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Preface

THIS BOOK is devoted to a discussion of some of the basie physical concepts and
methods appropriate for the description of systems involving very many parti-
cles. It is intended, in particular, to present the disciplines of thermody-
namices, statistical mechanies, and kinetic theory from a unified and modern
point of view. Accordingly, the presentation departs from the historical
development in which thermodynamics was the first of these disciplines to
arise as an independent subject. The history of the ideas concerned with heat,
work, and the kinetic theory of matter is interesting and instructive, but it
does not represent the clearest or most illuminating way of developing these
subjects. I have therefore abandoned the historical approach in favor of one
that emphasizes the essential unity of the subject matter and seeks to develop
physical insight by stressing the microscopic content of the theory.

Atoms and molecules are construets so successfully established in modern
science that a nineteenth-century distrust of them seems both obsolete and
inappropriate. For this reason I have deliberately chosen to base the entire
discussion on the premise that all macroscopic systems consist ultimately of
atoms obeying the laws of quantum mechanics. A combination of these
microscopic concepts with some statistical postulates then leads readily to
some very general conclusions on a purely macroscopic level of deseription.
These conclusions are valid irrespective of any particular models that might be
assumed about the nature or interactions of the particles in the systems under
consideration; they possess, therefore, the full generality of the classical laws
of thermodynamics. Indeed, they are more general, since they make clear
that the macroscopic parameters of a system are statistical in nature and
exhibit fluetuations which are caleulable and observable under appropriate
conditions. Despite the microscopic point of departure, the book thus con-
tains much general reasoning on a purely macroscopic level—probably about
as much as a text on classical thermodynamics—but the microscopic content
of the macroscopic arguments remains clear at all stages. Furthermore, if one
is willing to adopt specific microscopic models concerning the particles consti-
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tuting a system, then it is also apparent how one can calculate macroscopie
quantities on the basis of this microscopic information. Finally, the statistical
concepts used to discuss equilibrium situations constitute an appropriate
preparation for their extension to the discussion of systems which are not
in equilibrium.

This approach has, in my own teaching experience, proved to be no more
difficult than the customary one which begins with classical thermodynamies.
The latter subject, developed along purely macroscopic lines, is conceptually
far from easy. Its reasoning is often delicate and of a type which seems
unnatural to many physics students, and the significance of the fundamental
concept of entropy is very hard to grasp. I have chosen to forego the subtle-
ties of traditional arguments based on cleverly chosen cycles and to substitute
instead the task of assimilating some elementary statistical ideas. The follow-
ing gains are thereby achieved: (@) Instead of spending much time discussing
various arguments based on heat engines, one can introduce the student at an
early stage to statistical methods which are of great and recurring importance
throughout all of physies. (b) The microscopic approach yields much better
physical insight into many phenomena and leads to a ready appreciation of
the meaning of entropy. (¢) Much of modern physies is concerned with the
explanation of macroscopic phenomena in terms of microscopic concepts. It
seems useful, therefore, to follow a presentation which stresses at all times the
interrelation between microscopic and macroscopic levels of deseription. The
traditional teaching of thermodynamics and statistical mechanics as distinet
subjects has often left students with their knowledge compartmentalized and
has also left them ill-prepared to accept newer ideas, such as spin temperature
or negative temperature, as legitimate and natural. (d) Since a unified presen-
tation is more economical, conceptually as well as in terms of time, it permits
one to discuss more material and some more modern topies.

The basie plan of the book is the following: The first chapter is designed to
introduce some basic probability concepts. Statistical ideas are then applied
to systems of particles in equilibrium so as to develop the basie notions of
statistical mechanics and to derive therefrom the purely maecroscopie
general statements of thermodynamics. The maecroscopic aspects of the
theory are then discussed and illustrated at some length; the same is then done
for the mieroscopic aspects of the theory. Some more complieated equilibrium
situations, such as phase transformations and quantum gases, are taken up
next. At this point the text turns to a discussion of nonequilibrium situations
and treats transport theory in dilute gases at varying levels of sophistication.
Finally, the last chapter deals with some general questions involving irreversi-
ble processes and fluctuations. Several appendices contain mostly various
useful mathematical results.

The book is intended chiefly as a text for an introductory course in sta-
tistical and thermal physies for college juniors or seniors. The mimeographed
notes on which it is based have been used in this way for more than two years
by myself and several of my colleagues in teaching such a course at the Uni-
versity of California in Berkeley. No prior knowledge of heat or thermo-
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dynamies is presupposed; the necessary prerequisites are only the equivalents
of a course in introductory physics and of an elementary course in atomic
physics. The latter course is merely supposed to have given the student
sufficient background in modern physics (a) to know that quantum mechanics
describes systems in terms of guantum states and wave functions, (b) to have
encountered the energy levels of a simple harmonic oscillator and to have seen
the quantum description of a free particle in a box, and (¢) to have heard of the
Heisenberg uncertainty and Pauli exclusion principles. These are essentially
all the quantum ideas that are needed.

The material included here is more than can be covered in a one-semester
undergraduate course. This was done purposely (a) to include a discussion of
those basic ideas likely to be most helpful in facilitating the student’s later
access to more advanced works, (b) to allow students with some curiosity to
read beyond the minimum on a given topie, (¢) to give the instructor some
possibility of selecting between alternate topics, and (d) to anticipate current
revisions of the introductory physics course curriculum which should make
upper-division students in the near future much more sophisticated and better
prepared to handle advanced material than they are now. In actual practice
I have successfully covered the first 12 chapters (omitting Chapter 10 and most
gtarred sections) in a one-semester course. Chapter 1 contains a discussion of
probability concepts more extensive than is needed for the understanding of
subsequent chapters. In addition, the chapters are arranged in such a way
that it is readily possible, after the first eight chapters, to omit some chapters
in favor of others without encountering difficulties with prerequisites.

The book should also be suitable for use in an introductory graduate
course if one includes the starred sections and the last three chapters, which
contain somewhat more advanced material. Indeed, with students who have
studied classical thermodynamies but have had no significant exposure to the
ideas of statistical mechanics in their undergraduate career, one cannot hope to
cover in a one-semester graduate course appreciably more subject matter than
is treated here. One of my colleagues has thus used the material in our
Berkeley graduate course on statistical mechanics (a course which is, as yet,
mostly populated by students with this kind of preparation),

Throughout the book I have tried to keep the approach well-motivated and
to strive for simplicity of presentation. It hasnot been my aim to pursue rigor
in the formal mathematical sense, I have, however, attempted to keep
the bagie physical ideas in the forefront and to discuss them with care. In the
process the book has become longer than it might have otherwise, for I have
not hesitated to increase the ratio of words to formulas, to give illustrative
examples, or to present several ways of looking at a question whenever I felt
that it would enhanee understanding. My aim has been to stress physical
insight and important methods of reasoning, and I advise most earnestly that
the student stress these aspects of the subject instead of trying to memorize
various formulag meaningless in themselves. To avoid losing the reader in
irrelevant details, I have often refrained from presenting the most general ease
of a problem and have sought instead to treat relatively simple cases by power-
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ful and easily generalizable methods. The book is not meant to be eneyclo-
paedic; it is merely intended to provide a basic skeleton of some fundamental
ideas most likely to be useful to the student in his future work. Needless to
say, some choices had to be made. For example, I thought it important to
introduce the Boltzmann equation, but resisted the temptation of discussing
applications of the Onsager relations to various irreversible phenomena such
as thermoelectric effects.

It is helpful if a reader can distinguish material of secondary importance
from that which is essential to the main thread of the argument. Two devices
have been used to indicate subject matter of subsidiary importance: (a) See-
tions marked by a star (asterisk) contain material which is more advanced or
more detailed; they can be omitted (and probably should be omitted in a first
reading) without incurring a handicap in proceeding to subsequent sections.
(b) Many remarks, examples, and elaborations are interspersed throughout the
text and are set off on a gray background. Conversely, black marginal
pointers have been used to emphasize important results and to facilitate
reference to them.

The book contains about 230 problems, which should be regarded as an
essential part of the text. It isindispensable that the student solve an appreci-
able fraction of these problems if he is to gain a meaningful understanding of
the subject matter and not merely a casual hearsay acquaintance with it.

I am indebted to several of my colleagues for many valuable criticisms
and suggestions. In particular, I should like to thank Prof. Eyvind H.
Wichmann, who read an older version of the entire manuseript with meticulous
care, Prof. Owen Chamberlain, Prof. John J. Hopfield, Dr. Allan N. Kaufman,
and Dr. John M. Worlock. Needless to say, none of these people should be
blamed for the flaws of the final produect.

Acknowledgements are also due to Mr. Roger F. Knacke for providing
the answers to the problems. Finally, 1 am particularly grateful to my
secretary, Miss Beverly West, without whose devotion and uncanny ability
to transform pages of utterly illegible handwriting into a perfectly typed
technical manuseript this book could never have been written.

It has been said that “an author never finishes a book, he merely abandons
it”” I have come to appreciate vividly the truth of this statement and dread
to see the day when, looking at the manuseript in print, I am sure to realize
that so many things could have been done better and explained more clearly.
If T abandon the book nevertheless, it is in the modest hope that if may be
useful to others despite its shortcomings.

F. REIF
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Introduction to statistical methods

rH1s BooK will be devoted to a discussion of gystems consisting of very many
particles. Examples are gases, liquids, solids, electromagnetic radiation (pho-
tons), ete. Indeed, most physical, chemical, or biological systems do consist
of many molecules; our subject encompasses, therefore, a large part of nature,

The study of systems consisting of many particles is probably the most
active area of modern physies research outside the realm of high-energy physies.
In the latter domain, the challenge is to understand the fundamental interac-
tions between nucleons, neutrinos, mesons, or other strange particles. But, in
trying to discuss solids, liquids, plasmas, chemieal or biologieal systems, and
other such systems involving many particles, one faces a rather different task
which is no less challenging. Here there are excellent reasons for supposing that
the familiar laws of quantum mechanics deseribe adequately the motions of the
atoms and molecules of these systems; furthermore, since the nuclei of atoms
are not disrupted in ordinary chemical or biological processes and since gravi-
tational forces between atoms are of negligible magnitude, the forces between
the atoms in these systems involve only well-understood electromagnetic inter-
actions. Somebody sufficiently sanguine might therefore be tempted to
claim that these systems are “understood in principle.” This would, however,
be a rather empty and misleading statement. For, although it might be pos-
sible to write down the equations of motion for any one of these systems, the
complexity of a system containing many particles is so great that it may make
the task of deducing any useful consequences or predictions almost hopeless.
The difficulties involved are not just questions of quantitative detail which can
be solved by the brute force application of bigger and better computers.
Indeed, even if the interactions between individual particles are rather simple,
the sheer complexity arising from the interaction of a large number of them can
often give rise to quite unexpected qualilalive features in the behavior of a
system. It may require very deep analysis to predict the oceurrence of these
features from a knowledge of the individual particles. For example, it is a
striking fact, and one which is difficult to understand in microscopic detail,
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2 INTRODUCTION TO STATISTICAL METHODS

that simple atoms forming a gas can condense abruptly to form a liquid with
very different properties. It is a fantastically more difficult task to attain an
understanding of how an assembly of certain kinds of molecules can lead to a
system capable of biological growth and reproduction.

The task of understanding systems consisting of many particles is thus
far from trivial, even when the interactions between individual atoms are well
known. Nor isthe problem just one of carrying out complicated computations.
The main aim is, instead, to use one’s knowledge of basic physical laws to
develop new concepts which can illuminate the essential characteristics of such
complex systems and thus provide sufficient insight to facilitate one’s thinking,
to recognize important relationships, and to make useful predictions. When
the systems under consideration are not too complex and when the desired level
of description is not too detailed, considerable progress can indeed be achieved
by relatively simple methods of analysis.

It is useful to introduce a distinction between the sizes of systems whose
description may be of interest. We shall call a system ‘“microscopic” (i.e.
“small scale’) if it is roughly of atomic dimensions or smaller (say of the order
of 10 A or less). For example, the system might be a molecule. On the other
hand, we shall call a system “macroscopie’” (i.e., “‘large scale’”) when it is large
enough to be visible in the ordinary sense (say greater than 1 micron, so that it
can at least be observed with a microscope using ordinary light). The system
consists then of very many atoms or molecules. For example, it might be a
solid or liquid of the type we encounter in our daily experience. When one is
dealing with such a macroscopie system, one ig, in general, not concerned with
the detailed behavior of each of the individual particles constituting the system.
Instead, one is usually interested in certain macroscopic parameters which
characterize the system as a whole, e.g., quantities like volume, pressure,
magnetic moment, thermal conductivity, ete. If the macroscopic parameters
of an isolated system do not vary in time, then one says that the system is in
equilibrium. If an isolated system is not in equilibrium, the parameters of the
system will, in general, change until they attain constant values corresponding
to some final equilibrium condition. Equilibrium situations can clearly be
expected to be amenable to simpler theoretical discussion than more general
time-dependent nonequilibrium situations.

Meacroscopic systems (like gases, liquids, or solids) began first to be sys-
tematically investigated from a macroscopic phenomenological point of view
in the last century. The laws thus discovered formed the subject of “thermo-
dynamics.” In the second half of the last century the theory of the atomic
constitution of all matter gained general acceptance, and maeroscopie systems
began to be analyzed from a fundamental microscopic point of view as systems
congisting of very many atoms or molecules. The development of quantum
mechanics after 1926 provided an adequate theory for the description of
atoms and thus opened the way for an analysis of such systems on the basis
of realistic microscopic concepts. In addition to the most modern methods of
the “many-body problem,” there have thus developed several disciplines of
physies which deal with systems consisting of very many particles. Although
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the boundaries befween these diseiplines are not very sharp, it may be useful
to point out briefly the similarities and differences between their respective
methods of approach.

a. For a system in equilibrium, one can try fo make some very general
statementgs concerning relationships existing between the macroscopic parame-
ters of the system. This is the approach of classical “thermodynamies,”
historically the oldest diseipline. The strength of this method is its great
generality, which allows it to make valid statements based on a minimum
number of postulates without requiring any detailed assumptions about the
microscopic (i.e., molecular) properties of the system. The strength of the
method also implies its weakness: only relatively few statements can be made
on such general grounds, and many interesting properties of the system remain
outside the scope of the method.

b. For a system in equilibrium, one can again try to make very general
statements consistently based, however, on the microscopic properties of the
particles in the system and on the laws of mechanies governing their behavior.
This is the approach of “statistical mechanics.,” It yields all the results of
thermodynamics plus a large number of general relations for caleulating the
macroseopic parameters of the system from a knowledge of its microscopic
constituents. This method is one of great beauty and power.

c. If the system is not in equilibrium, one faces a mueh more difficult task.
One ean still attempt to make very general statements about such systems,
and this leads to the methods of “irreversible thermodynamies,” or, more
generally, to the study of “statistical mechanics of irreversible processes.”
But the generality and power of these methods is much more limited than in
the case of systems in equilibrium,

d. One can attempt to study in detail the interactions of all the particles
in the system and thus to caleulate parameters of macroscopic significance.
This is the method of “kinetie theory.” It is in principle always applicable,
even when the system is not in equilibrium so that the powerful methods of
equilibrium statistical mechanies are not available. Although kinetic theory
yields the most detailed deseription, it is by the same token also the most
difficult method to apply. Furthermore, its detailed point of view may tend to
obseure general relationships which are of wider applicability.

Historically, the subjeet of thermodynamics arose first before the atomie
nature of matter was understood. The idea that heat is a form of energy was
first suggested by the work of Count Rumford (1798) and Davy (1799). It
was stated explicitly by the German physieian R. J. Mayer (1842) but gained
acceptance only after the careful experimental work of Joule (1843-1849),
The first analysis of heat engines was given by the French engineer 8. Carnot
in 1824, Thermodynamic theory was formulated in consistent form by
Clausius and Lord Kelvin around 1850, and was greatly developed by J. W.
(Gibbs in gome fundamental papers (1876-1878),

The atomic approach to macroscopie problems began with the study of
the kinetic theory of dilute gases. This subject was developed through the
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pioneering work of Clausius, Maxwell, and Boltzmann. Maxwell discovered
the distribution law of molecular veloecities in 1859, while Boltzmann formulated
his fundamental integrodifferential equation (the Boltzmann equation) in
1872. The kinetic theory of gases achieved its modern form when Chapman
and Enskog (1916-1917) succeeded in approaching the subject by developing
systematic methods for solving this equation.

The more general discipline of statistieal meehanics also grew out of the
work of Boltzmann who, in 1872, succeeded further in giving a fundamental
microscopic analysis of irreversibility and of the approach to equilibrium. The
theory of statistical mechanies was then developed greatly in generality and
power by the basie contributions of J. W. Gibbs (1902). Although the advent
of quantum mechanies has brought many changes, the basic framework of the
modern theory is still the one which he formulated.

In discussing systems consisting of very many particles, we shall not aim
fo recapitulate the historical development of the various disciplines dealing
with the physical description of such systems, Instead we shall, from the
outset, adopt a modern point of view based on our present-day knowledge of
atomic physies and quantum mechanics. We already mentioned the fact that
one can make very considerable progress in understanding systems of many
particles by rather simple methods of analysis. This may seem rather sur-
prising af first sight; for are not systems such as gases or liquids, which consist
of a number of particles of the order of Avogadro’s number (10%%), hopelessly
complicated? The answer is that the very complexity of these systems con-
tains within it the key to a successful method of attack. Since one is not
concerned with the detailed behavior of each and every particle in such sys-
tems, it becomes possible to apply statistical arguments to them. But as
every gambler, insurance agent, or other person concerned with the caleulation
of probabilities knows, statistical arguments become most satisfactory when
they can be applied to large numbers. What a pleasure, then, to be able to
apply them to cases where the numbers are as large as 10%, i.e., Avogadro’s
number! In systems such as gases, liquids, or solids where one deals with very
many identical particles, statistical arguments thus become particularly effec-
tive. This does not mean that all problems disappear; the physics of many-
body problems does give rise to some difficult and fascinating questions. But
many important problems do indeed become quite simple when approached by
statistical means,

RANDOM WALK AND BINOMIAL DISTRIBUTION

1-1 Elementary statistical concepts and examples

The preceding comments make it apparent that statistical ideas will play a
central rale throughout this book. We shall therefore devote this first chapter
to a discussion of some elementary aspects of probability theory which are of
great and recurring usefulness,
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The reader will be assumed to be familiar with the most rudimentary
probability concepts. It is important to keep in mind that whenever if is
desired to deseribe a situation from a statistical point of view (i.e., in terms of
probabilities), it is always necessary to consider an assembly (or “‘ensemble’”)
consisting of a very large number 9 of similarly prepared systems. The prob-
ability of oceurrence of a particular event is then defined with respeet to this
particular ensemble and is given by the fraction of systems in the ensemble
which are characterized by the oceurrence of this specified event. For example,
in throwing a pair of dice, one can give a statistical description by considering
that a very large number 9 (in prineiple, 91 — «) of similar pairs of dice are
thrown under similar cireumstances. (Alternatively one could imagine the
same pair of dice thrown 91 times in succession under similar circumstances.)
The probability of obtaining a double ace is then given by the fraction of these
experiments in which a double ace is the outcome of a throw.

Note also that the probability depends very much on the nature of the
ensemble which is contemplated in defining this probability. For example, it
makes no gense to speak simply of the prebability that an individual seed will
yield red flowers. But one can meaningfully ask for the probability that such
a seed, regarded as a member of an ensemble of similar seeds derived from a
specified set of plants, will yield red flowers. The probability depends crucially
on the ensemble of which the seed is regarded as a membor. Thus the prob-
ability that a given seed will yield red flowers is in general different if this seed
is regarded as (a) a member of a collection of similar seeds which are known to
be derived from plants that had produced red flowers or as (b) a member of a
collection of seeds which are known to be derived from plants that had produced
pink flowers.

In the following discussion of basie probability concepts it will be useful
to keep in mind a specific simple, but important, illustrative example—the
so-called “‘random-walk problem.” In itssimplest idealized form, the problem
can be formulated in the following traditional way: A drunk starts out from a
lamppost located on a street. Each step he takes is of equal length {. The
man is, however, so drunk that the direction of each step—whether it is to the
right or to the left—is completely independent of the preceding step. All
one can say is that each time the man takes a step, the probability of ifs being
to the right is p, while the probability of its being to the leftisg = 1 — p.
(In the simplest ease p = ¢, but in general p # q. For example, the street
might be inelined with respeet to the horizontal, so that a step downbhill to the
right is more likely than one uphill to the left.)

Choose the x axis to lie along the street so that = 0 is the position of the

The drunkard’s random walk in one dimension.
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Fig. 1-1-2 Example of a ran-
dom walk in two dimensions.

point of origin, the lamppost. Clearly, since each step is of length I, the loca-
tion of the man along the z axis must be of the form z = ml, where m is an
integer (positive, negative, or zero). The question of interest is then the fol-
lowing: After the man has taken N steps, what. is the pmba.bnhty of his being
located af the position x = ml?

This statistical formulation of the problem again implies that one considers
a very large number 91 of gimilar men starting from similar lampposts.  (Alter-
natively, if the situation does not change in time, e.g., if the man does not
gradually sober up, one could also repeat the same experiment 91 times with
the same man.) At each step, one finds that a fraction p of the men moves to
the right. One then asks what fraction of the men will be located at the posi-
tion x = mi after N steps.

One can readily generalize this one-dimensional problem to more dimen-
sions whether it be two (a drunk starting out from a lamppost in the middle
of a parking lot), three, or more. One again asks for the probability that after
N steps the man is located at a given distance from the origin (although the
distance is no longer of the form mi, with m integral),

Now the main concern of physics is not with drunks who stagger home
from lampposts. But the problem which this illustrates is the one of adding N
vectors of equal length but of random directions (or directions specified by some
probability distribution) and then asking for the probability that their resultant
vector sum has a eertain magnitude and direction (seel'ig.1-1-2). Wemention
a few physieal examples where this question is relevant.

a. Magnetism: An atom has a spin ¥ and a magnetic moment y; in accord-
ance with quantum mechanies, ils spin can therefore point either “up” or
“down” with respect to a given direction. If both these possibilities are
equally likely, what is the net total magnetic moment of N such atoms?

b. Diffusion of a molecule in a gas: A given molecule travels in three
dimensions a mean distance [ between collisions with other molecules. How
far is it likely to have gone after N collisions?

e .
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¢. Light intensity due to N incoherent light sources: The light amplitude
due to each source can be represented by a two-dimensional vector whose
direction specifies the phase of the disturbance. Here the phases are random,
and the resultant amplitude, which determines the total intensity of the light
from all the sources, must be computed by statistical means.

The random walk problem illustrates some very fundamental results of
probability theory. The techniques used in the study of this problem are
powerful and basic, and recur again and again throughout statistical physics.
It is therefore very instructive to gain a good understanding of this problem.

1:2 The simple random walk preblem in one dimension

For the sake of simplicity we shall discuss the random walk problem in one
dimension. Instead of talking in terms of a drunk taking steps, let us revert
to the less aleoholic voeabulary of physics and think of a particle performing
successive steps, or displacements, in one dimension, After a total of N such
steps, each of length [, the particle is located at

z = ml
where m is an integer lying between
—N<m<N
We want to calculate the probability Px(m) of finding the particle at the posi-
sion x = ml after N such steps.

Let n; denote the number of steps to the right and n. the corresponding
number of steps to the left. Of course, the total number of steps N is simply

N:'—ﬂl'l'ﬂug (1‘21)

The net displacement (measured to the right in units of a step length) is given

by
m = fig — 7 (1‘22)

If it is known that in some sequence of N steps the particle has taken n, steps
to the right, then its net displacement from the origin is determined. Indeed,
the preceding relations immediately yield

m=n1—ng=n1—(N—n1}=2n1—-N (1'2'3)
This shows that if N is odd, the possible values of m must also be odd. Con-

versely, if IV is even, m must also be even.
Our fundamental assumption was that successive steps are statistically
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! Fig. 1:2:1 Tllustration showing the eight sequences of steps ivhich are possi-
} ble if the total number of stepsis N = 3.

independent of each other. Thus one can assert simply that, irrespective of
past history, each step is characterized by the respective probabilities

p = probability that the step is to the right
and ¢ = 1 — p = probability that the step is to the left

Now, the probability of any one given sequence of n, steps to the right and n,
steps to the left is given simply by mulfiplying the respective probabilities,
i.e,, by

‘ PP - pPQq - q=pm (1-2-4)

e ™
l ny factors n: fnotors

But there are many different possible ways of taking N steps so that n; of them
are to the right and n. are to the left (see illustration in Fig. 1:2-1). Indeed,
the number of distinet possibilities (as shown below) is given by

i |

N! ;
. i (1-2-5)
‘ f Hence the probability Wx(n1) of taking (in a total of N steps) n, steps to the
right and ny = N — n; steps to the left, in any order, is obtained by multi-
i plying the probability (1-2-4) of this sequence by the number (1-2-5) of
possible sequences of such steps. This gives
( > Walm) = o phg™ (1-2-6)
B
'ill\ Simple example Consider the simple illustration of Fig. 1-2-1, which shows

the case of & total of N = 8 steps. There is only one way in which all three
I successive steps can be to the right; the corresponding probability W(3) that
] t all three steps are to the right is then simply p-p:p = p%. On the other
l hand, the probahllty of a sequence of steps where two steps are to the nghﬁ
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while the third step is to the left is p%. But there are three such possible

sequences. Thus the total probability of oceurrence of a situation where two
steps are to the right and one is to the left is given by 3p%.

Lg
.I"JJ_.**J*

Reasoning leading to Eq. (1-2-5) The problem is to count the number of
distinct ways in which N objects (or steps), of which n, are indistinguishably
of one type and n: of a second type, can be accommodated in a total of
N = n; + ns possible places. In this case

the 1st place can be occupied by any one of the N objects
the 2nd place can be occupied by any one of the remaining (¥ — 1) objects

YR S Y

the N'th place can be occupied only by the last 1 object
Hence all the available places can be occupied in

NN —1)(N=2)+--1=N!

possible ways. The above enumeration considers each object as distinguish-
able. But since the n, objects of the first type are indistinguishable (e.g.,
all are right steps), all the n;! permutations of these objects among them-
selves lead to the same situation. Similarly, all the n;! permutations of
objects of the second type among themselves lead to the same situation.
Hence, by dividing the total number N'! of arrangements of the objects by
the number n;!n;! of irrelevant permutations of objects of each type, one
obtains the total number N!/n,;!n.! of distinet ways in which N objects can
be arranged if n, are of one type and n. of another type.

Example For instance, in the previdus example of three steps, there are
N = 3 possible events (or places) designated in Fig. 1.2.2 by B, B., B, and
capable of being filled by the three particular steps labeled 4, A., A,. The
event B, can then occur in any of three ways, B.in any of two ways, and B,
in only one way. There are thus 3 X 2 X 1= 3! = 6 possible sequences

o0 |
T e - [ TRESES
e b : A A
=S [ e A
Bt a LT

Fig. 1-2-2 Diagram illustrating the problem of distributing three objects
A, A, A, among three places B, B.. B.. The right part of the diagram
lists the possible arrangements and indicates by brackets those
arrangements which are ideatical when A, and A, are considered
indistinguishable.
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The probability function (1-2-6) is called the binomial distribution,
The reason is that (1-2-5) represents a typical term encountered in expanding
(p + ¢)" by the binomial theorem. Indeed, we recall that the binomial expan-
sion is given by the formula

B N = .
(»+9*= Z AN =iy 1-2-7)
n=0

We already pointed out in (1-2-3) that if it ig known that the particle
has performed 7, steps to the right in a total of N steps, then its net displace-
ment m from the origin is determined. Thus the probability Py(m) that the
particle is found at position m after N steps is the same as Wy(n,) given by
(1-2-8), e, '

Py(m) = Wx(n) (1-2:8)

By (1-2-1) and (1-2-2) one finds explicitly*
=N +m), nx=FN—m) (1-2-9)
Substitution of these relations in (1-2-6) thus yields

In the special case where p = ¢ = 4 this assumes the symmetrical form

Py(m) =

N + m)/2]l[(N = m)/2]1( )

=

* Note that (1-2-3) shows that (N + m) and (N — m) are even integers, since they
equal 2n, and 2n,, respectively.




GENERAL DISCUSSION OF MEAN VALUES

:he rigb.f

Wy, UL, - . -
with respective probabilities

0=

P(ui), P(us), . . .
The mean (or average) value of u is denoted by @ and is defined by
Pu)uy + P(us)us + - - -

1 . 3 General discussion of mean values

Let u be a variable which can assume any of the M diserete values

y UM
’ P(ulf)

+ P(ua)us

or, in shorter notation, by

Pm) -+ Ple) 4 - - -

+ P(uw)

e vicinity of the erigin is larmt. f
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This is, of course, the familiar way of computing averages. For example, if u
| represents the grade of a student on an examination and P(x) the number of
students obtaining this grade, then Eq. (1:3-1) asserts that the mean grade y
is computed by multiplying each grade by the number of students having this
grade, adding this up, and then dividing by the total number of students.
More generally, if f(u) is any funection of %, then the mean value of f(u) is

1 defined by .
M _‘
Y Pufs)
- J) = — (1-3-2)
] Z F & (ﬂi}
| i=1
i This expression can be simplified. Since P(u,) is defined as a probability, the
i quantity
! M
' P(u) + Plus) + - -+ + Pluw) = -21 P(u)
{ represents the probability that « assumes any one of its possible values and
' this must be unity. Hence one has quite generally
M
;:l » Y Pu) =1 (1-3-3)
: i1
- '| Thie is the so-ealled “normalization condition” satisfied by every probability.
!
1 As s result, the general definition (1:3-2) becomes
M
f > ) = 3, P(uf(u) (1-3-4)
i im1
I ;i Note the following gimple results. If f(u) and g(u) are any two functions
.l* of u, then
3 M M M
t“ Ty +90) = 3, Pa)lf(w) + gl = 3, Pw)f(u) + 3, Plusg(us)
[;l iy =] i=1 i=1
13 S o0 o) = J) + 7 (1:3-5)
I! ' Furthermore, if ¢ is any constant, it is clear that
_'l > T = o (1:3-6)
tl Some simple mean values are particularly useful for describing character-
f istic features of the probability distribution P. One of these is the mean value
k| @ (e.g., the mean grade of a class of students). This is a measure of the central
| value of u about which the various values u; are distributed. If one measures
' 1] the values of u from their mean value 4, i.e., if one puts
\'. Au=u—i (1-3-7)
then M=lw—a=a—a=0 (1-3-8)

This says merely that the mean value of the deviation from the mean vanighes.
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Another useful mean value is

(Au)? = EM Plu)(ug — 5)* > 0 (1-3-9)

iTm]

which is called the “second moment of w about its mean;” or more simply the
“dispersion of w«.” This can never be negative, since (Au)? > 0 so that each
term in the sum contributes a nonnegative number. Only if u; = @ for all
values u; will the dispersion vanish. The larger the spread of values of u;
about 4, the larger the dispersion. The dispersion thus measures the amount
of scatter of values of the variable about its mean value (e.g., scatter in grades
about the mean grade of the students). Note the following general relation,
which is often useful in computing the dispersion:

(uw—u)? = W —2uu+ %) = u® — 2aa + a?

or
> -0 =w — @ (1-3-10)
Since the left side must be positive it also follows that

ut > it (1-3-11)

One can define further mean values such as (Au)®, the “nth moment of u
about its mean,” for integers n > 2. These are, however, less commonly
useful.

Note that a knowledge of P(u) implies complete information about the
actual distribution of values of the variable u. A knowledge of a few
moments, like % and (Au)%, implies only partial, though useful, knowledge of .
the characteristics of this distribution. A knowledge of some mean values is |
not sufficient to determine P(u) completely (unlessone knows the moments (Au)~ '
for all values of n). But by the same token it is often true that a ealculation
of the probability distribution function P(u) may be quite difficult, whereas
some simple mean values can be readily caleulated directly without an explicit .
knowledge of P(u). We shall illustrate some of these eomments in the follow-

ing pages.

1 ¥ 4- Calculation of mean values for the random walk problem

In (1-2-6) we found that the probability, in a fotal of N steps, of making n,
steps to the right (and N — n, = n, steps to the left) is

W(n) = Rl (1-4-1)

N!
(N — ! P

! (For the sake of simplicity, we omit attaching the subsecript N to W when no
confusion is likely to arise.)
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Let us first verify the normalization, i.e., the condition

N
Y W) =1 (1-4-2)
ny=0

which says that the probability of making any number of right steps between

0 and N must be unity. Substituting (1-4:1) into (1-4-2), we obtain

N N
s it mygN—ny N H 1 i
z SN ~ 5! pMg (p+q) by the binomial theorem

ni=0

1¥=1 sinceg=1—p

which verifies the result.
What is the mean number #; of steps to the right? By definition

N N .

= Nl <

iy = E W(n)ny, = Zom prgt (1-4-3)
ny = Ry

If it were not for that extra factor of n, in each term of the last sum, this would
again be the binomial expansion and hence trivial to sum. The factor n,
spoils this lovely situation. But there is a very useful general procedure for
handling such an extra faetor so as to reduce the sum to simpler form. Let us
consider the purely mathematical problem of evaluating the sum occurring in
(1-4-3), where p and ¢ are considered to be any two arbitrary parameters,
Then one observes that the extra factor n; can be produced by differentiation
so that

a
mp™ = p 37 (™)

Hence the sum of interest can be written in the form

N N
N! N! ]
s e AT 0 = = el my N—mny
‘.Zon,!av = P TS L I — ! [”ap (v )] 7
% | by interchanging order
= —-g- Z ___'h_r_'_._ nygN—ny X . d dif
P ap (N — n)! g of suuslm?.tlon and dif-
ni=g - ferentiation
=p ;5 (» + @) by the binomial theorem

=pN(p + g™

Since this result is true for arbitrary values of p and ¢, it must also be
valid in our particular case of interest where p is some specified constant and
g=1—p. Then p+ g =1 so that (1-4-3) becomes simply

I i, = Np (1-4-4)

We could have guessed this result. Since p is the probability of making
a right step, the mean number of right steps in a total of N steps is simply given

o 5 ol i)
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by N - p. Clearly, the mean number of left steps is similarly equal to

fis = Ng (1-4-5)
Of course
fu+f2=Np+q =N

add up properly to the total number of steps.
The displacement (measured to the right in units of the step length [) is
m = n; — ny. Hence we get for the mean displacement

I M =N —Ns= i —iia = N(p—q) (1-4-6)

If p = ¢, then m = 0. This must be so since there is then complete symmetry
between right and left directions.

Calculation of the dispersion Let us now caleulate (An,)®. By (1-3:10)
one has

(Any)? = (ny — M1)?* = ny® — iy? . (1-4-7)
We already know #;. Thus we need to compute n;%
N
ny = Z W(ni)n*

ny=0
N

z N! pmqﬂf—u;nlz (1 _4_8)
0 ﬂ-].!(N — ﬂg)!

Lo

Considering p and ¢ as arbitrary parameters and using the same trick of dif-
ferentiation as before, one can write

nlpm = ny (p ‘-%’) (™) = (;‘J %’)‘ (p™)

Hence the sum in (1-4-8) ean be written in the form

i ._._.L i i nigN—n;
L ml (N — ny)! Pap) 77
a\t w N1 by interchanging order
- (P @) Z MmN — n)! i il summation and dif-
=0 ferentiation
2
= (P 561_’) (p + )% by the binomial theorem

= (p 8%1) [eN(p + )%
= plN(p + Q' + pN(N — 1)(p + 9)¥]
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The ecase of interest in (1-4-8) is that where p +¢ =1. Thus (1-4.8)
becomes simply

n,? = p[N + pN(N — 1)]

= Np[1 + pN — p]
= (Np)* + Npg sincel —p =g¢g
= m:* + Npg by (1-4-4)

Henece (1-4-7) gives for the dispersion of n; the result
> @t = Npg /Ly 2olS (1-4.9)
—

The quantity (An,)? is quadratic in the displacement. Its square root,
i.e., the rms (root-mean-square) deviation A*n; = [(An;)?), is a linear measure
of the width of the range over which n; is distributed. A good measure of the
relative width of this distribution is then

A*ni _ VNpg _ g 1

iy s 5 EVA N
In particular,
A*n 1
for p = q = A}’ ﬁll — V—F-—

Note that as N increases, the mean value 7, increases like N, but the width
A*ny increases only like N?. Henee the relative width A*n,/7, decreages with
increasing N like N—%.

One can also compute the dispersion of m, i.e., the dispersion of the net
displacement to the right. By (1-2-3)

m=n1—ng=2n1—N (1'4‘10)
Hence one obtains

Am=m— = (2n; — N) — (2A;, — N) = 2(m; — 71) = 2An; (1-4-11)
and (Am)* = 4(An,)*

Taking averages, one gets by (1-4-9)

=3 @Am)® = 4{Any)® = 4Npg (1-4-12)
In particular,
forp=gq=14 (am): = N
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Fig. i1+4-1 Binomial probability distribution for p = 0.6 and ¢ = 0.4, when

N = 20 steps. The graph shows again the probability W(n) of ny right steps,

or equivalently. the probability P(m) of a net displacement of m units to the

right. The mean values M and (Am)? are also indicated.

1- 5 Probability distribution for large N

When N is large, the binomial probability distribution W(n:) of (1-4-1)
tends to exhibit a pronounced maximus n at some value n; = 7y, and to decrease
rapidly as one goes away from 7i; (see, for example, Fig, 1-4-1). Let us
exploit this fact to find an approrimate expression for W(n,) valid when N is
sufficiently large.

If N is large and we consider regions near the maximum of W where n, is
also large, the fractional change in W when n; changes by unity is relatively
quite small, i.e.,

[Wina + 1) — W(n)| < W(n) (1-5-1)

Thus W ean, to good approximation, be considered as a continuous function
of the continuous variable n,, although only integral values of n, are of physical
relevance, The location ny = 7 of the maximum of W is -g'mn approximately
determined by the condition
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—— = or equivalently

dm (1-5-2)

d‘l’h

where the derivatives are evaluated for n, = ;. To investigate the behavior
of W(ni) near its maximum, we shall put

m =i+ 19 (1-5-3)

and expand In W(n,) in a Taylor’s series about #;. The reason for expanding
In W, rather than W itself, is that In W is a much more slowly varying function
of n, than W. Thus the power series expansion for In W should converge much
more rapidly than the one for W.

Expanding In W in Taylor’s series, sne obtains
1
In W(n) = In W(i,) + By + 3B + B + - - - (1-5:4)

where = (1-5-5)

is the kth derivative of In W evaluated at n; = ;. Since one is expanding
about & maximum, By = 0 by (1-5-2). Also, since W is a maximum, it follows
that the term -}Bm must be negative, i.e., B, must be negative. To make this
explicit, let us write By = —|[B,|. Henee (1-5-4) yields, putting W = W(i,),

W(nl) = W B HiBy - - WG“W’"" T (1.56)

In the region where 5 is sufficiently small, higher-order terms in the expan-
sion can be neglected so that one obtains in first approximation an expression
of the simple form

W(ny) = W etimb? 1-5:7)
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Let us now investigate the expansion (1-5-4) in greater detail. By (1-4-1)
one has
In Win)) =mN!'—Inny! — In(N —n))!l + nulnp+ (N —n;)Ing (1-5-8)

But, if n is any large integer so that n >> 1, then In n! can be considered an
almost continuous function of n, since In n! echanges only by a small fraction of
itself if n is changed by a small integer. Hence

d.h1ﬂ[ﬁln(n+l)[—lnﬂ!_ (n + 1)!
dn 1 = e b
Thus
1
for n>> 1, d?nn'wlnn (1-5-9)
Hence (1:5-8) yields
d};‘?= —Inmy+In(N —n)+Inp—Ing (1-5-10)

By equating this first derivative to zero one finds the value ny = #i;, where
W is maximum, Thus one obtains the condition

[(N = fix) 3;] -0

or (N = fi)p = flag
so that
fra- fiy = Np (1-5-11)
since p + q =
Further differentiation of (1-5-10) yields
2

%‘2_—%-}\,}_“: (1-5-12)

Evaluating this for the value n, = 111 given in (1-5-11), one gets
s Gl 1\715 N —Np Np "N ( )

or
> iy S (1-5-13)

Npg
since p + ¢ = 1. Thus B, is indeed negative, as required for W to exhibit
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Similarly, B = "—2;‘5"' o —2(W+W) H
RO ¥ i f
Thus it is seen that the kth term in (1-5-4) is smsller in magnitude than

7/(Npg)~'. The neglect of terms beyond Byy*, which leads to (1-5-7), is
therefore justified if 7 is sufficiently small so that*

7 < Npg i (1°5-14)

On the other hand, the factor exp (~#|Bily?) in (1-5-6) causes W to fall
off very rapidly with increasing values of |y] if [B| is Jarge. Indeed, if

Bilr? = 3L »1 (1:5-18)

thepwhabinty W(wmwxymnmmwlmo Hence
it follows that if  is still small enough to satisfy (1-5-14) up to values of
80 large that (1+5-15) is also satisfied, then (1:5'7) provides an excellent
apmuﬁmﬁthﬁm@oﬁﬂuanmwhnnm
able magnitude. This condition of simultaneous validity of (1-5-14) snd

(1-5-15) requires that
V/Npg «n «Npg - _ _
i.e, that Npg>>1 - (1-5-16)

huﬁmmnﬁmmmﬂndnmﬁnwhmhmw-
not negligibly small, the expression (1-5-7) provides a very good approxima-
tion to the extent that N is large and that neither p nor g is too small.

The value of the constant W in (1-5-7) can be determined from the normal-
ization condition (1-4-2). Since W and n, can be treated as quasicontinuous
variables, the sum over all integral values of n; can be approximately replaced
by an integral. Thus the normalization condition can be written

N
Z W(ny) = [ W(ny) dny = [_"_ W, +9)dnp=1 (1-5-17)
n =0
Here the integral over 5 can to excellent approximation be extended from — =
to 4+ =, since the integrand makes a negligible contribution to the integral
wherever [g| is large enough so that W is far from its pronounced maximum
value. Substituting (1-5-7) into (1-5-17) and using (A-4-2), one obtains

W f_ e B gy = W \f|-B~r

* Note that the condition (1-5-1) is equivalent to |8W/on,| € W, i.e., to |Bm| =
(Npg)~t|n| <« 1 by virtue of (1-5:7) and (1-5-13). Thus it is also satisfied in the domain
(1:5-14) where W is not too small.

t When p <1 or ¢ < 1, it is possible to obtain a different approximation for the
binomial distribution, namely the so-called “Poisson distribution” (see Problem 1.9).
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Thus (1-5-7) becomes
’ Win,) = ‘\fgzj g HBal(m—ip)? (1-5-18)

The reasoning leading to the funetional form (1:5-7) or (1:5-18), the
go-called ““Gaussian distribution,” has been very general in nature. Hence it
is not surprising that Gaussian distributions occur very frequently in statistics
whenever one is dealing with large numbers. In our case of the binomial
distribution, the expression (1-5-18) becomes, by virtue of (1-5-11) and
(1-5-13),

; . (n; — Np)*
’ W(fil) = (zaerq) *exp[— —W;q-—— (1'5'19)
Note that (1-5-19) is, for large values of N and n;, much simpler than
(1-4-1), since it does not require the evaluation of large factorials. Note
also that, by (1-4-4) and (1-4-9), the expression (1-5-19) ean be written
in terms of the mean values 7, and (An,)? as

i W) = ey exp [~ G|

16 Gaussian probability distributions

The Gaussian approximation (1-5-19) also yields immediately the probability
P(m) that in a large number of N steps the net displacement is m. The cor-
responding number of right steps is, by (1-2-9), n; = ¥(N + m). Hence
(1-5-19) gives

P(-;n} =W (N . m) = {2-,|-Npq]—i exp | — [m—_yg_p__q}tl (1.6.])

2 8N pq
since ny — Np = [N + m — 2Np] = }{lm — N(p — ¢)]. By (1-2-3) one has
m = 2ny; — N, so that m assumes here integral values separated by an amount
Am = 2.

We can also express this result in terms of the actual displacement var-
able z,
z=ml (1:6:2)

where [ is the length of each step. If [ is small compared to the smallest length
of interest in the physical problem under consideration,* the fact that r can
only assume values in diserete increments of 21, rather than all values continu-
ously, becomes unimportant. Furthermore, when N is large, the probability
P(m) of oceurrence of a displacement m does not change significantly from

* For example, if one considers the random motion (diffusion) of an atom in a solid,
the step length ! is of the order of one lattice spacing, i.e., about 10~* cm. But on the

mucroscopie seale of experimental measurement the smallest length L of relevance might be
1 micron = 10~4 em.




Tl e

——

22 secrion 16

Pim)

=
21

Fig. 1:6°1 The probability F(m) of a net displacement of m units when the
total number N of steps is very large and the step lengih | is very small.

one possible value of m to an adjacent one;ie., |P(m + 2) — P(m)| < P(m).
Therefore P(m) can be regarded as a smooth funection of z. A bar graph
of the type shown in Fig. 1-4-1 then assumes the character illustrated in
Fig. 1-6-1, where the bars are very densely spaced and their envelope forms
a smooth curve.

Under these circumstances it is possible to regard r as a continuous variable
on a macroscopic scale and to ask for the probability that the particle is found
after N steps in the range between z and » + dr.* Since m assumes only inte-
gral values separated by Am = 2, the range dr contains dx/2l possible values
of m, all of which oceur with nearly the same probability P(m). FHence the
probability of finding the particle anywhere in the range between & and & + dz
is simply obtained by summing P(m) over all values of m lying in du, i.e., by
multiplying P(m) by dx/2l. This probability is thus proportional to dz (as
one would expeet) and can be written as

O(a) dz = P(m)g—f (1-6-3)

where the quantity ®(z), which is independent of the magnitude of dz, is
called a “probability density.” Note that it must be multiplied by a differ-
ential element of length dx to yield a probability.

By using (1-6-1) one then obtains

> ®(z) dz = \/%_ e—te—e2et iy (1-6-4)
W o
where we have used the abbreviations
w=(p—qNl (1-6-5)
and o =2+/Npql (1-6-6)

* Here dz is understood to be s differential in the macroscopie sense, i.e., dz &« L, where
L is the smallest dimension of relevance in the macroscopic discussion, but dz 3 [ (In
other words, d is macroscopically small, but microscopically large.)
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The expression (1-6-4) is the standard form of the Gaussian probability
distribution. The great generality of the argument leading to (1-5-19)
suggests that such Gaussian distributions occur very frequently in probability
theory whenever one deals with large numbers.

Using (1-6-4), one can quite generally compute the mean values # and
@ — ©° In calculating these mean values, sums over all possible intervals
dz become, of course, integrations. (The limits of x can be taken as — = <
x < =, since @(z) itself becomes negligibly small whenever |z is so large as to
lead to a displacement inaccessible in N steps.)

First we verify that ®(z) is properly normalized, i.e., that the probability
of the particle being somewhere is unity. Thus

l =
— (st o
Vo f—"‘
1 =
= — g"'ll"-'f" dy
‘\/21 o f— =
1 ———
= 2/725?
V2o
=]

f:., ®(z) dz =

(1-6-7)

Here we have put y = 2 — p and evaluated the integral by (A 4-2).
Next we calculate the mean value

= f_: 2®(x) dx
o o Y8
Viora

- '\/;_;ar [f_: y eV dy + f_: g2t dy]

Since the integrand in the first integral is an odd function of y, the first integral

f 2 g e @mMe g
—

4 |
Flx) |

e e S SRl D e i

Fig. 1'6:2 The Gaussian distribution. Here #(r) dr is the area under the
curve in the interval between ¢ and ¢ < dr and is thus the probability that
the variable & lies in this range.
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vanishes by symmetry. The second integral is the same as that in (1-6.7),
so that one gets

[=3 E=y (1-6-8)

This is a simple consequence of the fact that ®(z) is only a function of |z — uf
and is thus symmetrie about the position x = u of its maximum. Hence this
point corresponds also to the mean value of z.

The dispersion becomes

G—wr=[" - woewd
\/_12_; - f:.. y* e V1% dy
vi 7 o]

where we have used the integral formulas (A-4:6). Thus

@) =T — )t = o (1-6-9)

Hence o is simply the root-mean-square deviation of z from the mean of the
Gaussian distribution.

By (1:6-5) and (1-6-6), one then obtains for the random walk problem
the relations

£ = (p— qNI ; (1-6-10)
(Az)* = 4Npql® | : (1-6-11)
I
These results (derived here for t-hé case of large N) agree, as they must, with
the mean values # = 7l and (Ax)® = (Am)%*® already calculated in (1-4-6)
and (1-4-12) for the general case of arbitrary N,

GENERAL DISCUSSION OF THE RANDOM WALK

Our discussion of the random walk problem has yielded a great number of
important results and introduced many fundamental concepts in probability
theory. The approach we have used, based on combinatorial analysis to cal-
culate the probability distribution, has, however, severe limitations. In par-
tieular, it is diffieult to generalize this approach to other cases, for example, to
situations where the length of each step is not the same or where the random
walk takes place in more than one dimension. We now turn, therefore, to a
diseussion of more powerful methods which can readily be generalized and yet
possess a basic simplicity and directness of their own,
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1 -7 Probability distributions invelving several variables

The statistical deseription of a situation involving more than one variable
requires only straightforward generalizations of the probability arguments
" applicable to a single variable, Let us then, for simplicity, consider the case of
only two variables u and » which can assume the possible values

1

w; wherei=12 ..., M
and v; wherej=1,2, ... ,N

Let P(usp;) be the probability that « assumes the value u; and that v assumes
the value ;.

The probability that the variables u and ¢ assume any of their possible
sets of values must be unity; i.e., one has the normalization requirement

Dy

35 Pluspy) = 1 1-7-1)
i=1

i=1

where the summation extends over all possible values of u and all possible
values of v.

The probability P,(u;) that u assumes the value w;, irrespective of the
value assumed by the variable v, is the sum of the probabilities of all possible
situations consistent with the given value of u;; ie.,

P.(u;) = i Pus,v;) (1-7-2)
=1

5

where the summation is over all possible values of v;. Similarly, the proba-
bility P.(v;) that v assumes the value v;, irrespective of the value assumed by
u, is

M
Po(v;) = z P(ui,p;) (1-7-3)

i=]1

An important special case occurs when the probability that one variable
assumes a certain value does not depend on the value assumed by the other
variable, The variables are then said to be “statistically independent’” or
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“uncorrelated.” The probability P(u,v;) can then be expressed very simply

in terms of the probability P,(u.) that u assumes the value %, and the proba-

bility P,(y;} that v assumes the value »;, Indeed, in this case [the number of

instances in the ensemble where u = u; and where simultaneously v = ,] is

simply obtained by multiplying [the number of instances where u = u.] by
| [the number of instances where v = p;]; hence

( Pusv;) = Pu(u)Pu(vy) (1-7-5)
i #f u and v are statistically independent.
i Let us now mention some properties of mean values. If F(u,) is any
I| function of u and p, then its mean value is defined by
| M N
Flup) = 3 5 P(us)F (uivy) (1-7-6)
=151
Note that if f(u) is a function of » only, it also follows by (1:7-2) that
J@) = 3 ¥ Plup)f(u) = 3 Pu(u)f () 1-7-7)
i L ]
; If F and G are any funetions of » and v, then one has the general result
| FFG =YY Pl (usn) + Gluspy)
L

= 3 3 Plusu)F(usn) + 3, 3, Plus)Gluip))
or U O
> FFG=F+0 (1-7.8)

i.e., the average of a sum equals simply the sum of the averages.

Given any two functions f(u) and g(v), one can also make a general state-
ment about the mean value of their product if u and v are statistically inde-
pendent variables. Indeed, one then finds

Jg®) = 3, ¥ P(wiv)f (ws)g(vy)
o3 E E Pu(u) P (v;)f (i) g (v;) by (1-7-5)

= [3 Puudf(u)] [ Pulo)a() ]

Thus
| > Fajg(®) = Fu) g(0) (1-7.9)
Le., the average of a product equals the product of the averages if u and v are
I statistically independent. 1f u and » are statistically not independent, the state-

] ment (1-7-9) is in general not true.
l The generalization of the definitions and results of this section to the case
of more than two variables is immediate.

o tew e vis e, = ¢
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1- 8 Comments on continuous probability distributions

Consider first the case of a single variable u which can assume any value in
the continuous range a; < u < a.. To give a probability deseription of such
a situation, one ean focus attention on any infinitesimal range of the variable
between u and u + du and ask for the probability that the variable assumes a
value in this range. One expects that this probability is proportional to the
magnitude of du if this interval is sufficiently small; i.e., one expects that this
probability can be written in the form ®(u) du, where ®(u) is independent of
the size of du.* The quantity ®(u) is called a “probability density.” Note
that it must be multiplied by du to yield an actual probability.

It is readily possible to reduce the problem dealing with a continuous vari-
able to an equivalent discrete problem where the number of possible values of
the variable becomes countable. It is only necessary to subdivide the accessi-
ble range a; < u < a, of the variable into (arbitrarily small) equal intervals of
fixed size du. Each such interval can then be labeled by some index Z. The
value of u in this interval can be denoted simply by u; and the probability of
finding the variable in this range by P(x;). One can then deal with a denumer-
able set of values of the variable u (each of them corresponding to one of the
chosen fixed infinitesimal intervals). It also becomes clear that- relations
involving probabilities of discrete variables are equally valid for probabilities
of continuous variables. For example, the simple praperties (1-3-5) and
(1-3-6) of mean values are also applicable if u is a continuous variable.

i iy p

Fig. 1:8-1 Subdivision of the range a; < u < a: of a continuous variable u
into a countable number of infinitesimal intervals du of fixed size.

To make the connection between the continuous and discrete points of view
quite explicit, note that in terms of the original infinitesimal subdivision
interval u,

P(u) = ®(u) du

Similarly, if one considers any interval between u and u + du which is such
that du is macroscopically small although du >> §u, then this interval con-
tains du/du possible values of u; for which the probability P(u;) has essen-
tially the same value—call it simply P(u). Then the probability P(u) du of

* Indeed, the probability must be expressible as a Taylor's series in powers of du and
must vanish as du— 0. Hence the leading term must be of the form @ du, while terms
involving higher powers of du are negligible if du is sufficiently small.
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thavnmhi’emmmgawluebetwaenumdu+dushauldbegweu by
multiplying the probability P(u.:) for assuming any discrete value in this
range by the number du/du of discrete values in this range; i.e., one has
properly

#(u) du = P(m)d“ P g, (1-8.1)

Note that the sums involved in caleulating normalization conditions or
mean values ean be written as integrals if the variable is continuous. For
example, the normalization condition asserts that the sum of the probabilities
over all possible values of the variable must equal unity; in symbols

Y Pu) = 1 (1-8-2)

But if the variable is continuous, one can first sum over all values of the vari-
able in a range between u and w + du, thus obtaining the probability ®(u) du
that the variable lies in this range, and then complete the sum (1-8-2) by
summing (i.e., integrating) over all such possible ranges du. Thus (1.8-2)
is equivalent to

[ o) du =1 (1-8-3)

which expresses the normalization eondition in terms of the probability density
®(w). Similarly, one can calculate mean values in terms of ®(u). The general
definition of the mean value of a function f was given in terms of discrete vari-
ables by (1-3-4) as

Jlu) = EP(us')f(ui) (1-8-4)

In a continuous description one can again sum first over all values between
u and u + du (this contributes to the sum an amount ®(u) du f(»)) and then
integrate over all possible ranges du. Thus (1-8-4) is equivalent to the
relation

) = [ o) du (1:8:5)

Remark Note that in some eases it is possible that the probability density
®(u) itself becomes infinite for certain values of w. This does not lead to any
difficulties as Tong as the integral f ®(w) du, which measures the proba-
bility that % assumes any value in some arbitrary range between c; and cs,
always remains finite.

The extension of these comments to probabilities involving several varia-
bles is immediate. Consider, for example, the case of two variables u and v
which can assume all values in the continuous respective ranges a1 < u < @2




COMMENTS ON CONTINUOUS PROBABILITY DISTRIBUTIONS 29
»

(4 k—du L=

Bu

-

=l

v

-~ -

u

Fig. 1-8-2 Subdivision of the continuous variables u and v into small inter-
vals of magnitude Su and .

and by < » < by, One can then talk of the probability ®(u,») du dv that the
variables lie in the ranges between u and w + dw and between v and v + d,
respectively, where ®(u,v) is a probability density independent of the size of
du and dv. It is again possible to reduce the problem to an equivalent one
involving discrete countable values of the variables. It is only necessary to
subdivide the possible values of u into fixed infinitesimal intervals of size su
and labeled by 17, and those of v into fixed infinitesimal intervals of size év and
labeled by 7. Then one can speak of the probability P(uv;) that u; = » and
that simultaneously v = v;. Analogously to (1-8:1) one then has the
relation
®(u,v) du dv = P(up) %-E—%E

where the factor multiplying P(u,v) is simply the number of infinitesimal cells
of magnitude du & contained in the range lying between % and u + du and
between ¢ and v + dv.

The normalization condition (1-7-2) can then be written in terms of
the probability density ®(u,v) as

fﬂ ,:'du dv ®(up) = 1 (1-8-6)

Analogously te (1:7-7) one can also write

Flay) = [ » :’du dv ®(u,0)F (u,v) (1-8-7)




du dug

Fig. 1-8:3 [Illustration showing a function ¢(u) which is such that u(yp) is a
double-valued function of ¢. Here the range dy corresponds to u being either
in the range du, or in the range du,.

Sinee the problem can be formulated in diserete as well as continuous terms,
the general properties (1-7-8) and (1-7-9) of mean values remain, of course,
valid in the continuous case.

Functions of random variables Consider the case of a single variable u
and suppose that ¢(u) is some continuous function of u. The following ques-
tion arises quite frequently. If ®(u) du is the probability that u lies in the
range between u and u + du, what is the corresponding probability W(e) de
that ¢ lies in the range between ¢ and ¢ + de? Clearly, the latter probability
is obtained by adding up the probabilities for all those values u which are such
that ¢ lies in the range between ¢ and ¢ + de; in symbols

W(e) dp = fd ®(u) du (1-8-8)

Here u can be considered a function of ¢ and the integral extends over all those
values of u lying in the range between u(¢) and u(¢ + dg). Thus (1-8-8)
becomes simply

W(p) de =

etde

@

0w | % d.¢=ecu)[je:1«1v (1-8-9)

The last step assumes that u is a single-valued function of ¢ and follows, since
the integral is extended only over an infinitesimal range de. Since u = u(p),
the right side of (1-8-9) can, of course, be expressed completely in terms of ¢.
If u(e) is not a single-valued function of ¢, then the integral (1-8-8) may con-
sist of several contributions similar to those of (1-8-9) (see Fig. 1-8-3).
Similar arguments can be used to find the probabilities for functions of
several variables when the probabilities of the variables themselves are known.
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Example Suppose that a two-dimensional vector B of constant length

B = |B| is equally likely to point in any direction specified by the angle @
(see Fig. 1-8-4). The probability @ (#) dg that this angle lies in the range
between # and # + d# is then given by the ratio of the angular range dé to -
the total angular range 2 subtended by a full circle; ie.,

dg

@(0) do = 5, (1-8-10)

Tf the vector makes an angle § with the x axis, its  component is given by
B. = Bceoséd (1-8-11)

What is the probability W(B.) dB. that the r component of this vector lies
between B. and B. ~ dB.? Clearly, B. is always such that —B < B, < B,
In this interval an infinitesimal range between B. and B. -+ dB. corresponds
to fwo possible infinitesimal ranges of 44 (see Fig. 1-8-4), each of magnitude
df connected to dB. through the relation (1-8-11) so that dB, = |Bsin 4| d6.
By virtue of (1-8-10) the probability W(B.) dB, is then given by

1 dB. ] =1 48
2z [Bsind||  #B|sin g
But, by (1.8.11), -

W(B,) dB. = 2|

isin 8 = (1 — cos? 0)F = ]:1 it (%)’}é

Hence
dB.
S0 s Sy R RBanP
W(B) dB. = {WJB*—BJ- o : (1-8:12)
0 otherwise

The probability density is maximum (indeed infinite) as ' B,| —+ B and is

A 1h
3 B
3l ==
f
0 >

Fig. 1-8:-4 Dependence of the x component B, = B cos 0 of a two-dimen-
sional wvector B on its polar angle §.
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1 minimum when B, = 0. This result is apparent from the geometry of Fig.
(1-8-4), since a given narrow range of dB. corresponds to a relatively large
range of the angle 6 when B, = B and to a very much narrower range of the
angle 8 when B, = 0.

\

1:9 cCeneral calculation of mean values for the random walk

The comments of See, 17 allow one to calculate mean values for very general
situations by very simple and transparent methods. Consider a quite general
form of the one-dimensional random walk problem. Let s denote the dis-
placement (positive or negative) in the ¢th step

Let w(s;) ds; be the probability that the #th displacement lies in the
range between s; and s; + ds;.

We assume again that this probability is independent of what displacements
oceur in any other steps. For simplicity we further assume that the prob-
ability distribution w is the same for each step i. Nevertheless, it is clear that
the situation envisaged here is considerably more general than before, for we
no longer necessarily assume a fixed magnitude [ of displacement at each step,
but a distribution of possible step lengths with relative probability specified
by w.

We are interested in the total displacement x after N steps. We can ask
for ®(z) dx, the probability that z lies in the range between z and @ + dz. We
can also ask for mean values (or moments) of z. In this section we show that

the caleulation of these moments can be achieved very simply without prior
knowledge of ®(x).

Fig. 1:9'1 Some examples of probability distributions giving, for any one
step, the probability w(s) ds that the displacement is between s and s + ds.
(a) A rather general case, displacements to the right being more probable than
those to the left. (b) The special case discussed in Sec.1:-2. Here the peaks,
centered about +! and —I, respectively, are very narrow; the area under the
right peak is p, that under the left one is q. (The curves (a) and (b) are not
drawn to the same scale; the totdl area under each should be unity.)




—
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The total displacement x is equal to

N
z=snitsat - tw= 3 s (1-9:1)

i ]
Taking mean values of both sides,

N N
&= v = 1-9.-2
I'Z‘la fZ! ¥ ( )

where we have used the property (1-7-8). But sinee w(s;) is the same for
each step, independent of 4, each mean value § is the same. Thus (1:9.2)
is gimply the sum of N equal terms and becomes

fise &= N§ (1-9-3)
where =35 = [dsw(s)s (1-9-4)

is merely the mean displacement per step.
Next we calculate the dispersion

@) = (& — 2)° (1-9-5)
By (1:9-1) and (1 -9 - 2) one has
r—F= Z(s;—ﬁ)
N

or Ar = As; (1:9:6)
where Ag = 8 — § (1-9-7)

By squaring (1-9-6) one obtains
N N
(Az)? = (2 As;) (E AS;) = Z {As)?* - E 2 (ﬁ&.’)(ﬁ&,‘) (1-9.8)
im1 i=1 ] T
int

Here the first term on the right represents all the square terms, and the second
term all the cross terms, originating from the multiplication of the sum by
itself, Taking the mean value of (1:9.8) yields, by virtue of (1-78),

Az)? = Ziﬂs;ii-!-EEAs;As, (1:9.9)
¢ AL
it

In the cross terms we make use of the fact that different steps are statistically
independent and apply the relation (1-7-9) to write for ¢ # j

(As:)(As) = (As) (Agy) =0 (1:9:10)
sinee As; =8/ —§=10

In short, each cross term vanishes on the average, being as often posifive as
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negative. Thus (1-9-9) reduces simply to a sum of square terms
N
@) = ) (@s)? (1:9-11)

i1
Of course, none of these square terms can be negative. Since the probability
distribution w(s,) is the same for each step, independent of 7, it again follows
that (As)? must be the same for each step. Thus the sum in (1-9-11) con-
sists merely of N equal terms and becomes simply

> (82)* = N{Bs) (1-9-12)
where (As)® = (As:)* = [ ds w(s)(As)? (1-9-13)

is just the dispersion of the displacement per step.

Despite their great simplicity, the relations (1-9-3) and (1-9-12) are
very general and important results, The dispersion (Az)® = (z — 7)° is a
measure of the square of the width of the distribution of the net displacement
about its mean z. The square root A*z = [(Az)%]}, i.e., the “root-mean-square
(rms) deviation from the mean,” thus provides a direet measure of the width of
the distribution of the displacement about the mean #. The results (1-9-3)
and (1-9-12) thus make possible the following interesting statements about
the sum (1:9-1) of statistically independent variables, If 3 0 and the
number N of these variables (e.g., of displacements) increases, the mean value
Z of their sum tends to increase proportionaly to N. The width A*z of the dis-
tribution about the mean also increases, but only proportionately to N*.
Hence the relative magnitude of the width Az* compared to the mean z itself
decreases like N—¥; explicitly, one has by (1-9-3) and (1-9-12),if § # 0,

A%z A% 1
2 3N
where A*s = [(A5)%]t. This means that the percentage deviation of the dis-
tribution of values of z about their mean # becomes increasingly negligible as
the number N becomes large. This is a characteristie feature of statistical
distributions involving large numbers.




CALCULATION OF THE PROBABILITY DISTRIBUTION

*1:10 Galculation of the probability distribution

For the problem discussed in the last section, the total displacement z in N

steps is given by .

z= Y & (1-10-1)

i=1

We now want to find the probability ®(z) dz of finding z in the range between
z and z + dz. Since the steps are statistically independent, the probability of
a particular sequence of steps where

the 1st displacement lies in the range between s; and s; + dsy
the 2nd displacement lies in the rsnge between sy and s; + ds. *

the Nth displacement lies in the range between sy and sy + dsy
is simply given by the produet of the respective probabilities, i.e., by
w(81) dsy - w(sy) dss © + - w(sy) dsy

If we sum this probability over all the possible individual displacements which
are consistent with the condition that the total displacement z in (1-10:1)
always lies in the range between z and = + dz, then we obtain the total prob-
ability ®(z) dz, irrespective of the sequence of steps producing this total dis-
placement. In symbols we can write

®(z) dz = f [ [ wilsu(sy) - - - wisy) dsydss -« - dsw (1:10-2)
@
where the integration is over all possible values of the variables s, subject to

the restriction that
N

B E s <z de (1-10-3)
i=] |

In principle, evaluation of the integral (1-10-2) solves completely the prob-
lem of finding @(z).
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In practice, the infegral (1-10-2) is difficult to evaluate because the
condition (1:10:3) makes the limits of integration very awkward; ie., one
faces the complicated geometrical problem of determining over what subspace,
consistent with (1:10-3), one has to integrate. A powerful way of handling
this kind of problem is to eliminate the geometrical problem by integrating
over all values of the variables s; without restriction, while shifting the compli-
cation introduced by the condition of eonstraint (1-10-3) to the wlegrand.
This can readily be done by multiplying the integrand in (1:10-2) by a
factor which is equal to unity when the s; are such that (1-10-3) is satisfied,
but which equals zero otherwise. The Dirae § function §(z — ), discussed in
Appendix A - 7, has precisely the selective property that it vanishes whenever
[ = x| > & |dz|, while it becomes infinite like (dx)~!in the infinitesimal range
where [z — x| < ¥ |dz|; i.e., 8(x — ) dz = 1 in this latter range. Hence
(1-10-2) can equally well be written

N

®(zx) dz = ‘U“ f w(s)w(sz) - - - wlsy) [6 (::: — z s;) d:c] dsyds, - - - dsy
N % (1-10-4)

where there is now no further restriction on the domain of integration. At this
point we can use the convenient analytical representation of the § function in
terms of the integral (A-7-14); i.e., we can write

— ) = __1 2 ik [Zn—z] 5 &
oz — s;) 5 f L dl e (1-10-5)
Substituting this result in (1-10-4) yields:

0@ = [[- [ wlsdwls) - - - wlsw) o [ dkeiert et dsy ds, - - dsw
or ®(z) = %_ f :” dk e—*= f :’ ds; w(s;) e*s - - - [ _': dsy w(sxy) e**w
(1-10-6)

where we have interchanged the order of integration and used the multipli-
cative property of the exponential function. Except for the irrelevant symbol
used as variable of integration, each of the last N integrals is identical and
equal to

i Q) = [~ ds emus) (1-10-7)
Hence (1:10:6) becomes

> 0@) = o [~ dk e *QV(R) (1-10-8)

Thus the evaluation of two simple (Fourier) integrals solves the problem
completely,
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Example Let us again apply the present results to the case of equal step
lengths { discussed in Sec. 1+2. There the probability of a displacement -/
is equal to p, that of a displacement —1is equal to g = 1 — p; i.e., the corre-
sponding probability densily w is given by

wis) = pbls — 1) + qd(s + 1)
The guantity (1.10.7) becomes
Qk) = @ = peii g et
Using the binomial expansion, one then obtains
QV(k) = (::'3Ir Rl e
= Z, Hﬁ%ﬂ (p eyn(g eHH)v—n

ne=

N
= E W)\r}v_l.—n]l prgie pikEr2a—y)
n=1{
Ttl'l.'l’,s (l a 10'8) yie]ds

0@ =55 [ dkerQvh)
.

= nze ;ﬁ%;'-—-—m pnqx-m { 2% f _: ak e‘-‘b{{h-—su-ﬂ}

N
or 0(z) = z ,M—Ni“-)—ip"q”"ﬂx —@n— N (1-10-9)
nw=0

This says that the probability density ®(z) vanishes unless

z=(2n — N)I, wheren =0,1,2, . . . , N
The probability P(2n — N) of finding the partiele at such a position is then
given by

S fﬂl—NJl-—t
where e is some sufficiently small quantity; i.e., P is given by the coefficient
of the corresponding & function in (1-10:9). Thus we regain the result of
See. 1-2 as a special case of the present more general formulation and without
the need to use any combinsatorial reasoning.

(2n—N)l+e ol
o) de = i i P

f‘l -11 Probability distribution for large N

We consider the integrals (1-10:7) and (1:10-8) which solve the problem of
finding ®(x) and ask what approximations become appropriate when N is large.
The argument used here will be similar to the method detailed in Appendix

A -6 to derive Stirling’s formula.
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The integrand in (1-10.7) contains the factor ¢*, which is an oscillatory
funetion of s and oscillates the more rapidly with inereasing magnitude of k.
Hence the quantity Q(k) given by the integral in (1-10-7) tends in general to
be increasingly small as k becomes large. (Seeremark below.) If Q is raised to
a large power N, it thus follows that Q¥ (k) tends to decrease very rapidly with
increasing k. To compute ®@(z) by Eq. (1-10-8), a knowledge of Q¥(k) for
small values of k is then sufficient for calculating the integral, since for large
values of k the contribution of @¥(k) to this integral is negligibly small. But
for small values of k, it should be possible to approximate Q¥ (k) by a suitable
expansion in powers of k. Since Q¥ (k) is a rapidly varying function of &, it is
preferable (as in Sec. 1:5) to seek the more readily econvergent power series
expansion of its slowly varying logarithm In Q¥ (k).

ua

Remark To the extent that w(s) varies slowly over a period of oscillation,
themiae;ralQ{l:) = [dse*w(s) = 0. The reason is that in any range a <
& < bin which w varies slowly so that [dw/ds|(b — a} << w, but which contains
mywmﬂahmmthat{b—a}b»l the integral

[, ds ente) = wa) [P ase =0
Combining these two inequalities one can say that
[ ds et ~ 0

to the extent that & is large enough so that everywhere
‘ dwll

The actual caleulation is straightforward. We want first to compute
Q(k) for small values of k. Expanding e¢** in Taylor’s series, Eq. (1-10-7)
becomes

QW) = [ dsw(s) et = [ dsw(s)(1 + iks — Fh3s* + - - )
or Q) = 1 + sk — §s%k* - « - (1-11:1)
where & = [ dsw(s)s" (1:11-2)
is a constant which represents the usual definition of the nth moment of s.

Here we assume that |w(s)| — 0 rapidly enough as |s| — = so that these
moments are finite. Hence (1:11:1) yields

In Q¥(k) = Nln Q(k) = N In [1 + 48k — Fs%hk* « - ] (1:11-3)
Using the Taylor’s series expansion valid for y<<1,
In(1+9) =y —
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Eq. (111 - 3) becomes, up to terms quadratic in k,
In Q¥ = N[isk — $s%k* — $(8k)2 + - ]
= N[isk — (% — 8)k? - - ]
= N[isk — $(As)%k? « - ]

where (As)? = 5? — & (1-11-4)
Hence we obtain
QNUC) = e"NEk—}NmT’-B (1 il 5)
Thus (1 - 10 + 8) becomes
o) = 21_1? f_”“ dk ei(NF—2)k—} NCBRTIkE (1-11-6)

The integral here is of the following form, where a is real and positive:

f  duemonttts = f " du gelv-Glal

= f T dy gote-bia) e by completing the square

= g'lte f _: dy e by puttingy = u — 2—1
=ieise \E by (A-4-2)
Thus f ® du e—ouitby — \/I gblis (1-11-7)
ke a

Applying this integral formula to (1-11-8) we get, with b = (N8 — ) and
a = +N(As)?, the result

1wy 11
®(z) = ‘\/_2;;33 =32 (1-11-8)
where u = N&
i 1-11.9
gt = N(&si”} ( )

Thus the distribution has the Gaussian form previously encountered in Sec.
1-6. Note, however, the extreme generality of this result. No matier what
the probability distribution w(s) for each step may be, as long as the steps are
statistically independent and w(s) falls off rapidly enough as |s| — =, the total
displacement z will be distributed according to the Gaussian law if N s su ffi-
ciently large. This very important result is the content of the so-called
“central limit theorem,” probably the most famous theorem in mathematical
probability theory.* The generality of the result also accounts for the fact
that so many phenomena in nature (e.g., errors in measurement) obey
approximately a Gaussian distribution.

* A proof of the theorem with attention to fine points of mathematical rigor can be
found in A, I. Khinchin, “Mathematical Foundations of Statistical Mechanies,” p. 166,
Dover Publications, New York, 1949,
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We already showed that for the Gaussian distribution (1-6-4)

2=p }
{ and (Az)? = o

Hence (1-11-9) implies

&= Ns
and (Az)® = N(As)? (i)

which agree with the results obtained from our general moment calculations
(1-9-3) and (1-9-12).
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PROBLEMS

1.1 What is the probability of throwing a total of 6 points or less with three dice?
_ 1.2 Consider a game in which six true dice are rolled. Find the probability of
obtaining
(a) exactly one ace
(6) at leasf one ace
(¢) exactly two aces
1.3 A number is chosen at random between 0 and 1. What is the probability that
exactly 5 of its first 10 decimal places consist of digits less than 5?
1.4 A drunk starts out from a lamppost in the middle of a street, taking steps of
equal length either to the right or to the left with equal probability. What is
the probability that the man will again be at the lamppost after taking NV steps
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.

1.5

(a) if N is even?

(b) if N is odd?
In the game of Russian roulette (nof recommended by the author), one inserts
a single cartridge into the drum of a revolver, leaving the other five chambers
of the drum empty. One then spins the drum, aims at one’s head, and pulls the
trigger.

(a) What is the probability of being still alive after playing the game N
times?

(b) What is the probability of surviving (N — 1) turns in this game and then
being shot the N'th time one pulls the trigger?

{¢) What is the mean number of times a player gets the opportunity of
pulling the trigger in this macabre game?
Consider the random walk problem with p = ¢ and let m = n, — n, denote the
net dlspla.cement to the right. After a total of N steps, calculate the following
mean values: m, m?, m?, and m*
Derive the bmorms.l distribution in the following algebraic way, which does not
involve any explicit combinatorial analysis. One is again interested in finding
the probability W(n) of n successes out of a total of N independent trials. Let
w, = p denote the probability of a success, wy = 1 — p = ¢ the corresponding
probability of a failure. Then W(n) can be obtained by writing

2

2
% 3 e Y ewm e (1)
=1 k=1

Wi(n) =

IIMn

Here each term contains N factors and is the probability of a particular combina-
tion of successes and failures. The sum over all combinations is then to be
taken only over those terms involving w; exactly n times, i.e., only over those
terms involving wy"
By rearranging the sum (1), show that the unrestricted sum can be written
in the form
W(n) = (w + wa)¥

Expanding this by the binomial theorem, show that the sum of all terms in (1)
involving w,", i.e., the desired probability W(n), is then simply given by the
one binomial expansion term which involves w",

Two drunks start out together at the origin, each having equal probability of
making a step to the left or right along the ¢ axis. Find the probability that
they meet again after N steps. It is to be understood that the men make their
steps simultaneously. (It may be helpful to consider their relative motion.)
The probability W(n) that an event characterized by a probability p oceurs n
times in N trials was shown to be given by the binomial distribution

N!

W(n) = AN — )t {1 -

B (1)
Consider a situation where the probability p is small (p < 1) and where one is
interested in the case n < N. (Note that if N is large, W(n) becomes very
small if n — N because of the smallness of the factor pm when p <<1. Hence
W(n) is indeed only appreciable when n << N.) Several approximations can
then be made to reduce (1) to simpler form.
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PROBLEMS

(a) Using the result In (1 — p) = —p, show that (1 — p)¥= = ¢ ¥»,
(b) Show that N!/(N — n)! = N=.
(¢) Hence show that (1) reduces to

Win) = -Ee"' (2)

where A = Np is the mean number of events. The distribution (2) is called the
‘“Poisson distribution.”
Consider the Poisson distribution of the preceding problem.

N

(a) Show that it is properly normalized in the sense that E Wa=1.

n=0
(The sum ecan be extended to infinity to an excellent approximation, since W,
is negligibly small when n 2> N.)

(b) Use the Poisson distribution to calculate n.

(c) Use the Poisson distribution to calculate (An)? = (n — )"

Assume that typographical errors committed by a typesetter occur completely
at random. Suppose that a book of 600 pages contains 600 such errors. Use
the Poisson distribution to calculate the probability

(a) that a page contsins no errors

(b) that a page contains at least three errors
Consider the o particles emitted by a radioactive source during some time inter-
val {. One can imagine this time interval to be subdivided into many small
intervals of length Af. Since the o particles are emitted at random times, the
probability of a radioactive disintegration occurring during any such time Af is
completely independent of whatever disintegrations occur at other times.
Furthermore, At can be imagined to be chosen small enough so that the proba-
bility of more than one disintegration oceurring in & time At is negligibly small.
This means that there is some probability p of one disintegration occurring
during a time At (with p <1, since Af was chosen small enough) and proba-
bility 1 — p of no disintegration occurring during this time. Each such time
interval At can then be regarded as an independent trial, there being a total of
N = t/At such trials during a time 2.

{a) Show that the probability 1W(n) of n disintegrations occurring in a time
t is given by a Poisson distribution.

() Suppose that the strength of the radioactive source is such that the

mean number of disintegrations per minute is 24. What is the probability of
obtaining n counts in a time interval of 10 seconds? Obtain numerical values
for all integral values of n from 0 to 8.
A metal is evaporated in vacuum from a hot filament, The resultant metal
atoms are incident upon a quartz plate some distance away and form there a
thin metallic ilm. This quartz plate is maintained at a low temperature so that
any metal atom incident upon it sticks at its place of impaet without further
migration. The metal atoms can be assumed equally likely to impinge upon
any element of area of the plate.

If one considers an element of substrate area of size b* (where b is the metal
atom diameter), show that the number of metal atoms piled up on this area
should be distributed approximately according to & Poisson distribution. Sup-
pose that one evaporates enough metal to form a film of mean thickness corre-
sponding to 6 atomic layers. What fraction of the substrate area is then not



PROBLEMS 48

\] 1.16

1.17

1.18

1.20

covered by metal at all? What fraction is covered, respectively, by metal
layers 3 atoms thick and 6 atoms thick?
A penny is tossed 400 times. Find the probability of getting 215 heads. (Sug-
gestion: use the Gaussian approximation.)
A set of telephone lines is to be installed so as to connect fown 4 to town B.
The town A has 2000 telephones. If each of the telephone users of 4 were to
be guaranteed instant access to make calls to B, 2000 telephone lines would be
needed. This would be rather extravagant. Suppose that during the busiest
hour of the day each subseriber in 4 requires, on the average, a telephone con-
nection to B for two minutes, and that these telephone calls are made at random.
Find the minimum number M of telephone lines to B which must be installed
so that at most only 1 percent of the callers of town A will fail to have immediate
access to a telephone line to B. (Suggestion: approximate the distribution by
a Gaussian distribution to facilitate the arithmetic.) i
Consider & gas of N, noninteracting molecules enclosed in a container of volume
Vi Focus attention on any subvolume V -of this container and denote by N
the number of molecules located within this subvolume. Each molecule is
equally likely to be located anywhere within the container; hence the proba-
bility that a given molecule is located within the subvolume V is simply equal
to V/Vo.

(a) What is the mean number N of molecules located within ¥'? Express
your answer in terms Ny, V,, and V.

(b) Find the relative dispersion (N — N)*/N? in the number of molecules
located within V. Express your answer in terms of N, V, and V.

(¢) What does the answer to part (b) become when ¥V < V,?

(d) What value should the dispersion (N — N)* assume when V — ¥,?

‘Does the answer to part (b) sgree with this expectation?

Suppose that in the preceding problem the volume V under consideration is
such that 0 € V/V,<< 1. What is the probability that the number of mole-
cules in this volume is between N and ¥ + dN'?
A molecule in a gas moves equal distances I between collisions with equal proba-
bility in any direction. After & total of N such displacements, what is the mean
square displacement RZ of the molecule from its starting point?
A battery of total emf V is connected to a resistor K; as a result an amount of
power P = V*/R is dissipated in this resistor. The battery itself consists of N
individual cells connected in series so that V is just equal to the sum of the emf’s
of all these cells. The battery is old, however, so that not all cells are in perfect
condition. Thus there is only & probability p that the emf of any individual
cell has its normal value v; and a probability 1 — p that the emf of any individual
cell is zero because the cell has become internally shorted. The individual cells
are statistically independent of each other. Under these conditions, caleulate
the mean power P dissipated in the resistor, expressing the result in terms of
N, v, and p.
Consider N similar antennas emitting linearly polarized electromagnetic radia-
tion of wavelength A and velocity ¢. The antennas are located along the z axis
at a separation A from each other. An observer is located on the r axis at a
great distance from the antennas. When a single antenna radiates, the observer
measures an intensity (i.e., mean-square electrie-field amplitude) equal to 1.

(a) If all the antennas are driven in phase by the same generator of fre-
queney » = ¢/A, what is the total intensity measured by the observer?
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(b) If the antennas all radiate at the same frequency » = ¢/\ but with
' completely random phases, what is the mean intensity measured by the observer?
(Hint: Represent the amplitudes by vectors, and deduce the observed intensity
from the resultant amplitude.)

1.21 Radar signals have recently been reflected from the planet Venus. Suppose
that in such an experiment a pulse of electromagnetic radiation of duration =
is sent from the earth toward Venus. A time ¢ later (which corresponds to the
time necessary for light to go from the earth to Venus and back again) the
receiving antenna on the earth is turned on for a time r. The returning echo
ought then to register on the recording meter, placed at the output of the elec-
tronic equipment following the receiving antenna, as a very faint signal of defi-
nite amplitude a,. But a fluctuating random signal (due to the inevitable
fluctuations in the radiation field in outer space and due to current fluctuations
always existing in the sensitive receiving equipment itself) also registers as a
signal of amplitude a, on the recording meter, This meter thus registers a total
amplitude a = a, + a,.

Although d, = 0 on the average, since a, is as likely to be positive s nega-
tive, there is considerable probability that a. attains values considerably in
excess of a,; i.e., the root-mean-square amplitude (a,’)! can be considerably
greater than the signal a, of interest. Suppose that (a,9)! = 1000 a,. Then
the fluctuating signal a, constitutes a background of “‘noise’” which makes obser-
vation of the desired echo signal essentially impossible.

On the other hand, suppose that N such radar pulses are sent out in succes-
sion and that the total amplitudes a picked up at the recording equipment after
each pulse are all added together before being displayed on the recording meter.

3 The resulting amplitude must then have the form 4 = A, + 4, where 4,
] represents the resultant noise amplitude (with A, = 0) and 4 = A, represents
the resultant echo-signal amplitude. How many pulses must be sent out before
(A5} = 4, so that the echo signal becomes detectable?
1.22 Consider the random walk problem in one dimegsion, the probability of a dis-
\ placement between s and s + ds being

: w(s) ds = (2wo?)—¥ ¢ (—DY2aYs

i After N steps,

(@) What is the mean displacement # from the origin?
() What is the dispersion (z — #)??

1.23 Consider the random walk problem for a particle in one dimension. Assume
that in each step its displacement is alwaws positive and equally likely to be
anywhere in the range between [ — b a d | + b where b < l. After N steps,
what is

(a) the mean displacement £?
(b) the dispersion (z — 2)2!

1.24 (a) A particle is equally likely to lie anywhere on the circumference of a circle,
Consider as the z axis any straight line in the plane of the circle and passing
through its center. Denote by 8 the angle between this z axis and the straight
line connecting the center of the circle to the particle. What is the probability
that this angle lies between @ and 6 + d6?

(b) A particle is equally likely to lie anywhere on the surface of a sphere.

i Consider any line through the center of this sphere as the z axis. Denote by 8

: the angle between this z axis and the straight line connecting the center of the
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sphere to the particle. What is the probability that this angle lies between @
and 0 + d8?

Consider a polycrystalline sample of Ca80,-2H,0 in an external magnetic field
B.in the 2 direction. The internal magnetic field (in the z direction) produced
at the position of & given proton in the H:O molecule by the neighboring proton
is given by (u/a*) (3 cos® @ — 1) if the spin of this neighboring proton points
along the applied field; it is given by — (u/a%)(3 cos? § — 1) if this neighboring
spin points in a direction opposite to the applied field. Here u is the magnetic
moment of the proton and a is the distance between the two protons, while 8
denotes the angle between the line joining the protons and the z axis. In this
sample of randomly oriented crystals the neighboring proton is equally likely
to be located anywhere on the sphere of radius a surrounding the given proton.

(a) What is the probability W(b) db that the internal field b lies between b
and b + db if the neighboring proton spin is parallel to B?

(b) What is this probability W(b) db if the neighboring proton spin is
equally likely to be parallel or antiparallel to B? Draw a sketch of W(b) as a
function of b.

(In a nuclear magnetic resonance experiment the frequency at which energy
is absorbed from & radio-frequency magnetic field is proportional to the local
magnetic field existing at the position of a proton. The answer to part (b)
gives, therefore, the shape of the absorption line observed in the experiment.)
Consider the random walk problem in one dimension and suppose that the proba-
bility of a single displacement between s and s - ds is given by

b
o = e &
Caleulate the probability ®(z) dz that the total displacement after N steps lies
between = and x + dz. Does ®(z) become Gaussian when N becomes large?
If not, does this violate the central limit theorem of Sec. 1-11?
Consider a very general one-dimensionsal random walk, where the probability
that the ith displacement lies between s; and s + ds; is given by wy(s:) ds;.
Here the probability density w; characterizing each step may be different and
thus dependent on 7. It is still true, however, that different displacements are
statistically independent, i.e., w; for any one step does not depend on the dis-
placements performed by the particle in any other step. Use arguments similar
to those of Sec. 111 to show that when the number N of displacements becomes
large, the probability ®(z) dz that the total displacement lies between z and
z + dz will still tend to approach the Gaussian form with a mean value £ = Z§;
and a dispersion (Az)* = Z(As,)®. This result constitutes a very general form of
the central limit theorem.
Consider the random walk of a particle in three dimensions and let w(s) d’
denote the probability that its displacement s lies in the range between s and
s + ds (i.e., that s, lies between s, and s, + ds., s, between s, and s, + dsy,
and s, between s, and s, + ds.). Let ®(r) d*r denote the probability that the
total displacement r of the particle after N steps lies in the range between r
and r 4+ dr. By generalizing the argument of Sec. 1-10 to three dimensions,
show that

w(s) ds = 1
™

1 -
o) = s f 7k Rk

where Q(k) = f: d*s e'*sy(s)
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*1.29 (a) Using an appropriate Dirac-delta function, find the probability density
w(s) for displacements of uniform length [, but in any random direction of three-
dimensional space. (Hint: Remember that the function w(s) must be such
that [[[w(s) ds = 1 when integrated over all space.)

(b) Use the result of part (a) to caleulate @(k). (Perform the integration
in spherical coordinates.)

(¢) Using this value of @(k), compute ®(r) for N = 3, thus solving the
random walk problem in three dimensions for the case of three steps.
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Statistical description of
systems of particles

NOW THAT we are familiar with some elementary statistical ideas, we are ready
o turn our attention to the main subject of this book, the discussion of systems
consisting of very many particles, In analyzing such systems, we shall attempt
‘to combine some statistical ideas with our knowledge of the laws of mechanics
applicable to the particles. This approach forms the basis of the subjeet of
“statistical mechanies’ and is quite similar to that which would be used in
discussing a game of chance. To make the analogy explicit consider, for

example, a system consisting of 10 dice which are thrown from a cup onto a .

table in a gambling experiment. The essential ingredients necessary for an
analysis of this situation are the following:

1. Specification of the state of the system: One needs a detailed method for
deseribing the outcome of each experiment. For example, in this case a
specification of the state of the system after the throw requires a statement as
to which face is uppermost for each of the 10 dice.

2. Statistical ensemble: In principle it may be true that the problem is
deterministie in the following sense: if we really knew the initial positions and
orientations as well as corresponding velocities of all the dice in the cup at the
beginning of the experiment, and if we knew just how the cup is manipulated
in the act of throwing the dice, then we eould indeed predict the outecome of the
experiment by applying the laws of classical mechanics and solving the result-
ing differential equations. But we do not have any such detailed information
available to us. Hence we proceed to describe the experiment in terms of
probabilities, That is, instead of focusing our attention on a single experi-
ment, we consider an ensemble consisting of many such experiments, all carried
out under similar conditions where 10 dice are thrown from the cup. The out-
come of each such experiment will, in general, be different. Buf we can ask
for the probability of occurrence of a particular outcome, i.e., we can determine
the fraction of cases (in this set of similar experiments) which are characterized
by a particular final state of the dice. This procedure shows how the prob-
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ability is determined experimentally. Our theoretical aim is to prediet this
probability on the basis of some fundamental postulates.

3. Basic postulate aboul a priori probabilities: To make theoretical prog-
ress, we must infroduce some basie postulates.  Our knowledge of the physical
situation leads us to expect that there is nothing in the laws of mechanies which,
for regular dice of uniform density, would result in the preferred appearance
uppermost of any one face of a die compared to any other face. [lence we may
introduce the postulate that a priori (i.e., based on our prior netions as yet
unverified by actual observations) the probabilities are equal that any of the
six faces of a die land uppermost. This postulafe is eminently reasonable and
certainly does not contradiet any of the laws of mechanics, That the postulate
is actually valid can only be decided by making theoretical predictions based
on this posfulate and checking that these predictions are confirmed by experi-
mental observations. To the extent that such predictions are repeatedly
verified, the wvalidity of this postulate can be accepted with increasing
confidence.

4. Probability caleulations: Once the basic postulate has been adopted,
the theory of probability allows the theoretical caleulation of the probability
of the outecome for any experiment with these diee.

In studying systems consisting of a large number of particles, our consider-
ations will be similar to those uged in formulating the preceding problem of
several dice.

STATISTICAL FORMULATION OF THE MECHANICAL PROBLEM

2 . 1 Specification of the stale of u system

Consider any system of particles, no matter how complicated (e.g., an assembly
of weakly interacting harmonie oseillators, a gas, a liquid, an aufomobile).
We know that the particles in any such system (i.e., the eleetrons, atoms, or
molecules composing the system) ean be described in terms of the laws of
quanfum mechanics, Specifically, the system can then be deseribed by a wave
function ¥(gs, . . . , ¢r) which is a function of spome sel of [ coordinates
(ineluding possible spin variables) required to characterize the system, The
number [ is the “number of degrees of freedom™ of the system, A particular
quantum state of the system is then specified by gmiving the values of some set
of f quantum numbers. This description is eomplete sinee, if  is thus specified
at any time #, the equations of motion of quantum mechanies allow prediction
of ¢ at any other time.

ﬂiﬂﬂ G’hnaider a aysimn eonsisting of 4 single particle, considered fixed
.m pcm'hnn; but‘havm.gnﬂpm i (i.¢., intrinsic spin angular momentum 34). In
Tict &esﬂﬁ)titfn the state of thig particle is specified by the
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projection ni of its spin along some fixed axis (which we shall choose to eall the
z axis). The gquantum number m can then assume the two values m = + or
m = —%; i.e, roughly speaking, one can say that the spin can point either
“up” or “down” with respeet to the 2 axis,

Example 2 Consider a system consisting of N partieles considered fixed in
position, but each having spin . Here N may be large, say of the order of
Avogadro’s number N, = 6 X 10%. The quantum number m of each particle
can then assume the two values 3 or —+. The state of the entire system is
then speeified by stating the values of the N quantum numbers m;, . . . , my
which speeify the orientation of the spin of each particle.

Example 3 Consider a system consisting of & one-dimensional simple
harmonic oseillator whose position coordinate is 2. The possible quantum
states of this ozeillator can be specified by a quantum mumber » such that the
energy of the oscillator can be expressed as

B, = (n+ e
where o is the classieal angular frequency of oseillation. Here the quantum
number # can assume any integral valuen =0, 1,2, . . . .

Example 4 Consider a system eonsisting of N weakly inferseting one-
dimensional simple Larmonic oseillators, The gquantum state of this system
can be specified by the sef of numbers 2y, . . . , 5y, where the quantum num-
ber #n; refers to the {th oscillator and can assume any value 0,1, 2, . . . .

Example 5 Congider o system consisting of a single particle (without spin)
confined within & rectangular box (so that the particle’s coordinates He
within the ranges 0 <z <L. 0<y <L, 0<z<L,), bul otherwise
subject to no forees. The wave function ¢ of the partiele (of mass m) must
then satisfy the Schridinger equation

¢ o
- g (5 * 5+ ) ¥ = @11

and, to guarantee confinement of the particle within the box, ¥ must vanish at
the walls. The wave funetion having these properties has the form

¥ = sin r%) sin (w%) sin (r%:) (2+1:9)

Thiz satisfies (2-1-1), provided that the energy F of the particle is relafed
to s, By, 2 by
ﬁ’ %

B- e+ 5 +15) @1:8)
Also ¢ = 0 properly whenz = 0 orz = L, when y = O ery = L,, and when
2= 0orz = L, provided that the three numbers 7, ny, n, assume any dis-
crete integral values, The state of the particle is then specified by stating
the values assumed by these three quantum numbers n., ny, Bey While Eq.
(2:1:8) gives the eorresponding value of the quantized energy.
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Commentis on the classical description  Atoms and molecules are properly
deseribed in terms of quantum mechanics. Throughout this book our theo-
refical diseussion of systems of many such particles will, therefore, be based
consistently on quantum ideas. A deseription in terms of classical mechanics,
although inadequate in general, may nevertheless sometimes be a useful
approximation. It is, therefore, worth making a few comments about the
specification of the stafe of a system in classical mechanies,

Let us start with a very simple case—a single particle in one dimension.
This system can be completely deseribed in terms of its position ceordinate ¢
and its eorresponding momentum p.  (This specification is complete, since the
laws of clagsical mechanies are such that a knowledge of ¢ and p at any one
time permits prediction of the values of ¢ and p at any other time.) Tt is
possible to represent the situalion geometrically by drawing carfesian axes
labeled by g and p, as shown in Fig. 2:1-1. Specilieation of ¢ and p is then
equivalent to specifying a point in this two-dimensional space (commonly
called “phase space’”). As the coordinate and momentum of the particle
change in time, this representative point moves through this phase space,

Tn order to deseribe the situation in terins where the possible states of the
partiele are countable, if is convenient to subdivide the ranges of the variables
¢ and p into arbilrarily small diserete infervals. For example, one can choose
fixed interyals of size g for the subdivision of ¢, and fixed intervals of size op for
the subdivision of p. Phase space is then subdivided into small cells of equal
size and of two-diniensional volume (i.e., area)

8g &p = hy

where g is some gmall constant having the dimensions of angular momentum.
The state of the system can then be specified by stating that its coordinate lies

Fig, 2:1+1 Classical phase space for a single particle
in one dimension.
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%Eﬂ sisba Fig. 2:1:2 The phase of Fig. 2-1-1 is here shown
i g e e subdivided into equal cells of volume &g 6p = ko




SPECIFICATION OF THE STATE OF A SYSTEM il

in some interval between ¢ and g + d¢ and that its momentum lies in some
interval between p and p + ép, i.e., by staling that the representative point
(g,p) lies in a particular cell of phase spacé, The specification of the state of
the system elearly becomes more precise as one decreases the sige chosen for
the cells into which phase space has been divided, i.e., as one decreases the
magnitude ehosen for hg.  Of eourse, hy can be chosen arbitrarily small in this
classical deseription.

It may be remarked that quantum theory imposes a limitation on the aceuraey
with which a s'rmultaneous-speciﬁcatian of a peordinate g and its cooresponding
momentum p is possible.  Indeed, this limitation is expressed by the Heisen~
berg uncertainty pringiple, which states that the uncertainties 6g and dpin
these two cuantities are such that dg 8p 2 4, where 4 is Planck’s constant
(divided by 2w.) Thus subdivision of ﬂm phase space into cells of volume
less than 4 is really physically meaningless; i, a choice of hy < #i would lead
to & speeificalion of the system more precize than is allowed by quantum
theory.

The generalization of the above remarks to an arbitrarily complex system
ig immediate. Such a system ecan be deseribed by some set of [ coordinales
qu G2 - - . ¢ and [ eorresponding momenta py, Py, - .- . , Py, 1.8, by a total
of 2f parameters, The number f of independen! coordinates needed for the
deseription of the system is called the ‘number of degrees of freedom” of the
system, (I'or example, if we are dealing with a system of N poinf particles,
then each particle is characterized by three position coordinates so that
f=3N.) The set of numbers |g1, . . ., @ P1, - . . , Pr} can again be
regarded as a ‘“‘point” in a “phase space” of 2f dimensions in whieh each
cartesian-coordinate axis is labeled by one of lhe coordinates or momenia,
(Except for the fact that this space iz not so readily visualized by our pro-
vineial three-dimensional minds, this space is completely analogous te the
two-dimensional diagram of Fig. 2:1-1). Onee again this space can be sub-
divided into little cells (of volume dgy - - - dgr &p1 -+ - 6pr = b/ If one
always chooses the interval of subdivigion dg, of the kth coordinate and &p;
of the £th momentum such that 8. 6ps = hy). The state of the system can
then again be specified by stating in which particular range, or cell in phase
space, the coordinates qi, . . . , gy, P1, - - . , prof the system ean be found.

Summary The microscopic state, or “microstate,” of a system of particles
can be simply speeified in the following way:

Enumerate in some convenient order, and label with some index r
(r=1,2 38, ..),all the possible quantum states of the system, The state
of the system is then deseribed by specifying the particular state r in which the
gystem 1s found.

If it is desired {0 use the approximation of classical mechanics, the situa-
tion is quite analogous. After the phase space for the system has been sub-
divided into suitable cells of equal size, one can enumerate these cells in some
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convenient order and label them with some index » (r =1, 2,3, . . .). The
state of the system is then deseribed by speeifying the particular eell r in which
the representative point of the system is located.

The quantum mechanieal and classical descriptions are thus very similar,
a cell in phase space in the classical discussion being analogous to a quantum
state in the quantum-mechanical discussion.

2 + 2 Statistical ensemble

In prineiple the problem of a system consigting of many particles is completely
deterministic in the sense that a complete specification of the quantum state ¥
of the system at any one time allows ealculation of all physical quantities, as
well as prediction of the state ¥ of the system at all other times. (Similarly,
in classical mechanies, complete specification of the state of the system by all
of its coordinates ¢ and momenia p at any one time allows calculation of all
physieal quantities, as well as prediction of the coordinates and momenta at :
all other times.) But in general we neither have available fo us, nor are we
interested in, such a complete specification of the system. Ience we proceed

to a discussion of the system in terms of probability coneepts. For this pur-

pose we consider nol an isolated instance of a single system, but iustead imagine

attention focused on an ensemble consisting of a very large number of identical

gystems, all prepared subjeel to whatever conditions are specified as known,

The systems in this ensemble will, in general, be in different states and will,
therefore, also be characterized by different macroscopic parameters (e.g., by

different values of pressure or magnetic moment). But we can ask for the
probability of oceurrence of a particular value of such a parameter, i.e., we ean
determine the fraction of cages in the ensemble when the parameter assumes

this particular value. The aim of theory will be to prediet the probability of
oceurrence in the ensemble of various values of such a parameter on the basis

of some basic postulates.

Example Consider a system of three fixed particles, each having spin § so
that each spin can poeint either up or down (i.e., along or opposite some direc~
tion chosen as the 2 axis), Each particle has 8 magnetic moment along the 2
‘axis of w when it points up, and —g when it points down, The system is
placed in an external magnetic field H pointing along this 2 axis,

The state of the particle © can be specified by its magnetic guanium
number m; which ean assume the two values m; = +3. The state of the
whole system is specified by giving the values of the three guantum numbers
my, My, Ma. A particle has energy — pif when its spin peints up, and energy
pH when its spin points dewn.

We list in the table below all the posmbls states of the gystem. We also
list some parameters, such as total magnetic moment and total energy, which
characterize the system as 8 whole, (For the sake of brevitym = % is denoted
simply by +, andm = ~3 by —.)
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State Quantwm numbers Total magnetic Potal
index r M1, M, M Troment energy
1 + + + . e —3uH
2 k= B =UiE
3 + — + B —pH
4 — . =+ 1 —pH
5 o —u uH
6 — 4 — = uH
7 S = uH
8 - — = —3u SuH

One usually has available some partial knowledge abouf the system under
consideration. (For example, one might know the total energy and the volume
of a gas.) The system ecan then only be in any of its states which are com-
patible with the available information about the system. These states will
be called the “states accessible fo the system.” In a statistical description
the representative ensemble thus containg only systems all of which are eon-
sistent with the specified available knowledge about the system; ie., the
systems in the ensemble must all be distributed over the various accessible
states.

Exumple Buppose that in the previous example of a system consisting of
three spins the total energy of the system is known to be equal to —uH. If
this is the only information available, then the system can be in only one of the
following three states:

H+-) -+ =+

Of courge, we do not know in which of these states the systern may actually be,
nor do we necessarily know the relative probability of finding the system in
any one of these states.

s 3 Basie postulates

In order to make theoretical progress, it is necessary to introduce some posiu-
late about the relative probability of finding a system in any of iis accessible
states. Suppose that the system under consideration is isolafed and thus can-
not exchange energy with its surroundings. The laws of mechanics then
imply that the total energy of the system is conserved, Thus it is known
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that the system must always be characterized by this value of the energy and
thal the states accessible to the system must all have this energy. But there
are usually a great many states of this kind, and the system can be in any one
of them, What can one say about the relative probability of finding the
system in any such state?

One can hope to make some general statements in the simple case where
the isolated gystem is in eguilibrawm. Such an equilibrium situation is char-
acterized by the fact that the probability of finding the system in any one state
is independent of time (i.e., the representative ensemble is the same irrespective
of time). All macroscopic paranmeters deseribing the isolafed system are then
algo time-independent. When one considers such an isolated system in equi-
librium, the only information one has available about the system is that it must
be in one of its accessible states consistent with the constant value of its encrgy.
But there is nothing in the laws of meehanies which wonld lead one to expect
that the system should be found more frequently in one of its accessible states
rather than in another. Hence it seems eminently reasonable fo assume that
the system is equally likely to be found in any one of its accessible stafes.
Indeed, one can show explicitly from the laws of mechanies that if one considers
a repregentative ensemble of such isolated systems where these systems are dis-
tributed uniformly (i.e., with equal probability) over all their accessible states
at any one time, then they will remain uniformly distributed over these states
forever.* This fact shows that such a uniform distribution of systems in the
ensemble over their accessible states corresponds imdeed to a possible equi-
librium situafion which does not change in time. It also suggests that there is
nothing intrinsie in the lawes of mechanics which favors some slates at the
expense of others, because there exists no tendenecy to destroy the uniform
distribution by populating some states preferentially while depleting other
states.

The foregoing considerations suggest that all accessible states of an
igolated system have intrinsically the same probabilily of being oceupied by
this system. One is thus led to introduce the following fundamental postulate
of equal a priori probabilities:

P> An isolated system in equilibrium is equally likely to be in any of its
accessible states,

The same postulate is made in classical mechanics where state refers to a
cell in phase space. That 18, if phase space is subdivided into small eells of
equal size, then an isolated system in equilibrium is equally likely to be in any
of its aceessible cells. T

This fundamental postulate is eminently reasonable and cerlainly does not
contradict any of the laws of mechanies, Whether the postulate is actually

* This is & consequence of what is called “Liouville’s theorem.” A proof of this theorem
in classieal mechanics is given in Appendix A+13 and discussed more fully in R. . Tolman,
“The Prineiples of Statistical Mechanics,” chap. 3, Oxford University Press, Oxford, 1938,
A discussion of this theorem in quantum meehanics van he found in chap. 9 of the same book,

1 Further comments about the postulate can be found at the end of this section.
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valid ean, of course, only be decided by making theoretical predictions based
on it and by checking whether these predictions are confirmed by experimental
observations. A large body of caleulations based on this postulate have indeed
vielded results in very good agreement with observations. The validity of
this postulate can therefore be acecepted with great eonfidence as the basis of
our theory.

We illugtrate this postulate with a few simple examples,

Ezample 1 In the previous example of a system of three spins, assume that
the system iz isolated. Tts total energy is then known to have some conztant
value; suppose that it is known to be equal to —uH. As already mentioned,
the syatem can then be in any of the following three states

fett =) (R (=t
The postulate asserts that when the system is in equilibrium it 13 equally
likely to be found in any of these three states.

Note, incidentally, that it is not true that a given spin is equally likely to
poimt up or down, i.e., to be in any of its two possible states. (There is,
of course, no paradox here, since a given spin is not an isolated system, but
interacts with the other two spins.) Indeed, it iz seen that in the present
example it is twice as probable that a given spin points up (is in a state of
lower energy) than that it points down (is n & state of higher enerpy).

Ezample 2 An example more representative of situafions encountered in
practice 18 that of A macroseopie system consisting of N magnetic atoms, where
N is of the order of Avogadro's number. If these atoms have spin & and
are placed in an external magnetic field, the situstion is; of course, completely
analogous to that of the preceding case of only three sping. But now there
exists, in general, an extremely large mumber of possible states of the system
for each specified value of its total cnergy.

Exzwmple 3 Consider a ohe-dimensional harmonie oseillator of mass e and
spring constant &, and let us discuss it in terms of elassical mechanies.  Denote
the displacement coordinate of the oscillater by @ and its lincar momentum
by p. Phase space is then two dimensional, The energy ¥ of the oscillator
is ziven by

E=%+J§m* (2-3-1)
where the first term on the right is its kineiie, the second term its potential
energy. For a constant energy F, Eq. (2-3-1) desoribes an ellipse in phase
Bpace, Le., in the pe plane. Suppose one knows that the energy of the oscil-
lator lies in the small range* between B and F -+ 4E. Then there are stll’

* The energy of a gystem ean never be physically known to infinite precision (in guantum
physics not even in principle, unless one spends an infinite amount of time in the measure-
ment), and working with an infinitely sharply defined energy can also lead to unnecessary
voneeptusl diffienlties of a purely mathematieal kind.
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Fig. 2-3-1 Classical phase space for o one-dimensional hermonic oscil-
lator with energy between H and E + $E. The accessible region of phase
space consists of the area lying between the two ellipses.

many cells in phase space conlained between the two ellipses corresponding
to the vespective energies ¥ and K -+ 8E, i.e., many different corresponding
suts of values of @ and p ave possible for the oscillators in a representative
ensemble, If the only information available about the oscillator is thatit is
in equilibrium with an energy in the specified range, then our statistical

_ postulate asserts thab it i equally probable that the oscillator has values of
- ¢ and p lying within any one of these cells.

Another way of looking at the situation is the following. The fime
dependence of @ and p for the oseillator is, by elementary mechanics, of the
form .

# = Acos {wf + o)
p =i = —mAe sin (ol 1 @)

where w — /[, while A and ¢ are constants. By (2:3+1) the total energy
is then

' joc?
B= " & sin' (ut + @) + h A co? (ut + @) = ImalAl

This is indeed equal to a constant, and the above relation defermines the
amplitude 4 in terms of B But the phase angle ¢ is still quite arbitrary,
depending on unknown initial condiliong, and can assume any valae in the
range (0 <7 @ << 2z. This gives rise to the many possible sets of values of
# and p which correspond to the same energy,

Note that a given interval dr corresponds to a larger number of cells
(i.e., a larger area) lving between the two ellipses when & = A than when

< == 0. Hence it 18 more probable that an oscillator in the engemble is found

with its pesition = close to A than close to 0. This result is, of course, also
obvicus from the Tact that near the extremes of its position, where @ = A4,
the oseillator has small velocity; hence it spends a longer time there than
near r == 0, where it moves rapidly,
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The approach to equilibrium Consider a situation where it is known that
an isolated system is not equally lkely to be found in any of the stales aceessible
to it. Our fundamental postulate asserts Lhat this situation cannot be one
where equilibrium prevails. Thus one expects the sibuation to change with
time. This means that in the representative statistical ensemble the distribu-
tion of systems over the accessible states will change in time; correspondingly,
the mean values of various maeroscopic parameters deseribing the system will
also change, .

Before discussing this nonequilibrium situation in greater detail, it is
worth making a few comments about the nature of {he states used in our theory
to deseribe an isolated system of many particles. These stales are nof rigor-
ously exact quantum stales of the perfectly isolated gystem with all inter-
actions between particles taken into account.®* It would be prohibitively com-
plicated to attempt any such utterly precise deseriplion; nor does one have
available sufficiently detailed information about a macroscopiec system to make
such a precise deseription of any experimental interest. Instead one describes
the system in ferms of some complete sef of approximate quantum states which
take into aceount substantially all of its predominant dynamiecal features
withoul being rigorously exaet. When the system is known to be in such a
state at any one fime, il will not remain in this state indefinitely. Instead,
there exists a finite probability that the system will at some later time be found
in some of the other approximate stafes accessible to if, the transitions to these
other states being caused by the presence of small residual interactions between
the particles (interactions not taken into account in defining the approxi-
mate quantum states of the system).

Suppose then that at some initial time ¢ the system is known to be in some
subset of the states actually accessible to it. There are no restrictions which
would prevent the system from being found in any of its accessible states at
gsome later time since all these states satisfy the conservation of energy and
are congistent with the other constraints to which the system is known to be
subject; nor is there anything in the laws of mechanics which would make any
of these states intrinsically preferable to any other one. If is therefore exceed-
ingly unlikely that the system remains indefinitely in the restricted subset of
states in which it finds itself at the initial time {. Instead, the system will in
the eourse of time always make transitions between all its various accessible
states as a resull of small interactions belween ils constifuent particles. What
then is the probability of finding the system in any of these states at some much
later time?t

To see what happens it is only necessary to consider a statistical ensemble

*If the system were known to be in such an exact eigenstate at any one time, it would
remain in this sfate forever.

t In prineiple, one eould ask more detailed questions about subtle correlations exiating
hetween states of the system, i.e., questions about the quantum mechanical phases as well as
amplitudes of the relevant wave functions. But i§ is generally meaningless to seek such a
precige description in a theory where completely detailed information about any system is
neither available nor of interest.
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of such systems. Suppose that these systems are initially distributed over
their accessible states in some arbitrary way; e.g., that they are only found in
some particular subset of these accessible states. The systems in the ensemble
will then constantly continue making transitions between the various acces-
sible states, each system passing ultimately through practically all the states
in which it can possibly be found. One expects that the net effect of these
constant transitions will be analogous to the effect of repeated shufflings of a
deck of cards. In the latier case, if one keeps on shuffling long enough, the
cards get so mixed up that each one is equally likely to occupy any position in
the deck irrespective of how the deck was arranged initially. Similarly, in
the case of the ensemble of systems, one expects that ultimately the systems
will become randomly (i.e., uniformly) distributed over all their accessible
states. The dlstnbutlen of systems over these states then remains uniform,
i.e., it corresponds to a final time-independent equilibrium situation. In other
words, one expects that, no matter what the initial conditions may be, an
isolated gystem left to itself will ultimately attain a final equilibrium situation
in whieh it is equally likely to be found in any one of its accessible states, One
can look upon the expectation discussed in the preceding sentences as a highly
plausible basic hypothesis very well confirmed by experience. From a more
fundamental point of view this hypothesis can be regarded as a consequence
of the so-called “H theorem,” which ean be established on the basis of the laws
of mechanics and certain approximations inherent in a statistical description.*

Example I Consider again the very simple example of an isolated system of
three spins 4 in a large external magnetic field /7. The approximate quantum
states of the system can be labeled by the orientation of each spin with
respeet to {his field (Yup” or ‘‘down”). Suppose that this system has been
‘prepared in such 4 way that it is known to be in the state (+ + —) at some
initial time; the system is then left to itself. Small interactions exist between
the spins beesuse the magnetie moment of one spin produces a small field H,,
(H, <€ H) with which the moment of some other spin can inferact. These
intersetions befween the magnetic moments of the spins bring about transi-
tions in whieh one gpin flips from the “up”’ direction to the “down” direction
‘while some other spin does the reverse; of course, such & mutual spin-flip
lenves the total energy of the system unchanged. The net result is that, affer

& sufficiently long time, the system will be found with equal probability in
any of its three accessible states (- + =), (+ — +); and (— + +).

Example 2 Another vivid example is shown in Fig. 2+3-2, in which a gas of
molecules is originally confined to the left half of a box, the right half being
empiy. Buppose now that the partition is removed at some initial time £
Immediately after this act, the molecules are certainly not distributed with
-equal probability over all their accessible states, since the molecules are
all localized in the left half of the box whereas the right half, although now per-

* The interested reader can find a discussion of the H theorem in Appendix A-12,
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Fig. 2:3:2 A system consisting of a box §
divided by @ partition into two equal
parts. cach of volume V.. The left side
is filled with gus: the right zide is empty. |

fectly accessible, is empty, Butitis clearly fantastically improbable that this
situation will prevail for any length of time. Tndeed, as a result of collisions
with the walls and with each other, the molecules will very guickly
redistribute themselves over the entire volume of the box. The final
equilibrium situation, where the density of molecules is uniform fhroughout
the entire box, is thus attained gquite rapidly,

Note that the preceding comments say nothing about how long one has to
wail before the ultimate equilibrium situation is reached. If a system is
initially not in equilibrium, {he time necessary to attain equilibrium, (fhe
so-called “relaxation time”) might be shorter than a mierosecond or longer
than a century. It all depends on the detailed nature of the interactions
helween the particles of the particular system and on the resullant rate at
which transitions actually oceur between Lhe accessible states of this system.
The problem of caleulating the rate of approaching equilibrium is a diffieult
one. On the other hand, one knows that isolated systems do tend to approach
equilibrium if one waits long enough, The task of caleulating the properties
of systems in such tme-independent situations is then quite straightforward (in
principle), sinee it requires only arguments based on the fundamental statistical
postulate of equal a priori probabilities.

*Remark on classical phase space Phase space is defined in terms of
generalized coordinates and momenta beeause it is in terms of these variables
that Liouville’s theorem holds. Tn cartesian coordinates it is usually true
that p: = mu, and phase space could therefore have been defined equally well
in terms of coordinates and velocilies. But more generally, for example in the
presence of a magnetic field, the relation between p; and v, i< more complicated.

*Remark on the fundamental postulate in quantum mechanies The
probability P, that a quantum-meehanical system ig in a state » (which is an
eigenstate of the Hamiltonian) is given by P, = [a.|% where a, is the com-
plex “probability amplitude” which characterizes the state ¢ of the system.,
Btrictly speaking, the fundamental postulate asserts that in equilibrium
the probabilities P, are equal for all accessible stales and that the corves-
ponding amplitudes a, have random phase factors.™

* R, €. Tolman, “The Principles of Statistival Mechanies,” Oxford University Press,
Oxford, 1938, pp. 349-356.
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2 -4 Prob'abili:y calculations

The postulate of equal a priori probabilities is fundamental to all statistical
mechanics and allows a complete discussion of the properties of systems in
equilibrium. In principle, the ealculations are very simple. For purposes of
illugtration, consider a system in equilibrium which is isolated so that its total
energy is known to have a constant value in some range between F and
E + 8E. To make statistical predictions, we foeus attention on an ensemble
of such systems, all of which satisfy the condition that their total energy lies
in this energy range. Let Q(F) denote the tolal number of states of the system
in this range. Suppose that there are among these states a certain number
(1(E; ye) of states for which some parameter y of the system assumes the value
Yx. The parameter might be the magnetic moment of the system, or the pres-
gure exerted by the system, ete, (We label the possible values which y may
agsume by the index k; if the possible values which y ean assume are continuous
instead of discrete, we think of successive values of k as eorresponding to values
of y which differ by infinitesimal amounts.) Our fundamental postulate tells
us that among the states accessible to the system, lmcﬁg‘mmates
which satisfy the condition that the energy of the system Lies in the speﬂﬁa_d,
range, all-states are equally likely to occur in the ensemble. Hence we can
simply write for the probability P(y) that the parameter y of the system
assumes the value y,
_ ;) .

Plys) = OB (2-4-1)
Also, to calculate the mean value of the parameter y for this system, we simply
take the average over the systems in the ensemble; i.e.,

2 QCE; yu)ys
RSN
V=
Here the summation over k denotes a sum over all possible values which the
parameter y can assume.

Calculations of this kind are in principle quite straightforward. It is true
that purely mathematical difficulties of computation may be encountered
unless one is dealing with very simple systems. The reason is that, although
it is quite easy to count states when there are no restrictions, it may be a
formidable problem to pick out only those particular Q(E) states which satisfy
the condition that they have an energy near some specified value £, Mathe-
matical complications of this sort are, however, not prohibitive and there are
methods for overcoming them quite readily.

(2-4-2)

*'.‘f'mnhummmmotmwmqummm
"Wﬂ‘. ; NWWWMMM is kmown to be —pH,

iy
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then the system is equally likely to be in any of the three states
{F ool Sty ol o)

Focus attention on one of these spins, say the first, What is the probability
P, that this spin points up? Since there are two rases where it points up, one

has
P, =%

What is the mean magnetic moment &, (in the +z direction) of such a spin?
Since the probability of oceurrence of each state of the entire system is 4,

one has simply
Beo= fu + & + $(—p) = 0

2 +5 Behavior of the density of states

A maeroscopic system is one which has very many degrees of freedom (e.g.,
a copper block, a bottle of wine, ete.). Denofe the energy of the system by /1,
Subdivide the energy scale into equal small ranges of magnitude §E, the mag-
nitude of §E determining the precision within which one chooses to measure
the energy of the system. I'or a macroscopic system, even a physically very
small interval §F contains many possible states of the system, We shall
denote by 2(£) the number of states whose energy lies between ¥ and £ + §F.
The number of states 2(F) depends on the magnitude §E chosen as the
subdivision interval in a given discussion. Suppose that $FE, while being large
compared to the spacing between the possible energy levels of the system, is
macroscopically sufficiently small. Then ©(E) must be proportional* to 68,

i.e,, one can write i
UE) = w(k) sF (2:5:1)

where w(E) is independent of the size of 8E. Thus w(F) is a characteristic
property of the system which measures the number of states per unit energy
range, i.e., the ““density of states.” Since all statistical caleulations involve
the counting of states, it is worth examining how sensitively Q(F) (or equiva-
lently w(FE)) depends on the energy F of a macroscopic system,

We are not interested in any exact results, but rather in a rough cstimate
adequate to reveal the essential behavior of 2 as a function of £. A simple
argument can then be given along the following lines. Consider a system of f
degrees of freedom so that f quantum numbers are required to specify each of
its possible states. Let [ be the energy of the system measured from its low-
est possible energy (i.e., measured from the energy of its quantum-mechanical
ground stale) and let ®(F) denote the total number of possible quantum

* The number of states 0(E) must vanish when §F — () and must he expressible as a
Taylor's serics in powers of 8. When §# is suffieiently small, all terms involving higher
powers of 8/ are negligibly small and one is left with an expression of the form (2.5.1).
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states of the system which are characterized by energies less than £ Clearly
(V) increases as the energy F increases. Let us examine how rapidly &(E)
inereages.

Consider first one typical degree of freedom of the system. Denote by
@, (¢) the total number of possible values which can be assumed by the quantum
number associated with this particulsr degree of freedom when it contributes
to the system an amount of energy e or less. Again ®,(¢) must clearly increase
a8 e increases (the smallest value of @, being unity when e has its lowest possible
value). Tf e is not too small, ®; is of the order of ¢/Ae where Ae denotes the
mean spacing belween the possible quantized energies associated with a typical
degree of freedom and may itself depend on the magnitude of ¢, But without
getting involved in insignificant details, one can say that ®, ought to increase
roughly proportionally to e; or in symbols that

Dy x ¢t (e =1) (2:5-2)

where o is some number of the order of unity.

Let us now return to the whole system having an energy ¥ and deseribed
by f quantum numbers |{s;, 8, . . ., 8. Then the energy e per degree of
freedom is of the order of

e~ ? (2-5-3)
and, corresponding to this amount of energy or less, there are roughly ®,(e)
possible values which can be assumed by the quantum number describing
this degree of freedom. Corresponding to a total energy of F or less of the
entire system, there are then approximately ®i(e) possible values which can be
assumed by the quantum number s; associated with the first degree of freedom,
approximately @®,(e) possible values which can be assumed by s, approxi-
mately ®(¢) possible values which ean be assumed by s;, ete. Hence the total
number ®(F) of possible sets of values of the f quantum numbers is approxi-
mately given by

B(E) ~ [B:()F,  whete ¢ = ‘?E (2-5-4)
This gives the total number of states of the system when it has energy # or less.
The number of states Q(Z) in the range between E and E + 3§ is then

QE) = B(E + 55) — ®(E) = % 5E (2:5-5)
Thus QUE) ~ o/~ i}:-‘ } T (2:5-6)

When the energy F of the system increases, the number of states #, per degree
of freedom increases slowly and, by (2-5-3), roughly proportionately to
e = K/f. But when one is dealing with a macroscopic system, f is very large—
of the order of Avogadro’s number—so that f =~ 10%. Since the exponent in
(2-5:6) is so very large, it follows that the number of possible states Q(E)
accessible to the entire system is an extremely rapidly increasing funetion of
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the energy E of the system. This is a general characteristic of the number of
states Q(E), or equivalently of the density of states w = Q/8E, of all ordinary
maeroscopic systems.

The relation (2-5-6) allows one to make some statements about orders
of magnitude. Thus it implies that

In@=(f=1)In® 4 1In (‘%BE) 257

We recall that 6F is supposed fo be large eompared to the spacing between the
energy levels of the system. The quantity (8®:/de) 6F is thus of the order of
unity in the widest sense; i.e,, it is certainly not greater than f nor much less
than f~'. Hence its logarithm is certainly of the order of unity in a strict sense
(i.e., it lies between In f and —In f or between 55-and —55, if f = 1024), On
the other hand, the first term of (2:5:7) is of the order of f itself (if the energy
¢ of the sysfem is nol so very close to its ground-state energy that ®; = 1 for all
degrees of freedom) and is thus fantastically larger than the second term which
is only of order Inf. (That is, Inf < << f, if f is very large.) Thus to an
excellent approximation, (2:5-7) becomes

InQ = fIn &, (2:5:8)
and

| he=0() ifE>0 (2:5:9)

That is, In @ is of the order of f if the energy of the system is not too close to
the energy of its ground state. Furthermore, it follows by (2-5-8) and (2-5-2)
that,

> Q=& « B (2-5-10)

This last relation is intended to be only an order-of-magnitude relation showing
roughly how rapidly @(%) varics with the energy E of the system. Thus we
have put a = 1 for simplicity, since we are not particularly interested in
whether the exponent in (2-5-10) should be f, +f, or any other number of the
order of f,

Special case: ideal gas in the classical limit Consider the ease of a gas
of N identical molecules enclosed in a container of volume V. The energy of
this system can be written

E=FK+ U+ Emn (2:5:11)

Here K denotes the toial kinetic energy of translation of the molecules. If
the momentum of the cenier of mass of the ith molecule is denoted by py, then
K depends only on these momenta and is given by

= 2 1
K =K(py,ps - - -,pxy) = o z pi (2:5:12)

The quantity U7 = UU(ry, s, . . . , ry) represents the potential energy of
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mutual interaction between the molecules. It depends on the relative separa-
tions between the molecules, i.e., on their center-of-mass posilions r.

Finally, if the molecules are not monatomic, the atoms of each molecule
ean algo rotate and vibrate relative to its center of mass. Let @1, Qs, . . . , Qn
and Py, Py, . .., Py denote the coordinates and momenta describing this
intramolecular motion. Then Fi.. represents the fofal energy of the system
due to such inframolecular motion; it depends only on the internal coordinates
Q; and internal momenta P; of all the molecules. Of course, if the molecules
are monatomie, Fi,, = 0,

A particularly simple case is that where the mutual energy of interaction
between the molecules is negligibly small. Then I7 = 0 and the molecules are
said to form an ‘“‘ideal gas.” This situation can be achieved physically in the
limit where the concentration N/V of the molecules is made sufficiently small,
for then the mean separation between molecules becomes so large that their
mutual interaction becomes negligibly small,

What is 2(E) for such an ideal gas? Let us consider the situation in the
classical limit, i.e., under eircumstances where the energy F of the gas is much
greater than its ground-state energy so that all quantum numbers are large.
A description in terms of classical mechanics is then expected to be a good
approximation, The number of states 2(F) lying between the energies /i and
E + §E is then equal to the number of cells in phase space contained between
these energies; i.e., it is proportional to the volume of phase space contained
therein. Imn symbols,

E+SE

oE) = [ [de - dirydipy - - dpdQ - - dQudP: - - - APy

(2-5-13)

Here the integrand is simply the element of volume of phase space where we
have used the abbreviations

dal".- = d:t" dyi dz;
d'p; = dpiz dpyy, dpis

K

to express three-dimensional volume elements in terms of the three cartesian
components of the respective position and momentum vectors. The integra-
tion extends over all coordinates and momenta which are such that the total
energy given by (2-5:11) lies in the range between K and E + §E.

Since U = 0 for an ideal gas, the expression F in (2-5-11) is independent
of the center-of-mass positions r; of the molecules.* Hence the integration
over the position vectors r, ean be performed immediately. Since each integral
aver r; extends over the volume V of the container, [ d%; = V. But there
are N such integrals. Hence (2:5-13) becomes simply

> UE) = VVx(E) (2-5-14)
* This is true as long as each molecule remains within the container. Of course, the

walls of the container serve to confine the molecules within its volume by making £ — =
whenever a molecule tends to penetrate into a wall.
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where x(F) =« f fd'pl v Ppyd@y c - d@u dPy - ¢ - dPy

(2-5-15)

E

is independent of V| since neither K nor Ky, in (2-5-11) depends on the coor-
dinates ry, so that the integral (2-5-15) does not depend on the volume of the
container. The relation (2-5-14) expresses a physically reasonable result for
noninteracting molecules. It makes the obvious assertion that if the kinetic
energy of each molecule is kept fixed while the volume of the box is doubled,
twice a8 many states become available to each molecule; the number of states
accessible to the N molecules is then simply increased by a factor 2 X 2 X
202 s = 2N

Consider now the particularly simple case where the molecules are mona-
tomie so that f,, = 0 and no intramolecular coordinates Q; and P; appear in
the problem. Then (2-5-11) reduces simply to the kinetic energy and becomes

N a4
2mE = Y ¥ i (2:5-16)

=] aml

where the sum contains the square of each momentum component py, of each
particle (since p® = pn® + pi® + pis®, denoting x, y, z components by 1, 2, 3,
respectively). The sum in (2-5:16) thus containg 3N = fsquare terms. For
E = constant, Eq. (2:5:16) then deseribes, in the f~dimensional space of the
momentum components, a sphere of radius R(E) = (2mE)\. Hence Q(E), or
x(E) in (2-5-15), is proportional to the volume of phase space contained in the
spherical shell lying between the sphere of radius R(J) and that of slightly
larger radius R(F + 8F) (see Fig. 2-5-1). But the volume of a sphere in [
dimensions is proportional to R/, since it is essentially obtained (just as the
volume of a cube in f dimensions) by nmltiplying f linear dimensions by each
other. Thus the total number of state $(F) of energy less than I is proportional

Fig. 2:5:1 Hlustration in two dimer - =
sions of the “sphere’” in momentum
space for a single particle (of mass m)
moving in two dimensions. Here
(Zm)ps* 4+ py*) = B, the energy of the
particle. The radius of the shell is Energy E

R = (2mE]‘. Energy B+ E
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to this velume, i.e..
®(E) = R/ = (2mE) (2-5-17)

The number of states Q(F) lying in the spherical shell between energies E and
17 4 81 is then given by (2:5-3), so that

Q(E) o FUIN-1 « [faNm-—t (2513)

which is properly proportional to R/~!, i.e., to the area of the sphere in phase
space. Combining this result with (2-5-14) one obtains for the classical
monalomic ideal gas

- Q(E) = BVNEN! (2-5-19)

where B is a constant independent of ¥ and E, and where we have neglected
1 compared to N. Note again that since N is of the order of Avogadro’s
number and thus very large, Q(H) is an extremely rapidly increasing funetion
of the energy 7 of the system,

INTERACTION RETWEEN MACROSCOPIC SYSTEMS

2.0 Thermal interaction

In deseribing a maeroscopic gystem if is, in general, possible to specify some
macrosecopically measurable independent paranieters wy, »g, . . . , &, Which are
known to affect the equations of motion (i.e., to appear in the Hamiltonian) of
this system. These parameters are known as the “external parameters” of
the system, Examples of such parameters are the applied magnetic or electric
fields in which the system is located, or the volume V of the system (e.g., the
volume 1 of the container confining a gas).* The energy levels of the system
depend then, of course, on the values of the external parameters. If a par-
ticular quantum state » of the system is characterized by an energy E., one
can thus write the functional relation

Er = }.‘:,-('.I"L, 7 R R ,.Iln} (2‘61.]

The “macroscopic state,” or “macrostate,” of the system is defined by
speeifying the external paramefers of the system and any other conditions to
which the system is subject. For example, if one deals wilth an isolated sys-
tem, the macrestate of the system might be specified by stating the values of
the external parameters of the system (e.g., the value of the volume of the
system) and the value of its constant total energy. The representative ensem-

*The volume ¥ enters the equations of motion hecause the walls of the container are
represented by a potential energy term U which depends on the position coordinates of the
parficles in such o way that U — = whenever the position coordinate of a molecule lies
outside the available volume, i.e., inside the wall itself. TFor example, in the case of a
aingle particle, Eq. (2-1 3) shows explicitly that its energy levels depend on the dimensions
of the container; i.e., for a given quantum state, ¥ = V=3 if the volume V of the container is
changed without change of shape.
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ble for the system is prepared in accordance with the specification of this
macrostate; e.g., all systems in the ensemble are characterized hy the given
values of the external parameters and of the total energy. Of course, cor-
responding to this given macrostate, the system can be in any one of a very
large number of possible microstates (i.e., quantum states).

Let us now consider two macroscopie systems A and A’ which can interact
with each other so that they can exchange energy. (Their total energy remaing
constant, of course, since the combined system A'® consisting of 4 and A’
is isolated.) Tn a macroscopic deseription it is useful to distinguish between
two types of possible interactions between sueh systems. In one case all the
external parameters remain fixed so that the possible energy levels of the
systems do not ehange; in the other case the external parameters are changed
and some of the energy levels are thereby shifted. We shall discuss these
types of interaction in greater detail.

The first kind of interaction is thal where the external parameters of
the system remain unchanged. This represents the case of purely ““thermal
interaction.”

Example As a trivial illustration, suppose that a bottle of beer is removed
from & refrigerator and placed in the trunk of & car, where it remains for
a while, No external parameters are ehanged; i.e., neither the yolume of the
bottle nor that of the air in the trunk is changed. Bub energy is transferred
from the air in the trunk to the beer and resulis in & change of the latter's
properfies (e.g., the heer tastes less goad).

As a result of the purely thermal interaction, energy is transferred from
one system (o the other. In a statistical deseription where one focuses atten-
tion on an ensemble of similar systems (A4 + A’) in interaction (see Fig,
2:6-1), the energy af every A4 system (or every A’ system) does not change by
precisely the same amount. One can, however, describe the situation con-
veniently in terms of the change in mean energy of each of the systems. The
mean energy transferred from one system fo the other as a result of purely
thermal interaction is called “heat.” More precisely, the change AE of the
mean energy of system A is called the “heat @ absorbed” by this system; i.e,,
Q = AF. This heat can, of course, be negative as well as positive; the quan-
tity (—@Q) is ealled the “heat given off” by the system. Since the combined
energy of (4 + A) is unchanged, it follows that

AE 4+ AE =0 (2:6:2)

where AE denoles the change of mean energy of A and AE' that of A’. In
terms of the definition of heat, one can write correspondingly

Q@+ @ =0 or Q=—0 (2-6-3)

This merely expresses the conservation of energy by the statement that the
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Fig. 2:6-1 Diagram illustrating schematically a
representative statistical ensemble of similar iso-
lated systems AW, euch consisting of two systems A
and A' in interaction with each other.

heat absorbed by one system must be equal to the heat given off by the other
system,

Hince the external parameters do not change in a purely thermal inter-
action, the energy levels of neither system are in any way affected. The
change of mean energy of a system comes about because the interaction results
in a change in the relative number of systems in the ensemble which are dis-
tributed over the fixed energy levels (see Fig. 2-7-3a and b).

2. 7 Mechanical interaction

A gystem which cannot interaet thermally with any other system is said to be
“thermally isolated,” (or “thermally insulated'”). It is easy to prevent ther-
mal interaction between any two systems by lkeeping them spatially suf-
ficiently separated, or by swrounding them with “fhermally insulating”
(sometimes also called “adiabatic') envelopes. These names are applied to
an envelope provided that it has the following defining property: if it separates
any two systems A and A’ whose external parameters are fixed and each of
whiech is initially in internal equilibrium, then these systems will remain in
their respective equilibrium macrostates indefinitely (see Tig. 2-7-1). This
definition implies physically that the envelope is such that no energy transfer
is possible through it. (In practice, envelopes made of asbestos or fiberglass
might approximate adiabatic envelopes reasonably well.)

When two systems are thermally insulated, they are still capable of infer-
acting with each other through changes in their respective external parame-
ters. This represents the second kind of simple macroscopic interaction, the
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Fig. 2:7-1 Two systems A and 4'. each
consisting of a gas in a container of fixed
velume, are separated by a partition. If
the partition is adiabatie, each system can
independently remain in equilibrinm for
any value of its mean pressure. If the
partition is nol adiabatic, the gus pressures
will, in general, change in time until they
attain mutually compatible values in the
final equilibrivm situation.

case of purely “mechanical interaction.”

..§ .._: ‘.
| B

The systems are then said fo

exchange energy by doing “macroscopic work' on each other.

Example Consider the situation shown in Fig. 2:7-2 in which a gas is enclosed
in a vertical evlinder by a piston of weight w, the piston being thermally
insulated from the gas. Initially the piston is clamped in position at a height
&, When the piston is released, it oscillates for a while and finally comes to
rest al a greater height 5. Let A denote the system consisting of the gas and
cylinder, and A’ the system consisting of the piston (including the weight)and
the earth. Here the interaction involves changes in the external parameters
of the system, i. e., a change in the volume of the gas and in the height of the
pisten. In this process the gas does & net amomunt of work in lifting the weight.

ravity
|
S iston i

-2
Insulating
Layes

Fig, 2:7:2 A gas contained in a cylinder
closed by a piston of weight w. A layer of
thermally insulating material (of negli-
gible weight) is attached to the bottom of
the piston 1o separate it from the gas.

In a statistical deseription one again focuses attention on an ensenible of

gimilar systems (1 + A7) In interaction.

Not every syvstem in the ensemble

has its energy changed by exactly the same amonnt as a result of the change of
external parameters, but one ean again describe the situation in terms of the
change in mean energy of the systems, Consider, for examiple, system .
If the change in its mean energy doe fo the change of external parameters is
denoted by A.f, then the “maeroscopic work” W done on the system is

defined as

W =AE

(2-7-1)

The macroscopic work W done by the system is the negative of this and is thus
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defined as
W=—W=—AF% (2-7-2)

Whenever we shall use the term “work™ without further qualifications, we
shall be referring to the macroscopic work just defined, The conservation of
energy (2-6-2) is, of course, still valid and ean be written in the form

W+ W =0 or W=-W (2-7-3)

i.e., the work done by one system must be equal to the work done on the other
system,

The mechanical interaction between systems involves changes in the
external parameters and hence resulfs in changes of the energy levels of the
systems. Note that, even if the energies K, of different quantum states are
originally equal, a change of external parameters usually shifts fhese energy
levels by different amounts for different states r. In general, the change in
mean energy of a system depends on how the external parameters are changed
and on how rapidly they are changed. When these parameters are changed
m gome arbitrary way, the energy levels of the possible states of the system
change; in addition, transitions are produced between various states of the
system. (Thus, if the system is initially in a particular state, it will in general
be distributed over many of its states after the parameter change.) Thus
the situation may be quite complicated while the paramelers are changed and
shortly thereafter, even when equilibrium conditions prevail initially and
finally,

- - — - - 20
E:[ - o B c N 3 30 30
300 ~300- 150 &l 70 = ~fp
300 e 2
e =ty il g
= E 2 ¢ E= 3 s
lal b Ie

Fig, 2-7-3 Schematic illustration of heat and work. The diagram shows
the energy levels (separated by an amounit &) of a hypothetical system which
can be in any of nine possible stutes. There are 600 systems in the statistical
ensemble and the numbers indicate the number of these systems in each
stete. (a) Initial equilibrium situation. (b) Final eguilibrium situation
after the system has given off heat ¢ to some other system. (c) Final equi-
librium situation after the system in (a) has (in some arbitrary way) done
work Le on some other system, (The very small numbers used for simplicity
in this illus¢ration are, of course, not representative of real macrascopic
systems.)

Example The complications can be illustrated by the previous example of
Fig. 2-7-2, or perhaps even more directly by the example of Fig. 2:7.4.  Sup-
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Fig, 2:7+d A system consisting of a fluid (gas or liguid) contained in o
eylinder closed off by a movable piston. The enre external parameter is

the distance s, which is the distance of the piston from the end wall of
the eviinder.

pose that this svstem is inilially in equilibrium, the piston being clamped at a
distance s; from the end wall of the eylinder. The system is then equally
likely to be in any of its possible states compatible with the initial value
g =& and with the initial energy F, of the system. Suppese that some
external device now rapidly moves the piston fo a new position ¢ = s, thus
compressing the fluid. Tn this process the external device does work and the
mean energy of the system is increased by some amount A.E. Butl all kinds
of pressure nonuniformities and turbulence are also set up in the fuid:
during this time the system is not equally likely to be in any of its accessible
states, Of course, if one keeps 4 al the value 5 and wails long enough, a new -
equilibrium situation will again be reached, where there is equal probability
that the system isin any of its states compatible with the new value s = &,
and the new mean energy B+ 4.5

Macroscopic work is, nevertheless, a quantity which can be readily meas-
ured experimentally. Suppose that in the mechanical interaetion between two
systems A and A’ at least one of them, say A’, is a relatively simple sxstgm
whose change in mean energy can readily be computed from a change in 1ts
external parameters by using considerations based on mechanics, For exam-
ple, one may know that A’ exerts a measurable mean force on A and that the
change of external parameters corresponds simply to a definite displacemer.al
of the center of mass of A/, Then the mean work W' done by A’ on 4 1=
immediately obtained as (he produet of a mean force multiplied by the cor-
responding displacement; by (2.7 3), the work done by A is fhen given by
W= —W.

E:mmp!e 1 Ocmmder the previously mentioned Jmsﬁwhqn of Iﬁg- 2-7- 2;
‘where the piston is initislly at a height s, and finally comes to rest ata height
Spe Hare the center of mass of the iston. aazm;piy dxeplaced bya mwun%

dl

es in the gmtun rélaﬁv 8 o
theme:gyofﬁﬁe syai.m L', co LSt
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is due to the change of potential energy w(s; — s;) of the center of mass of the
piston in the gravitational field of the earth. Hence it follows that in the
proceas here contemplated the system A, consisting of gas and cylinder, does
an amount of work W = w(s; — %) on the system A",

Example 2 In Fig. 276 the falling weight 1 is connected through a string
to a paddle wheel, which is thus made to rotate and to churn the liguid in
which it is immetsed. Suppose that the weight descends with uniform speed
adistanee 2. Then the energy of the system A’, consisting of the weight and
the earth, ig decreased by an amount we; this is then also the work done on
the system A congisting of the paddle wheel and the liquid.

Fig. 2:7+5 A system consisting of @ vessel contain-
ing a liquid and a paddle wheel. The falling weight
can perform work on the system by rotating the
paddle wheel.

Example 3 Figure 27.6 illustrates a similar situation where a battery of em{
U is connected eleetrically to a resistor immersed in a liguid. When a charge
q flows through the eireuit, the energy stored in the batiery decreases by an
amount ¢'U. Hence the battery does an amount of work gU on the system A
consisting of the resistor and the liquid.

e

Fig. 2:7+-6 A system consisting of a resistor im-
mersed in a liguid. The battery can perform elee-
trical work on the svstem by sending ecwrrent
throwgh the resistor.
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2 . 8 General interaction

In the most general case of interaction between two systems their external
parameters do not remain fixed and the systems are not thermally insulated.
As a result of such a general interaction the mean energy of a system is changed
by some amount AE, but not all of this change is due to the change of its exter-
nal parameters. Let A.E = W denote the increase of its mean enerzy calenla-
ble from the change of external parameters (i.e., due to the macroscopic work
W done on the system). Then the total change in mean energy of the system
can be written in the form

AE=AFE+Q=w+0 (2:8-1)

where the quantity @ thus introduced is simply a measure of the mean energy
change not due to the change of external parameters. In short, (2-8-1)
defines the quantity @ by the relation

Q=AE —w=AE+ W (2-8-2)

where W = —W is the work done by the system. The relation (2-8-2) con-
stitutes the general definition of the heat abserbed by a system. When the
external parameters are kept fixed, (2-8-2) reduces, of course, to the definition
already introdueed in See. 2-6 for the case of purely thermal interaction.

The relation (2-8-1) simply splits the total mean energy change into a part
W due to mechanical interaction and a part () due to thermal interaction.
One of the fundamental aims of our study will be to gain a better understanding
of the relationship between thermal and mechanical interactions. This is
the reason for the name “thermodynamics” applied to the classical discipline
dealing with such questions.

Note that, by virtue of (2:8-1), both heat and work have the dimensions
of energy and are thus measured in units of ergs or joules.

Example Congider Fig, 2:81 where two gases 4 and A’ are contained in a
eylinder and separated by a movable piston.

. Suppose first that the piston is clamped in a fixed position and that it
iz thermally insulating. Then {he gases 4 and A’ do net interact.

b. H the piston is nof insulating but is clamped in position, energy will
in general flow from one gas to the other (although no macroscopic work gets

Fig. 2:8:1 Tuwo gases A and 4
separated by o piston.
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If one contemplates infinitesimal changes, the small increment of mean
energy resulting from the interaction can be written as the differential df.
The infinitesimal amount of work done by the system in the process will be
denoted by dW; similarly, the infinitesimal amount of heat absorbed by the
system in the process will be denoted by d). In terms of the above notation,
the definition (2:8:2) becomes for an infinitesimal process

2Q = dE + dW (2:8-3)

2+9 Quasi-static processes

In the last few sections we have considered quite general processes whereby
gystems ean interget with each other. An important, and much simpler,
special case is that where a system A interacts with some other system in a
process (involving the performance of work, exchange of heat, or both) which
ig carried out so slowly that A remains arbitrarily close to equilibrium at all
stages of the process, Such a proeess is said to be “quasi-static” for the system
A. Just how slowly one must proceed to keep a situation quasi-static depends
on the time r (the ‘“relaxation time”) that the system requires to attain equi-
librium if it is suddenly disturbed. To be slow enough to be quasi-static
implies that one proceeds slowly compared to the time r. For example, if the
gas in Fig. 2-7-4 returns to equilibrium within a time » = 10~? seconds after
the distance s is suddenly halved, then a process wherein the piston is moved
80 a8 to halye the volume of the gas in 0.1 second can be considered quasi-static
to & good approximation.
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If the external parameters of a system have values z;, . . . , 2, then the
energy of the system in a definite quantum state r has some value
Ey-Er(z]’ s ,'.t:,.) {2'9'1}

When the values of the external parameters are changed, the energy of this
state r changes in accordance with the functional relation (2-9-1). In par-
ticular, when the parameters are changed by infinitesimal amounts so that
Za— Xa + (g for each o, then (2:9:1) gives for the corresponding change in
energy

o 9E,
dE, = 21 5 dae (2-9-2)

The work dW done by the system when it remains in this particular state r is
then defined as

dW, = —dE, = X, dz, (2:9:3)
where we have introduced the definition
aE,
Xu.r = — aﬁn (2‘9'4)

This is called the “generalized foree” (eonjugate to the external parameter
Ta) in the state r. Note that if z, denotes a distance, then X, is simply an
ordinary force,

Consider now the statistical description where one focuses attention on an
ensemble of similar systems. When the external parameters of the system are
changed quasi-statically, then the generalized forces X,.. have at any time
well-defined mean values; these are calculable from the distribution of systems
in the ensemble corresponding to the equilibrium situation consistent with the
values of these external parameters at that time, (For example, if the system
is thermally isolated, then the systems in the ensemble are at any time equally
likely to be in any of their accessible states which are compatible with the
values of the external parameters at that time.) The macroscopie work dW
resulting from an infinitesimal quasi-static change of external parameters is
then obtained by caleulating the decrease in mean energy resulting from this
parameter change. Caleulating the mean value of (2:9-3) averaged over all
accessible states r then gives

X.d (2:9-5)
=]
where ;f- (2-9:6)

i the mean generalized force conjugate to z.. Here the mean values are to
be ealeulated with the equilibrium distribution of systems in the ensemble
corresponding to the external parameter values z,. The macroscopic work W
resulting from a findte quasi-static change of external parameters can then be
obtained by integration.

S
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Remarlk If one were dealing with an isolated system in a state » which is an
exact stationary quantum state of the entire Hamiltonian (ineluding all inter-
actions between particles), then this system would remain in this state of
energy B, indefinitely when the external parameters are kept fixed; it would
also remain in this state (its energy E., varying in accordance with (2:0:1))
when the external parameters are changed infinitely slowly. Thus no transi-
tions fo other states would occur in the course of time. But in a statistical
description one does not deal with such precisely defined situations. Tnstead,
one contemplates & system which can be in any one of a large number of
accessible quantum states which are not exacl stationary quantum states of
the entire Hamiltonian (including all the interactions), so that transitions
hetween these states do oceur, " Indeed, if one waits long enough, these transi-
tions bring about the final equilibrium situation where the system, if iso-
lated, is equally likely to be found in any of its accessible states. When the
external parameters of.the system are changed quasi-statically, a given sys-
tem in the ensemble does then not always remain in the same state. Instead,
there occurs a continual redistribution of systems over their accessible states
80 as to maintain alwaysa distribution consistent with an equilibrium situa-
* tion, i, e.. & uniform digtribution over all accessible states in an ensemble of
isolated systems (see Fig, 2-0:1).

. - = i =
I ~g00 806 30 g 1000 - 100
-~ — A 150 180
E“i Ez.l.'.'
{a b {e)

Fig., 2:9.1 Sechomatic illustration of quasi-static work done by the ther-
mally isolated system of Fig. 2:7-8 as a result of the same change of
external parameter as that shown in part (e) of that figure. The diagram
shows ugain the energy levels of this system. and the numbers indicate
the number of wystems present in each state in the engemble. (a) Initiol
equilibrinm situation. (h) Hypothetical siteation which would prevail
after the gquasi-static external parameter change if vach system remained
in its former state, () Aetwal final equilibricm situation resulting (rom
the quasi-static external parameter change, work j¢ having been done

by the svatom.

2:-10 Quasi-static worl done by pressure

As an important example of quasi-static work, consider the case in which there
ig only one external parameter of significance, fhe volume V of the system.
Then the work done in changing the volume from V to V 4 dV can be ealeu-
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lated from elementary mechanies as the produet of a force multiplied by a
displacement. Suppose that the system under consideration (see Fig. 2-7:4)
is contained in a cylinder. If the system is in state r, let its pressure on the
piston of area A be denoted by p.. The force exerted by the system on the
piston is then p,A. The volume of the system is specified by the distance s of
the piston from the end wall of the eylinder; thus ¥V = As. 1If the distance
s is now changed very slowly by an amounf ds, the system remains in the
state r and performs an amount of work

d“‘f' - (prA) ds = PP(A dﬂ) = Pr av (2'10'1)
Since dW, = —dE,, it follows from this that
ak,

pr=—3p (2-10-2)

Thus p, is the generalized force conjugate to the volume V.

If the volume of the system is changed quasi-statically, the system remains
always in internal equilibrium so that its pressure has a well-defined mean
value p. The macroscopic work done by the system in a quasi-static change of
volume is then, by (2:10:1); related to the mean pressure by the relation*

W = pdV (2-10-3)

Remark The expression (2-10+3) for the work done is much more general
than the derivation based on the simple cylinder would indicate. To show
this, consider an arbitrary slow expansion of the system from the volume
enclosed by the solid boundary to that enclosed by the dotted boundary in Tig.
2:10+1. T{ the mean pressure is p, the mean force on an element of arca d4 is
# d A in the direction of the normal n. If the displacement of this element of
area is by an amount ds in the direction making an angle ¢ with the normal,

Fig. 2:10:1 Arbitrary expansion of a
system of volume V,

* When n system is in one definite state r, the work dW, and the gorresponding pressure
pr mny, in general, depend on just how the volume is changed. (For example, if the system
i in the shape of a rectangular parallelepiped, the work dW, may depend on which wall is
moved and the force per unit area on different walls may be different.) But after averaging
over all the states r, the macroseopic work and menan pressure p become insensitive to the
procise mode of deformation econtemplated for the volume.
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then the work done by the pressure on this ares is (p d4) dscos 6 = §dy,
where dv = (d4 dscos 6) is the volume of the parallelepiped swept out by
the area element dA in its motion through ds. Summing over all the elements
of area of the boundary surface gives then for the total work

dW =Zpdv = pZdv=pdV

where dV = X dois the sum of all the little vohimes-awept ot i.-.a;,__the ineresse
in volume of the total system. Thus one regains (2-10:3).

Fig. 2:10°2 Depend of the

preasure h on the velume V of a system.
The shaded area under the curve repre-
senis the work done by the system, when
its volume changes quasi-statically
from Vi to V.

Suppose that a quasi-static process is carried out in which the volume is
changed from V¥, to ¥V, For example, this process might be carried out in
such a way thatl for all volumes ¥; < V < V; the mean pressure § = (V)
assumes the values indicated by the curve of Fig. 2-10-2. In this process the
macroscopic work done by the system is given by

Wa= [, aw=["pav (210-4)

Note that this integral represents geometrically just the shaded area contained
below the eurve of Fig. 2:10-2,

211 Exact and “‘inexact” differentials

The expression (2-8-3) relates the differential d of the energy to the infinitesi-
mal quantities dW and dQ. It is instructive to examine these infinitesimals
more clogely.

Consider the purely mathematical problem where F(z,y) is some function
of the two independent variables z and y. This means that the value of I is
determined when the values of z and y are specified. If one goes fo a neighbor-
ing point corresponding to x + dx and y + dy, the function F changes by an
amount

dF = F(z + dz, y + dy) — F(z,y) (2-11:1)
This ean also be written in the form
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af = A(zy) dz + B(ay) dy (2-11-2)

where 4 = aF/dz and B = oF/dy. Clearly dF in (2-11-1) is simply the
infinitegimal difference between two adjacent values of the function F. The
infinitesimal quantity dF is here just an ordinary differential; it is also called
an “exaet differential’”’ to distinguish it from other kinds of infinitesimal
quantities to be discussed presently. Nole thai if one goes from an initial
point ¢ eorresponding to (z,y:) to a final point f eorresponding to (z4,y,), the
corresponding change in [ is simply given by

ar = F;—Fo= [laF = [[(4dz + Bay) (2-11-3)

Binee the difference on the left side depends only on the initial and final points,
the integral on the right can only depend on these end poinis; it thus eannot
depend on the path along which it is evaluated in going from the initial point
1 to the final point f.

On the other hand, not every infinitesimal quantity is an exaet differential.
Consider, for example, the infinitesimal quantity

A'zy) de + B'(2,0) dy = dG (2-11-4)

where A’ and B’ are some functions of x and y, and where dG’ has been intro-
duced merely as an abbreviation for the expression on the left side.  Although
d@ is certainly an infinitesimal quantity, it does not follow that it iz necessarily
an exact differential; i.e., it is in general not true that there exists some function
G = G(z,y) whose value is determined when x and y are given, and which
is such that d& = G(x + dx, y + dy) — G(2,y) is equal to the expression
(2-11-4). Egquivalently, it is in general not true that, if one sums (i.e., inte-
grates) the infinitesimal quantities & in going from the point ¢ to the point
f along & certain path, that the integral

fi’dr;= [/ 4z + B ay) (2-11-5)

is independent of the particular path used. When an infinitesimal quantity
is not an exact differential it is called an “inexact differential.”
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Fig. 2111 Alternative paths
connecting the points © and f in
the xy plane,

Alm;nuﬁvaiy, one can caleulate it along the path { — b — f passing through
thegdngbw!theom&nma,z), this gives

, v J- dG = gn2+ o

mm,,
@moﬁwm mmmqmmy

@E‘F-— —dx+‘ady

man@mtmmﬁaw the weﬂ-de_ﬂmd‘ function =g Inx+ g Iny, The
integral of d#' from i to f is thus always equal to

‘}:'rdﬁ'—-:;j;faf=(a-l-ﬁ)]n2

irrespective of the path chosen to go from i to /.

After this purely mathematical illustration, let us return to the physical
situation of interest, The macrostate of a macroscopie system can be specified
by the values of its external parameters (e.g., of its volume V) and of its mean
energy E; other quantities, such as its mean pressure 7, are then determined.
Alternatively, one can choose the external parameters and the pressure  as
the independent variables deseribing the macrostate; the mean energy B is
then determined. Quantities such as dp or dE are thus infinitesimal differ-
ences between well-defined quantities, i.e., they are just ordinary (i.e., exact)
differentials. For example, df = B, — F;is simply the difference between the
well-defined mean energy E of the system in a final macrostate f and its well-
defined mean energy F; in an initial macrostate ¢ when these two states are only
infinitesimally different. It also follows that, if the system is taken from any
initial macrostate ¢ to any final macrostate f, its mean energy change is simply
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given by
AE’=E,—E‘-=fI_"dE (2-11-6)

But since a quantity like £ is just a function of the macrostate under con-
sideration, &; and £, depend only on the particular initial and final maero-

states; thus the inlegral f._'rdE‘ over all the energy increments gained in the

process depends only on the initial and final macrostates. In particular,
therefore, the integral does not depend on what particular process is chosen
to go from 7 to [ in evaluating the integral,

On the other hand, consider the infinitesimal work dW done by the gystem
in going from some initial macrostate ¢ to some neighboring final macrostate f,
In general dW = =X, dr, is not the difference between two numbers referring
to the two neighboring macrostates, but is merely an infinitesimal quantity
characteristic of the process of going from state 7 fo state f. (Itis meaningless to
talk of the work 7n a given state; one can only talk of the work done in going
from one stale to another state.) The work dW is then in general an inezact
differential. The total work done by the system in going from any macrostate
7 to some other macrostate f can be written as

wy = [/ aw (2-11-7)

where the integral represents simply the sum of the infinitesimal amounts of
work dW performed at each stage of the process. But, in general, the value
of the integral does depend on the particular process which is used in going
from macrostate ¢ to macrostate f,

Example Congsider a system, e.g., a gas, whose volume V is the only relevant
external parameter (see Fig. 2.7-4). Assume that the system is brought
quasi-statically from its initial macrostate of volume V, to its final macrostate
of volume V. (During this process the system may be allowed {o exchange
heat with some other system.) We can describe the particular process used
by specifying the mean pressure p( V) of the system for all values assumed by
ity volume in the course of the process. This functional relation can be repre-

Fig, 2:11-2 Relation between
mean pressure poand volume V
for two different quasi-static ! "~
processes. A e ¢
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sented by the curve of Fig. 2:11-2 and the corresponding work is given by
(2-10-4), i.e., by the area under the curve. If two different processes are
used in going from ¢ to f, deseribed respectively by the solid and dotted p
versus ¥V curves in Fig. 2-11-2, then the areas under these two curves will be
different. Thus the work W, done by the system certainly depends on the
partioular process used in going from ¢ o f.

In going from macrostate 7 to macrostatef the change A does not depend
on the process, while the work W in general does. Hence it follows by (2-8-2)
that the heat @ in general also does depend on the process used, Thus dQ
denotes just an infinitesimal amount of heat absorbed during a process; like
dW, it is, in general, not an exact differential.
Of course, if the system is thermally insulated so that @ = 0, Eq. (2-8-2)
implies that
Wiy = —AE (2-11:8)

Then the work done depends only on the energy difference between initial and
final macrostates and 75 independent of the process. Thus we have a result
which is sometimes referred to as the “first law of thermodynamics” :

some final macrostate, the work done by the system is inde-

If a thermally isolated system is brought from gome initial to
(2-11-9)
pendent of the process used.

Remark This stalement is an expression of congervation of energy and is
subject to direct experimental verificalion. For example, one may coneeive
of the following type of experiment. A thermally insulated cylinder is cloged
by a piston. The cylinder contains a system which consists of a liguid in
which there 1s immersed & small paddle wheel which can be rotated from out-
side by a falling weighl. Work can be done on this system by either ()
moving the piston, or () rotating the paddle wheel. The respective amounts
‘of work can be measured in terms of mechanical quantities by knowing (z)
the mean pressure on, and displacement of, the pisten, and (b) the distance

Fig, 2:11-3 A thermally insulated system on
which work can be done in verious ways.
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by which the known weight descends. By doing such work the system can be
brought from its initial macrostate of volume V; and pressure $; to a final
state of volume ¥, and pressure fi;. But this can be done in many ways:
e.g., by rotating the paddle wheel first and then moving the piston the required
amount; or by moving the piston first and then rotating the paddle wheel
through the requisite number of revolutions; or by performing these two types
of work alternately in smaller amounts. The statement (2-11-9) asserts
that if the flotal work performed in each such procedure is measured, the
result is always the same.* -

Similarly, it follows that if the external parameters of a system are kept
fixed so that it does no work, then dW = 0 and (2-8-3) reduces to

aQ = dE

so that d@) becomes an exact differential. The amount of heal @ absorbed in
going from one macrostate to another is then independent of the process used
and depends only on the mean energy difference between themn,

SUGGESTIONS FOR SUPPLEMENTARY READING

Statistical formulation

R. C. Tolman: “The Principles of Statistical Mechanics,” chaps. 3 and 9, Oxford
University Press, Oxford, 1938, (This book is o classie in the field of statistical
mechanics and is entirely devoted to a earveful exposition of fundamental ideas.
The chapters cited discuss ensembles of systems and the [undamental statiztical
postulate in elassical and quantum mechanics, respectively,)

Work and heat—macroscopic discussion

M. W. Zemansky: “Heat and Thermodynamics,” 4th ed, chaps. 3 and 4, MeGraw-Hill
Book Company, New York, 1957,

H. B. Callen: "“Thermodynamics,” secs. 1.1-1.7, John Wiley & Sons, Inc., New York,
1960. (The analogy mentioned on pp. 19 and 20 is particularly instructive.)

PROBLEMS

2.7 A particle of mass m is free to move in one dimension. Denote its position
coordinste by @ and its momentum by p. Suppose that this particle is confined
within a box g0 as fo be located hetween 2 = 0 and x = L, and suppose that its
energy is known to lie between F and F + 6£. Draw the classical phase space

* Paddle wheels such as this were historically used by Joule in the last century to estab-
lish the equivalence of heat and mechanical energy. Tn the experiment just mentioned we
might equally well replace the paddle wheel by an electric resistor on which electrical work
vnn be done by sending through it & known electric current.



2.2

2.3
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PROBLEMS

of this particle, indicating the regions of this space which are accessible to the
particle,

Consider a system consisting of two weakly interacting particles, each of mass
m and free to move in one dimension. Denote the respective position coordi-
nates of the two particles by z; and 2, their respective momenta by p and p..
The particles are confined within a box with end walls located at z = 0 and
# = L. The total energy of the system is known to lie between F and F + 6.
Since it ig difficult to draw a four-dimensional phase space, draw separately the
part of the phase space involving ; and ., and that involving p; and p.. Indi-
cate on these diagrams the regions of phase space accessible to the system.
Consider an ensemble of classical one-dimensional harmonic oscillators.

(z) Let the displacement z of an oscillator as a function of time ¢ be given
by = = A cos (wt + ¢). Assume that the phase angle ¢ is equally likely to
assume any value in its range 0 < ¢ < 2r. The probability w(e) de that ¢
lies in the range between ¢ and ¢ 4 de is then simply w(w) de = (2r)~! de.
For any fixed time ¢, find the probability P(z) dz that x lies between « and @ + dx
by summing w(¢) de over all angles ¢ for which # lies in this range. Express
P(z) in terms of A and .

(b) Consider the classical phase space for such an ensemble of oscillators,
their energy being known to lie in the small range between £ and F + 4F.
Caleulate P(z) dz by taking the ratio of that volume of phase space lying in this
energy range and in the range between z and z + di to the total volume of phase
space lying in the energy range between F and F -+ 86F (see Fig, 2-3.1). Express
P(z) in terms of £ and 2. By relating I to the amplitude A, show that the
result is the same as that obtained in part (a).

Consider an isolated system consisting of a large number &V of very weakly inter-
acting localized particles of spin 4. Enach particle has & magnetic moment g
which can point either parallel or antiparallel to an applied field 7. The
energy B of the system is then B = — (ny — ny)pH, where n; is the number of
spins aligned parallel to i and n, the number of spins aligned antiparallel to H.

(@) Consider the energy range between E and E + 68 where 8E is very
small compared to £ but is microscopically large so that 8 > pH. What is
the total number of states Q(F) lying in this energy range?

(b) Write down an expression for In Q(E) as a function of B. Simplify
this expression by applying Stirling's formula in its simplest form (A-6-2).

(¢) Assume that the energy F is in a region where Q(E) is appreciable, i.e.,
that it is not close to the extreme possible values + NuH which it can assume,
In this case apply & Gaussian approximation to part (@) to obtain a simple
expression for Q(E) as a function of 7.

Consider the infinitesimal quantity

Adz+ Bdy = dF

where A and B are both functions of x and y.
(a) Buppose that dF is an exact differential so that F = F(z,y). Show that
A and B must then satisfy the condition

04 _ 98
dy O

(b) If dF is an exact differential, show that the integral [dF evaluated
along any closed path in the zy plane must vanish.
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2.6

2.7

2.8

Consider the infinitesimal quantity
(z* — y) dz + zdy = dF (1)

(a) Is this an exact differential?
(b) Evaluate the integral [dF between the points (1,1) and (2,2) of Fig.
2-11-1 along the straight-line paths connecting the following pointa:

(1,1) = (1,2) — (2,2)
(L,1) = (2,1) — (2,2)
(1,1) = (2,2)

(c) Suppose that both sides of (1) are divided by =% This yiclds the quan-
tity dG = dF/z*. Is d@& an exact differential?

(d) Evaluate the integral [d(@ along the three paths of part (b).

Consider a particle confined within a box in the shape of a cube of edges
L, = Ly, = L,. The possible energy levels of this particle are then given by
(2-1-3).

(a) Suppose that the particle is in a given state specified by particular
values of the three integers n,, n,, and n,. By considering how the energy of
this state must change when the length L. of the box is changed quasistatically
by a small amount dL., show that the force exerted by the particle in this state
on a wall perpendicular to the z axis is given by F, = —9dE/aL,.

(b) Caleulate explicitly the force per unit area (or pressure) on this wall,

By averaging over all possible states, find an expression for the mean pressure
on this wall, (Exploit the property that the average values n.* = n,? = n.®
must all be equal by symmetry.) Show that this mean pressure can be very
simply expressed in terms of the mean energy E of the particle and the volume
¥V = L.L,L, of the box.
A system undergoes s quasi-static process which appears in & diagram of mean
pressure 7i versus volume V as o closed curve.  (See diagram. Such & proeess is
called “cyclic” since the system ends up in a final macrostate which is identical
to its initial macrostate.) Show that the work done by the system is given by
the area contained within the closed curve.

t

|
|
|
|
| -
1 =

v

2.9 The tension in a wire is increased quasi-statically from F, to Fo.- If the wire has

length L, eross-sectional area A, and Young's modulus Y, calculate the work
done.
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2,10 The mean pressure p of a thermally insulated amount of gas varies with its
volume V according to the relation

P =K

where v and K are constants. Find the work done by this gas in a quasistatic
process from a macrostate with pressure p, and volume V; to one with pressure
iy and volume V. Express your answer in terms of §i, ¥y, By, Vy, and .

2,11 In a quasi-static process A — B (see diagram) in which no heat is exchanged
with the environment, the mean pressure § of a certain amount of gas is found to
change with its volume V secording to the relation

§=aV! 5

where « is a constant. Find the quasi-static work done and the net heat
absorbed by this system in each of the following three processes, all of which
take the system from macrostate A to macrostate B,

(a) The system is expanded from its original to its final volume, heat being
added to maintain the pressure constant. The volume is then kept constant,
and heat is extracted to reduce the pressure to 10* dynes cm™2

() The volume is increased and heat is supplied to cause the pressure to
decrease linearly with the volume.

{¢) The two steps of process (a) are performed in the opposite order.
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Statistical thermodynamics

TaE PUNDAMENTAT statistical postulate of equal a priori probabilities can be
used as the basis of the entire theory of systems in equilibrium. In addition,
the hypothesis mentioned at the end of Sec. 2:3 (and based on the assumed
validity of the 1 theorem) also makes a statement about isolated systems not in
equilibrium, asserting that these tend to approach ultimate equilibrium situa-
tions (characterized by the uniform statistical distribution over acecessible
states which is demanded by the fundamental postulate).

In this chapter we shall show how these basic statements lead to some very
general conclusions eoncerning all macroscopie systems. The important
results and relationships thus established constitute the basic framework of
the discipline of “equilibrium statistical mechanics’” or, as it is sometimes
called, “statistical thermodynamies.” Indeed, the major portion of this book
will deal with systems in equilibrium and will therefore be an elaboration of the
fundamental ideas developed in this chapter.

IRREVERSIBILITY AND THE ATTAINMENT OF EQUILIBRIUM

51 Equilibrium conditions and constraints

Consider an isolated system whose energy is specified to lie in a narrow range.
As usual, we denote by 2 the number of states accessible to this system. By
our fundamental postulate we know that, in equilibrium, such a system is
equally likely to be found in any one of these states.

We recall briefly what we mean by ‘“‘accessible states.” There are in
general some specified conditions which the system is known to satisfy. These
act as constraints which limit the number of states in which the system can
possibly be found without violating these conditions, The accessible states
are then all the states consistent with these constraints,

The eonstraints ean be deseribed more quantitatively by specifying the
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values of some parameters® yy, ys, . . . , ¥» which characterize the system on a
macroscopic seale. The number of states accessible to the system depends
then on the values of these parameters; i.e., one can write the funetional
relation

an(ylr Hhin lyn)

for the number of states accessible to the system when each parameter labeled
by a lies in the range between y, and y, + &y.. For example, a parameter y.
might denote the volume or the energy of some subsystem. We give some
concrete illustrations.

Example 1 Consider the system shown in Fig. 2.3.2 where a box is divided
by a partition into two equal parts, each of volume V. The left half of the
box is filled with gas, while the right one is empty. Here the partition acts
as a constraint which specifies that only those states of the system are acces-
sible for which the coordinates of all the molecules lie in the left half of the box,
In other words, the volume ¥ accessible to the gas is a parameter which has
the prescribed value V = V..

Exemple 2 Consider a system A consisting of two subsystems A and A4’
separated by a fixed thermally insulating partition (see Fig. 2:7-1). This
partition acts &9 8 constraint which specifies that no energy can be exchanged
between A and A'. Hence only those states of A ® are accessible which have
the property that the energy of A remains constant st some specified value
E = E,, while that of A' remsains constent at some other speecified value
E'= g/

Example 3 Consider the system of Fig. 2-8:1 where a thermally insulated
piston separates two gases A and A’. If the piston is clamped in position,
then this piston acts as a constraint which specifies that only those states
of the total system are accessible which are such that the A melecules lie
within 4 given fixed volume 7, while the A’ molecules lie within a given fixed
volume V'

Suppose that the initial situation with the given constraints is one of
equilibrium where the isolated system is equally likely to be found in any of
ite @, accessible states. Consider that some of the constraints are now
removed. Then all the states formerly accessible to the system still remain
aceesgible to it; but many more additional states will, in general, also become
accessible. A removal of constraints can then only result in increasing, or
possibly leaving unchanged, the number of states accessible to the system,
Denoting the final number of accessible states by @, one can write

Q> % (3-1-1)

* These are not necessarily exfernal parameters,
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Foeus attention on a representative ensemble of systems similar to the
one under consideration and suppose that, when the constraints are removed,
Qy > Q. Immedialely after the constraints are removed, fhe systems in the
ensemble will not be in any of the states from which they were previously
excluded. But the systems occupy then only a fraction

Ly it
P = Q, (3-1-2)
of the 9, states now accessible to them. This is not an equilibrium situation,
Indeed, our fundamental postulate asserts that in the final equilibrium situa-
tion consistent with the absence of constraints, it is equally likely that each
of the @, states be occupied by the systems. If @, > @, the particular situa-
tion where the systems are distributed only over the @; original states becomes
thus a very unlikely one; to be precige, its probability of occurrence ig given by
(3-1-2). In accordance with the hypothesis discussed at the end of Sec. 23,
there is then a pronounced tendency for the situation to change in time until
the much more probable final equilibrium situation is reached where the sys-
tems in the ensemble are distributed equally over all the possible §2, states.
Let us illustrate these statements with the examples mentioned previously.

Example 1 Suppose that the partition in Fig. 2-3-2 18 removed. There is
now no longer any constraint preventing a molecule from ocecupying the
right half of the box. It is therefore exceedingly improbable that all the
molecules will remain concentrated in the left half. Tnstead, they move
about until they become randomly disiributed throughout the entire box.
In this final equilibrium situation each melecule is then equally likely to be
found anywhere inside the box.

Suppose that this final equilibrium situation in the absenee of the par-
tition has been attained., What then is the probability P, of encountering a
situation where all the molecules are again concentrated in the left half of the
box? The probability of finding one given molecule in the left half of the
box is . Hence the probability P; of simultaneously finding all N molecules
in the left half of the box is obtained by simply multiplying the respective
probabilities of each molecule being in the left half, i.e.,

F;= &)N
When N is of the order of Avogadro’s number, so that N =~ 6 X 103, this
probability is fantastically small; i.e.,

P; = 10—10%

Example 2 Imagine that the partition in Fig. 2:7+1 is made thermally con-
ducting. This removes the former constraint because the systems A and A4’
are now free to exchange energy with esch other. The number of states
accessible to the combined system A® = A - A’ will, in general, be much
greater if A adjusts its energy to some new value (and if A’ correspondingly
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adjusts its energy so as to keep the energy of the isolated total system A®
unchanged). Hence the most probable final equilibrium situation results
when such an adjustment has taken place by virtue of heat transfer between
the two systems.

Example 3 TImagine that the piston in Fig. 2-8- 1 is unclamped so that it is.
free to move., Then the number of states accessible to the combined system
A 4 A7 is, in general, much increased if the volumes of 4 and A’ assume
new values significantly different from their original ones. Thus a much

more probable final equilibrium situation for the combined system 4 4 A4’
1s attained if the piston moves so as to bring the velumes of 4 and 4’ to
these new values.* As one would expect (and as we shall prove later), this
final equilibrium situation corresponds to one where the mean pressures
of both gases are equal so that the piston is in mechanieal equilibrium.

This discussion can be phrased in terms of the relevant parameters
Y1, « . . , yn of the system. Suppose that a constraint is removed; for exam-
ple, one of the parameters (call it simply y), which originally had the value
¥ = Ifs, 18 now allowed to vary. Singe all the states accessible to the system
are a priori equally likely, the equilibrium probability distribution P(y) of
finding the system in the range between y and y -+ éy is proportional to the
number of states accessible to the system when the parameter lies in this
range; i.e.,
Py) = 9(y) (3-1-3)

This probability implies an oceurrence of possible values of y, which is, in
general, extremely different from the original sifuation where all sysfems in
the ensemble were characterized by the value y = ¥ (see Fig. 3-1:1). In
the absence of constraints the value y = y, of the parameter represents,
therefore, a very improbable configuration. Henee the situation tends to
change in time until the uniform equilibrium distribution of systems over

* The piston may oscillate back and forth several times before settling down in its
final equilibrium position.

Fig. 3-1'1 Schematic diagram
showing the number of states {{y)
accessible to a system as a function
of a purametery. The initial value
of this parameter is denoted by y:.
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accessible states is attained, i.e., until the various values of y oceur with
respective probabilities given by (3:1-3). Usually 2(y) has a very pro-
nounced maximum at some value 7. In that ease practically all systems in
the final equilibrium situation will have values corresponding to the most
probable situation where y is very close to §. Hence, if inifially y; £ 7, the
parameter y will change after the constraint is removed until it attains values
close to 7 where © is maximum, This discussion can be summarized by the
following statement:

If some constraints of an isolated system are removed, the param-
eters of the system tend to readjust themselves in such a way that
Q(y1, - - - ; Yn) approaches a maximum. In symbols

Qy1, . . ., Yau) — maximum (3-1-4)

3 - 2 Reversible and irreversible processes

Suppose that the final equilibrium situation has been reached so that the sys-
tems in the ensemble are uniformly distributed over the @, accessible final
states. If the constraints are now gimply restored, the systems in the ensemble
will still oeeupy these Q, states with equal probability. Thus, if @, > @
simply restoring the constraints does not restore the initial situation. Onece
the systems are randomly distributed over the &, states, simply impesing or
reimposing a constraint cannot cause the systems to move spontaneously ouf
of some of their possible states so as to oceupy a more restricted class of states,
Nor eould the removal of any other constraints make the situation any better;
it could only lead to a situation where eyen more states become accessible to
the system so that the system could be found in them as well.

Congider an isolated system (i.e., one whieh cannot exchange energy in
the form of heat or work with any other system) and suppose that some process
oceurs in which the system goes from some initial sifuation to some final situa-
tion. If the final situation is such that the imposition or removal of constraints
of this isolated system cannot restore the initial situation, then the process is
said to be “irreversible.”” On the other hand, if it is such that the imposition
or removal of constraints can restore the initial situation, then the process is
said to be “reversible.”

In terms of these definitions, the original removal of the constraints in the
cage where @; > €, can be said to be an irreversible process. Of course, it is
possible to encounter the speecial case where the original removal of the con-
straints does not change the number of accessible states so that £, = @, Then
the system, originally in equilibrium and equally likely to be in any of its @
states, will simply remain distributed with equal probability over these states.
The equilibrium of the system is then completely undisturbed go that this
special process is reversible,

We again illustrate these comments with the previous examples:
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Example 1 (Once the molecules are in equilibrium and uniformly distributed
throughout the box, the simple act of replacing the partition does not change
the essential situation. The molecules still remain uniformly distributed
throughout the box. The original removal of the partition thus constitutes
an irreversible process.

This does nof mean that the original situation of this system can never be
restored. It ean, provided that the system is not kept isolated but is allowed
to interact with other systems. For example, in the present situation one
can take & thin piston, which is originally coineident with the right wall of the
box. One can now use some outside device A' (e.g., a falling weight) to move
the piston to the center of the box, thus doing work on the gas in order to
recompress it into the left half against the pressure exerted by the gas. The
volume of the gas has now been restored to its original value V, and the right
half of the box is empty as before. But the energy of the gas is greater than
originally because of the work done on it during recompression, To restore
the energy of the gas to its previous value, one can now let the gas give off just
the right amount of heat by bringing it into thermal contact with some suita-
ble system A", The gas has thus been restored to its original situation, its
volume and energy being the same as initially.

Of course, the ssolated system A consisting of the gas and the systems 4’
and A" has not been restored to its original situation, since the systems A’
and A have been changed in the process, The process is still irreversible
for the entire system A®, Indeed, in releasing the weight to move the piston
and in eliminating the thermal insulstion to allow heat exchange with A",
we have removed constraints of A and inereased the number of states
accessible to this isolated system.

FExample 2 Suppose that thermal interaction between A and A’ has taken

place and that the systems are in equilibrium, Simply making the partition

again thermally insulating does not change the new emergies of A and A"

k One cannot restore the system A + A’ to its original situation by making

heat flow in a direction oppesite to the original direction of sponfaneous

heat transfer (unless one introduces interaction with suitable outside systems),
The original heat transfer is thus an irreversible process.

Of course, a special ease may arise where the initial energies of the systems

A and A’ are such that making the partition originally thermally conducting

does not increase the number of states accessible to the combined system

| A 4+ A'. Then no net epergy exchange takes place between 4 and A, and

the process is reversible. )

Example 3 This again i, in general, an irreversible process. Bimply clamp-
ing the piston in its new position, so that it is again not free to move, does not
restore the initial volumes of the gases.

The diseussion of this section can be summarized by the statement that
if some constraints of an isolated system in equilibrium are removed, the num-
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ber of states accessible to the system ean only increase or remain the same, i.e.,
[ 787

If @, = i, then the systems in the representative ensemble are already
distributed with equal probability over all their accessible states. The system
remains, therefore, always in equilibrium and the process is reversible.

If @, > £, then the distribution of systems over the possible states in the
representative ensemble is a very improbable one, The system will therefore
tend to change in time until the most probable final equilibrium situation of
uniform distribution of systems over accessible states is reached. Equilibrium
does not prevail at all stages of the process and the process is irreversible.

Remarks on significant time scales Note that we have nowhere made any
statements about the rafe of a proeess, i.e., about the relaxation time 7 required
by a system to reach the final equilibrium situation. An answer to this kind
of question could only be obtained by & delailed analysis of the interactions
between particles, since these interactions are responsible for bringing about the
change of the system in time which results in the attainment of the final
equilibrium state. The beauty of our general probability arguments is pre-
cigely the fact that they yield information about equilibrium situations,
without the necessity of getfing involved in the diffieult detailed analysiz of
interactions between the very many particles of a systen.

The general probability arguments of statistical mechanics are fthus
basically restricted to a consideration of equilibrium situations which do not
change in time. But this limitation is not quite as severe as it might appear af
first sight. The important parameter is really the time f., of experimental
interest compared to the significant relaxation times = of the system under
consideration. There are really three cases which may arise,

1. 7 < lxp:  In this ease the system comes to equilibrium very quickly
compared to times of experimental inferesl. Hence probability argunients
concerning the resulting equilibrium situation are eertainly applicable.

2. 7 3> Lap: This is the opposite limit where equilibrium is achieved very
slowly compared to experimental times. Here the situation would not be
changed significantly if one imagined eonstraints {o be introduced which would
prevent the system from ever reaching equilibrium at all.  But in the presenee
of these constraints the system would be in equilibrinm; henee it can again be
treated by general probability arguments,

Example 1 Imagine thatin Fig. 2-7- 1 the partition has a very small thermal
conductivity so that the amount of energy transferred between A and A
during 4 time fu., of experimental interest is very small. Then the situation
would be substantially the same if the partition were made thermally insu-
lating; in that case both 4 and A’ ean separately be considered to be in ther-
mal equilibrium and can be diseussed accordingly.
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Fig. 3-2-1 Experimental setup in which a gas is
contained in a cylinder closed by a piston which is
free 1o oscillate. The gas is in thermal contact
with the laboratory bench,

Laboratory bench

Example 2 Asasecond example, consider the situation of Fig. 3:2+1. Here
& gas is contained in a eylinder closed by a movable piston, and the whole
apparatus is sitting on a bench in the laboratory. When the piston is pushed
down and then released, it will oscillate with a period ... about its equilibrium
position, There are two significant relaxation times in the problem. If the
piston is suddenly displaced, it takes a time ¢,, before the gas will again come
to thermal equilibrium with the laboratory bench by exchanging heat with it;
it also takesa time ¢, before the gas of molecules will regain internal thermal
equilibrium so that it is again uniformly distributed over all its accessible
states., Ordinarily .. < ¢y, If the time of experimental interest (which
18 here the period of nss:illatiun t,..) is such that

Tint % Lona { Tip

one can treat the problem fo good approximation by considering the gas
to be always in internal equilibrium in a macrostate corresponding to the
instantaneous position of the piston, and by considering the walls of the
eylinder to be thermally insulating.

3. 7 = lxyt In this case the time required to reach equilibrium is com-
parable fo times of experimental significance. The statistical distribution of
the system over its aceessible states is then not uniform and keeps on changing
during the time under consideration. One is then faced with a difficult pro-
blem which cannot be reduced to a discussion of equilibrium situations.

THERMAL INTERACTION BETWEEN MACROSCOPIC SYSTEMS

33 Distribution of energy between systems in equilibrium

Let us now discuss in greater detail the thermal interaction between two
macroscopic systems A4 and A’.  We shall denote the respective energies of
these systems by E and £, For convenience, we imagine these energy scales
to be subdivided into equal small intervals of respective magnitudes §F and
éB'; then we shall denote by Q(E) the number of states of 4 in the range
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Fig. 3-3-1 Two macroscopic systems
A and A' in thermal interaction with
each other.

between E and E + 6E, and by @' (£’) the number of states of A’ in the range
between £’ and E’ + 8E'.

We assume that the systems are not thermally insulated from each other
so that they are free to exchange energy. (The external parameters of the
systenis are supposed to remain fixed; thus the energy transfer is in the form of
heat.) The combined system A® = 4 + A4’ is isolated and its total energy
E®™ is therefore constant. The energy of each system separately is, however,
not fixed, since it can exchange energy with the other system. We assume
always, when speaking of thermal contact between two systems, that the infer-
action between the systems is weak so that their energies are simply additive.
Thus we can write

E 4+ E' = B = gonstant (3-3-1)

Remark The Hamiltonian (or energy) 3¢ of the combined system ean always
be written in the form
3 = 5 43¢’ 4 Jchinw

where iC depends only on the variables deseribing A, 3¢’ only on the variables
describing A’, and the interaction term JCU=¥ on the variables of both sya-
tems.* This last term 52029 ecannot be zero, because then the two systems
would not interact at all and would have no way of exchanging energy and
thus coming to equilibrium with each other. But the assumption of weak
interaction is that 3¢¥»%, although finite, is negligibly small compared to 3¢
and J€°.

Suppose that the systems 4 and A’ are in equilibrium with each other,
and focus attention on a representative ensemble such as that shown in Fig,
2-6-1. Then the energy of A can assume a large range of possible values, but
these values oceur by no means with equal probability. Indeed, suppose that
A has an energy E (i.e., more precisely an energy between E and £ + §E.)
Then the corresponding energy of A’ is by (3:3:1) known to be

B = HFW0 — B (33‘2‘)

The number of states accessible to the entire system A4 can thus be regarded

as a function of a single parameter, the energy F of system 4. Let us denote
* For example, for two particles moving in one dimension

p P

Im  2m

where the first terms deseribe their kinetic energies and the last one desceribes their potential
energy of mutual interaction which depends on their positions z and 2.

+ Ulrz’)

K =
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by 2@ (F) the number of states accessible to A when 4 has an energy between
E and £ + 8. Our fundamental postulate asserts that in equilibrium 4
must be equally likely to be found in any one of its states, Hence it follows
that the probability P(H) of finding this combined system in a configuration
where A has an energy between F and B + 8F is simply proportional to the
number of states @ (E) accessible to the total system A under these cir-
cumstances. In symbols this ean be written

P(E) = CQO(E) (3-3-3)

where (' is a constant of proportionality independent of E.

More explicitly, this probability could also be written as
: o
pE) = 3D

Rw}m

where (9,,, denotes the tofal number of states accessible to A%, Of course,
Q,,, can be obtained by summing Q@ (F) over all possible energies £ of the
system A. BSimilarly, the constant €' in (3-3-3) can be determined by the
normalization requirement that the probability P(&) summed over all pos-
sible energies of 4 must yield unity. Thus

0l = QO,, = ggm(}g}

But when A4 has an energy E it can be in any one of its Q(F) possible
states. At the same time A’ must then have an energy E' = E® — F so that
it can be in any one of its @'(A') = Q'(E®™ — E) possible states. Since every
possible state of A can be combined with every possible state of A’ to give a
different state of the total system A9, it follows that the number of distinet
states accessible to A when 4 has energy F is simply given by the product

QO(E) = QE)Q(E® — E) (3-3:4)

Correspondingly, the probability (3-3-3) of system A having an energy near
F is simply given by

o P(E) = CQUE)Q(E® — E) (3-35)

Hlustrative evample with very small numbers Consider the fwo
systems A and A’ having the characteristies illustrated in Fig. 3-3-2. Sup-
pose that the total energy B of both systems is, in the arbitrary units used,
equal to 15, One possible situation, for example, would be that B = 4 and
E’ =11, In this case 4 could be any one of its two possible states and 4’
in any one of its 40 states. There are then a total of Q@ = 2 3 40 = 80
different possible states for the combined system A + 4’ Let us enumerate

4
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systematically some of the conceivable situations in a table when the total

energy of the system iz £ = 15.

ar

Suppose E = ;thenE' = . Here (£ = |, and 0" (E') = . Hence AW({E} =
4 1t 2 40 80
& A0 & 26 130
6 8 10 16 160
T ] 37 8 136
8 7 25 3 76
net 5
Figa )
17—
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b
2
- - . i + . >
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28—
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i
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Fig. 3-3:2 Craph showing. in the case of twe special very small systens
A and A'. the number of states Q(E) accessible to A when its energy is E
and the number of states O'(E') accexsible to A" when its energy is E'.

(The energies are measured in terms of an arbitrary unit.)
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Note that it would be most probable in the ensemble to find the combined

“system in a state where 4 has energy # = 6and A’ has energy £’ = 9. This
situation would be likely to oceur twice as frequently as the situation where
F = 4 and B' = 11.

Let us now investigate the dependence of P(E) on the energy #. Since
4 and A’ are both systems of very many degrees of freedom, we know by
(2-5-10) that both Q(%) and Q'(E) are extremely rapidly increasing funetions
of their respective arguments. Hence it follows that if one considers the
expression (3:3-5) as a function of increasing energy F, the factor QE)
inereases extremely rapidly while the factor Q'(E® — E) decreases extremely
rapidly. The result is that the product of these two factors, i.e., the proba-
bility P(Z), exhibits an extremely sharp maximum for some particular value
E of the energy E. Thus the dependence of P(EY on E must show the general
behavior illustrated in Fig. 3-3-3 where the width A*E of the region where
P(E) has appreciable magnitude is such that A*E < < < .

Fig. 3-3:3 Schematic illus-

, tration of the functional

J dependence of the probability
P(E) on the energy K.

v

Remark More explicitly, if the number of states exhibits the behavior dis-
cussed in (2:5-10) so that @ « Ef and @ = B, then (3-3-5) gives

InP=flnE 4 f'In (EY — E) + constant

Thus In P exhibits a unique maximum as a function of &, and this maximum
of the logarithm corresponds to a very pronounced maximum of P itself.
Exeept for the fact that this maximum is enormously sharper for these macro-
scopic systems where @ and 2’ are such rapidly varying functions of energy,
the sitnation is analogous to the simple example discussed above. We shall
postpone until Sec. 3-6 a more quantitative estimate of the width A*E of the
maximum in the case of macroscopic systems.

To locate the position of the maximum of P(E), or equivalently, of the
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maximum of its logarithm, we need to find the value £ = £, where*

b S e (3:3-6)
But by (3-3-5)
In P(E) = InC + In Q(E) + In Q'(E") (3:3:7)
where £ = E© — E. Hence (3-3-6) becomes
alnag(E) 5 d hl;;"(b"} {=1) =0
or
> B(E) = B'(E") (3-38)

where E and £ denote the corresponding energies of 4 and A’ at the maxi-
mum, and where we have introduced the definition

> B = "”;‘;E“ (3.3-9)

with a corresponding definition for 8. The relation (3:3-8) is the equation
which determines the value B where P(E) is maximum.

By its definition, the parameter @ has the dimensions of a reciprocal energy.
It is convenient to introduce a dimensionless parameter T defined by writing

kT = % (3:3-10)
where I is some positive constant having the dimensions of energy and whose
magnitude can be chosen in some convenient arbitrary way. The parameter T
is then by (3-3-9) defined as

1 ¥

5= ;‘% (3-3-11)
where we have introduced the definition
> S=knQ (3-3-12)

This quantity S is given the name of “entropy.” The condition of maximum
probability P(E) is then, by (3:3.7), expressible as the condition that the
total entropy

8 + 8 = maximum (3:3-13)
The condition that this oecurs can, by (3-3-8), be written as
: T=1 (3-3-14)

* We write this as a perfial derivative to emphasize that all external parameters of the
system are considered to remain unchanged in this discussion. The reason that it is some-
what more convenient to work with In P instead of P itself is that the logarithm is a much
more slowly varying function of the energy B, and that it involves the numbers fand 0’ asa
simple sum rather than as a product.
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Remark Note that the number € of accessible states in the energy range
6F (and hence also the entropy 8 = & In @ of (3-3-12)) depends on the size
81 chosen as the fixed small energy-subdivision interval in a given discussion.
This dependence of § is, however, utterly negligible for 4 macroscopie system
and does not at all afiect the parameter 8.
Indeed, by (2-5:1), Q(E) is simply proportional to §E; ie., QB) =

w(E) 8F, where u is the density of states which is independent of 8. Since §F
is & fixed interval independent of &, it follows by (3-3-9) that

i dlnw

which is independent of 8H. Furthermore, suppose that one had chosen
instead of 65 a different energy subdivision interval §*E. The corresponding
number of states 2*(£) in the range between E and E + 6*F would then be
given by

(3-3-15)

_ Q(F)
% (E) 5E &*E
The corresponding entropy defined by (3-3-12) would then be
s*=kmn*=s+km%§ (33 16)

Now by (2:5:9), § = kInQ is of the order of kf, where ' is the number of
degrees of freedom of the system. Imagine then an extreme situation
where the inferval 8E* would be chosen to be so fantastically different from
8F as to differ from it by a factor as large as f (e.z., by as much as 10%),
Then the second term on the right side of (3:3:16) would at most be of the
order of kInf. But when f is a large number, Inf < < < f. (For example,
if f = 10%, Inf = 55, which is certainly utterly negligible eompared to f
itself.) The last term in (33-16) is therefore completely negligible compared
to 8, so that one has to excellent approximation
8% = 8

The value of the entropy 8 = k In Q calculated by (3-3-12) is thus essentially
independent, of the interval 8F chosen for the subdivision of the energy seale.

3 . 4- The approach to thermal equilibrium

We pointed out already that the maximum exhibited by P(E) at the energy
E = F is extremely sharp. There is, therefore, an overwhelmingly large
probability that, in an equilibrium situation where 4 and A’ are in thermal
contact, the system A has an energy E very close to B, while the system A’
has correspondingly an energy very close to E® — E = E'. The respective
mean energies of the systems in thermal contact must therefore also be equal
to these energies; i.e., when the systems are in thermal contact,

E=E and E=F (3:4-1)
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Consider then the situation where 4 and A’ are initially separately in
equilibrium and isolated from each other, their respective energies being very
close to B, and E/. (Their respective mean energies are accordingly B, = E;
and B/ = E/') The systems A and A’ are now placed in thermal contact so
that they are free to exchange energy with each other. The resulting situation
is then an extremely improbable one, unless it happens that the systems
initially have energies very close to & and &, respectively. The situation will
therefore tend to change in time until the systems attain final mean energies
E; and By which are such that

E__r = E and Ef' = E‘? (3‘4'2)

so that the probability P(E) becomes maximum. By (3-3-8) the 8 parameters
of the systems are then equal, i.e.,

R N fre 4 (3-4:3)
where By = B(E/) and B/ = B(E,")

The final probability is maximum and thus never less than the original
one. By virtue of (3:3-7) this statement can be expressed in terms of the
definition (3:3:12) of the entropy as

S(H;) + S'(E) > S(8) + S'(E) (3-4-4)

When A and A’ exchange energy in attaining the final equilibrium, their total
energy is, of course, always conserved. Thus

E, + B = E: + B/ (3-4-5)
Let us denote the entropy changes of the systems by

AS = 8, — 8: = S(Hy) — 8(E)

AS' = 8/ — 8¢ = S(E/) — S(B) (3-4-6)

Then the condition (3:4-4) can be written more compactly as
fie- AS + A8 >0 (3-4-7)

Similarly, the mean energy changes are, by definition, simply the respective
heats absorbed by the two systems. Thus
Q = E_ e E—“

Q! == E'l!! — E"'_f (3'4'8)

The conservation of energy (3-4-5) can then be written more compactly as
| Q+@Q =0 (3:4-9)

Hence Q' = — @, so that if @ is positive then Q' is negative, and vice versa.
A negative heat absorbed is simply a heat given off, and (3-4-9) expresses the
obvious fact that the heat absorbed by one system must be equal to the heat
given off by the other system.
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By definition, we shall call the system which absorbs heat the ‘“‘colder”
system and the system which gives off heat the “warmer,” or “hotter,”

system,
There are thus basically two cases which can arise:

1. The initial energies of the system may be such that 8, = £, where
B: = B(E,) and B/ = B(B;). Then H; = £, and the condition of maximum
probability (or enfropy) is already fulfilled. (Equation (3-4-7) becomes an
equality.) The systems remain, therefore, in equilibrium. There is then also
no net exchange of energy (i.e., of heat) between the systems.

2. More generally, the initial energies of the systems are such that
B8; ¥ 8. Then E; > E, and the systems are in a very improbable nonequi-
librium situation. (Equation (3:4-7) is an inequality.) This situation will
therefore change in time. Transfer of heat between the systems fakes place
until the condition of maximum probability (or entropy) is achieved where
E; = F and where 8,/ = 8,.

35 Temperature

In the preceding section we saw that the parameter g (or equivalently, T =
(k8)~1) has the following two properties:

1. If two systems separately in equilibrium are characterized by the
same value of the parameter, then the systems will remain in equilibrium when
brought into thermal contact with each other.

2. If the systems are characterized by different values of the parameter,
then they will nof remain in equilibrium when brought into thermal contact
with each other,

In addition, suppose we have three systems 4, B, and C. We know that
if 4 and € remain in equilibrium when brought into thermal contact, then
B4 = Be. Similarly, we know that if B and € also remain in equilibrium when
brought into thermal contact, then 8z = B¢. But then we can conclude that
B4 = Bs, so that systems 4 and B will also remain in equilibrium when brought
into thermal contact. We thus arrive at the following statement, sometimes
known as the “zeroth law of thermodynamies’:

If two systems are in thermal equilibrium with a third sys-
tem, then they must be in thermal equilibrium with each (3:-5-1)
other.

This property makes possible the use of test systems, called ‘‘thermome-
ters,” which allow measurements to decide whether any two systems will or
will not remain in equilibrium when brought into thermal contact with each
other. Such a thermometer is any macroscopic system M chosen in accord-
ance with the following two specifications:

1. Among the many macroscopic parameters characterizing the system M,
select one (call it #) which varies by appreciable amounts when M is brought
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into thermal contact with the various systems to be tested. All the other
macroscopic parameters of M are held fixed. The parameter ¢, which is
allowed to vary, is called the “thermometric parameter’” of M.

2. The system M is chosen to be much smaller (i.e., to have many fewer
degrees of freedom) than the systems which it is designed to test. This is
desirable in order to minimize the possible energy transfer to the systems under
test so as to reduce the disturbance of the systems under test to a minimum.

Examples of thermometers

@. Mercury in a glass tube. The height of the mereury in the tube is
taken as the thermometric parameter #. This is the familiar “mercury-in-
glass thermometer.”

b. Gas in a bulb, its volume being maintained constant. The mean
pressure of the gas is taken as the thermometrie parameter . This is called
a “constant-volume gas thermometer.”

e. Gas in a bulb, its pressure being maintained constant. The volume
of the gas is taken as the thermometric parameter 2. This is called a “con-
stant-pressure gas thermometer.”

d. An electrical conductor maintained at constau‘c pressure and carrying
a current. The electrical registance of the conductor is the thermometric
parameter . This is called a “resistance thermometer.”

Measure ! \ level difference
leve]l difference is kept constant

— —_——
Hg level Measurs
always brovghy height of

10 this height | He level

Constant rolume Constant pressure

Fig, 3:5.1 Congtant-volume and constant-pressure gas thermometers,

A thermometer M is used in the following way. It is successively placed
in thermal contact with the systems under test, call them A and B, and is
allowed to come to equilibrium with each.

1. If the thermometric parameter ¢ of the thermometer M (e.g., the
height of the Hg column of the mercury-in-glass thermometer) has the same
value in both cases, one knows that after 3 has come to equilibrium with A,
it remains in equilibrium after being placed in thermal contact with B. Hence
the zeroth law allows one to conclude that A and B will remain in equilibrium
if brought into contact with each other.
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2. If the thermometric parameter of M does not have the same value in
both cases, then one knows that A and B will not remain in equilibrium if
brought into thermal contact with each other. For suppose they did remain
in equilibrium; then, after M attains thermal equilibrium with A, it would by
the zeroth law have to remain in equilibrium when brought into thermal con-
tact with B. Thus the parameter ¢ could not change when M is brought into
thermal contact with B.

Consider any thermometer M with any one parameter ¢ chosen as its
thermometric parameter. The value assumed by # when the thermometer M
has come to thermal equilibrium with some system A will, by definition, be
called the “temperature” of the system A with respect to the parficular ther-
mometric parameter ¢ of the particular thermometer M.

According to this definition the temperature can be a length, a pressure,
or any other quantity. WNote that, even if two different thermometers have
parameters of the same dimensions, it is in general not true that they will yield
the same value of temperature for the same body. Furthermore, if a body €
has a temperature halfway between the temperatures of bodies 4 and B when
measured by one thermometer, this statement is not necessarily true with
respect to the temperatures measured by some other thermometer,

Nevertheless, the somewhat arbifrary temperature concept which we have
defined has, according to our discussion, the following fundamental and useful
property:

Two systems will remain in equilibrium when placed in ther-
mal contact with each other if and only if they have the same (3:5-2)
temperature (referred to the same thermometer).

Note that if Y(#) is any single-valued funetion of ¢, then it can be used as a
thermometric parameter Just as well as & itself. This function ¢(i}) also
satisfies the property (3-5-2) and can be equally well designated as the tem-
perature of the system with respect to the particular thermometer chosen for
the measurement,.

The temperature concept which we have defined is important and useful,
but is rather arbitrary in the sense that the temperature assigned to a system
depends in an essential way on the peculiar properties of the particular system
M used as the thermometer.

On the other hand, we can exploit the properties of the parameter g and
use the particular parameter 8y of the thermometer M as its thermometric
parameter. Then we know that when the thermometer ig in thermal equilib-
rium with a system A, By = f4. The thermometer measures then, by virtue
of (3-3-9), a fundamental property of the system A, namely, the variation of
its density of states with energy. Furthermore, if one uses any other thermome-

" ter M’, it too will read a value 8y = B4 when brought into thermal contact

with system A. Thus we see that
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If the parameter 8 is used as a thermometrie parameter, then any
thermometer yields the same temperature reading when used to
measure the temperature of a particular system. Furthermore, this
temperature measures a fundamental property of the density of
states of the system under test.

The parameter 3 is, therefore, a particularly useful and fundamental tem-
perature parameter. The corresponding dimensionless quantity T = (kg)~!
is accordingly called the “absolute temperature.” We shall postpone until
later a discussion of practical procedures for finding numerical values of 3 or T
by appropriate measurements,

Soeme properties of the absolute temperature By (3:3:9) the absolute
temperature is given by

1 aln
RT=P= 35 (8-5:8)

We saw in Sec. 2:5 that Q(F) is ordinarily a very rapidly inereasing function of
the energy E. Hence (3:5:3) shows that ordinarily

8>0 or i) (3:5-4)

*Remark This is true for all ordinary systems where one takes into account
the kinetie energy of the particles. Such systems have no upper bound on
their possible energy (a lower bound, of course, slways exists—namely, the
quantum mechanical ground-state energy of the system); and as we have seen
in See. 2-5, {1(#) increases then roughly like B/, where f is the number of
degrees of freedom of the system. Exeeptional situations may arise, however,
where one does not want to take into account the translational degrees of
freedom of a system (i.e., voordinates and momenta), but focuses attention
only on its spin degrees of freedom. In that case the sysfem has an upper
bound to its possible energy (e.g., all spins lined up antiparallel to the field)
as well as a lower bound (e.g., all sping lined up parallel to the field). Corre-
spondingly, the fofal number of states (irrespective of energy) available to
the system is finite. In this case the number of possible spin states @,,.(E)
at first increases, as usual, with increasing energy; but then it reaches a
maximum and decreases again. Thus it is possible to get absolute spin tem-
peratures which are negative as well as positive,

If one disregards such exceptional cases where systems have an upper
bound to their possible total energy, T is always positive and some further
general statements can readily be made. In (2-5.10) it was shown that the
functional dependence of @(F) is roughly given by

QLY = I

where [ is the number of degrees of freedom of the system and the energy &
is measured with respect to its ground state. Thus

InQ = fln E + constant
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Thus, when E = E = E, one gets

3l Q(E) _

8= = (3-5-5)

[~

E
f

Thus the quantity k7' is a rough measure of the mean energy, above the ground
state, per degree of freedom of a system.

The condifion of equilibrium (3:3:8) between two systems in thermal
contact asserts that fheir respective absolute temperatures must be equal.
By virtue of (3-5-6) we see that this condition is roughly equivalent to the
fairly obvious statement that the total energy of the interacting systems is
shared between them in such a way that the mean energy per degree of freedom
is the same for both systems.

In addition, the absolute temperature 7' has the general property of
indicating the direction of heat flow between two systems in thermal contaect.
This is most readily seen in the case where an infinitesimal amount of heat @ is
transferred between two systems A and A, originally at slightly different
initial temperatures 8; and 8. Using the notation of Sec. 3-3, the condition
that the probability (3-3-7) must increase in the process (or equivalently, the
condition (3-4-7) for the entropy) can be written as

Blnﬂ(E;) 5 alnﬂ’(EiJ} 7 B

Using the definition of g ag well as the relations (3-4-8); this becomes
(B: —BHNR =0

and kT =~ (3:56)

Thus, if @ > 0, then

B = 8
and T.‘ S T."

if T; and T are positive. Hence positive heat is always absorbed by the sys-
tem with higher 8 and given off by the system with lower 8. Or, in the ordinary
case where the absolute temperatures are positive, heat is absorbed by the
system at the lower absolute temperature T and given off by the system at the
higher absolute temperature T. Since the words “colder” and “warmer” were
defined in Sec. 3 -4 in terms of the direction of heat flow, one can say (in the case
of ordinary positive absolute temperatures) that the warmer system has a
higher absolute temperature than the colder one. (We shall see later that
the same conclusions are frue in situations where a finife amount of heat is
transferred.)

3 -0 Heat reservoirs

‘The thermal interaction between two systems is particularly simple if one of
them is very much larger than the other one (i.e., if it has many more degrees
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of freedom). To be precise, suppose that A’ denotes the large system and A
any relatively small system with which it may interact. The system A" is then
said to act as a “heat reservoir,”” or “heat bath,” with respect to the smaller
system if it is so large that its temperature parameter remains essentially
unchanged irrespective of any amount of heat @" which it may absorb from the
smaller system. In symbols, this condition says that A’ is such that

‘BE' Q| «p (3-6-1)
Here 88'/8E' is of the order of 8'/E’, where E’ is the mean energy of 4" measured
from its ground state,* while the heat )’ absorbed by A’ is at most of the order

of the mean energy E of the small system A above its ground state. Hence
one expects (3-6-1) to be valid if

E
E)r
i.e., if A'is sufficiently large compared to A.

Note that the concept of a heat reservoir is a relative one. A glass of tea
acts approximately as a heat reservoir with respect to a slice of lemon immersed
in it. On the other hand, it is certainly not a heat bath with respect to the
whole roonti; indeed, the relationship there is the opposite.

If the macroscopic system A’ has Q'(E") accessible states and absorbs heat
Q' = AR, one can express the resulting change in In Q' by a Taylor’s expansion.
Thus

InQ'(E' + Q) — mh@(E") = (‘3;‘5;")@’ +3(Z ]}’,?)Q’*+ ‘i

.ri' laﬁf re g | S
=B+ @+ (3-6-2)

«1

where we have used the definition (3-3-9). But if A’ acts as a heat reservoir
so that (3-6:1) is satisfied, then 8’ does not change appreciably and higher-
order terms on the right of (3-6-2) are negligible. Thus (3:6-2) reduces
simply to

@& + Q) — I (E) = #Q = & (3-6:3)
The left side expresses, by the definition (3:3:12), the entropy change of the
heat reservoir. Thus one arrives at the simple result that, if a heat reservoir
at temperature T absorbs heat ', its resulting entropy change is given by

[
B AS' = % (for a heat reservoir) (3-6-4)

A similar relation holds for any system which is at absolute temperature
T = (k8)~' and which absorbs an infinitesimal amount of heat d@Q from some

* Indeed, assuming the approximate dependence @' = E'’ of (2-5-10), it follows for
E' = [ that 8’ = (0 In @' /9F ) = f'/F'; hence |38’ /0E'| =~ f//E* ~ g'/F'.
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other system at a slightly different temperature. Since dQ <« E, where E is

the energy of the system under consideration, it follows that

InQ (E + 4Q) — In Q(E) = al““d@ 8dQ

or, since 8 = k In @, that
as = 3

where dS is the inerease in entropy of the system.

- 7 Sharpness of the probability distribution

In See. 3:3 we argued that the probability P(E) that A4 has an energy K
exhibits a very sharp maximum. Let us now investigate more quantitatively
just how sharp this maximum really is.

Our method of approach is identical to that used in Sec. 1:5. To inves-
tigate the behavior of P(E) near its maximum E = £, we consider the more
slowly varying function In P(E) of (3-3-7) and expand it in a power series of
the energy difference

(3-7-1)

Expanding In Q(E) in Taylor’s series about £, one gets

2
In (E) = In 9(E) +(3;%“) +%(3_6%12E),,s+ Coe (31-2)

Here the derivatives are evaluated at £ = E. Let us use the abbreviations
dlnQ
( s ) (3.7.3)
(3@ a8 .
and = ( =5 ) = (5?5’) (3.7-4)

The minus sign has been introduced for convenience since we shall see that the
second derivative ig intrinsically negative.
Hence (3:7-2) can be written

In QE) = In QE) + 8y — $M2+ - (3-7:5)

One can write down a corresponding expression for In @'(E) near E' = E'.
By conservation of energy £’ = E® — F, so that

— B = —(E—E) = — (3-7:6)
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Analogously to (3:7-5) one thus obtains
In @(E) = n Q'(E") + 8(~m) — N (=m*+ - -+ (377

where 8’ and )\’ are the parameters (3-7-3) and (3-7-4) correspondingly defined
for system A’ and evaluated at the energy E' = F’, Adding (3-7-5) and
(3:7-7) gives

In [Q(B)Y(B)] = In [EQ(E)] + (8 — 8)n — 30+ N)n2 (3-7-8)

At the maximum of Q(E)Q'(E") it follows by (3-3-8) that § = g', so that the
term linear in 4 vanishes as it should. Hence (3 - 7 - 8) yields for (3 - 3 - 8) the
result

In P(E) = In P(E) — $\on?
or

B P(E) = P(E) ¢~ ™E-B» (3-7-9)
where =A+ N (3-7-10)

Note that A, cannot be negative, since then the probability P(E) would not
exhibit a maximum value, i.e., the combined system A® would not attain a
well-defined final equilibrium situation as, physically, we know it must.
Furthermore, neither X nor A’ can be negative. Indeed, one could choose for
A’ a system for which A" < X; in that case A = \; and, since we already argued
that this last quantity cannot be negative, it follows that X > 0. Similar
reasoning shows that A’ > 0.*

The same conclusion follows also from the argument that ordinarily
2 = B/, Indeed, using the definition (3:7-4), one obtains from (3:5-5)

Ly SINCNE 7.
A= (E‘z) 5>0 (8-7-11)

The preceding discussion leads to several interesting remarks. In Sec.
3:3 we concluded from the general behavior of the densities of states of the
interacting systems that the probability P(E) has a unique maximum at some
energy 5. We have now shown more specifically that, for & not too far from
E, the probability P(E) is described by the Gaussian distribution (3-7-9). It
then follows by (1-6:8) that the mean energy F is given by

E=F (3-7-12)

Thus the mean energy of A is indeed equal to the energy E corresponding
to the situation of maximum probability. Furthermore, (3:7-9) shows
that P(E) becomes negligibly small compared to its maximum value when

* The equals sign corresponds to exceptional eircumstances. An example might be a
system consisting of a mixture of ice and water in equilibrium. The addition of energy to
this aystem results in melting some of the ice, but does not change its temperature parameter.
Thus A = —3g/aE = 0,
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(B — B)2 > 1, ie., when |E — E|> X} In other words, it is very
improbable that the energy of 4 lies far outside the range F 4+ A*E where *

A*E = )\ (3-7-13)
Suppose now that A is the system with the larger value of the parameter \.
Then
£ 7
Ao = N = -J—E-i -E_-'-;
E
and AYE ~ —
V7

where F is the mean energy of A above its ground state. The fractional width
of the maximum in P(F) is then given by
> e
B
If A contains a mole of particles, f = N, ~ 10% and (A*E/E) =~ 10-1%
Hence the probability distribution has indeed an exceedingly sharp maxi-
mum when one is dealing with macroscopic systems containing very many
particles. In our example, the probability P(E) becomes already negligibly
small if the energy F differs from its mean value by more than 1 part in 102!
This is an example of a general characteristic of macroscopic systems, Since
the number of parficles is so very large, fluectuations in any macroscopic parame-
ter y (e.g., energy or pressure) are ordinarily utterly negligible. This means
that one nearly always observes the mean value 7 of the parameter and tends,
therefore, to remain unaware of the statistical aspects of the macroscopie world.
Tt is only when one is making very precise measurements or when one is dealing
with very small systemg that the existence of fluctuations becomes apparent.
The condition A > 0 implies by (3:7-4) that

_lng _ _ 38

(3-7-14)

A=—Z3m =~ 2"
a8 i i
or F S0 (3:7-15)
Using 8 = (kT)~!, the equivalent condition for T becomes
af AT 0T
aT3E = kmaE ="
aT
Thus EZO (3-7:16)

i.e., the absolute temperature of any system increases with its energy.

The relation (3:7-15) allows one to establish the general connection
between absolute temperature and the direction of heat flow. In the situation
of Sec. 34, suppose that initially 8: = /. If A absorbs positive heat @,

* The result (1-6 9) applied to the Gaussian distribution (3:7-9) shows that A;!is
indeed the dispersion of the energy.
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(3-7-15) implies that its value of 8 must decrease. At the same time, 4’ must
give off heat so that its value of g’ must increase. Since § is a continuous
function of B for each system, the g values of the systems change in this way
continuously until they reach the ecommon final value @;; this must therefore
be such that 8, < g;and 8, > 8. Thus g; > 8 and the positive heat Q gets
absorbed by the system with the higher value of 5. Correspondingly, for
ordinary positive absolute temperatures, positive heat gets absorbed by the
system at the lower absolute temperature 7%

*Remark on the total number of accessible states Tt is of some interest
to ealeulate the total number of states (9, accessible to the entire system
A®™. Sinece the probability distribution is so sharply peaked, practically all
states lie in a range within a width A*E = A\ of B (see Tig. 3-3:3). Since
the density of states near B = F is equal to QO (#) /5E, the total number of
states is approximately given by

0@y, = 9% A*E = KQO(E) (3-7:17)
A*E ;
where K= SE (3-7-18)

By (3-7-17) it follows that
In Q@ = In QO(F) + In K ~ In Q(f) (3:7-19)

The last result is true to excellent approximation because In K is utterly
negligible. This is another striking consequence of the fact that we are
dealing with such large numbers. The reason is that, no matter what reasona-
ble energy subdivision interval we may choose, the number & in (3-7-18)
should certainly not be much bigger than f, where f may be of the order of
| Avogadro’s number N,. Thus In K is of order In f or less. On the other
hand, (2-5°9) shows that In  is some number of the order of f. Buf when fis
‘ large, say f= Nao= 10% f>>> Inf (10* compared to only 55). Thus
| In K is campletely negligible compared to In R(&). The relation (3-7-19)
' asserts then that the probability distribution is so sharply peaked around its
| maximum that, for purposes of caleulating logarithms, the total number of
states is equal fo the maximum number of atates. From this if also follows
that, if in analogy to (3-3-13), one defines the total entropy of A in terms
of the total number of ifs accessible states so that

§© = kln Q@,,
Then
S© = k1n QO(E) = kln [EYY(E)] = kn Q(E) + & In Q(E")
ar 8© = (&) + 8'(E") (3-7-20)

Thus the entropy so defined has the above simple additive property.

1 * The statement relating to T is restricted to the ordinary case of positive lemperatures,
since otherwise 7' is not a continuous function of E. Indeed, for spin systems with an upper
bound of possible energies, @ has & maximum, and hence g passes continuously through the
value 8 = 0. But correspondingly, T = (k8)~! jumps from « to — =,
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GENERAL INTERACTION BETWEEN MACROSCOPIC SYSTEMS

3:8 Dependence of the density of states on the
external parameters

Now that we have examined in detail the thermal interaction between systems,
let us turn to the general case where mechanical interaction can also take place,
i.e., where the external parameters of the systems are also free to change. We
begin, therefore, by investigating how the density of states depends on the
external parameters.

For the sake of simplicity, consider the situation where only asingle external
parameter z of the system is free to vary; the generalization to the case where
there are several such parameters will be immediate. The number of states
accessible o this system in the epergy range between F and E + 68
will also depend on the particular value assumed by this external parameter;
we shall denote it by Q(E,z). We are interested in examining how @ depends
on x.

When z is changed by 4n amount dz, the energy E.(x) of each microstate
r changes by an amount (d£,/9z) dx. The energies of different states are, in
general, changed by different amounts. Let us denote by @y(2,2) the number
of those states which have an energy in the range between ¥ and £ + 3E when
the external parameter has the value , and which are such that their derivative
dl,/dx has a value in the range between ¥ and ¥ + §Y., The total number of
states is then given by

ULZ) = ¥ Qy(E,x) (3-8:1)
Y

where the summaltion is over all possible values of V.

Consider a particular energy #. When the external parameter is changed,
some states which originally had an energy less than E will acquire an energy
greater than F, and vice versa. What then is the total number of states o(F)
whose energy is changed from a value less than F to a value greater than ¥
when the parameter changes from z to 2 + dx? Those states for which aE,/dz
has the particular value Y change their energy by the infinitesimal amount
Y dz. Hence all these states located within an energy Y dx below E will
change their energy from a value smaller to one greater than E (see Fig. 3-8-1).
The number oy(F) of such states is thus given by the number per unit

Fig. 3:8:1 The shaded area
indicates the energy range occu-
pied by states with a value of
il,/8z = Y, whose energy
changes from a value smaller
than E to one greater than E
when the external parameter is
changed from z to z + dz.
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energy multiplied by the energy range ¥ dz, i.e., by
ov(E) = Qy(Ez) Ydr (3-8-2)
oF
Different states have their energy changed by different amounts ¥ dz (positive
or negative). Henee the total number of states ¢(#) whose energy is changed

from & value less to a value greater than E is given by summing (3-8 -2) over all
possible values of 8F,/dx = ¥; thus

. Qy(E,x) _ Q(E,z) oo
c(ﬁ}=2~—ﬁ— ¥de = =52 Pz (3-8-3)

where we have used the definition

1
¥~ ol an(E,z)Y (3:8-4)

as the mean value of ¥ over all accessible states, each state being considered
equally likely. The mean value thus defined is, of course, a function of £ and
x,i.e, ¥ = P(Ez). Since ¥ = 3E,/dz, one has

ak, =
?=6::=

-X (3:8:5)

where X is, by the definition (2-9.6), the mean generalized force conjugate to
the external parameter z.

Let us now consider the total number of states (E,z) between E and
E + 8E (see Fig. 3-8-2). When the parameter changes from z to z + dz,
the number of states in this energy range changes by an amount [62(F,x)/dz] dz
which must be due fo [the net number of states which enter this range by
having their energy changed from a value less than ¥ to one greater than £]
minus [the net number of states which leave this range by having their energy
changed from a value less than F + 8§ to one greater than E + §F]. In
symbols this can be written

aﬁ—gi"'?—)dz=o(m—a(3+w)=—ﬂw

aE
Using (3-8-3) this becomes

Fig. 3:8-2 The number of
states in the shaded energy
range changes when the ex-
ternal parameter is varied
because states enter and leave
this energy range.
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By dividing both sides by €, this can be written
d4lnQ __ 94InQ I—,_QI_}
gz = aE aE

But for a large system the first term on the right is of the order of (f/E) ¥,
since one has approximately @ = £/, On the other hand, the second term on
the right is only of the order of ¥ /9B = Y /E and is therefore smaller than
the first term by a factor f. For macroscopie systems where f is of the order
of Avogadro’s number, the second term on the right is thus utterly negligible.
Hence (3-8:7) becomes to excellent approximation

dln@ dlnQ - =
e 5 Y =X (3:8:8)
where we have used (3:8-5) and the definition (3-3-9) of the temperature
parameter g.
When there are several external parameters x;, ..., #. (so that
Q = 9B, x1, . . . ,2.)) the above relation is clearly valid for each one of them.
One obtains then for each external parameter z, and its corresponding mean
generalized force X, the general relation

B 5;:” — 8%, (3-8-9)

(3-8-7)

3 2 9 Equilibrium between interacling systems

Consider two systems A and A’ which can interact both by exchanging heat
and by doing work on each other, A specific example might be the situation
illustrated in Fig. 2-8-1 where the piston is free to move and is capable of con-
ducting heat. System A has energy E and is characterized by some external

parameters z;, . . . , &, which are free to vary. Similarly, 4’ has energy £’
and is characterized by some external parameters z,/, . . . , 2./. The com-
bined system 4@ = 4 4 A4'is isolated. Hence

E + E' = E\ = constant (3:9-1)

The energy £’ of A”is then determined if the energy £ of 4 is known. Further-
more, if A and A’ can interact mechanically, this implies that the parameters
z’ are some functions of the parameters z.

Example In Fig, 2-8-1, the gas A is deseribed by one external parameter

a, its volume V; similarly, the gas 4’ is deseribed by its volume V'. Buvas

the piston moves, the total volume remains unchanged, i.e., :
V + V' = V® = constant (392

The total number of states accessible to A is thus a function of £ and
of the parameters z.(a = 1, . . . , n). Once again QO (F; zy, . . . , 2a) Will
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have a very sharp maximum for some values £ = # and z, = #,. The equi-
librium situation corresponds then to the one of maximum probability where
practically all systems A have values of E and z, very close to B and ..
The mean values of these quantities in equilibrium will thus be equal to £ = £
and 3, = £,

Infinitesimal quasi-static process Consider a quasi-static process in
which the system A, by virtue of its interaction with system A’, is brought
from an equilibrium state deseribed by B and .(e = 1, . . . , n) to an infini-
tesimally different equilibrium state described by B + dB and 7. + di..
What is the resultant change in the number of states @ accessible to A ?

Since 2 = Q(F; #, . . . , T4), one can write for the resultant change in
In @ the purely mathematieal result

dlnQ - G alnQ =
dng =% dE+“ZI S 2 (3-9-3)

By using the relation (3-8-9), this can be written
dln @ = BdE + ¥ X. dz.) (3-9-4)

By (2-9-5) the last term in the parentheses is just the macroscopic work ¢W
done by A in this infinitesimal process. Hence (3-9-4) can be written

dln Q@ = g(dE + dW) = g dQ (3-9-5)

where we have used the definition (2-8-3) for the infinitesimal heat absorbed
by 4. Equation (3-9-5) is a fundamental relation valid for any quasi-static
infinitesimal process. By (3:3:10) and (3:3:12) it can also be written in the
form

Je d4Q = TdS = dE + ¢w (3.9-6)
or equivalently
B ds = %19 (3-9-7)

Thus the relation (3-6-5) remains valid even if the external parameters of
the system are changed quasi-statically. Note that in the special case when
the system is thermally insulated (i.e., when the process is “adiabatic”) the
absorbed heat d@) = 0 and (3-9-7) asserts that

a8 =0

This shows that S, or In @, does not change even if the external parameters are
varied quasi-statically by a finite smount. Hence one has the important result
that

If the external parameters of a thermally isolated system are (3-9-8)
changed quasi-statically by any amount, AS = 0.
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Thus the performance of quasi-static work changes the energy of a thermally
irolated system, but does not affect the number of states accessible to it. In
accordance with the discussion of Sec. 3-2, such a process is thus reversible.

It is worth emphasizing that even if a system is thermally isolated so that
it absorbs no heat, its entropy will increase if processes take place which are
not quasi-static. For example, each total system A is thermally isolated in
the three examples discussed at the beginning of Sec. 3-1, yet the number of
states accessible to it, and hence its entropy, increases,

Equilibrium conditions Consider the equilibrium between the systems A
and A" in the simple case where the external parameters are the volumes ¥
and V' of the two systems. The number of states available to the combined
system A®™ is, asin (3-3-5), given by the simple product

QOEV) = QE, Q' (E, V") (3:9-9)

where E" and V' are related to Z and V by (3-9-1) and (3-9-2).

Taking logarithms of (3-9-9), one gets
In9® =IngQ+ In @ (3-9-10)
or S0 =84 8 (3:9-11)
The maximum value of 2 or S is then determined by the condition that
dln2® =d(lnQ2+1n Q) =0 (3-9:12)
for arbitrary changes of dE and dV.

alnﬂ 61:19

But dln@ = dE + ——~dV = BdE + ppdV (3:9-13)

where we have used (3-8:8) and the genernlized force X = —(3E,/aV) is, by
(2-10-2), just the mean pressure 7 exerted by 4. Similarly, one has for 4

din Q' =g dE' + 8p' dV' = —8' dE — g'p' AV (3-9-14)

gince the conservation conditions (3:9-1) and (3-9-2) imply that dE' = —dFE
and dV' = —dV, respectively, Hence the condition of maximum entropy
(3:9-12) becomes

(8—p)dE + (Bp — 89" dV =0 (3:9:15)

Since this must be satisfied for arbitrary values of d# and dV, it follows that
the coefficients of both of these differentials must separately vanish.

Hence B—g = 0}
and Bp— B’ =0

or =SS .
and P o= 33’} (3:9-16)
As might be expected, these conditions simply assert that the temperatures of
the systems must be equal to guarantee their thermal equilibrium and that
their mean pressures must be equal to guarantee their mechanical equilibrium.
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As a particularly simple example consider the mechanical interaction
of a system A with a purely mechanical device A’ whose energy E” isa function
‘only of some external parameter », Thesituation might be the one illustrated
in Fig, 3:9.1 where 4’ is a spring whose elongation ismeasured by the distance
x. The total number £ of states accessible to the system A + A’ is then
simply proportional o the number of states Q(F.x) accessible fo A.* But if
E™ is the constant fofal energy, the energy of A is

E=E" — E'z) (3:9-17)

and is thus a function of . If 2 is free Lo adjust itself, it will tend to change
go that the system approaches an equilibrium situation where 2 is a maximum,
i@, where :
a
ﬂx In D.(E',z) =
This means that
dln0sE dlnp 0
8E b6z e
By (3:9.17) and (3-8+9) thig becomes
oE" i
o) oo

or _—

This condition asserts simply that in equilibrium the mean force X exerted
by the gas A must be equal Lo the force pL'[de exerted by the spring.

Fig. 3941 A gas A interacting ”I|I||II IHHl
through a movable piston with
a spring A'.

3 . 10 Properties of the entropy

Entropy and exact differentials In Sec. 29 we discussed the fact that the
infinitesimal heat d@ is not an exact differentinl. The relation (3-9-7) estab-
lishes, however, the following remarkable result : Although the heat dQ absorbed
in & quasi-static infinitesimal process is nol an exact differential, the quantity

* The number of states accessible to A’ remains unchanged —this is what one means by
& purely mechanical device which is completely described by its external parameters; i.e., 4’
itgelf is thermally insulated, and its external parameters are changed sufficiently slowly
(compared to its significant, relaxation {ime) that its entropy remaing constant.
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dQ/T = dS obtained by dividing d@ by the absolute temperature T' of the
system s an exact differential. This is so because the entropy S is a function
characteristic of each macrostate of the system, and dS is simply the difference
between two such functions for adjacent macrostates,

PRI e . i it vL} £ 412 o e A e e e

Tt follows that, given any two macrostates ¢ and f of a system, the entropy
difference between them can be written as

.s,—s.-:fd,5'=j:’%;@ (3-10-1)

(eq)

where we have used the result (3-9:7) in the last integral. We have labeled
this integral by the subseript “eq’ (standing for “‘equilibrium’’) to emphasize
explicitly the fact that it is to be evaluated for any process by which the system
is brought quasi-statically through a sequence of near-equilibrium situations
from its initial to its final macrostates. The temperature in the integrand is
thus well defined at all stages of the process. Since the left side of (3-10-1)
refers only to the initial and final macrostates, it follows that the integral on
the right side must he independent of whatever particular quasi-static process
leading from ¢ to [ is chosen to evaluate the integral. In symbols,

18Q
T

(eq)

is independent of the process (3:10:2)

Example Consider the wo quasi-static processes indicated by the solid and
; I
dashed lines of the  versus V disgram in Fig, 2-11-2. The infegral L Q9
giving the fotal heat absorbed in going from 1 to f will be different when evalu-
ated for the two processes. But the integral L : (dQ/T) will yield the same

result when evaluated for these processes.

Let us be clear as to how such an integral is to be evaluated. At any
stage of the process the system is characterized by a certain value of ¥ and
corresponding value 7 given by the graph. This information is adequate to
determine a definite temperature T for this macrostate of the system. In
going to an adjacent value of ¥, an amount of heat €@ is absarbed. Hence

one knows both T and dQ, and can sum all the successive quantities dQ/ i
as one proceeds to increase the volume from ¥y to V.
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Implications of the statistical definition of entropy In (3-3-12) we
defined the entropy in terms of the number @ of accessible states in the range
between B and E 4+ §E by the relation

S=kng (3-10-3)

It iz important to note that if the macrostate of a system is specified, i.e., if
one knows the external parameters and the energy £ of the system, then the
number @ of states accessible to the system is completely determined if the
system is discussed in terms of quantum mechanies. Hence the entropy S has,
by (3-10-3), a unique value caleulable from a knowledge of the microscopic
constitution of the system.*

Remark This last statement would nof be true if the system were deseribed
in terms of classical mechanics. If the system has [ degrees of freedom,
phase space is subdivided {as in See. 2-1) into cells of arbitrarily chosen
volume he/. The total number of eells, or states, available to the system is
then obtained by dividing the accessible volume of phase space (confained
hetween the energies & and F 4 8F) by the volume per cell. Thus

Q"'}}% ."'quv“d‘}rdﬁv"d?’f
or s=kin(f - [ag---do)— Kb (3:10-4)

These relations show that @ depends in an essential way on the size of the cells
into which phase space is subdivided. Correspondingly, S contains an addi-
tive constant which depends on this cell size, In a elassical deseription
the value of the entropy is thus not unique, but only defined to within an
arbitrary additive constant. What happens effectively in quantum mechanics
ig that there exists a natural unit of cell size according to whieh A, is to be put
equal to Planck’s constant; the additive constant becomes then uniquely
determined.

Limiting behavior of the entropy As one goes to lower energy, every
system deseribed by quantum mechanies approaches the lowest possible energy
E, of its ground state. Corresponding to this energy there exists usually only
one possible state of the system; or there may be a relatively small number of
such states, all of the same energy H, (the ground state is then said to be
“degenerate’”). When one considers energies somewhat greater than Ey, the
number of states Q(FE) increases, of course, very rapidly; by (2-5-10), it then
behaves roughly like £ « (E — Ey)/ if f is the number of degrees of freedom
of the system. The general dependence of In & on the energy ¥ of the system
is thus of the form sketched in Fig. 3-10-1.

* The value of § is certainly unique for a given choice of the energy subdivision interval
§E. In addition, we showed at the end of Sec. 33 that the value of the entropy is also
utterly insensitive to the exact choice of the magnitude of 4.




120 section 9 10

n RUE!

Fig. 3-10'1 Behavior
of In 2(E) for energies
E > E,. Note thatg,
the slope of the curve,
becomes very large for
E— E, and that

ag/eE < 0.

b

iy E

@

Whenever the energy of the system is significantly greater than its ground
state energy 1y, its entropy S is the order of & In @, i.e., by (2+5:9), of the arder
of kf. As its energy approaches Ey, the number of states @(£) within the given
interval 4F falls off rapidly: it ultimately becomes a nuniber of the order of f
itself or smaller since the ground state itself consists of only one state, or at
most a relatively small number of states. But then 8 = k In Q approaches a
number of the order of k In f or less, and this is utterly negligible compared to
the magnitude kf of the entropy at higher energies. Thus one can assert to
excellent approximation that the entropy becomes vanishingly small as the
system approaches its ground-state energy. In symbols,

asE— E,, S—0 (3-10-5)

Remark Wenote again the quantum-mechanieal basis for the validity of the
above discussion, In the framework of classical mechanics there would not
exist a situation of lowest energy with an associated definite small number
of states.

This limiting behavior of § can also be expressed in terms of the tempera-
ture of the system. We know by (3-7-15) that 93/aE < 0, or equivalently
that 87/4E > 0. Hence it follows that as B decreases toward Ey, § increases
and becomes very large, while 7' = (kB)—! decreases and becomes very small.
In the limiting case as 7 — 0, E must increasingly approach its ground-state
value By By virtue of (3-10-5), the entropy must then become negligibly
small. Thus,

asT—0, S—0 (3-10-6)

In applying (3-10:6) to situations of experimental interest one must, as
usual, be sure to ascertain that equilibrium arguments are applicable to the
system under consideration. At very low temperatures one must be particu-
larly careful in this respect since the rafe of attaining equilibrium may then
hecome quite slow. Another question which may arise in practice concerns the
extent to which the limiting situation 7'— 0 has indeed been reached. TIn
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other words, how small a temperature is sufficiently small to apply (3-10-6)7

It is only possible to answer this question by knowing something about the
particular system under consideration. A case of very frequent occurrence is
that where the nuclei of the atoms in the system have nuclear spins. If one
brings such a system to some sufficiently low temperature T, the entropy (or
nunber of states) associated with the degrees of freedom not involving nuclear
spins may have become quite negligible. Yet the number of stales 2, corre-
sponding 1o the possible nuelear spin orientations may be very large, indeed just
as large as al very much higher temperatures. The reason is that nuclear
magnetic moments are very small; interactions affecting the spin orientation of
a nucleus are thus also very small. Hence each nuclear spin is ordinarily
oriented completely at random, even af temperatures as low as T'.

Suppoae, for example, that the system consists of atoms having nuclear spin
% (e.g., the system might be a silver spoon). Each spin can have two possible
orientations. If spin-independent interactions are very amall, these two
orientations do not differ significantly in energy and esch spin is equally likely
to point “up” or “down.” If there are N nuclei in the system, there are then
25 = 2V possible spin states accessible to the system, even at o temperature
as low as Ty Only at temperatures very much less than T will the inter-
aetions involving nuelear spins become of significance. For instance, the
situation where all nuclear spins are aligned parallel to each other (“nuclear
ferromagnetism™) may have slightly lower energy than other spin orienta-

tions. The system will then (if it attains equilibrium) sefile down at the
very lowest temperatures (T < < < T,) into this one very lowest state where
all nuelei are aligned.

In the case under discussion, where one knows that the nuclear spins are
still randomly oriented at a temperature as low as Ty and do not deparl from
this random eonfiguration until one goes to temperatures very much less than
Ty, one can still make a useful statement. Thus one can assert thal as T'
decreases towards 7', the entropy approaches a value Sy which is simply given
by the number of possible nuclear spin orientations, i.e., Sy = k In 25. In
symbols this yields the result that

as T — 0y, S— S N (3-10-7)

Here T — 04 denofes a limiting temperature which is very small, yel large
enough so that spins remain randomly oriented. Furthermore, S, is a definite
constant which depends only on the kinds of atomic nucler of which the system
is composed, but which is completely independent of any details concerned
with the energy levels of the system. One can say, in short, that S is inde-
pendent of all parameters of the system in the widest sense, i.e., independent of
the spatial arrangement of ils atoms or of the interactions between them. The
statement (3-10-7) is a useful one because it can be applied at temperatures
which are not prohibitively low.
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SUMMARY OF FUNDAMENTAL RESULTS

3 -1 1 Thermodynamic laws and basic statistical relations

The entire discussion of this chapter has been based on the fundamental
stalistical postulates of Sec. 2:3. We have elaborated some details and given
various illustrative examples to gain familiarity with the main properties of
macroscopic systems. The main ideas have, however, been quite simple; most
of them are contained in Secs. 3:1, 3.3, and 3.9. The discussion of this chapter
encompasses, nevertheless, all the fundamental results of classical thermody-
namies and all the essential results of statistical mechanies. Lef us now sum-
marize these results in the form of very general statements and group them
into two eategories. The first of these will consist of purely maeroscopic state-
ments which make no reference to the micrescopic properties of the systems,
i.e., to the molecules of which they consist. These statements we shall call
“thermodynamic laws.”” The other class of statements will refer to the
microscopic properties of the systems and will be designated as ‘“‘statistical
relations.”

Thermodynamie laws The first statement is the fairly trivial one discussed
in See. 3-5.

P> Zeroth law: If two systems are in thermal equilibrium with a third system,
they must be in thermal equilibrium with each other.

Next there is a statement expressing the conservation of energy and discussed
in Sec. 2-8.

’ First law: An equilibrium macrostate of a system can be characterized by
a quantity & (called ‘‘internal energy’’) which has the property that
for an izolated system, E = constant (3-11-1)

If the system is allowed to interact and thus goes from one macrostate
to another, the resulting change in & can be written in the form

AE = —W+Q (3:11-2)
where W is the macroscopic work done by the system as a result of the

system’s change in external parameters. The quantity @, defined by
(3:11-2), is called the “heat absorbed by the system.”

Next we were led to introduce the entropy S which had the simple properties
digeussed in Secs, 31 and 3-9. Thus we obtain the following results:

P Second law: An equilibrium macrostate of a system can be characterized
by a quantity S (called “entropy’), which has the properties that
a. In any process in which a thermally dsolated systeni goes from one
maerostate to another, the entropy tends to increase, i.e,,

AS >0 (3-11-3)
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. If the system is not isolated and undergoes a quasi-static infini-
tesimal process in which it absorbs heat d@, then
s = %@ (3:11-4)

where T'is a quantity characteristic of the macrostate of the system. (7'
is called the “absolute temperature” of the system.)

Finally, there is a last statement based on (3:10-7).
’ Third law: The entropy S of a system has the limiting property that
as T— 0., 8— 8y (3-11-5)

where S, is & constant independent of all parameters of the particular
system.

Note again that the above four laws are completely macroscopic in content.
We have introduced three quantities (£, S, and T) which are asserted to be
defined for each macrostate of the system, and we have made some statements
aboutf properties relating these quantities. But nowhere in these four laws
have we made any explicit reference to the microscopic nature of the system
(e.g., to the properties of the molecules constituting the system or to the forces
of interaction between then).

Statistical relations There is first the general connection (3 - 3 - 12)
= S=king (3-11:6)

This allows one to relate the quantities entering in the thermodynamic laws
to one’s mieroscopic knowledge of the system. Indeed, if one knows the nature
of the particles constituting the system and the interactions between them,
then one can in principle use the laws of mechanics to compute the possible
quantum states of the system and thus to find Q.

Furthermore, one can use the fundamental statistical postulate of Sec. 2-3
to make gtatements about the probability P of finding an isolated system in a
situation characterized by certain parameters y;, . . ., ¥ If the corre-
sponding number of accessible states is @, then in equilibrium

> P =@ et (3:11-7)

A large number of conclusions follow from the purely macroscopic state-
ments which we have called the laws of thermodynamics. Indeed, the whole
discipline of classical thermodynaniics assumes these laws as basie postulates
and then proceeds to deduce their consequences in a macroscopic discussion
which never refers to the microscopic deseription of matter in terms of atoms
or molecules. The approach is sufficiently fruitful to have given rise to a large
body of important results. We shall discuss it further, particularly in Chapter
5. This approach was also historieally the oldest, sinee it could arise in a
context where the atomic constitution of matter was not yet known or suffi-

i
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ciently understood.* If one does make use of microgcopic information and
uses statistical mechanies to caleulate £, one’s powers of prediction are, of
course, tremendously inereased, Not only can one then caleulate thermody-
namie quantities from first prineiples by using (3:-11-6), but one can also
caleulate probabilities and thus the fluctuations of physical quantities about
their mean values. Statistical mechanics is thus the more inclusive discipline
which encompasses all of classical therniodynamics; to emphasize this fact it is
sometimes called ‘‘statistical thermodynamies."

3 8 12 Statistical calculation of thermodynamic quantities

It is worth pointing out explicitly how a knowledge of the number of states
Q= Q(F; 2, ...,z of asystem allows one to ealculate important macro-
scopic quantities characterizing the system in equilibrium. The quantity
is a function of the energy of the system under consideration and of its external
parameters. The relations of particular interest are (3:3:9) and (3-8:9),
namely,

dlnQ - 1alng
b==7% Sndi = e

These allow one to compute the absolute temperature and the mean generalized
forces of the system from a knowledge of 2. For example, in the particular
case when z, = V' is the volume V of the system, the corresponding mean
generalized force X, is, by (2-10-2), the mean pressure § given by

_lamle
B av

(3:12-1)

(3-12.2)

The equations (3-12-1) permit one to find relations connecting the
generalized forces, the external parameters, and the absolute temperature
T. Buch relations are called “equations of state’ and are important, since they
relate parameters that are readily measured by experiment. I'or example, one
can find how the mean pressure 7 depends on the temperature T and volume
V of the system; the relation 5 = A(7T,V) would be the corresponding '‘equation
of state.”

ka Note that the relations (3:12:1) are implied by the statement
-4). The latter ]nelds for an infinitesimal quasi-static process the

ds = % = %_(dﬁ - &E; %, di.) (3:12-3)

* See the references at the end of this chapter for books treating the subject entirely
from a maecroseopic point of view.
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Buhmm%kamﬁopyﬁisafumhmot the energy and the external parame-
ters, one can also write the purel;r mathematical result

a8 O /08 o
a8 = (55 m+¢-1 5 ) d2e (3:12-4)
Since (3-12:3) and (3-12-4) must be identically equal for arbitrary values of

dB and d%., the corresponding coefficients multiplying the differentials must
be equal, Henee one obtains

i a3 .. X6 gy
ok 2 =) Sy

where the derivatives are to be evaluated corresponding to the energy £ = F
and parameters £, = &, of the equilibrium state under consideration. The
relations (3-12+5) are identical to (3-12+1), since § = kIn Q and T = (8)~".

Let us illustrate the preceding comments by applying them to a very
simple but important system, an ideal gas. In (2:5-14) we showed that for an
ideal gas of N molecules in & volume V the quantity @ is of the form

Q « VNx(E) (3-12-6)

where x(/7) is independent of V and depends only on the energy £ of the gas.
Hence

In@=NInV <+ In x(E) + constant (3:12-7)

Thus (3:12-2) yields immediately for the mean pressure of the gas the simple
relation

oy 4 NN o
p—-—gi-l_:—p,):-T (3-12-8)
or
e P = nkT (3.12-9)

where n = N/V is the number of molecules per unit volume. This is the
equation of state for an ideal gas.  Alternatively one can write N = »N,, where
v is the number of moles of gas present and N, is Avogadro’s number. Then
(3-12-8) becomes

= pV = vRT (3-12:10)

where R = N,k is called the “gas constant.” Note that neither the equation
of state nor the constant R depends on the kind of molecules constituting the
ideal gas.
By (3:12-1) and (3-12-7) one obtains further
o In x ()

B 8k
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evaluated for the mean energy £ = F of the gas. Here the right side is only a
funetion of &, but not of ¥. Thus it follows that, for an ideal gas 8 = 8(F)

or E = E(T) (3-12-11)

Hence one reaches the important conclusion that the mean energy of an ideal
gas depends only on its temperature and is independent of its volume. This
result is physically plausible, An increase in volume of the container increases
the mean distance between the molecules and thus changes, in general, their
mean potential energy of mutual interaction. But in the case of an ideal gas
this interaction energy is negligibly small, while the kinetie and internal energies
of the molecules do not depend on the distances belween them. Hence the
total energy of the gas remains unchanged.
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L. Landau and E. M. Lifshitz: “Statistical Physics,” secs. 1-13, Addison-Wesley,
Reading, Mass,, 1963.
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PROBLEMS

3.1 A box is separated by a partition which divides its volume in the ratio 3:1. The
larger portion of the box containg 1000 molecules of Ne zas; the smaller, 100
molesules of He gas. A small hole is punetured in the partition, and one waits
until equilibrium is attained.

(a) Find the mean number of molecules of each type on either side of the
partition,

(B) What is the probability of finding 1000 molecules of Ne gas in the larger
portion and 100 molecules of He gas in the smaller (i.e., the same distribution
as in the initial system)?




PROBLEMS 127

3.2

3.3

3.4

3.5

3.6

Consider a system of N localized weakly interacting particles, each of spin ¢ and
magnetic moment g, located in an external magnetic field H. This system was
already discussed in Problem 2.4,

(a) Using the expression for In (F) calculated in Problem 2.4b and the
definition § = d In /9FE, find the relation between the absolute temperature T
and the total energy F of this system.

{b) Under what circumstances is T negative?

(¢) The total magnetic moment M of this system is related to its energy

fZ. Use the result of part (2) to find M as a function of H and the absolute
temperature 7.
Consider two spin systems 4 and A’ placed in an external field H. System A
consists of N weakly interacting localized particles of spin 4 and magnetic moment
. Similarly, system A’ consists of N' weakly interacting localized particles of
spin ¢ and magnetic moment g'. The two systems are initially isolated with
respective total energies bNuH and b'N'u'H. They are then placed in thermal
contact with each other. Suppose that |b] € 1 and |[b'| < 1 so that the simple
expressions of Problem 2.4c ean be used for the densities of states of the two
gystems.

(a) In the most probable situation corresponding to the final thermal equi-
librium, how is the energy E of system A related to the energy B of system 4'?

(b) What is the value of the energy E of system A?

(¢) What is the heat ( absorbed by system A in going from the initial situation
to the final situation when it is in equilibrium with 4'7?

(d) What iz the probability P(E) dF that 4 has its final energy in the range
between E and F + df?

(¢) What is the dispersion (A*E)? = (F — E)? of the energy E of system A in
the final equilibrium situation?

(f) What is the value of the relative energy spread |A*E/E| in the case when
N> NT
Buppose that a system A s placed info thermal confaet with a heat reservoir A’
which is at an absolute temperature 7" and that A absorbs an amount of heat @
in this process. Show that the entropy increase AS of A in this process satisfies
the inequality AS > Q/1", where the equals sign is only valid if the initial tem-
perature of 4 differs infinitesimally from the temperature 77 of A’

A system consists of N, moleeules of type 1 and Ny molecules of type 2 confined
within & box of volume V. The molecules are supposed to interact very weakly
g0 that they constitute an ideal gas mixture.

() How does the total number of states 2(¥) in the range bct.wean B and
E + §F depend on the volume V of this system? You may treat the problem
classically.

(b) Use this result to find the equation of state of this system, i.e., to find its

mean pressure f as a function of V and 7'
A glags bulb contains air at room tempersture and at a pressure of 1 atmosphare.
It is placed in a chamber filled with helium gas at 1 atmosphere and at room tem-
perature, A few months later, the experimenter happens to read in a journal
article that the particular glass of which the bulb is made is quite permeable to
helium, although not to any other gases. Assuming that equilibrium has been
attained by this time, what gas pressure will the experimenter measure inside the
bulb when he goes back to check? ‘




Macroscopic parameters

and their measurement

SECTION 3-11 conTaINs all the results necessary for an extensive discussion of
systems in equilibrium. We shall begin this discussion by exploring a few of
the purely macroscopic consequences of the theory. The present chapter will
consider briefly some of the parameters which are commonly used in the deserip-
tion of macroscopic systems. Many of these parameters, such as heat, abso-
lute temperature, and entropy, have already been introduced. They have been
defined in terms of the microscopic mechanical concepts applicable to the par-
tieles of a system, and their properties and interrelations have already been
established on the basis of the microscopic theory. But we have yet {o
examine how these quantities are to be determined operationally by suitable
macroscopic measurements on a system. An examination of this kind of
question is, of course, essential to any physical theory, since one must show how
theoretical constructs and predietions can be compared with well-defined
experimental measurements. In this chapter we shall discuss how the theory
suggests what quantities are to be studied experimentally and how they are to
be measured. In Chapter 5 we then shall show how the theory is capable of
predicting various important relationships between such measurable macro-
scopic quantities.

4-1 Work and internal energy

The macroscopic work done by a system is very easily determined, since one
can readily measure the external parameters of the system and the associated
mean generalized forces, For example, if the volume of a system is changed
quasi-statically from ¥, to ¥, and throughout this process the mean pressure
of the system has the measurable value #(V), the macroscopic work done by
the system is given by caleulating the integral (2:-10-4)

w= [, #5(v)av (4-1-1)
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The determination of the internal energy E of a system is, by (3-11-2),
reducible to a measurement of macroscopic work. If one considers a system
which is thermally insulated so that it cannot absorb any heat, then ¢ = 0 and
one has simply

AE = —W
or Bo—Bo= —Wa=— ["aw (4:1.2)

This relation defines internal energy differences in terms of the macroscopic
work W, done by the system in going from macrostate a to maecrostate b.
Only such energy differences are of physical significance; i.e., the mean energy
is defined only to within an arbitrary additive constant (just as potential energy
in mechanics is defined only to within an arbitrary constant), Thus one can
chooge one particular macrostate a of a system as a standard state from which
the mean energy is measured. For example, one can adopt the convention of
putting #, = 0. To determine the internal energy £y of any other macrostate
b of the system, it is only necessary to insulate the system thermally and fo go
from state a to state b (or conversely, from state b to state a) by the performance
of a suitable amount of maeroscopic work, Equation (4-1-2) shows that the
work thus done is independent of the particular process used in going from a to
b. (This was the essential content of the first law of thermodynamics diseussed
in Sec. 2-11.) Hence the work thus done by the system is guaranteed to yield
a unique measurable number. The internal energy of macrostate b is thus
uniquely determined by (4-1-2) as

Ey= —Wa= Wi (4:1-3)

The above procedure can be applied to all maerostates b of the system and
allows one, therefore, to characterize each such state by a definite operationally
measurable value of the internal energy parameter E,. Note that the units
of energy are the same as those of work, i.e., ergs or joules.

Example 1 Consider a system consisting of & vessel which con
and & paddle wheel which is free to rotate (see Fig. 2:7-5).
kept atﬂmadpmm,itammatm:s completely specified by its
energy E. Equivalently, it can be specified by its temperatu
-M%hmpec#énm arbitrary thermometer, since # and # are fu
related. A falling weight can do macroscopic work on the systera b _‘_
the paddle wheel.
Cesamlwmm&aﬁndﬂdmmstﬂen,wbm&=%mdﬂ
doing some measurable amount of work W on the system one
different macrostate characterized by s different temperature ¢
interna} energy B = E, + W. Similarly, one can determine the
anm&amumﬁmmththmﬂ,by-m
macrostate, characterized by aummwm ¥, and 1.
of work "W which must be done on the system to brin
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Fig. 4-1:1 Schematie curve
showing the dependence of
the measured mean energy

B on the arbitrary tempera-
ture parameter § character

—p  izing the svstem of Fig, 2:7.5.
f 4
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The energy of the initial macrostate is then B, — . In this way one can
construct a curve of £ versus & (see Fig. 4-1-1). The energy F, of the
standard state can, of course, be set equal to zero.

Example 2 Consider a system congisting of an electricresistor (e.g., a coil of
platinum wire), [If this aystem is kept at fixed pressure, its macrostate can
again be specified completely by an arbitrary temperature parameter .
Here one can determine values of the internal energy of this system corre-
sponding to various values of & by connecting a battery to the resistor and
doing electyical work on it. Except for the fact that electrical measurements
are usually more convenient and accurate than mechanical ones, the analysis
of this example is identical to that of the preceding one.

Example 3 Consider the system of Fig. 4:1-2 consisting of a eylinder con-
taining a gas. The macrostate of this system can be specified by two parame-
ters, e.g., its volume V and internal energy E. The mean gas pressure p is
then determined. (Alternatively, one can specify the macrostate by specify-
ing Vand fas independent variables; the mean energy F'is then determined.)
Censider a standard macrostate o of volume V, and mean pressure p,, where
E = E.. How would one determine the mean energy E, of any other marco-
state b of volume V), and mean pressure ;?

Fig, 4-1-2 4 system consisting
i of a evlinder containing a gas,
llll The velume V of the gas is
determined by the position of
the movable piston. The resis-
tor B can be Brought into ther-
mal contact with this svsten.

2

L 4
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Fig. 4-1-8 Diagram illustrating the volumes and mean pressures deserib-
ing different macrostates of the gas of Fig, $-1-2.

Bach macrostate can be represented by a point on a § V diagram (see
Fig. 4:1+2). One could proceed as follows.

1, Let the gas expand against the piston until its volume changes from
its initial value V. to its desired final value V.. Asa result, the mean pressure
of the gas decreases to some value ., Denote by W,, the work done by the gas
on the piston in this process.

2, To change the mean pressure to the desired final value p, while
keeping the volume constant, bring the system into thermal contact with
another system whose internal energy i8 already known; e.g., bring the
gystem into thermal contact with the electrical resistor of the preceding
example. Do electric work W, on this resistor of an amount just sufficient
to bring the gas pressure to fi.. In this process the internal energy of the
registor changes by a measurable amount A% and an amount of energy
a4 — A (n the form of heat) is transferred to the system of interest.

The total internal energy of the system in state b is then given by”*

BE=FE, — W.+w— ¢

4 . 2 Heat
The heat Q. absorbed by & system in going from a macrostate a to another
maecrostate b is, by (2-8-2), defined as

Qu = (Bs — Eo) + Wa (4-2-1)
where W, is the macroscopic work done by the system in this process, Since

we have already discussed how to measure the work W and the internal energy

* Sinee the performance of work on the resistor results in an inerease in the pressure of
the gas, the above procedure could not be used if g < . But then one could proceed in
the reverse direction by measuring the work required to go from state b to state a.
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B, the relation (4:2-1) yields a well-defined number for the heat absorbed.

Note that the units of heat are the same as those of work, i.e., ergs or joules.
In practice, two slightly different methods are commonly used for doing

“calorimetry,” i.e., for measuring the heat absorbed by a system.

Direct measurement in terms of work Suppose it is desired to measure
the heat @ absorbed by a system 4 with fixed external parameters (e.g., the
gas of Fig. 4-1-2 with piston clamped in position). Then one can bring 4 into
thermal eontact with some other system on which work can be done, e.g., an
electrical resistor (or equivalently, the paddle-wheel system of Fig. 2-7-5). By
doing a measurable amount of electrieal work W on the resistor, one can bring
A from state ¢ to state b. Since the combined system consisting of A and the
resistor does not exchange heat with any outside system, Eq. (4:2:1) applied to
this combined system yields

W = AE + Ae

where AE is the change in mean energy of A and Azis the change in mean energy
of the resistor. Sinee A itself does no work, the same Eq. (4-2:1) applied to
A implies that

Qu = AE
Hence Qu = W — Ag (4:2-2)

If the resistor system is sufficiently small compared to A, then Az < AE
and the term Azin (4-2-2) is negligibly small. Otherwise, the internal energy
€ of the resistor can be considered known as a function of its macrostate (e.g.
of its temperature ¥) from prior measurements involving the performance of
electrical work on the isolated resistor system. Equation (4-2-2) thus deter-
mines the heat absorbed by A in going from macrostate a to b.

Comparison method (sometimes called the “method of mixtures”)
While keeping all external parameters fixed, bring the system A into thermal
contact with a reference system B whose internal energy is already known as a
function of its parameters. No work is done in this process. The conservation
of energy for the isolated combined system implies then that in the process of
going [from the initial situation, where the systems are in equilibrium and
isolated from each other| to [the final situation, where the systems are in equi-
librium and in thermal contact], the changes in internal energies satisfy the
condition

AEy + AEs =0
In terms of the heats absorbed by the two systems, this can be written
Qs+ Qs=0 (4:2:3)

Since Q5 = AKy is known for the reference system B in terms of the changes
of its parameters in the process, one has thus measured

Qi = —0Qs (4-2-4)

A familiar example of this method is that where water is used as the reference
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system B. The system A is immersed in the water. The resulting tem-
perature change of the water can be measured and determines the internal
energy change of the water. The heat absorbed by A is then known.

4 = 3 Abselute temperature

We discussed in See. 3-5 the measurement of temperature with respect fo an
arbitrary thermometric parameter of some arbitrary thermometer. We now
want to consider the operational determination of the abselute temperature T
of a system. Compared to an arbitrary temperature parameter, the absolute
temperature has the following two important properties:

1. As discussed in Sec, 35, the absolute temperature proyides one with
a temperature parameter which is completely independent of the nature of the
particular thermometer used to perform the temperature measurement.

2. The absolute temperature 7 is a parameter of fundamental signifieance
which enters all the theoretical equations. Hence all theoretical predictions
will involve this particular temperature parameter.

Any theoretical relation involving the absolute temperature 7' can be
used as the basis of an experimental determination of 7. We can distinguish
between two classes of relations on which such a determination can be
based.

a. Theoretical relations involving microscopic aspects of the theory.
For example, one can apply statistical mechanics fo a particular system to
caleulate from microscopic considerations the equation of state of this system.
The equation of state (diseussed in Sec. 3-12) is a relation between macroscopic
parameters of the system and the absolute temperature 7. Hence it can be
used as a basis for measuring 7'

b. Theoretical relations based on the purely macroscopic statements
of the theory. For example, the second law states that dS = d@Q/T for an
infinitesimal quasi-static process. This relation involves the absolute tem-
perature T and can thus be used for measuring T. {An example of this pro-
cedure will be discussed in Sec, 11-3.)

The simplest and most important illustration of the first method is
that based on the equation of state for an ideal gas. In (3-12-8) we found
that this equation of state can be written in the form

pV = NkT (4-3-1)
or equivalently, PV = »RT (4-3-2)
where R = N,k (4:3-3)

Here v is the number of moles of gas, and N, is Avogadro’s number. In
practice, the ideal gas conditions of negligible interaction between molecules
can be achieved by working with gases in the limit of very high dilution so that
the mean intermolecular separation is large.
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In the limit of Buﬁcwnaﬂar high dilution the mean mternmlaciﬂn separation
also becomes large compared to the mean De Broglie wavelength correspond-
ing to the mean momentum of a gas molecule. Quantum mechanical effects
thus become unimportant in this limit and the equation of state (4:3-1),
derived on the basis of classical statistical mechanics, must alse be vakd

(The strictly quanturm-mechanical derivation of (4:3-1) will be given in
Chapter 9.)

The equation of state (4:3-1) makes some definite predictions, For
example, it asserts that, if the temperature is kept fixed, one has the relation

pV = constant

This result is the familiar and historically important “Boyle’s law.” Another
consequence of (4-3-1) is that this equation of state is the same frrespective
of the particular gas considered; e.g., it applies equally well to helium, hydro-
gen, or methane, as long as these gases are sufficiently dilute that they can be
considered ideal.

To use the equation of state (4-3-1) as a means for delermining the
absolute temperature T, one can proceed as follows. I{eep the volume 7 of
the given amount of gas fixed. Then one has a constant-volume gas ther-
mometer of the type described in Sec. 3-5. Its thermometric parameter is the
pressure 5. By virtue of (4.3-1) one knows that § is directly proportional
to the absolute temperature T of the gas. Indeed, once one chooses the value
of the arbitrary constant & still at one's disposal (or equivalently, the value of
the constant &), Eq. (4-3.1) defermines a definite value of 7. We now
describe how this constant & is conventionally chosen, or equivalently, how
the absolute temperature scale is chosen.

When the constant-volume gas thermometer is brought into thermal con-
taect with some system 4 with which it is allowed to come to equilibrium, its
pressure will atfain some definite value ;. When it is brought into thermal
contact with some other system B (this may be a system of the same kind but
in some other macrostate) with which it is allowed to ¢come to equilibrium, its
pressure will attain some other definite value s. By (4-3-1), the pressure
ratio ig then given by

oL
=7, (4-3:4)
where Ty and T’z are the absolute temperatures of the systems 4 and B. Thus
any ideal gas thermometer can be used to measure absolute temperature ratios,
In particular, if system B is chosen as some standard system in some standard
macrostate, then the gas thermometer can be used to measure the ratio of the
absolute temperature T of any system to the temperature 75 of this standard
system.
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are in equilibriuny with each other.

The relation (4-3:4) is another consecuence of the equation of state (4:3-1)
which can be checked experimentally, for it implies that this pressure ratio
ought to be the same no matter what gas is used in the gas thermometer,
provided that the gas is sufficiently dilute. In symbols,

Tim Pa_, constant independent of nature of gas 4-3-5)

=0 P
where » denotes the number of moles of gas used in the bulb of the
thermometer.

This comment also provides an experimental criterion for deciding when a
zas is sufficiently dilute to be considered ideal. The pressure ratio j./fis can
be measured with a given amount of gas in the bulb. This measurement
can then be repeated with successively smaller amounts of gas in the bulb;
the ratio Pa/Ps must then, by (4:3:5), reach a limiting constant value.
When this is the case, the gas is known to be sufficiently dilute to exhibit
idenl behavior.

185

By international convention one chooses as the standard system pure

water, and as the standard macrostate of this system the situation where the
solid, liquid, and gas phases of this system (i.e., ice, waler, and water vapor)
(This macrostate is called the “‘triple

Seal-off

Water vapor

207N
:

Water layer——3

—lee

Water

Fig, 431 Diagram illustrating a triple-point cell designed to calibrate a
thermometer at the triple point of water. A freesing mixture is first intro-
duced into the central well to produce some of the ice. After the freezing

—— Thermometer bulb

mixture is removed, the thermometer bulb is placed in the well and the sys-

tem is allowed to come to thermal equilibrinm.
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point” of water,) The reason for this choice is that there is only one definite
value of pressure and temperature at which all these three phases can coexist
in equilibrium and, as can readily be verified experimentally, the temperature
of this system is unaffected by any changes in the relative amounts of solid,
liquid, and gas present under these circumstances. The triple point provides,
therefore, a very reproduecible standard of temperature. By international con-
vention one chooses to assign to the absolute temperature T, of water af its
triple point the value

T, = 273.16 exactly (4-3-6)

This particular choice was motivated by the desire to keep the modern tem-
perature scale, adopted by international convention in 1954, as nearly identical
as possible with a historically older temperature scale.

The choice (4:3:6) fixes a seale factor for T which we can indicate by
assigning to T’ the unit* of "“degree K.” This stands for ‘“‘degree Kelvin”
(so named after the famous British physicist of the last century), and is com-
monly abbreviated as “°K.”” Whenever we use the unit “degree” without
further qualifications, we shall always mean “degree K.” We mentioned in
Sec. 3:3 that kT has the dimensions of energy. It thus follows that the
constant & has the units of ergs/degree.

Once the above conventions have been adopted, the absolute temperature
T4 of any system A is completely determinable by the gas thermometer. If
the thermometer exhibits pressure 54 when in thermal eontact with this system,
and pressure §; when in thermal eontact with water at the triple point, then

T, = 273.151:_{:1 (4-3-7)

Here the pressure ratio is to be evaluated in the ideal gas limit, i.e., in the limit
when the gas used in the thermometer is made sufficiently dilute, Thus the
absolute temperature of any system can be directly determined by measuring
the pressure of a constant volume gas thermometer. This is in practice a
relatively simple method of measuring the absolute temperature, provided that
the {emperature is not so low or so high that the use of gas thermometers
becomes impracticable.

Once the temperature scale has been fixed by (4-3-6), one can return to the
equation of state (4.3.2) and determine the constant ®, Taking » moles of
any gas at the triple-point temperature T, = 273.16°K, one need only measure
its volume V (in ¢m?®) and its corresponding mean pressure 7 (in dynes/cm?);
this information permits computation of R by (4:3:2). Careful measurements
of this type yield for the gas constant the value

R = (8.3143 + 0.0012) joules mole —! deg—? (4-3-8)

* This unit is a unit in the same sense as the degree of angular measure; it does not
involve length, mass, or time.
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(1 joule = 107 ergs). Knowing Avogadro’s number (‘‘unified scale,” atomie
weight of C'* = 12 exactly)

N, = (6.02252 + 0.00028) X 102 molecules mole™! (4:3-9)

one can use (4:3:3) to find the value of k. This important constant is called
“Boltzmann’s constant” in honor of the Austrian physicist who contributed so
significantly to the development of kinetic theory and statistical mechanics.
Tts value is found to be*

= (1.38054 + 0.00018) X 10-1¢ ergs degree~! (4-3-10)

On the absolute-temperature scale defined by the choice of (4-3-6), an
energy of 1 ev (electron volt) corresponds to an energy kT, where T' = 11 600°K.
Also, room temperature is approximately 300°K on this scale and corresponds
to an energy kT = 5 ev.

Another temperature scale sometimes used is the Celsiug (or centigrade)
temperature 0 defined in terms of the absolute temperature 7' by the relation

86=T — 273.15 degrees Celsius (4-3-11)

(abbreviated as “°C”). On this scale water at atmospheric pressure freezes
at approximalely 0°C and boils al approzimately 100°C.

Historical remark We wish to mention briefly the historical context which
motivates the particular choice of numerical value in (4:3:6). The basic
reason was the adoption, before the full significance of the absolute tempera-
ture concept had become clear, of the Celsins (or centigrade) temperature
seale based on fwo fixed standard temperatures. In this scheme the Celsius
temperature # was chosen as & linear function of the thermometric parameter.
For example, in the case of the constant-volume gas thermometer where the
thermometric parameter is the pressure 5, the Celsius tnmpantummtnken
to be

; 0 =ap+b (4-3-12)

where a and b are constants to be determined in terms of the two fixed stand-
ard temperatures. The latter were again based on water as the standard
system, but the two standard macrostates of this substance were chosen as
follows:

1. The state where ice is in equilibrium with sir-saturated water at
atmospheric pressure. This is the so-called “ice point” of water. By
definition one assigned to the temperature of this state the value # = 0.

2. The state where water is in equilibrium with water vapor at a pressure
of 1 atmosphere, This is the so-called “steam point” of water. By definition
one assigned to the temperature of this state the value 8 = 100.

* The values of these physical constants are those of the least-squares adjustment of
E. R. Cohen and J. W. M. DuMond and approved for adoption by the National Research
Council in April, 1963. See the Table of Numerical Constants at the end of the book.
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(We note parenthetically that these points are more difficult to reproduce
experimentally than the triple point of water, which involves only pure
water (without the presence of air) and needs no specification of the
applied pressure.)

If the pressure readings of the gas thermometer at the ice and steam points
are denoted by p; and 7,, respectively, then Eq. (4-3-12) yields the following
two relations when applied to these two standard states:

0=ap;+b
100 = ap, + b

These two equations ean be solved for @ and b in terms of §; and 5, The
relation (4:3:12) then beeomes

§ = 100 %_—'_-;—: (4:3:13)

Alternatively, this can be used to express § in terms of 8. One finds
p=5(1+7) (4:3:14)
where o100 (F: — 1) w1y

depends only on & pressure rafie and is thus independent of the nature of the
gas used. Thus & is a universal constant for all gases and can be measured
by using a gas thermometer at the ice and steam points. One finds thus

Gy = 273.15 (4-3-16)

By (4:3-14), measurements of two systems at the respective temperatures
4 and 85 yield for the corresponding pressure ratio

6o+ 0
£ 9:19: (4:3-17)

This is of the same form as (4:3-4) if one defines the absolute temperature T
by the relation
T =@+ 0 (4-3-18)

If the triple point of water is measured on this temperature scale, one finds
0 = 0,01°C, or by (4:318), T =~ 273.16°K approzimately.

Tt is clear that this old-faghioned procedure for establishing a temperature
scale is cumbersome, logically not very satisfying, and not of the highest
possible accuracy. The modern convention using a single fixed point is far
more satisfactory in all these respects, But by choosing T to be exactly
273.16°K rather than some other number, one gains the convenience that all
the older temperature measurements based on the former tamperatire soale;
will (within the limits of acouraey with which the triple point of water w&s,
measured on that scale) agree numerieally with the values based on the mod-
ern convention.
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4-4 Heat capacity and specific heat

Consider a macroscopic system whose maecrostate can be specified by ifs
abgolute temperature T and some other macroscopic parameter (or set of
macroscopic parameters) y. For example, y might be the volume or the mean
pressure of the system. Suppose that, starting with the system at temperature
T, an infinitesimal amount of heat d@) is added to the system while all its
parameters y are kept fixed. The resulting change dT in the temperature of
the system depends on the nature of the system as well as on the parameters T'
and y specifying the macrostate of the system. We define the ratio

(gg,)u =C, (4-4.1)

in the limit, as d@Q — 0 (or d7 — 0) as the “heat capacity' of the system. Here
we have used the subseript ¥ to denote explicitly the parameters kept constant
in the process of adding heat, The guantity C, depends, of course, on the
nature of the system and on the particular macrostate under consideration,
i.e., in general

Cy, = Cy(T,y) (4:2:2)

The amount of heat dQ which needs to be added to produce a given tem-
perature change dT of a homogeneous system will be proportional to the guan-
tity of matter contained therein. Hence it is convenient to define a quantity,
the “specific heat,” which depends only on the nature of the substance under
consideration, nol on the amount present. This can be achieved by dividing
the heat capacity C, of » moles (or m grams) of the substance by the correspond-
ing number of moles (or of grams). The “specific heat per mole” or “heat
eapacity per mole” is thus defined as

1 1/(d
CUE;C" =;(£ 2 (4‘43}
Equivalently, the “specific heat per gram” is defined as
1 1 /d
Cr’sﬁcvza(ﬁ)n {444)

The cgs units of the molar specific heat are, by (4:4-3), ergs degree —! mole—,

It should be noted from the operational definition (4-4-1) of the heat
capacity (', that this quantity does depend on which particular parameters y
of the system are kept constant in the process of adding the heat. Suppose we
consider a substance, e.g., a gas or liquid, whose macrostate can be specified
by two parameters, say the temperature 7' and the yolume V (see Fig. 4-4-1).
When the system is in a given macrostate, we can ask for the following two
quantities: (1) ey, the molar specific heat at constant volume of the system in
this state, and (2) ¢,, the molar specific heat at constant pressure of the system
in this state.
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Fig. 4+4'1 Diagram illustrating specific heat measure-
ments af a gas kepl: al constant volume or at constant
pressure.

1. To determine ¢y, we clamp the piston in position so that the volume
of the system is kept fixed. In this case the sysiem cannot do any work, and
the heat d€) added to the system goes entirely to increase the internal energy of
the system

aQ = dE (4-4.5)

2. To determine ¢,, the piston is lefl completely free to move, the weight
of the piston being equal to the constant forece per unit area (or mean pressure
p) on the system, 1In this case the piston will move when heat d} is added to
the system; as a result, the system does also mechanical work. Thus the heat
d@ is used both to increase the internal energy of the system and to do mechani-
cal work on the piston; 1.e.

dQ = dE + 5 dV (4-4-6)

For a gien amount of heat absorbed, the internal energy B will therefore
inerease by a smaller amount (and hence the temperature T will also increase
by a smaller amount) in the second case compared to the first. By (4:4.1)
one expects, therefore, that the heat capacity is greater in the second case;
i.e., one expects that

¢y > oy (4-4-7)

Remark Note that the specific heat at constant yolume may itself still be a
function of the volume V; i.e., cv = ov(7,V) in general. For example, the
heat required to raise the temperature of a gas from 300 to 301 degrees is in
general not the same if its volume is kept constant at 50 ecm® in the process
of adding heat, as it is if its volume is kept constant at 1000 em? in the process
of adding heat.

Since the second law allows us to write d@ = T dS, the heat capacity
(4-4-1) can be written in terms of the entropy as

- (88 o
=1 (ﬁ) (4-4-8)

If S in this expression is the entropy per mole of substance, then (), is'the molar
speeific heat.
If one contemplates a situation where all the external parameters of a
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gystem are kept fixed, then the systemn does no macroscopic work, dW = 0, and
the first law reduces simply to the statement dQ = dE. For example, if the
volume V is the only external parameter, one can write

Cr = T(;-;)V = (g—ﬁ)‘ (4-4.9)

By virtue of (3-7-16) it follows that this quantity is always positive,

Measurements of the specific heat involve measurements of heat of the
type diseussed in Sec. 4.2, In measuring heat by the comparison method (or
method of mixtures), it used to be popular to select water as the reference
substance. Henece a knowledge of its specific heat was of particular impor-
tanee. Such a measurement ean be made direetly in terms of work and was
first performed by Joule during the years 1843-1849. The specific heat of
water at a pressure of 1 atmosphere and a temperature of 15°C (288.2°K) is
fourid to be 4.18 joules deg—! gram=1,

Before the nature of heat as a form of energy was understood, it was
customary to define a unit of heat, the “calorie,’" as the heat required to raise
the temperature of water at 1 atmosphere from 14.5 to 15.5°C. Joule’s meas-
urement of the heat capacity of water in terms of work allowed expression of
the ealorie in terms of absolute energy units. The calorie unit is gradually
becoming obsolete and is now defined in terms of energy units by the relation

1 calorie = 4.1840 joules (4-4-10)

Example Let us consider heat measurements by the method of mixtures in
terms of the specific heats of the substances involved. Consider that two sub-
stances A and B, of respective masses m. and mg, are brought into thermal
contact under conditions where the pressure is kept constant, (For example,
a copper block is immersed in water, the pressure being atmospheric.) Sup-
pose that at this pressure the speeific heats per gram of the respective sub-
stances are ¢./(T) and cs'(T). Assume that before the substances are
brought into thermal contact their respective equilibrium temperatures are
T, end Tp, respectively. Denote their final common temperature, after
equilibrium is reached, by T;. No work gets done in this proeess, so that the
conservation of energy is expressed by (4-2-3) as

Qi +Qs=0 (4-4-11)
But by (4-4:4) the heat absorbed by a substance when its temperature is

increased by an amount d7 is given by dQ = mc’ dT. Hence the heat
absorbed by 4 in going from temperature T4 to temperature T is given by

T,
Qu = [, mac(r) o
or Qu = mac/ (T — Ta)

if the temperature dependence of c.’ is negligible. Similar expressions hold
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for B. Hence the fundamental condition (4-4-11) can be written

ST A R
ma [y eat A s [, el AT =0 @41)

This relation allows, for example, computation of the final temperature T
if the other quantities are known. The situation is particularly simple if
the specific heats ¢4’ and ¢s’ are temperature independent, In this case
(4:4-12) becomes simply

maca'(Ty — Ta) + maop'(Ty — Ta) =0 (4:4:13)
If daaired, this can be solved explicitly for the final temperature T, to give

p, - Macs'Ta + maca'Ts
I macd” 4 macs’

4< -5 Entropy

The entropy can readily be determined by using the second-law statement
(3-11-4) that dS = d@/T for an infinitesimal quasi-static process. Given any
macrostate b of the system, one can find the entropy difference between this
state and some standard state a by considering any guasi-stalic process which
carries the system from state a to state b and calculating for this process the
integral

Sb—Sa=J:% (#:5-1)

a

The evaluation of this integral yields, as discussed in Sec. 3- 10, the same unique
value of Sy — S, irrespective of what quasi-static process may be chosen to
bring the system from state a to state h.

Let us emphasize again that the process chosen for caleulating the infegral
in (4-5-1) must be quasi-static. This means that we must somehow bring the
system from state @ to state b by continuously changing its parameters so
slowly (compared to significant relaxation times) that it is at all times very
close to an equilibrium situation. In general, this will require the use of other
auxilisry systems on which the system can do work and from which it can
absorb heat. For example, if we need to change the volume of the system,
we could do it by sucecessively moving a piston by small amounts, proceeding
sufficiently slowly to allow the systern to reach equilibrium at all stages. Or,
if we need to change the temperature of the gystem, we could do it by bringing
the system successively into contact with & large number of heat reservoirs of
slightly different temperatures, again proceeding sufficiently slowly to allow
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the system to reach equilibrium at all stages. Clearly, the temperature 7' is
a well-defined quantity as we go through this succession of equilibrium situa-
tions, and the heat d@ absorbed in going from one macrostate to an adjacent
one is also a measurable quantity. The evaluation of the entropy difference by
(4-5-1) thus presents no conceptual difficulties. Note that the units of entropy
are, by (4-5.1), ergs/degree or joules/degree.

Suppose that the macrostate of a body is only specified by its temperature,
since all its other parameters y (e.g., its volume V or its mean pressure f) are
kept constant. If one knows the heat capacity €, (1) of the body under these
conditions, then its enfropy difference (for the given values of the parameters
¥) is given by

0dQ _ mC(T) dT"

S(TY) — S(T) = f = [ (4:5-2)

In the particular case that ',(T) is independent of 7, this becomes siniply

S(Ty) = S(T) = Cy1n 1 (4:5-3)

Example Consider the example discussed at the end of Bec. 4-4 where
two systems A and B, with constant specific heats ¢4 and ¢p’ and originally
at respective temperatures T4 and 7'y, are brought info thermal contact with
each other. After the systems come fo equilibrium, they reach a common
final temperature T, What is the entropy change of the entire system in this
process? The process which oceurred here was certainly not a quasi-static one
(unless T's = T4); nonequilibrium conditions prevailed between the initial
and final situations. To caleulate the entropy change of system 4, we can
imagine that it is brought from its initial temperature T4 to its final fem-
perature 7'y by & succession of infinitesimal hest additions whereby the sys-
tem at any intermediate equilibrium termperature T absorbs from a heat
reservoir at an infinitesimally higher temperature (7' + dT) a small amount
of heat dQ = muca’ dT. Thus the entropy change of 4 is given by

T mcd dT T
ASs = 8u(Ty) ~ ST = [ o A = e gt

A similar expression holds for system B. Hence the entropy change of the
total system is given by
AS4 + ASs = muca’ In TT“ + mpos’ h}.'% (4:5-4)
A B
Bince this represents the tofal enfropy change of the isolated system
(A -+ B), we know by the second law (8- 11+3) that this can never be negative.
To verify this explicitly, we make use of the simple inequality (proved in
Appendix A-8)
nhz<az-—1 (= sign forz = 1) (4-5-5)
Hence —Inz>—2+1
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The relation (4-5-2) is actually quite interesting because it gives an
explicit connection between two different types of information about the system
under consideration. On the one hand, (4-5-2) involves the heat capacily
C(T) obtainable from macroscopic meagurements of absorbed heat. On the
other hand, it involves the entropy which is related to a microscopic knowledge
of the quantum stales of the system and which can be caleulated either from
firgt prineiples or from experimental information obtainable from speetroscopic
data.

el 3
. Enumph* msdnple illustration, suppose that one is dealing with & simple
: stic atoms, each with spin §. If this system is known to
hfm@ﬁmﬁpdﬂﬁmﬂth temperatures, all spins must be completely
aligned as T— 0 so that the number of accessible states 2— 1, or § =
— 0 (in accordance with the third law). But at sufficiently high

peratures all spins must be completely randomly oriented so that @ = 2¢
and § = kN In2. Hence it follows that this system must have s heat

capacity C(T) which sutisfies, by (4-5-2), the equation

f'g‘ = kN In2

o.

This relation must be valid irrespective of the details of the interactions
. which bring about ferromagnetic behavior and irrespective of the temperature
dependence of €(7).

These comments should make it apparent that the measuring of heat
capaeities is not just a dull activity undertaken to fill up handbooks with data
useful to engineers concerned with the properties of materials. Accurate
measurements of heat capacities may be of considerable interest because they
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can provide some important information about the nature of the energy levels
of physical systems.

4 -0 Consequences of the absolute definition of entropy

In many applications it is true that only entropy differences, i.e., values of the
entropy measured with respect to some chosen standard state, are of impor-
tance. In this respect the entropy is similar to the internal energy £ of a
systen, and the entropy of any state with respect fo the standard state can be
determined by the integral (4-5-1). But we do know, as discussed in Sec.
3-10, that the entropy S is a completely calculable number and is not merely
defined to within an arbitrary additive constant. This reflects itself in the
third law statement that the entropy approaches, as T'— 0, a definite value
Sp (usually 85 = 0) independent of all parameters of the system. To obtain
an absolute value of the entropy one can either use statistical mechanies to
calculate the absolute value of the entropy in the standard state, or one can
measure entropy differences from a standard state chosen at T'— 0 where
S = Sy is known to have a definite value independent of all parameters of the
system,

The fact that the entropy has a definite value (without any arbitrary
additive constant) makes possible physically significant statements which could
not be made otherwise. The following two examples will serve to illustrate
this point,

Example 1 Consider the case of a solid which can exist in two different
erystal structures. A elassical example of this kind is tin, which exists in two
rather different forms: one of these is “white’’ tin, which is a metal; the other
is “gray" tin, which iz a semiconductor. Gray tin is the stable form at tem-
peratures below Ty = 202°K, while white tin is the stable form above this
temperature. At the temperature T the two forms are in equilibrium with
each other. They ecan then coexist indefinitely in arbitrary proportions, and a
positive amount of heat @, must be absorbed to transform one mole of gray
tin into the white tin modification.

Although white tin is the unstable form at temperatures below 7', the
speed with which the transformation proceeds to the gray form is very slow
compared to times of experimental interest. Tt is thus very easy to work with
white tin, the ordinary metal, down to very low temperatures. (One is, in
practice, scarcely aware that there is a tendency for the metal to transform to
the gray form.) A sample of white tin readily achieves internal equilibrium,
although it exhibits a negligible tendency to transform to the gray form. One
can thus easily measure the molar specific heat C®(T) of white tin in the
temperature range T < T, There is, of course, no difficulty in working with
a sample of gray tin in this temperature range; one can thus also make measure-
ments of the molar specific heat (@(T) of gray tin at temperatures T < To.*

* All quantities in this discussion refer to measurements at the same constant pressure.
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Sinece the transformation from the white to the gray form proceeds at a
negligible rate, the situation would not be changed significantly if one imagined
imposing a constraint which would prevent the transformation altogether. In
that case white tin can be considered in a genuine equilibrium situation statisti-
cally distributed over all states consistent with the erystal structure of white
tin; similarly, gray tin can be considered in an equilibrium situation statistically
distributed over all states consistent with the erystal structure of gray tin.
Arguments of equilibrium statistical mechanics can then be applied to each of
these systems. In particular, let us consider the limit as the temperature
T — 0. By thislimit we shall mean a reasonably low temperature (say 0.1°K),
but not one so extremely low (say, less than 10~%°K) that the random spin
orientation of the tin nuclei would be affected.* In accordance with the dis-
cussion of Sec. 3-10, a sample consisting of a mole of white tin approaches a
ground-state configuration consistent with the white-tin crystal structure.
Correspondingly its entropy S tends to zero except for the contribution
8 = kIn Qs associated with the Qg states of possible nuclear spin orientations.
Similarly, a sample consisting of a mole of gray tin approaches a ground state
configuration consistent with the gray tin erystal structure. Correspondingly,
its entropy S also tends to zero except for the contribution due to the possible
nuelear spin orientations. Sinee one is dealing with the same number of the
same kind of nuelei, there are again Qg possible spin states, and this nuclear spin
eontribution to the entropy is again Sy = & In 5. Thus, as T'— 0,

SW(T)— 8, and S@(T) — Sy
S (0) = S©(0) (4-6-1)

The relation (4-6-1) expresses just the content of the third law that the
entropy approaches, as T — 0, a value independent of all parameters of the
system (in this case independent of crystal strueture). We shall now show how
this statement can be combined with a knowledge of the specific hegts to
calculate the heat of transformation Qg from gray to white tin at the transition
temperature T,. For suppose that it is desired to calculate the entropy
84 (Tq) of a mole of white tin at 7 = T, One can use two different quasi-
static processes in going from T = 0 to the same final macrostate.

1. Bring a mole of white tin quasi-statically from 7 = Oto T = T%. This
yields a final entropy

(T = @ () + [ g ’(T ) ar (4-6-2)

2. Take a mole of gray tin at T = 0 and bring it first quasi-statically to
temperature Ty, Then transform it quasi-statically (at this equilibrium transi-
tion temperature) to white tin; its entropy change in this transformation is

* The magnetie field H produced by & nuclear moment p at a neighboring nucleus at an
interatomic distance r is of the order of u/r?, i.e., of the order of 5 gauss if u is a nuclear
magneton (5 X 10~ ergs/gauss) and r = 107% em. Departures from random nuclear spin
orientation can therefore only be expected at & temperature 7' low enough so that kT' < uH,
the interaction energy between nuclei.
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simply @Qo/Ts. Hence one can write*

+ C"’(T ) g 4 Q“ (4-6-3)

S@)(Ty) = S@(0) + f

Making use of the result (4:6-1), one thus obtains the relation

s  [HCETY) o S rsCOT) Lo o
ﬁ_fo S dT fn o dT (4-6-4)

By using the experimental specific heat measurements and performing the
integrations numerically, one finds that the first integral has the value 51.4
joules/deg, while the second integral has the value 44.1 joules/deg. Using
Ty = 202°K, one then calculates Q¢ = (292)(7.3) = 2130 joules, which com-
pares favorably with the value of 2240 joules obtained by direct measurement
of the heat of transformation. Note that this calculation of @y would have
been impossible if the third law had not allowed the comparison (4-6-1)
between the entropies at T = 0.

Example 2 As a second example illustrating the significance of the third law
for caleulations of the entropy, consider a system A consisting of a mole of
solid lead (Ph) and a mole of solid sulfur (8) separated by a partition. Consider
also another system B consisting of a mole of the solid compound lead sulfide
(PbB). Although the systems A and B are very different, they consist of the
same atoms. Hence the third law asserts that the entropies of both systems
approach the same value as T — 0, a value corresponding merely to the number
of possible orientations of the nuelear spins. In symbols,

SEeb8)(0) = SPES)(0) (4:6-5)

if SP+8(T) denotes the entropy of system A and S®*® denotes the entropy
of system B.

Suppose that the systems A and B are both at atmospheric pressure.
Suppose further that one knows as a function of temperature the heat capacity
per mole (at constant atmospheric pressure) C® of solid lead, C® of solid
sulfur, and C®*%) of lead sulfide (PbS). Then one ean write for the entropy of
the system A consisting of Pb and S separately

COM) 41 (4-6-6)

SEo48) () = SEEb+8)(0) - frC""’(T a7’ + f?‘

For the entropy of the system B consisting of PbS one can write at the same
temperature
T C{Pbm(T:‘) sl

S(EsS) (T = S(Pb8)(0) f (4:-6:7)

* The integrals in (4-6-2) and (4-6:3) must converge properly, since all other
quantities are finite. Henee the specific heats must approach zero as T— 0. This is a
general property of the specific heats of all substances and one that is well verified
experimentally.
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By virtue of (4:6-5) the last two relations provide then a quite unique value
for the entropy difference [SPr3) () — SFbS) ()] even though the caleulations
involve only a knowledge of the specific heats and no information whatever
about how Pb and 8 might react to form PbS. This implies also a very definite
prediction as to the value of the integral [dQ/T which one would obtain by
earrying out & quasi-static proeess in which PbS at a temperature T would be
transformed through successive equilibrium states into separated Pb and 8 af
the same temperature. Such a quasi-static process could be performed as
follows: Heat the PbS slowly until it evaporates; then heat it further until
all the PhS molecules are completely dissociated info Pb and 8 atowms; then
separate the gases slowly with the aid of a semipermeable membrane; then
lower the temperature of the whole system back to the temperature 7' while
keeping the membrane in position.

Remark on the separation of gases by semipermeable membranes
It is possible to conceive of a membrane which is completely permeable
to molecules of one type and completely impermeabie to all other molecules.
(One can also realize such membranes in practice; e.g., hot palladium metal
is permeable to hydrogen (H.) gas but to no other gases) With the aid of
such membranes one can unmix gases as illustrated in Fig, 4.6-1. For
example, to unmix the 4 and Bmolecules in a quasi-static way, one needs only”
to move the two membranes slowly until they meet somewhere in the con-
tainer, Then all the A molecules will be in the left part and all the B mole-
culgs in the right part of the container.

Membrane permeahle only to A molecules Membrane permesbie only to B molecules

Before

an 4+6+1 Seporation af two gases A and B by means of
ble membr

&

4. { Extensive and intensive parameters

The macroscopic parameters specifying the maerostate of a homogeneous sys-
tem can be classified into two types. Let y denote such a parameter. Con-
sider that the system is divided into two parts, say by introducing a partition,
and denote by y; and y, the values of this parameter for the two subsystems.
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Fig. 4:7-1 Division of a homogeneous
system into two parts by a partition. i

Then two cases can arise:

1. One has y; + 2
exlensive.

2. One has y; = y: = y, in which case the parametfer y is said to be
infensive.

¥, in which case the parameter y is said to be

In simple terms one ean say that an extensive parameter gets doubled
if the size of the system is doubled, while an intensive parameter remains
unchanged.

Thus the volume V of a system is an extensive parameter, as is the total
mass M of a system. On the other hand, the density pof a system, p = M/V,
isan intensive parameter, Indeed, it is clear that the ratio of any two extensive
parameters is an intensive parameter.

The mean pressure of a system is an inlensive parameter, since both parts
of a system, after subdivision, will have the same pressure as before. Similarly,
the temperature T of a system is an intensive parameter.

The internal energy & of a system is an extensive quantity. Indeed,
no work is required to subdivide the system inio two parts (if one neglects
the work involved in creating the two new surfaces; this is negligible for
large systems for which the ratio of the number of molecules near the boundary
to the number of molecules in the bulk of the system is very small}. Thus
the total energy of the system is the same after subdivision as it was before,
i.E., E_], + E'g = E

The heat capacity C, being the ratio of an energy increase divided by a
fixed small temperature increment, is similarly an extensive guantity. The
specific heat per mole (or per gram) is, by its definition €'/» (where v is the
number of moles in the system), obviously an intensive quantity.

The entropy S is also an extensive quantity. This follows from
the relation AS = [d@Q/T, since the heat absorbed d@Q = C'dT is an
extensive quantity. It also follows from the statistical definition, e.g.,
from (3-7-20).

When dealing with extensive quantities such as the entropy S, it is often
convenient to talk in terms of the quantity per mole S/v which is an intensive
parameter independent of the size of the system. It is sometimes convenient
to denote the quantity per mole by a small letter, e.g., to denote the entropy
per mole by s. Thus § = ys.

~
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PROBLEMS

SUGGESTIONS FOR SUPPLEMENTARY READING

Macroscopic discussion of internal energy, heat, and temperature
M. W. Zemansky: “Heat and Thermodynamics,” 4th ed., chaps. 1 and 4, McGraw-

Hill Book Company, New York, 1957.

H. B. Callen: “Thermodynamics,” chap. 1, John Wiley & Sons, Inc., New York, 1960,

Consequences of the third law

E. Fermi: “Thermodynamice,” chap. 8, Dover Publications, New York, 1056,
J. Wilks: “The Third Law of Thermodynamics,” Oxford University Press, Oxford,

1961, (A more advanced book.)

PROBLEMS

4.1

4.2

4.3

4.4

(a) One kilogram of water at 0°C is brought into contact with a large heat
reservoir at 100°C. When the water has reached 100°C, what has been the change
in entropy of the water? of the heat reservoir? of the entire system consisting
of both water and heat reservoir?

(b) If the water had been heated from 0°C to 100°C by first bringing it in
contact with a reservoir at 50°C and then with a reservoir at 100°C, what would
have been the change in entropy of the entire system?

(¢) Show how the water might be heated from 0°C to 100°C with no change
in the entropy of the entire system.

A 750-g copper calorimeter can containing 200 g of water is in equilibrium at a
temperature of 20°C, An experimenter now places 30 g of ice at 0°C in the
calorimeter and encloses the latter with a heat-insulating shield.

(a) When all the ice has melted and equilibrium has bgen reached, what will
be the temperature of the water? (The specific heat of copper is 0.418 joules g~
deg=1, Ice has a specific gravity of 0.917 and its heat of fusion is 333 joules g=*;
i.e,, it requires 333 joules of heat to convert 1 g of ice to water at 0°C.)

(b) Compute the total entropy change resulting from the process of part (a).

(c) After all the ice has melted and equilibrium has been reached, how much
work, in joules, must be supplied to the system (e.g., by means of a stirring rod)
to restore all the water to 20°C?

The heat absorbed by a mole of ideal gas in a quasi-static process in which its
temperature T' changes by dT and its volume V by dV is given by

dQ = cdT + pdV

where c is its constant molar specific heat at constant volume and p is its mean
pressure, = RT/V. Find an expression for the change of entropy of this
gas in a quasi-static process which takes it from initial values of temperature T';
and volume V; to the final values T and ¥, Does your answer depend on the
process involved in going from the initial to the final state?

A solid contains N magnetic atoms having spin 3. At sufficiently high tem-
peratures, each spin is completely randomly oriented, i.e., equally likely to be in
either of its two possible states. But at sufficiently low temperatures the inter-
actions between the magnetic atoms causes them to exhibit ferromagnetism,
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4.5

with the result that all their spins become oriented along the same direction as
T— 0. A very crude approximation suggests that the spin-dependent contribu-
tion C(T) to the heat capacity of this solid has an spproximate temperature
dependence given by

o) = ¢ (2% - 1) LT, < T < T,
=0 otherwise

The abrupt increase in specific heat as 7" is reduced below T'; is due to the onset of
ferromagnetic behavior.

Use entropy considerations to find an explieit expression for the maximum
value (') of the heat capacity.
A solid contains N magnetic iron atoms having spin 8. At sufficiently high
temperatures, each spin is completely randomly oriented, i.e., equally likely to
be in any of its 25 - 1 possible states. But at sufficiently low temperatures the
interactions between the magnetic atoms causes them to exhibit ferromagnetism,
with the result that all their spins become oriented along the same direction as
T — 0. The magnetie atoms contribute to the solid a heat capacity C(T) which
has, very crudely, an approximate temperature dependence given by

C(T)=cl(z%—1) H3T < T < Ty
1
=10 otherwise

The abrupt increase in speeific heat as 7' is reduced below T'; is due to the onset of
ferromagnetic behavior.

If one dilutes the magnetic atoms by replacing 30 percent of the iron atoms
by nonmagnetic zinc atoms, then the remaining 70 percent of the iron atoms still
become ferromagnetic at sufficiently low temperatures. The magnetic atoms
now contribute to the solid a heat capacity C(T) with the different temperature
dependence given, very crudely, by

C(T)=C:%ﬂ H0o<T<T,s
=0 otherwise

Since the interactions between magnetic ions have been reduced, the ferromagnetic
behavior now sets in at a temperature 7' lower than the previous temperature
Ty, and the heat capacity falls offi more slowly below the temperature T,.

Use entropy considerations to compare the magnitude of the specific heat
maximum (' in the dilute case with the magnitude of the specific heat maximum
(' in the undiluted ease. TFind an explicif expression for C/C).



Simple applications of

macroscopic thermodynamics

1N THIS chapter we shall explore the purely macroscopic consequences of our
theory in order to derive various important relationships between macroscopic
quantities. The whole chapter will be based solely on the general statements,
called “‘thermodynamic laws,” which were derived in Chapter 3 and sum-
marized in See. 3:11, Despite their apparent innocuousness, these statements
allow one fo draw an impressive number of remarkable conelusions which are
completely independent of any specific models assumed to deseribe the miero-
scopie constituents of a system.

Sinee the disecussion of this chapter will be completely macroscopie, quan-
tities such as energy F and pressure p will always refer to their respective mean
values. For simplicity, we shall therefore omit the averaging bar symbols
above the letters designating these quantities.

Most of the systems considered in this chapter will be characterized by a
single external parameter, the volume V. The macrostate of such a system can
then be specified completely by two macroseopic variables: its external parame-
ter ¥ and its internal energy 15.* The other macroscopic parameters, like
temperature T or pressure p, are then determined. But the quantities ¥ and
E do not always represent the most convenient choice of independent varidbles.
Any two other macroscopic parameters, e.g., £ and p, or Tand V, might equally
well be chosen as independent variables. In either case, £ and V would then
be determined,

Most of the mathematical manipulations encountered in making thermo-
dynamic caleulations involve changing variables and taking partial derivatives.
To avoid ambiguity, it is customary to indicate explicitly by subseripts which
of the independent variables are kept constant in evaluating a given partial
derivative. For example, if T and V are chosen as independent variables,
(8E/8T)y denotes a partial derivative where the other independent variable
V is kept constant. On the other hand, if T and p are chosen as independent

* These are, of course, the same variables that specify the number of states @(E,V)
accessible to the system. 1

158
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variables, (6E/dT), denotes a partial derivative where the other independent
variable p is kept constant. These two partial derivatives are, in general, not
equal. If one simply wrote the partial derivative (0E/aT) without a subseript,
it would not be clear which is the other independent variable kept constant in
the differentiation.*

The first law (3:11:2) applied fo any infinitesimal process yields the
relation

dQ = dE + aW

where ¢F is the change of internal energy of the system under consideration.
If the process is quasi-static, the second law (3-11-2) allows one to express the
heat d@ absorbed by the system in this process in terms of the change of
entropy of the system, i.e., dQ = T dS; furthermore, the work done by the
system when its volume is changed by an amount dV in the process is simply
given by dW = pdV. Hence one obtains the fundamental thermodynamic
relation

B T dS = dE + p dV

Most of this chapter will be based on this one equation. Indeed, it is usually
simplest to make this fundamental relation the starting point for discussing any
problem.

PROPERTIES OF IDEAL GASES

Py 1k Equation of state and internal energy

Macroscopically, an ideal gas is deseribed by the equation of state relating its
pressure p, volume ¥V, and absolute temperature 7. For » moles of gas, this
equation of state is given by

pV = vRT (5:-1-1)

We derived this relation in (3-12-10) by micrescopic arguments of statistical
mechanies applied to an ideal gas in the classical limit. But from the point
of view of the present macroseopic discussion, Eq. (5-1-1) merely characterizes
the kind of system we are talking about; thus (5-1-1) might equally well be
considered as a purely phenomenological relation summarizing experimental
measurements on the system.

An ideal gas has a second important property already proved in (3-12-11)
on the basis of microscopie statistical mechanics: its internal energy does not
depend on its volume, but only on its temperature. Thus

E = E(T) independent of V' (5-1:2)

‘This property is actually a direct consequence of the equation of state
(5-1:1), Thus, even if (5-1-1) were to be considered a purely empirical equa-
tion of state describing a particular gas, the thermodynamic laws would allow

* Further discussion of partial derivatives can be found in Appendix A - 9.
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us to conclude immediately that this gas must satisfy the property (5-1-2).
Let us show this explicitly.
Quite generally, the internal energy E of » moles of any gas can be con-
sidered a funetion of T and V',
E = E(T.V) (5-1-3)

Thus we can write the purely mathematical statement

a 3 B
dE_(ﬁ,)VdT+(a—, v (5-1-4)

But the fundamental thermodynamic relation for a quasi-static continuous
change of parameters can be written as

=3 TdS = dQ = dE + p dV (5-1-5)
Using (5-1+1) to express p in terms of V and T, (5-1-5) becomes
1 vR
dsS = -,de -f-?dV
or by (5-1-4)
i LR 1 (3E Al o

The mere fact that dS on the left side of (5-1-6) is the exdct differential of a
well-defined function allows us to draw an important conclusion. We can
consider § dependent on T and V. Thus 8§ = S(71,V), and we can write the
mathematical statement

2 5
ds = (a—g)vdT-l-(-é-g)TdV (5-1.7)

Since this expression must be true for all values of dT and dV, comparison with
(5-1-4) shows immediately that

a8) _ 1(oF
arfy ~ T\aT )y
av /e TA\AV Jr V

But the equality of the second derivatives, irrespective of order of differen-
tiation,

(5-1-8)

a8 S8
aver _ aTav (G-l

implies a definite connection between the expressions on the right side of

(5-1-8). Thus
@) ), - @), ().
by (5:1-9), and

1( @B 1 (3E 1( @B
T(aV&T) N [_ F(a_V)r +T(6T9V)] ot
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using (5-1:8). Since the second derivatives of & are again (analogously to
(5-1-9)) equal irrespective of the order of differentiation, this last relation shows

immediately that
aE
(5"1?)T =0 (5-1-10)

This establishes that E is independent of V and completes the proof that
(5:1:2) follows from (5-1-1).

Historical remark on the ‘““free expansion’® experiment The fact that
the internal energy E of a gas does not depend on its volume (if the gas is
sufficiently dilute that it can be considered ideal) was verified in a classical
experiment by Joule. He made use of the “free expansion’ of an ideal gas as
illustrated in Fig, 5-1-1,

A container consisting of two compartments separated by a valve is
immersed in water. Initially, the valve is closed and one compartment is
filled with the gas under investigation, while the other compartment is evac-
uated. Suppose that the valve is now opened so that the gas is free to expand
and fill both eompartments. In this process no work gets done by the system
consisting of the gas and container. (The container walls are rigid and nothing
moves.) Hence one can say, by the first law, that the heat @ absorbed by
this system equals its increase in internal energy,

Q = AE (5:1-11)

Assume that the internal energy change of the (thin-walled) container is
negligibly small, Then AF measures simply the energy change of the gas.

Joule found that the temperature of the water did not change in this
experiment. (Because of the large heat capacity of the water, any anticipated
temperature change is, however, quite small; Joule’s actual sensitivity of tem-
perature measurement was, in retrospect, rather inadequate.) Thus the water
absorbed no heat from the gas; consequently, the heat @ absorbed by the gas

Thermometer 2 :
—_— - (.:mr Valve

l

Acuum

Water

Fig. 5:1-1 Experimental setup for studying the free expansion of a gas.
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also vanished, All that happens in the experiment is that the temperature
of the gas remains unchanged while its volume changes from its initial value
V; to its final value V;. Since @ = 0, Joule's experiment leads by virtue of
(5-1-11) to the conclusion

E(T,V)) — E(T,V,) =0
which verifies that E(T,V) is independent of the volume V.

5+2 Specific heats
The heat absorbed in an infinitesimal proeess is given by the first law as
dQ = dE + p dV (5-2-1)

Let us first obtain an expression for the molar specific heat ey at constant
volume. Then dV = 0 and (5-2-1) reduces simply to

dQ = dE

1/d0Q 1/0
=3 (31), =5 (1), ey

The specific heat ¢y may itself, of course, be a function of 7. But by virtue
of (5-1-2), it is independent of V for an ideal gas.

Since ¥ is independent of V, so that E is only a function of T, the general
relation (5-1-4) reduces to

Hence one obtains

aT Jv

i.e., the change of energy depends only on the temperature change of the gas,
even if the volume of the gas also changes. Using (5:2-2), one can then write
quite generally

B = (@) T (5-2:3)

dE = vey dT (5:2:4)
for an ideal gas. i
Let us now obtain an expression for the molar specific heat ¢, at constant
pressure. Here the pressure is eonstant, but the volume V changes, in general,
ag heat is added to the gas. Since the general expression (5-2-4) for dF is still
valid, one ean substitute it into (5-2-1) to get

dQ = vey AT + p AV (5-2-5)

We now want to make use of the fact that the pressure p is kept constant’
By the equation of state (5-1-1), a volume change dV and a temperature
change d7' are then related by

pdV = R dT (5-2-6)

Substituting this into (5-2:5) yields for the heat absorbed at constant pressure
dQ = vey dT + vR dT (5-2-7)
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But, by definition,
. _1(10
T Gl
Using (5-2-7), this becomes
B cp=cv+ R (5-2-8)

Thus ¢, > ey, in general agreement with (4-4:7), and these molar specific
heats of an ideal gas differ precisely by the gas constant K.
The ratio v of the specific heats is then given by

e R .9,
The quantity v can be determined from the velocity of sound in the gas and
can also be measured directly by other methods. Table 5-2-1 lists some
representative experimental values of ¢y for a few gases. It also illustrates
the extent of agreement between the values of v computed by (5-2-9) and the
experimentally measured values of this quantity.

Table 5-2+1 Specific heats of some gases (at I5°C and I atm)*

(fas Symbol ey * ¥
(experimental) (experimental) (computed by (5-2-9))
(joules mole™

deg™)
Helium He 12.5 1.666 1.666
Argon Ar 12.5 1.666 1.666
Nitrogen N, 20.6 1.405 1.407
Oxygen 0, 21.1 1.396 1.397
Carbon dioxide CO, 28.2 1.302 1.298
Ethane C;Hs 39.3 1.220 1.214

* Experimental values taken from J. R. Partington and W. G. Shilling, "'The Specific
Heats of Gases,"” p. 201, Benn, London, 1924,

Microscopic calculation of specific heats If one is willing to make use of
microscopic information, one can, of course, make many more interesting state-
ments. The situation of a monatomic ideal gas is particularly simple. In
(2:5-19) we found for the number of states of such a gas in some small energy
range 6 the expression

HE,V) = BYVEN!2

swhere N is the number of molecules in the gas and B is some constant inde-
pendent of ¥ and V. Hence

Ing@ =1nB+N1nV+§§£1nE
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The temperature parameter 8 = (kT)~" is then given by

g_dlo _3N1
3F 2K
3N 3N
Thus E = "2"5 = —g—kT (5210)

This expresses directly the relation between the internal energy and the absolute
temperature of the gas. If N, denotes Avogadro's number, N = vN, and
(5:2-10) can also be written

B = $»(NJ)T = §oRT (5-2:11)
where B = Nk is the gas constant.

The molar specific heat at constant volume of a monatomic ideal gas is
then, by (5-2-2) and (5-2-11),

"".=%(Z_?),, =g!|’. (5-2-12)
By (4-3-8) this has the numerical value
ey = 12.47 joules deg~' mole~! (5-2:13)
Furthermore, (5-2-8) then gives
3 ¢, =38R+ R =§R (5-2-14)
and ¥ z%’ = § = 1.667 (5-2-15)

These simple microscopic arguments lead thus to very definite quantitative
predictions. The experimental values given in Table 521 for the monatomic
gases helium and argon show very satisfactory agreement with the theoretical
values (5-2-13) and (5-2-15).

5 . 3 Adiabatic expansion or compression

Suppose that the temperature of a gas is maintained constant by being kept in
thermal contact with a heat reservoir. If the gas is allowed to expand quasi-
statically under such “isothermal” (i.e., “‘same temperature”) conditions, the
pressure p and volume V satisfy, by virtue of the equation of state (5-1-1),
the relation

pV = constant (5-3-1)
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Suppose, however, that the gas is (hermally insulated from its surround-
ings (i.e., that it is maintained under adiabatic conditions). If the gas is
allowed to expand under these conditions, it will do work at the expense of its
internal energy; as a result its temperature will also change. In a quasi-static
adiabatic process of this kind, how is the pressure p of the gas related to its
volume V?

Our starling point is again the first law (5-2-1). Since no heat is absorbed
in the adiabatic process here contemplated, d@ = 0. Using Fq. (5-2-4) for
an ideal gas, (5-2-1) becomes

0= veydl + p dV (5-3-2)

This relation involves the three variables p, V, and 7. By the equation of
state (5-1-1), one can express one of these in terms of the other two. Thus
{5-1-1) yields

pdV 4+ Vdp = »RdT (5:3-3)

Let us solve this for dT and substitute the result into (5-3-2). This gives
a relation between dp and dV.

L i v
O—R(pdV—I—Vdp)—erdV (R—l—l)pdV-l-RVd'p
or (v + R)p dV + evV dp =0
Dividing both sides of this equation by the quantity cypV yields the equation
dV | dp

where, by (5-2-9),
_ovt+ B _c L
¥ ey & 8

Now ¢y is temperature independent for most gases. In other cases it may be a
slowly varying funetion of 7. Thus it is always an excellent approximation
to assume that the specific heal ratio v is independent of T in n limited tem-
perature range, Then (5-3-4) can be immediately integraled fo give

vIln V + In p = constant
or

& pV7? = constant (5-3:6)

Since ¥ > 1 by virtue of (5-3-5), p will vary more rapidly with V than in the
isothermal case (5-3-1) where pV = constant.

From (5-3-6) one can, of course, also obtain corresponding relations
between V and T, or between p and T. For example, since p = »RT/V,
(5-3-6) implies that

V=17 = gonstant (5:3:7)
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5 - 4 Entropy

The entropy of an ideal gas can readily be computed from the fundamental
thermodynamic relation (5-1:5) by the procedure of Sec. 4-5. By virtue of
(5:2-4) and the equation of state (5-1.1), the relation (5-1.5) becomes

T dS = vey(T) dT + "—}-f;,z av
b as = pay(m%@-&-v&g (5.4:1)

This allows one to find, by integration, the entropy of » moles of this gas at any
arbitrary temperature T and volume V compared to the entropy of the gas in
some standard macrostate.

Let us choose as the standard macrostate of this kind of gas one where v,
moles of the gas occupy a volume Vg at the temperature 7. We denote the
molar entropy of the gas in this standard state by s,. To caleulate the entropy
S(T,V; ») of » moles of this gas at temperature T and volume V, we need
merely to consider any quasi-static process whereby we bring these » moles of
gas from the standard state to the final state of interest. Letf us then first
divide off by a partition » moles of gas in the standard state; these will have
entropy »$o and oceupy a volume Vy(»/»y). Take these v moles of gas and
slowly inerease the temperature to the value 7" while keeping the volume con-
stant at Vo(v/»). Then change the volume slowly to the value V while keeping
the temperature constant at T. TFor the process just deseribed, integration of
(5-4-1) gives the result

7 ep(T") dT’ v av’
]

S(T,V;v) — vsy = rf ] + vR otsiis T

te T (bl

The last integration is immediate:

2 e 7 Y 0 WA At B i
fv.“}]“) —-V,— = [ln Vrll’g(r.frq) =n¥V —1In (Vu ’ll_u) = ln 7 In Vs

Hence (5-4-2) becomes ~

S(T,V; ) = v [f: I g + R0 Y — R0+ su] (5-4-3)

Yo

onl ST ) o=y o) AT+ RInV — RIn v + constant | (5-4-4)
T?

In this last expression we have lumped all the quantities referring to the
standard state into a single constant. The expressions (5-4-3) or (5-4-4) give
the dependence of the entropy S on 7, V, and ». In the special case when ey
is temperature independent, the integral over temperature becomes, of course,
trivial; i.e.,

[ T = evyin T

if ¢y is constant.
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GENERAL RELATIONS FOR A HOMOGENEOUS SUBSTANCE

5 . 5 Derivation of general relations

We consider & homogeneous system whose volume V' is the only external
parameter of relevance. The starting point of our whole discussion is again
the fundamental thermodynamic relation for a quasi-static infinitesimal process

dQ = T dS = dE + p dV (5-5-1)

This equation gives rise to a wealth of other relations which we want to exhibit
presently.

Independent variables S and V' Equation (55 - 1) can be written
> dE = TdS — pdV (5:5-2)

This shows how E depends on independent variations of the parameters § and
V. 1If these are considered the two independent parameters specifying the
system, then

E = E(8,V)
and one can write the corresponding purely mathematical statement
ax aE 2 2
df = (a_E)v ds + (W)s dv (5:-5-3)

Since (5:5:2) and (5:5-3) must be equal for all possible values of dS and dV,
it follows that the corresponding coefficients of dS and dV must be the same.

Hence
aE
ES‘)V i

The important content of the relation (5-5-2) is that the combination of
parameters on the right side is always equal to the exaet differential of a
quantity, which in this case is the energy E. Hence the parameters T, S, p,

“and V which occur on the right side of (5:5-2) cannot be varied completely
arbitrarily; there must exist some connection between them to guarantee that
their combination yields the differential dE. To obtain this connection, it is
only necessary to note that the second derivatives of £ must be independent of
the order of differentiation, i.e.,

; arl a2k
av 88 — aSav

5 ). (). - ). 7).

(5-5-4)
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Hence one obtaing by (5-5:4) the result

(.- @)

This useful relation reflects merely the fact that d# is the exact differential of a
well-defined quantity E characteristic of the macrostate of the system.

Independent variables S and p Equation (5-5-2) exhibits the effect of
independent variations of S and ¥. One might equally well exhibit the effect
of independent variations of S and p. One can easily pass from the expression
p dV, where the variation dV appears, to an equivalent expression where dp
appears by the simple transformation

pdV =deV) — Vdp

Let us then return to (5-5-2) and transform this into an expression involv-
ing dp rather than dV. We get

dE =TdS—pdV =TdS — dpV) + V dp
or d(E + pV) = TdS + Vdp

We can write this as

dH = TdS+ Vdp (5-5-6)
where we have introduced the definition
H=E+pV (5:5:7)

The function H is called the “enthalpy.”
Considering S and p as independent variables, one can write

H = H(8,p)

and dH = (as) dS+( H) dp (5-5-8)

Comparison between (5-5-6) and (5:5-8) yields the relations

(%)’ B (5-5-9)

aH
(5)3 G

The important aspeet of (5:5-6) is again the fact that the combination of
parameters on the right side is equal to the exact differential of a quantity
which we happen to have designated by the letter H. The equality of the
cross derivatives of this quantity, i.e., the equality

8*H _ &H
apaS  aSap
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then implies immediately the relation

(%)S = (g_g), (5-5-10)

This equation is analogous to (5-5-5) and represents again a necessary
connection between the parameters 7, S, p, V. By this time it should be clear
what kind of game one plays to get thermodynamic relations of this sort. All
we need do is play it to the bitter end by performing all other possible changes
of variable in the fundamental equation (5:5-2).

Independent variables T and V. We transform (5:5:2) into an expression
involying dT rather than d8. Thus we can write

dE = T dS — pdV = d(TS) — S dT — p dV
or dF = —8dT — p dV (5-5-11)

where we have introduced the definition
F=FE—TS8 (5-5-12)

The function F is called the “Helmholtz free energy.”
Considering T and V' as independent variables,

F =¥F(T,V)
_(oF oF (5-5-13)
and it = (‘EJ_T)V aT + (51—")1 dVv
Comparison of (5-5-11) with (5-5:13) yields
().
i (5-5-14)

o/ N
£17) S

Equality of the cross derivatives

»F _ 9F
avar aTav
then implies
98\ _ (9p 5.
(ET' o (aT)v BeBt)

Independent variables T and p We finally transform (5:5:2) into an
expression involving d7" and dp rather than dS and dV. Thus we can write

dE = TdS — pdV = d(T8S) — 8dT — d(pV) + V dp
or dd = —8dT + V dp (5-5:16)

where we have introduced the definition

G=FE— T8 + 3V (5:5-17)




-

164 section 5+ 6

The function @ ig called the “Gibbs free energy.” In terms of the previous
definitions (5:5-7) or (5-5:12), we could also write G = H — TS, or
G =F + pV.

Considering T and p as independent variables,

G = G(T,p)

o ;
Ard = (%P T + (%)r 75 (5-5-18)

Comparison of (5-5-16) with (5-5-18) yields

Lo e
E;g: B (5-5-19)

Equality of the cross derivatives

! .
apaT aT ap

= (g_ﬁ)T ~ (%’)ﬂ (5-5-20)

56 Summary of Maxwell relations and thermodynamic
Sunctions

then implies

Maxwell relations The entire diseussion of the preceding section was based
upon the fundamental thermodynamic relation

% dE = T dS — p dV (5-6-1)

From this statement we derived the important relations (5-5-5), (5-5-10),
(5-5-15), and (5-5-20), which are repeated below:

aT Ry e s
1 (W),g (ﬂ L (d 6 2)

(). &)
(#)-()
©).--C

These are known as “Maxwell’s relations.”” They are a direet consequence of
the fact that the variables T', S, p, and V are not completely independent, but
are related through the fundamental thermodynamic relation (5-6-1). All
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the Maxwell relations are basically equivalent ;* any one of them can be derived
from any other one by a simple change of independent variables.

It is worth recalling explicitly why there exists this connection between
variables which is expressed by the Maxwell relations. The basic reason is as
follows: It is possible to give a complete macroscopic description of a system in
equilibrium if one knows the number of states @ accessible to the system (or
equivalentily, its entropy S = k In @) as a funetion of its energy £ and ifs one
external parameter V. But both the temperature T and mean pressure p of
the system can be expressed in terms of In @ or S; in Chapter 3 we found the
explieit expressions (3-12.1) or, equivalently, (3-12:5)

1_ (o8 _ (38 ..
T‘(ﬁ)v oy p‘z(al’)m S

It is the fact that both T and p are expressible in terms of the same function S
which leads to the connection (5-6-1) and henee to the Maxwell relations,

= e -1 . F5

A8

1 ey i
w +(57), 47 LI
=pdE+5ar by 566 R

and the Iﬁ'i':{ser"expmasipn.i's simply the fundamental relation (5-6-1)

Note that the fundamental relation (5+6:1) involves the variables on the
right, side in pairs, one pair consisting of 7' and S, the other of p and V. In
these two pairs

(T,8) and (p,7)

the first involves quantities like entropy and temperature which deseribe the
density of accessible states of the system, whereas the second involves an
external parameter and its corresponding generalized force. The essential
content of the Maxwell relations is the existence of a connection between the
eross derivatives of these two kinds of quantities, Specifically, each of the
Maxwell relations is a statement asserting that [the derivative of a variable of
,the first pair with respect to a variable of the second pair] is (except for sign)
equal to [the corresponding derivative of the other variable of the second pair
with respect to the otfier variable of the first pair].

The above property characterizing the Maxwell relations makes it very
easy to read them off directly from the fundamental relation (5:6-1). The
) proper sign ean be obtained in the following way: If the two variables with
respect to which one differentiates are the same variables S and ¥ which oceur
as differentials in (5-6-1), then the minus sign that occurs in (5-6-1) also

* They ean, for example, all be summarized by the single statement that the Jacobian
determinant a(T,S)/a(p, V) = 1.

e
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oceurs in the Maxwell relation. Any one permutation away from these par-
ticular variables introduces a change of sign.

Example A minus sign occurs in (5-6:2) because the variables § and ¥
with respect to which one differentiates are the same as those appearing as
differentials in (5-6:1). On the other hand, in (5-6-3) the derivatives are
with respect to 8 and p, whereas S and V appear as differentials in (5-8-1).
The switch from p to V implies one sign change with respeet to the minus sign
in (5-6-1); hence there is a plus sign in (5-6:3).

Thermodynamic functions The Maxwell relations constitute the most
important result of the last section. It is, however, also worth summarizing
for future reference the various thermodynamic functions that were introduced
in that section. We list them below, together with the most convenient inde-
pendent variables used in conjunction with each of these funetions (i.e., the

. variables in terms of which the fundamental relation (5-6-1) is expressed most

simply): H L reT
E = B(S,
H=E+ 9V H = H(Sp) e
F=FE— T8 F = F(T.V) ol

G=E— TS+ pV G =G(T,p)

Next we summarize the thermodynamic relations satisfied by each of these
functions

dE = TdS — pdV (5-6-8)
dH = TdS + V dp (5:6-9)
dF = —S dT — p dV (5-6-10)
dG = =8 dT + V dp (5-6-11)

The relations (5:5-4), (5-5:9), (5-5-14), and (5-5-19), involving derivatives
of the functions E, H, F, and @, respectively, can immediately be read off from
these equations.

The equations (5-6:9) through (5-6-11) are very simply related to the
fundamental equation (5:6-8) or (5:6-1). It is only necessary to note that
all of them involve the same variable pairs (T,S) and (p,V), the variables
entering as differentials being the independent variables listed in (5:6:7); and
that any change of variable away from those used in (5-6-8) introduces a

change of sign.
\

5-7 Specific heats

We consider any homogeneous substance whose volume V is the only relevant
external parameter. Let us first investigate the general relation existing
between the molar specific heat ¢ at constant volume and the molar specific
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heat ¢, at constant pressure. This relation has practical importance, since
ealculations by statistical mechanics are usually more easily performed for an
assumed fixed volume, while experimental measurements are more readily
| carried out under conditions of constant (say atmospheric) pressure. Thus, to
compare the theoretically caleulated quantity ey with the experimentally
i measured parameter c,, 8 knowledge of the relation between these quantities
I§ necessary.
The heat capacity at constant volume is given by

v = (92) _ (92 57
Cv = (dT)v = T(GT)V (5-7-1)
The heat capacity at constant pressure is similarly given by
— (99\ _ p(28 7
0y, = (dT), = T(a'}f),, (5-7-2)

We seek a general relation between these two quantities.

Experimentally, the parameters which can be controlled most conveniently
are the temperature T and pressure p. Let us consider these as independent
variables, Then 8§ = S(T,p) and one obtains the following general expression
for the heat d@ absorbed in an infinitesimal quasi-static process

as a8
g =Tds = T[(ﬁ)pd?‘—l-("é;)rd;o] (5-7-3)
One can use (5:7-2) to write this in the form
dQ=TdS=C,,dT+T(%q) dp (5-7-4)
p/r

If the pressure is maintained constant, dp = 0, and (57 -4) reduces to (5-7-2).
But in caleulating C'y by (5-7-1), T and V" are used as the independent varia-
bles. To express d@ in (5:7-4) in terms of dT and dV, it 15 only necessary to

express dp in terms of these differential quantities. This gives
o i 85y (22 9 T _
aQ = TdS -C,,dT—l—T(ap)T[(aT)VdT-{- 1% TdV:I (5-7:5)

The heat dQ absorbed under conditions when V is constant is then immediately
obtained by putting dV = 0. Dividing this heat by dT gives C'y. Thus

L (98 (9p 7.
Cy = T(aT)V =Cp+1 (Bp)r (M,)v (5:7-8)

This is a relation between Oy and ,, but it involves on the right side
quantities which are not readily measured. For example, what is (98/dp)r?
“It is not readily measured, but sinee it is the derivative of a variable from the
(T,8) pair with respect to a variable from the (p,V) pair, we can use one of the .
Maxwell relations. By (5-6-5)

a8 oV -
(&) - - (2. o0
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Here the guantity on the right #s a readily measured and familiar quantity,
since it is simply the change of volume with temperature under conditions of
constant pressure. Indeed, one defines the intensive quantity

LT fal
«=3(37), (578)
as the “volume coefficient of expansion” of the substance. Thus
as k
('6_39');:1 = —Va (-7-9)

The derivative (p/aT)v i8 also not very readily determined, since it implies
a measurement where the volume 1 is kept constant.* It is usually niore
eonvenient to control the temperature 7" and pressure p.  But we can express
V in terms of 7' and p. Thus

av av
dV = (ﬁ’),, al' <+ (‘—35)? dp

and, under conditions of constant volume where 417 = 0, this gives for the
desired ratio dp/dT at constant volume the result

(5-7-10)

().

(This is simply the result (A-9-5), which we could have written down without
rederiving it.) Here the numerator is again related to « by (5-7-8). The
denominalor is another familiar quantity, since it measures the change in
volume of the substance with increasing pressure at a constant temperature,
(The change of volume will be negative, since the volume decreases with
increasing pressure.) One defines {he positive intensive quantity

),

e I N i

K= ".V—' (%)1‘ {-‘) 7 11)

as the “‘isothermal compressibility” of the substance. Hence (5-7-10) becomes
R e .

(ﬁ)p r 5 (5-7-12)

7
Substitution of (5-7-9) and (5:7-12) into (5-7-6) yields then

Cy = 0, + T(=Va) (E)
or
az

> Cy— Cr = VT = (6-7:13)

* In the ease of solids and liquids a small temperature increase at constant volume tends
to produce a very large pressure increase, This imposes rather severe demands on the
strength of the vessel containing the substance,
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If €, and €y in this expression are the heat capacities per mole, then the cor-
responding volume V is the volume per mole.

Equation (5-7-13) provides the desired relation between (), and 'y in
terms of quantities which can be either readily measured directly or computed
from the equation of state. For solids and liquids the right side of (5-7-13) is
fairly small, so that €, and C'y do not differ very much.

Numerical example Consider the case of copper at room temperature
(298°K) and atmospheric pressure. The density of the metal is 8.9 g em™
and its atomic weight is 63.5; hence its molar volume is ¥V = 63.5/8.9 =
7.1 em?® mole™!. The other observed values® are & = 5 X 107% deg™, x =
4.5 % 1071 em?® dyne~*, and ¢, = 24.5 joules deg~' mole?. Then one com-
putes by (5:7-13) that ¢; — cv = 1.2+ 107 ergs deg! mole™’. Thus ¢v =
23.3 joules deg~1 mole' and y = ¢,/ey = 1.05.

Simple application: ideal gas Let us apply (5-7-13) to the special case
of the ideal gas discussed in Sec. 5-2. Then the equation of state (5-1-1) is

oV = vRT (5:7-14)
We caleulate first the expansion coefficient « defined by (5:7-8). For
constant p

pdV = »RdT

av vl
H sk W=l

ence (6’1" | 5
ARy R %

and a=3 (%) =k =7 % s

We cealoaulate next the compressibility « defined in (5-7-11). For constant
T, (5:7:14) yields

pdV + Vdp =0
av v
Hence -5-?-])1 5
TG D i ¥ =8 Vg
Thus (5:7-13) becomes
_¢, =vr/D¥_Vp _
Cp—Cy = VT--—UP_ e vl
or, per mole,
cp — ey = B (5-7-17)

which agrees with our previous result (5-2-8).
’Limiﬁn‘g properties near absolute zero The third law of thermodynamics
(3-11-5) asserts that, as the temperature T — 0, the entropy S of a system

* Data taken from “American Institute of Physics Handbook,” 2d ed., MeGraw-Hill
Book Company, New York, 1963.

—
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approaches smoothly some limiting constant value S, independent of all
parameters of the system. In symbols*

as T—0, S—5 (5-7-18)

In the limit as T — 0, the derivatives 8S/dT appearingin (5-7-1) and (5-7:2)
remain thus finite, and one can conelude from these relations that

as T— 0, Cy—0 and Cp—0 (5-7-19)

The argument leading to (5-7-19) becomes particularly clear if one writes
(5:7:1) or (5:7-2) in integrated form. For example, if the volume is kept
constant,

T Cy(T")
sy — s = [T ar
But since the entropy difference on the left must be finite, it must be true that
Cy(T)— 0 as T — 0 in order to guarantee proper convergence of the integral
on the right. The limiting behavior (5:7:19) of the heat capacities is not
surprising. It merely reflects the fact that as T — 0, the system tends to
settle down in its ground state. The mean energy of the system then becomes
essentially equal to ifs ground-state energy, and no further reduction of tem-
perature can result in a further change of mean energy to a smaller value.

Since the limiting value approached by the entropy as T — 0 is inde-
pendent of all parameters of the system, it is also independent of volume or
presgure variations in this limit. Hence (d8/8p)r — 0, and the Maxwell rela-
tion (5:7-7) applied to the definition (5-7-8) allows one to make a statement
about the limiting behavior of the coefficient of expansion «; i.e.,

as I'— 0, a—0 (5-7-20)

On the other hand, the compressibility « is a purely mechanical property
and a system (e.g., a solid) in its ground state has a well-defined compressibility.
Thus x remains finite as T — 0.

Since the product Ta® on the right side of (5-7-13) approaches zero very
rapidly as 7'— 0, it follows that the difference €', — Cy becomes increagingly
negligible compared to (y itself as one goes to very low temperatures; i.e.,

Cp‘ o CV
Cy

This statement in no way contradicts the relation (5-7-17), according to which
C, — Cy is a constant for an ideal gas. The reason is that when T — 0 and
the system approaches its ground state, quantum mechanical effects become
very important. Hence the elassical equation of state pV = »RT is no longer
valid, even if the interactions between the particles in a gas are go small that
the gas can be treated as ideal.

as T— 0, =0 (5:7.21)

* As usual, this low-temperature limit may be understood to be auﬂimantly high that
the nuclear spin orientations are still completely random. 3
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5 o 8 Entropy and internal energy

Consider the temperature T and volume V of a substance as the independent
variables. Then one can write its entropy as

| 8 = S(T,V)
so that ag=(28Y ar + (2 av (5:8-1)
aT )y av /e

But the first of the derivatives is simply related to the heat capacity at con-
gtant volume, while the second can be reexpressed in terms of a Maxwell
relation. Specifically, by (5:7.1) and (5:6-4) one has

a8 fo
: (ﬁ' =G (5-8-2)
a8\ _ fap 8.
&), = ). ko
Hence (5-8-1) becomes
o —-d!‘+(:¥ av (5-8-4)

Note that the right side of (5-8-3) can be evaluated if one knows the
equation of state. The quantity 'y is in general a function of both T' and V.
Its dependence on ¥ can, however, also be caleulated from the equation of
state. Indeed, from its definition,

as
Oy X (a‘f‘)v

Differentiation at a fixed temperature T' then yields

acv\ _ a L
). = @), @) - 7aver
9*S d a8
ITET_aT"“T(ET)v v )r
d

ap :
T(aT)v (W)v by (5-8-3)
Thus

> (), (),

)
and the right side can be evaluated from a knowledge of the equation of state.
We have already pointed out, most recently in Sec, 5-6, that all thermody-
namic properties of a system can be caleulated from a knowledge of its entropy,
Let us then ask what experimental knowledge is necessary in order to ealculate
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the entropy S and thus also all other thermodynamic functions. Tt is readily
seen that what is required is only a knowledge of

1. The heat capacity as a function of T for some one fixed value ¥V = 7,
of the volume
2. The equation of state

For example, the equation of state can be used in (5 8- 5) to caleulate (8C'y/dV)p
as a function of T and V. This information is then sufficient to relate the heat
capacity Cy(T, V) at any volume V to the known heat capacity Cy(T,V,) at the
volume V', and the same temperature 7'; i.e., one has simply

Co(T,V) = Cy(T, V) + (ac"(fv)) v (5-8-6)

Knowing O (7, V) and using the knowledge of (dp/aT)y as a function of T and
V which is provided by the equation of state, one can immediately use (5-8-4)
to find S(T,V) at any temperature 7' and volume V compared to its value in
some standard state of temperature T'; and volume V. One needs only fo
integrate (5-8-4) by writing

8(T,V) — 8(Ty, Vo) = [S(T,V) — S(Ty, V)] + [S(To,V) — S(Th, V)] (5:8-7)

where the first term on the right represents the entropy change at the constant
volume V and the second term the entropy change at the constant temperature
To. Thus one gets

'.I"n

Remark One could, of course, have pqually well integrated (5-8:4) in
opposite order by writing, instead of (5-8:7),

S(T, V) — S(Te, Vo) = [S(T V) — S(T,Va)] + [S(T, Vo) — ST, V)]
”f (GP(T V)) av’ + f TGV(T’ Vo) AT’ (5-8-9)
Yy

This expression involves Cy at the volume ¥y instead of the volume V, and
(dp/8T)y af the temperature T instead of the temperature Ty. Nevertheless
(5:8:9) must yield the result (5-8:8). The reason is, of course, the funda-
mental one that the entropy is a quantity characteristic of a particular macro-
state, so that the entropy difference caleulated is independent of the process
used to go from the macrostate Ty, Vy to that corresponding to T, V.

Let us now turn to the internal energy # of the substance and consider
it as a funetion of 7' and V. The fundamental thermodynamic relation asserts
that

dE =T dS — pdV
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By expressing dS in terms of T and V as we already did in (5-8-4), this can be
written as
dE = Cy dT + [ (:;’,) p] av (5-8-10)

Comparing this with the purely mathematical result

. (oF oF
dL—(af;) dT+( )dV
we obtain the relations

< (g;{)v = (5-8-11)
* (%)r o T(:;) P (5-8-12)

Equation (5:8-12) shows that the dependence of the internal energy on the
volume ean again be caleulated from theequationof state. A knowledge of this
equation of state and of the heat capacity permits one thus to integrate
(5:8:10) to find E(T,V) at any temperature T and volume V compared to the
energy E(Ty, V) of some standard macrostate.

Example: The van der Waals gas  Consider a gas whose equation of state
is

(p+:_z) (@ —b) = RT (5-8:13)

where v = V /v is the molar volume. This is an empirical equation known as
the van der Waals equation. (With suitable approximations it can also be
derived from statistieal mechanics; see Chapter 10.) It represents the
behavior of real gases more accurately than the ideal gas law by introducing
two additional pesitive constants e and b characteristic of the particular
gas under consideration. (Indeed, it is approximately valid even at tem-
peratures and molar volumes so low that the gas has become a liquid.)

From a qualitative microseopie point of view, long-range attractive forces
between molecules tend to keep them closer together than would be the
ease for noninteracting moleculfes, These forces thus have the same effect as
a slight compression of the gas; the term a/v? represents this additional positive
pressure. On the other hand, there are also shorf-range repulsive forees
between the moleeules which keep them apart sufficlently to prevent them
from occupying the same place ab the same time. The term b represents the
volume oceupied by the molecules themselves and which must thus be sub-
tracted from the volume available to any one molecule in the container.

Fora =t = 0, or in the limit where the gas becomes very dilute (so that

v v— =), Eq. (5-8:13) reduces to the ideal gas equation

pv = BT
as it must.
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SECTION
We first caleulate by Eq. (5-8-12) the volume dependence of the molar
energy e. We need to find (dp/07T)y. Solving (5-8-13) for p, one gets
RT a
PR =y (5-8-14)
ipy - _E 8
Hence ﬁ)v =% (5-8:15)
Thus (5:8-12) yields
de AN e R R
(3—9 T z ﬂT)u L4 v—b P
or, by (5-8-14),
dey _ @ 8.
5)r -2 (5-8-16)

For an ideal gas, a = 0 so that (de/dv)r = 0 in agreement with our earlier
result (5:1-10).
Also we have by (5:8-5) and (5-8-15)

(= mhah) =B G

o
Hence ey is independent of the molar volume and thus only a function of 7|, ie,,
ev = cv(T) (5-8-17)

(The same result is; of course, true a fortiori for an ideal gas.) Eguation
(5:8-10) can then be written

de = ey(T) dT + u—‘:do (5:8-18)
If some standard macrostate of the gas is chosen to have temperature 7'y and
molar volume ty, then integration of (5-8:18) gives

(T ) — e(Towe) = fT ep(T") a1 — a (L - 1

Y Uy

or (Ty) = ff er(T") T — 2 4 constant  (5-8-19)

If ey is independent of temperature, this becomes simply

(T) = T — % + constant (5:8-20)
Note that here € does depend on the melar volume v, As v increases, e
also increases., This makes physical sense because the intermelecular separa-
tion increases as ¢ inereases, and thus the attractive (ie., negative) potential
energy of interaction between the molecules is decreased in magnitude.
Finally, let us compute the entropy per mole of gas. By using (5-8-15),
the relation (5-8:-4) becomes

dg =

cv(T) R
T aT + mdﬂ (5:8-21)

58
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Integrating, one gets

¥ . s
o(T'0) — s(Tope) = f: %ﬂ +RIn (:ﬁ = z;) (5-8-22)

If ¢v is independent of temperature, this can be written
s(Tw) =cyln T+ KEln (v —_b) + constant .  (5:8-23)

FREE EXPANSION AND THROTTLING PROCESSES

5.9 Free expansion of a gas

This experiment is one we have mentioned hefore. Consider a rigid container
which is thermally insulated. It is divided into two compartments separated
by a valve which iz initially closed (see Fig. 5-9-1). One compartment of
volume V), confains the gas under investigation, the other compartment is
empty. The initial temperature of the system is T'y.  The valve is now opened
and the gas is free to expand so as to fill the entire container of volume V..
What is the temperature 7's of the gas after the final equilibrium state has been
reached ?

Since the system consisting of gas and container is adiabatically insulated,
no heat flows into the system; i.e.,

Q=0
Furthermore, the system does no work in the process; i.e.,

W =0
':I‘hus it follows by the first law that the total energy of the system is conserved;
ie.,

AE =0 (5-9-1)

Assume that the container itself has negligible heat capacity so that the internal
energy of the container itself does not change. (This iz a condition difficult to
realize in practice; we shall come back to this point later.) Then the energy

/\fa]\e

Fig. 5-9:1 Free expansion of a gas.
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change is simply that of the gas, and the conservation of energy (5-9-1) can be
written
E(T»,Vs) = E(T, V1) (5:9-2)

To prediet the outcome of the experiment it is only necessary to know the
internal energy of the gas BE(T,V) as a funetion of 7 and V'; for if the initial
parameters Ty and V7, and the final volume V; are known, Eq. (5-9-2) provides
one with an equation for the unknown final temperature 7'..

Remark The actual free expansion is, of course, a complicated irreversible
progess invelving turbulence and gross nonuniformities of pressure and ter-
perature (to the extent that these quantities can be defined at all for such a
marked nonequilibrivm situation). Equilibrium conditions prevail only
in the initial and final situations. Nevertheless, to predict the outcome of
the process, the only knowledge required is that of the energy function F
characteristic of equilibrium macrostates of the system.

For an ideal gas, E is independent of the volume V;1.e., £ = E(T). Then
(5-9-2) becomes simply E(T.) = E(T;), so that one must have T: = T';.
There is then ne temperature change in the free expansion of an ideal gas.

More generally, the energy E(T,V) is a function of both T and V. It can
be represented in a two-dimensional graph by pletting £ versus T' for various
values of the parameter V, as shown schematically in Fig. 5-9:2. From such
a diagram the result of the experiment can be immediately predicted. Given
T, and V,, one ean read off the value B = F,. By (5-9-2) the intersecfion of
the horizontal line ¥ = E, with the curve Vs, yields then the final temperature
T,. TIf the eurves are as drawn, T < T

Alternatively, and somewhat more directly, one can use the knowledge
of B{T,V) shown in Fig. 5-9-2 to draw curves of 1" versus V for various values
of the energy E. On such a plot (illustrated in Fig. 5-9-3) one knows by
(5-9-2) that the initial values of T and V determine a given energy curve, say
E = E,, and that as a result of the free expansion one must always end up

Fig. 5:9:2 Schematic diagram
showing the dependence of the
internal energy £ of a gas on
its temnperature T for various
values of its volume V.

v

n il 14
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7
Fig. 5:9*3 Schematic dia-
gram showing curves of
constant internal energy E.
Each curve describes cor-
responding values of T and
V which yield the given
energy B.

somewhere on this same curve, The final temperature can thus be read off
immediately from this curve for any value of the final volume V4.

Example: van der Waals gas Let us calculate the temperature change
in the case of the free expansion of one mole of a van der Waals gas. If we
denote the molar internal energy by (7,4}, the energy-conservation condition

(5:9-2) is
T y = e(T.
This becomes by (5-8:19) €(Toy00) = «(T01)
a

f:’ er(T") 4T’ — % = f L GV(T') ar -
Hence f::" ev(T) dT" — fm ew(T7) dT' = a -; - —)
or f oo a1’ = a (5 — —-) (5-9-3)

Over the small temperature range 7 < 7" < T,, any possible temperature
dependence of ¢y is negligibly small. Thus ¢y can be regarded as substan-
tially constant, and (5-9-3) becomes simply

Ty — T =a —’ -——)

or TamTy= -2 ;1 = sz) (5-9-4)
For an expansion where v; > vy, or 1/v > 1/, one gets thus (since cy > 0)
Ty (5:9-5)

Hence the temperature is reduced as a result of the free expansion.

In principle, it appears that the free expansion of a gas could provide
a method of cooling the gas to low temperatures. In practice, a difficulty
is encountered because of the appreciable heat capacity C. of the container.
Since ifs internal energy also changes by an amount C.(Ty — T4), & given
volume change of the gas results in & much smaller net temperature change
when €, is finite than when it is zero. (If the container is taken into account,
thefgt)capui_w ey in (6-9-4) must be replaced by the fotal heat capacity
cy an

v
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5 . ]0 Throttling (or Joule-Thomsan) Process

The difficulty associated with the presence of containing walls can be overcome
by replacing the single-event free-expansion process just discussed (where this
one event must also supply the energy necessary to change the container tem-
perature) with a continuous-flow process (where the temperature of the walls
ean adjust itself initially and remains unchanged after the steady-state situation
has been reached). We now discuss this steady-state experimental arrange-
ment, which was first suggested by Joule and Thomson.

Consider a pipe with thermally insulated walls. A porous plug in the pipe
provides a constriction to the flow of the gas. (Alternatively, a valve which is
only slightly opened may provide such a constriction.) A continuous stream
of gas flows from left to right. The presence of the constriction results in a
constant pressure difference being maintained across this constriction. Thus
the gas pressure p; to the left of the constriction is greater than the gas pressure
pa to the right of the constriction. Let 7' denote the temperature of the gas
on the left side of the constriction. What then is the gas temperature 7'; on
the right side?

Let us analyze the situation. Foeus attention on the system consisting
of the mass M of gas lying between the dashed planes 4 and B shown in Fig.
5-10-2. (We suppose that the planes A and B are chosen so far apart that
the volume occupied by the constriction itself is negligible compared to the
volume contained between 4 and B.) At some initial time the plane B coin-
cides with the constriction, and virtually the entire mass M of gas lies to the left
of the constriction (see Fig. 5-10-2a). Then it occupies some volume V' cor-
responding to the pressure p;. As this mass M of gas flows down the pipe, the
planes 4 and B which define its geometrical boundaries also move down the
pipe. After some time has elapsed, the plane 4 will have moved so as to
coincide with the constriction, and virtually the entire mass M of the gas will
lie to the right of the constriction. There it occupies some different volume 7,
corresponding to the lower pressure po. This is the final situation illustrated
in Fig. 5-10-2b.

In the process just deseribed, the difference in internal energy of the mass
M of gas between the final situation when it is to the right and the initial

Parous plug

Gas  flow Fs

Fig. 5:10°1 A steady-state throttling process in which a gas is flowing
through a porous plug.
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Fig. 5-10-2 Diagram showing e mass M of gas passing through a constriction
(a porous plug in this case) (a) before passing through the constriction (b)
after passing through the constriction.

situation when it is to the left of the constriction is simply
AE = By — By = E(Typo) — E(Ty,p1) (6:10-1)

In this process the mass M of gas also does work, Indeed, it does work
p: Vs in displacing the gas to the right of the constriction by the volume Vs
against the constani pressure p,. Furthermore, the gas to the left of the con-
striction does work p,77; on the mass M of gas by displaeing it by the volume
Vi with a consiant pressure p;.  Hence the net work done by the mass M of gas
in the process is simply

W = pVs— iV (5-10-2)

But no heat is absorbed by the mass M of gas in the process we have
deseribed. This is not just because the walls are adiabatically insulated so
that no heat enters them from the outside; more importantly, after the steady
state situation has been established, there is no temperature difference between
the walls and the adjacent gas, so that no heat flows from the walls into the
gas, Thus

Q=0 (5-10-3)

Application of the first law to the mass M of gas yields then for the process
under consideration the relation
AE+W=Q=20 (5-10:4)
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By (5:10-1) and (5:10-2) this becomes

(Bx — B1) + (paVa — piVy) =0
or Es + paVs = By + piV (5-10:5)

Let us define the quantity
H=E-+ pV (5-10-6)

This iz the so-called “‘enthalpy” already encountered in (5:5-7). Then
(5:10-5) can be written

Hy = Hy
or

> H(Ty,ps) = H(Ty,p1) (5-10-7)

Thus we arrive at the result that in a throttling process the gas passes through
the constrietion in such a way that its enthalpy H remains constant.

Note that (5-10-7) is analogous to the condition (5-9:2) for the free
expansion case. The difference is that the gas does work in the throttling
process, so that the enthalpy rather than the internal energy is the quantity
which is conserved.

Remark Here again &ammlpmganfthemﬁhmnghﬁm constrietion
involves complicated irreversible nonequilibrium processes. Equiﬁbrmm-
situations prevail only to the left and to the right of the constri But &
knowledge of the ant-halpy function H(T,p) uhamniamam of equilibrium
macrostates of the system is sufficient to predict the outcome of the process.

Suppose that H(T,p) is known as & funetion of T and p. Then, given T
and p; and the final pressure p,, (5-10-7) provides an equation to determine
the unknown final temperature 7. In the case of an ideal gas,

H = E + pV = E(T) + vRT

go that H = H(T) is a function of the temperature only. Then the condltmn
(5-10-7) implies immediately

H(Ts) = H(Ty)

50 that T = T;. Thus the temperature of an ideal gas does not change in &
throttling proecess.

In the more general case the method of analysis is similar to that used for
the discussion of the free expansion in See. 5-9. From a knowledge of H(T,p)
one can construct curves of T versus p for various fixed values of the enthalpy
H (see Fig. 5-10-3). On such a plot the initial values T and p, determine
a particular enthalpy curve. By virtue of (5-10:7) one must end up some-
where on this same curve as a result of the throttling process. The final tem-
perature T's can then be read off immediately from this eurve for any value of
the final pressure ps.

The eurves of Fig. 5:10-3 do in general exhibit maxima. Thus it is pos-
sible to attain, as a result of a throttling process with ps < pi, conditions where



THROTTLING (OR JOULE-THOMSON) PROCESS 181

Inversion curve
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Fig. 5:10°3 Curves of constant enthalpy H in the p1' plane of a gas. The
numerical values are for nitrogen (N,). The dashed line is the inversion
Curve.

the temperature T either increases, decreases, or remains the same. A signifi-
cant parameter in this context is the slope u of these curves,

T
M (E)H (5-10-8)

called the Joule-Thomson coefficient.* This quantity gives the change of tem-
perature produced in a throttling process involving an infinitesimal pressure
differential. For an infinitesimal pressure drop, T will decrease if p > 0. The
condition g = 0 implies that no temperature change occurs and locates the
maxima of the curves in Fig, 5-10-3. The locus of the maxima forms & curve
(shown dashed in Fig. 5-10-3) which is called the “‘inversion curve.” It
separates on the diagram the region of positive slope p (where the temperature
tends to fall) from the region of negative slope x (where the temperature tends
to rise).

Let us find an expression for u in terms of readily measured parameters
of the gas. By (5-10-7) we are interested in a situation where I is constant.
Starting from the fundamental thermodynamic relation

dE = T dS — p dV
we get for the enthalpy change the result
o AH=d(E+pV)=TdS+ Vdp (5:10:9)
(This was already obtained in (5-5-6).) In our case, where H is constant,

dH = 0. Writing (5-10-9) in terms of the quantities T and p which we have

* It is sometimes also called the Joule-Kelvin coefficient. The reason is that the names
Thomson and Kelvin refer to the same person, William Thomson, who was raised to the
peerage and thus becarrixe. Lord Kelvin.
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used as independent variables in discussing the throttling process, we get

a8 aS
0=T7T [(.a_f')p a7 + (55)11 dp] + Vdp

& G‘,dT—}-[T(a—S +V]dp=0
op /v

where we have used ', = T(45/4T), Using this result, valid under condi-
tions of constant H, to solve for the ratio d7'/dp, we get

e _ _T@8/ép)r +V Loy
e (a_g)s - gt (5-10-10)

The numerator can be transformed into more convenient form by a
Maxwell relation; by (5:6:5) one has

&)= - Gr), - -

where « is the coefficient of expansion defined in (5:7-8). Thus (5-10-10)
becomes

B p=0£(Tac—l} (5:10-11)

Of course, this is properly an infensive quantity, since both the volume ¥ and
the heat capacity €, are extensive quantities.

For an ideal gas we found in (5:7-15) that « = T-'. Then p = 0 and, as
mentioned previously, no temperature change results from a throttling process.

More generally, x > 0if a > 7, and conversely p < 0if o < T-'. The
locus of points in the pT plane, where a is such that « = T, gives the inver-
sion curve.

The Joule-Thomson effect constitutes a practical method for cooling gases
and is often used in processes designed to liquefy gases. In order to achieve a
lower temperature as a resulf of throttling a gas, it is necessary to work in that
region of pressure and temperature where g > 0; in particular, the initial tem-
perature must be less than the maximum temperature on the inversion curve
(see Fig. 5:10:3). For example, this maximum inversion temperature is 34°K
for helium, 202°K for hydrogen, and 625°K for nitrogen. An attempt to
throttle helium gas starting from room temperature would thus result in an
increase, rather than a decrease, of the gas temperature. To use the Joule-
Thomson effect for cooling helium gas to very low temperatures it is then
necessary to precool it first to temperatures below 34°K. This can be done by
using liquid hydrogen to precool the helium gas. Alternatively, one can keep
the helium gas thermally insulated and let it do mechanical work at the expense
of its internal energy. After this procedure has resulted in a sufficiently large
temperature decrease of the helium gas, the Joule-Thomson effect can be used
as the final stage in the cooling process.

Joule-Thomson effect and molecular forces Neither free-expansion nor
throttling processes result in a temperature change in the case of an ideal gas.
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Both of these processes become interesting only if the gas iz not ideal, ie.,
when the mutual interaction between molecules is of importance. The equa-
tion of state of any gas can be written in the general form of a series

p = kTln + By(T)n* + Bao(T)n? » - ] (5-10-12)

which is an expansion in powers of the number of molecules per unit volume
n= N/V. The expression (5-10-12) is called the “virial expansion,” and the
coefficients B, Bi, . . . are called virial coefficients, For an ideal gas
Bs=By= +:: =0. If nis not too large, only the first few terms in
(5-10-12) are important. The first correction to the ideal gas consists of
retaining the term Bon? and neglecting all higher-order terms. In this case
(5-10-12) becomes

2 =%mﬂ(1 +%s,) (5-10-13)

One can readily make some qualitative statements about the behavior of
B, ag a function of T on the basis of some simple microscopic considerations.
The interaction between two gas molecules is weakly atfractive when their
mutual separation is relatively large, but becomes strongly repulsive when their
separation becomes of the order of a molecular diameter.* At low {empera-
tures the mean kinetic energy of a molecule is small. The weak long-range
attraction between molecules is then quite significant and tends to make the
mean intermolecular separation less than would be the case in the absence of
interaction. This attraction thus tends to reduce the gas pressure below that
for an ideal gas;i.e., Bain (5-10-13) is then negative. But at higher tempera-
tures the mean kinetie energy of a molecule becomes so large that the weak
intermolecular attractive potential energy becomes comparatively negligible.
In that case it is the strong shori-range repulsive interaction between molecules
which ig most significant. This repulsion tends to increase the gas pressure
above that expected for an ideal gas; i.e., B, is then positive. These qualitative
considerations lead one to expeet that B, is an increasing function of 7', being
negative for sufficiently low temperatures and becoming positive at higher tem-
peratures. (These arguments will be made more quantitative in Sec. 10:4;
they lead to a curve of Bo(T) versus T of the type shown in Fig. 10:-4.1.)

Let us now apply these considerations o a discussion of the Joule-Thomson
effect by evaluating (5-10-11). Let ug uge the equation of state (5-10-13) to
express V as a funetion of T and p.  This is most readily done by noting that
the term (N /TV)B, is a correction term which is small compared to unity; hence
one commits negligible error by replacing the ratio N/V in that term by the
value p/(ET) which this ratio assumes in first approximation. Thus (5-10-13)

becomes
_ NiT P N
= —.[}—- (1 + fi‘_hT Bz) = —V'- (LT == sz)
or V = N(% =& Be) (5-10-14)

* Figure 10-3-1 illustrates a curve of potential energy of mutual interaction as a
funetion of intermolecular distance.
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Hence (5:10-11) yields the result

28 VN _ | - N (pdBs _ 10
”‘?:;[T(a'r), V:[—cp( = B,) (5-10-15)

The previously discussed temperature dependence of B, allows us now to draw
some interesting conclusions. Sinece By is an increasing function of T, the
term T'(@B,/aT) is positive. At low temperatures where molecular attraction
is predominant, B, itself is negative; hence (5-10-15) shows that p > 0 in this
temperature range. But if one goes to sufficiently high temperatures where
molecular repulsion becomes predominent, B, becomes positive and sufficiently
large to make g < 0in (5-10-15). The existence of the inversion curve where
p = 0 reflects, therefore, the competing effects between molecular attraction
and repulsion.

HEAT ENGINES AND REFRIGERATORS

5-11 Heat engines

Historieally, the subject of thermodynamies began with a study of the basic
properties of heat engines. Since the subject has not only great technological
importance (sufficient to have been responsible for the industrial revolution)
but also intrinsic physical interest, we shall devote some time to a discussion of
it.

It is very easy to do mechanical work w upon a device M, and then to
extract from it an equivalent amount of heat ¢, which goes to increase the
internal energy of some heat reservoir B.* For example, the device M might
be a paddle wheel rotated in a liquid by a falling weight, or an electric resistor
upon which electrical work is done.

The fundamentally significant question is: To what extent is it possible
to proceed in the reverse way, i.e., to build a device (called a “heat engine'’)
which can extract some of the internal energy from a heat reservoir in the form
of heat and convert it into macrosecopic work? The situation would then be as
diagrammed in Fig. 5-11-3,

It is necessary to keep in mind the following points. The work should not
be provided at the expense of the heat engine itself; otherwise one could not
continue the process of heai-to-work conversion indefinitely. Thus one wants
the engine to be in the same macrostate at the end of the process as it was at the
beginning (i.e., to have gone through a eycle) so that it is ready to start again
converting more heat into work in the next eycle. Clearly, steam engines and
gasoline engines all go through such cycles. Furthermore, the work put ouf
by the heat engine should be capable of simply changing an external parameter
of some outside device (e.g., of lifting a weight) without doing it at the expense
of affecting the other degrees of freedom (or entropy) of that device. One can

* We use the small letters w and g to denote intrinsically positive amounts of work and
heat.
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Fig. 5:11'1 Conversion of work w into heat g >
given off to a heat reservoir at temperature T . w

Weight

Fig. 5-11'2 A physical illustration
showing the conversion of mechanical
work into heat.

thus phrase the essential problem of constructing a heat engine in the following
way: To what extent is it possible to extract a net amount of energy from one
(or more) heat reservoirs, where that energy is randomly distributed over very
many degrees of freedom, so as to transform it into energy associated with the
single degree of freedom connected with the external parameter of an outside
device?

Figure 5-11-3 would then be the prototype of the most desirable type of
engine. After a cycle, M is back in the same macrostate as at the beginning,
so that its internal energy is the same. Hence the first law of thermodynamics
implies that

w=q (5-11-1)

i.e., to conserve energy, the work put out by the engine must be equal to the
heat extracted from the reservoir. One can certainly not build an engine which
violates this condition.

But one may not be able to construct an engine even when this condition

Fig. 5-11'3 A perfect engine.
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is satisfied. Thus the epgine illustrated in Fig. 5-11-3 is indeed a highly
desirable ‘“‘perfect engine’’; i.e., working in a cyele, it extracts heat from a
reservoir and performs an equivalent amount of work withow! producing any
other effect on the environment., But a perfect engine of this kind is, unfor-
tunately, not realizable. Indeed we know from our discussion of Sec. 3-2 that
the conversion of work into heat illustrated in Itig, 5-11-2, or more schemati-
cally in Fig. 5-11-1, is an irreversible process in which the distribution of sys-
tems over accessible states becomes more random, go that the entropy increases.
One cannot, therefore, simply reverse the process as shown in Fig. 5-11-3.
In the concrete case of Fig. 5112, one cannot simply expeet the heat reservoir
B to eonvert its internal energy, randomly distributed over all its degrees of
freedom, into a systematic upward motion of the weight. It is, of course, in
principle posseble that this might happen, but from a statistical point of view
such an oceurrence is fantastically improbable.

Equivalently, we can show that an ideal engine of the type illustrated in
Fig. 5-11:3 violates the second law of thermodynamics. Indeed, we must
require that the total entropy change AS of the complete system (consisting
of the heat engine, the outside device on which it does work, and the heat
reservoir) be such that in a eycle

AS >0 (5-11.2)

Now the engine itself returns to its previous state after a cyele; its entropy is
thus unchanged after the eycle. [Furthermore, we have already pointed out
that no entropy change is associated with the outside device on which work is
done. On the other hand, the entropy change of the heat reservoir at abso-
Iute temperature 7, is, by (3-6-4), given by —q/T, since the reservoir absorbs
heat (—g). Hence (5-11:2) becomes

—g
Tl 20

or, by (5-11-1),
Hoeso il E-11-
T, = lso (5-11-3)

Since we want the work w done by the engine to be positive, (5-11-3) cannot be
satisfied. The inverse process of Fig. 5:11:1 where w < 0 is, of course,
feasible, There is no objection to converting any amount of work into heat,
but the converse is not possible. The second law thus again implies a funda-
mental irreversibility of natural processes. By (5-11-3) it specifically implies
this result:

It is impossible to construct a perfect heat engine. (5-11-4)

(This statement is sometimes known as Kelvin’s formulation of the second law
of thermodynamics.)

A perfect heat engine is thus not realizable because it would require the
spontaneous oceurrence of a process which goes from an initial situation, where
a certain amount of energy is distributed randomly over the many degrees of
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freedom of a heat reservoir, to a much more special and enormously less prob-
able final situation, where this energy is all associated with the motion of a
single degree of freedom capable of performing macroscopic work; in short,
because it would require a process where the entropy S decreases. But this
kind of process, in which the system consisting of heat reservoir and engine
goes to a less random situation, can take place if this system is coupled to some
other guxiliary system whose degree of randomness (or entropy) is increased in
this process by a compensating amount (i.e,, by an amount large enough that
the entire system does inerease in randomness). The simplest such auxiliary
system is a second heat reservoir at some temperature T’y lower than 7'y. One
then obtains a nonperfect, but realizable, heat engine which not only absorbs
heat ¢, from a reservoir at temperature 7'y, but also rejects heat to some second
reservoir at some lower temperature 7. Thus a real engine can be diagram-
med as shown in Fig. 5:11-4.
In this case the first law requires that in a cycle

a=w+ g (5-11-5)
On the other hand, the second law is satisfied if in this eycle the total entropy
change of these reservoirs safisfies the inequality

o (—ql) s =

Equations (5-11-5) and (5-11-6) ean be satisfied with positive work w per-
formed by the engine on the outside world. By combining these equations one
gets

=S w
TR TS 20
w 1 1
T, =% (T T
w Ty F1—3%,
L A S £ 5.11-
or n &S 1 T. T (5 7)

Q.l w:qlv—qq

Fig. 5:11'4 A real engine,
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For a perfect engine one would have w/q; = 1. For a real engine this
ratio is less than 1, i.e.,

w q1 — g2 o
7 @ o (5:11-8)

since some heat does not get transformed into work but is instead rejected to
some other heat reservoir. The quantity » = w/¢: is called the “efficiency’
of the engine. KEquation (5-11-7) provides us then with a relation for the
maximum possible efficiency of an engine operating between two reservoirs of
given absolute temperatures. Since the equals sign in the second statement
(5-11-6) holds only for a quasi-static process, (5-11.7) implies also that no
engine operating between the two given heat reservoirs can have an efficiency
greater than that of an engine which operates between the same two reservoirs
in a guasi-static manner. Furthermore, (5-11-7) implies that any engine
which operates between these two reservoirs in a quasi-static manner has the
same efficiency:

Ty =Ty
AT

T, (5:-11:9)

if quasi-static,

Carnot engines It is of interest to exhibit explicitly how such an engine
operating quasi-statically belween two heat reservoirs can be constructed.
Such an engine is the simplest conceivable engine and is called a ‘“‘Carnot
engine’’ (named after Carnot, the French engineer who was the first to examine
theoretically the operation of heat engines). Let 2 denote the external
parameter of the engine M; changes in this parameter give rise to the work
performed by the engine. Let the engine initially be in a state where z = 2.
and its temperature T = T, the temperature of the colder heat reservoir.
The Carnot engine then goes through a eycle consisting of four steps, all per-

Insulator 1

T

 Tnsulator

a—p b b p—pd d—p
Fig. 5:11-5 The four steps of a Carnet cycle in which a gas is used as the
working substance. The external parameter z is the volume V of the gas.
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formed in a quasi-static fashion. Label macrostates of the engine by small
letters a, b, ¢, d.

1. a— b: The engine is thermally insulated. TIts external parameter is
changed slowly until the engine temperature reaches 7',. Thus 2, — a3 such
thﬁ.t- Tg—‘ T:,‘

2. b— ¢: The engine 18 now placed in thermal contact with the heat
reservoir at temperature T,. Its external parameter is changed further, the
engine remaining at temperature T, and absorbing some heat g, from the
reservoir. Thus zs — =z, such that heat ¢, is absorbed by the engine.

3. ¢— d: The engine is again thermally insulated. Its external param-
eter is changed in such a direetion that its temperature goes back to Te. Thus
Z, —+ x4 such that T — T..

4. d— a: The engine is now placed in thermal contact with the heat
reservoir at temperature T,. Its external parameter is then changed until it
returns to its initial value z,, the engine remaining at temperature T, and
rejecting some heat g, to this reservoir. Thus 2; — 2, and heat ¢, is given off
by the engine.

The engine is now back in its initial state and the eyele is completed.

Example Let us illustrate a Carnot cyele with a particular kind of system.
Take, for example, a gas (not necessarily ideal) contained in a ¢ylinder
closed off by a piston. The external parameter is the volume V of the gas.
The four steps of the Carnot cycle are illustrated in Fig. 5-11.5. The area
enclosed by the quadrilateral figure in Fig. 5+11+6 represents the total work

(] o d a
-w:f 'pdV+ff’pd.V—~f -p'dV+fdpdV
@ [

performed by the engine in a cyele.

T

- Lr -z
Fig. 5:11-6 The Carnot cyele of Fig. 5-11-5 illustrated on a pV diagram.
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Practical engines, such as steam or gasoline engines, are somewhat more
complicated than Carnot engines. But, like all heat engines, they cannot
be perfect and are well known to have mechanisms (such as condensers or
exhausts) by which they reject heat to some low-temperature reservoir, usually
the surrounding atmosphere,

5 * 12 Refrigerators

A refrigerator is a device which, operating in a cycle, removes heat from a
reservoir at lower absolute temperature and rejects it to a reservoir at higher
absolute temperature. It can be represented by the diagram of Fig. 5-12-1,
which 1s similar to that of Iig. 5:11-4 except that the directions of all the
arrows have been reversed. The first law, applied to the refrigerator of Fig.
5:12-1, requires that

W+ g =q (5-12-1)

Since a Carnot engine operates quasi-statically by passing continuously
through a series of near-equilibrium states, one could run it equally well quasi-
statieally in the reverse direction. In this case it would operate like a par-
ticularly simple special kind of refrigerator.

Needless to say, Fig. (5-12-1) does not represent the ideal refrigerator
one might like fo have. After all, if the two heat reservoirs were placed in
thermal contact with each other, some amount of heat ¢ would flow sponta-
neously from the reservoir at higher temperature T'; to the reservoir at lower
temperature T, The “perfect refrigerator” would just reverse the process,
i.e., it would simply remove heat ¢ from the reservoir at lower temperature and
transfer it to the reservoir at higher temperature witheut affecting the environ-
ment in any other way; i.e., the perfect refrigerator would not require any work

I T

] ]

i 7

Fig. 5:12+1 A real refrigerator, Fig. 5:12'2 A perfect refrigerator.
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to be done on it and would be represented by the diagram of Fig. 5-12-2.
But a perfect refrigerator would again violate the second law. TIndeed, the
total entropy change in Fig. (5-12-2) has to satisfy the inequality
85 =L 1050
T,

: e
e e .12
or o(7; T,) >0 (5:12:2)

which is impossible for ¢ > 0 and Ty > 7. Thus we arrive at the following
statement:

It is impossible to construct a perfect refrigerator. (5-12-3)

(This statement is sometimes known as the Clausius formulation of the second
law of thermodynamics.)

This result is, of course, only too familiar. Kitchen refrigerators have a
nasty habit of requiring an external source of power.

A real refrigerator is then properly represented by Fig. 5-12-1, where some
amount of work w must be done on the refrigerator to make it function. In
that case one has, by (5-12-1),

ge = g1 — W (5-12-4)

i.e., the heat removed from the colder reservoir is less than that given off to the
warmer reservoir. The second law imposes then the requirement that

2

T,
Je Ty
23 Al 5:12-5
or 6T, ( )

where the equals sign holds only for a refrigerator operating between the two
reservoirs in a quasi-static manner.

Remark It can be shown that the Kelvin and Clausius statements of the
second law are equivalent and that either one implies that there must exist
a function with the properties of entropy. This was the basis of the historical
maeroscopic appraach to classical thermodynamics. The interested reader is
referred to the bibliography st the end of this chapter for books developing
this point of view.
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PROBLEMS

5.1 An ideal gas has a temperature-independent molar specific heat er at constant
volume. Let y = e,/er denote the ratio of its specific heats. The gas is
thermally insulated and is allowed to expand quasi-statically from an initial
volume V; at temperature 7' to a final volume V.

{a) Use the relation pV7 = constant to find the final temperature 7' of
this gas.

() Use the fact that the entropy remains constant in this process to find
the final temperature T,

5.2 The molar specific heat at constant volume of & monatomic ideal gas is known
to be #R. Suppose that one mole of such a gas is subjected to a eyelic quasi-
static process which appears as a circle on the diagram of pressure p versus
volume V shown in the figure. Find the following quantities:

(2) The net work (in joules) done by the gas in one eycle.

(b) The internal energy difference (in joules) of the gas between state C' and
state A.

(¢) The heat absorbed (in joules) by the gas in going from A to C via the
the path 4 BC of the eycle.




(10% dynes em *)

(10" cm')

5.3 An ideal diatomic gas has a molar internal energy equal to E = §RT which
depends only on its absolute temperature 7. A mole of this gas is taken quasi-
statically first from state A to state B, and then from state B to state C along the
straight line paths shown in the diagram of pressure p versus volume V.

(a) What is the molar heat capacity at constant volume of this gas?
(b) What is the work done by the gas in the process A — B — 07
(¢) What is the heat absorbed by the gas in this process?

(d) What is its change of entropy in this process?

+(10% dynes cm™)

(107 em)

5.4 A cylindrical container 80 ¢cm long is separated into two compartmenta by a thin
piston, originally clamped in position 30 cm from the left end. The left com-
partment is filled with one mole of helium gas at a pressure of 5 atmospheres;

L, the right compartment is filled with argon gas at 1 atmosphere of pressure.
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These gases may be considered ideal. The eylinder is submerged in 1 liter of
water, and the entire system is initially at the uniform temperature of 25°C.
The heat capacities of the cylinder and piston may be neglected. When the
piston is unclamped, a new equilibrium situation is ultimately reached with the
piston in & new position,

(a) What is the increase in temperature of the water?

(b) How far from the left end of the cylinder will the piston come to rest?

(¢) What is the increase of total entropy of the system?

5.5 A vertical cylinder containg » moles of an ideal gas and is closed off by a piston

3.6

3.7

of mass M and area 4. The aceeleration due fo gravity isg. The molar specific
heat ey (at constant volume) of the gas is a constant independent of temperature.
The heat capacities of the piston and eylinder are negligibly small and any frie-
tional forees between the piston and the eylinder walls can be neglecied. The
whole system iz thermally insulated. Initially, the piston is elamped in position
=0 that the gas has a volume V, and & temperature 75 The piston is now
released and, after some oscillations, comes to rest in a final equilibrium situation
corresponding to a larger volume of the gas.

(@) Does the temperature of the gas increase, decrease, or remain the same?

{B) Does the entropy of the gas increase, decrease, or remain the same?

{¢) Caleulate the final temperature of the gas in terms of Ty, Vi, and the
other parameters mentioned in the statement of the problem.
The following describes a method used to measure the specific heat ratio ¥ =
ty/ey of a pas.  The gas, assumed ideal, is confined within a vertieal cylindrical
container and supports a freely moving piston of mass m. The piston and
eylinder both have the same cross-sectional area 4.  Atmospheric pressure is pg,
and when the piston is in eguilibrium under the influence of gravity (accelera-
tion g) and the gas pressure, the volume of the gaz is V.  The piston is now dis-
placed slightly from its equilibrium position and is found to oscillate about this
position with frequency ». The oscillations of the piston are slow enough that
the gas always remains in internal equilibrium, but fast enough that the gas
cannot exchange heat with the outside. The variations in gas pressure and
volume are thus adiabatic. Express v in terms of m, g, A, po, Vo, and v
Consider the earth’s atmosphere as an ideal gas of molecular weight p in a
uniform gravitational field. Let g denote the acceleration due to gravity.
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5.8

5.9

5.10

(a) If z denates the height above sea level, show that the change of atmos-
pheric pressure p with height is given by

dp g
‘?‘; = — ﬁdz
where T is the absolute temperature at the height 2.

(b) If the decrease of pressure in (a) is due to an adiabatie expansion, show
that

ap _ vy dT
g y—17

(¢) From (a) and (b) caleulate dT/dz in degrees per kilometer, Assume
the atmosphere to consist mostly of nitrogen (Nj) gas for which vy = 1.4

(d) In an isothermal atmosphere at temperature T, express the pressure
p at height z in terms of the pressure p, at sea level.

(e) If the sea-level pressure and temperature are po and Ty, respectively, and

the atmosphere is regarded as adiabatic as in part (), find again the pressure
p at height 2.
When a sound wave passes through a fluid (liquid or gas), the period of yibration
is short compared to the relaxation time necessary for a maecroscopically small
element of volume of the fluid to exchange energy with the rest of the fluid
through heat flow. Hence compressions of such an element of volume can be
considered adiabatic.

By analyzing one-dimensional compressions and rarefactions of the system
of fluid contained in a slab of thickness dx, show that the pressure p(z,{) in the
fluid depends on the position z and the time ¢ so as to satisfy the wave equation

#p _ ,9%
FTERR

where the velocity of sound propagation u is a constant given by u = (prs) %,
Here p is the equilibrium density of the fluid and ks is its adiabaiic compres-
sibility ks = —V-1(aV/dp)s, i.e., its compressibility measured under conditions
where the fluid is thermally insulated.
Refer to the results of the preceding problem.

(a) Calculate the adiabatic compressibility ks of an ideal gas in terms of its
pressure p and specific heat ratio 7.

(b) Find an expression for the velocity of sound in an ideal gas in terms of vy,
its molecular weight p, and its absolute temperature 7.

(¢) How does the sound veloecity depend on the gas temperature T at a fixed
pressure? How does it depend on the gas pressure p at a fixed temperature?

(d) Caleulate the velocity of sound in nitrogen (Ng) gas at room temperature
and pressure. Take vy = 1.4,
Liquid mercury at atmospheric pressure and 0°C (i.e., 273°K) has a molar volume
of 14.72 em?®/mole and a specific heat at constant pressure of ¢, = 28.0 joules
mole™! deg~!. Tts coefficient of expansion is @ = 1.81 X 10~ deg™!, and its
compressibility is & = 3.88 X 107!* ¢m? dyne~’. Find its specific heat cv at
constant volume and the ratio ¥ = ¢,/cv.
Consider an isotropie solid of length L. Its coefficient of linear expansion oz
is defined as azx = L (dL/4T), and is a measure of the change in length of this
solid produced by s small change of temperature. By considering an infini-
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tesimal rectangular parallelepiped of this solid, show that the coefficient of
volume expansion e = V=1(8V/aT), for this solid is simply equal to & = 3n;.
The following problem arises when experiments are done on solids at high
pressures, If the pressure is increased by an amount Ap, this being done under
circumstances where the sample is thermally insulated and at a sufficiently slow
rate that the process can be regarded as quasi-static, what is the resulting change
of temperature AT of the sample? If Ap is fairly small, derive an expression for
AT in terms of Ap, the absolute temperature T of the sample, its specific heat at
constant pressure ¢, (in ergs g=! deg™!), its density p (in g/em?), and its vol-
ume coefficient of thermal expansion @ (in deg1).

A homogeneous substance at temperature 7' and pressure p has a molar volume v
and a molar specific heat (measured at constant pressure) given by ¢,. TIts
coefficient of volume expansion o is known as a funetion of temperature. Caleu-
late how ¢, depends on the pressure at a given temperature; i.e, calculate
(dep/0p) r, expressing the result in terms of T, v, and the properties of a.

In a temperature range near absolute temperature T, the tension force F of &
stretched plastic rod is related to its length L by the expression

F = aT*L — Lo)

where a and L, are positive constants, Lo being the unstretched length of the rod.
When L = Ly, the heat capacity €'z of the rod (measured at constant length) is
given by the relation €'r = 6T, where b is a constant.

(a) Write down the fundamental thermodynamic relation for this system,
expressing dS in terms of dF and dL.

(6) The entropy S(T,L) of the rod is a function of T and L. Compute
(8S/8L) .

() Enowing 8(Tq,Lo), find 8(T,L) at any other temperature T and length
L. (It is most eonvenient to caleulate first the change of entropy with tem-
perature at the length L, where the heat capacity is known.)

(d) If onestarts at T = T;and L = L; and strefches the thermally insulated
rod quasi-statically until it attains the length L;, what is the final temperature
T,? 1Is T;larger or smaller than 77

(e) Caleulate the heat capacity C'r(L,T) of the rod when its length is L
instead of Lg.

(f) Caleulate S(7,L) by writing S(T,L) — 8(To,L0) = [S(T,L) — S(Te,L))
+ [S(T',L) — S(Ty,Ly)) and using the result of part (e) to compute the first
term in the square brackets. Show that the final answer agrees with that found
in (¢).

The figure illustrates a soap film (shown in gray) supported by a wire frame.
Because of surface tension the film exerts a foroe 20l on the cross wire, This
foree is in such & direction that it tends to move this wire so as to decrease
the area of the film, The quantity o is called the “surface tension’ of the film
and the factor 2 oceurs because the film has two surfaces. The temperature
dependence of & is given by

o =gy — al

where oo and « are constants independent of T or z.

{(a) Suppose that the distance = (or equivalently, the total film area 2[z) is
the only external parameter of significance in the problem. Write a relation
expressing the change dF in mean energy of the film in terms of the heat dQ
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absorbed by it and the work done by it in an infinitesimal quasi-static process in
which the distance z is changed by an amount dz.

(b) Caleulate the change in mean energy AE = E(z) — E(0) of the film
when it is stretched at & constant temperature T, from a length z = 0 to a
length .

(¢) Caleulate the work W (0 — z) done on the film in order to streteh it at

thiy constant temperature from a length z = 0 to a length 2.
Consider an electrochemical cell of the type illustrated in the figure. The cell
can be maintained in equilibrium by connecting a potentiometer across its ter-
minals in such a way that the emf U produced by the cell is precisely compensated
and no net eurrent flows through the outside circuit. The following chemical
reaction can take place in the cell:

Zn 4 CuB0, 2 Cu + ZnB0, (1)

Suppose that the equilibrium is shifted quasi-statically by an infinitesimal
amount go that the reaction proveeds from left to right, dN atoms of copper
(Cu) being produced in the process. Then a charge z¢ dN fows from the Cu to
the zine (Zn) electrode through the outside circuit (where 2 = 2 is the valence
of copper) and the cell does an amount of work Uze dN. IExpressed in terms of
moles, when dv = dN /N, moles of Cu are produced, the charge transferred is
2eN, dv = zf dv (where f = N,e is called the Faraday constant), and the work
done by the cell is Vzf dv. ll -

Cu

Porous partition
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The cell can thus be deseribed in terms of the following independent parame-
ters: its temperature T, the pressure p, and the number of moles » of Cu metal.
The volume change of the material in the cell is negligible. The fundamental
thermodynamic relation for this cell becomes then

T dS = dB + 2V dv )

Use this relation to find an expression for the change AF in the mean energy of
the cell at a fixed temperature T and pressure p when one mole of Cu is produced.
Show thereby that AE (which is the heat of reaction involved in the chemical
transformation (1)) can be determined solely by measurements of the emf U
of the cell without the necessity of doing any calorimetry.
The equation of state of a gas can be written in the form

p = nkT(1 + Ban)

where p is the mean pressure of the gas, T its absolute temperature, n = N/V
the number of molecules per unit volume, and By = By(T) iz the second virial
coefficient. The discussion of Sec. 5-10 showed that B, is an increasing function
of the temperature,

Find how the mean internal energy F of this gas depends on its volume
¥, i.e., find an expression for (9E/0V)r. Is it positive or negative?
The free expansion of a gas is & process where the total mean energy E remaing
constant. In connection with this process, the following quantities are of
interest.

(a) What is (8T/8V)x? Express the result in terms of p, T, (9p/3T)y,
and Cv.

(b) What is (88/0V)e? Express the result in terms of p and T.

(c) Using the results (@) and (b), calculate the temperature change AT =
T — T, in a free expansion of a gas from volume V, to volume V. Give
explicit results for » moles of a van der Waals gas, assuming 'y to be temperature
independent.
The van der Waals equation for 1 mole of gas is given by (p + avr %) (v — b) =
RT, In general, curves of p versus v for various values of 7' exhibit & maximum
and a minimum at the two points where (dp/dv)r = 0 (the curves are similar to
those of Fig. 8:6-1}. The maximum and minimum coalesce into & single point
on that curve where (8%p/8v*)r = 0 in addition to (dp/dv)r = 0. This point is
called the “critical point” of the substance and its temperature, pressure, and
molar volume are denoted by 7., p., and #,, respectively.

(a) Express o and b in terms of T. and v..

(b) Express p. in terms of 7, and »..

() Write the van der Waals equation in terms of the reduced dimensionless
variables

T = %r v = 5’;-:

This form should involve neither a nor b.
Find the inversion curve for a van der Waals gas. Express your result in

3
Il
Bl

” terms of the reduced variables p' and T, and find p’ as a function of T’ along the

inversion curve. Sketch this curve on a graph of p’ versus 77, being sure to
indicate quantitatively the intercepts on the 7" axis and the location of the maxi-
mum pressure on this curve.
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The Joule-Kelvin coéfficient, is given by

aT VIT(aV
w=(5). =57 (&), -1 H
Since it involves the absolute temperature T, this relation can be used to deter-
mine the absolute temperature 7.

Consider any readily measurable arbitrary temperature parameter ¢ (e.g.,
the height of a meroury column). All that is known is that & is some (unknown)
funetion of T'; ie., & = #(T).

(a) Express (1) in terms of the various direcily mesasurable guantities
invelving the temperature parameter ¢ instead of the absolute temperature T,
i.e., in terms of p’' = (9¢/9p)w, O = (dQ/dd),, o' = V-1(8V/88),, and the
derivative dd/dT.

(b) Bhow that, by integrating the resulting expression, one can find T' for any

given value of & if one knows that & = &, when T' = T (e.g., if one knows the
value of # = & at the triple point where Ty = 273.16).
Refrigeration eycles have been developed for heating buildings. The procedure
is to design a device which absorbs heat from the surrounding earth or air outside
the house and then delivers heat at a higher temperature to the interior of the
building. (Such a device is called a “heat pump.')

(a) If a device is used in this way, operating between the outside absolute
temperature T, and an interior absolute temperature T what would be the
maximum number of kilowatt-hours of heat that could be supplied to the
building for every kilowatt-hour of elecirical energy needed to operate the deviee?

(8) Obtain a numerical answer for the case that the outside temperature is

0°C and the interior temperature is 25°C.
Two identical bodies, each characterized by a heat capacity at constant pressure
C which is independent of temperature, are used s heat reservoirs for a heat
engine, The bodies remain at constant pressure and undergo no change of
phase. Imitially, their temperatures are T and 7', respectively; finally, as a
result of the operation of the heat engine, the bodies will aftain a common final
temperature 7'y,

(a) What is the total amount of work W done by the engine? KExpress
the answer in terms of C, T,, Ty, and T';.

() Use arguments based upon entropy considerations to derive an inequal-
ity relating T, to the initial temperatures Ty and T,

(¢) For given initial temperatures T, and 7'y, what is the maximum amount
of work obtainable from the engine?

The latent heat of melting of ice is L per unit mass. A bucket contains & mixture
of water and ice at the ice point (absolute temperature 7). It is desired to use
a refrigerator in order to freeze an additional mass m of water in the bucket.
The heat rejected by the refrigerator goes to warm up a body of constant heaf
capacity €' and, initially, also at temperature Ts. What is the minimum amount
of heat which the refrigerator must reject to this body in the process?

Consider the physical situation illustrated in Fig. 5-11-2, Suppose that under
the influence of gravity (g = 980 em sec™?) the weight, having a mass m = 50
grams, is allowed to descend a distance L = 1 em before coming to rest on a plat-
form. In this process the weight turns the paddle wheel and raises the tem-
perature of the liguid by a slight atmount above ifs original temperature of 25°C,

Calculate the probability that, as a result of a spontaneous fluctuation, the
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water gives off its energy to the weight and raises it again so as to restore it to a
height of 1 ¢m or more.

A gasoline engine can be approztmately represented by the idealized cyelic
process abed shown in the accompanying diagram of pressure p versus volume
V of the gas in the eylinder, Here a— b represents the adiabatic compression
of the air-gasoline mixture, b — ¢ the rise in pressure at constant volume due to
the explosion of the mixture, ¢ — d the adiabatic expansion of the mixture during
which the engine performs useful work, and d — @ the final cooling down of the
gas at constant volume.

Ly

v
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Yy Va s
Assume this eycle to be carried out quasi-statically for a fixed amount of
ideal gas having a constant specific heat. Denote the specific heat ratio by
¥ = cp/t,. Caloulate the efficiency # (ratio of work performed to heat intake @)
for this process, expressing your answer in terms of ¥y, Vy, and v,
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oNE caN readily discuss many more important applications based on the
macroscopic aspects of the general theory of Chapter 3. But appreciably
greater insight and power are gained by considering alzo the microscopic aspects
of the theory. In this chapter we shall therefore turn our attention to the
statistical relations summarized in the latter part of Sec. 3-11. Our aim will
be (1) to derive general probability statements for a variety of situations of
physical interest and (2) te describe practical methods for caleulating macro-
scopie quantities (such as entropies or specific heats) from a knowledge of the
purely microseopic properties of a gystem. In Chapter 7 we shall then apply
these methods to a discussion of some important physical situations.

ENSEMBLES REPRESENTATIVE OF SITUATIONS
OF PHYSICAL INTEREST

6.1 Isolated system

In giving a statistical deseription of a system, one always has some information
available about the physical situation under consideration. Therepresentative
statistical ensemble is then constructed in such a way that all the systems in the
ensemble satisfy conditions consistent with one’s information about the system.
Since it is possible to visualize a variety of physical situations, one is led to
consider a corresponding number of representative ensembles. We shall
deseribe some of the most important cases in the following sections,

An isolated system represents a situation of fundamental importance, one
which we have discussed at length in Chapters 2 and 3. Indeed, whenever one
is dealing with a situation where a system A is not isolated but is allowed to
interact with some other system 4’, it is always possible to reduce the situation
to the case of an isolated system by focusing attention on the combined system
A + A7

201
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For the sake of simplicity, suppose that the volume V of the system is its
only relevant external parameter. An isolated system of this kind consists
then of a given number N of particles in a specified volume V, the constant
energy of the system being known to lie in some range between  and B + §F.
Probability statements are then made with reference to an ensemble which
consists of many such systems, all consisting of this number ¥ of particles in
this volume V, and all with their energy lying in the range between F and
E + 8E. The fundamental statistical postulate asserts that in an equilibrium
situation the system is equally likely to be found in any one of its accessible
states. Thus, if the energy of a system in state r is denoted by E,, the prob-
ahility P, of finding the system in state r is given by

(6:1-1)

p_|C #E<E <E+E
e e otherwise

where C is a constant. It ean be determined by the normalization condition
that ZFP, = 1 when summed over all accessible states in the range between

E and E + SE.
An ensemble representing an isolated system in equilibrium consists then
-~ of systems distributed in accordance with (6-1-1). It is sometimes called a

“mierocanonical’”’ ensemble.

6 2 System in contact with a heat reservoir

We consider the case of a small system A in thermal interaction with a heat
regervoir A'. This is the situation already discussed in Sec. 36 where A < 4',
i.e,, where 4 has many fewer degrees of freedom than A’. The system A may
be any relatively small macroscopic system. (For example, it may be a bottle
of wine immersed in a swimming pool, the pool acting as a heat reservoir.)
Sometimes it may also be a distinguishable microscopic system which can be
clearly identified.* (For exarple, it may be an atom at some lattice site in a
solid, the solid acting as a heat reservoir.) We ask the following question:
Under conditions of equilibrium, what is the probability P, of finding the system
A in any one particular microstate r of energy .7
This question is immediately answered by the same reasoning as was used
in Sec. 3-3. We again assume weak interaction between A and A’so that their
energies are additive. The energy of 4 is, of course, not fixed. It is only the
total energy of the combined system A® = 4 + A’ which has a constant
value in some range between E® and B + §E. The conservation of energy
can then be written as
. B, + E' = E® (6-2-1)

where ' denotes the energy of the reservoir A. When A has an energy &,

* The qualifying remark is introduced because it may not always be possible to label
the identity of an individual atomic particle in & quantum mechanical deseription.
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the reservoir A’ must then have an energy near £’ = E(W — K. Hence, if 4
is in the ene definite state r, the number of states accessible to the combined
system A ig just the number of states Q'(E‘” — F,) accessible to 4’ when
its energy lies in a range 8K near the value E' = ™ — FE,. But, according
to the fundamental statistical postulate, the probability of oceurrence in the
ensemble of a situation where A is in state r is simply proportional to the
number of states accessible to A under these conditions. Hence

I P, = C'Q(E©® — E,) (6-2-2)

where (" i8 a constant of proportionality independent of r. As usual, it can be
determined from the nermalization condition for probabilities, i.e,,

zp,=1 (6-2-3)

where the sum extends over all possible states of 4 irrespective of energy.

Up to now, our discussion has been completely general. TLet us now make
use of the fact that A is a very much smaller system than A'. Then B, < E
and (6-2-2) can be approximated by expanding the slowly varying logarithm
of Q'(E") about the value £’ = E®. Thus

In Q(E® — B) = In Q/(E®) — [3;%?] By one (842
(1]

Sinee A’ acts as a heat reservoir, F, «¢ 'Y and higher-order terms in the
expansion can be neglected. The derivative

gln R S
[W]u=3 (6-2-5)

is evaluated at the fixed energy B’ = E and is thus a constant independent
of the energy B, of A. By (3-3-10) it is just the constant temperature
parameter 8 = (kT)~! characterizing the heat reservoir A’. (Physically, this
means that the reservoir 4’ is so large compared to 4 that its femperature
remains unaffected by whatever small amount of energy it gives to A.) Hence
(6-2-4) becomes

In Q(E® — E,) = In '(E'V) — BE,

or QE® — E,) = QI(EW) ¢hE (6:2:6)
Since Q'(£) is just a constant independent of r, (6-2-2) becomes then simply
=3 P, = ( ¢¥5 (6-2-7)
where €' is some constant of proportionality independent of r. Using the

normalization condition (6-2:3), € is determined by the relation

C1 = Y ebm
r
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so that (6-2-7) can also be written explicitly in the form

BE,
Pl S, (6-2-8)

8B,
; e

Let us discuss the results (6:2-2) or (6:2-7) more fully. If 4 is known to
be in a definite one of its states, the reservoir can be in any one of the large
number @' (E® — [} of states accessible to it, Remember that ordinarily the
number of states Q'(E’) accessible to the reservoir is a very rapidly increasing
function of its energy (i.e., 8 in (6-2-5) is positive), Thus, if A is in a state r
where its energy F, is higher, the conservation of energy for the fotal system
implies that the energy of the reservoir is correspondingly lower so that the
number of states accessible to the reservoir is markedly reduced. The prob-
ability of encountering this situation in the ensemble is accordingly very much
less. The exponential dependence of P, on £, in (6-2-7) just expresses this
state’of affairs in mathematical terms,

Example A simple numerical illusfrafion is provided by Fig. 6+2+1 where
the bar graphs show the number of states accessible to A and A’ for various
values of their respective energies. Assume that the total energy of the
combined system is known td be 1007. Suppose that A is in one of its states,
call it », of energy 6. Then the energy of the reservoir A’ must be 1001
so that it can be in any one of 400,000 possible states. In an ensemble

n:};ﬂ‘ 8
A 375
1 [
L »
0 S 7 E
0 (e A

o /\f " 1000 1001 100 E
Fig., 6:2:1 Schematic illustration (not drawn to scale) showing the
number of states accessible to a system A and to g heat reservoir A' an a

function of their respective energies. (The energy scale is in termis of an
arbitrary unit,)
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The probability (6-2:7) is a very general result and is of fundamental
importance in statistical mechanics. The exponential factor e #%: is called the
“Boltzmann factor”; the corresponding probability distribution (6-2-7) is
known as the “canonical distribution.”” An ensemble of systems all of which
are in contact with a heat reservoir of known temperature 7', i.e., all of which
are distributed over states in accordance with (6-2-7), is called a “canonical
ensemble,” T

The fundamental result (6-2-7) gives the probability of finding A in one
particular state » of energy E.. The probability P(E) that A has an energy in
a small range between ¥ and F 4 8F is then simply obtained by adding the
probabilities for all states whose energy lies in this range; i.e.,

P(E) = 3. P,

where r is such that E < E, < E + 6K. But all these states are, by (6-2-7),
equally probable and are characterized by essentially the same exponential
factor e #F; hence one needs simply to multiply the probability of finding 4
in any one of these states by the number 2(F) of its states in this energy range,
i.e.,

P(E) = CQ(E) e?F (6:2-9)

To the extent that A itself isa large system (although very much smaller than
A"), Q(E) is a rapidly increasing function of £. The presence of the rapidly
decreasing factor e?F in (6-2-9) results then in a maximum of the product
Q(E) ¢#8. The larger A is, the sharper is this maximum in P(E);i.e., the more

RIEJE#E

Fig. 6:2:2 Schematicillustra-
tion showing the dependence
of the function @(E)e 5 on E
for a macroscopic system.
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rapidly Q(H) increases with E, the shaper this maximum becomes. Thus we
arrive again at the coneclusions of Sec. 3-7. We emphasize, however, that
(6-2-9) is valid no matter how small 4 is. It may even be a system of atomic
size, provided that it can be treated as a distinguishable system satisfying the
additivity of energy (6:2-1).

Omnce the probability distribution (6-2:7) is known, various mean values
can readily be computed. For example, let y be any quantity assuming the
value y. in state r of the system A. Then

E e 0y,

e .9,
4 E e—BE. (6:2-10)
where the summation is over all states r of the system 4. ¢

6 . 3 Simple applications of the canonical distribution

The canonical distribution (6-2-7) yields a host of conclusions. Here we
mention only a few illustrative applications where the canonieal distribution
leads immediately to physieally very important results. Most of these will be
discussed more fully in Chapter 7.

per unit volume and which is placed in an external magnetic field H, Assume
that each atom has spin § (corresponding to one unpaired electron) and an
intrinsic magnetic moment g. In & quantum-mechanical description the mag-
netic moment of each atom can then point either parallel or antiparallel to the
external field H. If the substance is at absolute temperature T, what is the
mean magnetic moment gy (in the direction of H) of such an atom? We
J assume that each atom interacts only weakly with the other atoms and with
the other degrees of freedom of the substance. It is then permissible to focus
attention on a single atom as the small system under consideration and to
regard all the other atoms and other degrees of freedom as constituting a heat
reservoir, *

Fach atom can be in two possible states: the state (4) where its spin
points up (i.e., parallel to H) and the state (—) where its spin points down (i.e.,
antiparallel to H). Let us discuss these states in turn.

In the (+) state, the atomic magnetic moment u is paraliel to H so that
| pr = p.  The corresponding magnetic energy of the atom is then e, = —pH.

|
4
’ Paramagnetism Consider a substance which contains N, magnetic atoms

* This assumes that it is possible to identify a single atom unambiguously, an assump-
tion whith is justified if the atoms are localized at definite lattice sites of a solid or if they
form & dilute gas where the atoms are widely separated. In a concentrated gas the assump-
tion might break dewn. It would then be necessary to adopt a point of view (which is
always permissible, although more complicated) which considers the enfire gas of atoms as a
small microscopic system in contact with a heat reservoir provided by other degrees of
freedom.
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The probability of finding the atom in this state is thus
Py =ClegPe= (0Pl (6-3-1)

where (' is a constant of proportionality and g = (kT)-'. This is the state
of lower energy (if x is positive) and is thus the state in which the atom iz more
likely to be found.

In the (—) state, u is antiparallel to H so that uyy = —p. The corre-
sponding energy of the atom is then e = +uH. The probability of finding
the atom in this state is thus

P_= (et = Cetel & (6:3-2)

This is the state of higher energy (if u is positive) and is thus the state in which
the atom is less likely to be found. '

Since the first state where u is parallel to H is more probable, it is clear
that the mean magnetic moment gy must point in the direction of the external
field H. By virtue of (6:3-1) and (6-3-2), the significant parameter in this
problem is the quantity

which measures the ratio of a typical magnetic energy to a typical thermal
energy. It iz apparent that if 7' is very large, 1.e., if y <1, the probability
that u is parallel to H is almost the same as that of its being antiparallel. In
this case u is almost completely randomly oriented so that gz = 0. On the
other hand, if T is very small, i.e., if y 3> 1, then it is much more probable that
u is parallel to H rather than antiparallel to if. In this case gp = p.

All these qualitative conclusions can readily be made quantitative by
actually calculating the mean value fy. Thus we have

_ Pipt+ P(—p) _ eH — gl
( M=—p 1P T~ PFETIm
H
or Bz = p tanh J;c_T (6-3-3)
Iere we have used the definition of the hyperbolic tangent
= eV — gv
tanh y = =

The “magnetization” M, or mean magnetic moment per unit volume, is then
in the direction of H and is given by

Mo = Noaig (6:3-4)
One can easily check that gy exhibits the qualitative behavior already dis-
cussed. Ify <<l thenev=1+y+ - -andev=1—y-+ -+ . Henee

fOl'y(‘:.l, tanhy=[1+y+"')_2'(1_“3"”_”')_—.:5,
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On the other hand, if y >> 1, then e 3> e¥v. Hence

fory>1, tanhy = 1

Thus (6-3-3) leads to the limiting behavior that

for uH/ KT < 1, m = 22 (6-3-5a)

for uH/KT > 1, Ba = i (6-3-5b)
By (6-3-4) and (6-3-5a) it then follows that

it WH /BT <1, 15y = (6-3-6)

where x is a constant of proportionality independent of H. This parameter
x i called the “magnetic susceptibility” of the substance. Equation (6:3:5a)
provides an explicit expression for x in terms of microscopie quantities, i.e.,

Nop? b
X = 77 (6:3:7)
The fact that y < T-!is known as Curie’s law. On the other hand,
if uH/ET > 1, Mo— N (6-3-8)

becomes independent of H and equal to the maximum (or ‘“‘saturation’’) mag-
netization which the substance can exhibit. The complete dependence of the
magnetization M, on temperature T and magnetic field H is shown in Fig.
6-3-1.

M.

N o
09}
0.8
0.7
0.6

Fig. 6-3'1 Dependence of the magnetization M, on magnetic field H and
temperature T for noninteracting magnetic atems of spin § and magnetic
moment pu.
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Molecule in an ideal gas Consider a monatomic gas at absolute tempera-
ture T confined in a container of yolume V. Assume that the number of
molecules per unit volume is small enough that the interaction between mole-
cules is very weak; then the total energy of the gas equals the sum of the
energies of each molecule. We treat the problem classically so that it is
permissible to focus attention on a given distinet molecule (without having to
be concerned about the essential indistinguishability of the molecules in the
gas). All the remaining molecules ean then be regarded as a heat reservoir at
temperature T.

The molecule can only be located somewhere inside the container. There
its energy is purely kinetic; i.e.,

p 3.
= (6:3-9)

where m is the mass of the molecule and v = p/m is its velocity. If the
molecule’s position lieg in the range between r and r + dr (i.e., if its z coordi-
nate lies between x and x + dz, its y coordinate between y and y -+ dy, and its
z coordinate between z and z + dz) and if its momentum lies in the range
between p and p + dp (i.e., if its © component of momentum lies between
p. and p, + dp., . . .), then the volume of phase space corresponding to this
range of r and p is

d* d*p = (dx dy dz)(dp. dp, dp:) (6-5-10)

To find the probability P(r,p) d®r d®p that the molecule has position lying in
the range between r and r + dr and momentum in the range between p and
p + dp, one need only multiply the number (d*r d®p)/hy® of cells in phase
space corresponding to this range by the probability that the molecule is found
in a particular cell. Thus

P(r,p) d'r d°p « (53;;’;3}3) g—Ape/2m) (6-3-11)
where g = (ET)-L

Note that the probability density P does not depend on the position r of
the molecule in the box. This reflects merely the fact that, in the absence of
external forces, the symmetry of the physical situation is such that there can be
no preferred location of a molecule within the box.

To find the probability P(p) d%p that a molecule has momentum lying in
the range between p and p + dp, irrespective of its location r, one need only
sum the probability (6-3-11) over all possible positions r, i.e., integrate it
over the volume of the container

P(p) d'p = [, P(r,p) d* dip « e dip (6-3-12)

One can equally well express this in terms of the velocity v = p/m. The
probability P'(v) d®v that a molecule has a velocity between » and v + dv is
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then

P'(v) d* = P(p) d*p = C e#™'? d% (6:3:13)

where (' is a constant of proportionality which can be determined by the
normalization condition that the integral of the probability (6-3-13) over all
possible velocities of the molecule must be equal to unity. The result (6-3-13)
is the famous “Maxwell distribution’ of molecular velocities.

Molecule in an ideal gas in the presence of gravity Consider the situa-
tion of the preceding example, but suppose now that a uniform gravitational
field acts in the —z direction. Then, instead of (6-3-9), the energy of a
molecule in the gas becomes

Pa
- + mgz (6-3-14)

where g is the constant acceleration due to gravity. Analogously to (6:3:11),
one then has

P(r,p) d*r d’p = éa_;@’ g—BLDY 2m)+maz]
0
« d% dap =P 2m) —Bmyr ( 6.3. 15)

The probability now does depend on the z coordinate of the molecule. The
probability P(p) d’p that a molecule has momentum in the range between p
and p + dp, irrespective of its location, is given as before by

P(p) d'p = [, P(r,p) d'r d'p (6-3-16)

where the integration over r extends over the volume ¥ of the container.
Since (6-3-15) factors into the product of two exponentials, (6-3-16) becomes
simply

P(p) d%p = C e#U'*™ dip (6:3-17)

where C is a constant of proportionality. This means that the momentum
distribution function, and thus also the velocity distribution function, is
exactly the same as that obtained in (6:3-12) in the absence of & gravitational
field.

Finally we can find the probability P(z) dz that a molecule is located at a
height between z and 2z + dz, irrespective of its momentum or z and y position
components. This is found from (6-3-15) by integration:

2 = 3 I3 S :

P(z) dz = ftm fm P(r,p) dr dip (6-3-18)
where one integrates over all momenta (from — % to + « for each momentum
component) and over all possible z and y values lying within the container,
(i.e., over the cross-sectional area of the container). Again, since (6:3.15)
factors into a produet of exponentials, (G-3-18) becomes simply for a con-

tainer of constant cross section
P(z) dz2 = O eFmor dz (6-3-19)
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where C' is a constant of proportionality. This implies that
P(z) = P(0) g mesi*r (6-3-20)

i.e., the probability of finding a molecule at height 2 decreases exponentially
with the height. The result (6-3-20) is sometimes called the “law of atmos-
pheres," since it would describe the density variation of the air near the surface
of the earth if the atmosphere were at a constant temperature (which it is not).

6 . 4- System with specified mean energy

Another situation of physical interest is that where a system A consists of a
fixed number N of particles in & given volume V, but where the only informa-
tion available about the energy of the system is its mean energy E. This is a
very common situation. Suppose, for example, that a system A is brought to
gome final macrogtate as a result of interaction with other macroscopic systems.
Then the measurement of the macroscopic work done or the heat absorbed in
the process does not tell one the energy of each system in the ensemble, but
provides information only about the mean energy of the final macrostate of A.

A system A with specified mean energy  is also described by a canonical
distribution. For, if such a system were placed in thermal contact with a heat
reservoir at some temperature 8, the mean energy of the system would be
determined. Thus a proper choice of 8 would guarantee that the mean energy
of the system assumes the specified value B,

A more direct argument is readily given. Denote the energy of the system
4 in state r by E,. Suppose that the statistical ensemble consists of a very
Iarge number a of such systems, a, of which are in state . Then the informa-
tion available to us is that

1 : _
aZa.E,.=E (6-4-1)

L]
equals the specified mean energy. Thus it follows that
Za,E, = aF = constant

This implies that the situation is equivalent to one where a fixed total amount
of energy aZ is to be distributed over all the systems in the ensemble, each such
system being equally likely to be in any one state, If a system in the ensemble
is in state r, the remaining (e — 1) systems must then have a combined energy
(aE — E,). These (@ — 1) systems can be distributed over some very large
number ®(H’) of accessible states if their combined energy is E'. If the one
system under consideration is in state r, the remaining (¢ — 1)systems can then
be with equal probability in any of the ®(aE — E,) states accessible to them.
Since F, <« af, the mathematical problem is here exactly the same as that of
See. 6-2, dealing with a system in thermal eontact with a heat reservoir,
except that the role of energy reservoir is now played not by any physical heat
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reservoir of specified temperature parameter 8, but by the totality of all the
other systems in the emsemble. Accordingly, one gets again the canonical
distribution

P, = ¢ 95 (6:4-2)

The parameter 8 = (8 In ®/dE’) does not here have any immediate physical
significance in terms of the temperature of a real heat bath. Rather, it is to be
determined by the condition that the mean energy calculated with the distribu-
tion (6-4-2) is indeed equal to the specified mean value E, i.e., by the condition

E efE [,
8

_27-_\;5-_ =.E'-' (6’4'3)
P

In short, when one is dealing with a system in contact with a heat reservoir
of temperature 8 = (kT)~%, the canonical distribution (6-4-2) is valid and the
mean energy B can be ealeulated by (6-4:3) from the known value of 8. If
one is dealing with & system of specified mean energy E, the canonical distribu-

- tion (6-4-2) is again valid, but the parameter § is to be calculated by (6-4-3)

from the known value of E.

6 + 5 Calculation of mean values in a canonical ensemble

When a system A is in thermal contact with a heat, reservoir as in Sec. 6-2, or
when only its mean energy is known as in Sec. 6-4, the systems in the represent-
ative statistical ensemble are distributed over their accessible states in accord-
ance with the canonieal distribution

¢g—BE,

E ¢—BE.

r

P, = Ce#t =

(6-5-1)

Tn these physical situations the energy of the system is not precisely specified
and the caleulation of important mean values becomes particularly simple.
By (6-5-1) the mean energy is given by
Y et5E,
E = ——-E e (6-5-2)

where the sums are over all accessible states r of the system, irrespective of
their energy. The relation (6:5-2) can be reduced to much simpler form by
noting that the sum in the numerator can be readily expressed in terms of the
sum appearing in the denominator. Thus

Zg—urgr =Yy Z% (5 = — 5 z
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where
B Z = Ee“”» (6-5-3)
ks
is just the sum in the denominator of (6-5-2). Hence one obtains
s 18Z _ 8lnZz &5
[ 2 E=—-Z3 = 5 (6-5-4)

The quantity Z defined in (6-5-3) is called the ‘‘sum over states’ or the
‘“partition function.” (The letter Z is used because the German name is
“Zustandsumme.”)*

The canonical distribution implies a distribution of systems over possible
energies; the resulting dispersion of the énergy is also readily computed. We
can use the general statistical relation (1-3-10}, i.e,,

(AE): = (E — E)* = E* —2KE + E* = B* — £ (6-5-5)
E eBE-F 2

Here EX = W (6'5'5)
r

But S esnnp = — 2 (3 esnr,) = (_ ;ﬁ)’ (3 =)

Hence (6:5:6) becomes
- = (6:5-7)

This can be written in a form involving the mean energy E of (6-5-4). Thus

B 1 faZ\? ok .
E’=é§(§£)+§§(£) = —Ee——}-ﬁ'

Hence (6-5-5) yields

’ W=_§_€=£]n_z_ (6-5-8)

Since (AE)? can never be negative, it follows that 8% /98 < 0 (or equivalently,
that 8E/8T > 0). These results agree with those of (3-7:15) and (3-7-16).

Suppose that the system is characterized by a single external parameter
z. (The generalization of all results to the ecase when there are several such
parameters will be immediate.) Consider a quasi-static change of the external
parameter from z to x + dx. In this process the energy of the system in state
r changes by the amount

aE,
dx

AE, = dx
The macroscopic work dW done by the system as a result of this parameter

* Note that since there are in general very many states of the same energy, the sum Z
contains very many terms which are equal.
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change is then, corresponding to (2-9-5), given by
dE,
—gr [ Oy
Z” ( ax d’ﬁ)

dW = (6-5-9)

55,
Z €

where the mean value has been calculated with the canonical distribution
(6:5-1). Once again the numerator can be written in terms of Z. Thus

Yt LA (fom) - -1

and (6:5-9) becomes

1 aZ loelnZ
Since one can express dW in terms of the mean generalized force X
aW=Xde, X=-2
dx
it follows also, by (6-5-10), that
> x-1dlnZ (6-5-11)

For example, if = V, the volume of the system, Eq. (6:5:11) provides an
expression for its mean pressure. That is,

S 0
aW = pdV = =55~ dV
or
. _1dlnZ o
B B (6:5-12)

Now Z is a function of g and V (since the energies F, depend on V). Hence
(6:5-12) is an equation relating 7 to T = (k) and ¥, i.e., it gives the equa-
tion of state of the system.

6:6 Connection with thermodynamics

Note that all the important physical quantities can be expressed completely
in terms of In Z.* In particular, the fact that both the mean energy £ and the
work W are expressible in terms of In Z implies immediately the intimate con-
nection between dB and dW which is the content of the second law of thermody-
namies. To show this explicitly, we recall that Z in (6-5-3) is a function of both

* The situation is completely analogous to that encountered in (3 - 12 - 1), where all
physical quantities could be expressed in terms of In ©. The physical consequence (the
validity of the second law in the form (6-6-4)) is the same in both cases.



CONNECTION WITH THERMODYNAMICS 215

8 and 2, since E, = E.(z). Hence one has Z = Z(p,xz) and ecan write for a
small change of this quantity

g dlnZ,  oahzZ -
dlna’—-—é—x dx + a8 dg (6-6:1)

Consider a quasi-static process where z and 8 change so slowly that the system
is always very close to equilibrium and thus always distributed according to the
canonical distribution; then (6:6-1) implies, by virtue of (6:-5-4) and (6-5-10),
the relation

dinZ = gdW — E dg (6:6-2)

The last term can be rewritten in terms of the change in B rather than the
change in 8. Thus X A

din Z = gdW — d(EB) + B dE
or d (In Z + BE) = 8(aW + dE) = 8 dQ (6:6-3)

where we have used the definition (2-8-3) for the heat d@) absorbed by the
gystem. KEquation (6-6-3) shows again that although d@ is not an exact differ-
ential, an exact differential results when 4@ is multiplied by the temperature
parameter §. This is, of course, the content of the second law of thermo-
dynamics, previously derived in (3:9-5) and expressed there in the form

a8 = 5% (6-6-4)

The identification of (6-6-3) and (6-6-4) becomes complete if one puts
- 3 S = k(ln Z + 8E) (6-6:5)

It can readily be verified that this result agrees with the general definition
8 = kIn Q(E) introduced in (3-8 12) for the entropy of a macroscopic system
of mean energy K. The partition function (6 5-3) is a sum over all states r,
very many of which have the same energy. One can perform the sum by first
summing over all the 2(E) states in the energy range between E and E + 8E,
and then summing over all such possible energy ranges. Thus ;

z=Ee-ﬂf.=§,9(E) on (6:6:6)

The summand here is just proportional to the probability (6-2:9) that the
system A has an energy between F and I + 6E. Since Q(F) increases very
rapidly while e## decreases very rapidly with increasing E, the summand
Q(H)ePF exhibits a very sharp maximum &t some value % of the energy (see
Fig. 6-:2:2). The mean value of the energy must then be equal to & (ie.,
E = F), and the summand is only appreciable in some narrow range A*E sur-
rounding E. The subsequent argument is similar to that used in (3:7-17).
The sum in (6-6-6) must be equal to the value @(E)efE of the summand at
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its maximum multiplied by & number of the order of (A*H/8E), this being
the number of energy intervals 8% contained in the range A*E. Thus

= *
Z = 9k a‘-#’%ﬁ-ﬁ
*
o InZ = In Q(F) — BE + o5y

But, if the system has f degrees of freedom, the last term on the right is
at most of the order of Inf and is thus utterly negligible compared to the
other terms which are of the order of f, Hence

InZ = QA — BE (66:7)
80 that (6-6+5) reduces indeed to
S = kIn Q&) (6-6-8)

Since k8 = T-1, (6-6-5) can be written in the form

TS =kT'InZ + B
or

'S F=E—-—T8=—kT'lnZ (6-6-9)

Thus In Z is very simply related to the Helmholtz free energy #' already encoun-
tered in (5-5-12)., Indeed, the relations (6-5-12) and (6-5-4) expressing §
and F in terms of derivatives of In Z are equivalent to the relations (5-514)
expressing § and S in terms of derivatives of . They express a connection
between these macroscopic quantities and the partition funetion Z, which is
caleulable from microscopic information about the system. They are thus
analogous to the relations (3:12-1) or (3:12:5) which connect T and F with
the quantity In @ or S.

Let us examine the partition function (6-5-3) in the limit as T'— 0 or
f— =. Then the only terms of appreciable magnitude in the sum are those
with the lowest possible value of the energy E,, i.e., the {2, states corresponding
to the ground state energy E;. Hence

as I'— U: Z— 2 e~ Pk

In this limit the mean energy B — K, and the entropy S defined in (6:6.5)
becomes,

as T — 0, 8 — k{(n R — BEs) + BEo] = &k In 0 (6-6-10)

Thus we regain the statement (known as the ‘““third law of thermodynamics’)
that the entropy has the limiting property already discussed in Sec. 3-10; i.e.,
the entropy approaches a value (equal to zero in the absence of randomness of
nuclear spin orientations) independent of all parameters of the system.
Suppose that one ig dealing with a system A® consisting of two systems
A and A’ which are weakly interacting with each other. Let each state of A
he denoted by an index r and its corresponding energy by F.. Similarly, let



CONNECTION WITH THERMODYNAMICS 217

each state of 47 be denoted by an index s and its corresponding energy by £,'.
A state of the combined system A®@ = 4 + A’ can then be denoted by the
pair of indices r,s; since A and A’ interact only weakly, the corresponding
energy of this state is simply given by

B, =E + E/' (6-6-11)
The partition function of A is then, by definition,
Zm] — Eg_ﬂsulll

T8

= ¥ e#t8am0
T8

lz g BE. o—BE/

G G

that is,
B Z0 = 77 (6-6-12)
or InZ® =nZ + In 2’ (6-6-13)

where Z and Z' are the partition functions of 4 and A’, respectively. By virtue
of (6:5-4), the respeetive mean energies of A, 4, and A’ are then related by

E® = E+ B (6-6-14)

It then also follows that the respective entropies of these systems are, by virtue
of the definition (6:6-5), related by

S(D’ = S + S’ (6'6' 15}

Hence (6-6-12) or (6:6-13) refleet the obvious fact that the extensive thermo-
dynamic functions of two weakly interacling systems are simply additive.

Suppose, finally, that two systems A and A’ are each separately in internal
equilibrium with specified mean energies, or equivalently, with specified tem-
perature parameters § and §', respectively. Then the probability P, of finding
system A in state r and the probability P,’ of finding A’ in state s are given by
the canonical distributions

Pl TRl S A (6-6-16)
2 g8, 2 e FE;
If these systems are placed in thermal contact so that they interact only weakly
with each other, then their respective probabilities are statistically independent
and the probability #,, of finding system A in state r and system s in state s is
given by P, = P.P,. Immediately after the systems are brought into thermal
contaect, it then follows by (6-6-16) that
BB, gN'E/

Gl P
yeth e

(6-6-17)
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If g = p', this becomes simply
8—3(&',4‘8.']
P (6-6-18)

Z E g*ﬂ(S.-{-.ﬁ-‘.’}
r A

which is the canonical distribution (corresponding to temperature 5) charac-
terizing the equilibrium of the combined system 4 + A’ whose energy levels
are given by (6-6-11), Hence the systems 4 and A’ do remain in equilibrium
after being joined. On the other hand, if 8 # g8, then (6-6-17) does not cor-
respond to a canonical distribution of the combined system and thus does not
deseribe an equilibrium situation. Hence a redistribution of systems over
states tends to oceur until an ultimate equilibrium situation is reached where
Py, 18 given by a ecanonical distribution of the form (6-6-18) with some common
temperature parameter 8. These comments show directly that the parameter
B oceurring in the eanonical distribution has the familiar properties of a
temperature.

The discussion of this section makes it apparent that the canonical dis-
tribution implies all the thermodynamie relations already familiar from Chapter
3. The particular definition (6-6-5) of the entropy is actually quite convenient
since it involves a knowledge of In Z rather than of In ©. Butl a computation
of Z by (6:5-3) is relatively simple since it involves an unrestricted sum over
all states, whereas a computation of 2(#) involves the more difficult problem of
ecounting only those states lying between the energies E and E + 8E. The
definition (6-6-5) for the entropy of a system at specified temperature g has
the further advantages that it does not depend, even in principle, on the size
81 of any arbitrary energy interval; and that it can be used to define the entropy
i of an arbitrarily small system. These are distinet mathematical advantages,

although the physical significance of the original (and, for large systems,
equivalent) definition (6-6-8) of the entropy is more transparent.

e e Sy

tf-__-_l

*Remark It is instructive to express the physical quantities of interest
directly in terms of the canonical probability P, of (6:5-1). By (6-5-3), one

[ can write P, in the form 3
g""nr
P = (6:6-19) |
{
'? The mean energy of the system is then given by r
E =2ZP,B, (6-6:20) {‘.
In a general quasi-static process this energy changes because both E. and P, \ 1'
® change. Thus )
dE = E (B, dP, + P, dE,) (6-6-21) 5
¥ . |

The work done by the system in this process is
dW = Y P.(—dE,) = — ¥ P, dE, (6+6-22)
r
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In doing work, the energy of each state, ocoupied with the given proba~
bility P, is thus simply changed by dE, by virtue of the change of external

parameters,
The heat absorbed in this process is, by definition,
dQ = dE + aw _
g0 that dQ - E B, dPr (6' 6‘23J
r

In absorbing heat, the energy of each state is thus unaffected, but its proba~
bility of occurrence is changed.
The entropy (6-6-5) can be written

8 = fa[an +32P,Er]
=k[lnz—ErP,]n{ZPf)] r
=k[!nz— LrnZ(EP,) --EP.-InPr]

or
’ S=_kzpr’-ﬂpr (6'6‘24)
sinee 2P.= 1

r

APPROXIMATION METHODS

¥ -~ .
o - | Ensembles used as approximations

Suppose that one is interested in discussing an isolated system with a given
number N of particles in a given volume V, the energy of the system being
known to lie in the range between K and E + §E. The physical equilibrium
situation is then such that the system is described statistically in terms of a
mierocanonical ensemble where all states in the given energy range are equally
probable, [If a parameter y assumes the value y, in state r, then the mean
value of § is given by
Y v
1— r

Y= am)

Here all summations are subject to the condition that one sums only over those
states for which the energy F, lies in the small range

I <E, <8+ (6-7-2)

(6-7:1)

and Q(#) is the number of states in this particular range. The caleulation of
such sums and of () may be quite difficult because of the equation of con-
straint (6-7-2). The trouble is that one eannot simply sum indiseriminately
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over all states without restriction as we did in See. 65 in ealeulating mean
values with the canonical distribution. Insiead, one must pick out only those
particular states which satisfy the restrietion (6:7-2). This difficulty can,
however, be readily overcome by the use of quite accurate approximation
methods.

One way of circumventing the difficulties presented by the condition
(6-7-2) is to replace it with the weaker condition that only the mean energy
of the system is specified, with E chosen to be equal (o the given energy F.
Then the canonical distribution (6-4-2) is applicable and the probability of the
system being in any one of its 2(%,) states of energy between E; and E, + &8,
is given by

P(E,) = Q(Ey) e & (6:7-3)

Since the number of states 2(#,) for a large system is a very rapidly increag-
ing funetion of K, while e#% is rapidly decreasing, the expression (6:73) has
the usual very sharp maximum at the energy £ = E (see Fig. 6-2-2),
Indeed, the sharpness of this maximum can be explicitly caleulated by using

the canonical distribution to compute the dispersion (B, — E)* by (6-5-8).
The width A*E; of the maximum, given by the square root of this dispersion,
is very small relative to J for a macroscopic system. (By the arguments of
(3-7-14), A*E/E is ordinarily of the order of /~! where [ is the number of degrees
of freedom.) Thus, even if the energy of the system should be so precisely
known that 85 in (6-7-2) is very small (say §///F = 10-11), it is yet true that
A*E, < 6l for a system consisting of a mole of particles. Thus values of the
energy I lying outside the range (67 -2) occur with negligible probability in
the canonical distribution. A specification of the mean energy £ is then almost
equivalent to a specification of the total energy £ by (6:7-2). Hence one
expects that mean values can be computed with negligible error by using the
canonical distribution; i.e., instead of (6-7-1) one can write

E e PEwy,
¥ = e (6:7-4)

r

where there appears now no further complieating restriction on the domain of
summation, since one sums over all states,

The foregoing comments can be phrased in more physical terms. If a
magroscopic system A is in contact with a heat reservoir, the relative fluctua~
tions in the energy of A are exceedingly small.  Suppose now that 4 is removed
from contact with the heat reservoir and is thermally insulated; then its total
energy cannot change at all, But the distinetion between this situation and
the previous one is so small that it is really utterly irrelevant for most purpoges;
in particular, the mean values of all physical quantities (e.g., of the mean
pressure or the mean magnetic moment of A) remain quite unaffected. Hence
it makes no difference whether these mean values are caleulated by considering
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the system to be isolated so that it has equal probability of being in any one of
its states of accurately specified fixed energy, or by considering it to be in
confact with a heat reservoir so that it is distributed over all its states in
accordance with a canonieal distribution. But the latter procedure is mathe-
malically simpler.

Caleulating the dispersion (y — ) of some quantity y is a much more

delicate matter. There is no guaraniee that the dispersion is the same when
calculated under conditions where £ is precisely specified (i.c., 65— 0 in
(6-6-2)) or under conditions where only the mean energy F is specified. Asa
matter of fact, one would expect the dispersion to be greater in the second case.
In particular, if y were the energy F of the system, its dispersion would vanish
in the first case where B is precigely specified, but would not vanish in the second
' case where only the mean value E is specified.
’ When one is dealing with a macroscopic system of very precisely specified
energy, the mathematical difficulties encountered in the evaluation of (6:7.1)
can therefore be circumvented to excellent approximation. IFor purposes of
calculating mean values, the situation is quite equivalent to one where the
| system ig described by a canonical distribution with a mean energy correspond-
§ ing to its actual energy.

*
6 ’ 8 Mathematical approximation methods

The use of a canonical ensemble as an approximation method for handling the
difficulties caused by the restrictive condition (6-7-2) can also be considered
| as a purely mathematical approximation method. This point of view is
i’ instructive both because it makes apparent how to find approximations for
related situations, and because it permits one to make estimates of the errors
involved.

To caleulate physical quantities for an isolated system by the relations
(3-12-1), one needs to know the function In 2(¥). Simply counting states is
! not, very difficult if one can simply proceed in any order and add them up one
' at a time toget 1 +1 4+ 1 414 - -+ Buf the difficulty ig that among all
these states one wants to count only those which have an energy F. lying in the
range

E<B.<FE+ SE (6-8-1)

Thus the sum fo be performed is of the form

{ QE) = E' Uy . = 1 for all r (6-8-2)

| where the prime on X denotes that the sum is fo be performed subject to the
| resiriction (6-8:1).

The basic problem is again that of handling the constraint (6-8:1). There
' are several ways of doing this conveniently.
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Method 1 This is the mathematical analogue of the physical approximation
used in the preceding section, By virtue of (6:8:1), the sum (6-8:2) depends
on the particular energy £/, If the energy of interest were not K, but /), the
sum would be quite different. Indeed the sum, i.e., Q(E,), is a very rapidly
increasing function of F;,. We wish to caleulate it for the particular value
By = E. We can exploit the rapidly increasing property of the sum Q(H;)
by noting that multiplication by the rapidly decreasing function e ## produces
a function Q(E,) e#% with a very sharp maximum near some value b, = F;.
Here @ is some arbitrary positive parameter which (for the time being) has no
connection whatever with temperature. By proper choice of § one can make
the maximum oceur at the desired value £, = ¥; one need only choose g so that

aInf
6El

aiE; In [Q(Fs) e#5] = —8=0 (6-8-3)

when B, = E.

The sharp maximum property of Q(E;) e implies that when this quan-
tity ig summed indiscriminately over all possible energies #,, only thosge terms
in some narrow range A*E near F will contribute appreciably. Thus one
selects only those terms of interest; i.e.,

Zn(ﬁ:l) B = (E) K, K= E
68,

1

where the sum is expressed in terms of the value of the summand at the maxi-
mum, multiplied by the number K of terms in the sum contained in the range
A*E (see Fig, 6-2-2). Taking logarithms, one gets

In [Esz(b‘x) e—”-] = In QI — BE
o

since In K is utterly negligible compared to the other terms. Hence
B In QE) = In Z + 8E (6-8-4)
where Z=)YQE)eh =Y g0k (6:8:5)

The last form on the right is obtained by summing over all individual states,
whereas in the first sum one first groups together all terms with a given energy
F and then sums over all energies. The relation (6-8- 4) represents the desired
approximate evaluation of In @ in terms of the unrestricted sum Z over all states,

The parameter 8 is to be determined by the maximum condition (6:8-3)
which is an equation expressing g in terms of £. Thus Z is a function of £
through its dependence on . By (6-8-4) the condition (6-8-3) becomes for

By =&
dln Z ap ag 3
[ % §E+(E;ﬁ,+ﬂ)]—ﬁ—o

or dih Z e (6-8-6)

ap
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Using (6-8:5), this equation for determining g is simply
E e BEH.

‘-ZBT == E (ﬁ 3 8 1 7}

It is clear from (6-8-3) that the parameter 8 introduced in this approxima-
tion method is just the temperature of the system. Similarly, the entropy can
be calculated by (6-8-4) as

S =klnQ=k(ln Z + 8E)

where the sum Z defined in (6:8:5) is simply the partition function already
encountered in (6-5-3).

Method 2 1t is possible to handle the restrictive condition in the sum
(6-8:2) in a very straightforward fashion by a method similar to that used in
Sec. 1-10.  Let us shift the complication introduced by the restriction from the
summation to the summand by multiplying each term in the sum by the fune-
tion §(#, — E)6E, which is equal to unity whenever F, lies in a range 8 about
E, but which vanishes otherwise. By Appendix A7 the function &(&, — F)
is just the Dirac § funetion. Then one can write

Q(F) = E 8(E, — E) 8E (6-8-8)
where the sum is now over all states without any restriction, but where the &
function in the summand guarantees that only those terms in (G-8-8) which
satisfy the condition (6-8:1) contribute to the sum.

But at thig point one can make use of the simple analytic representation

for the & function given in (A-7:16). Thus

oy e LS ! pi{E—B)B o(E—E)8
ME—EB) =5 [ db'e ¢
or in more compact form

SE — By = o [* dp e85t (6-8-9)

2r J—w
where g=pg+16 (6-8-10)

is complex, the integration is only over its imaginary part, and g is an arbitrary
parameter which can be chosen at will.
The sum (6:8:8) is now readily evaluated. One has simply

QE) = 5B Z f_"’” dg’ eE-28

2 &
or o) = 5 [~ as esz(8) (6-8-11)
where Z(p) = 2 e fE = E g (Btif) B, (6:8:12)
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This last sum is over all states without restriction and is thus relatively simple
to evaluate.

These results are exact. We notfe that if ' = 0, all the terms in the sum
(6:8:12) are positive. On the other hand, if 8’ # 0, the oscillatory factors
e 'E; payse the terms in the sum not to add in phase, but to add with more or
less random signs in the real and imaginary parts. BSince there are so very
many terms in the sum, the result is that the absolute value |e§5Z(E)l is. very
much larger for 3’ = 0 than for 8’ # 0. Because of this very sharp maximum,
only the region of integration near 8’ = 0 contributes appreciably to theintegral
(6-8-11). Hence we expect that the integral is very well approximated by

Q(E) = K' efPZ(B) (6-8-13)

where K’ is some constant which is certainly small compared to the number of
degrees of freedom. Thus

= In Q(E) = BE + In Z(8) (6-8-14)

since In K’ is negligibly small compared to the other terms which are of order
f. Thus we regain the result (6-8-4).

= st

It is worth doing the argument leading to (6-8:13) more carefully.
Because the integrand in (6-8-11) iz only appreciable for 8’ = 0, one can in the
significant domain of integration expand its logarithm in a power series about
B"=0. Thus

In [e#5Z(8)] = BE + In Z(8)
= (8 + 18)E + In Z(8) + B:(i8") + +Ba(iB)* + - -
or
-._ In [e€*Z(8)] = BE + In Z(B) + #(E + B’ — 4B+ -« - (6:8:15)

#mzy _#hnz 818
vhere  Bu= | 56 b £ (6:8:18)

Hence
#FZ(8) = Pl A () el AR (6:8-17)

The parameter 3 is still at our disposal, and we can choose it so as fo
optimize our approximation. Irrespective of the choice of 3, we already
kmow (and (6-8:17) shows this explicitly) that [#5Z(g)] is elways maximum
for ' = 0. We should like the integrand to contribute most significantly
to the integral in the immediate vicinity of 8’ = 0 where the expansion
(6-8-15) is most nearly valid. Because of the oscillatory behavior of the
integrand e25Z(8) caused by the imaginary part 8/, this integrand contributes
to the integral most importantly in that region where it oscillates least rapidly,
ie., where

a

% [e25Z(8)] = 0
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so that the integrand is stationary with respect to the phase @' Choosmg
the region of least rapid oseillation to lie at § = 0 means choosing 8 so that

HEA4+ B =0
or AR S (6-8+18)
a8
Then (6:8-17) reduces to
eEl’Z(ﬁ) = ¢FEZ(B) e }B" (6-8-19)
The argument which led us o expect a sharp max:mm of e28Z(8) at
B’ = 0 implies that Bs must be such that B;>> 1, Henge (6:8-11) becomes
simply

UE) = sﬂ‘Z(ﬁ) f dﬁ’ imp

or QUE) = et=Z(B) ﬁ (6:8-20)

Thus InQ(E) ~ BE +InZ

These are the results (6-8-13) and (6-8-14), Note also that the condition
(6:8-18) which determines 8 is the same as that of (6-8-6), i.e., it is again.
equivalent to (6-8-7).*

GENERALIZATIONS AND ALTERNATIVE APPROACHES

*6 . 9 Grand canonical and other ensembles

System with an indefinite number of particles The discussion of the last
few sections can be readily generalized to a variety of other situations. Con-
sider, for example, the case where a system A of fixed volume V is in contact
with a large reservoir A’ with which it can exchange not only energy, buf
particles (see Fig. 6-9:1). Then neither the energy E of A nor the number N
of particles in A are fixed, but the fotal energy B and the total number of
particles N9 of the combined system A!® = 4 + A’ are fixed; ie,,

E + E' = E® = gonstant
2 - 6-9-1

N + N' = N = constant ( )
where B’ and N denote the energy and number of particles in the reservoir A’.
In this situation one can ask for the probability in the ensemble of finding the

* This method based on the integral (6-8-11) and its approximate evaluation by the
method of stationary phase is equivalent to the so-called “Darwin-Fowler” method which
employs econtour integration in the complex plane and the method of steepest descents.
See, for example, R. H. Fowler, “Statistical Mechanics," 2d ed., chap. 2, Cambridge Uni-
versity Press, Cambridge, 1955, or E. Schrodinger, “‘Stafistical Thermodynamics,” 2d ed.,
chap, 6, Cambridge University Press, €ambridge, 1952,
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Fig. 6:9-1 A4 small system A separated
from a much larger system A’ by a
perforated partition. The systems

can exchange both energy and
particles.

system A in any one particular state » where it conlains N, particles and has an
energy E..

The argument which answers this question is identical to that of See. 6-2.
Let @'(E' N') denote the number of states accessible to the reservoir 4’ when
it contains N/ particles and has an energy in the range near F. If A isin the
particular state 7, the number of states accessible to the combined system A
is just the number of states accessible to the reservoir. The probability P, of
finding A4 in this state is then proportional to this; i.e.,

P.(E,,N,) = Q'(B® — E, N® — N,) (6-9-2)

where we have used the conservation equations (6-9-1). Since 4 is very small
compared to A', B, < B and N. < N®, Thus

| aln @ ] dInQ i
B — B NGO _ N = TR ATy Fanp ] bt 0 5
In Q(E E,, N:) = In @/(E™, NO) 7 ]ﬂ E. o v

Here the derivatives are evaluated for ' = E©® and N’ = N; they are,
therefore, constants characterizing the reservoir A’. Denote them by

_|[9ln@ _|éalng ;
8= [—GE-’ L and a= [ AN ]0 (6:9-3)
Then QB — B, NO — N = QUEW, N} g=8E—eN,
and
> P, = g fB—a¥, (6-9-4)

This is called the “grand canonieal’”’ distribution. An ensemble of systems
distributed according to this probability distribution is called & “‘grand canoni-
cal ensemble.” The parameter § is, by (6:9:3), the temperature parameter
of the reservoirj thus 7' = (k3)~! is the absolute temperature of the reservoir,
The quantity @ = —kT« is called the “chemical potential’” of the reservoir.
It is obvious from the diseussion of Sec. 6 -4 that if one considers a physical
situation where only the mean energy E and the mean number N of particles
of a system A are known, the distribution over systems in the ensemble is
again described by a grand eanonical distribution of the form (6-9-4). But
then the parameters 8 and « no longer characterize any reservoir. Instead,
they are to be determined by the conditions that the system A has the specified
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mean energy % and mean number N of particles, i.e., by the equations

. E e PE—aN, J.
S TE z—BE~aN,
E'g'"ﬁ-ﬂ'r—achNr (6 8 5)
N = ’E e—ﬁﬂ,-—-n:Nr

r

Here the sums are over all possible states of the system A irrespective of its
number of particles or of its energy.

When A is a macroscopie system in contact with a reservoir as illustrated
in Fig. 6-9-1, it is again clear that the relative fluctuations of its energy about
its mean energy K, and of its number of particles about its mean number N,
are very small. Thus the physical properties of A would not be appreciably
affected if it were removed from contact with the reservoir so that both its
energy and number of particles would be rigorously fixed. Thus, for purposes
of caleulating mean values of physical quantities, it makes no noticeable differ-
ence whether a macroscopic system is isolated, or in contact with a reservoir
with which it can only exchange energy, or in contact with a reservoir with
which it can exchange both energy and particles. Hence these mean values
can equally well be ealeulated by considering the system to be distributed with
equal probability ovér all states of given energy and number of particles
(microcanonical distribution), or to be distributed according to the canonical
distribution (6-2-7) over all its states with a given number of particles irrespec-
tive of energy, or to be distributed according to the grand canonical distribution
(6-9-4) over all its states irrespective of energy and number. In some prob-
lems where the constraint of a fixed number of particles is cumbersome, one
can thus readily circumvent the complication by approximating the actual
situation with one where only the mean number of particles is fixed, i.e., by
using the grand eanonical distribution (6-9-4), This is sometimes a useful
procedure in practical caleulations.

System in macroscopic motion Up to now we have always been careful to
satisfy the condition of conservation of total energy for an isolated system.
But what about other constants of motion like the total linear momentum or
total angular momentum? The reason that we have not paid attention to
these quantities is that we have always effectively considered the system A of
interest to be enclosed in a container 4’ of very large mass. This container can
take up arbitrary amounts of momentum from the system 4 with negligible
effect on the velocity of its center of mass. The system 4 can thus have
arbitrary amounts of momentum, and one need not be concerned about satisfy-
ing any momentum conservation conditions for it. What is effectively speci-
fied in the problem is then the velocity g of the container A’, and we have
chosen vy = 0 with respect to the laboratory, The system A itself can then
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have arbitrary momentum; the condition of equilibrium is only that its mean
velocity be the same as the specified velocity v, of the container.

These comments show that the system A’ acts like a momentum reservoir
with a mass M much larger than that of 4. The analogy to the case of energy
reservoirs discussed in See, 6-2 15 apparent. 1t is, indeed, of some interest to
discuss briefly the situation where the combined system A® = 4 + A’ is in
macroscopic motion with respeect to the laboratory. Consider the case where
A can exchange both energy and momentum with the much larger system A’,
If A isin a state r where its total energy is € and its momentum is p,, then the
conservation conditions for the combined system A of fotal energy e and
momentum pg are

& + ¢ = e = constant
p- + p' = po = constant

(6-9-6)

Here ¢’ denotes the total energy and p’ the total momentum of the reservoir 4’

Up to now we have always considered systems whose center of mass is at
rest with respect to the laboratory; then the total energy e of a system consists
only of the internal energy £ of particle motion with respect to the center of
mass. In the present problem the situation is different. The number of
states Q'(E’) accessible to 4’ depends on its internal energy E’ with respect to
its center of mass. Bince the latter moves with velocity p’/M’, the internal
energy of A’ differs from its total energy ¢ by the macroscopic kinetic energy
of center-of-mass motion. Thus

2

i S as e g
Eiz o5 o

(6-9-7)

When A is in state r, it follows by (6-9-6) that the internal energy of A’ is

1
E’=fﬂ‘"€r—ﬂf(m‘?r)i
2
=w—e-En+ Pk B
or E =~ (eu 2”3}) — (& — vo+ pr) (6-9-8)

Bince M’ is very large, we have neglected the term p,2/M'. Also M'is then
nearly the mass of the combined system A go that vy = po/M’ is the velocity
of the center of mass of the total system A (or equivalently, of 4).

The probability P, that 4 is in state r is

P, = Q'(E")
with B’ given by (6-9:8). Expanding In @'(E') in the usual way this becomes
’ P, o g Al—ve 5] (6:9:9)

where 8 = 8 In @'/0F’ is the temperature parameter of the reservoir evaluated
when its internal energy E' = ¢ — po?/2M'.
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Example Consider a molecule 4 in an ideal gas 4’; the center of mass of the
whole gas moving with constant velocify v, Suppose that 4 is in a state
with momentum béetween p and p + dp, or velocity between v and v + du,
where p = mwv and m is the mass of the molecule. Then

& — o Pr = 3mv? — vy mv = Fm(v — vg)? — Imuy®

Since vy is just & constant, it follows by (6-9-9) that the probability of the
molecule's veloeity being in the range between v and v - dwp is simply

P(v) d*v g~ ¥om=u* gay

This is, of course, what one would expest. The molecule has simply & Max-
y wellian veloeity distribution relafive to the frame of reference moving with the
constant veloeity vo.

6 . 10 Alternative derivation of the canonical distribution

The canonical distribution is so important that it is worth deriving it by an
alternative method. Although this derivation is more cumbersome than the
one given in Sec. 6-4, it has some instructive features.

We use the notation introduced in Sec. 6-4 and consider a system A of
constant specified mean energy 5. The representative ensemble is supposed
to consist of a very large number a of such systems, a, of which are in state r. I
Then we know that

Ya=a (6-10-1) .
-
b 1 =
= 1, = 3- 10'2
while az aE, = F (6 )
J The number I'(a:, az, . . .) of distinct possible ways of selecting a total of a

distinet systems in such a way that e, of them are in state r = 1, a2 in state i

r = 2 ete., is given by the same combinatorial reasoning as that used in Sec.
1:2, i.e., by .
5 al :10-3) .
¥ aqilaslagl - - - (6-1 :

Thus InT =1Inal— E In a,! (6-10-4)

Since the representative ensemble is supposed to consist of a very large number
of systems, all the numbers a and a, are very large so that Stirling's approxima-
tion ean be used in its simplest form (A-6-2):

In a,! = a, In a, — a;
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Hence (6:10-4) becomes

InT alna—a—Zm,.]na..-i-zar

or InT=alne — Za. ln a, (6:10-5)

where we have used (6-10-1). We can now ask: For what distribution of
T systems over the possible states will the total number T' of possible ways of
achieving this distribution be a maximum? That is, for what set of numbers
\ ay, @z, as, . . . , subjeet to conditions (6-10:1) and (6-10.2), will I' (or In T")
- be a maximum?
| The eondition that In T has an extremum is that for emall changes* 8a, of
| the various numbers there is no change in I'. Thus we require that

§InT = —E(rﬁa.,-}—]n a, ba,) =0 (6-10-6)

| subject ta the conditions (6-10-1) and (6:10-2), ie.,

| Zaa,=0 (6-10-7)
and
EE,.&&,. =10 (6-10-8)

By virtue of (6-10:7) the condition (6-10-6) becomes
Eln a, 6a, = 0 (6-10-9)
-

In (6-10-9) all the changes 8a, are not independent of each other since they
must satisfy the equations of constraint (6-10-7) and (6-10-8). The situation
is most expeditiously handled by the method of Lagrange multipliers (see
Appendix A-10). Thus one ean multiply (6:10:7) by a parameter « and
(6-10-8) by a parameter § and then add these equations to (6-10-9) to obtain

Y (n @, + « + BE,) da, = 0 (6-10-10)

With a proper choice of « and g, all the da. in (6-10:10) can now be regarded
as independent. Hence we can conclude that each coefficient of fa, must
separately vanish. If we denote by &, the value of @, when I' is maximum, we
. have then

Ind +a+BE =0
or @, = e~@ g% (6-10-11)

Here the parameter « is to be determined by the normalization condition
* The numbers a, are integers, but they are so large that even a change da, of many

integer units is negligibly small compared to a, itself and can be considered infinitesimal.
Thus differential ealeulus methods are applicable,
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(6:10-1); i.e.,

prai= g(Zigmrig

The parameter 8 is to be determined by the condition (6-10-2), i.e., by the
relation

23,_”" = B (6-10-12)
Putiing

L et o
’ P = == 2 — (6-10-13)

we have in (6-10-13) regained the canonical distribution (6-4-2) as correspond-
ing to that distribution of systems in the ensemble which makes the number I’
of possible configurations a maximum.

In terms of the probability P, = a,/a, the expression (6:10:5) for I' can
be written

InT=alna— Eal"’r In (aP,)
=a]na—a2Pr(lna+lnP,)
= alna-a]na(EP,) —aEPrlnP,
or InT'=—-a) P.InP, (6-10-14)

since ZP, = 1. (Note that the right side is properly positive, since 0 < P, < 1,
so that In P, < 0.)

Hence the canonical distribution P, is characterized by the faet that
it makes the quantity — ZP, In P, a maximum subject to a given value

~
ZP.E. = E of the mean energy. Comparison with the expression (6-6-24)
for the entropy in terms of the canonical distribution shows that

mr=%S (6-10-15)

An increase in In T reflects a more random distribution of systems over the
available states, i.e., a loss of specific information about the distribution of
systems over the available states. The maximum possible value of T' gives,
by (6-10-15), the entropy of the final equilibrium state.

The quantity —In T, i.e., the function E P, In P,, can be used as a measure

of nonrandomness, or information, available about systems in the ensemble.
This function plays a key role as a measure of information in problems of
communication and general “information theory.”*

* See, for example, L. Brillouin, “‘Science and Information Theory,” 2d ed., Academic
Press, New York, 1062; or J. R. Pierce, 'Symboals, Signals, and Noise," Harper, New York,
1961. Statistical mechanics is considered from the point of view of information theory by
E. T. Jaynes in Phys. Rev., vol. 106, p. 620 (1957).
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Remark One can easily check that T is indeed & mazimum by expanding
(6-10-5) about the value @. Thus

A InT =alne— 2(a + éa) In (3, + da;) (6-10-186)
u
2
In (& + bax) mlnﬁr+1n(l +% amm+%—%(§§f) o
Then (6-10-16) becomes
1nr=a1na—Ea,lna,—E(1+1na,)_aa,—z%{5;:)’
¥ ’ v
The terms in da, vanish, as they must for an extremum, since
S Ind Sa, = —3(a + SE,) ba, = 0
by (6-10-7) and (6-10-8). Hence one is left with
l|1I‘=(alnca—Ec‘c’,h}.t‘i,)--~%z{6§')2
r P
ot Pzrexp[—%z%] (6-10-17)
i

The argument of the exponential function is a very large positive number
unless practically all the da, vanish, Hence I' exhibits a very sharp maximur.
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PROBLEMS

J 6.1 A simple harmonic one-dimensional oscillator has energy levels given by £, =
(n 4+ %) fiw, where w is the characteristic (angular) frequency of the oscillator and
where the quantum number n can assume the possible integral values n = 0,
1, 2, . . .. Buppose that such an oscillator is in thermal contact with a heat
reservoir at temperature T' low enough so that &7/ (Aw) << 1.
(o) Find the ratio of the probability of the oscillator being in the first
excited state to the probability of ifs being in the ground state.
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6.2

6.3

6.4

6.6

6.7

(b) Assuming that only the ground state and first excited state are apprecia-
bly occupied, find the mean energy of the oseillator as a funcion of the tem-
perature 7',

Consider again the system of Problem 3.2, i.e., N weakly interacting particles,
each of spin § and magnetic moment u, located in an external field 7. Suppose
that this system is in thermal contact with a heat reservoir at the absolute tem-
perature 7. Caleulate its mean energy F as a function of 7 and H. Compare
the result with the answer to Problem 3.2a.

A solid at absolute temperature T is placed in an external magnetic field H =
30,000 gauss. The solid contains weakly interacting paramagnetic atoms of spin
+ so that the energy of each atom is + pfH.

(a) If the magnetic moment p is equal to one Bohr magneton, ie., u =
0.927 X 10~*" ergs/gauss, below what temperature must one cool the solid so
that more than 75 percent of the atoms are polarized with their spins parallel to
the external magnetic field?

(b) Suppose that one considered instead a solid which is free of paramag-
netic atoms but contains many protons (e.g., paraffin). Each proton has spin %
and a magnetic moment g = 1.41 X 10-23 grgs/pauss. Below what temperature
must one cool this solid so that more than 75 percent of the protons have their
spins aligned parallel to the external magnetic field?

A sample of mineral oil is placed in an external magnetie field H. ¥ach proton
has spin 4 and a magnetic moment u; it ean, therefore, have two possible energies
€ = Full, corresponding to the two possible orientations of its spin. An
applied radio-frequency field ean induce transitions between these two energy
levels if its frequency » satisfies the Bohr condition hy = 2uH. The power
absorbed from this radiation field is then proportional to the difference in the
number of nuclei in these two energy levels. Assume that the protons in the
mineral oil are in thermal equilibrium at a temperature 7' which is so high that
pH << ET. How doez the absorbed power depend on the temperature T of
the sample?

Consider an ideal gas at the absolute temperature 7' in a uniform gravitational
field deseribed by acceleration g. By writing the condition of hydrostatic
equilibrium for a slice of the gas loeated between heights z and 2z + dz, derive
an expression for n(z), the number of molecules per cm? at height 2. Compare
this with Eq. (6-3+20), which was derived from statistical mechnics.

A system consists of N weakly interacting particles, each of which ean be in either
of two states with respeciive energies ¢; and €., where e, < €.

(a) Without explicit caleulation, make a qualitative plot of the mean
energy £ of the system as a function of its temperature T, What is & in the
limit of very low and very high temperatures? Roughly near what tem-
perature does E change from its low to its high temperature limiting values?

(b) Using the result of (@), make a qualitative plot of the heat capacity Cy
(at constant volume) as a function of the temperature T.

(¢) Calculate explicitly the mean energy E(T) and hest capacity Cy(T)
of this system. Verify that your expressions exhibit the qualitative features
discussed in (a) and (b).

The nuclei of atoms in a certain crystalline solid have spin one. According to
guantum theory, each nucleus can therefore be in any one of three quantum
states labeled by the quantum number m, where m = 1, 0, or —1. This quan-
tum number measures the projection of the nuclear spin along a crystal axis of

X
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the solid. Since the electric charge distribution in the nueleus is not spherically
symmetrical, but ellipsoidal, the energy of a nucleus depends on its spin orienta-
tion with respect to the internal electric field existing at its location. Thus a
nucleus has the same energy F = ¢ in the state m = 1 and the state m = —1,
compared with an energy B = 0 in the state m = 0.

(a) Find an expression, as a function of absolute temperature T, of the
nuclear contribution to the molar internal energy of the solid.

(b) Find an expression, as a function of T, of the nuclear contribution to
the molar entropy of the solid.

(¢) By directly counting the total number of accessible states, calculate
the nuclear contribution to the molar entropy of the solid at very low tempera-

[ tures. Calculate it also at very high temperatures. Show that the expression
in part (b) reduces properly to these values as T'— 0 and T'— o,

(d) Make a qualitative graph showing the temperature dependence of the
nuclear contribution to the molar heat capacity of the solid. Caleulate its
temperature dependence explicitly. What is its temperature dependence for
large values of T'?

6.8 The following describes a simple two-dimensional model of a situation of actual
physical interest. A solid at absolute temperature 7' contains N negatively
charged impurity ions per em?, these ions replacing some of the ordinary atoms
of the solid. The solid as a whole is, of course, electrically neutral. This is so
because each negative ion with charge —e has in its vicinity one positive ion with
charge +e. The positive ion is small and thus free to move between lattice
sites. In the absence of an external electric field it will, therefore, be found with
equal probability in any one of the four equidistant sites surrounding the station-
ary negative ion (see diagram; the lattice spacing is a).

© o
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If a small electrical field & is applied along the z direction, calculate the
electric polarization, i.e., the mean electric dipole moment per unit volume along
the » direction.

6.9 A wire of radius r, is coincident with the axis of a metal cylinder of radius B
and length L. The wire is maintained at a positive potential V (statvolts)
with respect to the cylinder. The whole system is at some high absolute tem-
perature 7. As a result, electrons emitted from the hot metals form a dilute gas
filling the cylindrical container and in equilibrium with it. The density of these
electrons is so low that their mutual electrostatic interaction can be neglected.

(a) Use Gauss’s theorem to obtain an expression for the electrostatic field
which exists at points at a radial distance r from the wire (r; < r < R). The
cylinder of length L may be assumed very long so that end effects are negligible.
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6.10

6.12

*6.13

(b) In thermal equilibrium, the electrons form a gas of variable density

which fills the entire space between the wire and eylinder. Using the result
of part (a), find the dependence of the electric charge density on the radial
distance r.
A dilute solution of macromolecules (large molecules of biological interest) at
temperature T is placed in an ultracentrifuge rotating with angular velocity w.
The centripetal acceleration w? acting on a particle of mass m may then be
replaced by an equivalent centrifugal force mw? in the rotating frame of
reference.

(a) Find how the relative density p(r) of molecules varies with their radial
distance r from the axis of rotation.

(b) Show quantitatively how the molecular weight of the macromolecules
can be determined if the density ratio pi/ps at the radii r; and r2 is measured by
optical means.

Two atoms of mass m interact with each other by a force derivable from a mutual
potential energy of the form

=05

where » is the separation between the two particles. The particles are in con-
tact with a heat reservoir at a temperature T low enough so that &7 << Uy,
but high enough so that classical statistical mechanics is applicable. Caleulate
the mean zeparation #(T) of the particles and use it to compute the quantity

102
idl

Ll

o

(This illustrates the fundamental procedure for caleulating the coeflicient of
linear expansion of & solid.) Your caleulation should make approximations
based on the fact that the temperature is fairly low; thus retain only the lowest
order terms which yield a value of @ # 0. (Hint: Expand the potential function
about its minimum in & power series in z. To evaluate some of the integrals, use
approximations similar to those used in evaluating the integral (A-6-12).)
Consider a rectangular box with four walls and a bottom (but no top). The total
area of the walls and bottom is A. TFind the dimensions of the box which give a
maximum volume using

(a) the methods of straightforward caleulus;

{(b) Lagrange multipliers (see Appendix A-10).
Suppose that the expression

8= —kY PP,

is accepted as the general definition of the entropy of a system. The following
problems illustrate that the enfropy so defined has indeed some very interesting
properties showing that S is a measure of disorder or randomness in a system.

Imagine that & system A, has probability P, of being found in a state r
and a system A, has probability P,® of being found in a state s. Then one has

,5'1 = —k E P, P, and S, = E le n P‘tz.\

Each state of the composite system A consisting of 4, and 4, can then be labeled
by the pair of numbers 7, s; let the probability of A being found in this state be

i
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*6.15

PROBLEMS
denoted by P,,. Then its entropy is defined by

S= ‘-kEZPrQI-DPu

If A, and 4, are weakly interacting so that they are statistically independ-
ent, then P, = PP, @ Show that under these circumstances the entropy is
simply additive, i.e., S = 8; 4+ S,.

In the preceding problem, assume that 4, and 4, are not weakly interacting so
that P, # P.WP,1®,  One has, of course, the general relations

P =%P, and P®=YP,
8 T
Furthermore, all the probabilities are properly normalized so that
E_p,mz]r ZP‘{'SJ=],, EEPP'El

(a) Show that
P (2
8 — (8 + 89 =k2P..1n(P’PP‘ )

ra

(b) By using theinequality of Appendix A-8, — Inz > —z + 1, show that
8 <8+ 8,

where the equals sign holds only if P,, = P,{0P.@ holds for all r and 5. This
means that the existence of correlations between the systems, due to the inter-
action between them, leads to a situation less random than that where the sys-
tems are completely independent of each other.

Consider a system distributed over its accessible states r in accordance with an
arbitrary probability distribution P, and let its entropy be defined by the relation

8S=—k z P,.In P.. The distribution is properly normalized so that 2 Pio= 1,
Compare t.hls distribution with the canenical distribution

P = e—%f; Z= Er:e_'“'
corresponding to the same mean energy B, i.e.,
ZP,WE, = ZP,E, = E
The entropy for this canonical distribution is given by Sy = —F& E P9 n P03,
(a) Show that :

8§ =8 ==k E [=P,InP, + P, In P,/ — P, In P,\® 4 P, In P,

()
=kZPflnP;,&

(b) Using again the inequality Inz < z — 1 of Appendix A-8, go on to
show that Sy > 8, the equals sign holding only if P, = P, for all states r.
This shows (in agreement with the discussion of See. 6-10) that, for a speci-

fied value of the mean energy, the entropy S is a maximum for the canonical
distribution.




Simple applications of
statistical mechanics

THE pIscussion of the preceding chapter dealt with some detailed microseopic
aspects of the general theory of Chapter 3. As a result of this discussion, we
have acquired some very powerful tools for caleulating the macroscopiec
properties of any system in equilibrium from a knowledge of its microscopic
constituents. The range of applicability of these conceptual tools is very wide
indeed. In the present chapter, we shall illustrate their usefulness by dis-
cussing some rather simple, but very important, physical situations.

GENERAL METHOD OF APPROACH

7 « 1 Partition functions and their properties

The procedure for caleulating macroscopic properties by statistical mechanies
is, in principle, exceedingly simple. If the system under consideration is at a
specified temperature T, i.e., if it is in thermal contact with some heat reservoir
at this temperature, then one need only ealeulate the partition funetion Z of
(6-5-3). Other physical quantities such as B, 5, S, or even dispersions such as
(AE)%, can then be immediately obtained from the relations of Sec. 6-5 by
simply taking suitable derivatives of In Z. Nor is the situation significantly
different if the system is not in contact with a heal reservoir., Even if the
system i3 isolated and has fixed energy, the mean values of the macroseopie
parameters of the system are still related to its temperature T as though it were
in thermal contact with a heat reservoir of this temperature. Thus the cal-
culation is again reduced to the evaluation of the partition function Z.

Thus one arrives at the near-universal preseription for calculating macro-
scopic properties by statistical mechanics: evaluate the partition function™

7 =Y e (7-1-1)

* An alternative preseription would, of course, be to evaluate 2(E) and then to use rela-
tions such as (3-12-1) to find other quantities. But, for reasons already discussed, a
direct caleulation of Q(E) is in general more difficult than a caleulation of Z.

287
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This is an unrestricted sum over all states of the system. If one knows the
particles which consfitute the system and the interactions between them, it
is possible to find the quantum states of this system and to evaluate the sum
(7-1:1). The statistical mechanical problem is then solved. In principle
there is no difficulty in formulating the problem, no matter how complex the
system may be. The difficulties are reduced to the mathematical ones of
carrying out these prescriptions. Thus it is an easy task to find the quantum
states and the partition function for an ideal gas of noninteracting atoms; but
it is a formidable task to do the same for a liguid where all the molecules interact
strongly with each other.

If the system can be treated in the classical approximation, then its energy
Elgy, . .. ,4q,p1, . ..,Pys depends on some f generalized coordinates and f
momenta, If phase space is subdivided into eells of volume hy/, the partition
function in Eq, (7-1-1) can be evaluated by first summing over the number *
(dqy*+*dgy dpy+ - » dpy)/he of cells of phase space which lie in the element of
volume (dq: * - * dgy dp: * * * dpy) at the point {g1, . . . , @5 Py, . . . , P} and
which have nearly the same energy E(gy, . . . , ¢5 Py, . . . ,Pr); and then
summing (or integrating) over all such elements of volume, Thus one obtains
in the classical approximation

7z =f Sl fg»—uta. ..... o B1 - dpy (7-1-2)

It is worth keeping in mind the following remarks concerning the partition
function Z. The first remark pertains to the energy scale used in evaluating Z.
The energy of a gystem is only defined to within an arbitrary additive constant.
If one changes by a constant amount ¢ the standard state with respect fo
which the energy is measured, the energy of each state r becomes E.* = E, + ¢
Correspondingly, the partition function becomes

7% = Y e tEtw = 0 Y e E = gHuf (7-1-3)
[ T
or hZ*=InZ — Bea

Thus the partition function is also changed. By (6:5-4) the new mean energy
is then given by

ge_ 02z alZ
9B ap

i.e., it is properly shifted by the amount ¢, On the other hand, the entropy is
properly unchanged, since by (6-6-5)

S* = k(ln Z* + BE*) = k(ln Z 4 BE) = S

Similarly, all expressions for generalized forces (i.e., all equations of state) are
unchanged, since they involve only derivatives of In Z with respect to an external
parameter,

The second remark concerns the decomposition of the partition function
for a system A when the latter consists of two parts A* and A" which interact

o = Bt
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only weakly with each other. If the states of A’ and A" are labeled respec-
tively by » and s, then a state of 4 can be specified by the pair of numbers
& and its corresponding energy F,, is simply additive, i.e.,

ey = Bt B (7-1-4)

Here A’ and A" may refer to two different distinguishable groups of particles
which interact weakly with each other (e.g., He and Ne molecules in an ideal-gas
mixture of these two gases). Alternatively, they may refer to two different
sets of degrees of freedom of the same group of particles (e.g., in a diatomie gas,
they may refer to (1) the degrees of freedom describing the translational motion
of the centers of mass of the molecules and (2) the degrees of freedom deseribing
the rotation of these molecules about their respective centers of mass).

The important point is only the additivity of the energies in (7-1-4); for
then the partition function Z for the total gystem A is a sum over all states
labeled by rs, i.e.,

Z = N e fEAE) = N o-AES g—BE) — —8E,! 88,
2 rE. e E e e Qr: e ) (2; e

Thus Z=2Z'2Z" (7-1-3)
and InZ=mZ +InZ" (7-1-86)

where Z’ and Z” are the partition functions of A’ and A", respectively. Thus
we have shown that if a system consists of distinet noninteracting parts, the
partition function factors into a simple product.* This is a useful result and
one which clearly is equally valid when one is dealing with more than two
weakly interacting parts.

IDEAL MONATOMIC GAS

7 <2 Calculation of thermodynamiec quantities

Consider a gas consisting of N identical monatomic molecules of mass m
enclosed in a containerof volume V. Denote the position vector of the 7th mole-
cule by ry, its momentum by py, Then the total energy of the gas is given by

N
PR 9.
.r«:_zlszrUm. Fsy, - - -, TN) (7-2:1)

Here the first term on the right represents the total kinetic energy of all the
molecules. The term U represents the potential energy of interaction between
the molecules. If the gas is sufficiently dilute that the interaction between
molecules is negligible, I/ — 0 and we obtain the simple case of an ideal gas.

* We already established this result in (6:6:13) where we showed that it implies the
additivity of all extensive thermodynamie functions.
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In writing (7-2-1), we assume the constraining condition that all the position
vectors r; lie inside the volume of the container.

Let us treat the problem classically; the validity of this approximation will
be examined in Sec. 7-4. Then we can immediately use (71-2) to write the
classical partition function (denote it by Z')

1
7t = fexp [—ﬁ[-z;‘(pl"-% = = = paf) b Uy, oo ,rn)]}
dsrl yoras der d:_pl 08 0 anN
hOSN
or
1
£ e er—wzmm.! dipy - - - fg—wzm;pul d'py

fg—ﬂU(rr....,ru} diry - - - dry (7-2-2)

where the second expression follows from the first by using the multiplicative
property of the exponential function. Since the kinetic energy is a sum of
terms, one for each molecule, the corresponding part of the partition funection
breaks up info a product of N integrals, each identical except for the irrelevant
variable of integration, and equal to

f R e

Since U is not in the form of a simple sum of terms for individual molecules, -
the integral over the coordinates ry, . . . , ry is very difficult to carry ouf.
This is why the treatment of nonideal gases is complicated. But if the gas is
sufficiently dilute to be ideal, then U/ = 0 and the integral becomes trivial; i.e.,

[diry « » + dry = [drfdPry - - - [diry = V¥

since each integration extends over the volume of the container. Then Z'
factors into a simple product

7t =¥ (7-2-3)
or InZ'=NIn¢ (7:2:4)
where = hzf _: e—(B/2mp* dip (7-2-5)

is the partition function for a single molecule,

Remark It would be possible to formulate this problem in a slightly dif-
ferent way by not imposing the condition that the position coordinate r of
each molecule lie within the container, TIn that case, to write down an expres-
sion for the total energy valid everywhere, one would have to add to (7:2:1)
8 term

U= E u(rs)



CALCULATION OF THERMODYNAMIC QUANTITIES 241

where u(r;) represents the patential energy of & molecule due to ﬁlec,ontg.}n_gr’ .
ie.

| u@y = |0 if rlies inside the container

- C) if r lies outside the container

In this case the partition function (7+2-2) would contain a factor 687 which
would equal unity whenever all molecules are within the container and would
equal zero whenever any one molecule is outside the container. Thus the inte-
gration over all coordinates without restriction would again madmbely
reduce to the form (7-2:2) of integration over the yolume of the con-
tainer only.

The integral in (7:2-5) is readily evaluated.
f ® e—(@/2mpt Jip = [ f f e~ @lam @t n 40 dp. dp, dp,

f * e-Gimnt dp, f e~ 6Imn dp f © eGrms gy,

(\/’%) by (A-4-2)
V(h zﬁ) | 7-2-6)

N[an——lnB+~l (2’”“)] (7-2-7)

From this partition function one can immediately caleulate a host of other
physical quantities. By (6-5-12) the mean gas pressure p is given by

Henee e

and In Z'

_lalnz 1N
SEEEY e Y
Thus
B BV = NkT (7-2-8)

and one regains the equation of state already derived in (3-12:8) under more
general conditions (gas not necessarily monatomic).
By (6:5:4), the total mean energy of the gas is
~ d e i e
E-«—é—Ean 38 = N& (7-2-9)

where
E @ = kT (7-2-10)
is the mean energy per molecule. The heat capacity at constant volume of the
gas is then given by
oF 3 3
= —_— = - = - . 2 2 11
Cy (GT)V 2 Nk 5 v N oo (7 )
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where » is the number of moles and N, is Avogadro’s number. Hence the
molar specific heat at conztant volume of a monatomic gas is

ov = $R (7-2-12)

where B = N,k is the gas constanl. These results agree with those already
obtained in (5-2-10) and (5-2-12).

Remark on fluctuations The fluctuation in the total energy of the gas in
contact with a heaf reservoir at temperature T can also be readily ea!eulstad
By (6:5+8) the dispersion in energy is given by

e 38
@Ep = — 35

Here the volume V is, of course, kept constant in taking the derivative.
Putting B = (#7)~!, this becomes

@By = (_:r' 38 = ”’(
or
S @B = kT*Cy (7-2-13)

‘Thus the fluctuation in energy of any system is quite generally related to its
heat capaeity at constant volume. In the particular case of a monatomic
 ideal gas consisting of ;' moleoules one obtains, by (7-2-11),

@EY: = 4Nk (7-2-14)

The root-mean-square fluctuation in energy A*E = [(AE)?"} ean be compared
to the mean energy ¥ of the gas. Thus

B HNET \ET
This is very small when N is of the order of Avogadro’s number.

(1-2-15)

The entropy of the gas can be caleulated by (6-6-5). Using (7:2:7)
and (7-2-9) one obtains

S = k(in 2' + gE) = Nk [1nv—gmﬁ+gln(2ﬂ’i‘)+%]

ho®
or S=Nk[lnV+&In 7T + o] (7:2-16)
L 2rmk 3
where =§1 (ha’)+§

is a constant independent of T, V, or N. This expression for the entropy is,
however, not correct.
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7 . 3 Gibbs paradox

The challenging statement at the end of the last section suggests that the
expression (7-2-16) for the entropy merits some discussion. First, note that
our caleulation was earried-out within the framework of classical mechanies
which certainly is not valid at very low temperafures where the system is in
the (relatively few) states of very low energy close to the quantum-mechanical
ground state and where a quantum description is certainly needed. Hence the
circumstance that Eq. (7-2:16) yields S — — = as T — 0 (in apparent con-
tradiction to the third law of thermodynamics) 18 no cause for alarm. In
accordance with its elassical derivation, (7-2-16) is not expected to be valid at
such low temperatures.

Nevertheless, the expression (7-2-16) for S is clearly wrong sinee it 1mph%
that the entropy does not behave properly as an extensive quantity, Quite
generally, one must require that all thermodynamic relations remain valid if
the size of the whole system under consideration is simply increased by a seale
factor o, i.e., if all its extensive parameters are multiplied by the same factor .
In our case, if the independent extensive parametfers V' and N are multiplied
by a, the mean energy ¥ in (7:2-9) is indeed properly increased by this same
factor, but the entropy S in (7-2-16) is not increased by a because of the term
NinV.

Indeed, (7-2-16) asserts that the entropy S of a fixed volume V of gas is
simply proportional to the number N of molecules, But this dependence on N
is not correct, as can readily be seen in the following way. Imagine that a
partition is introduced which divides the container into two parts. This is a
reversible process which does not affect the distribution of systems over acces-
sible states, Thus the total entropy ought to be the same with, or without, the

partition in place; i.e.,
S=8+8" (7:3-1)

where S’ and S” are the entropies of the two parts. But the expression
(7:2:16) does not yield the simple additivity required by (7-3-1). This
is easily verified. Suppose, for example, that the partition divides the gas
into two equal parts, each containing N’ molecules of gas in a volume V.
Then the entropy of each part 1s given by (7-2:16) as

& =8"=NknV'+£InT + ]

while the entropy of the whole gas without partition is by (7-2-16)

Fig. 7°3'1 A container of gas divided
into two equal parts by « partition.
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8 =2NK[ln (2V") + 4 In T + o]
Hence S—28 =2N'kIn 2V) —2NkIn V' = 2N’k In 2 (7-3-2)

and 18 not equal to zero as required by (7-3-1).

This paradox was first discussed by Gibbs and is commonly referred to
as the “Gibbe paradox.” Something is obviously wrong in our discussion; the
question iz what. Did we not prove quite generally in (6.6:15) that the
entropies of two weakly interacting systems are additive? How then can we
fail to satisfy the condition (7-3-1)7 The answer is quite, simple. Our
general argument in Sec. 6:6 was based on the prémlse that the external
parameters of each subsystem remain the same. If we brought the two gases
in our example together and left them separated by a partition, then the vol-
ume V' of each subsystem would remain the same and their entropies would
satisfy the additivity (7-3:1). But we did more than that—we also removed
the partition, In that case Eq. (6-6:11) is no longer valid because the energies
E,' and E,” are both caleulated with the volume ¥’ as the external parameter,
while for the combined system (with partition removed) the possible states of
energy I,, are to be caleulated with total volume 2V as the external parameter.

The act of removing the partition has thus very definite physical conse-
quences. Whereas before removal of the partition a molecule of each sub-
system could only be found within a volume V”, after the partition is removed
it can be located anywhere within the volume ¥V = 2V'. If the two sub-
systems consisted of different gases, the act of removing the partition would
lead to diffusion of the molecules throughout the whole volume 2V and conse-
quent random mixing of the different molecules. This is clearly an irreversible
process; simply replacing the partition would not unmix the gases. In this
case the increage of entropy in (7-3-2) would make sense as being simply a
measure of the irreversible increase of disorder resulting from the mixing of
unlike gases.

But if the gases in the subsystems are identical, such an increase of entropy
does not make physical sense. The root of the difficulty embodied in the
Gibbs paradox is that we treated the gas molecules as individually distinguisha-
ble, as though interchanging the positions of two like molecules would lead to a
physically distinct state of the gas. This is not so. Indeed, if we treated the
gas by quantum mechanics (as we shall do in Chapter 9), the molecules would,
as a matter of principle, have to be regarded as completely indistinguishable.
A caleulation of the partition function would then automatically yield the
correct result, and the Gibbs paradox would never arise. Our mistake has
been to take the classical point of view too seriously, Even though one may
be in a temperature and density range where the motion of molecules can be
treated to a very good approximation by classical mechanics, one cannot go so
far as to disregard the essential indistinguishability of the molecules; one can-
not observe and label individual atomic particles as though they were macro-
scopie billiard balls. If one does want to use the classical approximation, then
the indistinguishability of the molecules must be taken into account explicitly
in caleulating the partition funetion (7:2-2). This can be done by noting
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that the N'! possible permutations of the molecules among themselves do not
lead to physically distinct situations, so that the number of distinet states over
which one sums in (7 -2-2) is too large by a factor of N!. The correct partition
function Z, which does take into account the essential indigtinguishability of
the molecules and does not lead to the Gibbs paradox difficulties, is then given
by dividing (7-2-3) by this factor, i.e.,

4 N

!

N
o~

Z=

(7-3-3)

71

=
2

Nate that in a stricily classical deseription it would be permissible to consider
every particle as distinguishable. If one agrees to consider identical mole-
cules as essentially indistinguishable so as to avoid the Gibbs paradox, then
the following question arises: Just how different must moleculez be before
they should be considered distinguishable (i.e., before their mutual mixing
leads to a finite, instead of no, increase of entropy)? In a elassical view of
nature two molecules could, of eourse, differ by infinitesimal amounts (e.g.,
the nuelei of two atoms could have infinitesimally different masses). In a
quantum deseription this troublesome question does not arise because of the
quantized digereteness of nature (e.g., the nuclei of two isotopes differ by at
least one nucleon mass). Henee the distinetion between identical and non-
identical molecules is completely unambiguous in & quantum-mechanical
deseription. The Gibbs paradox thus foreshadowed already in the last
eentury conceptual difficulties that were resolved satisfactorily only by the
advent of quantum mechanics.

By (7:3:3) one then gets

InZ=Nln{—InN!
or mMZ=NIn{t—NIhN+N (7-3-4)

where we have used Stirling’s formula. Equation (7-3-4) differs from the cor-
responding expression (7-2:4) only by the additive term (—NIn N + N).
Since the pressure 7 and energy F depend only on derivatives of In Z with
respect to 7 or 3, the previous results (7-2-8) and (7-2-9) for these quantities
are unaffected. But the expression for S, which does involve In Z itself rather
than only its derivatives, is changed by this additive term. Thus (7-3:4)
yields, instead of (7-2-16), the result

S=kNlnV+EnhT+d+k—-NhN+N).

or
> S=kN[ln%+glnT+ao] (7-3:5)
where gn=a+ 1= gln(z;::?:k)-]—g (7-3:6)

It is apparent that the extra term involving In N avoids the difficulties of
the Gibbs paradox. The entropy S8 in (7:3:5) behaves properly like an
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extensive quantity;i.e., it does get multiplied by a factor « if both 17 and & are
multiplied by a.

Sinee hy is an arbitrary constant in the present classical calculation, oy is
some arbitrary additive constant in the entropy. Note that (7-3-5) agrees
exactly with the entropy expression derived by macroscopic reasoning in
(5-4-4). It is only necessary to put N = »N,, where v is the number of moles
of gas, and to use the relation (7-2-12), according to which ¢y = N,k for a
monatomie ideal gas,

.
7 -4 Validity of the classical approximation

We saw that the essential indistinguishability of identical molecules cannot be
disregarded even if the motion of the molecules can be treated by classical
mechanies. But to what extent is the latter procedure itself valid? That is,
to what extent is it permissible fo evaluate the partition funetion (7-2-2) in
terms of coordinates r; and momenta p; which can be simultaneously specified ?

An approximate criterion for the validity for this classical deseription can
be obtained by appealing to the Heisenberg uncertainty principle

AgAp = A (7-4-1)

This relates the uncertainties Ag and Ap introduced by quantum effects in any
attempt at simultaneous specification of a position g and corresponding
momentum p of a particle. Suppose that one tries to describe the motion of
the gas molecules by classical mechanies. Denote the magnitude of the mean
momentum of a molecule by* p and the mean separation between molecules by

K. Then one would certainly expect a classical description to be applicable if
Rp>h (7-4-2)

when (7-4-1) implies that quantum mechanical effects are not important.
Equivalently (7-4-2) expresses the condition that

| 2 R>% (7-4-8)

i.e., that the mean separation between particles is much greater than their
mean de Broglie wavelength

(T-4-4)

When (7-4-3) is satisfied so that B >> X, the quantum description ought to be
equivalent to the motion of wave packets describing individual particles which
move independently in a quasi-classical manner. In the opposite limit, where
R < 7, a state of the whole gas will be shown in Chapter 9 to be described by a
single wave function which cannot be decomposed in any simple way; it thus

* The symbol # should not be confused with the mean pressure of the gas. We shall
denote the latter quantity by capital P later in this section.



VALIDITY OF THE CLASSICAL APPROXIMATION 247

results in correlations between the motions of the particles even if no forces
exist between them.

The mean intermolecular separation B can be estimated by imagining
each molecule at the center of a little cube of side B, these cubes filling the
available volume V. Then

BN =7V

o B (%)' (7-4-5)

The mean momentum $ can be estimated from the known mean energy & of a
molecule in the gas at temperature T. By (7-2-10)

1 i
— e
5 B H 2 kT
Thus 7 =~ A/ 3mkT
= h
d A= —— 7-4:6
52 = V/3mkT G:a:5)
Hence the condition (7-4:3) becomes
At h
L 2t e 7.4
(N) > Wi (7-4-7)

This shows that the classical approximation ought to be applicable if the con-
centration N/ of molecules in the gas is sufficiently small, if the temperature
T is sufficiently high, and if the mass of the molecules is not too small.

Numerical estimates Consider, for example, helium (He) gas at room
temperature and pressure. Then one has

mean pressure P = 760 mm Hg ~ 10° dynes/cm?
temperature T = 300°K; hence kT = 4 X 10~ ergs
4

molecular mass m = 55 108

=T X 10-%* grams

The equation of state gives

1 e 2.5 X 10*° molecules/em?

P
Vo BT
Thus R~ 34 X 10~% em by (7:4-3)

and A=0.6 % 10-% cm by (7-4-6)

Here the criterion (7-4-3) is quite well satisfied, and the classical evaluation of
the partition function ought to be a very good approximation if the indis-
tinguishability of the particles is taken into account. Most gases have larger
molecular weights and thus smaller de Broglie wavelengths; the criterion
(7-4-3) is then even better satisfied.

On the other hand, consider the conduction electrons in a typical metal,
In a first approximation, interactions between these electrons can be neglected




248 SECTION 7 ‘5

so that they can be treated as an ideal gas. But the numerical values of the
significant parameters are then quite different. First, the mass of the electron
is very small, about 10~*" g or 7000 times less than that of the He atom. This
makes the de Broglie wavelength of the eleetron much longer,

A = (0.6 X 10-%) /7000 =~ 50 X 10—* ¢cm

In addition, there is about one conduction electron per atom in the metal.
Since there is roughly one atom in a cube 2 X 10~% em on a side,

R ~2xX10-*cm
This is much smaller than for the He gas case; i.e., the electrons in a metal form
a very dense gas, Hence the criterion (7:4:3) is certainly not satisfied.
Thus there exists no justification for discussing electrons in a metal by classical
statistical mechanics; indeed, a completely quantum-mechanical treatment is
essential,

THE EQUIPARTITION THEOREM

7 3 5 Proof of the theorem

In classical statistical mechanies there exists a very useful general result which
we shall now establish. As usual, the energy of a system is a function of some f
generalized coordinates ¢: and corresponding f generalized momenta p;; i.e.,

E=E(q, ... 905 .05 (7:5-1)
The following is a situation of frequent occurrence:
a. The total energy splits additively into the form

E=«p) +E'(q, . ..,p) (7-5-2)

where & involves only the one variable p; and the remaining part E’ does not
depend on p;.
b. The funetion ¢ is quadratic in p;; i.e., it is of the form

«(pi) = bpd (7-5:3)
where b is some constanf.

The most common sifuation is one where p; is & momentum. The reason
is that the kinetic energy is usually a quadratic function of each momentum
component, while the potential energy does not involve the momenta.

If in assumptions (a) and (b) the variable were not a momentum p; but a
coordinate g; satisfying the same two conditions, the theorem we want to estab-
lish would be exactly the same.

We ask the question: What is the mean value of ¢ in thermal equilibrium
if conditions (@) and (b) are satisfied?

If the system is in equilibrium at the absolute terperature T = (kB)~!, it
is distributed in accordance with the canonical distribution; the mean value
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& is then, by definition, expressible in terms of integrals over all phase space

f" efEG.....0)e dgy - - - dpy
&= (7-5-4)
f_.. BB ) dgy - - - dpy
By condition (a) this becomes
o J‘e—#(-ﬂ—s'}ﬂ dﬂl. s ey d‘m
i JePeFtEY dpy - - dp,
_efhedp [ e dgy - - - dpy

- JePudp: [ e dgy - - - dpy

where we have used the mulliplicative property of the exponential function
and where the last integrals in both numerator and denominator extend over
all terms ¢ and p except p.. These integrals are equal and thus cancel; hence
only the one-dimensional integrals survive:

feve, dp;
& f__I;fd; (7-5-5)

This can be simplified further by reducing the integral in the numerator to that
in the denominator. Thus

2Py a_aﬁ(fe—ﬂ!i dp‘)

iR

or A % in ([, edp:) (7:56)

Up to now we have made use only of the assumption (7-5-2). Let us now
use the second assumption (7-5-3). Then the integral in (7-5-6) becomes

f:: b4 dp; = ‘f:n_ e P dp, = f_: ev* dy
where we have introduced the variable y = gip.. Thus
In j_: efidp, = —4Ing + In f:” et dy

But here the integral on the right does nof involve g at all. Hence (7:5-6)
becomes simply

ar
fie= & = kT (7:5-7)

Note the great generality of this result and that we obtained it without need-
ing to evaluate a single integral,

Equation (7-5:7) is the so-called *‘equipartition theorem” of classical
statistical mechanics. In words it states that the mean value of each inde-
pendent guadratic term in the energy is equal to k7.
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Fig. 7:5:1 Schematic diagram of the energy
levels of a system.

It should be emphasized that the equipartition theorem is valid only in
classical statistical mechanics. In the correct quantum-mechanical deserip-
tion a system has a set of possible energy levels, as indicated in Fig. 7-5-1,
where E, is the ground-state energy and where at higher energies the levels are,
in general, increasingly closely spaced. When the absolute temperature is
sufficiently high (and thus the mean energy of the system is sufficiently high)
the spacing AE between levels around the mean energy E is small compared to
the thermal energy k7T; i.e., AE < kT. In this case the fact that there are
discrete energy levels is not particularly important, and the classical deserip-
tion (and equipartition theorem where applicable) can be expected to be a good
approximation, On the other hand, when the temperature is sufficiently low
so that kT < AE, the classical description must certainly break down.

7 . 6 Sim.-ple applications

Mean kinetic energy of a molecule in a gas Consider a molecule in a gas
(not necessarily an ideal gas) at temperature 7. If this molecule has mass m
and a center-of-mass momentum p = mv, its kinetic energy of translation is

1
K =5 (p* + 2 + ) (7-6-1)

The kinetic energy of the other molecules does not involve the momentum p
of this particular molecule. The potential energy of interaction between
molecules depends only on their position coordinates and thus certainly does
not involve p. Finally, if the molecule is polyatomie, the internal energy of
vibration or rotation of its atoms relative to its center of mass also does not
involve p. Hence the essential conditions of the equipartition theorem are
satisfied. Since (7:6:1) contains three quadratic terms, the equipartition
theorem allows one to conclude immediately that

K = $1T (7-6-2)

if the motion of the center of mass can be treated classically.

.".
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For an ideal monatomic gas the entire energy is kinetie, so that the mean
energy per mole of gas is simply

E = N.(3kT) = $RT

: The molar specific heat at constant volume is then
ok 3
=|—) ==F 7-6-3
w=(2) -1 (7-6-)

Brownian motion Consider a macroscopic particle of mass m immersed in a
liquid at temperature T. Let the z axis point in the direction of the gravita-
tional field (if one is present) and focus attention on v,, the x component of the
center-of-mass velocity of the particle. The mean value of v. must vanish by
symmetry; i.e.,

. =0

But it is, of course, not true that v, itself is always found to vanish if one
observes a collection of such particles; velocity fluctuations do occur. Indeed,
the equipartition theorem can be applied to the center-of-mass energy terms
just as in the preceding example; thus one can conclude that

kT

T

IR 7.2

dmu,t=4kT or 1.

The dispersion #,* in this velocity component is thus negligibly small when
m is large. For example, when the particle is the size of a golf ball, fluctuations
in its velocity are essentially unobservable and the particle appears to be at
rest. But when m is small (e.g., when the particle has a diameter of about a
micron), »,2 becomes appreciable and velocity fluctuations can readily be
observed under a microscope. The fact that small particles of this kind
perpetually move about in a random manner was first observed by Brown, a
botanist, in the last century, The phenomenon is, therefore, called ‘‘Brownian
motion.” It was explained theoretically by Einstein in 1905 on the basis of
: the intrinsic thermal fluctuations resulting from the interaction of the small
particle with the heat bath, i.e., from the random collisions of the particle with
| the molecules of the liquid. The phenomenon was historically important in
helping to gain acceptance for the atomic theory of all matter and for the
validity of the statistical description thereof.

I

Harmonic oscillator Consider a one-dimensional harmonie oscillator which
is in equilibrium with a heat reservoir at absolute temperature T. The energy
of such an oscillator is given by
o S (7-6+4)
2m = 2
where the first term on the right is the kinetic energy involving the momentum
p and mass m, and the second term on the right is the potential energy involv-
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ing the position coordinate = and spring constant k. Each of these terms is
quadratic in the respective variable. Hence the equipartition theorem leads
immediately to the following conclusions, valid in the classical approximation:

i—==%kg=

2m

mean kinetic energy

mean potential energy = dxex? = kT
Hence the mean total energy is
B = kT + kT = kT (7-6-5)

It is instructive to treat this example by quantum mechanicg as an illustra-
tion of the limits of validity of the classical deseription. Aceording to quantum
mechanics the possible energy levels of the harmonic oscillator are given by

Bx = (n + Pha (7-6-6)

where the possible states of the oscillator are labeled by the quantum number
n which can assume all integral values

fo== 012,080 L L
Here # is Planck’s constant (divided by 2x) and

o=y o L 6
w =4l (7-6-7)
is the classical angular frequency of oscillation of the oscillator. The mean

energy of the oscillator is then given by

e BEH 7z
7 _ n=0 Vi vl B oty Bl 6.
E="—""= 798 " aﬁan (7-6-8)
g—BEn
n=()
where Z = E ¢ PEn = E g—(n+hhu (7:6-9)
n=0 n=0 P
or 7 = g~1phw 2 g hhe = giNa(] - g Phu | B8R | .o )

n=0

This sum is just an infinite geometrie series where each term is obtained from
the preceding one as a result of multiplication by ¢~#¢. The sum can thus
immediately be evaluated to give

1——15'—7% (7-6-10)

or : InZ = —3phw — In (1 — M) (7-6-11)
Thus one obtains, by (7-6-8),

= d 1 %)
E = —'aﬁh]z = — (—-Eﬁm —'T:?EQE)

Z = gHn
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or
~ 1 1
B E=ﬁw(§+e—m—_—i) (7-6-12)
Let us now investigate some limiting cases. When
fow
ﬁhw=ﬁ<<1 (7-6-13)

the temperature is so high that the thermal energy &7 is large compared to the
separation fiw between energy levels. Then one expects the classical deserip-
tion to be a good approximation. Indeed, if (7-6-13) is valid, the exponential
function ean be expanded in Taylor’s series so that (7-6-12) becomes

: i i pg s s
EZ"‘“[§+(1+afm+ s -}-1]'“’*‘“[‘2*"',%]

1 - A
=~ he [BT«..:] by virtue of (7-6-13)
1

or E=’§-——-kT (7-6-14)

in agreement with the classical result (7-6-5).
On the other hand, at low temperatures where

ﬁﬁ,w=2—f;,>>1 (7-6-15)
one has e 3 1, so that (7-6-12) becomes
E = hu( + ePt) (7-6-16)

This is quite different from the equipartition result (7-6-5) and approaches
properly the (‘‘zero point’”) energy +hw of the ground state as T'— 0.

7 -7 Specific heats of solids

Consider any simple solid with Avogadro’s number N, of atoms per mole.
Examples might be copper, gold, aluminum, or diamond. These atoms are free
to vibrate about their equilibirum positions. (Such vibrations are called
“lattice vibrations.””) BEach atom is specified by three position coordinates
and three momentum coordinates. Since the vibrations are supposed to be
small, the potential energy of interaction between atoms can be expanded about
their equilibrium positions and is therefore quadratic in the atomic displace-
ments from their equilibrium positions. The net result is that the total energy
of lattice vibrations can be written (when expressed in terms of appropriate
“normal mode coordinates”) in the simple form
8.

S () B 1.
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Here the first term is the total kinetie energy involving the 3N, (normal-mode)
momenta of the atoms, while the second term is the total potential energy
involving their 3N, (normal-mode) coordinates. The coefficients x are positive
constants. Thus the total energy is the same as that of 3N, independent one-
dimensional harmonie oscillators. If the temperature T is high enough so that
classical mechanies is applicable (and room temperature is usually sufficiently
high for that), application of the equipartition theorem allows one to conclude
immediately that the total mean energy per mole is

E = 3N[(#kT) X 2]
or E = 3N.kT = 3RT (7:7-2)

Thus the molar specific heat at constant volume becomes

> cv=(%)v=3.ﬂ (7-7-3)

This result asserts that at sufficiently high temperatures all simple solids have
the same molar specific heat equal to 3R (25 joules mole—*deg—!). Historically,
the validity of this result was first discovered empirically and is known as the
law of Dulong and Petit. Table 7-7-1 lists directly measured values of the
molar specific heat ¢, at constant pressure for some solids at room temperature,
The molar specific heat ey at constant volume is somewhat less (by about 5
percent, as calculated in the numerical example of Sec. 5-7).

Table 771 Falues® of ¢y (joules mole™ deg™!) for some solids at T' = 298°K

Solid Cp Solid p
Copper 24.5 Aluminum 24.4
Silyer 25.5 Tin (white) 26.4
Lead 26.4 Sulfur (rhombic) 22.4
Zine 25.4 Carbon (diamond) 6.1

* “American Institute of Physies Handbook,” 2d ed,, MeGraw-Hill Book Company,
New York, 1963, p. 4-48.

Of course, the preceding arguments are not valid for solids at appreciably
lower temperatures. Indeed,the third law leads to the general result (5-7-19),
which requires that ¢y must approach zero as T— 0. One can obtain an
approximate idea of the behavior of ¢y at all temperatures by making the crude
agsumption (first-introduced by Einstein) that all atoms in the solid vibrate
with the same angular frequency . Then x = mw® for all terms 2 in (7-7-1),
and the mole of solid is equivalent to an assembly of 3N, independent one-
dimensional harmonic oscillators. These can be treated by quantum mechan-
ics so that their total mean energy is just 3N, times that of the single oscillator
discussed in (7:6-12); i.e.,

1

1
B =3N.m(2+m) @-7-4)
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Hence the molar specific heat of the solid on the basis of this simple Einstein
model is given by
_(oB\ _(9E\ o8 _ _ 1 (3E
o= (1), = (), o7 = ~ s ().
3N o o 17
— TRTY ["' '(B.CT'__—I)E]

33(%5)”_@"‘12_ (7.7-5)

or oy (EB’” = 1)2

where R = N,k and where we have written

ho _ Os
T T

Bho =

by introducing the characteristic “Einstein temperature
he
k

If the temperature is so high that kT > Awor T' 3> g, then 6z/T « 1 and
expansion of the exponentials in (7.7:5) vields again the classical result
for T' > Oy, cy — 3R (7-7-7)

On the other hand, if the temperature is so low that k7' < fhiw or T < 65
then ©5/7 >> 1 and the exponential factor becomes very large compared to
unity. The specific heat then becomes quite small; more precisely,

(7:7:6)

eg =

for T & O5, ey — 3R (8EY ¢-owr 7.7-8)
T

Thus the specific heat should approach zero exponentially as T'— 0.

Experimentally the specific heal approaches zero more glowly than this, indeed

ey = T3ag T'— 0. The reason for this discrepancy is the crude assumption

that all atoms vibrate with the same charaeteristic frequency. In reality this

is, of course, not the case (even if all the atoms are identical). The reason is

that each atom does not vibrate separately as though it were experiencing &

foree due to stationary neighboring atoms; instead, there exist many different

modes of motion in which various groups of atoms oscillate in phase at the same

, frequency. It is thus necessary to know the many different pessible frequen-

cies of these modes of oscillation (i.e., the values of all the coefficients » in

(7:7:1)). This problem will be considered in greater detail in Sees. 101 and

10-2. But it is qualitatively clear that, although T may be quite small, there

are always some modes of oscillation (those cbrresponding to sufficiently large

i groups of atoms moving together) with a frequency w 8o low that fiw < k7.

These modes still contribute appreciably to the specific heat and thus prevent
ey from deereasing quite as rapidly as indicated by (7:7:8).

Nevertheless, the very simple Einstein approximation does give a reason-

ably good description of the specific heats of solids. It also makes clear the

existence of a characteristic parameter @z which depends on the properties of
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Fig. 7°7:1 Temperature depend of ey ding to the Einstein model.
The points are experimental values of ¢y for diamond, the fit to the curve
being achieved by choosing 0 = 1320°K (after A. Einstein, Ann. Physik, vol,

the solid under consideration, For example, if a solid has atoms of low

_molecular weight and is hard (i.e., relatively incompressible), this implies that
each oscillator has a small mass m and a large spring constant, «o (i.e., the
spring is stiff). Then (7-6-7) shows that the angular frequency of vibration
w of the atoms is large, or that O defined in (7-7:6) is large. Thus one must
go to higher temperatures before the classical limit ¢y = 3R is reached. This
explains why a solid such as diamond, which consists of relatively light ecarbon
atoms and is quite hard, has at room temperature a specific heat ¢y which is
still considerably smaller than the classical value 3R (see Table 7-7-1). Thus
for diamond a reasonably good fit with experiment can be obtained by choos-
ing 05 = 1320°K (see Iig. 7:7-1). For most other solids Og lies closer to
6 = 300°K. This corresponds to a frequency of vibration e/2r = kOQg/(2rh)
of about 6 X 10'* e¢ycles/sec, i.e., to a frequency in the infrared region of the
electromagnetic spectrum. ;
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PARAMAGNETISM

7 + 8 General calculation of magnetization

We have considered a simple example of paramagnetism in See. 6-3. Here
we shall discuss the general case of arbitrary spin.

Consider a system consigting of N noninteracting atoms in a substance af
absolute temperature T and placed in an external magnetic field H pointing
along the z direction. Then the magnetic energy of an atom ean be written as

= —p-H (7-8:1)

Here p is the magnetic moment of the atom. It is proportional to the total
angular momentum #J of the atom and is conventionally written in the form

= fuoJ (7-8:2)

where up is a standard unit of magnetic moment (usually the Bohr magneton
ko = eh/(2me), m being the electron mass) and where g is a number of the
order of unity, the so-called g faetor of the atom.*

Remark Sﬁrioﬂyspanhngthemagnahcﬂeldﬂuedin (7-8-1) is the local
magnetic field acting on the atom. It is not quite the same as the external
magnetic field since it includes also the magnetic field produced by all the
other atoms. Suitable corrections for the difference can be made by standard
arguments of electromagnetic theory., The distinction between external and
loeal field hecomes increasingly unimportant when the concentration of
magnetic atoms is kept small,

By combining (7-8-1) and (7-8-2) one obtains
e = —guod + H = —guohlJ, (7:8-3)

since H points in the z direction. In a quantum-mechanical description the
values which J, can assume are discrete and are given by

J,=m
where m can take on all values between —J and -+J in integral steps; i.e.,
O ) S0 I (R 0 SRR . 1 (7-8-4)

Thus there are 2J -+ 1 possible values of m corresponding {o that many possible
projections of the angular momentum vector along the z axis. By virtue of

*In the case of atoms having both electronic spin and orbital angular momentum, g
would be the Landé g factor.
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Fig. 7-8:1 Relative orientation of the angular
momentum J with respect to H.

(7-8-3), the possible magnetic energies of the atom are then
em = —guoHm (7-8:5)

For example, if J = 4 as would be the case for an atom with a single net elec-
tron spin, there are only two possible energies corresponding to m = +4.
This was the simple case treated in Sec. 6-3.

The probability P,, that an atom is in a state labeled m is given by

P, « g8t = gBomlm
The z component of its magnetic moment in this state is, by (7-8-2), equal to

Hy = Guom

The mean z component of the magnetic moment of an atom is therefore
J
E ebassm(guom)

PR (7-5:6)
2 huHm
m—J

Here the numerator can conveniently be written as a derivative with respect to
the external parameter H, i.e.,

J
18Z,
eﬂaﬂuﬂm(g“nm) = e ey
ME_J g aoH
J
where Z, = Z P (7-8-7)

m=—J

is the partition function of one atom. Hence (7 8:6) becomes*

, 1102, 1alnZ, el
’ ﬂ:—az'ﬁ—a oH (7:8-8)

; * This expression is valid even if the dependence of the energy levels of an atom on H
18 more complieated than in (7-8:5). See Problem 11.1.




GENERAL CALCULATION OF MAGNETIZATION

To caleulate Z,, introduce the abbreviation

= —,g-—-uﬁ . .
7 = BgroH = T (7-8:9)

which is a dimensionless parameter which measures the ratio of the magnetic
energy gpolf, which tends fo align the magnetic moment, to the thermal
energy kT, which tends to keep it randomly oriented. Thus (7-8-7) becomes

J
Z, = E g = g 4 a1 | .. . L el

m=—J

which is simply & finite geometric series where each term is obtained from the
preceding one as a result of multiplication by e® This can immediately be
summed to give
e — gnld+1)
S =g
This ean be brought {0 more symmetrical form by multiplying both numerator
and denominator by e=72. Then

T — end )
Z, =

g1 — gin
or
_ sinh (J + $)n
=3 Zy= ey T (7-8-10)
where we have used the definition of the hyperbolic sine
ainhyae";r" (7-8-11)
Thus In Z; = In sinh (/ + $)n — ln sinh %9 (7-8:12)
By (7:-8-8) and (7-8-9) one then obtains
o lolmZz, 14z s _  alZ
K58 PR B om0l TR
Hence
o [{J +4)cosh (/ +§)n  Fcosh i-q]
Lol SRR i o sinh 7
or
> B = guol Bs(n) (7-8-13)
where

& By(n) Ed—lr[(.f-y-%)mh (J+%)q—%coth%n] (7-8-14)
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The funetion B(n) thus defined is sometimes called the “Brillouin func-

tion.” Let us investigate its limiting behavior for large and small values of
the parameter .

The hyperbolic cotangent is defined as

coshy e —+ev ]
sinhy e — e (FRed

Fory > 1, eV <L e¥ and cothy = 1 (7-8-16)

cothy =

Conversely, for y < 1, both e¥ and e can be expanded in power series.
Retaining all terms quadratic in y, the result is

Fory « 1, cothy=$+%y (7-8-17)
Applying these results to the function By{y) defined in (7-8-14) yields

for 0> 1, B ol } [(J A -;) = %] Ly (7-8-18)

In the opposite limit where n < 1,

B =+ {(7+3) lorm 5 (0 +3)7] -3 12+ 2}

7
1 (1 fasc
e
_3 5 1_1}
— {J i
Forn <1, Bl i A=l (7-8-19)

3

Figure 7-8-2 shows how B;(y) depends on 5 for various values of J.
If there are Ny atoms per unit volume, the mean magnetic moment per
unit volume (or magnetization) becomes by (7-8:13)

> M, = Not, = Noguo/Bs(n) (7-8-20)
If n<k1, (7-8-19) implies that M, « 5 = H/T. One can write this relation
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Fig. 7-8:2 Dependence of o2 W
the Brillouin function !
Bs(n) on its argument 7 for 0.1
various values of J, 0

in the following form:
for guoH /kT K 1, M, = xH (7-8-21)

where the eonstant of proportionality, i.e., the susceptibility x, is given by

212
[ ¥ =Nom~%;%3 (7-8:22)

Thus x « 71, a result known as Curie’s law. In the other limiting case
when guoH /kT > 1, M. — Noguod (7:8:23)

One gets then saturation behavior where each atom has the maximum 2 com-
ponent of magnetic moment, gue/, that it can possibly have.

Although the general results (7-8-20) and (7-8:21) are quite important,
all the physical ideas are exactly the same as those already discussed in Sec, 63
for the special simple case of / = +. Note that our discussion is equally valid
if the total angular momentum J and magnetic moment u of the atom are due
to unpaired electrons of the atom (e.g., a gadolinium or iron atom); or if the
atom has no unpaired electrons and J and u are due solely to the nucleus of the
atom (e.g., a He?® atom or fluorine I~ ion). The difference is one of magni-
tudes. In the first case p is of the order of a Bohr magneton, But in the
second case the magnetic moment is smaller by approximately the ratio of the
electron to the nucleon mass; i.e., it is of the order of a nuclear magneton,
about 1000 times smaller than the Bohr magneton. Nueclear paramagnetism
is thus about 1000 times smaller than electronic paramagnetism. Cor-
respondingly, it requires an absolute ternperature about 1000 times smaller to
achieve the same extent of preferential nuclear spin orientation along an
applied magnetic field as it does to achieve this extent of orientation for an
electronic spin (see Problem 6.3).




(Gauss/deg) 107 % ——y

Fig.7-8'3 Plots of the meen magnetic moment ji. of an ion (in units of the
Bohr magneton u;) as a function of H/T. The solid curves are Brillouin func-
tions. The experimental points are those for (I) potassium chromium alum,
{IT) iron ammonium alum, and (ITI) gadolinium sulfate octahydrate. In all
cases, J = 8, the total electron spin of the ion, and g = 2. Note that at 1.3°K
a field of 50,000 gauss is sufficient to produce more than 99.5 percent mag-
netic saturation (after W. E. Henry, Phys. Rev. vol, 88, p. 561 (1952)).

KINETIC THEORY OF DILUTE GASES IN EQUILIBRIUM

7 -9 Maxwell velocity distribution

Consider a molecule of mass m in a dilute gas. The gas may possibly consist
of several different kinds of molecules; the molecule under consideration may
also be polyatomic. Let us denote the position of the center of mass of this
molecule by r and the momentum of its center of mass by p. If external force
fields (e.g., gravity) are neglected, the energy e of this molecule is equal to

e= P 4 o 7-9:1)
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where the first term on the right is the kinetic energy of the center of mass
motion; the second term, which arises only if the molecule is not monatomie,
designates the internal energy of rotation and vibration of the atoms with
regpect to the molecular center of mass, Since the gas is supposed to be suffi-
ciently dilute to be considered ideal, any potential energy of interaction with
other molecules is supposed to be negligible; thus e does not depend on r.

The translational degrees of freedom can be treated classically to an
excellent approximation if the gas is dilute and the temperature is not too low;
the internal degrees of freedom must usually be treated by quantum mechanics.
The state of the molecule can be described by specifying that the position of
the center of mass of the molecule lies in the range (r; dr), i.e., in a volume ele-
ment of magnitude d*r = dz dy dz near the position r; that the momentum of
its center of mass lies in the range (p; dp), i.e., within the momentum space
volume dp = dp. dp, dp. near the momentum p; and that the state of internal
motion of the molecule is labeled by some quantum numbers s with correspond-
ing internal energy e,f", This particular molecule is in weak interaction with
all the other molecules which act, therefore, as a heat reservoir at the tem-
perature T of the gas. If the gas is sufficiently dilute, it is also permissible to
think in classical terms and to focus attention on the particular molecule as a
distinguishable entity. Then the molecule satisfies all the conditions of a
distinet small system in contact with a heat reservoir and obeys, therefore, the
canonical distribution. Hence one obtains for the probability £,(r,p) d*r d°p
of finding the molecule with center-of-mass variables in the ranges (r; dr) and
{p; dp) and with internal state specified by s the result

P.r,p) d*r d’p = g PO/ 2mt et g5 d’p
« gTEPYIm o —But gy g (7-9-2)

The probability P(r,p) d°r d*p of finding the molecule with center-of-mass
variables in the ranges (r; dr) and (p; dp), irrespective of its internal state, is
obtained by summing (7:9:2) over all possible internal states s. The sum
over the factor exp (—@B¢!™") contributes then only a constant of proportion-
ality, so that the result of summing (7-9-2) is simply

P(r,p) d’r d’p « ¢ P& gip gip (7-9-3)

This is, of course, identical with the result (6-3-11) derived previously under
less general conditions.

If one multiplies the probability (7-9:3) by the total number N of mole-
cules of the type under consideration, one obtains the mean number of mole-
cules in this position and momentum range. Let us express the result in terms
of the velocity » = p/m of the molecule’s center of mass. For the type of
molecule under consideration, we define

of mass position between r and r + dr, and velocity between »

f(rv) dr d' = the mean number of molecules with center
(7-9-4)
and v + do.
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Then (7-9-3) gives
Flrw) dir div = Ce—Pre/2) (b dip (7-9:5)

where (' iz a constant of proportionality which can be determined by the
normalization condition

jm jm f(r,v) d'r d*v = N (7-9-6)

That is, summing over molecules with all possible velocities » from — « to =
and with all possible positions r anywhere in the volume V of the container
must yield the lofal number of molecules. Substituting (7-9-5) in (7-9-6)
thus gives

C fm [ "™ dw dir = N (7-9:7)

Since f does not depend on r, the integration over this variable yields simply
the volume V. The rest of the integration is similar to that leading to (7 -2-6).
Thus (7-9-7) reduces to

v ([, evmer an,)? _cv(ﬁz’) =N

. N
or C=ﬂ(—2‘;_-), n 7 (798)

where 7 is the total number of molecules (of this type) per unit volume. Hence
(7:9-5) becomes

f(v) d*rdv=n (Bm) —ifmut gip gty (7-9-9)

or
i
> f(v) d*rdiv = n (2«)0'1’) e—mP/2kT gy iy (7:9-10)

Here we have omitted the variable r in the argument of fsince f does not depend
on r. This condition must, of course, be true from symmetry considerations
since there is no preferred position in space in the absence of external force
fields. Furthermore one sees that f depends only on the magnitude of v; i.e.,

f(v) = f(v) (7-9-11)

where » = |v|. Again this is obvious by symmetry, since there is no preferred
direction in a situation where the container, and thus also the center of mass of
the whole gas, is considered to be at rest.

If (7-9-10) is divided by the element of volume d®r, one obtains

J(v) d*v = the mean number of molecules per unit volume
with center-of-mass velocity in the range between » and (7-9-12)
v + dv.

Equation (7-9-10) is the Maxwell velocity distribution for a molecule of a
dilute gas in thermal equilibrium.
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7 . ]O Related velocity distributions and mean values

Distribution of a component of velocity Various other distributions of
physical interest follow immediately from (7:9-10). For example, one may
be interested in the quantity

g(v2) dv, = the mean number of molecules per unit volume
with z component of velocity in the range between v, and
v; + dv.,, irrespective of the values of their other velocity
components.

(7-10-1)

Clearly, one obtains this by adding up all molecules with z component of
velocity in this range; i.e.,

002) do. = [ [ $() d (7-10-2)

where one sums over all possible y and z velocity components of the molecules.
By (7-9-10) this becomes

m \}
. — —(m 2T} (paibv, 2 v, )
oes) 90 n(?wkT) fosfos G 01 4%

m I L] =
—mud) kT —{m[2kT) v, —{m/ 2k T v,
= ﬂ.(z H:T) g—mus dv, f_a e v dy, fﬂu 4 dv,

i P
S O \/2”}‘77'
= (21rkT) = fike ( m

]
glvs) dv. = n (ﬁ-f') g—my 2T gy (7-10-3)

e
el

Fig. 7:10°1 Maxwellian distribution of a molecular velocity component.
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Of course, this expression ig properly normalized so that
f_", gv) dvz = n (7-10-4)

Equation (7-10-3) shows that each component of velocity is distributed with a
Gaussian distribution symmeiric about the mean value

7. =0 (7-10-5)

It is physically clear that #;, = 0 by symmetry, since thez component of velocity
of a molecule is as likely to be positive as negative. Mathematically this
result follows, since

i, = = [ _: g(v.) v, dus

Here the integrand is an odd function of v, (i.e., reverses its sign when v,
reverses sign) because g(v.) 18 an even function of v, (i.e., does not reverse its
sign under this operation, since it depends only on v,?). Thus contributions to
the integral from +», and —uv, cancel each other. A similar argument shows
immediately that

if k is any odd integer, vE =0 (7-10-6)

Of course, ».? is intrinsically positive and is, by virtue of (7-10-5), the
dispersion of v,, By direct integration, using (7-10:3), or by recalling the
properties of the Gaussian distribution already studied in (1-6-9), it follows that

— 1 r» ; kT A

0= 7 gt do. = = (7:10-7)
The same regult follows, of course, also immediately from the equipartition
theorem, according to which

o = JkT

Thus the root-mean-square width of the Gaussian (7-10:3) is given by
A*, = v/kT/m. The lower the temperature, the narrower will be the width
of the distribution function g(»,).
Needless to say, exactly the same results hold for v, and ».,since all velocity
components are, by the symmetry of the problem, completely equivalent.
Note also that, since v? = 9.2 + 1,2 + 1,2, Eq. (7-9-10) factors so that
it can be written in the form

f(v)nrl“v g [g(tu) dv:] [G{in dvu] [g(v,) dv.]

n n

This means that the probability that the velocity lies in the range between v
and » + dv is just equal to the product of the probabilities that the velocity
components lie in their respective ranges. Thus the individual velocity
components behave like statistically independent quantities.
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Distribution of speed Another quantity of physical interest is

F{y) dv = the mean number of molecules per unit volume (7-10-8)
with a speed v = |v| in the range between v and v + dv.

One clearly obtains this quantity by adding up all molecules with speed in this
range irrespective of the direction of their velocity. Thus

F(v) dv = ['f(v) d*
where the integral extends over all velocities, satisfying the condition that
v < |v| <o+ dv

1.e., over all veloeity vectors which terminate in velocity space within a spherical
shell of inner radius » and outer radius v + dv. Sinece f(v) depends only on
[v|, this integration is just equal to f(») multiplied by the volume 4xv? dv of this
spherical shell. Thus

- F() dv = 4xf(v)v? dv (7-10.9)

Using (7-9-10), this becomes explicitly

1
i B = b (E;’;‘j) o e IBT gy (7-10-10)

This is the Maxwell distribution of speeds. Note that it has a maximum for
the same reason responsible for the maxima encountered in our general dis-
cussion of statistical mechanics, As v increases, the exponential factor
decreases, but the volume of phase space available to the molecule is propor-
tional to v* and increases; the net result is a gentle maximum. The expression
(7-10-10) is, of course, properly normalized, i.e.,

]D‘“ Flo)dv = n (7-10-11)

Fig. 7°10°2 Representation (in two
dimensions) of the shell in velocity space
containing all molecules with velocity v
such that v < |o| < v + dv.
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Fig. 7+10-3 Max-
wellian distribu-
tion of moleculdr
speeds. The
¥ is expresed in
terms of the speed
o = (2kT/m)} where
F is maximum.

7

{ d o

Mean values It is again of interest to caleulate some significant mean values.
The mean speed is, of course, positive since » = |v| is intrinsically positive.
It 18 given by

- ;ll J[[ swwas (7-10-12)

where the integration is over all speeds. Thus one gets

7= -i f: fow - dmvt do = 4—: Ln fw)v dv

3 row

=i fﬁ) Jo et by (7-9:10)
E] -2

= ﬁ?) %(%) A

Hence N e /2%1 (7-10-13)

On the other hand, the mean-square speed is given by

o = ;i [ oy dvo = ;“ﬂl [,” st do (7-10-14)

We could again integrate this by using (A-4-6), but we can save ourselves
the work since we know that

Fmet = @t + 9,2 + v.)
Hence by the equipartition theorem (or by using the symmetry argument that
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v.2 = 1,F = 0,5 so that »* = 31,7, a quantity already computed in (7-10-7)),

we get
Jmi? = kT
—= 3T
or v —? (7‘10‘15}

The root-mean-square speed is thus

Deme = VI = o [25X (7-10-16)
m
Finally, one can ask for the most probable speed # of the molecule, i.e.,
the speed for which F(v) in (7:10-10) is a maximum, This is given by the
condition

ar _
-
e o e—mozer e — N meynr —
2 % it
or g = gL
m
Hence 7 is given by
3 i (7-10-17)
m

All these various speeds are proportional to (kT/m):. Thus the molecular
speed increases when the temperature is raised; and, for a given temperature,
a molecule with larger mass has smaller speed. The various speeds we have
calculated are such that their ratios

Urma : @ 7
are propertional to V3 : .\/' /2 (7-10-18)
or to 1.224:1.128: 1

For nitrogen (Ns) gas at room temperature (300°K) one finds by (7-10-16),
using m = 28/(6 X 10%%) g, that
Urms = B X 10% cm/sec = 500 m/sec (7:10-19)

a number of the order of the velocity of sound in the gas.

7 -1 1 Number of molecules striking a surface

It is possible o discuss a number of interesting physical situations by consider-
ing the motion of individual molecules in detail. Detailed arguments of this
kind constitute the subject matter of what is usually called “kinetic theory.”
Since we shall for the present restrict ourselves to equilibrium situations, our
considerations will be very simple.
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Let us focus aftention on a dilute gas enclosed in a container and ask the
following question: How many molecules per unit time strike a unit area of the
wall of this container? This question is very closely related to another ques-
tion of physical interest: If there is a very amall hole in the wall of the container,
how many molecules will stream out of this hole per unit time?

Crude calculation To understand the essential features of the situation, it
is adequate to adopt a highly simplified approximate point of view. Imagine
that the container is a box in the form of a parallelepiped, the area of one end-
wall being 4. IMow many molecules per unit time strike this end-wall? Sup-
pose that there are in this gas n molecules per unit volume. S8ince they all
move in random directions, we can say roughly that one-third of them, or n/3
molecules per unit volume, have their veloeities in a direction predominantly
along the z axis (chosen to be normal to the end-wall under consideration as in
Fig. 7-11-1). Half of these molecules, i.e., n/6 molecules per unit volume,
have their velocity in the 4z direction so that they will strike the end-wall
under consideration. If the mean speed of the molecules is #, these molecules
coverin an infinitesimal time df a mean distance 5 df. Hence all those molecules
with velocity 7 in the z direction which lie within a distance # df from the end-
wall, will, within a time dt, strike the end-wall; those which lie further than a
distance 7 di from the end-wall will not. Thus we arrive at the result that
[the number of molecules which strike the end-wall of area A in time di] is
equal to [the number of molecules having veloeity # in the z direction and
contained in the cylinder of volume A# di]; i.e., it is given by

(%") (A di) (7-11-1)

The total number @, of molecules which strike unit area of the wall per unit
time (i.e., the total molecular “fux") is then given by dividing (7-11-1) by
the area A and the time interval di. Thus

We emphasize that this result was obtained by a very erude argument in
which we did not consider in any detail the velocity distribution of the mole-
cules, either in magnitude or in direction. Nevertheless, arguments of this

i /-‘,-‘\n:a A

=

| =~ — ———— ]

Fig. 7-11+1 Molecules colliding with a wall.
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kind are often very useful because they can exhibit the essential features of a
phenomenon without the need of exact calculations which are likely to be more
laborious. Thus the factor 4 in (7-11:2) is not to be taken very seriously.
There ought to be some numerical factor there of the order of 4, but its exact
value must certainly depend on the particular way in which various averages
are to be computed. (Indeed, the exact calculation will yield a factor %
instead of %.) On the other hand, the essential dependence of ®; on n and #
ought to be correet, i.e., ® = nd. Thus (7-11-2) makes the very plausible
assertion that @, is proportionately increased if the concentration of molecules
is inereased or if their speed is increased.

The dependence of &, on the temperature 7' and mean pressure 7 of the
gas follows immediately from (7-11-2). The equation of state gives

O e ATl T
B = nkT or n= (7-11-3)

Furthermore, by the equipartition theorem,

Imv? = kT
s0 that D e g (7-11-4)
Thus (7-11-2) implies that

B, « \/% (7-11-5)

Exact calculation Consider an element of area dA of the wall of the con-
tainer. Choose the z axis so as to point along the outward normal of this
element of area (see Fig. 7-11-2). Consider first those molecules (in the
immediate vicinity of the wall) whose velocity is such that it lies between v
and v + de. (That is, the velocity is such that its magnitude lies in the range
between » and v + dp; its direction, specified by its polar angle # (with respect
to the normal, or z axis) and its azimuthal angle ¢, is such that these angles lie
between 8 and 8 + df and between ¢ and ¢ + de, respectively.)

Fig. 7+11:2 Molecules, with velocity between v and
© + dv, colliding with an element of area of a wall.
(Note that the height of the cylinder shrinks to
zero as di — 0.)
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Molecules of this type suffer a displacement v di in the infinitesimal fime
interval di. Hence all molecules of this type which lie within the infinitesimal
eylinder of cross-sectional area dA and of a length v dt making an angle 8 with
the z axis will strike the wall within the time interval df; the molecules lying
outside this eylinder will not.* The volume of this eylinder is d4 v dl cos @,
while the number of molecules per unit volume in this velocity range is f(v) d®v.
Hence [the number of molecules of this type which strike the area d4 of the
wall in time df] = [f(v) d*vi[dA v di cos 8]. Dividing this by the area dA and
the time interval df, we get for

$(v) d*v = the number of molecules, with velocity between
v and v + dv, which strike a unit area of the wall per unit (7-11-6)
time.

the expression
fe ®(v) d*v = d*v f(v)v cos 0 (7-11-7)

Lefl ®, = the fotal number of molecules which strike a unit (7-11-8)
area of the wall per unit time. j
This is simply given by summing (7-11-7) over all possible velocities which a
molecule can have and which will cause it to collide with the element of area.
This means that we have to sum over all possible speeds 0 < v < =, all possible
azimuthal angles 0 < ¢ < 2x, and all angles ¢ in the range 0 < 6 < »/2.
(Those molecules for which x/2 < # < = have their velocity directed away
from the wall and hence will not collide with it.) In other words, we have to
sum over all possible velocities v subjeet to the restriction that the veloeity
component v, = v eos § > 0 (since molecules with ». < 0 will not collide with
the element of area). Thus we have

@ = [, d% f(e)v cos 0 (7-11-9)

The regults (7-11-7) and (7-11-9) are generally valid even if the gas is not in
equilibrium (although f might then also be a function of r and 7). But if we
consider a gas in thermal equilibrium, f(v) = f(») is only a function of |[v|. The
element of volume in velocity space can be expressed in spherical coordinates:

d'v = v* dv (sin 6 d6 de)
where sin 0 df d¢ = d@ is just the element of solid angle. Hence (7-11-9)

* Note that since the length v dt of the eylinder can be considered arbitrarily small, only
molecules located in the immediate vicinity of the wall are involved in this argument.
Furthermore, since v df can be made much smaller than the mean distance [ traveled by &
molecule before 1t collides with another molecule, collisions between moleecules need not be
considered in this argument; i.e., any molecule located in the cylinder and traveling toward
the wall will indeed strike the wall without being deflected by a collision before it gets there.
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becomes
= [ 0% dvsin 0d0 de f()0 cos 9
o w/2 2x
= fo Jv* dv fo sin @ cos 0 d9 j; de

The integration over ¢ gives 2r, while the integral over 8 yields the value 1.
Hence ¥

By L" Fo)® do (7-11-10)

This can be expressed in terms of the mean speed already computed in
(7:10:12). Thus

= ;‘l-fdavf(v)v

;11 fo” L' f:r (v* dv sin 8 d de)f(v)e

o A fe -

or 7="" [ fw do (7-11-11)
since the integration over the angles # and ¢ is just the total solid angle 4x
about a point. Hence (7-11-10) can also be written

» ®y = jnd (7-11.12)
This rigorous result can be compared with our previous crude estimate in
(7-11-2). We see that the latter was off by a factor of only .

The mean speed was already computed from the Maxwell distribution in
(7-10-13). Combining this with the equation of state (7-11:3), one obtaing
for (7-11-12)

P
v o 7-11-13
N 2rmkT ( )

7 s 12 Effusion

If a sufficiently small hole (or slif) is made in the wall of the container, the
equilibrium of the gas inside the container is disturbed to a negligible extent.
In that case the number of molecules which emerge through the small hole is
the same as the number of molecules which would strike the area occupied by
the hole if the latter were closed off. The process whereby molecules emerge
through such a small hole is called “effusion.”

One may ask how smeall the diameter D of the hole (or the width D of
the glit) must be so that there is no appreciable effect on the equilibrium
state of the gas. The fypieal dimension against which D is to be compared
is the ‘‘mean free path” [, i.e., the mean distance which a molecule in the
gas travels before it suffers a collision with another molecule. The eoncept
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of mean free path will be discussed in greater detail in Chapter 12. Here it
will suffice to make the obvious comment that, at a given temperature, { is
inversely proportional to the number of molecules per unit volume. (At
room temperature and atmospheric pressure, [ = 10-% em in a typical gas.)
If D <<, the hole can be eonsidered as very small. In that case, molecules
will now and then emerge from the hole if their velocities happen to be in the
right diregtion. When a few molecules escape through the hole, the remain-
ing molecules in the container are then searcely affected sinee ! is so large.
This is the case of “effusion,”

On the other hand, if D >> [, molecules suffer frequent collisions with each
other within distances of the order of the hole size, When some molecules
emerge through this hole (see Fig. 7:12-1), the molecules behind them are
in an appreciably different situation. They no longer eontinue colliding with
the molecules on the right which have just escaped through the hole, but
they still suffer constant eollisions with the molecules on the left. The net
result is that the molecules near the hole experience, by virtue of these con-
tinuous moleeular impacts, a net force to the right which causes them fo
acquire a drift veloeity in the direction toward the hole. The resultant
collective motion of all these molecules moving together is then analogous to
the flow of water through the hole of a tank. In this case one has not effusion,
but “hydrodynamic flow.”

Let us consider the situation when the hole is sufficiently small so that
molecules emerge through the hole by effusion. If a vacuwm is maintained
outside the container, the effusing molecules can be collimated further by
additional slits so that one is left with a well-defined “molecular beam.” Such
molecular beams have been extensively used in experimental physics investiga-
tions because they provide one with the possibility of studying individual
molecules under circumstances where interactions between them are negligible.
The number of molecules which have speed in the range between v and v + dv
and which emerge per second from a small hole of area A4 info a solid angle
range d2 in the forward direction # = 0 is given by (7:11-7) as

A®(v) d*v < A[f()v cos 6)(v? dv d)
o fo)u® dp dQ o e IRTYS dy d) (7-12-1)

Note that this expression involves the factor »% rather than the factor »* which
eecurs in the Maxwellian speed distribution (7-10-10).

Experiments on such a molecular beam can provide a direet test of the
Maxwell velocity distribution by checking the prediction (7-12-1). TFigure

ks

Fig, 7-12:1 Formation of a molecular
beam by effusing molecules,
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Fig. 7-12:2 A molecular-beam apparatus for studying the velocity distribu-
tion of silver (Ag) atoms. The Ag atoms stick to the drum surface upon
impact.

7:12:2 shows one experimental arrangement which has been used. Silver (Ag)
atoms are produced by evaporation in an oven and emerge through a narrow
slit to form a molecular beam. A rotating hollow eylindrical drum, with a
slif in it, revolves rapidly about its axis and is located in front of the beam.
When molecules enter the slit in the drum, they require different times to reach
the opposite side of the drum, a fast molecule requiring less time than a slow
one. Sinee the drum is rotating all the time, the Ag molecules deposited on the
opposite inside surface of the drum get spread out on this surface in accordance
with their velocity distribution. Thus a measurement of the thickness of the
Ag deposit as a function of distance along the drum surface provides a measure-
ment of the molecular velocity distribution.

A more accurate method for determining the velocity distribution involves
the use of & velocity selector similar in principle of operation to those used in
neutron time-of-flight spectroscopy or for determining the veloecity of light
(Fizeau wheel). In this method the moleeular beam emerges from a hole and
is detected by a suitable deviee at the other end of the apparatus. The velocity
selector is placed between the source and the detector and consists, in the
simplest case, of a pair of disks mounted on a common axle which can be
rotated with known angular veloeity. Both disks are identical and have
several slots eut along their periphery; thus the rotating disks act as two shut-
ters which are alternately opened and closed. When the disks are properly
aligned and not rofating, all molecules can reach the detector by passing
through corresponding slots in both disks. But when the disks are rotating,
molecules passing through a slot, in the first disk ean only reach the detector if
their velocity is such that [the time of flight required for them to travel to the
second disk] is equal to [the time required for the next slot of this disk to rotate
to the location of the original slot]. Otherwise they will strike the solid part
of the second disk and be stopped. Hence different angular velocities of rofa-
fion of the disks allow molecules of different speeds to reach the detector.
Measurement of the relative number of molecules arriving there per second then
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Fig. 7-12-3 Arrangement for studying the molecular velocity distribution
by a velocity selector. (A more effective velocity selector results if more
than two similar disks are mounted on the same axle.)

allows a direct check of the molecular-velocity distribution. The validity of
the Maxwellian distribution has been well confirmed by such experiments. *

Equation (7-11-5) shows that the rate of effusion of & molecule depends on
the mass of the molecule, lighter molecules effusing more rapidly than heavier
ones. This suggests the application of effusion as a method for the separation
of isotopes. Suppose that & container is closed off by a membrane which has
very many small holes through which molecules can effuse. If this container
is surrounded by a vacuum on the outside and is filled with a gas mixture of two
isotopes at some initial time, then the relative concentration of the isotope of
larger molecular weight will increase in the container as time goes on. Simi-
larly, the gas pumped off from the surrounding vacuum will be more concen-
trated in the lighter isotope.

Another example of interest is illustrated in Fig. 7-12.4. Here a con-
tainer is divided into two parts by a partition containing a small hole. The
container is filled with gas, but one part of the container is maintained at tem-
perature T';, the other part at temperature T One may ask the following

* For recent experimental work on velocity distributions see R. C. Miller and P, Kusch'
J. Chem. Phys., vol. 25, p. 860 (1956); also P. M. Mareus and J. H. McFee in I. Estermann
(ed)., “Recent Research in Molecular Beams,'” p. 43, Academic Press, New York, 1959.

1t The suceessful large-seale separation by this method of uranium isotopes (in the form
of UF; gas) was a crueial step in the development of nuclear fission devices (reactors and
bombs) and is described in H. de W. Smyth, “Atomic Energy for Military Purposes,”

chap. 10, Princeton University Press, Princeton, 1947; or Rev. Mod. Phys. vol. 17, p. 430
(1945).
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Fig. 7°12-4 A container divided into
two parts by a partition containing a
small hole. The gas in the two parts
is at different temperatures and
pressures.

question: What is the relation between the mean gas pressures p; and . in the
two parts when the system is in equilibrium, ie., when & situation is reached
where neither ; or p», nor the amount of gas in either part, changes with time?
If the linear dimension D of the hole is large (D 3> [), then the condition is
simply 2 = §1; for otherwise the pressure difference would give rise to mass
motion of the gas from one side to the other until the pressures on both sides
reach equality. But if D <1, one deals with effusion through the hole rather
than with hydrodynamic flow. TIn this ease the equilibrium condition requires
that the mass of gas on each side remain constant, i.e., that [the number of
molecules which pass per second through the hole from left to right] equals
[the number of molecules which pass per second through the hole from right
to left]. By (7-11-12) this leads to the simple equality

mally = Nglz (7-12-2)
By (7-11-5) this condition becomes

o S (7-12-3)
VT, T,
Thus the pressures are then not at all equal, but higher gas pressure prevails in
the part of the container at higher temperature.

This discussion has practical consequences in experimental work. Suppose,
for example, that it is desired to measure the vapor pressure f. (ie., the
pressure of the vapor in equilibrium with the liquid) of liquid helium at 2°K,
The experimental arrangement might be as illustrated in Fig. 7+ 12 5, the mer-
cury manometer at room temperature being used fo make the pressure
measurement. A small tube of dismeter D connects the manometer to the
vapor pressure to be messured, and the difference of mercury levels on the two
sides of the manometer measures the pressure difference p. Now at 2°K, #,
ia still fairly large, i.e., the density of helium vapor is large enough that the
mean free path [ of molecules in the vapor is much less than the diameter D of
the connecting tube. Then the pressure 7 read on the manometer is indeed
equal to the vapor pressure f, of interest. But suppose that it is desired to
measure §, 8t lower temperatures, say at 0.5°K. Then #, is small and the
density of He vapor is g0 small that ! is comparable to, or large with respect to,
the diameter D of the connecting tube. If one assumed that the pressure p
which one reads on the manometer still equals the vapor pressure g, of inter-
est, one would be fooling oneself very badly. So-called ‘‘thermomolecular




278 sgcrion 7+ 13

Vacuum

Level differsnce
medsures pressurc

Mereury

Limpuid He
tonstant-temprrature hath | )

He vapor at pressure p,—|

Liguid He

Fig, 7:12-5 Exper
arrangement for ma;nrmg tﬁa
_vapor pressure of ﬁqmid helium. :

corrections” are then necessary to relate f. to the measured pressure P In .
the limit as D<ll, Fq. (7-12.3) a.,g:am becomes apphmbia, s0 that

P
‘/EE ~ /300 :

if room temperature is taken to be 300°K. Thus p can differ from p. by as.
much as a factor of /600 = 25, which is a very substantial correction indeed.

7 ] 13 Pressure and momentum transfer

It is of interest to consider from a detailed kinetic point of view how a gas exerts
a pressure, The basic mechanism is certainly clear: The mean force exerted
on a wall of the container is due to the many collisions of molecules with the
wall.  Let us examine this mechanisin in greater detail.  We shall again look
af the problem in a highly simplified way before doing the exact caleulation.

Crude calculation We ean give an argument similar to that used at the
beginning of Section 7-11.  In Fig. 7 11 1 we again imagine that roughly one-
third of the molecules move parallel to the z divection.  When such 2 molecule
strikes the right end-wall, its kinetic energy remains unchanged. (This must
be frue, at least, on the average; otherwise one would not have an equilibrium
situation.) The magnitude of the momentum of the molecule must then also
remain unchanged; ie, the molecule, approaching the right end-wall with
momentim me in the z divection, must have momentum —mp after it rebounds
from the wall. The z component of momentum of the molecule changes then
by an amount Ap. = —2my as a resull of the collision with the wall. Corre-
spondingly it follows, by econservation of momentum, that the wall gains in such
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a collision an amount of momentum —Ap, = 2me.  But the mean foree exerted
on the wall is, by Newton’s laws, just equal to the mean rate of change of
momentum of the wall. Hence the mean force on the end-wall can be obtained
simply by multiplying [the average momentum 2md gained by the wall per
collision] by [the mean number of collisions (An#A) per umt time with the end-
wall]. The mean foree per unit area, or mean pressure g on the wall, is then
given by*

| 1 =
7= — (2mb — DA P TE W 1G
B= g (2mu) (5 "o —1) 7 nmd [ e )

Exact calculation Suppose that we wish to caleulate the mean force F
exerted by the gas on a small element of area dA4 of the container wall. (See
Fig. 7-13-1, where we have chosen the z axis to be normal to the element of
area.) Then we must caleulate the mean rate of change of momentum of this
element of wall, i.e., the mean net momentum delivered to this wall element per
unit time by the impinging molecules. If we focus attention on an element of
area dA lying inside the gas an infinitesimal distance in front of the wall, then
the above calculation is equivalent to finding the mean net molecular momen-
tum which is transported per unit time across this surface from left to right as
the molecules cross this surface from both directions. T Let us denote by G
the mean molecular momentum crossing this surface d4 per unit time from
left to right, and by G the mean molecular momentum crossing this surface
dA per unit time from right to left. Then one has simply

F = ¢H — 6= (7-13-2)

To calculate G, consider the element of surface dA in the gas and focus
first, attention on those molecules with velocity between v and v + dv. (See
Fig. 7-13 2, which is similar to Fig. 7-11-2.) The mean number of such mole-
cules which cross this area in an infinitesimal time dt is again the mean number
of such molecules contained in the cylinder of volume |[dA4 v di cos 6]; i.e., it is
equal to f(v)d*v |dA vdicosf|. By multiplying this number by the momentum

* The symbol p stands for mean pressure and should not be confused with the momen-
tum variahle p.

t Bimilarly, and quite equivalently, one can consider an element of area anywhere
inside the gas and ask for the mean force which the gas on one side exerts on the gas on the
other side. Agsin this is the same as asking what is the net molecular transport of momen-
tum across this area.

Area dA
=

z

e e e e

Fig.7'13'1 An element of area dA of the container
wall and a surface of area dA lying inside the gas
Jjust in front of the wall.
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Fig.7:13'2 Molecules erossing u surface dA in a gas from left to right (+)
and from right to left (—). (Note that the height of the eylinders shrinks to
zero as di— 0.)

mu of each such molecule and dividing by the time di, one obtains the mean
momentum transported across the area dA4 per unit time by molecules with
velocity between v and » + dv. By summing over all molecules which cross
this area from left to right, i.e., over all molecular velocities with v. > 0, one
then gets for the total mean molecular momentuni G transported across this
area from left to right the result

6 = [ j(w) d* |d4 v cos 6|(mw)
@ GO = ad [ d §(o) /(o) (713-3)

where we have put », = v cos § and where the integration is over all velocities
for which». > 0. A similar expression gives the total mean molecular momen-
tum G transported across this area from right to left, except that the integra-
tion must now be over all molecules for which v, < 0. Thus

GO =da [ dv j(w)u|(mo) (7-13-4)

The force (7-13-2) is then given by the net mean momentum transported
across the surface, ie., by subtracting (7-13-4) from (7-13:3). But in
(7-13-3), where the integration is only over positive values of 2,, one can
simply put [v.] = v, in the integrand. In (7-13-4), where the integration is
only over negative values of v,, one can put |v,| = —v, intheintegrand., Henee
(7-13:3) gives simply

F=C®»— G- =d4 f o @' J(@)o.(mv) + dA Aty f(v)vs(mo)

v
or

lie- F = dA [ d* f(v)v.(mv) (7-13-5)

where the two integrals have been combined into a single integral over all
possible velocities. Equation (7-13-5) is a very general expression and would
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be valid even if the gas is not in equilibrium, i.e., even if f is completely
If the gas i8 in equilibrium, then f(v) is only a funetion of v = |v|. Note
(7-13-6)
Equation

arbitrary,
first that
F. = dA mf d* f(v)v, = 0
since the integrand is odd, having opposite signs for v, and —uv,.
| (7-13-6) expresses the obvious fact that there ean be no mean tangential force
' on the wall in an equilibrium situation. The mean normal force does, of
course, not vanish. Measured per unit area it gives the mean pressure, which
is thus, by (7-13:5), equal to
T F" — 3 2
== dA ) fdvf(u}mv,
P = nmp,? (7-13-7)

or
Here we have used the definition
—_ 1
o= % 3 2
e f div f(v)v.

By symmetry, 1,2 = 3, = 1,% so that
R R T
(7-13-8)

Hence (7-13-7) can be written equivalently as
P = dnmo*
This agrees substantially with our crudely derived result (7-13-1) (except that
(7-13-9)

the averaging is now done carefully so that what appears is »? rather than 7*).
Since y? is related to the mean kinetic energy K of a molecule, (7-13-8) implies

p = fn(Ems?) = nK

the general relation
i.e., the mean pressure is just equal to 4 the mean kinetic energy per unit

volume of the gas.

Up to now we have not yet made use of the fact that the mean number
density of molecules f(v) d% is given by the Maxwell velocity distribution.*
This information allows us to caleulate explicitly »* and is equivalent to using
the equipartition theorem result that K = $47. Then (7-13-9) becomes

(7-13.10)

7= nkT

so that one regains the equation of state of a classical ideal gas.
* The expressions (7-13-7) through (7-13-9) are thus equally valid even if f is given
by the guantum-mechanical Fermi-Dirac or Bose-Einstein equilibrium distributions to be

discussed in Chapter 9.
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PROBLEMS

7.1

7.2

7.3

7.4

7.4

Consider a homogeneous mixture of inert monatomic ideal gases at absolute
temperature T in a container of volume V., Let there be »; moles of gas 1,
vy moles of gas 2, , . . , and ¥ moles of gas k.

(z) By considering the classical partition function of this system, derive
its equation of state, i.e., find an expression for its total mean pressure p,

(b) How is this total pressure 5 of the gas related to the pressure fi; which the
ith gas would produce if it alone oceupied the entire volume at this temperature?
An ideal monatomie gas of N particles, each of mass m, is in thermal equilibrium
at absolute temperature 7. The gas is contained in & eubical box of side L,
whose top and bottom sides are parallel to the earth’s surface. The effect of the
earth’s uniform gravitational field on the particles should be considered, the
aceeleration due to gravity being g.

(a) What is the average kinetie energy of a particle?

(b) What is the average potential energy of a particle?

A thermally insulated container is divided by a partition into two compartments,
the right compartment having a volume b times as large as the left one. The left
compartment containg » moles of an ideal gas at temperature 7' and pressure f.
The right compartment also containg » maoles of an ideal gas at the temperature
T. The partition is now removed. Caleulate

(a) the final pressure of the gas mixture in terms of 3;

(b) the total change of entropy if the gases are different;

(c) the total change of entropy if the gases are identical,

A thermally insulated container is divided info two parts by a thermally insu-
lated partition. Both parts contain ideal gases which have equal constant heat
capacities ¢y, One of these parts contains »; moles of gas at a temperature T
and pressure fi;; the other contains v, moles of gas at a temperature Ty and pres-
sure p;.  The partition is now removed and the system is allowed to come fo
equilibrium,

(a) Find the final pressure.

(b) Tind the change AS of total entropy if the gases are different.

(e) Find AS if the gases are identical.

A rubber band at absolute temperature 7' is fastened at one end to a peg, and
supports from its other end a weight W. Assume as a simple microscopic model
of the rubber band that it consists of a linked polymer chain of N segments
joined end to end; each segment has length a and can be oriented either parallel
or antiparallel to the vertical direetion. Find an expression for the resultant
mean length [ of the rubber band as a function of W. (Neglect the kinetic
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7.6

7.7

7.8

7.9

\/ 7.10

energies or weights of the segments themselves, or any interaction between the
segments.)

Consider a gas which is nol ideal so that molecules do inferact with each other.
This gas is in thermal equilibrium at the absolute temperature T.  Suppose that
the translational degrees of freedom of this gas can be treated classieally. What
is the mean kinetie energy of (center-of-mass) translation of a molecule in this gas?
Monatomic molecules adsorbed on a surface are free to move on this surface
and can be treated as o classical ideal two-dimensional gas. At absolute tem-
perature T, what is the heat capacity per mole of molecules thus adsorbed on a
surface of fixed size?

The electrical resistivity p of 4 metal at room temperature is proportional to the
probability that an electron is scattered by the vibrating atoms in the lattice,
and this probability is in turn proportional to the mean square amplitude of
vibration of these atoms. Assuming classical statistics to be valid in this tem-
perature range, what is the dependence of the electrical resistivity p on the
absolute temperature 7'?

A very sensifive spring balance congiste of a quartz spring suspended from
a fixed support, The spring constant is e, i.e., the restoring force of the spring
is —aa if the spring is stretched by an amount z, The balance is at a tempera-
ture T in a location where the acceleration due to gravity is g.

(@) If a very small object of mass M is suspended from the spring, what is
the mean resultant elongation # of the spring?

{h) What is the magnitude (z — )* of the thermal fluctuations of the object
about its equilibrium position?

(¢) It becomes impracticable to measure the mass of an object when the

fluctuations are so large that [(z — #)%* = & What is the minimum mass M
whieh ean be messured with this balance?
A system consists of N very weakly interacting particles at a temperature 7'
sufficiently high so that classical statistical mechanics is applicable. Each
particle has mass m and is free to perform one-dimensional oscillations about its
equilibrium position. Caloulnte the heat capacity of this system of particles at
this temperature in each of the following cases:

(a) The force effective in restoring each particle to its equilibrium position is
proportional to its displacement @ from this position,

(6) The restoring force is proportional to 2%,

Assuma the following highly simplified model for ealeulating the specific heat of
graphite, which has a highly anisotropic erystalline layer structure. Bach
carbon atom in this structure can be regarded as performing simple harmonic
oscillations in three dimensions. The restoring forces in directions parallel to a
layer are very large; hence the natural frequencies of oseillations in the z and y
directions lying within the plane of a layer are both equal to a value wy which iz
50 large that fiw; >> 300k, On the other hand, the restoring force perpendicular
to a layer is quite small; hence the frequeney of oscillation w, of an atom in the
z direction perpendicular to o layer is so small that fw, << 300k, On the hasis of
this model, what is the molar specific heat (at constant volume) of graphite at
300°K?

Consider a solid of ecompressibility x. Assume that the atoms in this solid are
arranged on a regular eubic lattice, the distance between their nearest neighbors
being a. Assume further that a restoring force —wy Aa acts on a given atom
when it i« displaced by a distance Aa from its nearest neighbor.
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7.13

7.14

7.15

7.16

7.17

7.18

7.19

PROBLEMS

(@) Usesimple reasoning to find an approximate relation between the spring
constant xy and the compressibility « of this solid. (Consider the force needed
to decrease the length of one edge of a solid parallelepiped by a small amount,)

(b) Estimate roughly the order of magnitude of the Einstein temperature
Op for copper (atomic weight = 63.5) by assuming that it is a simple cubic
structure with density 8.9 g em ™ and compressibility 4.5 % 10-1* cm? dyne!,
Show that the general expression (7-8-13) for E. becomes identical to the
simple expression (6-3-3) in the case where J = .

Consider an assembly of N, weakly interacting magnetic atoms per unit volume
at a temperature T and describe the situation classically. Then each magnetic
moment g can make any arbitrary angle # with respect to a given direction (call
it the z direction). In the absence of a magnetic field, the probability that
this angle lies between # and @ 4 df is simply proportional to the solid angle
2 sin @ df enclosed in this range. In the presence of a magnetic field & in the
2 direction, this probability must further be proportional to the Boltzmann
factor e P%, where ¥ is the magnetic energy of the moment u making this angle ¢
with the z axis. Use this result to calculate the classical expression for the mean
magnetic moment M, of these Ny atoms.

Consider the expression (7-8:20) for M. in the limit where the spacing between
the magnetic energy levels is small compared to kT, i.e., where 9 = gue/ /kT << 1.
Assume further that the angle # between J and the z axis is almost continuous,
i.e.,, that J is so large that the possible values of cos § = m/J are very elosely
spaced; to be specific assume that J is large enough that J9 >> 1. Show that in
this limit the general expression (7-8:20) for M. does approach the classical
expression derived in the preceding problem.

An aqueous solution at room temperature T contains a small concentration of
megnetic atoms, each of which has a net spin § and a magnetic moment g. The
solution is placed in an external magnetic field H pointing along the 2 direction.
The magnitude of this field is inhomogeneous over the volume of the solution.
To be specific, H = H(z) is a monotonic increasing function of z, assuming a
value H, at the bottom of the solution where z = 2z; and a larger value H,
at the top of the solution where z = z,.

(3) Let n.(z) dz denote the mean number of magnetic atoms whose spin
points along the z direction and which are located between z and 2 + dz.  What
is the ratio n(z:)/n.(z:)?

(b) Let n(z) dz denote the total mean number of magnetic atoms (of both
directions of spin orientation) located between z and # + dz. What is the ratio
n(z2)/n(2:)? Is it less than, equal to, or greater than unity?

(¢) Make use of the fact that pH << kT to simplify the answers to the pre-
ceding questions,

What fraction of the molecules of & gas have = components of velocity between
—7 and 45, where 7 is the most probable speed of the molecules? (Suggestion:
consult a table of the error function; see Appendix A:5.)

Use the results of Problem 5.9 to express the velocity of sound in an ideal gas
in terms of the most probable speed 7 of the molecules in the gas and the specific
heat ratio ¥ = ¢,/er of that gas.

In the case of helium (He) gas, what frastion of the molecules have molecular
speeds less than the speed of sound in this gas?

A gas of molecules, each of mass m, is in thermal equilibrium at the absolute
temperature T. Denote the velocity of a molecule by », its three cartesian com-



l' PROBLEMS 285

7.20

7.21

7.22

7.23

7.2¢4

ponents by ¢, v, and v, and its speed by v. What are the following mean
values:

(@) @ @ vy
() v.F (&) (v. + bv,)? where b is a constant
(c) vh, () o2

(If you need to calculate explicitly any integrals in this problem, you are the
kind of person who likes to turn cranks but dees not think.)
An ideal monatomie gas is in thermal equilibrium at room temperature T’ so
that the molecular velocity distribution is Maxwellian.

(a) If v denotes the speed of a molecule, caleulate (1/»). Compare this
with 1/4.

(b) Find the mean number of molecules per unit volume whose energy lies
in the range between e and e + de.
What is the most probable kinetic energy & of molecules having a Maxwellian
veloeity distribution? Is it equal to $mi?, where ¥ is the most probable speed of
the molecules?
A gas of atoms, each of mass m, iz maintained at the absolute temperature T'
inside an enclosure. The atoms emit light which passes (in the z direction)
through a window of the enclosure and can then be observed as a spectral line
in a spectroscope. A stationary atom would emit light at the sharply defined
frequency »,. But, because of the Doppler effect, the frequency of the light
observed from an atom having an « component of velocity v, is not simply equal
to the frequenecy »y, but is approximately given by

l'=l-"u(l +ﬂ—=
¢

where ¢ is the velocity of light. As a result, not all of the light arriving at the
spectroscope is at the frequency vy instead it is characterized by some intensity
distribution I(») dv specifying the fraction of light intensity lying in the fre-
quency range betweeh v and » + dv. Caleulate

(2) The mean frequency # of the light observed in the spectroscope.

(b) The root-mean square frequency shift (Av)wm. = [(¥ — )2} (measured
from the mean frequency) of the light observed in the spectroscope.

(¢) The relative intensity distribution 7(») dv of the light observed in the
spectroscope.
In a molecular beam experiment, the source is a tube containing hydrogen
at a pressure P, = 0.15 mm of mercury and st a temperature T = 300°K. In
the tube wall is a slit 20 mm X 0.025 mm, ppening into a highly evacuated
region. Opposite the gsource slit and one meter away from it is a second detector
slit parallel to the first and of the same size. This slit is in the wall of a small
enclosure in which the pressure § can be measured.

{a) How many H; molecules leave the source slit per second?

(b)) How many H; molecules arrive at the detector slit per second?

{¢) What is the pressure . in the detector chamber when a steady state
has been reached so that s is independent of time?
A thin-walled vessel of volume V, kept at constant temperature, contains a gas
which slowly leaks out through a small hole of area 4, The outside pressure is
low enough that leakage back into the vessel is negligible. Find the time
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required for the pressure in the vessel to decrease to 1/e of its original value.
Express your answer in terms of 4, ¥, and the mean molecular speed 7.

A spherical bulb 10 em in radius is maintained at room temperature (300°K)
except for one square centimeter which is kept at liquid nitrogen temperature
(77°K). The bulb contains water vapor originally at a pressure of 0.1 mm of
mercury. Assuming that every water molecule striking the cold area condenses
and sticks to the surface, estimate the time required for the pressure to decrease
to 1075 mm of mereury.

A vessel is closed off by a porous partition through which gases can pass by
effusion and then be pumped off to some collecting chamber. The vessel itself
is filled with a dilute gas consisting of two types of molecules which differ because
they contain two different atomic isotopes and have correspondingly masses
my and mg, The concentrations of these molecules are ¢, and ¢, respectively,
and are maintained constant inside the vessel by constantly replenishing the sup-
ply of gas in it by a steady slow flow of fresh gas through the vessel.

(a) Let ¢;" and ¢y’ denote the concentrations of the two types of molecules
in the eollecting chamber, What is the ratio e’/c:'?

(b) By using the gas UFg one can attempt to separate U?% from U238,

the first of these isotopes being the one useful in the initiation of nuclear-fission
reactions. The molecules in the vessel are then U2¥F1® and U2, (The
concentrations of these molecules, corresponding to the natural abundance of the
two uranium isotopes, are cus = 99.3 percent and cgs = 0.7 percent,) Calcu-
late the carresponding ratio eyss/cess of the molecules collested after effusion in
terms of their original concentration ratio css/cass-
A container has as one of its walls & membrane containing many small holes.
If the container is filled with gas at some moderate pressure po, gas will escape
by effusion into the vacuum surrounding the container. It is found that when
the container is filled with He gas at room temperature and at pressure p,
the pressure will have fallen to 3p, after one hour.

Suppose that the container is filled at room temperature and at total pres-

sure py with a mixture of helium (He) and neon (Ne), the atomic concentrations
of both species being 50 percent {i.e., 50 percent of the atoms are He and 50 per-
cent of them are Ne). What will be the ratio ng./nm of the atomic concentra-
tions of Ne to He after one hour? Express your answer in terms of the atomic
weights pn, of neon and g, of helium.
A box of volume ¥ containing an ideal gas of molecular weight p at temperature
T is divided into two equal halves by a partition. TInitially the pressure on the
left side is p:(0) and that on the right side is p2(0). A small hole of area A is now
introduced in the partition by opening a valve so that the molecules can effuse
through the resulting hole in the (thin) partition.

(a) Find the pressure p;(t) of the gas in the left side of the box as a function
of time,

(b) Caleulate the change of entropy AS of the whole gas after the final

equilibrium has been reached.
An enclosure contains a dilute gas at temperature 7', Some molecules can
escape into & vacuum by effusing through a small hole in one of the walls of the
container. Choose the z direction so as fo point along the outward normal to
the plane of this hole. Let the mass of a molecule be m and the z component
of its velocity be denoted by #..
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7.30

7.31

(@) What is the mean velocity component #. of a molecule inside the
container?

(b) What is the mean velocity component #i. of a molecule which has effused
into the vacuum?

The molecules of a menatomic ideal gas are escaping by-effusion through a small
hole in & wall of an enclosure maintained at absolute temperature 7',

(a) By physical reasoning (without actual calculation) do you expect the
mean kinetic energy & of a molecule in the effusing beam to be equal to, greater
than, or less than the mean kinetic energy & of a molecule within the enclosure?

{b) Calculate & for a molecule in the effusing beam. Kxpress your answer

in terms of &.
An enclosure contains gas at a pressure  and has in one of its walls a small hole
of area A through which gas molecules pass into a vacuum by effusion. In this
vacuum, directly in front of the hole at a distance L from it, there is suspended a
circular disk of radius B. It is oriented so that the normal to its surface points
toward the hole (see figure), Assuming that the molecules in the effusing beam
get scattered elastically from this disk, calculate the foree exerted on the disk
by the molecular beam.




Equilibrium between phases
or chemical species

THE LAST several chapters have elaborated both the macroscopic and the
microscopic aspects of the basic theory of Chapter 3. We are thus well pre-
pared to use this theory to discuss a number of important physical situations.
Up to now we have dealt almost exclusively with systems consisting of a
single ““‘component’ (i.e., of a single type of molecule or chemical species) and
a single “phase’ (i.e., a single spatially homogeneous state of aggregation).
But the situations of greatest interest are often more complicated. For
example, one may be interested in a single-component system consisting of
several phases (e.g., ice and water in equilibrium, or a liquid and its vapor in
equilibrium). Alternatively, one may be interested in a single-phase system
consisting of several components (e.g., a gas consisting of several types of
molecules which may react chemically with each other). Or, in the case of
greatest generality, one may be interested in systems consisting of several
components in several phases.

In this chapter we shall show how such more complicated systems can be
treated by the methods of statistical thermodynamics. Most of our considera-
tions will be independent of any particular microscopie models and will lead
to a number of very general results. These yield much valuable insight into
many systems of common occurrence. In addition, they are useful both in
establishing important relationships between various macroscopic quantities
and in furnishing suitable starting points for detailed microscopic caleulations.

GENERAL EQUILIBRIUM CONDITIONS

The following sections will amplify the discussion of Sec. 3-1 with the aim of
examining equilibrium conditions for systems in various physical situations.

288
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8:1 Isolated system

Consider a thermally isolated system A. From our discussion of See. 3-1,
as summarized in the second law of thermodynamics, we know that any spon-
taneously occurring process ig such that the entropy of the system tends to
increase, In statistical terms this means that the system tends to approach
a situation of larger intrinsie probability. In any such process the spontaneous
change of entropy satisfies thus the condition

AS >0 (8:1-1)

It follows that if a stable equilibrium situation has been attained where no
further spontaneous processes (other than ever-present random fluctuations)
can take place, then this is a situation where § is maximum; i.e., it is the most
probahle situation for the system subject to the given constraints. Hence one
can make the following statement.

For a thermally isolated system, the stable equilibrium situa-
tion is characterized by the fact that

’ S = maximum (8:-1-2)

This means that if one goes away from the situation where § = 8pax is maxi-
mum, then for very small departures from this equilibrium situation S does not
change (dS = 0 for an extremum), but for larger departures S nust decrease.
That is, the change of entropy A,S measured from a stable equilibrium situa-
tion is such that

A8 =8 —'Smax .0 (8:1:3)

Example 1 Let us illustrate the situation schematically (see Fig. 8-1:1),
Suppose that the system is characterized by a parameter ¥ (or by several such
parameters) which is free to vary. (For example, the system might consist
of ice and water, and y might denote the relative concentration of ice.) Then

h

-
o

v

o ' L

Fig. 8-1-1 Diagram illustrating the dependence of the entropy S on a
parameter i,
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In a thermally isolated system of the kind discussed, the first law of
thermodynamics implies that
Q=0=W+ Al
or = —AF

(8-1-4)

If the external parameters of the system (e.g., its volume) are kept fixed,
then no work gets done and
E = constant (8-1-5)

while § tends to approach its maximum value in accordance with (8-1-2).
The argument leading to (8:1-2) can be phrased in more explicit statistical
terms, Suppose that an isolated system is deseribed by a parameter y (or by
several such parameters) so that its total energy is constant. Let 2(y) denote
the number of states accessible to the system when the parameter has a given
value between y and y + 6y (8y being some fixed small interyal); the corre-
sponding entropy of the system is then, by definition, S(y) = & In 2. If
the parameter y is free to vary, then the fundamental statistical postulate
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asserts that in an equilibrium situation the probability P(y) of finding the
system with the parameter between y and y + 8y is given by

> P(y) = Q(y) = eS®it (8:1-6)

Equation (8 1-6) shows explicitly that if y is left free to adjust itself, it
will tend to approach a value 7 where P(y) is maximum, i.e., where S(y) is
maximum. In equilibrium the relative probability of the occurrence of a
fluctuation where 3 # 7 is then given by (8-1-6) as

P) _  asie ]
P 1)

where A8 = S(y) — Smax-

The relations (8-1-6) or (8- 1-7) provide more quantitative statements
than the assertion (8-1-2) because they imply not only that the system tends
to approach the situation where S = Suux, but they also allow one to calculate
the probability of occurrence of fluctuations where 8 % Sqp.

Remark If 8 depends on a single parameter y, then its maximum oeceurs
for some value y = § determined by the condition

a8

=50

ay

Expansion of § ahout its maximum gives then

2
8) = So +3(G3) W=D+ -

where the second derivative is evaluated at ¥ = 7 and must be negatfive to
guarantee that S is maximum wheny = §. Thus one can write (6*S/dy*) =
— |58 /9y?| and obtains by (8-1-6) the explicif expression

PG) = o0 [~ 3| 55| 0 — 0] (5:1-8)

for the probability of fluctuations near the equilibrium situation where
4 = . The fluctustions are thus deseribed by a Gaussian distribution with
a dispersion given by

(y —5‘5_’=1¢[%§

8 ’ 2 System in contact with a reservoir at constant temperature

Knowing the equilibrium conditions for an isolated system, one can readily
deduce similar conditions for other situations of physical interest. For
example, much experimental work is done under conditions of constant tem-
perature. Thus we should like to investigate the equilibrium conditions for a
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Fig. 8:2-1 A system A in contact with a
heat reservoir at temperature T,

system A in thermal contact with a heat reservoir 4° which is at the constant
absolute temperature 7.

The combined system A(® consisting of the system 4 and the heat
reservoir A’ is an isolated system of the type discussed in See. 8:1. The
entropy S© of A™ then satisfies the condition (8- 1-1) that in any spontaneous
process

A8 > () (8:2-1)

But this condition can readily be written in terms of quantities which refer
only to the system A of interest. Thus

AS" = AS + AS' (8:2-2)

where AS is the entropy change of A and A8’ that of the reservoir A’ in the
process under consideration. But if 4 absorbs heat © from the reservoir
A’ in this process, then A' absorbs heat (— @) and suffers a corresponding
enfropy change

since it remains in internal equilibrium at the constant temperature T..
Furthermore, the first law gives

Q=AE+W

where AF is the internal energy change of 4 and W the work done by A
in the process under consideration. Thus (8:2:2) can be written

Q _ToAS—(ME+W) ATS—E) —W
TD‘_ TQ 5 Tn

ot AS©® = —AF =W
To

AS® = AS —

(8-2-3)

where we have used the fact that 7 is a constant and have introduced the
definition

Fy=H— T (8-2-4)
This reduces to the ordinary Helmholtz free energy F = E — T8 of the system
4 if the latter has a temperature 7T equal to that of the heat reservoir A Of



SYSTEM IN CONTACT WITH A RESERVOIR AT CONSTANT TEMPEBATURE 288

course, in the general case when A is not in equilibrium with A’ its tempera-
ture T is not necessarily equal to T'.

The total entropy change A8 in (8-2-3) is expressed completely in terms
of quantities that refer only to the system A of interest, The fundamental
condition (8-2-1) then allows us to draw some interesting conclusions, Since
Ty is in all ordinary cases positive, one gets

—AF, > W (8-2-5)

This relation implies that the mazimum work which can be done by a system
in contact with a heat reservoir is given by (—AF,). (This is the reason for
the name “free energy’ given to F.) The maximum work corresponds, of
course, to the equals sign in (8:2-1) and is obtained when the process used is a
quasi-static one (so that A is always in equilibrium with A’ and T = T).
Equation (8 2:5) should be compared with the rather different relation (8:1:4)
which holds for the work done by an isolated system.

If the external parameters of the system A (e.g., its volume) are kept
fixed, then W = 0 and (8-2-5) yields the condition

AFy <0 (8:2-6)

This equation is analogous to Eq. (8-1-1) for an isolaled system. It implies
that if a system in thermal contact with a heat reservoir, its free energy tends
to decrease. Thus we arrive at the statement:

If a system, whose external parameters are fixed, is in thermal
contact with a heat reservoir, the stable equlibrium situation is
characterized by the condition that

B Fy = minimum (8:2:7)

This last condition can again be phrased in more explicif statistical terms.
Consider the external parameters of A4 to be fixed so that W = 0, and suppose
that A is described by some parameter y. The thermodynamic funetions of
A (e.g., 8 and E) have definite values S(y:) and E(y1) when y has a given value
¥ = y1. If the parameter changes to any other value y, these functions change
by corresponding amounts AS = S(y) — S(y:) and AE = E(y) — E(y1) = Q.
The entropy of the heat reservoir A’ also changes since it absorbs some heat,
and the corresponding change in the total entropy of A is given by (8-2:3)
(with W = 0) as

AS = — ARy (8-2-8)
Ty
But in an equilibrium situation the probability P(y) that the parameter lies
between y and y + 8y is proportional to the number of states Q% (y) accessible
to the total isolated system A when the parameter lies in this range. Thus
one has, analogously to (8-1-6),

P(y) = Q) = oS8 ik (8:2:9)




209/ secTion 8-+ 3

But by (8-2-8)
SO (y) = SO (y,) — _F:P = 8O (y,) _ Foly) — Folyn)

Ty

Since y, is just some arbitrary constant value, the corresponding constant terms
can be absorbed in the constant of proportionality of (8:2-9) which then
becomes

=3 Ply) o e Folw ik (8-2-10)

This relation shows directly that the most probable situation is one where
Fois a minimum. Of course, if £ is a constant independent of y (as it would be
for an isolated system), then Fo = E — Ty8(y) and (8 2-10) reduces properly
to the relation (8-1:6) which involves only the entropy.,

Remark The relation (8:2:10) is, of course, akin to the canonical dis-
tribution. According to the latter the desired probability is given by

P« Nehr,  fo=@T0 | @210

where the sum extends over all states r for which the parameter lies between
wand y + dy. If R(E; y) denotes the number of states for which the param-
eter lies between y and y + Eymdwhoseenergyheabetweenﬂ'de-i- 8E,
the relation (8:2-11) becomes

P(y) = 3 QE;y) ehs
E

where the sum is now to be taken over all possible energy intervals. The sum-
mand has as a function of F the usual very sharp maximum near some value
E(y) which depends on y and which is equal to the mean energy of the system
for this value of y. Hence only terms near this maximum contribute appre-
ciably to the sum and

P(y) « Q(E; y) ePE® = o3lkPifly) = ghartw)

8-3 System in contact with a reservoir at constant temperature
and pressure

Another case of physical interest is that where a system A is maintained under
conditions of both constant temperature and constant pressure. This is a
situation of frequent occurrence in the laboratory, where one may carry out an
experiment in a thermostat at, say, atmospheric pressure, A situation such
as this implies that the system A is in thermal contact with a heat reservoir
A’ which is at a constant temperature Ty and at a constant pressure p;. The
system A can exchange heat with the reservoir A'; but the latter is so large
that its temperature 7', remains unchanged. Similarly, the system 4 can
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Fig. 8:3:1 A system A in contact with a
reservoir at constant temperature 7y and
constant pressure pg.

change its volume V at the expense of the reservoir A’, doing work on the
reservoir in the process; but again A’ is so large that its pressure po remains
unaffected by this relatively small volume change.

Remark The system A’ may be a single reservoir with which 4 can interact
both by heat transfer and pressure work. Alternatively, A’ may be a com-
bination of two reservoirs, one at temperature T with which 4 can inferact
only by heat transfer, and the other at pressure py with which 4 can interact
only by pressure work,

The analysis of the equilibrium conditions for a system A under these
conditions is very similar to that of the last section. Onee again the entropy
S@ of the combined system AW = A 4+ A’ satisfies the condition that in any
spontaneous process

ASO = AS 4+ AS' >0 (8-3-1)

If A absorbs heat @ from A’ in this process, then AS’ = —Q/T,. But now
the first law applied to A gives

Q) = AE + py AV -+ WH

where py AV is the work done by A against the constant pressure p, of the
reservoir A’ and where W* denoles any other work done by A in the process.
(For example, W* might refer to eleetric or magnetic work done by A.)
Hence one can write

AS® = A — 2 = L (148 — Q] = = [ToAS — (AL + po AV + W*)]
1] ] ]

1 A
‘ﬁ' [A(TDS — B V) W

—AGh — W
Ty

ar ASO = (8-3-2)

Here we have used the fael that Ty and p; are both constant and have intro-
duced the definition
G‘;EE_—-TuS—i—pul" (833)

This reduces to the ordinary Gibbs free energy ¢ = E — T8 + pV for the
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system A when the temperature and pressure of the latter are equal to those of
the reservoir 4,

The total entropy change AS™ in (8-3-2) is again expressed completely
in terms of quantities which refer only to the system A. The fundamental
condition (8:3-1) implies then that

—AGy, > W* (8-3-4)

This asserts fhat the mazvmum work (other than work done on the pressure
reservoir) which can be done by the system is given by (—AGy). (This is the
reason that 7 is also called a “free energy.”’) The maximum work corresponds
again to the equals sign in (8-3:1) and corresponds to a quasi-slatic process.

If all the external parameters of A, exeept its volume, are kept fixed, then
W#* = 0 and (8-3-4) yields the condition

AGy <0 (8-3-5)
Hence one concludes that

If a system is in contaet with a reservoir at constant temperature
and pressure and if its external parameters are fixed so that it
ean only do work on the pressure reservoir, then the stable equi-
librium situation is characterized by the condition that

[ Gy = minimum (8-3-6)

This last condition can again be phrased in more explicit statistical terms.
The probability that a parameter y of the system 4 assumes a value between
y and y 4+ 8y is given by

P(y) & oS0}k (8:3:7)

But with W* = 0, the change in S due to a parameter change away from
some standard value y; is by (8:3-2)

ASO = — B0 (8-3-8)
8O (y;) — Goy) ; Golyr)

0

s0 that 8O (y)

I

Since y, is just some constant, (8:3:7) leads to the proportionality
b P(y) = e @ik (8-3-9)

This again shows explicitly that the most probable situation is one where @, is
a minimum and allows calculation of the probability of fluctuations about this
equilibrium.

8-4 s tability conditions for a homogeneous substance

As a simple example of the preceding discussion, consider a one-component
system in a single phase (e.g., a simple liquid or solid). Tocus attention on
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Fig. 8-4:1 A small portion 4 of a hamo- @
geneous substance is singled out for consider-

ation to examine the conditions for stable

equilibrium.

some small, but macroscopic, part 4 of this system where A consists of some
fixed number of particles. The rest of the system is then relatively very large
and acts like a reservoir at some constant temperature 7' and constant pressure
po. By (8-3:5) the condition for stable equilibrium applied to A is that for
this system the function

(7o

E — ToS + poV = minimum (8-4-1)

Stability againsi temperature variations Let T and V be the two inde-
pendent parameters specifying the maerostate of A. Consider first a situation
where V is considered fixed but where the temperature parameter 7' is allowed
to vary. Suppose that the minimum of &y occurs for T' = T when Go = Gumin.
Expanding G about its minimum and writing AT = 7' — 7, one obtains

aliy

1
Al =0y =G = (—=) 4T+ =
N (aT)VM 2(

9%

=) (AT):+ - - - (842

o), amr k- @D
Here all derivatives are evaluated at 7 = 7. Since ¢ is a minimum, its sta-
tionary character at this point implies that A.(f = 0 in a first approximation;
i.e., the first-order terms proportional to AT must vanish so that

aGha) in: . i
(ﬁ_)r =0 for?'=1T (8-4-3)

The fact that Gy is not only stationary but & minimum at T = T requires that
in next approximation, when terms in (AT)? become important, one has

Al 2> 0

62‘?0 -~ . m o b
or (-a—ﬁ)v >0 for T =T (8-4-4)

Y1

Fig. 8-4:2 Schematic dependence Gt
of Go(T,V) on the temperature T'
at a fixed volume V,

"y
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Using (8:4:1), the condition (8-4-3) that @, be stationary becomes, when

V is kept constant,
o) _ (af as) _ i
@), - Gr), - (), -0 @49

But by the fundamental thermodynamie relation
TdS = dE + pdv (8-4-6)
it follows that for V constant, d¥ = 0, and

r(28) - (2
aT )y — \aT)v
Thus (8-4-5) becomes

e T\ (0
@), = (-7) @), ety
Setting this equal to zero where T = T, one gets simply
T = TU (8‘4‘8)

Hence we arrive at the obvious eonclusion that a necessary condition for equi-
librium is that the temperature of the subsystem A is the same as that of the
surrounding medium.

Now we proceed to the second-order terms to satisfy the condition (8-4-4),
which guarantees that Gy is actually & minimum. By (8-4-7),

G Ty (0F T\ (8B
(W) =T (a’f') +(1- ) (GF), 20

When this is evaluated at the minimum of &, where T = T, by virtue of
(8-4-8), the second term vanishes and one obtains simply

Jb
(EI;)V =0 (8:4:9)
But this derivative is just the heat capacity Cy at constant volume, Thus
[ Oy 20 (8-4-10)

The condition (8-4-9) or (8-4-10) was already derived previously in (3:7-16)
and in (6-5-8). It is a fundamental condition required to guarantee the
intrinsic stability of any phase.

This condition is physically very reasonable. Indeed, the following state-
ment, known as ‘“Le Chételier’s principle,” must be true quite generally:

P If a system is in stable equilibrium, then any spontaneous change of
its parameters must bring about processes which tend to restore the
system to equilibrinm.

If this statement were not true, any slight fluctuation leading to a deviation
from equilibrium would result in an increase of this deviation so that the
system would clearly be unstable. To illustrate the principle in the present



—

| STABILITY CONDITIONS FOR A HOMOGENOUS SUBSTANCE 289

example, suppose that the temperature 7' of the subsystem A4 has increased
above that of the surroundings A’ as a result of a spontaneous fluctuation.
Then the process brought into play is heat transfer from the system 4 at the
higher temperature to the surroundings 4’, and a resulting decrease in the
energy B of A (ie., AE < 0). But the stability condition expressed by
Le Chételier’s principle requires that this process, induced by the original
temperature increase, is such that the temperature is again decreased (i.e.,
AT < 0), Hence it follows that AE and AT must have the same sign, i.e.,
that aE/aT > 0 in agreement with (8:4-9).

Stability against volume fluctuations Suppose that the temperature of
the subsystem A ig considered fixed at T' = T, but that its volume ¥ is
allowed to vary. Then one can write

o 5 e aGD 1 6EGG SR e o e

where AV = ¥V — 7, and the expansion is about the volume V' = ¥ where
Gy is minimum. The condition that @, is stationary demands that

a 9 — - -
(B—V)y =10 (8-4-12)
Using the definition (8-4-1)

G\ _ (oB) _ g (38
(BV )*.-' 2 (BV)T Ty (W)r + o

But, by virtue of (8-4-6),

a8 1) b
' : (W)T z (a_v) 2
LA 2 BN
HET!.CE G—V)g- = T (W)T _ﬁ Tu (BV)T + Pa

aG“ — i ] . .
or (W)T = —p+pe (8:4:13)

since T = Ty The condition (8-4-12) then implies that at equilibrium, where
G is minimum and V = V, the corresponding value of the pressure  is such
that |

7= p (8-4-14)

Again this is a rather obvious result which asserts merely that in equilibrium
the pressure of the subsystem A must be equal to that of the surrounding
mediuni.

The condition that @& is actually a minimum is that A.Gy, = 0; or by
(8-4-11), that the second derivative of G, is positive. By (8:-4-13) this yields

the condition
3__._.6” s, (0P A
(aV* )-,-. o (aV)r 20 Bt
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In terms of the isothermal compressibility defined by

L R
K= V(&;ﬁ)r (8-4-16)
the condition (8-4-15) is equivalent to
= k=0 (8-4-17)

The stability condition (8-4:15) is again a physically quite reasonable
result consistent with Le Chételier’s principle. Suppose that the volume of
the subsystem A has increased by an amount AV as a result of a fluctuation.
The pressure j of 4 must then decrease below that of its surroundings (i.e.,
Ap < 0) to guarantee that the net force exerted on A by its surroundings is of
a direction such that it tends to reduce its volume to its former value.

Density fluctuations The preceding considerations permit one also to eal-
culate the fluctuation in the volume V of the small subsystem 4. The most
probable situation is that where ¥V = ¥ is such that @, is a minimum,
Go(V) = Guin. Let ®(V) dV denote the probability that the volume of A lies
between V and V 4 dV. Then one has by (8-3-9)

(V) dV « et gy (8-4-18)

But when AV = V — ¥ is small, the expansion (8-4-11) is applicable. By
virtue of (8:4-12) and (8:4-15) it yields

-. C1(0BY (s g AT

6u(V) = Gan = 3 (), (A7) = G+ 72
where we have used the definition (8-4-16) in the last step. Thus (8-4-18)
becomes

2T,V

where we have absorbed Gy, into the proportionality constant B. This con-
stant can, of course, be determined by the normalization requirement that the
integral of (8-4-19) over all possible values of the volume V is equal to unity.*

The probability (8-4-19) is simply a Gaussian distribution with a maxi-
mum at the volume V = ¥. Thus ¥ is also equal to the mean volume ¥ and
the general result (1-6-9) implies that (8-4-19) yields a dispersion of the
volume equal to

®(V)dV = Bexp [— u] dV (8-4-19)

AV = (V — V)2 = kT W« (8-4-20)

The presence of such volume fluctuations in a small amount of material
containing a fixed number N of molecules implies, of course, corresponding
fluctuations in the number n = N/V of molecules per unit volume (and thus

* This integral can be extended from V = —= to V = + o, since the integrand
(8:4:19) becomes negligible when V differs appreciably from the value ¥ where @ is
maximum,
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also in the mass density of the substance). The fluctuations in n are centered
about the value 1 = N/V, and for relatively small values of An = n — # one
has An = —(N/V?) AV = —(#/V) AV. Hence (8-4-20) implies for the dis-
persion in the number density n the result

(An)? = (fﬁ) @av: = (kg“ ) (8-4-21)

Note that this depends on the size of the volume ¥ under consideration.
An interesting case arises when

ap
(6_1.,)?.., 0 (8-4-22)

Then k — = and the density fluctuations become very large.* The conditions
of temperature and pressure which are such that (85/8V)r = 0 define the
go-called “critical point” of the substance. The very large density fluctua-
tions at this point lead to a very large scattering of light. As a result a sub-
stance, which is ordinarily transparent, will assume a milky white appearanee
at its eritical point (e.g., liquid CO, when it approaches its critical point at a
temperature of 304°K and pressure of 73 atmospheres). This impressive
phenomenon is known as “‘eritical point opalescence.”

Remarlk The result (8-4- 19}, proved under mndiﬁm of 'ﬁ stant t
perature, can be shown to remain valid even if beth ¥V and .'I"
vary simultaneously (see Problem 8.1). Hence ‘ﬁkﬂa
fluctuations is applicable to the actual case of ex tal

EQUILIBRIUM BETWEEN PHASES

8-5 Equilibrium conditions and the Clausius-Clapeyron equation

Consider & single component system which consists of two phases which we
shall denote by 1 and 2. For example, these might be solid and liquid, or
liquid and gas. We suppose that the system is in equilibrium with a reservoir
at the constant temperature 7 and constant pressure p so that the system
itself has always a temperature T’ and a mean pressure p. But the system can
exist in either of its two possible phases or in a mixture of the two. Let us
begin by finding the conditions which must be satisfied so that the two phases
can coexist in equilibrium with each other,

In accordance with the discussion of Sec. 83, the equilibrium condition
is that the Gibbs free energy @ of the system is a minimum,

G=FE— T8 4+ pV = minimum (8-5-1)

* They do not become infinite, since the approximations which allowed us to neglect in
(8:4-11) terms beyond (4V)? are then no longer justified.
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System g, 8:5:1 A system consisting of two phases
maintained at constant temperature and
pressure.

Let

v

g:(T,p)

the number of moles of phase ¢ present in the system
the Gibbs free energy per.mole of phase 7 at this tem-
perature 7 and pressure p

Then ¢ can be written
G = ng1 + vege (8-5-2)

The conservation of matter implies that the total number » of moles of the
substance remain constant, i.e.,
»1 + vy = » = constant (8-5-3)

Thus one can take »; to be the one independent parameter which is free to
vary. In equilibrium (8:5-1) requires that G be stationary for changes in vy;
thus

dG - gldﬂ;“i—gzdﬂ'z =l

or (g1 — g2) dvr =0

since dv; = —dyy by (8:5-3), Hence we obtain as a necessary condition for
equilibrium that

B 0 =g 8-5-4)

Clearly, when this condition is satisfied, the transfer of a mole of substance
from one phase to the other does not change @ in (8-5:2); hence G is then
stationary as required.
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Let us look at the situation more closely. For given 7 and p, g:(T,p) is
a well-defined function characteristic of the properties of phase 1; similarly,
g+(T,p) is a well-defined function characteristic of phase 2,

If T and p are such that g, < g, then the minimum value of G in (8-5-2)
is achieved if all the v moles of substance fransform into phase 1 so that
(7 = vg1. Phase 1 is then the stable one.

If T and p are such that g;: > g2, then the minimum value of G is achieved
if all the substance transforms into phase 2 so that @ = vgy,. Phase 2 is then
the stable one.

If T and p are such that g, = g, then the condition (8-5-4) is satisfied
and any amount », of phase 1 can coexist in equilibrium with the remaining
amount vy = » — v, of phase 2, The value ¢ remains unchanged when », is
varied. The locus of points where T and p are such that the condition (8-5-4)
is fulfilled then represents the ‘“phase-equilibrium line’ along which the two
phases can coexist in equilibrium. This line, along which g, = g, divides the
»T plane into two regions: one where g; < gs, so that phase 1 is the stable one,
and the other where g, > gs:, so that phase 2 is the stable one.

It is possible to characterize the phase-equilibrium line by a differential
equation. In Fig. 8 52 consider any point, such ag A, which lies on the phase-
equilibrium line and corresponds to temperature T and pressure p. Then the
condition (8-5-4) implies that

g:(T,p) = g2(T,p) (8:5-5)
Consider now a neighboring point, such as B, which also lies on the phase-

equilibrium line and corresponds to temperature 7' + d7 and pressure p + dp.
Then the condition (8-5-4) implies that

g(T + dT, p + dp) = gs(T + dT, p+ dp) (8-5-6)
Subtracting (8-5:5) from (8-5-6) vields the condition
dg, = dg, (8:5-7)
(29 ap 4 (%
where dgi = (BT)p dl + (Bp)-r dp

A

P

S

Phase'1

Fig. 8:5:2 Pressure—temperature plot showing the domains of relative stabil-
ity of two phases and the phase-equilibrium line.
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ig the change in the molar Gibbs free energy for phase ¢ in going from point A
to point B.

But the change dg for each phase can also be obtained by using the
fundamental thermodynamie relation

de=Tds — pdv
expressing the change in mean molar energy e of this phase. Thus
dg=d(e — Ts+ pv) = —sdT + vdp (8:5-8)

Hence (8-5-7) implies that
—851dT +vidp = —82dT + v2dp

(82 — 81) dT = (o — v1) dp
dp _ As :
oK AR (8-5-9)

where As = 8, — s;and Ay = v, — vy, This is called the “Clausius-Clapeyron
equation.” Consider any point on the phase-equilibrium line at a temperature
7' and corresponding pressure p. Equation (8:5:9) then relates the slope of
the phase-equilibrium line at this point to the entropy change As and volume
change Av of the substance in “crossing the line” at this peint, i.e., in under-
going a change of phase at this temperature and pressure. (Note that the
quantities on the right side of (8-5-9) do not need to be referred to one mole of
the substance; both numerator and denominator can be multiplied by the
same number of moles, and dp/dT must obviously be left unchanged.)

Since there is an entropy change associated with the phase transformation,
heat must also be absorbed. The “latent heat of transformation” Ly, is defined
as the heat absorbed when a given amount of phase 1 is transformed to phase 2.
Since the process takes place at the constant temperature T, the corresponding
entropy change is simply

AS = 8y — 8 = -2 (8:5-10)

where L, is the latent heat at this temperature. Thus the Clausius-Clapeyron
equation (8-5-9) can be written

[ i A0 Lt (8:5-11)

Clearly, if V refers to the molar volume, then Lis is the latent heat per mole; if
V refers to the volume per gram, then L, is the latent heat per gram.
Let us discuss a few important illustrations,

Phase transformations of a simple substance Simple substances are
capable of existing in phases of three types: solid, liquid, and gas. (There may
also be several solid phases with different crystal structures.) The phase-
equilibrium lines separating these phases appear typically as shown in Fig.
8-5-3. These lines separate solid from liquid, liquid from gas, and solid from
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Fig. 8:5:3 Phase diagram for a
simple substance. Point A is the
triple point, point C the critical
point.

gas.* The three lines meet at one common point 4, called the “triple point’’;
at this unique temperature and pressure arbitrary amounts of all three phases
can therefore coexist in equilibrium with each other. (This is the property
which malkes the triple point of water so suitable as a readily reproducible
temperature standard.) At point €, the so-called “critical point,” the liquid—
gas equilibrium line ends. The volume change AV between liguid and gas has
then approached zero; beyond € there is no further phase transformation, since
there exists only one '‘fluid"” phase (the very dense gas has become indistin-
guishable from the liquid).

In going from solid (s) to liquid (I) the entropy of the substance {or degree
of disorder) almost always increases.t Thus the corresponding latent heat L,
is positive and heat gets absorbed in the transformation. In most eases the
solid expands upon melting, so that AV > 0. In that case the Clausius-
Clapeyron equation (8:5-11) asserts that the slope of the solid-liquid equilib-
rium line (i.e., of the melting curve) is positive. There are some substances, like
water, which contract upon melting so that AV < 0. For these the slope of
the melting curve must thus be negative (as drawn in Fig. 8-5-3).

Approximate calculation of the vapor pressure The Clausius-Clapeyron
equation can be used to derive an approximate expression for the pressure of a
vapor in equilibrium with the liquid {or solid) at a temperature T. This pres-
sure is called the “vapor pressure” of the liquid (or solid) at this temperature.
By (8:5-11)
dp. 1
aT = T v (8:5-12)
* The gas phase is sometimes algo called the “vapor phase.!" The transformation from
solid to liquid is called "“melting,” that from liquid to gas is called “vaporization,"” and that
from golid to gas is called “sublimation.”
t An exceptional case oceurs for solid He? in a rcertain temperature range where the
nuclear gpins in the solid are randomly oriented while those in the liquid are aligned anti-
parallel to each other so as to satisfy the quantum-mechanical Fermi-Dirac statistics.
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where I = l;; is the latent heat per mole and v is the molar volume, Let 1
refer to the liquid (or solid) phase and 2 to the vapor. Then

Ay =g — vy = g

since the vapor is much less dense than the liquid, so that v, 3> v,. Let us also
assume that the vapor can be adequately treated as an ideal gas, so that its
equation of state is simply

pue = RT

Then Ay = RT/p and (8:5-12) becomes

TApi el e
>daT — RT: (8-5-13)
Assume that [ is approximately temperature independent. Then (8-5-13) can
be immediately integrated to give

Inp = — Ff.f + constant

or = poe” UET (8-5-14)

where p, is some constant. This shows that the vapor pressure p is a very
rapidly increasing function of T, the temperature dependence being determined
by the magnitude of the latent heat of vaporization.

8 . 6 Phase transformations and the equation of state

Consider a single-component system. Suppose that the equation of state for a
mole of this substance

p = p(,T) (86-1)

is assumed known (by theoretical considerations or from empirical information)
for the range of variables where the substance is a gas or aliquid. For example,
the equation of state might be the van der Waals equation mentioned in
(5-8:13), i.e.,

(p+§)(v—b)=m

The equation of state (8:6- 1) can be represented in a two-dimensional diagram
by drawing a set of curves of mean pressure p versus the molar volume v for
various values of the temperature T. Such a diagram is illustrated schemati-
cally in Fig. 8:6-1.*

Consider the system described by (8:6-1) to be in contact with a reservoir
at given temperature T and pressure p. The intensive parameters T and p can
then be regarded as the independent variables of the problem. Focus attention

* Upon multiplication by v?, the van der Waals equation is seen to be cubic in v. Thus
it also gives rise to S-shaped curves of the type illustrated in Fig. 8-6-1.
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(i} 5
Fig. 8:6-1 Schematic diagram showing curves of constant temperature forl
an equation of state (8:6+1) describing the fluid states of a substance. The
point C is the critical point. In the shaded region mistures of two phases can
coexist along the horizontal lines.

on a particular eurve of constant temperature T' (or ‘‘isotherm™) of the equation
of state (8:6-1). A curve of this type is illustrated in Fig. 8-6-2 and contains
a wealth of information. If at the given temperature T' the pressure is suffi-
ciently low so that p < p;, the curve yields, correspondingly, a unique value of
v. There exists then a well-defined single phase. Here the slope of the curve
dp/ov < 0 as is necessary by the stability condition (8:4-15). Also, |ap/ov| is
relatively small, so that the compressibility of this phase is relatively large, as
would be the case for a gaseous phase.

If at the given temperature T the pressure is sufficiently high that p > pa,
then there exists again a single phase with a unique value of ». The stability
condition dp/dv < 0 is again satisfied, but [9p/dv| is relatively large. Hence
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By Uy v

Fig. 8-6:2 Plot of the equation of state (8:6'1) for a particular temperature 7',

the compressibility of this phase is relatively small as would be the case for a
liquid phase.

Now consider the intermediate pressure range p; < p < pa. At the given
temperature 7' there are now, for each pressure p, three possible values of the
volume ». The question is which value of v corresponds to the most stable
situation. We see immediately that the stability condition dp/dv < 0 is vio-
lated in the region ¥ < v < v» where the curve has positive slope. Thus
values of v in this range are certainly excluded since they would lead to an
intrinsically unstable situation. But this still leaves two possible values of »
between which one has to decide on the basis of relative stability. On the
diagram, where we have labeled points on the curve by letters, one has fo ask
which is the more stable situation—where v = v4 or where v = vy This
question then reduces, by virtue of the discussion of Sec. 83, to an investiga-
tion of the relative magnitude of the molar-free energies ga(7,p) and ga(T,p).

Changes of the function ¢ = ¢ — T's ++ pv can readily be computed along
the constant temperature curve of Ifig. 8-6-2. TFrom the general thermody-
namie relation

T ds = de + p dv
it follows immediately that for a pressure change where 7' is kept constant,
dg = d{e — Ts + pv) = vdp (8-6-2)

Differences between g on any point of the curve of Fig, 8:6-2 and some
standard point O are then given by

9‘—Uo=fp:vdp (8-6-8)

The right side represents geometrically the area between the curve and the p
axis in the range between py and p. Note that, starting from the point O on
the curve and performing the integral (8-6-3) along it, the value of this
integral first increases until one reaches the point N, then decreases until one
reaches the point J/, and then inereases again as one continues toward the point
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M. Hence a curve of g(T',p) versus p along the constant-temperature curve
has the appearance shown in Fig. 8 6-3. (The points on this curve are labeled
to correspond to those of Fig. 8 6-2.)

From this diagram one can readily see what happens for various values of
the pressure. At O only the high-compressibility phase (in our example, the
gas) exists. When the pressure is increased to the range py < p < p», there are
three possible values of g. The values of g along the curve OKXN correspand
to large values of ¥ > vy in the region of high compressibility; this corresponds

' to the gas phase. The values of g along the curve JXM R correspond to small
values of » < v; in the region of low compressibility; this corresponds to the
liquid phase. The values of g along the curve JDN correspond to the intrinsi-
cally unstable range v, < @ < vy, If p is only slightly larger than pi, then
Fig. 8-6-3 shows that the gas phase, with volume near vk, has the lower value
of g and is thus the more stable one. This situation prevails until p is increased
to the extent that it reaches the value p = px corresponding to the point X
where the curves KXN and JXM in Fig. 8-6-3 intersect. At this point the
free energies g of both gas and liquid hecome equal. This then is the pressure
at which arbitrary proportions of both these phases can coexist in equilibrium
with each other. If the pressure is inereased beyond py, the curve JXM cor-
responding to the liquid phase yields the lower free energy g so that this phase
is the more stable one. Af{ the point X the system shifts, therefore, from the
curve DK XN (corresponding to the gas phase) over to the curve JXM R (cor-
responding to the liquid phase). Thus px corresponds to the pressure where
the phase transformation from gas to liquid occurs.

Let us look at the phase transformation in greater detail. Assume that
in Fig. 8:6-2 the pressure of the phase transformation is py = pyx. Then 4

Fk' : N

T =constant

i Py o, i

Fig. 8:6-3 Schematic illustration showing, as a function of pressure p, the
behavior of g(T,p) implied by the curve of Fig. 8+6-2.
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and B both correspond to the point X in Fig. 8-6:3. Furthermore vp is the
molar volume of the gas and vy that of the liquid at the pressure and tempera-
ture of the phase transformation. If under these circumstances a fraction £
of the mole of substance is in the gaseous phase, then the total molar volume
Vit 18 given by

Vior = Ep + (1 — E)uy (8-6-4)

In the course of the phase transformation the total molar volume changes con-
tinuously from the value vz for the gas to the value v4 for the liquid as the
fraction £ changes continuously from 1 to 0. In this process there will, of
course, be a change of entropy and an associated latent heat. In Fig, 8:6-2
the horizontal line BDA along which the phase transformation occurs is
characterized by the fact that

gr = ga (8-6-5)

or, by virtue of (8-6-3), by the fact that the integral

.{BNDJA vdp =0 (8:6-6)

when evaluated along the curve BNDJ A in Fig. 8-6-2. This integral can be
broken up into several parts giving contributions of different signs:

fBN”d?J+fNDudp+f;vdp—|—f:udp=g

(f:udp& f:::dp)+(— fJDﬂdp+fJAvdp) =

or area (DNB) — area (AJD) =0

where area (DN B) denotes the area enclosed by the straight line DB and the
curve DN B, and similarly, where area (AJ D) denotes the area enclosed by the
straight line A D and the curve AJD. Thus we have the resulf that the loca-
tion of the phase-transformation line A DB in Fig. 8 6-2 is determined by the
condition that

> area (A4JD) = area (DNB) (8-6-7)

Remark The molar entropy change As and associated latent heat I of the
tmnafnrmmtm can also be determined from the equation of state. Since T
is constant in the transformation so that dT = 0, one has simply

2 Bu) do= ( ) v (8:6-8)
whmwehavamdaMnxwallmhmnmtheMstep In going from A
to B in Fig, 8:6-2, the corr ing entropy change can then be computed
by evaluating tbemtepn.l

Bs=an—w = .mer (%’)w i Eo

i

Consider the given curve for temperature T and & neighbori
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As one goes to higher temperatures the two extremum points where
(0p/9v)r = 0 (indicated in Fig, 8:6-2 by v = v; and v = vy) move closer
together. This alsg implies that the volume change Av in the phase trans-
formation decreases. As the temperature is increased further one reaches the
situation where these two extremum points v; and v, just coincide, so that there
is no longer a change of sign of (dp/av), i.e., the derivative of (dp/dv) vanishes
clso. At this point one has then (8%p/8v®)r = 0 as well as (dp/dv)r = 0; the
point is thus a point of inflection on the pv curve. This unique point is the
“eritical point” (point €' in Fig. 8-6- 1) and corresponds to values of 7', p, and
v which are called the critical temperature, pressure, and volume. There the
phase transformation has barely disappeared, the volume change Av having
approached zero.* At still higher temperatures (dp/dv) < 0 everywhere so

*Since (4p/év)r = 0 at the critical point, it follows from our previous discussion fol-
lowing (8-4:22) that density fluctuations at this point become very large; i.e., the substance
‘‘cannot quite make up its mind" whether to be a liquid or a gas.
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that there is no phase transformation. One then deals always with a single
fluid phase with no sharp distinction between gas and liquid. As the pressure
is raised one then goes confinuously from the situation of large molar volume v
and high compressibility to the situation of small » and low compressibility.

SYSTEMS WITH SEVERAL COMPONENTS; CHEMICAL EQUILIBRIUM

8- 7 General relations for a system with several components

Consider a homogeneous system, of energy E and of volume V, which consists
of m different kinds of molecules. Let N; be the number of molecules of type 7.
Then the entropy of the system is a function of the following variables:

8 = S(E, V,Ny, Ns, - . . , Nu) (8-7-1)

These variables can, of course, all change in a general process. For example,
the numbers of molecules of each species may change as a result of chemical
reactions. In a completely general infinitesimal quasi-static process the
entropy change is then given by*

a8 £ v /88
48 = (@)m dE + (W)m av + 21 (Tm)g.m iN:  (8-7-2)

Here the subseript N denotes the fact that all the numbers [Ny, . . . , N}
are kept constant in taking the partial derivative. In the case of a derivative
such as (dS/@N;), the subscript N denotes the fact that all the numbers
Ny ..., Niyy, Niga, - . ., Nal, except the one number N; with respect to
which the derivative is taken, are kept constant in taking the partial derivative.
Equation (8-7-2) is a purely mathematical statement. But in the simple
case when all the numbers N; are kept fixed, the fundamental thermodynamic
relation asserts that
dE + pdV

80
8 = o = =

(8-7-3)

Under these circumstances dN; = 0 for all 7 in Eq. (8-7:2); comparison of
the coefficients of dF and dV in (8:7-2) and (8:7-3) then yields

(a )
aE vV.N T
(a )
aVv Jewn 7

* The system ig, in general, interacting with some other systems. The variables in
(8-7-2) and subsequent relations are to be evaluated for the equilibrium (or most probable)
situation when the values of these variables are essentially equal to their mean values,
E, V, N, p, and so on. We shall, however, omit writing the averaging bars over these
symbols.

[

(8-7-4)
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Let us introduce the abbreviation

o 08
B = — T G—M)E‘V.N (875)

The quantity w; is called the “chemical potential per molecule” of the jth
chemical species and has been defined so that it has the dimensions of energy.
Then (8-7-2) can be written in the form

__1 P v et ¥
dS = 7dB + 7 d —Z-TdN‘ (8-7-6)
or
> dE = TdS — pdV + ) wdN: (8-7-7)

1=1

This is just a generalization of the fundamental relation d& = T dS — p dV to
the case where the numbers of particles are allowed to vary.

Note that the chemical potential u; can be written in many forms equiv-
alent to (8-7 5). For example, suppose that all the independent, variables
other than N; are kept constant in (8:-7-7). ThendS = dV = 0, dN, = 0 for
t 5 j, and (8-7-7) yields the relation

ak
by = (6 ) (8:7-8)
N ;) B V.N
Alternatively, one can write (8-7-7) in the form
d(E — T8) = dF = —SdT—pdV+EmdN.- 8-7-9)

If all independent variables other than N; are kept constant, it follows immedi-

ately that
aF
s ics (ﬁ;)y.v‘ﬁ SR

One can also write (8-7.7) in terms of the Gibbs free energy; thus
d(B — TS+ pV) = d6¢ = —8dT + Vdp + Y mdN; (8:7-11)
R

Hence one can alse write

a6
iy = (aN,-)T‘,,.N (8-7-12)

1f there is only one chemical species present, say species j, then
G = G(T,p,Ny)

But 7 must be an extensive quantity. Thus, if all the independent extensive
parameters are multiplied by a scale factor e, i.e., if N, is multiplied by «, then
¢ must be multiplied by the same factor «. Thus  must be proportional to
N; and can be written in the form

@(Tp,N;) = Nig'(T,p)
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where g'(T,p) does not depend on N;, Then

w= (), = /T (8:7-13)

i.e., the chemical potential per molecule s just equal to the Gibbs free energy
¢' = G/N; per molecule.

When several components are present, then @ = G(T, p, Ny, . . . , N,)
and in general

T ]
RS (BN,-' T.pN A N;

Remark The requirement that extensive quantities seale properly leads,
however, to the following general conclusions. Consider, for example, the
total energy

E=E(®SV,NyNs ...,Na) (8-7-14)

If one increases all extensive variables by the same scale factor, Bq. (8:7-14)
must remain valid. That is, if

§— a8, V= al, N;— C;N.'
then one must also have B — afl, Thus
B8, aV,aNy, . . . ,aNw) = aB(8, V,Ny, . . . ,Na) (8-7-15)

In particular let
a=14%y

where |y| << 1. Then the left side of (8:7-15) becomes E(8 + 48, V + vV,
N1+ ¥Ni, . . .) which can be expanded about its value E(S, V, Ny, . . .),
where v = 0. Thus (8:7-15) implies the requirement that

i (63 ?NTS+ (3V)SNTV+ Z (GN.' sv.-rTN‘ = & b

A ( )PNS+(6V sMV Z(aN) Ne 18:7:36)

But the derivatives are preecisely given by the respective coefficients
of @8, dV, and dN; in (8:7-7). Hence (8:7-16) is equivalent to the relation

E = TS—pV+EmNc (8:7-17)
or '
o= G=E—TS+pV = Y alls (8-7-18)

* This purely mathematical consequence of (8 7-15) is commonly referred to as “Euler’s
theorem for homogeneous functions.”
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If only a single kind j of molecule is present, (8:7-18) reduces fo the previous
relation
Hi =37
Eq. (8:-7-17) implies that
dE = TdS +8dT — pdV — V@+Emﬂm+zwdm

But ginee (8-7-7) must alse be valid, one obtams the generni reault
84T —Vdp+ Y Nedpi =0 (8:7-10)
7
(This is known ag the “Gibbs-Duhem relation.’”)

8 - 8 Alternative discussion of equilibrium between phases

In Sec. 8-5 we treated the problem of the equilibrium between two phases
under conditions where the system was considered to be in equilibrium with a
reservoir at constant temperature and pressure. It is instructive to treat this
problem from a somewhat more general point of view, considering the total
system to be isolated. Our discussion will be a straightforward extension of
that used at the end of See. 3-9,

Consider N molecules forming a substance which consists of two phases
denoted by 1 and 2. The whole system is isolated so that its total energy E
and ite total volume V are both fixed. Let there be N; molecules of the sub-
stance in phase i, and denote the energy of this phase by E; and its volume by
V";.  Then we haye the conservation conditions

P, + E; = E = constant |
V1< V2 = V = constant (8-8-1) i
N;+ N: = N = constant i

The entropy of the whole system (or the total number of states accessible
to the whole system) is a function of these parameters. The equilibrium condi-

Fig, 8:8'1 Equilibrinm between two phases form-
ing an isolated system of constant total energy and
volume.
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tion corresponding to the most probable situation is that the entropy is a
maximum, i.e., that

8 = 8(E.,V1,Nyi; By, Vi, Ns) = maximum (8-8:2)
But 8 = 8:(By,Vi,N1) + S«(E3,V4,N3)

where S; is the entropy of phase <. Thus the maximum condition (8 8 2)
yields

dS =dS, +dS; =0 (8:8-3)
subject to the conditions (8:8:1), which become, in differential form,

dE, +dE, =0
dV1+dV3=0
dNy+ dN: =0

By using the relation (8:7-6) for each phase, (8 8:3) gives

2 sl Py M 1 Pz gy M2 R
dS—(TldEl-!-TidVl Tld-Nl)‘l‘(TsdEg"l‘Tdeg ngN;)—U

(8:8-4)

or

2o Wy e I D1 _ P2 (1 ma = 8.
dS—(Tl Tz)dEl+(Tl Ti)dv, (T1 T!)le—O (8-8-5)

where we have used the conservation conditions (8 8-4). Since (8-8-5) is to
be valid for arbitrary variations dE,, dVy, dN, it follows that the coefficients
of all these differentials must separately vanish. Thus one obtains

or
> (8-8-6)

These are the necessary conditions for equilibrium between two phases; they
reflect the respective conservation equations (8-8-1). The relations (8-8-6)
assert that the temperatures and mean pressures of the phases must be equal,
as one would expect. The condition that the chemical potentials must also
be equal may seem less familiar. But sinee each phase consists of only a single
component, it follows by (8-7-13) that p; = g is the chemical potential per
molecule of phase 7. The last relation of (8 8-6) is then equivalent to

01’ = 92; (837)
Thus we regain the condition (8-5-4).
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Remark In Sec. 8:5 we used the Gibbs free energy g per mole; thus g =
N.g' where N, is Avogadro’s number. In thesame way, it is sometimes useful
to define a chemical pomml per mole. Thisis given by the relation (3G/8»:);
sinee »; = Ni/Ng, it is N, times larger than the corresponding chemical
potential per molecule (8G/3N).

One could readily extend the arguments of this section to treat the equi-
librium between phases containing several components, or to calculate the
fluctuations in the number of particles present in each phase.

Finally it is worth noting the miecroscopic implications of our discussion.
One can take the equilibrium condition (8-8-6) or (8:8-7) and write it in the
form

ﬂl(T:p) = PZ(T:P) (8 8- 8)
where we have expressed the chemical potentials in terms of T and p. Now
we know, at least in principle, how to use statistical mechanics to caleulate
thermodynamic functions such as the entropy S for each phase. We can then
go on to caleulate for each phase the chemical potential x (say, by its definition
(8-7-5)) and we can express it in terms of T and p. The result is an equation
of the form (8-8-8) which can be solved to find p as a function of T. In
this way one can, for example, start from first prineiples to compute the vapor
pressure of a substance at a given temperature. The only difficulty in such a
caleulation is the evaluation of the partition function for each phase. We shall
illustrate such a vapor-pressure calculation in the next chapter,

8:9 General conditions Jor chemical equilibrium

Consider a homogeneous system (consisting of a single phase) which containg
m different kinds of molecules. Let us designate the chemical symbols of
these molecules by By, Bs, . . . , B,. Assume that there exists the possibility
of one chemical reaction occurring between these molecules whereby molecules
can get transformed into each other. This chemical transformation must be
consistent with the conservation of the total number of atoms of each kind. A
properly balanced chemical equation expresses precisely these conservation
conditions,

Example Suppose that the system consists of Hs, O, and HyO molecules
in the gas phase. There exists the possibility of transformation of molecules
into each other through the chemieal reaction

2H; + 0, 2 2H,0
This chemical equation is properly balanced so that the total number of H
atoms is the same on the left and right sides, as is the total number of O
atoms. :
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Let b; denote the coefficient of B; in the chemical equation; thus b; is some
small integer designating the number of B; molecules involved in the chemical
transformation. For convenience we adopt the convention that, if the chem-
ical reaction is regarded arbitrarily as proceeding in a given direction, one
considers b, positive for any “product” molecule formed as a result of the
chemical reaction, and one considers b; negative for any “reactant” molecule
disappearing as a result of the reaction. For example, the reaction

2H, + 0;— 2H,0
would be written in standard form as

—9H, — 0; + 2H,0 = 0 C(8:9.1)

A general chemical equation can then be written in the form

m

> Elb¢3f=o (8:9-2)

Let N; denote the number of B; molecules in the system. The numbers
N; can change as a result of the chemiecal reaction between molecules. But
they cannot change in arbitrary ways because the conservation of afoms
requires that the ehemical equation (8-9-2) be satisfied. The changes in the
numbers N; must therefore be proportional to the numbers of molecules appear-
ing in the balanced chemical equation (8-9-2);i.e,,

dN; = \b; for all ¢ (893)

where X is a constant of proportionality. Here dN; > 0 for molecules formed
as a result of the reaction, and dN; < 0 for molecules disappearing as a result of
the reaction,

Consider now an equilibrium situation where molecules confined within an
isolated enclosure of volume V can react chemically with each other in accord-
ance with the reaction (8-9-2). Let F denote the total energy of the system.
The equilibrium condition then is that

‘ “ 8 =8(E V,Ny...,Ns) =maximum (8:9-4)
or \ ; ds =0 (8-9-5)

"4
Under the assumed conditions of constant V and FE, this condition becomes, by
virtue of (8-7-6),

i .
E pidN; =0 (8-9-6)
s=1
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Using the fact that the variations dN; must satisfy the chemical equation
(8:9-2), i.e., the restriction (8-9-3), the condition (8-9-6) then becomes
simply

S Y b =0 (8:9:7)

i=1

This is the general condition for chemical equilibrium.

Remarlk If we had assumed that the reaction takes place under conditions
of constant temperature T' and volume V, then the condition that F is mini-
mum or dF' = 0 under these circumstances would, by virtue of (8-7-9), again
lead to (8:9:6) and (8-9-7), Similarly, for a reaction at constant temperature
T and pressure p, the condition that & is minirmum or dG- = 0 would, by virtue
of (8:7-11), also lead to (8:9-6) and (8-9:7).

The chemical potentials g are functions of the variables describing the
system. For example, u; =p;: (B, V, Ny, . . . , Ny), if E and V are chosen as
independent variables, or gy = p(T, V, N1, . . . , Nn) if T and V are chosen
as independent variables. Hence the condition (8-9-7) implies in an equi-
librium situation a definite connection between the mean numbers N; of mole-
cules of each kind. Sinee statistical thermodynamies allows one to calculate
thermodynamic functions like the entropy 8, it also makes it possible to
caleulate the chemieal potentials x; and thus to deduce explicitly the connec-
tion between the numbers Ny, . . . , Nn implied by the condition (8-9-7).
‘We shall illustrate such a caleulation in the next section.

8+ 10 Chemical equilibrium between ideal gases

Consider that the chemical reaction (8-9-2) can oceur between m different
types of molecules. Suppose thaf these form gases which can be considered
ideal and that they are confined in a container of volume V at an absolute
temperature 7. What is the relationship between the mean numbers of the
reacting molecules in the equilibrium situation?

The question is readily answered by exploiting the condition (8:9-7)
explicity. In other words, suppose that one knows the free energy

F =F(T)V9Nh o[ b :Nm)

of this mixture of gases. If at the constant specified temperature 7' and
volume V one imagines a transformation in which, in accordance with the
chemical equation (8:9-2), b of each of the reactant molecules are trans-
formed into b; of each of the product molecules, then the corresponding small
free-energy change AF in the reaction is given by

e Z (:;%F")T.V.N b 2‘ b (8-10-1)
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ar :
Here Wi = (':,'—1\,'_)1"”‘r (8-10:2)

is, in accordance with the relation (8.7-10), just the chemical potential
of a molecule of type ¢ and is, like F itself, a function of the variables

T, V,Ni, ... ,N, Inequilibrium the free energy F is a minimum, so that
(8:10-1) yields the familiar eondition (8-9-7):
AF = ¥ by = 0 (8-10-3)

The remaining task is then merely that of caleulating 7, and hence the chemicél
potentials u;, of this mixture of gases,

Calculation of the chemical potential We again consider the gases to be
at sufficiently high temperature and sufficiently low density that their transla-
tional motion can be treated classically.

Let the possible states of the kth molecule in the gas be labeled by s and
let e(se) denote the energy of the molecule in this state. Since there is
negligible interaction between the molecules, the total energy of the gas in
one of its possible states can always be written as a sum

E = 61(81) + ex(ss) + ea(ss) + - - -
with a number of terms equal to the total number of molecules. Hence the
partition function beecomes (treating all molecules as distinguishable)
Z = e Aleda)teglandt -]
l]g,ﬂl

where the summation is over all the states of each molecule. As usual this
factors into the form
Z' = (Y et (F eta) « - (8:10-4)

In this product there will be N; equal factors for all molecules of type 1, each of

these factors being equal to
fo=Y e P (8-10-5)
L

where the sum is over all the states s and corresponding energies of one mole-
cule of type ¢. Thus (8-10-4) becomes simply

Z' = pMigge - - - poNe (8-10-6)

Here we have counted as distinct states of the gas all those which differ only
by permutations of like molecules. As we sawin Sec. 7- 3, it would be erroneous
(Gibbs paradox) and inconsistent with the essential indistinguishability of the
molecules in quantum mechanics to count these gas states as distingt. To gef
the ecorrect partition function Z, the expression (8:10:6) must therefore be
divided by the (N,!N,! - - - N,!) possible permutations of like molecules
among themselves. Thus we get
g—lh’l{!Na SR g'wﬁrn -
Z = Wi Nl et
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This can also be written

=S Z= i By (8:10-8)
where

U
> 7= f\—,—, (8-10-9)

is the partition funetion of a gas of N, molecules occupying the given volume V
by itself in the absence of all other gases.
A variety of important results follow from (8- 10:8), i.e., from the relation

InZ = ZInZ.- (8-10-10)

These results all reflect the fact that the molecules are weakly interacting so
that the thermodynamic functions are simply additive. For example, since
the mean energy of a system is given quite generally by B = (—a In Z/98),
it follows from (8-10-10) that

E(T,V) = EE(TV) (8-10.11)

where F; is the mean energy of the 7th gas oceupying the given volume by
itself. Also, sinee the mean pressure of a system is given quite generally by
P = B In Z/0V), it follows from (8-10-10) that

;3=2;5“ (8-10:12)

where 7, is the mean pressure that would be exerted by the ith gas if it occupied
the given volume ¥ by itself. This quantity #; is called the “partial pressure
of the ith gas.”

Now we have already derived the equation of state for a single gas; i.e.,
for gas 7 occupying the volume V by itself
N;
v

Hence (8-10-12) gives us immediately the equation of state for the gas mixture

B = nkT, mi= (8-10-13)

m
B = nkT, where n = E 7 (8-10-14)

i=1
Sinece the Helmholtz free energy is given quite generally by the relation
F = —kTIn Z, it follows from (8-10-10) that

F(T,V) = EFi(T,V) (8:10-15)

where F; is the free energy of the ith gas by itself. Since F = E — TS,
(8-10-11) and (8-10-14) also establish the additivity of the entropies

S(T,V) = Y S(T,V) (8:10-16)

where 8 is the entropy of the ith gas occupying the given volume by itself.

!
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Let us now proceed to calculate the chemical potential. By (8-10-9),
InZ; = N;Inf; — In N;!

where t; = (T,V) is the partition funetion (8-10-5) for a single molecule and
thus does not involve N;. Using (6-6-9) and (8-10-10), one then cbtains

F=—-kTlhZ = -—kTZ(N«]n_{';-— In N;!)

i Br F=—kTS Ne(lnf —InNi+ 1) (it
where we have used Stirling’s formula In N! = NIn N — N. Since
aln (N!)
\ Tv.— =InN

(a result already encountered in (1-5-9)), it then follows by (8-10-2) that the
chemical potential of the jth kind of molecule is simply given by

i T
i 5 oN; Jrv
or

f,
= —kT In s+ 8-10-18
> W N, ( )

= —kT(hl £ — In N,)

Law of mass action By (8-10-1), the free-energy change in the reaction is
then egual to

AF = —kTZb;(lnf,-—-lnN.-) B AFo+kTEb¢lnN.- (8:10-19)
where AFo= —kT Y biln & (8:10-20)
is & quantity (the so-called “standard free-energy change of the reaction’)

which depends only on 7' and V, but not on the numbers N; of molecules
present. The equilibrium condition (8-10-3) then becomes

AF = AF, + kTEb;lnN.- =0
i

Zln N¥ =In (NANg - - - Njda) = — %ET_"
or
[ NN« -« Nodn = Ky(T,V) (8-10:21)

1
!
l

> Ky(T,V) = e=5Foldl = e higs - o poba (8-10-22)

The quantity Ky is independent of the numbers of molecules present and is
called the “‘equilibrium constant’; it is a funetion only of T' and V through
the dependence of the molecular partition functions {; on these quantities.
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Equation (8-10-21) is the desired explicit relation between the mean numbers
of molecules present in equilibrium; it is called the “law of mass action” and is
likely to be familiar from elementary chemistry,

Example Consider the reaction (8.-.91} mthegasphzwe g ;
- 2H, — 0, + 20,0 = 0 s, S

The law of mass action, (8-10-21) then becomes S ;.
Nuy*Noy Nmo? = Ky f
or T'—N ‘Nm = KN( T}V} =

Note that (8-10:22) gives an explicit expression for the equilibrium con-
stant Ky in terms of the partition functions {; for each type of molecule. Hence
Kx can be calculated from first principles if the molecules are sufficiently
simple g0 that ¢ in (8- 10-5) can be evaluated from a knowledge of the quantum
states of a single molecule. Even when the molecules are more complex, it is
still possible to use spectroscopic data to deduce their energy levels and thus
to caleulate ¢ and the equilibrium constant Ky.

Rosttarnkc: Noter (b dho tutor 151 present m(Blﬂﬂ) mmmpw e
aceount of the indistinguishability of the molect y essential fo
the whalet-heory If this factor were not.

"""oiN,-. aenm@:l{!s}woum > ug no nship bel '
numbars at aiII "imm tha cIaameal d:rﬁnulﬁg .examphﬁe& by the GEE:‘EQ

-

It is worth noting the simplifying property that &(V,T) is, as in (7-2-6),
simply proportional to V. Indeed (8:-10-5) can be written

fi = fdﬂr f d*p 9_'5"/2'"28—5*-“‘“
L]

where we have calculated the translational part of the partition function
classically. (The remaining sum is over the states of infernal motion, both
vibration and rotation, if the molecule is nof monatomic.) Here the center of
mass position r occurs only in the integral [ d*r which yields the volume V.
Thus one can write

LV, T) = Vi(T) (8:10-23)

where i’ depends only on 7. Hence the chemical potential (8-10-18) becomes
. -

el (8-10.24)
L

where n; = N;/V is the number of molecules of type j per unit volume.
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The fundamental equilibrium condition (8:10-3) can then be written
more simply

Ebtlnm = Ybng!
T P

or
e nitingd - - v ngde = K (T) (8-10-25)
where
> Ku(T) = /% -+ - falin (8-10-26)
and the equilibrium constant K,(T) depends only on the temperature.

By (8:10-22) and (8:10-26) one has the relation

Kx(T,V) = V*K,(T), whereb = E By (8-10-27)

i=1

Temperature dependence of the equilibrium constant The relation
(8:-10-22) gives explicitly

(8:10-29)
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dalnKy\ _ _ [\ (AF\ _ _(3\ AF
Hence ( 37 )v = (ﬁ)v(ﬂ') = (aT)V,N WT (8-10-30)

The last expression follows by (8:10-19), since AF and AF, differ only by an
expression involving the numbers Ny and since these numbers are supposed to
be held constant, as indicated, in the differentiation of AF/ET. Hence

aln Ky 1 1 (3 AF :
( aT )vgk_ﬂw—ﬁ'(w)m EooS
But

(e S ) - - 1) () - -

Here we have used the general relation, implied by (8-7-9), that

oF
)

and have denoted by AS the entropy change of the reaction when |b;| of each
of the reactant molecules are transformed into b; of each of the product mole-
cules, Hence (8-10-31) beecomes

(a In K.v) 34 AR

o

since ' = E — T8; thus AE = A(F + T8) is simply the mean energy increase
in the reaction. Since the reaction is earried out at constant volume, A is also
the heat absorbed in the reaction when |b| of each of the reactant molecules
are transformed into b; of each of the product molecules.
Since K, differs from Ky only by a factor involving the volume V,
(8-10-32) implies equivalently that
dln K, AE
g e
If AE > 0, (8-10-32) asserts that Ky increases as T is increased. This
result is again in accord with what would be expected from Le Chatelier’s
principle. When E > 0, heat is absorbed as a result of the reaction, If the
temperature T increases, more molecules must then be produced in order to
absorb heat and thus to restore the original temperature. Thus Ky must
increase.

(8-10-33)
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PROBLEMS

8.1 In some homogeneous substance at absolute temperature T (e.g., a liguid or
gas) focus attention on some small portion of mass M. This small portion is in
equilibrium with the rest of the substance; it is large enough to be magroscopic
and can be characterized by a volume ¥ and temperature T. Csleulate the
probability ®(V,T) dV dT' that the volume of this portion lies between V and
V + dV and that its temperature lies between 7 and T + dT. Express your
answer in terms of the compressibility  of the substance, its density p,, and its
specific heat per gram cy at constant volume.

8.2 The vapor pressure p (in millimeters of mereury) of solid ammonia is given by
In p = 23.08 — 37564/T and that of liquid ammonia by In p = 19.490 — 3063/T.

{a) What is the temperature of the triple point?

(b) What are the latent heats of sublimation and vaporization at the triple
point?

(c) What is the latent heat of melting at the triple point?

8.3 A simple substance of molecular weight x has its triple point at the absolute
temperature 7'y and pressure po. At this point the densities of the solid and
liquid are p, and p, respectively, while the vapor can be approximated by a
dilute ideal gas. 1If at this triple point the slope of the melting curve is (dp/dT)
and that of the liquid vaporization curve is (dp/dT)., what is the slope (dp/dT),
of the sublimation curve of the solid?

8.4 Helium remains a liquid down to absolute zero at atmospheric pressure, but
becomes a solid at sufficiently high pressures. The density of the solid is, as
usual, greater than that of the liquid. Consider the phase-equilibrium line
between the solid and liquid. In the limit as T'— 0, is the slope dp/dT of this
line positive, szero, or negative?

8.5 Liquid helium boils at a temperature 7' (4.2°K) when its vapor pressure is equal
to po = 1 atmosphere, The latent heat of vaporization per mole of the liquid
is equal to L and approximately independent of temperature. The liquid is
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8.6

8.7

8.8

contained within a dewar which serves to insulate it thermally from the room
temperature surroundings. Since the insulation is not perfeet, an amount of
heat § per second flows into the liquid and evaporates some of it. (This heat
influx @ is essentially constant, independent of whether the temperature of the
liguid is T or less.) In order to reach low temperatures one can reduce the
pressure of the He vapor over the liquid by pumping it away with a pump at
room temperature 7., (By the time it reaches the pump, the He vapor has
warmed up to room temperature.) The pump has a maximum pumping speed
such that it can remove a constant volume U of gas per second, irrespective of
the pressure of the gas. (This is a characteristic feature of ordinary mechanical
pumps which simply sweep out a fixed volume of gas per revolution.)

(a) Caleulate the minimum vapor pressure p. which this pump can main-
tain over the surface of the liquid if the heat influx is €.

(b) If the liquid is thus maintained in equilibrium with its vapor at this
pressure p., caleulate its approximate temperature 7.,
An atomic beam of sodium (Na) atoms is produced by maintaining liquid sodium
in an enclosure at some elevated temperature . Atoms of Na from the vapor
above the liquid escape by effusion through a narrow slit in the enclosure and
thus give rise to an atomic beam of intensity f. (The intensity I is defined as
the number of atoms in the beam which cross unit area per unit time.) The
latent heat of vaporization per mole of liquid Na into a vapor of Na atoms is L.
To estimate how sensitive the beam intensity is to fluctuations in the temper-
ature of the enclosure, calculate the relative intensity change I-*(dI/dT) in
terms of L and the absolute temperature T' of the enclosure.
The molar latent heat of transformation in going from phase 1 to phase 2 at the
temperature 1" and pressure pis l. What is the latent heat of the phase trans-
formation at a slightly different temperature (and corresponding pressure), i.e.,
what is (dl/dT)? Express your answer in terms of ! and the molar specific
heat ¢,, coefficient of expansion «, and molar volume v of each phase at the
original temperature T and pressure p.
A steel bar of rectangular cross section (height ¢ and width b) is placed on a
bloek of ice with its ends extending a trifle as shown in the figure. A weight of
mass m is hung from each end of the bar, The entire system is at 0°C. Asa
regult of the pressure exerted by the bar, the ice melts beneath the bar and
relreezes above the bar. Heat is therefore liberated above the bar, conducted
through the metal, and then absorbed by the ice beneath the bar. (We assume
that this is the most important way in which heat reaches the ice immediately
beneath the bar in order to melt it.) Find an approximate expression for the
speed with which the bar thus sinks through the ice. The answer should be in
terms of the latent heat of fusion | per gram of ice, the densjties p; and p, of
ice and water respectively, the thermal conductivity x of steel, the temperature
T (0°C) of the ice, the acceleration due to gravity g, the mass m, and the dimen-
sions a, b, and ¢, where ¢ is the width of the block of ice.
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8.10

8.11

8.12

8.14

PROBLEMS

Careful measurements were made of the vapor pressure of liquid pentane as a
function of temperature. The temperature was measured very precisely in terms
of the emf of a thermocouple whose reference junction was maintained at the
triple point of water. Thus one determined the curve of vapor pressure p versus
measured thermocouple emf ¢. Also measured as a function of ¢ along the
vapor pressure curve were the latent heat of vaporization L per gram of liquid
pentane, and the volume change AV per gram of pentane in going from liquid to
vapor. Show that this information is sufficient to calibrate the thermocouple;
i.e., write an explicit expression (in terms of an integral) for the absolute temper-
ature T" when the measured thermocouple emf is ¢.
Consider any substance in equilibrium in the presence of externally applied forces
due to gravitational or electromagnetic fields. Focus attention on any twe vol-
ume elements of this substance, both of fixed size and infinitesimally small on a
macroscopic scale. By using the fact that the total entropy of the substance
must remain stationary if a small amount of energy or a small number of parti-
cles, or both, are transferred from one of these volume elements to the other,
show that the temperature 7' and the chemical potential 4 must each have a
constant value throughout the substance.
Consider a classical ideal gas in thermal equilibrium at temperature T in a con-
tainer of volume ¥ in the presence of a uniform gravitational field. The acceler-
ation due to gravity is g and directed along the —z direction.

(a) Caleulate the chemical potential u of an element of volume of such a gas
as a function of the pressure p, the temperature 7, and the height 2.

(h) Show that the requirement that p is constant implies immediately the
law of atmospheres which gives the dependence of p on T and 2.
At a fixed temperature T = 1200°K, the gases

CO; + H: 22 CO + H.O0

are in chemical equilibrium in a vessel of volume V. If the volume of this vessel
is increased, its temperature being maintained constant, does the relative con-
centration of CO; increase, decrease, or remain the same?

An experiment on iodine (I) atoms is earried out in a molecular beam apparatus.
The beam is obtained by effusion of molecules from a small slit in an oven con-
taining, as a result of thermal dissociation, a mixture of I» molecules and I atoms.
Tf the temperature of the oven is kept the same but the total gas pressure within
it is doubled, by what factor is the intensity of I atoms in the beam changed?
Consider the following chemical reaction between ideal gases:

T

2 b,B; =0

i=1
Let the temperature be T, the total pressure be p. Denote the partial pressure of
the ¢th species by p;.  Show that the law of mass action ean be put into the form

ottt ¢ 0 patm = K (T)

where the constant K,(7T) depends only on 7'.

Show that if the chemical resetion of the preceding problem is carried out under
conditions of constant total pressure, the heat of reaction per mole (i.e., the heat
which must be supplied to transform |b;| moles of each of the reactants to |bi
moles of each of the reaction produets) is given by the enthalpy change

AH = Zbh;
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8.16

8.17

8.19

where h; is the enthalpy per mole of the ith gas at the given temperature and
pressure.
Show that
dln K,
d7

Ad
T

=]

where E is the gas constant per mole.

Suppose that ¥y moles of HiQ gas are introduced into a container of fixed vol-
ume V at a temperature low enough so that virtually all the gas remains undis-
sociated in the form of H;O vapor. At higher temperatures dissociation can
take place according to the reaction

2H,0 — 2H; + O,

Let £ denote the fraction of Hy0 molecules which are dissociated at any temper-
ature T corresponding to a total gas pressure p. Write an equation relating
£ to p and K, (T).

In the preceding problem the degree of dissociation £ at atmospheric pressure and
at various temperatures T' is experimentally found to have the following values:

T (°K) €

1500 1.97 X 10~
1705 12 x10°*
2155 12 x10-

What is the heat required to dissoeiate one mole of water vapor at 1 atmosphere
into 0, and H; at a temperature of 1700°K?

The partition function for an ideal gas of molecules in a volume ¥ can be written
in the form

| -

7= 5 (Ve

=

where V{' is the partition function for a single molecule (involving its kinetic
energy, plus internal energy if it is not monatomic) and {’ depends only on the
absolute temperature T'.

When these molecules are condensed so as to form a liquid, the erudest
approximation consists of treating the liquid as if the molecules still formed a
gas of molecules moving independently, provided that (1) each molecule is
assumed to have a constant potential energy —7 due to its average interaction
with the rest of the molecules; and (2) each molecule is assumed free to move
throughout & total volume Ny, where v is the (constant) volume available per
molecule in the liquid phase.

(a) With these assumptions, write down the partition function for a liquid
consisting of N; molecules.

(b} Write down the chemical potential u, for N, molecules of the vapor in a
volume ¥V, at the temperature T. Treat it as an ideal gas.

(¢) Write down the chemical potential g for N; molecules of liquid at the
temperature T

(d) By equating chemical potentials, find an expression relating the vapor
pressure to the temperature T where the gas is in equilibrium with the liquid.
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PROBLEMS

(e) Caleulate the molar entropy difference between gas and liquid in equi-
librium at the same temperature and pressure. From this caleulate the molar
heat of evaporation L. Show that L = Nun if 5 > kT.

(f) The boiling point T is that temperature where the vapor pressure is
1 atmosphere. Express the ratio L/RTs in terms of vy and the volume o, per
molecule in the vapor phase at one atmosphere at the temperature T.

(g) Estimate the order of magnitude of L/RT), and show that it is a num-
ber of the order of 10 for all ordinary liquids. (This result is called “Trouton’s
rule.")

(k) Compare this simple theory with experiment by looking up the densities
and molecular weights of some liquids, computing L /T4, and comparing with the
experimental ratio of L/T,. Data can be found in the “Handbook of Physics
and Chemistry’” (Chemical Rubber Publishing Company, Cleveland, Ohio).
Try nitrogen and benzene, for example.



Quantum statistics of

ideal gases T i

7HIS cHAPTER will be devoted to a discussion of systems consisting of particles
with negligible mutual interaction, i.e., of “ideal gases.”” But we shall now
treat these systems from a completely quantum-mechanical point of view.
This will allow us to discuss problems involving gases at low temperatures or
high densities and to avoid the problems encountered in Sec. 7-3 in connection
with the indistinguishability of the particles. It will also permit us o calculate
unique values of entropies, to make absolute caleulations of vapor pressures
or chemical-equilibrium constants, and to treat distinctly nonclassical gases
such as photons or conduction electrons in metals.

MAXWELL - BOLTZMANN, BOSE - EINSTEIN,
AND FERMI - DIRAC STATISTICS

9.1 Identical particles and symmetry requirements

Consider a gas consisting of N identical struetureless particles enclosed within
a container of volume V. Let () denote collectively all the coordinates of the
ith particle (e.g., its three cartesian position coordinates and its spin coordinate,
if any). Let s; be an index labeling the possible quantum states of this single
particle (e.g., each possible value of s, corresponds to a specification of the
three momentum components of the particle and of its direction of spin orienta~
tion; we postpone more detailed discussion to Sec. 9:9). The state of the
whole gas is then described by the get of quantum numbers

Va1, B, o ey} (9:1:1)
which characterize the wave function ¥ of the gas in this state.
= wln.-...lml(Qh Q?! AL | QN) (9'12)

Let us now discuss the various cases of interest.

-~
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“Classical’” case (Mazwell-Boltzmann statistics) In this case the particles
are considered to be distinguishable, and any number of particles can be in the
same single-particle state s. This “classical” deseription imposes no symmetry
requirements on the wave function when two particles are interchanged. The
particles are then said to obey “Maxwell-Boltzmann statistics” (abbreviated
“MB statistics’). This description is not correct quantum mechanieally, but
is interesting for purposes of comparison.

Quantum mechanics The quantum-mechanical deseription is, of course,
the one which is actually applicable, But when quantum mechanies is applied
to a system of identical particles, it imposes definite symmetry requirements on
the wave function (9:1-2) under interchange of any two identical particles.
The net result is that one does not obtain a new state of the whole gas by simply
interchanging two such particles. When eounting the distinet possible states
accessible to the whole gas, the particles must thus be considered as intrinsically
indistinguishable. Tn enumerating these possible states of the gas, it does then
not matter which particle is in which particle state, but only how many particles
there are in each single-particle state s.

The symmetry requirements can be regarded as fundamental quantum-
mechanical postulates* and are intimately connected with the spin of the
particles. There are two possible cases which may arise: either (a) the par-
ticles have integral spin or (b) the particles have half-integral spin.

a. Particles with integral spin (Bose-Einstein statistics):

Thig is the case where each particle has a total spin angular momentum
(measured in units of #) which is integral, i.e.,0,1,2, . . . (examples might be
He' atoms or photons). Then the fundamental quantum-mechanical sym-
metry requirement is that the total wave function ¥ be symmetric (i.e., that it
remain unchanged) under interchange of any two particles (i.e., interchange of
both their spatial and spin coordinates). In symbols,

W @y ors Q) =W Qe Qe ) (9-1-3)

(Here we have omitted the subseript {sy, . . . , sy} in (9:1-2) for the sake of
brevity.) Thus interchange of two particles does nof lead to a new state of
the whole gas. The particles must, therefore, be considered as genuinely
indistinguishable in enumerating the distinct states of the gas., Note that
there is no restriction on how many particles can be in any one single-particle
state s. Particles satisfying the symmetry requirement (9-1-3) are said fo
obey ‘‘Bose-Einstein statistics” (abbreviated ‘“‘BE statistics’’) and are some-
times called ‘‘bosons.”

b. Particles with half-integral spin (Fermi-Dirac statistics):
This is applicable when each particle has a total spin angular momentum
(measured in units of ) which is half-integral, i.e., 4, 4, . . . (examples might

* These postulates can, however, be derived (as was first done by Pauli) from s much
more profound point of view which examines the requirements for a consistent description
of the particles in terms of quantum field theory.
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be electrons or He? atoms). Then the fundamental quantum-mechanical sym-
metry requirement is that the total wave function ¥ be antisymmetric (i.e., that
it change sign) under interchange of any two particles. In symbols

‘I'(Q;Qu)":—w(QnQ,} (9,1_4}
Once again, interchange of two particles does nof lead to a new state of the gas.
Hence the particles must again be considered as genuinely indistinguishable in
enumerating the distinet states of the gas. But the change of sign in (9-1-4)
does imply one additional consequence: Suppose that two particles 2 and 7, both
in the same single-particle state s, are interchanged. TIn that case one obviously
has
U Q@) =W Q@) (9:1:6)
But since the fundamental symmetry requirement (9-1-4) must also be valid,
(9-1-4) and (9:1-5) together imply that

¥ =10 when particles 7 and j are in the same state 8 (9-1-6)

Thus in the Fermi-Dirac case there exists no state of the whole gas for which
two or more particles are in the same single-particle state. This is the so-called
“Pauli exclusion principle.””* In enumerating the distinct states of the gas one
must then keep in mind the restriction that there can never be more than one
particle in any given single-particle state. Particles satisfying the antisym-
metry requirement (9 1-4) are said to obey Fermi-Dirae statistics (abbreviated
“FD statisties”) and are sometimes called ‘fermions.”

Ilustration A very simple example should help to make these general
ideas much clearer. Consider a “gas” of only two particles; call them 4 and B.
Assume that each particle can be in one of three possible quantum states,
s =1,2,3. Letusenumerate the possible states of the whole gas. This is the
same as asking in how many distinet ways one ean put two particles (4 and B)
into three single-particle states (labeled 1, 2, 3).

Magwell-Boltzmann statistics: The particles are to be considered dis-
tinguishable, Any number of particles can be in any one state.

1 2 8
AB
s s a AB PR
AB
1 A B . A
B A wilalw
A B
B A
A B
B A

* This principle should be familiar since it applies to the important case of electrons
(which have spin 4) and accounts for the periodic table of the elements.
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Each of the two particles can be placed in any one of the three states. Hence
there exist & total of 32 = 9 possible states for the whole gas.

Bose-Einstein statistics: The particlesare to be considered indistinguishable.
Any number of particles ¢an be in any one state. The indistinguishability
implies that B = A, so that the three states in the MB case which differed only
in interchange of 4 and B are now no longer to be counted as distinet. The
enumeration is then as follows:

1 2 3
AA AL
AA
. e e AA
A A
4 4
< A A

There are now three distinet ways of placing the particles in the same state.
There are three distinct ways of placing the particles in different states. Hence
there exist a total of 3 + 3 = 6 possible states for the whole gas.

Fermi-Dirac statistics: The particles are to be considered as indistinguish-
able. No more than one particle can be in any one state. The three states in
the BE case where two particles were in the same state must be eliminated in
this case. One is thus left with the following enumeration:

1 2 8
A A
A A
. A A

There exist now only a total of 3 possible states for the whole gas.
This example shows one further qualitative feature of interest, Let

_ probability that the two particles are found in the same state
= probability that the two particles are found in different states

£

Then we have for the three cases

tup =4 =%
tgp=4 =
tp=%=0

Thus in the BE case there is a greater relative tendency for particles to bunch
together in the same state than in classical statistics. On the other hand, in
the F'D case there is a greater relative tendency for particles to remain apart
in different states than there is in classical statistics.
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Discussion in terms of wave functions The same simple example ean be
discussed equivalently in terms of the possible wave functions for the whole
gas. Let

(@) = the one-particle wave function for 4 single
particle (with eoordinate @) in state s

As before, let ¥ be the wave function for the whole gas. Since the particles
are noninteracting, ¥ can be written as a simple produet of single-particle
wave functions, or of proper linear combinations thereof. Let us again discuss
the cages in turn.

Muozwell-Boltzmann stafistics: There is no particular symmetry require-
ment on ¥ under particle interchange. Apart from normalization, a com-
_plete set of wave funetions ¥ for the gas are then the 3 X 3 = 9 functions
~ of the form
Yi(Qa)¥;(Qr)
wheret = 1,2, 3andj =1, 2, 3.

Bose-Einstein statisties: Here W must be symmetric under interchange of
the two particles, From the nine wave functions listed above one can con-
struct only six symmetric ones. A complete (unnormalized) set of distinct
wave functions are then the three functions of the form

Yi(Q@u)i(@s)

where 1 = 1, 2, 3 and the three functions of the form .

Vi(Qu)¥i(Qa) + i(@s)¥;(Q)
where 7 > 2 againi = 1,2, 3 and j = 1, 2, 3.
Fermi-Dirac statistics: Here W must be anfisymmetriec under interchange
of the two particles. TFrom the nine wave functions listed under the MB case

one pan constiuet only three antisymmetric ones. A complete {(unnormalized)
set of distinet wave functions are then the three functions of the form

Vi(Qu)ys(Qs) — Vel Qr)¥i(Qa)
where j > 2; againt =1, 2, 8andj =1, 2, 3.

9 ) 2 Formulation of the statistical problem |

We consider a gas of identical particles in a volume V in equilibrium at the
temperature 7. We shall use the following notation: '

Label the possible quantum states of a single particle by r (or s).
Denote the energy of a particle in state r by .

Denote the number of particles in state r by n..

Label the possible quantum states of the whole gas by R.




—

———

338 sectioy 92

The assumption of negligibly small interaction between the particles allows
us to write for the total energy of the gas, when if is in some state R where
there are n, particles in state r = 1, n, particles in state r = 2, efe., the
additive expression

Eg=ﬂ1£1+ﬂ253+ﬂsﬁa+ S =Zﬂ-,-ér (921)

where the sum extends over all the possible states r of a particle. Furthermore,
if the total number of particles in the gas is known to be N, one must have

Yn=N (9-2-2)

In order to calculate the thermodynamic functions of the gas (e.g., its entropy),
it is necessary to caleulate its partition function

= —BE = —B(nyataget - - s
< ;"‘ §“ M) (9:2-3)

Here the sum is over all the possible states B of the whole gas, i.e., essentially
over all the various possible values of the numbers ny, ns, ns, . . .

Since exp [—f(nier + noes + -)] is the relative probability of finding
the gas in a particular state where t,here are n; particles in state 1, n, particles
in state 2, etc., one can write for the mean number of particles in a state s

2 7, e Plmarkngeat )

e = = (9:2:4)
E e~Biniertnaert o)

1 1 04
Ty, = = o el Blaet+mert - — petcic
Hence 7 ; ( e 57 B¢,
or
_\ . o lang S
b iy = ﬂ ﬂe. (9-2 5)

Thus the mean number of particles in a given single-particle state s can also be
expressed in terms of the partition function Z.

Caleulation of the dispersion Gmwdmﬂar write down an expression
forthedispermnofthemmheraf;patﬁﬂminmma ‘One pan use the

general relation PR
() = (—A) =) — & (9246
But for 2.’ anemnwnbe byﬁe:ﬁ:ﬁm : :

(9+2:7)
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_ —_ 19z P
or n, B‘Z B (9-2.8)
This can be put into a more convenient; form involving #, in (9-2-5). Thus
Py SRR I 50 S W oin
: = alo(z50) t 7 as.) |-l Cad) + o]
Thus (9-2-6) becomes
1dlnZ :
@n)* = o 5 (9-2.9)
or by (9-2:5),
1 d#,
> @nyt = o (9-2.10)

Caleulation of all physical quantities of interest thus requires simply the
evaluation of the partition function (9-2-3). Let us now be very specific
about what we mean by the sum over all possible states K of the gas. In
accordance with the discussion of See. 9-1 we mean the following:

Mazwell-Boltzmann  statistics: Here one must sum over all possible
' numbers of particles in each state, i.e., over all values

Rl I e R for each r (9-2:11)
subjeet to the restriction (9-2-2) of a fixed total number of particles

Zm =N (9-2-12)

But the particles have also to be considered as distinguishable. Thus any
permufation of two particles in different states must be counted as a distinet
state of the whole gas even though the numbers {ni, ns, n; . . .} are left
unchanged. This is so because il is not enough ta specify how many particles
are in each single-particle state, but it is necessary to specify which particular
particle is in which state.

Bose-Einstein and photon statisiies: Here the particles are to be considered
as indistinguishable, so that mere specification of the numbers {n, na, ng, . . .}
is enough to specify the state of the gas. Thus it is necessary only to sum over
all possible numbers of particles in each single-particle state, i.e., over all
possible values

CE o) D R for each »r (9-2-13)

If the total number of particles is fixed, these numbers must satisfy only
the restriction (9-2-2)
Zn, =N (9-2-14)
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A simpler special cage is that where there is no requirement fixing the total
number of particles. This is the case, for example, when one considers the
particles to be photons enclosed in a container of volume V, since the photons
can be readily absorbed and emitted by the walls. There is then no equation
of constraint (9:2-14) to be satisfied, and one obtains the special case of
“photon statistics.”

Fermi-Dirac statistics: Here the particles are again to be considered as
indistinguishable, so that mere specification of the numbers {ny, ns, 73, . . .} s
enough to specify the state of the gas. Thus it is necessary only to sum over
all possible numbers of particles in each single-particle state, remembering
that there can be no more than one particle in any one such state; i.e., one has
to sum over the two possible values

=0 for each r (9:2.15)

If the total number of particles is fixed, these numbers must satisfy only
the restriction (9-2:2)
ZR'ZN (9:2-16)
-

9.3 The quantum distribution functions

Before turning to a systematic calculation of the partition functions in the
various cases of interest, we shall devote this section to a simple discussion of
the essential features of the quantum theory of ideal gases. We begin by
noting that there is a profound difference between gases obeying BE statistics
and those obeying FD statistics. This difference becomes most striking in the
limit as T'— 0, when the gas as a whole is in its state of lowest energy.

Consider a gas consisting of a fixed number N of particles, and suppose
that the state of lowest energy of a single particle has an energy e;. (This
corresponds to a state where the particle has essentially zero momentum.) In
the case of BE statistics, where there is no restriction on how many particles
can be placed in any one single-particle state, the lowest energy of the whole
gas is then obtained if all the N particles of the gas are put into their lowest-
lying state of energy e (e.g., all particles are in their state of zero momentum).
This then describes the situation at 7' = 0.

Buf in the case of FD statistics one cannot put more than one particle
into any one single-particle state. If one is interested in obtaining the lowest
energy of the whole gas, one is then forced to populate single-particle states of
increasing energy; i.e.,, one can start from the state of lowest energy e and
must then fill up single-particle states of suecessively higher energies, one at a
time, until all the N particles have been accommodated. The net resulf is
that, even when T = 0 and the gas as a whole is in its state of lowest possible
energy, there are particles in the gas which have a very high energy compared

i/
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to e; similarly, the gas as a whole has an energy considerably greater than the
energy Ne; which it would have if the particles obeyed BE statistics. The
Pauli exclusion principle thus has very pronounced consequences.

Let us now consider the case of arbitrary temperature T and calculate,
for the several cases of interest, the mean number of particles 7, in a particular
state s. We can proceed directly from the expression (9-2-4) for this mean
value, ie.,

N, e Bmatngert o dngete0 )

fio = LT - o e (93.1}

G—ﬁ(m:,+u|¢,+ CRIE & Y S |

LTI PR

By summing first over all possible values of n,, using the mulfiplicative
property of the exponential function, and rearranging the order of summation,
' (9-3-1) can also be written in the form

| E“‘ e—im 2‘0 g Blmetnyent - )

g, = D YT P 5
| ey Ze""-'- E(” e—Binertnaert- ) (9 3 2)

L0 T R

Here the last sums in the numerator and denominator omit from consideration
the parficular state s (this is indicated by the superscript s on the summation
gymbol).

Photon statistics This is the case of BE statistics with an unspecified total
number of particles. In accordance with the discussion of the last section, the
numbers ny, g, . . . assume here all values n, = 0, 1, 2, 3, . . . for each r,
without any further restrietion. The sums Z in the numerator and denomin-
ator of (9:3.2) are then identical and eancel. Thus one is left simply with

E Ty €M
i (9:3-3)

= E e-.ﬁ'n,l,

The rest of the calculation is straightforward. The result (9:3-3) becomes

_ (=1/8)(3/8e)Zz ™ 19 ~ In (2 ¢#ne) (9:3.4)

But the last sum is just an infinite geometric series which can be summed.
Thus

-

g hfmen = 1 -+ o=t = o g2y + - o= 1_—3_-"7-

na=0
Hence (9-3-4) gives
e A%

= T—cf

Q.nlq,

In(l1—e*) =

o =
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or

> fle = e—,——l-_—l (9-3-5)

This is called the “Planck distribution.”

Fermi-Dirac statistics Let us now turn to cases where the total number N
of particles is fixed. This restriction makes the caleulation slightly more com-
plicated. We discuss first the case of FD statistics, since it is somewhat
simpler. In accordance with the discussion of Sec. 9-2, the sums in (9:-3:2)

range here over all values of the numbers ny, #s, . . . such that n. = 0 and 1
for each r; but these numbers must always satisfy the restriction
yn =N (9-3-6)

This restriction implies, for example, that if one particle is in state s, the
sum Z® in (9-3.2) extends only over the remaining (N — 1) particles which can
be put into the states other than s. Let us then introduce for the sum Z®,
extended over all states except s, the convenient abbreviation

Z(N) = Ew e—Bingebngest o) (9-3-7)

TN .

if N particles are to be distributed over these remaining states, i.e., if

Y@ mn, =N  (state s omitted from this sum)

By performing explicitly the sum over n, = 0 and 1, the expression (9-3-2)
becomes then

2 O N — 1)
' T ZuN) + ePeZ (N — 1)
= 1

2 "= Gz — D]+ 1

This can be simplified by relating Z,(N — 1) to Z,(N). Thus one can
write quite generally, if AN < N,

(9:3:8)

(9-3-9)

In Zi(N — AN) = In Z,(N) — 2 L‘;vz AN = In Z,(N) — o, AN
or ZAN — AN) = Zy(N) e-=s¥ 9-3.10)
where a2 ;”NZ' 9-3-11)

But since Z.(N) is a sum over very many states, one expects that the variation
of its logarithm with the total number of particles N should be very insensitive
as to which particular state s has been omitted from the sum (9-3.7). Letus
then introduce the approximation (whose validity can be verified later) that
a, 18 independent of s, 8o that one can write simply

o =a (9-3-12)
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for all s. The derivative (9:3.11) can then also be expressed approximately
in terms of the derivative of the full partition funetion Z(N) (over all states)
which occurs in the denominator of (9-3-1) or (9:3-8); i.e.,
_9lnZ
"N
Using (9-3-10) with AN = 1 and the approximation (9:-3-12), the result
(9-3:9) becomes then
I

’ fly = t?_‘;':H"—-H (9 2 3 ' 14,1
This is called the “Fermi-Dirac distribution.”

The parameter a:in (9-3- 14) can be determined from the condition (9-3-6),
which demands that the mean values must satisfy the relation

YA =N (9-3-15)

(9-3-13)

1 .
or E g‘;_;a-;"- _;_-—i = A’ (9 3 S ]_6)
Note that since the free energy F = —kT' In Z, the relation (9-3:13) is equiva-
lent to

e R S (9-3:17)

where u is the chemical potential per particle defined in (8-7-10), The result
(9:3:14) ean thus also be written in the form

” 1
T = creny (9-3-18)
Note that 7. — 0 if ¢ becomes large enough. On the other hand, since
the denominator in (9-3-14) can never become less than unity no matter how
small e, becomes, it follows that #, < 1.. Hence

0<na <1

a relation which reflects properly the requirement imposed by the Pauli exelu-
sion principle.

Remark concerning the validity of the approximation The partition
function given by the denominator of (9:3-1) or (9- 3 8) is related to Z,(N) by
; Z(N) = ZN) + e#=Z,(N — 1) = Z,(N)(L + e=Pe)
or nZ=1InZ +1In (1l +eofe)
where we have used (9-3:10) and (9:3:12), Hence
dinZ dlnZz, e = s Ja

aN TN 1+M'-BN'
ot Lo A ﬁ,aN




Bose-Einstein statistics The discussion here is very similar to that just
given in the case of FD statistics. Here the sums in (9-3-2) range over all
values of the numbers ny, ng, . . . such that n, =0, 1, 2, 3, . . . for each r;
but the situation differs from the case of photons beeause these numbers must
always satisfy the restriction (9:3:6) of a fixed total number N of particles.
Performing explicitly the sum over n,, Eq. (9:3-2) then becomes

04 e BTN — 1) + 2Bz (N —2) + - - -

TS LN T e AN — D) eV = 2) F - -
where Z,(N) is defined as in (9-3.7). Using (9-3-10) and the approximation
(9-3-12), the result (9-3-20) becomes

_ ZJAN)0 4 ePuga 4 2gWugte L - . ]
ST AR A TR L e R |
E T, g~ MalEHEn)
8

or fle = -W (93'21)

(9-3-20)

i

But this simple expression is similar to (9:3-3), except that e in that expres-
sion is replaced by (a + fe,). The remainder of the calculation is then identi-
cal to that leading to (9-3-4) and yields therefore
= 1

> = ST (9-3-22)
This is called the ‘“‘Bose-Einstein distribution.”” Note that 7, can become very
large in this case. The parameter « can again be determined by the condition
(9:3:15), i.e., by the relation

1
Z‘emi = N (93‘23)
It is again related to the chemical potential u by the relation @ = —gp of
(9:3:17), so that (9:3:22) can also be written in the form
1
fiy = em—_—l (9324)

In the ease of photons, the sums are to be performed without any restrie-
fion as to the total number N of particles, so that Z(N) [or Z,(N)] does not
depend on N. Thus @ = 0 by (9-3-13), and the Bose-Einstein distribution
(9-3-22) reduces properly to the special case of the Planck distribution (9-3 - 5).
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Remark In the case of photons (or other particles whose total number iz
not fixed) e, denotes the unambiguously defined energy necessary to create one
particle in state s (e.z., & = fiw, if . in the angular frequency of the photon).
Suppose that the energy scale is shifted by an arbitrary constant g, so that the
ground state of the photon gas (the situation whenny = na =z = + - + =0)
has energy n instead of zero energy, Then the energy of the gas in a particular
state becomes & = Zn.e, + 9, But the constant n cancels in (9:3-1), so that
the Planck distribution (9:3-5) is properly unaffected.

In the case of ordinary gases with a fixed number ¥V of particles, e, denotes
the energy level of a particle in state s, Suppose that the energy scale is
shifted by an arbitrary constant. Then all single-particle energy levels are
shifted by the same constant »’ and the energy of all states of the whole gas is
shifted by the constant n = Ny’. Once again this additive eonstant cancels
in (9:3-1); thus the FD and BE distributions (9-3-18) and (9-3-24) are prop-
erly unaffected (the chemical potential u being also shifted by 7).

This completes the discussion of the essential features of the gquantum
statisties of ideal gases. It is, however, worth looking at the various cases in
greater detail with the aim of caleulating not only the distribution funections
fly, but also thermodynamic functions (e.g., the entropy) and the magnitude of
fluetuations in the number of particles in & given state. We shall, therefore,
devote the next few sections to calculate systematically the partition funetion
Z for each case of interest, i.e., to find an explicit expression for Z in terms of
the energy levels of a single particle. The remainder of the caleulation will
then involve only the simple problem of finding explicitly the energy levels of a
single particle.

9 . 4< Mazxwell-Boltzmann statistics

For purposes of comparison, it is instructive to deal first with the strictly
classical case of Maxwell-Boltzmann statisties. Here the partition function is

7 = Ee—-ﬁfn|l.+n,l|+-"l (9-4-1)
R

where the sum is to be evaluated, as deseribed at the end of Sec. 9-2, by sum-
ming over all states R of the gas, i.e., by summing over all possible values of
the numbers n, and taking into account the distinguishability of the particles.
If t-h?re is a total of N molecules, there are, for given values of [ni, na, . . .},

N1
'ﬂ.ll!??.g! L
possible ways in which the particles can be put into the given single-particle

states, so that there are n, particles in state 1, n» particles in state 2, ete. By
virtue of the distinguishability of the particles, each of these possible arrange-
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ments corresponds then to a distinet state for the whole gas. Hence (9:4-1)
can be written explicitly as

= ‘JV.! =GN e+ Nakat + v 0 )
Z"m.,é.:.__W‘ i (9-4-2)
where one sums over all values n, = 0, 1, 2, . . . for each r, subject to the
réstriction
In=N ©-4.3)

But (9-4-2) can be written

N
Z = Z m.;i_._ (e—ﬂa.)m(e—pq]n, =y 1 K

which, by virtue of (9-4-3), is just the result of expanding a polynomial. Thus

Go=lpha Ligfe | o W
or

=5 nZ=NIn(Fe?) (94-4)

where the argument of the logarithm is simply the partition function for a
gingle particle,

Alternative method One may equally well write the partition function of
the whole gas in the form

Z= 3 expl—Blentent  : +ew) (9-4-5)
LET - PP
where the summation ig now over all the possible states of each individual par-
ticle. Clearly, this way of summing considers particles as distinguishable
and produges distinct terms in the sum when [particle 1 is in state r, and par-
tiele 2 is in state r;] and when [particle 2 is in state #, and particle 1 is in
state ra]. Now (9-4'5) ﬁnmediate]yfschomtogwe

Z= 3 e (e exp (—Be) -

Ti,re, .

- [Eexp (—Ben) ] [zexp (=Be)] -+
or 2 = [ exp (~fer)]" (9-4:6)
Thus one regains the result (9-4:4).

By applying (9-2-5) to the partition function (9-4-4), one obtains, by
differentiating with respect to the one term involving e,

. 14lnZ _ 1. —pBePn
o 8 de, E ¥ E g—Be
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or
e fu
S =N (9-4-7)
E g‘ﬂ‘-

This is called the “Maxwell-Boltzmann distribution.” It is, of course, just
the result we encountered previously in a classical approach where we apphed
the canonical distribution to a single particle.

Calculation of the dispersion By combining the general result (9-2-10)
with (9-4-7) one obtains

e ﬁai. B [ Sebe Cehea)t
E .
= = i

This last step follows since 7, << N unless the temperature T' is exceedingly
low. The relative dispersion is then
2

> =2 (9:4.9)

g

9 N 5 Photon statistics

The partition function is given by

7 = $ pBlniqtnet o) (9-5-1)
-
where, in accordance with the discussion at the end of Sec. 9-2, the summation
is simply over all valuesn, = 0,1, 2,3, . . . for each r, without further restric-
tion. Thus (9-5-1) becomes explicitly
Z = By I?._BN’(! ghngey . .
o - (Fem (G (G oao
=0

But each sum is just an mﬁmte geometric series whose first term is 1 and where
the ratio between successive terms is e fe. It can thus be immediately
summmed. Hence (9-5-2) becomes

T

or

B mZ=— Y (l—e?) (9-5-3)
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By applying (9-2-5) to (9-5-3), differentiation with respect to the one
term involving ¢, yields

or
1
’ Tis =88'-_—i (9-5-4)

Thus we regain the Planck distribution previously derived in (9:35).

Calculation of the dispersion The dispersion in n, can be caleulated by
applymg (9:2:10) to (9-5-4). Thus

{ Uit
W=—-— (f= — 1)1
One can use (9-5-4) to write this in terms of ,. Thus
@y = G DL

Hence Bn)F = (1 + ) (9:5-5)
or
> B el 9.5:6)

Note that this dispersion is greater than in the MB case of Eq. (9-4:8). In
dealing with photons, therefore, the relative dispersion does not become arbi-
trarily small even if 72, 3> 1.

9. 6 Bose-Finstein statistics

The partition funetion is again given by
Z = Ee"‘ﬁ(ﬂtt‘fﬁ‘!'ﬂ'"'] (96 1}
B

where, in accordance with the discussion of Sec. 92, the summation is over all
values

fa =042 ol for each » (9:-6:2)

Unlike the photon case, however, these numbers must now satisfy the restrie-
tive condition

En,=N (9-6-3)

where & is the total number of particles in the gas. If it were not for the equa-
tion of constraint (9-6-3), the sum (9-6- 1) could be easily evaluated just as in
the last section. But the condition (9-6-3) introduces a complication.
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There are various ways of handling the problem presented by the condi-
tion (9-6:3). Let us use an approximation method similar to that described
in Sec. 6-8. As a result of (9:6-3), Z depends on the total number N of par-
ticles in the system. If the number of particles were N’ instead of N, the
partition function would have some other value Z(N'). Indeed, since there
are 80 many terms in the sum (9-6-1), Z(N') is a very rapidly increasing func-
tion of N'. But, by virtue of (9:6:-3), we are interested only in the value of Z
for N' = N. We can, however, exploit the rapidly increasing property of
Z(N') by noting that multiplication by the rapidly decreasing function e-*¥’
produces a function Z(N')e=*¥' with a very sharp maximum which can be
made to occur at the value N' = N by proper choice of the positive parameter
o. A sum of this funection over all possible numbers N’ thus seleets only those
terms of interest near N' = N, ie.,

;Z(N') eV = Z(N) eV A*N' (9:6-4)
where the right side is just the maximum value of the summand multiplied by

the width A*N' of its maximum (where A*N' << N),
Let us introduce the abbreviation

- Z=Y Z(N' )=V (9-6:5)
NJ

Taking the logarithm of (9:6-4) one then obtains to an excellent approximation
J InZN)=aN +hhz (9:6-6)

where we have neglected the term In (A*N') which is utterly negligible com-
pared to the other terms which are of order N. Here the sum (9:6-5) is easily
performed, since it extends over all possible numbers without any restriction.
(The quantity Z is called a “grand partition function.”)

Let us evaluate Z. By (9-6-1) this becomes

= g'-"mnmmaﬁ“" g Piidiakesd (9:6-7)

where the sum is over all possible numbers (9-6-2) without restriction. By
regrouping terms one obtains

Z= (atfe) m—(atde) ng— o
m,nEg.:. = Ve " : 1
= —{a+fe ) —(a+Bes) n gl
(L) F by

A
This‘is just a product of simple geometric series. Hence

1 1 2 iy
1 — g latbe) 1 — g—ftatfe) 2

or InZ=—YIn(l—e=p) (9:6:8)

Z
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Equation (9-6-6) then yields

e Inf = ol = N in(l — =) (9:6:9)

Our argument assumed that the parameter « is fo be chosen so that the
function Z(N')e—="" has its maximum for N’ = N, i.e., so that

dIn Z(N)

d no_
sy A — ol = —om

—a=0 (9-6-10)

Since this condition involves the particular value N = N, « itself must be a
function of N. By virtue of (9:6-6), the condition (9-6-10) is equivalent to

o (v +227) ] -

or N + = =0 (9-6-11)

Using the expression (9-6:9), the relation (9-6-11) which determines « is then

g P
= 21 T—ete 0
or

> Y s =N (9-6-12)

By applying (9-2.5) to (9:6-9) one obtains then

1dInZ 1[ Be—oFu aanc‘la]

W= T By . Bl d—e" " 8 b,

The last term takes into account the fact that « is a funetion of e, through the
relation (9-6-12). But this term vanishes by virtue of (9:6-11), Hence one
has simply

> | (9:6-13)

Thus one regains the Bose-Einstein distribution already derived previously in
(9-3-22). Note that the condition (9-6-12) which determines « is then
equivalent to

Em=N (9-6-14)

the obvious requirement needed to satisfy the conservation of particles (9-6-3).
The chemieal potential of the gas is given by
oF alnZ

B=gﬁ kTW=_kTC!
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\ where we have used (9:6:10). Thus the parameter
a= —fu (9:6-15)

is directly related to the chemical potential of the gas. In the case of photons,
where there is no restriction on the total number of particles, Z is independent
of N; then a = 0, and all our relations reduce to those of the preceding section.

Colculation of the dispersion By applying (9:2:10) to (8-6-13) one

2 M, 1 estbe 79

o 1 - 2y (44

(An)t = = B e, — @ (et — 1) \ e, -HS)

e=tAn (g=tfe — 1) -1 o

But (ﬂﬂﬁ" £ 1}, = (ew.l L 1)2 = fi, + ﬁ-!

o 16y _
He:llce @ = a1+ ) (1 4+ 5 a&) a1 4+n)  (9-6-16)
an:

. T

> Gl Ly ©-6-17)

where we have negleeted the term da/de,. This term is usually very small,
since a is to be determined by (8- 6-11) and (unless the temperature T = (k3) 2
is so low that only a very few terms in the sum have appreciable magnitude)
a small change of one energy e, leaves the sum (and hence o) essentially
unchanged.

Note that the relation (9-6-17) is exactly the same as that of (8:5-6) for
photons. The relative dispersion is again preater than in the MB case of
(9-4-9). Thus the relative dispersion does not become arbitrarily small even
when 7, 2> 1.

The correction term in (9-6-16) can, of course, be evaluated explicitly by
taking (9-6-12), which determines o, and differentiating it with respect to e,.

Thus
Bertha g 8a _ 0
T {etBe — 1)2 2 (extBee — 1)% B,
or =B+ 15 = [Y o+ 00| $E =0
Do a1 4 @y)

Hence siel LRyl LR E L

S Ba 1 ¥l + a)

ﬂ'l{l + ﬁ'!)

d 3= A AR Et =B

and BryE = Al + 7)) [1 LY nr}] (9-6-18)

r

The dispersion is thus slightly smaller than if the last term in the square
brackets were neglected. But if one goes to the limit where T'— 0, then
all the particles tend to be in the one single-particle state s = 1 of lowest
energy, so that i, = N while 7, =~ 0 for sll other states, The correction
term in (9-6-18) is then important since it prediets properly that the fluctu-
ation in the number of particles in the ground state s = 1 goes to zero,
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9. 7 Fermi-Dirac statistics

The discussion here is very similar to that for Bose-Einstein statistics, The
problem is again to evaluate the partition function (9:6-1). Buf, in accord
with the discussion of Sec. 92, the summation is only over the two values

n, = 0and 1 for each r (9-7-1)

where these numbers must again satisfy the restrictive condition {(9-6-3).
The problem can be handled in a manner identical to that used in the
last section for BE statisties. The unrestricted sum Z of (9-6-5) becomes

Z = g Plmertnyet <+ J—alnitnet -+ )
NyuRyLTS
1 1
= ( E g-—(‘ﬂ'ﬂ‘x]"ﬁ)( 2 e—("ﬂ'ﬁizi“ﬁ) e (97-2)
ni=0 n=0

Here each sum consists, by virtue of (9:7-1), of only two terms and is thus
trivial. Hence
7 = (1 + e—a—ﬁﬂ}(l + e—a—ﬂll) o e

or InZ = ) In (1 4 et (9-7-8)

Hence (9 6:5) becomes

> InZ = aN + ) In (1 + eabe) (9:7.4)
[

Except for some important sign changes, this expression is of the same form

as (9-6:9) for the BE case. The parameter « is again to be determined from
the condition (9-6-11). Thus

dlnZ ARl
== ZT__

dax + et

or
1
By applying (9:2-5) to (9:7-4), one obtains

J s _lalﬂZ_l ﬁe—-ﬂ—ﬂh

O e RIS
or

1

’ fls = m—i (976)

Thus one regains the Fermi-Dirae distribution derived previously in (9:3:14).
The relation (9:7-5) which is used to determine « is again just the condition
(9-6-14) and the parameter « is again related to the chemical potential x by
the relation (9-6-15).
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Calculation of the dispersion By applying (9:2:10) to (9-7-6), one

obtains
G = = 55 = G 1 (o + )
But @~ e = e
Hence A, = Ayl — ) (1 + % gg) = (1 — 1) Ged
and
- R %

Note that the relative dispersion is smaller than in the MB case diseussed in
Eq. (9:4-9). For example, if #,— 1, the maximum value it can attain in
accordance with the exclusion principle, then the dispersion vanishes. There.
is no fluctuation in 7, for states which are completely filled.

0.8 Quantum statistics in the classical limit

The preceding sections dealing with the quantum statistics of ideal gases can
be summarized by the statements that

> Bl 9-8-1)

= patie + 1

where the upper sign refers to FD and the lower one to BE statistics. If the
gas consists of a fixed number N of particles, the parameter o is to be deter-
mined by the condition

> EED RS ae

T .
The partition function Z of the gas is given by
e InZ=aN + Yl (1 + eope) (9-8-3)

Let us now investigate the magnitude of & in some limiting cases. Con-
sider first the case of a gas at a given temperature when its concentration is
made sufficiently low, i.e., when N is made sufficiently small. The relation
(9:8:2) can then only be satisfied if each term in the sum over all states is
sufficiently small, i.e., if i, << 1 or exp (& + Be,) >> 1 forall states r. Similarly,
consider the case of a gas with some fixed number N of particles when its tem-
perature is made sufficiently large, i.e., when § is made sufficiently small. In
the sum of (9-8-2) the terms of appreciable magnitude are those for which
Be K a; hence it follows that as 8 — 0, an increasing number of terms with
large values of ¢ contribute substantially to this sum. To prevent this sum
from exceeding N, the parameter « must become large enough so that each
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term is sufficiently small; i.e., it is again necessary that exp (a + 8e,) > 1 or
7. << 1 for all states . Thus one arrives at the eonclusion that, if the eoncen-
tration is made sufficiently low or if the temperature is made gufficiently high,
« must become so large that,

for all 7, ettie 3> 1 (9:8-4)
Equivalently this means that the oecupation numbers become then small
enough so that,

for all r, i & 1 (9-8-5)

We shall call the limit of sufficiently low concentration or sufficiently high
temperature where (9-8-4) or (9-8-5) are satisfied the “classical limit.”
In this limit it follows by (9-8-4) that for both FD and BE statisties
{(9:8:1) reduces to
iy = g% (9-8-6)
By virtue of (8:8:2), the parameter o is then defermined by the condition

Yeute =gy ebe =N

*

or e =N (Erﬁ‘r)_l (9-8-7)
e_ﬂ‘r

—f

Hence it follows that in the classical limit of sufficiently low density or suffi-
ciently high temperature the quantum distribution laws, whether D or BE,
reduce to the MB distribution,

The present conclusion is in agreement with our discussion of Sec. 7-4,
where we estimated more quantitatively just how low the concentration and
how high the temperature must be for classical resulis to be applicable.

Let us now consider the partition function of (9-8:3). In the classical
limit, where (9-8-4) is satisfied, one can expand the logarithm in (9:8-3) to get

nZ = aN + E (e=Pa) =aN + N

Thus fp = N (9-8-8)

But by virtue of (9-8-7)

o

—InN -+ (Z e""r)
Hence IhnZ=—-NhN+N+N¥h(Ye?) (9-8-9)

Note that this does not equal the partition function Zys computed in Eq.
(9-4-4) for MB statistics

InZyn = Nln (3 e*v) (9-8-10)
Indeed InZ =1nZys — (NIn N — N)
or Zup (9-8-11)

Bl
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where we have used Stirling's formula since & is large. Here the factor V!
corresponds simply to the number of possible permutations of the particles,
permutations which are physically meaningless when the particles are identical,
It was precisely this factor which we had to introduce in an ad hoc fashion in
See, 7-3 to save ourselves from the nonphysical consequences of the Gibhbs
paradox. What we have done in this section is to justify the whole discus-
sion of Sec. 7-3 as being appropriate for a gas treated properly by quantum
mechanies in the limit of sufficiently low toncentration or high temperature.
The partition funetion is automatically correctly evaluated by (9-8-9), there
is no Gibbs paradox, and everything 1s consistent.,

A gas in the classical limit where (9-8-6) is satisfied is said to be “non-
degenerate.” Onthe other hand,if the concentration and temperature are such
that the actual FD or BE distribution (9-8-1) must be used, the gas is said fo
he “degenerate.”

IDEAL GAS IN THE CLASSICAL LIMIT

9-9 Quantum states of a single particle

Wave function To complete the discussion of the statistical problem it is
necessary to enuwmerate the possible quantum states s and corresponding
energies ¢, of a single noninteracting particle. Consider this particle to be
nonrelativistic and denote its mass by m, its position vector by 7, and its
momentum by p. Suppose that the particle is confined within a container of
volume 1" within which the particle is subjeet to no forees. Neglecting for the
time being the effect of the bounding walls, the wave funetion ¥(rf) of the
particle is then simply deseribed by a plane wave of the form

¥ = Al Tm00 — (g g (9-9-1)
which propagates in a direction specified by the “wave vector” x and which

has some constant amplitude 4. Here the energy e of the particle is related
to the frequency « by

e = hew (9:9:2)
while its momentum is related to its wave vector « by the de Broglie relation
p = fix (9-9-3)

Thus one has
= Al v 9.4
‘T om” 2m (29:4)

The basie justification for these statements is, of course, the fact that
¥ must satisfy the Schridinger equation

L 0¥ o
ih =1 (99-5)
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Since one ean choose the potential energy to be zero inside the container, the
Hamiltonian JC reduces there to the kinetic energy alone; ie.,

S e e I8 e
_Zmp"zm(iv) o
2 44 a2

d
where V’z@-}-@,+a?
Putting T = it = e lilbu (9-9-8)
where ¥ does not depend on time, (9 9-5) reduces to the time-independent
Sehrodinger equation

Y = e (9-9:7)
or vw+%¢ =0 9-9-8)

Equation (9-9-7) shows that e corresponds to the possible values of 3C and is
thus the energy of the particle. The wave equation (9:9-8) has solutions of
the general form

= A girtauins) = 4 giver (9-9-9)

where « is the constant “wave vector” with components k:, &y, #-. By sub-
stitution of (9-9-9) into (9-9- 8) one finds that the latter equation is satisfied if

— (ot )+ =0

Bowt

= (9:9-10)

Thus €
and e is only & function of the magnitude x = |v| of x. Since
fi
pY =W = A

one obtaing then the relations (9-9-3) and (9-9-4).

Up to now we have considered only the translational degrees of freedom.
If the particle also has an intrinsie spin angular momentum, the situation is
searcely more complicated; there is then simply a different function ¢ for each
possible orientation of the particle spin. For example, if the particle has
spin 4 (e.g., if it is an electron), then there are two possible wave functions
Y. corresponding to the two possible values m = +3 of the quantum number
specifying the orientation of the particle’s spin angular momentum.

Boundary conditions and enumeration of states The wave function
¥ must satisfy certain boundary conditions. Aceordingly, not all possible
values of x (or p) are allowed, but only certain discrete values. The cor-
responding energies of the particle are then also quantized by virtue of (9-9-4).

The boundary conditions ean be treated in a very general and simple
way in the usual situation where the container enclosing the gas of particles is
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large enough that its smallest linear dimension L is much greater than the
de Broglie wavelength X = 27 /|| of the particle under consideration.* Tt is
then physically clear that the detailed properties of the bounding walls of the
container (e.g., their shape or the nature of the material of which they are
made) must become of negligible significance in describing the behavior of a
particle located well within the container.t To make the argument more
precise, let us consgider any macroscopic volume element which is large com-
pared to A and which lies well within the container so that it is everywhere
removed from the container walls by distances large compared to N\, The
actual wave function anywhere within the container can always be written as a
guperposition of plane waves (9-9-1) with all possible wave vectors x. Hence
one can regard the volume element under consideration as being traversed by
waves of the form (9-9-1) traveling in all possible directions specified by #, and
with all possible wavelengths related to the magnitude of . Since the con-
tainer walls are far away (compared to )\), it does not really matter just how
each such wave is ultimately reflected from these walls, or which wave gets
reflected how many times before it passes again through the volume element
under consideration, The number of waves of each kind traversing this
volume element should be quite insensitive to any suech details which desecribe
what happens near the container walls and should be substantially unaffected
if the shape or properties of these walls are modified, Indeed, it is simplest if
one imagines these walls moved out to infinity, i.e., if one effectively eliminates
the walls altogether, One can then avoid the necessity of treating the problem
of reflections at the walls, a problem which is really immaterial in deseribing
the situation in the volume element under consideration. It does not matter
whether a given wave enters this volume element after having been reflected
somewhere far away, or after coming in from infinity without ever having been
reflected at all,

The foregoing comments show that, for purposes of discussing the proper-
ties of a gas anywhere but in the immediate vicinity of the container walls, the
exact nature of the boundary conditions imposed on each particle should be
unimportant. One can therefore formulate the problem in a way which makes
these boundary conditions as simple as possible. Let us therefore choose the
basic volume V of gas under consideration to be in the shape of a rectangular
parallelepiped with edges parallel to the =, y, z axes and with respective edge
lengths equal to L., Ly, L.. Thus V = L.L,L,. The simplest boundary condi-
tions to impose are such that a traveling wave of the form (9-9-1) is indeed an
exact solution of the problem. This requires that the wave (9:9:1) be able to
propagate indefinitely without suffering any reflections. In order to make the
boundary conditions consistent with this simple situation, one can neglect

' *This condition is ordinarily very well satisfied for essentially all molecules of a gas
since & typical order of magnitude, already estimated in Sec. 7-4, is X = 1 A for an atom of
thermal energy at room temperature.

T Note that the fraction of particles near the surface of the container, i.e., within a dis-
tance X of its walls, is of the order of AL*/L? = )\/L and is thus ordinarily utterly negligible
for a macroscopic container,
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Lv: ;?:% Fig. 9:9:1 The volume under
consideration (indicated in darker
gray) is here considered embedded
in an array of similar velumes
extending throughout all space,
Wall effects are thus effectively
eliminated.

-

Ly

completely the presence of any container walls and can imagine that the
volume of gas under consideration is embedded in an infinite set of similar
volumes in each of which the physical situation is exactly the same (see Fig.
9:9-1). The wave funetion must then satisfy the conditions

’#(’T + Lﬂ': "f: z) = &{J;,y‘z)
(e, y + Ly 2) = $(a,y2) (9-9-11)
\b(l': i 2 S "-'-'z) = !&{r,yﬁ)

The requiremeni that the wave funection be the same in any of the parallel-
epipeds should not affect the physies of interest in the one volume under con-
sideration if its dimensions are large compared to the de Broglie wavelength A
of the particle.

Remark Suppese that the problem were one-dimensional so that a particle
moves in the ¢ direction in a container of length L,. Then one can eliminate
the effects of reflections by timagining the container to be bent around in the
form of a circle s shown in Fig. 9.9.2. If L, is very large, the curvature is
quite negligible 2o that the situation inside the container is substantially the
same as before. But the advantage is that there are now no container walls
to worry about. Hence traveling waves described by (8:8-1) and going
around without reflection are perfectly good solutions of the problem. It is
only necessary to note that the points @ and = + I, are now coincident; the
requirement that the wave function be single-valued implies the condition

dlr + L) = () (9:9.12)

Fig., 9.9:2 A ane-dimensional con-
tainer of length L, bent tato a circle
by joining its ends.
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This is precisely the analog of (9-9-11) in one dimension. Indeed, one could
regard the condition (9-911) as resulting from the attempt to eliminate
reflections in three dimensions by imagining the original parallelepiped to be
bent into & doughnut in four dimensions. .(This is, admittedly, difficult to
visualize.)

This point of view, which describes the situation in terms of simple travel-
ing waves satisfying the periodic boundary conditions (9:9.11), 18 very con-
venient and mathematically exceedingly easy. By virtueof (9-9-1) or (9:9:9)

= g“‘" = gilratrptr)
To satisfy {9-9-11) one must require that

k:(x + Lz) = ks + 2mins (ns integral)

or _ o
Ky = T Ne
Similarly, Ky = Iﬁ n, (9-9-13)
b
and Ky = %E Ty

Here the numbers n,, n,, n. are any set of integers—positive, negative, or zero,
The components of ¥ = p/h are thus quantized in diserete units. Accord-
ingly (9-9-4) yields the possible quantized particle energies

- 240

e=%ﬂ@+wf+@]=¥£( 2f+
Note that for any kind of maeroscopie volume where L., L,, L. are large,
the possible values of the wave-vector components given by (9-9-13) are very
clogely spaced. There are thus very many states of the particle (i.e., very
many possible integers n.) corresponding to any small range dk. of o wave-
vector component. It is easy to do some counting. Ior given values of
xy and k., it follows by (9-9-13) that the number An, of possible integers n. for

which k. lies in the range between k. and x, + dk. is equal to

) (9-9-14)

an, = 2= dx, (9-9-15)
The number of translational states p(x) d% for which % is such that if lies in
the range between « and % + dx (i.e., in the range such thaf its z component is
between «. and k; + du., its y component between «, and x, + dk,, and its
z component between «, and x; + dx.) is then given by the produect of the
numbers of possible integers in the three component ranges. Thus

" L; L L_— L L:
pd® = An. Any, An, = (ﬂ dx ) ( ¥ dx,) (ﬂ dx,) = ("QI:)S dis dicy dx,
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or
> p i = ot di (9-9-16)

where d*x = dk. di, dk. 18 the element of volume in “x space.” Note that the
density of states p is independent of x and proportional to the volume V under
consideration; i.e., the number of states per unit volume, with a wave number »
{or momentum p = fx) lying in some given range, is a constant independent of
the magnitude or shape of the volume.

Remark Note that (9:9:3) yields for the number of translational states
pp @°p in the momentum range between p and p + dp the expression

v d 5
0, d%p = o d% = W?%) = V,Ti’ (9-9-17)

where h = 2r# is the ordinary Planck’s constant. Now ¥V d®p is the volume
of the classical six-dimensional phase space occupied by a particle in a hox of
volume V' and with momentum between p and p + dp. Thus (9-9-17)
shows that subdivision of this phsase space into cells of size A yields the
correct number of quantum states for the particle,

Various other relations can be deduced from the result (9-9-16). For
example, let us find the number of translational states p, dx for which x is such
that its magnitude || lies in the range between x and « + dk. This is obtained
by summing (9-9-16) over all values of x in this range, i.e., over the volume in
x space of the portion of spherical shell lying between radii x and ¢ 4 dk. Thus

V
(2m)*

pedx = (drxt di) = -2—.:% k* di (9-9-18)

Rermark Since ¢ depends only on x = [x|, (9:9:18) gives immediately,
corresponding fo this range of x, the corresponding number of translational
states pe de for which the energy of the particle lies befween e and e + de,
From the equality of states one has

d de |t
o de| = [pe ] = | | de = pc | S e
By (9-9-4) one then obtains
(2am)}
B =2{-—,xs %[ﬁ:{_‘%%da (9.9-19)

Alternative discussion It is, of course, possible to adopt a slightly more
complicated point of view which does take into account explicitly reflections
oceurring at the walls of the container. Since the exact boundary conditions
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are immaterial let us, for simplicity, assume that the container is in the shape
of & rectangular parallelepiped with walls located at 2 = 0and 2 = L.,y = 0
and y = Ly, and 2 = 0 and 2 = L,. Let us further assume that these walls
are perfectly reflecting, i.e., that the potential cnergy U of the particle equals
U = 0 inside the box and {7 = « outside the box. Then the wave fune-
tion ¥ must satisfy the requirement that

whenever 2 = 0 or L,
¢ =0 y =0orlL, (9-9-20)
z=0orL,

The particular solution ¥ = &7 of (9:9-9) represents a traveling wave
and does not satisfy the boundary conditions (9-9-20). But one ¢an con-
struet suitable linear combinations of (9-9+9) (all of which automatically also
satisfy the Schridinger equation (9-9:8)) which do satisfy the boundary con-
ditions (9-9-20). What this means physieally is that in this box with per-
fectly reflecting parallel walls standing waves are seti up which result from the
superposition of traveling waves propagating back and forth.* Mathemati-
cally, since "% is a solution of (9:9:8), so is ¢~*=*, The combination

(o't — g =) = gin K.x (9-9-21)

vanishes properly when # = 0. Tt can also be made to vanish for @ = L,
provided one chopses k. so that

Ko Lz= whs

where n, ig any integer. Here the possible values n. should be restricted to
the positive set
q = 1,23, . .

since a sign reversal of 7, (or x.) just turns the function (9-9-20) into
gin {—Kx)2 = — gin w2

which is not a distinct new wave function. Thus a standing wave solution is
specified completely by [i:].

Forming standing waves analogous to (9-9-21) also for the y and z diree-
tions, one obtains the product wave funciion

¥ = A(sin x.x)(sin ryy) (sin k.2) (9-9-22)

where A ig some constanf. This satisfies the Sehrddinger equation (9:9:8)
and also the boundary conditions (9:9:20) provided that

T T
Kz =z:n,, Ky ~—-I‘—’n,,, Kz =£;'n, (9.9.23)

* Bimple standing waves of the form (9-9-21) would not be set up if the walls of the
container were not exactly parallel. Hence our previous discussion in terms of traveling
waves eriss-crossing the volume in all directions, in & manner insensitive to the precise
boundary conditions, affords a more convenient and general point of view.
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We are now ready to calculate the partition function Z of a monatomic ideal
gas in the classical limit of sufficiently low density or sufficiently high tem-

section 9+ 10

where n,, ny, 7. are any positive integers. The possible energies of the parficle
are then given by

12, TR nl | ont
B I I +.)

Tor given values of «, and &, the number of translational states with x, in the
range between k. and k. + dk. is now equal to

An, = L; dks (9-9-24)

The number of translational states with » in the range betwesn % and x + dx
is then given by

pde = An; Any An, = (% dx,) (% dx,,) (‘% dx,)
or p43n=54m (9-9-25)

The number of {ranslational states p. di for which x is such that its magnitude
lies in the range between x and « + di is obtained by summing (8-9:25) over

all values of % in this range, i.e., over the volums in % space of the portion of

spherieal shell lying between radii x and & + dk and located in the first octant
where ks, &y, ke > 0 50 as to satisfy (9:9-23). Thus (9-9-25) yields

2
et = 5 (126 — wxw (9-9-26)

This is the same result as was obtained in (9-9-18). The reason is simple,
By (9-9-24) there are, compared to (9 9:15), twice as many states lying in a
given interval di., but sinee only positive values of k. are now to be counted,
the number of such intervals is decreased by a compensating factor of 2,

By (9-9-26) it also follows that p. de is the same as in (8:9-19). This
just illustrates the result (which ran also be established by rather elaborate
general mathematical arguments)* that this density of states should be the
same irrespective of the shape of the container or of the exact boundary con-
ditions imposed on its surface, so long as the de Broglie wavelength of the
particle 15 small compared fo the dimensions of the container.

. ]0 Evaluation of the partition function

perature. By (9-8-9) one has

mZ=N({n¢{—InN+1) (9-10-1)
where =Yt (9-10-2)

L

* Bee, for example, R. Courant and D. Hilbert, ' Methods of Mathematical Physics,”

vol, I, pp. 429-445, Interscience Publishers, New York, 1953.
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is the sum over all states of a single particle. The expression (9-10-1) is
identical to the result (7-3-3); ie.,
;N
= Vi (9-10:3)
Since we have just enumerafed the possible states of a single particle, the
sum (9-10-2) is readily evaluated. By (9:9-14)

ph* OnE NG :

& Z;,‘ZN exp [— om RS T K;“}:I (9-10-4)

where the swm is over all possible values of r., &, x. given by (9-9-13). Since
the exponential function factors, { becomes the product of three similar sums

¢ = (Z e—m*,rem}x;) (E e—(aa’mm)‘,*) (E e-n-;rwzm;‘ﬁ) (9:10-5)

Successive terms in a sum like that over k. = (2r/L,)n. correspond to a
very small increment Ax; = 2r/L; in «; and differ, therefore, very little from

each other; i.e.,
a 2r
Y ro—tantiamyet) [ 2T
‘ [i [6 ] (L;)

Provided that this condition is satisfied, it is an excellent approximation to
replace the sums in (9:10-5) by integrals. A small range between x, and
kz T di; contains then, by (9-9-15), An-. = (L:/2r) dx, terms which have
nearly the same magnitude and can be grouped together. Summing over all
possible ranges of x; completes the sum. Thus

<& g (BNS 2m) kst (9 -10- 5'}

w

Z g (BAtam)e® f_‘: (B ) s (—;_‘{ dx,)

m
Lo (2em\t _ L (2rm\} o

Hence (9-10-5) becomes

V. (Z2rm\t ¥V
= e - — = — ' * - .
> § (2rh)* ( ] ) 3 (2mmkT) (9-10-7)
Note that this is the same result as that obtained by the classical calculation in
(7-2-6), provided that we set the arbitrary parameter hy (which measures the
size of a cell in classical phase space) equal to Planck’s constant h.

It then follows, by (9-10-1), that

Vo 48 3. 2mm
/ an=N(InF—§]nﬁ+;z—ln-&T+l) (9-10-8)

= el NS
- —_—— ER — e— = e - .
Hence E 38 58 =3 NeT (9-10-9)
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and

., S=k(an+ﬂE)=N!c(ln%—|—%ln?’+oo) (9:10-10)
where
> 2o m 81 20k 4 B (9-10-11)

These results are exactly the same as those we obtained in (7-3-5), with one
important difference. Since we have now treated the problem by gquantum
mechanies, the constant oo has a definite value in terms of Planck’s constant A
(unlike the classical case where Ay was an arbitrary parameter). The faet that
the entropy does not involve any arbitrary constants has important physical
consequences whieh we shall diseuss in See. 9.11.  All quantities such as E or
the mean pressure 7, which depend only on derivatives of S are, of course, the
same as those calculated in Sec. 7-2,

Let us verify that the condition (9-10-6) justifying the replacement of the
sum over states by an integral is indeed satisfied. This condition requires that

gl o 10-
13"‘& <1 (9:10-12)

But the mean value of «, can be estimated from (9:10-9) or the equi-
partition theorem. Thus

WEE_ 108 _1

2m 32m 2

hie = \/mkT

kT

or
Hence (9-10-12) becomes
b e K1

or approximately AN&L L {(9-10-13)

where X = h/pis the mean de Broglie wavelength of the particle.

Thus (9-10-12) demands only that X is smaller than the smallest dimen-
sion L of the container. On the other hand, we saw in See, 7-4 that the
requirement for the very applicability of the classical approximation is that
A be smaller than the mean interparticle separation, i.e,,

L
A <<m (9:10-14)

which is 8 much more stringent condition than (9-10-13).

Finally, let us point out what happens if each particle has also an intrinsic
spin angular momentum /. The possible orientations of this spin are specified
by its projeetion my; = —J, —J +1,... ,J — 1, J. There are then
(2J + 1) possible states of the same energy associated with each possible
translational state of a particle. The net result is that the sum over states {
simply is multiplied by (2J + 1), so that the entropy is increased by the con-
stant Nk In (2J + 1).



PHYSICAL IMPLICATIONS OF QUANTUM-MECHANICAL ENUMERATION OF STATES 368

9 . 1 1 Physical implications of the quantum-mechanical
enumeration of states

Although the results of the quantum-mechanical caleulation of Z are virtually
the same-as those of the semiclassical calculation in See. 7-3, there are two sig-
nificant differences:

a, The correct dependence (9:10-1) of In Z on N (i.e., the factor N! in
(9:10-3)) is an automatic consequence of the theory. Thus the Gibbs paradox
does not arise, and In Z in (9.10-8) behaves properly like an extensive quantity
under simultaneous change of scale of N and V.

b. There are no arbitrary constants oceurring in Z or the entropy 8 derived
therefrom; instead Z is a well-defined number inveolving Planck’s constant h.

These differences reflect the fact that we have now unambiguously counted
the number of quantum states available to the gas. We should expect this
enumeration to be particularly imporfant in cases invelving transfer of
particles from one phase to another (or from one component to another), since
in these cases a calculation of the equilibrium situation must compare the
actual number of states available in one phase with that in another (or for one
type of molecule with that for another). Mathematically, this is manifested
by the properties of the chemical potential

: oF dlnZ
LA (W)v,? = hkT( anN )v,r (ke

In the last chapter we saw that the chemical potential is the important param-
eter determining the equilibrium conditions between phases or chemical com-
ponents. On the other hand, it is elear from (9-11-1) and (9:10-1) that

s —len% (9-11-2)

does depend on N and the various constants, such as Planck’s constant,
involved in {. Thus the quantum-mechanical caleulation of Z in terms of
these constants allows one to make predictions completely outside the realm of
any theory based on classical statistical mechanics. We shall give two repre-
sentative illustrations.

Thermal ionization of hydrogen atoms Buppose that H atoms are
enclosed in a container of volume V" at a high temperature T.* There then
exists the possibility of ionization into a hydrogen ion H* and an electron e™.
This ean be described in terms of the reaction

He Ht e (9-11-3)
Let e denote the energy necessary to ionize the atom, i.e., its ‘‘ionization

potential.” This means that the ground state of the H atom has an energy
{—¢&) relative to the state where the proton H+ and the electron e~ are af, rest

* We assume that this temperture is high enough that the number of H; molecules is
negligible, practically all of them being dissociated into H atoms.
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separated by an infinite distance from each other.* Viewing (9:11-3) as a
chemical equilibrium of the type discussed in Sec. 8.9, we can write it in the
standard form

=H A=t e =0

so that the law of mass action (810-21) becomes

NN_ e
= = Ky (9-11-4)
where Ky = 5= (9-11-5)
{u

Here N denotes the mean number of particles of each kind and the subseripts
+, —, and H refer to the H* ion, the electron, and the H atom, respectively.

‘We are now in a position to caleulate the quantities { from first prineiples,
It is only necessary to be sure, for the sake of consistency, that all energies in
the problem are measured from the same standard state. We shall choose
this standard state to be the one where the eleetron and proton are at rest at
infinite separation from each other. Furthermore, we shall assume that the
H* and e~ concentrations are relatively small. The classical limit is then
applicable at these high temperatures, and any coulomb attraction between
the separated protons and electrons can be neglected.

Thus one can use (9-10-7) to write for the electron of mass m,

o= ;—2 (2emkT) (9-11-6)

Here the factor of 2 is introduced, since the eleciron has spin 4 and, therefore,
has two possible spin states for each translational state. Similarly, for the
freely moving proton of mass M, one obtains

£ = 2, @xMKT (9117

Here the factor of 2 is introduced, because the nuclear spin of the proton is
4, so that there are two possible nuclear spin orientations for each translational
state of the proton.

The H atom has a mass M + m = M, since m << M. Its inlernal energy
measured with respect to our chosen standard state is (—eg), since practically
all H atoms are in their ground state at the temperature under consideration.}
Hence one can write for the H atom

ta = 4—;%; (2rMET)} exl®? (9-11-8)

* From atomic physics we know that e = §(e?/ay), where ay = #2/me? is the Bohr
radius. Numerically & = 13.6 electron volts. (This is about three times larger than the
energy necessary to dissociate a H; molecule.)

t The first excited state has an energy — e, so that the relative probability of finding an
atom in this state rather than in the ground state is

s!ﬂn‘/eﬂu = g Ba
which is very small, even if T = (kg)~! = 10,000°K.
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Here the factor of 4 is introduced, sinee there are four possible states of the

atom for each translation state: two states of possible electron spin orientation,

and for each of these, two states of possible nuclear spin orientation.
Combining these various expressions, one obtains, by (9-11-5),

Ky = %(Mk?’}‘e""f” (9-11:9)

which is the desired expression for the equilibrium constant. Note that all the
statistical weighting factors due to the existence of spin have cancelled.

What (9:11-4) and (9-11-9) say physically is that the large ionization
potential e tends to favor the existence of the H atom since this is the system
of lowest energy. On the other hand, many more states become accessible to
the system, i.e., its entropy tends to be greater, if one deals with two separafte
particles. The equilibrium situation represents the compromise between these
two tendencies. More generally speaking, the most probable gituation is that
where the free energy F/ = F — T'S is minimum, At low temperatures where
F = F this favors the situation of low energy, i.e., the H atom. On the other
hand, when 7' becomes large, F can become small if the entropy S is large, and
this favors dissoeciation. '

Suppose that a number N, of H atoms are present in the container at some I
temperature low enough that N_ = N, = 0, and that the temperature is then
raised to the value T. Let ¢ denote the fraction of atoms dissociated at this ‘
temperature, i.e., ‘

-_— N+ . -

E= N, (9-11-10) |
|
But by virtue of (9:11-3) |
N+ = N_ = an |
and NH=Nn'-NaE=No(1_'5)”Nu I

since £ << 1, Then the law of mass action (9-11-4) gives, by (9-11-9),
|

V'\ [2emkT\!
£ = (m) ('—R'g—T) e—4/kT (9 11-11)

so that the degree of dissociation can be readily calculated. Note that
Planck’s constant appears quite explicitly in this relation.

Vapor pressure of a solid Consider a solid consisting of monatomic mole-
cules, e.g., solid argon. If it is in equilibrium with its vapor the equilibrium
condition is, by (8-8-8),

M1 = Wz (9-11-12)

where p; is the chemical potential of the vapor and g, that of the solid. Unless
the temperature is exceedingly high, the vapor is not too dense and can be
treated as an ideal gas. Then for the chemical potential of &, atoms of vapor
in a volume V,, (9-11:2) and (9-10-7) give

T\
uy = ZFFIn [% (2%,“) ] 9-11-13)
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Here we have assumed, for simplicity, that the atoms of mass m have no spin
degrees of freedom,

Let us now turn to & discussion of the solid. If it consists of N, atoms
and has a volume Vs, its chemical potential is related to its partition function

Z by 7
aF édln
= (G en = Gy, G0

Although we could try to calculate Z by using a model such as the Einstein
model of Sec. 7:7, let us keep the discussion more general and relate Z directly
to specific heat information. The mean energy of the solid is related to Z by

- 91n Z ,(0lnZ
i (W)f“' ( aT )v

This can be integrated immediately to give

In Z(T) — In Z(Ty) = : %-(-;—2) ar’ (9-11-15)
Here we shall choose 7'y — 0.

Since the solid is almost incompressible, its volume V, iz very nearly
constant, and its thermodynamic functions are essentially only funections of 7.
Let us denote by ¢(7T) the specific heat per atom of the solid. (It matters little
whether it is measured at constant yolume or constant pressure, sinee the solid
is nearly incompressible.) Since (8E/8T)y = Na¢, we can express E(T) in
terms of the specific heat. Thus

B(T) = —Nwm + N2 jf o(T") aT" (9-11-16)

Here we have put E(0) = —Ng. This is simply the ground-state energy of
the solid measured from the same standard state as that of the vapor, i.e., from
the state where all atoms are at rest at very large distances from each other.
Thus 5 is the latent heat of sublimation per atom at 7' = 0.

Finally we note that as T — 0 org— =

7z = X g 86 Qn g—B{=Na)

or Ty =TA s (9-11:17)

since the number of states @, accessible to the solid in its ground state is of the
order of unity.* (The atoms were assumed to have no spin degrees of freedom
which might lead to many states at Ty = 0.) Using (9-11:16) and (9-11-17})
in (9:11-15), and putting Ts — 0, one obiains

I -
In Z(T) = ‘:—-’f" 1N, OT gﬂ f: (T 4T (9-11-18)
Hence (9-11:14) yields
T) = =n = 1 [[* G5 [T e ar” (9-11-19)

* That 1s, the entropy S = & In @ of the solid vanishes as 7' — 0, in accordance with the
third law,
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The equilibrium condition (9-11-12) becomes then

n [ ;; (2"2‘:“1") ] = - “M;E[TT) (9-11-20)

To find the vapor pressure g, one needs only to use the ideal gas equation of
state V' = NkT for the vapor. Thus (9-11-20) becomes

llli-cz 2rmk T\ =_i‘|'_2_
P\ kT

(-‘Tm)l (ij;]

1 fodl’ pr 7 0
[ ?:;“ Efo T Jo ( ”)dT]
(9:11-21)

This is the desired expression for the vapor pressure. Note that it again
involves Planck’s constant in an essential way,

The specific heat of the solid can be obtained either from microseopic
caleulation by some model (e.g., the Einstein model of Sec. 7-7) or from experi-
mental measurements. The double integral in (9.11-21) is seen to be a posi-
tive increasing funetion of 7'; it converges without difficulty, since ¢ — 0 suffi-
ciently rapidly as T — 0.

Note that if we had tried to compute the vapor pressure by means of the
Clapeyron equation in a manner similar fo that used at the end of Sec. 8- 5, we
could not have determined the constant of integration, i.e., all the constants on
the right side of (9-11-21).

Hence Inp = In [
%m

and

3
9 . 12 Partition functions of polyatomic molecules

Let us sketch briefly how one goes about caleulating the partition function for
an ideal gas consisting of N polyatomic molecules. In the classical limit where
the mean de Broglie wavelength X associated with the momentum of the
center-of-mass motion is small compared to the mean separation of the mole-

cules one has again
N

, (9-12.1)
g—feln) (g ]22)

3

Il
|

Z
e

Here

aM:Z

is the parfition function for an individual molecule, the summation being over
all the quantum states s of the molecule. To a good approximation one can
write the Hamiltonian of a molecule in the additive form

~ 3¢ = 3¢, + 3¢, + 9¢ + 3¢, (9-12:3)
and correspondingly the energy levels of the malecule in the form
é(s) L 51(5*) + Ee(’sa) =+ fr(sr} == Eu(sv} (9 124)
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je, denotes the Hamiltonian describing the translational motion of the
center of mass of the molecule; ¢(s,) denotes the corresponding translational
energy of the translational state labeled s,.

3¢, denotes the Hamiltonian deseribing the motion of the electrons about
the nuclei assumed in a fixed configuration; ¢(s,) denotes the corresponding
electronic state labeled s,

3¢, denotes the Hamiltonian deseribing the rotation of the nuelei of the
molecule about their center of mass; «(s.) denotes the corresponding rotational
energy of the rotational state labeled s,.

g¢, denotes the Hamiltonian deseribing the vibrational motion of the
nuelei of the molecule relative to each other; e,(s,) denotes the corresponding
vibrational energy of the vibrational state labeled by s,.

The additivity of (9-12-4) implies immediately thatl the partition function
¢ faetors into a produet; ie.,

r= E e—Plela) e (o)t la)tela)]
3 (E “-';‘B"(’*‘) (E g0l (E epuien) (T eeceo)
= ¢ = Lkl ©0-12-5)

where {, is the partition function for the translational motion of the center of
mass, {, is the partition function for electronic motion, efe.

Let us discuss these partition functions specifically for a diatomic molecule
with atoms of masses m; and m..

Translational motion of the center of mass The center of mass moves
like a particle of mass m; 4 m,. Thus

2

i ) L
i 2(my + my)

where p denotes the linear momentum of the center of mass. Using the mass
m1 + me, the translational states are then the same as those discussed in con-
nection with the monatomie gas. Hence the sum over translational states
gives by comparison with (9:10:7)

o= h—p;[z;r(m, + m)RT]E (6-12-6)

Electronic motion We turn next to the internal motion of the atoms rela-
tive to the center of mass. Consider first the possible electronic states of the
molecule. For fized nuclei the electronic ground-state energy €. can be caleu-
lated as a function of the internuclear separation E and yields a curve of the
type shown in Fig. 9-12-1.

The minimum of this curve determines, for the electronic ground state of
the molecule, the equilibrium internuclear separation Ro, where eo = —ep'.
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Fig. 9:12-1 Energy of the 0
electronic ground state

e () of a diatomiec mole-

citle as a function of the
internuclear separation 1.

The dissociation energy is

denoted by €5, the vibra-

tional zero-point energy by -
e, Ry

This energy is negative when measured with respect to a standard state where
the nuclei are al rest at infinite separation from each other. Since the first
excited electronic state is, for almost all molecules, higher than the ground state
by an energy of the order of a few electron volts, i.e., very large compared to
kT, all terms in the electronic partition function other than the one of lowest
energy are negligible. (That is, the molecule is with overwhelming prob-
ability in its electronic ground state.) Thus one has simply

e = [ ePon’ (9-12-7)
where £ is the degree of degeneracy (if any) of the electronic ground state.
Rotation Consider now the rotation of the molecule. Thisis in first approxi-

mation like the rotation of a rigid dumbbell consisting of two masses m, and m.,
separated by the atomic equilibrium distance &y in the molecule. The moment

J
Qm:
= 7 4
/./ S /'\
2 &
// i i i
= < Ry
= ~
ol
.\ 2% -

\ -
{ Fig, 92:12:2 Rotation of a rigid dumbbell molecule.
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of inertia A of the molecule about an axis through the center of mass and
perpendicular to the line joining the atomic nuclei is given by
A = Ju*Re? (9-12:8)
where g* is the reduced mass of the two atoms
N L
my -+ ma
If AJ denotes the rotational angular momentum of this dumbbell, its classical
energy is given by (RJ)*/24. Quantum mechanically J® can assume the

possible values J(J 4 1), where the quantum number J =10, 1, 2, 3, . . . .
Hence the rotational energy levels are given by

I (9:12-9)

o= d +1) (9-12-10)

(Note that a small moment of inertia implies a large spacing of the rotational
energy levels.) The vector J can, of course, have several discrete spatial
orientations labeled by my, its projection along some axis. The possible values
of m; are

i = aF i =0

so that for each value of .J, there are 2J + 1 possible quantum states of the
same energy (9-12-10). The rotational partition funetion becomes then

Eo= 2 (2] + 1) e @O+ (9-12-11)
J=0

The significant parameter in (9-12-11) is the argument of the exponential,
i.e,, the ratio of rotational to thermal energy. For low temperature 7' or
small moment of inertia, #%/(2AkT) 3> 1; then practically all molecules are in
the very lowest rotational states, and all terms in the sum (9-12-11) beyond
the first few are negligible.

Remark Note that in writing down (9:12-11) we have not worried about
any angular-momenturm component parallel fo the axis of the dumbbell. The
reason is that the moment of inertia about this axis is very small. Any state
with such an angular-momentum component different from szero would, in
analogy to (9:12-10), have very high energy compared to £T and can there-
fore be neglected.

On the other hand, suppose that the temperature T is reasonably large
and the moment of inertia is not too small, so that A%/ (J + 1)(24LT) 1 < 1.
(This is the ease for many diatomie molecules in which the spacing between the
rotational energy levels (9-12-10) is of the order of 10—*ev. Exceptions are
molecules such as H; below room temperature, because these have such small
moments of inertia.) Then the spacing of rotational-energy levels is small
compared to k7. This implies that the rotation of the molecule could then
also be treated by classical statistical mechanics. Mathematically this means
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that successive terms in the sum (9-12.11) differ from each other by relatively
small amounts so that this sum can be approximated by an integral. Thus one
can write, putting u = J(J + 1),

& o= BRI = 24
fooh L du e 2 B
24k
or g o 2850 (9-12-12)

If the two nueclei of the molecule are identical, then we must again be
concerned about their essential indistinguishability (just as we were concerned
about the factor N! in the translational partition function). In the classical
limit, where (9-12-12) is valid, the indistinguishability is easily handled.
Turning the molecule end-for-end is the same as interchanging the two identieal
nuclei. We have counted such a turning over by 180° as a distinct state in
calculating (9-12-12), and properly so for unlike nuelei, But it is not to be
counted as a distinguishable state for ltke nuclei; in this case (9-12-12) is too
large by a factor of 2. Hence one should generally put

o 24kT Lt
[ = (9-12-13)
. e if the nuclei are unlike
Gl %o e if they are identical @izl

In the case where the quasi-classical treatment of rotation is not applicable
(e.g., for H, at low temperatures) the situation is more complicated and leads
to the involvement of nueclear spins with the rotation in a very intimate way.
We shall forego discussing the interesting peculiarifies arising in such cases.

Remark In the classical limit where (9-12-13) is applicable
In {» = — In 8 - constant
Hengce the mean energy of rotation is given by

i} 1 '
&= = gglnt =g =¥l (9:12-15)

This is indeed what one would get from the classieal equipartition theorem
applied to the two degrees of freedom which represent classical rotation,
namely, rotation about the two orthogonal principal axes which are perpen-
dicular to the line joining the two nuclei. (We already mentioned in our
last remark that the rotation abou! the line joining the nuelel cannot be
treated in the classical limit.)

Vibration Finally, the nuclei are also free to vibrate relative to each other

about their equilibrium separation Ro. The potential energy of the nuclei as a
¥ funetion of their separation R is given by the electronic ground-state energy

eo( ) of Fig. 9:12.1. Near its minimum it can be expanded in the form

el B) = —ep’ + 4be* (9-12-16)
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3? e.0(Fo)

where b="—;

and E=R— R (9-12-17)

The kinetic energy of vibration of the nuclei relative to their center of mass is
given by :

K = Ju*R? = Ju*§? (9-12-18)
By (9-12-16) and (9-12-18), one would obtain classically simple harmonic
motion of angular frequency

D
G \/F (9-12-19)

Quantum mechanically, (9-12-16) and (9-12.18) yield the Hamiltonian of a
simple harmonic oseillator whose possible vibrational energy levels are given by

e = hw(n + %) (9-12-20)
Here the possible quantum states are labeled n, which can assume all values
e S R (R
Hence the vibrational partition funetion is

by = E g—Bho(n+d) {9.12.21)

n=0
We already evaluated this simple geometric series in (7:6-10). Thus

sy (9-12-22)

For most diatomic molecules at ordinary temperatures fiw is so large (of the
order of 0.1 ev) that 8fiw > 1. In that case (9-12-21) reduces to its first term
by = il

The vibrational degrees of freedom can then certainly not be treated classically.

Remark Note that even at T' = 0 the nuclei still have a zero-point energy
4w in their lowest vibrational state. Hence e»’ in Fig. 9-12-1 is not equal
to the dissociation energy ep which must be provided at T = 0 to dissociate
the molecule into two atoms at rest at an infinite distance from each other.
Instead, one has (see Fig. 9-12:1)

& = e — Fhw (9-12:28)

We have now caleulated all the essential ingredients necessary for the
evaluation of the partition funetion (9:12-5) for an ideal gas of diatomic mole-
cules. (Some examples of applications will be found in the problems.) If the
nuclei of the molecules have spin, then { in (9-12-5) must also be multiplied
by the possible number of nuclear-spin states. If one deals with molecules
consisting of more than two atoms, the decomposition (9-12-4) or (9-12-5) is
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in general still valid, but the rotational and vibrational partition functions
¢+ and ¢, become more complicated.

BLACK - BODY RADIATION

9.13 Electromagnetic radiation in thermal equilibrium inside
an enclosure

Let us consider the electromagnetic radiation (or in quantum-mechanieal
language, the assembly of photons) which exists in thermal equilibrium inside
an enclosure of volume V whose walls are maintained at the absolute tempera-
ture 7. In this situation photons are continuously absorbed and reemitted
by the walls; it is, of course, by virtue of these mechanisms that the radiation
inside the container depends on the temperature of the walls. But, as usual,
it is not at all necessary to investigate the exact mechanisms which bring about
the thermal equilibrium, since the general probability arguments of statistical
mechanics suffice to deseribe the equilibrium situation.

Let us regard the radiation as a collection of photons. These must, of
course, be considered as indistinguishable particles. The total number of
photons inside the enclosure is not fixed, but depends on the temperature T of
the walls. The state s of each photon can be specified, in a manner discussed
below, by the magnitude and direction of its momentum and by the direction
of polarization of the electric field associated with the photon. The radiation
field existing in thermal equilibrium inside the enclosure is completely described
if one knows the mean number 7, of photons in each possible state. The caleu-
lation of this number is precisely the problem already solved in (9-3-5). The
result is the Planck distribution

- 1
Tefe— 1

s (9-13-1)
where ¢, is the energy of a pholon in state s.

To make this result more concrete we have to consider in greater detail
how the state of each photon is specified. Since we are dealing with electro-
magnetic radiation, the eleetric field & (or each component thereof) satisfies
the wave equation

1a%

g S
Ve S

(9-13-2)

This is satisfied by (the real part of) plane wave solutions of the form
& = Aeitxt—al) = gy(r) g—ivt (9-13-3)

(where 4 is any constant), provided that the wave vector x satisfies the
condition

K== k= [¥| (9-13-4)
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Rsniark Nnte ﬁha.t tha apatml part Sn(r) on the righﬁ si&a of (9-13:3)
‘satisfies the time independent wave ecrustlon

‘which is, for each component of &, ofmﬁlvthemfomaath&time«
‘independent Schradinger aquation (9-9-8) for a nonrelativistic particle.

If the electromagnetic wave is regarded as quantized, then the associated
photon is described in the familiar way as a relativistic particle of energy e and
momentum p given by the familiar relations

e = hw

i {9-13-5)
Thus (9-13-4) implies that
e "
ol =72 (9-13-6)

Bince an electromagnetiec wave satisfies the Maxwell equation V - & = 0,
it follows by (9-13-3) that v+ & = 0, i.e., that & is transverse to the direction
of propagation determined by the vector ». For each », there are thus only
two possible components of &, perpendicular to x, which ean be specified. In
terms of photons this means that, for each %, there are two possible photons
corresponding to the two possible directions of polarization of the eleetric
field &.

As in the case of the particle discussed in Sec. 9-9, not all possible values of
¥ are allowed, but only certain discrete values depending on the boundary
conditions. Let us again take the enclosure to be in the form of a paralellepiped
with edges L., Ly, L. in length., We suppose that the smallest of these lengths,
call it Z, is so large that L >> \ where A = 2x/x is the longest wavelength of
gignificance in the discussion. Thenwe can again neglect effects oceurring near
the walls of the container and ean describe the situation in terms of simple
traveling waves of the form (9:13-3). To eliminate wall effects it is only
necessary to proceed as in Sec. 9-9 by imposing the periodie boundary condi-
tions (9:9-11). The enumeration of possible states is then exactly identical to
that in Sec. 9-9, the possible values of x being those given by (9:9-13).

Let f(x) d*x = the mean number of photons per unit volume, with
one specified direction of polarization, whose wave vector lies befween
x and v + dx.

There are, by virtue of (9-9-16), (2r)~? d% photon states of this kind per unat
volume. Each of these has an energy ¢ = fiw = fck. Since the mean number
of photons with one definite value of x in this range is given by (9-13-1),

> f(x) d'x = ;;,rlfl% 9-13-7)

Obviously f(x) is only a function of |x|.
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Let us find the mean number of photons per unit volume of both directions
of polarization and with angular frequency in the range between w and « + dw.
This is given by summing (9-13-7) over all the volume of x space contained
within the spherical shell of radius x = w/cand x + dk = (@ + dw)/c and then
multiplying by 2 to include both divections of pelarization; i.e., it equals

8r wlde

2(e) (e de) = o S

(9-13-8)

Let @(w; T') dw denote the mean energy per unit volume (i.e., the mean
“energy density’") of phetons of both directions of polarization in the frequency
range between w and w + dw, Since each photon of this type has an energy fiw,
one obtains

Wi T) do = 21 (dmet () = 0 f)atda  (9-13-9)

B wde

or (w; T) do = g g — |

(9:13-10)

Note that the significant dimensionless parameter of the problem is

fie
| = P 13
n = fho = = (9-13-11)

i
the ratio of photon energy to thermal energy, Thus one can write 4 in terms
of n as

I3 o o Ao R 5
Wi T) do = o5 ( n) P (9-13-12)

A plot of @ as a function of 5 is shown in Fig. 9-13-1. The curve has a maxi-
mum for some value n = 7 = 3. Note a simple sealing property. If at tem-

(ﬂ“t"‘ﬁ B

li'.l Tl ] 6

1.2
o/p 1S

0.4

0 2 4 & 8 10 T
kT

Fig. 9-13'1 The energy density i(y) (per unit dimensionless frequency

range dy) as a function of n = fw/kT.
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perature T'; the maximum occurs at the angular frequency &,, and at some other
temperature Ty the maximum occurs at @, then one must have

Gy _ hay _
B BTy 7
@ _ G .13.
or T, = T, (9-13:13)

This result is known as “Wien’s displacement law."”
The mean total energy density 4, in all frequencies is given by

Go(T) = fo” a(T; w) de

By (9:13-11) this becomes
n k 4 o 3
w(T) = —(TT) fo o (9:13-14)

en — 1

The definite integral here is just some constant. Hence one is left with the
interesting result that

> @n(T) = T* (9-13-15)

This statement is called the Stefan-Boltzmann law.

The integral (9:13:14) can easily be integrated numerically. Although
this has no physical importance, it can also be evaluated exactly (see Appendix
A-11), The result is

- n'dy _ .13
[ae‘?-l_lc') W
Thus one obtains the explicit expression
7 I Ui .13
w(T) = 15 (ch)? (9-13-17)

The proportionality (9:13:15) is an obvious result reflecting the faet that
space is three-dimensional, This can be seen by the following simple argu-
ment. At a temperature 7 most of the photons must have an energy of the
~ order pf k7T orless, i.e., they must be photons with wave yector v of magnitude
less than &’ corresponding to an energy :
fix!

M:.=Tﬁw

But in three-dimensional space, the number of photon states with || less £ is
proportional ta the volume in x space contained within a sphere of radius «’,
Hence the total mean number § of photons at temperature 7' must be pro-
portional to '

N« «a T (9-13-18)
The typical energy of these photons is of the order of 7. Hence it follows
that the mean energy density i, satisfies the proportionality

iy & N(kT) « T (9-13-19)
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Calculation of radiation pressure It is of interest to ealculate the mean
pressure g exerted by the radiation on the walls of the enclosure. The pressure
contribution from a photon in state s is given by —de,/dV ; hence the mean
pressure due to all the photons is*

5= Zﬁ.(— :—{;) - (9-13-20)

where 7, is given by (9-13-1). To evaluate —de,/dV, consider for simplicity
that the enclosure is a cube of edge lengths L, = L, = L, = L so that its
volume is ¥ = L!. With the possible values of % given by (9-9-13), one has
for a state s specified by the integers n., n,, n.

o = B ey = Aol 68 4 a1 = g (%”) (f? + 1y? + m)
or & = OL7! = V-3, where €' = constant (9-13-21)
de | .l €s
TLCE E o e e e e i [l 2
Hence 2 3 cv 3V (9-13-22)
Thus (9:13:20) becomes
P v A I TS Ll
p_zn.(" )_3Vzﬁuﬁ_'3VE
or
B ) (9-13-28)

The radiation pressure is thus very simply related to the mean energy density
of the radiation.

It is also instructive to caleulate the radiation pressure by detailed kinetic
arguments similar to those used in Sec. 7-13 for computing the mean pressure
exerted by a classical gas of particles. Photons impinging upon an element of
area dA of the container wall (normal to the z direction) impart to it in unit
time a mean z component of momentum G, In equilibrium, an equal
number of photons leaves the wall and gives rise to an equal momentum flow
— G in the opposite direction. Hence the net force per unit area, or pressure
on the wall, is related to the mean rate of change of momentum' by

4 1 2G¢H

P = ﬂ. [Gg-H = (_G;+])] == dA
Consider, in Fig. 9:13-2, all photons with wave vector between x and = -+ dx.
There are 2f(x) d* photons of this kind (of both possible polarizations) per
unit volume. Since photons travel with speed ¢, all photons contained in the
eylindrical volume ¢ df dA cos 0 strike the area dA in time d¢ and earry z com-
ponent of momentum #fx.. The total photon momentum arriving at d4 per
unit time is then

G = % [0 [2() A dt dA cos 6) (h)

* The same result could be obtained from the geners] relation § = g~1(d In Z/aV) by
using the partition function for photons in (9-5-3).
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Area dA

Fig. 9-13+2 Photons impinging upon
a wall.

x"l
Hence p = 2h f Lo 200 d

where we have put cos 6 = «./x. But f(x) depends only on x|, so that the
integrand is an even function of k.. Thus one can extend the integration over
all values of x and wrife

7= ch [12760) dn] % = Loh [[af(w) ang EL 0t £ 0D

where the last result follows by symmetry, since all directions are equivalent,
Since x* + 1% + k.* = &% one then obtains

pik f [2£(x) dl(chx) = ko

since cfix is simply the energy of a photon of wave vector .

9:14 Nature of the radiation inside an arbitrary enclosure

The full generality of the results of the preceding section can be made apparent
by a few simple physical arguments. Consider an enclosure which has an
arbitrary shape and which may contain several bodies within it. Its walls,
which may consist of any material, are maintained at an absolute temperature
T. The enclosure thus acts as a heat reservoir. From our general arguments
of statistical thermodynamics we know that the equilibrium situation of
greatest probability, or entropy, is the one where the radiation, as well as the
bodies inside the enclosure, are all characterized by the same temperature 7.

The nature of the radiation field existing at this temperature 7 inside the
enclosure can be deseribed in terms of
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Fig. 9:14-1 Electromagnetic radiation in
equilibrium inside an enclosure of arbitrary
shape. The radiation must be homogeneous.

Ja(®,r) d’% = the mean number of photons per unit volume ai the
point r, with wave vector between x and x + dx and with polarization
gpecified by the index a (i.e., by some unit vector b, L )

As usual we assume that the dimensions of the enclosure are large compared
to the wavelengths X = 2mx! of interest.

If the enclosure is in equilibrium, one can immediately make several general
statements about f.

1. The number f is independent of r; i.e., the radiation field is
homogeneous.

Argument: Suppose that f,(x,r) were different at two positions in the
enclosure. Consider what would happen if two identieal small bodies at tem-
perature T were placed at these positions. (Imagine these to be surrounded by
filters which transmif only frequencies in the specified range o = w(x) and
which transmit only radiation of the specified direction of polarization «.)
Since different amounts of radiation would be incident on the two bodies, they
would absorb different amounts of energy per unit time and their temperatures
would therefore become different. This would contradict the equilibrium con-
dition of maximum entropy aceording to which the temperature must be uni-
form throughout the enclosure. Hence

Talw,r) = fa(x) mdependent, of »

2. The number f is independent of the direction of x, but depends only
on [x|; i.e., the radiation field is isotropic.

Argument: Suppose that f,(x) did depend on the direction x, e.g., that [
is greater if x points north than if it points east. We could again imagine that
two identical small bodies at temperature T (and surrounded by the same
filters as before) are introduced into the enclosure as shown in Fig. 9-14-2.
Then the body on the north side would have more radiation incident on it and

T

Fig. 9-14:2 The radiation in equilibrium
inside the enclosure is isotropic.
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thus absorb more power than the body on the east side. This would again lead
to a nonpermissible temperature difference being produted between these
bodies. Hence we can conclude that

fu{“} == fa("); where x = |"|

3. The number [ is independent of the direction of polarization of the
radiation, i.e., the radiation field in the enclosure is unpolarized.

Argument: Suppose that f.(x) did depend on the direction of polarization
specified by . Then we could imagine that two identical small bodies at the
temperature T are introduced side by side into the enclosure and are surrounded
by filters which transmit different directions of polarization. Hence different
amounts of radiation would be incident upon these bodies, and a temperature
difference would be developed between them in contradiction to the equilibrium
condition. Hence

J1(k) = fa(k)
is independent of the polarization index.

4, The function f does not depend on the shape nor volume of the
enclosure, nor on the material of which it is made, nor on the bodies it
may contain.

Argumeni: Consider two different enclosures, both at the temperature T,
and suppose that the fractions [ (x) and /57 (x) deseribing their radiation fields
were different. Imagine that we connect the two enclosures through a small
hele (containing a filter which transmits only radiation in a narrow frequency
range about w(x) and of the specified direction of polarization). This would
represent an equilibrium situation if both enclosures are at the same tem-
perature T. But if f@ > f® more radiation per unit time would pass from
enclosure 1 into enclosure 2 than in the opposite direction. A temperature
difference would then develop between the two enclosures, in contradiction to
the equilibrium condition of uniform temperature. Hence one concludes that

fe o) = 13700

T

Fig. 9-14:3 Two different enclosures at the same temperature
joined through a small hole.
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Thus we arrive at the result that in thermal equilibrium f.(x) depends
only on the temperature T of the enclosure. In particular, it also follows that
£ is the same for an arbitrary cavity as it is for the rectangular parallellepiped
cavity which we used for simplicity in the discussion of Sec. 9-13.

9 .15 Radiation emitted by a body at temperature T

In the preceding sections we considered the very simple equilibrium gituation of
electromagnetic radiation confined within an enclosure at absolute temperature
T. We arrived at a set of interesting results on the basis of very general
arguments of statistical mechanies without having to be concerned about the
detailed mechanisms of absorption or emission of radiation by the walls. The
results of this equilibrium discussion can, however, serve as a basis for treating
mueh more general cases. Consider, for example, a body maintained at some
elevated absolute temperature T'; as a concrste example, think of the hot
filament of a light bulb hanging from the ceiling. We know that this body
emits eleetromagnetic radiation, and we may be interested in how much energy
per unit time (or power) ®,(w) dw this body emits by radiation in the frequency
range between w and w + dw. The situation envisaged here is certainly not
one of equilibrium; the walls of the room are at a much lower temperature than
the light-bulb filament, and there is a continuous transfer of energy by radiation
from the hot filament to the colder walls. It might seem, therefore, that we can
no longer use the methods of equilibrium statistical mechanics to diseuss this
problem and that we need to undertake a detailed investigation of the processes
whereby the atoms in the body emit radiation. This would indeed be a formid-
able problem in quantum mechanics and electromagnetic theory! It is pos-
sible, however, to circumvent completely such an analysis by reverting to very
clever general arguments based on the equilibrium situation. The method of
approach consists of imagining the radiating body to be in an equilibrium situa~
tion inside an enclosure containing radiation at this temperature 7', and then
investigating the conditions that must prevail so that the equilibrium is indeed
maintained. The fundamental argument used here is one of “‘detailed bal-
ance’; i.e., one argues that if the body is to remain in equilibrium, then each
process of emission by the body must be balanced by an inverse process of
absorption of incident radiation, But the radiation incident on the body in an
equilibrium situation is easily calculated from the results of the preceding
sections dealing with the simple case of an ideal gas of photons. Thus one can
immediately find the power emitted in such & process without engaging in the
vastly more complicated caleulation of how a collection of interacting atoms in
the body emit radiation. Now that we have outlined the general nature of the
arguments to be used, let us make them more precise.

i Bodies as emitters and absorbers of radiation Consider an arbitrary
body at absolute temperature 7. The electromagnetic radiation emitted by
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Fig. 9-15'1 Diagram illustrating emission and absorption of radiation by
a body.

this body can be deseribed in terms of the energy per unit time, or power,
emitted by the body. Specifically one can define its “‘emissivity’’ as

®u(x; @) dw dQ = the power, per unit ares of the body, emitted with
polarization o into a range about x (i.e., into an angular frequency
range between » and w + dw, and info & solid angle d2 about the
direction x)

The emissivity depends on the nature of the body and on its temperature.

Having seen how to deseribe a body as an emitter of radiation, let us now
try to describe it as an absorber of radiation. For this purpose, consider radia-
tion of polarization « and with a wave vector in a small range about % (i.e.,
with angular frequency in the range between w and w + de and propagating in
a direction lying within thesolid-angle range d2 about /). Suppose that radia-
tion of this type is incident on the body so that power ®;(x',e) dw d is incident
per unit area of the body. Of this a fraction a(x’,e) is absorbed by the body.
(By conservation of energy the rest of the incident power is then reflected into
various directions if we assume the body to be sufficiently thick that none of
the incident radiation is transmitted through it.) The parameter a(x',a)
(sometimes called the “absorptivity”) is characteristic of the particular body
and depends, in general, also on its temperature 7. This parameter deseribes
the properties of the body as an absorber of radiation.

The principle of detailed balance We pointed out earlier that it would be
quite difficult to calculate directly quantities such as the power @, radiated by
a body at temperature 7. To circumvent this problem, we imagine that the
body under consideration is placed inside an enclosure at the same temperature
T go as to be in equilibrium with the radiation field existing therein. The
characteristics of this radiation field are well known from our previous simple
discussion based on equilibrium statistical thermodynamics. Let us now,
however, consider more closely the various mechanisms whereby the equilib-
rium state of the body in this enclosure is actually maintained. Under these
circumstances the body emits radiation. On the other hand, radiation is con-
tinually incident upon the body which absorbs a certain fraction of it. In the
equilibrium situation the energy of the body must remain unchanged, Hence
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we can conclude that these processes must balance so that
Power radiated by body = power absorbed by body. (9:15-1)

We shall, however, want to make statements which are much sfronger than
this simple condition of over-all energy balance by asserting that the processes
which maintain the equilibrium also balance each otherin defail. For example,
it might be conceivable that in one frequency range the body radiates more
power than it absorbs, while in another frequency range it radiates less power
than it absorbs, in such a way that the over-all energy balance (9-15-1) is
preserved. A simple physical argument shows, however, that this cannot be
the case. Imagine that the body is surrounded by a shield (a “filter””) which
absorbs completely all radiation except that, in one small element of area, it is
completely transparent to radiation of one direction of polarization and of one
narrow frequency range between w and » + dw. The presence of this shield
cannot affect such intrinsie parameters of the body as its emissivity or absorp-
tivity; nor can it, by the arguments of the preceding section, affect the nature
of the radiation in the enclosure. Since the equilibrium situation can equally
well exist in the presence of the shield, it follows that the energy balance
(9:15-1) must hold for this particular element of area, direction of polarization,
and frequency range. Since any kind of shield could have been used, one thus
arrives at the “principle of defailed balance,” which asserts that in equilibrium
the power radiated and absorbed by the body must be equal for any particular
element of area of the body, for any particular direction of polarization, and
for any frequency range.

Fig. 9:15-2 A body located inside an enclosure
and surrounded by a shield which is only trans-
parent in one small element of area to radiation
of one direction of pelarization and of one nar-
row frequency range.

*Microscopic discussion The principle of detailed balance is a very
fundamental result based on considerations more general than those pertain-
ing to ensembles representing systems in thermal eguilibrium. The basic
justification of the principle rests on the fundamental laws of microseopic
physies, e.g., the Schrodinger equation of quantum mechanics and Maxwell’s
equations of electromagnetic theory. Consider a single isolated system con-
sisting of several wealdy interacting parts (e.g,, a body and electromagnetic
radiation). In the absence of interacfion between these parts the system can
be in any one of its quantum states labeled by indices r, 8, etc, The presence
of the interaction causes transitions between these states. From the funda-
mental mieroseopic laws one can compute the resulting transition probability
Wy, Der unit time from stats r to state &. But these microscopic laws are all
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invariant under reversal of the fime from { fo —#. Under such a time reversal
a state r goes over into a state r, ete. (e.z., a state of a particle labeled by its
momentum p = fix goes over into one labeled by momentum —p). If we
eall the ‘‘reverse” transition the one from state s* to r*, then the invariance
of the mieroscopic laws under time reversal implies that

Water = Wey (9'15‘2)

This expresses the “principle of microscopie reversibility.” For example,
consider the process of emission of & photon with wave veetor x. The reverse
process obtained by reversing the sign of the time ¢ is the absorption of a
photon of wave vector —x, The microscopic reversibility (9:15-2) asserts
that these two processes oceur with equal probability,

Onee one knows the transition probability for the oscurrence of a process
in a single system, one can readily calculate the rate of occurrence of this proc-
ess when one deals with a statistical ensemble of such systems. Let us con-
sider the process of transition from a set A of states labeled by r to some
set B of states labeled by . Let P. denote the probability in the ensemble
that the system is in state ». Then the probability W sz of oceurrence of the
process 4 — B in the ensemble is given by

Wah = 2 0 Prite (9-15-3)
r =

Here one sums over all the initial states r in the set 4 from whish the system
can start out, each of these states being weighted by the probability that the
system is found in this state; then one sums this probability over all the possi-
ble set B of final states s. Similarly, one can write for the rate of oecurrence
of the reverse process

g ey Z ZP"‘”"" (0-15-4)

But our fundamental statistical postulate asserts that, in an equilibrium situ-
ation, an isolated system is found with equal probability in any aceessible state
of the ensemble. All the probabilities P, are then equal to the same value P.
Hence one obtains by (9:15:2) ;

Waeas = P ;_Zw.-,- = PF:',rEw,.

so that Waoas = Wan (9-15-8)

This is the principle of detailed balance. In words it asserts that in the sta-
tistiesl ensemble representing a system in equilibrium, the probability of
ocourrence of any process must be equal to the probability of occurrence of
the reverse process, By a process we mean transitions from one seb of states
of the system to another such set of states, the probability of the process
being proportional to the number of such transitions occurring per unif time.
The reverse process is the one that would result if the sign of the time were
reversed, in partieular, if all veloeities were reversed so that everything went
backward in time,
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Radiation emitted by a body Let us now apply the principle of detailed
balanece to a body at temperature 7' in equilibrium with radiation inside an
enclosure at this temperature. On a unit area of this body radiation power
®;(w,e) is ineident per unit frequency and solid angle range about the vector «;
a fraction a(x,a) of this is absorbed, the rest being reflected. We know that
the reverse process occurs with equal probability. In this process an amount
of power ®,(—x,a) is emitted by this area of the body per unit frequency and
solid angle range about the direction —x. By equating the powers involved
in these two processes, one obtains

O —w,a) = alx,a)Fi(va) (9-15-6)
& w = Gie 9-15-7)

Note that on the left side of this last equation there are quantities that depend
only on the nature of the particular body and on its temperature. They are
parameters that could be calculated from first principles (if we were clever
enough to earry through the computation), and they are not affected at all by
the fact that the body happens to be located in the radiation field of the enclo-
sure in the partieular equilibrium situation which we are envisaging. On the
other hand, the incident radiation power ® on the right side of (9:15-7)
depends only on the temperature of the equilibrium radiation field inside the
enclosure and is independent of the nature of the body. Hence one can imme-
diately eonclude that the ratio on the left side of (9-15-7) can only depend on
the temperature. There exists, therefore, a very close eonnection hetween the
emissivity ®, and the absorptivity a of a body. A good emiller of radiation s
also a good absorber of radiation, and vice verse. This is a qualitative statement
of “Kirchhoff's law.” Note thal this statement refers only to properties of
the body and is thus generally valid, even if the body is not in equilibrium; but
we arrived at this conclusion by investigating the conditions which must be
fulfilled to make the properties of the body consistent with a possible equilib-
rium situation.

Silvered side Blackened side
-~

.
Y

Hot water

Thermometer Thermometer

Fig, 9-15-3 A classical experiment illustrating Kirchhoff’s law. The con-
tainer is filled with hot water. [Its left side is silvered on the outside so that
it is a poor absorber; its right side is blackened so that it is a good absorber.
Since the left side is then a poorer emitter of radiation than the right side,
the thermometer on the left is found to indicate a lower temperature than
the one on the right.
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Remark Kirchhoff's law is a reasonable result by virtue of the following
microseopie considerations. Focus attention on a pair of energy levels of the
body; transitions between these give rise to emission or absorption of radi-
ation at some frequency w, If transitions between these levels are readily
produced (i.e., if the transition probability is large), then the electric field in
the incident radiation can readily induece absorption in transitions from the
lower to the upper level; but then the thermal agitation can also readily induce
emission in transitions from the upper to the lower level.

A particularly simple case arises if a(x,a) = 1 for all polarizations, fre-
quencies, and directions of the incident radiation. A body having this property
is a perfect absorber of radiation and is called a ‘“‘black body.” (The reason
for the name is clear, since a body which absorbs all radiation incident on it
would look black.) For a black body (9-15:6) becomes simply

Pa( —w,0) = ®i(x,a) (9:15:8)

Substances such as lampblack are reasonable approximations to black bodies,
but by no means perfectly so, since they do not absorb all radiation at all
frequencies. The best approximation to a black body is a small hole in the
wall of some enclosure. Consider such a hole. Any radiation incident on this
hole from outside gets trapped inside the enclosure with negligible probability
of escaping through the hole as a result of several reflections. Thus the hole
acts like a perfect absorber of all radiation incident on it, i.e., like a black body.
By (9-15-8) the power emitted by any black body has the same characteristics.
In particular, the hole cut in the enclosure can serve (and in practice does serve)
as the prototype of a black body emitter. The emission characteristics of this
hole are, of course, particularly easily calculated. The problem here is simply
that of “effusion” of photons from the enclosure through the hole (analogous to
the effusion of molecules discussed in Sec. 7-12).

Let us now put (9-15:6) inte more quantitative form by calculating
explicitly the power ®:(x,«) incident per unit area of a body in an enclosure at
temperature T. This is readily done in terms of the mean number f(x) d
of photons per unit volume and of a given polarization, the quantity found in

Enclosure Zs— Incident radiation

N

Fig. 9:15:4 A amall hole in an enclosure
acts like a black body.
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(9:13:7). Referring to Fig. 9-13-2, the familiar argument demonstrates that
(e di cos 8)f(x) d* photons of this kind strike a unit area of the body in time df,
Since each photon carries energy fiw one obtains

Pi(%,0) dw dQ = (hiw)(e cos 8 f(x) dx)

Expressing the volume element d® in spherical coordinates and using the
relation x = w/¢, one has

so?
die = K de dl = c—,dwdﬂ
he®
Hence ®i(v,0) = = f(x) cos @ (9-15-9)

This is independent of the direction of polarization e, since f does not depend
on it, but dees depend on the angle 8 of the direction of incidence with respect
to the normal to the surface.

From the detailed balance argument (9:15-6) one thus obtains for the
power emitted by a body in the direction ¥’ = —«

3
®o(v',a) dw d? = a(—¥,a) ?;—n:-f(x) cos § dw d2 (9-15-10)

If the body absorbs isotropically so that a(—x' ) is independent of the direc-
tion of %', this shows that the power emitted i proportional to cos #, where 8 is
the angle between the direction of emission and the normal to the surface.
This result is known as ‘‘Lambert’s law.”

Let us now find the total power ®.(«) dw emitted per unit area into the
frequency range between w and w + dw for beth directions of polarization.
Then one must integrate (9-15-10) over all possible directions of emission, i.e.,
over all solid angles in the polar angle range 0 < # < =/2 and azimuthal angle
range 0 < ¢ < 2r. Then one must multiply by 2 to include both directions
of polarization. Assume, for simplicity, that the absorptivity a = a(w) is
independent of the direction and polarization of the incident radiation. Bince
d = sin § df de, one then obtains

Folw) do = 2 fﬂ ® (' &) dw dQ

alw) 2?,?5)’(!() dw (?nr f;m cos 6 sin 8 de)

2mhew®
o2

or P fw) do = alw) k) do (9-15-11)

Here the right side is proportional to (fiw)f(x) d%, i.e., to the mean radiation
energy density #(w) dw inside an enclosure. Thus it can be expressed explicitly
in terms of #(w) by (9-13-9) to yield the simple result

»> 0u(w) do = a(w)kei(w) do] ©9.15-12)
IUsing the equilibrium relation (9:13-7) for f(k), or equivalently, the relation
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(9-13-10), one thus obtains

h * des
> Ou(w) do = a(0) 5 (9-15-13)

For a black body a(w) = 1, and this becomes the famous Planck law for the
spectral distribution of black-body radiation. By wvirtue of (8:15.12), the
frequency and femperature dependence of ®.(w) is then the same as that illus-
trated in Fig. 9-13-1.

The total power ®” emitted per unit area of the body is obtained by
integrating (9-15-13) over all frequencies. If a(w) has a constant value @ in
the frequency range where () is not negligibly small, then the integral is the
same as that encountered in obtaining (9-13-17). Thus one gets simply

> &0 = a(kous) = a(eT*) (8-15-14)
2 4
where uEg—Ot%—‘i (9-15-15)

The relation (9-15-14) is called the Stefan-Boltzmann law, and the coefficient
o is called the Stefan-Boltzmann constant. Its numerical value is

o = (5.6697 + 0.0029) X 10-% erg sec—! em—2 deg~*  (9-15-16)

In the case of a black body, @ = 1. If one is dealing with radiation in the
infrared region, @ = 0.98 for a substance such as lampblack ; on the other hand,
a = 0.01 for a metal such as gold with a well-polished surface.

CONDUCTION ELECTRONS IN METALS

9.1 6 Conseqguences of the Fermi-Dirac distribution

It is possible to neglect, to a first approximation, the mutual interaction of the
conduction electrons in a metal. These electrons ecan therefore be treated as
an ideal gas, Their concentration in a metal is, however, so high that they
cannot be treated at ordinary temperatures by the approximation of classical
statistics. This conclusion was made apparent by the numerical example at the
end of Sec. 7-4, Hence the appropriate Fermi-Dirac statistics must be used
to discuss conduction electrons in & metal.

In (9-3:14) we found for the mean number of particles in state s the FD
distribution
1 1

T = eatha L 1 o o= |- 1 (9 161)
Here we have used the definition
W= — % = —kTa (9-16-2)

The quantity p is called the “Fermi energy’’ of the system. (Incidentally, we
showed in (9-3-17) that u is also the chemical potential of the gas). The
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parameter o or u is to be determined by the condition that

1 1
Ene = E?(?Tﬂ =N (9163)

where N is the total number of particles in the volume V. By virtue of
(9:16-3), u is then a funection of the temperature.
Let us look at the behavior of the *Fermi function”

!

efitemide 1
as a function of ¢, this energy being meagured above its lowest possible value
e = 0. If uissuch that gu < 0, then e+ >> 1 and F reduces to the Maxwell-

Boltzmann distribution. In the present case, however, we are interested in
the opposite limit where

Fle) = (9:16-4)

Bu = k—‘;-,»l (9-16-5)

In this case, if € < g, then (e — p) < 080 that F(e) = 1. On the other hand,
if €3> u, then 8(e — ) >> 0 =o that F(e) = 9 falls off exponentially like a
classical Boltzmann distribution. If e = p, then F = 4. The transition

&
Flel
1k
L
2
0 —p
&
Fig. 9:16-1 The Fermi function at a finite temperature T'.
4
o Fle
i &
0 P
I £

Fig. 9:16-2 The Fermi funciion at T = (.
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region in whieh F goes from a value close to 1 to a value elose to zero corresponds
to an energy interval of the order of £7 about ¢ = p (see Fig. 9-16-1), In the
limit when 7 — 0 (or 8 — ) this transition region becomes infinitesimally
narrow. In this case # = 1 for e < pand F = 0 for € > u, as illustrated in
Fig. 9:16:2. This is an obvious result for the absolute-zero situation where
the gas is in its ground state of lowest energy. Since the exclusion principle
requires that there be no more than one particle per single-particle state, the
lowest energy of the gas is obtained by piling all particles into the lowest
available unoccupied states until all the particles are accomodated. The last
particle thus added to the pile has quite a eonsiderable energy u, since all the
lower energy states have already been used up. Thus one sees that the exclu-
sion principle implies that a FD gas has a large mean energy even at absolute
ZEro,

Let us calculate the Fermi energy p = pg of a gas at T = 0. The energy
of each particle is related to its momentum p = hx by

=y 16-
e i (9-16-6)
At 7' = 0 all states of lowest energy are filled up to the Fermi energy g, which
corresponds to a ‘‘Fermi momentum” of magnitude pr = fixr such that

_opt R

=B _Tar (9-16-7)

Ha

Thus at 7' = 0 all states with & < «p are filled, all those with x > & are empty.
The volume of the sphere of radius xr in » space is (wxs®). But, by virtue of
(9:9-16), there are (2r)—*V translational states per unit volume of » space.
The “Fermi sphere’” of radius xr contains therefore (2m)—*V (§wxp®) trans-
lational states. The fotal number of states in this sphere is twice as large, since
each elecfron with a spin of 4 has two spin states for each translational state.
Since the total number of states in this sphere must at T = 0 be equal the
total number of particles accomodated in these states, it follows that

1}'
2-('—2";)-'5 (%11‘!(1?5) = N

Fig. 9:16°3 The Fermi sphere in v space. At
T = 0 all states with ¥ < xr are completely occupied
by particles, these with & > ¥r are completely empty.
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or \
T\
> Mg 3,#@,) (9-16-8)
% o (PN
Thus )‘F=;= (:;T,‘!);(F) (9'169)

This means that the de Broglie wavelength Ay corresponding to the Fermi
montentum is of the order of the mean interparticle separation (V/N):. All
particle states with de Broglie wavelength A = 27x~! > Ap are occupied at
T = 0, all those with A < Ap are empty.

By (9-16-7) one obtains for the Fermi energy at 7' = 0

h? h? N\i
po =5 kpt = 2—??1(311'2 V) (9-16-10)

Numerical estimate Let us calculate the Fermi energy at T =0 of
copper, a typical metal. Tts density is O grams/cm® and its atomic weight is
63.5. There are then 9/(63.5) = 0.14 moles of Cu per em? or, with one con-
duetion electron per atom, N./V = 8.4 3 10% electrons/em® Taking the
electron mass m = 10~% grams, one obtfains, by (9:16-10),

Tr = ‘-‘f = §0,000°K (9:16-11)
The quantity Ty is called the “Fermi temperature.” For a metal such as Cu
it is seen to be much greater than any temperature T of the order of room tem-
perature (' = 300°K). Hence even al such relatively high temperatures the
electron gas is highly degenerate. The Fermi distribution at room femper-
ature has then the appearance of Fig. 9:16-1 where T << u, and the Fermi
energy i differs only slightly from its value poat 7' = 0, ie,,

B = o

Since in a metal there are so many electrons with e << g, all of which are in
completely filled states, these electrons have in many cases very little effect on
the macroscopic properties of the metal. Consider, for example, the contribu-
tion of the conduction electrons to the specific heat of the metal. The heat
capacity C'y at constant volume of these electrons can be computed from a
knowledge of their mean energy E(T) as a function of T, i.e.,

oF
Cy = (a_f)v (9:16-12)

If the electrons obeyed classical M B statistics, so that F' «< e~#¢{or all electrons,
then the equipartition theorem would give, classically,
E=3NkT and Cy = §Nk (9-16-13)

But in the actual situation where the FD distribution has the form shown in
Fig. 9-16-1, the situation is very different. A small change of T does not
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b affect the many electrons in states with e << g, since all these states are com-
pletely filled and remain so when the temperature is changed. The mean
energy of these electrons is therefore unaffected by temperature so that these
electrons eontribute nothing to the heat capacity (9-16-12). On the other
hand, the small number N of electrons in the small energy range of order £T'
near the Fermi energy p do contribute to the specific heat. In the tail end of
this region /' « e~f* behaves as a MB distribution; hence, in accordance with
(9:16:13), one expects that each electron in this region contributes roughly an
amount §k to the heat capacity. If p(e) de is the number of states in the energy
range between e and e + de, the effective number of electrons in this region is

Nutt =~ p()hT (9-16-14)
Hence one obtains for the heat capacity
Cv = Neu(Bk) ~ $5% ()T (9-16-15) 1

More roughly still, one ean say that only a fraction k7 /g of the total electrons
are in the tail region of the FD distribution so that

Nt = (ﬂ) N (9-16-16)
i
3 kT 3 T o
and CVHQNL(—“—)= #ER(—T“;) {9'16'11)

!
Since T/Tp i1s quite small, the molar specific heat ¢y of the electrons is |
very much less than their elassical specific heat #/£. This is a welcome result 4
because it accounts for the fact that the molar heat capacity of metals is about i
the same as that of insulators (at room temperature, approximately 3R by
virtue of the vibrations of the atoms in the lattice). Before the advent of |
quantum mechanies the classical theory predicted incorrectly thatf the presence ’
of conduetion elecfrons should raise the heat capacity of metals by 50 percent H
(i.e., by #R) compared to insulators. Y
Note also that the specific heat (9:16-17) is not temperature-independent d
as it would be classically. Using the superscript e to denote the electronic
specific heat, the molar specific heat is of the form

cv® = 4T (9-16-18) ,

where v is a constant of proportionality. At room temperature cy® is com-
pletely masked by the much larger specific heat cv'® due to lattice vibrations. )
But at very low temperatures ep™ = AT? where A is a constant of propor- i
tionality,* and approaches, therefore, zero much faster than the electronic con- ]
tribution (9:16-18) which approaches zero only proportionally to 7. Thus
it follows that low temperature experiments on metals permit measurements of
the magnitude and the temperature dependence of the electronic specific heat. i
Indeed, the fotal measured specific heat of a metal at low temperatures should )

* This result will be derived theoretically in See. 10-2.
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Fig. 9-16+4 The measured specific heat cv for copper and silver presented in
plots of ev/T versus T* (after Corak, Garfunkel, Satterthiwaite, and Wexler,
Phys. Rev., vol. 98, p. 1699 (1955)).

be of the form

ey = cff + o™ =T + AT? (9-16-19)
Henece ‘%’ =y+ AT? (9-16-20)

and a plot of ¢y/T versus T should yield a straight line whose intercept on the
vertical axis gives the coefficient v. Figure 9-16-4 shows such plots. The
fact that good straight lines are obtained experimentally verifies that the tem-
perature dependences predicted by (9-16-19) are indeed correct.

*
9-1 7 Quantitative calculation of the electronic specific heat

Let us calculate the specific heat of the electron gas in detail and verify our
order-of-magnitude estimates. The mean energy of the electron gas is given by

Er
R =
r

Since the energy levels of the particles are very closely spaced, the sum can be
replaced by an integral. Thus

E=2 [FQep@de =2 [ moms—gp@de  (0:17:1)
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where p(e) de is the number of translaiional states lying in the energy range
between e and e + de. The factor of 2in (9-17- 1) accounts for the two possible
gpin states which exist for each translational state. Here the Fermi energy u
is to be determined by the condition (9-16-3), i.e.,

= 1
2 f F(e)ple) de = 2 fu g P de =N (9-17-2)
Evaluation of integrals All these integrals are of the form

L‘” Fe)ole) de (9-17-3)

where F(e) is the Fermi function (9-16-4) and ¢(e) is some smoothly varying
function of e. The function F(e) has the form shown in Fig. 9:-16-1, i.e., it
decreases quite abruptly from 1 to 0 within a narrow range of order kT about
e = u, but is nearly constant everywhere else. This immediately suggests
evaluating the integral (9-17-3) by an approximation procedure which exploits
the fact that F'(e) = dF /de = 0 everywhere except in a range of order k7 near
e = p where it becomes large and negative, Thus one is led to write the inte-
gral (9-17-3) in terms of F’ by integrating by parts.

Let ¥le) = fn‘ o(e') de’ (9-17-4)
Then [ F@e@ de = F@W@E — [;" Fiw(e d

But the integrated term vanishes, since F(s) = 0, while 4(0) = 0 by (9:17-4),
Hence

[, F@e de = — [7 F/(S0(e) de (9:17-5)

Here one has the advantage that, by virtue of the behavior of F'(¢), only the
relatively narrow range of order £T about e = u contributes appreciably to the
integral. But in this gmall region the relatively slowly varying function ¢ can

A
kT

"y

Fig. 9-17+1 The derivative F'(¢) of the Fermi function as a function of e
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be expanded in a power series
¥(e) —\f’(#)"i‘*[ ] (&=l 5 [;‘:] (e— w2+ -+

- 3 A

me=

where the derivatives are evaluated for e = u. Hence (9-17-5) becomes

[} Fode= - 2 m,[di,‘] JT P @ — wmde (9:17-6)

= ® Bl e—p)
But fo Fl'e)(e — w)mde = — L (_e‘ﬁle-—l_F € — w™de
@ ex -
= e
where z = f(e — p) (9-17-7)

Since the integrand has a sharp maximum for e = g, (i.e., for = 0) and since
Bu >> 1, the lower limit ean be replaced by — = with negligible error. Thus
one can write

[ @ = wm de = — kT, (9-17-8)
where In= f_‘a (e;eT‘l)! ™ dx (9-17-9)
Note that
e* 1

E+0 @E+DeE:+1)

is an even function of z. If m is odd, the integrand in (9-17.9) is then an odd
function of x so that the integral vanishes; thus

I.=0 if misodd (9.17-10)
- e* 1 =
Also Iu = f—m m&d@‘ - — [m]_u =1 (9‘17'11)

By using (9-17-8), the relation (917 6) can then be written in the form
o (kT (kT)? [ dy
f Fo de E L., il [d’e"‘:l Y(u) + I 5 I:E:;:L'F
(9-17-12)

The integral I, can readily be evaluated (see Problems 9.26 and 9.27).
One finds

™

Ig=§
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Hence (9-17-12) becomes

> [T F@e( de = [ o(0) de + T {k?’)’[g—':]” + o (9017:19)

Here the first term on the right is just the result one would obtain for T — 0
corresponding to I'ig, 9-16:2. The second term represents a correction due to
the finite width (= kT) of the region where F' decreases from 1 to 0.

Calculation of the specific heat We now apply the general result (9-17-13)
to the evaluation of the mean energy (9 17-1). Thus one obtains

B =2 [ eod de + ”{ (kT)? [Ed; (ep)]’ (9-17-14)

Since for the present case, where kT /u << 1, the Fermi energy u differs only
slightly from its value yo at 7' = 0, the derivative in the second small correction
term in (9:17-14) can be evaluated at u = u, with negligible error. Further-
more one can write

2 [ eae) de = 2 " eale) de + 2 [ ep(e) de = B+ 2uop(le) (s — o)

gince the first integral on the right is by (9-17-1) just the mean energy F at
T =0. Since

%(EP}=p+ep’, -
Eq. (9-17-14) becomes
E = By + 2uop(uo) (1 — o) + = (»‘FT] [p(uo) + pop(pe)] (9:17-15)

Here we still need to know the change (u — ue) of the Fermi energy with tem-
perature. Now u is determined by the condition (9:17-2) which becomes, by
(9-17-13),

2 [ o9 de + 5 (DY) = N (9:17-18)

Here the derivative in the correction term can again be evaluated at uy with
negligible error, while

2f AR f”' ) de + 2[ o(e) de = N + 2p(ia)(z — po)

since the first integral on the right side is just the condition (9:17:2) which
determined gy at 7 = 0. Thus (9-17-16) becomes

2o(ue) (& — o) + (kT)’ (o) = 0

or (0 — po) = — E (kT)* ”i(:“)) (9-17-17)
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Hence Eq. (9:17-15) becomes

B =F - 3 T kT uee! (o) + = (kT}“[p(m) + sop'(po)]

or E = E, + 3 (kT)’p(Ho) (9-17-18)

since terms in p' cancel. The heat capacity (at constant volume) becomes then
ok ?

> Oy = 2 = 2 kap(ua)T (9-17-19)

This agrees with the simple order of magnitude calculation of Eq. (9-16-15).
The density of states p can be written explicitly for the free-electron gas by
(9:9-19):

v d
ple) de = {2 g (4« 2 ‘de) - 5 @&aa  (@17.20)
But Al (3« N) by (9-16-10)
Hence (ko) = V.Z i (3:- V) (9-17-21)

Equivalently this can be written in terms of N and p, by eliminating the volume
V between the last two equations. Thus one obtains

3N
plue) = [21r’h’ (8r? N)i] [-— e (311N)I] = (9-17-22)
Hence (9-17:19) gives
1 - :
cr=Cm¥r Ty (9-17-23)
1 2 o 2 Mo
or, per mole,
3, (= kT
B CV=.-R(§ E) (9-17-24)
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PROBLEMS

9.1

9.2

9.4

9.5

Consider a system consisting of two particles, each of which can be in any one of
three quantum states of respective energies 0, ¢, and 8e. The system is in con-
tact with a heat reservoir at temperature 7 = (k38)-%

(e) Write an expression for the partition function Z if the particles obey
classical MB stafistics and are considered distinguishable.

(5) What is Z if the particles obey BE statistics?

() What is Z if the particles obey I'D statistics?

(a) From a knowledge of the partition function Z derived in the text, write an
expression for the entropy 8 of an ideal FD gas. Express your answer solely in
terms of fi,, the mean number of particles in state r.

(b) Write a similar expression for the entropy 8 of a BE gas.

(¢) What do these expressions for & become in the classical limit when

i, <L 17
Calculate the partition function of & monatomic gas in the classical limit by con-
sidering the particles enclosed in & rectangular box with perfectly reflecting walls
and describing each particle in terms of the wave function ¥ of (9-9:22) which
vanishes at the walls. Show that the result is identical to that obtained in
(9-10-7) by using the description in terms of traveling waves.
(a) An idesl gas of N atoms of mass m is contained in & volume V at absolute
temperature 7. Caleulate the chemical potential u of this gas. You may use
the classical approximation for the partition function, taking into acoount the
indistinguishability of the particles.

(6) A gas of N' such weakly interacting particles, adsorbed on a surface of
area A on which they are free to move, can form a two-dimensional ideal gas on
such a surface. The energy of an adsorbed molecule is then (p*/2m) — e, where
p denotes its (two-component) momentum veotor and € is the binding energy
which holds & molecule on the surface. Caleulate the chemical potential u' of
this adsorbed ideal gas. The partition function can again be evaluated in the
classical approximation.

(c) At the temperature T, the equilibrium condition between molecules
adsorbed on the surface and molecules in the surrounding three-dimensional gas
can be expressed in terms of the respective chemical potentials. Use this con-
dition to find at temperature T the mean number n’ of molecules adsorbed per
unit area of the surface when the mean pressure of the surrounding gas is 3.
Consider a nonrelativistic free particle in & cubical container of edge length L
and volume V = L%,

(a) Each quantum state r of this particle has a corresponding kinetic energy
¢- which depends on V. What is &(V)7

(b) Find the contribution to the gas pressure p, = —(de,/dV) of a particle
in this state in terms of e and V.

(¢) Use this result to show that the mean pressure  of any ideal gas of
weakly interacting particles is always related to its mean total kinetic energy £ by
P = #E/V, irrespective of whether the gas obeys classical, FD, or BE statistics,

(d) Why is this result different, from the relation 7 = $E/V valid for a gas
of photons?

(e) Calculate the mean pressure § by using a semiclassical kinetic theory
calculation which computes § from the momentum fransfer resulting from the
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9.6

*9.7

*9.8

2.9

9.10

9.11

9.12

molecular impacts with a wall. Show that the result thus obtained is consistent
with that derived in (¢) in all cases,
Consider an ideal gas of N very weakly interacting ordinary nonrelativistio parti-
cles in equilibrium in a volume V at the absolute temperature 7. By continuing
to reason along lines similar to those used in the preceding problem, establish the
following results, irrespective of whether the gas obeys classical, FD, or BE
statistics.
{(a) Calculste the dispersion ([Ap)® of the gas pressure, and show that it is
quite generally directly related to the dispersion (AE)? of the total gas energy.
(b) By using the expressions for £ and (AE)? in terms of the partition func-
tion Z, express p and (Ap)® in terms of Z. Show that

2T

=
QA
=

=
=
i
(=)
=
S
=

(¢) In the case of this gas in the classical limil, caloulate explicitly the frac-
tional dispersion of the pressure (Ap)*/p®.

What is the malar specific heat at constent volume of a diatomic gas at room
temperature T,? Use the fact that for practically all diatomic molecules the
spacing between rotational energy levels is small compared to kT, while that
between their vibrational energy levels is large compared to k7.

Suppose that N molecules of HD gas are put into a flask and kept at a femper-
ature 7' until complete equilibrium has been established. The flask will then
contain Hy and D, molecules in addition to some mean number n of HD mole-
cules. Caleulate the ratio n/N. Express your answer in terms of T, the mass m
of a hydrogen atom, the mass M of & deuterium atom, and the (angular) vibra-
tional frequency wg of the HD molecule, You may assume that T is about room
temperature, so that the rotational degrees of freedom of the molecules can be
treated as classical, while Aw, >> kT, so that all the molecules are essentially in
their lowest vibrational state,

Electromagnetic radiation at temperature T fills a cavity of volume V. If the
volume of the thermally insulated cavity is expanded quasistatically to a vol-
ume 8V, what is the final temperature 7,7 (Neglect the heat capacity of the
cavity walls.)

Apply the thermodynamic relation T dS = dE +  dV to a photon gas. Here
one can write that £ = V' where 2(7), the mean energy density of the radiation
field, is independent of the volume V. The radiation pressure p = &i.

(a) Considering S as a function of 7 and V, express dS in terms of dT and
dV. Find (88/0T)y and (38/3V)z.

(b) Show that the mathematical identity (928/0VaT) = (928/3T3V) gives
immediately a differential equation for # which can be integrated to yield the
Stefan-Boltzmann law 4 « T4,

A dielectric solid has an index of refraction n, which can be assumed to be con-
stant up to infrared frequencies. Calculate the contribution of the black-body
radiation in the solid to its heat capacity at a temperature T = 300°K. Com-
pare this result with the classical lattice heat capacity of 3R per mole.

It has been reported that a nuclear fission explosion produces a temperature of
the order of 10°°K. Assuming this to be true over a sphere 10 ¢m in diameter,
caleulate approximately
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9.13

9.14

9.15

9.16

9.17

PROBLEMS

(a) the total rate of electromagnetic radiation from the surface of this
sphere;

(b) the radiation flux (power incident per unit area) at a distance of 1 km;

(c) the wavelength corresponding to the maximum in the radiated power

spectrum.
The surface temperature of the sun is Ty (= 5500°K); its radiusis B (= 7 X 10
em) while the radius of the earth is r (= 6.37 X 105 ¢m). The mean distance
between the sun and the earth is L (= 1.5 X 10" ¢m). In first approximation
one can assume that both the sun and the earth absorb all electromagnetic radi-
ation incident upon them.

The earth has reached a steady state so that its mean temperature 7" does
not change in time despite the fact that the earth constantly absorbs and emits
radiation.

(a) Find an approximate expression for the temperature 7" of the earth in
terms of the astronomical parameters mentioned abave.

(b) Caleulate this temperature T numerieally.

What is the total number 9 of molecules that escape per unit time from a unit
area of the surface of a liquid which is at temperature 7, where its vapor pres-
sure is p? Use detailed balance arguments by considering a situation where the
liquid is in thermal equilibrium with its vapor at this temperature and pressure.
Treat the vapor as an ideal gas, and assume that molecules striking the surface
of the liquid are not appreciably reflected.

Caleulate the number 9T of molecules escaping per unit time from unif area

of the surface of water in & glass at 25°C. The vapor pressure of water at this
temperature is 23.8 mm Hg.
To measure the vapor pressure of a metal (e.g., nickel) at some elevated temper-
ature T, one can enclose a wire of this metal in an evacuated glass envelope.
By passing a current through the wire, one can bring it to the desired temper-
ature T for a time £. (This temperature can be measured by optical means by
observing the wavelength distribution of the emitted radiation,) All the mole-
cules of the vapor emitted from the wire and striking the glass envelope con-
dense there, since this envelope is at a much lower temperature., By weighing
the wire before and after the experiment, one can measure the small loss of mass
AM per unit length of this wire. The radius r of the wire can also be measured.
(It changes only by a negligible amount during the experiment.) The metal is
known to have a molecular weight p.

Derive an explicit expression showing how the vapor pressure p(7T) of the
metal at the temperature 7' can be determined from these experimentally meas-
ured quantities. (Assume that when the metal is in equilibrium with its vapor,
every molecule of the vapor striking the surface of the metal condenses.)

An ideal Fermi gas is at rest at absolute zero and has a Fermi energy p. The mass
of each particle is m. If v denotes the velocity of a molecule, find 7, and 1.2
Consider an ideal gas of N electrons in a volume V at absolute zero.

(a) Calculate the total mean energy F of this gas.

(h) Express F in terms of the Fermi energy u.

(¢) Bhow that E is properly an extensive quantity, but that for a fixed
volume V,  is not proportional to the number N of particles in the container.
How do you aceount for this last result despite the fact that there is no inter-
action potential between the particles?
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9.18

9.20

9.21

9.22

2.23

Find the relation between the mean pressure p and the volume ¥ of an ideal
Fermi-Dirac gas at T = 0.

(¢) Compute this by the general relation § = — (3E/3V)r valid at T = 0,
Here F is the total mean energy of the gas at T = 0.

() Compute this from the relation § = £&/V derived in Problem 9-5.

(¢} Use the result to caleulate the approximate pressure exerted by the con-
duetion electrons in copper metal on the solid lattice which confines them within
the volume of the metal. Express your answer in atmospheres.

Use arguments based on the specific heat to answer the following questions
without detailed caleulations:

(a) By what factor does the entropy of the conduection electrons in a metal
change when the temperature is changed from 200 to 400°K?

(b) By what factor does the entropy of the electromagnetic radiation field
inside an enclosure change when the temperature is increased from 1000 to
2000°K?

The atomic weight of sodium (Na) is 23, the density of the metal is 0.95 gm /em?,
There is one conduction electron per atom.

(a) Use an approximate expression for the Fermi energy of the conduction
electrons in Na metal to calculate the numerical value of the Fermi temperature
Tr= p/k.

(b) It is desired to cool a sample consisting of 100 em? of Na metal from

1°K down to 0.3°K. At these low temperatures the lattice heat capacity of the
metal is negligible compared to that due to its conduction electrons. The metal
can be cooled by bringing it in thermal contact with liquid He® at 0.3°K. If
0.8 joules of heat input are required to evaporate 1 cm? of liquid He?, estimate
how much of the liquid must be vaporized to cool the Na sample.
Use qualitative arguments (similar to those used in the text in connection with
the discussion of the specific heat of the conduction electrons in & metal) to dis-
cuss the paramagnetic susceptibility x due to the spin magnetic moments of the
conduction electrons. In particular,

(a) what is the temperature dependence of x?

(&) what is the order of magnitude of ¥ per mole of conduction electrons?
By what factor would this answer differ if the electrons obeyed Maxwell-Boltz-
mann statistics?

A metal has n conduetion electrons per unit volume, each electron having spin +
and an associated magnetic moment yn. The metal is at 7 = 0°K and is placed
in & small external magnetic field H. The total energy of the conduction elec-
trons in the presence of the field H must then be as small as possible. Use this
faet to find an explicit expression for the paramagnetic susceptibility due to the
spin magnetic moments of these conduction electrons.

The lowest possible energy of & conduction electron in a metal is — ¥ below the
energy of a free electron at infinity, The conduction electrons have a Fermi
energy (or chemical potential) 4. The minimum energy needed to remove an
electron from the metal is then ® = ¥, — u and is called the work function of
the metal. The figure illustrates these relations in a diagram of energy versus
spatial location of an electron.

Consider an electron gas outside the metal in thermal equilibrium with the
electrons in the metal at the temperature 7. The density of eleetrons outside
the metal is quite small at all laboratory temperatures where kT << ®. By
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9.24

9.25

*0,26

%9 .37
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equating chemical potentials for the electrons outside and inside the metal, find
the mean number of eleetrons per unit volume outside the metal.

e
@
»

Outside Meta] Dutside

Calculate the number of electrons emitted per second per unit ares from the
surface of a metal at temperature T. Hence caleulate the resultant electron
current density. Use detailed balance arguments by considering the situation
when such a metal is in thermal equilibrium with an eleetron gas outside the
metal as discussed in the last problem. Assume that a fraction r of the elee-
trons striking the metal is reflected.

Write an expression for f(x) d%, the mean number of conduction electrons per
unit volume which are inside the metal and which have a particular direction of
spin orientation and & wave vector ¥ (or momentum p = /%) lying in the range
between x and x + dx. Use this result and detailed kinetie arguments to calcu-
late how many of the electrons inside the metal strike unit area of its surface per
unit time with enough energy to emerge from the metal. Assume that a frac-
tion r of these electrons are reflected back into the metal without emerging from
it. Compare your answer with that obtained in the preceding problem.

(a) Show that the integral I, defined in (9-17-9), can by integration by parts,
be written in the form

8 mds
o ee41

I, =4

(b) By expanding the integrand in powers of e~ and integrating term by
term, show that I'; can be expressed as an infinite series.

(¢) By summing this series by a method similar to that used in Appendix
A-11, show that I, = n2/3.
The caleulations involving Fermi-Dirac statistics give rise to the integrals I'n
defined in (9:17-9).

(a) Bhow that all these integrals can be obtained if it is possible to evaluate
the single integral
- sﬁs dx

1w = [ e 4
since power series expansion of J(k) yields the result
RN
J(k) = ZO L us @)

(b) Evaluate the integral J(k) by putting # = z, where z is a complex varia-
ble, and using contour integration. In order to exploit the periodicity of the
exponential function e*, compare the integral along the real axis (where z = )
with the integral elong the parallel line a distance 2x above the real axis (where
2 =z + 2mi). These paths can be distorted into each other if one bypasses the
singularity at z = 1,
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{¢) By expanding J (k) and comparing the coefficients of 4* on both sides of
(2), obtain in particular the value of I..

*9.28 Consider a gas of weakly interacting particles obeying BE statistics and main-
tained at a temperature I. The total number of particles is not specified exactly,
but only their mean total number N is given. The whole gas can then be
deseribed in terms of the grand canonical distribution of (6-9-4),

(@) Use this distribution to caleulate the mean number of particles 7, in the
single-particle state s. Compare your answer with (9-6-13).

(b) Use this distribution to caleulate the dispersion (An,)?. Show that this
result agrees with (9:6:17), but does not include the correction terms contained
in (9-6-18).

{e) Use the grand canonical distribution to caleulate 2, and n,? if the parti-
cles obey FD statistics.

*9.29 The partition funetion (9:-6-1) subject to the condition (9-6-3) can be written
in the form

7 Za-gfn,¢.+am+-~) {%r f_'r' exp [(N — En,) (o + ia‘)] da:'} (1)

Here the factor in braces has, by (A-7-15), the property that (irrespective of
the value assumed by the parameter o) it equals unity when (9-6-3) is satisfied,
but vanishes otherwise, Hence the sum in (1) can be performed over all possible
values n, = 0, 1, 2, 3, . . . for each r, without any further restriction.

By using arguments similar to those of method 2 in Bec. 68, derive an
explieit approximate expression for In Z and show how the value of « is to be
determined. In this way, rederive the results (9:6-9) and (9-6-12).
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STATISTICAL MECHANIcS has been used repeatedly in the preceding chapters to
calculate the equilibrium properties of systems on the basis of a knowledge of
their microscopic constituents. Up to now we have, however, restricted our-
selves to simple situations where the systems gonsist of particles which interact
with each other fo a negligible extent. The calculations are then, of course,
quite easy. But most systems in the real world are more complicated than
ideal gases and consist of many particles which do interact with each other
appreciably (e.g., liquids and solids). In principle, the discussion of the equi-
librium properties of such a system requires again only a caleulation of its
partition function. But, although the problem is thus very well defined, it
can become both complex and subtle. Indeed, some of the most fascinating
and difficult questions explored in present-day research concern systems of
interacting particles.

An important and frequently occurring situation arises when one is dealing
with a system at a sufficiently low absolute temperature. In this case the
probability that the system is in any one of its states is appreciable only if it is
a state of low energy. There is therefore no need to examine &ll the possible
quantum states of the system; an investigation of the relatively few quantum
states of energy not too far above the ground-state energy of the system is suffi-
cient to discuss the problem. The analysis is thereby greatly facilitated. The
general procedure consists in trying to simplify the dynamical problem by
introducing new variables in terms of which the low-lying excited states of the
system can be deseribed most simply. These excited states represent then
particularly simple possible modes of motion (“eollective modes’) of the system
as a whole, rather than of the individual particles. To be specific, one attempts
to choose the new variables so that the Hamiltonian of the system, when
expressed in terms of these variables, becomes identical in form to the Hamil-
tonian of an assembly of weakly interacting particles. (These are commonly
called “‘quasi-particles” to avoid confusion with the actual particles constituting
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the system.) If the dynamical problem of reducing the Hamiltonian to this
simple form ecan be solved, then the whole problem becomes equivalent to
that of an ideal gas of quasi-particles; the siafistical problem thus becomes
trivial.

Let us mention a few illustrations of the above method of analysis in terms
of collective modes. Consider, for example, a solid, i.e., a system where the
interaction between particles is sufficiently strong that they become arranged
in a lattice of definite crystal structure. If the temperature is not too high,
the amplitudes of vibration of the individual atoms are relatively small. The
collective modes of motion involving many atoms are then the possible sound
waves which ean propagate through the solid. When these sound waves are
quantized, they exhibit particlelike behavior and act like weakly interacting
quasi-particles called “phonong.” (The situation is analogous to light waves,
which exhibit particlelike behavior when quantized, the quasi-particles being
the familiar photons.) Another example might be a ferromagnet at very low
temperatures. Here all the spins and associated magnetic moments interact
strongly with each other and all point in one particular direction at 7' = 0.
Small deviations from perfect alignment constitute low-lying excited states of
somewhat higher energy. These deviations can propagate through the fer-
romagnet like waves (they are called “spin waves'’) and, when quantized, have
particlelike properties (they are then called “‘magnons”), Other systems, such
as liquid helium near T = 0, can similarly be described in terms of quasi-
particles. These general remarks are admittedly rather vague (although the
detailed discussion of solids in Sec. 101 will illustrate the method of approach
quite specifically in a simple case). They should, however, be sufficient to
indicate that it is often possible to reduce a problem of interacting particles
near 7' =0 to a ftrivial equivalent problem of essentially noninteracting
particles.

Another situation which is relatively simple to treat is the opposite limit,
where the temperature T’ of the system is high enough that k7 is large com-
pared to the mean energy of interaction of a particle with the other particles of
the system. Since the interaction between particles is then relatively small,
it can be takewn into account by systematic approximation methods (like appro-
priate power series expansions). These yield the correction terms which
describe the extent to which the properties of the system depart from those
which would exist if interactions between particles were absent. One instance
where such approximation methods are applicable is an ordinary gas which is
sufficiently dilute and at a sufficiently high temperature that its behavior does
not differ excessively from that of an ideal gas, although it may differ from it
significantly. Another illustration is a system of interacting spins at a tem-
perature much higher than that below which ferromagnetism oceurs; departures
of the susceptibility from Curie’s law then do oceur, but the correction terms
are relatively small.

The fwo situations described in the preceding paragraphs represent
extremes of comparative simplieity. In the limit of sufficiently low tempera-
ture the systems are almost completely ordered (e.g., the lattice of a solid is
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almost rigid, or the spins of a ferromagnet are almost perfectly aligned); the
small departures from perfect order can then be discussed fairly readily. In
the other limit of sufficiently high temperature the systems are almost com-
pletely disordered (e.g., the motions of individual molecules in a gas are almost
completely uncorrelated, or the spins of a spin system point in almost random
directions); the small departures from perfect randomness can then be readily
discussed. It is the intermediate situation which is the most difficult and
faseinating, for it raises the question of how a system does make the transition
from a disordered to an ordered configuration as its temperature is reduced.
The ordering can be expected to take place at some temperature 7" which is
such that T is of the order of the mean interaction energy of a particle with the
other particles in the system. But just how rapidly does the system become
ordered when its temperature is lowered? The answer is that the ordering, or
at least the onset of ordering, can occur very abruptly at a sharply defined
critical temperature T.. For example, a gas at a fixed pressure turns suddenly
into a liquid at a sharply defined temperature; or an assembly of spins becomes
suddenly ferromagnetic below a well-defined critical temperature, The reason
for the suddenness of these transitions is that the presence of appreciable inter-
actions between particles can lead to ‘‘cooperative’” behavior involving all the
particles; i.e., when a few particles become locally ordered, this facilitates the
ordering of some more particles further away, with the net result that the order
propagates through the entire system (like a row of collapsing dominoes). For
example, when a few gas molecules condense to form a liquid, this process helps
other molecules to condense; or when a few spins beecome oriented in the same
direction, they produce an effective magnetic field which induces neighboring
spins also to line up in this direction. Since such cooperative effects involve
correlations between all the particles, they are very difficult to diseuss theoreti-
cally. In principle it is, of course, true that the exact partition function Z
would deseribe all these phenomena, including the occurrence of abrupt phase
transitions whose existence would be manifested by a singularity of the funetion
Z as a function of T at & critical temperature T.. But the theoretical problem
is precisely the circumstance that it is very difficult to calculate Z when the
correlated motions of all particles must be taken into account. Only the most
trivial problems can be discussed exactly (with great mathematical ingenuity),
and it is a challenging task to develop approximation methods which are power-
ful enough to treat physically important situstions. It is characteristic of
these methods that they become least satisfactory at a temperature close
to T. where the correlations resulting in cooperative behavior become mosf
significant.

In this chapter we shall discuss only some simple, but important, systems
consisting of interacting particles and shall treat them by the simplest methods,
We shall discuss a solid as an example of an almost ordered system at com-
paratively low temperatures; a slightly nonideal gas as an example of an almost
random system at comparatively high temperatures; and the case of ferromag-
netism as an example of cooperative ordering.
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SOLIDS

1 0 + 1 Lattice vibrations and normal modes

Consider a solid consisting of N atoms. Denote the position vector of the ith
atom of mass m; by ry, its corresponding cartesian coordinates by z:, Tis, Tis;
denote the equilibrium position of this atom by r;®., Each atom is free to
vibrate with relatively small amplitude about its equilibrium position. To
measure displacements from the equilibrium position, introduce the variable

Bio = Tia — Y, wherea =1,2 or3 (10-1-1)

The kinetic energy of vibration of the solid is then

K=1% E 2 Mida® = § E Z Mikia® (10-1-2)

i=1 a=1 i=1l a=1

where &, = £, denotes the o component of veloeity of the 4th atom,
The potential energy V = V(zy, %12, . . ., oys) can be expanded in
Taylor's series since the displacement-s £ are small. Thus one gets

aV
V= V"'z[aT] bty ) ||, ot + - -+ (1013

Here the sums over ¢ and j are from 1 to N; the sums over « and v are from
1 to 3. The derivatives are all evaluated at the equilibrium positions of the
atoms where zi,, = 2" for all ¢ and a. These derivatives are therefore
simply constants. In particular, ¥V, is merely the potential energy in the
equilibrium configuration of the atoms. Since V must be a minimum in this
equilibrium configuration, [V /03] = 0, i.e,, the force acting on any atom
must then vanish. Introducing as an abbreviation the constants

[ R
Aig iy = [M]u (10:1-4)
(10-1-3) becomes thus, neglecting terms of order higher than quadratic in £,
V=Vi+4% 2 Aejubiabiy (10-1-5)
iy

Hence the total Hamiltonian, or energy, associated with the vibrations of the
atoms in the solid assumes the form

& = VD 4 ‘ﬁ' E Wém = 'é' E in, j-pEt’an‘r (10 8 2 6}
!“,,T",r'
The kinetic energy term is simple since it involves & sum of terms each of which
refers only to a single coordinate. The potential energy term is compli-
cated, however, since it involves all possible products of different coordinates.
This reflects, of course, just the fact that the atoms interact so that they do not
behave like independent particles.
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Since the potential energy is quadratic in the coordinates, the problem
presented by (10-1-6) can, however, immediately be reduced to much simpler
form by a change of variables which eliminates the cross-product terms in the
potential energy (10-1-5) without destroying the simple form (10-1-2) of the
kinetic energy. (The procedure is analogous to that of rotating the coordinate
axes in such a way as to reduce the general equation of an ellipsoid to the simple
standard form which involves only the equare of each coordinate but no eross-
product terms). Indeed, it can readily be shown* that it is always possible to
go from the 3 old coordinates £, to some new set of 3V generalized coordinates
¢ by a linear transformation of the form

3N
bia= 3 Biast (10-1-7)
r=1

such that a proper choice of the coefficients Bi... transforms 3¢ in (10-1-6) to
the simple form

aN
®="Vo+4% Y G+ wg?) (10-1-8)
r=1

Here the coefficients w,® are positive constants, and there are ne cross terms
involving produets of two different variables. The new variables ¢ are called
the “normal coordinates” of the system. In terms of these variables the
Hamiltonian (10-1-8) is simply a sum of 3N independent terms each of which
refers to only a single variable, Indeed (10-1:8) is identical in form to the
Hamiltonian of 3N independent one-dimensional harmonic oscillators, the
oscillator of coordinate ¢, having an angular (“normal mode") frequeney w,.
The ehange of variable (10:1-7) has thus reduced the complicaved problem of
N interacting atoms to the equivalent problem of 3N noninteracting harmonic
oscillators. The discussion of the latter problem is, of course, very simple,
To give the quantum-mechanical discussion, consider first the simple one-

dimensional harmonic oscillator Hamiltonian

3 = H¢* + ole?) (10-1-9)

involving the single variable ¢.. The possible quantum states of this oscillator
are labeled by the quantum number n, which can assume the values

B =012 B 4. (10-1-10)
The corresponding energies are given by
& = (n, + P, (10-1-11)

One can then write immediately the solution for the complete Hamiltonian
(10-1-8) of a system of 3 independent harmonie oscillators. The quantum
state of the whole system is specified by the set of 3N quantum numbers
{ny, ne, . . ., nav) each of which can assume any of the integral values listed

* See, for example, H. Goldstein, “Classical Mechanics,” chap. 10, Addison-Wesley
Publishing Company Reading, Mass., 1950; or K. R. SBymon, “Mechanies,” 2d ed., secs.
12-1-12-3, Addison-Wesley Publighing Company, Reading, Mass., 1960.
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in (10-1-10). The corresponding total energy is simply the sum of the one-
dimensional oscillator energies, i.e.,

3N
Bo.oo = Vot 3 (0 + Pho, (10-1-12)

{ r=1

This can be written in slightly different form as

aN
" Enl ..... iy — _N"? -+ E n,-hw.- (1..9_].-;13)-—
r=1 e
where —Np =V, +~}2hw, (10-1-14)

is & constant independent of the quantum numbers n,. By (10-1-13), —

represents the lowest possible energy of the atoms measured with respect to a
standard state where they are at rest at an infinite separation from each other.
(Note that this quantity differs from V, by the ‘“‘zero-point energy” 4Zhw,.)
Thus n represents the binding energy i:;er atom in the solid at absolute zero,

Remark We have arrived at the result that the state of the system is com-
pletely specified by the set of integers {ni, . . . , nay} With a corresponding
energy given by (10:1-18), Note that this result is exactly the same as if
one were denling with a system of particles each of which can be in any one
of the 3N _states labeled by r = 1, , 3N with respective energies fiw,,
fm;, . ., honw, there being ny part_m]_m'present in state 1, ng particles in
state 2, . . . , and nax particles in state 3N. TFrom this point of view the
state of the system would be specified by stating the numbers n. of partieles
of each type r. Only these numbers are important, i.e., there is no mention
of any distinguishability of particles, and, therefore, it does not matter which
particular particle is in which state. Furthermore, any number of particles
(ﬂir =0, 1, 2,3 ...)can be in any mmf,-ﬁndthﬁtﬂmnmbﬂm
of particles is not fixed in any way. These particles would then obey Bose-
Einstein statistics. One can summarize these comments by noting that a
quantum-mechanical diseussion of the harmonic-oseillator Hamiltonian
(10:1-8) gives rise to a specifieation of the system in terms of integral quan-
tum numbers n., and that the results can then be interpreted as if one dealt
with a system of indistinguishable pa.rtmiea where these integers specify the
number of particles in each state. This is, of course, merely an inlerpre-
tation of the results in terms of particles. To emphasize this fact we shall
refer to these “particles” as “quasi-particles” to avoid confusion with the real
particles of the problem, i.e., the atoms which form the solid. This interpre-
tation in terms of qua.al—pa.rticlea represents a very useful point of view. In
the present case the quantization of the lattice vibrations leads fo quasi-
particles which are called “phonens” (since they are basically quantized sound
waves). The situation is completely analogous to the case where one quan-
tizes electromagnetic radiation; the guasi-particles which arise in that problem
are called “photons” and have the familiar particlelike prmms of hghL

-
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The caleulation of the partition function with (10-1-13) is immediate.
One has

Zi= E e PI-Nrtnid it nabunt - Fnavhaay]

RiAgMgea -

= ¢y (“20 gm0 iag—ﬂﬁﬂwnm)

N=
or Z = ' (1—_,_—:3_33:,) % 5 (Tl—ﬂhm) (10-1-15)

since this is simply the produet of one-dimensional harmonic-oscillator parti-
tion functions which are geometric series.

aN
Thus InZ = fNng— Y In (1 — esh) (10-1-16)
T=1
The possible normal mode frequencies w, are closely spaced, and it 12 convenient
to define the quantity
a(w) dw = the number of normal modes with angular fre-
guency in the range between @ and w + dw.
A curve of o(w) versus w might have the kind of shape gshown in Fig. 10-1-1,
In terms of the definition (10-1:17), In Z in (10-1-16) can be expressed as an
integral

} (10-1-17)

“In (1 — eP)o(w) doo (10-1-18)

InZ=BNq—-f

S R R S SR T n‘;s. 0.9 1.0
1272 10 sec—t) iy Wmge

Fig. 10-1'1 The normal-mode vibrational frequency distribution o(w) for
aluminum. The solid curve is a measured curve deduced from X-ray scat-
tering measurements at 300°K (after C. B. Walker, Phys. Rev., vol, 103, p. 547
(1956)). The dashed curve represents the Debye approximation of See. 10+2
with a value Bp = 382°K deduced from the specific heat.
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Thus the mean energy of the solid becomes

dlnZ _ . K

o e — () de (10-1-19)

Its heat capacity at constant volume is then

oF ok
G (ﬁ)v e (373-)"
or

> Cv=k [ G% (Yo () dos (10-1-20)

The statistical problem is thus very simple. The entire complication of
the problem revolves about the transformation of the Hamiltonian from
(10-1-6) to (10-1-8); i.e., one must solve a mechanics problem to find the
actual normal mode frequencies of the solid so as to determine the funetion
o(w) for the solid under consideration,

Irrespeetive of the exact shape of ¢(w), one can make general statements
about the high temperature limit. The significant dimensionless parameter
oceurring in (10:1:18) is fhw = fiw/kT. Let wmsx denofe the maximum fre-
quency of the normal mode spectrum, i.e., let wmax be such that

o(w) =0 if @ > wmax (10-1-21)

If 7" is large enough so that Fhw. < 1, then ffiw < 1 throughout the range of
integration of the integral (10-1-20), so that one can write

e =1 4 Bhw 4 - -
Thus (10-1-20) becomes simply,

for kT 3> hesmar, Cy =k [[" o(w) do = BN (10-1.22)
since the integral equals simply the total number of normal modes, ie.,
Jo o) do = 3N (10-1-23)

The relation (10:1-22) is simply the Dulong and Petit law already obtained in
Sec. 77 by applying the equipartition theorem in the classical high-tempera-
ture limit.

10 ¥ 2 Debye approximation

The caleulation of the number ¢(w) of normal-mode frequencies is a complicated
problem. Although fairly good caleulations of #(w) can be made for solids
of simple structure, it is useful to employ less laborious methods to obtain
approximate estimates of o(w).

Consider a solid congsisting of N atoms whose masses are not too dissimilar.
The approximation method used by Debye proceeds by neglecting the dis-
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creteness of the atoms in the solid and treating the latter as if it were a con-
tinuous elastic medium. Each normal mode of vibration of this elastic con-
tinuum is characterized by a wavelength A. Let a denote the mean interatomic
separation in the solid. If A >> a, neighboring atoms in the solid are displaced
by nearly the same amount. In this ease the fact that atoms are at a finite
separation a from each other is not very significant, and the normal modes of
vibration of the elastic medium are expected to be very nearly the same as
those of the actual solid. On the other hand, those modes of vibration of the
elastic continuum for which A becomes comparable to @ correspond to markedly
different, displacements of neighboring atoms. The discrete spacing of atoms
is then guite important, and the actual normal modes of vibration of the atoms
are consequently quite different from those of the elastic continuum, In
short, treating the real solid as though it were an elastic continuum should be a
good approximation for modes of long wavelength A 3> a. Equivalently, this
means that for low frequencies o the density of modes o,(w) for the continuous
elastic medium should be very nearly the same as the mode density o(w) for
the actual solid. For shorter wavelengths, or higher frequencies, o(w) and
oc(w) differ increasingly. Finally, when M < a, ¢(w) and o.(w) are completely
different; indeed the real solid has no modes at such high frequencies (i.e.,
o(w) = 0for @ > wna), while there is no limitation on how short a wavelength
or how high a frequency a continuous medium can have.

Let us then investigate the normal modes of vibration of the solid con-
sidered as an isotropic elastic continuous medium of volume V. Let w(r,t)
denote the displacement of a point in this medium from its equilibrium posi-
tion. (In the limit of long wavelengths, the « component of the atomie dis-
placement &, defined in (10-1-1) is then approximately given. by t.(t) =
ua(ri',t).) The displacement = must then satisfy a wave equation which
describes the propagation through the medium of sound waves traveling with
sonie effective velocity ¢,. The analysis of normal modes is then completely
analogous to that in Sec. 9:9. A sound wave of wave vector x corresponds to
an angular frequency w = ¢, and the number of possible wave modes with
frequency between @ and @ + de (corresponding to a magnitude of » between
x and x + dk) is given analogously to (9-9-18) by

v
2n%c,?
where the factor of 3 accounts for the fact that there are three possible direc-

tions of polarization of u (one longitudinal one, as well as two transverse ones)
for each wave vector .

aw) dw = 3-(5‘;_-)3(41,‘3 de) = 3 w? dw (10-2-1)




DEBYE APPROXIMATION 418

Elasticity theory shows* that the vectors w, and w; then satisfy, with different
velocities of propagation ¢, and ¢, respectively, the wave equations

1 9%
Viw = g
a2
'“’l'z il (10-2-5)
Vi =5 ap
Here ¢; and ¢, can be expressed in terms of the elastic constants of the medium

by the relations

where p is the density of the medium, u its shear modulus, and b its bulk
modulus (the reciproeal of its compressibility).
Equations (10 2-5) have plane wave solutions of the form

w o= Ay, | =2 (10-2-7)
o= A eiur—ed, | == (10-2-8)

where A4, and A4, are constants. By virtue of (10-2-3)
%-w =0, sothatu L w (10-2-9)

Hence w, represents a displacement which is perpendieular to the direction of
propagation of the wave, so that wu, in (10-2:7) represents the propagation
of & sound wave polarized transversely to the direction of propagation, Simi-
larly, it follows from (10-2-4) that

X w =0, so0 that wlw (10-2-10)

Hence w; represents a displacement which is parallel to the direction of propa-
gation of the wave, so that w in (10-2:8) represents the propagation of a
sound wave polarized longitudinally to the direction of propagation.

By (9:9-18) the number of longifudinal wave modes in the frequency
range befween w and w + dw corresponding to & wave vector of magnitude
between «; and x; - du; is then

- Vo ¥
{0, = e g e { =2
o (w) dw = @r}s&m’dm e w?* do (10-2-11)
For the number of transverse wave modes in the frequency range between w
and w + dw one obtains a similar result except for multiplication by a factor
of 2, since there are fwo possible components of the transverse displacement .
Thus

P(w) dw = 2 w? dw (10-2:12)

2ar¥e®

* Bee, for example, L. Page, “Introduction to Theoretical Physics,” 3d ed., p. 1985,
l D. Van Nostrand Company, Inc. New York, 1953,
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‘The Debye approximation consists in approximating ¢(w) by o.(w) not
only at very low frequencies where these should be nearly the same, but for
all the 3N lowest-frequency modes of the elastic continuum. Specifically,
Debye approximates o(w) by the distribution op(w) defined by

onlu) = [ L R (10-2-15)

for w > wp

where the “Debye frequency” wp is chosen so that op(w) yields the correet
total number of 3N normal modes (just as ¢ does in (10:1:-23)); i.e.,

[, onlw) do = ﬁ,“’" euf) du = 3N (10-2-16)

A plot of op(w) versus w is shown in Fig. 10-2.1 and is compared with a real
frequency spectrum o(w) in Fig. 10-1-1,
Substitution of (10-2-1) into (10-2-16) yields

3V fen

rtcd Jo @40 =

i =3N (10-2-17)

Wp
2r%c,

0 wy @™

Fig. 10-2-1 The Debye frequency spectrum.
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or

i
e Wp = €, (t‘nr* 5‘;;) (10-2-18)

Thus the Debye frequency depends only on the sound velocities in the solid
and on the number of atoms per unit volume. It is approximately such that
the corresponding wavelength 2w¢, /wp is of the order of the interatomic spacing
a~ (V/N)L. Since ¢, = 5-10° em/sec and @ = 10—2 em, wp =~ 10M gec—! is
typically a frequency lying in the infrared region of the electromagnetic
spectrum.

Using the Debye approximation (10-2-15), the heat capacity (10-1-20)
becomes

- ap (B8R}t 3V ”.
an r=kJ, @ — 1) 2niep " % (10-2-19)
In terms of the dimensionless variable » = fhw this gives
- 3V phos  €* ; -
Cram 2t (c.Bh)° fu @ —12° dz (10-2-20)

To facilitate comparison with the classical result Cy = 3NFk, the volume V can
be expressed in terms of N by (10-2-17), giving

V = 6r2N (—CL)’ (10-2-21)
wp

Thus (10-2-20) ean be written in the form
B Cy = 3Nkfp(Bhwp) = 3Nkfp (%,2) (10-2-22)
where we have defined the ‘‘Debye function” fp () by
> foly) = f (e, S qyatds (10-2-23)
and have further defined the “Debye temperature” 6 to be such that
=3 k8p = hwp (10-2-24)

At high temperatures where T >> 0p, fp(@p/T) — 1 by the general arguments
at the end of Sec. 10-1. Indeed, for small y, one can put e* = 1 + z in the
integrand of (10-2-22) so that

for y — 0, f;,(y)_.y%j;"xedx = (10-2-25)

The more interesting limiting case is that of very low temperatures. Then
Bhew >> 1 for relatively low frequencies where w << wp. Physically this means
that only oscillators of fow frequency w are then thermally excited to an
appreciable extent and contribute to the heat capacity. Mathematically
this means that the exponential factors are such that the integrand in (10-1-20)
is appreciably only for small values of w. In this case a knowledge of o(w) for
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Fig. 10:2:2 Temperature dependence of the heat capacity Cv ding to
the Debye theory (10:2+22). The dashed curve shows, for comparison, the
temperature dependence according to the simple Einstein model of Sec. 77,
with Oz = On.

low frequencies w is sufficient to caleulate C'y at low temperatures, and it is
precisely in this region that the Debye approximation of replacing the solid by
an elastie continuum is best,

In this low-temperature region the upper limit fhwp = 0p/T of the
integral (10-2:20) can be replaced by @ so that this integral becomes simply a
constant. Hence it follows immediately that for T' < @p,

> Cy « =% o« T8 (10-226)

Remark Axmﬁoionﬂylowtempmwmﬂmoduuf Bquenaoi
_h;hummnotami‘bed. Henoettheoummelsvmthatmupparwhﬁ
~ frequency wp exists in this problem and the situation becomes complefely anal-

ogous to that of electromagnetic waves, where all frequencies are permissible.

The remarks made in (9-13-18) in connection with photons are thus equally

'_._;m%md“ﬁm"uwm#m The mean

The result (10-2:26) can easily be made more quantitative. Since the
upper limit in (10-2-20) can be replaced by %, we note that Cy becomes
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independent of the precise value chosen for the upper cutoff frequency wp.
The resulting integral was already encountered in our diseussion of black-body
radiation in (9-13:16); it can be evaluated numerically or can be computed
exactly (see Appendix A:11). Thus one finds
S i e S - ap ﬁé'f: (10-2-
L(F*l}’xdﬂ 4]; !g:_ld:c 15 (10-2-30)
where the second integral is obtained by integration by parts. Tquivalently,
this implies that
1

4t
fory > 1, In(y) = o (10-2-31)

ot KT\
Cv=—5-Vk(E—§)

Alternatively, this can also be expressed in terms of the quantity wp or 8y
given by (10-2-18) and (10-2-24). Using (10-2-21), or using (10-2-22) and
(10-2-23), one obtains

Hence (10-2-20) becomes

1254 T\?

> oy = 2 (é:) (10-2.32)

The fact that the specific heat of solids is proportional to T% at sufficiently
low temperatures is quite well verified experimentally, although it may be
necessary to go to temperatures low enough so that T < 0.020; (see Figs.
9-16-4 and 10-2.3). The Debye temperature 6p can be obtained from such
low-temperature specific-heat measurements by comparison with the coefficient
of 7 in (10-2-32). Theoretically, 85 should be given by (10-2.18) so that it
can be computed from the elastic constants of the solid, either from the known

5.0
&
-

¥

1

=

£

2

2

:

(Deg?) s

Fig. 10:2:3 A curve of Cy/T versus T for KCI showing the validity of the
T law at low temperatures, (The experimental points are those of P, H.
Keesom and N. Pearlman, Phys. Rev., vol. 91, p. 1354 (1953).)
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[Deg K} T

Fig. 10:2:4 The molar specific heat of copper: Debye theory with 6p = 309°K
and experimental points, (After P, Debye, Ann. Physik, vol. 39, p. 789 (1912).)

veloeities of sound ¢ and ¢, or by (10-2-6) from the known elastic moduli.
The agreement is fairly good, as shown in Table 10.2 1.

The Debye theory (10-2-22) also provides in many cases a fairly good,
although not perfect, representation of the temperature dependence of the
specific heat over the entire temperature range. Figure 10-2-4 shows an
example taken from Debye’s original paper.

Table 10-2+1 Comparison of Debye temperatures obtained from low-
temperature specific-heat measurements and caleulated from
elastic constants™®

Solid Bp from specific heat (°K)  Bp from elastic constants (°K)
NaCl 308 320
KCl 230 246
Ag ; 225 216
Zn 308 305

* Compilation taken from (. Kittel “Introduction to Solid State Physics,” 2d ed.,
p. 132, John Wiley & Sons, Tne., New York, 1956.

NONIDEAL CLASSICAL GAS

10 -3 Caleutation of the partition function for low densities

Consider a monatomie gas of N identical particles of mass m in a container of
volume V at temperature T. We assume that T is sufficiently high and the
density n = N/V is sufficiently low that the gas can be treated by classical
statistical mechanics. The energy, or Hamiltonian, of this system can be
written in the form

=K+1U (10-3-1)
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where
K 1 -
=5 E (10-3-2)

is the kinetic energy of the gas and U is the potential energy of interaction
between the molecules. We denote the potential energy of interaction between
molecules 7 and k by s = u(F;) and assume that it depends only on their rela-
tive separation R = |r; — ri. We assume further that U is simply given by
the sum of all interactions between pairs of molecules. Thus

U=wun+uwst+uu+ " + un+ tm + * o+ Un—1N

or F= 2 Eu,;. -}E Zuﬂ (10-3-3)

f‘=1 kﬂl :-l k-l

The potential energy of interaction u between a pair of molecules has the
general shape shown in Fig. 10-3-1; i.e., it is strongly repulsive when the mole-
cules are very close together and more weakly attractive at larger separations.
For simple molecules it is possible to obtain u(R) by quantum-mechanical
calculations. A useful semiempirical potential, the so-called “Lennard-Jones
potential,” is given by

(8 [(fz")” (%)“] | (10-3-4

u(R) |

Fig. 10-3-1 Diagram illustrating the potential energy u(R) describing the
interaction bet twao lecules separated by a distance R.
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ul R |

Fig. 10-3-2 Graph illus-
trating the potential energy
u(R) of Eq. (10:3-5) as a
Sfunction of R.

This has the general shape shown in Fig. 10-3-1. The two constant param-
eters —uo and Ry denote, respectively, the minimum value of » and the separa-
tion at which this minimum oceurs. The fact that 4 « E—% when R is large
has theoretical justification (see Problem 10.6).

A different potential which is a less realistic approximation, but mathe-
mafically slightly simpler, is of the form

for R < R,

The faet that 4 — = for B < R, means that the minimum possible separation
between molecules is Ry, i.e., the molecules act like weakly attracting hard
spheres of radius $R,. The choice of exponent s = 6 is usually most appropri-
ate. This potential is illustrated in Fig, 10:3-2.

To discuss the equilibrium properties of the gas, it is then necessary to
calculate the classical partition function

Z=—ff fg—ﬂcm-md‘!’l' : 'd'P}:zg“rz' o diry

=WI...IG-—M{N ..... 2 dipy - - - dipx
j’ Py fg—-wtn ..... ™ dipy + -« diry (10-3-6)

where K and U are given by (10-3-2) and (10-3:3). The factor N'! takes into
account the indistinguishability of the particles, and we have set ho = A in
accordance with our discussion of Sec. 9:10. The first integral over the
momenta is very simple and identical to that evaluated in (7-2-6) for the ideal
f gas. Denote the second integral by

: Zy=[ '+ [P0t dop - . - dipy (10-3-7)

e
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Then (10:3-6) becomes
4N
7= 2;7;‘ Zv (10-3-8)
The evaluation of the integral Zy, where each r; ranges over the volume V of
the container, is quite complicated because U in (10-3-3) does not involve the
coordinates one at a time. The caleulation of Zy constitutes thus the essential
difficulty in the discussion of nonideal gases. Of eourse, Zy becomes simple in
the limiting case when the gas is ideal so that U — 0, or when the tempera-
ture 1s so high that 8 — 0; for then e #V — 1 and Z¢ — V¥,

If the gas density n is not too large, it is possible to develop systematic
approximation procedures for evaluating the partition function Zy. These
procedures involve essentially a series expangion in successively higher powers
of the density n. For low densities the first terms in the expansion are then
sufficient to give an accurate description of the gas. Indeed, the first approxi-
mation to Zy can be easily obtained by energy considerations alone. The
mean potential energy of the gas is given by

. et Udlry s s dly @ ot
U= Te o dn, @~ R (10-3.9)
Henioo InZo(g) = N1n V — [’ () ag’ (10-3-10)

since Zy(0) = V¥ for 8 = 0. But by Eq. (10-3-3) the mean potential energy
of the ZN(N — 1) pairs of molecules is simply

U=4iNN — 1)a =~ N (10-3-11)

since N 3> 1. Furthermore, when the gas is sufficiently dilute, one can assume
in first approximation that the motion of any pair of molecules is not correlated
appreciably with the motion of the remaining molecules which act, therefore,
simply like a heat reservoir at temperature I. The probability that molecule j
is located at a position R = r; — ry relative to molecule k is then proportional
to e (&) @3R. Hence the mean potential energy 4 between this pair of mole-
cules is given by
—fu. 3
e %“fﬁsi‘—ﬁ%‘ e %ln[e"“ &R (10-3-12)

where the integration is over all possible values of the relative position R, i.e.,
essentially over the whole volume V of the container, Since u = 0 and
e~ =~ 1 practically everywhere except when R is small, it is convenient to
write the integral in the form

frﬂv d'R = f[l + (e —1)]dR=V+1= V(l +-{-;) (10-3-13)

where

b 1(8) = f (e — 1) d°R = L' (e — 1)4rR:dR  (10-3:14)
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is relatively small so that 7 << V. By using (10:3-13) in (10-3-12), one then

obtains
g = — i‘ _I 1 — -—.a._ _{ b
= aﬁl:ln'l’-l*ln(l +V)] 0 eﬁ(V“F )
IS ESA T 7o
or u__T_’EE (10-3-15)
Thus (10-3-11) becomes
0=_ 1Nl
0 R
Hence (10-3-10) yields simply, gince I = 0 for § = 0,
2
> In Zo(8) = N1n V + 3 5= 1(9) (10-3-16)

10- 4 Equation of state and virial coefficients

The equation of state can readily be obtained from the partition funection by
the general relation

lelnZ 1dInZy
P=5 eV =5 oV (10-4:1)
since only Zy in (10-3-8) involves the volume V. Hence (10-3-16) yields the
result

=1 (10-4:2)
This is of the general form

% = n + By(T)n? + By(T)n® + - - - (10-4-3)
where n = N/V is the number of molecules per unit volume. Equation
(10-4-3) is an expansion in powers of n which is the so-called “‘virial expan-
sion” already mentioned in (5:10:12). The coefficients B;, Bs, . . . are
called the “virial coefficients.” TFor the ideal gas By = By = + - - = 0. If
n is not too large, only the first few terms in (10-4-3) are appreciable. We
have evaluated the first correction to Z when terms in n* become important.
Hence we have found the second virial coefficient B,; by identification with
(10-4-2) and reference to (10-3-14) it is simply given by

> By= —}4I = —2r [ (e — )RR (10-4-4)

A knowledge of the intermolecular potential u allows therefore an immediate
evaluation of the first correction term to the ideal-gas equation of state.
Keeping in mind the general behavior of the intermolecular potential
illustrated in Fig. 10-3-1, it is easy to discuss the temperature dependence of
B;. Consider the dependence of the integrand in (10-4-4) as a function of R.
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Fig, 10-4-1 Dimensionless plot showing the dependence of B; on the tem-
perature T. The curve labeled “classical’™ shows the result of the classical
calculation using the Lennard- Jones potential (10-3-4). The other two
curves indicate, for comparison, calculated curves for He and H, gas if
quantum-mechanical effects are taken into nt. (It is seen that quan-
tum effects for these light gases become important at low temperatures.)
The points indicate experimental results for several gases (after J. O.
Hirschfelder, C. F. Curtiss, and R. B. Bird, **Molecular Theory of Gases and
Liquids,” p. 164, John Wiley & Sons, Inc., New York, 1954).

When R is small, « is large and positive so that (e=#+ — 1) is negative; in this
region the integrand in (10-4.4) thus makes a positive contribution to Ba.
But for larger values of R, u is negative so that (e=#* — 1) is positive and larger
for larger values of g (i.e., for smaller values of 77); in this region the integrand
thus makes a negative contribution to Ba. At low temperatures this negative
contribution ig predominant so that Bj is negative; but at high femperatures it
is of minor significance so that B, is positive. At some intermediate tempera-
ture B, must then vanish. The temperature dependence of B, exhibits,
therefore, the behavior shown in Fig. 10-4-1,

One can understand this behavior in more physical terms. At low tem-
peratures where kT < ug, the molecules are most likely to be in configurations
of lowest mutual energy where the intermolecular forces are attractive. This
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attraction tends to reduce the pressure of the gas below that of an ideal gas,
i.e,, By is negative. At higher temperatures, where kT > wg, the molecules
are scarcely affected by the presence of the potential minimum, and it is the
strong repulsive interaetion whose influence is predominant. This repulsion
increases the pressure of the gas above that of an ideal gas, i.e., B is positive,
Finally, when T is very large, the molecular kinetic energy becomes so large
that the molecules can also overcome some of their repulsive potential energy
to come cloger together than at lower temperatures. Thus, at sufficiently high
temperatures, there is a slight tendency for the pressure, and hence for B, to
decrease again.

All these qualitative features are exhibited in Fig. 10-4- 1, which illustrates
the result of an explicit caleulation of B; by using (10-4.4) with the Lennard-
Jones potential (10-3-4). Note that this potential is of the general form

u(E) = un g (g—o) (10-4-5)

where 4, and R, are two parameters and ¢ is some function of the relative
separation /R, Thus (10-4-4) can be written

By = —2rRy f: (e~BwtlB) — YR dR', R = %
or By = —2» fn” (e # BN — 1)R'? dR' (10-4-6)
TRy P L ek
where B, = R and T = !Tu_ S (10-4-7)

Hence the potential (10-4.5) implies that, when expressed in terms of these
dimensionless variables, B’ is the same universal function of 7" for all gases.
This function is shown in Fig. 10-4 -1 for the Lennard-Jones potential (10-3-4),
Experimental measurements of the equation of state provide points which can
be plotted on such a graph, the question being how good a fit with the theo-
retical curve can be obtained by using only the two adjustable parameters
Roand uwo. Figure 10-4-1 shows that rather good agreement ean be obtained.
The values of Ry and ug which give the best fit then yield information about
the intermolecular potential. For example, for argon one thus obtains*
Ry = 3.82 & and uy/k = 120°K.

The van der Waals equation Let us illustrate the caleulation of B. for a
special simple ease. Suppose that the potential % can be adequately repre-
sented by (10:3:5). Then (10-4-4) becomes

By =2r [ R'dR — 2r [on (e — DR dR (10-4-8)

* Values for some other gases can be found summarized in T, L, Hill, “Introduction to
Statistical Thermodynamics,” p. 484, Addison-Wesley Publishing Company, Reading,
Mass., 1960.
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Assume that the temperature is high enough that

Bup << 1 (10-4-9)
Then e#* = 1 — Bu in the second integral and (10-4.8) becomes

Hre %” R — 2mpuo [ (%E)' R*dR

“Zmpafy 3
or By = = Ro (1 s—3kT)
where we have assumed that s > 3 so that the integral converges. Thus
B, assumes the form

By =1b'— EGT (10-4-10)
where b= % R and o = (s E 3) blug (10-4-11)

The equation of state (10-4-3) becomes then, neglecting terms of order higher
than n?,

% =n+(b’—%)n’ (10-4-12)
Hence P = nkT + kT — a')n?
or P+ a'nt = nkT(1 + b} = § ”_k";,n (10-4-13)
In the last step we have made the approximation that
n &1 (10-4-14)

i.e., that the density of the gas is low enough that the mean volume n—! = V/N
available per molecule in the container is large compared to the volume of the
hard-sphere core of the molecule. Thus (10-4-13) becomes

(p + a'n? G - b’) = kT (10-4-15)
which is essentially the van der Waals equation. One can write this in more

familiar form in terms of the molar volume v = V/», where » is the number of

moles of gas, Thus
NS AN N

MN=—m = — = —

v v v
where N, is Avogadro’s number. Thus (10-4-15) becomes

(;5-%‘%) (w—b) = RT (10-4-16)
where B = N,k is the gas constant and

a = N,%/ and b= Ngb' (10:4-17)

By virtue of (10-4-11), the van der Waals constants a and b are then expressed
in terms of the parameters deseribing the intermolecular potential (10:3-5).
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10 -5 Alternative derivation of the van der Waals equation

Tt is instructive to discuss the problem of the nonideal gas in an alternative
way which, though very crude, does not specifically assume that the gas is
dilute. One proceeds by focusing attention on a gingle molecule and approxi-
mates the situation by assuming that this molecule moves in an effective
potential U.(r) due to all the other molecules (which are assumed to remain
unaffected by the presence of the molecule under consideration). The parti-
tion function for the system reduces then to that for a system of N independeni
particles, each with kinetic energy (2m)—'p* and potential energy U,. In this
approximation one has classically

e ‘3§1r"1 [ff =B ImU) ﬁ%id_af]w (10-5-1)

where the factor N! again takes into account the indistinguishability of the
molecules. The integral over momentum is identical to that evaluated in
(7:2:6) for the ideal gas. Thus (10-5-1) becomes

7= (2}% Y[ eren an ] (10-5-2)
This remaining integral extends over the volume V of the container. To make
further progress, we note that there are regions where U, — « because of the
strong repulsion between molecules. Thus the integrand vanishes in these
regions of total volume V.. In the remaining volume (V" — V), where U, does
not vary too rapidly with the intermolecular separation, we shall replace it by

some effective constant average value UU,, Thus (10-5:2) becomes

1 2rm\! N 5
Z = i [(TFB_) (V —V,) ﬁﬂ-] (10-5-3)
_It remains to estimate the values of the parameters U, and V, by some
self-consistency requirements. The total mean potential energy of the male-
cules is given by NU.. But since there are $N(N — 1) = 4N* pairs of
molecules, it follows by (10-3-3) that their total mean potential energy is also
given by $N%i. Equating these expressions one requires that NU, = 3Nz,
ie., that

U.=3Nu (10-5-4)

To estimate the mean potential energy i between a pair of molecules, let us
agsume that the potential (10:3-5) is an adequate representation of reality.
Focusing attention on a given molecule 7, one can say in the erudest approxima-
tion that any other molecule is equally likely to be anywhere in the container
if it is at distance R greater than R, from molecule j. The probability of its
being at a distance between R and R + dR is then (4xR*dR)/V so that

dpuy R (R.,

St _8'!
i )Rdﬁ!

i 1 8
= jm u(R)4=R2 dR = — 5

|
J



ALTERNATIVE DERIVATION OF THE VAN DER WAALS EQUATION 42T

We again assume that & > 3, i.e., that u(R) falls off sufficiently rapidly for the
integral to converge properly. Then (10-5-4) becomes

ol N BB
U,—zi\ru— o' 5 (10-5:5)
2 S
where o = % Ry (8 = 3) Ug (10-5-6)

By (10-3-5) the distance of closest approach between molecules is R,
In each encounter between a pair of moleeules there is thus a volume excluded
to one molecule by virtue of the presence of the other molecule, this volume
being that of a sphere of radius R, (see Fig. 10:5-1). Since there are
+N(N — 1) = £N? pairs of molecules, the total excluded volume is 2N *(4r R%).
But, for the sake of self-consistency, this must be equal to NV, since V. was
understood to be the volume excluded per molecule. Thus it follows that

V.=bN (10-5:7)
3
where b = 2?1 Rot = 4 [% (%n) ] (10-5-8)

is just four times the volume of a hard-sphere molecule.

This completes our crude evaluation of the partition function. One can
now caleulate the equation of state by the general relation (6-5-12). Applied
to (10-5-3) this gives

o AFng ) A
L T
Using (10:5-5) and (10-5:7), this becomes

[Nln (F=V¥g) = Nﬁﬁe]

_WEN N
P=y_wN T
o NA

Thus we regain the van der Waals equation (10-4-15).

The arguments used in this section to derive the equation of state (10-5-9)
have been quite crude. They have, however, been more general than those of
the preceding section, since they did not assume specifically that the gas is of
low density. Hence one expects that, although the van der Waals equation
(10-5:9) is only a very approximate equation of state, it retains also some

Fig. 10-5:1 [llustration showing that the presence of
a molecule k makes a spherical volume of radius R,
inaccessible to molecule j. The molecules are con-
sidered hard spheres of radius $R;.
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rough measure of validity even when used to describe the dense liquid state.
It should thus be permissible to use this equation to discuss approximately the
occurrence of the gas-liquid phase transformation by the arguments of Sec. 8- 6.

FERROMAGNETISM

10 . 6 Interaction between spins

Consider a solid consisting of N identical atoms arranged in a regular lattice,
Each atom has a net electronic spin § and associated magnetic moment u.
Using a notation similar to that of Sec. 7-8, the magnetic moment of an atom is
then related to ifs spin by*

v = guoS (10-6-1)
where o is the Bohr magneton and the g factor is of order unity. In the pres-

ence of an externally applied magnetic field H, along the z direction, the
Hamiltonian 3¢, representing the interaction of the atoms with this field is then

N N
3o = —guo 2 S;« Hy = —gpoHls 2 S;s (10-6-2)
i=1 J=1

In addition, each atom is also assumed to interact with neighboring
atoms. This interaction is not just the magnetic dipole-dipole interaction due
to the magnetic field produced by one atom at the position of another one.
Thigs interaction is in general much too small to produce ferromagnetism. The
predominant interaction is usually the so-called “‘exchange’ interaction. This
i8 a quantum-mechanical consequence of the Pauli exclusion prineciple. Since
electrons cannot occupy the same state, two electrons on neighboring atoms
which have parallel spin (i.e., which cannot occupy the same orbital state)
cannot come too close to each other in gpace (i.e., cannot occupy the same
orbital state) ; on the other hand, if these electrons have antiparallel spins, they
are already in different states, and there is no exclusion-principle restriction on
how elose they can come to each other. Since different spatial separations of
the electrons give rise to different electrostatic interactions between them, this
qualitative discussion shows that the electrostatic interaction (which can be of
the order of 1 ev and can thus be much larger than any magnetic interaction)
between two neighboring atoms does also depend on the relative orientations
of their spins. This is the origin of the exchange interaction, which for two
atoms j and & can be written in the form

K = —2J8;+ Sk (10:6-3)

Here J is a parameter (depending on the separation between the atoms) which
measures the strength of the exchange interaction. If J > 0, the interaction

* In Seo, 7-8 we used the symbol J instead of S, but the latter notation is customary in
discussions of ferromagnetism; it also avoids eonfusion with the conventional uge of J to
designate the exchunge energy in (10:6-3).
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energy 30y is lower when the spins are parallel than when they are antiparallel.
The state of lowest energy will then be one which favors parallel spin orienta-
tion of the atoms, i.e., one which tends to produce ferromagnetism. Note also
that, since the exchange interaction depends on the degree to which electrons
on the two atoms can overlap so as to occupy approximately the same region in
space, J falls ofl rapidly with inereasing separation between atoms; hence the
exchange interaction is negligible except when the atoms are sufficiently close
to each other. Thus each atom will interact appreciably only with its n nearest
neighbor atoms.

Remark Let us show explicitly that the magnelic inferaction between atoms
is far too small to aceount for ordinary ferromagnetism. Since an atom pro-
duces a magnetic field at a distance r of the order of uo/r?, the magnetic inter-
action of an atom with its n neighboring atoms at a distance 7 is approximately
(npo*/r?). Takingn = 12, o = 1072° ergs gauss—! (the Bohr magneton), and
# =2+ 10" om, this gives for the interaction energy 1.5 X 10-*® ergs or,
dividing by %, about 1°K, This magnitude of interaction energy might, well
produce ferromagnetism below 1°K, but certainly not in the region below
1000°K where metallic iron is ferromagnetic!

To simplify the interaction problem, we shall replace (10-6:3) by the
simpler funetional form
B = —2J8:8%: (10-6-4)

This approximate form leaves the essential physical situation intact and ayoids
the complications introduced by the vector quantities. (The simpler form
(10 6-4) is called the “Ising model’'.)

The Hamiltonian 3¢’ representing the interaction energy belween the
atoms can then be written in the form

( —2J E E SiaSke) (10-6-5)

Fy =1

where J is the exchange constant for neighboring atoms and the index k refers
to atoms in the nearest neighbor shell surrounding the atomj.  (The factor % is
introduced hecause the interaction between the same two atoms is counted
twice in performing the sums),

The total Hamiltonian of the atoms is then

3} = 3¢, + x' (10-6-6)

The problem is to caleulate the thermodynamic functions of this system, e.g.,
its mean magnetic moment M, as a function of the temperature T and the
applied field H,. The presence of interactions makes this task quite compli-
cated despite the extreme simplicity of (10-6:5). Although the problem has
been solved exactly for a two-dimensional array of spins when H, = 0, the
three-dimensional problem is already so difficult that it has up to now defied
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exact solution. We shall therefore attack the problem by the simplest method
of approximation, the molecular-field theory of Pierre Weiss.

10- 7 Weiss molecular-field approximation

Focus attention on a particular atom j, which we shall call the “central atom.”
The interactions of this atom are described by the Hamiltonian

\’jc:' — _"g#UHllSj; = 2JS_;’: E Sh (107’])

k=1

The last term represents the interaction of this central atom with its » nearest
neighbors. As an approximation we replace the sum over these neighbors by
its mean value, i.e., we put

T
27 Y S = gpoHn (10-7-2)
k=1

where H,, is a parameter defined so as to have the dimensions of a magnetic
field. Itis called the “molecular” or “‘internal’ field and is to be determined in
such a way that it leads to a self-consistent solution-of the statistical problem.
In terms of this parameter (10-7-1) becomes just

3 = —guo(Hy + Hum)S;e (10-7:3)

The effect of neighboring atoms has thus simply been replaced by an effective
magnetic field H,. The problem presented by (10-7-3) is just the elementary
one of a single atom in an external field (H, + H,), a problem discussed in
Sec. 7:8. The energy levels of the central jth atom are then

Eﬂl e _gﬂD(HU—F Hm)ma, m, = _Sp (_S + 1), a oy |S (10‘74)

From this one can immediately caleulate the mean 2z component of spin of
this atom, One has by (7-8-13)

S;. = SBs(n) (10-7-5)
where 1 = Bguo(Ho + Hn), B = (kT)? (10-7:6)
and Bg(y) is the Brillouin funetion for spin S defined in (7-8-14).

The expression (10:7:5) involves the unknown parameter H,,. To deter-
mine it in a self-consistent way, we note that there is nothing which dis-
tinguishes the central jth atom from any of its neighboring atoms. Hence any
one of these neighboring atoms might equally well have been considered as the

central atom of interest and its mean value of S. must also be given by (107 - 5).
To obtain self-consistency we must then require that (10-7-2) reduce to

2Jn8Bs(n) = guoHn (10-7-7)
Since y is related to H, by (10-7-6), the condition (10:7:7) is an equation
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which determines H,, and thus completes the solution of the entire problem.
Fxpressing H,, in terms of 5, (10-7-7) becomes

kT guoH
which defermines 5 and thus H,. In particular, in the absence of external field
(10-7-8) becomes,
kT
I8 "
The solution of the equations (10-7-8) or (10-7-9) can readily be obtained

by drawing on the same graph (as shown in Fig. 10-7-1) both the Brillouin
funetion y = B,(n) and the straight line

kT ( - mm)

for Hy = 0, Bis(n) = (10-7-9)

Y= g008\" ~ &7

and finding the point of intersection 4 = n' of these two curves.
Once the molecular field parameter H,, is determined, the total magnetic
moment of the sample is of course known. One has by (10.7-5) simply

M = guo Y, S5 = NguoSBs(n) (10:7-10)
7
Consider now the case when the external field Hy = 0. It is then always

true that n = 0is a solution of (10-7-9) so that the molecular field H,, vanishes.
But there exists also the possibility of a solution where n = 0 so that H,,

£tk
/S

Fig. 10:7-1 Graphical solution of Eq. (10-7-8) determining the molecular
field Hy, corresponding to the intersection of the curves at y = y'. The
dashed straight line corresponds to the case where the external field H, = 0.
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assumes a finite value; correspondingly, there exists then a magnetic moment
given by (10-7-10). The presence of such spontaneous magnetization in the
absence of an external field is, of course, the distinguishing characteristic of
ferromagnetism. To have such a solution where  # 0 it is necessary that
the curves in Fig., 10-7-1 intersect at a point # # 0 when both curves start
out at the origin. The condition for this to occur is that the initial slope of the
curve y = Bg(n) is larger than that of the straight line, i.e., that

dBs kT :
I:E;:Iv—ﬂ > nJs (10-7 11)

But when 5 << 1, Bs assumes the simple form given by (7-8-19)

Bs(n) = £(S + 1) (10-7-12)
Hence (10:7-11) becomes
1 ET
3 S+1) > oIS
or  dlic =gl it
where
i kT, = M&s_ﬂ (10-7-13)

Thus there exists the possibility of ferromagnetism below a certain eritical
temperature T., called the “Curie temperature,” given in terms of J by
(10-7-13). This ferromagnetic state where all spins can exploit their mutual
exchange energy by being preferentially aligned parallel to each other has
lower free energy than the state where 5 = Hn, = 0. At temperatures below
T. the ferromagnetic state is therefore the stable one.*

As the temperature T'is decreased below T, the slope of the dashed straight
line in Fig. 10-7-1 decreases so that it intersects the curve y = Bg(n) at
increasingly large values of y corresponding to increasingly large values of y.
For T'— 0, the intersection ocecurs for n — « where Bs(q) — 1; then (10-7-10)
gives M — NguoS, the magnetic moment when all spins are aligned com-
pletely parallel. For all these temperatures one ean, of course, use (10-7-10)
to compute M(T) corresponding to the various values of n. One then obtains
a curve of the general shape shown in Fig. 10-7-2.

Finally we investigate the magnetic susceptibility of the solid in the
presence of a small external field at temperatures above the Curie temperature

* This does not mean that & macroscopic sample in zero external field necessarily has a
net magnetic moment. To minimize the energy stored in the magnetic field, the sample
tends to become subdivided into many domains, each magnetized along a definite direction,
but with these directions differing from one domain to another. (See C, Kittel, “Introduc-
tion to Bolid State Physies,” 2d ed., chap. 15, John Wiley & Sons, Inc., New York, 1956.)
Our discussion thus applies to a single domain,
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Fig. 10-7-2 Spontaneous magnetization M of a ferromagnet as a function
of temperature T in zero external magnetic field. The curve is based on the
molecular field theory of (10:7:10) and (10:7-9) with § = 4. The points
indicate experimental values for nickel (measured by P. Weiss and R. Forrer,
Ann. Phys., vol. 5, p. 153 (1926)).

(10-7-13). Then we are in a region where 5 in Fig, 10-7-1 is small. Thus one
can use the approximation (10-7-12) to write the general consistency condition

(10-7-8) in the form
k
—{s+1)q 3L ( "”“H°)

2nJ 8 kT

Solving this for  gives, using the quantity kT, defined in (10:7-13),

= guaHo (10-7-14)

Thus (10-7-10) yields
M = 3NguoS(8 + 1)y
so0 that

_M _ NgturS(S + 1) 5

is the magnetic susceptibility of N atoms. This is called the Curie-Weiss law.
It differs from Curie’s law (7:8-22) by the presence of the parameter T, in the
denominator. Thus y in (10-7-15) becomes infinite when 7'— T, i.e., at the
Curie temperature where the substance becomes ferromagnetic,
Experimentally the Curie-Weiss law is well obeyed at temperatures well
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Fig, 1073 Plot of x~! versus T per gram of gadolininm metal above its
Curie temperature. The curve is (except for some slight departures at high
temperatures) a straight line, in accord with what would be expected from
the Curie-Weiss law (10-7+15). The intercept of the line with the tempera-
ture axis gives T. = 310°K. The metal becomes ferromagnetic below 289°K,
(Experimental data of S, Arajs and R. V. Colvin, J. Appl. Phys., vol. 32
(suppl.), p. 336 (1961).)

above the Curie temperature. It is, however, not true that the temperature
T. occurring in (10-7-15) is exactly the same as the Curie temperature at
which the substance becomes ferromagnetic. Furthermore, the shape of the
magnetization curve calculated by the Weiss molecular-field theory in Fig.
10:7:2 is quantitatively not quite correct. One of the most serious dis-
crepancies of the present theory concerns the behavior of the specific heat at
the Curie temperature in zero external field. Experimentally, the specific heat
has a very sharp discontinuity at that temperature, whereas the theory just
discussed predicts a much less abrupt change. The existence of these dis-
erepancies is not surprising in view of the drastic approximations used in this
simple theory which replaced all spins by some average effective field and
neglected the existence of any correlated fluctuations in the orientations of
different spins, The simple theory is, nevertheless, remarkably successful in
exhibiting all the main features of ferromagnetism. Needless to say, more
refined approximation methods have been devised which improve agreement
with experiment considerably.*

* One of the simplest of these, the so-called Bethe-Peierls-Weiss approximation (the
‘Weiss involved here being & different person from Pierre Weiss, who introduced the concept
of the molecular field), is a straightforward generalization of the method used in this section,
It simply treats a central atom and its nearest neighbors exactly and replaces all the other
atoms by an effective molecular field. See P. R. Weiss, Phys. Rev., vol. 74, p. 1493 (1948).
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PROBLEMS

10.1 For the quantized lattice waves (phonons) discussed in connection with the
Debye theory of specific heats, the frequency w of a propagating wave is related
to its wave vector ¥ by w = cx, where ¥ = |x| and ¢ is the velocity of sound.
On the other hand, in a ferromagnetic solid at low temperatures quantized waves
of magnetizstion (spin waves) have their frequency w related to their wave num-
ber k according to w = Ax? where 4 is a constant. At low temperatures, find
the temperature dependence of the heat capacity due to such spin waves,

10.2 Use the Debye approximation to find the following thermodynamic functions of
a solid as a function of the absolute temperature 7'

(a) In Z, where Z is the partition function
(b) the mean energy B
(c) the entropy S
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10,3

10.4

10.5

10.6

10.7

10.8

PROBLEMS

Express your answers in terms of the function

3
D) = 3 fy ! dz

o e =1

and in terms of the Debye temperature Op = fwmn./k.

Evaluate the function D(y) in the limits when y >> 1 and y << 1. Use these
results to express the thermodynamic functions In Z, £, and 8 caloulated in the
preceding problem in the limiting cases when 7' << 8p and when T 2> Op.

In the expression for the energy E of (10-1:-13) both n and the normal mode
frequencies depend, in general, on the volume V of the solid. Use the Debye
approximation to find the equation of state of the solid; i.e., find the pressure §
as a function of ¥V and T. What are the limiting cases valid when T << @p and
when T 23> 057 Express your answer in terms of the quantity

=19
TE BV
Assume that v is a constant, independent of temperature. (It is called the

Griineisen constant.) Show that the coefficient of thermal expansion « is then
related to v by the relation

1/9V dp Cy
G 2 (37').- & "(ﬁ')r R 4
where Cy is the heat capacity of the solid and « is its compressibility.
As an electron moves in & molecule, there exists at any instant of time a sepa-
ration of positive and negative charge in the molecule. The latter has, there-
fore, an electric dipole moment p; which varies in time.

(a) How does the electric field due to this dipole vary with the distance 2
from the molecule? (Here R is assumed to be much larger than the molecular
diameter.)

() If another molecule of polarizability « is located at a distance R from
the first molecule, how does the dipole moment p, induced in this molecule by
the first depend on the distance R?

(c) How does the interaction energy between p; and p; depend on R7
Show that this is the distance dependence of the “‘van der Waals potential,”
i.e., of the long-range part of the Lennard-Jones potential.

Show that the molar entropy of & monatomic classical nonideal gas at absolute
temperature T', and with a density corresponding to n atoms per unit volume,
can in first approximation be written in the form

S(Tm) = 8(Tyn) + A(T)n

where So(T,n) is the entropy of the gas at this temperature and density if it
were ideal (i.e,, if the intermolecular interaction potential u(R) = 0), Show that
the coefficient A (7)) is always negative (as expected sinee correlations ought to
decrease the degree of randomness in the gas) and find an explicit expression for
A(T) in terms of u.

An adsorbed surface layer of area A consists of N atoms which are free to move
over the surface and can be freated as a classical two-dimensional gas. The
atoms interact with each other according to a potential u(R) which depends only
on their mutual separation B. Find the film pressure, i.e., the mean force per
unit length, of this gas (up to terms involving the second virial coefficient).
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10,9 Consider an assembly of N magnetic atoms in the absence of an external field
and deseribed by the Hamiltonian (10-6+5). Treat this problem by the simple
Weiss molecular-field approximation.

(a) Caleulate the behavior of the mean energy of this system in the limiting
cases where T << T, where T' = T, and where T 2> T,, Here T. denotes the
Curie temperature.

(b) Caleulate the behavior of the heat capacity in the same three temper-
ature limits.

(¢) Make a sketeh showing the approximate temperature dependence of the
heat capacity of this system.




Magnetism and low .

temperatu res

MAGNETIC INTERACTIONS are of considerable interest throughout much of
physics; they are of particular importance in the study of matter at low tem-
perature and provide also the means for attaining extremely low temperatures.
Before leaving the subject of systems in thermal equilibrium, we shall therefore
devote some attention to the application of thermodynamic ideas to these
topics,

The study of & macroscopic system at very low temperatures provides an
opportunity for investigating this system when it is in its ground state and in
the quantum states which lie very close to it. The number of such states
accessible to the system, or its corresponding entropy, is then quite small.
The system exhibits, therefore, much less randommness, or a much greater
degree of order, than it would at higher temperatures. The low temperature
situation is thus characterized by a fundamental simplicity* and by the possi-
bility that some systems may exhibit in striking fashion a high degree of order
on a macroscopic seale. An example of such order is provided by a system of
spins all of which, at sufficiently low temperatures, become aligned parallel fo
each other, thus giving rise to ferromagnetism. A more spectacular example is
provided by liquid helium, which remains a liquid down to absolute zero (pro-
vided that its pressure is not increased above 25 atmospheres). Below a
critical temperature of 2.18°K (the so-called “lambda point”) this liquid
becomes “superfluid” ; it then exhibits completely frictionless flow and can pass
through extremely small holes with the greatest of ease. Another set of
gpectacular examples is provided by many metals (e.g., lead or tin) which
become ‘‘superconducting’” below characteristic sharply defined critical tem-
peratures. The conduction electrons in these metals then exhibit completely
frictionless flow with the result that the metals become perfect conductors of
electricity (with strictly zero de electrical resistivity) and manifest striking
magnetic properties. We refer the interested reader to the references at the

* There is at least simplicity in principle, since the task of understanding the nature of
the ground state of a many-particle system may, at times, be far from trivial.
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end of this chapter for more detailed discussions of these remarkable proper-
ties. The foregoing comments should, however, be sufficient to indicate why
the field of low temperature physics has become a well-developed aetive field
of current research.

It is worth inquiring just how close to its ground state a macroscopie
system can be brought in practice, i.e., to how low an absolute temperature it
can be cooled. The technique is to insulate the system at low temperatures
from its room temperature surroundings by enclosing it in a ‘‘dewar.” (Thisis
a glass or metal vessel which provides thermal insulation by a double-walled
construction; a vacuum maintained between these walls minimizes heat con-
duction by residual gases and proper polishing of the walls minimizes heat
influx due to radiation.)* Helium is the gas which liquefies at the lowest
temperature, at 4.2°K under atmospherie pressure. The temperature of the
liquid ean be readily reduced further to about 1°K simply by pumping away
the vapor over the liquid and thus reducing its pressure to the lowest prac-
tically feasible value.f Thus it is quite easy by modern techniques to bring
any substance to 1°K simply by immersing it in a heat bath consisting of
liquid helium. By using liquid He?, the liquid consisting entirely of the rare
isotope He? (normally constituting less than 1 part in 10% of ordinary helium,
which consists almost entirely of He'), one can apply similar methods to attain
fairly readily temperatures down to 0.3°K. Appreciably greater effort and
different techniques are necessary in order to work at still lower temperatures.
By using a method (to be discussed in Sec. 11-2) which involves the perform-
ance of magnetic work by a thermally isolated system of spins, it is feasible to
attain temperatures as low as 0.01°K or even 0.001°K. Extensions of this
method have even made it possible to reach 10-°K!

After these general remarks about low-temperature physics and some of
its connections with magnetism, we are ready to turn to a specific discussion
of magnetic systems, Any subject involving electromagnetism raises immedi-
ately the question of choice of units. Since we are discussing problems in
physics rather than in electrical engineering, we shall use the units which are
currently in most common use in the physies journals of all countries, namely
Gaussian cgs units. We recall that in these units all electrical quantities
(such as current and voltage) are measured in electrostatic units, while mag-
netic quantities (such as magnetic field or magnetization) are measured in
£auss,

11-1 Magnetic work:

We consider a system of volume V in an externally applied field H,. The
system might, for example, be a sample consisting of & magnetic solid. In

* An ordinary thermos bottle is a familiar example of a dewar.,

T The prineiple of the method should be familiar to any hiker ambitious enough to have
cooked out of doors. The boiling point of water on a mountain top is reduced below that
at sea level because of the reduced atmospheric pressure.




L ——————

440 secrion 11 -1

H—e

_ z

Fig, 11-1-1 A long cylindrical sample in the presence of an externally ap-
plied magnetic field H,. Here H = H, and M, = xH.

order to avoid uninstructive complications and problems of detail which are
predominantly in the realm of electromagnetic theory, we shall focus attention
on a physically simple situation. We assume that the externally applied field
H,, even when it varies in space, is substantially uniform over the volume of
the relatively small sample. We further assume that the sample is in the
shape of a cylinder which is very long compared to its cross-sectional dimen-
sions, and that it is always kept oriented parallel to the direction of H,. Then
the mean magnetic moment per unit volume M, = M/V is essentially uniform
throughout the sample and parallel to H, (These properties would also be
true for any ellipsoidal sample.) In addition, if H denotes the magnetic field
inside the sample, H = H, by virtue of the boundary condition that tangential
components of H must be continuous. We also reeall that quite generally the
magnetic induction B is related to H by the relation

B = H + 4xM, (11:1-1)

Outside the sample where My = 0, B = H,. The magnetic susceptibility x per
unit volume of the sample is defined by the ratio x = M,/H so that (11-1-1)
can also be written

B=yH=(1+4rx)H (11-1-2)

where p’ is called the magnetie permeability of the sample.

The starfing point for applying macroscopic arguments of statistical
thermodynamies to such a magnetic system is again the fundamental relation
(3-9:6)

dQ = T dS = dE + aW (11-1-3)

valid for any quasi-static process. Here the system is, in general, characterized
by two external parameters, the volume V and the applied magnetic field H..
Hence the total work dW done by the system includes not only the mechanical
work 5 dV done by the pressure in a volume change dV but also the magnetic
work dWt agsociated with changes in H,. We proceed to derive an expression
for this magnetic work.

To keep the geometry simple by making the problem one dimensional, we
suppose that the applied magnetic field H, points in the z direction and that the
eylindrieal sample is always oriented parallel to this direction. Then the
magnetic field H inside the sample (and its magnetic moment J) also points
in the z direction and H = H,. Suppose then that the sample is in a particular
state r, where its total magnetic moment is M., and that the external magnetic
field H, = H at the position of the sample is changed slowly by a small amount.
The work done in this process cannot depend on just how the field is changed.
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Let us therefore imagine that the magnitude of the applied field is not quite
uniform in space, but that it vanishes at infinity and varies gradually so as to
attain the value H, in the region of experimental interest. The magnetic field
then exerts on the sample a force having a component F, = M, (8H /dz) in the
z direction (see Fig. 11-1.2), The magnetic field at the position of the sample
can now be changed by moving the sample slowly from a position  where
H = H(x) to a neighboring poesition = + dx where H = H(z + dz). In this
process one must exert on the sample a force —F, in the z direction and must do
on the sample an amount of work d'W!™ which goes to increase the energy of
the sample in this state by an amount dE,. Thus

dwm = 4B, = (—F.) dz = (—M ﬁ) i

" Bz
or* dwm = dE, = —M.dH (11-1-4)
aE, ,
Thus M, = — s (11-1-5)

i.e., the magnetic moment is the “generalized force” conjugate to the magnetic
field regarded as an external parameter, Taking the statistical average of
(11-1-4) over an equilibrium statistical ensemble of similar systems, one then
obtains for the macroseopic magnetic work dW® done by the sample when the
field in which it is located changes by an amount dH the result

dWm = —goim) = N dH (11-1-6)

* Note that this expression justifies the familiar result £, = —M.H for the energy of a
magnetic moment of fized size in an external feld H.

H{z) in 2 direction

— F=t a(H+ 2 a5)

Fig. 11-1+2 Diagram illustrating the foree exerted by a magnetic field H
on a magnetic moment represented by a small rectangular current loop.
There is a net x component of force given by F. = ¢7'I dy (aH far) dx =
M(3H /az), where [ is the current and M = ¢! I (dz dy) is the magnetic
moment of the loop, The force on a large sample can be regarded as due
to the superposition of forces on many such infinitesimal moments.
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where M is the total mean magnetic moment of the sample. Hence the fun-
damental thermodynamic relation (11-1.3) ean be written

= TdS =dE + pdV + M dH (11-1-7)

where the last two terms represent the total work done by the sample in a
general infinitesimal quasi-static process.

The relation (11-1-7) can, as usual, be rewritten in a variety of other forms.
For example, if it is desired to consider M rather than H as an independent
variable, one can write M dH = d(MH) — H dM, so that (11-1-7) becomes

TdS = dE* + pdV — H dM (11-1-8)

where E* = E + MH is the analog of some kind of enthalpy. The thermody-
namic consequences of (11:1-8) or (11-1.7) are, of course, equivalent; the
essential content of these relations is that both dE and dE* are exact differ-
entials of well-defined quantities characteristic of the macrostate of the system.

Alternative point of view There is another way in which one can calculate
the magnetic work. Imagine that the sample is placed inside a close-fitting
solenoid whose length I and area A are then equal to those of the sample so
that 14 = V, the volume of the sample. The solenoid is supposed to consist of
N turns of wire and to have negligible electrical resistance. It ¢an be connected
to a source of emf (e.g., a battery) as shown in Fig. 11-1-3. Work must be
done by the source of emf on the system consisting of the coil and sample in
order to produce the desired magnetic field. The reason is that, in trying to
change the magnetic field inside the coil, a counter-emf U is induced across the
coil. The source of emf must then provide an emf U to overcome this induced
emf. If the current in the circuit is 7, the magnetic work dw'™ thus done by
the source in time di is

dW'm = J dt (11-1.9)

Let us now express U and 7 in terms of the fields B and H inside the solenoid.
Since the magnetic flux passing through each turn of the solenoid is BA, the
magnitude of the induced emf is given by Faraday’s law as

)
U=ENEE(AB) (11:1-10)

I | &

2 |I- Fig, 11:1'3 4 magnetic sample placed inside
a solenoid.
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where the constant ¢ is the velocity of light (since we use Gaussian units) and
where B is expressed in gauss and U in statvolts. Also, by Ampere's circuital
theorem, H inside the solenoid satisfies the relation

H = ) (11-1-11)
Hence (11-1:9) becomes
NAdB\ (¢ 1 Al
temy = o prisetiis =
aw (c dz)(%N )dt £ 1 dB
or aw = L HdB (11-1-12)

Using (11-1-1) and M = V.M, this becomes

Vv

awtm = —-H(dH —+ 47 dMo) =d (VH

8

This expression represents the work necessary to magnetize the sample and to
establish the magnetic field; i.e., it is the work done on the system consisting
of the sample plus the magnetic field. On the other hand, (11-1-6) represents
the work done on the sample in some given magnetic field, i.e., it is the work
done on the system consisting of the sample alone, It is, of course, equally
legitimate to consider either the sample alone, or the sample plus electromag-
netic field, as the system of interest.

) +HdM (11-1-13)

The following analogy may serve to clarify the situation. Consider a gas
and a spring contained in a cylinder, as shown in Fig. 11-1+4. Tt is possible
to consider the gas as the system of interest. In this case the spring is part
of the environment capable of doing work on this system. Alternatively, one
can consider the gas plus the spring as the system of interest. The potential
energy of the spring is then part of the internal energy of this syatem.

Fig. 11:1-4 A gas and a
spring contained within a
cylinder closed by a movable
piston.

If one adopts the point of view that the system of interest consists of
sample plus field, the thermodynamic relation (11-1.3) becomes, using for
the magnetic work dW’'™ = —dwW'™ done by this system the expression
(11-1-13),

TdS=d(E‘—EI—)+ dv — Hdl (11-1-14)

where B’ denotes the mean energy of thissystem, Putting B* = ' — VH?/8r,
this relation is identical with (11-1-8) and thus equivalent to (11:1:7). This
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shows explicitly that the thermodynamic consequences of our discussion are the
same irrespective of which system one chooses to consider,

*Remark It is instructive to exhibit in detail the equivalence of the expres-
sions (£1-1:6) and (11:1-18) for magnetic work. To show this explicitly,
consider the situation illustrated in Fig, 11-1-3. Suppose one starts with
H = 0 and an unmagnetized sample with M = 0. What then is the work W
which one must do fo reach the final situation where the field is Hy and the
magnetic moment of the sample is M(H,)? By using the reasoning leading to
(11-1-13), one gets

et L PH A Ha
W=+ [ Hai (11-1-15)

Let us now look at the problem from & different point of view. Imagine
that one starts with H = 0, and that the sample with M = 0 is located at
infinity, The final situation can then be brought about in the following steps:

1. Turn on the field H; inside the coil.
2. Bring the sample from infinity into the coil, magnetizing it in the
process, This requires work for two reasons:

a. Work must be done, for fized current I in the voil (i.e., for fized H,),
to move the sample into the coil against the forces exerted on it by
the field.

b. Work must be done by the battery to keep the current [, con-
stant even though an emf is induced in this coil by the moving
magnetized sample which produces a changing flux through the coil.

By (11-1-13) the work done in step (1) is simply
VHg#

W= (11-1-16)
The work done on the sample in step (2a) is given by (11-1-6) go that
w-=—j;H'H(H)caH (11-1-17)

Finally in step (2b), where H = H, is maintained constant, the work
done by the battery is given by (11-1-12)

W = _%Ho(ﬂ; —B) (11-1-18)

where B is the initial and B, the final value of the magnetic induction inside
the coil. But' when the sample is initially at infinity, B; = Hy; when the
sample is finally inside the coil, (11-1-1) yields B, = Hy + 4w M(H,)/V.
Hence (11-1-18) becomes

W= 4—“, o fibe L (H") = H W (Hy) (11-1:19)
Adding the three works (11-1-18), (11- 1-17) and (11-1-18), one gets then
VH@' Hy
W =g — | MH) dH + M(H)H, (11-1-20)

Integration by parts shows that this is indeed identical to (11-1-15).
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11-2 Magnetic cooling

Sinee it is possible to do work on a sample by changing the applied magnetic
field, it is also possible to heat or cool a thermally insulated sample by changing
a magnetic field. This provides a commonly used method to attain very low
temperatures, The nature of this method can be made clearer by comparing
it with a more familiar mechanical analogue. Suppose that it is desired to cool
a gas by means of mechanical work. One can proceed in the manner illustrated
in the top part of Fig. 11-2-1. The gas is initially in thermal contact with a
heat bath at temperature T, e.g., with a water bath. One can now compress
the gas to a volume V., In this process work is done on the gas, but it can give
off heat to the bath and thus remains at the temperature T; after equilibrium
has been reached. The gas is then thermally insulated (e.g., by removing the
water bath) and is allowed to expand quasi-statically to some final volume V.
In this adiabatic process the gas does work at the expense of its internal energy
and, as a result, its temperature falls to gome final value 7', less than T'.

The method of magnetic cooling is very similar and is illustrated in the
bottom part of Fig. 11-2:1. The system of interest is a magnetic sample
initially in thermal eontact with a heat bath at temperature T.. In practice
this heat bath is liquid helium near 1°K, thermal contact of the sample with
the bath being established by heat conduction through some helium gas af low
pressure. One can now switch on a magnetic field until it attains some value
H;. 1In this process the sample becomes magnetized and work is done, but the
sample can give off heat to the bath and thus remains at the temperature T;
after equilibrium has been reached. The sample is then thermally insulated
(e.g., by pumping off the helium gas which provided the thermal contact with
the bath) and the magnetic field is reduced quasi-statically to a final value H,
(usually H, = 0).* As a result of this “adiabatic demagnetization” the tem-
perature of the sample falls to some final value 7' less than 7. In this way
temperatures as low as 0.01°K can readily be attained. Indeed, temperatures
close to 10~%°K have been achieved by elaboration of this method.

Let us now analyze the method in greater detail in order to understand how
the temperature reduction comes about. The first step is an isothermal
process: here the system is kept at a constant temperature T while if is brought
from some macrostate a to some other macrostate b by a change of external
parameter. The second step is an adiabatic process: here the system is ther-
mally isolated and is then brought quasi-statically from the macrostate b to a
macrostate ¢ by a change of external parameter. The entropy S of the system
therefore remains constant in this last step. The whole method is then most
conveniently illustrated in a disgram of entropy S versus temperature T.
Such a diagram is shown schematically in Fig. 11-2-2 for a paramagnetic
sample where the significant external parameter is the magnetic field H. For
such a sample the entropy S becomes smaller when the individual atomic

* Internal equilibrium is usually attained rapidly enough that reducing the field o zero
in & few seconds is sufficiently slow to be considered guasi-static.
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Mechanical:

Piston

System; gas

Heat bath, T =T,
(water at 3D0°K)

sgction 112

Magnetic: .
To pump

Magnet coil

System magnetic solid

Low-pressure He gas
for thermal contact

Heat bath, T =T,
liguid helium at 1°K |

(al Isothermal work

I To pump

Vacuum
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Fig. 11:2:1 Lowering the temperature of a system by the performance of

adiabatic work.

A magnetic sample on whi

Top: A gas on which mechanical work is done.
h magnetic work is done.

Bottom:

magnetic moments are more nearly aligned since this is the more ordered situa-

tion.

Hence S is decreased when the temperature is decreased or when the

magnetic field A is increased. The curves of S versus T for various values of
H are drawn in Fig. 11-2-2 so as to reflect this situation.*

* At temperatures below 1°K lattice vibrations contribute very little to the heat
capacity and entropy of a solid. Practically the entire heat capacity and entropy of &
magnetic solid are then due to its magnetic atoms and depend correspondingly on the mag-

netic field H.
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Fig. 1122 Behavior of the entropy S of @ paramagnetic sample as a func-
tion of T for various values of the magnetic field H. The indicated adiabatic
demagnetization process b — ¢ is from the initial field H; = H; to the final
field Hy = 0.

The essence of the method is made apparent by this diagram. In the
isothermal step a — b (field increased from H = 0 to H = H, in Fig. 11-2-2)
the external parameter is changed in such a way that the entropy of the system
is decreased, i.e., the distribution of such systems over their accessible states
becomes less random (see Fig. 11-2-3). In the quasi-static adiabatic step
b—s ¢ (field decreased from H = H, to H = 0 in Fig. 11-2-2) the entropy

- )
Isothermal Adiabatic

Fig. 11:2:3 Diagram illustrating the effects of isothermal magnetization
and adiabatic demagnetization in terms of the energy levels of a single
atom (of spin §). The lengths of the heavy bars indicate the relative num-
bers of atoms in the respective states. These relative numbers change in
the isothermal process, since the Boltzmann factor changes when the
energy levels are changed. The relative numbers do not change in the
adiabatic process where the entropy remains constant. Since the final
population differences are large despite the small energy-level separations,
the final temperature must be very low.
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must remain unchanged. Hence one sees from Fig, 11-2-2 that the final tem-
perature 7' attained by the system must be less than its initial temperature T},
In other words, in this adiabatic process the external parameter is changed in
such a direction as would tend to increase the randomness of the distribution
of the system over its possible states if its temperature were to remain the same.
But since the degree of ordering among states must remain unchanged in this
process, the temperature of the system must suffer a compensating decrease
(see Fig. 11.2.3).

If one knows the entropy S = S(T,H) as a function of 7 and H, i.e., if
one has a quantitative diagram of the type shown in Fig, 11-2-2, then one can
immediately determine the final temperature 7'; which is reached if one starts
at temperature T in a field H; and reduces the field adiabatically to a final
value H;. The constancy of the entropy implies that

S(T,,H,) = S(T,H:) (11-2-1)

and this relation determines the unknown temperature 7.

Consider first the case where the mutual interaction between the magnetic
atoms in the solid can be considered negligible. The only significant parameter
of the problem is then the ratio uH /kT of the magnetic energy pH of an atom
(of magnetic moment u) compared to the thermal energy k7. The partition
function and entropy can then only depend on this ratio. (The analysis of
Sec. 78 shows this explicitly.) Hence S = S(H/T) is only a function of H/T,

and (11-2-1) becomes
HeN o o Hs
s(x;) =5 (£)

H, _ H Iy &

T, T T, or 7. = . (11-2-2)

so that
This is indeed an approximate relation allowing one to predict the final tem-
perature T, attained as a result of an adiabatic demagnetization. It does naot
permif one to conclude, however, that demagnetization to H; = 0 allows one to
reach T’y = 0. The reason is that the assumption of mutually noninteracting
atoms breaks down when the temperature becomes too low. More precisely,
one needs to consider the fact that, in addition to the externally applied field
H,, there acts on each atom an “internal” or “molecular” field H,. due to
neighboring atoms. This field H,, = u/r® if it is due to the magnetic dipole-
dipole interaction with neighboring magnetic atoms located at a mean distance
r from a given atom. (More generally, if the mean energy of interaction
between atoms is e,, one can define H,, by the relation uH, = e,) Mutual
interaction between atoms is then negligible if T is large enough so that
pH,/ET < 1, but becomes important otherwise. If one still wants to look at
the demagnetization approximately in terms of (11-2-2), then H,in that rela-
tion is simply the initially applied field since it is usually much larger than H,.
On the other hand, if in the attempt to reach very low temperatures the
applied field is reduced to zero, the final field H, acting on each atom does not
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vanish but becomes equal to H,. Thus one has approximately

L’,_-, Hun (11-2-3)

In order to achieve very low temperatures, it is therefore necessary to use
magnetic samples in which the interaction between magnetic atoms is small.
It is thus helpful to use as samples solids in which the concentration of magnetic
atoms is not too large. Typically, one uses salts containing paramagnetie
ions separated by many other atoms. An example is iron ammonium alum
(FeNH(S04) 12 H,0) which contains magnetic Fe®" ions; the interactions
between these ions are such that, starting at about 1°K in a field H; = 5000
gauss, one can attain final temperatures of about 0.09°K. In a salt such as
cerium magnesium nitrate (Ce:Mgs(NOjg) 24 Hy0) the internal interactions
affecting the magnetic cerium ions are considerably smaller so that one can
attain a final temperature of less than 0.01°K under similar conditions. In
attempting to minimize interactions between magnetic atoms one can also try
to reduce their concentration by substituting nonmagnetic atoms (such as Zn)
for an appreciable fraction of magnetic atoms (such as Fe) in a crystal lattice,
Of course, one cannot push this process of dilution too far because then the heat
capacity associated with the magnetic afoms becomes too small. If this heat
ecapacity becomes smaller than the small but finite heat capacity associated
with lattice vibrations, then it is impossible to reduce appreciably the tempera-
ture of the sample (consisting of spins plus lattice).*

The degrees of freedom associated wif.h the posslble orientations of the
spins of the magnetic atoms constitute & “spin system,” which is in thermal
interaction with the degrees of freedom of translational motion of all the
atoms which constitute the “lattice system.” (The interaction between the
two systems oceurs because the translational motion of the magnetic atoms
produces fluctuating magnetic fields which can reorient their magnetic
moments and associated spins.) The external magnetic field acts on the
spin system elone, but if this field is not changed too rapidly, the lattice
and spin systems remain always in equilibrium with each other. Thus the
temperature of the lattice is reduced to the same extent as that of the spin
system. Furthermore, the total heat capacity of the sample consists of that
of the spin system plus that of the lattice.

Thermodynamic analysis The method of adiabatic demagnetization illus-
trated in Fig. 11-2-2 ean readily be discussed in general terms by considerations
very similar to those used in discussing the Joule-Thomson effect in Sec. 5-10.
The volume V of the solid sample remains essentially constant in these experi-
ments. Only magnetic work is then done and the parameters T and H can be
taken to specify completely the macrostate of the sample. The entropy

* It is impossible to cool the water in a swimming pool appreciably by putting it in
thermal contact with a golf ball, no matter how cold this golf ball may be.
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S{T,H) remains constant during the quasi-static adiabatic demagnetization.
A field change dH in this process is then related to the corresponding tempera-
ture change dT by the condition

a8
ds = (a,f:) dT+(aH) dH = 0 (11-2-4)
dT (9 (ﬁ' r
it o€ (EHZ)H — (11-2-5)
T /)y
a ~
But T(ﬁ?)ﬂ = Cu(T,H) (11-2.6)

is the heat capacity of the sample measured under conditions of constant
magnetic field. To simplify the numerator in (11-2-5) ore can use the fun-
damental thermodynamie relation (11-1-7), with dV = 0:

dE = T dS — M dH (11-2-7)

Here the variable pairs (T,8) and (M,H) occur on the right side, and (a8/0H)r
is a derivative of a variable from one pair with respect to a variable of the other
pair. Hence (11-2-7) suggests immediately a Maxwell relation of the type

(%)r = (g_ﬁfz),, (11-2-8)

m sigorous proof follows by writing (11:2-7) in the form
§ . WP =-SaT-MdH
. .-.._.. {vﬂr’ﬂq gﬂ m h , . e

_:_.

o Ms:
Writing M = VxH (11.2-9)

where x = x(T,H) is the magnetic suseeptibility per unit volume of the sample,

(11-2-5) becomes then
0 - VZHax i
(). = - & &), L)

Thus a knowledge of x(7T,H) (i.e., of the magnetic equation of state of the
gystem) and of the heat capacity C'x(T,H) is sufficient to calculate* (87/8H)s.

* Note that this derivative is analogous to the Joule-Thomeon coefficient (87 /8p)x
defined in (5-10-8).




MAGNETIC COOLING 461

Actually, the dependence of C'y on H can also be found from a knowledge
of x(T,H). Proceeding as in (5-8-5), one obtains

Cn\ _ (2N [p(3S op S _p 8 _p(2) (38
9H Jr  \8H [/r aTl/a | ~ 8HaT aTaH ol lx \oH /v

By (11-2-8) this becomes

aCa\ _ ﬂ = 9 oD
(TE-H—)? i (BTS)H Sl (6T2)H (11-2:41)
An integration over H for a fixed value of T then yields the relation

*x(T H')

Cu(T,H) = Ca(T,0) + VT fo”( L

) H'dH' (11-2-12)
H

Hence a knowledge of the heat capacity Cr(7,0) in zero magnetie field plus a
knowledge of x(T,H) is sufficient to compute Cu(T,H) for all fields H and to
find the quantity (87 /dH)sin (11-2-10).

Example As a very special case, suppose that in a certain range of tem-
perature and magnetic field the susceptibility x is approximately given by
Curie’s low
@
R E

where a is constant. Suppose further that in sero magnetic field the sample
has a heat capacity (owing predominantly to interaction between magnetic
atoms) which assumes in this temperature range the form

Ca(T0) = 3o

where b is another constant. Then it follows by (11- 2--12) that
Vo " {20
CulTH) = 75 + V7T (3) mr am = o (o -+ aff?)
Furthermore, by virtue of (11-2-8) and (11-2-9),
GVH
(aH) - vi (5%

Henee (11-2-4) becomes

a8 =0=7 (b+aHﬂ1dT--‘ﬂ'§gH

dT aH dH 1

2 Ri 3 lin (& + o)
. T b GH - e
T’z 73 ﬁ i ﬁ:ﬁ?‘ by integration
T, (b4 aHA\d
or 7= ( )
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11 -3 Measurement of very low absolute temperatures

Measurements of the absolute temperature in the region below 1°K present
some difficulties. Since gases have condensed to become liquids or solids,
thermometers using ideal gases are not available. Other theoretical relation-
ships (for example, Curie’s law according to which ¥ « T~!) may be useful in
determining 7', but their range of validity is limited. We shall now show how
the second law of thermodynamics can be used to establish the absolute tem-
perature scale in this region.

Before proceeding with this discussion, it may be worth pointing out that
the actual measurement of absolute temperatures in this range is sufficiently
important in physical investigations to warrant considerable effort. First, it
should be kept in mind that the range below 1°K is not a “small” temperature
range. What counts in physical phenomena, and what appears in the Boltz-
mann factor, is the ratio of kT to significant energies in the systems under con-
sideration. Thus it is temperature rafios which tend to be important, and the
range from 0.001°K to 1°K can span a variety of physical phenomena compara-
ble to that between 1°K and 1000°K. Second, all theoretical predictions
involve the absolute temperature 7. Hence no comparison between theory
and experiment would be possible if one could not determine the absolute tem-
perature at which a particular experiment is carried out.

It is not difficult to measure a temperature. One needs only to proceed as
in Sec. 3-5 by choosing an arbitrary maecroscopic parameter ¢ of some system
a8 a thermometric parameter while keeping all its other macroscopic parame-
ters fixed, For example, the system used as thermometer might be a paramag-
netic solid maintained at a fixed pressure. Its magnetic susceptibility x can
readily be determined, by measuring the inductance of a coil surrounding the
solid, and can be used as its thermodynamie paramater #. This parameter # is
some unknown funetion of the absolute temperature 7, i.e., & = (7). The
problem is how to use a knowledge of # based on such an arbitrary thermometer
to obtain the corresponding value of the absolute temperature 7'

The second law of thermodynamies is a general relation involving T and
provides the starting point of the discussion, The law states that in an infini-
tesimal quasi-static process the heat absorbed dQ and the corresponding
entropy change of a system are related by dS = dQ/T. Hence

r_ 49

o (11-3-1)

This relation can be applied to the system used as thermometer. Assume
that the infinitesimal process envisaged in (11-3-1) is one where the external
parameters of the system are kept fixed. To be specific, consider the case
where the system used as a thermometer is a paramagnetic solid and where
the applied magnetic field H is the one external parameter of significance.
Then the infinitesimal process envisaged in (11-3-1) is one where H is kept
fixed so that H = H, (ordinarily H; = 0), Dividing both the numerator and
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denominator in (11-3-1) by the change d¢ of the thermometric parameter in
this infinitesimal process, one obtains

_ (2Q/dv), iy
T (11:3-2)

where the subseript 0 indicates that H is to be kept fixed at the value H; in
evaluating these quantities.

The numerator is readily measured. When the system is in a macrostate
characterized by a particular value of J, one keeps the field constant at the
value H = H,. One then adds to the system a known small amount of heat
d@ (e.g., by sending a current through an electrical-registor heater embedded
in the system, or by knowing the rate of decay and energy release per disinte-
gration of a radioactive source embedded in the system) and measures the
resultant inerement dé (e.g., by measuring the change of magnetic susceptibility
of the sample). One then calculates the ratio

ag\ _
(E)u = Co(9) (11-3-3)

{a heat capacity with respect to ¢), which depends, of course, on the particular
value of ¢ at which this measurement was performed. One can repeat measure-
ments of this sort for a whole set of temperatures J and construct in this way
a curve of Cg(d) versus ¢ of the type shown in Fig. 11-3 1.

We now turn our attention to the evaluation of the denominator of
(11-3-2). The entropy S can be considered a function of & and H so that
8 = S(#,H). Assume that S(9,,H) is known as a function of H at some tem-
perature ¢ = ¢;. (This may be some high temperature above 1°K where ideal
gas thermometry can be used, so that the corresponding absolute temperature
T; is known.} Suppose then that the system, originally at the temperature
¢ = #;, is thermally insulated and that the magnetic field is changed quasi-
statically from H to the value Hy. In this adiabatic demagnetization the
entropy remains unchanged, and at the end of the process the thermometric
parameter of the system attains some final value ¢ which can be measured.
The final entropy is then given by the relation

S(8,H) = S(8,H) (11-3-4)

coo)

Fig. 11-3-1 Schematic curve
showing (y(¢) as a function
of &,
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S(9, Ha)

Fig. 11:3-2 Schematic
curve showing S(%,H,) as
a function of ¢ for the
given value H = H,.

One can repeat this kind of adiabatic process starting always at ¢ = &, but
from a variety of initial fields . Thus one ean reach a variety of final tem-
peratures ¢ in the final field Hy,. The corresponding values of S(#,H;) are
then given by (11:3-4). In this way one can construct a curve of S(3,H,) as a
funection of ¢ for the given value Hy (see Fig. 11-3-2). From this curve one
can then find the slope (8S/39), needed in (11-5-2).

(anﬁ’) sw + ewﬁ;% — S(@,Hy) _

(11:3-5)

It is now possible to answer the queat.ion how to determine 7' if 4 is known.
For the given value of ¢ one can find the slope (85/9d), of the curve in Fig.
11-3-2. For this value of ¢ one can also read off the corresponding value of
= (d@/d#), from the curve of Fig, 11-3-1. Hence one can use (11:3-2)
to compute the corresponding value of the absolute temperature T.
This diseussion assumed that S(#;,H) is known as a function of H at the
known absolute temperature T: whered = &. Equivalently, thisimplies that
(8S/8H)s is known for this value ¥,; for then

7 3S(9,H')

! . .
L (11-3-6)

S(#%,H) = constant + fn

where the constant is independent of H and is irrelevant in computing the
entropy differences necessary to caleulate the derivative (88/88),. But by
(11-2-8) one has, for ¢ = 9,

@-CE. -G, e
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so that a knowledge of the susceptibility x near the relatively high absolute
temperature T; (where Curie's law is usually well obeyed) is sufficient to provide
the necessary knowledge of S(¥;,H) in (11:3-6).

114 Superconductivity

We already mentioned that many metals become ‘‘superconducting’” when
cooled to sufficiently low temperatures. When such a metal is cooled below a
sharply defined temperature 7', which depends on the external magnetic field
H in which the metal is located, the de electrical resistance of the metal falls
abruptly to zero. At the same time currents are set up in the metal in such a
way that the magnetic induction B vanishes inside the metal® irrespective of the
applied field H. This superconducting state of the metal exists as long as the
temperature is sufficiently low and the applied field is sufficiently small; other-
wise the metal is normal. The situation is illustrated in Fig. 11.4-1.

To give a concrete example, lead becomes superconducting in zero applied
field at a critical temperature 7. = 7.2°K. The critical field necessary to
destroy its superconductivity in the limit where T— 0 is H, = 800 gauss.
The absence of resistance can be impressively demonstrated by setting up a
current in a ring of superconducting metal and then removing any batteries or
other power sources. One finds that even after waiting a year, the current is
still lowing with no measurable deerease in its magnitude!

Although superconductivity was first discovered by Kammerlingh Onnes

* We restrict our diseussion to the so-called ‘‘soft”” superconductors or “‘superconductors
of the first kind."” The situation is somewhat more complicated in “superconductors of the
second kind”' which have aroused much interest recently in connection with the production
of very high magnetic felds.

gl

Normal

v

T T

Fig. 1141 Diagram showing the domain of temperature T and magnetic
field i in which a metal is superconducting. The curve separating the domain
where the metal is superconducting from that where it is normal is the critical-
temperature curve, which determines the critical temperatures and corre-
sponding critical fields at which the transition of the metal from the normal
to the superconducting states (or vice versa) occurs.
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in 1911, it was only in 1957 (after years of immense efforts) that a successful
microscopic theory of this remarkable phenomenon was finally proposed. The
essence of the microscopic explanation is that a very weak interaction between
the conduction electrons of a metal can, at sufficiently low temperatures, lead
to quantum states characterized by a highly correlated motion of all these
electrons. The theory is complicated precisely because it must give a proper
quantum-mechanical description of the correlated motion of very many par-
ticles obeying Fermi-Dirac statistics. The reader is referred for further details
to the references at the end of this chapter. In the present section we shall
only want to make use of the fundamental property that

B=0 inside a superconducting metal (11-4-1)

Both the normal and the superconducting states of the metal can be
treated as well-defined thermodynamic macrostates of the metal. The transi-
tion from one to the other is completely analogous to a phase transformation
like that between a liquid and & solid. Thus the superconducting transition
can be readily discussed by similar thermodynamic reasoning.

Consider a metal in the form of a long cylinder placed parallel to an exter-
nally applied field H as shown in Fig. 11:1-1. When the metal is normal, its
magnetic moment M = 0 to a very good approximation, since its susceptibility
x is very small (of the order of 10-%). On the other hand, when the metal is
superconducting, the property (11:4.1) implies that the sample has a large
magnetic moment. Indeed, since H inside the metal is the same as the applied
field, it follows by (11-1-1) that inside the superconducting metal

L

B=H+4«V (11:4-2)
Hence the total magnetic moment M, of the superconducting sample is
- v
M, = — gﬂ (11-4:3)

There i another more direct way of obtaining this result. We adopt a
microscopic point of view so that there is no distinction between B and H.
Then B = H is produced by all currents, both those that are macroscopically
applied and those microscopic currents that are responsible for the magnetiza-
tion of the sample. In the presence of an externally applied field H a circulat-
ing eurrent J must then be set up (along the periphery of the superconducting
metal) of such a direction and magnitude that it cancels this applied field so as
to make the net field B = 0 inside the metal. By Ampere’s cireuital theorem
this current I generates a field H; given by Hyl = (4r/c)I, where [ is the length
of the sample. The condition that the total field inside the sample must
vanish becomes then

H+H=H+T1=0

The current flowing along the periphery of the sample has thus a magnitude
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H out of paper

Fig, 11:4:2 End view of a cylindrical supercon-
ducting sample in an applied field H. A circu-
lating current is set up in a very thin (about

5 X I107° cm thick) peripheral layer of the cylinder
and produces a field —H inside the cylinder so as
to reduce B to zero inside the metal.

el
do= —EH (11-4-4)
If the sample has a cross-sectional area A, this current produces a magnetic

moment

- 1 1 el v
where V = Al is the volume of the sample. Thus we regain the result

(11-4-3).

Work must be done in setting up this current I or magnetic moment M,.
Since the volume V of the sample remains unchanged to excellent approxi-
mation, the fundamental thermodynamic relation (11-1.7) applied to the
sample becomes then simply

Q) = TdS = df + M dH (11-4-8)

Since the temperature ' (rather than the entropy §)is the independent variable
at our disposal, we rewrite (11-4-6) in the form

d(TS) — S dT = dE + M dH
or dF = —8dT — M dH (11-4-7)
where F=E—-TS8 (11-4-8)

is & free energy. The condition of increasing entropy for an isolated system
implies then, analogously to (8-2-3), that

68—%20 or g—TASZD0 (11-4-9)
when the sample absorbs heat @ from a heat reservoir at the constant tempera-
fure T. But, if the magnetic field H is kept constant, it follows by (11-4-6)
that the heat Q absorbed by the system is simply @ = AE. Hence (11-4-9)
shows that, when the system is kept at a constant temperature T in & constant
magnetic field H,

AF <0 (11-4-10)

i.e., the condition for stable equilibrium is the usual one that the free energy
F of (11-4-8) mugt satisfy the condition

F = minimum (11-4-11)
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The problem of the equilibrium between the normal and superconducting
phases of a metal is then quife analogous to the ordinary phase transformations
discussed in Sec. 8:5. To satisfy the minimum property (11-4-11), F must
be stationary if one transforms the metal from the normal to the superconduet-
ing state. Hence the condition of equilibrium between the normal and super-
conducting phases at a given temperature T and magnetic field H is

F.,=F, (11-4-12)
where /', and F, are the respective free energies of the two phases. On the
other hand, if ¥, < F,, the normal phase of the metal is the more stable one;
if ', < F';, the superconducting phase is the more stable one.

The condition (11-4:12) is satisfied everywhere along the phase trans-
formation (i.e., critical temperature) curve of Fig. 11-4.1. Proceeding as in
the derivation of the Clausius-Clapeyron equation (8-5-9), the relation
(11-4.12) applied to a particular point (T,H) on the eritical temperature curve
vields

F.(T\H) = F.(T,H)
At a neighboring point on this eritical temperature curve one has similarly
FP(T +dT, H + dH) = F(T + dT, H + dH)
Subtracting these two relations, one gets
aF, = dF, (11-4-13)

Here dF, whether in the normal or superconducting phases, is given by (11:4-7).
Hence (11-4-13) becomes

—8,dT — M,dH = —8,dT — M, dH

where the subseripts n and s denote funetions in the normal and superconduct-
ing phases respectively, Thus
Sy — 8,) dT = — (M, — M,) dH
Since M, = 0, while M, is given by (11-4-3), this becomes
V _.dH

’ Sn - Ss =l = 4_17 H a"TT
This is the analog of the Clausius-Clapeyron equation (8-5-9); it relates
the entropy difference to the slope of the transition temperature curve.

Since dH/dT < 0, it follows that S, > S.. Thus the superconducting
state of the metal has lower entropy (i.e., is more ordered) than the normal
state. Associated with this entropy difference, there is a latent heat

L =TS8 — 8) (11-4-15)

which must be absorbed by the metal in the transformation from the supercon-
ducting to the normal state. Note that S, — S, = 0 when the transition takes
place in zero external field so that H = 0. In that case there is no latent heat
associated with the transition. Wher T — 0, the third law of thermodynamies
requires that S, — 8,— 0. The latent heat must then also vanish as T — 0.
In addition, Eq. (11-4-14) implies then that (dH/dT) — 0 as T — 0, i.e., the

(11-4-14)
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transition curve in Fig, 11-4-1 must start out at T = 0 with zero slope. All
these conelusions are in agreement with experiment.
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PROBLEMS

11.1 Suppose that the energy of o system in state r is given by E.(H) when the sys-
tem is in a magnetic field . Then its magnetic moment M. in this state is
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quite generally given by (11-1-5), so that M, = —dE./dH. Use this result to
show that when the system is in equilibrium at the temperature T, its mean
magnetic moment is given by M = -1 8 In Z/3H, where Z is the partition fune-
tion of this system.

The magnetic susceptibility per unit volume of a magnetic solid is given by
x = A/(T — 6) where A and 0 are constants independent of magnetic field.
How much does the entropy per unit volume of this solid change if, at the tem-
perature T, the magnetic field is increased from H = 0 to H = H,?

The magnetic susceptibility per mole of a substance containing interacting mag-
netic atoms is given by the Curie-Weiss law, x = A/(T — 6), where A and 8 are
constants independent of temperature and of magnetic field. The parameter #
depends, however, on the pressure p according to the relation § = (1 + ap)
where @, and « are constants. Caleulate the change in molar volume of this
substance when, at a fixed temperature and pressure, the magnetic field is
increased from H = 0 to the value H = H,.

(a) Show that for a fixed temperature, the entropy of & metal is independent of
magnetic field in both its superconducting and its normal states. (The magnetic
susceptibility in the normal state is negligibly small.)

(b) Given the critical field curve H = H(T) for a superconductor, find a
general expression for the difference (€, — C';) between the heat capacities of the
metal in the superconducting and normal states at the same temperature 7',

(¢) What is the answer to part (b) at the transition temperature T = T,?
At these low temperatures the temperature dependence of the heat capacity C.
in the normal state is to a good approximation given by

Cw = aT + BT

where g and b are constants, In the superconducting state the heat capacity
C,— 0 as T — 0 more rapidly than T;ie., C,/T— 0as T'— 0. Assume that
the critieal field curve has the parabolic shape H = H,[1 — (T'/T.)%. What is
the temperature dependence of C,?
Consider & metal in zero magnetic field and at atmospheric pressure. The heat
capacity of the metal in the normal state is €, = vT; in the superconducting
state it is approximately €, = aT9 Here v and « are constants; 7' is the abso-
lute temperature.

(a) Express the constant « in terms of 4 and the critical temperature T,

(b) Find the difference between the internal energy of the metal in the
normal and superconducting states at T = 0. Express the answer in terms of
v and T..
(Remember that the entropy of the normal and superconducting states is the
same both at 7' = 0 and at T = T..)
The heat capacity C, of a normal metal at low temperatures T is given by
Cx = ¥T, where + is a constant. But, if the metal is superconducting below
the transition temperature 7', then its heat capacity €, in the superconducting
gtate in the temperature range 0 < T < 7, is approximately given by the rela-
lation €', = aT", where « is some constant. The entropies S, and S, of the metal
in the normal and superconducting states are equal at the transition temper-
ature T' = T; it also follows by the third law that S, = 8, as T — 0. Use the
above information to find the relation between ¢, and ', at the transition
temperature T,




Elementary kinetic theory
of transport processes

1N THE preceding chapters our concern hag been almost exclusively with equilib-
rium situations. General statistical arguments were quite sufficient to treat
problems of this sort, and there was no need to investigate in detail the inter-
action processes which bring about the equilibrium. Many problems of great
physical interest deal, however, with nonequilibrium situations.

Consider, for example, the case where the two ends of a copper rod are
maintained at different temperatures. This is nel an equilibrium situation,
sinee the entire bar would then be at the same temperature. Instead, energy
in the form of heat flows through the bar from the high- to the low-temperature
end, the rate of this energy transfer being measured by the ‘“‘thermal condue-
tivity' of the copper bar. A caleulation of the coefficient of thermal condue-
tivity thus requires a more detailed consideration of the nonequilibrium proces-
ses whereby energy is transported from one end of the bar to the other.
Caleulations of this sort can become quite complicated, even in the rather
simple case of ideal gases which we shall treat in these next chapters. It is
therefore very valuable to develop simple approximate methods which yield
physical insight into basic mechanisms, which elucidate the main features of
phenomena in a semiquantitative way, and which can be extended to the dis-
cussion of more complicated cases where more rigorous methods might become
hopelessly complex. Indeed, it is very often found that simple approximate
caleulations of this sort lead to the correct dependence of all significant parame-
ters, like temperature and pressure, and to numerical values which differ by
no more than 50 percent from the results of rigorous calculations based on the
solution of complicated integrodifferential equations. In this chapter, there-
fore, we shall begin by discussing some of the simplest approximate methods
for dealing with nonequilibrium processes. Although we shall treat the case of
dilute gases, the same methods are useful in more advanced work, e.g., in
discussing transport processes in solids in terms of ‘“‘dilute gases’ of electrons,
“phonons” (quantized sound waves with particlelike properties), or ‘mag-
nons” (quantized waves of magnetization).
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In a gas, molecules interact with each other through collisions. If such a
gas is initially not in an equilibrium situation, these collisions are also respon-
sible for bringing about the ultimate equilibrium situation where a Maxwell-
Boltzmann velocity distribution prevails. We shall discuss the case of a gas
which is dilute. The problem is then relatively simple because of the following
features:

a. Each molecule spends a relatively large fraction of its time at distances
far from other molecules so that it does not interact with them. In short, the
time between collisions is much greater than the time involved in a collision.

b. The probability of more than two molecules coming close enough fo each
other at any time so as to interact with each other ssmultancously is negligibly
small compared to the probability of only two molecules coming sufficiently
close to another to interact. In short, triple collisions oceur very rarely com-
pared to two-particle colligions. Thus the analysis of collisions can be reduced
to the relatively simply mechanical problem of only {we interacting particles.

¢, The mean de Broglie wavelength of molecules is small compared to the
mean separation between molecules, The behavior of a molecule between col-
lisions can then be deseribed adequately by the motion of a wave packet or
classical particle trajectory, even though a quantum-mechanical calculation
may be necessary to derive the scattering cross section deseribing a collision
between two molecules,

Tinally, it is worth adding a very general comment about the distinetion
between equilibrium and steady-state situations. An isolated system is said
to be in equilibrium when none of its parameters depends on the time. It is,
however, also possible to have a nonequilibrium situation where a system A,
which is nof isolated, is maintained in such a way that all of its parameters are
time-independent, The system A is then said to be in a “steady state,” but
this situation is not one of equilibrium, since the combined isolated system A"
consisting of A4 and its surroundings is not in equilibrium, i.e., since the parame-
ters of A’ vary in time.

Example Consider a copper rod A connecting two heat reservoirs B and B,
at different temperatures Ty and T, A steady-state situstion would be one
where the temperatures T, and 7' at the two ends of the rod are maintained
constant and where one has waited a sufficiently long time so that the local
temperature in each maeroscopically small region of the rod has attained a
constant value, If B, and B, are sufficiently large, the temperatures T, and
T, will vary very slowly, despite the transfer of heat from one reservoir to the
other; but B, and B, are certainly not in equilibrium, and their temperatures
will gradually change and reach equality if one waits long enough to attain
the final equilibrium situation. Similarly, if one constantly does work on one
reservoir and uses a refrigerator on the other reservoir to keep their respective
temperatures strictly constant, the environment of A is most certainly not in
equilibrium. '
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12 -1 Coliision time
Consider a molecule with velocity v. Let

P(t) = the probability that such a moleeule survives a time

L without suffering a collision. (12-1-1)

Of course P(0) = 1, since a molecule has no chance of colliding in & time { — 0,
i.e., it certainly manages to survive for a vanishingly short time. On the other
hand, P(t) decreases as the time ! inereases, since a molecule is constantly
exposed to the danger of suffering a collision; hence its probability of surviving
a time ¢ without suffering such a fate decreases as time goes on. Finally,
P(t) — 0 at t— e. (The situation is similar to one very familiar to all of us;
being constantly exposed to the vicissitudes of disease and aceident, each one
of us must die sooner or later.) The net result is that a plot of P(f) versus (
must have the shape indicated in Fig. 12-1-1.
To deseribe the collisions, let

w dt = the probability that a molecule suffers a collision

between time ¢ and ¢ + . (12:1-2)

The quantity w is thus the probability per unit time that a molecule suffers a
collision, or the ‘‘collision rate.”” We shall assume that the probability w is
independent of the past history of the molecule; i.e., it does not matter when
the molecule suffered its last collision. In general w may, however, depend on
the speed » of the particular molecule under consideration, so that w = w(v).

Knowing the collision probahility w, it is possible to calculate the survival
probability P({). This can be done by noting that [the probability that a
molecule survives a fime { + d without suffering a collision] must be equal to
[the probability that this molecule survives a time ¢ without suffering a col-
lision] multiplied by [the probability that it does not suffer a collision in the

T r
dt

Fig. 12:1:1 Probability P(t) of surviving a time { without suffering a colli-
sion. (The shaded area represents the probability ®(l) dl of suffering a
collision in the time interval between { and { + di after surviving a time {
without collisions.)
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subsequent time interval between ¢ and ¢ + d#]. In symbols, this statement
becomes

Pt + dt) = P(H)(1 — w db) (12:1-3)
‘Hence Pty + %dﬁ = P(f) — P(tw di
or 11—,% = —w (12-1-4)

Between collisions (i.e., in & time or the order of w—!) the speed v of a molecule
does not change at all; or, if the molecule is subject to external forces due to
gravity or electromagnetic fields, its speed changes usually only by a relatively
small amount in the short time w—'. Hence the probability w, even if 1t is a
funetion of v, can ordinarily be considered essentially a constant independent of
time. The integration of (12-1-1) is then immediate and gives

In P = —wt + constant
or P= g

Here the constant of integration ' can be determined by the condition that
P(0) = 1. Thus one obtains ¢ = 1 and

> P(t) = e (12°1-5)
Multiplication of (12-1-1) by (12-1-2) gives then

®(t) dt = the probability that a molecule, after surviving
without collisions for a time f, suffers a collision in the time (12-1-6)
interval between ¢ and ¢ + dt.

Thus

-5 @) dt = e dt (12-1-7)

[T ewma=1 (12:1-8)

This asserts simply that there is probability unity that a molecule collides at
some time, Indeed, by {(12-1-7), one finds

j:} e—“"wdt=fo evdy =1

so that the normalization condition (12-1:8) is verified.
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Let + = f be the mean time between collisions. This is also called the
“collision time’ or “relaxation time” of the molecule. By (12:1:7) one can
write

. r=i= [0 dt
-fuqr“‘wdtd
Popatss ot o
~ul =g

since the integral is of the type evaluated in (A-3-3), Thus

1
T=c (12:1.9)

and (12-1-7) can equally well be written in the form
fe ®(t) dt = s-md:t (12-1-10)

Bince in general w = w(v), » may depend on the speed v of the molecule. The
mean distance traveled by such a molecule between collisions is called the
“mean free path” I of the molecule. One has thus

) = vrv) (12-1-11)
i A gas of molecules can then conveniently be characterized by the average col-

lision time, or the average mean free path, of the molecules traveling with a
mean speed 7,

Remarks on the similarity to a game of chance Theproblem of molecular
collisions formulated in the preceding paragraphs is similar to a simple game of
chance. The molecule in danger of a collision is analogous to a man who keeps
on throwing a die in a game where he has to pay $100 whenever the throw of the
die results in the “fatal event” of a 6 landing uppermost. (The game of
Russian roulette described in Problem 1.5, might be a more bloody analogue.)
Let

= the probability that the fatal event occurs in a given trial.

This probability pis assumed to beindependent of the past history of occurrence
of fatal events. Then

g =1 — p = the probability that the fatal event does nof oceur in &
given trial.
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The probability P, of surviving n trials without a fatal event is thus given by
P.=(1—p)» (12-1-13)

The probability @, of surviving (n — 1) trials without a fatal event and then
suffering the fatal event at the nth trial is then

Cn = (1 —p)t g =g 'p (12-1-14)
This probability is properly normalized so that the probability of suffering the
fatal event at some time is unity, i.e.,

i @ =1 (12-1-15)

This can be verified by using (12-1-14); thus

- =

Y, @ = Elq’“"p=p(l+q+q=+ 2

ne=] o=

By summing the geometric series, we obtain properly

7= “21 ®un = ’21 g—pn = %21 a*n (12-1-16)

L] a -]
one=q q"
n=1 aanl
oy ¢
_QGQ(I“G')
l-9g +4g q

P R (12-1-17)

All these results are analogous to those obtained in discussing a molecule.

To make the correspondence exact, consider time to be divided into fixed

infinitesimal intervals of magnitude df. Each such interval represents a “trial”’

for the molecule in its game of chance. The fatal event is, of course, the suffer-

ing of a collision. In terms of the collision rate w of (12-1:2), the probability p
is then given by

p=wdt (12-1-18)
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Turthermore, the number of trials experienced by a molecule in a time ¢ is
given by -
t

n== (12-1-19)
Note that as dt— 0, p— 0 and n— = in such a way that
pn = wi (12:1-20)
By (12:1:13) the survival probability is then given by
P{t) = (1 —p)"
Since p < 1, this can be approximated by writing
InP=nln(l—p = —np
Hence P(l) = en? =¥ (12-1-21)
where we have used (12:1:20). Thus we regain (12:1-5).
Similarly, one obtains by (12-1-14)
@) dt = (1 — p)™lp = et d (12-1-22)
which agrees with (12:1:7). Finally (12-1-19) gives
I=nd
which becomes, by (12:1:17),
r=%d¢=wi—;t=% (12-1-23)

and agrees thus with (12-1-9).

12 -2 Collision time and scattering cross section

Scattering cross section An encounter (or collision) between two particles
is described in terms of a ‘‘scattering cross section’” which can be computed by
the laws of mechanies if the interaction potential between the particles is
known. Consider two particles of respective masses m; and m;. Denote their
respective position vectors by ri and ry, and their respective velocities by v
and v,. View the situation from a frame of reference fixed with respect to
particle 2; the motion of particle 1 relative to 2 is then described by the relative
position veetor R = r; — rg, and the relative velocity ¥ = ©; — vs. In this
frame of reference where the “target” particle 2 is at rest, consider that there
is a uniform flux of F, type 1 particles per unit area per unit time incident with
relative velocity ¥ on the target particle 2.  As a result of the scattering process
a number 497 of particles of type 1 will emerge per unit time at large dis-
tances from the target particle with final velocity in the range between ¥’ and
V' 4 dV'. This defines a small solid angle range d2' about the direction
V' = V'/|V| of the scattered beam. (If the collision process is elastic so that
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Classieal particle trajectory

Fig. 12:2:1 Scattering process viewed from the frame of reference where
the target particle 2 is at rest.

energy is conserved, |F’| = [F|.) This number d9 is proportional to the
ineident flux &, and to the solid angle d2’. One can then write

AN = §\o dY (12-2-1)

where the factor of proportionality o is called the “differential scattering cross
section.” It depends in general on the magnitude V of the relative veloeity of
the incident particle and on the particular direction P’ (specified by the polar
angle 8" and azimuthal angle ¢') of the seatiered beam relative to the incident
direction ¥. This differential scattering eross section o = o(V; P’) can be
computed by classical or quantum mechanics if the interaction potential
between the particles is known. Note that ¢ has the dimensions of an area,
since the flux &, is expressed per unit area.

The total number 9% of particles scattered per unit time in all directions is
obtained by integrating (12-2-1) over all solid angles. Thus

N = o Fio d' = Fioy (12‘2'2)

where ool V) = fn, o(V; P") da’ (12-2-3)

is called the ““total seatiering cross section.” In general ¢ depends on the
relative speed V' of the incident particles.

The calculation of scattering cross sections for various types of forces
belween particles is a problem discussed in courses on mechanies. Let us here
recall only briefly the very simple result obtained in classical mechanies for
the total seattering cross section between two “hard spheres” of respective
radii @, and as.  (This means that the interaction potential V(&) between the
particles is a funetion of the distance R between their centers such that
V(R) = 0 when R > (a1 + ay) and V(R) — « when R < (a; + as).) The
relative initial motion of the two spheres is indicated in Fig. 12:2.2. Notethat
scattering takes place only if the distance b (called the “impact parameter”) is
such that b < (ay + as). Hence, out of an incident flux of &, particles per
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v

L 4

Fig. 12:2:2 Collision process between two hard
spheres of radii a; and ay.

unit area per unit time, only that fraction of particles incident on the circular
area w(a, + a.)? is scattered. By the definition (12.2:2) one thus nbiains for
the total scattering cross section between two hard spheres

o= gll = m(ay + a2)? (12.2.4)

If the two particles are identical, thig reduces simply to
oy = md? (12-2-5)

where d = 2a is the diameter of the spherical particle.

Relation between collision time and scattering cross section If the
scattering cross section o for collisions between molecules is known, one can
readily find the probability 73! per unil time that a given molecule in a gas
suffers & collision. We shall give the argument in simplified fashion without
being too careful about the rigorous way of taking various averages,
Consider a gas consisting of only a single kind of molecule. Denote the
mean number of molecules per unit volume by n.  Let b be the mean speed of
these molecules, V their mean relative speed, and ¢, their mean total seattering
eross section at this speed. Tocus attention on the particular type of molecules
(say those of velocity near vy) whose collision rate ! we wish to calculate, and
let ny denote the number of such molecules per unit volume. Consider now
how this type of molecule (eall it type 1) is scattered by all the molecules in an

Tvpe-1 molecules

Area dA

«—Scattering molecule

Fig. 12:2:8 If there are ny molecules per unit volume with relative veloecity
near V, all of these contained in the volume (V dt dA) collide with the area
dA in time d! and thus constitute a flux 1,V incident upon the scattering
molecule.
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element of volume d°r of the gas. The relative flux of type 1 molecules incident
on any one molecule in d@% is given by the familiar argument as

er%;d—A—) = nV (12-2-6)

By (12:2:2) a number n,Vo, of these incident molecules is then scattered per
unit time in all pessible directions by this one target molecule. The total
number of type 1 molecules scattered by all the molecules in dir is then given by

(?’b], ‘[7{70} ('n d"r)

Dividing this by the number n; d% of type 1 molecules in the element of velume
under consideration, one then obtains the collision probability w = +—! per
unit time for one molecule of this type. Hence

B =t = Voumn (12-2-7)

The collision probability is thus enhanced by a large density of molecules, a
large molecular speed, and a large scattering cross section.

*Remark This caloulation can readily be made rigorous by careful averag-
ing. Let f{v) d* be the mean number of molecules per unit volume with
veloeity in the range between v and v + dv.  (In the equilibrium situation
envisaged here this is just the Maxwell velocity distribution.) We wish to
caleulate the collision probability r—(z;) for a molecule with velocity between
vy and vy + dyy. The relative flux of these molecules with respect to a
molecule of velocity v is given by [f(v:) %, V] where V = |v; — »|. Multi-
plying this by the differential soattering cross section o(¥; ), and inte-
grating over all solid angles d@’ corresponding to the various directions of
seattering P, gives then the total number of molecules seattered by one mole-
cule in the volume d'», One then has to integrate over all the scattering
molecules in 4, and to divide by the number of molecules with velocity
near v; in this volume, Thus

f, f [fGen) &0 V1e(V; P*) 40 [F(v) dPv d¥r)
oD @or dr
or oy) = L f VoV POf(w) a2 do (12:2-8)

o) =

Equation (12-2:7) yields for the average mean free path [ defined in
(12-1-11) the result
[ =10= Ay (12-2-9)
nag

<i| =

Here the ratio (7/V) of mean speed to mean relative speed is close to unity.
Actually V is somewhat larger than 5. The following simple argument makes
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this clear. Consider two different molecules with velocities »; and v;.  Their
relative velocity is then given by

V =1 — g
Hence V2 = v,* + v — 2v10 02 (12-2:10)

If one takes the average of both sides of this equation, v; - v; = 0, since the
cosine of the angle between v; and v, is as likely to be positive as negative for
molecules moving in random directions. Thus (12-2-10) becomes

e

Neglecting the distinction between root-mean-square and mean values, this
can be written =

V = /5, T 05 (12-2-11)
When the molecules in the gas are all identical, #; = #; and (12-2-11) becomes
V=23 (12:2-12)
Then (12:2-9) becomes
1
l = 12-2.13
’ ¥ ‘\/2 Moo ( )

Although this fact is not too interesting, it may be remarked parenthetically
that a suitable average of (12:2-8) over the Maxwell velocity distribution
yields for hard-sphere collisions precisely the result (12-2-13).

It is of interest to estimate the mean free path for a typical gas at room
temperature (~ 300°K) and atmospheric pressure (10® dynes em—*). The
number density n cdn be calculated from the equation of state, Thus

P 10¢
®T = (1.4 X 10-1%)(300)
A typical molecular diameter d might be 2 X 10~%em. Hence (12-2:5) gives
ap = m(2 X 10-9)% = 12 X 10-® em? and (12-2:13) yields the estimate

l=3X10-%em (12:2-14)
Thus I>d {12-2.15)

B o= = 2.4 X 10'* molecules/cm?

so that our approximations based on relatively infrequent encounters between
molecules are justified. If the gas is nitrogen, the mean speed of a N3 molecule
is, by (7:10-19), of the orderof # = 5 X 10*em/sec. Its mean time r between
collisions is then roughly » = I/# =~ 6 X 1071 sec. Thus its collision rate is
7! =~ 2 X 10° sec!, which is a frequency in the microwave region of the
electromagnetic spectruni.

12 E 3 Viscosity

Definition of the coefficient of viscosity Consider a fluid (liquid or gas).
Imagine in this fluid some plane with its normal pointing along the z direction.
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= r = constant

Fig.12:3-1 A plane z = constant in a fluid. The fluid below the plane exerts
a force P: on the fluid above it.

Then the fluid below this plane (i.e., on the side of smaller z) exerts a mean
force P, per unit ares (or “stress”) on the fluid above the plane. Conversely,
it follows by Newton’s third law that the fluid above the plane exerts a stress
—P, on the fluid below the plane,

The mean force per unit area normal to the plane, i.e., the z component of
P,, measures just the mean pressure $ in the fluid; to be precise, P., = p.
When the fluid is in equilibrium, so that it is at rest or moving with uniform
velocify throughout, then there is no mean component of stress parallel to the
plane. Thus P., = 0. Note that the quantity P,, is labeled by two indices,
the first of them designating the orientation of the plane and the second the
component of the force exerted across this plane.®

Consider now a nonequilibrium situation where the liquid does not move
with the same veloeity throughout. To be specifie, consider the case where
the fluid has a constant mean velocity u. in the 2 direction, the magnitude of
u: depending on z so that u. = u.(z). This kind of situation could be produced
if the fluid is enclosed between two plates a distance L apart, the plate at z = 0
being stationary and the plate at z = L moving in the x direction with constant
velocity up. The layers of fluid adjacent to the plates assume, to a good
approximation, the velocities of the plates;so that there is no relative veloeity
of slip between the fluid and the plates. Layers of fluid between the plates
have then different mean velocities %, varying in magnitude between 0 and wu,.
In this case the fluid exerts a tangential force on the moving plate, tending to
slow it down so as to restore the equilibrium situation.

More generally, any layer of fluid below a plane z = constant exerts a
tangential stress P,. on the fluid above it. We already saw that P,, = 0 in
the equilibrium situation where u.(z) does not depend on z. In the present
nonequilibrium case where du./dz # 0 one expects, therefore, that P,, should

* The quantity Pay (where « and v can denote #, y, or 2) is called the “pressure tensor.”

= :=L g S
z = canstanl® o
z RN

Fig. 12:3:2 A fluid contained between two plates. The lower plate is at
rest while the upper one moves with velocity w.; there thus exists a velocity
gradient (du:/dz) in the fluid.




VISCOSITY 478

be some function of derivatives of u. with respeet to z such that it vanishes
when %, is independent of z. But if du./dz is assumed to be relatively small,
the leading term in a power-series expansion of this funection should be an
adequate approximation, i.e., one expects & linear relation of the form

__6'-'-#: L
> Po= -t (12-3-1)

Here the constant of proportionality 5 is called the ‘“‘coefficient of viscosity.”
If u, inereases with increasing 2, then the fluid below the plane tends to slow
down the fluid above the plane and thus exerts on it a force in the —x direetion.
That is, if du./dz > 0, then P.. < 0. Henece the minus sign was introduced
explicitly in (12-3-1) so a8 to make the coefficient n a positive quantity. The
egs unit of 5 is, by (12:3:1), that of gm em~! see—X. (It is also commonly
called a “poise’” in honor of the physicist Poiseuille.) The proportionality
implied by (12-3-1) between the stress P, and the velocity gradient du./dz i8
experimentally well satisfied by liquids and gases if the velocity gradient is not
too large.

Note the various forces which act in the » direction in Fig, 12-3-2. The
fluid below the plane z = constant exerts a force P,, per unit area on the fluid
above it. Since the fluid between this plane and the plate at z = L moves
without acceleration, this plate must exert a force — P., per unit area on the
fluid adjacent to it. By Newton’s third law, the fluid must then also exert on
the plate at z = L a force per unit area + P.., given by (12-3-1).

Calculation of the coefficient of viscesity for a dilute gas In the simple
case of a dilute gas, the coefficient of viscosity can be caleulated fairly readily
on the basis of microscopic considerations of kinetic theory. Suppose that
the mean fluid velocity component w. (which is assumed to be very small com-
pared to the mean thermal speed of the molecules) is a function of 2. How does
the stress P.. come about in this situation? The qualitative reason is that in
Fig. 12:3-2 molecules above the plane z = constant have a somewhat larger
z component of momentum than molecules below this plane. As molecules
cross back and forth across this plane they carry this # component of momen-
tum with them. Hence the gas below the plane gains momentum in the =
direction from the molecules coming from shove the plane; conversely, the gas
above the plane loses momentum in the z direction by virtue of the molecules
arriving from below the plane. Since the rate of change of momentum of a
system is, by Newton’s second law, equal fo the force acting on the system, it
follows that the gas above the plane is acted on by a force due to the gas below
the plane. More precisely,

P.. = mean increase, per unit time and per unit area of the
plane, of the z component, of momentum of the gas above the
plane due to the net transport of momentum by molecules
crossing this plane.

(12-3-2)
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; Rsmm-k ‘An analogy may make fthis mechanisn cosity by momenturm
transfer clearer, Suppose two railroad trains h:mra alde by side along parallel
tracks, the speed of one train being greater than that of the other. Imagine
that mrkers on each train constantly pick up sa.ndha.gsfwm their train and
throw them onto the other train. Then there is a transfer of momentum
between the trains so that the slower {rain tends to be accelerated and the
faster train to be decelerated.

Let us now give an approximate simple calculation of the coefficient of
viscosity. 1If there are m» molecules per unit volume, roughly one-third of
them have velocities along the z direction. Half of these, or 4n molecules
per unit volume, have mean velocity 7 in the -z direction; the other half have
a mean velocity 7 in the —z direction. On the average there are, therefore,
(3n#) molecules which in unit time cross a unit area of the plane z = constant
from below; similarly, there are (dnf) molecules which in unit time cross a unit
area of this plane from above. But molecules which eross the plane from
below have, on the average, experienced their last collision at a distance
[ (I = mean free path) below the plane. Since the mean velocity . = u.(2)
is a function of z, the molecules at this position (z — [) had on the average a
mean x component of velocity w.(z — I). Thus each such molecule of mass m
transports across the plane a mean 2 component of momentum [mu.{z — [}].
Hence one coneludes that

The mean ¢ component, of momentum transported per unit
time per unit area across the plane in the upward direction = (12-3:3)

(&nd)[mux(z — 1],

Similarly, the mean 2 component of momentum transported
per unit time per unit area across the plane in the downward (12-3-4)
direetion = (4n)[mu-(z + 1)].

By subtracting (12-3-4) from (12-3-3) one obtains the nef molecular transport
of # component of momentum per unit time per unit area from below to above
the plane, i.e., the stress P.. deseribed in (12-3:2). Thus

Poa = (fnd)[mus(z — )] — Gnd)[mu.lz + )]
or P = gndmfus(z — 1) — usfz + )] (12-3-5)

Here u.(z) can be expanded in Taylor’s series and higher-order ferms can be
neglected, since the velocity gradient du./dz is assumed to be small (i.e., small

" z=copstant

Fig. 12:3:3 Momentum transport by molecules crossing a plane.
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enough that the mean veloeity u. does not yary appreciably over a distance of
the order of {). Thus

au: . .
(2 + 1) = u.(2) + 5 l
wale — 1) = usle) — g -
L il S 3.
Hence Py = ﬁmm( 2 . £) =i (12-3.6)
where
e n = yniml (12:3-7)

Thus P, is indeed proportional to the velocity gradient du,/dz (as expected by
(12-3-1)), and (12-3-7) provides an explicit approximate expression for the
viseosity coefficient 5 in terms of the microscopic parameters characterizing
the molecules of the gas,

Our ealeulation hag been very simplified and careless about the exact way
various quantities ought to be averaged. Hence the factor % in (12-3-7) is
not to be trusted too much; the constant of proportionality given by a more
careful ealeulation might be somewhat different. On the other hand, the
essential dependence of » on the parameters n, 7, m, and [ ought to be correct.
Discussion  The result (12-3:7) leads to some interesting predictions. By
(12:2-13)

1
! T 12 - 3'8
\/2 Moo ( )
Thus the factor n eancels in {12:3-7), and one obtains
- M 1239
i 3 ’\/i 7o ( T )
But the mean molecular speed, given by (7-10-13) as*
ey (12.3-10)
T

depends only on the temperature but not on the gas density n. Hence (12-3-9)
is independent of the gas density n, or equivalently, of the gas pressure
p = nkT.

This is a remarkable result. It asserts that in the situation illustrated in
Fig. 12-3-2, the viscous retarding force exerted by the gas on the moving
upper plate is the same whether the pressure of the gas between the two plates
is, for example, equal to 1 mm Hg or is increased to 1000 mm Hg., At first
sight such a conclusion seems strange, since a naive intuition might lead one

* In the approximate calculations of this chapter one could just ss well replace the mean
speed 7 by the rms speed /35T /m obtained from the equipartition theorem.
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to expect that the tangential force transmitted by the gas should be propor-
tional to the number of gas molecules present. The paradox is resolved by
noting that if the number of gas molecules is doubled, there are indeed twice
as many molecules available to transport momentum from one plate to the
other; but the mean free path of each molecule is then also halved, so that it
can transport this momentum only half as effectively. Thus the net rate of
momentum transfer is left unchanged. The fact that the viscosity 5 of a gas
at a given temperature is independent of its density was first derived by Max-
well in 1860 and was confirmed by him experimentally.

It is clear, however, that this result cannot hold over an arbitrarily large
density range of the gas. Indeed, we made two assumptions in deriving the
relation (12.3-7):

1. We assumed that the gas is sufficiently dilute that there is negligible
probability that more than two molecules come simultaneously so close together
a8 to interact appreciably among themselves. Thus we were allowed to eon-
sider only two-particle collisions. This assumption is justified if the density n
of the gas is sufficiently low so that

I>d (12:3:11)

where d = 4/7, is a measure of the molecular diameter.

2. On the other hand, we assumed that the gas is dense enough that the
molecules collide predominantly with other molecules rather than with the
walls of the container. This assumption implies that n is sufficiently large that

KL (12-3-12)

where [, is a measure of the smallest linear dimension of the containing vessel
(e.g., L is the spacing between the plates in Fig. 12.3-2).

If the gas is made so dilute that the condition (12-3-12) is violated, then
the viscosity » must decrease, since in the limiting case when n — 0 (perfect
vacuum) the tangential force on the moving plate in Fig. 12-3-2 must clearly
go 10 zero. (Indeed, in this limit the mean free path [ in (12.3:7) must
approach the container dimension L.) Note, however, that the range of densi-
ties where both (12-3-11) and (12-3-12) are simultaneously satisfied is quite
large, because L >> o in usual macroscopic experiments. Thus-the coefficient
of viscosity # of a gas is independent of its pressure over a very considerable
range.

Remark mmmwﬁMthmqu
tive. The tofal probability per unit time ro~! that a molecule suffers a col-
lision can be "_mhmﬂmwm

e e Lo S n“‘-r“«]-r.;‘ ‘ 219
" ;,-'._g‘j..\p. = § i e e ) oy 3 ]

-
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where v~! iz the probability per unit time that the molecule collides with
other molecules and 7.~ is the probability per unit time that the molecule
collides with the walls of the container. But by (12-2.7) g

71 = Vnay =7 (12-3-14)

where | = (1/2 neg)~* is the mean free path due to collisions with other mole-
cules, On the other hand, the mean time 7. required to cross the smallest
dimension L of the container is of the order of L/7 sa that

) el i)
Tw Vs 7 (12 3 ].5)
Hence (12:3-13) gives for the resultant mean free path [, = 740 the relation
K.l 1

Tt is this value of I which should be used in (12:37) if approximate account
is to be taken of collisions with the walls. When the density n becomes suf-
ficiently small, lp— L and 5 « n. It should be pointed out, however, that
in the very low density limit where [ >> L. (a gas safisfying this condition is
called & “Knudsen gas) the coneept of coeffieient of viscosity tends to lose its
meaning. The reason is that molesular collisions with the walls are then of
overwhelming importance go that geometrieal factors involving the shape of
the container have to be considered in detail.

Let us now discuss the temperature dependence of 4. If the scattering of
molecules is similar to that of hard spheres, then the cross section oy is by
(12-2-5) a number independent of T, Then it follows by (12-3-9) that the
temperature dependence of 5 is the same as that of #; i.e., for hard-sphere
scattering,

9« T (12-3-17)

More generally, oy = ao(V) depends on the mean relative speed of the mole-
cules. Since 7 « T o, becomes then also temperature dependent. The
result is that  tends to vary with temperature more rapidly than in (12-3-17),
somewhat more like T%7. This can be qualitatively understood since there
exists not only a repulsive but also a longer-range afiractive interaction
between the molecules. This latter interaction tends to increase the seattering
probability of a molecule and becomes more effective at low temperatures,
where the molecules have low velocities and are thus more readily deflected.
Hence the seattering cross section oy tends to decrease with increasing tem-
perature. As T increases, the viscosity n « T% /o tends, therefore, to increase
with temperature more rapidly than T

Note that the viscosity of a gas increases as the temperature is raised,
This behavior is quite different from that of the viscosity of liquids, which
generally decreases rapidly with increasing temperature, The reason is that
in a liquid, where molecules are close together, momentum transfer across a
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plane occurs by direct forces between molecules on adjacent sides of the plane
as well as by virtue of their motion across this plane,

Finally we estimate the magnitude of . Since the mean pressure of the
gas is, by (7-13:1), approximately given by § = Lnmi?, the expression (12-3-7)
can be written as

—? =p L
n—al 7/ (12-3-18)

In words this says that the coefficient of viscosity is of such a magnitude that
it would give rise to a stress equal to the gas pressure in the presence of a
velocity gradient equal to the mean molecular speed divided by the mean free
path. For air at atmospheric pressure (10° dynes em—*) and room temperature
(300°K) one has approximately 7 = 5 X 10* em see—! and { = 3 X 10-% cm*
hence (12-3-18) gives as an order-of-magnitude estimate

7 = 108/(1.7 X 10%) = 6 X 10~% gm cm~! sec™!
The measured value of n for N gas at this temperature is 1.78 X 10~* gm em~!
seg—th
For purposes of later comparisons with more exact caleulations, we can
combine (12:3:9) and (12-3-10) to obtain the following explicit expression
for n obtained by our simple theory:

2 A/mkT
34/

= 0.377 VmkT

ay ag

3= (12-3-19)

2

12 + 4 Thermal conductivity

Definition of the coefficient of thermal conductivity Consider a sub-
stance in which the temperature is mof uniform throughout. In particular,
imagine that the temperature T is a function of the z coordinate so that
T = T(z). Then the substance is certainly not in a state of equilibrium. As
a result, energy in the form of heat flows from the region of higher to that of
lower temperature. Let

2. = the heat crossing unit area of a plane (in the z direction
normal to the plane) per unit time.

(12-4-1)

T
9.<0

W r=constant

Fig. 12:4:1 A substance in thermal contact with two heat reservoirs at
constant temperatures 71 and 75 If T > T, heat flows in the —:z direction
Srom the region of higher to that of lower temperature.
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The quantity @, is called the “heat flux”” in the z direction. If the temperature
were uniform, @. = 0. If it is not uniform, one expects that €. should to good
approximation be proportional to the temperature gradient 87 /dz if the latter
is not too large. Thus one can write

aT

> g = —«oF (12-4-2)
The constant of proportionality « is called the ‘‘coefficient of thermal con-
ductivity” of the substance. Since heat flows from the region of higher to
that of lower temperature, . < 0 if 87/dz > 0. The minus sign was intro-
duced explieitly in (12-4-2) so as to make « a positive quantity. The relation
(12-4-2) is found to be well obeyed in practically all gases, liquids, and isotropic
solids.

Calculation of the coefficient of thermal conductivity for a dilute gas
In the simple case of a dilute gas the coefficient of thermal conduetivity can be
readily caleulated by simple microscopic arguments similar to those used in
discussing the viscosity of & gas. Consider a plane z = constant in the gas
where T = T(z). The mechanism of hdat transport is due to the fact that
molecules cross this plane from above and below. But if 87'/8z > 0, a mole-
cule coming from above has a mean energy &(7) which is larger than that of a
molecule coming from below. Thus there results a net transport of energy
from the region above the plane to that below it. More quantitatively, there
are again roughly 4n# molecules which in unit time cross unit area of this plane
from below and an equal number of molecules which cross it from above.*
Here n is the mean number of molecules per unit volume at the plane
z = constant, and 7 is their mean speed. Now molecules which cross this
plane from below have, on the average, experienced their last collision at a
distance [ (I = mean free path) below the plane. But the mean energy & of a
molecule is a function of T and, since T = T'(z) in the present case, conse-
quently a function of z so that é = &z). Henee the molecules crossing the
plane from below carry with them a mean energy é(z — ) corresponding to the

* Since the thermal conductivity of a gas is measured under steady-state conditions
where there is no convective motion of the gas, the number of molecules crossing unit area
of any plane per second from one side must always be equal to the number of molecules
crossing the plane in the opposite direction. It is therefore unnecessary in this simple dis-
cussion to worry about the fact that the temperature gradient causes n and # to be slightly
different above and helow the plane. (Sueh questions can be investigated more carefully
by the methods of the next chapters.)

z=constant
Fig. 12:4'2 Energy
transport by molecules
crossing a plane,
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mean energy assumed by them at their last collision at the position (z — ).
Thus one obtains

Mean energy transported per unit time per unit ares across (12-4-3)
the plane from below = tnie(z — 1).

Similarly, in considering molecules coming from above the plane where they
suffered their last collision at (2 4 ), one obtains

Mean energy transported per unit time per unit area across (12-4-4)
the plane from above = nie(z 4 1).

By subtracting (12:4-4) from (12-4-3) one then obtains the net flux of
energy @, crossing the plane from below in the 4z direction

Q. = gnile(z — 1) — &z + 1))
{ v &l [. o
=3 [[e(z) - ZB—S] - [e(s} + 1 63]}
%nﬂ(—%% = —lsl'afﬁlﬁa—’:{T (12:4-5)

since é depends on z through the temperature T. Let us introduce the
abbreviation

_ 0E A
= aT (12-4-6)
which is the specific heat per melecule. Then (12:-4-5) becomes
ar
Q= —kor (12-4-7)
where
[ x = dnicl (12-4-8)

The relation (12-4-7) shows that @. is indeed proportional to the temperature
gradient (as expected by (12-4:2)), and (12-4-8) provides an explicit expres-
sion for the thermal conductivity « of the gas in terms of fundamental molecular
quantities.

Once again the precise factor 4 in (12-4-8) is not to be trusted too much
in this simplified calculation, but the dependence on the other parameters
ought to be correct. Since | « n~!, the density n again cancels; i.e., using
(12-3:8), the thermal conductivity (12-4-8) becomes

= 0 e

K = —

3+/20a0

which is independent of the pressure of the gas. This result is due to the
same reasons mentioned in connection with the similar property of the viscosity
coefficient n and is again valid in a density range where d < [ < L.

Note that for a monatomic gas the equipartition theorem gives & = $£7
so that the specific heat per molecule is simply given by ¢ = #k.

] (12-4-9)
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Since 7 = T% and since ¢ is usually temperature independent, (12-4-9)
gives for hard-sphere interaction between molecules

k o« Tt (12-4-10)

More generally, oy also tends to vary with the temperature in the manner
discussed in the last section in connection with the viscosity. As a result,
« increases again somewhat more rapidly with increasing temperature than is
indicated by (12-4-10).

An estimate of the order of magnitude of « for a gas at room temperature
can readily be obtained by substituting typical numbers into (12-4-8). A
representative value is the measured thermal conductivity of argon at 273°K,
namely k = 1.65 X 10~ watts em—*! deg—L.

By using the result (12:3-10) for 7, the approximate expression (12-4-9)
for the thermal conductivity becomes explicitly

Lt e R 12.4-11
T ( )

Finally, comparison between the expressions (12-4-8) for the thermal
conduetivity x and (12-3.7) for the viscosity » shows that these are quite
similar in form. Indeed, one obtains for their ratio the relation

(

= | =

Equivalently, multiplying both numerator and denominator by Avogadro’s
number N,

AT (12-4-13)

Ho
where ¢y = N.c is the molar specific heat of the gas at constant volume and
where p = Nun is its molecular weight. Thus there exists a very simple
relation between the two transport coefficients x and 4, a relation which can
readily be checked experimentally. One finds that the ratio (x/q)(c/m) " lies
somewhere in the range between 1.3 and 2.5 instead of being unity as predicted
by (12-4-12). In view of the very simplified nature of the arguments leading
to these expressions for 4 and x, there is greater justification for being pleased
by the extent of agreement with experiment than there is cause for surprise at
the discrepancy. Indeed, part of the latter is readily explained by the mere
faet that our caleulation did not take info account effects due to the distribu-
tion of molecular velocities. Thus faster molecules eross a given plane more
frequently than slower ones. In the case of thermal conductivity these faster
molecules also transport more kinetic energy; but in the case of viscosity they
do not carry any greater mean 2 component of momentum. Thus the ratio
i/5 should be increased to a value larger than that given by (12-4-12),

* Application to nonclassical gases 1t is worth pointing out that the sim-
ple considerations of this section are applicable to a much wider class of
physical situations. Consider, for example, the thermal conductivity of a
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metal. Heat in such a metal is predominantly transported by the conduction
electrons. The latter would travel through a perfect periodic erystal lattice
without being scattered (since the electrons have wave properties in a quantum
description). They do, however, get scattered because every metal contains
some impurities or other lattice imperfections, and because at a finite tempera-
ture the lattice vibrates (i.e., the perfect periodicity of the lattice is then
disturbed by thermally excited sound waves, or phonons, traveling through the
lattice).

In order to apply (12-4-8) to the conduction electrons which form a
highly degenerate Fermi-Dirac gas, we note first thal only those electrons
lying within a range of the order of kT around the Fermi energy u, i.e., only
the fraction kT'/u of electrons which contribute to the electronic specific heat
(an amount £ per electron) contribute to the thermal conductivity x. Hence
the product ne in (12-4-8) involves only these effective electrons; thus it
becomes approximately n(kT'/u)($k), i.e., it is proportional to 7. All these
electrons move nearly with the Fermi velocity vy; thus# = vy in (12-4.8), and
this is essentially temperature independent. If the temperature is low enough,
the number n, of thermally excited phonons per unit volume becomes suffi-
ciently small compared to the number n: of impurities per unit volume that
impurity seattering of the electrons is predominant. But since n; is a fixed
number independent of 7, the electron mean free path I « n,;~!is independent of
T (assuming the electron-impurity scattering cross section to be essentially
constant). Hence (12-4.8) predicts that, for impurity scattering,

i T (12-414)

This proportionality is experimentally found to be well satisfied for metals
(and alloys, which are, of course, very impure) at sufficiently low temperatures.

At higher temperatures, scattering by phonons becomes predominant. If
the temperature is still sufficiently low that all thermally excited phonons (or
lattice vibrations) have large wavelengths compared to the interatomic spacing
(i.e., if 7 is still appreciably less than the Debye temperature of See. 10-2),
then the problem is quite analogous to that of photons, and the mean number
of phonons per unit velume n, = T? (see (10-2:27)). Hence the electron
mean free path due to collision with phonons is given by [ = n,~! « 7%
(assuming an essentially constant electron-phonon scattering cross section).
The temperature dependence of x in (12-4-8) then becomes, for phonon

scattering,
i T(El,i) « (12-4-15)

More generally, the electrons are scattered independently by both impuri-
ties and phonons at the same time. Hence the thermal resistivities (i.e., the
reciprocals of the respeetive conductivities) due to these processes simply add.
The resultant thermal conduetivity « must then be given by a relation of the
form

=1Gtl oy (12-4-16)
RE Ry T
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where x; and «, are given by (12-4.14) and (12-4-15), and where a and b are
two constants. The temperature dependence (12-4-16), with its character-
istic maximum as a function of 7', is experimentally well verified.

Let us finally consider the thermal conductivity of an insulating solid at
low tempeératures. Since there are no conduction electrons, the thermal con-
ductivity is low and is entirely due to heat transport by lattice vibrations, i.e.,
by phonons. In order to apply (12-4-8) to these phonons, we note that
ny = T*if T is sufficiently low. The speed 7 of a phonon is the velocity of
sound, which is essentially temperature-independent, The mean energy & of &
phonon is of the order of kT, so that ¢ = 3&/a7 is of the order & and fempera-~
ture-independent, If T is sufficiently low, the mean free path of a phonon is
essentially limited by seattering from the boundaries of the specimen; thus [ is
of the order of the specimen dimensions and therefore temperature-independ-
ent. Hence one obtains for an insulator at low temperature simply

ko« T (12.4-17)

This temperature dependence is experimentally found to be approximately
correct.

12w Self-diffusion

Definition of the coefficient of self-diffusion Consider a substance con-
sisting of similar molecules, but assume that a certain number of these mole-
cules are labeled in some way. For example, some of the molecules might be
labeled by the fact that their nuclei are radioactive. Let n: be the mean
number of labeled molecules per unit volume, In an equilibrium situation the
labeled molecules would be distributed uniformly throughout the available
volume, 8o that n, is independent of position. Now suppose that their dis-
tribution is not uniform, so that n, does depend on position, e.g., ny = ni(2),
even though the tofal mean number n of molecules per unit volume remains
constant. (This constaney guarantees that there is no mass motion of the
whole substance.) This is not an equilibrium situation and thus there will be
a motion of labeled molecules tending to increase the entropy, i.e., tending to
malke the concentration n, more nearly uniform. Let the flux of labeled mole-
cules be denoted by J, i.e., let

J. = the mean number of labeled molecules crossing unit
area of a plane (in the z direction normal to the plane) per (12-5-1})
unit time.

If n, were uniform, J. = 0. If n, is not uniform one expects that J/. should to
good approximation be proportional to the concentration gradient of labeled
molecules. Thus one can write

L o 5"
I s (12-5-2)
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Fig. 12:5'1 Diagram illustrat-
ing the conservation of the

: number of molecules during
Aren A diffusion.

The constant of proportionality D is called the “coefficient of self-diffusion” of
the substance. If dn,/8z > 0, the flow of labeled particles is in the —z direc-
tion so as to equalize the concentration, i.e., J, < 0. Hence the minus sign
was introduced explicitly in (12-5-2) to make D a positive quantity. The
relation (12:5-2) is found to describe quite adequately the self-diffusion* of
molecules in gases, liquids, or isotropic solids.

It is useful to point out that the quantity n, satisfies, by virtue of the
relation (12-5:2), a simple differential equation. Consider a one-dimensional
problem where n,(z,t) is the mean number of labeled molecules per unit volume
loeated at time ¢ near the position z. Foeus attention on a slab of substance of
thickness dz and of area A. Since the total number of labeled molecules is
conserved, one can make the statement that the [increase per unit time in the
number of labeled molecules contained within the slab] must be equal to [the
number of labeled molecules entering the slab per unit time through its surface
at 2] minus [the number of labeled molecules leaving the slab per unit time
through its surface at z + dz]. In symbols,

gz (md dz) = AJ.(2) — AJ.(e + d2)

any Lt ik ad.
or Ty dz = J,(z2) [J,(z) + % dz]
any aJ. e

This equation expresses just the conservation of the number of labeled mole-
cules. Using the relation (12-5-2), this becomes

- &nl ] 32‘311 =
This is the desired partial differential equation, the “diffusion equation,” satis-
fied by nq(z,t). ;

Calculation of the coefficient of self-diffusion for a dilute gas In the
gimple case of a dilute gas, the coefficient of self-diffusion can readily be
caleulated by mean-free-path arguments similar to those used in the last two
sections. Consider a plane z = constant in the gas. The mean number of

* One speaks of gelf-diffusion if the diffusing molecules are, except for being labeled,
identical to the remaining molecules of the substance, The more general and complicated
situation would be that of mutual diffusion where the molecules are unlike, e.g., the diffusion
of He molecules in argon gae.

*
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- z=constant

Fig. 12:5:2 Transport
of labeled molecules
acrogs a plane.

labeled molecules which in unit time cross a unit area of this plane from below
is equal to #n,(z — I); the mean number of labeled molecules which in unit
time cross a unit area of this plane from above is §#n.(z + [). Hence one
obtains for the net flux of labeled molecules crossing the plane from below in
the +z direction

J, = -&-z'ml(z it l) = -é'ﬁn;(z + I)
i _1 (. om
=Ew[n1(z-1) — mi(z + 1)) -65( 2_62 I)

aﬂl

or 1 .{. = (12-5-5)
where X
[ D = il (12:5-6)

Thus (12-5-5) shows explicitly that J. is proportional to the concentration
gradient (in accordance with the general relation (12-5.2)), and (12:5:6) gives
an approximate expression for the coefficient of self-diffusion in terms of
fundamental molecular quantities.

To express D in more explicit form one need only use the relations

1 ) it
AR (12-57)
V2nay V2a P
and o (12:5-8)
T m
B ()
Thus D= == 4 12-5-9
3 A/ oo m ( )
Hence the coefficient of self-diffusion D deoes depend on the pressure of the gas.
At a fixed temperature T,
el
D o i 7 (12-5-10)
Also at a fixed pressure,
D« T (12-5-11)

if the seattering is like that between hard spheres so that oy is a constant inde-
pendent of T.

By virtue of (12-5-6), the order of magnitude of D at room temperature
and atmospheric pressure is %9l ~ 4(5 X 104(3 X 107%) =~ 0.5 em® sec™.
The experimentally measured value for N, gas at 273°K and 1 atmosphere
pressure is 0,185 em? see™ ",
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Comparison between (12-5-6) and the coefficient of viscosity nin (12-3-7)
yields the relation

S=— == (12-5-12)

where p is the mass density of the gas, Experimentally, one finds that the
ratio (Dp/y) lies in the range between 1.3 and 1.5 instead of being unity as
predicted by (12-5-12). In view of the crude nature of our simple caleulations
thig extent of agreement between theory and experiment can be regarded as
quite satisfactory.

Diffusion regarded as a random walk problem It is possible to look
upon the diffusion problem as a random walk executed by the labeled molecule.
Agsume that sucecessive displacements suffered by the molecule between col-
lisions are statistically independent and denote by |, the z component of the
ith displacement of the molecule. If the molecule starts at z = 0, the 2 com-
ponent of its position vector after a total of N displacements is then given by

N
= _E t: (12-5-13)

We caleulate mean values as in See. 1-9. By virtue of the random direction
of each displacement, {; = 0 so that 2 = 0. On the other hand, one obtains
for the dizpersion
=Y+ Y (12-5-14)

¥ 1{";
Now, by virtue of the statistical independence, £,f; = F;f; = 0 so that (12-5-14)
reduces simply to

2 = NP2 (12:5-15)
The mean-square displacement [? per step can readily be computed. The
z component of this displacement in time {is ¢ = v.t. Hence

7 = ian

But, by symmetry, 2.2 = 3% Furthermore, one has by (121-10)

o i
Bm ("ot pm gt [ vt du = 200

Hence = e (12-5-16)
Since each displacement between collisions requires a mean time 7, the total
number N of displacements suffered in a time ¢ is equal to t/r. Hence

(12-5:15) yields for the mean-square z component of displacement of & mole-
cule in time ¢ the result

> 20 = () ¢ (12-5-17)

On the other hand, one can also calculate the mean-square displacement
21(t) by purely macroscopic reasoning based on the diffusion equation (12-5-4).
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0 ' o

Fig. 12:5:3 The number density n(z,l) as a function of 2 at various times

{ after molecules are introduced at time t = 0 near the plane z = (0. The
areas under all the curves are the same and equal to the total number N, of
labeled molecules.

Imagine that a total of N, labeled molecules per unit area are introduced at
time ¢ = 0 in an infinitesimally thick slab near z = 0. The molecules then
proceed to diffuse (see Fig. 12-5-3). Conservation of the total number of
labeled molecules requires that

[o mtde =Ny (12-5-18)
at all times. By definition one also has
70 = [ Amled do (12-5-19)

To find how 2% depends on ¢, multiply the diffusion equation (12-5-4) by
2% and integrate over z. This yields

[ a“‘dz D[ as"‘da (12-5-20)
The left side gives, by (12-5-19),
= am = - = 0 —=
f_n 3F dz —a z’nldz-—Nla(zg)

The right side of (12-5-20) can be simplified by successive integrations by part

f_: 2t 6;:; dz = [ EEI'_"]_H —9 f am dz

=0 — 2eny. + 2 f_. nyde
=0+ 2N,
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since ny and (dn;/9z) — 0 as |z — . Thus (12-5-20) becomes

4 2
= & = 2D (12-5-21)

or
fig 7' = 2Dt (12-5-22)

where the constant of integration has been set equal to zero, since z* = 0 for
t = 0 by virtue of the initial condition that all molecules start at z = 0.
By comparing (12:5-22) with the random walk result (12-5:17) one
obtains
= 41¥r (12-5-23)
or D = Ll (12-5-24)

if one neglects the distinetion between »? and #* and sets #r = I. Thus one
regains the result (12-5:6).

12 -6 Electrical conductivity

Consider a system (liquid, solid, or gas) containing charged particles which are
free to move. If a small uniform electric field & is applied in the z direction,
& nonequilibrium situation results in which an electric current density j. is set
up in this direction. By definition

j: = the mean electric charge crossing a unit area (perpen- (12-6-1)
dicular to the z direction) per unit time.

If the electric field & is sufficiently small, one expects that
Jr =0 & (12-6-2)

where the constant of proportionality oy is called the “electrical conductivity”
of the system. The relation (12:6-2) is called “Ohm's law.”

Consider now a dilute gas of particles having mass m and charge e and
interacting with some other system of particles by which they ecan get scattered
with collision time r. A particularly simple case would be that of a relatively
small number of ions (or electrons) in a gas where these ions are predominantly
scattered by collisions with the neutral gas molecules.

Remark Another example would be that of the eonduction electrons in a
metal where the electrons are seattered by the atoms of the solid, This case
involves, however, some subtleties by virtue of the Fermi-Dirac statistics
obeyed by the electrons. It will be considered mare specifically in Chapter 13.

When an electric field & is applied in the z direction, it gives rise to a mean
2 component of velocity 7. of the charged particies. The mean number of such
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particles crossing a unit area (perpendicular to the 2 direction) per unit time is

then given by ni, if n is the mean number of charged particles per unit volume,
Since each particle carries a charge e, one thus obtains

J= = meb. (12-6-3)
It only remains to calculate #.. Let us measure time from the instant

{ = 0 immediately after the particle’s last collision. The equation of motion
of the particle between this collision and the next one is

Oy
) M“EE = g8
Henoe b= L1+ 0,0 (12-6-4)

In order to calculate the mean value 7,, we assume that as a result of each
collision the particle is, at least on the average, restored to thermal equi-
librium; its velocity ©(0) has then random direction and #,(0) = 0 irrespective
of the particle’s past history before that collision.* Taking the mean value of
(12-6-4) over all possible times ¢ between collisions, as given by the prob-
ability (12-1-10), we then obtain

a,=5§Z=Ef”e—uri"f¢=e—sr (12-6-5)

m m Jo i m
that is, we have just used the familiar result that the mean time I between col-
lisions is equal tor, We have also treated the collision probability 7—! per unit
fime as a constant, even though it may depend on the particle speed. This is
justified because the electric field & was assumed to be sufficiently small that
the inerement in the particle’s speed produced by & between successive col-
lisions is negligibly small compared to the thermal speed of the particles.
By using (12:6-5) in (12-6-3), one obtains

2
je = %rs (12-6-6)
or je =oq & (12-6:7)
where
2
S ga =" g (12-6-8)

Thus j, is indeed proportional to & (as expected by (12-6-2)) and (12-6-8) pro-
vides an explicit expression for the electrical conductivity ea in terms of
microscopic parameters of the gas.

If the conductivity is due to a relatively small number of ions in a gas,
the collisions limiting the mean free path are predominantly those between

* One can expect this to be a very good approximation if the charged particle sufiers
collisions with particles of much larger mass, Otherwise the charged particle retains after
esch collision some memory of the z component of veloeity it had before that collision. For
the time being we neglect corrections due to such  persistence-of-veloeity™ effects.
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ions and neutral gas molecules.* Suppose that the total scattering cross
section of an ion by a molecule is gy, and that there are, per unit volume,
ny molecules of mass m;>> m. The thermal speed of the ions is then much
greater than that of the molecules, and the mean relative speed of an ion-
molecule encounter is simply the mean ion speed #. Thus the collision rate of
an ion is approximately equal to

AT 8 KT\
T = Mo = N1 | - — | Oim
T m

and o = ﬁ e LR (12-6-9)

8 N1 im m
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PROBLEMS

12,1 A large number of throws are made with a single die.

(2) What is the mean number of throws between the appearances of a six?
At any stage of the process what is the mean number of throws

(b) before the next appearance of a six;

(e) since the last appearance of a six?

12.2 Let [ denote the mean free path of a molecule in & gas. Suppose that such a
molecule has just suffered & collision. What is the mean distance

(@) it travels before it suffers the next collision;

(b) it has traveled since it suffered the last collision?

(¢) What is the mean distance traveled by the molecule between two suc-
cessive collisions?

12.3 An ion of mass m and electric charge e is moving in a dilute gas of molecules
with which it collides. The mean time between collisions suffered by the ion
is 7. Buppose that a uniform electric field & is applied in the z direction.

(2) What is the mean distance Z (in the direction of &) which the ion
travels between collisions if it starts out with zero z component of velocity
after each collision?

(b) In what fraction of cases does the ion travel a distance  less than 3?

12.4 Caleulate the differential scattering cross section o for the scattering of a hard

* Actually, even if ion-ion collisions occurred frequently, they would not affect the
electrical conductivity, sinee the colliding ions would, effectively, simply exchangeiroles in
carrying the electric current. This will be shown in greater detail in Sec. 14-6.
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sphere of radius @; by a stationary hard sphere of radine a,, How does the
result depend on the angle of scattering 8’ (Use classieal mechanics.)

12.5 The total scattering cross section for an electron-air molecule collision is about
10~ em® At what gas pressure will 90 percent of the electrons emitted from
a cathode reach an anode 20 cm away? (Assume that any electron scattered
out of the beam does not reach the anode; i.e., neglect multiple scattering.)

12.6 Estimate the magnitude of the coefficient of viscosity n of argon gas at 25°C
and 1 atmosphere pressure. To estimate the dimension of an argon atom, con-
sider the atoms as hard spheres which, in the solid at low temperatures, form a
close-packed structure having a density of 1.65 gm/em3. The atomic weight
of Aris 30.9. Compare your estimate with the experimentally observed value
of n = 2.27 X 10~ gm cm~! sec™™.

12,7 In the Millikan oil-drop experiment, the terminal velocity with which the oil
drop falls is inversely proportional to the viscosity of the air, If the temper-
ature of the air increases, does the terminal velocity of the drop increase,
decrease, or remain the same? What happens when the atmospheric pressure
increages?

12.8 Tt is desired to measure the coefficient of viseosity n of air at room temper-
ature, since this parameter is essential for determining the electronic charge by
Millikan’s oil-drop experiment. It is proposed to perform the measurement in
a viscometer consisting of a stationary inner cylinder (of radius B and length L)
supported by a torsion fiber, and an outer cylinder (of slightly larger inner
radius B + &) rotating slowly with angular velocity w. The narrow sannular
region of thickness 8(8 << R) is filled with the gas under consideration and one
measures the torque & on the inner cylinder.

(a) Find the torque G in terms of n and the parameters of this experi-
mental apparatus.

(b) To determine what quarts fiber is needed, estimate the magnitude of
the viscosity of air from first principles, and use this result to estimate the
magnitude of the torque which has to be measured in an apparatus of this kind.
Take as dimensions B = 2 em, § = 0.1 em, L = 15 em, and w = 27 radians/
second.

12.9 Suppose that the molecules of a gas interact with each other through a
radial force I which depends on the intermolecular separation R according to
F = CR~, where s is some positive integer and C is a constant.

(a) Use arguments of dimensional analysis to show how the total scatter-
ing eross section g of the molecules depends on their relative speed V. Assume
a classical calculation so that oo can only depend on V, the molecular mass m,
and the force constant C.

(b) How does the coefficient of viscosity 5 of this gas depend on the abso-
lute temperature 7'?

12,10 A fluid of viscosity  flows through a tube of length L and radius @ as a result
of a pressure difference, the pressure being py at one end and p, at the other
end of the tube. Write the conditions necessary to ensure that a eylinder of
fluid of radius r moves without acceleration under the influence of the pressure
difference and the shearing force due to the viscosity of the liquid, Hence
derive an expression for the mass M of fluid flowing per second through the tube
for the following two cases:

(e} The fluid is an incompressible liquid of density p.

(b) The fluid is an ideal gas of molecular weight u.
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12.11

12,12

12,13

12,14

12,15

PROBLEMS

(These results are Poiseuille’s flow formulas.) Assume that the layer of fluid in
contact with the walls of the tube is at rest. Note also that the same mass of
fluid must eross any cross-sectional area of the tube per unit time,

Consider a general situation where the temperature T of a substance is a fune-
tion of the time ¢ and the spatial coordinate z. The density of the substance
ia p, its specific heat per unit mass is ¢, and its thermal conduetivity is x. By
macroscopie reasoning similar to that used in deriving the diffusion equation
(12-5-4), obtain the general partial differential equation which must be satis-
fied by the temperature T'(z,1).

A long cylindrical wire of radius a and electrical resistance & per unit length
15 stretched along the axis of a long cylindrical container of radius . This
container is maintained at a fixed temperature T and is filled with & gas having
a thermal conductivity x. Caleulate the temperature difference AT bhetween
the wire and the container walls when a small constant eleetrical current [ is
passed through the wire, and show that a measurement, of AT provides a medns
for determining the thermal conduetivity of the gas. Assume that a steady-
state condition has been reached so that the temperature T at any point has
become independent of time. (Suggestion: Consider the condition which must
be satisfied by any cylindrical shell of the gas contained between radius r and
radius v + dr.)

Consider a eylindrical dewar vessel (e.g., thermos bottle) of the usual double-
walled construction. The outer diamster of the inner wall is 10 em, the inner
diameter of the outer wall is 10.6 em. The dewar contains a mixture of ice and
water; the outside of the dewar is at room temperature, i.e., at about 25°C.

(a) If the space between the two walls of the dewar contains He gas at
atmospheric pressure, ealculate approximately the heat influx (in watts per cm
height of the dewar) due to heat conduction by the gas. (A reasonable esti-
mate for the radius of a helium atom is about 1075 ¢m,)

(b) Estimate to what value (in mm Hg) the pressure of the gas between
the walls must be reduced hefore the heat influx due to conduection is reduced
below the value caleulated in part (a) by a factor of 10.

The coefficient of viscosity of He gas at T = 273°K and 1 atmosphere is 1, that
of Ar gasis g2. The atomic weights of these gases are p; and u., respectively.

(z) What is the ratio o2/a; of the Ar-Ar atom total scattering cross section
oz as gompared to that of the He-He atom total scattering cross section o7

(b) What is the ratio xa/k; of the thermal conduetivity x: of argon gas
compared to the thermal conductivity «; of He gas when 7 = 273°K?

(¢) What is the ratio Ds/D, of the diffusion coefficients of these gases
when T' = 273°K?

(d) The atomic weights of He and A are respectively g = 4 and u, = 40,
The measured viscosities at 273°K are respectively %, = 1.87 X 10~ and
Nz = 2.105 X 10~ gm ¢m~! see™!, Use this information to calculate approxi-
mate values of the cross sections o; and o,

(¢) If the atoms are considered to scatter like hard spheres, estimate the
diameter d, of a He atom and the diameter dq of an Ar atom.

It is desired to do an experiment on an isotopic mixture of N. gas. For this
purpose one takes a spherical storage vessel, 1 meter in diameter, containing
N4 gas at room temperature and atmospheric pressure, and introduces through
a valve at one side of the container a small amount of N.*% gas. In the absence
of any convection in the gas, make a rough estimate of how long one has to wait
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before one can be reasonably sure that the N and Ny* molecules are uni-
formly mixed throughout the container.

12.16 A satellite, in the form of & cube of edge length L, moves through outer space
with a velocity V parallel to one of its edges. The surrounding gas consists of
molecules of mass m at a temperature 7', the number n of molecules per unit
volume being very small, so that the mean free path of the molecules is much
larger than L. Assuming that collisions of the molecules with the satellite are
elastic, caleulate the mean retarding force exerted on the satellite by the inter-
planetary gas. You can assume that V is small compared to the mean speed
of the gas molecules. If the mass of the satellite is M and it is not subject to
external forces, after how long a time will the velocity of the satellite be reduced
to half its original value?




Transport theory using
the relaxation-time
approximaltion

IN THE preceding chapter we presented a highly simplified discussion of non-
equilibrium transport processes in dilute gases. Although this discussion was
valuable and illuminated the main physical processes at play, it was quite
crude; e.g., no attempt whatever was made to take into account the distribu-
tion of molecular velocities. In this chapter we shall treat the theory of
transport phenomena from a somewhat more sophisticated point of view, Our
main aim will be to gain insight into how the velocity distribution of the mole-
cules is actually modified when nonequilibrium conditions prevail. We shall
then use this information to investigate the resulting transport processes. Up
to a point we shall thus set up the problem quite correctly, taking proper
account of the distribution of molecular velocities and acquiring a better
understanding of the significant parameters involved. Nevertheless, we shall
still use some fairly drastic approximations in order to avoid the complications
involved in a defailed analysis of molecular collisions. The resulting theo-
retical approach is thus still fairly simple and very useful in practice, especially
in more complicated problems. On the one hand it has the advantage, com-
pared to the most elementary theory, that it provides a systematic way of
formulating a problem and that it isolates clearly the essential assumptions in
a caleulation; on the other hand, it is often tractable even when the more
rigorous theory proves excessively difficult. In the next chapter we shall then
show how this theoretical approach can be extended so as to yield a more
nearly exact theory.

13-1 Transport processes and distribution functions

The general theory of transport processes is based on the following observation.
Suppose that one knows for a given situation, which is in general not an equi-
librium situation, the actual molecular distribution function f(r,v,t). As usual,
this is defined so that

494
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S(r,v,t) dir d?e = the mean number of molecules whose cen-
ter of mass at time { is located between r and r + dr and (13:1-1)
has a velocity between v and » -+ dv.

The function f(r,v,t) provides a complete description of the macroscopic state
of the dilute gas (neglecting possible nonequilibrium perturbations of the
internal degrees of freedom of the molecules) and should therefore permit,
caleulation of all quantities of physical interest, e.g., of viscosity coefficients or
thermal conduetivities. Hence any transport problem can be solved by
attempting to calculate the actual distribution funetion f(r,v,f) for the physical
situation of interest.

To elaborate these comments, let us point out a few general relations
involving the distribution funetion f(r,v,t). Let

n(r,i) d*r = the mean number of molecules (irrespective of
velocity) which at time ¢ are located between r and r - dr.

Then one has by the definition (13-1-1)
n(rt) = j d'f (r,v,1) (13-1-3)

where the integration is over all possible velocities, Furthermore, let x(r,,t)
be any function that denotes a property of a molecule located at time ¢ near r
with a velocity near v. For example, x might denote the energy e of the
molecule; or it might denote a vector quantity like the momentum p of the
molecule, The mean value of x at time ¢ at the position r will be denoted
interchangeably either by a bar or by angular brackets and is defined by

(13-1-2)

() = %(n) = oy [ dofrmx(rof)  (18-1-9)

In particular, the mean veloeity u(r,t) of a molecule at position r and time ¢
is defined by

alrt) w (il = ﬁ [ @ sero0 (13-1-5)

This velocity w(r,t) deseribes the mean velocity of flow of the gas at a given
point. (This is just the “hydrodynamic velocity” of the fluid described by
macroscopic hydrodynamics.) It is useful to measure the velocity v of a
molecule with respect to this mean velocity, We shall therefore define the
“peculiar velocity” U of a molecule by the relation

U=v—u (13-1:6)
Thus it follows, by the definition (13-1-5), that
() =() —u=0 (13-1-7)

_ In considering transport phenomena, one is interested in caleulating the

fluxes of various quantities. Consider at time ¢ and at the point r an infini-
tesimal element of area dA whose normal is denoted by the unit vector A.
This element of area divides the gas into two regions, a (+) region on the side
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Fig. 13-1-1 The element of area dA with normal i divides the gas into a
(+) and (—) region and with velocity u. The figure illustrates mole-
cules crossing the element of area in time df from the (—) to the (+) side
(left diagram), and from the (+) to the (=) side (right diagram).

toward which f points and a (—) region on the other side. If the mean
molecular velocity w(r,t) does not vanigh, we imagine that the element of area
moves along with the fluid, i.e., that it moves without change of orientation
with the velocity wu(r,!). Because of their random velocities U about the mean
velocity w, molecules move back and forth across this element of area. Hach
such molecule carries the property x with it. One then defines F.(r,t), the ft
component of the flux of x across this element of area, by the statement that

Fa(r,f) = the net amount of x which is transported per unit
time per unit area of an element of area (oriented with its (13-1-8)
normal along A) from its (—) fo its (4) side.

Referring to Fig. 13-1-1, it is easy to calculate this flux by familiar methods.
Consider molecules at time ¢ located near r with a velocity near v. Their
velocity relative to dA is given by U =v — u. If Up= AU > 0, these
molecules will cross the element of area from the (—) to the (4) side. The
number of such molecules crossing d4 in the infinitesimal time df is the number
of such molecules contained in the infinitesimal cylinder of area dA and of
length |Udi| i.e., of corresponding height |A . Udi|. Since its volume is
|f- U dtdA|, it contains thus f(r,,t) d® | - U dt dA| such molecules. Since
each such molecule carries the property x(r,v,), the tofal amount of x carried
by the molecules across the area d4 in time df from the (—) to the (+) side is
given by

fa- oo /(ri0)0) do A~ Udt dA| x(r,v,0) (13-1-9)

where the integration is over all velocities v for which A - U > 0,

The analysis for molecules crossing d4 from the (4) to the (=) side is
similar. These are the molecules for which U, = f- U < 0. The total
amount of x carried by these molecules scross the area dA in time d¢ from the
(+) to the (—) side is then given by the corresponding integral

[ veo (rivt) dio [+ UdidA| x(r,00 (13-1-10)
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To obtain the net flux of x from the (—) to the () side one needs then only
subtract (13:1-10) from (13-1-9) and to divide by dt dA. Thus

Fatrt) = [y pao @S Ulx = [} yodio A Ulx (13:1-11)

In the first integral [A -« U| = A - Usince A+ U is positive. But in the second
integral [A - Ul = —fA+ Usinee &+ U is negative. Hence the integrand in the
second integral assumes a net positive sign, and the two integrals combine to
give a single integral over all possible velocities:

F Folrt) = [dw fA- Ux (13-1-12)
In terms of the definition (13-1-4) this can be written
[ Fal(rt) = n (A Ux) (13-1-13)
Thus F, can be regarded as the i component of a flux veclor & such that
Fo= N+ F (13-1-14)
where F = n{Ux) (13:1:13)

Examples In ealeulating the viscosity of a gas (as we did in See. 12-3),
one is interested in finding P.., the @ component of the mean stress exerted,
on 4 unib area of surface with normal oriented along the # axis, by the fluid
below this surface on the fluid above this surface. The corresponding rate of
change of momentum i given by the net flux of & component of molecular
momentum transported from below to above the surface. The quantity
transported is thus x = mu,, whileA * U = U,. Hence this stress, or momen-
tum flux, is by (13-1:18)

Poo = nmU.ta) (18:1-186)
This can also be written in the form
Py = 0m{Us(ta + Ug)) = nmfua(Us) + (V.U
or Pea = 2m(U,U.) (13:1:17)

since ua(r,t) does not depend on v and (U,) = 0.
For instance, in the physical situation illustrated in Fig. 12-3-2, one has
%: 7 0 and w. = 0, Then U, = v, and (13:1-16) becomes simply
Pig = nm{tabe) = m[ @ fouta (13-118)
The mean pressure f is just the atress exerted normal to the surface, i.e., in the
z direction, Hence one hag
P = P = nm(v,?) (13:1-10)
This result agrees with that of Eq. (7+13-7) and is, of course, always a positive
quantity. In caleulating P., in (13:1-18) one must use the actual function
S(r,v,t) for the nonequilibrium situation. If f were simply the equilibrium
distribution function for a gas at rest, f would depend only on |v|. In calen-
lnting P,., the integrand in (13-1-18) would then be an odd function of v, and
v, g0 that the integral over all velocities would vanish by symmetry. The
existence of a shearing stress P.. #€ 0 in the situation of Fig. 12:3-2 is due
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13 -2  Boltzmann equation in the absence of collisions

" In order to find the distribution function f(r,v,?), we should like to know what
relations this function must satisfy. Let us assume that each molecule of
mass m is subject to an external force F(r,f) which may be due to gravity or
electric fields. (For simplicity we assume that F does not depend on the
velocity v of the molecule. We thus exclude magnetic forces from the present
discussion.) We begin by considering the particularly simple situation when
interactions between molecules (i.e., eollisions) can be completely neglected.
What statements can one make about f(r,v,f) under these circumstances?
Consider the molecules which at time ¢ have positions and veloeities in the
range d°r d*» near r and v, respectively. At an infinitesimally later time
t' = ¢ + di these molecules will, as a result of their motion under the influence
of the force F, have positions and velocities in the range d®' d%’ near r’' and
v', respectively, Here
r'=r+rdl=r+vdl (13-2-1)

a1l W=vtodi=vt o Fd (13-2-2)

The situation is illustrated schematically in Fig. 13:2-1. In the absence of
collisions this is all that happens; i.e., all molecules in the range d*r d*v near r

A
t-+dt
e s

l“’

x
Fig. 1321 Figure illustrating the motion of a particle in one dimension
in a two-dimensional phase space specified by the particle position z and
ita velocity v..
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and v will, after the time interval df, be found in the new range d*' d*v' near
r' and »’. In symbols,

For' ) d3' d%' = f(r,v)t) d% dv (13-2-3)

Remark The element of volume dr d° in the six—dimené}.enal (r,v) phase
space may become distorted in shape as a result of the motion. But its new
volume is simply related to the old one by the relation

dir’ dv' = |J| dr dow (13-2-4)

where J is the Jacobian of the transformation (13:2:1) and (13-2-2) from
the old variables r, v to the new variables r', »’. The partial derivatives
appearing in J are (for the various components &, v = 1, 2, 3)

%:% = by % = Gt SRy R

\GIJ.:' 1 dF., . eﬂq’ . o
By O O L b DY UGS

where we have used the faef, that F is independent of ». Hence J is given by

0 a
1 0
3z’ y' 2wl 0 o) & 0 13

J

5 &, 1 2 Yoy Uy 0)

=
:g’l:gﬂ: &

oo~ ico B
o~ o ioco B o
- oo e s

where all nine terms in the lower left corner of the determinant are propor-
tional to di. Hence
J =1+ 03

so that J = 1is correct up to and including first-order terms in the infinitesi-
mal time interval di. Hence it follows by (18-2-4) that

d¥r! div' = dor d's (13-2. 5)

By (13-2-5) the relation (13:2-3) becomes simply*
i o' t) = f(rot) (13:2-6)
or fr +#dt, v+ ddt, t + dl) — f(rpt) =0

By expressing this in terms of partial derivatives, one obtains

afr, . of . Bf. af . B o L] [P
[(E“‘@y+$")+(§£”=+§:T,"’"+a_u,”’)+a]d"°

* Bince J in (13-2 4) differs from 1 only by terms of second order in 4f, it follows that
(13-2-5) and (13-2-6) hold actually for all times and not merely for infinitesimal times.
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More compactly, this can be written

> Df =0 (13-2.7)
¥ of @ o | F 4
sthiors D= Mg ATy AL B (329

Here 8f/dr denotes the gradient with respect to r, i.e., the vector with com-
ponents af/dz, 8f/dy, df/0z. Similarly, 8f/9v denotes the gradient with
respect to v, i.e., the vector with components af/dv., af/dv,, of/dv..

Equation (13:2-7) is a linear partial differential equation satisfied by f.
The relations (13:2-6) or (13-2-7) assert that f remains unchanged if one
moves along with the molecules in phase space. (This is a special case of
Liouville’s theorem proved in Appendix A-13.) Equation (13-2.7) is the
Bolizmann equation without collisions. (In plasma physics it is sometimes
called the “Vlasov equation.”)

* Alternative derivation Instead of following the motion of an element of
volume of phase space as we did in Fig. (13-21), one can focus attention on a
fived element of volume. Thus, consider a given range of molecular positions
between r and r ++ dr and of velocities between v and v + duv (see Fig. 13-2-2).
The number of molecules in this element of volume d*r d*v of phase space
changes as the positions and velocities of the molecules change. The increase
in the number of molecules in this range in time df is given by (af/dt) d*r d®v dl.
This change is due to the number of molecules entering and leaving this range
d*r d*v as a result of their motion.

In the absence of collisions, the molecular positions and velocities change
simply in accordance with (13-2-1) and (13-2-2). The number of molecules
entering the “volume” d®r d*v in time di through the “face’” z = constant is
then just the number contained in the volume (& di) dy dz dv. dv, dv,, i.e.,
equal to f(& dt) dy dz dv. dv, dv.. The number leaving through the *face”

ax
(2 + 5~ dx) dt

wetde,

L

x+ dx x

Fig. 13-2:2 Figure illustrating a fived elemeni of volume of phase space for
a particle moving in one dimension and specified by its position z and
velocity v;.
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x + dz = constant is given by a similar expression except that both f and z
must be evaluated at @ + dx instead of at 2. Hence the net number of mole-
cules entering the range d% d% in time di through the faces z and = + dz is

fa dt dy dz dv, dvy, dv, — I:fx‘ -+ % (f&) dz] di dy dz dv. dvy dv.
= — 2 (fe) dtdsr d

Summing similar contributions for moleeules entering through the faces labeled
by ¥, 2, ts, vy, &nd v,, one obtains

Saawan = - |2 o) + ;— () + :% )
' o (8 2 (i) + 2 o) | dv e e

3
ar o 6:1:., 2,
me ge bl de]e S R0 wan
where _ X =2, Ty =4, o= 2
and Vi = Uy Vg = ty, ¥3 = U,
Ofa _ OWa _
But T i 0

since the variables v and r are independent, and

Pe _ LOFs _ o

e M I,
since F does not depend on veloeity. Hence the last bracket in (13-2-9)
vanishes so that this equation reduces to

af .g '-..a.‘—ra
i A

which is identical to (13-2-7).
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13:3 Path integral formulation

The investigation of trausport processes requires a consideration of the effects
of molecular collisions. We are interested in finding f(r,v,). Suppose that
there were no collisions. A molecule with poesition r and veloeity v at time #
would then at any earlier time t, = { — (' have a position ry and velocity vy which
eould be caleulated from the equations of motion for the particle under the
influence of the force F. Both ry and vy depend thus on the elapsed time ¢’
and on the values of r and v at the time {. In symbols,

ry = r(tu) = ru(t; r,v)
vo = o(lo) = volt; r,v}} (13:3:1)

In the absence of collisions, Df = 0, so that f remains unchanged in any finite
time interval, i.e.,
f(rv,t) = f(rovo,to) (13:3-2)

Let us now consider the effects of collisions. We assume, as in Sec, 12-1,
that the probability that such a molecule suffered a collision in the time
interval between {y = t — t' and &y — di’ = {; — (' + di’), and then continued
to move without further collisions during the time ', is given by

’

L ger (13-3-3)
Let us suppose that the number of molecules near ry and v, which have just
suffered a collision at time {, is given by [ (rg,vo,ts) d d*vy. To avoid a
detailed analysis of collision processes, we must introduce some assumption
concerning the funetional form of f®. We shall thus assume that the effect
of collisions is simply to restore the distribution funetion to one describing
equilibrium conditions existing locally near the particular point at the par-
ticular time. For example, if the molecules obey Maxwell-Boltzmann statis-
tics, we assume that /@ has the form.

|
FO (rgwple) =1 (éﬁf) e—i8m(v—u)

where the parameters », 8, and u may be functions of r, and ¢, (though not
of vy) and represent respectively the local number density, temperature parame-
ter, and mean velocity of the molecules.* Tt follows, by (13:3-2), that if there
were no collisions, all the f (ry,vy,b) d*ry d®ve molecules near ry and v, would
arrive near r and v at time . Because of collisions only a fraction (13-3-3)
of these manage to survive so as to arrive near r and » at time {. Hence it
follows that the number of molecules near r and v at time ¢ can be regarded as

* 1f externally applied forces or temperature gradients are not too large, collisions may
readily be effective in bringing about equilibrium conditions within any macroscopically
small volume element. But the existence of such local equilibria does not imply that the
various volume elements are in equilibrium with each other; ie., that there exists global
equilibrium throughout the whole gas.
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X
Fig. 13-3'1 The physical content of Eq. (13:3-4), shown schematically. A
particular element dr dv. of phase space is shown at time . The curve
indicates the trajectory in phase space of a particle which moves solely
wunder the influence of the external forces so as to arrive in dr di. at time {.
The other variously shaded elements of volume in this phase space indicate
those particles which have just been thrown onto the trajectory as a result
of collisions and which succeed in staying on this trajectory without further
collisions until time {.

consisting of the sum total of all molecules which suffered eollisions at all pos-
sible earlier times ¢ — ' and then moved without further collisions so as to
reach the region near r and v at time {. In symbols,

’ f(rﬂ-’,f) = ﬁ]“ f(ﬂ) (ru, vo, b — [’} et dT""

(13-3-4)
Here the integration is over all earlier times ¢/, and ry and v, are, by (13-3-1),
also functions of t". Note that the integrand becomes negligibly small when
' > 7. Hence it is sufficient to solve the equation of motion (13-3-1) relating
ro and v to r and v for only relatively short time intervals ¢ of the order of 7.

Remark In writing (13-3-3) or (13-3'4) we have assumed that the velociiy
change (due to possible external forees) of 8 molecule during a time 7 is suf-
ficiently small that changes in the collision probability v between collisions
can be neglected. Then 7(m) = 7(v) and one ean simply put 7 = 7(v) in
(13-3-4). This is usually an excellent approximation. If this is not true,

7~ itself becomes a funetion of time since » = v(f), Then (13+3:3) would
have to be replaced by (12-1:12), and (13-3-4) would become

f(rot) = ﬂ, FO(ro, oo, ¢ — t) 2 ( - f(a)) 7 — 1)

Equation (13:3-4) is the desired “‘kinetic” or “path integral’’ formulation
of the transport problem. It allows one to compute f from a knowledge of the
collision time r(v) and from an assumed function f© describing the local equi-
librium distribution immediately after a collision. This is, of course, nol an
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exact preseription for caleulating f. It assumes the existence of a collision time
r(v) which can be approximately calculated from the scattering eross section by
(12-2-8). Furthermore, it assumes that the same distribution f is always
restored after collisions; henee it does not take into account “persistence-of-
velocity”” effects, i.e., the fact that a molecule after a collision has a velocity
that is not independent of its veloeity just before the collision. Nevertheless,
(13-3-4) is a very useful approximation.* It has the great virtue of simplicity
so that it can be used to discuss complex physical situations without encounter-
ing prohibitive mathematical difficulties.

Finally, it is worth pointing out that (13-3:4) can be written in a con-
venient alternative form. Let us write f(©[f] to denote the complete time
dependence of @ including that eontained in ry and vy. Then (13-3-4) can
be integrated by parts to give

) s (o[ 4" i1 e = e{f‘“’[t’] o Jgt
frof) = ~ [7 ol der) = —[foll el + [FEmE et ar
The first integrated term on the right becomes f[0] = f(r,v,f). Hence we

obtain

w dfofg
S o = frwt) — 1O = [T eerar  3:3.5)
This has the advantage that it yields directly the (usually small) departure of
f from the distribution function f®.

13- 4 Example: calculation of electrical conductivity

We illustrate the path-integral method by treating two particular situations of
physical interest. The first of these is the case of electrical conductivity
already discussed by the simplified arguments of Sec. 12-6. We again consider
a gas of particles of mass m and charge ¢ in the presence of a constant uniform

* This path-integral formulation has become popular in recent years, particularly in
solid-state physics. See R. G. Chambers, Proc. Phys. Soc. London, vol. 85A, p. 458 (1852);
also V, Heine, Phys. Rev. vol. 107, p. 431 (1857); Cohen, Harrison, and Harrison, Phys. Rev.
vol. 117, p. 937 (1960).
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external electric field & in the z direction. The particles might be ions in a gas
which are scattered by the molecules of the gas; or they might be electrons in a
metal which are seattered by the atoms of the lattice.

We assume that collisions lead to a loeal equilibrium distribution of the
form

9% et) = ﬁ{e}, e = tmo? (13-4-1)

Here g(¢) for the ions in a gas is just the equilibrium Maxwell-Boltzmann dis-
tribution, i.e.,

i
gle) = n(%ﬁ) e (13-4.2)
where n is the number of particles per unit volume.

Consider a particle with position r and velocity v at time . One can find
its position r(f) and velocity v(f) (and thus also its energy e(to)) at any other
time ¢y from the equations of motion. These are in this case

dv, _ dy,

jfi @ = (13-4-3)
"o = €8
To calculate f by (13-3-5) we note that, with ¢’ = ¢ — ¢, and using (13-4-3),
90 o HN s 908
dt’ dity dv; dig v, m
Thus ‘%’f - ::_85% s eSv,gg (13-4-4)

since de/dv, = my,. We assume that & is sufficiently small that ». does not
change appreciably in a time of the order of +; ie., we assume that
(av./dt)r = (e&/m)r < 7, where 7 is the mean thermal velocity of the particles.
Then dg/de and v, in the integral of (13:3-5) can to good approximation be
evaluated at the time ¢ instead of at the earlier timefy = t — ¢/. Thus (13-3-5)
becomes

Af = —et, g—f fo * el dy!
or
> 108 = g(6) — e8ro, 2 (13-4:5)

The current density j, in the A direction is the flux of charge through an
element of area directed along A. Thus

jn = [ d fon (13-4-6)

Note that, since both r and g depend only on |v|, the integral [ d® gr, has an
odd integrand for every velocity component v, so that it vanishes. This is,
of course, an obvious result, since j must be zero in the equilibrium situation in
the absence of an electric field,
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By symmetry j must be in the direction of the electric field &; thus only
j= does not vanish. By (13-4-5) and (13-4-6) one obtains

> wm=le—gf d“vé—dfrv,“ (13-4.7)

The ratio j./& = oq is, by definition, the electrical conductivity of the particles.
As one would expect for the case of sufficiently low electric fields, (13:4-7)
shows that j, « &.

When g is the Maxwell-Boltzmann distribution of (13-4-2), as it would be
for ions or for (sufficiently dilute) electrons in a gas,

gt s
e Bg (13-4-8)
Then (13-4:7) becomes
i = pet f @ gro.? (13-4-9)

To evaluate the integral one requires a knowledge of 7 as a funetion of ». This
could be calculated by (12-2.8), but the result is rather complicated. If one
makes the approximation of replacing r(2) by some constant mean value ¥ and
takes it outside the infegral, one obtfains

oa = fe'F f dv gu.t = Be7(nv.?)

Here the average is calculated with the equilibrium function g so that the
equipartition result +mp.? = LT applies. Thus
¥ 0%
oa =17 (13-4-10)
which agrees with our previously derived result (12-6-8).

If it is desired to apply (13-4-7) to the calculation of the conductivity of
electrons in a metal, then g(e) is given by the Fermi distribution so that
g = (efl® 4 1)~ Since this gas is highly degenerate, dg/de differs from zero
only when e = g, the Fermi energy (see Sec. 9-16). Hence (13-4-7) shows that
only the electrons with energy close to the Fermi energy contribute to the con-
ductivity of the metal. Correspondingly, only the value of r = 74 for electrons
near the Fermi energy is needed to compute the integral. Thus (13-4-7)
becomes

au = —e'rs [ d‘v%%v.’ (13-4-11)
This integral can, however, again be expressed in terms of the total number n
of electrons per unit volume. Since dg/dv, = (dg/de)(de/8v.) = mv.(dg/de),
2 dg b g ag Uz — 1 [ s l i
f__- dulﬁ”’ - f_“ du:a‘;;;ﬁ_a[guz]—w mf__nd""g
where we have performed an integration by parts. The first term on the right
vanishes since g = 0 for v, = + «. Hence (13-4:11) becomes

2
ga = —ery (— % f dv g) = %‘rr (13-4-12)
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since the integral is simply equal to n. The relation (13-4-12) is similar to
(13-4-10). But here we have not introduced any approximations concerning
the velocity dependence of r, since only the value of r for electrons near the
Fermi energy is of relevance. Note, however, that n in (13-4-12) is the tofal
number of. electrons per unit volume.

13 -5 Example: calculation of viscosity

We treat again the physical situation illustrated in Fig. 1232, where the mean
velocity eomponent u.(g) of the gas does not vanish and depends on 2. We
assume that collisions tend to produce a local equilibrium distribution relative
to the gas moving with a mean wvelocity u. at the location of the collision.
Thus

f<m(l'|t?,t) = gl”w e u:(s)l vﬁ‘;”’] o 9( U‘r U‘l’IU3) (13'5' 1)
where U, = v — ua(2), =1, .= v, (13.5.2)

and g is simply the Maxwell distribution

0V T = o(V) = () e-tomr (159

Since there are no external forces acting on a molecule between collisions,
the molecular velocity remains constant between collisions. Consider such a
molecule which at time 7 is located at z and has a velocity component v,. Then
as a funection of the time #, this molecule moves simply so that

dil(t?) =l =, - (13-5-4)

By (13:5-1) we note that f{[¢'] depends on the time ' = { — i, only through
the time dependence of z. Thus

are® _ _ df® _ o 9U. _ _ 9y (_ Ous)dz(lo)
dt’ dto 2 BU; aty 8U, az dﬁo
or by (13:5-4)
af® g ou,

i (:58)

This expression is independent of ' so that (13-3-5) becomes simply

> j=go+ 2y, (13-5-6)

We now caleulate the stress compoent P... By (13-1-17) this is
Po=m [ d fU.U. (13-5-7)

Sinee f = g(U) is only a function of |U|, the integral [ d%» fOU.U, = 0 by
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symmetry, since the integrand is an odd function of U, and of U,. Hence
(13:5:7) becomes simply, since v. = U, by (13-5-2),

Pu= -3 (13-5-8)
where
> n=—m [ mx% UAU.r (13-5-9)

The coefficient n in (13-5-8) is, by definition, the coefficient of viscosity, and
(13-5:9) represents the expression derived for it on the basis of the present
formulation of the theory.

If we again make the approximation of replacing r(v) by a suitable mean
value 7 so that it can be taken outside the integral, further simplifications
become possible. Thus one gets

n=—m [[ av,av. 02 [* av. 5 v.

Integrating by parts

[ . u.

Hence 7

[gU.] = — f_"_ dU,g =0 — f_"‘ dU. g
mif U gU.2 = minUJ (13-5-10)

where the mean value is calculated for the Maxwell distribution (13-5-3) so
that the equipartition result mU,* = $kT applies. Hence

b n = nkT7 (13:5:11)
By symmetry one can also write U7 = $TU? so that (13:5:11) becomes
n = ki T3 (13-5-12)

If one puts approximately T2 =~ U?, then +U = [, the mean free path. If one
considers further the case where u. is small so that U7 = 7, then (13-5-12)
reduces to 4nmld, the expression (12:3:7) derived by simple mean-free-path
arguments.

13:6 Boltsmann differential equation formulation

It is possible to formulate the problem of caleulating f(r,v,t) by an alternative
approach which is equivalent to the path-integral method of Sec. 13-3. Pro-
ceeding as in Sec. 132, focus attention on the molecules which at time t have
position and velocity in a range d*r d*v near r and v. Consider then the situa-
tion at an infinitesimally later time ¢ + dt. If there were no collisions, these
particles would simply move, under the influence of the external force, to a
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position near r’ = r 4+ # di and to a velocity near ' = v 4 # dt so that Eq.
(13-2:3) would be valid. But if collisions also take place, the number of
molecules in the range d’r d% can also change by virtue of collisions. The
reason ig that, as a result of collisions, molecules originally with positions and
velocities not in this range d®r d®v can be scattered into this range; conversely,
molecules originally #n this range can be scattered out of it. Let Def d*r d*»
denote the net increase per unit time in the number of molecules in the range
d’r d®v as a result of such collisions. Then one can assert, instead of (13-2-3),
that [the number of molecules which at the time ¢ 4 df are in the range near
(r + #df) and (v + ® dt)] must be equal to [the number of molecules which
were at time ¢ in the range near r and v and thus moved to (r 4 F dt) and
(v + © dt) as a result of the external force] plus [the net change in the number
of molecules in this range caused by collisions in the time interval di]. In
symbols,

fr+Fdi, v+ odl, t + di) &% d%' = f(rvt) d’r d*v + Def d*r dPv di
Using (13:2:5), this becomes with the definition (13-2-8)
> Dj = Def (13-6-1)

This is ealled the “Boltzmann Equation.”

The compact form (13:6-1) hides a complicated equation. In particular,
one can write down an explicit expression for Def in terms of integrals involving
fand describing properly the rate at which molecules enter and leave the range
d% d®v as a result of collisions. The Boltzmann equation (13-6-1) is then an
“integrodifferential”’ equation, i.e., both partial derivatives of j and integrals
over [ enter in this equation for the unknown function f, This equation is the
basis of the more exact transport theory to be discussed in the next chapter.

For the present we want to avoid excessive complications by means of
suitable approximations for D¢f. Let us then simply assume that the effect
of collisions is always to restore a local equilibrium situation deseribed by the
distribution funetion f(r,v,f). Let us further assume that, if the molecular
distribution is disturbed from the local equilibrium so that the actual distribu-
tion f(r,v,t) is different from f®, then the effect of the collizions is simply to
restore f to the local equilibrium value f® exponentially with a relaxation time
o which is of the order of the time between molecular collisions. In symbols
this assumption for Dgf reads

— (o
3% B e (13-6-2)
To
According to (13:6-2), D¢f = 0if f = f©®; also for fixed r and v, f changes as
a result of collisions according to f(t) = f@() + [f(0) — F™(0)] exp (—1/70).
With the assumption (13-6-2), Eq. (13-6-1) becomes

e GRS S8 Vi o, o (=R N
= Dfm < tvetf.d = = (13-6-3)



510 section 13 -7

This is simply a linear partial differential equation for f and is the Boltzmann
equation with the relaxation-time assumption.

]3 . 7 Equivalence of the two formulations

We now want to show that the special Boltzmann equation (13-6-3) is com-
pletely equivalent to the path integral (13-3-4). Indeed, the latter integral is
just an integrated form of the partial differential equation (13-6-3). Thus it is
quite immaterial whether a given transport problem is discussed in ferms of the
path-integral method of Sec. 13:3 or by the Boltzmann equation method of
Sec. 13:6. For more complicated problems the path-integral method is usually
easier, since it provides already an expression in integrated form so that no
partial differential equation needs to be solved.

To show the equivalence, we consider f(r,v,t) as given by (13-3-4) and ask
what differential equation f satisfies. Remember that in (13-3-4) the variables
r and v are related to the corresponding variables rq and v, via the equations
of motion (13-3-1), That is, ro and v, are the values assumed by the position
and velocity of a molecule at time ¢y, = ¢t — ¢' if the molecule position and
velocity r and v at time ¢. Or conversely, r and v are the vilues assumed by
the position and veloecity at time ¢ = f, + (' if the corresponding values are ry
and v at time ¢,. Consider then a molecule with given values of ry and v, at
timefy = £ — . The equations of motion (13-3-1) under the influence of the
external force then imply a connection such that at time ¢ the molecule has
position r and velogity v, and that at the time ¢ 4 dt it has position r + # di
and velocity » + ¢ dt. Now by (13:3-4)

= 1
femt) = [ 1O vo,t — ) et (13-7-1)
Similarly, one must have
f
fr+Fdto+odt+d) = [ fOCro, vt +dt — ¥) e—ﬂf‘%‘ (13-7-2)

Subtracting (13-7-1) from (13:7.2), one obtains
fr+ Pt v+ odi, t +dt) — f(ro)

_ (O vt — ) o, O 7.
_fu Tw el = Daretr T (137:3)

Since we are considering a situation with fixed given values of 7y and v, we can
write
af O (ro, vo, t = ¢) _ _ 3 O(ro, v, ¢ — 1)
at A at’

Dividing both sides of (13:7-3) by di then gives

= _1 “af(w(rm vlht_t’) —i'fr A4 M
Df = ;fu LT ety (13-7-4)
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Here the left gide is just the quantity Df defined in (13-2-8). Integrating
(13-7:4) by parts, one gets

Df = = [0y vt = 1) 0] *

1 -
— (0 R LAV o Sond
. = fa T (ry, v, ¢ t') e <

3, % [0 — fO(r0,8)] — %f(r,v,t)

since the remaining integral is just the one occurring in (13:7:1). Hence one
obtains

Df =1 (/@ - J) (13-7-5)

which is identical with the Boltzmann equation (13:6.3), provided that the
relaxation time ry introduced there is identified with the ordinary mean time »
between molecular collisions. We shall therefore henceforth write vy = = in
the Boltzmann equation (13-6-3),

13 . 8 Examples of the Boltzmann equation method

In order to apply the Bolizmann equation (13- 6-3) to the discussion of trans-
port problems, further approximations are usually needed to achieve a solution
of this partial differential equation. A frequently oceurring situation is that
where the departures from the equilibrium situation are relatively small. The
approximation procedures exploit this fact.

Suppose that the situation is one of complete equilibrium, Then f =
is the actual equilibrium distribution which ought also, therefore, to satisfy
the Boltzmann equation (13:6-3). Indeed this is the case. The collision
term Dgf e (f — f@) on the right side vanishes then. Furthermore, the left
side Df of (13-6-3) also vanishes as a special case of Liouville’s theorem.

Remark For example, for a gas at rest one knows by statistical mechanics
that f® = 79(¢) is only a function of the energy e of the molecule. Specifi-
cally, € = mv® + V(r) where U(r) is the potential energy from which the
fores is derived so that F = —(dU/9r). Then af®/df = 0, Also the term

afe ggj % _ o Lo

= 61' de or = e
(0) {4 (0}
just cancels the,ﬁ‘tarmfag— L 9« o a‘f R - Moy

m dv m e dv de m

Thus D = 0 so that the left side of (13:6+3) vanishes.

Consider now a situation slightly removed from equilibrium. Then one
can write f = f® - 0 where f( <« f©. The collision term on the right
side of (13-6-3) becomes just — f"/r. The left side is then also small and can
be evaluated approximately by neglecting terms in f0, This perturbation
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procedure is best illustrated by some examples. We shall, therefore, apply the
Boltzmann equation method to the same two cases already discussed by the
path-integral method in Secs. 13-4 and 13-5.

Electrical conductivity The physical gituation is the one deseribed in Sec.
13-4. In the absence of an external electric field &, the distribution funetion
is given by

O = g(e), €= ymp? (13-8-1)

where g(e) is the MB distribution (13-4-2) in the case of ions or the FD dis-
tribution in the case of electrons in a metal. If a spatially uniform time-
independent electric field & is applied in the z direction, one expects that the
new distribution function f(r,v,f) will still be independent of r and {. Then
the Boltzmann equation (13-6-3) becomes simply, since F = e& has only a
z component,

@mafn s e (13-8-2)

maﬂz T

Let us assume that & is quite small. Then one expects that f differs only
slightly from f® = g. Thus we put

f=g+ fv where [V < g (13-8:3)
Then (13:8-2) becomes in first approximation

B R 8

i = (13-8-4)
Here we have neglected on the left side the term involving f©, since it is of the
order of the product of the two small quantities & and f©. Thus (13-8-4)
becomes

o =fmg= BN, U (13-8-5)

which is identical with (13:4-5). The rest of the discussion proceeds then as
in Sec. 13-4.

By (13-8-3), the above approximations are valid if f¥ < g. Since
dg/de = —pfg, this condition becomes by (13-8-5) e8rv.8 = e8(rv.) /kT K 1.
This means that the electric field & must be sufficiently small that the energy
acquired by the particle from the field & in a mean free path v.r is appreciably
less than its mean thermal energy.

Viscosity The physical situation here is the one discussed in See. 13-5.
In the absence of a mean velocity gradient, the equilibrium distribution for a
fluid moving with constant mean velocity u. in the x direction is simply

FO = g(ve — usy,0:) = g(Us,U,,UL), (13-8-6)
the Maxwellian distribution (13-5:3) relative to the moving fluid. This
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satisfies the Boltzmann equation (13:6-3). If there is 8 mean velocity gradient
in the gas so that u; in (13-8-6) is a function of z such that du./dz = 0, then
(13-8-6) no longer satisfies the equation (13:6:3). Bince the situation is
time-independent, f does not depend on t. But f will depend on 2, since this
is the direction of the velocity gradient. Here there is no external force, i.e.,
F = 0, so that the Boltzmann equation (13-6-3) becomes simply

v L AR (13.3.?)

“ oz T

Again we assume that du./dz is sufficiently small, and hence 8f/dz is sufficiently
small, that f differs from f only by a small amount. Putting again

F= 1O+ @, with fO & f© (13-8-8)

(13-8-7) becomes then

(D) (1)
,,;?_g? 3 Jf? . (13-8-9)

where we have neglected terms in f on the left side. Thus

6O _ . ag ou
dz *al, az

FO = f — fO = —qy, (13-8-10)

which agrees again with our previous expression (13-5-6).

SUGGESTIONS FOR SUPPLEMENTARY READING

C. Kittel: “Elementary Statistical Physics,” secs. 40, 41, 43, John Wiley & Sons, Inc.,
New York, 1958,

8. Chapman and T. G. Cowling: “The Mathematical Theory of Non-uniform Gases,”

2d ed., chap, 2, Cambridge University Press, Cambridge, 1952, (Discussion of
distribution functions and fluxes.)

PROBLEMS
13.1 Since the relaxation time r is only a function of || (or of ¢ = $ms?), show by

performing the integrations over angles in (13- 4-7) that the expression for the
electrical conduetivity ean be written in the form

Tat = —éezfgﬂl’d‘u
or Tat = *—%8’ L“%w‘du

where g = g(e) = g(3mt?) is the equilibrium distribution function.
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13.3

13.4

13.5

13.6

PROBLEMS

Suppose that the particles in the preceding problem obey Maxwell-Boltzmann
statistics. Show that their electrical conductivity can be written in the con-

venient form
2

Tol = % T)e

where (7}, is a suitably weighted average of 7(¢) over the velocity distribution
and is defined by

B e
(r)e = i fu ds e s47(iis)

Here i = (2kT/m)! is the most probable speed of the particle in equilibrium
and § = v/ is a dimensionless variable expressing molecular speeds in ferms of
this most probable speed. The average (r), has been defined in such a way
that it reduces to 7 when this quantity is independent of v,

Bhow that the expression (13-5+9) for the viscosity can be written in the form

asec it dg
ISe 15[“’”&"”‘

where g = g(e) = g(zmU/?) is the equilibrium distribution function,
If the molecules obey Maxwell-Boltzmann statistics, show that their coefficient
of viseosity ean be written in the form

= ﬂkT("'}w

where (1}, is & mean collision fime defined by
16, f= o
Iriy = W; f(l ds e~'s%r(0s)

and where the notation is similar to that used in Problem 13.2. If 7(») is
independent of v, (r), again reduces to r.
Assume that (7), in the last problem (or in (13-5-11)) ean be approximated by
a constant valuer = [/i = (‘\/E nog) ! where oy is the constant total scatter-
ing cross section between rigid-sphere molecules. Caleulate n in terms of o, T,
and the molecular mass m. Compare the result with the simplest mean-free-
path calculation (12:3-19) and with the result of the rigorous calculation
(14-8-33).
A dilute gas of monatomic molecules of mass m is enclosed in a container and
maintained in the presence of & small temperature gradient 87 /9z in the # direc-
tion. Tt is desired to find an expression for the thermal conductivity of this gas
at the temperature T. If Maxwell-Boltzmann statistics are applicable, find,
in first approximation, the distribution function f of the molecules in the pres-
ence of this temperature gradient by using the path-integral method. Assume
that the molecular collision time 7 is independent of molecular speed.
Suggestion: Assume that the distribution function immediately after col-
lision is of the local equilibrium form

g=mn (%%l)i exp (—#8me?)

where the temperature parameter 3 = (kT)~! and the local density n are both
functions of 2z, Since the experimental conditions are such that no macroscopie
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mass motion of the gas is allowed, the condition that #; = 0 yields a relation
between n and 8. What does this relation say about the pressure in the gas?
13.7 Find the molecular distribution funetion in the preceding problem by solving
the Boltzmann equation.
13.8 Use the results of the preceding problems to caleulate the thermal conduetivity
of the gas, Show that it can be written in the form

_§nk=T
S

K T
where r is the constant collision time.

13.9 Compare the result obtained in the calculation of the preceding problem with
the simplest mean-free-path caleulation x = §ncil of (12:4-8) for a monatomic
gas. Assume a constant relaxation time r = I/0.

13.10 Assuming that the collision time 7 ean be taken as a constant, use the results of
Problems 13.4 and 13.8 to find the ratio /7 of thermal conductivity to vis-
cosity. Compare this with the value of this ratio obtained by the simplest
mean-free-path calculations. Does the more refined calculation improve the
agreement of this ratio with experiment?

13.11 The conduetion electrons of a metal are primarily responsible for the thermal
conductivity of the metal. Caleulate the thermal conductivity « due to these
conduction electrons, remembering that these form a highly degenerate Fermi-
Dirac gas. In setting up the caleulation (either from the point of view of the
path integral or the Boltzmann equation method), remember that the thermal
conductivity is measured under open-circuit conditions where no electric cur-
rent flows through the metal. Hence in the presence of the thermal gradient,
a slight redistribution of the conduection electrons must oceur so as to set up
in the metal an electric field & of just the right amount to reduce the mean drift
velocity of the electrons to zero. Express your final answer for & in terms of
the temperature 7 of the metal, the total number n of conduction electrons per
unit volume, the electron mass m, and the collision time 7 of the electrons
having an energy near the Fermi energy.

13.12 Use the result of the preceding problem and that of Eq. (13-4-12) to compute
the ratio x/g.; of the thermal conduetivity & to the eleetrical conductivity a.; of
a metal. Show that this ratio depends only on the temperature T and on the
fundamental constants e and &, but is independent of the mass of the electrons,
their number density, or their collision times in the particular metal. (This
result is known as the Wiedemann-Franz law.)

Calculate the value of this ratio numerically at 0°C (T = 273°K). Com-
pare this value with the experimentally measured ratio for the following metals:
silver, gold, copper, lead, platinum, tin, tungsten, and zine. (The experimen-
tally measured values x and o, for these metals can be found, for example, in
the ““Handbook of Physies and Chemistry” (Chemical Rubber Publishing Com-
pany) or in the “American Institute of Physies Handbook,” 2d ed. (MeGravy-
Hill Book Company, 1963).)
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Near-exact formulation
of transport theory

OUR TREATMENT of transport processes in the preceding chapter left much to be
desired. We assumed the existence of a relaxation time r and had only approxi-
mate means of calculating this quantity, More important, we did not treat
the effects of collisions in a detailed way. Thus we neglected correlations
between molecular velocities before and after a collision, i.e., persistence of
velocity effects. We shall now formulate the problem in a more rigorous and
satisfactory way without using the concept of a relaxation time. The procedure
will be fo write down an equation for the distribution function f(r,u,t) directly
in terms of the scattering cross section o for binary collisions hetween the mole-
cules. The solution of this equation provides, in principle, a solution of the
physical problem. Since the equation is quite complicated, the task of solving
it is not easy, and approximation methods must again be used. Nevertheless,
despite increased complexity, there is an important advantage in formulating
the problem in this way. The reason is that the point of departure of the
theory is an equation which is fairly rigorous. Hence general theorems can be
proved and systematic approximation procedures developed. On the other
hand, if one starts from the simpler formulations of the preceding chapter, it is
difficult to estimate the errors committed and to know how to correct for
certain effects (like persistence of velocities) in a systematic way.

14' : 1 Description of two-particle collisions

We begin our discussion by considering in detail collisions between two mole-
cules. Throughout this chapter we shall assume that if the molecules are not
monatomie, their states of internal motion (e.g., rotation or vibration) are
unaffected by the collisions. Thus the two molecules under consideration ean
be treated as simple particles with respective masses m; and m., position vectors
ry and rs, and velocities v; and vs. The interaction between these particles
depends then in some way on their relative positions and velocities. (If the
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particles also have spins, we assume for the sake of simplicity that their inter-
action does nof depend on their spins.)

The collision problem can be much simplified by an appropriate change of
variables. Conservation of the total momentum implies the relation

M0y + Maty = P = congtant (14'1'1)

Thus the velocities v(t) and v.(t) are not independent, but must always satisfy
the relation (14-1-1). The other quantity of physical interest is the relative
velocity

vi—wn=F (14-1-2)

One can then use (14-1-1) and (14-1:2) to express v; and vs in terms of P
and V. Thus

(my + ma)vy = P + msV}

(my + Mma)vg = P — myV

or n=c+Ly 2
My
(14-1-3)
vp=c— L ¥
ey
o P _ My + mavg 0,
where T em (14-1-4)
is the time-independent velocity of the center of mass; i.e.,
c - @
dt
_ mary + mary o
where r, = e (14-1-5)

is the position vector of the center of mass. In addition, we have introduced
the quantity

MMMty
my + ma

which is called the “reduced mass' of the particles.
The total kinetic energy K of the particles becomes by (14-1-3)

K = Imw? + Imava? = Fm: + ma)e? + Jul? (14-1-7)

Consider now & collision process. Denote the velocities of the two par-
ticles before they interact with each other in the collision process by vy and vs;
denote their respective velocities afier the collision by v, and vs’. In terms of
the new variables the situation is described in a particularly simple way. The
center-of-mass velocity e remains unchanged as a consequence of conservation
of momentum, The relative velocity changes from the value ¥V before the
collision to the value V' after the collision. We assume the collisions to be
elastie so that the internal energies of the molecules remain unchanged. Then
the kinetic energy K remains unchanged in a collision, and it follows, by
(14-1-7), that ¥* also remains unchanged so that |V’| = |F|. Hence the only

" (14-1-6)
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Fig. 14-1'1 Geometrical construction based on (14-1-8) and illustrating an
elastic collision process. Consider the original momenta py = mv and

Pz = Mgy represented by the vectors ,‘Rj and Zﬁ?, respectively. Their vector
sum yields the total momentum P = (my + ma)ec = .,ﬁ. which remains un-
changed in time. Divide this vector AB in the ratio mi:m; to locate the
point 0: then A0 = mc and OB = me. Hence the t 0_6 repr ts ul.
Draw a sphere about 0 of radius 0Q. Then the final relative velocity must
be such that the vector u¥V"' = ﬁﬁ’ terminates somewhere on this same
sphere (although not necessarily in the same plane ABQ). The final
momenta p|’ and p:' are simply given by the vectors E' and Q_"..B. Their
directions with respect to the original vectors p, and p, are then immedi-
ately apparent from the diagram.

effect of a collision is that ¥ changes its direction without changing its magni-
tude. The collision process can thus be deseribed by merely specifying the
polar angle ' and azimuthal angle ¢’ of the final relative velocity P’ with
respect to the relative veloeity ¥ before the collision.

It is simplest to visualize the relationship between the velocities before
and after the collision by considering the corresponding molecular momenta
p1, p: before and p,', po” after the collision. By (14-1-3) one has at all times

Py = mye + pV .
P2 = Mae — uV (L8 3:8)

The geometrical relationships are illustrated in Fig. 14-1-1.
One can correspondingly visualize (classically) the positions of the particles
at all times. In addition to the center-of-mass position vector r, of (14-1-5)
we introduce, corresponding to (14-1-2), the relative position vector
rn—ri=R (14-1-9)
Then, analogously to (14:1:3), one has
1’1*.5 v gt =f£—R
& (14-1-10)
PQ*EI':—?G= "”—iﬂ
Thus the position r, of the center of mass moves with the constant veloeity e of
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i

Laboratory system Center-of-mass system

Fig. 14:1:2 Classical trajectories for two colliding particles illustrated in
the laboratory system and in the reference frame moving with their center
of mass C.

(14-1:4). In the frame of reference which moves with the center of mass, the
collision process is deseribed very simply: The position vectors ri* and ry*
of the particles relative to the center of mass are, by (14-1-10), at all times
oppositely directed, and their magnitudes have a fixed ratio so that

mar* = —morg*

The vector R joining the particles passes always through their center of mass.
If the force exerted on molecule 1 by molecule 2 is denoted by Fyy, it follows by
(14-1-8) that

dpl d’R

a T taeE
Hence the motion R(t) of molecule 1 relative to molecule 2 is the same as if it
had a mass x and were acted on by the force Fio. The discussion of the two-
particle problem is thus reduced to the solution of a simple one-particle prob-
lem. With respect to particle 2 the scattering process appears ag shown in
Fig. 14-1-3.

== F“ (14'1'11)

Fig. 14-1-3 Scattering process relative to molecule 2 regarded as fixed.
The polar scattering angle is denoted by 0'. Classically, various scattering
angles 8 correspond to different values of the impact parameter b, the dis-
tance of closest approach of the molecules if there were no interaction
between them.
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14- -2 Scattering cross sections and symmetry properties

Molecules having initially velocities v; and v, ean get seattered in their relative
motion through various angles 6’ and ¢’ (depending classically on the value of
the initial impact parameter b). If the only information available are these
initial veloecities v; and v; (and quantum mechanically this is all the information
one can possibly have, since simultaneous determination of the impact parame-
ter b would be impossible in principle), then the outcome of the scattering
process must be described in statistical terms. This can be done in terms of
the quantity o’ defined so that

o' (01,02 — vy, 12’) d*v)" .’ = the number of molecules per

unit time (per unit flux of type 1 moleecules incident with

relative velocity ¥ upon a type 2 molecule) emerging after (14-2-1)
seattering with respective final velocities between v, and

v’ + duv,’ and between vy and v’ + dvy'.

Analogously to (14-1-3), one has
o'=¢+LV and w=¢-LW (14-2-2)
my Tty

where, by wvirtue of conservation of momentum and energy, ¢ = e and
[V'| = |V|. Thus e’ must vanish unless v,’ and v, are such that these condi-
tions are satisfied. Indeed, in terms of the variables ¢ and V, the scattering
process is completely described in terms of the equivalent one-body problem of
relative motion of Fig. 14-1-3, where F” is specified completely in terms of the
polar and azimuthal angles 8’ and ¢’ with respect to ¥. Hence one can define
a simpler but less symmetrical quantity, the differential scattering cross section
o already introduced in (12-2-1), by the statement that

(V") dQ' = the number of molecules per unit time (per unit

flux of type 1 molecules incident with relative velocity ¥V

upon a type 2 molecule) emerging after scattering with final (14-2-3)
relative velocity ¥’ with a direction in the solid-angle range

d' about the angles ' and ¢'.

Here o depends in general on the relative speed |F| = [F’| and on the angles
8" and ¢’; i.e., it depends on the magnitude and direction of ¥. By the defini-
tions (14-2-3) and (14:2:2), o is related to ¢’ by

0’(‘7‘) dﬂ’ = ,fc' f _u"(b‘l,!}g—r 1}1',1}2’) daﬂlf ds‘li‘g’ (14'2'4)

where the integration is over all values of ¢’ and of |[F|. (The integration is,
of course, trivial, since ¢/ = 0 unless ¢’ = ¢ and |V/| = |F].)
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Remark It is useful to express the velocity range d®v, dtv; in terms of the
variables c and V. One has f

Foy vy = [ doc BV (14-2-5)
where J' is the Jacobian of the transformation (14-1-3). But
A(vi32) R
s s ”1'.1:98: mi i,
d”!a.dﬂlx = B(z:;,'f'.',) d(:: d_V.s g 1 _i &C*'dv,
My

= (ot o) deadVe = ~de.aV,

where we have used (14:1:6). The {ransformation (14:2-5) is just the
absolute value of a product of three such terms, corresponding to «, y, and
z components. Hence one gets simply
divy dPoy = dic ¥ (14:2-6)
Similarly, one has _
d'v) dPuy' = dic’ ¥’ (14-2:7)
Now ¢' = e; furthermore ¥ and V differ only in direction but not in magni-

tude, and since volume elements remain unchanged under simple rofations of
coordinstes, d'F’ = d°F. Henge (14:2:6) and (14+2:7) also imply

d'v dPvy’ = dvi dio, (14-2-8)

The probability ¢ has various useful symmetry properties which imply
connections between a given collision process and related processes. The
interactions between the molecules are basically electromagnetic in origin.
The equations of motion must therefore have the following very general
properties:

1. The equations of motion must be invariant under reversal of the sign
of the time from { — —{, Under such a time reversal, which implies of course
a corresponding reversal of all the velocities, one obtains the “reverse” collision
in which the particles simply retrace their paths in time, Thus one must have
the following relation between seattering probabilities

o' (v, 02— v1,0e) dPv) Py’ = o' (—v,—v' — —uy,—ws) dior diey
or by (14-2.8)

o' (1,00 — v, ve)) = o'(—vi,—vy) — —v,—vy) (14-2-9)

*Remark If the particles had spin and the interaction befween them were

spin-dependent, then time reversal would also necessitate simultaneous rever-
sal of all spins. Equation (14:2-9) would therefore not be valid as it stands,
but would still hold if averaged over all possible directions of the initial and
final spins.
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2. The equations of motion must be invariant under the transformation
which reverses the sign of all spatial coordinates so thatr — —r. Undersucha
“space inversion,” the signs of all velocities also change, but the time order does
not, Thus one must have

o'(vyve— v\ 0) = o'(—v,—va— —v/,— ') (14-2-10)

It is of particular interest to consider the so-called “inverse” collision
which, by definition, 18 obtained from the original collision by interchanging the
initial and final states. Whereas in the original collision the particles collide
with velocities »; and vy and emerge with velocities vy and vy/, in the inverse
collision precisely the opposite takes place; i.e., the particles collide with veloci-
ties vy and vy’ and emerge with velocities v; and vy (see Figs, 14-2.1 and
14-2-2). The inverse collision can be obtained from the original colligion by
considering the operation of time reversal followed by the operation of space
inversion which changes the sign of all spatial coordinates. Successive applica-
tion of (14:2-9) and (14-2-10) shows that the collision probabilities for the
original and inverse collisions are also equal; i.e., by applying the operation of
space inversion to the right side of (14-2-9), one obtains by (14-2-10)

o (v, vs— v, we) = o (v v — vi,0) (14:2-11)

Original collision Reverse collision Inverse collision

Fig. 14:2-1 Figure illustrating related collisions between hard spheres.
The scattering cross sections are the same for all these collisions.

Original collision Reverse collision Inverse collision

Fig. 14-2:2 Figure illustrating classical relative orbits for related collisions.
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141 + 3 Derivation of the Boltzmann equation

We are now in a position to make use of our knowledge of molecular collisions
to derive an explicit expression for Def in the Boltzmann equation (13-6-1),

Df = Def (14-3-1)

In order to caleulate Dgf, the rate of change of [ caused by collisions, we shall
make the following assumptions:

a. The gas is sufficiently dilute that only two-particle collisions need be
taken into account,

b. Any possible effects of the external force F on the magnitude of the
collision cross section can be ignored.

e. The distribution function f(r,v,t) does not vary appreciably during a
time interval of the order of the duration of a molecular collision, nor does it
vary appreciably over a spatial distance of the order of the range of inter-
molecular forces.

d. When considering a collision between two molecules one ecan neglect
possible correlations between their initial velocities prior to the collision. This
fundamental approximation in the theory is called the assumption of “molecu-
lar chaos.” It is justified when the gas density is sufficiently low. Then the
mean free path [ is much greater than the range of intermolecular forces, and
two molecules originate before their encounter at a relative separation which is
of the order of I and thus sufficiently large that a correlation between their
initial velocities is unlikely.

Focus attention on molecules located in the volume element d% located
between r and r + dr, and consider the collisions which occur there in the time
between ¢ and ¢ + di. (Here dr is taken to be large compared to the range of
intermolecular forees and dt to be large compared to the duration of a collision.
Nevertheless, they can be congidered infinitesimally small with respect to
variations in f by virtue of the assumption (¢).) We are interested in calculat-
ing how collisions cause a net change D¢f(r,v,t) d*r d*v df in the number of
such molecules with velocity between v and v 4 dv. First, the molecules in
d’r can be thrown out of this velocity range by virtue of collisions with other
molecules; we denote the resulting decrease in time dt of the number of such
molecules by De@)f(r,,f) d¥r d'v di. Second, molecules in d?r whose velocity
is originally not in the range between » and » 4+ dv ean be thrown info this
velocity range by virtue of collisions with other molecules; we denote the
resulting increase in time dt of the number of molecules thus scattered into
this velocity range by D™ f(r,w,t) d*r d*v df. Hence one can wrile

Dof = — Do + Detf (14-3-2)

To caleulate De'=f, fwe consider in the volume element dr molecules with
velocity near v (eall these 4 molecules) which are scattered out of this velocity
range by virtue of collisions with other molecules (call them A, molecules)
which are in the same volume element d?r and which have some velocity vi.
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The probability of occurrence of such a collision where an 4 molecule changes
its velocity from » to one near v, while an A; molecules changes its velocity
from v, to one near v, is by (14.2-1) deseribed in terms of the scattering
probability o'(v,vy — v',0y") d*v' d®vy. To obtain the f(otal collision-induced
decrease D¢™'f dPr d*v df in time dt of the number of molecules loeated in d?r
with velocity between » and v + dv one must first multiply ¢’ d®»’ d®,’ by
the relative flux v — v|f(r,v,t) d*¢ of A molecules incident upon an A; mole-
cule and must then multiply this by the number of A molecules f(r,vs,t) dr d®v,
which can do such scattering, Then one has fo sum the result over all possible
initial velocities »; of the A, molecules with which 4 can collide and over all
possible final velocities v’ and v, of the scattered 4 and 4, molecules. Thus
one ohtains:

Do f(rvd) dirdwdt = [, [, [
[lo = vilf(r,u,0) d¥][f(r,e18) dPr dPeilo’(v,01— v/ \0)') dP’ dPy/] (14-3-3)

Here we have used the fundamental assumption (d) of molecular chaos in
writing for the probability of simultaneous presence in dr of molecules with
respective velocities near v and v, an expression proportional to the simple
product

f(r,v,!.) div « f{r]vl,t) divy

which assumes the absence of any correlations between the initial velocities v
and v, so that these are statistically independent.

We now turn to the caleulation of D¢¥f. Considering again the same
volume element d*r, we ask how many molecules will end up after collisions
with a veloeity in the range between v and v + dv. But this involves precisely
a consideration of what we called “inverse collisions” in Sec, 14:2. Namely,
we should like to consider all molecules in d® with arbitrary initial velocities
v’ and v," which are such that, after collision, one molecule acquires a velocity
in the range of interest between » and » + de, while the other acquires some
velocity between v, and v, 4+ dv;. This scattering process is described by the
scattering probability o'(v',v' — »,11). The relative flux of molecules with
initial velocity near v’ is [v' — vi/| f(r,v’,t) d®v’, and these molecules get scattered
by the f(r,v\',f) d®r d?v,' molecules with velocity near»,’. Henceone can write
for the total inerease in time dt of the number of molecules located in d% with
velocity between v and v + dv the expression

Do f(rvt) drdrwdt = [ [ [,

[lo" — vy [f(r,v,0) *'][f(r, 01 ,1) d¥r dP|[o'(v 01 — v,o1) dP0 dPvy] (14:-3-4)
where the integrations are over all the possible initial velocities v’ and v, of
the molecules, and over all possible final velocities v, of the other molecule whose
velocity does not end up in the range of interest near v.

By (14:32), Dcf is then obtained by subtracting (14-3-3) from (14-3-4).
Note the following simplifying features. By (14-2-11) the probabilities for
inverse collisions are equal so that

o' (v o — vvy) = o'(v,v1— v'8y)
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Furthermore, we can introduce the relative velocities

V=uv— Vi=y —o' (14:3.5)
Then the conservation of energy for elastic collisions implies that
==V
In order to save writing, if is also convenient to introduce the abbreviations
g = gm0, fi=fro A0S

JN = f(l',t!",.l), flf = f(rl"l'lt}
Then (14-3-2) becomes

Def = [, [, [ 5 — 1) Ve (oos— o' ) dior die' dv’ (14-3.7)

One can use (14-2-4) to express this result in terms of P’ and the solid-angle
range d’ about this vector. Using (13-2-8), the Boltzmann equation (14:3-1)
for f(r,v,{) can then be written in the explicit form

> a_f_l_v._a._.f_'-.fcaf:

T st m ae = o Jo UK — Ve d? @ (14:3-8)

where ¢ = (V).

14- A 4 Equation of change for mean values

Consider any function x(r,v,t) which describes a property of a molecule that
has a position r and a velocity v at time t. Asin (13-1-4), the mean value of
x is defined by

) =z [ @ frmxCon (14:4.1)

where n(r,t) is the mean number of molecules per unit volume. We should
like to derive an equation which describes how (x} varies as a function of tand r.
This can be done in two ways, either by analyzing the situation directly from
the beginning, or by starting from the Boltzmann equation (14-3-8). Since
both approaches are instructive, we shall illustrate them in turn.

Direct analysis Consider the fixed volume element d?r, located between r
and r + dr, which contains n(r,t) d°r molecules. In a time interval between
¢t and ¢ + di the total mean value {n d* x) of the quantity x for all molecules
in d*r increases by an amount

§
g'i ) dirdt = Ay + Anes + Aca (14-4.2)

Note that n can always be taken outside the averaging brackets, since it does
not depend on ». The quantities A represent various contributions to be
described presently.




526 secrion 14 -4

1. There is an intrinsic increase A;,, in the total mean value of x due to
the fact that the quantity x(r,»,1) for each molecule in d*r changes. In time dt,
each molecule changes position by dr = v di and velocity by dv = (F/m) dt;
hence the corresponding change in x is given by

""d:+ vadt + 6"F"dt

Here z, and v, denote the respective cartesian components of the vectors r and
v, and we have adopted the “summation convention” that a summation from 1
to 3 is implied whenever a Greek subscript occurs twice. Hence the intrinsic
inerease in the mean value of x in d'r is given by

Am = (n d* Dx dt) = n d*r dt (DX) (14-4.8)
where Dy = + “:: .|.‘::§: "39_3:_{_ 5x+ L 8: (14-4.4)

2. There is an increase Ay, in the total mean value of x in d*r due to the
net flux of molecules which enter the volume element d’r in time df. By an
argument gimilar {o that in Sec. 13:-2, the increase in the mean value of y
caused by molecules entering the element of volume in time d¢ through the face
2, is the mean value contained in the volume v, df dx, dzy, i.e., (nx[vy di dzs dzs]).
The decrease in the mean value of x caused by molecules leaving through the
face z; 4+ duz, is correspondingly given by

(nxvy dl dzy dzs) + 32- (nxv, di dz,y dzy) dzy
1

By subtracting these two expressions one obtains for the net increase in the
mean value of ¥ due to molecules entering and leaving through these two faces
the contribution

a8, s
o (nxvy dt d?r)
Adding contributions from all other faces one gets thus

B é%-{ﬂv.x) dt dir (14-4-5)
A
vyt
Fig. 14-4:1 Figure illustrating a

two-dimensional projection of the
volume element d’r.
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3. Finally, there is an increase A,q in the total mean value of x in d*r
because of collisions between molecules in this volume element. In such a
collision where a molecule with velocity v collides with another one of velocity
vy, and the molecules then emerge with respective final velocities v’ and v,’, the
change in x i8 equal fo

ol B e A e (14-4-6)
where
X = X(P,U,o, X1 = x(ru,t) By
X* = X(".v’,!), xlf = x(rivlflt) (14 4: 7)

The number of such collisions is again given by
(lv — wilf(r,v,0) divlle’ d*' d*oy][f(r,01t) d°r d'vy]

where we have used the assumption of molecular chaos. Thus 4. is obtained
by multiplying this number by Ax and summing over all possible initial
velocities v and v, of the molecules and over all their possible final veloeities.
This result must then be divided by 2, since in the above sums over molecular
velocities each colliding pair of molecules is counted twice. Thus one has

Aol — % ddr di ffff d*v div; d*' d*vy'ff,Ve' Ax (14-4-8)
By (14-4-3), (14-4-5) and (14-4-8), Eq. (14-4-2) then becomes
- %(M) = n{Dx) — aiz. (nvax) + €(x) (14:4-9)

where ©(x) denotes the rate of change of x per unit volume due to collisions;
by (14:4:8) and (14-2-4) it can be written

ANI 1 3 =
> C(x) = vl E.Uf d*v d*v, dQ' ff, Vo Ax (14-4-10)

Note again that n can always be taken outside the averaging angular brackets
since it does not depend on v. Equation (14-4-9) is sometimes called
“Enskog's equation of change.”

Analysis based on the Boltsmann equation To find the equation satis-
fied by (x) defined in (14-4-1), we multiply both sides of the Boltzmann equa~
tion (14-3:8) by x and then integrate over all velocities ». Thus we get

[ dw Df x = [ d* Def x (14-4-11)
where fd’prx = fdw%:x+fdwu-g{x+fd=u£-£x (14-4-12)

and where €(x) = [d'v Dof x = [[] d®vd?vi d®’ (f'fy — ff))Vox (14-4-13)

Let us now transform the integrals in (14-4:12) into quantities which are
averages, i.e., into integrals which involve f itself rather than its derivatives.
Thus we have !
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since the order of differentiation with respect to { and integration over v ean be
interchanged. Hence

[ o 3{:: - o - "(?af) (14-4-14)

The second integral in (14-4-12) can be similarly rewritten. To avoid con-
fusion, we express the vector quantities in terms of their cartesian components
denoted by Greek subseripts and again use the summation convention. Keep-
ing in mind that r, v, ¢ are to be considered as independent variables, one has

fd‘vv-'%{x = fd‘vvug;x
= [ [ L o —M%]
oy Ox
- Efd’v_fv.x oy fd’vﬁa-a—x—
or fd“uu-g{x = 6‘_1: (n{vax)) — n{u, %.> (14-4-15)

Finally, since we assumed the foree F to be independent of velocity, one gets

fd‘um a0 X fd.vmav. \
fda [av ( ) % g’i]
[l [t
Since f — 0 a8 |v,| — @, this becomes simply
[ Ba(®  aea

Hence (14-4-12) is obtained by adding the expressions (14:4.14) through
(14-4-16). The result is

e [ @ Drx = 5 () + 5 (loax) — (D) (14:4:17)

where Dy is defined in (14-4-4).
We now turn to the evaluation of the collision term (14-4-13). This is
by (14:2-4) most symmetrically written in the form

C(x) = [J[[ d*vd®vid* d*vy (f'f' — ff) Ve (vo1— v'ey)x(rvt) (14-4-18)

The high symmetry of this expression ean be exploited by interchanging v and
vy as well as o' and vy, This leaves o' unchanged so that one obtains

e(x) = [I[] d*v divydie’ do (J'fy = [f)Ve'x(reyt) (14:4:19)
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Adding (14-4-18) and (14:4-19) then yields
e(x) = §/JJJ d*v d*vy d*' &) (i’ — f)Ve'lx + xa] (14:4-20)

with x and x, defined in (14-4-7).

But one can exploit a further symmetry by interchanging v and o', as
well as v; and v/, This leads to the inverse collision which leaves ¢’ also
unchanged. Thus one can write

JIST dbo d¥oy d*' dy' ff\'Vo [x 4+ xil
= [Jf] d'e d'vy d*' d*) ffiVe'[x' + xil (14-4-21)

where x' and x:" are defined in (14-4-7).
Substituting (14-4:21) in (14-4.20) then yields

e(x) = ¥[f[f d*vdiey @' divs' ffiVe' Ax
or

> C(x) = [[[ dv d*v, dDQ' [f1Ve Ax (14-4.22)

where Ax = x' + xi' — ¥ — x1 is the total change in the quantity x in the
collision between two molecules. Substitution of (14-4-17) and (14-4-22)
into (14:4:11) leads then again to Eq. (14-4-9).

14.4 -5 Conservation equations and hydrodynamics

The equation of change (14-4-9) becomes particularly simple if x refers to &
quantity which is conserved in collisions between molecules so that Ay = 0,
Then €(x) = 0 and Eq. (14-4-9) reduces simply to*

%(ﬂﬁ ok a%a (nvax) = n{Dx) (14-5-1)

The fundamental quantities which are conserved in a collision are, first, any
constant, in particular the mass m of a moleeule. Furthermore, each com-
ponent of the total momentum of the colliding molecules is conserved. Finally,
assuming the internal energies of all molecules (o remain unchanged in col-
lisions, the total kinetic energy of the colliding molecules is also conserved.
These conservation laws lead then fo five corresponding cases where Ax = 0
in (14:4:6). These are

consgervation of mass X=m (14-5:2)
conservation of momentum X = muy, =123 (14-5-3)
conservation of energy x = {me? (14:5:4)

One then obtains by (14 5-1) five corresponding conservation laws satisfied by
the gas.

* This equation and all subsequent considerations of this section are very general.
They depend only on the conservation laws, not on the sssumption of molecular chaos and
the consequent special form (14.4.10) of ©(x) involving ff: a8 & simple product.
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Conservation of mass Putting x = m, Eq. (14:5-1) leads immediately to

) a
3 (nm) + e (nmu,) =0 (14-5:5)
Here n is independent of v and can be taken outside the angular averaging

brackets. Also by (13:1-5), (v) = u, the mean velocity of the gas. Further-
more, the mass density of the gas, i.e., its mass per unit volume, is given by

plr,f) = mn(r,t) (14-5-6)
Hence (14-5:5) becomes simply
> ‘3“+ 2 (oua) = 0 (14-5.7)

or using the vector notation of the divergence,
%4-::-(9“) =0 (14-5-8)

This is the so-called “‘equation of continuity’ of hydrodynamics. It expresses
the macroscopic condition necessary to guarantee the conservation of mass.

Conservation of momentum By (14-5-3) we put x = muv, so that Eq.
(14:5-1) becomes

{ﬂmv.,) Lt (nmv.ﬂ-.«) = n{m Duv,) (14-5-9)
By the definition (14-4 4),
_Foy _Fu, _F
DI’Y = 'a -a?. ™ 5-,, = ey

Hence (14-5-9) becomes, using (14-5‘7),

where F’ - ﬂ_“: (14-5-11)

is the force per unit mass of the fluid.
The second term in (14-5:10) is usefully expressed in terms of u and the
peculiar velocity U. By (13-1.6),

v=u+U
and  (vavy) = (e + Ua)(tty + Uy)) = (Uatiy + UalUy + ualUy + Uit}
or (avy) = ualtiy + {UaUy) (14-5-12)
ginee (uUy) = u{U,) =0
Furthermore, we define the “pressure tensor” P., by
B o plTU v - Bre= Py (14-5-13)
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This definition agrees with that of (13-1-7). By (14-5-12) and (14.5-13),
Eq. (14:5:10) then becomes

a%(pu-;) + a_aﬁ (puatty) = — ===t + oFy (14-5-14)

This is the Euler equation of motion of macroscopic hydrodynamics. It can
be put into more transparent form by rewriting the left side of (14:5-14) as

dp au, duy
Uy o +u~,az (.aun)-i-puuax

dp AUy Buy | _ Ay

=[G | o [ G ] =0 0 G

Here the first square bracket vanishes by the equation of continuity (14-5-7);

furthermore, we have defined the “substantial derivative” of any funetion
é(r,t) by b fhe 3

5 ™5 —+ Ug Y 5o (14:5-15)

This measures the rate of change of the function ¢ if one considers oneself

moving along with the mean velocity u of the fluid. Hence (14-5-14) becomes

> “d‘? g ‘L’-;—:'f 4 oF! (14.5.16)
This expresses physically the fact that the rate of change of mean momentum
of any element of fluid is due to the stress forces (including the ordinary
pressure) of the surrounding fluid, as well as to the external forees acting on
the fluid.

We could, similarly, go on to use (14:-5:4) to derive the hydrodynamic
equation for energy conservation, but we shall not do this here.

The conservation equations (14-5.7) and (14:5-16) are rigorous con-
sequences of the Boltzmann equation (14:3-8). Nevertheless it is clear
that, in order to obtain from them practical hydrodynamic equations, one must
find explicit expressions for quantities such as the pressure tensor P.,. Of
course, (14-5-13) provides a prescription for calculating this quantity in terms
of molecular quantities, but this requires finding the actual distribution func-
tion f which is a solution of the Boltzmann equation (14-3-8). Hydrodynamic
equations can thus be obtlained to various orders of approximation. Details
are discussed in the references,

14 ¥ 6 Example: simple discussion of electrical conductivity

Before turning to detailed applications of the theory of this chapter to the
solution of problems of physical interest, we shall show how the present
formulation of the theory can also be useful in discussing situations in less
rigorous terms. As an example, we shall give a semiquantitative treatment of
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electrical conductivity which, although almost as simple as the elementary
arguments of Chapter 12, will bring out several new features of physical
significance.

Consider the case of ions of mass m and charge e which move in a neutral
gas consisting of molecules of mass my. Let the number of ions per unit
volume be n, the number of neutral molecules per unit volume be ny. The
temperature is T, and a small uniform electric field & is applied in the z direc-
tion. We should like to find the electrical conductivity aq of the ions,

This situation was already discussed in Secs. 12-6, 13-4, and 13-8. Here
we shall consider the collision processes in somewhatl greater detail. We are
interested in finding the eleetrical current density of the ions

Js = enu, (14-6-1)

Since & depends on neither r nor ¢, it follows that neither n nor the mean ion
veloeity u depends on poeition r or on the time ¢ once a steady-state situation
has been reached. One can immediately write the equation for the mean
momentum balance for the ions contained in a unit volume by using the equa~
tion of change (14-4-9). The direct physical argument is that the [rate of
change of mean momentum of these ions] must be equal to [the mean external
force exerted on these ions by the electric field] plus [the mean rate of momen-
tum gain of these ions due to collisions]. In symbols

n aai:' = ned + C(mv,)

In the steady state du,/d! = 0 so that this condition becomes simply
ne& -+ €(mu,) =0 (14-6-2)

To caleulate the mean rate of ion-momentum gain caused by collisions,
we note first that, when two ions collide, their total momentum is conserved,
Hence there is no mean change of ion momentum caused by collisions between
ions, Thus @(mv,) is due entirely to momentum changes suffered by ions in
collisions with neutral molecules.

The mean number of such ion-molecule collisions per unit time is approxi-

mately given by
T_" = V‘flmﬂl (14‘6'3)

where V is the mean relative speed between an ion and a molecule and i is
the total scattering cross section for scattering of an ion by a molecule. Here
one can put approximately, as in (12-2.11),
= = — 1 1 3kT
| | J—— % = it el Pt B

PavieEtmaur(ien) -2 (14-6:4)
where we have used the equipartition theorem and introduced the reduced
mass

= i B
e (14:6-5)
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We ealculate next the mean momentum gain (p) of an ion in an ion-mole-
cule collision. By (14-1.3) we can write the ion velocity v in terms of the
velocity ¥ of an ion relative to the molecule with which it collides and the
velocity e of their center of mass. Thus p = me = me + pVF. The momen-
tum change of the ion in this collision is then

Ap = m(v' — v) = u(V' — V) = yl(cos 8’ — )V + V'] (14-6-6)

Here we have resolved V' into components parallel and perpendicular to V.
The relative velocity ¥’ after collision is such that [F'| = |F| and that it makes
an angle # with respecl to V. On the average, V' will have no components
perpendicular to ¥ so that (V") = 0. Furthermore, if the collision is like
that between hard spheres, all scattering angles 8’ are equally probable go that
ecos ' = 0 on the average, (See Problem 12.4.) Hence on the average
(14.66) gives, for the mean momentum gain of an ion per collision,

(Ap) = —i(V) = —ulv — v1)
or (Ap) = —uu (14:6-7)

if we assume that the neutral molecules are at rest with respect to the container
walls so that their mean velocity u; = 0.

It is of interest to compare (Ap) with the mean momentum mu of the ions.
(In the present problem, u has, of course, only a nonvanishing component in
the z direction.) Then (14-6:7) can be written

{Ap) = —tmu, tmd o s (14-6-8)

m m+m
where & denotes the fractional mean momentum loss of an ion per collision.
This shows that if m < m,, then £ = 1; the ion loses then, on the average,
practically all its forward momentum in each collision with the much heavier
molecule. On the other hand, if m 3> m,, then £ =~ my/m; the ion loses then,
on the average, only a relatively small fraction m,/m of its forward momentum
in each collision with the much lighter molecule, In the latter case, collisions
with molecules are, of course, not very effective in reduecing the electrical con-
ductivity of the ions. The factor £ of (14.6-8) shows thal an ion after a
collision may have a velocity which depends strongly on its velocity before the
collision, particularly if m >> m,. Hence this factor takes into account the
persistence of velocity effects which we ignored in the preceding two chapters.

The mean rate of collision-induced momentum gain of an ion can then be
computed by multiplying the mean number +—! of jon-molecule collisions per
unit time by the mean momentum gain (Ap) per collision. By (14:6:8) the
momentum balance (14-6-2) becomes simply

. 8 — ri(tmu,) =0 (14-6-9)

Hence e
U mEG




584 section 14 -7
By (14:6-1) the electrical conduetivity is then

y .
P s (14-6-10)

This differs from the previous expressions (12:6-8) or (13-4-10) by the factor &
which takes into account the persistence-of-velocity effects. Using (14-6-3)
and (14-6-8) one gets explicitly

5 ne* 1
10im '\/B.UkT

Note that this depends only on the reduced mass of the ion and molecule. If
m < m; so that persistence-of-velocity effects are negligible, then u = m and
(14-6-11) reduces essentially to (12-6-9). But in the opposite limit, where
m 3> my, one gets u = m,, and o,y becomes independent of the mass of the ion.

The relation (14 -6-11) exhibits the correct dependence on the various
parameters of the problem. In particular, it takes into account persistence-
of-velocity effects and shows properly that ion-ion collisions have no appreei-
able effect on the electrical eonductivity, A more careful evaluation of the
momentum-balance equation would lead to numerically more accurate results.
We leave this as an exercise in one of the problems at the end of the chapter.

(14-6-11)

or Tel

Bolizmann equation

|} 14 - 7 Approximation methods for solving the
|
|

To apply the transport theory developed in this chapter to a quantitative dis-
cussion of situations of physical interest, it is necessary to find approximate
golutions of the Boltzmann equation

Df = Def (14:7-1)

written out explicitly in (14-3-8), Our aim will not be to find the most exact
solutions accessible by means of elaborate approximation procedures, but to
- show how results of good accuracy can be obtained by relatively simple
| methods.
To find the distribution funetion f(r,v,t) which satisfies (14:7:-1), we
| assume again that we are dealing with a physical situation which is not too far
removed from equilibrium conditions. Then one expects that f(r,v,?) does not
i differ too much from a Maxwell distribution f®(r,v,1), which deseribes local
equilibrium conditions near a particular place and time; i.e.,

fO(rpt) = n (ﬂjﬁ)l ety (14:7-2)

2r

where n, 8, and u may all be slowly varying funetions of r and ¢, but do not
depend on v. Sinee the dependence of f” on v is thus the same as that for a
genuine equilibrium distribution, and since the collision term in the Boltzmann
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equation involves only integrations over velocities, it follows that fV has the
same property as a genuine equilibrium distribution of remaining unchanged
under the influence of collisions; i.e.,

Dgf® =0 (14-7-3)

Remark This ean be readily verified by showing that, for ﬁny rand ¢,
O (@) = @) (o) A47-4)
so that the integrand on the right side of (14-3:8) vanishes. Equivalently,
it is necessary to show that
In f(p) 4 In /@ (2;) = In 7O(e’) + In fO(n,)

or by (14:7+2) that

Fmv — w)? + Jm(e — u)? = Im(e’ — u)® +dm(e/ —w)? (14-7-5)
But the left side of (14:7-5) can be written simply as

(Fmvt + Fmo?) — (mo + mos) < w4+ mu? .

which involves, besides constants, only the total kinetic energy and the total
momentum of the particles before collision. Since the right side of (14-7-5)
is of the same form, except for referring to velocities after the collision, the
conditions of conservation of total kinetic energy and of total momentum in &
ccollision imply immediately the validity of (14-7-5) and hence of (14-7-3).

Of course, f'¥ does not in general reduce the left side of the Boltzmann
equation (14-7:1) tozero. Thatis, Df( = 0, unless n, 8, and w are independ-
ent of rand {. Only then would f© be a genuine, rather than merely a local,
equilibrium distribution funection satisfying the Boltzmann equation (14-7-1),

To exploit the assumption that the situation is not far removed from equi-
librium, one ean write f in the form

f=f®14&), wheredk1 (14-7-6)

In the Boltzmann equation (14-7.1), the contribution of the correction term
S to the left side can then be neglected compared to the contribution of f,
Thus

Df = Df® (14-7-7)
The right side of (14-7-1) is given by (14-3-8) as
Dof = [] d*erdQ' (f'fy — Jf1) Ve (14-7-8)

Using (14-7-6), one has
Jfi = JOfO0 4 @ + &)
where we have neglected the small quadratic term ®&,, Similarly, one has
ff =[O0 + &' 4 &)
where we have used (14- T-fi) to put f@OF, M = floF W,

Substituting these relations into (14-7-8), and using the fact that terms
involving only f/’s lead to a vanishing contribution to the integral (since
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Def® = 0 by (14-7-3)), one obtains

where Dof = £ (14-7-9)
> £ = [[ dbvd¥ fOfOVe AD (14-7-10)
with AD =3 + &y — & — B, (14.7-11)

In terms of these abbreviations the Boltzmann equation (14-7-1) is then, by
(14-7.7) and (14.7.9), reduced to the approximate form

e Df = £d (14-7-12)

The functional form of f(¥ is known by (14-7-2); hence the left side of
(14-7-12) is a known funetion. The unknown function $ appears in (14-7-12)
only in the integrand of the right side, Finding the functional form of ® which
satisfies the integral equation (14-7-12) is still not a trivial task. On the other
hand, this equation is linear in ® and very much simpler than the original
Boltzmann equation (14.7-1),

Remark We can impose one physieal requirement which helps to place some
restriction on the possible form of ®. Let us require that the actual function
f(rot) be such that the quantities n(rt), w(ri), and B(r#) = (A7)~ in
(14:7:2) preserve their usual meaning of denoting respectively the mean
number of particles per unit volume, their mean velocity, and their mean
thermal kinetic energy. In more mathematical terms this means that we
require the following relations, true in the equilibrium situation when n, u,
and T are independent of r and ¢, to remain valid even if these parameters
do depend on r and ¢: .

f o f = n(nt)
_}l f Bofo = u (rt) (14.7-18)
[ s[5 mew - w2] = #7000

By (14-7:8), the first term f© by itself satisfies all these relations. Hence it
follows that, to satisfy (14-7-18), the function ® must be such that
' [d%fo% =0
J dspfidy =0 (14:-7-14)
[ diy fOB(y — ) =0

To determine the function ® which satisfies (14:7-12), one can assume
that it has some reasonable funetional form which depends on g parameters
Ay, Ay, As, ... A, For example, one could assume that ® is a function of
U = v — u of the form

3 8

2=y alh+ ) o hlUu+ - - (14:7-15)

A=1 Ap=1




L —— ——————————— A

APPROXIMATION METHODS FOR SOLVING THE BOLTZMANN EQUATION 587

where the coefficients a, and @, are parameters. If one takes this assumed
form of ® and substitutes it into (14-7-12), one will in general find that £® is
not the same funection of v as the left-hand side Df™. Hence no choice of the
parameters 4, . . . A, will really fulfill the requirement that (14-7-12) be
satisfied for all values of v. Nevertheless, one's guess as to the functional
form of ® may not be too bad, provided that one makes an optimum choice of
the parameters 4., . . . ,4, One systematic way of making this choice is to
replace the task of satisfying Eq. (14.7-12) by the weaker requirement. of
satisfying it only in an average sort of way. Tor example, if ¥(v) is any func-
tion of », then it follows by (14-7-12) that

[ d*v ¥ Df® = [ dip ¥ £ (14-7-16)

Since one has integrated over », both sides of this equation are independent of
v. Although (14.7-12) implies (14 -7-16), the conyerse ig, of course, nof frue;
1,e., if ® satisfies (14-7-16) for a given choice of the funetion ¥, it does not
necessarily satisfy the original equation (14:7:12). Only if (14:7-16) were
satisfied for all possible funetions ¥, could one conclude that (14-7-16) is
equivalent to (14-7-12). Nevertheless, if one chooses some set of g functions
¥y, . . ., ¥, and tries fo satisfy the resulting g equations (14-7-16) for all of
these, then one obtains ¢ simple algebraic equations for the ¢ unknown param-
efers Ay . . . A, One would then expect that this choice of the A’s would
give a reasonably good solution of (14:7-12). Of course, the larger the
number ¢ of parameters at one’s disposal (and the corresponding number of
T's used to obtain independent algebraic equations (14 7-16)), the better can
one expect the solution to approximate the real solution of (14-7-12). If onc
assumes the funetional form (14-7-15) for @, then the various “test functions”
¥ are most conveniently chosen to be functions of the form U\, UyU,, . . . .
The method just deseribed iz then called the “method of moments.”

Note that (14-7-16) is equivalent to (14-4-11); thus the condition
(14-7-16) implies physically the requirement, that the mean value (¥} satisfies
the correct equation of change (14-4-9).

*Solution by use of a vaeriational principle A part.mularly powerful
method of solving (14:7-12) is provided by the use of a suitable variational
principle. Note that the integral in (14-7-12) is linear in ®; i.e,, for any two
functions ® and ¥

L@+ T) =LP+LF (14-7-17)

Note also that the integral in (14:7-16) has a lovely degree of symmetry.
Using (14:7-10) and (14-2-4) it can be written in the symmetric form

[d* W & = [[[[ dbo d'o, d*’ doy’ fOF Vo' (v,0:— o', 0/ )¥ AR (14-7-18)

One can now proceed as we did in transforming the expression (14-4-18) into
(14-4-22). First interchange v and vy, 5s well a5 v/ and v/'. Then o’ as well
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as Ad are unchanged. Thus (14-7-8) becomes (we omit the volume elements
in the integrals for the sake of brevity)

[V ed = H_f_l' FOfO Ve, AD
Adding this to (14-7:18) then gives
¥ Ld =% [[[[fO/HOVe [T + ;] AP (14-7:19)

Interchanging » and »' as well as v, and v’ (i.e., passing to the inverse col-
lision) leaves ¢' unchanged and changes the sign of A®. Also by (14-7.4),
FOH© = jOf 0, Hence (14-7-19) becomes

J ¥ 8d = —§ [[[[fOf Ve ¥ + ¥, AD
Adding this to (14:7-19) yields the symmetrical form

[¥ed = =3 [[[[fOf©Fe' 5% A® (14-7-20)

where AV = W'+ 0! — T — ,,

The result (14-7.20) implies two important properties. TFirst it yields
the symmetry relation

e [¥ed=[dew (14.7.21)
Second, if ¥ = ®, then the integrand in (14.7-20) is positive so that
> [®Ld <0 (14-7:22)

Let us now compare the actual solution ® of (14-7.12) with eny other fune-
tion & = & + 6&. If we multiply both sides of (14-7:12) by ®, we obtain
the expressions [® £® and [& Df®, Using instead the function @ and
exploiting (14-7-21), these expressions become, respectively,

[ LD = [(P + 6B) L(P + §B) = [ BLD -+ 2 §DED + [ 6B L 5B
(14:7-23)
and
J @ Di® = [ (@ -+ .sif.) Dfto = [ ® Df® 4 [ 6& Df©O (14.7.24)

Hence, if one considers the expression

P M =[dwded—2[d%d DO = [ @ BELD — 2 DY) (14-7:25)
and the corresponding expression M’ caloulated with the function ®', one finds
by (14-7-23) and (14-7-24) that

~M=[L5d<0 (147 .26)
where we have deliberately defined M so that, by virtue of (14:7- -12), ter
linegr in 6% vanish in (14-7-26). Hence M does not change for small

6® in the funetion ®, but is always negative for larger values of 6®. Thus we
arrive at the “vsmtwus,l principle’:

The ﬁ‘expres,ém? M assumes its maximum value for that particular
function @ which is a solution of the Boltzmsnn equation (14:7-12).
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‘This provides one with a very powerful method of finding approximate
solutions of the Boltzmann equation (14-7-12), If one assumes a functional
form for ® which contains several parameters, then the optimura choice of

‘these parameters which provides one with the best solution to (14:7-12) is
that which makes the expression M a maximum. One can also quite sys-
tematically find incressingly better approximations to the real solution of
(14-7-12) by successively modifying one’s first guess of the function ® in such
& way as to make M greater and greater,

As the simplest example, assume that @ is of the form ® = 4 ¢, where
¢ is some function of v and A is a parameter. Then (14-7.25) gives

M=A[¢L¢— 24 [ ¢ DfO®
The optimum choice of 4 is obtained by maximizing M, ie., by putting

?i 0= Mf¢.ﬂ¢—-2f¢Df“”
i¢ Df©®
so that e (14-7-27)

14.- 8 Example: calculation of the coefficient of viscosity

Consider again the physical situation illustrated in Fig. 12-3-2 where the gas
has a mean velocity u,(z) in the = direction and a gradient du./dz = 0. We are
interested i caleulating the shearing stress P...

This situation is time-independent and only . depends on z. Hence the
[ocal equilibrium distribution is simply that already used in (13-8-6); e,

FO 0t = n (m ) e iAm{ v (] T, 0]

where 8 and n are just constants, More compactly one can write this in the
form

fw}{r:vlt') = {]’(U) (14 8- 1)
where U(2) = v: — u2(2), U, = v, U =1, (14-8-2)
i
and g(U) = n (m_ﬁ) gimi (14-8-3)
2w
Sinee there are no external forces so that F = 0, one has simply
af“” dg T Ak
) = }, — —_—— = e
BjY =2, S = Vg ( az) Bmg(U)U.U. 5

where we have put v. = U, by (14-8-2). Hence the Boltzmann equation
(14:7-12) becomes, using (14-8-3),

(Bm E?’*”-‘f) (UIU.U. = [[ @V a g Ug(U)Vo a0 (14:8:4)
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It remains to determine how ® depends on v, or equivalently on U, so
that it yields upon integration the left side of (14:8:4). This left side trans-
forms under rotation of coordinate axes like the product of the vector eom-
ponents U,U.. The right side must, therefore, behave similarly. Thus we
are led to expect that ® has the form

&= AU.U, (14-8:5)

where A, in general, might be some function of |U|. We shall, however,
assume that to a first approximation A is simply independent of [U|. To
determine the value of this one parameter A which gives the best solution, we
proceed by the method of (14:7-16). We shall multiply both sides of (14-8-4)
by the test function U.U,, integrate over v (or equivalently U), and try to
satisfy the resulting equation by proper choice of A. This means that we are
trying to satisfy, instead of (14-8-4), the equation

Bm%“f [ #UoUU = 4 [[[ dUdsviag g(U)g(U;)VaU,U,?(U,;L)
14-8.6)

(Note that this choice of 4 is exactly equivalent to that given by the varia-
tional principle in (14.7.27).)
The integral on the left is by (14:8-6) simply

[ @ugyvsv.:
=n (f_;;ﬂ)! f:— e—mU2 41, f_"w e imue 1.2 41, ,[.:. e 1ImU2 7,2 AU,
or f SBUg(U)U2UL = U2 T2 =n (fﬂ%)’ (14-8:7)

where the bars denote equilibrium values calculated with the equilibrium fune-
tion g; these can therefore be obtained by the equipartition theorem without
need of explicit ealeulation.

In the integral on the right side of (14-8-6) we shall first integrate over all
angles of scattering, i.e., over all @', and then integrate over U and U;. Thus
we write this integral in the form

I = [[d¥U d*U, g(U)g(U)U.U, J(U,Uy) (14-8-8)
where J(U,Uy) = [d¥ Ve A(U.US) (14-8.9)
Using (14-8:7), Eq. (14-8:6) then becomes simply
> n(%')i—t:'= Al (14-8-10)

Before evaluating 7, note that the function ® of (14-8-5) satisfies, by sym-
metry, the conditions (14-7-14). Note also that the pressure tensor P., can
be immediately calculated from (14-8-5). By (13-1-17)
P, = mf d»fU.U, = m[ d*U g(U)(1 + ®)U.U,
=0+ mf &U gdUU, = Am[ d*U gUAU?
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where we have used the fact that the integral involving g(U) alone vanishes by
symmetry. Since the last integral is just that of (14-8-7), one obtains

> P, = nm (’%’)" A (14-8-11)

Thus the calculation is completed onee the integral 7 is evaluated, since A is
then known by (14-8-10).

Evaluation of the collision integral I We first evaluate the integral J
of (14-8-9). Since the integrand involves V directly as well as in the cross
section o( V), we express U in terms of the relative velocity ¥ and the center-of-
mass velocity e. Thus

V='IJ‘“‘IJ|,= U—'Ul (14'8'12}
Also, since all molecules have the same mass m,
moe +mor 1
c = o == (v + v1)
or C=c—u=3%U+1,) (14-8-13)

where C is the center-of-mass velocity measured relative to the mean velocity u
of the gas. By (14-8-12) and (14-8-13) one finds, analogously to (14-1-3),

U=C+ 47, Ui=C— 3V (14-8-14)
After the collision one has similarly
U =0C+34V, Uy=C-—4V (14-8-15)
since C remains constant. Now, by (14-7-11),
A(U.U,) = UJU + Uh'Uy — UU; — Uy Urs
Using (14-8+14), one obtains

UU. + Uz = (C. + 3V)(C. + 3V + (C. — 3V.)(C. — $V)
= 20,0, + 3V.V.

Hence AU = 5V, VS — V.Ve) (14-8-16)
Thus (14-8-9) becomes
r 8 .,
J=3 [ [ sino do dg Vo[VVS — V.V (14-817)

where ¢ and ¢’ are the polar and azimuthal angles of P’ measured with respect
to ¥V as polar axis. This vector V¥ is, of course, fixed in the integration
(14:8:17) which is over the various directions of ¥'. Imagine that V is taken
to be along the { axis of a cartesian coordinate system £, 5, . Without loss
of generality one can then choose the £ axis, from which the angle ¢ is meas-
ured, to lie in the (¥,8) planes Here £, &, { denote unit vectors directed along
the £, u, { axes; similarly &, ¥, £ denote unit vectors directed along the labora-
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Fig. 14-8-1 Geometrical relationships between
the vector ¥ before and the vector V' after a
collision. The % axis of the laboratory frame of
reference is also shown.

ey

tory =z, y, z axes. The geometrical relationships are illustrated in Fig. 14-8-1.
Since |V'| = |V|, one can write

V' = Vecos 0t + Vsin 6’ cos o'E + V sin 8’ sin ¢'a
Remembering that V& = ¥ and that & L £, one then gets

V)=V 8= V.,cosf' + Vsintcose E-2

V=P %= V.cos6 + Vsinb# cose' -4+ Vsinf' cose'% (14-8-18)

We shall assume that the forces between molecules depend only on the
relative distance between them. Then the differential scattering cross section
o i8 independent of the azimuthal angle ¢'; i.e., ¢ = ¢(V;8'). The integral
(14-8-17) is then much simplified. Consider first the integration over ¢’ from
0 to 27. Since [sine' do’ = [cos¢ de’ = [sin ¢ cos ¢’ dp’ =0, while
[ cos? ¢ dp' = [sin? ¢’ do' = m, use of (14-8-18) in (14:8-17) shows that all
cross terms cancel. Thus (14-8-18) yields

o det VIV — VW) = 22V.V.cost 0 + xV1sin 0/ R - B)(k - 4) — 20TV,
(14-8-19)

To eliminate the vector ¥, we note that the condition % L # can be
expressed in terms of £, 5, { components (i.e., in terms of direction cosines) as

5.4=0=EDE- D+ G- HG-H+C-H 9
Since & L %, this implies that
ViHE-8)(E-9) = -V DT 8) = —V.Vs
Hence (14:8-19) becomes
[ e (Vv = V.V = aV.Vu2cost 0 — sint 0 — 2) = —3xV.V.sin? 0’
and (14-8-17) can be written in the form
| 2 J = —3V.V, Vo (V) (14-8-20)
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where
> ay(V) = 2r j;' a(V,0') sin® 8 db’ (14-8-21)

can be interpreted as the total effective scattering cross section which enters
the viscosity calculation.
One can now refurn to the integral (14:8.8), which becomes

I = =4[] &UdU, g(U)g(U)UUV.V Voo (V)
or by (14-8-3)

Ta= gm( ) f f AU ¥, eS0T UUL Y,V Vo (V)  (14-8-22)

This integral depends again on the relative velocity V. Hence we again make
the transformation (14-8-14) fo the variables ¥ and €. Analogously to
(14-2-86), one has d3U @*U; = d*C d?F. Then (14-8-22) becomes

T ome §n’( ) f dIC dBV e—Amicrrivy

1
(C:C-‘: + 5 sza + = cavz == l szs) VzVaVU‘
4 2 3
_ _ 8 . (nBY [ —gmet [ —igm 1
= —Zn’(%) [L.aeeta [ aw et (c00T. + 2 Viv2
1
+ % NAZES c,v.w,) Ve (T)

By symmetry it is clear that three of the terms in the parentheses are odd fune-
tions of V. or V. and lead therefore, by symmetry, to a vanishing result upon
integration over ¥. Thus one is left with

P il (m") 2, dCetne [° 4 eV aV.AVe (V) (14:8-23)
By Appendix A-4 one has simply
i = 3
f_.” PC e~ = 4«}; enet 02 dC = (-mlﬂ) (14-8-24)

Expressing V in terms of spherical coordinates with £ as polar axis, one has
V.=Veosd V,= Veinbcos ¢ anddV = V:dVsin 8d8de. Thus one gets

[ @ ey v g (W= [ av ey, v) Jo d0sin® 0 cost 0
f i de cos® @

[(w/mﬁ)f d”_'w"‘(»/me)][ ]”

(148.25)
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where we have introduced the dimensionless variable

which physically expresses the relative speed V in terms of the most probable
speed 7 of the gas in equilibrium. If ¢, did not depend on the relative speed of
the molecules, then the integral in (14 -8-25) would, by Appendix A -4, be equal
t0 3o,. More generally, let us define a mean effective cross section by

> o, (T) = f dse—*a,(\/mﬁ (14-8-26)
Then (14-8-25) becomes
10247 o,
[ @ ey 2y ave,(v) = = "—(1::8}“ (14-8-27)
Substituting (148 27) and (14-8-24) into (14-8-23) yields then
24 kT
> 1= -2, ( )a,, (14-8-28)

Evaluation of the coefficient of viscosity Using (14-8.28), the parameter
A is now given by (14-8-10) as

4= 24 Ny (kT) Oz (b8
Then one obtains by (14-8-11)
Uz
Py = _ﬂa—z
where
’ __5‘\/1|“V‘ka (14-8'30)

T TR

This completes the calculation. It is, of course, apparent by (14:8-30)
that 5 depends only on the temperature, but not on the pressure.
Note that it is the eross section o, of (14:8.21), rather than the total cross

i 2 - i . s : z
section g = 27 fo o sin 8 d’, which enters this viscosity calculation. The

extra sin® #' factor in the integrand implies that scattering angles near 90° are
weighted most heavily. The physical reason is clear; scattering through such
angles is most effective in cutting down the rate of momentum transfer responsi-
ble for the viscosity.

Exampk Let us evalnate (14-8-30) for the speeiaa case where the moleaulags
oan be considered hard aphareaofrad:naa. ‘Then the htzlm%ermg cmas
~ section is
; = (@) = e (14-8:31)
The d&ﬂereutls.l soattering cross section for hard spheres dmm’edepend on.
the scattering angle 6’ (see Problem 12.4). Thus :
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i g

Then one finds, by (14-8-21),

a, = 2r (ﬁ) j;r sin® 4’ d8' =%w (%) = g-mo

Since this is independent of V, (14-8-26) gives simply

B, =0y = 300 (14-8-32)
Thus (14-8-30) becomes
e 5-1\;« VIRT _ () g5y NIET (14-8'33)
Ty Ty

This is actually a very good value for the hard-sphere model. More refined
approximations would only inerease this result by 1.6 percent.

It is of interest to note that (14 8:33) is larger than the result of the
mogt elementary mean-free-path caleulation (12-3-19) by a faetor of 1.47,
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PROBLEMS

14.1 Consider the physical situation envisaged in Sec. 14- 6 where there are n ions per
unit volume, each having charge ¢ and mass m. These ions are free to move in
8 gas containing n, neutral molecules of mass m, in unit volume, Assume, for
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14.2

14.3

14.4

14.5

PROBLEMS

the sake of simplicity, that the scattering of an ion by a molecule can be approxi-
mated by the scattering of hard spheres of total cross section oi.. The neutral
gas has zero drift velocity, since it is at rest with respect to the container. By
carrying out the momentum balance argument of Sec. 14:6 exactly, derive an
expression for the electrical eonduectivity of the ions in this gas.

Consider again the physical situation deseribed in Problem 13.6 where a mona-
tomic dilute gas at temperature T 18 enclosed in a container and is maintained
in the presence of a small temperature gradient in the z direction. The molecu-
Jar mass iz m, and the differential scattering eross section deseribing collisions
between molecules is o (V,67).

(a) Obtain an approximate form of the molecular distribution function.
Refer to the suggestion in Problem 136 and note again that the physical situ-
afion of no mass motion requires that 7. = 0.

(b) Find an approximate solution of the Boltzmann equation and use this
result to find the coeffieient of thermal conductivity of this gas. Express your
answer in terms of T, m, and the effective total cross section &,(7) defined in
(14-8-26).

(¢} If the molecules can be considered hard spheres of total scattering cross

section oy, calculate the thermal conductivity of this gas in terms of oy.
By comparing the general expressions derived in the case of a monatomie dilute
gas for its thermal conductivity « in Problem 14.2 and for its viscosity coef-
ficient 4 in (14:8:30), show that the ratio /9 is a constant independent of the
nature of the interactions between the molecules.

(a) Find the numerical value of this ratio.

(b) Compare this value with the value which would be computed on the
basis of the simplest mean-free-path arguments.

(¢) Compare the value of this ratio predicted by the exact theory with
experimental values obtained for several monatomic gases. Appended are a few
values of atomic weights p, viscosity # (in gm em~" sec™), and thermal condue-
tivity x (in ergs em—! sec™! deg™!) at T = 373°K

Gas n n K
Neon 20.18 3.65 % 104 5.67 X 10¢
Argon 39.95 2.70 x 101 2.12 102
Xenon 131.3 2.81 X 10 0.702 x 107

The general expression (6-6-24) for the entropy of a system suggests that the
quantity H defined in terms of the distribution function f(r,,1) by

H=[dvflnf

is related to the entropy of the gas. By using for f the equilibrium Maxwell
velocity distribution verify that H = —S/k, where S is the entropy per unit
volume of a monatomic ideal gas.
Use the definition

H=[dvfInf

to obtain a general expression for the time derivative dH/di. Make use of the
Boltzmann equation satisfied by f, and exploit the symmetry of the resulting
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14.6

expression in a manner similar to that employed in evaluating the collision term
at the end of Sec. 14-4,
(a) In this manner show that

o=~ 1J[] dvama vetags —m g0 — 1)

(b) Since for any y and =,

(ny—Ina)(y—2) =0

(the equal sign being valid only when y = «), show that dH/dt < 0 and that the
equals sign holds if, and only if, ffi’ = ffi. This is the so-called “Boltzmann
H theorem,” which proves that the quantity H always tends to decrease (i.e.,
the generalized entropy defined as — H/k tends to increase).

(¢) Bince in equilibrium it must be true that dH/dl = 0, show that when
equilibrium has been reached f’f;" = ff..
The equilibrium condition f’fy’ = ffy is equivalent to

Inff+hfi/=hf+nf

i.e., the sum of quantities before a collision must be equal to the sum of the
corresponding quantities after the collision. The only quantities thus con-
served are, besides a constant, the three momentum components of a molecule
and its kinetic energy. Thus the equilibrium condition can only be satisfied
by an expression of the form

Inf = A+ Bumy, + Bymy, + By, + C(zme?)

where the coefficients 4, B,, B,, B., and (! are constants. Show that this implies
that f must, therefore, be the Maxwellian velocity distribution (for a gas whose
mean veloeity does not necessarily vanish),




Irreversible processes
and fluctuations

v THIS final chapter we shall attempt to make some general statements about
systems which are not necessarily in equilibrium. Thus we shall examine how
equilibrium is approached and how rapidly it is approached. We shall also
want to gain an understanding of the frictional effects (like those due to viscous
forces or to electrical resistance) which lead to dissipation of energy in many
systems of interest. Finally, we shall investigate the fluctuations exhibited
by certain parameters of systems in thermal equilibrium. Although these
various questions may at first sight seem unrelated, our discussion will show
that they are actually very intimately connected.

TRANSITION PROBABILITIES AND MASTER EQUATION

151 Isolated system
Consider an isolated system A. Let its Hamiltonian (or energy) be
o = & + (15'1'1)

where 4C is the main part of the Hamiltonian and 5¢; < 3¢ is a small additional
part describing some weak interactions not included in 3¢. (For example, in

the case of a dilute gas, 3¢ might contain all the kinetic energy terms of the

molecules, while 3¢; might describe the small interactions between the mole-
cules.) Let the quantum states of 3¢ be denoted by r and their corresponding
energy levels by E,. If 5¢ = 0, these states would be quantum states of the
total Hamiltonian so that the system 4 would remain in any such state indefi-
nitely. The presence of the additional interaction J¢; makes this no longer
true, since 3C; is capable of inducing transitions between the various unper-
turbed states ». If d¢; is small, if there is a nearly continuous distribution of

48




ISOLATED SYSTEM 649

accessible energy levels,* and if one considers time intervals which are not too
small, then there exists a well-defined transition probability W,. per unit time
from the unperturbed state r to the unperturbed state s of system A. By
conservation of energy W., is such that

if B, = E,, W, =0 (15-1:2)

Furthermore, there is a symmetry property relating this transition to the
inverse transition* from state s to state 7,

’ W, = W, (15‘ 1 3)

*Remark 'This follows from the fact that by quantum mechanics
Wiy o [(s[aCardl® = (sfacilry*(sloeslr)

where {8}3C;|r) is the matrix element of ; between state r and state s. Since
3¢; is hermitian, so that (s}3jr) = (rl3Ci|s)*, the relation (15-1-3) follows
immediately. Note also that this symmetry property relating inverse tran-
sitions is not quite the same as the symmetry property between reverse tran-
sitions diseussed in (9- 15 -2).

Let P,(f) denote the probability that system A is found in state r at time £
Then P, tends to increase with time because systems in other states make
transitions to the given state r, and it tends to decrease because systems in this
state » make transitions to other states s. The time dependence of P, can thus
be described by the equation

"%:: = ZP.W,, = ZP,W,. (15:1-4)
Dr 5 a
> ‘% = S @, - PW.) (15-1:5)

If there are N states, one can write N such equations in the corresponding
number of unknowns P,. Hence a knowledge of the transition probabilities
W.,, allows one to compute the probabilities P, as a function of time.
Equation (15:-1-5) is called the ‘“‘master equation.” Note that all terms
in it are real and that the time ¢ enters linearly in the first derivative. Hence
the master equation does not remain invariant as the sign of the time ¢ is
teversed from ¢ to —{. This equation describes, therefore, the irreversible
behavior of a system, It is thus quite unlike the detailed microscopic equations
of motion, e.g., the Schridinger equation, which provide a deseription which

* This ean be the case because the energy levels are very closely spaced, or because one
considers an ensemble of systems not all of which have exactly the same energy levels. (An
example of the latter situation might he an assembly of nuelei located in slightly different
local magnetic fields.)
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1s invariant under time-reversal.* Although the master equation is related to
the Schrodinger equation, the preeise approximations which lead to the deriva-
tion of the master equation are subtle and involve the interesting question of
how one passes from reversible microscopic equations to a description which
exhibits irreversibility.t We shall discuss this question in somewhat greater
detail in See. 15:7. In the present context the approximations involved are
those, already mentioned, which lead to the existence of well-defined transition
probabilities per unit time and those implied by a discussion which concerns
itself only with the probabildly P, that the system is in a given stater. (The
complete quantum-mechanical specification of the state of the system at all
times involves the complex probability amplitude a.(t), where P, = |a.|®. The
present discussion thus invelves approximations which disregard all informa-
tion contained in the phases of the amplitudes a..)

If the isolated system A is in equilibrium, the fundamental statistical
postulate of equal a priori probabilities asserts that, for all r and s,

D= (15-1:6)
By the symmetry property (15-1-3) the right side of (15-1-5) gives then
Panr — PW, = PI(WIJ' = Wrr) =0 (1517)

go that (15-1-5) yields dP,/dt = 0 for all ». Thus Eq. (15:-1-5) does then
describe correetly an equilibrium situation.

The relation (15-1:7) expresses a condition of detailed balance according
to which the rate of occurrence of any transition equals the corresponding rate
of oceurrence of the inverse transition; i.e., states of the same energy (for which
W., # 0) are connected by the relation

-PrWra e PIW" (15 1. 8)

This is certainly a sufficient condition to guarantee that dP./dt = 0 for all r;
it is not, however, a necessary condition. As we have just shown, the condition
(15-1-8) is satisfied in equilibrium. It may, however, be possible to encounter
nonequilibrium steady-state situations, defined by the fact that dP /dt = 0
for all #, in which the condition (15-1-8) is not satisfied.i

Note that if it is assumed that the condition of detailed balance holds in an
equilibrium situation where P, = P,, then one can immediately conclude from
(15-1:8) that W,, = W,,. Since the transition probabilities W are dynamical
quantities which do not depend on whether the system is in equilibrium or not,
it then follows that the relation W,. = W,, must be quite generally valid even
if A is not in equilibrium. Thus one arrives again at the result (15-1-3).

* For a diseussion of time-reversal invariance, see R. €. Tolman, “The Principles of
Statistical Mechanics," secs. 37 and 95, Oxford University Press, Oxford, 1938.

t For a discussion of such derivations and further references, see R. W. Zwanzig in
University of Colorado “Lectures in Theoretical Physics," vol. 3, pp. 106-141, Interscience
Publishers, New York, 1961.

1 See, for example, M. J. Klein, Phys. Rev. vol. 97, p. 1446 (1955).
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15 -2 System in contact with a heat reservoir

Consider a system A4 in thermal contact with a much larger system A'. The
total Hamiltonian of the combined system A = 4 + A4’ is

3 = ge + 3¢’ + ac

where 3C is the Hamiltonian of A, 3¢ is that of the heat reservoir A’, and 3¢ is
very small and describes the weak interaction between A and A'. In the
absence of interaction when 3¢; = 0, denote the energy of A in state r by £,,
and the energy of A’ in state r’ by E,. The presence of the interaction 3¢
induces transitions between these states and is responsible for bringing about
equilibrium between 4 and A,

Let P, be the probability that A is in state r, and P} the corresponding
probability that A’ is in state . The state of the combined system 4@ is
described by the pair of numbers r and r'; the probability of A® being in this
state is P® = P.P.. In this combined system the interaction 3¢; causes
transitions between states. Under assumptions similar to those of the last
subsection, there exists a well-defined transition probability W@ (rr' — ss') per
unit time from state 1’ to state ss’. By conservation of energy,

if B, + E, % E, + E,, WO (pr' — ss’) =0 (15:2:1)
In addition, (15-1-3) yields for the isolated system A the symmetry condition
WO (ss" — 10') = WO (rr' — 35") (15-2-2)

Let us first reeall the relations valid in equilibrium. Then P, is propor-
tional to the total number of states available to A when A is known to be in
the given state r; thus, by the reasoning of See. 6-2,

P = L:QUE™ — B = b5 (15:2-3)

where @/(E’) is the number of states available to A’ when its energy is B,
E© ig the constant total energy of A® and g = 9 In @'/aE’ (evaluated for
E' = E) is the temperature parameter of the reservoir 4.

One can also obtain the canonical distribution (15-2-3) for system A4 by
assuming that the condition of detailed balance prevails in equilibrium and that
the interaction between 4 and A’ causes transitions between all states of A.
Then one can write

P P.W®(re' — 88') = P,PyW®(ss' — rr") (15-2:4)
where W = 0. TUsing the equality (15:2-2) this becomes
B0 B %5
P.= P (15-2+5)

But A’ itself satisfies the canonical distribution, since the equilibrium of A’ is
undisturbed when it is placed in contact with a heat reservoir at temperature
8. Hence P, = exp (—g8E',) and (15:2:5) becomes

P' ds’,:

- e AE —B) (15-2-6)
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Application of the conservation of energy to (15-2-4) requires that .

Er = E:,f = E.n = E:-‘ or E:-‘ = E:' o _(E; — Er)

Hence (15-2:6) becomes

3it
o A e i

2 o5

(15-2-7)

and one regains the canonical distribution (15-2-3) for system A.

Suppose now that we consider a general nonequilibrium situation, but
assume that the heat reservoir 4’ is so large that, irrespective of what 4 does,
A’ always remains in internal equilibrium. Thus, no matter what total energy
A' may have at any one time, A’ is always supposed to be distributed according
to a canonical distribution with the constant temperature parameter 3. Under
these circumstances, let us ask for the net transition probability W,. per unit
time of the subsystem A from its state r to its state s. It should be clear that
W, # W,.; Fig. 15-2-1 illustrates how this comes abouf.

The transition probability W,, can be obtained by multiplying the transi-
tion probability W (r' — ss’) for the combined system A4 by the probability
P! that A’ is in the particular state ' and then summing over all possible
initial states »* in which A’ can be found and all the possible final states s" in
which it can end up. Thus

Wee = 3 PaWO(rr' — s¢) = C Y, ePEvWO(rr' — ss')  (15-2-8)
e’

sinee P’ = C exp (—BE.), where C is some constant. Similarly,

We=20C E el A (38" =* ”’) (15 -2- 9)
r's

fri! —— yE

Fig. 15-2:1 Diagram illusirating a system A in thermal contact with a heat
reservoir A'. The lines indicate the energy levels for states r and s of A, and
states ¢’ and &' of A'. Since A' remains always in thermal equilibrium, A’ is
more likely to be in the lower state 5' (marked by the heavy line) than in
the upper state r'. As a result, transitions of the type ss'— rr', illustrated
in the left diagram, occur more frequently than those of type rr' — s/, illus-
trated on the right. Hence W, > W.. These transitions tend thus to pre-
duce the thermal equilibrium distribution where A is more likely to be in
state r than in state s.
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But the energy conservation (15-2-1) implies that E, = E. + E, — E,. |
Using the symmetry relation (15-2-2), the expression (15-2-9) becomes then
W" = g BEq e—ﬂ(s,—S.)'ﬁ?w}(wf == 33’) = g-BlE~ '}Wﬂ I

vyt

Thus

B

In the ordinary case where 8 > 0, W,. > W, if E, > E, In the system A
transitions to states of lower energy are thus more probable than transitions
in the opposite direction. This is, of course, what is required to bring about
the thermal equilibrium distribution in A. Indeed, if it is assumed that the
eondition of detailed balance prevails at equilibrium, then

PiWrii= BV (15-2-11)
The eanonical distribution (15-2-7) then implies immediately the relation
(15-2-10) between transition probabilities.

It is convenient to make the relationship (15:2:10) apparent by intro-
ducing a quantity A = A, defined by

e—ﬂE.WM' = e_ﬂErWra == }\rs = A"

42,
Wer _ ptm 0 o &0
P

e

(15-2-10)

Then one can write
W = €PEep,,, Wee = 898k, (15-2-12)

and (15-2-10) follows automatically since Ay = Ay
The probabilities for system A satisfy again the master equation (15-1-5)

2 o gL £. 8B, _ , 9.
. Z(P,W,, P,W.,) Z)\.,(P.ef P,eP2)  (15.2-13)

Once again, if equilibrium prevails so that the canonieal distribution (15-2-3)
holds for system A, then the right side of (15-2:13) vanishes and dP,/di = 0 i
for all r, as it should. .

15 . 3 Magnetic resonance

An instructive and important example of the ideas developed in the preceding
sections is that of magnetic resonance. Consider a substance containing N
noninteracting nuclei (or electrons) of spin 4 and magnetic moment p. If the
gubstance is placed in an applied magnetic field H, each spin can point either
“up” (i.e., parallel to H) or “down.” We denote the corresponding states by
+ and —, respectively. The two possible energies of each nucleus are then

Let ny be the mean number of spins pbinting up and #_ be the mean number of
spins pointing down. Clearly, n, +n_ = N.
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T Sl Fig. 15-3-1 Energy levels
W of a nucleus of spin } in
an external magnetic field
H. The magnetic moment
u is assumed to be positive
in this diagram.

€ . =~uelf

The total Hamiltonian of the system can be written as
e = 3, + 3o + 5

Here 3¢, is the Hamiltonian expressing the interaction between the nuclear
moments and the external field H; 3¢y is the Hamiltonian describing the “lat-
tice,” i.e., all non-spin degrees of freedom of the nuclei and all other atoms in the
substance. The Hamiltonian 3¢ describes the interaction between the spins
of the nuclei and the lattice, and causes transitions between the possible spin
states of the nuclei. (For example, the magnetic moment of a moving nucleus
produces a fluctuating magnetic field at the positions of other nuclei and this
field causes transitions.) Let W,_ be the transition probability per unit time
that a nucleus flips its spin from “‘up” to '‘down’’ as a result of interaction
with the lattice. The lattice itself is a large system which can be regarded
as being always very close to internal equilibrium at the absolute temperature
T = (k8)~'. Thus (15:210) allows one to write the relationship

W“" 1 g% e—ts e i

WT_=E_'ST=&B( +) (1532)
Now (15:3:1) gives (s — ¢,) = 28uH. For nuclei the magnetic moment
p = 5+ 107* ergs/gauss so that in laboratory fields of the order of & = 10*
gauss
i R R 1
AL F

for all but ezceedingly low temperatures. Even for electronic moments, which

BuH = <1

are about 1000 times larger, this inequality is almost always well satisfied.

By expanding the exponential, the relation (15:3:2) can then be written in the
form

Wi-=W
and W_,. = W(1 + 26uH), where guH < 1

Finally, there may also be present an externally applied alternating mag-
netic field of angular frequency w. If #fiw =~ ¢ — e, = 2uH, this field will
induce transitions between the spin states of a nucleus. (If H = 10* gauss,
w is typically a radio frequency (rf) of the order of 10® sec—'.) Let w,_ be the
transition probability per unit time for the “up” to “down” transition induced
by this rf field, Then one again has the symmetry property (15:1:3)

(15-3:3)

Wi = Wey = W (15:3-4)
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Here w = w(w) is only appreciable if » satisfies the resonance condition
fiw = 2uH.
The master equations for n,.(f) and n_(¢) then become

B o e (Wos + 0) = (W + )

B = n(Wae + 0) — (Wi + )

(15-3:5)

By subtracting the second equation from the first, one obtains
2 (ne—n) = —2m (W +0) + 20 (Wo +w)  (15:3:6)

Introducing the population difference
n=ny— 0 (15-3:7)
and using (15-3-3), the relation (15-3:-6) becomes

.‘% = —2(W + w)n + 28uHWN (15:3-8)
Here we have put 48uHWn_ = 43uHW (4 N — n) = 28uHWN, since one
always has n << NV in the temperature range of interest.
Let us now investigate various cases of interest. Consider first the equilib-
rium situation in the absence of an applied rf field, i.e., with w = 0. Then
dn/dt = 0, and (15-3-8) yields for the equilibrium excess number of spins

no = NpuH (15:3-9)

This is, of course, the result which follows from the eanonical distribution
according to which one has in equilibrium

LAuH 1A ]
e T P (CE W)
go that ny = n. — n_ assumes the value (15:3-9)

Hence (15-3-8) can be written in the form

S %’-} = —2W(n — no) — 2un (15-3-10)

In the absence of a rf field when w = 0, this yields upon integration
n(t) = no + [n(0) — ng) e2¥¢ (15-3-11)

where n(0) is the population difference at the initial time ¢ = 0. Thus n(f)
approaches its equilibrium value n, exponentially with a characteristie ‘‘relaxa-
tion time” (2W)~'. Obviously, the larger the interaction W of the spins with
the lattice heat reservoir, the shorter the relaxation time.

Suppose now that the interaction of the sping with the lattice is very weak,
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Fig, 15:3:2 Net energy flow in a steady-state resonance
absorption experiment,

so that W = 0, and that a rf magnetic field is applied. Then (15-3-10)
becomes

dn
E - —21971-
so that alt) = n(0) et (15:3-12)

The population difference then becomes exponentially zero within a characteris-
tie time (2w)~! which is inversely proportional to the strength of the interaction
with the applied rf field. The reason for this is quite clear. Since there are
more nuclei in the lower state of Fig. 15-3-1 than in the upper state, the fransi-
tions induced by the rf field result in a net absorption of power equal to
(ny — n)w(2uH). The nuclear spin system is essentially isolated since
W = 0; hence the energy absorbed from the rf field goes to increase the energy
and hence the “spin temperature T, of the spins until 7, approaches infinity.
At this point n, = n_, the population difference n = 0, and there is no further
absorption of rf power. The spin system is then said to be “saturated.”

If one does want to observe absorption of rf power in a steady state situa-
tion, there must be adequate contact between the spin system and the lattice
heat reservoir. In that case the power absarbed by the spin system is in turn
given off to the lattice (which, being a system of very large heat capacity,
experiences only an infinitesimal increase in temperature). In the steady state
dn/dt = 0 so that (15-3-10) becomes

Win — ng) = —wn
Tl
or n= Wﬁj {15‘3‘13)

Thus n is less than the equilibrium value ny by an amount which depends on
the ratio w/W of the transition probabilities. If w < W, n— n; but if
w > W, n— 0 and one gets saturation.

15-4 Dynamic nuclear polarization; Overhauser effect

Nonequilibrium methods for achieving nuclear polarization (the so-called
“Overhauser effect” being one such method) provide a particularly illuminating
illustration of the ideas presented in the last few sections. Consider a sub-
stance containing both nuclei of spin 4 and magnetic moment u., and also
unpaired electrons of spin 4 and magnetic moment p, (s, < 0). The substance
is placed in an external magnetic field H pointing in the 2 direction. Suppose
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that the principal interaction of a nucleus is with an electron through “hyperfine
interaction,” i.e., through the magnetic field produced by the electron at the
position of the nueleus. (This interaction is described by a Hamiltonian of the
form 3€,. = al - S where I is the nuclear and S the electronic spin angular
momentum.) Since no z component of external forque aets on the system
consisting of nucleus and electron (i.e., since the total Hamiltonian of this

| system is invariant under rotations about the z direction), the total zcomponent

| of angular momentum (7. + 8.) of this system is a constant of the motion.
Thus the transitions induced by the interaction between a nucleus and an
electron must always be such that whenever the nucleus flips its spin from “up”
to “‘down,” the electron must flip its spin from “down” to “up,” and vice
versa. We shall denote the transition probability per unit time due to this
interaction by Wa,(+ — — — =) where + and — indicate up and down
orientations of the nucleus n, and -+ and — up and down orientations of the
electron e,

The nuelei interaet then predominantly with the electron spins, which in :
turn interact appreciably with the lattice heat reservoir. It is through this
chain of interactions that the nuclear spins attain the thermal equilibrium
situation corresponding to the lattice temperature 7' = (k8)~'. TLetn, and n_
denote the mean number of nuclear “up” and “down’’ spins; let N, and N_
denote the mean number of electron “up’ and “down” spins. In thermal
equilibrium one then obtains, for the nuclei of energy e, = Fu.H,

.
- S eE (15-4-1)

Also for the electrons of energy B, = T p.H,

B,
% = _:_mﬂ = gbuH (15-4-2) ‘
The degree of polarization of the nuclei and electrons can be measured by the '
respective ratios defined by

AN
‘=N, FN_

Each £ lies in the range —1 < £ < 1. Since |u,| = 1000|p,|, it is clear by
(15-4-1) and (15-4:2) that £, << £. Even if one goes to such high applied
fields H and low temperatures 7 that the electrons are appreciably polarized,
the degree of nuclear polarization is thus still very small, in particular much too
small to do nuclear physics experiments on polarized nuclei.

From the point of view »f the transition probabilities one can regard the
combined system (n + e) of nucleus and electron as being in thermal contact
with the lattice heat reservoir. It thenfollows by (15-2-10) that the transition
probabilities must satisfy the relation

Mg — N

Ny — N i |
e (15-4-3)

En and £

g:gf ; : ; t; = gBletBimei—E) — g~(a—n)H (15-4-4)
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Fig, 15:4:1 Interaction
between nuclear spins,
electron spins, and the
lattice in the Qverhauser
effect.

If one assumes the condition of detailed balance to be valid in the equilibrium
situation,

N-Wesl——— ) = N Wal — +— + —) (15:4.5)
By (15-4-4) this condition becomes

e N oo (15-4-6)
L
a result consistent with the equilibrium relations (15-4-1) and (15-4-2).
Tmagine, however, that an rf field is applied at the electron-spin resonance
frequency and suppose that it is strong enough to saturate the electron-spin
system so that N, = N_. If one assumes that the detailed balance condition
(15-4-5) remains valid in this steady-state situation, (15-4-6) becomes

> Mt _ B~ g2 (15-4-7)
sinee || 3> |ga|. Thus the nuelei are now polarized by an amount as large as
though they were endowed with the very much larger electronic magnetic
moment! This remarkable result is called the “Overhauser effect.” It allows
the achievement of appreciable nuclear polarizations in a nonequilibrium, but
steady-state, situation,

Alternative discussion A more general and illuminating diseussion of the
effect ean be given by focusing attention on the lattice heat reservoir. Consider
the situation (+ —) where the nucleus points up and the electron points down;
suppose that the reservoir then has the energy E’. The probability P(4 —)
of oceurrence of this situation is then proportional to the number of states
available to the combined system, i.e., to the number of states @' available to
the reservoir when the nucleus and electron are in this one state. Thus

P(+ =) = Q'(&")

Compare this now with the situation (— —), where the nucleus n points
down and the eleetron e points down as before. If in going to this new situation
the reservoir has gained energy AE’, then one has similarly

P(— =) « QB + AE') = Q/(E') e A®
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where we have expanded In Q' about £ in the last term and where

d In &
8= FYol

is the temperature parameter of the reservoir. Hence

ECE=] _ s

55— = ¢ 15-4:8
or, equivalently,

’“in-=%+=rm' (15-4-9)

We now want to caleculate AE’. According to the interactions illustrated
in Fig. 15:4:1, the situation (— —) must be visualized as arising from the
preceding situation (+ —) in two stages, as shown in Fig. 15-4-2. (a) The
first stage involves a mutual spin flip of n and e caused by the mutual interaction
of nucleus and electron. (b) The second stage involves interaction between
the electron and the lattice (or the rf field) whereby the electron spin alone is
flipped. Let E., = denote the total energy of the system (n + e) consisting
of nucleus and electron. Then the change AE,. of this energy in the two stages
is
Stage a: A = (e — &) + (By — BL) = 2u,H — 2uH = 2(un — po)H

(15-4-10)
Stage b:  AEn = (B~ — Ey) = 2uH (15-4-11)

By addition, the total change in energy of the system (n + ¢) is then
AB., = 2u.H (15-4-12)

Consider first the ease of thermal equilibrium in the absence of an rf field.
Conservation of energy requires then that the total energy change (15-4:12)
is provided by the lattice heat reservoir so that

AE' = —AE,, = —2u.H (15.4-13)
Hence it follows, by (15-4-9), that

=t = qunn (15-4.14)

in agreement with (15-4-1),
Consider now, by contrast, the steady-state situation where the applied rf

n @ n (4 1 €
Fig. 15:4:2 Interactions leading from the situation where the nucleus n
points up and the electron ¢ points down to the situation where n poinis
down and ¢ points down as before.
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field keeps the electron-spin system saturated. Since the interaction of the
electron-spin system with the rf field is then muech stronger than its interaction
with the lattice, the electron-spin flip of stage b is in this case achieved by inter-
action with the rf field; the requisite energy for this process is thus provided by
this externally applied field and not by the lattice. The total energy supplied
by the heat reservoir is then only that for stage a. Thus

AR = —AE,, = —2(u, — po)H (15-4-15)
Hence it follows by (15-4-9) that

z; = Wb H o o~ (15-4-16)

Thus we obtain again the Overhauser effect predicted in (15-4-7).

SIMPLE DISCUSSION OF BROWNIAN MOTION

15-5 Langevin equation

A sufficiently smail macroseopic particle immersed in a liquid exhibits a random
type of motion. This phenomenon, already mentioned in Sec. 7-6, is called
“Brownian motion’”’ and reveals very clearly the statistical fluctuations which
oeeur in a system in thermal equilibrium.

There are a variety of important situations which are basically similar,
Examples are the random motion of the mirror mounted on the suspension
fiber of a sensitive galvanometer, or the fluctuating current existing in an electric
resistor. Thus Brownian motion can serve as a prototype problem whose
analysis provides considerable insight into the mechanisms responsible for the
existence of fluctuations and ‘‘dissipation of energy.” This problem is also of
great practical interest because such fluetuations constitute a background of
“noise” which imposes limitations on the possible accuracy of delicate physical
measurements.

For the sake of simplicity we shall treat the problem of Brownian motion
in one dimension. We consider thus a particle of mass m whose center-of-mass
coordinate at time ¢ is designated by z(t) and whose corresponding velocity is
v = da/dt. This particle is immersed in a liquid at the absolute temperature
T. It would be a hopelessly complex task to describe in detail the interaction
of the center-of-mass coordinate x with all the many degrees of freedom other
than z (i.e., those deseribing the internal motion of the atoms in the macro-
scopic particle, as well as those describing the motion of the molecules in the
surrounding liquid). But these other degrees of freedom can be regarded as
constituting a heat reservoir at some temperature 7', and their interaction
with # can be lumped into some net force F(f) effective in determining the time
dependence of z. Tn addition, the particle may also interact with some external
systems, such as gravity or electromagnetic fields, through a force denoted by
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F(t). The velocity v of the particle may, in general, be appreciably different
from its mean value in equilibrium.*

Focusing attention on the center-of-mass coordinate z, Newton's second
law of motion can then be written in the form

m® = 50+ F@) (15-5-1)

Here very little is known about the force F'(f) which describes the inferaction of
x with the many other degrees of freedom of the system. Basically, F(¢) must
depend on the positions of very many atoms which are in constant motion.
Thus F(t) is some rapidly fuetuating function of the time ¢ and wvaries in a
highly irregular fashion. Indeed, one cannot specify the precise functional
dependence of F on {. To make progress, one has to formulate the problem
in statistical terms. One must, therefore, envisage an ensemble of very many
similarly prepared systems, each of them consisting of a particle and the sur-
rounding medium. For each of these the force F(f) is some random function
of ¢ (see Fig. 15-5-1). One can then attempt to make statistical statements
about this ensemble.

For example, looking at a given time {,, one can ask for the probability
P(Fy,t,) dF; that the force F in the ensemble assumes at this time & value
between Fy and Fy + dF,. Or, picking two specific times {, and Z;, one ean
ask for the joint probability P(Fit; Fata) dF; dFs that at time i, the foree lies
between F'y and Fy + dFy, and that at time £, it lies between F, and F'y + dFa.
Similarly, one can compute various averages over the ensemble. Thus the
mean value of F at time ¢, is

N
Py =% t; FO 1)

where the sum is over all the N systems, labeled by %, contained in the
ensemble.

The following descriptive comments can be made about F(f). The rate
at which F(f) varies can be characterized by some ‘‘correlation time” r* which
measures roughly the mean time between two successive maxima (or minima)
of the fluctuating function F(#). This time r* is quite small on a macroscopic
seale. (It ought to be roughly of the order of a mean intermolecular separation
divided by a mean molecular velocity, e.g., about 10-19 gec if F(f) describes

* Indeed, the following question is of interest. Suppose that F = 0 and that at some
initial time the particle has a velocity » different from its thermal mean value § = 0. (Thia
could be the result of a spontaneous fluctuation; alternatively, this velocity might have been
produced by the application of some external force which is then switched off.) How
rapidly does the particle’s velocity then approach the mean value corresponding to thermal
equilibrium ?
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System 1

System &

Fig. 15-5:1 Ensemble of systems illustrating the behavior of the fluctuating
Jorce F(t) acting on a stationary particle. Here F®)(t) is the force in the
kth system of the ensemble as a function of the time (.

interactions with molecules of a typical liquid.) Furthermore, if one contem-
plates a situation where the particle is imagined clamped so as to be stationary,
there is no preferred direction in space; then F(¢) must be as often positive as
negative so that the ensemble average F(t) vanishes,

Equation (15-5-1) holds for each member of the ensemble, and our aim is
to deduce from it statistical statements about v. Since F(¢) is a rapidly flue-
tuating function of time, it follows by (15-5-1) that » also fluctuates in time.
But, superimposed upon these fluctuations, the time dependence of » may also
exhibit a more slowly varying trend. For example, one can focus attention on
the ensemble average 7 of the velocity, which is a much more slowly varying
funetion of the time than v itself, and write

v=170+7 (15-5-2)
where v denotes the part of » which fluctuates rapidly (although less rapidly

than #(t), sinee the mass m is appreciable) and whose mean value vanishes.
The slowly varying part @ is of crucial importance (even if it is small) because
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it is of primary significance in determining the behavior of the particle over
long periods of time. To investigate its time dependence, let us integrate
(15-5-1) over some time interval r which is small on a macroscopic scale, but
large in the sense that r >>+*. Then one gets

nma+a—wm=smr+f“mm&' (15-5-3)

where we have assumed that the external force F is varying slowly enough that
it changes by a negligible amount during a timer. The last integral in (15-5-3)
ought to be very small since F(t) changes sign many times in the time+. Hence
one might expect that any slowly varying part of » should be due only to the
external force ¥; i.e., one might be tempted to write

dp

ma=F (15-5-4)

But this order of approximation is too crude to describe the physical
situation. Indeed, the interaction with the environment expressed by F(t)
must be such that it always tends to restore the particle to the equilibrium
situation. Suppose, for example, that the external force & = 0. The inter-
action expressed by F must then be such that, if & £ 0 at some initial time, it
causes ¥ to approach gradually its ultimate equilibrium value # = 0. But
(15:5-4) fails to predict this kind of trend of # toward its equilibrium value,
The reason is that we were too careless in treating the effects of F in (15-5-3),
Thus we did not consider the fact that the interaction foree F' must actually be
affected by the motion of the particle in such a way that F itself also contains
a slowly varying part F tending to restore the particle to equilibrium. Hence
we shall write, analogously to (15-5-2),

F=F+F (15:5-5)

where F'’ is the rapidly fluctuating part of F whose average value vanishes.
The slowly varying part F must be some function of # which is such that
F(5) = 0in equilibrium when# = 0. If #is not too large, F(#) can be expanded
in a power series in # whose first nonvanishing term must then be linear in .
Thus F must have the general form

SN (15-5-6)

where « is some positive constant (called the “friction constant’) and where
the minus sign indicates explicitly that the foree F acts in such a direction that
it tends to reduce 7 to zero as time increases. Our present arguments do not
permit us to make any statements about the actual magnitude of . We can,
however, surmise that o must in some way be expressible in terms of F itself,
since the frictional restoring force is also caused by the interactions described
by F(t).
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In the general case the slowly varying part of (15-5-1) becomes then

m® G+ F=5—a (15:5-7)
If one ineludes the rapidly fluctuating parts ' and F’ of (15-5-2) and (15-5:5),
Hq. (15-5-1) can be written

> m%=i¥—aﬂ-}-ﬁ"{t} (15-5-8)

where we have put ab = av with negligible error (since the rapidly fluctuating
contribution av’ can be neglected compared to the predominant fluctuating
term F'(f)). Equation (15-5-8) is called the “Langevin equation.” It differs
from the original equation (15-5-1) by explicitly decomposing the force F(t)
into a slowly varying part —aw and into a fluctuating part ' (f) which is “purely
random,” i.e., such that its mean value always vanishes irrespective of the
velocity or position of the particle. The Langevin equation (15-5-8) describes
in this way the behavior of the particle at all later times if its initial conditions
are specified.

Since the Langevin equation contains the frictional foree —av, it implies
the existence of processes whereby the energy associated with the coordinate
z of the particle is dissipated in the course of time to the other degrees of
freedom (e.g., to the molecules of the liquid surrounding the particle). This is,
of course, in accord with our macroscopic experience where frictional forces are
commonplace. Nevertheless, one deals here with an example of an interesting
and conceptually difficult general problem. Consider a system A in confact
with some large system B. The microscopic equations governing the motion
of the combined system (A -+ B) do nof involve any frictional forces. The
total energy is conserved, and the motion is reversible. (That is, if the sign
of the time ¢ were reversed, the equations of motion would be essentially
unchanged and all particles would (classically) retrace their paths in time.)
But if one focuses attention on A, its interaction with the heat reservoir B can
be adequately deseribed by equations of motion involving frictional forces.
There is thus dissipation of energy from A to the heat reservoir B and the
motion of 4 is not reversible. The question is to understand in detail how
this situation comes about, what conditions must be satisfied for this deserip-
tion to be approximately valid, and how the modified equations of motion for 4
are derivable from the microscopic equations. A diseussion of such questions
in abstract generality is beyond the scope of this book. We shall, however,
return in Sec. 157 to a more detailed investigation of the approximations
which lead to the irreversible Langevin equation (15:5:8).

Finally, it is useful to point out the analogous electrical problem of an
electrical conductor of self-inductance L carrying a current I. Let the applied
electromotive force (emf) be UV(f). The current I carried by the electrons is
affected by the interactions of these electrons with the atoms of the conduetor.
The net effect of these interactions on the current I can be represented by some
effective fluctuating emf V(f). The latter can be decomposed into a slowly
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varying part — R I (where R is some positive constant) and into a rapidly fluctu-
ating part V'(#) whose mean value vanishes. The analogue of the Langevin
equation (15:-5:8) then becomes

L%—f=v- RI + V(%) (15-5-9)

The friction constant R is here simply the electrical resistance of the conduetor,

15:6 Calculation of the mean-square displacement

Let us assume the validity of Langevin’s equation as an adequate phenomeno-
logical deseription of Brownian motion and illustrate how it can be applied to
the caleulation of quantities of physical interest. In the absence of external

forces (15-5+8) becomes
m‘di:f = —av + P(t) (15-61) |
One can go further and ealeulate the frietional force by applying purely macro-
scopic hydrodynamic reasoning to the motion of a macroscopic spherical par-
tiele of radius a moving with velocity » through a liquid of viscosity . This
calculation yields a frictional force —av where
a = Brna (15-6-2)

This is known as “Stokes’s law.”’*

Consider the situation of thermal equilibrium. Clearly the mean displace-
ment ¥ of the particle vanishes (i.e., # = 0) by symmetry, since there is no
preferred direction in space. To calculate the magnitude of the fluctuations,
we now use (15-6-1) to calculate the mean-square displacement {z2?) = z* of
the particle in a time interval {. (We shall indieate ensemble averages inter-
changeably by bars or angular brackets.) Equation (15:6-1) contains the
quantities » = & and dv/di = di/di. Multiplying both sides of (15-6:1) by
z, one thus gets

D = [i (i) = z!] - = ciin 4 2F QD) (15:6+3)
dt di
One can now take the ensemble average of both sides of (15:6:3). As pointed
out in connection with the Langevin equation (15-5-8), the mean value of
the fluctuating foree F’ always vanishes, irrespective of the value of v or .
Hence («F’) = (z)(F') = 0. Furthermore, the equipartition theorem yields
$m(i*y = 3kT. Thus (15-6-3) becomes

m{% @a)) = m % @) = kT — afas) (15-6-4)

* Bee Problem 15.1. For the rigorous hydrodynamic derivation see, for example, L.
Page, ""Introduction to Theoretical Physics,” 3d ed., p. 286, D. Van Nostrand Company,
Princeton, N.J., 1952; or G. Joos, “Theoretical Physics,” 3d ed., p. 218, Hafner Publishing
Company, N.Y., 1958,
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Remark The operations of taking a time derivative and taking
ble average commute. Indeed, suppose that s qmtit}r v assumes at tmm 5
the value yfkj(t) ]n the kth Bym of an ensemble con: ng of N

Then
29 ~a(x 2', ”0) = E e

since one ¢an interchange the order of differentiation and summation.

The relation (15-6-4) is a simple differential equation which can immedi-
ately be solved for the quantity (zd) = «}(d(x'*‘) /dt). Thus one obtains

{zz) = Ce -I— —a— (15-6-5)
where ( is a constant, of integration. Here we have introduced the definition

o
y=2 (15-6-6)

so that 4! denotes a characteristic time constant of the system. Assuming
that each particle in the ensemble starts out at { = 0 at the position z = 0, so
that & measures the displacement from the initial position, the constant C in
(15:6:5) must be such that 0 = ¢ + kT/«. Hence (15-6-5) becomes

(xd) = Mt( z?) = —(1—8-*') (15:6-7)
Integrating once more one obtains the final result
[ (x%) = M [t — vy 11 — )] (15-6-8)

Note two interesting limiting cases. If ¢ < 4!, then

8—7f=1_7t+h2£!_ b AR
Thus
BT

for t K 773, @h==f (15-6-9)

The particle then behaves during a short initial time interval as though it were
a free particle moving with the constant thermal velocity v = (kT/m)*.
On the other hand, if 13> 41, et — 0. Thus (15-6:8) becomes simply

for 3> 7, () = 21.-:1’ (15-6-10)

The particle then behaves like a ch'ﬁ'usiug particle executing a random walk so
that (x?) « {. Indeed, since the diffusion equation leads by (12:5-22) to the
relation (%) = 2Dt, comparison with (15-6-10) shows the corresponding diffu-
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sion coefficient to be given by

p =X (15.6-11)

o

By using (15-6-2), the relation (15:6-10) yields the explicit result

kT
Ly .
(2% = —‘amt (15-6-12)

Observations of particles executing Brownian motion allowed Perrin
{ea. 1810) to measure (z*) experimentally. Indeed, knowing the size and
density of the particles as well as the viscosity of the medium, Perrin was able
to deduce from these observations a reasonably good value for Boltzmann’s
constant & and thus, with a knowledge of the gas constant R, the value of
Avogadro’s number.

A problem intimately related to the one discussed in this section is that of
the behavior of the particle in an external force field. If the particle earries
an electric charge e and is placed in a uniform electric field &, the Langevin
equation (15-5-8) becomes

GULEAL) | i,
ma-ea av + F'(t)

Taking the mean values of both sides and considering the steady-state situation
where dii/dt = 0, this yields

et — all = 0
This shows that # « & The “mobility” u = §/& is then given by
- e .8
p=g== (15-6:13)

Thus the mobility x and the diffusion coefficient D in (15-6-11) are both
expressible in terms of «. There exists therefore an intimate connection
hetween these two coefficients, namely,

> % = Eeﬁ (15-6-14)

This is known as the “Einstein relation.”

DETAILED ANALYSIS OF BROWNIAN MOTION

15 L 7 Relation between dissipation and the fluctuating force

In order to gain a better understanding of the frictional force, we shall now
return to Eq. (15-5-1) and attempt to analyze it in somewhat greater detail.
Let us again consider a time interval 7 which macroscopically is very small, but
which is large on a microscopic scale so that

T>r*
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where r* is a correlation time which is of the order of the mean period of
fluctuations of the force F({). (This time r® measures also the relaxation time
required for the degrees of freedom responsible for the force ¥ to come to
internal equilibrium when disturbed by a sudden small change of z.) We again
assume that the external force & is slowly varying, and we shall be interested in
finding the slowly varying part of the velocity ». Here we call quantities
slowly varying if they change by negligible amounts in a time interval 7.
Focus attention on an ensemble of similarly prepared systems each of
which satisfies Eq. (15-5-1). By considering this equation in its integrated
form (15-5-3) and taking the ensemble average of both sides, one obtains

mu(t + ) — o) = 5O + [

“rEany dr (15:7-1)

If one neglected completely any effect of the particle’s motion on the force
exerted on it by the environment, the mean value (F) would be the same as the
mean value (F), = 0 that prevails in a static equilibrium situation where the
particle is somehow clamped so as to be stationary with respect to its environ-
ment. This is, of course, not the actual situation. Indeed, as was pointed out
in See. 15-5, an order of approximation that would simply put (F) = (IF}y = 0
in (156:7-1) would be inadequate, since it would not yield a slowly varying
velocity tending to restore the particle to thermal equilibrium. One therefore
needs to estimate how (F) is affected as the velocity v of the particle changes.
To make an approximate analysis of the situation, we can proceed as
follows. Let us foeus attention on the small system A described by = and the
other degrees of freedom with which this coordinate interacts through the foree
F (e.g., the particle itself and the molecules of the liquid in the immediate
vieinity of the particle). All the many other degrees of freedom (e.g., the bulk
of the liquid) then constitute a large heat bath B. The temperature T' = (kg)~!
of this heat bath is essentially constant, irrespective of any small changes in its
energy. For a given value of », considered as a parameter, the possible states
of A can be labeled r; in such a state, the foree F assumes some value F..
Suppose that at some arbitrary time ¢ the particle has a velocity #(f). In
first approximation, the system A4 at this time can be assumed to be in ‘an
equilibrium situation where (F) = 0 and where the probability of A being in
state r is denoted by W, In the next approximation one must, however,
investigate how (F) is affected by the motion of the particle. Consider then
the situation at a slightly later time ¢’ = ¢ 4+ ' when the particle has a velocity
o(t ++"). The motion of the particle affects its enyironment and, if 7’ is
sufficiently short, the mean force (F(#')) depends on the situation at the earlier
time . Indeed, as the particle’s velocity changes, the internal equilibrium of
the environment is disturbed. But after a time of the order of #* (i.e,, of the
order of the time between molecular collisions) the interactions between mole-
cules will have reestablished equilibrium conditions consistent with the new
value of the parameter v = #(¢ + 7*). This means that the heat bath B will
again be found with equal likelihood in any one of its Q accessible states.
Suppose then that in a time interval ' > +* the velocity of the particle
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changes by Av(r’) and that correspondingly the energy of B changes from £’ to
E’ + AE'(r"). The number of states accessible to B changes accordingly from
Q(E") to Q(E’ + AE'). Since in a situation of equilibrium the probability of
occurrence of a given state r of 4 is proportional to the corresponding number
of states accessible to the heat bath B, it is then possible to compare the
probability of oceurrence of the same configuration r at the times ¢ and ¢ + 7'
If the latter probability is denoted by W.(1 + '), one has simply

Wil + 1) _ UE + AR _ ,up
W, V2 Q(E")

(15-7-2)

where 8 = (8 In 2/8E") is the temperature parameter of the heat bath B.
Physically, this means that the likelihood that system A 1s found in a given state
ai a somewhat later time 1is increased if more energy becomes available to the heat
reservoir. Thus

Wt + ')

W0 eBRE =~ W, (] + g AE') (15-7:3)
At the slightly later time ¢ = ¢ + ¢’ the mean value of ' is then given by
(F) =Y Wit + 7)F, = Y W, (1L + BAE)F. = {(1 + B AE)F)
f T

where the last mean value is to be computed with the equilibrium probability
W, Since (F); = 0, this gives

28 () = B(F AE"), (15-7-4)

which, in general, does not vanish.

These approximate considerations can now be used in (15-7-1), where
> 7* The integral in that expression extends then over a time interval
sufficiently long that ' = ¢/ — t 3> +* over practically the whole range of
integration, making it possible to use the approximation (15-7-4) in the
integrand.

The energy increase of B in the time ¢’ — ¢ is simply the negative of the
work done by the force F' on the particle. Thus

AE = — ]: “oEnR@E ditt = —o(t) j: “Feryder (15-7-5)

where we have made the approximation, consistent with (15-7-1), that v(f)
does not vary appreciably over times of the order of 7. Hence one can use
(15-7-4) to write for the integrand in (15:7-1) the expression

®@) = —sFEw [ Fe ey = —s) [ d @@OFEN (15-7-6)

Here we have first averaged separately over #(t), since it varies much more
slowly than F(f). It is useful to write (15-7-6) in terms of the physically
significant time difference

s=t"-1t (15-7-7)




570 sgcrion 15+ 8
Equation (15:7-1) then becomes

“ray ﬁfl, dsFVFE + 9o (15-7-8)

m(t + 7) — o) = 5ty — ) |
The last term on the right is slowly varying and leads to ‘‘dissipation,” i.e., to
the fact that in the absence of external forces, when § = 0, the mean velocity
7 goes to zero with inereasing time.

15 . 8 Correlation functions and the friction constant

The ensemble average which oceurs in (15-7-8), i.e,,
K(s) = (FEF({E"))o = (FE)F{E + 9o (15-8-1)

is called the “correlation function’ of the function F(f). The ensemble average
is here taken in the equilibrium situation where the distribution of systems in
the ensemble is independent of the absolute value of the time. Hence this
average is independent of the time ¢’ and depends only on the time difference s.

Correlation functions oceur quite frequently in statistical physics and
have several general interesting properties. In the following we can consider
F(t) to be any random function of { and shall, for convenience, write ¢ instead of
¢' and drop the subscript from the averaging brackets. Then one has

K(0) = (F(OF()) = (F*()) > 0 (15-8-2)

Thus K (0) is equal to the mean square value of the fluctuating function F, i.e.,
to its dispersion if (F) = 0. (Of course (F*({)) is independent of the value of
the time ¢ in this equilibrium situation.)

If s becomes sufficiently large, then F(t) and F(f + s) must become uncor-
related, i.e., the probability that F assumes a certain value at time { 4+ s must
be independent of the value it assumed at the much earlier time {. Thus one
has

for s— w, K(s) = (FOXF( + 9))
i.e., for s — oo, K(s)—0 if{F)=0 (15:8-3)
Quite generally one can also show that
|K(s)| < K(0) (15-8-4)
This follows from the obvious relation that

([F() £+ F(t+ 9)]5 =0
Thus (F2(1) + FX({ + §) + 2F(OF(t + 8)) = 0
or {F2()) + (P2t + ) + 2FOF( + ) = 0
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v

Fig. 15-8:1 Diagram illustrating the correlation function K{s) = (F(HF(t + s5))
of a random function F(t),

Since in the equilibrium ensemble (F2(t 4 &)) = (F¥(1)} = K(0), this becomes

K(0) = K(s) 20
or —K(0) < K(s) < K(0)

which is the result (15-8-4).
Finally, since in the equilibrium ensemble K(s) defined in (15-8:1) is
independent of the time ¢, it follows that for any other time 4

K(s) = (FOF(t + 9)) = F)F (L + 8))
Putting {; = ¢ — &, this becomes

K(s) = (F(OF(t 4 8)) = (F{t — )F(1)) = (FOF(t — s)}'
or K(s) = K(—3) (15-8-5)

Thus a plot of the correlation function K as a function of s has a sym-
metrie shape of the type shown in Fig. 15-8-1. In our case values assumed by
the force F({) become uncorrelated over times of the order of 7*; hence K(s) — 0
when s 3> 7*. Tt is clear from this discussion that the correlation function
K(s) contains an appreciable amount of information about the statistical
properties of the random variable F(f),

We now return to the evaluation of the integral in (15:7:8). The domain
of integration is shown in Fig. 15-8 2 in the ¢’s plane. (Note that, since the
integrand is just the correlation function K(s) of the force F and differs from
zero only in the small region where [s| £ v* < 7, the integral is proportional to
v*7 rather than to the area r® of the complete domain of integration. Thus the
integral is proportional to the first power of ».) Since K(s) is independent of
I/, the integration over ¢’ can be performed first quite easily. Changing the
order of integration in the double integral and reading off the limits from Fig.
15-8-2, one then gets
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Fig. 15:8:2 Domain of integration of the integral in Eq. (15-7-8).

[Fa [0 sk = [°as [T K@) = [° as K@)+ 9

Since 7 3> ¥, while K(s) — 0 when [s| 3> r*, one can neglect s compared o r in
the entire range where the integrand is appreciable; furthermore, the lower limit
in the last integral can be replaced by — « with negligible error. Hence one
obtains simply

[Frar [ ds K@) =7 [° avK(s) =4+ [7 dsK(9) (15:8:6)

where we have used the symmefry property (15-8-5) in the last step. Thus
(15:7+8) can be written

mp(t + ) — v{D)) = F(t)r — ab(t)r (15:8.7)
where {he constani « is given explicitly by
> - ﬁ, [ @OF@)Nds (15-8-8)

The last term in (158 7) is thus seen to be proportional to 7 in the same
way as the term involving the external force & Since we assumed that
7 = (v) varies only slowly over time intervals of the order of 7, the left side of
(15-8-7) is relatively small. Hence one e¢an express (15-8.7) in terms of the
(“coarse-grained’’) time derivative

dv _ @t + 7)) — @) _ @t +1) — v(t))
o

T T

Thus

I mg§=g—aﬁ (15:8-9)

When § = 0, this yields upon integration

B(t) = () e, 3 =—

m

(15:8-10)

so0 that # approaches its equilibrium value # = 0 with a time constant ¥~
Since we assumed that 7 is slowly varying, so that (di/dt)r << 9, this assump-
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tion demands, by (15-8-10), that yr << 1 or, by (15-7-1), that
LSS (15-8:11)

The discussion leading to (15 8-9) shows that frictional forces arise in the
dynamic deseription of a system when the surroundings with which it interacts
come 10 internal equilibrium very quickly compared to the smallest time scale
of interest in the deseription of this system. 'The result (15-8:9) agrees with
the previously discussed phenomenological equation (15-5-7) and thus leads
again to a deseription of fluetuations in terms of the Langevin equation
(15-5-8). But our present analysis has provided us with greater insight into
how the frictional force —ad arises from the fluctuating force. In particular,
the relation (15-8:8), which is sometimes called the “fluctuation-dissipation
theorem,” provides us with an explicit expression for the friction constant « in
termsg of the ecorrelation function of the fuctuating foree F(f) in the equi-
librium situation. It is plausible that this kind of conneetion should exist.
Indeed, suppose that the interaction of the system (e.g., of the particle) with
its surrounding heat reservoir ig strong.  Then the force /(1) producing fluctua-
tions in the system must be large. But, if the interaction with the heal
reservoir is strong, the system will also attain equilibrium with the surround-
ing heal reservoir quite quickly if it is not in equilibrium initially; i.e., the
parameter a describing the rate of approach to equilibrium must then also be
large.

Remark on the analogous electrical problem It was pointed out at the
end of See. 15-5 that the problem of an electrical conductor of seli-induct-
anee L and carrying a current [ is analogous to the Brownian-motion prob-
lem. Indeed, if 0 denotes an applied emf and V(1) the effective fluctuating
emf representing the interaction of the conduction electrons with all the other
degrees of freedom, the murant I aatisﬁe‘s the equation

Lo =00 + V0 (15:8-12)

-"ﬂﬂsisﬁakgomto{lﬁ51}w:thL-m,I-v,and’F‘{¢) =F@). HVisa
:mdowkmmmﬂmmuwmwmmdm
-'tem 9) then gives the equation

Ld—r‘-'u-ﬁf (15-8-13)

This equation is, of eourse, simply the conventional electrie cireuit equa-
tion for & conductor of inductance L and electrical resistance B. But the
present analysis has examined more closely how the frictional effects repre-
sented by this resistance come about and provides, through the analogue of
(15-8-8), the following explicil expression for & in terms of the fluctuating
emf:

B=gip [ OV ds i
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* ) SN
15 . 9 Calculation of the mean-square velocity increment

=

The expression (15:8-8) for the friction constant « in terms of the eorrelation
funetion of F' suggests a connection between o« and fluctuations in the velocity
v which are caused by this force F. Consider the particle in equilibrium with
the surrounding medium in the absence of external forces. Then

m % = F(l)
and () = miv(t + 1) — o)) = [TTF@) ar (15-9-1)

Let us caleulate the quantity ([Av(r)]®). By (15-9-1) this ensemble
average is given by

mao@p = ([ aer@y - [T pan)

= f;H-f A’ j;‘-{-fdt”(p(f)F(ﬁ”» (1592}
2 ﬁm at ﬁ‘:rm' ds(FW)F( 4+ 8))  (15:9:8)

where s = '/ — ¢'. Here the ensemble average of the force F' can be caleulated
as if the particle were stationary, since corrections to this approximation would
already involve terms containing more than two factors F' and would thus be
negligible compared to the leading term (i.e., they would go to zero faster than
linearly in the small quantity 7).

The integral in (15-9-2) looks, except for the limits, very much like the
integral in (15-7-8) and can be evaluated similarly. The integrand in (15:9:3)
is the correlation function K(s), and the domain of integration in the #'s plane
is that shown in Tig. 15-9-1. Once again one can exploit the fact that the
integrand is independent of ¢ by changing the order of integration so as to

Fig. 1591 Domain of integration of the inte-

gral in Eq. (I5-9:3).
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integrate first over ¢. Thus one gets, with limits determined from Fig.
15-9-1,

[ar [5 ask = [as [T K + [ de [t KG)
= [ as K@ -9+ [ ds K5 + 9

Since 7 3> 7*, while K(s) — 0 when [s| 3> r*, the term s can again be neglected
compared to r in the integrand; also r in the limit of integration can be replaced
by « with negligible error. Thus (15-9-3) gives

mi(an@)?) = ¢ ["ds K(s) +7 [°, dsK(s) = [ ds K(s)
or (8o = =5 [ ° (FO)F(s))o ds (15-9-4)

Henee ([Av]?) is directly proportional to r. Comparison with (15-8.8) shows
that this can be expressed in terms of the friction constant @. Thus

2kT

B ([Av(n)]%) = %’—2 (2kTa) = = =vr (15-9-5)
where y = a/m.
In (15:8-7) we found that, for ¥ = 0,
> o)) = — = or = —brr (15-9-6)
Hence (15-9:5) implies the relation
(o) = — 2T @) (15-9.7)

*
15 . 10 Velocity correlation function and
mean-square displacement

As an example of the use of correlation functions, let us compute the mean-
square displacement (x2(1)) of the particle in time ¢ by a more direct method
than that used in Sec. 15-6. We consider the equilibrium situation in the
absence of external forces. Let z(0) = 0at ! = 0. Since & = v, one has

z(®) = [, o) av (15-10-1)
Thus one obtains
@) = { JRGR Jo vty aery = fu Ya [ @) (15:10-2)

In this time-independent problem the velocity correlation funection K, can
depend only on the time difference s = ' — ¢/, so that

@{)u(")) = @0)u(s)) = Ku(s) (15-10-3)
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The integral (15-10-2) is essentially the same as the one oceurring in (15-9-2).
With a change of limits similar to that in Fig. 15-9-1 one then obtains
@) = [} ds [ a Ku) + [ as [*, a0 K. ()
= [fasKu)t = 8) + [° ds Ku(s)(t + o)

If we put s— —s in the second integral and use the symmetry properly
K.(—8) = K.(s) of (15-8:5), this becomes simply

> @) =2 [ ds (t — @O (15-10-4)

A caleulation of (z*(1)) then requires only a knowledge of the velocity correla-
tion function (15-10-3).

Since our information about » relates its derivative to F, it is easiest to
find a differential relation for the desired correlation function K,. One
approach consists in starting from the Langevin equation (15-5-8)

ma = —aw+ F(t) (15-10-5)
Then Mt gl ~ ale) = et 1-:-‘ [TRoa 05108

where v = a/m and r >> 7* is macroscopically small. Multiplying both sides
by »(0) and taking the ensemble average gives

(2(0)o(s + 7)) — (v(0)u(s))
= @O+~ () [TFW) dr) (1510-7)
In taking the ensemble average, the fluctuating force #” can here be treated as
purely random and independent of v, since any dependence on the motion of
the particle has already been explicitly included in the friction term av of
(15-10-5). Thus one has simply
Qo [Py ar) = eop ([ @) ar) =0

Equation (15-10-7), which is valid for r > 0, becomes then to a good approxi-
mation

(00)2(s + 7)) — (©(0)e(s)) _
T

& 0O = —vlo(0)o(e)) (15-10-8)
By integration this gives for s > 0

w(0)o(s)) = @*(0)) e

By virtue of the symmetry property ((0)v(—s)) = ((0)v(s)), this yields for
all values of s the expression

> (@(O)0(e)) = (u2(0)) el = X1 g (15-10-9)
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where we have used the equipartition theorem result (3mv?(0)) = 1kT. This
correlation function has the functional dependence illustrated in Fig. 15-8-1.
Note that the values assumed by the velocity are only correlated over a time
interval of the order of v~!, This time interval is shorter the larger the magni-
tude of the friction constant.

By using (15-10-9) in the relation (15-10-4) one obtains

(z2(1)) = 3"—91- | ds(t — 8) e (15-10-10)

If i > v, e — 0 when s 3> v'; i.e., e*— 0 for values of & that are much
less than {. Hence one can put { — § = { in the integrand and put t — « in
the upper limit of (15-10-10) with negligible error. Thus (15-10-10) becomes

2kT 2kT
for t > v, (z2(l)) = — f dstem = m—'rt (15-10:11)

More generally, the evaluation of (15:10-12) for arbitrary v yields

{z*(t)) = 28y (8 +— 3? .;;J ds e
of (@) = 2”'[ 3 ; {1 s e“")] (15-10-12)

which agrees with (15-6-8).

CALCULATION OF PROBABILITY DISTRIBUTIONS

*15-11 The Fokker-Planck equation

Consider the Brownian-motion problem in the absence of external forces.
Instead of inquiring simply how the mean value of the velocity » changes with
time £, let us now ask the more detailed question concerning the time depend-
ence of the probability P(v,t) dv that the particle’s velocity at time [ lies
between v and v + dv. One expects that this probability does not depend on
the entire past history of the particle, but thal it is determined if one knows
that ¥ = v, at some earlier time t,. (This assumption characterizes what is
known as a “Markoff process.”’) Hence one can write P more explicitly as a
conditional probability which depends on v, and {y as parameters; i.e.,

P dv = P(vtlvels) dv (15-11-1)

is the probability that the veloeity is between v and » 4 dv at time ¢ if it is
known thal the velocity is vo at the earlier time fo. Since nothing in this prob-
lem depends on the origin from which time is measured, P can actually only
depend on the time difference s = ¢ — t,. Thus one can simply write

P(otlots) do = P(v,s|vo) dv (15-11-2)
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to denote the probahility that, if the velocity has the value v, at any one time,
it assumes a value between v and v + dv affer a time s. If s— 0, one knows
that v = vg. Thus

for s — 0, P(v,slve) — 8(v — vy) (15-11-8)

where the Dirac 8 function on the right side vanishes unless v = v.

On the other hand, if s— =, the particle must come to equilibrium with
the surrounding medium at temperature 7, irrespective of its past history.
Hence P then becomes independent of vy and also independent of the time;
i.e., it reduces to the canonical distribution. Thus

for s — =, P(Q,slt)u) dv — (%)‘ e—iimut gy, (15-11-4)

One can readily write down a general condition that must be satisfied by
the probability P(v,slvy). In any small time interval r, the [increase in the
probability that the particle has a velocity between » and » + dv] must be
equal to the [decrease in this probability owing to the fact that the particle,
originally with velocity between v and v + dv, has a probability P(vy,r[v) dv, of
changing its velocity to any other value between »; and v; + dv,] plus the
[inerease in this probability owing to the fact that the particle, originally with
a velocity in any range between v, and v, + dvy, has a probability P(v,7m1|v:) dv
of changing its velocity to a value in the original range between v and v + dv].
In symbols this condition becomes

3_13(1“_ = — L. P(v,slu) dv - Ployrle) doy + L P(v1,8)00) dvy - Ployrley) de

08
(15-11-5)

where the integrals extend over all possible velocities v;. In the first integral
P(v,s|ny) does not depend on vr;, while

j; Ployrlo) doy = 1 (15-11-6)

since P(vy,rlv) is a properly normalized probability. Putfing v, =v — §,
Eq. (15-11.5) then becomes
aP »
57 = —Plslo) + fﬂ P — & spo)P(v, 7o — ) dE (15-11-7)
Note that Eq. (15-11:5) is equivalent to the general master equation
(15-1-5) and is also similar to the Boltzmann equation (14-3-8). In the latter
equation a molecule can change its velocity abruptly by a very large amount
as a result of a collision with another molecule. But in the present case the
velocity v of the macroscopic particle can only change by a small amount during
the small time interval r. Hence one can assert that the probability
P(v, 7|v — £) can only be appreciable when |¢| = |p — v4| is sufficiently small.
A knowledge of the integrand of (15-11-7) for small values of £ should then be
sufficient for evaluating the integral. Hence it should be permissible to
expand this integrand in a Taylor’s series in powers of £ about the value
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P(u,slog)P(y + & rlo) and to retain enly the lowest-order terms. This expan-
sion becomes

P(y = E: ‘5‘1”0)‘?(”! be‘ 2= E) = Z ( ?'!f) & {P(z«' srb’u)P(U + E, f}v}]
Hence (15-11-7) becomes &
gf ; fv’l [P(v,alvo) fj', dt £*Pv + z,T;ﬂ)] H

(15-11-8)

The term 7 = 0 in the sum is simply P(2,s/ve) by virtue of the normalization
vondition (15-11-6). As for the other terms, it is convenient to introduce the
abbreviation

M, = } [, aeePw + &, 7l) = ﬂﬂf})ﬂ (15-11-9)

where ((Av(r)]?) = ([u(x) — ¢(0)}") is the nth moment of the velocity increment
in time r. Equation (15.11-8) then becomes

ap(g’:l'ﬂu] = E : n}) :,}.. [M P (v,5)00)] (15-11-10)

n=]

But when » — 0, {(42)*) — 0 more rapidly than = itself if n > 2 (see Problem
15.11). When r is macroscopically infinitesimal (although = >> +*) the terms
involving M, with n > 2 can therefore be neglected in (15-11:10). Hence
this equation for P(v,slve) reduces to

3
S g = — glv (M1P) +%aa_us (MsP) (15:11-11)
This is the so-called “Fokker-Planck equation.” If is a partial differential
equation for P and involves as coefficients only the two moments M, and M, of
P evaluated for a macroscopically infinitesimal time interval. These moments
have already been calculated for the Brownian motion problem in sections
15-8 and 15-9. Alternatively they can also be easily deduced from the
Langevin equation (see Problem 15.11). The relations (15-9-5) and (15-9-6)
give

= -1-<au<r>> ——w

A (15-11-12)
and M:= - ([ﬁ ()% = =y
Hence (15-11-11) becomes

aP kT 0P

as Td—(P)+Tm du? e
or

P kT a2P
[ i,s = TP+'rv—+'rm =5 (15-11-14)
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Alternative mthod The condition satisfied by the probability P(mjﬂn,ta)
can also be formulated quite generally to express the fact that P provides a
‘complete probability deseription for the problem. Thus consider any time &,
with #, < # <, and denote the velocity at this time by n. The particle
must have arrived at the final velosity v at time ¢ by passing through any
of ifs possible velocities v, at the infermediate time t.. Now the ‘probability
that a particle starting at time ty with velocity v attaing at time & & velocity
between #; and », + du;, and then ends up af time £ with a velocity between
vand v + dy, is given by P(vt|et;) dv - P(uitijnoto) dvy. Henee one must have
the general relation

Ptloto) dv = [° Pltints) do- Pluilosts) dn (15:11-15)
where the integration is over all possible values of the intermediate wlomty v,
‘Let us introduce the time differences
s=h—1fh and T=i—-4

Then t — tp = s -+ 7, and €_15'-.-11-15)_ can be written in terms of the simpler
notation of (15-11:2) as

» s +riw) = [ PlrlPosle) du (511-16)

This is an integral equation (called the “Smoluehoms]n equatmn”}, which
must be satisfied by the probability P.

To converf (15-11-16) into a differential equat:on, it is rmly necessary to
consider 7 to be small.  Putting o, = ¢ — £, (15-11-18) then becomes

P{usloo) +a—ér = [7 POl — 9P0 — & elo) dt (15:11-17)

where P(vr|v — £) is only appreeiable when £ is small. Equation (15-11-17)
is identical with (15-11-7) so that one regains the Fokker-Planck equation
(15-11-11).

*] 512 Solution of the Fokker-Planck equation

To find P(v,s|vo), it is only necessary to solve the Fokker-Planck equation
(15:11-14), subject to the initial condition (15-11-3) which requires that

for s— 0, P(v,slvg) — 8(v — vo) (15-12:1)

We outline briefly the method of solution. Consider first the simpler
equation obtained by putting d*P/dv® = 0 in (15-11-14). Then one gets

ar aP

B;_WEZTP (15-12:2)
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This looks similar to the perfect differential expression
ar AR
S ds + W= dpP

Multiplying (15-12-2) by the integrating factor AMu,s), the identification would
be complete if

ds =)\, dv= —\w, dP = \yP
g dv _ P |
Le., if == and ;Y yP |

or U= uer and P =Qer

where « and  are constants.

This result suggests using the method of variation of parameters by con-
sidering @ and » as variables and frying to simplify the original equation
(15-11-14) by a substitution of the form

P(v,s) = eQ(u,s), where u = ver (15:12:3)

Then one calculates

gg = 821': a_g
dy
a!P = girs = agQ
vt du?
P
Also % =7e*’Q+e'f'[ Q Q(as)]=veT'Q+e'"[%—f~+w%]
Thus (15-11-14) reduces to
89 _ gms 29 .19.
% 'm ¢ Jut Torad

To eliminate the factor €2, one can introduce a new time scale § defined so
that dt = e~ df, or

GE%(e“‘f‘—- 1) (15-12-5)
Then (15-12-5) becomes simply
0Q _ 9@ kT
This is the standard diffusion equation with a solution
= (4x ()~ g—tu—ua)"4C8 (15-12-7)

which satisfies the condition that @ — 8(u — ug) as 8 — 0. In terms of the
original variables one obtains then

] — ya)2
> P(v,slve) = [mmf?—ﬁi exp [— %;T(—lﬂ'%] (15:12-8)

Note that for s— =, this approaches properly the Maxwell distribution
(15-11:4). Note also that at any arbitrary time (15-12-8) is a Gaussian
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distribution with 2 mean value u(s) = vy e 7*; this result is in accord with
(15-8-10).

FOURIER ANALYSIS OF RANDOM FUNCTIONS

15 - 13 Fourier analysis

When dealing with a random function of time y(t), it is very often convenient
to consider its frequency components obtained by Fourier analysis. This has
the advantage that it is commonly easier to focus attention on the amplitudes
and phases of simple sinusoidally varying functions than on the very compli-
cated variation in time of the random function y(#). In addition, suppose that
y(t) is & quantity which is used as the input to a linear system (e.g,, an electrical
voltage which is used as input to an electrical circuit involving resistors,
induetors, and capacitors); then it is guite easy to discuss what happens to
each frequency componenf passing through the system, but it would be
very difficult to analyze the situation without resolving y(f) into Fourier
components.

The quantity y(f) has statistical properties described by a representative
ensemble similar to that illustrated in Fig. 15-5-1 for the function F(f). We
want to represent y(i) within the very large time interval —8 < ¢ < 8 in
terms of a superposition of sinusoidally varying funetions of time. (We can
ultimately go to the limit where © — ©.) To avoid possible convergence
difficulties, we shall then try to find the Fourier repregentation of the modified
function ye(f) which is identical with y(f) in the entire domain —8 <t < 0,
but which vanishes otherwise. Thus ye(t) is defined by

y() for—@<t<®

yo(t) = 0 otherwise (15: 1540

We make use of the result (A-7-14) that the complex exponential funection
satisfies the (“orthogonality’) property

o [ 6wt du = 8t — ) (15-132)

where 8(¢ — ') is the Dirac & function. For any one system of the ensemble, we
can then write the function ye(f) in the form

yolt) = [ dt 8t — )ye(t)

= % f.: ar f_"u duw e~ yq(t))
or
> yo(l) = f:‘ C(w) e duw (15-13-3)

where Clw) = % _: ya(t’) e di’
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or
> Oty = % J2 utey e a (15-13-4)

and where we have used the definition (15-13-1) in the last step. The rela-
tion (15-13-3) is the desired “Fourier integral”’ representation of the function
ye(t) in terms of a superposition of complex exponential functions of different
frequencies «; the coefficient C'(w) is then determined by (15-13-4). Since
y(t) is real, its complex conjugate satisfies the relation

y*() =y (15-13-5)
Hence it follows by (15-13-4) that
C*(w) = C(—w) (15-13-6)

In any one system k of the ensemble, the function y™* (i) can thus be repre-
sented by its corresponding Fourier coefficient C'*) (w) given by (15-13-4).

15-14 Ensemble and time averages

There are two types of averages that are of interest. The first of these is the
ordinary statistieal average of y af a given fime over all systems of fhe ensemble.
This ensemble average, which we denote interchangeably by 7 or {y}, is defined
by

N
v = ) =5 ), ¥00 (15-14-1)
k=1
where y*!(#) is the value agsumed by y(f) in the &th system of the ensemble and
where & is the very large total numher of systems in the ensemble.

The second average of interest is the average of y for a given system of the
ensemble over some very large time interval 20 (where © — ). We shall
denote this ime average by {y} and define it for the kth system of the ensemble
by

I he
0] P ) ' L
o) =55 [C 4@+ 0) dt (15-14-2)

(In more pictorial terms illustrated by Fig. 15-5:1, the ensemble average is
taken vertically for a given ¢, while the time average is taken horizontally for a
given k.)

Note that the operations of taking a time average and taking an ensemble
average commute, Indeed

{y® W)} =% i [2—19— [ uPe+ ) dt’]

k=1
N
Ol e [ oy gy = L of® "y dit
=55 f_a [F.kzl y®(E+ a:)] iy = f_e {y(t + 1)) di

o {u®@}) = ()} (15-14-3)
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Consider now a situation which is “stationary” with respect to y. This
means that there is no preferred origin in time for the statistical description of
¥, 1.e., the same ensemble ensues when all member functions y®(¢) of the

ensemble are shifted by arbitrary amounts in time. (In an equilibrium situa-

tion this would, of course, be true for all statistical quantities,) For such sta-
tionary ensembles there is an intimate connection between ensemble and time

averages if one assumes that (with the possible exception of a negligible number

of exceptional systems in the ensemble) the function y*(t) for each system of
the ensemble will in the course of a sufficiently long time pass through all the
values accessible to it. (This is called the “ergodic’” assumption.) One ean
then imagine that one takes, for example, the kth system of the ensemble and
subdivides the time scale into very long sections (or intervals) of magnitude
20, as shown in Fig. 15-14-1. Since 8 is very large, the behavior of y* (1) in
each such section will then be independent of its behavior in any other section.
Some large number of M such sections should then constitute as good a repre-
sentative ensemble of the statistical behavior of y as the original ensemble,
Hence the time average should be equivalent to the ensemble average.

More precisely, in such a stationary ensemble the time average of y taken
over some very long time interval ® must be independent of the time {. Fur-
thermore, the ergodic assumption implies that the time average must be the

Fig. 15-14'1 The time dependence of 3™ (1) in
the kth member of a stationary ergodic ensemn-
ble. The time scale is shown broken up into
sections of very long duration 26. These sec-
tions are shown rearranged vertically in the
bottom part of the figure to form another repre-
sentative ensemble equivalent to the original
one. (Here y;(t') = y®(2j6 + 1), with

-8 <t <8,
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same for essentially all systems of the ensemble. Thus
Ly (D} = {y) independent, of k (15-14-4)

Similarly, it must be true that in such a stationary ensemble the ensemble
average of ¥ must be independent of time. Thus

(y(1)) = (y)  independent of ¢ (15:14-5)

The general relation (15:14.3) leads then immediately to an interesting con-
elusion. By taking the ensemble average of (15-14-4), one gets simply

(ly™@ ) = {y}

Furthermore, taking the time average of (15-4-5) gives simply

[ = W

Hence (15-14-3) yields, for a stationary ergodic ensemble, the important result
tyl = W (15-14-6)

15 . 15 Wiener-Khintchine relations
Consider the random funetion y(f), which is stationary. Its correlation funec-
tion is then, by definition,

K(s) = Oyt + o) (15-15-1)
and is independent of ¢ since y(f) is stationary. Note that K(0) = (3% gives
the dispersion of y if () = 0.

The correlation funetion of y can, like any other function of time and like
y itself, also be expressed as a Fourier integral. Analogously to (15-13-3) one
can then write

[ K(s) = [ 7(w) e do (15-15-2)

where the coefficient J(w) is called the “spectral density” of y. TFrom
(15-15-2) it follows that J(w) ean conversely be expressed in terms of K(s).
One thus obtains, analogously to (15-13-4),

> (o) = o [, K(s) e as (15-15-3)

Remark This follows explicitly from (15:15-2) by multiplying both mlas
of that relation by e~ and then integrating over s. Thus

[C asR@ e = [ s [° dodw) e
e = 2r f_”» e J(@) 8w — ')
- I(@)
which is identical to (15-15-3) if one puts w’ = w.
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The correlation function K(s) is real and satisfies the symmetry property
(15:8-5). Thus
K*(s) = K(s) and K(—s) = K(s) (15:15-4)

Henee it follows by (15-15-3) that /() is also veal and satisfies similar sym-
metry properties, i.e.,

J*w) =J@)  snd  J(—w) = I(w) (15-15-5)

Remark The proofs are immediate since, by virtue of (15:15:3) and
(1515-4), i
RS pn S R A g e o
K@ esds =5 [T K eds = T =
do= g [T K@ ewd=d

where we have changed the variable of integration from s to —s in the second
set of integrals. -
i

Note that (15-15.2) implies the particularly important result that

@)= KO = [°, J@)do = [[" () do (15-15-6)
where Jilw) = 2J(w) (16:15-7)

is the spectral density for positive frequencies.

The Fourier integrals (15:15-2) and (15-15-3) are known as the Wiener-
Khintchine relations. They can also be written in explicitly real form by
putting e¥i" = (cos ws + 7sin ws) and noting that, by virtue of (15-15-4) and
(15-15-5), the part of the integrand involving sin ws is odd and leads to a
vanishing integral. Thus (15:15:2) and (15-15-3) become

K(s) = [7 J(@) cosasda =2 [ J(@) coswsda (15158

J@) = 5 [7 K(s)coswsds = T [" K(s) coswsds (15-15:9)

T

It is of interest to express K(s) and J(«) directly in terms of the Fourier
coefficients C'(w) of the original random function y(t). If y(?) is stationary and
ergodic, K(s) is independent of time, and the ensemble average can he replaced
by a time average over any system of the ensemble. Hence (15:15:1) can

he written
K(s) = {y(0y(s)) = {y(0)y(s)}
or K(s) = oo [° b y(E)y(s + 1)

where we haye used the definition (15:14-2). By replacing y(t') by the modi-



NYQUIST'S THEORM a87
fied function ys(t) of (15-13.1), this becomes
1 = &
K(s) = 36 j_n dt’ yo(t)yels + 1) (15-15-10)
(Replacement of the.funection y(s + t') by ye(s + #) in the integrand is per-
missible since it causes an error only of the order of /0, which is negligible in

the assumed limit ® — =). By using the Fourier expansion (15:-13:3), the
last expression can then be written

K(s) = 55 [ 7 @t [° duf O e [ du Ofa) e+
= o5 [ 4o [ du 0)OG) = [ at e

= E]é f:u o j_: de' C(a')C(w) e[2r (e’ + w)]

1l

g f_ww dw C(—w)C'(w) ew*

-gf_’: dw |C(w)|2e™ by (15-13-6)

or K(s) = f_: J(w) et ds
where
3 J(w) = g [C(w)]? (15-15-11)
Hence one also obtains
W) = K©O) = 5 [ [C(w)[*do (15-15-12)

The relation (15 15-11) provides an expression for the spectral density .J(w) in
terms of the Fourier coefficient C'(w) of any system in the ensemble. It also
shows explicitly that J(w) can never be negative,

15-16 Nyquist’s theorem

Suppose that an electrical resistor /2 is connected across the input terminals of
a linear amplifier which is tuned so as to pass (angular) frequencies in the range
between w; and w,. The fluctuating current 7(f) due to the random thermal
motion of electrons in the resistor gives rise to a random output signal (or
“noise”) in the amplifier. The interactions responsible for this random eurrent
can be 1'(fpreseuted by an effective fluctuating emf V' (¢) in the resistor. If this
emf V(f) iz expressed in terms of Fourier components, then one can write

(VY = [ Tole) do (15-16-1)

where J(w) is the spectral density of the emf V(f). Since J(w) is intrin-
sically nonnegative, it provides an appropriate measure of the magnitude of
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the random noise input V(). The part of this input which contributes to the
amplifier noise output is then given by the integral of J(w) between the limits
wy and wy. To assess the importance of thermal noise in electrical measure-
ments it is therefore necessary to know the spectral density of the emf V(2).

Our general discussion of Sec, 158 has already shown that there exisls a
close connection between the fluctuating emf V(f) and the resistance R of an
electrical conductor maintained at the absolute temperature 7. The explicit
relation was obtained in (15-8-14) in terms of the correlation funetion of V in
an equilibrium situation, Thus

B 2‘12? f:.. (VO V(s))e ds (15-16-2)

By virtue of (15:15:3), the right side is immediately expressible in terms
" of the spectral density J/(w) of V, i.e.,

1 . n.
R = g 2nJ(0)] = 5 7(0) (15-16-3)
o J4(0) = 27(0) = 2 kTR (15-16-4)

But the correlation time 7* of the fluctuating voltage is very short (roughly of
the order of the time an electron travels between collisions, i.e., roughly 1014
sec.). Thus K(s) = (V(0)V(s))s = 0 if [s| > r*, and this eorrelation funetion
is very sharply peaked near s = 0. Correspondingly, it follows from the
Fourier integral (15-15-3) that in the domain where K(s) does not vanish,
e~it = 1 50 long as w is small enough that wr* < 1. For all values of » smaller
than this, the integral therefore has the same value; i.e.,

for Ju] < % J(w) = J(0) (15-16-5)
Thus a sharply peaked correlation funetion in the time domain implies & cor-

respondingly very broad spectral density in the frequency domain. (This is
analogous to the Heisenberg uncertainty principle Aw At 2 1 in quantum

J, lw)

g &

T
Fig. 15-16-1 Schematic diagram showing the correlation function K(s) and
spectral density J.(w) of the fluctuating emf V().
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mechanies), Using (15-16-4), one can then conclude that,
> fom<<T—{. Tty %km (15-16-6)

This important equation relating the spectral density J4(w) of the fluctuating
voltage to the resistance R is known as “Nyquist’s theorem.” It is a special
ecase of the general connection existing between fluctuations and dissipation in
physical systems. (For example, in the Brownian-motion problem, there is a
similar relation between the speetral density of the fluctuating force F(f) and
the friction constant a.)

Note that, by (15-16:5), J(w) is independent of w until one approaches
frequencies of the order of 10M eps, far beyond the microwave range. A
fluctuating quantity such as V which has such a frequency-independent
spectral density is in customary jargon said to give rise to “white noise”
(““white,” because just as in visible white light, all frequencies are equally
represented). Note also that J, is proportional to R and to the absolute tem-
perature 7' of the resistor. Thermal noise is thus decreased by reducing the
temperature of the resistor.

15 17 Nyquist’s theorem and equilibrium conditions

Nyquist’s theorem is such an important general result that it is worth some
further discussion. In particular, it is of interest to verify that the theorem is
consistent with the conditions that must prevail in any equilibrium situation.
Indeed, it is possible to conceive of any convenient equilibrium situation
involving an electrical resistor and to derive Nyquist’s theorem by requiring
that the conditions for equilibrium are properly satisfied,

As a specific illustration, consider the simple cireuit illustrated in Fig,
15-17 - 1 consisting of a resistor R in series with an inductance L and a eapacitor
(. The whole system is supposed to be in thermal equilibrium at the tem-
perature 7. TFluetuations in the current / can again be regarded as due to
some effective random emf in the resistor. Focus attention on a particular
(complex) Fourier component V(w)e® of this emf. The corresponding
current fy(w) % at this frequency is then found from the usual eireuit equation

dal 1
L%+ RI+5 [ 1dt=V@)

R L

Vie) o

Fig. 15171 An electric circuit consisting of a I
resistance i connected in series with un induct-
ance L and a capacitor (.
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This gives, for the particular frequency w,

Fila) ‘;}%} where Z(w) = R + :'(uL - fé) (15-17-1)

i8 the impedance of the circuit.

General statistical arguments applied to this circuit in thermal equilib-
rium require, however, that the mean energy stored in the inductance be given
by

(JLI*) = kT (15:17-2)

The eircuit equation (15-17:1) must therefore be consistent with this result.

Returning now to the eircuit of Fig. 15:17-1, the mean energy stored
in the inductance L can be expressed in terms of Fourier components by
(15-15-12). Thus

e gt d - P
(1) =325 [ In@ido = g 15 [ RS do
@) 1, e L)
=55 gens sk s

* In order to satisfy the conditions of applicability of this theorem, it woultl be necessary:
to show that it is possible to write the total energy of all the particles in the circuit in the
form §LI* plus other terms which involve generalized coordinates and momenta of all th
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where we have used the definition (1515 11) of the spectral density of the emf
V()

Jola) = 2J(0) = 2 |Vo(w)]? (15-17-4)

Using (15-17-1), the condition that (15-172) be satisfied in thermal equi-
librium requires then that the fluctuating voltage have a spectral density J,
such that

j‘w J (w) dw U k__T
0 B+ (wL — 1/eC)? L

(15-17-5)

Let ug write this in the form

AN J(w) dw kT
R Jo T+ (L/wR)(w® — a)t

—_ where wy = (LC)~t  (15-17-6)

If L is made very large the integrand exhibits & very sharp maximum at
the frequeney w = wg. (That is, the circuit is then very sharply turned.)
One can then put J(w) = Ji(wy) outside the integral. Also one can put
w? — we' = (@ + wy)(w — wg) = 20w — ws) in the integrand and replace
L/wR by L/wsR. The integral of (15-17-6) then becomes

J+(wn) f _ Jilwo) f dn
1+ (2L/R)’(m — wy)? R* J-=1+4 (2L/R)*?

- 552 [+ @)

where we have put 5 = w — wo and extended the limits from — « to + = with
negligible error, since the integrand is negligible for 5 = 0. Thus (15-17-6)
yields the result

> R %kTR (15-17.7)

Since wy can be any frequency obtained by proper choice of C, we regain in
(15:17-7) Nyquist’s theorem, We have also shown that it is consistent with
the mean thermal energy (15:17:2) stored in an inductance.

As another illustration of an equilibrium argument, consider the cireuit of
Fig. 15:17-2, which is in thermal equilibrium at temperature T. Here
Z'(w) = R'(w) + 1X'(w) is any arbitrary impedance, with resistive and reactive
parte which are in general frequency-dependent. The fluctuating thermal

R Zlw)

Fig. 15:17+2 A resistor &
connected to an impedance
Z'(w), both being in ther-
mal equilibrium at the vin Vit
temperature 7.
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emf’s associated with the resistor R and the impedance Z’ are represented by
V() and V'(t), respectively. In the equilibrium situation illustrated in Fig.
15-17-2, the [mean power ¢ absorbed by the impedance Z' due to the ran-
dom emf V(?) associated with E] must be equal to the [mean power ® absorbed
by the resistance & due to the random emf V’(t) associated with Z’]. Thus

¢ =@ (15-17-8)

Focus attention on a narrow frequency range between w and w + dw. The
equality (15-17 -8) must be valid in any such range if it is to be valid in general.*
But the frequency component Vo(e) of the emf ¥ (¢) produces in the circuit a
current Iy = Vo/(R + Z'); the mean power ¢ consequently absorbed by Z' is
given by

¢ « LR’ = |.--—-,V° ‘B (15-17-9)
0 R+2Z

Similarly, the frequency component V'(w) of the emf V'(t) produces in the
cireuit a current Iy’ = V'/(R + Z'); the mean power ¢ consequently absorbed
by E is given by

2
® « |I/|)R = | R (15-17-10)

Vo
R+Z
with the same constant of proportionality as in (15:17-9). Hence it follows
by (15-17-8) that

[Vol*’R’ = |[Vo'[*R
or Ji(w)R/(w) = J (@R (15-17-11)

where .J, is the spectral density of V() and J.' that of V'(¢§). Hence it follows
by (15:17-7) that

'3
Tty =% g") (12? km) - %kmf(ﬁ,} (15.17.12)
This shows that the spectral density of the thermal fluctuating voltage of any
impedance is always associated with its resistive part (at the particular fre-
quency) in accordance with Nyquist's theorem.

Finally, it is instructive to present Nyquist's original derivation of his
theorem by noting that the problem of the resistor E can be viewed ag a simple
one-dimensional ease of black-body radiation. One need only consider an
ideal (lossless) one-dimensional transmission line of great length L which is
terminated on both ends by resistances R (see Fig. 15-17:3), the whole system
being in equilibrium at the temperature T. The particular transmission line
is chosen so that its characteristic impedance is equal to . Then any voltage
wave propagating along the transmission line is completely absorbed by the
terminating resistor B without reflection. The resistor is then indeed the

* This is an argument of detailed balance. Indeed, one could alwaye conceive fhat a
suitable filter of pure reactance X, is inserted in the cireuit so as to pass current only in this
frequency range, This reactance X, can be imagined added to the reactance X’ in the
following discussion.
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R R
Vit) i Vit)
le [ e u
r 1

Fig, 15-17-3 A long transmission line of length L terminated at both ends
by equal resistances i equal to its characteristic impedance.

analogue of a black body in one dimension. A voltage wave of the form
V = Vyexp [i(kz — wt)] propagates along the transmission line with a veloeity
¢ = w/k. To count the possible modes, one can consider the domain between
2z =0 and z = L and impose the boundary condition ¥(L,) = V(0) on the
possible propagating waves. Then kL = 2mn, where n is any integer, and
there are An = (1/2x) dk such modes per unit length of the line in the frequency
range between w and @ + dw. The mean energy in each mode is given by
(9-13:1) as

) = ﬁ—,w for hw K kT (15-17-13)

One can now resort to the familiar defailed balance argument by equating
(in any small frequency range between » and w + dw) the power absorbed by a
resistor to the power emitted by it. Since there are (2r)~'(dw/c’) propagating
modes per unit length in this frequency range, the mean energy per unit time
incident upon a resistor in this frequency range is

o= (21 d“’) (@) = 5 e(w) d (15-17-14)
This is the power absorbed by the resistor. By the principle of detailed balance
this must be equal to the power emitied by the resistor in this frequency range.
But if the thermal emf generated by a resistor is V, this voltage sets up a
current I = V/2R in the line. Hence the mean power emitted down the line
and absorbed by the resistor at the other end is

Bp) = & <4R=/ 4%&: Jo© T4+() do

or (4R)—J dw in the frequency range between w and & + dw. Equating this
to (15-17-14) then gives

Filyda = 21; iy

fiw

ﬂi\w_l

\4R

Thus To(w) = R (15-17-15)

which is the correet Nyquist result if quantum-mechanical corrections are
taken into account. Since at ordinary temperatures fiw << kT up to frequencies
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well beyond the microwave range, (15:17-15) becomes,
for hw & kT, T it ?rkTR

which agrees with (15-16:6) or (15:17-7).

GENERAL DISCUSSION OF IRREVYERSIBLE PROCESSES

15-18 Fluctuations and Onsager relations

We shall conclude this chapter by showing that the arguments used in Sec. 15-7
to study the Brownian-motion problem can be extended on a more abstract
level to lead to general results of very wide applicability.

Consider an isolated system A described macroscopically by n parameters
{1, - » ., Ya}. Imagine that the possible values of each parameter y; are
subdivided into small ranges of magnitude dy;, and denote by 2(yy, . . . , a)
the number of states accessible to A when the parameters lie in the small range
near {yi, ..., ¥a}. Then S8 = kIn @ is, by definition, the corresponding
entropy of A. It may be helpful in this general discussion to keep in mind
some specific simple examples, e.g., the situation illustrated in Fig. 15-18-1
where the single parameter y denotes the position of the weight, or the
Brownian-motion problem where y denotes the velocity » of the particle.

In the equilibrium situation the probability in the representative ensemble
of finding 4 with its parameters in the range near {y, . . . ¥.] is given by

Plys, « o« 5 yn) « Qysy .« o, yn) = e50cwdle - (15-18-1)

The most probable situation is that in which § has its maximum value §, and
this occurs for values of the parameters y; = ;. Then

as| _ . AR,
[55‘] =0 for all 7 (15-18.2)

where the square bracket denotes that the derivatives are evaluated when

o

Moy [ : Weight

0il Fig. 15-18'1 An isolated system where a weight
suspended from a spring is immersed in a vis-
cous oil.
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¥y = @i for all j. The fact that § is a maximum implies then, by Taylor’s series
expansion, that for small values of [y — §i,

Blhe~ o5 gl Sty - o) = 1}2}6‘.—;(1«.- — #)(ye — §r) (15-18-3)
_[os e
where Ca=Cu= [ayfay;‘] (15-18-4)

Suppose now that one or more parameters y; are known to be different
from §;. This situation may have arisen as a result of external intervention
(e.g., clamping the weight in position), or as a result of spontaneous fluctuations
in the system. If the parameters are now left free to adjust themselves, A
will be in a highly improbable situation. One expects therefore that the
parameters y; will change in time until A approaches the most probable situa-
tion. Our present interest is to examine this more difficult nonequilibrium
problem and to arrive at some statements about the rate at which the parame-
ters change.

Purely phenomenologically one may reason as follows. Quantities such
a8 3y = dy;/di and aS/dy; are very rapidly fluctuating functions of time. Let
us therefore focus attention on their ensemble averages, which are slowly vary-
ing funetions of time and which deseribe the maecroscopically readily observable
quantities. If 98/ay; = 0 for all 4, the system is by virtue of (15-18:2) in
equilibrium; then the mean values #; of all parameters remain unchanged; i.e.,
diji/dt = 0 for all 2. On the other hand, when all the quantities 85/dy; do not
vanish, the system is not in equilibrium. One expects then that

gh=ﬁfhm,..,i¢ where Bim o0 (15:18.5)

ﬂy.'
and where f is some function such that f = 0 in the equilibrium situation when
¥; = Oforalli. If the situation is not too far removed from equilibrium, then
the quantities ¥; are small and the parameters § change relatively slowly in
time. One can then expand (15-18.5) in a Taylor's series and obtain for the
lowest order nonvanishing terms a linear relationship of the form

% _ N 7, 18-
> = ,Z, ai ¥ (15-18-6)
where the “frietion coefficients” o;; are constants. By (15-18-3)
- 8 L 5
B E—@—E@m—w (15:18-7)

If 3 = g for all k, the “driving forces” ¥; vanish; the relation (15-18-6) then
properly describes the equilibrium situation where di;/dt = 0. In the more
general nonequilibrium cage, the quantities §; must change in such a direction
that the entropy S increases.

Let us now treat the situation by more detailed statistical arguments
similar to those used in Sec. 15:7 to discuss the Brownian-motion problem.
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Each parameter y; can be regarded as a random variable which fluctuates
rapidly in time. Its rate of fluctuation is given by g = dy:/d! and can be
characterized by some correlation time »* which measures the time between
successive maxima (or minima) of the funetion . The time r* is also of the
order of the relaxation time necessary for the system to return to equilibrium
after some sudden small disturbance away from equilibrium. This time #*
is very short on a macroscopic scale, and our interest is in describing the
behavior of y; over time intervals very much greater than 7*. We introduce,
therefore, a time interval  which is microscopically large in the sense that
t 2> r* but which is maeroscopically so small that (for each 7) the ensemble
average §: = (y:) changes only very little during such a time . We then con-
sider the statistical ensemble and shall try to find the “coarse-grained” time
derivative of {y), i.e., the value of

Lt +n) — wo) = ;[ ity ar (15-18.8)

In the first approximation one can assume that the value of (§,) at time ¢ is
the same as if the parameters g; of A did not changein time, i.e., that (:(t)) = 0
a8 it would be in an equilibrium situation. Buf, to make the approximation
adequate, one must fake into account the fact that, when the parameters of
the system change in time, the values assumed by j; in the ensemble at any
subsequent, time #' do depend on how the paramelers y; themselves change in
fime. Let us assume that the parameters change in a small time interval
7' (r' > r*) by small amounts from y;(f) to y; (t + ') = y;() + Ay(z'). Since
v’ > r*, the system A can then reestablish internal equilibrium so that it is
again equally likely o be found in any of its Q accessible states consistent with
these new values of the parameters. In the time 7' the number of accessible
states 2 (or, equivalently, the entropy S = k In & of the system) therefore
changes by an amount

AS(') = kIn Qys(t + '), yalt + ), - - ]
— k In Qya(t), ya(®), + + 7] (15-18.9)

Suppose that the system has a probability W, of being found in some
configuration r where the value of 3 is (#),. When the system is in internal
equilibrium this probability is proportional to the number of states accessible
to the system under these circumstances. Hence one can compare the respec-
tive probabilities that the system is found in the same configuration » at time ¢
and time ¢ + 7' by writing

W,i+7) _QU+1) _ s 18-
) e Gl i i
or Wl + 1) ~ W,(0) [1 e %AS(T’)] (15-18-11)

where AS(r') is the entropy change of the system in the time 7’. The mean
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value of g, at the time ¢' = ¢ 4 ' is then given by
' I - 1 !
e = Z e+ a0, = ([ 1+ faser )

where the last average is to be computed with the original probability W, (t)
at time ¢ where we assumed an equilibrium situation so that (i:)s = 0. Hence

W) = %(z‘re(t’) AS('))e (15-1812)
Here one can expand AS in (15:18-9) and write
AS(r) = St + ), - . ] = S, - - 1= Z_S dur') (15-18-13)

Since 7 3> 7/, it is permissible to use the result (15-18-12) in the integrand
of (15-18:8). A calculation analogous to that of Sec. 15-7 then gives

@t + 1) — o) = ¢ [ @) A8 — o)oar

% fHﬂ < ) Z o, A (¢ = U}
= %Z ﬁH-' di' \y‘(t )Y,(t) j; di" gf“n)>n
= %E 70 [t [ ar i)

where we have put ¥; = 88/8y; and have averaged separately over this more
slowly varying function. Putting s = ("' — ¢’ and using the same change of
variable as in (15:8-6) then gives

Wit + 1) — w@®) = ¢ Ef’f s [t Koo) = 1), Ve [° do KiGe)
(15-18-14)
where Ky(s) = (G0is(t + ) = @a0)g())a (15-18-15)

is the “cross-correlation” function relating 3 and #; in equilibrium. Thus
(15-18-14) gives, after division by 7, the coarse-grained time derivative

13 dﬂ‘ Za., 4, (15-18-16)
where
> wi=1 [° ds Kifs) (15-18:17)

Equation (15-18-16) is identical to (15-18-7), but the friction coefficients ay;
are now given explicitly in terms of correlation functions of the quantities j
in the equilibrium situation. Kquation (15:18:17) is a general form of the
fluetuation-dissipation theorem,
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Symmetry properties The fact that (4:(D)#;({ + s))o must be independent
of the absalute value of the time ¢ in the equilibrium situation ‘mplies that this
quantity is unchanged under the substitution { — ¢t — s. Hence

WGt + 8)) = @it — )P} = @Ot — 8))o
or K,‘,'(S) = Kj.‘(“ 3) (15' 18- 18)

Hence this argument based on invariance under translation of the origin of
time does not imply that K;(s) is an even function of s unless 7 = j.

On the other hand, a physical argument based upon time reversal does lead
to further interesting results. Imagine that the sign of the time is reversed
from ¢ to —¢. Correspondingly, all particle velocities also reverse their signs;
furthermore, if any external magnetic field H is present, it also reverses its
sign since the currents producing it also reverse theirs. But the microscopie
equations of motion are invariant under such a reversal of the sign of the time;
hence, if the sense of time is reversed, all particles simply retrace their paths
backward in time. (This is the property of ‘‘microscopic reversibility” already
mentioned in See, 15-1.) Let us denote by a dagger superscript those quanti-
ties that refer to a situation where the sign of time is imagined reversed. The
correlation functions deseribing the fluctuations in the equilibrium situation
must, therefore, be such that

(#:(0)g5(s))a = (@(0)yi(—5))a'
or Kii(s) = Ki'(—2) (15-18-19)

where the correlation funetions on the right are evaluated under condifions of
time reversal. Combining this with the result (15-18-18) one has the sym-
metry property

Ky(s) = Ky'(s) (15-18-20)
or by (15-18-17)

» e (15-18-21)

More explicitly, imagine a general situation where an external field H is
present. In the usual ease where y; and y; are both displacements or are both
velocities, the quantity y;j; does not change sign under time reversal. Then
(15-18-19) and (15- 18- 18) imply that K;;(s; H) = Kiy(—s; —H) = Kx(s; — H)
and one has

a;(H) = ox(—H) ('15' 18-22)

On the other hand, if y; is a displacement and y; is a velocity, or viee versa,
then ¢); does change sign under time reversal. Thus

Ki(s; H) = —Ki{(—s; —H) = —Kj(s; —H)
and one has
Y = =T (15-18-23)

e
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The symmetry relations (15-18:21) (or more specifically (15-18-22) and
(15:18-23)) are known as the ‘“‘Onsager reciprocal relations.” Together with
the equations (15-18:16) they form the basis for the entire discipline of l
macroscopie irreversible thermodynamics. A discussion of this subject and its
applications to phenomena such as thermoelectric effects would take us too far \
afield in this book. The interested reader is referred to the references at the
end of this chapter. |

Finally, it is worth pointing out that the mieroscopic reversibility in no |
way contradicts the fact that in a macroscopic deseription all parameters
always tend to change in time so as to approach some equilibrium value and |
thus to exhibit irreversible behavior. Consider a variable y whose fluctuations
in an equilibrium situation are illustrated schematieally in Fig. 15-18-2. For
simplicity we assume that there is no magnetic field present and that y is some
quantity, e.g., a displacement, which is invariant under time reversal. If,
starting at some time ¢ = ¢, one looks into the future at times t, + s where
s > 0, or into the past at times {, — s where s > 0, the situation is then quite i
indistinguishable. Or, phrasing this in more picturesque terms, suppose that
one took a moving picture of the fluctuating variable . Then a spectator |
watching the movie run through the projector could not distinguish whether the !
movie is run through the projector forward or backward. This illustrates
coneretely the microscopic reversibility of the proeess under consideration,
On the other hand, suppose that one knows that the parameter lies in the small
range between y; and v, + 8y, where y, is appreciably different from the mean
value § about which y fluctuates. Then y must lie near one of the very few
peaks like 4, which correspond to such improbably large fluctuations that y
attains a value near y; (see Fig. 15-18-2). But then y, being near a maximum
like A, will decrease as time goes on. (As a matter of fact, it would also
decrease if one went backward in time.) The situation where y hag a value !
near ¥, and yet ncreases would correspond to the occurrence of a peak like B, |
which is even larger than A4; on the rising side of this peak, y would indeed
increase. But the occurrence of peaks as large ag B is enormously less probable
than the already very improbable occurrence of peaks as large as 4. Hence, if
¥ 18 known to be as large a8 y1, one can conclude that it will practically always
decrease and thus approach closer to .

Does the preceding argument, however, not contradict the fact that y has

L.
y(t) |

Fig. 15:18:2 Diagram illustrating the time dependence of a fluctuating
parameter y(t) in equilibrivm.
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to increase in the first place in order to attain a value as large as y; as a result of
spontaneous fluctuations? The answer is that there is no contradiction
because if |y, — §| is at all appreciable, it would take an unimaginably long
time before a fluctuation as large as this actually did occur; i.e., spontaneously
oceurring peaks as large as A are a fantastically rare oceurrence if [y — §| i
not small. Indeed, in this case the only practical hope of observing what
happens when y has a value near y, is to bring it to this value by external
intervention. If one then removes the external constraint, the situation will
be just the same as if  had attained the value y; as a result of prior spontaneous
fluctuations, and y will practically always decrease toward .
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PROBLEMS
15.1 A sphere or radius ¢ moves with uniform speed v through a fluid of viscosity

15.2

15.3

15.4

15.5

n. The frictional retarding force f acting on the sphere must then be some
function of @, v, and 5. (It cannot depend on the density of the fluid since the
inertial properties of the fluid are of no consequence in the absence of accelera-
tion,) Use arguments of dimensional analysis to find (except for a constant of
proportionality) the dependence of the frictional force f on these parameters.
Bhow that the result agrees with Stokes’s law in (15:6-2).

W. Pospisil (Ann, Physik, vol, 83, p. 735 (1927)) observed the Brownian motion
of soot particles of radius 0.4 - 10~* cm. The particles were immersed in &
water-glycerin golution having a viscosity of 0.0278 gm em™! sec™* at the tem-
perature of 18.8°C of the experiment. The observed mean square z component
of displacement in a 10-second time interval was z2 = 3.3 10~* em? TUse
these data and the known value of the gas constant to caleulate Avogadro’s
number.

Consider a system of particles (each having a charge ) confined within some
finite volume. The particles might, for example, be ions in a gas or ions in &
solid like NaCl. The particles are in thermal equilibrium at the temperature
T in the presence of an electric field & in the z direction.

(a) Denote the mean number of particles per unit volume at the posi-
tion z by n(z). Use the results of equilibrium statistical mechanics to relate
nfz + dz) to n(z).

(b) Suppose that the particles can be characterized by a diffusion coefficient
D. By using the definition of this coefficient, find the flux Jp» (the number of
particles crossing unit area per unit time in the z direction) due to the con-
centration gradient calculated in (a).

(c) Buppose that the particles are also characterized by a mobility u
relating their drift velocity to the applied field £. Find the particle flux J,
resulting from the drift velocity produced by the field &.

(d) By making use of the fact that in equilibrium the net particle flux
Jp+ J, must vanish, find a relation between Dand g. The result thus obtained
constitutes a very general derivation of the Einstein relation (15-6-14).
Consider the Langevin equation

e R () M
where the first term on the right is a phenomenological expression for the slowly
varying part of the interaction force, whose rapidly fluctuating part is
denoted by F'(t). If F' is neglected, the solution of the resulting equation is
v = uexp (—vt) where w is & constant. In the general case where F’ = 0,
assume & solution of the same form with 4 = u(¢) and show that the solution of
the Langevin equation gives for the velocity at time ¢ the result

L
v=upge " +$ =0 fo e F'(t") dt’ (2)

where v, = v(0),

To exploit the fact that the correlation time r* of the fluctuating force F' is very
short, consider a time 7 such that = >> r* but which is macroscopically very
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15.6

15.7

15.8

15.9

15.10

15.11

15.12

PRORLEMS

short in the sense that r << 4~'. The force F' is then not correlated in succes-
sive intervals of length = (all correlations due to the slowly varying interaction
force having already been explicitly abgsorbed in the term —vv of the Langevin
equation). By dividing the time interval ¢ into N successive intervals = so
that ¢ = Nr, show that in the preceding problem the solution of the Langevin
equation can be written in the form

N=1

V=—tme =YY= E Y (1)

k=0
where Y = et eVTHG = gmvrIN-RIG, (2)
and G=1 fo' F'(kr + 8) ds @)

Since r >> 7%, the statistical properties of G; are the same in each interval of
length r. Furthermore, the quantities y; (or (i) are statistically independent
of each other,

Show that the results of the preceding problem can also be obtained directly
from the Langevin equation (1) of Problem 15.4 by integrating the latter
over the small time interval T so as to relate the velocity o at time kr to the
velocity ve—y at the time (8 — 1)r. Successive application of this result then
allows one to relate vy to 1.

Use the results of Problem 15.5 to relate ¥ to @, the ensemble average of G
which is independent of k. Show that the result @@ = 0, expected from the
property that 77 = 0, is consistent with the equilibrium value § = 0 which must
be attained when {— .,

Use the results of Problem 15.5 to relate ¥z to G2 for all times {. Show that
@ can then be determined since it is known that, when ¢ — <, the velocity must
be given by the equilibriim Maxwell distribution, so that jms? = 3kT. Find
thus the explicit value of 2. Hence find also an explicit expression for V#
valid at all times.

The ¢entral limit theorem in its general form (see Problem 1.27) can be applied
to Hq. (1) of Problem 15.5 to find for large N the probability distribution of
Y = Zy; since this quantity is 2 sum of statistically independent variables, By
combining this result with the value of ¥ found in Problem 15.8, find the
probability P(v,tlvs) dv for the velocity v after any time interval {. Show that
the result thus obtained agrees with the solution (15- 12-8) of the Fokker-Planck
equation.

Express & in terms of the correlation function K(s) = (#'()F'(t + 8)) of the
random force and use the result of Problem 15.8 to rederive in this way the
fluctuation-dissipation theorem (15-8-B) relating the friction constant to K(s).
Integrate the Langevin equation (1) of Problem 15.4 directly over the small
time interval = to find Ay = v(r) — w.

(@) Use this result to express Av and (Ap)? in terms of @ and G2 Bhow
that these moments are proportional to r and find their explicit values by using
the results of Problems 15.7 and 15.8.

(b) Express (Av)' and (Ap)* in terms of moments of ¢; show that these
quantities are proportional to 7%

(¢) Find an explicit expression for {(Av).

Use the solution (2) of Problem 15.4 to find the velocity correlation function
(u(0) v(t)). Express the result in terms of T, m, v, and {.

—
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L 15.13 Use the solution (2) of Problem 15.4 to caloulate directly vi() for any time

1 3> r* without explicitly breaking up the range of integration of the integral
into discrete intervals as was done in Problem 15.5. Use the fact that r* < 4!
so that the correlation function (F'(0)F’(s)) is appreciable only when s << 1.
Show that the result thus obtained agrees with that derived previously. Show
also that this result yields immediately the general fluctuation-dissipation theo-
rem (15-8-8) if one makes use of the requirement that 1me* = }kT in the final
equilibrium situation when ¢t — <.

Consider the Langevin equation (1) of Problem 15.4.

(a) Write F’ and v in terms of Fourier integrals, and show how their
Fourier voefficients must be related to satisfy the Langevin equation. Express
the spectral density of the velocity in terms of the spectral density of the
foree F'(t).

(b) Use the Wiener-Khintchine relations to find the spectral density of the
veloeity v from the known correlation function (15-10-9) of this quantity.

(¢) By combining the preceding results of this problem, find an explicit
expression for the spectral density of the force I’ in terms of v. This consti-
tutes another derivation of Nyquist’s theorem,







Appendices

A * 1  Review of elementary sums
If f(z) denotes a function of a variable  which can assume the discrete values
Tty X3, . . . , Tm, then the sum

@) + 1@+ A+ S = Y @) (A-1.1)

=1

is conveniently abbreviated by the compaect notation on the right. The dis-
tributive property of addition permits one fo rearrange the terms of a sum in

convenient ways; e.g.,
3 3= (Ew (A-1:2

Here the right side is obtained by summing first over all values of y for a given
value of z, and then summing the resulting products over all values of z.
A frequently occurring sum is that of & “geometric series”

S=a+ao +af+ - +af (A-1-3)

where each term is obtained from the preceding one as a result of multiplication
by f. This factor f may be real or complex. To evaluate the sum (A-1:3),
multiply both gides by f to obtain

8 = af +-afr+ * - + 4 af*+iafit! (A-1-4)
Subtracting (A:1:4) from (A-1-3) then yields

80 that (M s (A-1-5)
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If | f| < 1 and the geometric series (A-1-3) is infinite so that n — =, the series
converges. Indeed, f*1— 0 in that case so that

=

forn— o, 8 = (A-1-8)

A + 2  Evaluation of the integral f_'” = dz

The indefinite integral [ e dx cannot be evaluated in terms of elementary
functions. Let I denote the desired definite integral

I=[" e*da (A-2:1)

The following clever artifice exploits the properties of the exponential function
to lead to the evaluation of I. One can equally well write (A-2-1) in terms of a
different variable of integration

i [_"_ e dy (A-2-2)
Multiplication of (A-2-1) and (A-2-2) then yields
=" ez [" evay
= [ [ eteranay
or It = f_: f_.. e dy dy (A-2:3)

This is an integral extending over the entire zy plane.

Let us express the integration over this plane in terms of polar coordinates
rand #. Then one has simply 22 + 3* = 7%, and the element of area in these
coordinates is given by (r dr d6). In order to cover the entire plane, the varia-

Fig. A°2'3 Evaluation of the integral (4-2-3) in terms of polar coordinates.
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bles @ and r must range over the values0 < # < 2rand 0 < r < «. Hence
(A-2-3) becomes

2= j;‘ f:'e“"'r dr df = 2r j: e~ rdr (A-2:4)

ginee the integration over @ is immediate, But the factor  in this integrand
makes the evaluation of this last integral trivial. Thus

=2 [ (—PdE) = —rle7ls = —x(0 — 1) ==

or I=A/r
Thus
> [Ce=de= /7 (A-2:5)

Note that since e=** is an even function (i.e., sinee it assumes the same value
for z and —a)

f _: e2ide =2 f; e dz
Hence

> [ e dz = /x (A-2-6)

A + 3 Evaluation of the integral fnw e * ot da
For n = 0, the evaluation is trivial.
L“ erdr = —[e?e = —=[0—1] =1 (A-3-1)

More generally, the integral can be simplified by integration by parts, Thus,
forn > 0,

f: efandy = — j;” 2nd(e)

—[zre 2]y + n fon grte=dz

Since the first term on the right vanishes at both limits, one obtains the
recurrence relation

fo e*arde =n fow e gt lds - (A-3-2)
If n is a positive integer, one can apply Eq. (A-3-2) repeatedly to get

[Seradr = ntn - —2) - @O
or

> ﬁ,“' e g dz = nl (A-3-3)
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A -4 Evaluation of integrals of the form j; "~ g g
Let
1) = [ e="ards, wheren >0 (A-4-1)
Putting = oIy, we note that forn = 0
I0) = o (" evdy = ~§£a—¥ = ‘; @4. (A-4-2)
where we have used (A-2-6). Also forn = 1 5
I0) = [ et ydy = at—h ey =fat (A43)

All integrals I(n) with integral values # > 1 can then be reduced to the integrals
1(0) or I(1) by differentiation with respect to « considered as a parameter.
Indeed, one can write (A-4-1) in the form

Itn) = - %(L' r“”z"-sdx) 3 '31(’;; 2) (A-4-4)

which gives a recurrence relation which can be applied as often as necessary.

For example,
ol

i
"2 O« %

12) = -
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Alternatively one can put z = (u/a)tin (A-4:1). Thends = dotudu,
and the integral assumes the form

I(n) = kait+D fu T [ )

By virtue of the definition (A-3-4) of the I' function, this can then be written

> I(n) = fn“ e e %r (”’ ; 1) a2 (A-4-5)

Using the property (A-3:6) of the T' function and the values I'(0) and T'(§)
given in (A-3-7) and (A-3-8), one can apply (A-4.5) to construct a small
table of integrals. Thus one obtains explicitly

I0) = ¥ v/ra?

I(1) = da!

12) = G V/ma? = f/ra?

I(3) = $(1)a? = $a7?

I4) =3@ X3 vmat =Fv/rat
I5) =32 X ot = a?

(A-4.6)

A * 5 The error function

The integral [ e=*' dz cannot be evaluated in terms of elementary functions,
although we have seen in Appendix A 2 that the definile integral between 0
and e has the simple value

ﬁ]" e VT (A-5-1)
2 .

Since the indefinite integral occurs frequently, it is useful to define the following
function of ¥ by the relation

‘-i L o By
erfy—v,;f;e dz (A-5:2)

This is called the “error function.” The integral can be evaluated numerically
for various values of y and is tabulated in many books.* By its definition
(A-5-2), erf y is a monotonically increasing function of y since the integrand
in (A-5:2) is positive. Obviously erf 0 = 0. The factor in front of the
integral (A-5-2) has been chosen so that, by virtue of (A-5-1), erf y — 1 a8
y—+ . The behavior of erf y is illustrated in Fig. A-5:1.

* See, for example, B, O, Peirce and R. M. Foster, “A Short Table of Integrals,' 4th
ed., Ginn and Company, Boston, 1956.




A - 6 Stirling’s formula
The caleulation of n! becomes very laborious for large values of n. We should
like to find a simple approximate formula by which # can be caloulated in the

limit when n is large.
It is very simple to derive an approximation which is good when n is very
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Fig. A'6°1 Behavior of In n as a func-
tion of n. |

large. By its definition

RI=1X2X3X - X(n—-1)Xn
Thus Innal=Iml1+h2+ - 4+hhn= Elnm (A-6-1)
m=]

One can approximate this sum (given by the area under the steps of Fig.
A-6-1) by an integral (the area under the continuous eurve of Fig. A-6-1). .
This replacement by an integral is increasingly good in the range where m is
large, since In m then varies only slightly when m is increased by unity. With
this approximation (A:.6:1) becomes

inn!ﬁfl"lnzdx=-[xlnz—:c]'{
or

\ [ nnl=Alnn—n (A-6:2)

since the lower limit is negligible when »n > 1,

In most applications of statistical mechanics the numbers of interest are |
80 large that (A-6-2) is an adequate approximation. It is, however, readily '
possible o obtain a much better approximation by a method which is of very
general utility. As a starting point one needs a convenient analytic expression
forn!. The integral formula of (A-3-3) provides one such convenient expres-
sion, namely,

il f; 2" o= dz (A-6-3)

Consider the integrand F = z"¢~* when n is large. Then z" is a rapidly
increasing funetion of z, while == is a rapidly decreasing function of xz. Hence
the product ' = z"e~* is a function which exhibits a sharp maximum for some
value z = 2, and falls off rapidly for x appreciably removed from x,. Let us
locate the position zy of this maximum of the integrand F. It is equivalent
and more convenient to work with the logarithm of F. (Since In F is a mono-
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F=x"—=}

i a1 ) ' x

Fig, A-6:2 Behavior of the integrand F(z) = " ™7 as a function of z for
large values of n.

tonically inereasing function of F, a maximum in In F corresponds, of course,
to a maximum of F.) To find this maximum, put

dlnF
b e
d _n va
or ﬂ(n]nz—z)—-z-—l—ﬂ
Hence Tg=n _ (A-6-4)

But, to the extent that the maximum of the integrand F is very sharp, only
values of z in the vicinity of zy = n contribute appreciably to the mtegral
(A-6-3). Hence aknowledge of the integrand I in the vicinity of n is adequate
for an evaluation of the integral. But convenient power-series expansions
exist which represent F adequately in this region, Hence one is led to a con-
venient approximate evaluation of the integral.

To find an expression for F valid near x = n, write

r=n+ ¢ where £ < n (A:6:5)

and expand In 7 in a Taylor’s series in £ about the point = n.

S e = e - RS

Then InF=nlhez—z=nlnn+& —(n+§ (A-6-6)

But, expanding the logarithm in Taylor's series,
mm+H=lnn+h(1+E)=ma+i 184 ... a8
' n n  2n*

Substituting this in (A-6-6), the first-order term linear in £ vanishes, of course,
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ginee one is expanding In F about its maximum. Thus

E?

lnF=nh1n—n—§—
or F = nren e it (A-6-8)

The last exponential term shows explicitly that ' has a maximum for £ = 0 and
that it becomes quite small when |§ >> v/n. If n is large, v/n << n and the
maximum is very sharp (see Fig. A-6-2). By (A:6:8) the integral (A-6-3)
then becomes

A f_"’n n et e BN JE = pn g j_"; e HEm dt (A-6-9)

In the last integral we have replaced the lower limit —n by — e, since for
values £ < —n the integrand is already negligibly small. By (A-4.6) this
last integral equals 4/2rn. Thus (A-6-9) yields the result

> nl = A Zmanre  forn>>1 (A-6-10)
This is known as Stirling’s formula. It can also be written in the form
Inn!=nlnn—n+ % In (2rn) (A-6-11)

If n is very large, In n < n. (For example, if n = 6 X 10?3, Avogadro’s num-
ber, then In n = 55.) In that case (A-6-11) reduces properly to the simple
result (A 6-2).

Accuraey of Stirling's formula To investigate this question, one needs
only to go systematically to the next higher approximation in expanding In F'.
Then (A-6-7) gives

me+d-mnri_1 (f)+3(f) (§)4+

50 that m:-*'=nlnn—n—%§ﬂ: Bgtu Lege

The integral (A:6:9) becomes then
nl=nre™ f:’ exp ( = E’) (1 £hiud §:) dé  (A-6:12)

3n? 4nd
Here one can make one further approximation to evaluate the integral. The
factor exp (—§&%/n) is the predominant one which makes the integrand negli-
gibly small when || > nt. Hence a knowledge of the second factor in the
integrand is required only in the significant range where £ < n¥. There this
factor can be expanded in & Taylor's series, since

oy e
L T ek

e . A B ————




A -7 The Dirac delta function

The Dirac & function is a very convenient “function’ (or more exactly, the
limiting case of a funetion) having the property of singling out a particular
value z = 7z, of a variable z. The function is characterized by the following
properties:

8z — 2) =0 for z # 2,
but 3z — z4) > for z —
in such a way that, @

for any ¢ > 0, f::‘ d(x — &) dz = 1

That is, the funetion §(z — z;) has a very sharp peak at # = z;, but the area
under the peak is unity, It follows that, given any smooth function f(z), one

* More rigorous estimates of the maximum error committed in using Stirling’s formula
can be found in R. Courant, “Differential and Integral Calculus,” p, 361, Interscience Pub-
lishers, New York, 1938; also in R. Courant and D. Hilbert, “Methods of Mathematical
Physics, vol. I, p. 522, Interseience Publishers, New Yorlk, 1053,
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0(z—z,)

0 2y »

Fig. A-7-1 Schematic plot of §(z — z;) as a function of z.

has

[} @8 — 20 do = 5@ [ b6z — a) do
since §(x — o) # 0 only when z = x, and there f(z) = f(z,). Hence

ifd <z <B

otherwise (Asred

fAB e ) da — { g(xo)
The property (A-7-2) implies all the characteristics of (A-7:1) and can be
taken as the definition of the function 8(z — z,).

The & funetion is a mathematical representation of a very common physical
approximation, the “physical point.” (An example is the electron considered
as a point charge.) It corresponds to a finite physical quantity (e.g., an
electrical charge) concentrated in a region much smaller than all other dimen-
gions relevant in a physical discussion. Subtle questions concerned with
limiting processes involving mathematical points are therefore usually irrele-
vant in discussions of physical problems.*

The following are examples of various analytical representations of the
& funetion. In all of these the positive parameter v is taken in the limit v — 0.
(This is a physical limit where v is smaller than all other relevant dimensions.)

1 oy X
£ —_— < 15
Example 1: 3z) =17 foriem = (A:7-3)
0 otherwise
Example 2: 3z) = %FTT-? (A-7-4)
Example 3: 3(z) = V,;_' st (A-7-5)
Y

The most convenient and important representation is, however, one involving
an integral.

* The reader interested primarily in questions of mathematical rigor is referred to M. J.
Lighthill, “Introduction to Fourier Analysis and Generalized Funetions,” Cambridge
University Press, Cambridge, 1958,
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Integral representation of the § function The periodic character of the
complex exponential function yields the familiar result

A D forn =0
f—-x et dd = ( pinr _ p—inv b1 [(il) — (i]-)] =D Etnsen
n m
ie., % f:, e dg = B,.0 (A-7:6)

where the right-hand side is a shorthand notation defined by

0 ifnm g
This useful symbol is called the “Kronecker delta symbol.” It is obviously the
analog, for discrete variables, of the definition of the Dirac & function 8(z — z,)
for continuous variables.

To make the connection between the discrete and continuous cases explicit,
choose a very large number L so that

ﬁnm={l ifn=m

e EET_*- (A-7-8)

covers essentially all possible values of the continuous variable x as n assumes
all possible integral values.* The relation (A-7-8) associates with each
integer n the range of z lying between

2—”(?1—-1-)<x<ﬁ( +1)
i 2 T

i.e., a range of magnitude

ﬁo‘";:r (A'T'g)

which becomes infinitesimally small as I — o,

* The factor 2r in (A-7-8) is introduced purely for convenience so that trigonometric
funetions such as cos Nz (where & iz any integer) remain unchanged when = changes by L.

Fig. A:7-2 The Kronecker delta
symbol 8,9 as a function of the
continuous veriable z = 2Zrn /L.
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According to the definition (A-7-7) it then follows that

3 et when —3 Az <z < § Az
=0 0 otherwise

By (A-7:3) one can then write for the & function the expression

3z) = &nﬂ%" (A-7-10)
Hence 8(z) = Lﬁu‘)ﬁ " e dg wiing (A:7-8)
= lim %(5‘2;) [ etetrdg  using (A-7-8) and (A-7-9)
Let k E.;'——rgﬁ |
o |
so that de = fdk '
Then _:
> ¥a) = o [ e dk (A-7-11)

This is the desired integral representation of the § function, a very useful result.




fix)

618 secrion A -8
Thus (A-7-6) and (A-7-11) yield the very useful results

> bum = dun = o [, 690 d (A.7-13)

> 3z = 20) = Bz —2) = o [ 7 oo ak (A-7-14)

AR tnaguahty Ine <2~

We wish to compare In z with x itself for positive values of z. Consider the
difference funetion

f@)=2—Inx (A-8:1)
For z — 0, Ing— —w;  hence f(z) & = (A-8-2)
Forz— oo, Inz < z; hence f(z) — =

1 x
Fig, A'8'1 The function f(z) =z — In r as a function of z.

B o VS ™
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To investigate the behavior of f(z) between these limits, we note that

A eisle - 8.
- >=0 forz=1 (A-8-3)
when f = 1. Since f(z) is a continuous function of z satisfying (A-8-2) and
having a single extremum given by (A-8-3), it follows that f(z) must have the
appearance shown in Fig. A-8:1 with a minimum at x = 1. Hence

flz) 2 f1) =1  (=signifz = 1) (A-8-4)
or, by (A-8-1),
lnzg<z—1 (= signif z = 1) (A-8-5)

A . 9 Relations between partial derivatives of several variables

Consider three variables x, ¥, 2z, two of which are independent. Then there
exists a functional relationship of the form

z=z(27) (A:9:1)

if one considers z and y as the independent variables. Given infinitesimal
changes in z and y, the corresponding change in z can then be written

“f 0z dz
dz = (55).« dx + (6_y). dy (A-9-2)
where the subscripts indicate explicitly the variables held constant in taking
the partial derivatives.

Alternatively, one might wish to consider y and z as the independent
variables and to use (A:9-1) to express z in terms of these; then

z = x(y,2) (A-9:3)
Analogously to (A-9:2), infinitesimal changes in the variables would then be
related by
dz = () ay + (%) a2 (A-9-4)
ay /. daz/y

We should like fo express the partial derivatives oceurring in (A -9-4) in terms
of the partial derivatives of (A-9-2) which involve z and y as independent
variables.

Evaluation of (dz/dy). Here one is asked to keep z constant and find the
ratio of the increment dz associated with an increment dy. But if z is kept
constant in (A-9-2), one has dz = 0, so that

0z oz
0= (_BE),, dr + (@)x dy

dzx (02/9y)=
e d = " (62/2),
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Since z was kept constant, this yields the result

dx (8z/9y)-
B é‘y), =~ Gelon). a4:5)

Evaluation of (0z/dz), Here one is asked to keep y constant and find the
ratio of the increment da associated with an increment dz. But if y is kept
constant in (A-9-2), one has dy = 0 so that

dz = ( ) dx
dx
dz 1
(K dz _ (9z/9%),
or
dr 1
e (é’é) = @/on) il

A « 10 The method of Lagrange multipliers

SBuppose that it is desired to find the extremum (maximum or minimum) of the
funetion

5 L e e (A-10-1)

where the n variables @1, @, . . . , @, satisfy the equation of constraint
gl Tag e 5 Ba) =10 (A-10-2)
If f is to have an extremum for a given set of values {#,%, . . . , z,/9}, then

there can be no change in f for any infinitesimal departure of the variables
from this set; i.e.,

f~afd1+&fd £ ‘-i-a—?idx,.——-ﬂ (A-10-3)

Here the derivatives are to be evaluated at the (n-dimensional) “point”
R e LU R

Furthermore, since the relation (A-10-2) is always to be satisfied, one
must require that for any small departure from the extremum point

S gd“*"‘“‘*‘ai_gd“”‘:" (A-10-4)

dxy
where the derivatives are again to be evaluated at the extremum point
(21O, , . ., 2.0},

Now, ¢f all the variables z;, 2, . . . , &, were completely independent, then
one could in (A-10:3) choose each dz to be zero except a particular one, say
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dzy. One could then immediately conclude from (A-10-3) that (9f/dzz) = 0
for all k.

But all the variables #;, @s, . . . , T, are not independent, since they are
interrelated by the condition (A-10-2). Since one equation connects the
variables, one of the variables, say, €., can by (A-10-2) be expressed in terms
of the other (n — 1) variables; these may then be chosen quite independently
without further restrictions. In other words, one must solve (A-10-3) subject
to the relation (A:10-4). The straightforward (and difficult) way of doing this
is to use (A-10-4) to solve dz, in terms of the differentials dz,, . . . | dz._1.
Substituting this value in (A-10-3) would then give a linear relation involv-
ing only the (n — 1) differentials dzy, . . . , d2._; which are now completely
independent. Putting all these (except dz:) equal to zero, would immedi-
ately give an equation to be satisfied as a result of the extrernum condition
(A-10-3). Since bk =1, 2, . . ., n — 1, there would be a total of (n — 1)
such equations.

The above method is perfectly correct and feasible, but it is complicated
because it spoils the symmetry of the problem.! A much easier procedure of
accomplishing the same task is due to Lagrange. In this method one intro-
duces a parameter X, to be determined later, by which one multiplies the
restrictive condition (A-10-4). One then adds the result to (A -10-3) to obtain

af o . ag T o\ L
E+;\ )dﬁ:l'l'( +R )d:c+ +(a—$—-+la)dz..—0
(A-10:5)

Here, of course, only (» — 1) of the differentials da; are independent, e.g.,
dry, . . ., dz._;. But the value of the parameter \ is still at one's disposal.
Choose it s0 as to eliminate the coefficient of dz,, e.g., choose A so that

oy BERE
3 tha el

Ln

(Note that A is a constant characteristic of the particular extremum point

2., . . ., 2.V}, since the derivatives in (A-10-3) are evaluated at this
point.) But with this one term in (A-10-5) eliminated, all the remaining
differentials dzy, . . . , dz._, are independent. Since any one of these can be

set equal to zero, one can immediately conclude that

L2 - Lo, et
6:ca+ =0 fork=1,..% ,n—1

The net result of this argument is that one can write

af ag 2t Ao
a—xk-’rha—{) fovallik =14, ., 5,0 (A-10-6)

This means that, after the “Lagrange multiplier’” A has been introduced, the
expression (A-10-5) can be treated as #f all differentials dz; were mutually
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independent. The awkward constraining condition (A-10-4) has thus been
handled very elegantly.

Of coursq, the eonstraint has not disappeared; all one has done is to post-
pone the com%]ications introduced by it to a later stage of the problem where
it is more readily handled. For, after solving Eq. (A-10-6), the solutions will
still be in terms of the unknown parameter A. This parameter can then be
determined by requiring that the solution satisfies the original restrictive con-
dition (A-10-2).

The method can readily be generalized to the case when there are m equa-
tions of constraint. In that caseonly (n — m) of the variables are independent,
and the problem can be handled by introducing m Lagrange paramefers,
Ay + « -, Am, one for each equation of constraint.

A + 11  Evaluation of the integral fow (e* — 1)L x¥dx

Let 7= fo“’ gtde (A-11-1)

Cp |

This can be evaluated by expanding the integrand in a series. Since ¢ < 1
throughout the range of integration, one can write

3 —z B
e‘x— i 13_-'";_’ =e=d{{l +e2r+e2=+ - - )

g—napd

n=1

Hence (A-11-1) becomes

= 2 -’;” e hepidy = i ;;1 fun ey dy
n=1

n=]

or I1=6Y 2 (A-11.2)

since the integral equals 3! = 6 by virtue of (A-3-3). This series converges
rapidly and can thus be easily evaluated numerically; alternatively, its exact
value can also be found analytically to be

=

1 4
E?ﬁ =% (A11-3)

r=1
Hence

S I=115f (A-11-4)

-~



= :
EVALUATION OF THE INTEGRAL L (e — 1) tz*dzx

* This general method of summing series can be found described in P, M. Morse and H,
Feshbach, “Methods of Theoretical Physics,” vol. I, p. 413, McGraw-Hill Book Company,
New York 1953.
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el (PG

wbieb_:,uatds : mﬂt (MM)

1 I'Of(A 11:1) ean be extended from — « to =

.' Ry AL n g‘e’dx

A EA . TB)ee (e -1
integral can then be evaluated directly, without series expansion, by using
confour integration in & manner similar to that outlined in Problem 9.27.

A . 12 The H theorem and the approach to equilibrium

We consider in greater detail the situation described at the end of Sec. 2.3.
Let us denote the approximate quantum states of an isolated system by r
(or §). The most complete deseription of interest to us in considering this
system 18 one which specifies at any time ¢ the probability P.(t) of finding this
system in any one of its accessible states r. This probability is understood to
be properly normalized so that summation over all accessible states always
yields

YR =1 (A-12-1)

Small interactions betsveen the particles cause transitions between the
accessible approximate quantum states of the system. There exists accord-
ingly some transition probability W,, per unit time that the system originally
in a state r ends up in some state s as a result of these interactions. Similarly,
there exists a probability W,. per unit time that the system makes an inverse
transition from the state s to the state r. The laws of guantum mechanies
show that the effect of small interactions ecan to a good approximation be
described in terms of such transition probabilities per unit time, and that these
satisfy the symmetry property*

We = W (A-12-2)

The probability P, of finding the system in a particular state r increases
with time because the system, having originally probability P, of being in any
other state s, makes transitions to the given state r; similarly, it decreases
because the system, having originally probability P, of being in fhe given
state r, makes transilions to all other states s. The change per unit time in
the probability P, can, therefore, be expressed in terms of the transition prob-

* The conditions necessary for the validity of this description in terms of transition
probabilites and the symmetry property (A-12-2) are discussed more fully in conneetion with
Eq. (15-1-3).
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abilities per unit time by the relation

ar; 3

W_ZPIW" ZPrwn

9
or T 2 WP, — P,) (A-12:3)
where we have used the symmetry property (A-12.2).*

Consider now the quantity H defined as the mean value of In P, over all
accessible states; i.e,,

H

InP, =) PlnP, (A:12-4)

This quantity changes in time since the probabilities P, vary in time. Differ-
entiation of (A-12-4) then gives

dH dPy 4B\ _ wdP,
y o (Tz-‘“P”fW)‘,'ﬁ(mPﬂ”)
dH
or = 5 Es W.(P. — P)(In P, + 1) (A+12-35)

where we have used (A-12.3). Interchange of the summation indices r and §
on the right side does not affect the sum so that (A-12:5) ean equally well be
written

%{ = Y3 WalP. — P)n P, + 1) (A-12:6)

Using the property (A-12-2), dH /di can then be written in very symmetrical
form by adding (A-12-5) and (A-12-6). Thus one gets
A
g
But ginee In P, is a monotonically inereasing function of P,, it follows that if
P.> P, then In P, > In P,, and vice versa. Hence

(P, — P)InP,—InP)>0 (=signonlyif P, =P,) (A-12:8)

Since the probability W, is intrinsically positive, each term in the sum
(A-12-7) must be positive or zero. Hence one can conclude that

df
B = S0 (A12.9)

where the equals sign holds only if P, = P, for all states r and s between which
transitions are possible (so that W, # 0), i.e., for all accessible states. Thus
dH

5 = 0 only if P, = C for all accessible states (A-12-10)

l O x [ A o
¥ 522 W..(P, — P)(In P, — In P,) (A-12-7)

* Note that the relation (A-12-3) is just the “master equation’ discussed in (15-1-5).
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where € is some constant independent of the particular state r. The result
(A-12.9) is called the ‘““H theorem'’ and expresses the fact that the quantity
H always tends to decrease in time.*

An isolated system is not in equilibrium when any quantity, and in par-
ticular the quantity H, changes systematically in time. Now (A-12.7) shows
that, irrespective of the initial values of the probabilities P,, the quantity H
tends always to decrease as long as not all of these probabilities are equal.
It will thus continue to decrease until H has reached its minimum possible
value when dH/di = 0. This final gituation is, by (A-12-10), characterized
by the fact that the system is then equally likely to be found in any one of its
accesgible states. This sifuation is clearly one of equilibrium, since any sub-
sequent change in the probabilities P, could only make some probabilities
again unequal and thus again increase H, a possibility ruled out by (A-12-9).
The final equilibrium situation is thus indeed consistent with the postulate of
equal a priori probabilities.t

A . 13 Liouville’s theorem in classical mechanics

Consider an isolated system specified classically by f generalized coordinates
and momenta {gi, . . . , ¢, Py, - . ., 2r}. In a statistical ensemble of such
systems let

p(Q1, - -« Gy Py - - ., Py 1) dgyc o dge dpy v - dpy = the
number of systems in the ensemble which, at time ¢, have positions
and momenta in the element of volume (dg, - - * dg;dp, * - - dp;) of
phase space lying between ¢1 and g1 + dgi, gz and qu + dgs, . . . , ps
and p; + dpy.

Every system in the ensemble moves in time according to its classical equations
of motion which are

d3C a3t
=i Sl = A-13-1
e 'pa_ . (A-13-1)
where 3¢ = 3¢(q1, . . . , @4 Py, - - - , Py) i8 the Hamiltonian of the system.

As a result of this motion the density p of systems in phase space changes in

time. We are interested in finding dp/at at a given point of phase space.

Focus attention on any given fixed element of volume of phase space
located between ¢y and g1 + dgy, g2 and gz + dgs, . . . , py and p; + dp; (see
Fig. A-13-1). The number of systems loecated in this volume (dg; - - * dgs
dpy * - * dp;) changes as the coordinates and momenta of the systems vary in

* Note that, by (6-6-24), S = —kH. Thus (A-12-9) expresses the fact that the
entropy tends to increase.

T More elaborate and ecritical discussions of the H theorem e¢an be found in R. €., Tol-
man, “The Principles of Statistical Mechanics,” chap. 12, Oxford University Press, Oxford,
1938; also in D, ter Haar, Rev. Mod. Phys., vol. 27, p. 289 (1955). The H theorem was first
proved, in somewhat special form, by Boltzmann in 1872,
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Fig. A°13:1 Diagram illustrating a fixed volume element of (two-dimen-
sional) phase space,

aceordance with (A-13-1). In a time df the change in the number of systems
within this volume of phase space is given by (dp/9f) di(dgy - - * dps). This
change is due to the number of systems entering and leaving this volume
(dg1 - + + dpy) in the time dif. But the number of systems entering this
volume in time dt through the “face” ¢, = constant is just the number con-
tained in the volume (¢:dt)(dqs + - - dpy), ie., it is equal to the quantity
plgy .« ., prt)(gdidg: + - - dps). The number of systems leaving through
the “face’’ g1 + dg, = constant is given by a similar expression except that
both p and ¢; must be evaluated at g1 + dg; instead of at ;. Hence the net
number of systems entering the phase-space volume (dg, - - * dpy) in time di
through the “faces” g; = constant and ¢, 4+ dg; = constant is given by

pqrdidgs + -+ dpy — [Pél + ‘% (pd1) dQL:I dtdgs - -+ dpy

e
=T (o§1) di dg1 dge - * - dpy

The total net increase in time dt of the number of systems in this volume
of phase space is then obtained by summing the net numbers of systems

entering the volume through all the “faces” labeled by g1, ¢, . . . , gr and
P1, Po, . - . , Py. Thus one obtains the relation
dp &g L oa
Sdidg, - - dpy = [—“Zﬁ(pqﬁ) —‘Zlym(pm]dxdql o iy
s
(1 et d Sl .12,
or G ‘_Z‘[ag‘_ (ods) + P (P}i.)] (A-13:2)

_
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This can be written

f
ap id dp . dp G | Ops .19.
at ~ ,Z,[(aa %t p)+’(q * o @A)
But, by virtue of the equatious of motion (A-13-1) it follows that

P e e
e = - oot
q % * ap:  0gdp:  Opidgs 9 (A-13-4)

Hence (A:13-3) reduces simply to

d d
> af 2 2 (a: ”‘) (@1 $50)
or equivalently to

> d . +E( :—;ﬁﬁ)=0 (A-13.6)

where dp/dt is the total time derivative of p(qi, . . . , ps; t); it measures the
rate of change of p if one moved along in phase space with the point represent-
ing a system. By (A-13.1) one can also write (A-13-5) as
J
ap dp 93C dp 33
d i St T ) A-13-7
dat E (&q; apg 6p¢ GQ( ( 13 )

The relation (A-13-5) or (A-13-6) is known as Liouville’s theorem.

Suppose that at any one time ¢, p is a constant (i.e., the systems are uni-
formly distributed over all of phase space). Or, more generally, suppose that
pis at time ¢ only a function of the energy ¥ of the system, this energy being, of
course, a constant of the motion. Then*

Q:na_‘o@::ﬂ and dp 6paE

dg;  9E ag; ap:  oE ap:
and Liouville’s theorem (A-13-5) implies that dp/df = 0. This means that
the distribution of systems over states remains then unchanged in time, i.e.,
one has an equilibrium situation. In particular, a specification such as that
of the microcanonical ensemble (where p = constant when £, < E < E; + 3,
but p = 0 otherwise) ig then indeed consistent with an equilibrium situation.
In quantum mechanics an equivalent discussion can be given in terms of
the density matrix pm. instead of the classical phase-space density p. This
discussion is actually simpler than the classical one for someone familiar with
elementary quantum mechanies. The interested reader is referred to the
references. t

=0

* The same result would hold if p is only a function of any set of parameterfa), . . .  @m
which are constants of the motion.

T 8ee C. Kittel, "' Elementary Statistical Physics, sec. 23, John Wiley & Sons, Inc,,
New York, 1958; algo R. C. Tolman, ““The Principles of Statistical Mechanics,” chap. 9,
Oxford University Press, Oxford3938.




Numerical constants

IN THE TABLE below the mole is defined in accordance with the modern conven-
tion according to which the isotope C' is assigned the atomic mass 12.* The
estimated error limits are three standard deviations applied to the last digit of
the preceding column.

Physical constants

Quantity Value Error
Elementary charge e = 480298 X 107" esu +20
. = 1,60210 X 1071 coulombs o ¢
Speed of light in vacuum ¢ = 2.997925 X 10** ¢m sec™! = 8
Planck’s constant, h = 6.6256 X 1077 ergs sec + 5
b= h/2r fi = 1.05450 X 1077 ergs sec =l
Electron rest mass m, = 91091 X 10~ grams + 4
Proton rest mass m, = 1.67252 X 10~ grams + B
Bohr magneton eh/2m.c pa = 9.2732 X 10 ergs gauss—! + 6
Nuelear magneton ef/2my ¢ py = 5.0505 X 107* ergs gauss™! + 4
Avogadro's number N, = 6.02252 X 10% mole™! +28 '
Boltzmann’s constant k = 1.380564 X 107'® ergs deg™! +18 !
(Gas constant R = 83143 X 107 ergs deg™! mole™? +12

Stefan-Boltzmann constant o = 5.6697 X 10% ergs em~?sec™' deg™*  +20

* The values quoted are those recommended in 1963 by the Committee on Fundamental
Constant of the National Academy of Sciences, National Research Council. See Physics
Today, vol. 17, pp. 4849 (February, 1964).
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Conversion factors
Quantity Value Error

Triple point of water = 273.18°K by definition
Celsius temperature X°C = (273.156 + X)°K by definition
1 atmosphere = 760 mm Hg = 1.013250 X 10® dynes em™? by definition
1 joule = 107 ergs by definition
1 thermochemical calorie = 4.1840 joules by definition
1 electron volt = 1.60210 » 10~** ergs =

= 1.16049 X 10+°K +16
1 kiloealorie/mole = 6.94726 X 10~ ergs/molecule +32

= 4.33634 x 102 ev/molecule +28

Approximate temperature I corresponding to various frequencies v (kT = hv)

v = 10° cycles sec™! — T = 480 X 10—°K (radio-wave photon)
» = 10 gycles see! — T =048°K {microwave photon)
y = 10% gycles see™* v T = 480°K (infrared photon)

v = 10 ¢ycles sec™! i T =48 X I0V°K (visible photon)
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Answers to selected problems

CHAPTER 1

1.2 (a) 0.402; (b) 0.667; (c) 0.040 1.5 (a) ()Y ® PP () 6
16 M=0, m=N; m*=0; m=3N*—2N L& [@N)/(N)IF¥
1.11 (a) 0.37; (b) 0.08 1.13 0003; 0086; 0162 1.15 8 118 NI
1.19 (N*V¥/R)p1 + (1 — p)/Np]  1.23 (a) NI; (b) Nb¥/3
1.25 (a) A(u/a® + b) db, where A = } v/a%/3p
(b) 34 (u/a® — b3 db, if — 2u/a’ < b < — p/a%;

§Al(w/a® — b)} + (u/a® + b) V] db, if — u/a® < b < p/a¥;
§A(u/a® + b)~d db if w/a* < b < 2u/a?

1.26 Nb dz [r(zt + N2
1.29 Be)if0<r <l Bl —r(6alr)ifl <r <3l 0ifr> 3

CHAPTER 2
da NI oK
23 @ i M9 R = EamIN/D + (B2 el

2.7 (b) p=3E/V 210 3V, —pV/Q - )
2,11 (a) W = 22,400 joules, @ = 11,800 joules

CHAPTER 3

8.2 (a) B = —NuH tanh (uH/KT); () E>0; (¢) M = Nutanh (H/kT)
3.3 (a) B/usN = E'/u*N"; (b) wNONuH + bN'WH)(@N + u'*N');
(e) NN'H('p'n* = bu'"*u)(u*N + u*N')7;
(d) P(E)dE = (Zra®)") exp |- (E — E)*/20 dE,
whore o pu'HINN'/(W*N -+ @2NOW;  (e) 0% (f) W/ (ub'NY)
687
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CHAPTER 4

41 (a) ASw = 1310 joules deg™!, AS., = —1120 joules deg™,
ASer = 190 joules deg™'; (b) 102 joules deg™

4.3 AS=cln (T)/T:) + RIn (V;/V3) 4.4 227 Nk

CHAPTER 5

5.1 (a) Ty = TV,/V) 5.2 (a) 314 joules; (b) 600 joules; (c) 1157 joules
5.4 (c) 3.24 joules deg™ 3.5 (o) [To + (mgVo/verA)I(1 + R/cv)™!

5.6 v = drtvimVo(pod? + mgd)? 5.12 aT Ap/pc,

5.13 oT — vT(da/dT)

5.14 (c) 8(L,T) = 8(Lo,To) + b(T — Ty) — aT(L — Lo)%;
(e) Cu(L,T) = b7 — aT(L — Ly)

515 (b) 2loor; (¢) —2lox 5.18 (a) —(1/Cv)[T(@p/0T)v — 1l
519 () (0 +3/v)(v —3) =T 520 p' =9 — 12(v/ T — /3)?
520 ) Toexn { [l a8/ + W/} 522 @ To/(Ti— T

5.23 (@) C(T1+ T —2T); () Tr>ATT © CA/Th— T2
5.25 exp (—101%) 526 1 —(V,/Vy)r

CHAPTER 6

61 (a) e™iFr; (B) (hew/2)(1 + eMl?)(1 + g MukT)-1 G4 T

6.6 (c) E = N(e + eetoe)b)(] 4 g—tes—adlkr)—1

6.7 (b)) 8 = Nakln (1 4 2¢7*T) + (2N.¢/T)e*/*T(1 4 2e+/kT)—1

6.8 (Nea/2) tanh (e8a/2kT)

6.10 (a) p(r) = p(0) exp (mw*r?/2kT); (b) p = 2NAT/w?(r® — ro®)]ln [p(ry)/p(rd)]
611 o =015k/Us 612 (A/3)}, (A4/3)3, 3(4/3)}

CHAPTER 7

b

7.2 (b) kT + mgL(1l — emetikr)—1
7.3 (a) 2p(1 + )~ (0) »RIn[(1 +6)/b); () vRIn [(1 + b)*/4]
7.5 Na tanh (Wa/kT) 7.9 (a) Maje; () kT/a; (¢) VkTa/g
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7.0 (b) TNk 7.2 (b) 160°K  7.14 M, = Nou[coth (uH/kT) — (WT/uH)]
7.16 (c) 1+ Lu/kT)? (H# — H®)  7.17 0.843

7.08 w = (y/2)48; 37 percent have speed less than w.

7.20 (b) 2mn(rkT)Hde T de  7.22 (c) Ioexp [—mei(v — vo)?/ (2kTwe?)] dv
7.23 (@) 11 X 10%; (b) 1.7 X 10%; (e) 2.4 X 10~® mm of Hg

7.24 4V/iA  7.27 20-vEalED

7.28  (a) 3[pi(0) + pA0)] + ${pi(0) — pa(0)]e—4747;

¥ 2p.(0) 2p1(0)
®) 37 [?"“}) 50 + 2@ T PO I F

rat sl —cor (i B)] - 2pa (B enecs

CHAPTER 8

] i 730 (b) 4&/3 :

]
81 ®(V,T)dV T = = ( “""")
2

k2T

_ Moy g pya_ P [y MY
exp[ 25:?‘01(T To) 2Mxk7‘o(y pu)]dVdT

8.2 (a) 195°K; (h) | = 31,220 joules mole™ for sublimation, | = 25,480 joules
mole™! for vaporization; (c) 5740 joules mole—!

8.5 (a) QRT./LU; (b) Toll — (TWR/L) In (pm/pa)lt 8.6 T (L/RT) — 4]
8.7 (ep — ) + (T = [T(ears — crwy)l/(vs — )}

8.8 (2mgkT/abel*p)[(1/p) — (1/pw)]

8.11 (a) 3kT + mgz — kT[ln (kT/p) + §In T + oy

8.13 2, for small dissociation 817 K, (T) = p'(1 — B)=*2 + &)
8.19 (d) p/kT = ePr/ews; (f) L/RTy = In (v,/v0)

CHAPTER 9

9.2 8= —k) [A-Inn £ (1F a)n (1 F )] (apper sign for FD, lower for BE)
9.4 (o) ph@rm)H(kT)Vexp (o/kT) 9.6 (c) 2/3N 9.7 3R

g [ T M () mb o

: mM | P T okT [2(m + M)p

9.13 (a) TV R/2L 9.5 p(t) = (AM/rt) A/ RT/2rn
9.6 v = 2u/bm 918 (a) [(BxDV/E|R/m)(N/VIE  9.22 x = 3numt/2u
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9.23 (2/k%)(2rmkT)e-2i  9.24 [drme(l — r)/h¥)(kT)% 7

9.26 (b) Ii=4 Y (=D*/(n+1)?* 9.27 () J(k) = wh/sinh vk

n=0

CHAPTER 10

10.2 (4) In Z = (Nn/kT) — 3N In (1 — ¢92/7) + ND(,/T);
®) B = —Nn + 3NkTD(05/T);
(c) 8 = Nk[—31n (1 — e~92/7) + 4D(0p/T)]

10.3 For T & 6p, In Z = (Nq/kT) + (NwT2/50,5%),
E = —Nn + (3r4/5)(NkT4/0p"),
S = (4r*/B)Nk(T/Op)*;
for 72> Bp, In Z = (Nn/kT) + N[—3 In (6/T) + 1],
E = =Ny + 3Nk, § = Nk[—3 1In (B5/T) -+ 4]

10.4 § = N(n/aV) + ByNKT/V)D(6,/T)
107 —3k fo” [l — e#¥(1 + Bu)ldwR2 dR
10.9 (a) B = —2aNSH,if T << T

- SNS(S+UNRT[, 3T Al
B S+ S +1 [ 2nJ5(S + 1)]’ i
B=0,i{T>T;

b C—=0,ifTKT,; C
C=01T>T,

2
15Nk2T [ 1 S{S+1)u]?.m

= W+ 81 SKT =19

CHAPTER 11

11.2 AS = — AH& 2T — 6)* 11.3 Av = — ABaH /2T — 051 + ap)]*

11.4 () O, — Cp = (VT/4m)(dH/dT)? + (VTH /4r)(d*H /dT?);
(e) (VT /Aw)(dH/dT)?  IL6 (a) o = 3v/TF (b)) —yTct/4

CHAPTER 12

12.3 (a) (e8/m)r%; (b) 0757 124 Ia +a)? 12.8 (a) G = 2rR¥Lnw/8
12.9 (b) 7 = Tataien

12.10 (a) {w/8)(ea'/nL)(pr — p2);
(b) (w/18)(pat/nRTL)(p* — pa*)

12.11 aT/ot = (x/pe)(9*T/9z*)

12,12 (I*R/2w¢) In (b/a)

12.15/ t = 3 hours

12.16 § = uniVL: t = M In 2/mnil?
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CHAPTER 13

13.6 0, =0 gives (1/n)(0n/dz) = (1/8)(96/32),
f=g+ (gr/T)(dT/d2)[§ — 0mv*/kT))
13.11 k = (7%/3) (nk*T/m)rr 13.12 x/oa = (w%/3)(k/e)*T

CHAPTER 14

141 g = (3r/8)(ne?/nioi ") (2ukT)~}, where p = mym/(mq + m)
14.2 (b) « = $5(k/T) VTET/m;  (0) « = 35(k/ae) V/ ThL /m
14.3 «&/n = 15k/4m

CHAPTER 15
N=1 » e |

157 ¥ = ) @G =0 158 G =2kTyr/m, ¥* = (kT/m)(1 — )
k=0

15.10 v = (2mkT)-! f_: K(s) ds

15.01 (a) Av = —vyugr, (D)2 = G = 2kTvr/m;
(b) (A = —3yurl®, (A0)* =G5 (o) (Av)* = —BkTy2rivs/m

1518 050 = vote=2v + [(1 — e=)/2ym?) f_"‘ K(s) de
13.14 (a) Jr(w) = mi(y? + wiJ (w);

(h) Julw) = (KT /mm)lv/(v? + «9)];
(6) TpH(w) = (2/mymkTy
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Index

Absolute temperature (see Temperature,
absolute)

Abgorptivity, 382

Accessible states, 53, 87

Adiabatic demagnetization, 445-451

Adiabatie igolation, 68

Adiabatic ax’ggnsion of ideal gas, 158-159

Adsorbed molecules in equilibrium with a
gas, 398

Atmospheres, law of, 211"

BE (see Bose-Finstein statistics)
Binomial distribution, 10
Black body, 386
radiation by, 386-388
Boltzmann, 4, 635
Boltzmann constant, 137
Boltzmann equation, 525
in absence of collisions, 500
in presence of collisions, 509
in complete form, 525
linearized, 536
solution by moments, 536-537
solution by variational prineiple,
537-539
with relaxation time approximation,
509
Boltzmann factor, 205
derivation of, 202-204
Bose-Einstein statistics, 346-349
and counting of states, 337338
distribution function for, 342, 348
fluetuation in particle numbers, 349

Boge-Einstein statistics
nature of ground state, 338
partition function for, 348
and symmetry requirements, 332
Bosons, 332
Boyle’s law, 134
Brillouin function, 260
Brownian motion, 251, 560
Langevin equation, 564
mean-square displacement, 567,
B75-677
mean-square veloeity increment, 575,
602
mean velocity inerement, 571, 602
probability distribution for velocity, 581

Calorie, 141
Calorimetry (see Heat, measurement of)
Canonieal distribution, 205
caleulation of mean values, 212-214
derivation by combinatorial argument,
220-231
Carnot, 3
Carnot engine, 188-190
Celsius temperature scals, 137
Center-of-mass motion, 517-519
Central limit theorem, 39
Chemical equilibrium, 317-325
between ideal gases, 319-325
equilibrium constant, 322-324
general equilibrium conditions for, 317—
319
law of mass action, 322-324
standard free energy change, 322

643
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Chemical potential, 313
and Fermi energy for FD gas, 388
of ideal gas, 322
and Planck’s eonstant, 363
relation to Gibbs free energy, 313-314
Clausius, 8
Clausius-Clapeyron equation, 304
and slope of melting curve, 305
and vapor pressure, 305-306
Coefficient of linear expansion, 195-196
Coefficient, of volume expansion, 168
behavior as T'— 0, 170
of ideal gas, 160
Cold
definition of, 102
relation to absolute temperature, 1068
Collision probabilities, 463—465
(see also Collision time)
Collision time, 465
related to scattering cross section,
469470
Compressibility, 168
of ideal gas, 160
positive sign of, 300
Conservation equations of hydrody-
namices, 520-531
Constraints, 87-91
Confinuity, equation of, 530
Cooperative behavior, 406
Correlation funetion, 570
for eross-correlation, 597
properties of, 670-571
of veloeity in Brownian motion, 576,
602
Correlation time, 562
Critical point, 198, 305, 311
fluetuations near, 301
opalescence at, 301
Curie’s law, 208
in general case, 261
Curie temperature, 432
Curie-Weiss law, 433
Cyelic process, 85, 184

D drift derivative operator, 500

Dy collision operator, 509
explicit expression for, 525

Darwin-Fowler method, 225n

De Broglie relation, 353

Debye frequency, 415

INDEX

Debye function, 415
Debye normal mode distribution, 414
Debye specific heat of solids, 415
in low temperature limit, 416-417
Debye temperature, 415
Debye theory of solids, 411-418
Degenerate gas, 353
Degrees of freedom, 51
Degrees Kelvin, 136
Delta function, 614-615
integral representation of, 617-618
Delta symbol, Kronecker, 616
Density of states, 61
effect of changing external parameters,
112-114
for a free particle in a box, 358
general properties of, 61, 63
for ideal gas, 63-66
Detailed balance, principle of, 381,
382-383
and evaporation, 400
microseopic discussion of, 383-384
and Nyquist’s formula, 591-594
and radiation by hot bodies, 385-388
Detailed balance conditions, 550
Dewar, 439
Differentials, exact and inexact, 79
Differential scattering eross section
(see Seattering cross section)
Diffusion, 483-484
coefficient, for dilute gas, 485
related to viscosity, 486
coeflicient related to friction constant,
567
coeflicient for self-diffusion, 484
equation for concentration, 484
mean-square displacement in, 486488
as & random walk, 486-487
related to mobility, 567
Dirac delta function
(see Delta function)
Dispersion, 13 (see also Fluctuations)
of Gaussian distribution, 24
for the random walk, 16, 34
Dissociation energy of a molecule, 372
Dissociation of H atom, 363-365
Distribution funetion for molecules, 263,
495
Doppler broadening, 285
Dulong and Petit law, 254, 411
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Efficiency of heat engine, 188
Effusion, 273-278
Einstein relation between diffusion and
mobility, 567, 601
Finstein temperature, 255
Einstein theory of specific heat of solids,
254-256
Elastic waves, 412414
Electrical conductivity, 488
of charged particles in a dilute gas, 489
caleulation by momenfum argu-
ments, 532-534, 545-546
caleulation in terms of 7, 504-506
of electrons in metals, 506-507
Electrochemical cell, 197-198
Electromagnetic radiation (see Radiation)
Electrons in metals, 388-393
paramagnetism of, 401
specific heat of, 391-393, 397
thermal conductivity of, 482483
Emissivity, 382
Energy fluctuation, 109-110, 213
of ideal gos, 242
Engine
Carnot, 188-189
perfect, 184186
quasi-static, 188
Ensemble, 5
canonical, 206
grand canonical, 225-227
microcanonical, 202
for system with indefinite number of
particles, 225-227
for system in uniform motion, 227-229
Ensemble average, 561, 583
Enskog equation of change, 527
Enthalpy, 162
in throttling process, 180
Entropy
additivity of, 111, 217
and heat capacity, 140-141
of ideal gas, 160
implications of third law, 145-148
limiting behavior as T — 0, 119-121
meagurement of, 142-143
of mixing, 243-244, 282
of monatomic ideal gas, 245
and probability, 123
related to absorbed heat, 108, 115, 118
related to partition function, 215

646

Entropy
statistical definition of, 99, 119
thermodynamic calculation of, 172
Equation of state, 124
calculated from partition function, 214
for ideal classical gas, 125
for slightly nonideal gas, 422
van der Waals, 173
virial expansion, 183
Equilibrium, 54
metastable, 290
Equilibrium conditions
between chemical components, 317-391
under conditions of constant T, 291-294
under conditions of constant 7' and p,
204-206
for homogeneous substance, 206-300
for isolated system 284-291
between phases, 301-306, 316-317
Equilibrium constant, 322-324
calculation from first principles,
363-365
temperature dependence of, 325
Equipartition theorem, 249
Ergodic ensemble, 584
equality of ensemble and time average,
586
Error function, 609-610
Fuler equation of hydrodynamics, 531
Exchange interaction, 428
Exclusion principle, 33
application to homonuclear molecules,
371
and exchange energy, 428
and ground state of FD gas, 338-339
Extensive parameter, 149
External parameter, 68

FD (see Fermi-Dirac statistics)
Fermi energy, 388, 391
Fermi function, 389-390
integrals involving, 393-396
Fermi momentum, 390
Fermi sphere, 390
Fermi temperature, 391
Fermi-Dirac statistics, 350-351
and conduction electrons in metals,
388-393
and counting of states, 338
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Fermi-Dirae statistics
distribution funetion for, 341, 350
fluctuation in particle numbers, 351
nature of ground state, 339, 300
partition function for, 350
and symmetry requirements, 332-333
Fermions, 333
Ferromagnetism, 428-434
Curie temperature for, 432
and exchange interaction, 428-429
Weiss molecular field theory of, 430434
First law of thermodynamics, 82, 122
Fluctuation
near critical point, 301
of density, 300-301
of energy, 109-110, 213, 242
of ideal gas, 242
of gas pressure, 399
of particle number, 336-337
for BE statistics, 349
for FD statistics, 351
for MB statistics, 345
for photons, 346
of volume, 300
Fluctuation-dissipation theorem, 572-573,
603
general case, 597
and Nyquist theorem, 588-589
Flux
of molecular quantities, 495-497
of molecules, 270-273
Fokker-Planck equation, 579
solution for Brownian motion, 580-581
Fourier analysis of random functions,
582-583
Free energy
Gibbs, 164
Helmholtz, 163
related to partition function, 216
Free expansion
of an arbitrary gas, 175-177
of an ideal gas, 155
Friction constant, 563
expressed in terms of fluctuating force,
572

Gamma function, 608
(ias constant, 136
Gaasoline engine, 200

INDEX

Gaussian distribution, 21-24
as general limiting case, 3740
as limiting case of binomial distribution,
1721
Gaussian integral, 607
Generalized force, 75
Geometric series, sum of, 605606
Gibbs, 3, 4, 635
Gibbs-Duhem relation, 315
Gibbs free energy, 164
Gibbs paradox, 243-245
Grand canoniecal distribution, 226
Grand partition function, 347
Griineisen constant, 436

H-theorem
for dilute gas, 546-547
general case, 624-626
Harmonic ozeillator
classical phase space for, 55-56
energy levels of, 49
mean thermal energy of, 251-253
Heat, 67, 73
measurement of, 131-133
Heat bath (see Heat reservoir)
Heat capacity, 139-141
(see also Specific heat)
Heat engines, 184-190
Heat pump, 199
Heat reservoir, 107
Helmholtz free energy, 163
Hot, definition of, 102
Hydrogen atom, thermal ionizetion of,
363-365
Hyperfine interaction, 557

Ideal gas in classical limit, 64
adiabatic processes, 158-159
classical partition function, 239-241,

245
density of states, 64-66
entropy, 160
quantum expression for, 362
equation of state, 125, 241
internal energy, 126, 153-156
mixture of several species
chemical potential, 322
equation of state, 321
partition function, 321
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Ideal gas in classical limit
quantum calculation of partition func-
tion, 360-361
specific heat relations, 156157
validity of classical approximation,
246-248
Ideal gas in quantum limit, 331-362
(see also Bose-Einstein and Fermi-Dirac
statistics)
Impact parameter, 468
Information theory, 231
Intensive parameter, 149
Internal energy, 122
general volume dependence of, 173
of ideal gas, 126, 153-155
measurement of, 129-131
relation to partition function, 213
of van der Waals gas, 174
Inverse collision, 522
Inverse transition, 544
Inversion curve, 181
Irreversibility, and microscopic reversi-
bility, 539-600
Irreversible plg'a'cesa, 91-93
Ising model, 420
Isotherm, 307 )
Isothermal process, 158
Isotope separation by effusion, 276

Joule, 3, 155-156

free expansion experiment, 155
Joule-Thomson coefficient, 181-182
Joule-Thomson process, 178184

Kammerlingh Onnes, 455

Kelvin, 8, 181

Kelvin temperature scale, 136

Kinetic theory, 3, 262-281, 461-545

Kirchhoft's law, 385

Knudsen gas, 477

Kronecker delta symbol, 616
integral representation of, 616, 618

Lagrange multipliers, 621-622
Lambert’s law, 387
Langevin equation, 564
Latent heat, 304
Lattice |
as totality of all nonspin degrees of free-
dom, 554
vibrations in golid, 407414

647

Le Chételier’s principle, 208
and chemieal equilibrium, 325
and compressibility, 300
and heat capacity, 208-299

Lennard-Jones potential, 419

Liouville’s theorem, 628

Maeroscopic system, 2
Macrostate, 66
Magnetic cooling, 445-451
Magnetic resonance, 553556
Magnetic susceptibility, 440
Magnetic work, 440444
Markoff process, 577
Mass action, law of, 322-324
Master equation, 549
for system in contach with heat reser-
voir, 553
Maxwell, 3
Maxwell-Boltzmann statistics, 843-345
and absence of symmetry requirements,
332
and counting of states, 337
distribution funetion for, 345
fluetuations in particle number, 345
as limiting case of BE and FD statistics,
361-353
partition function for, 344
Maxwell relations, 164-166
Maxwell velocity distribution, 210, 264,
267
MB (see Maxwell-Boltzmann statistics)
Mean free path, 465
related to seattering eross section, 471
Mean values, 11-13
for continuous variables, 28-29
of Gaussian distribution, 24
of a product, 26
for random walk, 14-16, 33-34
of a sum, 12, 26
Mean velocities of molecule in a gas, 265—
269
Mechanieal interaction, 68-72
Melting, 305n
Microcanonical ensemble, 202
Microscopie reversibility, 384, 508
relation to macroseopic irreversibility,
599-600
Microscopie system, 2
Microstate, 51
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Molecule in a gas,
digtribution of speed, 267-268
distribution of velocity, 209-210,
262-264
distribution of velocity component, 265
mean kinetic energy of, 250
mean velocities of, 265-269
Molecular beam, 274
for measuring velocity distribution,
274-276
Molecular chaos, 523
Molecular distribution
in gravitational field, 210-211
of velocities, 209-210, 264
Molecular field, 430
Molecular partition function,
for electronic motion, 368-360
for rotation, 369371
for translation, 368
for vibration, 371-372
Moments of a probability, 13

Noise, thermal
associated with electrical resistor,
588-689
(see nlso Nyquist's theorem)
in electrie circuit, 587-588
relation to Brownign motion, 560
white noise, 589
Normal coordinates, 408
Normalization condition for probabilities,
12
for continuous case, 28, 29
Nyquist’s theorem, 588-504
as analogue of black-body radiation,
592-593
for arbitrary impedance, 591-592
derived from equilibrium considera-
tions, 589-591
ag special case of fluctuation-dissipation
theorem, 588-580

Onsager symmetry relations, 595-509
Overhauser effect, 556-560

Paramagnetism
in classical limit, 284
of conduetion electrons in a metal, 401
general case, 257-262

INDEX

Paramagnetism
of interacting atoms, 432-434
of atoms with spin 3, 206-208
Partial derivatives, relations between,
619-620
Partial pressure, 321
Particle, moving freely in a box
density of states, 358
quantum states, 48, 354-360
Partition function, 213
of classical ideal gas, 240-245
for noninteracting systems, 238-230
properties of, 237-239
relation to Helmholtz free energy, 216
Path integral method, 503504
Pauli exclusion principle, 333
Perrin, 567
Persistence of veloeity, 489n, 516
effect on electrical conductivity,
533-534
Phase-equilibrium line, 303
slope of, 304
Phase space, 50-51, 59
for harmonie oseillator, 55-56
Phase transformation
and equation of state, 306-312
equilibrium conditions for, 301-304,
815-317
of superconducting metal, 458
Phonons, 405, 409
contribution to thermal conductivity of
solids, 483
temperature dependence of number of,
416
Photons, 878-874 (see also Radiation)
Photon statistics, 345-346
distribution function for, 339-340, 346
as gpecial case of BE distribution,
342, 349
fluctuation in particle number, 346
partition funetion for, 345
as special case of BE statistics, 338
Planck distribution, 340, 346
Planck radiation law, 388
Poise, 473
Poiseuille flow through tubes, 491
Poisson distribution, 41-42
Polarization of spins,
by dynamic methods, 556-560
by large constant field, 233, 261, 667
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Postulate of equal a priori probabilities,
H4-56
Pressure
calculated by statistical mechanies, 125,
241
exerted by degenerate Fermi-Dirac gas,
401
exerted by a gas, 398-309
of gas mixture, 282
kinetic evaluation of, 278-281
related to momentum transfer, 278-281
Pressure tensor, 472n
Probability, 5
density, 22, 27-32
of several variables, 25-26
of statisticall 'ndapsm%ant variables, 26
Product molecule, 318

Quantum states
of free particle, 49, 354-360
of harmonic oscillator, 49
Quasi-particles, 404405, 409
Quasi-static process, 74-76

Radiation in equilibrium, 378-381
energy density of, 375-376
general properties of, 378-381
photon distribution for, 374
pressure of, 377-378
Radiation emitted by a body, 381-388
and black bodies, 386
Planck radiation law for, 388
Radionotive decay, 42
Random walk, 540
with arbitrary step lengths, 3240
mean values, 33-84
probability distribution, 35-36
probability distribution for large N,
3740
and diffusion, 486488
with equal step lengths, 7-11
for large N, 17-21 -
Reactant molecule, 318
Reduced mass, 517
Refrigerators, 190-191
perfect, 190
Relaxation rates, 93-04
Relaxation time, 59
in Boltzmann equation, 509

648

Relaxation time
for spin system, 555
as time between molecular collisions,
465
Reverse collision, 521-522
Reverse transition, 384
Reversible process, 91-93
Rigid rotator, 369-371
Rotation of molecule, 369-371

Saturation
in magnetic resonance, 556
of magnetization for large H /T, 208
Seattering cross section, 467-468
differential, 468, 520
gffect of time reversal and space inver-
sion, 521-522
total, 468
for hard gpheres, 469
Second law of thermodynamics, 122-123
and canonical distribution, 215
Clausius statement of, 191
Kelvin staternent of, 186
Belf-diffusion (see Diffusion)
Semipermeable membrane, 148
Smoluchowski equation, 580
Bound, velocity of, 195
Space inversion, effect on scattering cross
seetion, 522
8pecific heat, 139
behavior as T — 0, 170
of conduction electrons in metals,
391-393
exact calculation of, 396-307
of diatomic molecules, 399
general relation between ¢, and ey,
166-168
of monatomic ideal gas, 157-158,
241-242, 251
positive sign of, 208
of solids, 253-256
in classical limit, 253-254, 411
Debye theory, 415
Einstein approximation, 264-255
general expression, 411
volume dependence of, 171
Bpectral density, 585
Stationary ensemble, 584
Statistical independence, 25-26
Statistical mechanies, 3
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Bteady state, 462
Stefan-Boltzmann constant, 388
Stefan-Boltzmann law for radiation
energy density, 376, 388
thermodynamic derivation of, 399
Stirling’s formula, 613
including correction terms, 614
to lowest approximation, 611
Stokes’s law, 565, 601
Stress in fluid, 472
Sublimation, 305n
Substantial derivative, 531
Summation convention, 526
Buperconductivity, 438, 455-459
critical field, 455
critical temperature, 455
entropy and latent heat, 458459
magnetic moment, 456-4567
slope of critical temperature curve, 458
Superfiuid liquid helium, 438
Surface tension, 196-197
Survival probability, 463
Huseeptibility, magnetic, 208
in general case, 261

Temperature, 102-106
Temperature, absolute, 105
measurement of, 133-137
measurement at very low temperatures,
452-455
negative, 105
properties of, 105-106
spin, 105, 556
statistical definition of, 89
Temperature as arbitrary thermometric
parameter, 104
Thermal conduetivity, 478-479
coefficient of, 479
of conduction electrons in metals, 515
of dilute gas, 479481
calculation in terms of r, 514-515
related to viscosity, 481
rigorous ealeulation, 546
of solids, 482483
Thermal insulation, 68
Thermal interaction, 66-68
Thermionic emission of electrons, 402
Thermodynamies, 3, 152-191
Thermodynamic functions, 166
Thermodynamic laws, 122-123

Im

Thermodynamic relations, 164-166
for several components, 312-315
Thermometers, 102-105
Thermometric parameter, 103
Thermomolecular effects, 276-278
Third law of thermodynamies, 119-121,
123
applications of, 145-148
application to specific heats, 170
related to partition funetion, 216
Thomson, William (see Kelvin)
Throttling process, 178-184
Time average, 583
relation to ensemble average, 583-585
Time reversal, 383-384
invariance of seattering cross section,
521
Tin, white and gray, 145-147
Transition probabilities between states,
H5H48-540
relation to inverse transition
for izolated system, 549
for system in contact with heat reser-
voir, 553
relation to reverse transition, 383-884
Triple point, 305
of water, 135-136
Trouton’s rule, 330

Van der Waals equation, 173, 198
derivation of, 4244328
Van der Waals force, 436
Vapor pressure, 305
approximate temperature dependense,
305-306
caleulation from first principles,
365-367
Vaporization, 305n
Variation principle for Boltamann egua-
tion, 537-539
Velocity, peculiar, 495
Velocity distribution of molecules
experimental measurement of, 274-276
for gas in macroscopic motion, 229
Maxwellian, 210
Velocity selector, 275-276
Virial coefficients, 183, 422
sealing properties for different gasos, 424
theoretical expression for second coefli-
cient, 422
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Virial equation of state, 183, 422 Warm
Viscosity, 471-473 relation to absolute temperature, 106
coefficient of, 473 Wave function of free particle, 354
of dilute gas, 473-478 Wave vector, 353

Weiss molecular field, 430

ion i i 8, 5
caleulation in terms of 7, 508, 513 Windomann. Prase Iaw, 515

n‘ldependencel ofspresf,:;e, by Wien's displacement law, 376
rigorous result, 544-5 Wiener-Khintchine relations, 585-586 '
temperature dependence, 477—478 Work. 69-70

Viscous flow through tubes, 491 done by pressure, 76-78

g magnetic, 440444
Warm

definition of, 102 \ Zeroth law of thermodynamies, 102, 122
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