between the singlet and triplet states of the ('132':
configuration in helium. The 2s single-particle state in helium is

1 {1)% , o
vdw | a, a,

The 2-electron wave function must be antisymmetric with respect to inte
change of position and spin variables. Since a singlet (S = 0) spin stat

g“"("/"u)

‘pzs(r) =

spin state must be combined with a position wave function that is symmetric wi

respect to the interchange of the electron position variables. The reverse is trl

for the triplet (§ = 1) state. '
Singlet:

L\E WA ) + g ey )y (1)
Hbs(rn":z:”nc’z):"’b (i)l )ﬁllf (r.)¥ (r)Xf.ﬂx:-u(Ul:U“)

Triplet:

Hbu(rl)‘abg;(rz) - ‘Pls(rzjﬂbﬂr(rl) g1

72 Xom, o(1, 02 )

The factors 1/ V2 are needed for normalization. The unperturbed e'r:mrgiCSI of

‘Pr(rl:rz, Oy, U'z)
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these two states will be equal. The first order energy corrections will differ by

f2 o2
(¢d |¢s) <¢Tl |¢r)
g2
= 2(4’1; r Hb2: r2)| l]‘!’u("z)‘!’z:(ﬁ))
8 1 2r 9r, | e~ Hn+n)/m
=2-|—|- : fg__‘ 2 5, dr,
g Lo, a, a, Ir, — 1yl -
64 &2 _
- (5.105)
729 a,

The method of evaluating the six-fold integral is similar to that used for the
evaluation of (5.103) in the previous problem. Note that the singlet and triplet
states have different energies, although we have not included any spin-dependent
forces in our Hamiltonian. The energy difference (5.105) is the result of the
greater effectiveness of the Coulomb repulsion between the electrons in
the position-symmetric state, in which the electrons are closer together on the
average. The spin angular momentum of the state enters the problem indirectly,
via the connection between position and spin permutation symmetry mandated
by Fermi statistics.

Consider the system described by the Hamiltonian

p» me’ '
H=— 4 —(1 —¢™™
2m 2a ( )
(a) Calculate an approximate value for the ground state energy using

first-order perturbation theory, perturbing about the solution for

ne 2

2t
2m 2
whose unnormalized ground-state eigenfunction is e~ ¢"“/2** and whose ground
state energy is fiw/2.

The perturbation is (mw?/2)((1 ~ e~ )/t = x?) =
unperturbed elgenstate is (mw/hm)! /g (me/ amst
rection to the energy is

H,=

AV. The normalized
= ¢y,. Thus, the first-order cor-

- 2
mw ] e g7

\ mey 12 % s s |
(ian) = (=) [ ¢ e

Integrals of this sort are conveniently evaluated using the general formula given
at the bottom of p, 282, The result is

— o9

hw

ah 4
1+ —
mew

me? 1
— {1 =
2a

If we add this to the unperturbed energy w/2, we get

me 1

E=hw + —|1 - (first order)  {(5.106a)
2hun
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(b) Calculate an approximate value for the ground state energy usiy
Rayleigh-Ritz variational principle, and compare the result with (5.10.6;1ln

We take our trial wave function to be ¢${8) = e~ B/ g calculate

s = AR
(s(B)]o(B))
° B d? me?
—fx2g2l _ _ ax —,{1:2/2
m_fmg 2m r2+2a(1 ) o
f e =B gy
1{ B# mw 1
= hw _i-i:- m—w + 2)‘—‘!& 1 — T (Variational)
1+
B
To find B, we solve the equation
0 dE(B) #* muw?
g 4m 3/2
481 + E)

This is equivalent to a quatric equation for 8. If e << mw/k, an approximat
solution to (5.107) is 8 = mw/A. If this is substituted into the variational estimat
{5.106b), the result agrees with the frst order perturbation theory estimat
(5.106a). If we substituted into (5.106b) the value of 8 that is the exact solutio
of (5.107), we would get a lower, and more accurate estimate of the ground stat
energy. For example, if @ = .2mw/h, the solution to (5.107) is approximatel
B = .85401(mw/i). This leads to a variational estimate of .46316Aw, as oppose
to the perturbation theory estimate of .46782%w. o

5.6.3 Fermi’s Golden Rule for
Transitions to Continuum Final Siates

Here the Hamiltonian has the form
H = Hy+ We™iv!
Hy and W are constant operators and w is a constant frequency, Let ¢, and ¢
be eigenstates of H),, -
Hyby = eghy
Hyby = g9,
£y is in the discrete part of the spectrum, but g is in the continuum. Then th

transition probability per unit time, from the discrete state ¢, to the continu
state §,, is -

I ’ :
Tym = o [W10) () (5.109

PROBLEM 5.6.5
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subject to the condition that e, = g, + hw. Here p(¢,) is the density of final
states at g,. This is caleulated (cf. Section 5.5) in a box of volume V, and ¢, must
be normalized in the same box:

[192dr =1

I
If this is done, [, _,, given by (5.109) will be independent of V.

Nuclei sometimes decay from excited states to the ground state by internal
conversion, a process in which an atomic electron is emitted instead of a photon.
Let the initial and final nuclear states have wave [unctions ®,(r,,r,,...,r,;) and
®,(r,,ry,...,rz) respectively, where r; (i = 1,2,..., Z) describes the protons.!
The perturbation giving rise to the transition is just the proton-electron interac-
tion )

z 2

where r is the electron coordinate,

(a) Write down the matrix element for the process in lowest-order perturba-
tion theory, assuming that the electron is initially in a state characterized by the
quantum numbers (u, /, m), and that its energy, after it is emitted, is large
enough so that its final state may be described by a plane wave. Neglect spin.

The initial state is ¢, = ¢"/(r)®@,(r,,xa,...,77). The final state is ¢, =

"

1/VV7e™ "®,(r,,1y,...,1,). Thus, the matrix element needed in (5.109) is
(1| 1)
| L z gt
= _V"‘f}"’fdj” k '<(I)F(r,,r2,...,rz)| Z '[T—_—r_r_tltpf(rl’rm'"=r2)>‘lb:lnf(r)

i=1
(b) Write down an expression for the internal conversion rate.
The density of states for electrons of energy ¢, is given by (5.93a) for each

' spin state, Since our interaction is independent of time, we use (5.108) with

w =0, s0 g + E,= ¢, + E;. Then (5.109) becomes

p 2w 1 (m My
0—1 T T hz) gm X
3 1 Z et [ :
X fd re "™ r<(I’1r|r§l r — rl_]|(1’f) n(r)
with
2m 2m
k= ore =\ srlet B~ £

(c) For light nuclei, the nuclear radius is much smaller than the Bohr radius
for the given. Z, and we can use the expansion

1 1 r-r;

==+ — (5.110)

}r—r,-!"— r r

(cf. 3.18a). Use this approximation to express the transition rate in terms of the

"'We make no explicit reference to the neutrons in the nucleus since they play no direct role in this process.
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5.7 NONRELATIVISTIC CHARGED
PARTICLE IN AN ELECTROMAGNETIC FIELD

dipole matrix element sghemaiic rep-

z - -

of the lowest en

d= (0. ) r|®) £ 2C. The draw-
i=1

Because 1/r does not involve the nuclear coordinates,

it car
orthogonal nuclear states. Thus, e

g
are of the order of
1 nd are due to the
<®Ff;'lq)f> =0 D splittings are 2 of the

.. . . d are due to
and the first surviving term in our multipole expansion (5.110) is ev. an

¢ 6’21'
(D E IDI> —5 (P Z r; I(DI>

=1 I f=1

& electrons.

i

This leads to

In (3 64) we have given the Hamiltonian of a nonrelativistic charged pa
moving in a specified electromagnetic field. Let us apply this Hamiltonian t
problem of an electron of charge —¢ moving in the Coulomb field of a st
nucleus of charge +Z, in the presence of an externally applied u
magnetic field B = Bh. The potentials appropriate to this situation are

Ze
(f’(r: l) =

;

B
Alr, 1) = -:-2-?1 Xr

(cf. Problem 3.11.1). In all situations attainable.in the laboratory the dommant
force on the clectron is the Coulomb force due to the nucleus, and the extern

approximated by

Y ¢
H= — — t)+ —(p-A+
2m d(r, 1) th:(p A-p)
jiz e
= — - ! — < by .
o ed(r, )+4mc(p AXT+iaXr-.p)
B b ( eB
. e¢r,t)+a—l;n-r><p
I eB
= om E(p(l‘, l)+§n"" 1

Note that p+n X r contains no p x, #,9, or p.z products, so p - (rl X r)
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lDz

ip,

.3F1
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3P0

(7 X r) + p. Equation (5.112) is often written in terms of a magnetic moment
operator

—¢
p=—1I (5.113a)
2me
B '
H= — —¢pfr,t)—p- B (5.113b)
2m
[cf. (3.57¢c,d)]. For a particle with intrinsic spin s, (5.113a) is replaced by
-
p= —I[I + gs] (5.114)
2me

It is a consequence of Dirac’s theory of the electron that g in (5.114) must be
taken to be 2, Thus, p is not proportional to the total angular momentum
operator j (= 1 + s). This leads to the “anomalous Zeeman eflect.”

The lowest energy levels of the carbon atom {Z = 6) are shown in Figure 5.4
How would these levels be changed if a weak uniform magnetic field B were
applied to the atom?

Suppose that the B field points along the Z axis. Then it adds to the
Hamiltonian a perturbation

eB eB
;: — = —
A 5 [L,+25.] o [/.+S.] (5.115)

me
where L_, S, and [, are, respectively, the z components of the electronic orhital,
spin, and total angular momenta. We must calculate the expectation value of
(5.115) in the free-atom eigenstates in order to obtain the first-order effect of the
magnetic field. The free-atom eigenstates have specified values of L, §, /, and
J., but not of §.. The Wigner-Eckart theorem can be used to show'? that

(S)gyn=0, ifj=0 (5.116a)
(S- J)L:ym hM(S 'J>Ls_,uu
T — M ] 0
T Duge ™ T+ VO
(5.116b)

2 he essential puinl is lh'll{ + &, ) have the samce rotational transformation propertics as { /., /,, /), so the
matrix elements (t})M |5, N’.\! and (1,5'“ |/,,|5b . are proportional, with the proportionality Tactor independent
of M|, My, a, See, for :.x"lmplc Croufy }Iremj' and i Application to the Quantum Mechanies of Momic Spectra, B, P,
Wigner, Academic Press, New York, 19539, p. 273,
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PROBLEM 5.7.2

But we can rewrite S - J as
~(G-9-(-5)+J-J+S-5
2
-L:-L+]J-J+8-8
2

S-J=

Thus,

(S Diyu= %‘[—L(L + 1)+ J(J+ 1) +8(S + 1)]

and (5.116b) becomes

hM

(S = 2 S(S+1) = L(L + 1)

JU+1)

AE= (A ) yn=0, ifJ=0
e 3 S(§+1)—-L(L+1)
= —BM|— +
2me 2 2J(J+ 1)

The application of this formula to the lowlying states of the carbon atom is gi
in the following table:

State L S J AR
5, 0 0 0 0
eh
in, 2 0 2 BM
me
g eh 3
5y 1 l 2 2—- . -é-BM
e
3 [ |
2 1 l | -—2 EBJ"
me
i, 1 1 0 0

The quantity eh/2me is called a Bokr magnetan.‘

The hiperfine splitting in the hydrogen atom can be discussed in terms of
perturbation AI - J in the Hamiltonian, where I and J are the angular mome
tum operators of the proton and electron, respectively, and 4 is a constant, :
(a) Calculate the splitting produced in the ls-level of atomic hydrogen.
this perturbation.
The total angular momentum of the atom is I + J = F. We write

(1+)-@+)-1-1-J-J F-F-1-1-J-]
2 - 2

Then the expectation value of the perturbation in the state characterized by

quantum numbers [, J, F is

I-J=

2

Ah
(AI'J>UF= _;'[F(F‘*‘-l) _I(I— 1) _J(J+ I)]

Hi",,
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For the hydrogen atom, 7 = J = ¢, and F = 0 or 1. Thus, we have

AR®
i An F(F+ 1) ) Pt (5.117)
Al - oy /MF = + 1) —=i= o .
( J)(l/-)(l/h)F 9 5 3 Ap?
— N for F=0

and the splitting between the F = 0 and | levels is 4A#”.

(b) Now suppose that a uniform magnetic field B is applied to the above-
described hydrogen atom. This can be accounted for by the addition of per-
turbing terms

g1 B+g,] B

Here g, and g, are gyromagnelic [actors. Calculate the splitting produced in the
L5 level of atomlc hydrogen by this external field and by the hyperfine interac-
tion AI - J, acting simultaneously. .

Let us choose the z direction to cdincide with that of the B field, so B = BZ.
The total perturbation is -

2me

AV = AL J+-~£~[g, T IA (5.118)

We choose our unperturbed states to be 1,D'/ 'fpl/ -, where

m ne
I\ = fzmp\pl/ﬂ = +3

1
™, "y

J_,c,b'/ 2= fm fd)l/ 2, = =+

m, nt,

15 -

Since the unperturbed Hamiltonian is degenerate with respect to these four states

\b’m/ 2 3"/ 2 we must diagonalize the 4 X 4 matrix of Al with respect to these states
(cf, Section 5.6.2). We have
(q}rn',, m/qlg[‘[ + g[\] l‘ibl'flliq f"/"> = 6m m.,, n, mﬁ [gﬂﬂ + g/n! ] (5.1192\)
(O AL I 0™
. Io+d —if, S WA T
— aguipapin g, + LI )3 U ZBNA T, gy
(5.119h)

Apphmtmn of (5.11b) and (5.13) to these / = / = § proton and electron states
gives the lollowing matrix of the perturbation (5.118) with respect to the
unperturbed states:

[EI
[T E3t
P S

[EYL

R e

P

1S |-

} 1o pm
e

eh [ o, 4 p ARt
- [M] + 0 o 0

2o 2

elth oy — 2 An? [4h*
0 b [“_’-f] _Aar Ar 0
2me 2 4 2
An® eih [~y + 8 AR
0 - e 0
2 T 2 4
0 ehh [ — gy £ ] § A
(} 0 2l 2] s —
2eme 2 i

(5.120)
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Notice that the only off-diagonal matrix elements are those with the
of m, + m,. This is because the perturbation is invariant under rotationg
the Z axis, 5o that it can only connect eigenstates of 7, (= I. + J-) with t
eigenvalue [el. (5.21)]. ) :

Two of the eigenvalues of the matrix (5.120) can be written don
mediately: m

eBh [g,-!- gj] N An®

2me 2 4

eBhi [ —p, — AR?
Az = [ & gj] + :

2me 2 4

The other two are found by solving the secular equation

eBh [g, — gJ] A#? A AR?
2me 2 4 T
An? eBh [ —g + gJ] AR? -
2 9 me 2 4
AR? ARINZ 1 eBh An2\?]
I Wil WO | sl B it [ gJ] _ 122
2 4 2me 2 2
whose roots are
1 An? 12)? [ eBh JE
375 9 + ( { ) + ch(é’i gj)_
\ 1 An® (AR2)° [ eBh T2
g =—{= — LR + —_— —_
i35 5 t | 2me (& g_j)J

the result (5.117), which applied when only the AI - J term was present. O
other hand, if we set 4 = 0 in (5.121), the result is

eh
A(;W]‘.v! mt) = %B[glm" + nge]
In this limit, the electron and proton spins are not coupled by the hyp_érﬁﬂ
interaction, and respond independently to the external magnetic field.

Equation (5.8a) shows a solution of the time-dependent Schridinger cquﬂ_ﬂu
expressed as a product of a time-dependent phase and a tlmc-mdepﬂﬂdc
eigenstate of the time-independent Schrédinger equation (5.8b). Such solutio
are possible whenever the Hamiltonian does not depend explicitly on time.
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probability density associated with the solution (5.8a) is

P=1%{(q,. 95 ) =19(q1,- ., 0a)[ {5.122)

and, thus, is independent of time, However, suppose that we construct a “wave
packet” by adding together terms such as (5.8a), corresponding to different

energy eigenvalues £,

T(qyyeeesqpt) = e WDRB (g, q,) + e NEDY g, 0 q,) (5.123)

Since (5.7) is linear in ¥, the sum (5.123) is a solution of (5.7) il each
contributing term is a solution. But the probability density associated with
V(g1 4y, L) of (5.123) is

PﬁI‘I,(QIs"'sqrht)P

2 2
=12(g550 0 +12o{g1s- - 04)]
+2R€[‘I’?’(g“ ety qtf)(bz(qls' v )-qd)g(l‘/h”ﬁ.l_ﬂ!)!] (5124)

which is time-dependent.

PROBLEM 5.8.1 A particle of mass m moves in one dimension in a square well with walls of

infinite height a distance L apart. The particle is known to be in a state
consisting of an equal admixture of the two lowest energy eigenstates of the
system. Find the probability as a function of time that the particle will be found
in the right-hand half of the well,

The wave function of the system is

VEME ‘/—[4) x0) 4y (x,0)] (5.125)
with
2 TN - Bl
"Jn( X, ':) = E CUS( _L—) e~ U/ME E,= 2mL2 (5.126&) 7.
2 2mx 2 hi?
. — ~ (i) E -
‘P|(A’l) L s 3 € ’ E| mL_Q (5126}3)

[ef. (5.50)—(5.53)]. Thus, (5.124} becomes .

Plx,1) = 1 o TX +ein? 2mx 4o ( mx\ | 2wx E, - E,
1) = —|cos® — — — —
X, 7 |cos ( I ) sin| — cos‘ 7 )sm 3 )cos( . )

(5.127)
and the probability that the particle is between x = Qand x =L/2 is
Tra- LB L E B L
. ' L{2z 2 2 2 h 3
1 4 3h%m®

2 " 3O\ omL?

PROBLEM 5.8.2 What are the expectation values of H and x in the state (5.125)?
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PROBLEM 5.8.3
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Since Y, and ¥, of (5.125) are eigenstates of H Corresponch | i =y 7 zi '
eigenvalues, they are orthogonal. Thus, ng to ' (5.10). Setting o =, , 2 dm (5.129), we get
1 — (YIS ) = —(¢|S 1) (5.130a)
<l,b(.\',£)lH|¢(x,t)>=§<¢u+1[;1|H|x,bu+l‘{,l> t:'i! mcf
1 ZCHS ) = = —(YIS9) (5.1300)
= §[<‘P0|HN’0> + (W )] d
1 a 2 2 (IS g) =0 (5.130c)
1| k™o 2h " 5 hin? dt
= 2|5 + IE = I - A second time derivative of (5.130a) and (5.130b} gives
. . d* eB\?
The expectation value of x is — (YIS, = =1 — | (iS.I¥) (¢ =x,p) (5.131)
L2 ar- me )
(o (x, t) |l (i, ) f {¢(x,t) |2x dy The solution of (5.131) with the speciﬁe’:l initiz}}conditions is
e (WISI¥) = ~cos| —
L2 ' e
1 2 r,( 'rrx) +s "( 27?.!‘) b B
=—_— cos”| — sin®| — o,
2 L _ip L (YIS, = T oSN e
49 E - Ent mXY |, [ 2mx Finally, (5.130c) implies that {${S.|{) is independent of ¢, so it continues to
cos fi cos A sin L have its initial value of zero. It is seen that ($|S|\/) has the time dependence of a
Ly vector that rotates clockwise around the z axis with circular [requency wy =
_ E-cos E - Eut f (_w_t) | 27x g eB/me (cl. 3.53).
I — ¢ 4, cos| —— [sin| —— frdy
6L (3 p? ) SCATTERING IN ONE
= —cos ! ENSION BY A LOCALIZED POTENTIAL
97 2 mL?

It is sometimes convenient to calculate the time dependence of an expec
tion value (4/|V[1,b) by using the cquatlon

;,;<¢1V|¢> <4/| (5.128

This can easily be derived by using the Schriédinger equation (5.7) to cxpress th
time dependence of 1.

HJ) + “(MHV VH|Y)

PROBLEM 5.9.1

An electron is immersed in a homogeneous magnetic field along the z axi
time { = 0, the electron is in a state with component of spin angular momentu:
/2 along the x axis. Find the expectation values of the x, y, and = componen
of the spin angular momentum at any later time.

Set ¥ = §, in (5.128). Since the operator S, does not depend exphcttiy on |
(5.128) becomes

d 1
7\ VISal) = — (| HS, — S HI)

The only part of H that does not commute with §, is the spin-dependent part
(eB/me) - S, [cf. (5. 115)] Thus, :
"URE 5.5 A one-dimen-

lonal step, with particles in-
dent from the high-poten-
8l side, The arrows repre-
Nt the incident, reflected,

a ¢ _ el
SIS = (1.5, — S8

The components of S obey the usual angular momentum commutation rdﬂ[ﬁ‘?-

The first step in the analysis of a scattering problem is the construction of a
solution of the Schrédinger equation in the external region, outside the range of
the potential. This will generally involve incident, reflected, and transmitied

~waves (cl. Problems 1.14.2, 1.14.3, and 3.16.2). The reflection and transmission

coefficients are determined by the requirements that { and its derivatives be
continuous everywhere.

A particle with E > 0 is incident from the left on the potential step shown in
Figure 5.5. Find the transmission and reflection coeflicients corresponding to the
step in the potential at x = 0,

The experimental conditions require incident ard reflected waves for x < 0,
and a transmitted wave for x > 0. Thus, we look for a solution of the form

. ) 2mll
P(x) = ™ o peribe k= I (x <0) (5.132a)
X
- 2m(E + b)
= fg'h K= — (x> 0) (5.132b)
X
——— veo
V= bl
x=0
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FPROBLEM 5.9,2

If we require that (x) and y/(x) be continuous at x =0, we gét::
simultaneous equations for r and ¢; : :

1+r=1
(1l —r) = iK1
The solution is
k- K :
"TE+E (5.133
=TT R (5.1335

The particle flux, j, is calculated from

h
i= ﬁ[ub*mb — yv*] (5.134

For x < 0, the flux is (#/m)[1 — | r|*]; for x > O the flux is (AK/m){¢|*. Thus.
the reflection coefficient & and the transmission cocfficient T are given by

T
reflected flux . ;M“ \ F— K\2
incident flux _h_l‘ =" = P (5.1353
m S
K
_ transmitted flux “;;;"[‘ " & 4LR :
incident flux ﬁ —II "= (k + K)'z (5-1$5b

Note that these expressions satisfy the flux conservation condition >

R+T=1 : (5.136
Of course, if this were a problem in classical physics, all the flux would be
transmitted. We see from (5.135a) that quantum mechanics tells us there will
always be some reflected flux, as long as there is a discontinuity in the potentia

In fact, if that discontinuity is large compared to the incident particle energy,
essentially all the incident flux will be reflected.

A stream of particles of kinetic energy £ < ¥, and mass m is incident fro

X = —oo on a finite rectangular barrier
V(x)=V,>0, O<x<a
=0, otherwise
vV
Vo
E
.’f
x 4
8] [
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Find the transmission coefficient.
The experimental conditions require incident and reflected waves for x < 0,

— qikx —ikx — 2mE .
Ylx) =™ + re7, k e (x <0) (5.137a)
2

and transmitted waves for x > a,
U(x) = teit (x> a) (5.137b)

The transmittance T is simply |¢]?, since & has the same value for the incident
and transmitted waves. The solution of the Schrédinger equation in the region
0 < x < a will be of the form

2m(Vy — E)
1‘12

The requirements of continuity of ¥(x) and Y(x) at x = 0 and x = a yield four
simultaneous equations for the four unknowns, r, ¢, &, fi:

l+r=a+f
(1 — 1) = u(a — B)
@™+ Bemrt = geiko
k(g™ — Be™™) = ikte™
The solutio.n of these equations gives
dirfe e
(i + k)%= — (1 — k) e™
Diwcke™ ke

- (&2 — k?)sinh(ka) + 2ixk cosh(ka)

Y(x) = ae"™ + Be™", K= (0 <x<a) (5.137c)

I

(5.138)

Finally we have
4?7
(k2 ~ fcz)zsinh2(lca) + 41k*cosh?(ka)
E(V, — E)

vy [ (2mly—E)a)| [

—sinh
2sm P

T=|t=

(5.139)
+ B(V, — E)

In this case, classical particles would all be reflected by a barrier whose height
was greater than their kinetic energy. According to (5.139), quantum mechanics
tells us that a particle can tunnel through the barrier, with a probability that is
controlled by the parameter 4/(2m{V, — E)a). If this parameter is small,
(5.139) approaches

16E{(V, — E
T‘= mm(pgz—)-e_zw"'“’""m"ﬂ' (fz < \2m(V, — E) a) (5.140)
Thus, the penetrability is decreased by increasing the mass of the particle or the
width or height of the barrier. Note that the presence of the exponential factor in
(5.140) implies that rather small changes in the energy of the particle or in the
properties of the well can have a large effect on the penetrability. Processes such
as a-decay, cold emission of electrons from metals, and nuclear reactions below
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5.10 SCATTERING BY A
THREE-DIMENSIONAL LOCALIZED POTENTIAL

the Coulomb barrier have rates that are limited by penetrability factors su-ml
to (5.140). These rates are observed to change rapidly when small changes Occ'
in the parameters corresponding to ¥, £, m, and a. .

We can also apply the above analysis to the situation in which £ > W
need only replace & in (5.137c), (5.138), and (5.139) by K, where

2m(E ~ V)

K= 2 (E> W) (5.137;1

Now the particle has positive kinetic energy in the region 0 £ x < a, The.
transmittance becomes '

2 Khe~ e
t LY
—i( K* + k*)sin( Ka) + 2Kk cos( Ka)
4K*%*
T= |t|2 = ’ ny 2 0 I [;
(K? + £%) sin®( Ka) + 4K%k*cos®( Ka)
E(E - V) |
3 (5.141)
Vo [ y2m(E - V)a) [ _
— sin - + E(E - V)
;

Here we see that T— 1 as E becomes much greater than the height of the
barrier V,. Note that 7 = 1 whenever E is such that

y2m{ £ — V)
h'a
These discrete values of E, at which the barrier becomes perfectly transparent
are said to be the energies of transmission resonances.
The £ > V, formulae we have just presented are also applicable to th
situation in Wthh E > 0, ¥, < 0. In this case we have scattering by an attracti
square well. The correspondmg wave functions (5.137) are the continuum
(positive energy) solutions of the Schrédinger equation referred to on page 218
They exist for every E > 0. ;

a= Ka=nm (n=1,2,3,...)

In the stationary-state treatment of scattering, we seek a solution of the
Schréidinger equation that has asymptotic form
ikr

W) > e f(0,0)— (5.142)

The function f(8,9) is callecl the scattering amplitude. It is related to the
differential cross-section by
flux

cattered in direction (8,
do unit solid angle * (0,¢)

—(8,9) = o =is0,0)1"

incident flux

unit area . i
(5 143

Here (f, ¢) are spherical polar coordinates chosen so that the beam is _ihcideﬂ_f'
from z = — co, traveling in the +2z direction.
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If the potential is spherically symmetric, centered at the origin, it is
convenient to expand (5.142) in terms of angular momentum eigenstates
e u,(r)
(r) = Y, (20 + 1)——P,(cos 0) (5.144)
=0 r
This converts the problem of solving a partial differential equation for {/(r) into
the simpler problem of solving the ordinary differential equation (5.73a) to find
the radial functions n,{r).
We seek the solution of (5.73a) that has the following properties:

wlr),z ar’™' (@ constant) (5.145a)
1!

i | g = /2Y _ S ftkr—{{m/2)) 5145]3

_E . ik [*‘3 1€ ] ( )

k

The coefficient —{— 1)!/2ik of ¢”**" in (5.145b) is chosen for later convenience,
We are free to make this choice since (5.73a) is homogeneous. However, once we
have chosen this normalization for ¢~ ", the coefficient of £** is specilied by our
solution #,(r). In (5.145h) this coeflicient is given in terms of a parameter §,. If
the potential U(r) is real and spherically symmetric, the incoming and outgoing
fluxes must be equal for each partial (/) wave. This implies that §; has unit
modulus, 50 it can be written in terms of a real phase shilt 8,, as follows,

S, = ¢2% (5.145¢)

Once we have found (5.145h), we can obtain the scattering amplitude
f(8, $) by subtracting from (5.144) the partial wave expansion of the plane wave

e*s = Y (20 + 1)j,(kr)P,(cos ) (5.146a)
=0
{m
sin( kr — ?)
Jilkr) = - (5.146D)
We get
L,l'.i'r
Yr) — ™ = — (0, $)
r—=oo [}
thr en S
— Y (20 + 1) = P,(cosﬁ) (5.146¢)
T T ey 20k

Thus, at large r, ¥{r) — ¢** contains only outgoing waves. This is a consequence

of the choice we made in (5.145b) for the coeflicient of the incoming wave part of
u,(r). If we compare (5.146c) to (5.142) we get an expression for the scattering
amplitude:

f8,¢)= Z (20 + 1}[S; — 1] P(cos #)

[
= — Z (2 + 1)e™sin 8,P,(cos #) (5.147a)
k=0
do | I . 2
—Q(ﬁ, b) = yel ¥ (20 + 1)e'fsin §, P (cos 0)‘ (5.147b)
r=0
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PROBLEM 5,10.1

The total scattering cross-section is

ad Gded i 21
a—j; o dﬂsm ¢ = e E( + 1)sin”3,

-
= (_4%

4=0-27

The sums in (5.147) include every nonnegative integral /. Suppose, however

that the scattering potc:ntlal has a finite range, R, Then if [ > kR, the cen
fugal potential term in (5.73a) will cause u,(r) to be very small when r<g
'Thus, a particle with this orbital angular momentum will be very little affecta;
by the presence of the potential. This means that u,(r) will be very close to the
free-particle radial function (5.146b), so that §, = 1 and §, = 0. Terms sue as
this make very little contribution ot the partlal~wave sums in (5.147). In practlce
therefore, when we have a potential of finite range it is necessary to include op
a finite number of partial waves (/-values). The classical interpretation of ti
neglected states with very high / is that they correspond to orbits with such larg
impact parameters that they never get close enough to the force center to feel o
deflecting force, and so they are not scattered.

Consider a potential of arbitrary shape that vanishes for r > a. Let u(r) be thc
{ = 0 radial wave function that vanishes at the origin, corresponding to th
energy E, and let f( E) be its logarithmic derivative at r = a:

1 du(r)
AE) = u(r) dr i

{a) If there is a bound state at £ = — E,, what is the value of f{~E ﬂ)?
When { = 0 and r > a4, (5.73b) becomes

d:.
dr®

The normalizable solution is proportional to ¢
atr=ais

w(r)=0 (r>a)

—Kr

, whose logarithmic derivative

1 du 2p( - Ey)
—_— = —p = — ._...—2._._.._._..
uodr | ., H
The required continuity of « and u’ at r=a implies that the logarithmic
derivatives of the interior and exterior solutions agree at r = a. Thus,

-y - - FECE
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told that f{E) varies slowly with energy. Thus,

—ika fha
_ke + Spe _
I e—i."m _ Sel'ka - K
0

K — ik
S = —2ika — —2:‘(.!-n+nrctnn
LI &+ ik )
and (5.145¢) allows us to conclude that
k 1
8, = — ka-!-arctan(—) W3 —k(a-l-—-)
I3 K
The low-energy limit of ¢ is then given by (5.147c),
1\? FE
UE':{]‘}W a-{-;) =4g|la+ T}LEB

(c) Apply this result to the calculation of o for low-energy neutron-proton
scattering. The neutron-proton system forms an /= 0 bound state with £, =
—2.23 MeV, the potential has a range a = 10~" ¢m, and the neutron and
proton rest energies are both about 940 MeV.

We need
wo A% 197.3 MeV-Im e
p— = b .3 m
— 20 E —2nc?)E 0
o (e®) 2y wx—mwmmw

o, 47 X (1.0 + 4.3)" X 10"% cm

= 3.5 X 10~* em?® = 3.5 barns
Experiment gives a zero-energy neutron-proton total cross-section of 21 barns.

- Wigner noted that in the E; = —~2.23 MeV bound state, the neutron and proton

are in a triplet state (§ = 1), whereas the neutron-proton scattering involves hoth
singlet (§ = 0) and triplet spin states. Thus, if the neutron-proton force were
different in singlet and triplet states, one could understand why a prediction
based on the bound state could not account for the scattering cross-section. This
was the first demonstration of the spin-dependence of nuclear forces.

'

5.11 BORN APPROXIMATION

(b) Assume that f(£) is a slowly varying function of Ejand that £, is close
to zero. Find an approximate expression for the scattering cross-section at low
energy.

nccording to (5.145h), the exterior { = 0 positive-energy radial funcuon is:

u(r) = ~ [e — Spe*r]
whose logarithmic derivative at r = a is
1 du gk G gite
fE)=|—— = ﬂkm /

At low energy, f(E) = f(—E}), since both £ and — £}, are small, and y{;e are

The Schrédinger equation for a particle of mass g, moving with positive energy
in a localized potential field U(r), can be written

(v2+kﬂ¢&)=%§wﬂ¢&) (5.148)

An equivalent integral equation, incorporating the boundary conditions ap-
propriate to scattering, is

iklr—r'|
V) = et = o [T U ) (5149

Any Y (r) satisfying this integral equation also satisfies the Schridinger equation
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(3.71). This can be proven by acting on (5.149) with V2 + £2, and us .
equation g the
\ eik|r—r'|
: 2 -
(Vr + £ )|r_—-r_'| = —'4'778(1‘ b [")
inside the integral on the right-hand side. :
-To extract the scattering amplitude from (5.149), we consider the iy
the integral as r — oo, Note that the presence of the factor U{r’) in the integra
ensures that 7’ will be finite wherever the integrand is nonzero. We haye =

Thus, we conclude from (5.149) that

i grkr
()= et + —[—

r

—ikier ’ ’ 3¢
Y e Ulr )t,’;(r ) d3r ]
and comparison with (5.142) shows that the scattering amplitude is

!
0,d)= —
(8, ¢) o

In this expression, # and ¢ are the polar coordinates of the fixed unit vector:

Equation (5.150} is exact, but it is not very useful as it stands, since y
require knowledge of the exact wave funetion ¥(r’) in order to evaluate th
integral. However, note that the presence of U/{r’) in the integrand means tha
we only need to know y/(r’) where U(r’) is nonzero, which may he a rather small
region of configuration space. Let us assume that in this region ¥(r’) does not
differ greatly from the incident wave, ¢, Then (5.150) becomes

e—r’AF-r’U(rf)lp(rf) dSrl

P’ (LT gt Tt gf
f(B, (f)) P 277;:2 fe—nh—-r U(rr)gxk: dJrf
T 2:}‘;2 Jeltaory(e) ddy
e - . -
= - [ervuter) abr (5.151

In (5.151) we have introduced the initial and final propagation vectors, k; = &
and k, = £7, and the “momentum transfer” q = k; — k; (actually 1// times the
momentum transferred by the particle to the well). Equation (5.151) is called the:
Born approximation. Its consequence is that the scatteriné amplitude is propof_-'.
tional to the three-dimensional Fourier transform of the scattering potential. The
reader should compare (5.151) to (4.3a), the basic equation of Fraunholer
scattering theory. '

Note that the Born approximation does not require that (r’) and e be
equal everywhere. Obviously, when ¢/ is large, ¥(r’) and ¢ are quite different

PROBLEM 5.11.1
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Find the Born approximation expression for the differential cross-section for
scattering of a particle of mass p. from a crystal with atoms at lattice points

r,,, = fa+ mb+ac (a,b, ¢ constant)
(I=0,%1, +2,...,+L)
(m=0,41,+2,...,+M)
(n=0,%1,+2,,...,2N)

The interaction potential between the particle and the atom at 1y, is ¥{r — r,,,,).
The total potential seen by the particle is

U(ry= Y. V{r - [la+ mb + ncl)

fmnt

and so the Born approximation scattering amplitude is

flg) = — -2-;:'?:13 Y fe“"“V(r’ — [fa + mb + nc]) d*r
]
B )
—_ . Z ctq'(r-.l-fn-l-m!:-l—nc)I,)'(f) ([3’,
2Wﬁ2 Imn
, - L , .
. iq-({n-Fmbtnc) Y . iqryy d"
[Remcemsem g vt o
The differential cross-section is
“ (@ =1 /@l
o (@ =1/@)]
) 2 — 1 ) ' 2
— Eeatl-(ln~l-mllll+llc) Xl . ft’""rV(r) d‘;i" (5152)
Inm 2ah”

The first {actor on the right-hand side of {5.152) represents the eflect of the
interference between the scattering by different atoms. If q equals

naXb+I'bXc+mecXa

. L {', m', n' integral) {5.153
q[,m,rl a-b)((: ( g ) ( )
then it is easily verified that

Uy - ([2 + mb + nc) = 2m - (U + mm’ + nn')

= 27 X an integer

This means that for ¢ = g, ., all the terms contribute constructively to the
(I, m, n) sum in (5.152), and the scattering is very strong. The ¢, of (5.153)
are said to form the lattice reciprocal to the original lattice r;,,. According to
(5.152), this interference pattern is modulated by a [actor associated with the
scattering from an individual atom, the so-called afomic form-facior. We see that
the general character of the scattering pattern is similar to the diffraction pattern
produced by a series of identical holes (Section 4.2).

2.12 EMISSION OF ELECTROMAGNETIC RADIATION

All we require is that Y(r’) and ¢**" be equal, or nearly equal, in the r’ region
where the potential U(r’) is strong. Many studies have been made of -the
circumstances under which the Born approximation can be expected to be-valid.:
It often turns out that the Born approximation works better than we have any
reason to expect. "

In the quantum theory of radiation, the free electromagnetic field is analyzed
into normal modes. Each mode can be characterized by a linear momentum /k,
an energy fif/c = hw, and a state of polarization & There are two independent
polarization modes for each Ak (i.e., two orthogonal linear polarization modes, or
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left-hand-right-hand circular polarization modes). The possible ener :
ated with the k, &€ mode are nhw, with n = 0,1,2,... . The integer n i?:s =
the‘ number of k, & photons present. In the free-field problem, the g
excitation of each mode (the number of photons) is constant. HDWe:rer if e
particles are present, they interact with the radiation Aeld. Then ;hec h Bt
nun?bt-ar is not constant and we can have processes in which photons are b
(emission) or annihilated (absorption). These processes are also associ o
changes in the state of motion of the particles (transitions).

The radiation field, considered as a dynamical system, has an ing;
number of degrees of freedom. This complication puts the 211::cnfe~(;|(33;2l
analysis beyond the scope of this book. We will present instead the conge n
simpler (but less rigorous) semi-classical theory of radiation. With the particll)e'.s

transition y, — 1, there is associated a so-called transition charge density p (i ¢
defined by e

ated i

Pu—ilr, t) = (‘PblZ‘L“S(r — ).
= (0BG T 18 = xR,
= T HETEN 6,12 q,8(r — 1;)|6,)
= fm(%[tha(r = 1)l
‘Thus, the frequency w associated with the transition charge density is related |
the energy difference £, — E, by the Bohr relation -

hw=E, — E, (5.155

Associated with the time-dependent charge density (5.154), we have a time-
dependent electric dipole moment '

Pt} = fP,,_.,,(r, t)rdo
= " | Larila,) (5.156

which is used in the classical expression (3.115) for the rate of emission of
electromagnetic energy: '

dP w? 2
';i_é- = 8'17'(.'3 (tbblZQr'rin,’n) B

‘ { W,
This gives t.he‘ energy flux per unit solid angle, measured by a detector sensitive
only to radiation with polarization & If we make the additional assumption tha

this energy is emitted as photons, each with energy fw, the rate at which these
photons will be recorded is

N & |
R (5.157a)

where we have used D,, to represent the electric dipole transition matrix element

D, = ($il L arde,) (5.157)

Wc must remember that (5.157) is based on the electric dipole appro:gfmatibﬁ
implicit in (3.115). If D,, in (5.157b) vanishes, there will be no electric dipole.
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radiation. The transition can still occur (albeit more slowly) via higher terms in
the multipole expansion of the radiation fGeld. For the next terms in this
expansion (magnetic dipale, electric quadrupole) the transition rates are smaller
than electric dipole rates by a factor of order of magnitude (L/A\)?, where L is
the size of the radiation source and A is the wavelength [cf. (3.111)]. For an atom
emitting visible radiation, this factor is about (1 /5000)%.

Since electric dipole radiation is relatively strong, it is important to ascertain
when it can or cannot occur. Let us suppose that the states ¢, and ¢, are
eigenstates of a spherically symmetric, inversion-invariant Hamiltonian, so that
they can be chosen to be angular momentum and parity eigenstates. Then

D, = (oML |6

= (oM L) 63) (5.158)
Since (Z,q;r;)9j7" has parity —m,, the scalar product (5.158) vanishes unless
—a, = m,. This leads to the parity selection rule:

Electric dipole radiation can only ocour between stales of opsposite parily

T'o get an lar momentum selection rules, we express x,, 3 and z; in terms
) i1 S0 l
of spherlca} harmonics

da

s=1 = Y (F) (5.159a)
' 2

sl A ”a‘[Yll(ﬁ') - Yll(?x')] (5.159D)
.| 2m

y= iy 5 ALYLG) + 7)) (5.159%)

Then we can rewrite (5.158) in the form

47

D._.,=\ -7 z(4’:?{”'2?%'}’01(%)4’3:]")
3 {

+ _\/-5_ <‘b:{?fblz, gr¥L 1(Tf)¢,lwﬂ'l“>

- . . N
+ /2 (‘;ﬁ{anQirinl(ri) A'?f') {5.160)

The orthogonality theorem (5.15) cannot be applied directly to the matrix
elements in (5.160), since their right-hand parts (kets) are not eigenstates of the
total angular momentum. According to (5.39), they can be expanded in terms of
states whose total angular momenta vary between fl — [jand 1 + . Then we
can apply the orthogonality theorem to each term in this expansion. Unless J,
lies in the range || — /| to 1 4+ J,, every application of (5.15) will result in zero.
This leads to the total angular momentum selection rule

Electric dipole radiation is only possible if J,, J, and 1 satisfy the triangle refations (3.39).

The application of the orthogonality theorem to the Af-quantum numbers in
(5.160) is more immediate, since M is an additive quantum number:

[2.(1) + L. (D)9a(2) = a(m, + my) ¥y,




256 Quantum Mechanics

PROBLEM 5,121

PROBLEM 5.12.2

photons  have an angular distribution given by (5.161), except that the:

Thus, the product X;q,7Y(7)¢f* is an eigenstate of T,0.(i) with e
.l l
h(m + M.}, with m = 0, 1, The orthogonality theorem (5.15) then 1m§flgaﬂl:;

Electric dipole radiation is only pessible if My = M, or M, + 1.

Determine the angular distribution of the radiation emitted in the transltm
¢ = ¢74h, where m, J,m, /, are consistent with the electric dipole selection ryleg
Since M, = M, = M, the only part of (5.160) that survives is

Dub h
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ity, and its angular momentum component in its direction of motion is —2%. A
right-hand circularly polarized photon moving in the +2 direction as a result of

the ¢%+ — ¢7v%, transition would thus imply a change of 2/ of the component
of the total angular momentum of the system in the -+ 2 direction. This violation
of total angular momentum conservation can be interpreted as the reason for the
vanishing of (5.161} and (3.116a) when § =

VIEW PROBLEMS

il CDVRHOIED
= E(Dab):

Thus, (5.157a) becomes

o

5~ Bried | Dw):
Comparison with (3.115) shows that the angular distribution is the same ag fo

the radiation emitted by a classical dipole oscillating along the 2 axis. Tt

partmular the radiation is linearly polarized in the plane determined by the
axis and the direction of observation.

2

~

z-E*l

Find the angular distribution of right-hand circularly polarized photons emitte

during the transition ¢ — ¢7h .

Since M, = M — 1, only the second term of (5.160) survives:
do X o i
3 ‘/" (‘l’a?-‘-’nl;qg‘y {7 1037

This vector is propaortional to p, of Problem 3.19.4, where we considered th

radiation from a dipole rotating in the x~y plane. Using the result of thal
analysis, we have '

£ p V <‘l’;\rl{51|2.’]fyl )l‘l’l“l‘>

(cos @ — 1) X (cos ¢ + ising)

Dﬂb =

and
N w? 2 \
49 dt = 24 hic® <‘l’ll?é1|Z'Q;Y-l-1(f£)|‘l’fl‘?]"> (COSB - 1)

‘Thus, a detector on the £ axis (6 = 0), sensitive only to right-hand circularly -
polarlzed radiation, would record no photons. This means that any photons:
cmitted in the +2 direction in the ¢f% — ¢%%, transition are all left-hand -
circularly polarized. It can easily be verified that left-hand circularly polarized:

(5.161)

(cos @ — 1)? factor is replaced by (cos f + 1)%

In the ¢+ — ¢/ transition, the component of the angular momentum o
the radiating system along the Z direction decreases by %, Angular momentum-
conservation requires that this angular'momentum be carried away by tht'"_.
emitted photon. Thus, a left-hand circularly polarized photon moving in the +2:
directioh has an angular momentum component / in its direction of motion. This:
is true in\general: a left-hand circularly polarized photon afwways carries one unit-
(%) of angular momentum in its direction of motion. It is said to have positive:

helicity. Conversely, a right-hand circularly polarized photon has negative helic-

Let us represent the interaction between two
helium atoms by the sum of a short-range
repulsive part, and a long-range attractive

part:
{r) = 4+ oo, forr<a
= | fora<r<é
=0, forr> b

where 7 is the distance between the centers of

the helium atoms, and a, &, and || are

constants.

(a) Find the condition satisfied by a, b, and
|V, for a bound state to exist in the rela-
tive motion of two helium atoms.

2

Answer: | 7|0 — )’ > >
mw

(b) Experimental evidence indicates that
helium does not solidily at atmospheric
pressure, even at 0°K. What do you think
this implies about the eflective helium
~helium interaction?

52 If the Schrodinger equation is written in

momentum space, the momentum operator
., is represented by multiplication by the
variable p.

(a) Show that the wanonically conjugate posi-

tion .operator x,, 18 represented by
—h/i- d/0p.

(b) Write the Schridinger equation for the
harmonic oscillator Hamiltenian, M =
p2/2m + mw?/2 - x*, in  momentum
space.

Answer:
P mwtht 32 ( zo()|.
T T 3R Y p) = By (p
(c) Find a momentum-space eigenfunction

corresponding to the energy eigenvalue
hw{n + 1/2).

Answer: | n(

/) )e—(,‘lg/[!mmh))l
ymawh

5.3. A one-dimensional harmonic oscillator is in

5.4

the state
_ ‘l’o(x: t) - 2‘1’1(-": f)
P{x, 1) = /5

where ¢y, and ¢, are, respectively, the normal-
ized ground state and first excited wave func-
tions. Find expressions [or the expectation
values of v, the potential energy and the total
energy, all as [unctions of time. Useful infor-

mation: the phases of ¢, and ¢, can be
chosen so that {@y]x|d,) = yi/2mw.
4 h 13 13
Answer: | — — cos !, —hw, —hw!.
2mw 0 10

A particle of mass m moves in the potential
shown in the figure, with (x) = 1/2 « k&x* for
x> 0and F(x) = oo for x < 0. What are the
energies of the ground state and first excited

state?

1 k

Answer: B, = hw(l + —) w=1 —

2 m

| k
E‘=fzw(3+— w= 1 —.

2 m

Vi{x)

x
5.5. Let §f, (M= —],—J+ 1,--+,+]) be the

set of states related by the angular momentum
operators according to (5.11) and (5.12). Prove
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that this set of states is closed with respect to
any rotation about the origin (i.e., if any state
is rotated the result can be written as a linear
combination of the members of the original
set.)

5.6. Prove that if ¥y, is an eigenstate of a spheri-
cally symmetric Hamiltonian with eigenvalue
E, then ¥, , and y,_, are also eigenstates
of the Hamiltonian with the same eigenvalue
(as long as |M £+ 1| < f).

3.7. The deuteron has total angular momentum
I,=1, whercas the #~ has total angular
momentum [, = 0. If a #~ is captured by a
deuteron from a 15 orbital state (so that their
relative angular momentum is zero), two neu-
trons are produced

7 +d=n+n

(a) What is the total angular momentum of
the system? Answer: ( = 1),

(b) What are the possible values of the total
neutron spin and the neutron relative
orbital angular momentum? (Remember
that neutrons are § = { Fermions.)

Answer: (8§ =1,1= 1),

(c) Assuming that the ¢ and n have even
parity, what is the parity of the #77?
Answer: (odd).

5.8, Determine the rotational spectrum of the CH,
molecule, assuming that the H nuclei lic at the
vertices of a regular tetrahedron at 1.09 A
from the C nucleus.

Answer: (E; =65 X 1071 J + 1) eV),

3.9, (a) Derive an approximate [ormula for the
strength of the magnetic field at the hy-
drogen nucleus produced by an electron
in the first Bohr orbit. ,

2? )5 (me?)*

Anseoer: (-——— T

-

[ia [4

(b) Use your result [rom (a) to estimate the
order of magnitude of the hyperfine split-
ting (in EV) of spectral lines,

Answer: (~ 1078 eV).

\

5.10. A spectral line ( A‘K‘“:.\?BOO A) is found to have

3.11.

5.12.

'5.13.

3.14.

5.15,

the energies of the ground state and of the
doubly degenerate frst-excited states.

4 E 2 Ty
: =2X —| =
nswer: B, 2m(L)

e

(b) Now use first-order perturbation theory to
include the effect of a weak zero-range
interaction, Vy(x, — x,). Find the per-
turbed energies of the states you con-
sidered in {a) above.

a width of 0.015 A, Estimate the mean hf

the excited state.
h

AR

What is the energy difference between g
tron spin-up and spin-down states in z 10
kilogauss magnetic field?

Answer: (1.2 X 10~

Answer: =8 X 10!

Show that the Schrodmgcr equation for.
particle moving in externally generated ele
tric and magnetic fields

dr l 1 (h
th— = |—| =
at 2m\ i

[cf. (3.64)] is invariant under the gauge trans.
formation

A% a2 3,
Answer: Egs = ( )

BNES

w0 L[+ ()

A 2
V—fi“c‘) + ¢ |¥
E*(S=1) =~ —

A-AN=A+vy

L 9x v,
- = — ——
=9 ¢ adt —2
L
Yo = (iu)x‘;b .16. The Hamiltonian for a certain particle is

[c.£. (3.60)].

Verify that the probability density and Hux
plr, 1) = Y™y

A 2
jr, 1) = _;;{f["b*v‘!' —YVPT - A

pE e—r/ru
H= — — Vj——
2m /1
with 4 and r, constant. Use the trial function
Y, = e~ /" to make a variational estimate of
the ground state energy.

2.2 -
are invariant under the gauge transformation Answer: B < — Pa® 20 — 1
of Problem 5.12, and that they satlsfy lhe B 2mrd 20 + 1
probability conservation condition ' - (2a + 1) ImVr2
3 where a satisfies = 5
divi 4 2 -0 2a(2a + 3) h
T

-17. Particles of mass m and energy E are incident
from x = — 00 toward a zero-range potential
at the origin, ¥(x) = V,6(x). What fraction of
the incident particles is reflected by this poten-
tial?

The 3p, n = 25, 5, transition in hydrogen has
six components satisfying the dipole selection
rule AM = 0, +1. What is the effect on the
energies of these components of a uniform
magnetic field of strength B?

Answer: 1

Answer:

AE ehB « 5 y 1 1 -
Coame \3° 737 37 3]

Two electrons move in a one-dimensional
square-well potential of width L, and w1t11

infinitely high walls.

1+ | E mlo
/ 2h*

(a) Assume that the interaction between Lh_g
two electrons is negligible and calculate
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3.18. Consider low-cnergy scattering of an un-
charged particle of mass g by a totally ab-
sorbing potential of radius R, The encrgy E is
low enough so that only s-waves (/ = 0) are
affected. The absorptive character of the
potential implies that at r =R, the /=0
radial wave function is purely ingoing.

(a) Determine the scattering amplitude,

2uly
A . = —— k= —_—
nsier 21[; ;‘,2

(b) Determine the total scattering cross-sec-

i , T
tion Answer: (D‘ = da| f|* = F)
(c) Determine the total absorption cross-sec-

.tion

(number of particles absorbed /unit time)

Uab: =

incident flux

T
Answer: ( o, = Az)
3.19. A particle of mass p and energy F is scattered
clastically by a spherically symmetric poten-
tial

U(r) = Ae™% (4, B constant)

Use the Born approximation to calculate the
scattering differential cross-section, as a func-
tion of the scattering angle, 8.

4 do Ab
e TR sl
—_— it —
o sin 7
5.20. Estimate the magnetic field strength that
would produce an energy density comparable
to that of a chemical explosive.

Answer: (~ 10° Gauss).




CHAPTER 6

6.1 THE FIRST LAW OF THERMODYNAMICS

 THE IDEAL GAS

The ldeal Gas 261

while the system poes through a cycle. The equation ¢ dlJ = 0 = ¢ dQ ~ ¢ dTV is
another way to state the first law of thermodynamics.

The way a system can do work on its surroundings depends on the physical
situation. For example, if the system is a gas in a cylinder fitted with a frictionless
piston, the gas can do work on its surroundings (the piston) by pushing it out,
and the piston can do work on the gas by compressing it. In this situation, which
is the most common one encountered in elementary thermodynamics, 2i¥ = pdlV
with p the pressure of the gas and 4V an infinitesimal volume change. If there
are other forms of physical interaction belween the system and its surroundings
(electrical, magnetic, gravitational, etc.), then other terms have to be added to
di,

dW = pdV + dw (6.2)

We will refer to dw as “non pdl work.”

A wide variety of physical systems are considered in this chapter: gases
containers, electrons in conductors, radiation in cavities, etc. All the systems a
too complex to allow exact microscopic analyses. In general, the best we can do-
to use conservation principles and statistical methods to relate average values
important physical quantitics. In some cases we can relate observed macroscs
quantities, like pressure or specific heat, to the detailed microscopic models of th
individual components.

The notion of temperature is used throughout this chapter. It is introduce
as a measure of the average translational kinetic energy of a collection o
molecules. Then it plays a role in the relationship between the increase in entrop
(disorder) of a system and the amount of heat added to it Finally, the
temperature serves as a parameter that governs the probability that a system wi
be in any one of its many allowed states. This is the most general interpretatio
we consider, in the sense that the other interpretations can be derived from it

260

Consider changes taking place in a closed system. Let #0Q be the heat flow s,
the system from the surroundings, &I the work done &y the system on ils
surroundings, and U the internal energy of the system. U/ is a function of th
state of the system, irrespective of how that state is reached. The first law 0
thermodynamics states that

dQ = dU + dW (5._1_ :

Note that df) is a small quantity of heat. It is not the differential of a heat
function Q. Similarly d¥¥ is a small quantity of work. It is not the differential o
a work function . But-«¢U is the differential of an internal energy function U.

Let ¢ refer to a series of changes that ends with the system returning to its
original state. Since U is a function of the state of the system, a series of changes
that returns the system to its original state produces no net change in U, Thus
¢ dU = 0. However, §4Q and ¢ dW are generally not equal to zero, since there.
can be net transfers of work and heat between the system and the surroundings

When we discuss the properties of gases, the following characteristic lengths are
important:

d, the range of the interaction between gas molecules (generally of the order of
107% em)

A, the mean distance a molecule travels before it interacts with another molecule
(of the order of 107" cm for a gas under normal conditions}

L, the smallest linear dimension of the container of the gas.

In situations in which L > A > d, the behavior of the gas is said to be ideal. The
pressure, volume and absolute temperature of n moles of icdeal gas are related by

pV =nRT (6.3)

Here R is the ideal gas constant, equal to approximately 2 cal/mol K or 8.3
J/mol K. A useful way to remember R is to remember that one mole of ideal gas
at 273 K and atmospheric pressure has a volume of approximately 22.4 liters.
In Section 6.8 we will see that we can derive {6.3) if we assume that the
translational kinetic energy of n moles of ideal gas is given by
KE = $nRT (6.4a)

Since each mole contains A, (= 6.022 X 10*') molecules, the average transla-
tional kinetic energy per molecule is

— IR 3
KE/molecule = ry K’; T= —Q-kT (6.4b)

The symbol & introduced in (6.4b) is called Boltzmann's constant, and has a
value of 1.38 X 107'% erg/molecule K. At 290 K, £7 is approximately equal to
1/40 cV.

A molecule consists of electrons and nuclei moving relative to one another, 1f
the mass center of a molecule of mass m moves with speed v, the molecule has
translational kinetic energy tmo®. If energy is supplied to a molecule, the speed of
the mass center may change, and thus there may be a change in the translational
kinetic energy. But it may also. happen that the added energy changes the
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PROBLEM 6.2.1

relative motion of the parts of a single molecule, for example by causiy
molecule to rotate or vibrate about its mass center. In other words, a'gy
store energy as translational energy or as “excitation energy” within the
lar structure. However, if the gas consists of single atoms (such as helium 3
gas), below about 10,000 K very little excitation energy will be stored within
molecular structure, and any energy supplied to the gas will be store |
translational kinetic energy. Thus, for a monatomic ideal gas, the interna] ener
U is given by .

U=KE = JnRT

In Section 6.11 there is a discussion of the way (6.4¢c) must be modified whe
deal with diatomic or polyatomic gases, which store excitation energy within: th
molecular structure, o
What about a contribution to the internal energy due to the interac
between the molecules? This will certainly be present in any real gas. It leads t
dependence of the internal energy on the gas density, since changing the deng
changes the average intermolecular spacing. However, in the regime in which th
ideal gas approximation is valid (A > d), the contribution to the internal éner
due to intermolecular attraction is negligible corapared to the contributions
to translational kinetic energy and internal excitation energy. These depend o
on the temperature, For an ideal gas, the internal energy is a function of temperature onl

In Problem 6.6.2 below we will derive this result directly from the ideal gas:lay
(6.3). :

(monatomic) N

Consider an atmosphere composed of an ideal gas in hydrostatic equiiibf m
Suppose that the temperature TY(2) is given as a specified function of the heigh
z. Find expressions for the pressure and density as functions of height, in terms

PROBLEM 6.2.2

3 HEAT CAPACITY
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Real (nonideal) gases are sometimes described by the Van der Waals equation of
state. For one mole of gas, this equation is

(p-i— —I-f_—.z)(V—b)=RT {one mole)
The constant a represents the effect of long-range attractive intermolecular
forces, and the constant b represents the volume occupied by the molecules
themselves.

{(a) Rewrite the equation so that it applies to # moles of gas.

If one mole of gas has volume &, » moles have volume né. The a/V? term
in the expression for one mole shows that the correction to p is proportional to
the square of the density. Thus, for » males in volume F, the correction is
n'a/V? To yield the correct ideal gas limit as @ — 0, b —= 0, the right-hand side
should be rRT, Thus, for n moles,

an®
b+ 72 (V — nb) = nRT (6.6)

(b) Which of the following is the correct expression for dU/3V |2 a/(V/n)?,
zero, a/(V/n — )7

For an ideal gas, dU/dV},= 0. In a Van der Waals gas, 0U/dV |+ 0
since changing the density changes the intermolecular interaction energy. Since it
is the a/(¥V/n)* in the Van der Waals equation that expresses the eflect of
intermolecular forces, the correct choice will be a/(¥/n)? This will be derived
explicitly from the equation of state in Problem 6.6.2.

the given 7°(z).
Hydrostatic equilibrium implies that the pressure # and the density p .
related by
dp
PP 1
This expresses the fact that the weight ol a thin slab of gas is borne by t

pressure difference between its upper and lower faces. If the gas is ideal and ha
molecular weight A{, then its density is given by '

Mn  Mp
PTTY T Rt
so that
g Mp
& *RT
1 dp a’I M1
r &P TERT
The solution of this differential equation is
N gﬂ"f = d=?
1 =1 —_—— | ——
0 4(z) =104 0) = T [

p(z) = j)(O)g_(!-’l”/“)fﬁ’(d:’/j"(_.f”

_ Mp(2) _ p(0)T(0)
RT(z) T(z}

F:4

¢~ (gM/R) U /T ("))

PROBLEM 6.3.1

If the addition of an amount of heat dQ to a system causes its temperature to
change by 47, then its heat capacity C is defined by
o= &
dT
The heat capacity per mole (or sometimes per gram) is called the specific heat
capacity, and is symbalized by ¢.

The heat capacity depends on the physical constraints effective while the
heat is added. For example, suppose the system consists of one moale of ideal gas
in a cylinder with a movable piston. Let ¢, be the heat capacity at con-
stant volume (the piston is kept fixed as heat is added). Then ¢, = dQ/dT =
(dU + dW)/dT = dU/dT. But we could also arrange to keep the pressure
constant as the heat is added, by allowing the piston to move. The associated
heat capacity s ¢, = dQ/dT = (dU + pdV)/dT = ¢, + pdV/dT. Since p is
constant, pdV/dT = d{ pV)/dT = d(RT)/dT = R. Thus, for an ideal gas, ¢,
and ¢, are related by

(6.7)

=c + R (6.8)

If the gas is monatomic as well as ideal, then U= 3/2RT, ¢, = 3/2R, and
¢, = 5/2R.

A mole of paramagnetic ideal gas consists of molecules with permanent magnetic
moment p. It is contained in volume V, in a uniform constant magnetic field B,
and at temperature 7. Assume that the magnetic susceptibility is given by
Curie’s law (6.52), and calculate the heat capacity at constant 7 and B.

¢, (per mole)

£
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If the total magnetic moment of the gas is M (= ¥ X magnetizatiop o
A}, its interaction with the external field B contributes a term —J . M
total energy (cf. 3.57c). Thus, if we add heat 4Q at constant ¥ and B, .

dQ =dU + pdV—B - dM = ¢ dT — B - dM L

Note the assumption that the gas is ideal means we neglect all interactiong (e
magnetic interactions) between the molecules, and so the internal energy [
unaffected by the magnetism. According to Curies’ law (6.52),

7

1
M=V#H=Vx(T)B=—-N,—
dx 1 p
dM|p = V—=(T)BdT = —=N,—Bd
|“,l dT( ) 3 OkT._ T
and so (6.1) becomes
d + IN-—--HHQBQ dar
Q_ Cu 3 0 kTE
and the heat capacity at constant V, B is
1 ”282
G =6+ TNy =y
pB\?
=¢+ |~ /3R
CU kT

"Thus, the presence of B increases the heat capacity. When we add heat to the g
and raise its temperature, the increased molecular choas decreases the ability
the molecules to line up parallel to the external magnetic field. This causé_s.a
increase in the total energy, an increase that must be supplied by a portion of th
added heat. This situation is analogous to the difference (6.8) between ¢, and g
which is due to the part of d) that must provide the 4V work performed whe
heat is added at constant pressure.

For an ideal gas, the infinitesimal changes dp, ¢V, dT are related by-th
condition -

d(pV) = pdV + Vdp = RdT  (one mole) (6.1

We can get another relation between ¥ and d7 if we require that no heat ente
or leave the system (an adizbatic process): :

dQ=0=dU+ pdV = c,dT + pdV " (6.11b
If we eliminate dT" between (6.11a) and (6.11b), we find that
R
P+ —|dV+Vdp=0

CU
¢, dV dp
~— 4+ — =0=dIn( pVo/~
WV a(47e%)

Then, when an ideal gas undergoes an adiabatic change,

V¥ = constant (5_-11.

PROBLEM 6.3.2

PROBLEM 6.3.3

PROBLEM 6.3.4
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where y represents the ratio ¢,/¢,. Tor a monatomic ideal gas, y =

(5/2R)/(3/2R) = 5/3.

An ideal monatomic gas at room temperature is adiabatically decompressed so
that the final volume is 8 times the original. What is the final temperature?
According to {6.11c),

ﬁl Pz.’ v 5/
E — 1}2{":_’ — 8_5/3 . 8 = 8_2/3
T, N
T, T, 300K
g = "é'é"ﬁ = T = 4 = 75 K

Suppose that the atmosphere of Problem 6.2.1 is also in equilibrium with respect
to fast (adiabatic) vertical displacements ol gas. What docs this imply about
T(z)

Using the ideal gas law, we can express (6.11c) in the form p' Y77 =
constant, or equivalently

y
In p + ——InT = constant
-y

Differentiating with respect to z, we get

d y 1dT
—Inp=—=—
2 y—1Td:
If we compare this with (6.5b), we see that
darT y— 1 gM
dz Yy R
whose solution
vy—1 gM
T{z)=T(0) — —— z
Yy R

shows that the temperature of the atmosphere decreases linearly with height.

Find the relation between G, and C, [or a real (not nccessarily ideal) gas.
C, 1s still given by dU/dT|. since, at constant volume, dQ = C, dT = dU.
But if we add heat at constant pressure, the volume changes by an amount
dV = dV/3dT|, dT. Thus, at constant pressute,
dQ = C,dT = dU + pdV/
U

aUu
=-—| dT+ | —

4V
aT |, av|, Y

C dT + oy il 1T
_ _I_ —_—
o (‘n‘/' - l) ( (?T) ’ a

c _ aus + a7
- v, "’(ﬁ),.
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This is a general relation between C, and C,. F -

I’ » £Or an ideal
dU/dV|;=0and dV/8T|, = nR/P,it reduces to C, = C, + nR Fofas
Waals gas (6.6), we get reeray

R 7123
nRk| p+ 77
Cp - Cr: + 9
n‘a  2nab
-p -]';"2— Vﬂ

We have used here 8U/a8V|, = n’a/V?, as given in Problems 6.2.2b and:

6.4 ENTROPY AND THE SECOND LAW OF THERMODYNAMICS

A reversible process is one that proceeds so slowly that at any instant the syste
can be considered to be in equilibrium. If a series of reversible changes brings
system back to its starting point, then the second law of thermodynamics says tha

“Q_

T 0

{(Remember that ¢dQ is generally not equal to 0). If 4 and B represéﬁﬁ' ty
states of a system connected by two different reversible paths, :

_opd0 o 4Q
o=$7r= [ 7+ [ 7

rev path 1 rev path 2

i B
[ 2. | %
T T
rev path | rev path 2

Equivalently,

T

A P
rev path | rev path 2

Thus, [dQ/T between two states of a system has the same value for all reversibl

pa‘ths connecting the two states. Let us call state 4 our reference state, and keep
this state fixed. For any other state B, the integral :

S(B) = f%_'g

A
ey

depends only on state B, and not on the path from reference state 4 to B. S(B) i

FIGURE 6.1 Two reversible

paths connecting states A
and B,
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said to be the entropy of the system when it is in state B. With this choice of
reference state, S(A) = 0. (Note: only entropy differences are uniquely defined).
We can choose any state of the system to be our reference state. Once this state is
chosen, the entropy of any other state is defined relative to it. Similar considera-
tions were used in Section 1.4 when the potential energy function was defined for
a conservative system, and again in Section 3.2 when the electrostatic potential
was introduced in connection with an electric field whose curl was zero.
For a reversible process connecting infinitesimally close states,

JQ_.
- =

Far an irreversible process (and every real process is irreversible) connecting the
same two states,

as {reversihle) (6.13a)

d
-:% < dS  (irreversible) (6.13b)

Note that dS is the same in these two cases since we are going between the same
initial and final states, and entropy depends only on the states. The difference
between (6.13a) and (6.13b} is in the left-hand sides, dQ/T.

Perhaps the most useful set of equations in thermodynamics is obtained by
combining (6.1), {6.2), and (6.13):

TdS = dU + pdV + dw
TdS > dU + pdV + dw

These equations are referred to as “the combined first and second laws.”

(6.14a)
{6.14b)

(reversible)

(irreversible)

PROBLEM 6.4.1 Calculate the entropy change when a block of lead of heat capacity C is heated
between absolute temperatures T, and Tj.

Assume that the heating is done reversibly. Then

240  CdT
=2 _ L
T T
des S(T,) = (T, 7CdT cl T (6.15)
= - = | —— =0In| + .
’ i) A 5 T :I:l

This is the entropy change no matter how we get from the initial state T}, to the
final state 7. '

Two identical blocks of lead, each with heat capacity C, are initially at
temperatures T, and T, (with 7, > T). They are brought into thermal contact
and left until they reach a common equilibrium temperature T=(T, + T,)/2.
Calculate the change in entropy of the system.

Let our reference state be the two blocks at some arbitrary temperature T,
The initial entropy is

T, T,
Sinitinl = S(Ti) + S(Tz) = QS('I;I) +C ln—,l-r‘— + !n_j—‘—
o A

T,

2
T3

4

=28(7,) + Cin
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The final entropy is

T, + 7, T+ T,
Spnal = 28| ———| = 28(7,) + 2Cin} ———
2T,
and the entropy change is
T+ T, T,
Stinal ™ Sinitiat = 26 In ‘—'2‘"7::“ - Cln T2
(Tl + T-_')2 1 (T; - Tz)z +1
= —_— | = - .
4T\T; " e, 0, i T, # T,

Thus, the irreversible transfer of heat between blocks at different temperatureg is
associated with an increase in the total entropy of the system, A]tcrnauvely, if
heat dQ flows from block 2 at temperature {, to block 1 at lower temperatures
I,

entropy change of block 1 is 4Q /!, (heat flows into block 1)
entropy change of block 2 is —4Q /¢, (heat flows out of block 2)

so the total entropy change is
d d!
o @ _ i 1],

since ¢, > {,
L, ly 6,y -

The expression (6.15) was derived by considering reversible changes. We can
use this expressmn to discuss entropy changes in irreversible processes, bccause
entropy is a function of the siate of the system, irrespective of how this state i
reached.

Derive a formula for the entropy of a mole of ideal gas, as a function of T and
V. Assume that the ranges of 7" and ¥ are small enough so that ¢, is constant

We use (6.14a) with dw = 0 and dU = ¢, dT:
TdS = ¢, dT + pdV (6.16)

By considering separate reversible isothermal (47 = 0) and isovolumetri
(dV = Q) changes, we can deduce from (6.16) that :

(reversible)

Ay yp R )
=T 7 (for an ideal gas) (6.
T
as €, . (
ar|, T '
I we integrate (6.172) from V, to ¥, we get
Va
SV, T) = S(V,, T) = Rln| = (6.182
A
Similarly, integrating (6.17b) from T to T, gives
Ty
S(V, TH) - S(V: T:‘I) = r"uln —TT
A

PROBLEM 6.4.4

PROBLEM 6.4.5

FIGURE 6.2 A thermally in-
Sulated container of volume
21 On the left, all the gas is
Lonstrained to valume V, by
a"barrier. On the right the
Dbarrier has been removed,
and the gas expands {o f:li
he entire container.
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Next we set T'= T in (6.18a), and V' =T,
equations. The result is

in {6.18b), and add the two

sS(v,, T T,) + RI Pu | Iu)™ (6.19
= + : _
( B }J) S(7, A ) n v T )

7

Calculate the entropy of a mole of paramagnetic ideal gas as a function of 7, T,
and the magnetic moment M. Assume (uB/4T") is small enough so that Curie’s
law (6.52) is valid.

The effect of the magnetization is the addition of a term —B - M to (6.16)

(see Problem 6.3.1):
TdS = ¢, dT + pdlV — B - dM (reversible)

If we change the components of M at constant I/, T, we get

as B, 3% .
oM, |, . T Nt
R ( )
=M, (a=x7,z
(Nop)

The integration with respect to each Af, proceeds as in (6.18). If we take our
lower limit of M to be 0, then (6.19) is replaced by

Tt
Pyl Ty

S(InsTn:M)"S(rm T-no) + R 1n ITA ?{

M-M

(Ngw) - (anj')
(6.20)

3
2

We see that the magnetic contribution to the entropy decreases as the magnetic
order increases, and M becomes a larger [raction of its maximum value, Njp.
Note that we can only use (6.20) if M << N,p, since the saturation condition
M = N,p is outside the range of Curie’s law [see (6.51)].

N moles of 2 monatomic ideal gas are contained in volume F|, within an
insulated container. After a partition is removed, the gas expands into an
adjacent evacuated volume F;, so that the final volume of the gas is 2F;. What is
the entropy change?

No work is done by the expanding gas, since it expands into a vacuum.
Moreover, no heat flows through the thick adiabatic walls. Thus,

dU = dQ) — dIV = (
Since the gas is ideal, /I = 0 implies that 47 = (. (This would not be true for a

Gas Vacuum Gas in
volume Vp volume Vg Remove volume 2Vg
barrier
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PROBLEM 6.4.6a

PROBLEM 6.4.6b

PROBLEM 6.4.7

real gas.)

21

0

Stinal ~ Sinigal = 72 In =nRIn2

for n moles of gas. The free expansion of the gas is an irreversible process so'th
entropy is increased. g

What are the signs of the pressure and temperature changes when an ides
makes an isovolumetric change in which it loses heat?

The conditions stated in the problem imply that

The Carnot Cycle 271

condition. Thus, the net rate of increase of entropy is

45 45 (100)(45) cal cal

273 373 (273)(373) Ks Ks
The ice melts at the rate

cal lg 45 g
45 — - — = 563
s 80cal 80's 8/

5 THE CARNOT CYCLE

0> dQ = dU + pdV = dU = d(2nRT)
so that

1 4
0> dT = —(pdV +Vip) = — dp

Thus, we have proven that 0 > 4T, dp, so that both T and p decrease,

What are the signs of the pressure and entropy changes when an ideal gas mak
an isothermal reversible expansion?
Here we have

I
dl'=0= —( pd 7
—(pdV + Vdp)
y
dp = — —dqV
IP V
dQ = TdS = dU + pdV = pdV
b
S = +—=d¥V
T !

Since dV > 0, we conclude that the pressure decreases and the entropy increases,

A straight copper rod with a cross-section area of 5 cm® and a length of 10 cm i
connected between boiling water and melting ice at one atmosphere pressure
The thermal conductivity of copper is 9 X 10~2 keal /K. ms. Considering this as-
a closed system, calculate the rate of entropy increase of the system and the rate.
at which the ice melts. '

q = rate of heat flow /unit area
= thermal conductivity X temperature graéiient
kcal 100K 90 keal
Kms ~ 0.lm m” §
5 X 10~% m®, the heat flow is

=9 x 107

For an area of 5 cm? =

90 keal . lecal cal
—Q—XSXIO_"m‘=.045—=45—
m" s 5 8

FIGURE 6.3 p- Vdiagram for
4 Carnot cycle,

At the warm end, entropy is extracted from the boiling water at a rate of 43
(cal/s)/373 K. At the cold end, entropy is supplied to the ice at the rate 43,
(cal/s)/273 K. The entropy of the rod is constant since we are in a stcady stat€

A Carnot cycle is performed on an apparatus consisting of two heat reservoirs of
infinite heat capacity, at respective temperatures 7, and T, (T, > T,). A
cylinder fitted with a frictionless piston contains a “working fluid.” It is able to
extract heat at temperature 7, from the hotter reservoir, to dump heat at
temperature T, into the colder reservoir, and to undergo adiabatic expansion and
contraction between these two temperatures. All processes are assumed to be
reversible. Figure 6.3 represents the four steps in the sequence that defines a
Carnot cycle:

1. a — b: Isothermal expansion at temperature 7. Q, joules are removed [rom
the heat reservoir at T7.
2. b — ¢: Adiabatic expansion until the working fluid reaches temperature T,,.

3. ¢ — d: Isothermal compression at temperature 7,,. Q, joules are delivered to
the heat dump at temperature 7.

4, d — a: Adiabatic compression until the working fluid reaches the initial
temperature 7.

Since all parts of the cycle are reversible, we know that ¢4Q /T = 0. During

the adiabatic expansion and contraction, dQ = 0. Thus,

T,

Q.l (—Qa) Q.z'—“ Ql_-]T:-

0= — + —t
T, T,

"The net work during the cycle is W = Q, — Q,. The efficiency ¢ of the cycle is
the ratio of the net work done to the energy extracted from the hotter reservoir,

W Q.l Q, Q,- T/ T _'1_15
Ql Q; Q, T,

Since some heat is dumped during the ¢ - ¢ phase, the efficiency is always less

(6.21)

P

Ty
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PROBLEM 6.5.1

PROBLEM 6.5.2

than 1. It is clear that we increase the efficiency of conversion of heat to work b
increastng the ratio T,/ T,.

No heat engine operating between temperatures T} and 7T, can convert hea
to work with an efficiency cxceeding that of the Carnot cycle. '

The cycle can be run reversibly in the direction opposite to that indicated 3, in
Figure 6.3. It then acts as a refrigerator, extracting heat at the low temperature
T, and dumping it at the higher temperature 7. The “coefficient of perfor-
mance” ¢ is the ratio of the heat extracted to the mf:chanica.l work supplied,

QL_ Q& T
w Q.l - Qz Tl - ﬂz

We increase ¢ by decreasing the ratio T\ /T,.

b2

A helium liquefier with an inside temperature of 4 K operates in surroundings at -
300 K. For each joule of energy extracted from the helium at 4 K, how many .
joules (at least) must be added to the surroundings as heat?
If the process is reversible,
W Q=@ LT M6
Qa Qs T, 4 .

Thus, if @, =1 joule, ¥ =74 joules,and Q, =74 + 1 =
to the surroundings as heat.

75 joules are added:

An ideal gas turbine may be assumed to work in a reversible Joule cycle shown in
the 7-§ diagram. The gas is monatomic, h

T p

50“5\

p const

8 14

(a) Draw the corresponding -V diagram.
Since the entropy remains constant as the temperature increases from 7} to .
T,, the step 1 — 2 must involve an adiabatic compression, with V¥ = py =
constant. Since p remains constant as the temperature increases from T, to Ty,

the step 2 = 3 must involve an isobaric expansion, with ¥ = nRT/p. Steps .

3 —» 4 and 4 — 1 are the reverse of steps 1 — 2 and 2 — 3, respectively.
(b) How much work is done in one cycle? Express your answer in terms of
T, 7, T, T, '
The work done is §pdV = $[TdS — dU| = $TdS, which is the area within
the curve representing the cycle in the 7-S plane. Between points 2 and 3,
TdS = dQ = ¢,dT = (5R/2)dT,

y 5
[ Tds==R(T, - T)
) 2

.6 FREE ENERGY AND
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Similarly, between points 4 and 1,
5
[Tas = SR(T = T)
4

Thus, the total work done in one cycle is (53R/2)(Ty — T, + T, — T,).

(c) Assuming fixed extreme temperatures T; and 77, find the intermediate
temperatures T, and 7, that will result in maximum work performed.

We cannot make 7, and 7 arbitrarily small, because of the stipulations
that 1 = 2 and 3 — 4 are adiabatic processes. But from the adiabatic conditions

TV 2/3 TV ‘/.5 T!jV:jQ/S — T;V.F/J
and the isobaric conditions
L% n_T
v, v’ ¥V

we can deduce that 7,7, = T,T. Thus, we need to minimize T, -+ T}, subject ta
this restriction on T,T,. Using the method of Lagrange multipliers, we have

]
0= —[T,+ 7T, -

3T, AT,T,] = 1 = AT,

o
I

d
ﬁ[TQ + T, —ATT,] = 1 ~ AT,

We sec that 7, = T, = yT\Ty, and the maximum work performed is
(5R/[T, + T, — 2yT\T4].

ENTHALPY

6.6.1 The Thermodynamic Polentials

Suppose that a process takes place in which a system goes {rom state 1 to state 2.
'The thermodyramic potentials enable us to calculate the maximum amount of work
that can be extracted [rom the system as it undergoes the transition between these
two states. There are several different potentials, corresponding to the different
kinds of processes we normally encounter.

The simplest situation occurs when the process takes place in an adiabatic
(thermally insulated) container. Then (6.1) and (6.2) give

dQ = 0 = dU 4+ dW = dU + pdV + dw
diy = —dU (adiabatic) (6.22a)

This gives the total work dW. We may be interested in the amount of non pdV
work done during this adiabatic process. Of course, if the process occurs at
constant volume, pdF = 0 and all the work done is nonp ¢/ work,

dw = —dU (6.221)

To determine dw in adiabatic processes in which volume is not constant, it is
convenient to introduce the enthalpy H, defined by

H=U+pv

(adiabatic, constant volume)

(6.23)
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Then
dif = dU + pdV + Vdp = ~dw + Vdp
dw= —dH+ Vdp  (adiabatic)
In particular, if the process occurs at constant pressure,
dw= —dH  (adiabatic, constant pressure)

If the container is not adiabatic, we cannot determine such strong rec
tions on dW and dw, since it is possible for heat energy ta flow into or oi: esf
container as the process takes place. However, the second law of théffg dv
namics, {6.13), puts limits on the possible amount of heat flow, Thug wc'cao ;
least find some uselul inequalities. U

From (6.1) and (6.13), we have

d = dU + dW < TdS
Now we define the Helmholiz free energy F by

F=U~T§

dF = dU — TdS — §dT
Combining (6.26b) and (6.25) yields

dW < —dF — §dT
In particular, if the process is isothermal {constant 7'}, this becomes
dW < —dF  (constant T')

extracted if that change is performed reversibly.
c by’To get a limit on 4w in the nonadiabatic case, we define the Gibbs free energy
G=F-+pV=U~—TS+pV
dG = dF + pdV + Vdp
Then (6.28b), (6.27a), and (6.2) can be combined to give
dw < —dG+ Vdp — §dT
dw < —dG  (constant p, constant T') (6.

Equations (6.22), (6.24), (6.27), and (6.29) imply that if a process takes
place in a container, the amount of non p ¥ work that can be extracted is limited
by the change in U, F, H, or G of the material in the container. U/ and H are
relevant for adiabatic processes, and F and G for isothermal ones. I/ and F an
relevant for processes at constant volume, H and G for processes at constan
pressure, U, F, H, G are called thermodynamic poetentials, and are functions of =
the state of the system, irrespective of how that state is reached. These results are’
summarized in Table 6.1. e

An electric cell can be constructed that uses the chemical reaction
Pb + 2HgCIl — PbCl, + 2Hg

When the reaction takes place reversibly at constant volume, and at a constant .
temperature of 25 C, the EMT of the cell is found to be .5387 volts. What is the
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TABLE 6.1 The amount of non pdV work duw
that can be extracted from a syslem, in terms
of changes in the thermadynamic potentials.

Constant Constant

I p
Adinbartic —dU —dlt
Isothermal® < —dfF < —di

“Noie that in the isothermal cases, only inequalities
can be stated. At constant I there is no distinction
between non p iV work dw and total work dIF,

change in Helmholtz free energy F when one mole of Pb is converted to PhCl, in
this way?

The electrical energy produced is the EMT times the charge transported.
Each lead atom transfers two electrons to mercury atoms, so that for each mole of
lead consumed

. ' C
dW = 2 X 6.022 X 10% electrons X 1.602 X 1079 —— x 5387V

electron

= 1.040 X 10° J = —dF

It turns out that the internal energy of PbCl, + 2Hg is lower than that of
Pb + 2HgCl by .95 X 10" joules per mole of Pb. If the reaction took place in an
adiabatic container at constant volume, this is the amount of electrical energy
that would be produced. The extra 0.09 X 10° joules of clectrical energy
produced when the reaction occurs at a constant temperature of 25 C comes from
heat conducted into the system as the reaction takes place. The cell acts as a
refrigerator and extracts heat from its surroundings.

6.6.2 The Maxwell Relations

Several useful relations can be obtained between the thermodynamic potentials,
U, F, H, G, and the thermodynamic variables p, ¥, 5, T, if we assume that the
only work done is pd¥ work. These equations can be conveniently classified
according to which pair of variables is chosen to be independent.

1. § and ¥ independent.
dQ = T'dS = dU + pdV, dU = TdS — pdV

au au
Fta T, G 52 I
ar ap
7 ls= "7 , (6.30a)
2. § and p independent.
dH = dU + pdV + Vdp = TdS + Vdp
,‘E =T i?.{{.. =V
a5 |» ’ dp P
aT av
E = 75 , (6.30b)
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PROBLEM 6.6.2 Find an expression that will enable you to calculate dU/dV | fora gaé, given its.

3. T and V independent.
dF = dU — TdS — SdT = —pdV — 8dT

aF aF

avlr 4 E"V:—'S
ap B as

aTlr ﬁ T

4. T and p independent.
dG = dU — TdS ~ S§dT + pdV + Vdp = —SdT + Vidp

G G

), ” "% ),

a8 v L
aplr” T AT, (6.30d)

Equations (6.30a, b, c, and d) are called the Maxwell relations.

equation of state.

Since ¥ and T are the independent variables here, we use the relations:

derived in (3) above. We have

oF|  a(U-—T3) w9
A A |,
au d
avir T,
Thus,
U ap
FZ e

We can use this expression whenever we know p as a function of 7" and V. Fm.‘_.
example, for an ideal gas, (6.3) implies that T 8p/dT|. = p, which yiclds the
expected result that dU/dV|,.= 0. For a Van der Waals gas, we use the

equation of state (6.6) to write

nRT an®

b= —

V— nb V
dp nRT an®
aTV— V'—J’Ib Hp+-72-

and so

arr N an? an®
El% .,fp Vi e

"This agrees with the expressions used in Problems 6.2.2b and 6.3.4.

PROBLEM6.6.3 Let f(T, {) be the tension in a rubber band of length / and absolute temperature

PROBLEM 6.6.4
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T. Let S(T, {) be its entropy.

(a) Find a relationship between d5/3!|;- and af/37,.

The thermodynamic potential appropriate to situations in which the inde-
pendent variables are T and / is the Helmholtz {ree energy F. The combined
first and second law applied to the rubber band is

TdS = dQ) = dU/ — fdl (6.31)

Thus,
dFf = dU — TdS — §dT = fdl — §dT

and (6.30c) is replaced by

ar Jar af a5

ol |-~ ar 7ol TR T

(b) If the temperature of the stretched band is raised while the length is kept

constant, will the tension increase of decrease? Hint: if a rubber band is stretched
at constant temperature, its molecules assume a motre regular arrangement.

The hint implies that 3S/8!|7.< 0. Thus, df/dT|, > 0, and the tension
increases when the band is heated at constant length.

!

Consider a piece of rubber of length { with onc end fixed and a force f pulling
on the other end. The equation of state of the piece of rubber is

[=(K,—aT)(l~-1,) (1> 1,)

ISR

where K, o, /; are constant. The heat capacity ¢, at constant length is taken to
be independent of 7". Suppose that this piece of rubber is adiabatically and
reversibly stretched [rom length /; to length /,. If the initial temperature was 7,
what is the final temperature?

We need d7/d!|g, so let us work with § and / as independent variables,
From (6.31) we have

au aty ar af d )
W‘ng’ E?'f?"a W‘v=ﬁi=?ﬁ[(ﬁtl_aT)([-[u)]’
If we supply heat at constant /,
ar T
d) = TdS = ¢, dT, ?7:5_'-,:5_,
Thus,
aT T
3l S = —a(/ - ln):‘.
1 dT d (-1,
Tals T T YT
lnz:'{ = : [(lz - [n)Q - ("i - /u)g]

T, 2
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6.7 EQUILIBRIUM CONDITIONS

so that the final expression for 7, is

Consider a process occurring in a container at constant T, 4, so that (6.29
applies. Suppose that conditions are such that the Gibbs {ree energy G hag j
lowest possible value consistent with specified values of 7" and p. Then any
change away from this state would produce 4G = 0, and consequently dw < :
In other words, a change can occur only if we do nonpdV work on the system:
(e.g., by sending in electrical energy). If we do not supply this extra energy'-.'
nothing will happen. Since the system will remain unchanged unless we stimtﬂaté"
it, we can say that it is at equilibrium. Thus, a sufficient condition that a system’
be in equilibrium at constant T and p is that & have the smallest value'
consistent with these values of T and p. Similarly, equilibrium at constant T
and ¥ corresponds to a minimum in F, and equilibrium under adiabat :
conditions corresponds to minima in H (constant p) or U/ (constant V).
Suppose that two phases of the same substance are in equilibrium at some
common temperature T" and pressure p. Let G, and G, be their respective Gibbs
free energies per mole. At equilibrium it must be that :

G\(T, p) = GLT, p) (6.322)

since if G, exceeded G,, the total Gibbs free energy of the system could be '
reduced if material in phase 1 converted to phase 2, which would imply that we
are not at the minimum of the total Gibbs free energy at this 7" and p.

Now suppose that 7 and p change slightly, but in a way that keeps the two
phases in equilibrium. Then

GAT + dT, p + dp) = G(T + dT, p + dp) (6.32b) -
Subtracting (6.32a) from (6.32b}) yields
EE[“ aﬁ"’—kﬂg—i a’p=?ﬁ dT+E% dp
o7 |p ap |, aT |y ap |p
0G, JG,
T dp |t dpl|, V-V
— = = (6.33)
dp ﬁ& _ dG, S — 5
aT [» 9T |, :

where ¥, and S are the volume and entropy of a mole of phase 1.
Let ! be the amount of heat that must be added te a mole of phase ! to
convert it to phase 2, If this heat is added reversibly at temperature T

PROBLEM 6.7.1

PROBLEM 6.7.2
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If 1-represents liquid water and 2 represents water vapor, {and I, — V| are
both positive, and so is d7/dp. For this reason the hoiling temperature of water
decreases as pressure decreases (it takes longer to boil an egg on a mountaintop).

1f 1 represents ice and 2 represents liquid water, / is positive, but ¥, — V| is
negative, since water expands when it freezes. Thus, dT/dp < 0, and the
increased pressure under an ice-skate blade lowers the melting temperature. If
this is below the ambient temperature, melting will occur, and the liquid
produced lubricates the motion of the blade over the ice.

Construct the Gibbs free energy for n moles of ideal gas, and find the equi-
librium volume for specified temperature and pressure.
We use (6.28a) and the result of Problem 6.4.3 to write
G = U(T) — nTRIn(VT?) + p¥V
apart from an irrelevant added constant. To find the equilibrium volume, we
must minimize G for fixed T and p,

0 aG nTR N
“wl.,” v T
pV =nRT

Thus, the equilibrium volume is the one that satisfies the ideal gas law.

It is usually possible to assume that the molar volume of a vapor is much greater
than the molar volume of the associated liquid or solid. Make the additional
assumptions that the vapor obeys the ideal gas law and the heat of vaporization
is approximately independent of temperature, and derive an expression for the
equilibrium vapor pressure as a function of temperature.

We apply the Clausius-Clapeyron equation (6.34) to two phases, one of
which is vapor and the other liquid or solid. If we neglect the liquid or solid
volume, and assume that the vapor behaves like an ideal gas, we get

dT TV TR

dp { Iy
d(in 1) [ dT
SR =R
Finally, if / is independent of T, we can integrate to get
{
Inp=Inp ~ T ( pp = constant)

{
=15 GXP( - Iﬁ;)

In many cases this gives a good representation of the dependence of equilibrium
vapor pressure on temperature.

6.8 KINETIC THEORY OF GASES

and (6.33) becomes
T T(V,— V)
Tl;b_ = (phases | and 2 in equilibrium) (6.34)

This is the Clausius-Clapeyron equation.

6.8.1 Velocity Distribution

A simple but useful model of an ideal gas is a large number of molecules moving
almost independently of each other in a container whose volume is much larger
than the tatal volume of the molecules. “Almast independently” means that the
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energy of interaction between the molecules is small compared to their transla.

tional kinetic energy, yet this interaction is strong enough to keep the maleculey

in a state of dynamic equilibrium with one another. Thus, it is unlikely that ona
molecule would have a speed much greater than the others, since frequent

collisions between the molecules lead to an almost continuous redistribution of

the total kinetic energy of the gas,

Let p be the average number of molecules per unit volume (number
density), which we assume to be constant throughout the container. We describe
the distribution of molecular velocities by a function f(v) such that
pfvy) do, v, dv. = pf(v,) d?y is the number of molecules per unit volumne whege
velocity v is within the range

(vﬂ)x “ -“Iz-dvx 2u < (Uﬂ)x + %dvx

(v), — b, < v, < (1)), + Ldo,
(). — 3o, < v, < (9), + dd, (6.35)

The condition (6.35) can be described by saying that the velocity v is within a .
“velocity space” volume d%v about v,. Since p is the total number of density, -

irrespective of velocity, f(v) must be normalized so that
[or(v)dt=p
[ & =1

" Usually we can neglect the effect of external fields and of the detailed shape of -
the container.' Then all directions in space become equivalent, and we expect

f(v) to be a function of the magnitude of v, but not of its direction. This makes it
useful to introduce polar coordinates in velocity space, and to write the normal-
ization condition (6.36) as

o w2
= 3, — 2 g
1= ff(v) do = ,,'.[0 guj;o 'p:lof(u)u dvsin,df,d¢,
= 47rff(v)v2 dy (6.37)
The mean-square molZcular speed can be written
(;3) = ff(u)v2 d = 47rff(n)a“ dy (5.383.):
so that the average translational kinetic energy per molecule ;s
KE/molecule = Tif% = 2'4?]'5/1_D/c'f(u')u4 do (6.38b)
0

Since the molecules whose velocities satisfy (6.35) have number density

pf(vy) d*v and average velocity v, their flux density is pf(v,) 4% v,. This means
that the number of these particles crossing an infinitesimal surface area da in unit
time is pf(vy)d’vv, - da, If da represents a small area in the wall of the

"I'his will be true when the dimensions of the container are much larger than the mean free path.

(6.36) -

FIGURE 6.4 v, and v are

cule that makes an elastic
collision with surface ele-
ment da of the container
wall.
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jda= 2da
vo
\ﬂu-_,._ _‘_ﬂu’f vo'

container parallel to the x—y plane (da = Zda), then the rate at which molecules
satisfying (6.35) strike this area is

pf(vy) &% vy - 2da = pf(v,)ncos 6, dadv (0, < m/2) (6.39a)

(see Figure 6.4). If we suppose that these molecules make elastic collisions with
the wall, then the amount of momentum delivered to the wall by each molecule
is 2Muyycos # 2. Then the rate at which the molecules satisfying (6.35) deliver
momentutn to da is

[2ﬂ!pf(v,,)v§c0520" a’i’u] Zda

Thus, the total lorce exerted on da is

ks I

2Mp f fwy)os dvy f cos*f,sin §, 40, f
0

&=n =0

d, |Zda

4 7 s .
= ﬂl?p{f(v‘,)vu duy | £ da

which implies that the upward pressure on da is®

da i
b= —S—Mp {f(v”)zf('f du, (6.39h)
Comparison with (6.38b) shows that ‘
p = 3p - KE/molecule (6.40)
If we now define the temperature 7° by
KE//molecule = 347 (6.41)

then (6.40) becomes
iV, nlT
p=pl'= — T = ——
g V

where n is the number of moles of gas. Thus, this simple model of an ideal gas,

*In Section 1.6 we also calculated the pressure that a fuid exerts un a wall by determining the rate at which the
fluid delivers momentum 1o unit arca of the wall.
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PROBLEM 6.8.1

PROBLEM 6.8.2

together with the interpretation (6.41) of 7 as a measure of the average

molecular kinetic energy, yields a derivation of the ideal gas law.

Suppose that da in Figure 6.4 represents a small hole in the top of the container, -
and the exterior region is pumped to maintain a vacuum there, At what rate wil]
molecules leave the container through this hole, and what will be their average -

kinetic energy?
We get the rate at which molecules will leave the container by integrating
(6.392a) over all departing velocities

L) /2 g
da p f f(v)vcos 8,d* v = dap ff(u)v“dv f cos B.5in 8, 48, f de,
8,<w/2 0 8:=0 =0

- [Wp [ f2)? dy} da (6.42a)

Their average kinetic energy is given by

oo 2

M-
ff(n)vﬂ—m d
A 2

(KE) avg T (6 '42b)

f o) dv
0
So far no assumption has been made about the explicit form of f(#).

Maxwell assumed that
M\ A2 JORT
f(v) B ( QWkT) g

Here M is the mass of a molecule, T is the absolute temperature, and £ is
Boltzmann’s constant. This velocity distribution is consistent with (6.37), and
with the Boltzmann probability distribution to be introduced in Section 6.9.

(6.43)

Answer the questions of Problem 6.8.1 using the Maxwell distribution (6.43) for
the velocity distribution of the molecules.

If we substitute (6.43) into (6.42a and b), we get? an outgoing particle flux
of

M \3/2% \ M (321 T(2)
d . =My 28T, 3 d _ —
g W”( 2wkT) {E vy = da “p( 27rkT)

2 M2
B 28T

(6.42c)

. kT
APV o

rt+1
- 1r( ! )
fn-—o\:"' bt

x"e de = Py s
Y R

3The formula

will be found to be useful for the evaluation of averages over the Maxwell distribution. Here T'(x) is the gamms
function, satisfying
T{x+ 1) =al'(x} T(1)=1,

M) =

PROBLEM 6.8.3

PROBLEM 6.8.4

FIGURE 6.5 Molecules travei
in straight-line paths io the
detector outside the con-
tainer.
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and an average outgoing kinetic energy of

~ Mo 24T, 5
M !"’ e d MF(S)(QA—T)
] = —
2 fﬂru“/wys o 2. T\ M
0

= 2kT (6.42d)
The average kinetic energy within the container is (3/2)4T. Thus, the molecules
that escape are, on the average, faster than those that stay behind.

A space capsule whose volume is 10 m® contains air at atmospheric pressure and
20 C. It is suddenly punctured by a small meteorite, which leaves a 1 mm* hole
in its side. How long will it take for half the air to leak out into the vacuum
surrounding the capsule? (Assume a heat source to keep the contents at 20 C.)

If the capsule has volume V, it contains pl/ molecules. According to (6.42c)

d(V) o T
2 T T T P

The solution for p(t) is
(1) = p(0) g~ dafET72mal sV
Thus, the density decreases to half its initial value in a time ¢, , given by
In2 In2

t Ny ==
Vi (da [RT 10"2em®  [1.38 X 107'% erg/K X 293 K
vV onM 10X 10°cm® | 28X 16X 102 g X 27

=58X%X10*s=~16h
Figure 6.5 shows a container with a small hole of area da in one wall, with
vacuum on the outside. At a distance R from the hole, at an angle 6, to one side,
is placed a particle detector with a sensitive arca g. At what rate will the detector
record the arrival of particles?

The particles that leave the hole and strike the detector move in a cone of
solid angle 6/R? whose axis is the line to the center of the detector. According to
{6.39a), the rate at which such particles leave the hole with speed between v and
v+ dvis

) o
da- p. f{v)v’cos 6, dvdS, = da - pf(z)v’ dvcos 9,,@

Integrating over all speeds, we get
o “ o kT
da - Pz o0s B,,‘Z‘f(v)u:‘ dv=da-p- 72 <08 g, By
If this is integrated over the entire exterior solid angle of 27 steradians, we
recover {6.42c).
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6.8.2 Mean Free Path

Suppose that a molecule within a gas has traversed a distance / since its [aq
collision, What is the probability dp that it will make a collision in the next sma]]
interval 4/? We assume that the molecular chaos is so great that there are 5.
statistical correlations between successive collisions. Then dp will be independer;

of /, and we can write dp = v d/, with y constant. What does this imply about the
distribution of path lengths between collisions? Let F{/) be the fraction of paths
that reach distance / without collision. Then F{{) — F(! + dl) is the fraction that
undergo collision between / and { + 4/. Our assumption is that this is the {raction
y d! of those that have reached /. Thus '

F(1) — F(L+ d) = yF(1) dl

dF({) ]
whose solution is
F(1) = F(0)e™" = ¢~ (6.44)

We see that short paths are more probable than long ones.
The probability of a collision between [ and / + &/ is

YF(!) dl = ye ¥ dl

The average intercollision path length, the mean free path A, is given by
oo
|
A= [lye™Vdl=— 6.45
i : (645)

To estimate y, we ascribe to each molecule an effective collision cross-section area
o. As the molecule moves a distance df through the container, this area sweeps
out a volume o 4/, Since p is the molecular number density in the container, the
probability that there is a molecule within volume o df is po 4/, and we take this
to be the collision probability, y d/. Thus

1

Y=po=< ' (6.46)

The precise value of o depends on the detailed interaction between the mole-
cules, but we can get a rough estimate by taking it to be a few times larger than
the molecular cross-sectional area, To make a numerical estimate, we can
consider a gas at 1 atmosphere and 273 K,

6 X 10% molecules

22,41
g =4 X 107" cm?,

and the mean [ree path is of the order of 1073 cm. Thus, 2 molecule travels, on
the average, about a thousand times the length of its diameter between collisions.
For this reason the amount of internal energy associated with the molecular
interactions is small compared to the translational kinetic energy of the gas.

The behavior of gas in a container depends on the ratio of the mean free
path of the gas to the dimensions of the container. For example, Figure 6.6 shows
a tube of small diameter 1) connecting two large chambers which are main-
tained, respectively at pressures P, £, and temperatures T}, 7,,. What will be the
direction of gas flow through the tube?

Suppose first that A << D. In that case, molecules in the tube are much
more likely to collide with cach other than with the tube. The gas behaves like 2

p= = 2.7 X 10" molecules /cm’

4§

y=op = 10" cm™!

FIGURE 6.6 Which way does
the gas flow?

PROBLEM 6.8.5

PROBLEM 6.8.6
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P, Ty Pg, Tg

continuous fluid, and its motion is governed by the laws of classical fluid
dynamics (Section 1--14e). If gravitational effects are small (as they usually are},
the gas flow will be from the chamber at higher pressure toward the one at lower
pressure.

Now suppose that A 3 D, In this case a molecule is much more likely to
collide with the wall of the tube than with another molecule. The molecules move
through the tube essentially independently of one another. According to (6.42c),
the flux from chamber 1 into the tube is proportional to p”/?, = P, /k‘/f , and
similarly, the Aux from chamber 2 into the tube is proportional ta 1’3',_,/:{‘»‘/?E .
Thus, when A > D, the direction of flow is out of the chamber with the larger
value of P/ VT, which is not necessarily the chamber with the higher pressure.

The container shown in the figure has a volume 2} divided into two equal parts
by a thin porous insulating wall with holes whose diameters are small compared
to the mean free path of pas molecules. Into the container n moles of gas of
molecular weight Af are put, the left side being maintained at temperature 77,
and the right side at temperature T,. Let A be the cumulative area of the holes
in the wall. When equilibrium is established, what are the particle densities and
pressures on each side of the wall?

i

According to (6.42¢), the particle flux throtigh the holes from side / is
proportional to pn[f- . At equilibrium, p,m = py/ Ty . If there are n moles (1,
molecules) on both sides, then p ¥ + p,// = nV,. These equations can be solved

simultaneously to give
Py = ‘/?‘/? ad ] fa = \ﬁT it
T T [T, +T, V
For an ideal gas, P = (nN,/V)kT = pkT. Thus,
kTYT, N, KT,  aN,

R A A R

The container shown in the figure on the next page has a volume 27 divided into
two equal parts by a thin porous insulating wall with holes whose diameters are
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PROBLEM 6.8.7

small compared to the mean free path of the gas molecules. Into the containg
molecules of gas of molecular weight M are put, the left side being maintained:
temperature 73, and the right side at temperature T, > T,. Let A be
curmulative area of the holes in the wall. A tube with a cross-section that s larg
compared to 4 connects the sides as shown. Neglecting the volume of the mg
compared to ¥, and the viscosity of the gas, describe in detail the steady stat
properties of the system.

Because of the large tube connecting the two sides, the pressures on the ty
sides must be very nearly equal. Let N, and A, be the number of molecules 5
el;lch side, and N = N, + N. Since P, = Nk, T,/V = B, = Nyk,To/V, it follow
that 5

NT, = N,T,
M= N N LN
LT+ T ¢ T+ T,

According to (6.42c), the net flux of molecules across the membrane from side.
to side 2 is

N, [T _ AN [k T, - T\T,
vV 2aM VoV 2aM T, + T,
AN kT, [T, - T,
vV amM | T, + 1,

which is greater than zero. Thus, there is a net flux across the membrane, from:
the cool side to the warm side. There is a return flow through the bottom tube
This flow is associated with very little pressure difference, since the connectin
tube has a large cross-section. :

Most conduction electrons in a metal are kept from leaving the metal by a
abrupt potential energy rise #, at the surface of the metal. Assume that the:
conduction electrons inside the metal have a Maxwellian cdistribution of velocity,
and find the current density of thermionic emission from the metal at tempera
ture T %
Only those electrons with mu?/2 > W, and v, > 0 will escape. Let g be th
density of conduction electrons. The, current density out of the metal is '

m o " o
ool gt 5]

ep —= v, dv_dv, dy,
(kT /m)* = Oy 4
> 21 S m

g~ /AT

|
o
©

xv.r"—

-
—o [

V2 /m

(2mkT/m)'"* 2mmw

PROBLEM 6.8.8

PROBLEM 6.8.2
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The gravitational acceleration at the moon’s surface is 167 cm /s, and the radius
of the moon is 1738 km. The mean temperature of the moon is 300 K.
(a) What molecular weight must a gas have so that a molecule with the rms
velocity of a Maxwellian distribution cannot escape from the moon?
According to (6.41),
my® 3

— 3T
—_— = —}kT = ]/ F— —_—
2 2 b vrnm U nl

A molecule with the escape speed v, has zero total energy. Thus, at the surface of
the moon,

2MG

5, = = J2gR

m2/2 — mMG/R = 0, A

Thus, if v,,, is to be less than v,,

[3kT 3T
— < 2gR, m>-—=21X10"%g
m _ 2sR

8

This corresponds to a molecular weight of
21X 107%g
1.6 X 107 g/u

- (b) Why has the moon no apparent atmosphere? Relate your answer to the
result obtained in part (a).

A molecule like N, has a molecular weight of approximately 28 u, so its rms
speed is less than the escape speed. However, the Maxwell distribution (6.43) has
a very long tail, and enough molecules had speeds greater than o, so that
essentially all the gas escaped during the lifetime of the moon.

=13u (atomic mass unit)

Two flat plates are separated by a distance a, and are at two slightly different
temperatures 7. and T, {¢ for cooler, w for warmer). Helium gas at pressure p,
such that the mean free path greatly exceeds a, fills the space between the plates.
Assume that the velocity distribution of the molecules that have bounced off a
surface is a Maxwell distribution corresponding to the temperature of that
surface, Find the thermal conductivity due to the helium gas.

The thermal conductivity is the net energy flux divided by the temperature
gradient, If p,, is the number density of molecules that have bounced off the
warmer surface, the kinetic energy flux of these molecules is

fdvydv: f dv, 2]“(1)_”l o, v:)pmyx( {vf + vf + y_*’})

v, >0

(247,,)°

mw

m

2

=pw

We have used the Maxwell distribution (6.43) for f{v,, v,, v.) with an extra factor
of 2 so that the normalization condition (6.36) is satisfied for v, > 0 only. The net
energy flux from the warm to the cold plate is

(2k)’

mmw

[p,T3/% — p, 1)
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6.9 STATISTICAL MECHANICS

Thermal Physics

To obtain p, and g, we use that [act that the net particle flux is zerg:

b
plTu =0T, putp=p=.r (T=T.=T,),

P (S S )
SR P ol

and the energy flux is approximately

GF b (Erc- [mre [
mr kT Qﬁ N mnT [Tw—h T‘] .

Since the temperature gradient is (T, — 7,)/a, the thermal conductivity due iu
the helium gas is ay2k/mw T,

Most of the measurements we make on a thermodynamic system tell us aboi
averages of the physical properties of many molecules. For example, temperatur
is a measure of the average translational kinetic energy. Pressure is a measure of
the average rate at which the molecules deliver momentum to unit area of wall,
Specific heat is a measure of the average way the molecules respond to addition
of energy, etc. The subject of statistical mechanics attempts to calculate such
averages from the underlying microscopic structure of the system. Note that we
do not attempt to find a detailed solution of the equations of motion, correspond
ing to some completely specified initial conditions. This would clearly be un
tainable for a complicated system such as a gas of 10 molecules. Fortunately
we do not need to know the detailed motion of each molecule in order to draw:
conclusions about the gross averages that are measured by our macroscopic'
experiments. )

6.9.1 Classical Slaltistical
Mechanics: Boltzmann Distribution

In classical mechanics, the instantaneous state of a system with o degrees o
freedom is specified by giving the values of 4 generalized coordinates q,,...,§;-
and d generalized momenta p,,..., p,. It is uselul to regard the variables
TrseosGyqs Ppse--y pg as the coordinates of a point in a 2d-dimensional phase -
space (cf. the discussion on p. 52}. In statistical mechanics, we visualize a large .
number of identical copies of our physical system. This collection of copies i
called an ensemble. At any instant, the state of each system in the ensemble can be
specified by locating its representative point in phase space. As time evolves, the-
collection of representative points move along trajectories determined by
Hamilton’s equations (1.48). If the ensemble is governed by the Boltzmann
distribution, the probability that a representative phase point is within a volume
dq,...,dp, around ¢,,..., , is given by

exp(—H{q,,..., p,)/kT ) dq, ... 4,
P(ases o) dgs ., dpy = ( 1 pa)/T) dg, ... dpy (6.47)

[exp(—H{ats..., #2)/KT) dai.. dp;
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Here H is the Hamiltonian of the system. The denominator in (6.47)

H{q{,.-., 1)
Z= fexp( - g (6.48)

is called the partition function. It ensures that the total probability is unity:

fP(q,,...,j)d) dq,...dp, =1

The principle of equipartition is a useful application of the Boltzmann
distribution. Suppose that

H(qi:"'f f)d) = ﬂqiz + H,(qus"'zpd)

where « is constant and H’ does not depend on g,. Then aq{, the average value
of the ag} contribution to the encrgy, is given by

m = fl?(]'fjp(ql,..., b)) dg, ... dpy

[agtexp(—Hay,..., b)/KT) day ... dp,

[exp(=H{qy,..., p,)/KT) da, ... dp,

o0

oD
- o

— o0

The numerator and denominator can be evaluated with the help of the integral
given in the [ootnote on p. 282, Thus,
—  I(3/2) (a/kT)'* 1 T(1/2) 1
agy = a T = ookl = kT
T(1/2) (askTY7* 2 T(1/2) 2
We see that every generalized coordinate or momentum that contributes
quadratically to the Hamiltonian has an average value of (1 /2)4T. This is the
equipartition principle.
Let us apply this result to a gas of polyatomic molecules in a container. The
Jth molecule contributes a translational kinetic energy

/}J%‘" + f’.;‘.fr + /’.;'2:
2M

to the Hamiltonian, The principle of equipartition tells us that its average value
is 3k7/2. Thus, the average translational kinetic energy of a mole of gas is
IN,kT/2 = 3RT/2. For an ideal monatomic gas, this represents all the energy of
the gas.

Now suppose that the gas consists of finite-size molecules that can rotate as
well as translate. The rotational kinetic energy of each molecule contributes three
quadratic terms to the Hamiltonian (for the three orientation degrees of freedom},
so the average rotational energy of a mole of gas is also 3R7 /2. If each molecule
vibrates harmonically about its equilibrium configuration with 7 normal modes
(Section 1.10), this vibrational motion contributes 2n quadratic terms to the
Hamiltonian (a potential and a kinetic energy term for each mode). Then the
average vibrational energy for each mole ol gas would be (2n)RT/2 = nKT.
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FIGURE 6.7 The path of the

light beam.

PROBLEM 6.9.1

PROBLEM 6.9.2

- Scale
50
da \% —a
Mirror f -

The total energy of a mole of gas would be
U= 3RT + 3RT + nRT = (3 + n)RT
and the specific heat? per mole would be (3 + r)R.

A very light torsion pendulum consisting of a thin wire and a tiny mirror j
suspended inside a glass-walled vessel containing gas at an absolute temperature
of 7= 300 K. A light beam is reflected by the mirror onto a scale at a distance
d =5 cm from the mirror. The motion of the light spot on the scale indicates
vibration of the mirror. What is the root-mean square amplitude of the vibration
of the light spot on the scale? The moment of inertia of the pendulum is 1073 g
cm?, and its period is 4 s. _
The potential energy associated with the twisting wire is k6%/2, where i is -
the torsion constant (restoring torque/angle of twist). Thus, ©6*/2 = kT/2 and -
6 = kT/x. It is clear from Figure 6.7 that a change 86 in mirror angle will
produce a change 2464 in the location of the light spot on the scale. Thus, the
root-mean-square amplitude for the light spot vibration is 24yA7/x. To de-
termine &, we use the information given about the period of oscillation of the
mirror:

1073 g cm®
T=4s=27/w=2nI/k =27 m.f__
k=247 X 1073 g em®/s®
from which we calculate that
eF
1.38 X 1076 _I?g X 300 K
rms amplitude = 2 (5 e¢m) - —— =41X 107 cm -
g cm® .
2.47 X 107% —;
5

Consider a classical gas of N point molecules moving in a three-dimensional
harmonic oscillator potential well, V(r) = {Kr? = LEK(x* + y* + 2%), at ab-
solute temperature 7. Obtain a formula for the probability that the molecule is -
between 7 and r + dr from the center of attraction. Obtain a formula for the

*This is the specific heat at constant volume, sinee our mode] refers to a gas moving in a container with fixed
walls,
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mean square distance of the particle from the center of attraction, and check
your result by comparison with the equipartition principle.
According to the Boltzmann distribution,

e—(l/ﬁ)ﬁ'r“/k'r dv .

il

P(r,8,¢)ds
few(l/E}Kr"’/.tTdv

e UKP /2T 260 0 48 dep dr

f&’_(Krz/sz)rz dr fsin f df d¢

sinfdfdy e KU/ gy

T(3/2) / ( 2—2—,) 7

Thus, the probability that the molecule is between r and r + dr (irrespective of
b, ¢) is
9 372
K\ ! o= (RP2/2T), 2 g ( K ) L (R /UT) 2
2T I'(3/2) 2kT V7 /2

, Y.
The mean value of < is

[~}

3/2
T K ) 1 fe—(i{r"’/i!kl)r'l dr
2kT I'(3/2) 4
K\ 1 r'(5/2) 3 2kT B 3kT
N ( sz) I( 2 K K

3/2) K \a/2 -
(577

According to equipartition,

I . . 1 - T

— 2 = + = 'T O r = e—

2K(x + 4+ 2%) =3 2&, 8 z

PROBLEM 6.9.3 Consider an ensemble of systems that have only two energy levels. Sketch the
average energy as a function of temperature, and on the same graph plot the
specific heat as a function of temperature.

-

Let the energy difference between the two levels be e The occupation
probabilities of the levels are

e-*r/k'r
b= 1 + e~/

Hh= |+ oo/ T
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FIGURE 6.8 Temperature de-
pendence of & and c.

PROBLEM 6.9.4
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The average energy is
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04 by L+ /AT~ T QAT e KT
- £ — 0

=0
The specific heat per system will be given by
dE ; e/kT 2
dT e/ 4 1

Figure 6.8 shows the T dependence of the average internal energy and the

specific heat, If the two-level systems are monatomic gas molecules, then we
should augment ¢ by adding the 34/2 per molecule due to the translational

kinetic energy. In fact this provides a very good description of ¢, for atomic

oxygen, which has two excited levels, at .020 eV and .028 eV, respectively, above |

which there is an energy gap with no levels until we reach 12,5 eV, For
T << 020 eV or AT > .028 eV, the value of ¢, is approximately 3/2 R per
mole, but ¢, shows a maximum when &7 is in the vicinity of .020—.028 eV. To

calculate the exact T dependence of ¢, in this region, you must take account of -
the multiplicities of these lowest three oxygen levels (5, 3, and 1, respectively).
The levels at or above 12,5 ¢V will not contribute to ¢, until T reaches the

victnity of 100,000 K,

Consider a mole of a paramagnetic ideal gas whose molecules each have
permanent magnetic dipole moment p. The gas is in a container of volume ¥/, in
a uniform constant magnetic field B, and at temperature 7. Find the average

magnetization density «# (magnetic moment/unit volume) and the low-field

magnetic susceptibility. Neglect all interactions (even dipole-dipole interactions)
between the molecules.

The degrees of freedom of the problem are the positions r; of each molecule,
and the polar coordinates (#;, ¢;) specifying the orientation of its dipole moment.
The energy of a dipole p in a uniform field B can be taken to be —p - B (cf.

3.57c). Il we choose our 2 direction to coincide with the direction of B, then the-
magnetic contribution to the energy of molecule 7 is — B cos §.. The normalized -
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Boltzmann distribution (6.47) reduces to
P(r,, e Ty Pl Pap Qs by e e 0:\’(,4’:\’")

- Z“Pi)"'/ﬂm—-nﬂ cos th ki
]
¢

—Z[(p,-)"‘/ﬂm-“;:!i'cus kT
fe ' [ 1 2% d*p, d(cos 6,) dg,

Because the Boltzmann factor is independent of ¢;, the average values of (p,),
and (p,), are zero. The average value of (p;). = p cos §, is
i

f BT s By 005 8. d cos 8,

— _ =1
jtcos 8, = :

f BZRT Y eos B)7 e 0,
2

pMBIRT 4 nll/KT JYa

=K BT —plifET - ;E (6.49:1)
Rauiuch (6.49b)
= th—r — — A€
1| co 1kT B

Since there are N, molecules in volume V| the magnetization density  is

Ny uB KT
7 coth~— — ——

z 6.50
kT uB ( )

We can get the high- and low-field limits of (6.50) by using the properties of the
exponentials in (6.49a). The results are

lim 7= ﬁr{l (6.51a)
WBAT = o0 # 4 '
Nep tpB 1IN, p°B
im M= — « i = —— . 6.511
BT 0 vV 3% 3V kT (6.51b)

Equation (6.51a} represents a saturation condition, in which all the dipoles are
aligned parallel to the external field. The low-field magnetic susceptibility,
AL/ B, 1s given by (6.51b):

LN, pf
= - — (6.52)
31V 4T

The proportionality of x and 1/7" is relerred to as Curie’s law.

PROBLEM 6.9.5 The total (clectron plus proton) angular momenturn quantum number for the
hydrogen atom can take on the values £ =0, 1. The “hyperfine” interaction
between the electron and proton raises the energy of the F = 1 level above that
of the F = 0 level. Transitions between these levels give rise to the famous “21
cm line.” At what temperaiure of an atomic hydrogen gas cloud will the three
F =1 states have a total population equal to that of the 7 = 0 ground state?

e
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PROBLEM6.9.6 As a model of an atom that can be ionized, consider an elcctron that can ex

FROBLEM 6.9.7

We require

o » . E ~-E
Bem B/ = E/KT (B EDT | f3 L0 I3

KT
E, - E, he
$In3  AkIn3
12,400 eV A - 1.6 X 10~ Zerg/eV >
" I3 X2 cm X 1.28 X 10-%ergs x 100 A/em 002K

either in a single bound state with energy —3 eV or in a “continuum® of stajq

which are those of an electron confined in a box whose volume is 5 cm?, Find' :s
expressmn that determines the temperature to which the system must be ht'ated
in order for the probability of ionization to reach %, and give an order o
magnitude estimate of this temperature,

The ionization probability (the probability that the electron is in ﬂm
continuum) is

The density of_ states, 4N /de, appropriate to nonrelativistic electrons in a box of
volume V| is given by (5.93b). The integral we need is

Vo {2m\32 V | 2mkT\2 %

— | — —efkT 172 -\ —x,1/2

2573(]‘;2) -([ﬂ B/ de 2#2( e ) ‘{J[e x < de

Vo 2mkT 2
() e

27\ H°

V( ImkT\3/2
mh? ) :
Thus, the ionization probability is

V( zka) 372

4\ 7ht
o L[BTT
4\ wht
which equals 1 /2 when “
eV V{ 2mkT\ %"
kT |:TL-( ah® ) ]

If we use V=5 cm’, the solution of this equation is 4T = 1/14 eV, This
corresponds to a temperature of :

T=20K X {;eV/LeV=830K
If a degree of freedom ¢; contributes a term ag? to the Hamiltonian, the~

principle of equipartition says that its average contribution to the energy is $47-
Calculate the rms deviation of ag? about this average.
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We need
o = {(ag? — %T) = y(ag?)’ - (347)°
o
f —ay} /.{qu’
(rlvq:f!)2 = == = Z(kT)z
f g~ /AT gy
Thus,

g, = \/%(kT)E - (%kT)E = 71’2_”

It is easy to show that if the Hamiltonian contains N such terms ¥ a.q?, with
average cnergy E = N X 1/2kT, the rms deviation about this average is

NkT QE
"V VN

This implies that in a system with many degrees of freedom, such as a macro-
scopic collection of molecules, the average energy fluctuations about the mean
energy are a very small fraction of the mean energy.

6.9.2 Connection Between Slatistical
Mechanics and Thermodynamics

The main link between these two subjects is provided by the equation
F=—~TInZ (6.53)

where F is the Helmholtz free energy (6.26a), and Z is the partition function
(6.48), Once we know the microscopic structure of our system, we can, in
principle, calculate 7 and Z. Equation (6.53) then gives us £, [rom which we

can calculate the thermodynamic properties of the system. For example, consider

one mole of ideal gas in a container of volume ¥/,

N o1 '
H= ;} Taf\ et o+ B (6.54)
N :
Z= fexp -2 (/fo + ]sz), -+ ])jz:) J2MET | dxy ... dby,
j=1

B [f aﬂffb'“"’] [f exp( = {47 + 45 + 2] /20T ) .y, “’”=]M}

n| _L(/2) P
| 2 MET

F=4kTInZ= —N,kT InV — 3N,T In{27MkT)

= [Py ?] ™
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Using the properties of F derived on p. 275, we calculate
ar N &T  RT

p= BV 7 _I}—’ the ideal gas Jaw
so - 2| ap ]y
= =5 , - n¥+InT + ER [_1 + 111(2'1711/!&)]
Vo Ty\*?

£

in agreement with the result obtained in Problem 6.4.3. Finally,

d
U=sF+T5=kTlnZ+ T-a?,(kTInZ)
2z =gy 200 Zpp
= —1n v _ -
dr 2T 2
Thus, we have obtained the thermodynamic properties of the gas, starting Wlth a
microscopic mechanical model (6.54), :

6.9.3 Quantum Statistical Mechanics

‘The Heisenberg uncertainty principle implies that we cannot measure the values.
of a generalized coordinate and its conjugate momentum simultaneously with:
unlimited accuracy. Thus, it is meaningless to assert that our system is at the
phase point ¢,,..., #,, and the classical concept of phase space loses its useful:
ness. Instead we speak of the quantum states of the system, and if the system ha
d degrees of freedom, the quantum states are labeled by sets of 4 quantum
numbers »,,¥,,..., ¥, Usually it is possible, and convenient, to modify the’
problem so that these quantum numbers take on only integral values. Then th
integral over classical phase space is here replaced by a sum over all possible sets
of quantum numbers. In order to make this correspondence dimensionally
correct, it is useful to associate a phase space volume of /“ with each quantum:
state, where % is Planck’s constant, We saw in Section 5.5 that this association
gives the correct formula for the density of states of a free particle.
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example, suppose that we consider a system of two particles, each of which can
be in one of three single-particle states a, b, or ¢, with single-particle cnergies ¢,
£, €. A state of the two-particle system is specified by giving the single-particle
state occupied by each particle.” We have the following 9 possibilities:

particle! a a b b a ¢ ¢ b ¢
particle2 a b a b ¢ a ¢ ¢ b

—_—— —_ =
energy  2g, €,-+ ¢, 26, €,+e 28 g, TE
If the particles are distinguishable, each of these is a distinct two-particle state.
The sum for Z has 9 terms, and equals

7 = L,—‘Ze,,/k7'+ ch(n,rn,,_)/k'r + €~2r,,/!rT+ 26—(5,,4-5‘)/&'7'

_i_g-".lr-,/kT 4 26—(5,,4-}?‘)/&7’ ‘
— (E—F,/'.k'r__*" o8/ 1 C-p,/rr)'-’
If the particles are identical bosons, the second and third states in the above list
are indistinguishable. All we can say is that the single-particle states « and 0 are
occupied, but we must not distinguish: between the diflerent ways of distributing
the particles among these states. Now Z has only 6 terms:
Z = gm0 /AT = e b e )/KT =00 /AT = (o n )T
4 20T o = (e e )/KT

- l[('e—s‘,/w‘_l_ g /AT e*‘E../frT)l-! (e AT g2 /AT L,-—'_’r,/&'l’)]

2
If the particles are identical fermions, we again do not distinguish between
different distributions of the particles over the same states. But now we must also
include the effect of the Pauli exclusion principle, which disallows any two-par-
ticle state in which more than one particle occupies the same single-particle state.
The sum [or Z now has only 3 terms:

7= g—(E.r+En]/"‘T+ c—(n,,‘l-c,}/k'l'_]_ L,—(r,,-l-r()/k'l'

%[(fnﬂ/n‘_l_ gt/ ET L,—#_,/&T)'l ~ (R AT /T gmzcr/n')]

6.10 BOSONS AND FERMIONS

The Boltzmann distribution implies that the probability P(»,,..., #,) that
the system is in the state labeled by quantum numbers #,,..., #, is given by

1 .
P(vy,.0s ) = Zexp(=E(n,..., 1) /kT) (6.55)

where the partition function Z is given by
Z= T ep(=E(,.... n)/iT) (6.56)

Prrasoy ty

Here E(»),..., #,) is the eigenvalue of H for the state with gquantum numbers:
Pyoiay ¥y

The thermodynamic propertics of the system can still be obtained by using
(6.53) to calculate the Helmholtz free energy from the partition function.
However, the sum over quantum states in (6.56) must include only distinct,:
allowable states. The allowed values of »,,...,r, depend on whether we are.
dealing with a system of fermions, bosons, or distinguishable particles. For:

In general, exact evaluation of Z [or fermions or bosons is difficult. However,
many of the important resulis can be obtained by wsing the following rule:

In a gas of wcakly interacting indistinguishable particles, the average
number of particles in the single-particle state « is -

i {or bosons —
S — - 6.5
Mo el /AT 4| {for fermions + } (6.57)

Here e, is the energy of the single-particle state «, and p is the “chemical
potential.”™ It is obtained {rom the requirement that the total number of particles
have some specified value, N,

1
Nz ;Hﬂ b gm ) (6.58)

*This assumes (hat the two particles interact weakly (see the footnote on page 223).
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For particles of zero rest mass (photons, neutrinas), u = 0, Equation (.5 57
reduces to the Boltzmann distribution in situations in which most of the parti.c[
are in states for which (e, — p)/kT > 1.

6.10.1 Electromagnetic Radiation in a Cavity

The state of the radiation in the cavity is determined by specifying the number of
quanta of excitation (photons) for each cavity mode. If there are » quanta jn '
mode of frequency », the contribution to the energy of the system is niy, Thi
situation is formally identical to that for a gas of independent bosons, T},
single-particle states for each boson are the cavity modes, and the single-particle
energy for a mode of frequency » is &v. According to (6.57), the average numhey .
of photons in a mode of frequency » is

1
en’w/kT —1

and since each photon has energy A, the average energy in this mode is

hy
LA /ET

"The number of such modes with frequency between » and » + d is 87 V2 dr/c*
if ¥ is the volume of the cavity (cf. 5.93c). Thus, the average energy per unit.
volume in modes with frequency between » and » + dv is >

Bahpd
u =

’ ?“TWT_—"TT dv (Planck’s law) (6.59) .

6.10.2 Debye Theory of the
Specific Heat of Crystals

We first analyze the vibrational motion of a crystal into its normal modes. The:
number of vibrational modes per unit frequency interval is given by the same
formula as for the electromagnetic radiation in a cavity, except that there are
three vibrational modes associated with each allowed 4-value, rather than the
two states of electromagnetic polarization. Thus, there are 12aVvp /c® vibra-
tional modes with frequency between » and » + d». Here ¢ is the speed of
propagation of vibrational waves in the crystal, which we assume to be indepen-
dent of » and the state of polarization. . :
A crystal with N atoms has 3N vibrational normal modes. Thus, in the
Debye model there is a maximum vibrational frequency ¥ Biven by

- 12ay 3 N
N = f 3 v® d": Voax = [ ]
[2]

¢ 4 V
The total vibrational energy of the crystal is then
f 127V b oNkT* ®T 23 e
;3 /AT _ | r= 93 _0[ 1

where @ is the Debye temperature, defined by
]”’mnx

k

PROBLEM 6.10.1

PROBLEM 6.10.2
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We can now calculate ¢, by differentiating U with respect to 7. We give the
result here in the low- and high-temperature limits:

U  12Nkw'
Cu:ﬁﬁ.T@i-—T’ if T 0
— 3Nk, if T=>0

Note that the high-temperature limit is the result predicted by the equipartition
principle, applied to the potential and kinetic energy associated with each mode,

The lattice heat capacity of a certain form of carbon has a temperature
dependence T?, instead of the more common T dependence for solids. What
can you infer about the structure of this particular phase of carbon?

The T dependence in the ¢, of the Debye law is due to the 7 dependence
of U at low temperatures. This arises when we extract the T-dependence of the

integral
vidy kT % x3dx
feh:v/k?‘_ 1 - T fﬂ’" -1
The »* dv factor came from the /» energy of each mode times the »? d» factor
from the density of states (5.93c). If the solid were two-dimensional, the density of

states would have a factor »dp, the integrand a factor »®dv, so U at low T
would be proportional to T2 and ¢, to 7%

Show that, in the Debye approximation, the heat capacity of a monatomic lattice
in one dimension is proportional to 7/@ for low temperature (7T < @). The
quantity © is the effective Debye temperature, given by 8 = A7s/Ka, with «
the interatomic spacing and v the sound velocity.

For a lattice of length L, the density of states is dN/dk = L /2%, With lattice

spacing a, the number of modes is L/a. Thus, £, is given by
L "f N L. L
a - A dk - Qqr | MOR? max

The mode £ has frequency @ = v and energy hw = #kv. Thus,

1, Bk Lk T2 %7 can
U==- de=——
w & exp(hbv/kT) — 1 2a O 4§ -1
dU Lk T s
“Tar T ae ) w1

0

For T < © the integral is nearly independent of T, and ¢, is proportional to
T/0,

6.10.3 The Fermi Gas

A TFermi gas is a collection of weakly interacting fermions. It has been used to
model many different phenomena, such as the conduction electrons in a solid, the
protons and neutrons in a nucleus, the neutrinos that fill the universe. The
concepts that are used in these different applications are rather similar, We
choose as our illustration the conduction electrons in a metal, such as copper. We
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FIGURE 6.9 The occupation
probability n, of single-par-
ticle state «, as a function of
the single-particle energy.

Enl

——— Fermi surface

assume that these form a gas of fermions that move freely throughout the metal,

Each copper atom contributes one conduction electron; the remaining 28 atomic -
electrons remain tightly bound to the Z = 29 copper nucleus. These Cu™ ions.
form a lattice which provides the mechanical rigidity of the metal and a -

background of positive charge which neutralizes, on the average, the negative
charge of the conduction electrons.

We get the lowest state of the conduction electron Fermi gas by filling the
lowest available single-particle states, consistent with the Pauli principle. We can
put two electrons (with oppositely directed intrinsic spins) into every single-par-

ticle orbital state and the number of single-particle orbital states in the energy -
interval e to & + de is V(27 /k*)(2m)**¢'/* de. ‘Thus, if there are N conduction

electrons in volume ¥, the condition analogous to (6.58) which determines the
“Fermi energy” (the name given to the chemical potential in this application) is

2@
= —(2m)* e 2 de

14 . (6.60)

N=2 /KT ]

o~ 8

We will soon see that for temperatures less than about 10,000 K, the occupation
probability (6.57) changes from nearly 1 to nearly 0 in an energy interval that is
small compared to the Fermi energy (see Figure 6.9). This interval is called the
“Fermi surface.” In order to simplily the evaluation of the integral in (6.60) let
us assume that the Fermi surface is infinitely sharp, so that

1 1 fore<np
gE=m/AT 41 T 10 fore>p

in which case (6.60) becomes

27 4
- = fV (2m) VEM e = 1 lJ(Zrn)J/2 /2

T3 N
_.,_{_ ——} (6.61)

= 2m |87 V

PROBLEM 6.710.3
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Copper has a molecular weight of about 63 g, and a mass density of about
9 g/cm’. Since N is approximately equal to the number of copper atoms, the
Fermi energy is equal to

(6.63 X 10" erg S)Q 3 9g 6% 10¥atom 1 electron [**
= 5 X | — . .
2X9.1X107%g 87 em’ G3g atom

=114 X 107 Nerg =7.1eV

Next we estimate the {raction of the electrons whaose states lie “in” the Fermi
surface. We take these states to be the ones with energies between g -+ 247, As
goes through this interval, », in (6.57) drops from 0.88 to 0.12. There are
approximately

2a S
e ?(273'!)3/“#'/" X 4kT
)

orbital states in this region, compared with N/2 occupied orbital states all
together. Thus, the [raction of the conduction clectrons whose states are in the
Fermi surface is

VQF:r (2m)" p/? X 4kT
_ =¥ 4k
, ) p 6kT

— - — (6.62)
P 2m)*/H(2,/3)p f
i

For copper at 300 K, this is about (6 X 0.025)/7.1 = 0.02. We see that a very
small [raction of the conduction electrons are in the region of the Fermi surface.
These are the only electrons that can absorb small amounts ol energy. Hence, at
temperatures less than about 10,000 K, the electrons make a small contribution
to the specific heat. From (6.62) we can conclude that this small contribution
varies linearly with 7"

Estimate a bound, in K, on the temperatures at which electrons in a metal with
10** electrons /cm® could be treated using Maxwell-Boltzmann statistics.
We need

i 2/
kT > E[.- = 2_ '
m

3
8 P
B3 s W 13 e
r> —p| = TR
2mk | Bar 2me-k | Bw

(12,400)* % 300 3 Lo 2/1 (0-1 K
= — X 10% x 1010
2 % 0.51 X 10°% % 0,025 | 87

20,000 K

PROBLEM 6.10.4 Metallic sodium crystallizes in a bec lattice, with 2 conduction electrons per

unit cell, and with lattice constant (cube edge) 4.28 A. Determine the Fermi
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PROBLEM 6.10.5 N noninteracting spin- 3 fermions move in one dimension in a common simple

temperature in K and the Fermi energy in eV for the conduction electrons
the free-electron model.

3 N)zf:" h? 3 2 2 (he)?
8w V 2m 87 (4.28 A)®

o |

2me?

3 2 % (12,400 eV A)”
= =3.2c¢V

87 (4.28A)°] 2 X .51 x 10°eV

3.2
Tp=300K X ~—— = 33,000 K
.025

harmonic oscillator potential, Each particle has a magnetic moment . Assume
that N is even.

(a) Find the specific heat of the system near 7' = 0.

Near 7= 0 the Fermi function 1/(¢*~*>*" + 1} falls very sharply near
€ = g, where &5 is the Fermi energy (chemical potential). The states of the
system have energies separated by #w (harmonic oscillator). Near T = 0 the
occupation of the states just above &, and the number of holes in the states just -
below &, are equal, and these numbers drop by a factor e™"“/*7 for each step :
away from &, Thus, near T'= 0 we can consider only the two states closest to g,

on either side, and &, will lie midway between them. For the state just below e,
the average occupation is

(25 + 1) = 21 — e~he/HT)

e—ﬁm/2k7'+ 1
since s = 3. For the state just above e, the average occupation is

2
—_— — —hw /24T
1+ ehm/Qk']' = ¢ /

The contribution to the energy of the system due to these states is

he\ o how .
2l ep+ > e /T L ol g~ 5 (1 — ¢ 49/UT) = const. + 2hwe™ 1o/2T

while, in this approximation, all other states remain either filled (¢ < g,) or
empty (& > g,). Thus the specific heat near T= 0 is

4,

dT E\ T

(b) Find the specific heat of the system at high temperatures.

At high temperatures, the electron occupation probabilities will [ollow the
Boltzmann distribution (approximately), and we can use the principle of
equipartition, For each electron there are two quadratic terms in the Hamilto-
nian (kinetic and potential energy), so

2
i(2hwﬂ—-hu/2k7') — i( fl_l’.d) g—-hm/QkT

PROBLEM 6.10.6

PROBLEM 6.10.7
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(c) Find the magnetic susceptibility of the system at 7= 0.

In the absence of a magnetic field, at 7 = 0, the magnetic moment of the
system is zero, since each single-particle oscillator state has two electrons in it
with oppositely directed spins. If we turn on a small magnetic field, the energies
of the spin-up states will be shifted slightly relative to the energies of the
spin-down states, but at T = 0 the relative numbers of spin-up and spin-down
states will not be changed. Thus, the total magnetic moment will still be zero,
even in the presence of a small magnetic field, and the magnetic susceptibility of
the system will be zero at T = 0.

It has been speculated that the universe is filled with neutrinos that are
continually being emitted and absorbed to maintain thermal equilibrium. Neutri-
nos are spin- 4 fermions, whose energy is given by & = ¢p, where p is the
momentum and ¢ is the speed of light. Determine the average number of
neutrinos in the universe if the temperature is 3 K and the volume of the universe
is 10™ cm®. Express your answer in terms of the integral 7, = [Fx"dx/(e" + 1).

The number of neutrino states per unit energy interval is given by (5.84c).
To get the total number of neutrinos in the universe we must integrate the
occupation probability (6.57) over all possible states:

. v 7 . e*de V kT 37 2 dx
Coahe)® g T qr'-’( I‘zc) o etk 1

The integral can be done numerically; it equals approximately 1.803. N equals
138 X 10715 =2 X 3K !
10® em? A8 X -IZ.— X3

® 1.05 X 107 ergs X 3 X 10" cm/s

X 1.803 = 4 X 10" neutrinos

The conduction electrons in Problem 6.8.7. are fermions. Use Fermi-Dirac
statistics to find the thermionic emission current density as a function of the
temperature T and the work [unction ¢ = Wy — W, W, being the Fermi
energy. Note that, for ordinary conditions, ¢ > &7

The average number of electrons in the momentum interval between p and
p +dpis

2V dp, dp, dp, 1

i (22 + p2 + )
2m

I+ exp[ - W,,] kT

Equivalently, in velocity space we have

2Vm? -1

—— dv_dv, dv.
IJ e m 2 2 2 ra
1 + exp E(z{‘+vj,+v:)—~1’l,.- kT

(3

The thermionic current density is

2m’ Yy
e f dv, dv,, dv, . . . -
V2 /m <y <o 1+ eXp —2_( U + UJ’ + y:) - F

—og <Y, S0
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Everywhere in the region of integration, the exponential is much larger thap |

unity. Thus, we can approximate the current by

om® % mo> = -
. do_- vexp| — | —% — W_/k —
e f v, nx(;xp( [ 5 P!,,/ILT]) _j;g dv, exp IiT

‘;‘2H’"/m

I kT (W, — W,)]  2mkT
A? £ " P KT X

drme o [ (W= W)
5 T) ""p[”T

m

6.11 QUANTUM CORRECTIONS TO THE PRINCIPLE

OF EQUIPARTITION

FIGURE 6.10 The molar
specific heat of an ideal di-
atomic gas as a function of
temperature.

A degree of freedom makes its full contribution of £7/2 to the average energy
only when £T is large compared to the excitation energy of the quantum states
associated with that degree of freedom (cf. Problem 6.9.3.). Thus, the details of
the energy spectra of the individual molecules in a system can have an effect on
the variation with temperature of the specific heat of the system.

A striking example of the way molecular spectra affect specific heat is
afforded by a diatomic gas. For a typical diatomic molecule, the rotational level

spacing in the vicinity of the ground state is approximately 1/400 eV, the

vibrational level spacing is about 1/4 €V and the electronic level spacing is
about 1 eV. Remember that 7= 300 K corresponds to T = 1/40 eV. Thus, if
T <30 K, so that £7'< 1/400 eV, rotational, vibrational, and electronic
degrees of freedom make a very small contribution to the average energy. The
average energy is almost all due to translational kinetic energy, and U = 3nRT/2,
¢, = 3R /2 per mole.

If 30 K < T'< 3000 K, so that 1/400 eV < kT < 1/4 eV, translational
and rotational degrees of freedom are excited and contribute significantly to the
average energy, Thus, U = 3nRT/2 + aRT = 5aRT/2, ¢, = 5R/2 per mole.
Note that the rotational energy contributes only two degrees of freedom. These
correspond to rotation of the molecule about any two axes perpendicular to its
symmetry axis. The moment of inertia of a diatomic molecule about its symmetry

cl.? . .;.

]~
=}

mjts nfo p
m
[

=

l | {
30 3,000 12,000 T(K)
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axis is so small that the excitation energy of quantum states of rotation about this
axis would be much higher than 1/4 eV.

If 3000 K < T < 12,000 K, so that 1 /4 eV < kT < 1 ¢V, translational,
rotational, and vibrational degrees ol [reedom are excited and contribute signifi-
cantly to the average energy. The vibrational motion contributes terms in r® and
#* to the Hamiltonian (r is the interatomic separation). Thus, U = 3uRT/2 -+
aRT + nRT = TnRT/2, ¢, = 1R/2 per mole. For 7'> 12,000 K, ¢, generally
continues to increase as the electronic motion of the atoms is disrupted.

6.12 THE STEFAN-BOLTZMANN LAW

PROBLEM 6.12.1

Planck’s law (6.59) gives the electromagnetic energy density (per unit volume,
per unit frequency interval) in a cavity at temperature 7. Suppose the wall of the
cavity contains a small hole of area da. At what rate does clectromagnetic energy
stream out through this hole? We can answer this question by using the formula
(6.42a) derived for particle flux leaving through a hole if we identify the particle
density p with Planck’s energy density ,, and use

8(v — ¢)

drp?

M) =
for the velocity distribution. This choice for f(v) is correctly normalized accord-

ing to (6.37), and guarantees that all the photons have speed ¢. If these p and
f(v} are used in (6.42a) we get

TH,C 2ahp? (6.63)
= e .G3a
dar s“[e"’/“ - 1]
for the rate, per unit {requency interval, at which electromagnetic energy leaves
through a hole of unit area in the cavity wall. We get the total radiant emission
by integrating {6.63a) over the entire frequency spectrum

- 2arha? Qah | KT\ xYdy )
{W(h’='—cu—(7) -{[L""—-l =gT (6.63[))
with
277 k! 10" erg
R 567 % em? s K*

Equation (6.63) expresses the Stefan-Boltzmann law. We have derived it by
calculating the rate at which energy leaves through a hole in the wall of a cavity
at temperature 7. The same expression, 0T, governs the rate at which energy is
radiated from unit area of an ideal “black body” at temperature 7". An ideal
black body is one which absorbs all radiant energy that falls on it

A small metal sphere painted {lat black is situated in interplanetary space, at a
point where the sun appears to have an angular diameter § << | radian. Assume
that the sun radiates like a black-body at temperature 7, = 6,000 K, and
estimate the equilibrium temperature of the sphere. Evaluate your result for
§ = 0.57°. Assume that the small sphere is a perfect absorber and a perfect heat
conductor,

Let the radius of the sun be r, and its surface temperature be T,. It radiates
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, # o

rm/_

Tﬂ'l .

Ty

energy at the rate 47’0 7%, If the metallic sphere has radius r,, and js af' :

2

distance R from the sun, it catches a fraction 772 /47R" of the radiation emitted -

by the sun, so it absorbs solar energy at the rate
4or?e Tt X wr?/4mR®

If the metallic sphere has temperature 7., it radiates at a total rate

ar?

47”20?",:

m
Thus, an energy balance for the sphere yields

2.2
T T

4 2 i
R ol = dwrol,

m

T, 1/2
7= |ox] "%
2R

If @ is the angular diameter of the sun, as seen at the sphere, then

2r, 1 /2
0= —2rad, T,= [6/4) /7T,

Using 7, = 6,000 K, 6 = 0.57° = 0.57 X #/180 rad, we find T, =300 K, .

which gives a good account of the average temperature of the earth.

PROBLEM 6.12.2 Large flat sheets of material are arranged parallel to one another, separated by

vacua. For example, this might be an unusually elaborate insulating window.

The spacing between the sheets is much smaller than the lateral dimensions of
each sheet. Assume that the sheets are perfect absorber-radiators, and perfect

thermal conductors, while the side support structures are perfect thermal insula-

tors. The first and last sheets have fixed temperatures T}, Ty. Find the tempera- -

tures 75, Ty, ..., Ty_, and the heat flux Q.
U, T
T2 M,
T3
7 7 IV

When the system is in a steady state, the net heat flux between each pair of
plates is the same:
Q

e 7 N T W) S, .1 SR oF
U_Tl T, =1, Ty = N—1 Ty
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Thus, the heat flux can be calculated from,

o= L (ri- 7))
and the intermediate temperatures are given by
N-2)T}'+ T;
pgi o @ WoTEH T
g N-1
N = 3)T} + 2T}
poga @ _ WA e
] N-1
‘ ‘ Q (N—-nT'+{r—1T)
'1';! = TrL - =

N -1

If T, =T, — AT with AT < T, @ is approximately linear in AT:

0= — |7 = (T, - AT)'] = 2 gy
N—1t! ‘ N—1"!

The R-value (Q /AT) for this sys

tem is 4077 /(N — 1),

PROBLEM 6.123 The diagram shows a source of light, a lens, and a thin black heat-conducting

disk. The light source is [ mm

in diameter and emits 100 watts of radiation

isotropically . The lens is 2 cm in diameter, has a focal length of 10 cm, and

passes all radiation that impinges

on it. The diameter of the disk is 1 /2 mm, and

the image of the source is just large enough to cover the disk completely. What is
the equilibrium temperature of the disk?

Disk

O o

Lens Source

Let &, and d,; be the distances between the\lens and source and lens and
disk, respectively. Their ratio is equal to the ratio of source and image diameters

[see (4.40)] '
d, 1 mm
- = =9
d, +mm
If we combine this with the lens equation (4.39)
1 N 1 | 1
d, d, h f "~ 10cm

we find that d, = 30 em and ¢, = 15 cm. Thus, the rate at which energy [alls on

the lens is approximately

kh
“‘4‘ (2 Cm)2 100

100 W X

7 = W
47 (30 cm)” 3600
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This is also the rate at which energy falls on the disk. The rate at which the
(two-sided) disk radiates is

a (.05 cm)® 100
IxX ——— " XoT = —
4 3600

so that T is given by

100 J g 107 erg 1/4
3600 s J

crg

i 7
2. — (.05 % 567X 1077 ————
g (05 cm) TXI0 K

= 1057 K

PROBLEM 6.12.4 If the sun behaves like a black bedy at 6000 K with a diameter of 10°% km, what
is its total microwave emitted power per megacycle width at 3 cm?

The amount of radiant energy emitted per unit area per unit [requency
interval is given by (6.63a). Thus, a black body of radius R emits into bandwidth

W Hz an amount of energy equal to
AR
, 2mh 3 27h ( X)

7 = 2
4mR ;2 L,m-/&'r_lm 4mR o2 phe/NT |

Werg/s

For R = 0.5 X 10° km, A = 3 cm, W = 10° Hz, and T = 6000 K, this is equal
to 1.75 X 10'® erg/s.

REVIEW PROBLEMS

6.1. In cold weather we heat rooms. How does this

6.2. A Carnot cycle operates as a heat engine

6.3.

6.4.

stant volume and pressure,
affect the total energy of the air in the room? 2
\ de, da-P
Answer: It doesn’t, ) = 7T—
dv | r aT?y,

between two bodies of equal mass and equal de,y v

specific heat, until their temperatures are E};) _ B T:q_];i ,

cqual. If their initial temperatures were T 2 25
and T, (with 7, > T;), find their common Answer: Start with ¢, = T.r—-) €, = T—-——-)
final temperature and the total work done by ’ aTI” aT/"

the engine. Answer: T = | 7T,

W= [T, + Ty~ 2yT,T; 1

Compare the entropy of 10% He molecules in
a one-liter vessel plus 10 O, molecules in a
similar one-liter vessel, with the entropy of all
these molecules in a single one-liter vessel, at
the same temperature. Answer: No difference.

6.5. One mole of an ideal monatomic gas is
expanded adiabatically and reversibly from
temperature T and volume V¥, to a volume
2V,. 1t is then compressed reversibly and iso-
thermally back to its original volume.

(a) Calculate the change in internal energy of
the gas in terms of 73, ¥, and the gas

Derive the following relationships obeyed by . 3 1
¢, and ¢, the specific heats of a gas at con- constant K. dnsuer: QRTD 22/ :

6.6.

6.7.

6.8.

6.9.

(b) Calculate the change in entropy of the
gas, Ansiwer: —R1In2.

A spoonful of water is placed in a bottle,
the cork is inserted, and the bottle is heated to
100 C. What is the pressure in the bottle?

646
Answer: —— atm.

273

Find a reiation between the equilibrium vapor
pressure of water and ils absolute tempera-
ture, by making the following assumptions:

(a) The latent heat of vaporization depends
upon absolute temperature according to
the relation

L=a— 0T
where g and 0 are constants.

(b) The volume occupied by the liquid s
negligible compared to the volume oc-
cupied by the vapor.

(c) The vapor bchaves like an ideal gas.
constant

Answer: P = Ca RTpIR
Acoustic frequencies are low enough so that
every point in a gas through which a sound
wave is traveling can be regarded as being in
thermodynamic cquilibrium. On the other
hand, acouslic frequencies are high enough so
that there isn’t sufficient time [or heat [low to
have much effect on the instantaneous tem-
perature distribution, Thus, it is reasonable to
treat the processes going on at every point in
the gas as adiabatic. Derive an expression {or
the speed of propagation, ¢, of an acoustic
wave through an ideal gas at pressure p and
temperature 7. You can start with the expres-
sion for ¢ given in (1.115c).

) [ RT
nswer: ¢ = I

A dilute gas consisting of molecules with a
permanent electric dipole moment p is hrought
into a uniform electric field. Find the Helm-
holtz [ree energy of the system, and the aver-
age electric dipole moment per unit volume of

gas,

6.10.

6.11.

6.12.

6.13.

6.14.

6.15.
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Answer: F= —NkT In (2mmk T2V

UT | Ep \
. Ep sinn kT
PN ' Ep B
= th| — | — — .
ne '( i) T Ep

A gas has an isotropic velocity distribution.
Show that the particle flux (number per unit
time crossing unit area in one direction} is
given by 1/4 - pB, where p is the particle
number density and v is the mean particle
speed.

The neutron flux at the center of a reactor is
4 % 10" neutrons/m” sec. Assume that the
neutrons have a Maxwell velocity distribution
corresponding to a temperature of 300°K.

(a) ‘Tind the number of neutrons/m”.
Answer: 6.4 X 10",

(b) Find the partial pressure at the neutron
gas. Answer: 2.4 X 1077 N/m*.

I{f a closed system is in contact with a re-
servoir, and is in thermal equilibrium, the
temperature is, by definition, the temperature
of the reservoir. However, the energy of the
system will fluctuate. Using the canonical en-
semble, show that the magnitude of these
fluctuations is given by
(8E): = EX — (E)* = kT*,

where ¢, is the heat capacity of the system at
constant volume.

Find the total energy of an electron gas in
which N electrons are in volume V at T'=
0 K.

35/ JRINEVE
80> mbi
At 100 K the molar specific heat at constant
volume equals 3 cal/mole C for H,, whereas
all other diatomic molecules have molar
specific heats of 5 cal/mole C. Explain,
Answer: H,, has a low moment of incrtia, and

rotational kinetic energy > 7.

Answer:

(a) The momentum p and kinetic energy E
of a particle with zero rest mass arc re-
lated by
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6.16.

6.17.

6.18.
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[cf. (2.15a)]. Consider a gas of photons in
a perfectly reflecting container. Show that
the pressure P exerted on the walls of the
container is related to the energy density u
by

P=tu

(b) Show that the ideal gas law can be writ-
ten in an analogous form, if z is inter-
preted as the kinetic energy density of the
molecules, and the constant 1/3 is re-
placed by a different constant. What is
this different constant? Answer: 3.

Consider an enclosure filled with black-body
radiation at temperature 7. The enclosure is
fitted with a movable piston with a reflecting
surface. Use the relationship between pressure
and energy density derived in Problem 6.15,
together with the combined first and second
laws of thermodynamics (6.14a), to derive for-
mulae for the radiation energy density and
entropy as functions of T and V.
Answer: v = constant X T
§ = constant X $V7T.

Suppose that the bulb of an ordinary 100-watt
incandescent lamp is blackened to absorb all
the radiation emitted by the filament. The
lamp is surrounded by vacuum, How hot will
the bulb get? Answer: 562 K.,

A small flat heat-conducting disk is placed a
distance D away, and parallel to, an infinitely
large plane surface maintained at temperature

6.19,

6.20.

T. All surfaces radiate as if they were p.e'r
fect black bodies. What is the equilibriyny
temperature of the disk?

Answer: 27\

A cubic ice crystal is at rest relative to the suﬁ'.
at the same distance from the sun as the earthy
is. It is balanced there under the simultaneous -
influences of gravitational attraction toward

the sun and outward pressure due to electrg

magnetic radiation from the sun. How big is
the crystal? Assume that the solar constant at-
the top of the atmosphere is 1 kw/m? and:
that the effective gravitational field strength of
the sun at the earth’s orbit is 6 X 10~

Answer: 107% cm

Make order-of-magnitude estimates of the fol._

lowing quantities:

(a) Number of watts emitted by 1 em® of
tungsten at 3000 K. Answer: 460 Watts, -

(b) Number of molecules/em” in a vacuum of

107 torr (mm Hg).

Answer: 3.5 X 107 /cm®..

(c) Velocity of an electron at the Fermi surface

in a metal,

{d) Pressure (in atmospheres) of a gas at room
temperature required to make its dielec-
tric constant appreciably different from 1
(e.g., 1.2 or 1.3). Answer: 1000 atm.,

..

Answer: 1.6 X 10% em/sec, -
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Antisymimetric wave function, 224, 234
Archimedes principle, 25
Argand diagram, 182
Atomic Torm-lactor, 2548
Alomic mass unit (L), 96
Avogadro’s number, 261
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Rar magnet, 153

Bauery, 124

Bessel functions, 177, 178
spherical, 249

Beta decay, 228
Riot-Savart law, 135, (37, 143
Birefringent crysul, 198
Black andy, 305, 308, 310
Body-fixed courdinate system, 341
[ohr, magneton, 2414
orbit, 166
vadlins, 200, 296, 228, 247
relation, 996G, 254
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Boltzmann's constant, 261
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puluminl, 60, 225, 250
Centripetal accelerstion, 63, 66, 68, 166, 200
Charge, conservation, 107

density, 107, 117, 1i8, 141

surface, 108, 162
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Chemical porential, 2497, 300, 302
Circuits, AG, 129

DO, 133
Circular Frequency, 4, 41, 73, 245
Classical limit of quanttin mechanics, 119, 200,

201, 202, 250

Clausius-Clapeyron equation, 278, 279
Coefficient of performance, 272
Coherence, 174, 183
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Cald emission of electrons from megals, 247
Collisions, 19, 99
Combined {irst and second laws of
thermodynamics, 267, 277, 310
Commuuation relations, 203, 204, 208, 211
Complex driving voliage, 129
Compton scatiering, 102
Conclucting plane, 117
Conduction elecirons, 286, 299, 304, 301, 302,
303
Conductivity, electrical, 123, 153, 158
thermal, 270, 287
Conductors, 115, 160
Conic section, 61, 62, 63, 67, 70
Conservative system, 14, 15, 40, 51
Coutinuum states, 218, 236, 248, 294
Coriolis, acceleration, 31
force, 28, 29, 31
Coulomb, unit, 107
force, 12, 61
potential, 226
Cross-section, absorption, 259
collision, 284
ditferential, G4, 175, 248, 249, 253, 258
total, 250), 251, 2534
Curie's lnw, 268, 264, 269, 203
Current, 135
Current density, 107, 135, 153, 158, 159, 286
surface, 108, 138, 153, 163
Cut-olT frequency, 162

D'alembert equation, 154, 161
Damping of eleciromagnetic waves, 158, 173
De Broglie wave length, 201
Debye wemperature, 298, 299
Debye theory of specilic heat ol crystals, 298,
299
Defects, 201
Deflection, 12, 13
funetion, G4
Degrees of [reedom, 40, 51, 254, 288, 292, 204,
205, 296, 304
Density, 23
fluctualions, 80
Density of states, 229, 230, 294, 208, 299, 300,
303
Diclectric, constant, 120, 132, 170, 310
sphere, 121 '
susceptibility, 120, 132
Diftraction, by cireular hole, 177
Fraunholer, 174, 252
Fresnel, 176
grating, 180, 182, 197
by holes distributed at random, 183
limnit, 178, 195
point symmetry, 179
ly rectangular slit, 176, 18, 197
by several identical holes, 179, 253
by several slits, 182, 184
Dipole approximation, 167, 172
Dirac 8-function, 114, 221
Dirac's theory of eleciron, 2359
Dispersion, 84, 86, 159, 190
Displacement, current, 108
field, 119, I2], 132

Distinguishable particles, 286, 297
Doppler shift, 96, 97, 98, 103, 104
Drunkard’s walk, 186
Dynnmic‘ balance, 37

Effeciive, forces, 27,
gravitational field,
potental, 62
Efficiency, of Carnot cycle, 271
of heat engine, 272
Eigenfunctions, 82
unperiurbed, 239
Eigenstates, 202
degenerate, 259
Eigenvalue problem, 81
Eigenvalucs, 82, 202
depenerate, 233, 241
unperturbed, 233
Elastic, collision, 19, 20, 21
potential energy, 19
Electret, 123
Electric, cell, 274, 275
current, 124, 125, 129, 130
dipole matrix element, 238, 256
dipole moment, 112, 113, 123, 167, 169, 171,
254, 256, 309
dipole transition matrix clement, 254
lield, 107, 118
quadrupole, 255
Electromagnetic, radiation in cavity, 298
transitions, 226, 254, 256, 258
witve propagation in conductors, 158
waves, 87, 96, 104, 106, 174
waves in cavitics and pipes, 160
Electrostatics, 109
Elliptic integral, 18, 136
EMF, 124, 145, 150, 131, 225
Endothernmic reaction, 99, 100
Energy, 94, 201, 253
of charge in an external electric field, 112
ol charged capacitor, 149
conservation, 18, 20, 67, 75, 949
density, 146, 148, 149, 239, 998, 305, 310
cigenvalues, 217, 218, 2320, 223, 234, 235,
996, 298, 231, 233, 235, 242, 254, 257,
259, 296

of electric dipole in an external electric Geld,
12

Rux, 73, 74, 287, 288, 305

flux (Paynting fux), 146, 148, 155, 168, 185,
188, 254 i

of magnetic dipole in an external magnetic
field, (41, 292

Ensemble, 288
average, 183, 184

Enthalpy, 273, 274, 275, 276, 278

Entropy, 260, 266, 276, 277, 278, 295, 308,

309, 510
of black-body radimion
change, 267, 268, 270, 271
of ideal gas, 268, 269
of parﬂmagnctic ideal gus, 209

Equilibrium, 4, 18, 41, 47, 54, &7, 58
conditions, 278
hydrostatic, 262

28,29, 3
25, 26,2

9, 30
G, 27, 30

8,
5,

vapor pressure, 279, 309
Equipartition, 289, 290, 291, 294, 299, 302,
504, 305
Equivalem network, 125, 126, 127, 120, 130
Escape speed, 68, 69, 287
Esu, 107
Euler's equations, lor fluid motion, 78
for rigid bady motion, 38
Eules-Lagrange condition, 191
LEvents, 87
Exothermic reaction, 99
Expectation value, 202, 220, 239, 240, 244,
257

Faraday's law, 108, 145
Fermat's principle of least time, 189, 181
Fermi, energy, 304, 501, 302, 303
lunction, 302
gas, 299, 300, 309
surface, 300, 301, 310
temperature, 302
Fermions, 223, 258, 296, 297, 299, 303
Fermi's golden rule, 236, 237
Firtite rectangular barrier, 246
Flux, incident, 64, 157, 245, 246, 248
refllected, 244, 246
transmitted, 245, 246
Flucwations, 290, 295, 309
Focal length, 195, 198, 307
Focal peing, {irst, 198
second, 198
Focus, 192, 193, 196
Foree, 1, 4, 50), 201
on electric dipole in a non-uniform electric
field, 112, 171
impact, 24
on magnetic dipole in a non-uniform
magnelic field, 141
Four-momentumn veclor, 94
Fourier, components, 78
series, 229
transform, 252
Free-body diagram, 10
Frequency, 4, 73, 80, 81, 82, 97, 08, 104, 155,
162, 298, 309
Friction, 3
kinetic, 3, 9, 26
static, 3
(-stop, 195

Galvanometer, 172

Gamma rays, 103

Gauge transformation, [43, 258

Gauss, 107

Gaussian, pillbox, 108
units, 106

Gauss' law, 107, 114, 116, 117, 147
theorem, 79, 107

Genernlized, coordinates, 40, 42, 52, 208, 288
momenta, 40, 52, 70, 203, 288

Gibls [vee energy, 274, 275, 276, 278
of ideal gas, 279

Gradient, 14

Gravitation, 3
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Gravitational, constant, 3
lield:
[ictivious, 24
uniform, 3
force, 14, 15, 61, 66, 200
potential energy, (9
tarque, 3
Group velocity, 84, 86
Gyromagnetic ratio, 141, 241

Hall-width, 182
Hamilten's equations, 51, 52, 53, 288
Hamiltonian, 51, 52, 53, 204, 302
al charged particle in electromagnetic feld,
Fht, 238, 239, 244, 958
Harmanic, approximation, 54
oscillawor, 5, 204, 222, 257, 200, 302
oscillator, two-dimensional, 33, 53
Harmonic waves, 73, 74, 75, 80
Heat, capacily, see Specilic heal
flow, 260, 267, 270
Heisenberg uncertainty principle, 228, 206
Helicity, 256
Helmholiz, equation, 81, 161
free energy, 274, 275, 376, 277, 278, 293,
296, 509
Hermite polynomial, 223
Hermitian operator, 53, 202, 205, 206
Homopencous quadratic function, 51
Hooke's taw, 3
Hyperfine, interaction, 242, 393
splitting, 240, 241, 258

Ideal pas, 261, 270, 279, 295, 369
constant, 261
law, 2G1, 281, 294, 310
monitomic, 262, 272, 289, 308
paramagnetic, 263, 292
[deal spring, 3
Image, real, 195, 196
virtual, 194, 195, 196
Image charge, 116, 117, 170
Impact parameter, 63, 64, 250
Impedance, 129, 130, 132
Impulse, 11, 12, 13, 19, 67, 172
angular, 11, 12, 21
Impulstve forces, 11, 83
Incoherence, 186, 188
Index of refraction, 156, 1549, 194, 192, [93,
198
Inductance, 129, 149
mutual, 150, 151, 179, 173
sell, 160, 151
Interference, [8(
constructive, 180, 182
destructive, 182
Interferometer, 187
[mernal conversion, 237
Internal energy, 260, 264, 273, 274, 275, 276,
278, 292, 294, 304, 308
Internal excitation energy, 262
Invariant interval, 88
Inversion invariance, 211
lonization probability, 29
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Irreversible process, 267, 268
Isothermal process, 271, 275, 308

Joule cycle, 272

Kepler's first faw, G1
second law, G0
third law, G3, 66, 70
Kinetic energy, 8, 13, 15, 19, 20, 40, 43, 51, 55,
83, 03, 102, 134, 230, 309
uanslational, 260, 261, 280, 281, 282, 283,
984, 289, 304
Kinetic theory of gases, 279
KirchofTs rules, 124, 127, 128
k-space, 229

Lagrange muliiplier, 273
Lagrange's cqunLions. 40, 41, 43, &4, 46, 49, 59,
54, 60, 65, 70
Lagrangian, 40, 43, 44, 16, 49, 50, b4, 60, 65,
il
Laguerre pnlynomiﬂls, 994
Laplace's equations, 109, 110, 116, 121, 214
Laplacian, 113, 219, 203
Laser, 185, 188
Latent heat, 278, 279, 309
Latitude, 28, 31
Lattice, 90, 300, 301
Legendre polynomials, 121, 212, 249
Lens, thick, 194
thin, 1992, 194, 198, 307
Lensmiker's formula, 194, 307
Lenz's faw, 145
Levi-Civita symbol, 210
Light emission, by independent atoms, 185,
187, 148
from real sources, 184
Lincar acceleration, B
Logarithmie derivative, 250
Lorentz, condition, 143
contriclion, 89, 90, 153
force, 138, 147, 154, 158
force on a wire, 134, 140
{frames, BT, B8, 89, 90, 91, 93, 96, 99, 100,
104, 152
translormation, 88, b8, 103, 104
of & and 1§ felds, 152
of velocity and acceleration, 90, 91, 94, 97,
103
Lyman-alpha transition, 228

Magnetic, dipole, 255

dipole moment, 140, 150, 263, 264, 292, 283,

302, 303

dipole moment operatot, @34

field, 107

flux, 145, 161, 152, 172

M feld, 119, 132, 133, 135, 172

pole, 133

scafur petential, 132

suscepibility, 120, 132, 263, 292, 293, 303
Magnetization, cutrrent density, 119

density, 118, 135, 9G4, 2499, 293

surlace current density, 120
Magnification, 195, 144, 307

Mass, center, 2, 10, 12, 22, 42, 47, 56, 58
-center system, 19, 20, 21, 69, 44, 100, 101,
224
conservation, 79
density, 79, 141, 262, 301
linear, 71, 75
reduced, 226
Matrix element, 202
diagonal, 202
ol rotstion operator, 219
aMaxwell, disuibution, 282, 283, 286, 287, 308
relations, 275, 2706
stress tensor, 146, 147, 170
Maxwell's equitions, 107, 119, 141, 143, 159,
174
Mean free path, 261, 284 .
Mechanical energy, 14, 16, 17, 18, 21, 60, 68
Molecular, chios, 264, 277, 284
interactions, 261, 262, 243, 280
speed, mean-square, 980, 287
Moment of inertiy, 2, 8,9, 17, [8, 22, 58, 154,
290, 319
principal, 35, 36, 37
tensor, 34, 59, 83, 84
Momentum, !, 11, 23, 95, 1389, 223, 253, 304
canservation, 12, 79, 99
eigenstates, 229
flux, 7, 146, 147, 281
operator, 257
space, 303
transler, 12, 252
wave function, 257
Maonopole moment, 112
Muosshauer eflect, 103
M quitntum number, 205, 208, 240, 241, 2432,
955, 256
Mulipole, expansion, 234, 237, 255
moment, 112

Newton's, rings, 197
second law, 1, 10, 13, 24, 28, 33, 40, 50, 7l
154, 158
third law, 1, 7, 23
Narma, requency, 84, 44, 40, 55, 57, b8, 88
modes, 43, 54, 55, 160, 161, 253, 289, U8,
294
Normalization, 202, 209, 211, 215, 916, 218,
a95, 154, 237
Nuclear reactions, 247
Number density, 90, 280, 284, 285, 286, 309
Olyject, real, 194, 196
virtual, 193, 196
Occupation probubility, 260, 291
of single-particle state (average), 297, 298,
302, 303
Ohm, 124
Ohm's Lw, 123, 124, 128
Oscillations, 4, 26, 33, 41, 52, 54, 55, 57, 58,
65, 165, 173
forced, 45
stable, 34, 47, G5

Parallel-axis theorem, 22, 58, Bd
Paraxial rays, 193, 196

Parity, 211, 214, 215, 216, 217, 218, 219, 221,
conservation, 214
selection vule, 255
Particke [ux, 289, 283, 285, 286, 288, 309
Partition Funciion, 289, 2095, 206, 297
Pauli exclusion principle, 297, 300
Pault spin matrices, 206, 210
Pendulum, 16, 26, 40, 42, 44, 45, 83
Penetrability, 247, 248
Periliclion, 68, G9
Permanent magnets, 132
Permeability, 120, 132, 151, 156
Perturbation, theory, 232
first-order, 233, 234, 2845, 239, 240, 241, 259
zero-order, 259
Perturbation expansion, 283
Phase <, 80, 13}
shilt, 249, 250, 251
spice, 52, 229, 234, 288, 2905
velocity, 155, 298, 304
Photon, 226, 280, 254, 256, 298, 310
angulir momentum, 256
Planck's, black body radiation law, 298, 294,
305
constant, 199
Plane wave, 80
partial wave expansion of, 249
solution of Maxwell's equations, 151, 158,
184, 185
Plasma [requency, 159
Point symmetry of Fraunholer dillraction
patterns, 179
Poisson's equation, 109, 113, 11, 116
Polarization, 230
charge density, 119
current density, 19
density, 118, 193, 171, 309
clliptic, 198
lel-lumd circular, 156, 168, 1461, 256
linear, 156, 168, 170, 104, 258, 256
vight-hand circular, 156G, 168, 164, 9506
surface eharge density, 120, 133
Polarizing filter, 184
Patential, 109
Potential difference, 117, 118, 124, 125, 144,
171
Putential energy, 14, 15, 0, 43, 47, 55, 202,
290
Power, 32
consumption in AG circuits, 131
{acwor, 132
ressure, 23, 79, 261, 281, 288, 310
fuctuations, B
gradient, 25, 285, 286
Principal, axes, 34, 37, 38, 39
maxima, 181, 182, 183
Prababilivy, conservation, 246, 2449, 258
density, 243, 258
Nux density, 246, 258
of measurement yielding particular result,
908, 200, 214, 220, 221, 2258
ol molecular collision, 284
Iropagation vector, 73, 1ab, tH6, 179
Proper time, 82

index 317

Quantum, corrections to the principle of
crpuipartition, 34, 305
numbers, 296G
principal, 226, 227
state of physical system, 202
statisticatl mechanics, 296
theory of vadiation, 253
J-value, 20, 99

R-value, 307
Radiant [Tux, 304, 306, 307, 308
Radiation, by accelerating charges, 163, 164,
165, 166G, 167, 168, 169, 170
microwave, 308
pressure, 310
Radius of gyration, 27
Rapidity, 98
Rayleigh criterion, 178
Rayleigh—Ritz varimional principle, see
Vartational principle
Rayleigh—Schrodinger perturbation theory, see
" Perturbation theory
Reactance, 139
Reciprocal lattice, 263
Recuced mass, 226
Relerence Trame, ineriial, 1, 2, 24, 27, 37,
<46
non-inertial, 24
Reflectance, 74, 75, 76, 157
Rellecting telescope, 198
Rellection, 190
coelficient, 2406
by spherical mirror, 196G, 198
symmetry, 2, 35, 36, 38, 170, 218
Refraction at spherical surface, 193
Relative coordinates, 64, 70
Relativity, see Special relativity
Resistance, 124, 125, 129
internal, 124, 172
Resistivity, 123
Resolution, angalar, 184
Resulving power, 183
Resonance, «1
Rest, energy, 93, 102
{rame, 91, 92, 94, 90
mass, 94, Us, U6, 102, 498
Restoring force, ., 55
Retapded, light cone, 164, 166
potential, 143
time, 163, 164, 166
Reversiile process, 266, 267, 208, 69, 271,
U7, 277
Right-hinud rule, 108
Rigidl body, 15, 34
RMS dispersion, 186, 187, See also Fluctoations
Redling, t, 11, 58
Rotatien operator, 208, 210
Rotational, energy levels, 258, 504
kinetic energy, 284, 304
level spacing, 35
synunetry, 2, 9, 35, 36, 61, 136, 177, 204,
2008, 200, 214, 224, 243, 9.4%), 958, a5,
280
Rutherford seattering formula, G35, &1
Rydberg constany, 227




Scafar, potential, 109, 142, 143, 238
product, 202, 203
Scuutering, 63, 218
amplitude, 175, 176, 248, 249, 252, 259
forward, 175, 178
angle, 63, 64
of charged particles, 202
by crystal lattice, 253
ol electromagnetic waves by free clectron,
173
integral equation for, 251
neutron-proton, 251
in oue dimension, 245, 259
by potential of finile range, 250
in three dimensions, 248, 259
Schrodinger equation, radial, 224, 225
time-dependent, 53, 204, 244 ’
time-independent, 204, 215, 221, 223, 224,
245, 248, 257
Schradinger picwure, 203
Screening, 232
Selection rules, 2558, 2506, 258
Semi-classical theory of radiation, 254
Shock wave, 85
Singlet (S==0) state, 294, 2344, 251
SI uniss, 106
Smull oscillations, 41, 43, 45, 46, 47, 54, 57, 59,
65, 71, 80, 83, 84
Snell's law, 199
Solenoid, 157, 138
Sommerfeld parameter, 202
Space-like interval, 89
Spectal relativity, 87, 88, 91
Specific heat, at constant length, 277
at constant mignetic field, 264
aL constant pressure, 263, 265, 308
at constant volume, 263, 265, 2940, 292, 303,
304, 308, 309
ol crystal, 299
of diatomic gas, 304, 309
slectronic contribution o, 301
§pectrascopic notation, 212, 214
Spherical Bessel Functions, 249
Spherical harmonic addition theorem, 215
Spherical harmonics, 121, 211, 212, 213, 214,
224, 255
Spinor, 208
Square-well potential, 215
inlinite, 218, 219, 290, 222, 225, 243, 258
State spice, 202
Statistical mechanics, 288, 295
connection with thermodynamics, 295
Stat-olum, 124
Stat-voll, 107, IO
Stelun—DBolizmann law, 305, 306, 304, 314
Steblar aberraton, 103
Stoke's theorem, 108
Sudden approximation, 219, 294, 227
Superposition, 183

Temperature, 260, 281, 288, 306, 307
of earth, 306
gradient, 270

Tensile strength, 201
Tension, 7, 71, 173, 277
Thermionic emission of electrons, 286, 303,
304
Thermodynamic potentials, 273
Thermodynamics, conneciion with statistical
mechanics, 295
first law, 260
second law, 266
Threshold energy, 99, 100, 101
Time dilation, 89, 95, 96, 98
Time-independent current, 133
Time-like interval, 89
Torque, 1, 37, 39, 59, 85, 153, 20, 290
on charge distribution, 112
on electric dipole, 112, 171
.on magnctic dipole, 141, 146
Tarston constant, 290
Transition, charge density, 254
probabiliy per unit time, 236, 237, 238,
25
Translattonal symmetry, 136, 137
Transmission, coefficient, 2406, 247, 248
resonance, 248
Transmitance, 74, 75, 76
Triangle relations, 2141, 255
Triplet (8=1) state, 224, 444, 251
Turning poinis, 61, 62
Twenty-one centimeter line, 203

Uniformly, accelerated reference [rame, 24, 26,
27
rotating reference [riame, 27,37, 53, 85
Uniqueness theorems of electrastatics, 114,
116
Unpolarized light, 188

Van der Waals gas, 263, 266, 276
Variptional, principie, 231, 236, 259
wave [unction, 231, 232, 236, 2549
Vector potentiat, 111, 142, 143, 238
Velocity, distribution, 280, 309
space, 280, 303
Vibrational, energy, 289, 298
energy levels, 304, 305
lrequency of & crystal, maximum, 298
Valt, 110, 124
Valtage dilference, 103
Voluneter, 172

Wave, equation, 72, 154
function, 203
radial, 212, 224, 225, 926, 297, 249, 250
packet, 84, 248, 257
Wiavelength, 73, 75, 80, 155
Waves, longiwdinal, 79, 81
mechanical, 71
standing, 76, 78, 81, 84, 160, 161
transverse, 71, 72, 155
transverse-clecuric, 162
transverse-maghelic, 162
wravelling, 162
Weak interacton, 228

Weighy, 3
Width of spectral lines, 958
Wigner's discovery of spin dependence of
nuclear forces, 251
Wark, 13, 14, 16, 260
funciion, 303

Index

nonpdV, 261, 273, 274, 275, 278
pdV, 261, 272, 274, 275
World line, 92, 164, 166

Zeeman effect, 258
anomalous, 239
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A‘REVIEW OF UNDERGRADUATE PHYSICS

This book presents a clear summary of most of the material covered in an
American undergraduate program in physics. :

It should be especially useful to:’ .

1. Graduate students, or advanced undergraduates, who are prepar ng t
take a comprehensive physics examination. ‘ e o

2. Physicists and physics students who want a concise, unified treatment o
the basic ideas and methods of physics.

3. Engineers and physical scientists who would like to see more advanced

treatments of the concepts they encountered in their undergraduate physics B

courses, v

There are six chapters: mechanics, relativity, electricity and magnetism,

optics, quantum mechanics and thermal physics. In each, the important physical
ideas are applied to the solution of problems at the level of first-year graduate
qualifying exams. Additional problems (with brief answers) are given at the end
of each chapter.
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