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PREFACE

This series of physics problems and solutions, which consists of seven vol-
umes — Mechanics, Electromagnetism, Optics, Atomic, Nuclear and Parti-
cle Physics, Thermodynamics and Statistical Physics, Quantum Mechanics,
Solid State Physics and Relativity, contains a selection of 2550 problems
from the graduate-school entrance and qualifying examination papers of
seven U.S. universities — California University Berkeley Campus, Columbia
University, Chicago University, Massachusetts Institute of Technology, New
York State University Buffalo Campus, Princeton University, Wisconsin
University — as well as the CUSPEA and C. C. Tingis papers for selection
of Chinese students for further studies in U.S.A., and their solutions which
represent the effort of more than 70 Chinese physicists plus some 20 more
who checked the solutions.

The series is remarkable for its comprehensive coverage. In each area
the problems span a wide spectrum of topics, while many problems overlap
several areas. The problems themselves are remarkable for their versatil-
ity in applying the physical laws and principles, their uptodate realistic
situations, and their scanty demand on mathematical skills. Many of the
problems involve order-of-magnitude calculations which one often requires
in an experimental situation for estimating a quantity from a simple model.
In short, the exercises blend together the objectives of enhancement of oneis
understanding of the physical principles and ability of practical application.

The solutions as presented generally just provide a guidance to solving
the problems, rather than step-by-step manipulation, and leave much to
the students to work out for themselves, of whom much is demanded of the
basic knowledge in physics. Thus the series would provide an invaluable
complement to the textbooks.

The present volume consists of 380 problems. It covers practically the
whole of the usual undergraduate syllabus in quantum mechanics, just
falling short of quantum field theory, but in substance and sophistication
going much beyond.

In editing, no attempt has been made to unify the physical terms, units
and symbols. Rather, they are left to the settersi and solversi own prefer-
ence so as to reflect the realistic situation of the usage today. Great pains
has been taken to trace the logical steps from the first principles to the
final solution, frequently even to the extent of rewriting the entire solution.
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In addition, a subject index to problems has been included to facilitate the
location of topics. These editorial efforts hopefully will enhance the value of
the volume to the students and teachers alike. The editor is most grateful
to Prof. C. H. Oh of the National University of Singapore for some most
illuminating discussion on the topics.

Yung- Kuo Lim
Editor



INTRODUCTION

Solving problems in school work is exercise of the mind and enhances
understanding of the principles. In general examination questions usually
parallel such problems. Thus working out problems forms an essential and
important part of the study of physics.

Major American University Ph.D. Qualifying Questions and Solutions
is a series of seven volumes. The subjects of each volume and the respective
referees (in parentheses) are as follows:

1. Mechanics (Qiang Yuan-gi, Gu En-pu, Cheng Jia-fu, Li Ze-hua, Yang
De-tian)

2. Electromagnetism (Zhao Shu-ping, You Jun-han, Zhu Jun-jie)

. Optics (Bai Gui-ru, Guo Guang-can)

4. Atomic, Nuclear and Particle Physics (Jin Huai-cheng, Yang Bao-
zhong, Fan Yang-mei)

5. Thermodynamics and Statistical Physics (Zheng Jiu-ren)

6. Quantum Mechanics (Zhang Yong-de, Zhu Dong-pei, Fan Hong-yi)

7. Solid State Physics, Relativity and Miscellaneous Topics (Zhang Jia-
lu, Zhou You-yuan, Zhang Shi-ling)

w

This series covers almost all aspects of University Physics and contains
2550 problems, most of which are solved in detail.

The problems have been carefully chosen from a collection of 3100 prob-
lems, of which some came from the China-U.S.A. Physics Examination
and Application (CUSPEA) Program, some were selected from the Ph.D.
Qualifying Examination on Experimental High Energy Physics sponsored
by Chao Chong Ting. The rest came from the graduate preliminary or
qualifying examination questions of seven world-renowned American uni-
versities: Columbia University, University of California at Berkeley, Mas-
sachusetts Institute of Technology, University of Wisconsin, University of
Chicago, Princeton University and State University of New York, Buffalo.

Generally speaking, examination problems in physics in American uni-
versities do not involve too much mathematics. Rather, they are to a large
extent characterized by the following three aspects. Some problems involv-
ing various frontier subjects and overlapping domains of science are selected
by professors directly from their own research work and thus have an “up-
to-dateT flavor. Some problems involve broad fields and require a quick

Vil
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mind to analyse, while the methods needed for solving the other problems
are simple and practical but requires a full Ttouch of physicst- Indeed, we
venture to opine that the problems, as a whole, embody to some extent the
characteristics of American science and culture, as well as the philosophy
underlying American education.

Therefore, we considered it worthwhile to collect and solve these prob-
lems and introduce them to students and teachers, even though the effort
involved was formidable. As many as a hundred teachers and graduate
students took part in this time-consuming task.

A total of 380 problems make up this volume of eight parts: basic prin-
ciples and one-dimensional motions (72), central potentials (27), spin and
angular momentum (48), motion in electromagnetic field (16), perturbation
theory (83), scattering theory and quantum transitions (61), many-particle
systems (37), and miscellaneous topics (40).

In scope and depth, most of the problems conform to undergraduate
physics syllabi for quantum mechanics in most universities, while many are
rather profound and sophisticated or broad-based. A remarkable fact is
that the problems from American universities often combine fundamental
principles and latest research activities. Thus the problems may help the
reader not only to enhance understanding of basic principles, but also to
cultivate the ability of solving practical problems in a realistic environment.

This volume is the result of the collective effort of 19 physicists who
worked out and checked the solutions, notably Zhang Yong-de, Zhu Dong-
pei, Fan Hong-yi, Ren Yong, Dai Tie-sheng, Ning Bo. The original trans-
lation was carried out by professors Zheng Jiu-ren and Qi Bo-yun.
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1. BASIC PRINCIPLES AND ONE-DIMENSIONAL MOTIONS

1001

Quantum phenomena are often negligible in the “macroscopic” world.
Show this numerically for the following cases:

(a) The amplitude of the zero-point oscillation for a pendulum of length
=1 m and mass m =1 kg.

(b) The tunneling probability for a marble of mass m =5 g moving at a
speed of 10 cm/sec against a rigid obstacle of height H =5 cm and width
w=1cm.

(c) The diffraction of a tennis ball of mass m = 0.1 kg moving at a
speed v = 0.5 m/sec by a window of size 1 x 1.5 m?2.

( Wisconsin)

Solution:

(@) The theory of the harmonic oscillator gives the average Kinetic energy
as V =1E, ie., $mw?A?= {hw, where w = \/g/l and A is the root-mean-
square amplitude of the zero-point oscillation. Hence

h —-17
A=4/—=041x10 m.
2mw

Thus the zero-point oscillation of a macroscopic pendulum is negligible.
(b) If we regard the width and height of the rigid obstacle as the width
and height of a gravity potential barrier, the tunneling probability is

2
T =~ exp [_Tw \/Zm (mgH— %mvz) ]

=exp (_ZrnTw v/29H — vz) ,

where 9
muw
— V2gH —v2 =~ 0.9 x 10%°.

Hence
30
T ~ e—0~9><10 ~ 0

That is, the tunneling probability for the marble is essentially zero.
(c) The de Broglie wavelength of the tennis ball is

A=h/p=h/mv=13x107% cm,



2 Problems and Solutions on Electromagnetism

and the diffraction angles in the horizontal and the vertical directions are
respectively

§1~X/D=13x10"%?rad, 6;=A/L=9x10"% rad.

Thus there is no diffraction in any direction.

1002

Express each of the following quantities in terms of A, e, ¢, m =electron
mass, M =proton mass. Also give a rough estimate of numerical size for
each.

(a) Bohr radius (cm).

(b) Binding energy of hydrogen (eV).

(c) Bohr magneton (choosing your own unit).

(d) Compton wavelength of an electron (cm).

(e) Classical electron radius (cm).

(f) Electron rest energy (MeV).

(9) Proton rest energy (MeV).

(h) Fine structure constant.

(i) Typical hydrogen fine-structure splitting (eV).

(Berkeley)
Solution:

(@) a = h%/me? = 5.29 x 107% cm.

(b) E = me*/2h? = 13.6 eV.

(c) up = eh/2mec = 9.27 x 1072 erg . Gs™'.

(d) X = 2wh/me = 2.43 x 10710 cm.

(e) re = €2/mc? = 2.82 x 10713 cm.

(f) E.=mc?=0.511 MeV.

(9) Ep, = Mc? = 938 MeV.

(h) o =e?/hc = 7.30 x 1073~1/137.

(i) AE = e8mc?/8h%c* = L o*mc® = 1.8 x 10~*eV.

1003

Derive, estimate, guess or remember numerical values for the following,
to within one order of magnitude:
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(a) The electron Compton wavelength.
(b) The electron Thomson cross section.
(c) The Bohr radius of hydrogen.
(d) The ionization potential for atomic hydrogen.
(e) The hyperfine splitting of the ground-state energy level in atomic
hydrogen.
(f) The magnetic dipole moment of 3Li” (Z = 3) nucleus.
(9) The proton-neutron mass difference.
(h) The lifetime of free neutron.
(i) The binding energy of a helium-4 nucleus.
(3) The radius of the largest stable nucleus.
(k) The lifetime of a 7% meason.
(1) The lifetime of a 4~ meason.
(Berkeley)

Solution:
(@) Ae = h/mec = 2.43 x 10—2A
(b)a—s" r2=6.56 x 10~3'm
(c)a= —7 =0.53 A.
(d) I =5; =136 eV.
(e) The spllttmg of the ground-state energy level is

2
1
= — ) =107%eV.
AE; =136 x (137) eV

The hyperfine splitting of the ground-state energy level is
AEns =~ AE;/10° ~ 1077 eV,

() up=167x10"267 T-1,

(@) Am = mp —m, =-2.3 x 10730 kg.

(h) T~ 15 min =9 x 10%s.

(i) E=4x7MeV = 28 MeV.

(3) The radius r corresponds to a region of space in which nuclear force
is effective. Thus

r~14 A¥=14 x (100} = 6.5 fm.

(k) 7=8.28 x 10717 s,
(1) The decay of u~ is by weak interaction, and so 7 = 2.2 x 10 %s.
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1004

Explain what was learned about quantization of radiation or mechanical
system from two of the following experiments:

(a) Photoelectric effect.

(b) Black body radiation spectrum.
(c) Firanck-Hertz experiment.

(d) Davisson-Germer experiment.
(e) Compton scattering.

Describe the experiments selected in detail, indicate which of the mea-
sured effects were non-classical and why, and explain how they can be
understood as quantum phenomena. Give equations if appropriate.

( Wisconsin)

Solution:

(a) Photoelectric Effect

This refers to the emission of electrons observed when one irradiates a
metal under vacuum with ultraviolet light. It was found that the magnitude
of the electric current thus produced is proportional to the intensity of the
striking radiation provided that the frequency of the light is greater than a
minimum value characteristic of the metal, while the speed of the electrons
does not depend on the light intensity, but on its frequency. These results
could not be explained by classical physics.

Einstein in 1905 explained these results by assuming light, in its inter-
action with matter, consisted of corpuscles of energy hv, called photons.
When a photon encounters an electron of the metal it is entirely absorbed,
and the electon, after receiving the energy hv, spends an amount of work
W equal to its binding energy in the metal, and leaves with a kinetic energy

1 2
—mv-=hvr—-W.
2

This quantitative theory of photoelectricity has been completely verified

by experiment, thus establishing the corpuscular nature of light.

(b) Black Body Radiation

A black body is one which absorbs all the radiation falling on it. The
spectral distribution of the radiation emitted by a black body can be derived
from the general laws of interaction between matter and radiation. The
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expressions deduced from the classical theory are known as Wienis law
and Rayleighis law. The former is in good agreement with experiment in
the short wavelength end of the spectrum only, while the latter is in good
agreement with the long wavelength results but leads to divergency in total
energy.

Planck in 1900 succeeded in removing the difficulties encountered by
classical physics in black body radiation by postulating that energy ex-
changes between matter and radiation do not take place in a continuous
manner but by discrete and indivisible quantities, or quanta, of energy. He
showed that by assuming that the quantum of energy was proportional to
the frequency, € = hv, he was able to obtain an expression for the spectrum
which is in complete agreement with experiment:

8thvd 1
EV = 3 hy ’
C exT — 1

where h is a universal constant, now known as Planckis constant.

Planckis hypothesis has been confirmed by a whole array of elementary
processes and it directly reveals the existence of discontinuities of physical
processes on the microscopic scale, namely quantum phenomena.

(c) Firanck-Hertz Experiment

The experiment of Franck and Hertz consisted of bombarding atoms
with monoenergetic electrons and measuring the kinetic energy of the scat-
tered electrons, from which one deduced by subtraction the quantity of
energy absorbed in the collisions by the atoms. Suppose Eg, Eq, Es, . . . are
the sequence of quantized energy levels of the atoms and T is the kinetic
energy of the incident electrons. As long as T is below A = E; — Ey, the
atoms cannot absorb the energy and all collisions are elastic. As soon as
T > E; — Ey, inelastic collisions occur and some atoms go into their first
excited states. Similarly, atoms can be excited into the second excited state
as soon as T > Ey— Ey, etc. This was exactly what was found experimen-
tally. Thus the Firanck-Hertz experiment established the quantization of
atomic energy levels.

(d) Davisson—Germer Experiment

L. de Broglie, seeking to establish the basis of a unified theory of mat-
ter and radiation, postulated that matter, as well as light, exhibited both
wave and corpuscular aspects. The first diffraction experiments with matter
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waves were performed with electrons by Davisson and Germer (1927). The
incident beam was obtained by accelerating electrons through an electrical
potential. Knowing the parameters of the crystal lattice it was possible to
deduce an experimental value for the electron wavelength and the results
were in perfect accord with the de Broglie relation A = h/p, where A is
Planckis constant and p is the momentum of the electrons. Similar exper-
iments were later performed by others with beams of helium atoms and
hydrogen molecules, showing that the wavelike structure was not peculiar
to electrons.

(e) Compton Scattering

Compton observed the scattering of X-rays by free (or weakly bound)
electrons and found the wavelength of the scattered radiation exceeded that
of the incident radiation. The difference AX varied as a function of the angle
@ between the incident and scattered directions:

Al =2 L3 sin? g,
me 2
where h is Planckis constant and m is the rest mass of the electron. Further-
more, AX is independent of the incident wavelength. The Compton effect
cannot be explained by any classical wave theory of light and is therefore
a confirmation of the photon theory of light.

1005

In the days before Quantum Mechanics, a big theoretical problem was to
istopT an atom from emitting light. Explain. After Quantum Mechanics,
a big theoretical problem was to make atoms in excited states emit light.
Explain. What does make excited atoms emit light?

( wisconsin)

Solution:

In the days before Quantum Mechanics, according to the Rutherford
atomic model electrons move around the nucleus in elliptical orbits. Classi-
cal electrodynamics requires radiation to be emitted when a charged particle
accelerates. Thus the atom must emit light. This means that the electrons
would lose energy continuously and ultimately be captured by the nucleus.
Whereas, in actual fact the electrons do not fall towards the nucleus and
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atoms in ground state are stable and do not emit light. The problem then
was to invent a mechanism which could prevent the atom from emitting
light. All such attempts ended in failure.

A basic principle of Quantum Mechanics is that, without external inter-
action, the Hamiltonian of an atom is time-independent. This means that
an atom in an excited state (still a stationary state) would stay on and not
emit light spontaneously. In reality, however, spontaneous transition of an
excited atoms does occur and light is emitted.

According to Quantum Electrodynamics, the interaction of the radia-
tion field and the electrons in an atom, which form two quantum systems,
contains a term of the single-photon creation operator a*, which does not
vanish even if there is no photon initially. It is this term that makes atoms
in excited states emit light, causing spontaneous transition.

1006

Consider an experiment in which a beam of electrons is directed at a
plate containing two slits, labelled A and B. Beyond the plate is a screen
equipped with an array of detectors which enables one to determine where
the electrons hit the screen. For each of the following cases draw a rough
graph of the relative number of incident electrons as a function of position
along the screen and give a brief explanation.

(a) Slit A open, slit B closed.

(b) Slit B open, slit A closed.

(c) Both slits open.

(d) TStern-GerlachT apparatus attached to the slits in such a manner
that only electrons with s, = /i/2 can pass through A and only electrons
with s, = —h/2 can pass through B.

(e) Only electrons with s, =#£/2 can pass through A and only electrons
with s, = R/2 can pass through B.

What is the effect of making the beam intensity so low that only one
electron is passing through the apparatus at any time?
(Columbia)

Solution:

(a) The probability detected at the screen is that of the electrons passing
through slit A:
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a) —

&

b

b) ——— - —
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Fig. 1.1

I1 = IA(Z') .

(b) The probability detected at the screen is that of the electrons passing
through slit B:
Iz = IB (.’l:) .

(¢) I. = Ii2(z) = I + Iz + interference term # I + L.

(d) The eigenstate of the electrons passing through slit A is different
from that of the electrons passing through slit B, and so there is no inter-
ference term. The intensity on the screen is just the sum of the intensities
of the single-slit cases:
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Iy=15+1;.

(e) Similar to (c), but the intensity is half that in (c):
I, = I./2.

Because of the self-interference of the wave functions of the electrons, the
answers above remain valid even when the incident electron beam intensity
is so low that only one electron passes through at a time.

1007

A particle of mass m is subjected to a force F(r) = -VV(r) such
that the wave function ¢(p,t) satisfies the momentum-space Schrédinger
equation

(P?*/2m — aV3) p(p, t) = i0p(p, t)/0t,
where A = 1, a is some real constant and
V2 =8%/0p%+ 8°/0p2 + 8*/0p? .

Find the force F (r).
(Wisconsin)

Solution:

The coordinate and momentum representations of a wave function are
related by

Bir, t) = (%) [t 1) e a,

o(k, t) = (-2-17;) ’ / w(r, 0 e dr |

where k = £. Thus (with li = 1)

p2 (p(pv t) - —V21/)(l‘, t) 3
V?,(P(p, t) - —Tz'l/)(l‘, t),
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and the Schrodinger equation becomes, in coordinate space,

% 2 . Op(r, t)
(—Zm + ar ) pr,t)=1 5

Hence the potential is

V(r) =ar?,
and the force is
rd
F(r) = =VV(r) = —— — V(r) = -2ar.
r dr
1008

Consider the one-dimensional time-independent Schrodinger equation
for some arbitrary potential V(z). Prove that if a solution 1 (z) has the
property that ¢ (z)— 0 as £ — t-oc0, then the solution must be nondegen-
erate and therefore real, apart from a possible overall phase factor.

Hint: Show that the contrary assumption leads to a contradiction.

(Berkeley)
Solution:

Suppose that there exists another function ¢(z) which satisfies the
same Schrodinger equation with the same energy E as 1 and is such that
limzoo @(z) = 0. Then

V') = —2m(E - V)/h?,
¢"/¢=-2m (E —V)/HK?,
and hence
V'p—-¢"p=0,
or
' — ¢’ = constant.

The boundary conditions at X — oo then give

Vo—-¢v=0,
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or 1/;’ ¢/
v ¢

Integrating we have In% =In ¢ + constant, or ¥ = constant x ¢. There-
fore, ¥ and ¢ represent the same state according to a statistical interpre-
tation of wave function. That is, the solution is nondegenerate.

When V(x) is a real function, ¥* and ¢ satisfy the same equation with
the same energy and the same boundary condition lim, _,., %* = 0. Hence
¥* = cy, or Y = c*¢*, from which we have |c|? = 1, or ¢ = exp (i8), where
d is a real number. If we choose 6 = 0, then ¢ = 1 and 4 is a real function.

1009
Consider a one-dimensional bound particle.

(a) Show that
it /:ood)*(z, t) ¢Y(z,t)dz=0.

(¥ need not be a stationary state).

(b) Show that, if the particle is in a stationary state at a given time,
then it will always remain in a stationary state.

(c) If at t = 0 the wave function is constant in the region -a < x < a
and zero elsewhere, express the complete wave function at a subsequent
time in terms of the eigenstates of the system.

( Wisconsin)
Solution:

(a) Consider the Schrodinger equation and its complex conjugate
iR azp/at=—h—2 Viy +Vy, (1)
2m
—ih OY* |0t = R V2* + Vor . 2)
2m
Taking ¢* x (1) — ¥ x (2) we obtain

in 2 ' y) = —E—v WV — PVY*).
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For the one dimension case we have, integrating over all space,

d [~ . _ih [™ 0 . OV o
P /_OOT/J (z, t)¢(z, t)dx = o _wa—z(d) ‘8;—1/1 8x> dx

iR, /9100
= o [V 0Y/0z — y8y" [0a]% .

If 4 is a bound state, then ¥ (z — 200) = 0 and hence

d o0
- /m V" (z, ) (z, t)dz = 0.

(b) Supposing the particle is in a stationary state with energy E at
t = tg, we have

ﬁlﬂ(l‘, to) = Ey(z,t0),
where H does not depend on t explicitly. At any later time ¢, the Schro-
dinger equation

ihdy (z, t)/0t = Hip(x,t)
applies. As H does not depend on ¢ explicitly, the Schrodinger equation
has the formal solution

¥(z,t)=exp|—iH (t —to)/H ¥ (z, to).

Multiplying both sides by f{Afrom the left and noting the commutability
between H and exp [—i(t —to)H /A}, we find

FIT/)(% t) = exp [_:ﬁg%:'t_olzl H¢($, to)

= E exp -[:i(:i—?t—o)}d’(ma to)

=Ey(z, t).

Hence ¥{z, tyepresents a stationary state at any later time ¢.
(c) The wave function given for ¢ = 0 can be written as

C, |z|<a,

1/)(96» 0) = {

0, otherwise,
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where C is a constant. Normalization ffa Y*pdx = 1requires that
1
c = (&) A
Suppose the eigenfunction of the bound state is (z|n)and H|n)=

E.|n). Then
1=Y " [|n)n],
and
|9 (z,0)) =Y [ n){n| $(z, 0)),

@ 0) = 3 Imnl v 0) ex( —i 52},

Hence

6o 1) = 3 et () exp (-i 2 t) ,

with

an=<n|w(x,0)>=/_°° 0% (@)% (=, 0) d

1/ .,
:\/% . ¥y (z)dzx.

1010

¥(z, t) is a solution of the Schrédinger equation for a free particle of
mass m in one dimension, and

¥(z,0) = A exp (-z*/a?).
(@) At time t =0 find the probability amplitude in momentum space.

(b) Find ¥ (z,t).
(Berkeley)
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1 o )
1 *  Aa _a’p?
“emiz | vas TP

2
(D pt
X exp [Z (ﬁ T 2mh>] dp

Aa oo a’p?®  ip’t  ipx
= ohE /_oo exp [_ a7 " omn T —h'] dp

Aa z?

S &XP |7 | >
/a2 + 2iht (a2 + ZZ_ht)
m m

which agrees with the previous result.

1011

A particle of mass m is confined to a one-dimensional region 0 < X < a
as shown in Fig. 1.2. At t = 0 its normalized wave function is

Y(z,t=0)= \/W[l + cos (% )] sin (rz/a).

(a) What is the wave function at a later time t=1t¢?
(b) What is the average energy of the systematt = 0 and at t=t,?
(c) What is the probability that the particle is found in the left half of

the box (i.e., in the region 0 <z < a/2) att=tp?

(MIT)
Solution:
The time-independent Schrédinger equation for 0 < X < ais
2 d%y
om dz? + E¢=0.
It has solution ¢ (z) = A sin kz, where k is given by k? = 23£, satis-

fying ¥(0) = 0. The boundary condition $(a) = O then requires ka = nx.

Hence the normalized eigenfunctions are
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® ®
Vix})
, —_— X
0 a
Fig. 1.2

2
b =2 sin (222),
a a
and the energy eigenvalues are

n27r252
n —

ez n=1,2,3,....

Any wave function ¥ (z, t) can be expanded in ¥y:

P(z, t)= Y Aa(t)¥n (z,0)

with Bt
i
M@=&@hm(—;)-
AS
Y(x, 0) =4/ 8 (1 + cos 7rm) sin —
R Vi a a
= 8 in Tz + 3 sin gﬂ
“ V 5a s 5a a ’
we have

A0)= 2, 4,0) =

1
V5 V5’

An(0)=0 forn#1,2.
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(a) Thus

8 ’l:’n'zht() T
to) =1/ — _mte) o T
Y (z, to) £ exp ( P ) sin —
/2 i2m2hty\ | 27z
+4/— exp { — sin ——
5a ma? a
B e (it
“V 5a P\ 2ma?

—i272htg Tx | . 7x
+ exp | ——— ) cos — |sin —.
ma? a a

(b) The average energy of the system is
(B) =) (¥nlBltn)

= Z An (O)2En

(c) The probability of finding the particle in 0 <z <Zatt=tgis

a/2
Plocssg)= [ v t)rd
0

8 a/2
= — sin? (E) [l + cos? =
5a Jy a a

3n2ht.
+2 cosE cos( T °>] dx
a

2ma?

_1,16 cos 3n2ht,
T2 157 2ma? |’
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1012

A particle of mass m moves in a one-dimensional box of length [ with
the potential
V=0, <0,

v=0 0<z<l,
V=, z>1.
At a certain instant, say t = 0, the wave function of this particle is
known to have the form

P=+430/bz(l-z), O<z<l,
¥ =0, otherwise.

Write down an expression for ¥ (z, t > 0) as a series, and expressions
for the coefficients in the series.

( Wisconsin)
Solution:
The eigenfunctions and the corresponding energy eigenvalues are

wn(w)=\/§sin(ﬂl—xn), E,,=£% (%n)z, n=1,2,3 ,....

Thus
[9)=>" In)(n| ),

where
l
(n]y(t=0) :/0 \/g sin (?n) . \/?—?x(l—z)da:
3
= 4\/ﬁ 'Cﬁ\ﬂ:) (1 — COS n7r)
= 4V15[1— (-1)"](1/nm)?,
and hence
W) =3 (00t =0) vnle) exp (i 22 0)
n=1 h

M

30 1 2n+1 S A (2n4+1_)\2
84/ — + ————— i —ign (in) e
L Gy sin ( ] wm) e .

n=0

I
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1013

A rigid body with moment of inertia of I, rotates freely in the x-y
plane. Let ¢ be the angle between the x-axis and the rotator axis.

(a) Find the energy eigenvalues and the corresponding eigenfunctions.
(b) At time t = O the rotator is described by a wave packet (0) =

A sin? ¢. Find ¥(¢) for ¢ > 0.
( Wisconsin)

Solution:
(a) The Hamiltonian of a plane rotator is

H = —(h?)2I,) d®/d¢?
and so the Schrédinger equation is
~(K?/21,) d*p/d¢* = Ep.
Setting o? = 21, E/h?, we write the solution as
Y=Ae® +t Beiad

where A, B are arbitrary constants. For the wave function to be single-
valued, i.e. ¥ (¢) =¥ (¢ + 27), we require

a=m=0, x1,x2,....
The eigenvalues of energy are then
En =m?h?)2I,, m=0, 1,....

and the corresponding eigenfunctions are
1 .
m($) = —= €™, m=0, 1,...
Ym (9) o yeees
after normalization foz"w,"nzj;mdqs:l.
(b) Att=0
. 2 A
P(0) = A sin* ¢ = 0} (1 — cos 2¢)
= aj2 D+ ),

which correspon_ds to m = 0 and m = £2. The angular speed is given by
En=31L¢% 0or¢= '}'—ﬁ Hence we have for time ¢
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b(t) = A % [e2(6=Rt/13) | =i2(8+ht/12)]

1014

An electron is confined in the ground state in a one-dimensional box of
width 1019 m. Its energy is 38 eV. Calculate:

(@) The energy of the electron in its first excited state.
(b) The average force on the walls of the box when the electron is in
the ground state.

( Wisconsin)
Solution:
(@) An electron confined to a one-dimensional box can have energy levels
(Problem 1011)
E, = B2n?n?/2ma®, n=12 3, ....

Thus for the first excited state (n = 2), the energy is E; = 4E; =
152 eV.
(b) The average force on the walls of the box is

—(8H/da) .

Differentiating the equation of a stationary state (H — En)¥n =0, we
have

O
>¢n+(H E,) az/; =0,

6H OFE,
8a Oa

and hence

OYn OFE, aH
H-F, =y n -
’d)'ll. ( ) 8(1 d’n < 6(1 ) ’L/}
Integrating the left-hand side of the above, we have

/z/)(H E)aw" /‘/’"(H B, vt dx,

which is zero since H is real. Integrating the right-hand side of the equation
then gives

(0H /da) = DE, /da .
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Hence
F = -0FE,/da.

For the ground state, n =1 and

F=2E/a=7.6 x10%°eV/cm = 1.22 x 1072 dyne.

1015

Give the energy levels E,(,“) of the one-dimensional potential in
Fig. 1.3(a) as well as the energy levels E,(Ib) of the potential in Fig. 1.3(b)

( Wisconsin)
I —— ——
Vo Vn
| !
0 2a 0 a
la} (b}
Fig. 1.3

Solution:

(a) Use coordinate system as shown in Fig. 1.4. The Schrodinger equa-
tion is

-a a
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2 g2
“gm @r TV =B
where
V=0 for x >a (region I) ,
V=-W for —a<z<a (region II),
V=0 for x < —a (region III).

For bound states we require —V3 < E < 0. Let

2 _
e w iz

The Schrodinger equation becomes

2
3f+k2¢ =0 for region II,
and 2
dxlf k™ =0 for region I and I,

which have solutions

Y =A sinkx+B coskx for-a<z <a,
¥ =Ce ¥z + Dek'z forr<—aandz>a.

The requirement that ¥ » 0 as x — oo demands that
Y= Ce *% for x >a(region I),
¥ = De*=  for z < a (region I1).
The boundary conditions that i and ¢’ be continuous at x = +qa then
give
Asin ka + B cos ka = Ce™*'¢
-A sin ka + B cos ka = De~*'e
Ak cos ka — Bk sin ka = —Ck' e~¥'e
Ak cos ka + Bk sin ka = Dki e~*'a,

b

or
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2A sin ka = (C —D)e ¥,
2B cos ka = (C + D) e~

2Ak cos ka = —(C — D) ki e¥ea,
2Bk sin ka = (C + D)ki %o,

For solutions for which not all A, B, C, D vanish, we must have either
A =0,C =D giving ktan ka=k&',or B =0, C = -D giving k cot ka =
—Kk’. Thus two classes of solutions are possible, giving rise to bound states.
Let £ =ka, n= kia.

Class 1:

tan & =17,
&+ =12,

where 42 = k2a? + k'2q? = 2mbpa®

Since £ and n are restricted to positive values, the energy levels are
found from the intersections in the first quadrant of the circle of radius
7 with the curve of £ tan £ plotted against &, as shown in Fig. 1.5. The
number of discrete levels depends on V4 and a, which determine 7. For
small 7 only one solution is possible.

"

Fig. 1.5
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Class 2:
{ §cot & =—n,

52 + 7]2 — ,72 .
A similar construction is shown in Fig. 1.6. Here the smallest value of
Vpa? gives no solution while the larger two give one solution each.

7

Fig. 1.6

Note that £ =0,n = 0 is a solution of £ tan £ = and so no matter how
small « is, there is always a class 1 solution, whereas v has to be above a
minimum for a class 2 solution to exist, given by & cot £ = 0 which has a
minimum solution £=7,i.e.y=For Voa? = il

(b) Use coordinates as shown in Fig. 1.7.

v

Fig. 1.7
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The Schrédinger equation has solutions

¥ =Asin kx + B cos kx for 0 < x < a,
P =Ce k= for x > a,
Y=0 forx <0,

satisfying the requirement ¢ — 0 as X — co. The boundary conditions at
x =0 and x = a then give B = 0,
A sin ka = Ce”k'“,
Ak cos ka = ~Ck'e~¥e,

and finally

{ cot € = -1,

£ +n? =12,
as for the class 2 solutions above.

1016

Consider the one-dimensional problem of a particle of mass m in a
potential (Fig. 1.8)
V=00 <0,

v =0, 0<z<a,
V=V, z>a.

(a) Show that the bound state energies (E < Vp) are given by the

equation
v2mEa E
tan ———— = — .
h Vv -E

(b) Without solving any further, sketch the ground state wave function.
(Buff&)

Solution:
(a) The Schrodinger equations for the two regions are

¥ + 2mEvy/h? = 0, 0<z<a,
P’ —2m(Vo— E)Y/R%2 =0, x> a,
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with respective boundary conditions % =0 for x = 0 and ¥ — 0 for
X — +o00. The solutions for E <V, are then

¥ =sin (vV2mEz/h), 0<z<a;
¥ = Ae—\/2m(Vg—E)z/h, z>a,

where A is a constant. The requirement that ¥ and %’f are continuous at
x = agives

tan (V2mEa/h) = —[E/(Vs — E)]*/2.
(b) The ground-state wave function is as shown in Fig. 1.8.

Vix)
A

n

Pix)

Fig. 1.8

1017
The dynamics of a particle moving one-dimensionally in a potential V(x)
is governed by the Hamiltonian Hy = p?/2m + V(X), where p=—ik d/dz
is the momentum operator. Let E,(LO), n=1,2,3,..., be the eigenvalues

of Hg. Now consider a new Hamiltonian H = Hy + Ap/m, where Xis a
given parameter. Given A, m and ,(10), find the eigenvalues of H.
(Princeton)

Solution:
The new Hamiltonian is

H = Ho+ Mp/m = p*/2m + Ap/m + V(z)
= (p + A?/2m + V(z) - \?/2m,
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or

where H' = H + ;‘2 p=p+A
The eigenfunctions and elgenvalues of H' are respectively E(O) and 1/)(0)
As the wave number is k' = 5@ + ), the new eigenfunctions are
1/) = (@ g=idz/h

and the corresponding eigenvalues are

E,= E® _x?/2m.

1018

Consider the one-dimensional wave function

P(z) = A(z/zo)" €™/
where A, n and zq are constants.
(a) Using Schrédinger’s equation, find the potential V() and energy E
for which this wave function is an eigenfunction. (Assume that as x — oo,
V(z) — 0).
(b) What connection do you see between this potential and the effective
radial potential for a hydrogenic state of orbital angular momentum [?

( Wisconsin)
Solution:

@ Differentiating the given wave function,

n-I n
fvoea () en (2 ()
To \Zyo Zo Zg

d?
) =4 "(" (1) ¢~/
z

x
n-1 n
A ot gl T e
25 (o) 3 (o)
nn—1) n 1
= ) S L.
[ x? zom+m§] ¥(@),
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and substituting it in the time-independent Schrédinger equation
ﬁ2
(-3 /aa" + V0 ¥(a) = Ev (o),

we have

2 1) 2 1
E_v=_l [fo-D 20 1
2m z2 ToT I

As V (x) = 0 when x — oo, we have E = —A2?/2mz2 and hence

B [nn-1)
2m [ z2

(b) The effective radial potential for a hydrogen atom is e?/r—1(l+ 1)
K2 /2ms2. Comparing this with V(x) we see that the 1/72 term is formally
identical with the 1/z% term with the angular momentum { taking the place
of n. The % term of V(x) depends on n =1, while the % (Coulomb) term in
the effective potential for the hydrogen atom is independent of the orbital
angular momentum 1. This is the difference between the two potentials.

V(z) = —2n/z¢z

1019

Consider the following one-dimensional potential wells:

Vix)

Fig. 1.9

Vix)
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(a) Can each well support a bound state for an arbitrarily small depth
Vi (i=1, 2)? Explain qualitatively.

(b) For Vi = Wk, what is the relationship between the energies of the
bound states of the two wells?

(c) For continuum states of a given energy, how many independent so-
lutions can each well have?

(d) Explain qualitatively how it is possible to have bound states for
which the particle is more likely to be outside the well than inside.

( Wisconsin)

Solution:

(a) For bound states, we must have -V < E <0. Let

2m(E+V)
T

2mE
12
) k :T )

k2
where Vv = V1, V; for the two cases, and set £ = ka, n = kia, v = 12;1"2&
The discussion in Problem 1015 shows that for the potential in Fig. 1.9,
the solutions are given by

Ecot £ =—n, E+n’=4%

The energy levels are given by the intersection of the curve £ cot £ = —n
with a circle of radius -y with center at the origin (Fig. 1.6) in the first
guadrant. As the figure shows, ¥ must be greater than the value of £ for
which £ cot £ =0, i.e. £ > 7. Hence for a bound state to exist, we require
SN > 5 or Vi 2 ot

For the potential shown in Fig. 1.10, two classes of solutions are possible.
One class are the same as those for the case of Fig. 1.6 and are not possible

for arbitrarily small V. The other class of solutions are given by

Etan =1,
€2+772=’72-

As the curve of £ tan ¢ = i starts from the origin, ¥ may be arbitrarily
small and yet an intersection with the curve exists. However small Vais,
there is always a bound state.

(b) For V4 = V3, the bound states of the potential of Fig. 1.9 are also
bound states of the potential of Fig. 1.10.
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(c) For continuum states of a given energy, there is only one independent
solution for well 1, which is a stationary-wave solution with ¢y =0 at x =0;
there are two independent solutions corresponding to traveling waves in +z
and —z directions for well 2.

(d) Let pa, p2 denote respectively the probabilities that the particle is
inside and outside the well. Consider, for example, the odd-parity solution

Y =A sinkx for 0<z<a,
Y=_Ce¥*  for a <z,

where k = YZRUAtE) (=g 9y gr= ZIRE for which

p1 Jfy A%sin® kx dx _ A? Ka sin 2ka
p2 = [ ClWadr ~ C? e~ 2ka )’

The continuity of ¥ at x = a gives

A e—k'a

C ~ sinka’

Setting, as before, n = kia, £ = ka, we have

n_ N (l_sin2§>_ 27 (l_sinZE)
p2  sin® ¢ 26 ) 1—cos2¢t 26 )

The odd-parity solutions are given by

{ﬁcot£=—n,
E+n* =72,

where 2 = %"ﬁ (i=1,2).
An analytic solution is possible if y— (n + %)11', or

) (n+ %)2,”252 7

; =01,2,...)

for which the solution is £ —(n + 2)m,n— 0, and

ﬂ—m.

D2

The particle is then more likely outside the well than inside.
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1020

Obtain the binding energy of a particle of mass m in one dimension due
to the following short-range potential:

V()= -V é(x).
( Wisconsin)
Solution:
The Schrodinger equation

Po/da? + T E - VX $=0, (E<0),

on setting
k =+2m|E|/kh, U =2mV,/h?,
can be written as

" (z) = K*(z) + U &(z) $(z) = O.

Integrating both sides of the above equation over x from —e¢ to ¢, where
¢ is an arbitrarily small positive number, we get

W) - v~k [ % dx + Uo(0) = 0,
which becomes, by letting e —» 0,
¥'(0%) - ¢'(07) + Uoy(0) = 0. 1)

At x # 0 (6(z) = 0) the Schrodinger equation has solutions

P(z) ~ exp (-kx) for x > 0,
Y(z)~exp (kx)  for x <O0.

It follows from Eqg. (1) that
¥ (0+) —¢' (0-) = ~2k¢ (0) .

A comparison of the two results gives k = Up/2. Hence the binding
energy is -E = h2k2/2m = mVZ/2h2.
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1021

Consider a particle of mass m in the one-dimensional 6 function
potential
V(z) = Vpé(x).

Show that if V} is negative there exists a bound state, and that the
binding energy is mVg/2h%.
(Columbia)

Solution:
In the Schrodinger equation
d?y/dz? + 2m[E — V(X)] ¥/k* =0,
we set E < 0 for a bound state as well as
k*=2m|E| /K%, Up=2mV,/h?,
and obtain
d*yp/dx® — k*p — Up 6(zx)y = 0.

Integrating both sides over x from —¢ to +¢, where € is an arbitrarily
small positive number, we obtain

Y (€) — ¢ (—€) — k? _E ¥ dx — Upp(0) = 0.

With ¢ = 0%, this becomes ¢'(0%)—¢'(07) = Up ¥(0). For x# 0 the
Schrodinger equation has the formal solution ¥(z)~ exp (-k | z|) with k
positive, which gives

—ke k>0,

kek=, z<0,

) 2] _kiz) _
Vi(z)~—k——e ¥l '—{

and hence
Y'(0F) — 9'(07) = —2k4p(0) = Uoy(0).

Thus k = -Up/2, which regliires Vb to be negative. The energy of the
bound state is then E = -2k = —mVZ /2% and the binding energy is
Ey = 0 — E = mV#/2h2. The wave function of the bound state is

w(@) =A exp (TR 1o1) = IV exp (b 2 /),
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where the arbitrary constant A has been obtained by the normalization
0 2 00 12 -
oo idx + Jo¢?dx=1.

1022

A particle of mass m moves non-relativistically in one dimension in a
potential given by V(x) = —ad(z), where §(z) is the usual Dirac delta func-
tion. The particle is bound. Find the value of zo such that the probability
of finding the particle with | z| < zo is exactly equal to 1/2.

( Columbia)

Solution:
For bound states, E < 0. The Schrédinger equation
[ K &2

om dZ ~ @)

Y(z) = E(z)

has for x # 0 the solutions finite at x = oo as follows,

Aekr  for x <0,
Y(z) =

Aek forx>0,

where k=3/+_ﬁ Bndan arbitrary constant. Applying lim._o+
ffe dx to the Schrodinger equation gives

2ma

¥ (0F) =¥ (07) = — =22 9(0) 1)

since . .
T 4(2)b(z)dz = $(0), lim l ¥ (z)dz =0
| VI e-0 e

for finite ¥ (0). Substitution of % (x) in (1) gives

Hence
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On account of symmetry, the probabilities are

P(’If < x0)=21A‘2 \]zo e—-2kz dr __Ié_lf(l _ e—2k1:o)

k
2 17 —oke 4 _ |AP
P(~oo<z<o0)=2|A] J e dg = L1
As it is given
1_6—2kzo:l
we have ) 5
=—In2=—
To 2% n 2 2maln2
1023

A particle of mass m moving in one dimension is confined to the region
0 <z <L by an infinite square well potential. In addition, the particle
experiences a delta function potential of strength A located at the center of

the well (Fig. 1.11). The Schrédinger equation which describes this system
is, within the well,

fzmai;h;z“&( —L/2)y(z) = Ey(z), o<x< L

Vix)

0 L/2 L

Fig. 1.11

Find a transcendental equation for the energy eigenvalues E in terms of
the mass m, the potential strength A, and the size L of the system.

(Columbia)
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Solution:

Applying lim._0 fLL /22_+: dx to both sides of the Schrbdinger equation,

we get
Y (L2 + €)= (LI2 —€) = (2mA/R3) ¥ (LI2) , (1)

since
L

3te L L Lie
/12‘_5 1/)(1:)5(1'—5)dx=¢ (-2_)’?—%/12‘_5 Y(z)dz =0.

Subject to the boundary conditions %(0) = ¥(L) = 0, the Schré-
dinger equation has solutions for x #%:

A; sin (kz), 0<z<L/2-¢
T S
Azsink(z—L)], L2 + e<x<L,
where k = ¥2mE and ¢ is an arbitrarily small positive number. The

continuity of the wave function at L/2 requires A; sin (kL/2)=—A,
sin(kL/2),or A; = —A,. Substituting the wave function in (1), we get

Azk cos (kL/2)~ A; k cos (kL/2) = (2mAA;/h?) sin (kL/2),

kL — _ kh? v2mEL __ _ [2E & i _
whence tan % = — 2, or tan o = ,/ = x» Which is the transcen

dental equation for the energy eigenvalue E.

1024

An infinitely deep one-dimensional square well potential confines a par-
ticle to the region 0 <x < L. Sketch the wave function for its lowest
energy eigenstate. If a repulsive delta function potential, Hi = Aé(z — L/2)
(A>0), is added at the center of the well, sketch the new wave function
and state whether the energy increases or decreases. If it was originally Ey,
what does it became when A — oo?

( Wisconsin)
Solution:

For the square well potential the eigenfunction corresponding to the
lowest energy state and its energy value are respectively

¢o(x) = v/2/L sin (zz/L),
m2h?

Eo = 2mL?’
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A sketch of this wave function is shown in Fig. 1.12
With the addition of the delta potential H’ = A§(z — L/2), the Schré-
dinger equation becomes

"+ k2 —ad(z— LI2)] ¢ =0,

where k? = 2mE/h?, a = 2mA/h%. The boundary conditions are

Qo(x)
4
i b-----2
0 L2 L -
Fig. 1.12
P(0) = (L) =0, (1)

v [(%ﬂ —y [(!;-)‘} = o (L/2), 0
JoTE] -

Note that (2) arises from taking lim._,¢ | i":hdx over both sides of the
Schradinger equation and (3) arises from the continuity of ¥(z) at x = %

The solutions for x # % satisfying (1) are

Ay sin (kx), 0<z<L L2,
={AﬁmM@—Ln L2 <x< L.

Let k = ko for the ground state. Condition (3) requires that A; = —
Ay = A, say, and the wave function for the ground state becomes

Asin (ko z), 0<z<L/2,
’(/}0 (IE) = i
-A sin [ko (x —L)], L2 <x< L.
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Condition (2) then shows that ko is the smallest root of the transcen-

dental equation
mA

W .

As cot (E£) is negative, m/2<ko L/2 <m, or n/L<ko<2r/L. The
new ground-state wave function is shown Fig. 1.13. The corresponding
energy is E = h2kZ/2m > E, = %, since ko > %. Thus the energy of
the new ground state increases.

Furthermore, if A— +00,ko—2n/L and the new ground-state energy
E — 4E0.

cot (kL/2)=—

qu(x)
+ > X
0 L/2 L
Fig. 1.13
1025

A nonrelativistic particle of mass m undergoes one-dimensional motion
in the potential
V(z) = —glé(x —a)+ d(z + a)]

where g > 0 is a constant and 4 (z) is the Dirac delta function. Find the
ground-state energy eigenfunction and obtain an equation which relates the
corresponding energy eigenvalue to the constant g.

(Berkeley)

Solution:

Since V(x) = V (—x), the energy eigenfunctions have definite parity.
The ground state has even parity, ¥ (—z) = ¥ (z). It is a bound state and
its energy is negative, E <O0.

For x > 0, the Schrédinger equation is

[—(K?/2m) d*/dz® — g6 (z — a)] ¥ () = Ey(z),
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whose solutions for x # a are ¥ ~ exp (fkx), where k = v2mE/h.

With the condition that the wave function remains finite as x — oo and
has even parity, we obtain

Ae~k=, X > a,
o

B cosh (kx), 0<x<a
The continuity of % at x = a requires that A = Be*® cosh (ka). Thus

Be¥a cosh (ka) e7*, x > a,
P(z) =

B cosh(kx), 0<z<a.

Normalization f;'v?dx + [¢?dx =1 gives

B e 1 4 2kag -1/
T\ 2k + 2k

At x = a, there is a discontinuity of the first differential of the wave
function (cf Problem 1024):
¥ (at) — ¢’ (a-) = —(2mg/R?) $(a).
Substitution of ¥ gives

k [1 + tanh(ka)] = 2mg/hZ,
which is to be satisfied by k. By symmetry the wave function for the entire
space is

Beke cosh (ka) e~*1=l, |x|> a,
Y(z) =

B cosh (kz), lz|<a.

1026
An approximate model for the problem of an atom near a wall is to con-
sider a particle moving under the influence of the one-dimensional potential
given by
V(x)
V(x)

-Vo 6(x), x> —d,
0, X <—d,
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where §(z) is the so-called 1delta functionT-

(a) Find the modification of the bound-state energy caused by the wall
when it is far away. Explain also how far is ifar awayT.

(b) What is the exact condition on Vg and d for the existence of at least
one bound state?

(Buffalo)

Vix)

Fig. 1.14

Solution:
(a) The potential is as shown in Fig. 1.14. In the Schrodinger equation

¥" + (2m/R?) (E + Vob (z)]9 = 0, x > —d,

let k = v/—2mE/Hk, where E < 0. This has the formal solutions

ae*® + be ** for -d <x< 0,
ORE Sl

for x > 0,

as 9(z) is finite for x — o0o. The continuity of the wave function and the
discontinuity of its derivative at x = 0 (Eq. (1) of Problem 1020), as well
as the requirement ¥(z = -d) = 0, give
a+b=1,
-k — (a — bk = —2mVy/hK?,

ae~ %4 + pekd = 0
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Solving these we find

B e2k:d b 1
C= "1 _"ekd’ "7 {_g2kad’
mVO (1 —2kd) .

The wall is ifar awayT from the particle if kd > 1, for which k =
mVp/k2. A better approximation is k = (mVp/h?)[1 — exp (—2mV, d/h?)],
which gives the bound-state energy as

P L O AR 2mVpd\]?
T 2m T 2m \ AZ TP T TRz

mVg 2mVpd
58 [ (22

_mVg  mV{ 2mVpd
e ()

The second term in the last expression is the modification of energy
caused by the wall. Thus for the modification of energy to be small we
require d >>1/k = h?/mV,. This is the meaning of being “far awayT-

-
—

YeF———=-—-f~—= ==~

Fig. 1.15

(b) Figure 1.15 shows line 1 representing y = k and curve 2 representing
Y = Ye [1—exp (—2kd)},where y. = mVy/h?. The condition for the equation

k = mVp [1 — exp (—2kd)]/R?
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to have a solution is that the slope of curve 2 at the origin is greater than

that of line 1: P
Y - 2
_dk 2mVpd/h* > 1.

Hence if Vod > £~ there is one bound state.

2m?

1027

The wave function of the ground state of a harmonic oscillator of force
constant k and mass m is

Yo () = (a/m)1/4 e /2 o= mwo/h, wi=k/m.

Obtain an expression for the probability of finding the particle outside the
classical region.

(Wisconsin)
Solution:

The particle is said to be outside the classical region if E < V(x).
For the ground state, E = hwp/2 and the nonclassical region is %fwo <

3 mwia?, ie.,
1
z>4/—,
a
1
T < —4f—.
V a

The probability of finding the particle in this nonclassical region is there-
fore

P= ¥ (z) dz

|=1>y/%

—v/1/a
e [ Eete
l/a ™
= / \/— ~oz? g
l/a

=2
“

=HQ

et dt ~ 16%.

§|



42 Problems and Solutions on Electromagnetism

1028

Consider a linear harmonic oscillator and let, ¥ and 1 be its real, nor-
malized ground and first excited state energy eigenfunctions respectively.
Let Ay + By with A and B real numbers be the wave function of the
oscillator at some instant of time. Show that the average value of x is in
general different from zero. What values of A and B maximize (x) and
what values minimize it?

( Wisconsin)
Solution:
The orthonormal condition

/ (Ao + Bo1)? dx = 1

gives A%+ B?=1. Generally A and B are not zero, so the average value
of z,

(z) = /z(Awo + By1)2dz = 2AB (3o | z | 91)
is not equal to zero. Rewriting the above as
(z) = [1 = (A% + B? + 24B)] (40 |z | ¥1)
=1~ (A= B)’] (o |z| ¢1)

and considering f = AB = A (1 — A2) %, which has extremums at A = + 7‘-2-,

we see that if A = B =1/v/2, (x) is maximized; if A = -B =1/v/2, (x) is
minimized.

1029

Show that the minimum energy of a simple harmonic oscillator is fuw /2
if AzAp = k/2, where (Ap)? = ((p - (p))?).
(Wisconsin)
Solution:
For a harmonic oscillator, (x) = {p) = 0, and so

(Az)? = (%), (Ap)* = (p*).
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Then the Hamiltonian of a harmonic oscillator, H = p?/2m + mw?z? /2,
gives the average energy as

(H) = (p?)/2m + mw?(z?)/2 = (Ap)?/2m + mw?(Ax)?/2.
As for a, b real positive we have (v/a —vb)2>0, or a + b > 2+/ab,

(H)min = (Ap)(Az)w = hw/2.

1030

An electron is confined in the ground state of a one-dimensional har-

monic oscillator such that v/{(z — (z))2) = 10~!° m. Find the energy (in
eV) required to excite it to its first excited state.

[Hint: The virial theorem can help.]
( Wisconsin)
Solution:

The virial theorem for a one-dimensional harmonic oscillator states that
(TY= (V). Thus Es = (H) = (T) + (V) = 2(V) = mew?(z?), or, for the
ground state,

5 = mew? (z?),
giving
" = h
" 2m, (z2)

As (X) = 0 for a harmonic oscillator, we have

Viz —(2))?) = V{z?) — (2)? = V/(22) =107 m.

The energy required to excite the electron to its first excited state is
therefore

h2 h2c?
2me (22)  2mec? (22
_ (6.58 x 10716)2 x (3 x 108)2
B 2 x0.51 x 10-20 B

AE = fw =

3.8eV,
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1031

The wave function at time ¢ = 0 for a particle in a harmonic oscillator
potential V =1 k22, is of the form

sin 3
22
where B and A are real constants, a? = vmk/hk, and the Hermite polyno-
mials are normalized so that

H; (az)|,

¥ (z,0)= Ae~(@2)*/2 [cos B Hy (ox) +

oo
/ g’e’ [H: (az)]? dx = —\/-ZT_—Z"n! :
—0 o

(@) Write an expression for (=, t).

(b) What are the possible results of a measurement of the energy of the
particle in this state, and what are the relative probabilities of getting these
values?

(c) What is (x) at t = O? How does (x) change with time?

( Wisconsin)

Solution:
(a) The Schrédinger equation for the system is

W, (z, t) = Hip(z, t),

where 9 (X, t) takes the given value ¥ (x, 0) at ¢t = 0. As H does not depend
on t explicitly,
Un(z, t) = Pn(z) e ERE/R
where ¥, (z) is the energy eigenfunction satisfying
Hip, (z) = Bt ().

Expanding ¥ (z, 0) in terms of v, (x):
d)(xw 0) = Ean Un (.’L‘) )

where

an=/¢;(z)w(z, 0) dz.
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Thus |
B (2 0= antn(a,t) = anthn(z)e 0.

For a harmonic oscillator,
Yn (z) = Npe™@"**/2 H, (az),
so that
a, = / Nne“"zzz/2 H, (az)- Ae—’z%/2

X [COS B Ho(ax) + %J%/_g H, (ax)

As the functions exp (— 3 z2) H, K)are orthogonal, all a, = O except

dx.

ap = ANy \/% cos S,

az = ANz \/-07:—2 2v2 sin 3.

Hence

Yz, t)=A4 \/é% [No cos B (z) e—iEot/h
+2v2 Ny sin B4 (z) e *F2t/R].
=A (alz)‘ [cos B (z) e F + sin B () e‘igg“t] :

as Ny, are given by [[¢,(2)]? dx = 1 to be Np= (%)%,N2=#§(%;)%.
(b) The observable energy values for this state are Ey = hw/2 and
E2 = 5 hw/2, and the relative probability of getting these values is

Py /Py = cos? 3/ sin? 8 = cot? 3.

(c) As ¥ (=, 0) is a linear combination of only 1 (z) and 2 (z) which
have even parity,

¥(-z,0) = ¥(z, 0) -
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Hence for ¢t =0,

:/1/1(33, 0) zy(z,0) dx = 0

It follows that the average value of x does not change with time.

1032

(a) For a particle of mass m in a one-dimensional harmonic oscillator
potential V = mw?z? /2, write down the most general solution to the time-
dependent Schrédinger equation, ¥ (z, t), in terms of harmonic oscillator
eigenstates ¢n (z).

(b) Using (a) show that the expectation value of z, (x), as a function of
time can be written as A cos wt + B sin wt, where A and B are constants.

(c) Using (a) show explicitly that the time average of the potential
energy satisfies (V) = (E) for a general ¢ (z, t).

Note the equality

mw n+1 n
\/—h— Ty = 5 ¢n+l+\/;¢n—l-

( Wisconsin)
Solution:
(a) From the time-dependent Schrédinger equation

zh—— V(z, t) = Hy(z, t),
as H does not depend on time explicitly, we get
Yz, t) = ey (2, 0).

We can expand % (z, 0) in terms of ¢, {x):
-T 0) Z AnPn (:D)

where

an=(¢n (.’B) l 4 (.’L‘, 0)) )
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and ¢, (z) are the eigenfunctions of

Hou(@) = Bubn(@), with By { n+ .

Hence

Y(z,t)= Z andy, (z) e Ent/R,
(b) Using the given equality we have
@= [ v @0

= Z Gy e'i(E"’_E")t/h/ O (x) 2dn (2} dx

n,n’
_ilE_,— n' +1
=Z I G ( 5 On,nr41
n,n’

n’ h

+ Y On,n/—1 pro
=Z an | @n-1 4/ D et t ang ‘/—TH— L gt e
- 2 2 mw

= A cos wt + B sin wt,

where
[k . n n+1
A: m ; aﬂ (an_l \/;+an+1 _2_) s
[ h - n fn+1
B = - ; iay, (an_l \/;—an.,.l ——2—> ,

and we have used Ep 41— Ep = hw.

(c) The time average of the potential energy can be considered as
the time average of the ensemble average of the operator Von Y(z,t). It
is sufficient to take time average over one period T =2r/w. Let (A) and A



48 Problems and Solutions on Electromagnetism

denote the time average and ensemble average of an operator A respectively.
As

1

Vigy =g hw - 22 a?|y)

=—h‘w1/%x2an1/%m¢n(m) i Rt

1
2
1 mw  ~— n+1

\/7|n _ 1)) e_zw(’n+1/2)t

=%ﬁwzan[ (i_"'l)(_"”l In+2)

ogur 2
+ (m%) |n>+\/"—("2_—111n—2>} e

we have

=@IVIY)

=—hw2a an <n+ )+ MZan+2

/(n+1)n+2) 12wt l i
/(n+1 (n+2) —12wt

=—hw2a an (n+2>
1 .
+-2-Tw7;)|an+2an| vV(n+1)(n+2) cos(2wt + 8,),

where 6, is the phase of a}, ., a,,. Averaging V over a period, as the second
term becomes zero, we get

_1 /Ti‘/dt—lmi* +1
=T J, =3 OnOn |+ 35 ).

n=0

l\?
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On the other hand,

E=(¢|H]¢)=fuuia;an (m%) ,

n=0

and (E) = E. Therefore (V) = (E)/2.

1033

Consider a particle of mass m in the onedimensional potential

V(z) = mw?x?/2, |z|>b;
V(z) =V, |z} <b,

where Vo> k% /mb? > hw, i.e. a harmonic oscillator potential with a high,
thin, nearly impenetrable barrier at z = 0 (see Fig 1.16).

Vix)

()
2b

Fig. 1.16

(a) What is the low-lying energy spectrum under the approximation
that the barrier is completely impenetrable?
(b) Describe qualitatively the effect on the spectrum of the finite pene-
trability of the barrier.
(MIT)

Solution:

(a) For the low-lying energy spectrum, as the barrier is completely im-
penetrable, the potential is equivalent to two separate halves of a harmonic
oscillator potential and the low-lying eigenfunctions must satisfy the con-
dition ¥ (x) = 0 at x = 0. The low-lying energy spectrum thus corresponds
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to that of a normal harmonic oscillator with odd quantum numbers 2n + 1,
for which v, (z)=0,atx=0and E, = (2n+3/2)kw,n =0, 1, 2, ... with
a degeneracy of 2. Thus only the odd-parity wave functions are allowed for
the low-lying levels.

(b) There will be a weak penetration of the barrier. Obviously the prob-
ability for the particle to be in || < b, where the barrier exists, becomes less
than that for the case of no potential barrier, while the probability outside
the barrier becomes relatively larger. A small portion of the even-parity
solutions is mixed into the particle states, while near the origin the prob-
ability distribution of even-parity states is greater than that of odd-parity
states. Correspondingly, a small portion of the energy E!, = (2n+1/2)hw is
mixed into the energy for the case (a). Since (y| barrier potential |3} > 0,
the energy levels will shift upwards. The level shifts for the even-parity
states are greater than for odd-parity states. Furthermore, the energy shift
is smaller for greater energies for states of the same parity.

1034

The Hamiltonian for a harmonic oscillator can be written in dimension-

less units (m =k =w = 1) as
H=a%*a+1/2,
where
a=(&+ip)/v2, a*=(@-1ip)/V2.
One unnormalized energy eigenfunction is
Ve = (223 - 3z) exp (—2%/2).

Find two other (unnormalized) eigenfunctions which are closest in en-

ergy to ¥a-
(MIT)

Solution:

In the Fock representation of harmonic oscillation, & and a* are the
annihilation and creation operators such that

&wn = \/7-1111"—1, &+1/)n = vVn+ 1¢n+1’ d&+’¢n = (n +1) ¢n )

En=(n+-;-)fuu, n=0,1,2 ,....
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AS

1 d d 22
aat, = = — - — 3 _ -
aa" P = 5 (x+dx> (w dx) (22° — 3z) ™ 2

-1 x+-d— 424 —122%+3) e~ F
2 dx ( )

= 4(22° — 3z) e F = (3+1)Ya,

we have n = 3. Hence the eigenfunctions closest in energy to ¥, have
n = 2, 4, the unnormalized wave functions being

R SN d —2?/2
Py = \/5‘““‘—\/6 (X+dx) (2x3 —3x) e
~(2x2 — 1) e~ /2,
Ll 1 d —2?/2
b=gat = (oo 5) @@ -3

~ (4z* — 1222 + 3) e~ 12

where the unimportant constants have been omitted.

1035

At time t = 0 a particle in the potential V(x) = mw?z?/2 is described
by the wave function

$(2,0) = A3 /VD" ¢u(a),

where ¥, (X) are eigenstates of the energy with eigenvalues E, = (n +
1/2) hw. You are given that (¥n, ¥n’) = Opn’-

(a) Find the normalization constant A.
(b) Write an expression for ¢ (z,t) for t > 0.
(c) Show that |4 (z,t)|? is a periodic function of time and indicate the
longest period .
(d) Find the expectation value of the energy at t =0.
(Berkeley)
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Solution:
(&) The normalization condition

®(2,0),%(z,0)) = 1 AI> D (1/2)™+72 (4, 4,0)

=1APY (%)m=2|A|2=1

m

gives A =1/+/2, taking A as positive real.
(b) The time-dependent wave function is

¥ (x,t) = e F/ (g, 0)
1 n+1
=3 (—\5) ettty ().

(c) The probability density is

b 0P =Y (5

mn

i pa el
) e G @).
Note that the time factor exp [—iw(n —m)t] is a function with period
tn%frﬁ;’ the maximum period being 27 /w .
(d) The expectation value of energy is

Noting
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or, by differentiation,

oo
> = o
L gntl (z-1)%°
we have
> n
S =
1 )
n=0 2n*
and hence H = 3hw/2.
1036

Consider the one-dimensional motion of a particle of mass p in the
potential
V(z) = Vo(z/a)™",

where n is a positive integer and Vj > 0. Discuss qualitatively the distri-
bution of energy eigenvalues and the parities, if any, of the corresponding
eigenfunctions. Use the uncertainty principle to get an order-of-magnitude
estimate for the lowest energy eigenvalue. Specialize this estimate to the
cases n = 1 and n — oo. State what V(z) becomes in these cases and
compare the estimates with your previous experience.

(Buffalo)
Solution:

Since the potential V' (x) — oo as  — oo, there is an infinite number of
bound states in the potential and the energy eigenvalues are discrete. Also,
the mth excited state should have m nodes in the region of £ > V(z) given
by kAz ~ (m + 1)m. Az increases slowly as m increases. From the virial
theorem 2T o 2nV, we have

k? o (Az)?" o« [(m + 1)7/k)*",

and so
E x k% o (m +1)2/(n+1)

Generally, as n increases, the difference between adjacent energy levels
increases too. Since V(—z) = V(z), the eigenstates have definite parities.
The ground state and the second, fourth, ... excited states have even parity
while the other states have odd parity.
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The energy of the particle can be estimated using the uncertainity prin-
ciple
Px ~ h/2b,

where

b= /(Az)2.
Thus
1 2 2n
E ~— (R/2b)* + Vp (b/a)*".
2p
For the lowest energy let dE/db =0 and obtain
b= (hzazn/Spn%)1/2(n+1) .
Hence the lowest energy is
E ~ [(n + 1)Vo/a®]| (R%a®" /8unV, )™/ ("+1).
For n =1, V(z) is the potential of a harmonic oscillator,
V(z) = Vox?/a? = pw?z?/2.

In this case E equals fw/2, consistent with the result of a precise cal-
culation. For n =cm, V(z) is an infinite square-well potential, and

E = h?/8ua?,

to be compared with the accurate result h?n?/2ua?.

1037
Consider a particle in one dimension with Hamiltonian
H=p’/2m + V(z),

where V(z)<O0 for all z,V(+o0) =0, and V is not everywhere zero.
Show that there is at least one bound state. (One method is to use the
Rayleigh-Ritz variational principle with a trial wave function

Y(z) = (b/m)"/* exp (~bz?/2).

However, you may use any method you wish.)
(Columbia)



Solution:

Method 1:
Assume a potential V(z) = f (z) as shown in Fig 1.17. We take a
square-well potential Vi(z) in the potential V'(z) such that

Vi(z) = -V, |zl<a,
V' (z) =0, || > a,
Vi (z)>f(z) forallz.

Vix)

Fig. 1.17

We know there is at least a bound state ¢(z) in the well potential Vi(z)
for which

(@) |H' | p(z)) = (¢ | p*/2m + V' (2) | @)
=FEy <0.
We then have
(p|H|p) =(p|p’/2m + f (z) | ¥)

<(p|p*/2m + V' (z) | ¥)
=FE;<0.

Let - - - -1 (z), ¥n(x),--- denote the eigenfunctions of H, and expand

o(x) = Y, Crta (2).
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As

[o o]

(‘lel(p)zz'Cn‘2(¢n|len><0»

n

there is at least an eigenfunction v; {z) satisfying the inequality

(i | H|¢:) <0

Hence there exists at least one bound state in V(x).
Method 2: Let the wave function be

¥ (x) = (b/m)/* exp (—bz?/2),

where b is an undetermined parameter. We have

(H) = \/b/_7r /°° e~bs"/2 (— B ) e_bz2/2dx+(V)

2m dz?

= h%b/4m + (V) ,

where o
(V) = (b/7r)1/2 / V(x) exp(—bz2) dx,

and thus

2 1/2 ;40

% = h— + 2ib (V) - (%) /_ 2V (z) e~ dx
2
- +ib (V) - (=*v) =0,
giving
14
b= V) T
2 (z"’V) - ZE]

Substitution in the expression for (H) yields

[ 2
E=(H) 2<x2v>_ﬁ—] )
=(H) = &+

[<x2V> Lk

m
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As V (z)<0for all z,V(£00)=0, and V is not everywhere zero, we have
(V) <0, {(z?V) <0 and hence E<0,b> 0.

In fact, under the condition that the total energy has a certain negative
value (which must be greater than (V) to make (T) positive), whatever the
form of V a particle in it cannot move to infinity and must stay in a bound
state.

1038

The wave function for a particle of mass M in a one-dimensional poten-
tial V () is given by the expression

¥(z,t) = az exp(-pz) exp(ivt/h), 2 > 0,
=0, x <0,

where a, 8 and -y are all positive constants.

(a) Is the particle bound? Explain.

(b) What is the probability density p(E) for a measurement of the total
energy E of the particle?

(c) Find the lowest energy eigenvalue of V(x) in terms of the given
quantities.

(MIT)
Solution:

(@) The particle is in a bound state because the wave function ¥ (z,t)
satisfies

lim 4(z,t) =0,

T——00

H — 1i —Bzx ivt/h _
z_I»I_'.rglo Yz, t) ncI_I)rllooomv:e e 0.
(b), (c) Substituting the wave function for x > 0 in the Schrédinger
equation
n 2 0 = [ 2 v v
ha V&Y = |\ "557 52 ’

gives 2

9z = =g (P2 = 26) + V ()2,
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whence the potential for x > 0:

h2
V(@) = =7+ 5o (87 = 28/2).

As the stationary wave function of the particle in V (z) satisfies

L G T = (E + 7) ¥E(z) 0
. (@—xw a/m)wE(x>-(E 7) ¥s(@), (z>0)

or
d? M
d_(ltf 1/15(113) + Eh? (E’ +€2/17) '(IJE(.Z') =0

by setting
E'=E+7-p8%h%/2M, €= pBh%/M,

and Yg (z)“—‘s"o, we see that the above equation is the same as that sat-
isfied by the radial wave function of a hydrogen atom with 1 = 0. The
corresponding Bohr radius is a = A2/Me? = 1/3, while the energy levels
are

E, = —Me*/2R%n® = —82h%/2Mn?, n=1,2,....

Hence
E,=-7+(6°h*/2M) (1 -1/n%), n=12, ..

and consequently the lowest energy eigenvalue is E; = -7 with the wave
function

oy

Y (x;t) = az exp (—Pz) exp (ivt/h) x Y1 (z) exp (—iErt/h) .

The probability density p(E) = ¥*% = ¥g,¥E1 is therefore

(E) 1 forE=-7,
P20 for B .

1039

A particle of mass m is released at t = 0 in the one-dimensional double
square well shown in Fig. 1.14 in such a way that its wave function at t = 0
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is just one sinusoidal loop (Thalf a sine waveT) with nodes just at the edges
of the left half of the potential as shown.

_____ Ll

¢ix,00 A

)

Fig. 1.18

(a) Find the average value of the energy at t = 0 (in terms of symbols
defined above).

(b) Will the average value of the energy be constant for times subsequent
to the release of the particle? Why?

(c) Is this a state of definite energy? (That is, will a measurement of
the energy in this state always give the same value?) Why?

(d) Will the wave function change with time from its value at ¢ = O? If

iyesT , explain how you would attempt to calculate the change in the wave
function. If InoT, explain why not.

(e) Is it possible that the particle could escape from the potential well
(from the whole potential well, from both halves)? Explain.

( Wisconsin)
Solution:

(a) The normalized wave function at ¢ =0 is ¥{z, 0) = \/g sin ZZ,
Thus

- R 2 [ wz\ d? T
HYeo=—-Vy — — — i —} —= si —
(H)=o ® oma OOSIn(a)deSIn(a)dx
h2n?
- 2ma
(b) (H) is a constant for ¢ > 0 since 8(H)/8t = 0.

(c) It is not a state of definite energy, because the wave function of the
initial state is the eigenfunction of an infinitely deep square well potential

Vo
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with width a, and not of the given potential. It is a superposition state of
the different energy eigenstates of the given potential. Therefore different
measurements of the energy in this state will not give the same value, but
a group of energies according to their probabilities.

(d) The shape of the wave function is time dependent since the solution
satisfying the given conditions is a superposition state:

Y(z, 0) = \/g sin (Z—x) = Z enthn (2)
P(x,t)= D cnthn (@) e E/R

The shape of ¥ (z, t) will change with time because E,, changes with n.

(e) The particle can escape from the whole potential well if the following
condition is satisfied: #27%/2ma > V;. That is to say, if the width of the
potential well is small enough (i.e., the kinetic energy of the particle is large
enough), the depth is not very large (i.e., the value of V4 is not very large),
and the energy of the particle is positive, the particle can escape from the
whole potential well.

1040

A free particle of mass m moves in one dimension. At time t =0 the
normalized wave function of the particle is

¥(z,0, 0%) = (2n07) /4 exp (~2%/4 03)

where o2 = (z2).

(@) Compute the momentum spread o, =+/{p?) — (p)? associated with
this wave function.
(b) Show that at time ¢ > 0 the probability density of the particle has
the form
(@, )1* = ¢z, 0, 02 + 222 /m?)[?.

(c) Interpret the results of parts (a) and (b) above in terms of the
uncertainty principle.
(Columbia)
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Solution:

@) As

(p) = [: P* (—m i)¢dz

> 1 T -z
—_ h — 201 d —
’/_w (27r02)1/2( 202)6 7=0,

(102)=/oo y* ( K2 :2) Y dx

— hz /00 _l_ _L + z?
B o (2ma2)1/2 202 408

x ¢ 27T dw—h2/4

(b) By Fourier transform,

Y(p, 0) = (_2_7;# / e~P=/R y(x, 0) dx

1 / e-—tp:z/h L
= (2nh)1/2 (2ma2)1/4
x exp (—z?%/402) dx
=[(2mo2)"/*/v2rh] exp [-a2p? /7).

Then
¥(p, t) = ¥(p, 0) e *EV/R,

where

61
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for a free particle. By inverse Fourier transformation

(2mo2 )1/4

. i 2
¢(za t) = / er=/h 1/1(1’; t) dp = W e're/h exp (—’i 2—fn_ﬁ t)

o2p2 ag 1/4 1
<o (-5F) = (3) —

172

exp z
X _
’ . ht
4 (ag-l-z %)
1 2
l¥(z, t) > = exp | -2 1—22
02t2 2 9 Upt
2 0%+# oz + m2

=|¢(z, 0, o2 +az2,t2m*2)|2.

(c) Discussion:
(i) The results indicate the width of the Gaussian wave packet at time
t (which was originally o, att = 0) is

\/ 02 + 02t /m2,
where o2 = h%/402.

(i) Asogzop=H/2, the uncertainty principle is satisfied.

1041

A particle of mass m moves in one dimension under the influence of a
potential V (z). Suppose it is in an energy eigenstate v (z) = (y2/x)1/4
exp (—v2z?%/2) with energy E = h2y2/2m.

(a) Find the mean position of the particle.
(b) Find the mean momentum of the particle.
(c) Find V(2).
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(d) Find the probability P(p) dp that the particleis momentum is be-
tween p and p + dp.

( Wisconsin)
Solution:

(a) The mean position of the particle is

(z) = [:¢*(x)x¢(x) dx = %/wme Y= gz = 0.

(b) The mean momentum is

0= [ @3z v@)e
Th 1%

_an —y2z*/2 i —v22?/2 -
s ¢ dx (e ) dz =

(c) The Schrédinger equation
R?  d?
(- 3 g2+ V@) ¥(o) = B(o)
can be written as

2 2
_ :_ P(z) = [E - V(2)]¥(a).

As

K d2 2.2, 2 2.2

—v22%/2 N2+ a2 r'zt/2

Tom da? © o v e ’

we have
ﬁ2
E-V(w)=——(7+vz)

or

h2'y2 ﬁ2’74.'132
2m = 2m

h2
14 — 4,2 .2
(@) = 5— (v"2" = 7%) +
(d) The Schrédinger equation in momentum representation is

P
2m 2m dp?

) $() = E(p).
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Letting
%(p) = Ne ™o

and substituting it into the above equation, we get

I

2m € 2m

4
o2 .2
(—2a + 4a%p?) e7%P = Ee~%" |

or 2
1
2,2 _ p
As the parameter a is independent of p, the above relation can be sat-
isfied by a =1/2h2y2. Hence

#(p) = N exp(—p®/2h%y?).
This is the eigenfunction of the state with energy h2y2/2m in the mo-

mentum representation. Normalization gives N = (1/h2y2x)1/4, Thus the
probability that the particle momentum is between p and p +dp is

) 1 1/2 pz
P(p)dp=|4(p)|* dp= (W) exp <___hz,72> dp.

Note that ¢ (p) can be obtained directly by the Fourier transform of
¥ (z):

dx in. ’)’9 1/4 2_2
el ip-z/hf T ~v2z%/2
I e I N
- J @ <,_,3)1/4 exp [(—2— — )| axp (- B
@rR)t/2 \ m V2hy V2 P 2h2y2

1 \Y* .,
_ (ﬁ2’y—2ﬂ') e P /252’)’2.

1042

In one dimension, a particle of mass m is in the ground state of a
potential which confines the particle to a small region of space. At time
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t = 0, the potential suddenly disappears, so that the particle is free for time
t> 0. Give a formula for the probability per unit time that the particle
arrives at time t at an observer who is a distance L away.

( Wisconsin)

Solution:
Let ¢ (X) be the wave function at t=0. Then

xp ( 2mh )

+00 g
= [T @l emn ) a @ )

—0o0

+o0 g
= / (x| e P t/CmR)| o'y apo (') da’

—oQ

o (- 4)|<)
_ //_+°° (|p) dp' <p' exp (~i %) lp>dp(p|x’>
/_ s oD [ i %] dp
= 271rh oo exP{ [ \/7
+(””_”c ] } - exp [ifa’ ~ 2)? =]

1 2mh m +oo —i2
=— /2= exp [(x—z)22ht]/ 7 dg

_ 1= /m o2 m

=2 Vam P [ - 9% 35

1—3 m oo ) 2 m ’ /
5 1/;{—}-_& /_oo exp [z(z ) %].wo(x)dz.

w(o 1) = (o (@)

where

Thus

'([J(.’I:, t) =
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Represent the particle as a Gaussian wave packet of dimension a:
%o (z) = (ma?)~V%exp (—z?/24%).

The last integral then gives

_(1-1) m 1
Vo) =5 \I78 FTia
xexp <1 ma? 1 m
2kt 2ht (F + 3iz)

+oo
X_l_/ € e
Ve tmr T
1

m e x ma? 1
= a1/27.r1/4 m+1, gg_ 2(12 m+1, g} 3

whence the current density

X exp 2 1
P14 (25)° L

By putting x = L, we get the probability per unit time that the particle
arrives at the observer a distance L away.

1043

A free particle of mass m moves in one dimension. The initial wave
function of the particle is ¥(z, 0).

(a) Show that after a sufficiently long time t the wave function of the
particle spreads to reach a unique limiting form given by

¥(z,t) = /m/ht exp (—im/4) exp (imzx?/2ht) p(mz/ht)
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where ¢ is the Fourier transform of the initial wave function:
(k) = (2m)~1/2 / ¥(z, 0) exp (—ikz) dz.

(b) Give a plausible physical interpretation of the limiting value of
(=, t)2.

Hint: Note that when a — oo,
exp (—iau?) 5 /7/a exp (—in/4) § (u).

(Columbia)
Solution:
(a) The Schrdodinger equation is

[ihD/8t + (R%/2m) d?/dx?) ¢(z,t)=0.
By Fourier transform, we can write
1 * ;
Yk, t) = E /_m dze %% (z, t),

and the equation becames

. 0 hk?

Integration gives

B 1) =00k, 0) exp (152

where ) oo
- —ikz = k).
Y (k, 0) Tor oo dze™** ¢ (z, 0) = (k)

Hence

21\+
w0 = o) ex( -5
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giving
1 ikx
(o, t) = [ dke*= ok, t)
27 J -0
1 bt k2Rt
=— d kp — 4 o2
o Ioo ko (k) exp (z z—1 2m)

For a—o0,

I
Q-.
—~~
14
~—

et ’/ exp 'L

and so after a long time ¢ (t — oo)

Rt o 27rm K
P ("%Q >\ @ e (~ig),

and
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(b) \
m mx
w0l =3 le (T -
W )P =2 e (G

Because ¢ (k) is the Fourier transform of ¢ (z, 0), we have

+oo +00
/ Pk = [ 1o o) ds,

— 00 —00

On the other hand, we have

/f: 9z, 1) ,2d2=/*°° ™ o (P as

+o00 +00
=[ wmﬁ#=l |9 (z, 0) |? dz,

which shows the conservation of total probability. For the limiting case of
t — o0, we have

[%(z, t) > =0 |9(0)]> =0,

which indicates that the wave function of the particle will diffuse infinitely.

1044
The one-dimensional quantum mechanical potential energy of a particle
of mass m is given by
Vz) =Wié(z), —a<z<o,
V(X) = oo, z < -a,
as shown in Fig. 1.19. At time t = 0, the wave function of the particle

is completely confined to the region -a < x < 0. [Define the quantities
k =v2mE/h and a = 2mV,/h?|

(a) Write down the normalized lowest-energy wave function of the par-
ticleat time t=0.
(b) Give the boundary conditions which the energy eigenfunctions

Yr(z) = Ph(x) and ¥k (z) - ¥ (2)

must satisfy, where the region | is -a < x < 0 and the region Il x > 0.
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Vix)

Fig. 1.19

(c) Find the (real) solutions for the energy eigenfunctions in the two
regions (up to an overall constant) which satisfy the boundary conditions.

(d) The t=0wave function can be expressed as an integral over energy
eigenfunctions:

Y(z) = /oo f (k) ¥k (z) dk.

v OO
Show how f (k) can be determined from the solutions ¥ (z).
(e) Give an expression for the time development of the wave function in

terms of f(k). What values of k are expected to govern the time behavior
at large times?

( Wisconsin)
Solution:

(@) The required wave function ¥ () must satisfy the boundary condi-
tions 1 (-a) = ¢¥(0) = 0. A complete orthonormal set of wave functions
defined in -a < x < 0 and satisfying the Schrédinger equation consists of

\ﬁ sin ( nm) <zr<0
on (z) = a PR AR ’
0, outside|-a, 0],

wheren =1, 2, ..., with
(On| H|dm) = En dmn, En= (h,z/Zm) ("”"/a‘)2 .
The normalized lowest-energy wave function is given by n = 1 as

s L2 sin (B)e<aso

0, outside [-a, 0].
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(b) The Schrédinger equation for = > -a is

2 2
M4 Vas(a)y = By,

" 2m dz
or

V" (z) + k*¥ (z) = od (2) ¢ (2)
with

k2 = 2mE _ 2mVW,
ST YT TR
The boundary conditions and the discontinuity condition to be satisfied

are

P (—a)=0, ¥'(0)=v"1(0), ¢ (+o0)= finite,
P (0) — " (0) = oy (0).

The last equation is obtained by integrating the Schrédinger equation
over a small interval [—¢,¢] and letting € = O (see Problem 1020).
(c) In both the regions I and 11, the wave equation is

Y" (z) + k% (x) = 0,

whose real solutions are sinusoidal functions. The solutions that satisfy the

boundary conditions are

¥k (z) = ¢k sin k(x + a), -a <x<0,
Yr(z) = ¢ ¥I(z) = ck sin k(x + @) + Agsin kx, X >0,
z < -a.

09
The discontinuity and normalization conditions then give

cra
Ay = T sin ka,

—1
- i 1_'_Ozsin21<:a+ asin ka\? ?
*712 k k ‘
(d) Expand the wave function % (x) in terms of ¥ (X),

v@ = [ 0w d,

O
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and obtain
T @v@ do= [ [ 16)0e) v @) ks
= /m f(k) & (k— ki) dk = f(K'),
10= [ @y ds.
(e) As 5
b@0) = [ flyw) dk,
we have

+00 _
bty = [ 1) v (9 e B gk

— 00
At time t = 0, the particle is in the ground state of an infinitely deep
square well potential of width a, it is a wave packet. When ¢ > 0, since the
4 (x) potential barrier is penetrable, the wave packet will spread over to the
region x > 0. Quantitatively, we compute first

0
f (k)= /_ ¢ sin k(z +a) - \/g sinzaE dz
0
=\/;}; [_a ck{cos [(k-1) x+ka]

— cos [(k+ —;E) x+kal]} dx

7 /2 sin ka
“aVajz_(z2*
k% —(Z)
and then

¥z, 1) \/' / _sin ka)r

N sin k(l‘ + a) e‘iEkt/h dk,
sin k(x + a) + ¢ sin ka sin kx
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where Ej = h%2k?/2m. In the last expression the upper and lower rows are
for regions | and Il respectively.

When t — co, the oscillatory factor exp(—iExt/k) changes even more
rapidly, while the other functions of the integrand behave quite normally
(k=m/ais not a pole). Thus ¥ (z, t) tend to zero for any given z. When
t is very large, component waves of small wave number k play the principal

role. At that time the particle has practically escaped from the region
[—a, 0].

1045

The radioactive isotope g3Bi%!2 decays to g T12°% by emitting an alpha
particle with the energy E = 6.0 MeV.

(@) In an attempt to calculate the lifetime, first consider the finite po-
tential barrier shown in Fig. 1.20. Calculate the transition probability T
for a particle of mass m incident from the left with energy E in the limit
T« 1.

(b) Using the above result, obtain a rough numerical estimate for the
lifetime of the nucleus Bi?!2. Choose sensible barrier parameters to approx-
imate the true alpha particle potential.

(CUs)
Vix)
A
%
k—> --f-----
> X 5 :
Fig. 1.20

Solution:

(@) If T« 1, the incident wave is reflected at x = 0 as if the potential
barrier were infinitely thick. We thus have
Y(z) = e** + (11— 1) e7**, x <0,
V() = te™? 0<z<b,
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where t; is the amplitude transmission coefficient and

2m(Vp — E) 2mE
F=V—w — =V

The continuity of ¢’ (z) at z = 0 gives

. _ - 7 _ 2k
’Lk(2 tl)-— k'ty, or t,= KTk
Consider the reflection at b. We have

’(/}(IL') — tle—k'b [e—k’(z—b) + (t2 _ 1) ek’(x—b)], 0<z<bh,
.w(l-) — tltze—kib eik(z—b), r>h,

and so
—kl(2 - tz) = ikty, or ty= 2ik,/(k + ’ik’) .

Hence the transition probability is given by

T = t1t2 Cdk,b

to be
IT? 16kk" o2kt _ 16E(Vo — E) e=2k'b
(k2 + k12)2 V02

(b) To estimate the rate of o-decay of g3Bi?!2, we treat, in first approx-
imation, the Coulomb potential experienced by the o-particle in the g;TI
nucleus as a rectangular potential barrier. As shown in Fig. 1.21, the width
of the barrier r¢ can be taken to be

2Ze>  2(83 -2) e? he_

To =

E 6 hc MeV
:%x%x 6.58 x 10722 x 3 x 101

=3.9x10"12 cm.
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Vix)
A

V*---w\
Y

bo o -~

Fig. 1.21

The radius of the nucleus of Tl is

R=1x10"13x%208% =6 x 10" cm

corresponding to a Coulomb potential height of

2
2Ze %’ = 39 MeV.

V=

To

An a-particle, moving with speed v in the nucleus of Tl, makes 55

collisions per second with the walls. Hence the lifetime 7 of g3Bi?*? is given
by

T2— ~1,
TITF 55
or
.~ 2R
To|T

Taking for the rectangular potential barrier a height Voz%(39—6)+6=

22.5 MeV, b = ro—R =33x10713 cm (see Fig. 1.21),v=4/2E =, /26 o ~
0.1¢, we find

10— 13
2\/2mc2(Vo_E) - X
2k'b = b= 2VE B0 1p fs'xg 10—53 2 33)(3 1010
2 X 6 x 10713 x 22.52 s
= X e
3 x 109 16 X 6 X (225 —6)

=54x%x10%s
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1046

An electron with energy E = 1 eV is incident upon a rectangular barrier
of potential energy Vg =2 eV (see Fig. 1.22). About how wide must the
barrier be so that the transmission probability is 10~3?

(Wisconsin)

Vix)

A
, d

A
El--- &

> X
Fig. 1.22

Solution:
The transmission probability is (Problem 1045)

- 2d
T ~ %‘;E) - exp [__ﬁ— V2m(Vp — E)]

0

=4 exp [—— 2m(Vp — E)] ,
whence

T

d= — In (Z) he
2 2mce? (Vo — E)
In (2) 6,58 x 10716 x 3 x 1010
=— X — =8.1x10"%cm.
2 V2 x 0.51 x 108
1047

Consider a one-dimensional square-well potential (see Fig 1.23)
V(z) = 0, < 0,
V(x) = =Vp, 0<2<a,
V(X) = 0, T>a,
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where Vp is positive. If a particle with mass m is incident from the left with
nonrelativistic kinetic energy E, what is its probability for transmission
through the potential? For what values of E will this probability be unity?

(Columbia)

Vix)
A

L e 7x

Fig. 1.23
Solution:
Let the wave function be
Y(x) = %% + Re~ k= z< 0,
P(z) = Setk=, z> a,

Y(z) = Ae’t'® + Be~iF'z O0<z<a,

where
V2mE , V2m(E+ V)
k= , k=Yt —m—
h h
The constants R, S, A, B are to be determined from the boundary con-
ditions that (=) and y’(x)are both continuous at x = 0 and x = a, which
give

1+ R=A+B,
k(I-R)=ki(A-B),

AeiF'a + Be—ik'a — Seika’

k' (Aeit'e - Be~%'¢) = kSeike,

Hence ]
s 4Kk eike
- (k + kl)2 e—ik'a _ (b _ kI)Z etk’a
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and the probability for transmission is

p=2_ 5P

1
4k2kl2
"~ 4(kk’ cos k'a)? + (k2 —k2)2sin® (kia)
Resonance transmission occurs when kia = na, i.e., when the kinetic
energy E of the incident particle is

E = n’n?h%/2ma® — V.

The probability for transmission, P, then becomes unity.

1048

Consider a one-dimensional square-well potential (see Fig. 1.24):

Vix)
A
_______ — X
0 a
o)

Fig. 1.24

Viz) =00, <0,
V(x):—‘/o, 0<z<a,
V(z)=0, z > a.

(a) For E <0, find the wave function of a particle bound in this poten-
tial. Write an equation which determines the allowed values of E.
(b) Suppose a particle with energy E > 0 is incident upon this potential.

Find the phase relation between the incident and the outgoing wave.
(Columbia)
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Solution:
The Schriodinger equations for the different regions are

[_;;%;—%—E Y(z)=0, O0<z<a,
[_;; dtfz_El Y(x)=0, z>a.
(@ E<o.
(1) Consider first the case of Vo <—E, for which the wave function is
0, X < 0,
Y(z) = ¢ Asinh(kx), 0<z<a,
Be‘k", T>a,

where

The continuity conditions of the wave function give

A sinh (ka) = Be™*'®
Ak cosh(ka) = —Bk'e e
and hence
k coth(ka) = -ki -
As coth x > 0 for x > 0, there is no solution for this case.
(i) For Vo > -E, ik—> k, k = 2m(Vp + E)/h, and the equation

determining the energy becomes k cot (ka) = -ki- The wave function is

0, <0,

Y(x) =4 A sin(kz), 0<z<a,

Be K=, X > a.

From the continuity and normalization of the wave function we get

1/2

2
g sin? (ka) + a — g sin (2ka) |

’
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) 1/2
= |4 — "% sin (ka) .
w sin® (ka) + a — 5 sin (2ka)
(b) E > 0. The wave function is
0, z< 0,
Y(z) =< Asin (kx), O<z<a,

B sin (Kix + ¢), x> a,

{2m(E + V,
k = —n-l—(h?i)', k’ = 4/ 2mE/h2

As dlny/8In x is continuous at x = a,

where

(ka) cot (ka) = (kia) cot (kia + (),

whence .
¢ = arccot <E; cot (ka)) - k'a.
For x > a, B B
_ 2 mikz—ip _ D ik'ztip
vie) =g e 2i ° ’
where
(Pinc(z) 0.8 e—ik'm—i«p,
Pout(z) ox €K T+,

Hence the phase shift of the outgoing wave in relation to the incident
wave is

k
§=2p=2 [arccot (-k—’ cot (ka)) - k'a} :

1049

Consider a one-dimensional system with potential energy (see Fig. 1.25)

V(x) = Vo, x>0,
V(x) =0, x<0,
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where Vp is a positive constant. If a beam of particles with energy E is
incident from the left (i.e., from z = -co), what fraction of the beam is
transmitted and what fraction reflected? Consider all possible values of E.

(Columbia)

Vix)
A

W ———

E
—_—
0 — X
Fig. 1.25
Solution:

For x <0, the Schrodinger equation is
d? 2mE

@ VTR =0

whose solution has the form
1/)(15) — eikm +,,.e—ik:c’

where

For x > 0, the equation is

d? 2m(E — Vg
v =0

(i) If E < Wy, write the above as

As 9 (z) must be finite for x — oo, the solution has the form

Y(z) = te_k”,
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= ’, _—__h2

The continuity conditions then give

where

1+7r=t,
ik — ikr = —tk',

whence r = (ki +ik)/(ik— ki) = (1 —ik’'/k)/(1 + ik’/k). Therefore the
fraction reflected is R = jref/Jjinc = |7|?>= 1, the fraction transmitted is
T=1-R=0.

(i) E > V4. For x > 0, we have

[_di’_+2m(E Vol '0

dz? h2

where

2m(E - W)

Y(@) = te*¥®, K = 2

Noting that there are only outgoing waves for x — oo, we have 1 +r =t,
ik —ikr = ikit, and thus r = (ki —k)/(k' + k). Hence the fraction reflected
is R = [(ki —k)/(k' + k)]?, the fraction transmitted is T=1-R =
4kK' [ (k + k)2

1050

A particle of mass m and momentum p is incident from the left on the
potential step shown in Fig. 1.26.

Calculate the probability that the particle is scattered backward by the
potential if

(a) p2/2m < Vo,

(b) p?/2m > V,.

(Columbia)
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Vix)
W ---—
5 " > X
Fig. 1.26

Solution:

The Schrédinger equations are

d2
(E;g-f-g;inTE) Y(z) =0 for z < =,
d? 2m
EpJfﬁ(E“VO)l Y(x) = 0 for = > zo.

(@) If E <Vp, we have
eik(@=20) 4 re=ik(z—20) & < g,
YP(z) = —k(z—
te (= :to)’ z > o,

where
2mE
K=
= ”—_hz ,

the condition that 1 (x)is finite for x — oo having been made use of.

The continuity conditions give 1 + r = t,ik — ikr = —k't, whence r =

(kT + ik)/(ik — kT). The probability of reflection is R = j,./ji =|r|*=1.
(b) If E > V5. We have

eik(@=m0) 4 pe—ik(z=20) & < g4,
Y(z) =

ik (2
tet (z a:o), z >0,
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where

2mE
VTR

= “——_ﬁ? ,

noting that there is only outgoing wave for x > zy. The continuity condi-
tions give 1 + r = t,ik— ikr = ik’t, and hence r = (k - k’)/(k + ki). The
probability of reflection is then R=|r|2=[(k —k')/(k + k')]?.

1051

Find the reflection and transmission coefficients for the one-dimensional
potential step shown in Fig. 1.27 if the particles are incident from the right.
( Wisconsin)

Vix)
A

Y —

Fig. 1.27

Solution:

As the particles are incident from the right we must have E > V.
And there are both incident and reflected waves in the region x > 0. The
Schrédinger equation for x > 0,

V'(z) +kiy(z) = 0,
where k; = v/2m(E —Vp)/k, has solutions of the form

P =exp (—ikiz) + R exp (ikiz).
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There are only transmitted waves in the region x < 0, where the
Schrodinger equation is
Y’ (z) + k3¢ (z) =0

with k2 = v2mE/h, and has the solution
Y(z)=S exp (—ikez).

Using the continuity conditions of the wave function at x = 0, we get
1 + R = S. From the continuity of the first derivative of the wave function,
we get k1 (1—R) = ko S. Hence R = (k1 —k2)/(k1+ks), giving the reflection

coefficient )
|Rf2 =Bk T 43
k1 + k2 (\/E'F«/E—Vo)‘i’
and the transmission coefficient
V02

2 _1_ 2 _q_
|S2=1-|R[>=1 T

1052

Consider, quantum mechanically, a stream of particles of mass m, each
moving in the positive x direction with Kinetic energy E toward a potential
jump located at x = 0. The potential is zero for z <0 and 3E/4 for z > O.

What fraction of the particles are reflected at x = O?
(Buffalo)

Solution:
The Schrodinger equations are

P"+ k%P =0 for £ <0,
" + (k/2)%y = 0 for x > 0,

where k = v2mE/h. As for x < 0 there will also be reflected waves, the
solutions are of the form
¥ = exp (ikx) + r exp (-ikx),
Y=t exp (ikz/2),

x <0,
X>0.



86 Problems and Solutions on Electromagnetism

From the continuity conditions of the wave function at x = 0, we obtain
1+r=tk(1-r)=kt/2, and hence r =1/3. Thus one-ninth of the
particles are reflected at x = 0.

1053

Consider a particle beam approximated by a plane wave directed along
the x-axis from the left and incident upon a potential V(x) = 7 §(z), 7 >
0, b(x) is the Dirac delta function.

(a) Give the form of the wave function for x < 0.
(b) Give the form of the wave function for x > 0.
(c) Give the conditions on the wave function at the boundary between
the regions.
(d) Calculate the probability of transmission.
(Berkeley)
Solution:

(a) For x < 0, there are incident waves of the form exp (ikx) and re-
flected waves of the form R exp (-ikx). Thus

P(x) = exp (ikx) + R exp(-ikx), x<O0.

(b) For x > 0, there only exist transmitted waves of the form S exp
(ikx). Thus
P(z) = S exp(ikz), x>0.

(c) The Schrédinger equation is

d2
" 5o ¥(@) + 76() $(a) = By(a)
and its solutions satisfy (Problem 1020)
2
¥ ") - (07) = S5 %(0).
As the wave function is continuous at z =0, ¥(0%)=(07).

(d) From (a), (b) and (9 We have 1+R = S, ikS—ik(1—R) = 2m~yS/h?,
giving S = 1/(1 + imy/h%k). Hence the transmission coefficient is
m2y2\ 7! my? -1
where E = h%k2/2m.
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1054

Consider a one-dimensional problem of a particle of mass m incident
upon a potential of a shape shown in Fig. 1.28. Assume that the energy
E at x — —o0 is greater than Vo, where V; is the asymptotic value of the
potential as x — oo.

Show that the sum of reflected and transmitted intensities divided by
the incident intensity is one.

(Princeton)

Fig. 1.28

Solution:
As E > Vp we may assume the asymptotic forms

P —e*® * re”kT for z — —o0,
P — te?f® for x — +o0,

where r,t,k, 3 are constants. The incident intensity is defined as the
number of particles incident per unit time: | = kk/m. Similarly, the
reflected and transmitted intensities are respectively
R =|r|%hk/m, T =|t|*h8/m.
Multiplying the Schrédinger equation by 9*,
h2 * 72 * *
—on V'V YTV = EYTY,
m

and the conjugate Schrodinger equation by v,

2
o YV 4 YV = By,
m
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and taking the difference of the two equations, we have
PV — VPt = v - (VY — yVP*) = 0.
This means that
f(x) = Y*dy/dz —pdy*/dx
is a constant. Then equating f (+o0) and f (-co), we find
k(1-|r?) =Bt
Multiplying both sides by % gives

I=R+T.

1055

A Schrédinger equation in one dimension reads
(—8?%/8x% — 2 sech® x) P = e

(h=1,m=1/2).

(a) Show that exp (ikz)(tanh x + const) is a solution for a particular
value of the constant. Calculate the S-matrix (transmission and reflection
coefficients) for this problem.

(b) The wave function sechx happens to satisfy the Schrodinger equa-
tion. Calculate the energy of the corresponding bound state and give a
simple argument that it must be the ground state of the potential.

(c) Outline how you might have proceeded to estimate the ground-state
energy if you did not know the wave function.

(Buffalo)

Solution:

(a) Letting the constant in the given solution 3 be K and substituting
9 in the Schrodinger equation, we obtain

k? (tanhz + K) — 2(ik + K) sech® x = ¢ (tanh x + K).
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This equation is satisfied if we set K = —ik and € = k2. Hence
¥(z) = e*® (tanh z — ik)

is a solution of the equation and the corresponding energy is k2. Then as
tanh x — 1 for x = oc and tanh (-x) = — tanh x we have

P=(1-ik)e** as x — co,
¥ = ~(1 + ik)e*™* as z — —co.

Since V(x) <0, > 0, the transmission coefficient is T =1 and the
reflection coefficient is R = 0 as the particle travels through V(x). So the
S-matrix is

1 —(1—ik)/Q + iK)
(—(l—ik)/(l +iK) 0 ) '

(b) Letting ¥ =sech X in the Schrédinger equation we have —i = €.
Hence ¢ = -1. Because sech x is a non-node bound state in the whole
coordinate space, it must be the ground state.

(c) We might proceed by assuming a non-node bound even function with
a parameter and obtain an approximate value of the ground state energy
by the variational method.

1056

A monoenergetic parallel beam of nonrelativistic neutrons of energy E
is incident onto the plane surface of a plate of matter of thickness t. In
the matter, the neutrons move in a uniform attractive potential V. The
incident beam makes an angle § with respect to the normal to the plane
surface as shown in Fig. 1.29.

(a) What fraction of the incident beam is reflected if t is infinite?

(b) What fraction of the incident beam is reflected if V is repulsive and
V = E? Consider t finite.

(CUS)
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Y

Solution:

(a) Let ko be the wave number of an incident neutron, given by k2 =
ImE . For x < 0, the wave function is

1 (.’E, y) —e ikox cos 8+ikoy SN @

+Re—ikoz Cc08 8+ikoy SN O

With t infinite and the potential negative, for X > 0 the Schrédinger equa-
tion is
R Vi =(E+V
“om Y =(E+ V).

Assuming a solution
o (x’ y) _ Tetksz+ikyy

and substituting it the equation, we obtain k2 + k2 = 2m(E + V) /2.
The boundary conditions at x = 0

(2} (0: y) =1 (0’ y)’
on| _ov

oz |,_, Oz

K
z=0

then give
ikoy Sn @ + ikoy Sin € ik
gtro Ret™0¥ - Te'v¥,

iko cos fetko¥ sin & _ Riko cos geikov sin 6 _ Tik, e'Fv¥
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As the potential does not vary with y, k, = kg sin  and the above
become
1+R=T,

ko (1 — R) cos 8 =k, T,

whichgive R = (ko cos 8—kz)/(ko cos 8+k; ). The probability of reflection
is then P =|R |2 = (ko cos 8 —k;)?/(ko cos 0 + k)%, with k2 =2m(E +
V)/h? — k sin® 9, k2 = 2mE/h2.

(b) For x < 0 the wave function has the same form as that in (a). For
0<x<t,E—V =0, and the Schrédinger equation is

—(K2/2m) V3¢ = 0.
As the potential is uniform in y we assume 1 = exp (ikiy) exp (kx),

where ki = kg sin 8. Substitution gives —k"2+ k2 =0, or k = fki. Hence
the wave function for 0 < x < tis

(3, v) = (ae¥® * be ) ¥y,
Writing ¢ (z, y) = ¢(z) e*'¥, we have for the three regions
<0, ¢1(x)=ek==+ pemikez,
0<x<t ¢ofz)= ae®® + be ¥z,
x > t, ¢3(z) = ce'*=?,
with
ky = 2’:—2E cos 8, Kk =\/2mE/R? sin 6.

The boundary conditions

#1(0) = $2(0), ¢2(t) = ¢3(2),

_ 402 o) _ dds
o dz|._ dz|,_, dz

dy
dzx

z = z= =t

give
l1+4r=a+b,
tkz(1 —71)=kK(a—0),
c exp (tkgt) = aexp (kit) + b exp (—k't),
ikzc exp (ikst) = kia exp (kit) — kib exp (—k't),
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whose solution is

[ (520 3 ()

a/b = [(K +ik;)/(K —ikg)] - e”2*'t.

Hence

e2k't -1
r _ —m——T
=1 _ B2e2r't
with ik
—_— — z x
A= kK + ik’

and the fraction of neutrons reflected is
2kt + =2kt _ o

e2k't 4 =2kt _ 2 cos 40’

R =|rf®=

Alternative Solution:

The solution can also be obtained by superposition of infinite ampli-
tudes, similar to the case of a Fabry-Perot interferometer in optics (see
Fig. 1.30).

Fig. 1.30

We need only consider the x-component of the waves. Let Ti;, Rio de-
note the coefficients of amplitude transmission and reflection as a wave
goes from medium 1 to medium 2, respectively. Let T3, Rp; denote
coefficients of amplitude transmission and reflection from medium 2 to



Basic Principles and One-Dimensional Motions 93

medium 1. Take the amplitude of incident wave as 1. Then the amplitude
of the wave that is transmitted to medium 2 is the sum

T =Tize™® - To1 + Ti2e™® - Roje Ry - Ty
+ Tize™® - (Rare™ 2 Rg1)? - Ty + - - -
=Tie 9Ty [1 + R3, e + (R3,e7 %)% +...]

1

=17 127’21(3—-1s —_—
2 —28
1—RZe

In the above exp(-6) is the attenuation coefficient of a wave in medium 2,
where

§ = k't with k'=/2mE(1—-cos?8)/h = V2mE sin 8/h.
From (a) we have the coefficients of transmission and reflection
Riz = (k1z — kaz) /(K1 + kog),
Ti2 = 1+ R12 = 2k1/(kig + koz).

As
kiz = V2mE cos 0/h,
k2z = ik’ = iV2mE sin /A,
we find
2cos 8 _ig
T12 = 2k1z/(k1;; + k2a;) = m = 2 cos fe y
21 sin @ . .
- z g) £ ————— = 2§ —i6,
T21 = 2k21/(k1 + kz ) cosftisn @ 1 Sin fe
1 sin @ — cos @ .
Ry = (kaz — k1z)/(k k ARl L
= (k2 12)/ (k12 + k2z) isin @ + cos @ ’
and hence
1
_ -5
T = T12T216 T%le_.z&

- . ’
43 cos @ sin fe=26  ¢—k't
= 1_ e-4i0g—2kt

B . y ’
2isin 20 e—2# =kt
= T - e-dwg—akt




94 Problems and Solutions on Electromagnetism
The transmissivity is therefore
T = 4 sin? 202Kt

(1 —e~2K"tcos? 9)2 * (e~2k'tsin 46)2
3 4 sin® 20e 2Kt

1 + e~4K't — 2e—2k"t cos 40

4sin® 29

e2k't + =2kt _ 9005 40’

and the reflectivity is
4 sin® 26
e2k't  e—2k't _ 2 cos 46
e2k’t +e——2k't _2
= @2kt + =2kt _ 2 o5 40°

1-|T)?P=1

where k' =v/2mE sin 8/h.

1057

Find the wave function for a particle moving in one dimension in a
constant imaginary potential -iv where V <« E.

Calculate the probability current and show that an imaginary potential
represents absorption of particles. Find an expression for the absorption
coefficient in terms of V.

( Wisconsin)

Solution:
The Schrédinger equation is

ihoy/ot = (p%/2m —iV) 4.
Supposing ¥ = exp (—iEt/hk) exp (iks), we have k%= (2mE/A?) (1 t

iV/E). As V < E,

2mE .V
k~+ —hz—(].'f‘zz—é),
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and hence

0 = 2mE_K ) 4 2mE:c _@
bz, t) =exp | Fy/ 5= 52| exp \/——hz exp = )

where 1, and 1 _ refer to the exponentially attenuated right- and left-
traveling waves respectively. The probability current is

e (20 = re ("0 = re [P o [ /FRE Y
]-—RC(’dla )-Re(d; ml/))-—Rel:mexp F = Em
~:l:h [2mE /2mEK
~E— 2 eXP TV 5%

These are the exponentially attenuated currents in the respective direc-
tions. The absorption coefficient is then

|14
b= j dz
The imaginary potential iV is responsible for the absorption of the

particle, since the exponent in j would be imaginary. Hence there would
be no absorption if V were real.

_dlnj
dz

2mEK
2 E°

1058

Let the solution to the one-dimensional free-particle time-dependent
Schrodinger equation of definite wavelength A be ¢ (z,t) as described by
some observer 0 in a frame with coordinates (x, t). Now consider the same
particle as described by wave function v’ (xi, t') according to observer 0’
with coordinates (z’,t') related to (z,t) by the Galilean transformation

' =z—vt,
t'=t.
(a) Do ¢ (z, t), ¥’ (z', t') describe waves of the same wavelength?
(b) What is the relationship between 4 (x,t) and 9’ («’,t') if both sat-

isfy the Schrédinger equation in their respective coordinates?
(Berkeley)
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Solution:

(a) The one-dimensional time-dependent Schrédinger equation for a free
particle

ihdup (z,t) = (—h?/2m) 029 (z, )
has a solution corresponding to a definite wavelength A
Ya(z, t) = expi(kz — wt)]
with
X =2n/k = 2nh/p, w = hk®/2m.

As the particle momentum p is different in the two reference frames, the
wavelength A is also different.

(b) Applying the Galilean transformation and making use of the Schré-
dinger equation in the (z’, ti) frame we find

ihoyy (', t') = thd)' (z — wt, t)
=ik [B0' (2', t') — vOLY (a’, )]
h2

= —— %Y (', V) — iy (2, 1)
2m

2
= —E_ 631/), (z‘ - ’Ut, t) - Zh'vam’l[], (,’L‘ - ’Ut, t) (1)
2m
Considering

ih 8, [ei(kz—wt)djl (.’IJ', tl)]
— ihei(k:t—wt) (at,(/)t . iwt,b')
and
h? 2 [ i(ke—wt) o (0 4t
— 5 Ozle P (', 1))
2
— _.__et(kx—wt) (_k2¢l + 21:k8z¢, + 831/),)

2m
— ihei(kz—wt) (Btzp’ _ ’l:u)’ll)'),
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making use of Eq. (1) and the definitions of k and w, we see that

2
_zh_ a: [eimvz/h e-imvzt/2h¢/ (.’L‘ —ot, t)]
m

— zf’u?t [eimvz/h e—imvzt/2h¢l ((L‘ —vt,t )]

This is just the Schrédinger equation that v (z,t) satisfies. Hence,
accurate to a phase factor, we have the relation

(z,t) =¥ (z — vt, t) exp {,_i [mm_ i ]}

1059

A particle of mass m bound in a one-dimensional harmonic oscillator
potential of frequency w and in the ground state is subjected to an impulsive
force pd (t).

Find the probability it remains in its ground state.

(Wisconsin)
Solution:

The particle receives an instantaneous momentum p at t = 0 and its
velocity changes to p/m instantaneously. The duration of the impulse is,
however, too short for the wave function to change. Hence, in the view of
a frame Ki moving with the particle, the latter is still in the ground state
of the harmonic oscillator g (xi). But in the view of a stationary frame
K, it is in the state 1o (xI) exp (—ipz/h). We may reasonably treat the
position of the particle as constant during the process, so that at the end
of the impulse the coordinate of the particle is the same for both K and
Ki. Hence the initial wave function in K is

Yo = Yo (z) exp (—ipz/h).

Thus, the probability that the particle remains in its ground state after
the impulse is
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ol o ~i5%)  Iwo)

2 +o0

all / e~ iR gy

T — 00
o *° 9 ip \°
—\—/—7_1_ . exp |—a x+2a2h dzx

2
)4
exp (— 2a2h2)
2
_ ~P
= (5mi)

where a = y/mw/h.

2
Po=(

2

2

1060

An idealized ping pong ball of mass m is bouncing in its ground state on
a recoilless table in a one-dimensional world with only a vertical direction.

(a) Prove that the energy depends on m, g, h according to: € = Kmg
(m2g/h?)* and determine a.

(b) By a variational calculation estimate the constant K and evaluate
e form = 1 gram in ergs.

(Princeton)
Solution:

(a) By the method of dimensional analysis, if we have

B [m]1+2a [g]H'a
[e] = T

or
fm] (L2 _ [m] (L2
TP FAE.

then a = —%. Thus, provided a = — %, the expression gives the energy of

the ball.
(b) Take the x coordinate in the vertical up direction with origin at the
table. The Hamiltonian is
2 h? d’Z

D
H=1 =
2m +mgz 2m dz? +mgz,
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taking the table surface as the reference point of gravitational potential.
Try a ground state wave function of the form ¥ = x exp (—Az2/2), where
A is to be determined. Consider

[ 4*Hydz
J*ydz
f:o re—>e’/2 (-%ﬁ;%» mgx) ze—2=/2 dx
Iy z2e~2=® dx

3h2 2mg

am " VT2

(H)

2
R . . 2
To minimize (H) , take %%l =0 and obtain A = (;%%)3.
The ground state energy is then

(H) = 3(3/4m)!/* mg (m®g/h?) /3.

giving
K =3 (3/4m)'/3.

Numerically

3 x 1.0542 x 10-54)§

3 x 980 x
4s x 980

1.9 x 10~ erg.

1061

The following theorem concerns the energy eigenvalues En(E; < E2 <
E3<...)of the Schrédinger equation in one dimension:

Theorem: If the potential Vi (x) gives the eigenvalues Fi, and the po-
tential V5 (x) gives the eigenvalues Ez, and Vi (x) < V2 (x) for all x, then
Ejp < Epy.

(a) Prove this theorem.
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Hint: Consider a potential V(A, z), where V(0, ) = Vi (z)and V(l, z)
=Va(z)and 8V/BA > 0O (for all z), and calculate 8E,, /3.
(b) Now consider the potential (Fig. 1.31)

U(z) = kz2/2, |z|<a,
U(z) = ka?/2, |z|>a.

Utx)

Fig. 1.31

We want to determine the number of bound states that this potential
can hold. Assume this number N is > 1. It may be helpful to draw a
qualitative picture of the wave function for the highest bound state.

Choose a solvable comparison potential and use the theorem above to
determine either a rigorous upper bound to N or a rigorous lower bound

to N. (Both can be done but you are asked for only one.)
(Berkele y)

Solution:

(a) Define V(A z) = AV, (z) + (1 — ) Vi(z). Obviously V(0,z) =
Vi(z), V(I, ) = Va(z), OV/OX = Vo (z) — Vi (z) > 0. The Hamiltonian is
then

HQ) = p*/2m + V(A z),

and the eigenequation is
HQ)|n,2) = Ea (V)| n, A),

where E, (X) = (n, A\|H(\)|n, A). As
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o lim, A AO) 7, )

(nA| BV (X)/OX| n))

=/ O b (2, N) |2 dz > 0,

8E, (\)/0A

)
we have Eyn, = E, (0) < E, (1) = E2n, and the theorem is proved. Note
that we have used {(nA|nA) = 1.
(b) Let V(x) = kx?/2. Then V(z)> U(x). If E, is an energy level
for the potential U(x), then E,, < (n + 1/2)kw, where w = \/k/m. For a
bound state, E, <ka?/2. Solving (N + 1/2) hw < ka2 /2, we find

mwa? 1 MU
< —-— =
N< 2h 2 [ 2hI ’

where [A] indicates the maximum integer that is less than A.
We now choose for V(x) a square well of finite depth,
V(z) = ka?/2, |x|>a,
V(z) =0, lz| < a.

The number of bound states of U(z) is less than that of V(x), which
for the latter is [2mwa?/mh] + 1. We can take the upper bound to the
number of bound states of U(z) as [2mwa?/mh] as for N > 1 the term 1

can be neglected. Taken together, we get that the number of bound states
is between [mwa?/2h] and [2mwa? /= h].

1062

For electronic states in a one-dimensional system, a simple model Hamil-
tonian is

N N
H=> Ep|n)(n|+ Y W{|n){n+1|+|n+1){(n|},

n=1 n=1

where In) are an orthonormal basis, (n | ni) = §,,; Ep and W are pa-
rameters. Assume periodic boundary conditions so that |N + j)=]j).
Calculate the energy levels and wave functions.

(' Wisconsin)
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Solution:

From the fact that | n) form a complete set of orthonormal functions,
wheren=1,2,3,...,N,and

N N
H=> Eoln)(n|+ > W{In)(n+1]|+|n+1)(n|},

n=1

or
H=FEy+W(4+ At),
with
N N
A=Y Imyn+1,47 =Y [n+1)(n],
n=1 n=1
and

Aln)=|n-1),A%|n) =|n+1),
AAT =AYA=1, or At =471,

we know that H, A and A* have the same eigenvectors. Hence we only
need to find the eigenvectors and eigenvalues of the operator A+ to solve
the problem. As

A = (K (A | k)= k-1,

We have
010 0
0 01 0
0 0 0 1
A =
-0 1
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and so
-2 1 0 0
0 =X 1
0 -1
A-XI= ,
. . -2 1
1 0 0 © =X NxN
ie.,

det (A — XI) = (=2)V + (-)V1=(—)¥N AN -1) =0,
giving 0
0 _am . .
Aj = e 0;=5§1=012 ... N-1.

If |E) are the same eigenvectors of the operators A and A+, i.e.,

1
A|E;) = N | E;), AT | E;) = = | Ei),
7

then

H|E;) = [E0+W (Aﬁ%)]lEﬁ

= (Eo +2W cos 0;) | E;) .

Hence the eigenvalues of H are

o
E; = Eo +2W cos 6;, with 9,-:%1, (G=0,1,2 ...,N=1).

The corresponding eigenfunctions can be obtained from the matrix equa-
tions
(A—X;)|E;) =0.
Thus
1
163

|E1) - ei29j

3l

(N =1)8;
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or
N

Z 'L(n 1)8; ln

ﬂl

1063

Give a brief discussion of why there are energy bands in a crystalline
solid. Use the ideas of quantum mechanics but do not attempt to carry
out any complicated calculations. You should assume that anyone reading
your discussion understands quantum mechanics but does not understand
anything about the theory of solids.

( Wisconsin)

Solution:

A crystal may be regarded as an infinite, periodic array of potential
wells, such as the lattice structure given in Problem 1065. Blochis theo-
rem states that the solution to the Schrédinger equation then has the form
u(z) exp(iKz), where K is a constant and u(z) is periodic with the pe-
riodicity of the lattice. The continuity conditions of u(z) and du(z)/dz
at the well boundaries limit the energy of the propagating particle to cer-
tain ranges of values, i.e., energy bands. An example is given in detail in
Problem 1065.

1064

A particle of mass m moves in one dimension in a periodic potential of
infinite extent. The potential is zero at most places, but in narrow regions
of width b separated by spaces of length a (b < a) the potential is Vp, where
Vo is a large positive potential.

[One may think of the potential as a sum of Dirac delta functions:

V(z) = i Vo bé(z — na).

n=-—00
Alternatively one can arrive at the same answer in a somewhat more
messy way by treating the intervals as finite and then going to the limit. ]

(a) What are the appropriate boundary conditions to apply to the wave
function, and why?
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(b) Let the lowest energy of a wave that can propagate through this
potential be Egp=h%k3/2m (this defines ko). Write down a transcendental
equation (not a differential equation) that can be solved to give kg and thus
Ep.

(c) Write down the wave function at energy Ep valid in the region 0 <
x <a (For uniformity, let us choose normalization and phase such that
¥{z = 0) = 1). What happens to the wave function between x = a and
z=a+b?

(d) Show that there are ranges of values of E, greater than Ey, for which
there is no eigenfunction. Find (exactly) the energy at which the first such
gap begins.

(Berkeley)

Solution:

(a) The Schrodinger equation is

AR
“am a2 Vb8 6 na)y (e) = BuGe)

n=—o0o

Integrating it from x =a —etox = a + € and letting ¢ = 0, we get
¥ (a*) — ¥/ (a7) = 20¢(a),
where © = mVyb/h2. This and the other boundary condition
P(a*) —¥(@™)=0

apply to the wave function at x = na, where n = —o0,...,-1,0, 1, ...,
+00.

(b) For x # na, there are two fundamental solutions to the Schrédinger
equation:

w1 (x) = €2, up (z) = e,

the corresponding energy being
E = h%k?/2m.

Let
Y(z)= Ae*® + Be ** 0<z<a
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According to Blochis Theorem, in the region a <x < 2a
¥(z) = eiKe [Aeik(x—a) 4 Be—ik(m—a)]’
where Kis the Bloch wave number. The boundary conditions give
e'f* (A+ B) = Ae™*® + Be e,
ike' (A — B) = ik (Ae'*® — Be~tk9)
+20Q (Ae'*e + Be~ ke,
For nonzero solutions of A and B we require

etKa _ gika giKa _ o—ika

iketfe _ (ik * 2Q)etke  —ikelKe 4 (ik — 2Q) e~ ke =9

or
Q
cos ka + i sin ka = cos Ka,

which determines the Bloch wave number K. Consequently, the allowed
values of k are limited to the range given by

coska+sk1- sin ka <1,

or
Q 2
(cos ka + T sin ka) <1
ko is the minimum of k that satisfy this inequality.

(c) For E = Ey,
P (z) = Ae'*® + Be7*® 0 <z < a,

where kg = \/2—'"52
Normalization (x = 0) = 1 gives

Y (x) = 2i A sin koz + e~ % 0<x<a.
The boundary conditions at x = a give

etKe = 9; A sin koa + e~ tke?
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or

2iA = (et e=th02y/ sin koa .

So Ck
_ (piKa _ ,—ikoay SID KoZ

Y(z)=(e € ) sin koo +

For z € [a, a + b}, the wave function has the form exp (+ks, ), where

k1 = /2m(Vo — Eo)/h.

(d) For ka = nm + 6, where § is a small positive number, we have

Q
cos ka + m sin ka

Q
= cos (nw + 6) +Esin (nm + §)

2 |
l-—+-=4|<L1.
-2+ 24| <
When ¢ is quite small, the left side = 1 + 2§/k> 1. Therefore in a certain
region of k > nr/a, there is no eigenfunction. On the other hand, ka = nm
corresponds to eigenvalues. So the energy at which the first energy gap
begins satisfies the relation ka =, or E = w2h%/2ma?.

1065

We wish to study particle-wave propagation in a one-dimensional peri-
odic potential constructed by iterating a isingle-potential? V(x) at inter-
vals of length [. V(x) vanishes for | z|> Z/2 and is symmetric in z (i.e.,
V(x) = V(-x)). The scattering properties of V(x) can be summarized as
follows:

If a wave is incident from the left, ¥, (z) = exp (ikz) for z < —1/2,
it produces a transmitted wave . (z) = exp (ikz) for x > /2 and a re-
flected wave ¥_ (X) = exp (-ikx) for x <—1/2. Transmitted and reflected
coefficients are given by

Yi(lz]) 1
@ - 5T - 2

1/J—(—|-"f|)~l 2ik |x] [ 2i6, _ ,2i80
RO gcep™ze e el

2ik |x|

e 218, + 62160],

N =~

[e

v

||

N | —
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and 4. and 4y are the phase shifts due to the potential V(z). Take these
results as given. Do not derive them.

Now consider an infinite periodic potential V. (x) constructed by iter-
ating the potential V{x) with centers separated by a distance ! (Fig. 1.32).
Call the points at which V. (z) = 0 Tinterpotential pointsT. We shall
attempt to construct waves propagating in the potential V() as super-
positions of left- and right-moving waves ¢, and ¢_.

VQ(X)
1\

i o

NDANP2A

Fig. 1.32

(a) Write recursion relations which relate the amplitudes of the right-
and left-moving waves at the nth interpotential point, ¢%, to the amplitudes
at the (n —1)th and (n + 1)th interpotential points, ¢~ and ¢3*.

(b) Obtain a recursion relation for ¢_ or ¢, alone by eliminating the
other from part (a).

(c) Obtain an expression for the ratio of amplitudes of ¢, to ¢_ at
successive interpotential points.

(d) Find the condition on k, é. and §y such that traveling waves are
allowed.

(e) Use this result to explain why it is inormalT for conduction by
electrons in metals to be allowed only for bands of values of energy.

(MIT)

Solution:
For the wave incident from the left, the potential being V(z), let

. 1 . .
¢t+ _ t¢+ezkx, = —2-(6126‘ + 61260);

"/)r— — 7.¢__e—1k1:’ r= 5 (6126e _ 61260).
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For the wave incident from the right, let the transmission and reflection
coefficients be t' and 7’ respectively. It can be shown that t' =¢,+' =
—r*t/t*. In the periodic potential, the transmission and reflection co-
efficients at adjacent interpotential points have relations ¢, =t,,_; and
rn -rn—1exp (i2kl). So the transmission coefficient can be denoted by a
single notation ¢.

(&) The waves at adjacent interpotential points are as shown in
Fig. 1.33. Obviously, only the reflection term of ¢ and the transmission
term of ¢! contribute to ¢7:

T =1 10"+t (1)
Similarly,
P =rng + "t ()
Thus we have
o = el g7 4 tgnt (3)
L =rnd} + ot (4)

n—1 n+1
A R
- — —

—

gutogn gntt
Fig. 1.33
(b) With n replaced by n + 1, Eq. (1) gives
¢t = gt tgl 5)
Equations (3),(4), (5) then give

- t(¢1_1 + ei2kl¢1+l)
¢+ T 1+ $2ei2kl _ .,.n,,.;enkl :
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Let ro = r. Then r, = r exp(i2nkl). Assume 7}, = —rkt/t*. Then
=71 exp (—i2nkl). Hence

¢n B t(¢1_1 + ei2kl¢1+l) 6
T T 1+ t2 ei2kl _ ppt @i2kl ( )

Similarly,
+1 ] -1
¢n ~ t(¢’_’ + eﬂkld)ﬁ )
= T 1t 212k _ ppt ei2kl *

(c) As the period of the potential is I, if ¥:(x) is the wave function in the
region [Zn—_1,%s ], then ¥(z —1) exp (id) is the wave function in the region

[@n,y Tnt1]. Thus
¢7_;+1 — ei(&—kl)¢1’
gL = i+ gn )

Let c, = ¢% /¢™. From (4) and (5) we obtain respectively

n+1
1= rnentt =, (8)
d)r:rl ¢'1i+1 .
T =g e ®)
Using (7), (9) can be written as
. n+1 ¢n+1
cne 2K q;—" =7 q;—" +te,,

or, using (8),

ene™ R (1 —rpcn) = (1= Tnen) + t2ca,

Tnca + (t2e' 2R p! 12K _ 1) ¢, + 1l 2kl = 0.

Solving for ¢, we have

o = (1 + ,,.,rle’i2kl _ t2e’i2kl) + \/5
21y,

’
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where
A= (t2ei2kl _ an;eizkz _ 1)2 _ 4rnT;ei2kl
— (tzeiw ikl _ 1)2 R

(d) The necessary condition for a stable wave to exist in the infinite
periodic field is

¢1+1/¢1 = eiél’
where 4; is real and independent of n. If this were not so, when n — co

one of ¢% and ¢+'") would be infinite. From (7), we see that §; = — kl.
From (6), we obtain

¢n—1 ¢‘n+l
1+ t2ei2kl _ ,r,,_lei2kl =t + + ei2kl +
o} %
—t [eitkl=8) + ei(kz+5)]_
Substituting 7' = —r*¢/t* in the above equation and using rr* + tt*= 1,

we obtain
te*! + t*e~* = 214* cos 6,

teikl + t*e—ikl
2tt* =L

or, using the definition oft,

which means

cos (26, + kl) + cos (26o + ki)
1+ cos [2(de — o)] -

<

|c0s(53+50+kl)|<1
[ cos(Be—00) |~

In general, only some of the values of k satisfy the above inequality,
i.e., only energy values in certain regions are allowed while the others are
forbidden. Thus we obtain the band structure of energy levels.

(e) In metals, the distribution of positive ions is regular and so the
conduction electrons move in a periodic potential. (d) Shows that the
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electron waves can only have certain k values, corresponding to bands of
electron energies.

1066
You are given a real operator A satisfying the quadratic equation
A*-3A+2=0.
This is the lowest-order equation that A obeys.

(a) What are the eigenvalues of A?
(b) What are the eigenstates of A?
(c) Prove that A is an observable.

(Buff&)
Solution:

(@) As A satisfies a quadratic equation it can be represented by a 2x2

matrix. Its eigenvalues are the roots of the quadratic equation A% -3X+ 2 =
0, /\1:1,/\2:2.

(b) Ais represented by the matrix

N 1 0
A= ( ) .
0 2
The eigenvalue equation

(02) )= ()
0 2 b b
then givesa =1,b=0for A=1anda =0, b =1 for A = 2. Hence the

eigenstates of A are ((1,) and ((1’ ).

(c) Since A = A*, A is Hermitian and hence an observable.

1067

If|4,) is any eigenstate of the electric charge operator Q corresponding
to eigenvalue g, that is to say,

Ql¥q) = al¥g),
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the icharge conjugationT operator C applied to |, ) leads to an eigenstate
[1¥—q) of Q corresponding to eigenvalue —g:

CW’q): |¢—q)-

(a) Find the eigenvalues of the operator CQ + QC.
(b) Can a state simultaneously be an eigenstate of C and of Q?
(Chicago)
Solution:
(a) Let
[4) =Z cq|%q) -

q
Then

(CQR+QC) |ty) =qC lthg) + QY—q) = ql¥—g) —qltp—) =0.

Thus the eigenvalue of the operator CQ + QC is zero.

(b) As C is the charge conjugation transformation, CQC~! = -Q, or
CQ +QC =0, i.e., Cand Q do not commute (they anticommute) they
cannot have common eigenstates. (Unless ¢ = 0, in which case it is quite
meaningless to introduce charge conjugation.)

1068

A quantum-mechanical system is known to possess only two energy
eigenstates denoted |1) and |2). The system also includes three other ob-
servables (besides the energy), known as P, Q and R. The states |1) and
|2) are normalized but they are not necessarily eigenstates of P, Q or R.

Determine as many of the eigenvalues of P, Q and R as possible on the
basis of the following sets of iexperimental datal- [Warning: one data set
is unphysical.]

(a) (1|P|1)=1/2,(1|P?|1)=1/4.

(b) (11QI1)=1/2, (1]Q*|1)=1/6.

(C) @IRI)=1, (1|R*|1)=5/4, (1|R®|1)="7/4

(MIT)
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Solution:

We are given three observables P, Q, R, which satisfy the Hermiticity
(n|P|m) = (m|P|n)*, and that the mechanical system has a complete
set of energy eigenstates |1) and |2).

(@) The completeness of the two states and the iexperimental datal,
give
1
P 1) =311+ al2),

where « is a constant to be determined. The orthogonality of the eigenstates
and the Hermiticity of P give

(1 1P|2>=%(1|2)+a2(z|2)=a*.

So we have
P2)=a"|1) + B]2),

where § is to be determined. Then

P%|1) = P(P|1))

% Pl +aP[2) = (1/4 + a*a)|1) + (/2 + af)[2).

As P?|1) =1 according to experiment, a*a = 0 and hence a = 0.
Therefore,
1
Pl1) ==1
) =51,

i.e., at least one of the eigenvalues of Pis1/2.
(b) Let

1
Q) = 511 +72),
where « is to be determined. By a similar procedure, we get y*y=1/6 —
1/4 < 0. So this data set is unphysical and the eigenvalue of Q could not

be determined.
(c) As (1|R|1) =1, we can write

R|1) =11) + A|2),
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where A is to be determined. Then
(X [R[2)=(1]|2) + A" (2]|2) = X",

showing that
R (2) =A"[1) + 7]2).
where 7 is to be determined. Consider
R%|1) = R|1) + AR|2)
= [1) + A[2) + xx* [1) + An|2).

Then as
(1 |R%]1) = 1+ AX* = g,
we have
XX* = 1
=
and so .
A = - exp (i),
2
and
1 3
R[1) = [1) + 5% ]2),
1 _is
RI2)=5e7 1) +nl2),
5 .
R =2+ 2 @+ medp).
4 2
It follows also

5 1 )
R3|1) =ZR|1)+§(1+n)e'5R|2)
=2y Se ) e 3@ M)

1 .
+ §(l+n)ne"5 12).
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Experimentally (1 |R3|1)=1. Thus $+ 1 (1 + n) =1, givingn=1.
Hence on the bases |1) and |2) the matrix of R is

(1 ﬁﬂw
L s :
Ee’ 1

To find the eigenvalues of R, solve

1-X %e‘i‘s

N
(4]
.
S
[ERN
1
X
1

e, (1-A)2-3=1-2-3)(@-xr+ 3) =0, and obtain the eigenvalues

of R=1% 3.

1069

For a charged particle in a magnetic field, find the commutation rules
for the operators corresponding to the components of the velocity.

(Berkeley)
Solution:

Suppose the magnetic field arises from a vector potential A. Then the
velocity components of the particle are

v = I:’I/m —qA;/mc.

Hence
(85, 0] = Elz- [131' - %Ai, Aj—%Aj]
= L {lps, A~ [0, Aj)} = L (Zﬁi - Z‘j])
= -T—inh;—cheijkBk,

where g, is the Levi-Civita density, use having been made of the corre-

spondence rule p; — % 2.
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1070

Using the coordinate-momentum commutation relation prove that

> (En—Eo)|(n|z|0)? = constant,

n

where E,, is the energy corresponding to the eigenstate |n). Obtain the
value of the constant. The Hamiltonian has the form H =p?/2M + V (xz).

(Berkeley)
Solution:
As
H = p%/2M + V(2),
we have
1 .
[H, z]= W[Pz,x] = —ihp/M,
and so
ih
[[H, z, 7] = M (P, z] =_h2/M'
Hence

2
(ml (18, 2], 2] jm) =~

On the other hand,

(m|[ [H, z],z]|m) = (ml Hz?>-2zHz + z*H |m)
=2E, (m|z?|m) — 2(m|zHz|m)
=2En Y _|(m|z|n) =23 En|(m|z|n)|®
n n

=2) (Em— Eq)|{m|z|n)?.

In the above we have used
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(m|z?|m) =) (m|z|n)(n|z|m)

=Zn:|(mlxln)lz
<m|sz1m>=;<m|xH|n><n|x|m>

=znjEn<m|z|n><n|x|m>

=2njEn|<m|zln>|2.

Equating the two resuits and setting m = 0, we obtain

S (B~ Eo)l(n]2]0) P = R2/2M.

1071
(a) Given a Hermitian operator A with eigenvalues a, and eigenfunc-
tions u, (z)[n =1, 2, ..., N; 0 <z <L}, show that the operator exp(iA)
is unitary.

(b) Conversely, given the matrix Unn oOf a unitary operator, construct

the matrix of a Hermitian operator in terms of Upmn.

(c) Given a second Hermitian operator B with eigenvalues b, and eigen-
functions w,(x), construct a representation of the unitary operator V that

transforms the eigenvectors of B into those of A.

Solution:
(a) As A+ = A, A being Hermitian,

{exp (i4)}T = exp (—iA™) = exp (—iA) = {exp (i4)} .

Hence exp(i4) is unitary.
(b) Let
Cmn = Umn + r:m =Umn + (U+)mn1
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C=U+U".

As Ut =U,C* = C. Therefore Cmn = Unn + Uy, is the matrix
representation of a Hermitian operator.

(c) The eigenkets of a Hermitian operator form a complete and orthonor-
mal set. Thus any | u,,) can be expanded in the complete set |vy,):

fum) = 3 10k) ok [um) = 3 [08) Vi,
k k
which defines Vim,
L
Viem :/ v (z) um (z) dx.
0

Similarly,

o) = 3 fus) (ug | vn)
=3 lug) vn fuy)*
= ijlw) Vi
= Z [uj) Vi
= Zm,-) Vi

Hence

lum) =3 3 145) Vit Vim =D _ [u5) 65mm
ik I

or
v+v = 1,

vt=v1,
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showing that V is unitary. Thus V is a unitary operator transforming the
eigenvectors of B into those of A

1072

Consider a one-dimensional oscillator with the Hamiltonian
H = p?/2m + mw?z?/2.

(a) Find the time dependence of the expectation values of the Tinitial
positionT and Tinitial momentumT operators

Zo = X €0S wt — (p/mw) sin wt,

Po = P COS Wt + rwwz Sin wt.

(b) Do these operators commute with the Hamiltonian?
(c) Do you find your results for (a) and (b) to be compatible? Discuss.

(d) What are the motion equations of the operators in the Heisenberg
picture?

(e) Compute the commutator [pg, o). What is its significance for mea-
surement theory?

(Princeton)
Solution:
(a) Making use of the relation
df 1 é] f
dt ik wHHL+ ot
we have

d{zo)

1 .
a ik [(x) cos wt, H] —w(z) sin wt

_'i [% sin wt, Hl —% cos wt
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d(gto) = ilh[(p) cos wt, H] — (p)w sin wt

121

+ %_l[mw(z) sin wt, H] +mw?(z) cos wt
1 — .

= i—h{p, HI cos wt — w{p) sin wt
+ —T?-hﬁ[x, H] sin wt + mw? (x) cos wt = 0.

Thus the expectation values of these operators are independent of time.
(b) Consider

[xo, H] = [z, H] cos wt _[p H] sin wt
mw

ihp . .
= cos wt + thwz sin wt,

[po, H] = [p, H] COS wt + mw [x, H] sin wt

= —ihmw?z cos Wt + ihwp sin wt.

Thus the operators xg, po do not commute with H.

(c) The results of (a) and (b) are still compatible. For while the ex-
pressions for zo and pg contain t explicitly, their non-commutation with H
does not exclude their being conserved. In fact

dxo O

1 _
gt = o Hl 5 =0
gm :l Hl + .8_1_)9. =
a — e 5 =0

showing that they are actually conserved.
(d) In the Heisenberg picture, the motion equation of an operator is

1 0A
dA/dt = — -
/dt 7 [A, H]+ En
Thus the motion equations of zo and pg are respectively

dzo/dt =0, dpo/dt =0.
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(e) Using the expressions for zq and pg, we have

[Po , o) = [p cos wt + mwz sin wt, o)

=[p, wo] cos wt + [X, zo] Muw sin wit

= [p, X COS wt - P sin Wt] cos wt
mw

+ [x,zcosvvt~—p— sin wt mw sin wt.
mw |

[p, x)cos® wt — [x, p]sin? wt

- [(L‘, p] = _lﬁﬁ

as [z, z] = [p, p] = O, [z, p] = %h.
In general, if two observables A and B satisfy the equation

[A, B] = ih,

then their root-mean-square deviations AA, AB, when they are measured
simultaneously, must satisfy the uncertainty principle

AA-ABZ%.

In the present case, the simultaneous measurements of position and
momentum in the same direction must result in

Am-Ang.

The relation shows

\/BzZ\/ApE > k2.

It is a relation between possible upper limits to the precision of the two
quantities when we measure them simultaneously.
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2001

An electron is confined in a three-dimensional infinite potential well.
The sides parallel to the z-, y-, and z-axes are of length L each.

(a) Write the appropriate Schrédinger equation.

(b) Write the time-independent wave function corresponding to the state
of the lowest possible energy.

(c) Give an expression for the number of states, N, having energy less
than some given E. Assume N > 1.

( Wisconsin)

Solution:

(a) The Schrodinger equation is

ihoyY (r, t)/0t = —(R?/2m) V¥ (r,t), 0<2,y,z<L,
P = 0, otherwise.

(b) By separation of variables, we can take that the wave function to be
the product of three wave functions each of a one-dimensional infinite well
potential. The wave function of the lowest energy level is

Yi(z, y, 2) = Yi(@)V1(y) ¥ (2),
i(x) = \/-% sin (% x) , etc.
Thus

Yin(z, v, 2) = (%)3/2 sin (%) sin (%) sin (%)

The corresponding energy is Ei1; = 3h?m2/2mL2.
(c) For a set of quantum numbers ng,n,, n, for the three dimensions,
the energy is

where

h2r2

= ImL?

Hence the number N of states whose energy is less than or equal to E is

equal to the number of sets of three positive integers nz,n,,n, satisfying
the inequality

(n? +n§+nf).

123
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2
2 2 2

ng + Ny + n, < _h27r2'
Consider a Cartesian coordinate system of axes nz,n,, n,. The number
N required is numerically equal to the volume in the first quadrant of a

sphere of radius (2mL%E/K?*72)1/2, provided N > 1. Thus
ol gm (el N\ am o mi2 N
T8 3 \ m? T 3 \2m2n? '

2002

A équarki (mass = m,/3) is confined in a cubical box with sides of
length 2 fermis = 2 x 10™1% m. Find the excitation energy from the ground
state to the first excited state in MeV.

( Wisconsin)
Solution:

The energy levels in the cubical box are given by

h27'l'2
En1 nanaz — 2

2 2 2
—m(n1+n2+n3), ni=12,....

Thus the energy of the ground state is E1;; = 3h%72/2ma?, that of
the first excited state is Ea1; = 6A%72/2ma? = 3h%7%/ma®. Hence the
excitation energy from the ground state to the first excited state is

_15x2h%c?
" mc2a?
_ 1.57%(6.58 x 1072%)2 x (3 x108)?

- = 461 MeV
(ZE) x 2 x 10-15)2 ©

AE = 3h%r2?/2ma?

2003

A NaCl crystal has some negative ion vacancies, each containing one
electron. Treat these electrons as moving freely inside a volume whose di-
mensions are on the order of the lattice constant. The crystal is at room
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temperature. Give a numerical estimate for the longest wavelength of elec-
tromagnetic radiation absorbed strongly by these electrons.
(MIT)

Solution:

The energy levels of an electron in a cubical box of sides a are given by
Enmk = (72h2/2ma?) (n? + m? + k?),

where n, m and k are positive integers. Taking a ~ 1 A, the ground state
energy is E111 = 3h2m%/2ma? ~ 112 eV. For a crystal at room temperature,
the electrons are almost all in the ground state. The longest wavelength
corresponds to a transition from the ground state to the nearest excited

state:
3m2h2

AE = By - B = 2
ma

= 112V,

for which

2004

An electron is confined to the interior of a hollow spherical cavity of
radius R with impenetrable walls. Find an expression for the pressure
exerted on the walls of the cavity by the electron in its ground state.

(MIT)

Solution:
For the ground state, ! = O, and if we set the radial wave function as
R(r) = x(r)/r,then x(r) is given by

d®>x 2uE
d_r2_+7x_0 forr < R,

x=0 forr>R,

where g is the electron rest mass. R(r) is finite at r = 0, so that x(0) = 0.
The solutions satisfying this condition are

2
xn=\/ﬁ sin-n%;, n=1,2,3,...)
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for which 252
(g
E,= ——n?.
2uR? n

The average force F acting radially on the walls by the electron is given

by R X
As the electron is in the ground state, n = 1 and
F=-0E,/0R = n*h*/uR?.
The pressure exerted on the walls is

p = F/AnR® = wh?/4uR5.

2005

A particle of mass m is constrained to move between two concentric
impermeable spheres of radii r =a and r =b. There is no other potential.
Find the ground state energy and normalized wave function.

(MIT)

Solution:

Let the radial wave function of the particle be R(r) = x(r)/r. Then
x(r) satisfies the equation

Txr) {@[E—V(r)]— l(l+1)}x(r)=0.

dr? h? r?

(a<r<b)

For the ground state, I = 0, so that only the radial wave function is
non-trivial. Since V(r) =0, letting K2 = 2mE/h?, we reduce the equation
to

X'+ Kx=0,
with
Xlrza = Xlr:b =0.
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x(a) = 0 requires the solution to have the form
x(r) = A sin [K(r —a)).
Then from x(b) = 0, we get the possible values of K:
K=nr/(b-a), (n=1,2,...)
For the particle in the ground state, i.e., n = 1, we obtain the energy
E = K2K?/2m = h®n?/2m(b - a)?.

From the normalization condition
b b
/ R%(r)r?dr = / x(r)dr =1,
a a

we get A =+/2/(b— a). Hence for the ground state, the normalized radial

wave function is
1 . w(r—a)

2 sin
b—ar b—a ’

and the normalized wave function is

R(r) =

1 2 1 . wn(r—a)
YO = e VeTar o .

2006

(a) For a simple harmonic oscillator with H = (p?/m + kxz?)/2, show
that the energy of the ground state has the lowest value compatible with
the uncertainty principle.

(b) The wave function of the state where the uncertainty principle mini-
mum is realized is a Gaussian function exp(—az?). Making use of this fact,
but without solving any differential equation, find the value of a.

(c) Making use of raising or lowering operators, but without solving any
differential equation, write down the (non-normalized) wave function of the
first excited state of the harmonic oscillator.



128 Problems and Solutions on Electromagnetism

(d) For a three-dimensional oscillator, write down, in polar coordinates,
the wave functions of the degenerate first excited state which is an eigen-

state of .
(Berkeley)

Solution:
(a) The ground state of the harmonic oscillator has even parity, so that

£=(0|z10)=0, F=(0|p|0)=0;

and so
Ap? = p2, Ax? = g2,

The uncertainty principle requires

_— —— K2
2. A2 > —.
Ap a2 -
It follows that
. p? k—
EF=—4 -
om T2 "
/k —
> —_ 2 2
ZVm Pz
Z—Z— £=hu}/2~Eo,

as ,% = w. Thus the energy of the ground state has the lowest value
compatible with the uncertainty principle.
(b) Using the given wave function we calculate

- 00
x2 =/ e~207’ g d:z:// e~2e2” gy = 1/4a,

- o 2 2 *© 2
p2 _h2 / p—az __2 e~ % d(l,'// e~ 20" g, — ﬁ2a,
dz oo

-0

and hence
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From 4E = 0 we see that when a = vkm/2h = mw/2h the energy is
minimum. Therefore a = mw/2h.
() In the Fock representation of harmonic oscillation we define

é=1i(p—imwi)/vV2m
at = —i(p + imwz)/V2m

Then [a,a%]=1
H= (% a+1/2) hw.

Denoting the ground state wave function by | 0). As H|0) = %hwl 0),
the last equation gives a*ta|0) = 0. It also gives

1
H(a*|0) =  hw* |0) + hwa*aa* |0)

% Fwat | 0) + hwat (a+a +1)|0)

grw(fﬁ 10)).

Hence

sty = —— (Lin 2 4y _mw 2
|1) = a*{0) = T ( zhax—t-zmwx) exp( 2hx)

\/—— Xexp _Eh—x)

in the coordinate representation.
(d) For a 3-dimensional oscillator, the wave function is

wnﬂlzns (r) = d)nl (:E) w‘nz (y) wna (Z) .

For the ground state, (n1, ng, nz) = (0, 0, 0). For the first excited
states, (nl,nZ,n3) = (1’0’0);(071’0);(01 011)

1
100 (1) = Ng Ni2az exp (__2_ 027‘2) ’

toto (r) = N§ N12ay exp ("

|
(TR SR
Q
D
-
(%)
N—’

1/)001 (1‘) = Ng N12CYZ exp <
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Expanding X, y, z in spherical harmonics and recombining the wave
functions, we get the eigenstates of 1,

Ym (r) = Np, exp (——12- a2r2) rYim (0, @) -

where

N,;1 = \/§/a2.

Note that here a =+/mw/k, which is the usual definition, different
from that given in (b).

2007

The diagram (Fig. 2.1) shows the six lowest energy levels and the asso-
ciated angular momenta for a spinless particle moving in a certain three
dimensional central potential. There are no iaccidentall degeneracies in
this energy spectrum. Give the number of nodes (changes in sign) in the
radial wave function associated with each level.

(MIT)
Solution:

The radial wave function of a particle in a three-dimensional central
potential can be written as R(r) = x(r)/r. With a given angular quantum
number [, the equation satisfied by x(r) has the form of a one-dimensional
Schrédinger equation. Hence, if an energy spectrum has no iaccidental”
degeneracies, the role of the nodes in the radial wave function of the particle
is the same as that in the one-dimensional wave function. For bound states,
Sturmis theorem remains applicable, i.e., x(r) obeys Sturmis theorem: the
radial wave function of the ground state has no node, while that of the nth
excited state has n nodes. Thus, for a bound state of energy E,, which has
quantum number n = n, + 1+ 1, the radial wave has n, nodes.

For angular guantum number [ =0, the numbers of nodes for the three
energy levels (ordered from low to high energy) are 0, 1 and 2.

Similarly, for [ = 1, the numbers of nodes are 0 and 1; for { = 2, the
number of nodes is 0.

Thus, the numbers of nodes in the energy levels shown in Fig. 2.1 are
0,1,0,0,1, 2, from low to high energy.
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E { =0
{ =1
1 =2
l =1
| 1 =0
{=0

Fig. 2.1

2008

A particle of mass m and charge g is bound to the origin by a spherically
symmetric linear restoring force. The energy levels are equally spaced at
intervals Awg above the ground state energy Eg = 3hwo/2. The states
can be described alternatively in a Cartesian basis (three one-dimensional
harmonic oscillators) or in a spherical basis (central field, separated into
angular and radial motions).

(a) In the Cartesian basis, table the occupation numbers of the vari-
ous states of the oscillators for the ground and first three excited levels.
Determine the total degeneracy of each of these levels.

(b) In the spherical basis, write down (do not solve) the radial equation
of motion.

(Note that in spherical coordinates V2 =24 2 (r2 2)—L; where L2 s
the operator of total orbital angular momentum squared in units of A2.)

Identify the effective potential and sketch it. For a given angular mo-
mentum, sketch the 1ground stateT radial wave function (for a given ! value)
and also the radial wave functions for the next two states of the same 1.

(c) For the four levels of part (a), write down the angular momentum
content and the parity of the states in each level. Compare the total de-
generacies with the answers in (a).

(d) Does the second excited state (E; = Thwy/2) have a linear Stark
effect? Why or why not? Compare similarities and differences between this
oscillator level and the second excited level (n = 3) of the nonrelativistic
hydrogen atom.

(Berkeley)
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Solution:
(a)
Table 2.1
Energy level | Occupation Numbers | Degeneracy
EO IOa Oa 0) 1
Ey 1,0, 0,10, 1, 0),]0, 0, 1)
E, 12, 0, 0,10, 2,0),10,0,2) | 6
Ili 11 0)’ |17 07 1)’ IO1 1’ 1>
Es 3, 0, 0,0, 3, 0},/0,0,3) | 10
12, 1, 0,10, 2, 1), |1, 0, 2)
(1, 2, 0),10, 1, 2,2, 0, 1)
1,1, 1)
(b) Let

¥(r) = R(r) Yim (6, ¢).

The radial wave function R(T) satisfies the equation
1d(,d 2m m o\ W+
r2 dr (r aR)+[h2 (E 2wr) r? k=0,

so that the effective potential is

Vegg = mw?r?/2 + K2(l + 1)/2mr?,

which is sketched in Fig. 2.2, where ro=[h2l(l+1)/m?w?]}/4. The shapes
of the radial wave functions of the three lowest states for a given 1 are shown
in Fig. 2.3.

vir)
y

Fig. 2.2
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Fig. 2.3

Note that the number of nodes of a wave function is equal to n,.

(©)

Table 2.2
E I | m P | D
Ey, 101 o0 + 1
E, |10, %1 - 3
E;, | 2|0, £1, +2 + 6
00
Es | 3]0 +1,+2,43 | — | 10
1 0, £1

Note: P = parity, D = degeneracy.

(d) The second excited state does not have a linear Stark effect because
X is an operator of odd parity while all the degenerate states for E; have
even parity, with the result that the matrix elements of H’ in the subspace
of the energy level E; are all zero.

On the other hand, for the second excited level of the hydrogen atom,
n = 3, its degenerate states have both even and odd parities, so that linear
Stark effect exists.

2009

(a) A nonrelativistic particle of mass m moves in the potential

V(z,y, z) = A(z® + % + 2Xzy) + B(2*® + 2u2),
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where A>0,B > 0, {A|<1,p is arbitrary. Find the energy eigenvalues.

(b) Now consider the following modified problem with a new potential
Vhew: fOor z>—p and any x and y, Ve =V, Where V is the same as in
part (a) above; for z < —g and any x and y, Vhew = +00. Find the ground
state energy.

(CUS)
Solution:
(a) We choose two new variables g,t defined by

= %(z-#y),t: -1—(93—3/),

V2
= (u+t)/V?2, y=T1/~§(ll—t),

and write the potential as

or

1
V(:E, Y, z) = A [5 (u2 + 2+ 2;Lt) + %(“2 + 12 _ 2y,t)

1
+2X 3 = t2)1 + B(2% + 2uz)

= AL+ A) p? + (1 =Nt + B(2% + 2u2)

and the differentials as
a al a 1

82 1 92 1

_1_(662 1 82 1)
V2 otop 2 ot 2/

X N a2 N a2
Bu? Ot 922
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Then Schrédinger equation becomes

o2 o2 0? 2m
st st E-V =0.
<8M2 + 5 + 822) op, t, 2) + = [E (1, t, 2 d(p, t, 2) =0

Let ¢(u,t,z) = U(p)T (t)Z(2). The above equation can be separated
into
0? 2m 2
a—#—z-U(p.)+ﬁ[E1 ~AQ+ N p)U(p) =0,
o? 2m 2
3 T(t) + -ﬁ—2[E2— Al - X)) T(t) =0,

g—:z Z(2) + (2m/h?) [Es — B(2% + 2u2)] Z(z) = 0,

with
E1 + E2 + E3 =E.
By setting z’ = z + u, E} = E3 + Bu?, all the above three equations can

be reduced to that for a harmonic oscillator. Thus the energy eigenvalues
are

1 24
Bo(med)n a-yZaen

2 m

1 2A
Y A O

2 m

1
E; = <n3+—) ﬁwg—BM2, w3 = g

2 m

(n,n2,m3=0,1,2 3, ...)

(b) With a new potential Vyew such that for z < —p, View = 00 and for
z > —pu, View IS the same as that in (a), the wave function must vanish for
z— —pu. The Z-equation has solution

Z ~ Hp, (Q)e /2,

where ¢ = (2mB/k?)Y4(z+ p), H,,(C) is the n3th Hermite polynomial and
has the parity of n3. Hence n3 must be an odd integer. The ground state
is the state for n; = ng = 0 and n3 = 1, with the corresponding energy

E = A(w; + w2)/2 + 3hws/2 — Bu?.
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2010

A particle of mass m moves in the logarithmic potential
V(r) = C In(r/ro).

Show that:

(@) All eigenstates have the same mean squared velocity. Find this mean
squared velocity.

(b) The spacing between any two levels is independent of the mass m.
(CUS)

Solution:
() We have

V) = (P2t} = = (P = = [ drurPPy

and, for a stationary state, the virial law gives
. 1
Hence

= (P?/m?) =

—~
<

N

~
|

1 1
—-2(T) = ={r- VV)

_1 3 4 .

—-r-n—Jdr- (rdTClnr/ro)d)dJ
C

& 3 2 _ ¥

—'m\]drh/)l m7

which is true for any eigenstate.

(b) Since
8E, _[|8H|\ /| P2
8m  \|om!|/ 2m?
__C
2m’
O8E,, /8m is independent of n. It follows that
NE, — E.-1) o cC C
om T 2m ' 2m
i.e., E,— E,,—1 is independent of the mass m.

)=-3 )

¥
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2011

Assume that the eigenstates of a hydrogen atom isolated in space are
all known and designated as usual by

¢nlm (7', 07 ¢) = Rnl (T) Ylm (0, d)) .

Suppose the nucleus of a hydrogen atom is located at a distance d from an
infinite potential wall which, of course, tends to distort the hydrogen atom.

(a) Find the explicit form of the ground state wave function of this
hydrogen atom as d approaches zero.
(b) Find all other eigenstates of this hydrogen atom in half-space, i.e.
d — 0, in terms of the Ry,;and Y.
(Buffalo)

Solution:

(a) Choose a coordinate system with origin at the center of the nucleus
and z-axis perpendicular to the wall surface as shown in Fig. 2.4. As d = 0,
the solutions of the Schrédinger equation are still R,,;Y;,, in the half-space
z>0ie,0<0<m/2, but must satisfy the condition ¥ =0 at 8 = 7/2
where V = co. That is, only solutions satisfying ! +m =odd integer are
acceptable. As |m|<{, the first suitable spherical harmonic is

Y10 = v/3/47 cosé.

T 7y Ve

Fig. 2.4
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Since n > + 1, the ground state wave function is R2;Yj0.

(b) All the other eigenstates have wave functions Rp;Y;, where ! +m =
odd integer. For a given [, we have m=[-1,1-3,...,-1 + 1 and hence
a degeneracy 1.

2012

At the time t = 0 the wave function for hydrogen atom is

1
YP(r, 0) = 71_6(2%00 + Y210 + V2¥a11 + V3¥21-1),

where the subscripts are values of the quantum numbers n, I, m. Ignore
spin and radiative transitions.

(a) What is the expectation value for the energy of this system?
(b) What is the probability of finding the system with [ =1, m =+1
as a function of time?

(c) What is the probability of finding the electron within 10~ ¢cm of
the proton (at time t = 0)? (A good approximate result is acceptable here.)
(d) How does this wave function evolve in time; i.e., what is (r, t)?

(e) Suppose a measurement is made which shows that L=1and L, =
+1. Describe the wave function immediately after such a measurement in
terms of the ¥nim used above.

(Berkeley)

Solution:

(a) Making use of the orthonormality of the wave functions, the expec-
tation value for the energy is

E=®|H|Y)= %(2%00 + Y210 + V20211 + V32111 2E19%100
+ Eathoio + V2Eatha) + V3Ea1 1)

1
=-]B (4E1 + Ey + 2FE5 + 3E2) = 116 (4E1 + 6E2)

2\ 2
—0.55E, = —225—5 me? (%—c)

0.55 1
=~ = x051 x 108 x — = -7.47
2 XX a7 v,
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as Ey = —me*/2h?, E; = L E; for the hydrogen atom.
(b) Since

b(2)) = exp (—— Ht) $(0)),

(n11 ] 9%(t)) =dn2 <211 exp (—% I?t)\¢(0)>

T .
= dpn2 \/; exp (—% E2t> ,

using the given wave function for ¢ = 0. Hence the probability required is

we have

P = (il 19(0) =5 6nz.

Thus if n = 2, P =1/5; otherwise P = 0.
(c) Let @ =1071% cm. We have

23
P =J Y e drdQ
= f —1—(4|R10|2+6|Rzll2)7'2dr,
w 10

making use of the given wave function as in (a). Here for the hydrogen

atom

e—-r/2a ,

4
2 - = ,~2r/a R 2 _
| Rio | 3¢ , | Rat] 5105

and a=5.29 x 1079 cm. Asr <a < a, we can make the approximation

—2r/a~ 1-— ZT e—r/2a._____1 o
ar 2a
Then
4 [ 4 2r\ 6 [* r?
~— | = (1-2 - | = {1- d
P ), @ (1 a) dr+10/ 24a5( 2a)r "
4 ra\3 ardl 4 6 1 sa\® 1 a\b
=[§ (3) *2(3)} ﬁ*ﬁ[ﬁa (3) -~ = (3) ]
3
8 o L 36x10°C.

~715 0a
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(d) The wave function at time t is
1
Wie,t) =exp| -3 B (e, 0

1 . .
=V 10 (2™ 4100 + e 10

+ V2 e ety + V3e Tty 1],

where wy = Ey/h,wa = Ey/h.
(e) Since n>L+1, with L=1 we have n = 2. Consequently the
required state vector has the form

|} = C,4 |211) + Co | 210) + C_ |21 — 1).

Using L, = (Ly + L_)/2, with L_Y}, = /(I —m+ 1) ({+m) Yim-1,
LyYim = (+m+1)({—m)Yims1, we can write Ly|)=|)as

1
5{\/500| 211) +v2(C4 + C_)| 210) + V2Co| 21 — 1))
= C,|211) + Co|210) + C_|21— 1),

and obtain
C,=C_= ﬂ
+ - \/§
Hence 1
1) = 500(\/§|211)+2|210>+\/5|21—1))-

Normalization

C2

(|)=_4°_(2+4+2)=1

gives Cp = 715 Therefore

|)=%(\ 211) +v/2] 210) +|21 — 1)).

2013

The ground state energy and Bohr radius for the hydrogen atom are
By = —e%/2a9, ap = h%/me?, where m is the reduced mass of the system.
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[me = 9.11 x1072 g, m, = 1.67 x 10724 g, e = 4.80 x 107 es.u., h =
1.05 x 10~%7 erg sec.]

(a) Compute the ground state energy and Bohr radius of the positron-
ium.

(b) What is the degeneracy of the positronium ground state due to
electron spin? Write down the possible spin wave functions which have
definite values of the total spin together with the corresponding eigenvalues.

(c) The ground state of positronium can decay by annihilation into
photons. Calculate the energy and angular momentum released in this
process and prove that there must be at least two photons in the final
state.

(Buffalo)

Solution:

(a) The reduced mass m of the positronium is given by ;- = -+ L,
i.e., m=m./2. Its use in the formulas gives

= 6.8 eV,

= 2a9 2

a0 = 1.05x10~% cm.

2 2 2\2 6
E, e me (e) 0.51 x 10

- he) =4 x 1372

(b) The degeneracy of the positronium ground state is 4. Denote the
positron by 1 and the electron by 2, and let the spin eigenstates in the z
direction of a single particle be a and 3, corresponding to eigenvalues £/2
and —Fk/2 respectively. Then the ground eigenstates with definite total spin
S =51 + s2 and z-component of the total spin S; = s, + s2, are

a(l)a(2), s= h S, = h

% (@(1)B(2) + B1)a2)], S=h, S,=0.

B(1)B(2), S=h, S,=-—h
1 — —

7 [(1)8(2) - B(1)a(2)], $=0, S,=0.

(C) The energy released in the annihilation process mostly comes from
the rest masses of the electron and positron, AE = 2m.c? = 1.02 MeV.
The released angular momentum depends on the state of the positronium
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before the annihilation. For the ground state S = 0, no angular momen-
tum is released. For the state S = £, the angular momentum released is
AJ = /(I + 1) h = v2h. There must be at least two photons in the final
state of an annihilation, for if there were only one photon produced in the
annihilation of a positronium, the energy and momentum of the system
could not both be conserved. This can be shown by a simple argument.
If the single photon has energy E, it must have a momentum E/c at the
same time. Thus the momentum of the photon cannot be zero in any ref-
erence frame. But in the positroniumis rest frame the momentum is zero
throughout the annihilation. Hence we have to conclude that there must
be at least two photons in the final state of an annihilation whose momenta
cancel out in the rest frame of the positronium.

2014

Consider an electron moving in a spherically symmetric potential V =
kr,where k > 0.

(a) Use the uncertainty principle to estimate the ground state energy.

(b) Use the Bohr-Sommerfeld quantization rule to calculate the ground
state energy.

(c) Do the same using the variational principle and a trial wave function
of your own choice.

(d) Solve for the energy eigenvalue and eigenfunction exactly for the
ground state.

(Hint: Use Fourier transforms.)

(e) Write down the effective potential for nonzero angular momentum
states.

(Berkeley)
Solution:
(a) The uncertainty principle states that
h
ApAr > 2

where

Ap= [P =p)%? = [(P®—2pp + P2)]'/?
=(p? - )2,
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Ar= (72 — 72)1/2,

The potential is spherically symmetric, so we can take 5 =0, i.e. Ap=

p?. For an estimate of the energy

n2
E=2 4 kT,
2m
we shall also take
Ar ~ F.
Then A )2 (A )2 .
Y4 p)* + kh
E~ > T 20
am TRATZ 5o A,

For the ground state energy E, we have

o5 _ ok _,
8Ap m  2(Ap)?2

1/3
or= ()

252\ 1/3
=3 (BT
2 am

giving

and

(b) The Bohr-Sommerfeld quantization rule gives

fPrdr=n,h, fP¢d¢=n¢h.

Choose polar coordinates such that the particle is moving in the plane
6 = n/2. The ground state is given by n, = 0, ny = 1, and the orbit is
circular with radius a. The second integral gives

2

Py =Iw =ma‘w = h.

The central force is
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Combining we have a = (h?/mk)*/3, and hence
Ep = Pg/Zma2+ ka = g(k2h2/m)l/3.

(c) The notion in the ground state does not depend on & and ¢. Take a
trial wave function @ = exp (—Ar) and evaluate

= (W H[Y)
H=-—"+7"—"°
W ly)
where
N h2
H=—-—-V%+kr
2m
As
R2f® o ld (,d _y 2
— T_____ —_— T d
(W] H|¢) o 2m € r2 dr (T dre ) rar
x
+k/ e dr
0
h? 72 —oar 2 k3!
——%)\ A (;—‘A) T d’l"+(2)\)4
_ o, 3k
T 8mX 8%’
% 2 1
=27 .2 — -
(1/)“/1)0‘/0 € Td"—(z)\)z 453"’
we have r22 .
_ 3
H= 2m | 2\

we find
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and hence
g9k _3 (9K
T 4xT2\4 m ‘
(d) The Schrédinger equation for the radial motion can be written as
h?  d?
o g Xt (kr—E)x =0,

where x = 7R, R being the radial wave function. For the ground state, the
angular wave function is constant. By the transformation

_ (2mk 1/3 E
the Schrodinger equation becomes the Airy equation

d2
d’;(zy) -yx(y) = 0,

whose solutions are Ai(—z) and Ai(zx), where z=—|y|,fory<0andy >0
respectively. The boundary conditions that R(r) and Ri(r) be continuous
at r = £, je. y = 0, are satisfied automatically as Ai(z) = Ai(-z),
Ai'(z) = Ai'(—z) for £ — 0. The condition that R(r) is finite at r— 0
requires that Ai(—z)=rR(r)— 0 as r— 0. The first zero of Ai(—zx)
occurs at xz = zo =~ 2.35. Hence the ground state energy is

h2 %
Ep = <M> kxo,

and the ground state eigenfunction is
1
1 . 2mk\ 3
R(r) = ~Ai(~z)  with z= (%) (%_r>
(e) The effective potential for nonzero angular momentum is

Ve = kr + K2I(I + 1)/2mr?.

2015

The interactions of heavy quarks are often approximated by a spin-
independent nonrelativistic potential which is a linear function of the radial
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variable r, where r is the separation of the quarks: V(r) = A+Br. Thus the
famous “charmonium” particles, the ¢ and ¢, with rest energies 3.1 GeV
and 3.7 GeV (1 GeV=10%¢eV), are believed tobe then = 0 andn = 1
bound states of zero orbital angular momentum of a icharmi quark of mass
m.=1.5GeV/c? (i.e. E = 1.5 GeV) and an anti-quark of the same mass
in the above linear potential. Similarly, the recently discovered upsilon
particles, the T and Y’, are believed to be the n = 0 and n = 1 zero orbital

angular momentum bound states of a ibottomT quark and anti-quark pair
in the same potential. The rest mass of bottom quark is m;, = 4.5 GeV/c2.
The rest energy of T is 9.5 GeV.

(a) Using dimensional analysis, derive a relation between the energy
splitting of the ¥ and ¢’ and that of the T and Y’, and thereby evaluate
the rest energy of the Y’. (Express all energies in units of GeV)

(b) Call the n = 2, zero orbital angular momentum charmonium particle
the 9. Use the WKB approximation to estimate the energy splitting of
the ¥’ and the " in terms of the energy splitting of the 4 and the v, and
thereby give a numerical estimate of the rest energy of the ¢”.

(Princeton)

Solution:

In the center-of-mass system of a quark and its antiquark, the equation
of relative motion is

R: _,
[_E V; + V(r] P(r) = EryY(r), p=my/2,

where Ef is the relative motion energy, m, is the mass of the quark. When
the angular momentum is zero, the above equation in spherical coordinates
can be simplified to

21 d/(,d
Let R(r) = xo(r)/r. Then xo (r) satisfies
d?xo0

ez t [ER V(r)lxe-0,

d*xo L2
dr? h2

(Er—A—-Br)xo=0.
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(a) Suppose the energy of a bound state depends on the principal quan-
tum number n, which is a dimensionless quantity, the constant B in V(r),
the quark reduced mass u, and A, namely

E=f (n)B"u¥h*

As,
[E] = [M}[LPP[T)2,
(B] = [M][L][T]72, [4] = [M]
(W] = [M][L]*[T]71,
we have
2 1
T=E=3 V=3
and hence

E = f(n) (BR)*3 (u)™1/3,

where f (n) is a function of the principal quantum number n. Then

(BR)*/3 (Bh)*/3

AEy =Ey — Ey = f(1) e ~ f(0) E

2/3
_ B -5 o)),

PC

and similarly

Bh 2/3
apr = 2 11y o).
Fo
Hence
AEy (ﬂc)l/i* 1\ /3
AEy  \m) (5) '
As

E'r/ — ET ~0.42 GeV,
Ex/=Er+042 =95+ 0.42 ~ 9.9 GeV.
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(b) Applying the WKB approximation to the equation for xo we obtain
the Bohr-Sommerfeld quantization rule

2/ V2u(EgR — A —Br)dr = (n + 3/4)h with a=ERB_A,
0

which gives, writing E,, for Eg,

3 (n+ 3) Br/4)*®
(2u)1/3
Application to the energy splitting gives

(BR)¥3 [[21\*® [ 9\?3
BB | () ~(%) -
£ g, - (BRY[(33 2/3 21\%3
VYT o) (E> i <ﬁ> !

Eyn— Ey (33)%3—(21)2/° o0.81
Ey —Ey  (21)23 - (9)2/3~

E,=A+

and hence

Thus

Eyr — Ey =0.81 x (Eyy— Ey)=0.81 x (3.7 — 3.1)
~ 0.49 GeV ,

and

Eyn=37+0.49 = 4.2 GeV.

2016

Two particles, each of mass M, are attracted to each other by a potential
V(r) = —(¢%/d) exp (-r/d),

where d = h/mc with mc2 = 140 million electron volts (MeV), Mc? =
940 MeV.
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(@) Show that for I = 0 the radial Schrodinger equation for this system
can be reduced to Besselis differential equation

d>J, (x)  1dJ, (z) _ _
w2t ax T\ ) =0

by means of the change of variable x = « exp (—8r) for a suitable choice
of a and .

N4V 870 AV A/ R
x WMol o S W A A
1s /
N1/ nnnnnn it
N7 /147,78
/1 /488
W) 187/ 187,174V 1/ &Y. Y.
107 '//4'// ///f//l////,/ /////"-3
1/ 8/, 87//4W/ 7,74 4%
. 74 1744V
, Y // 4////// /,/02
6 // ///'//A/ ///,/OJ
I N
-/ 7avi v
ot 7AW ¥a
A N/
/7 f
°-l1.32A-101 %W 5 6 7 ¢
P

Fig. 2.5
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(b) Suppose that this system is found to have only one bound state
with a binding energy of 2.2 MeV; evaluate g2/khc numerically and state its
units.

[Note: a graph of values J, (x) in x — p plane has been provided with
the information at the beginning of the examination (Fig. 2.5)].

(c) What would the minimum value of g2/he have to be in order to have
two ! = 0 bound states (d and M remaining the same)?.

(MIT)
Solution:

(&) When [ = 0, the radial wave function R(r) = x(r)/r satisfies the
equation
?x(r) M 9
+ = [E + Ze/d =
dr? B2 ( + d ¢ ) x(r) =0,

the reduced mass being ¢ = M/2. By the change of variable

r—-x=ae P, ye€0aq,

and writing x(r) = J(x), we have

?J(x) + 1 dJ(z) 4 [ Mg? (x)l/dﬁ 1 ME 1

dz? z dz R2d3 \a 2 @ 72 J(z) =0.
Letting
2g 1
== VM = —
a=- d, p 24’
and
» APM|E|  ARME
P = @

we can reduce the Schrodinger equation to Besselis differential equation of
order p

2
P

Thus the (unnormalized) radial wave function is

41143 (z)
F= TR (

dz? = X

Ry = 2
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(b) For bound states we require that for r — oo, R(r) = 0, or J, remains
finite. This demands that p > 0. R(r)must also be finite at r = 0, which
means that x(0) = J,(c) = 0.

This equation has an infinite number of real roots. For E =2.2 MeV,

Zd\/TE‘_ \/_W——\/940x2 ~ 0.65.

Figure 2.5 shows the contours of J, (z) for different values (indicated by
right and top numbers) of the function in the x — p plane. The lowest zero
of J,,(z) for p = 0.65 is 3.3, the next 6.6. Thus for a = 3.3, the system has
one ! = 0 bound state, for which

g% /hc = ha’/aMcd = mcta®/AMc? ~ 0.41,

which is a dimensionless constant.
(c) For a= 6.6, there is an additional 1 = 0 bound state. Thus the
minimum value of a for two ! = 0 bound states is 6.6, for which

(g% /hc)min = mc amm/4Mc ~ 1.62.

2017

Prove that in any single-particle bound energy eigenstate the following
relation is satisfied in nonrelativistic quantum mechanics for a central field-
of-force potential V(r),

vor- 2 (42 L (2)

where (0) is the wave function at the origin, m the particle mass, and L?2
the square of the orbital angular momentum operator (let A = 1). Give a
classical interpretation of this equation for the case of a state with angular
momentum # 0.

(Columbia)
Solution:
(@) In the field of central force, the Schrédinger equation is

1 |1 8 d 2
~om [7257(25;) r}"’“’“)'” By
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Let 1
'l/)(’l“, 6, 90) = R("‘) Yim (0’ (,0) = ; U(T) Yim (0’ <P),

where u(r)=rR(r), and we have for the radial motion

u” + {Zm [E - V()] - l(lr_; 1) }u =0, (r>0).

Multiplying the two sides of the above with »’(r) and integrating from
r =0 to r = o0, we get

Ju’(r)u"(r)dr+/{2m [E—V(r)]~&;—l)} (%uQ(r)),drzo.

For the eigenstates we may assume u’(oo) = 0, u{oo) = u(0) = 0. With
u’ (0) = [R(r) + 7R’ (r)]r=0 = R(O), partial integration gives

1 1 2 AV(r) 2(0+1) _
2R(O)—i—2 [.mJR ar rdr—-JT—gR rdrl—O.
Hence

9O = = B (0)

1 J R Yim 0,0 L) [R(r) Yim (6, )] r2drd2
27 dr

72
- o [ IROYYinm (6.0)) 75 [RE) Yim 0, @)lr"dras,

v = (20 L (1,

(b) For 150, |4(0)|2 = 0, and so

() =5 (=)

Its corresponding classical expression is

or

d

L2

1
m r
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Here F,. = —%}Q is the centripetal force, and

1 L2 rxvi? 1 ) v#
Eﬁ_m%: m;(vsmér,v)zz m —:—-,

=mar,
where v is the tangential velocity along the spherical surface of r, is mass
2

multiplied by the centripetal acceleration a,. = 2. The equation thus
expresses Newtonis second law of motion.

2018

A spinless particle of mass m is subject (in 3 dimensions) to a spherically
symmetric attractive square-well potential of radius rg.

(a) What is the minimum depth of the potential needed to achieve two
bound states of zero angular momentum?

(b) With a potential of this depth, what are the eigenvalues of the
Hamiltonian that belong to zero total angular momentum? (If necessary
you may express part of your answer through the solution of a transcen-
dental equation.)

(c) If the particle is in the ground state, sketch the wave function in the
coordinate basis and the corresponding coordinate probability distribution.
Explain carefully the physical significance of the latter.

(d) Predict the result of a (single) measurement of the particle kinetic
energy in terms of this wave function. You may express your prediction
through one-dimensional definite integrals.

(e) On the basis of the uncertainty principle, give a qualitative connec-
tion between parts (c) and (d) above.

(Berkeley)

Solution:

(a) The attractive potential may be represented by V =—-V,, where V,
is a positive constant. For bound states 0 > E > —V;. Thus for [ = 0 the
radial wave function R(r) = x(r)/r satisfies the equations

. B d%x
2m dr?
h? d’x
2m dr?

-Wx = Ex, (0<r<rp)

= Ey, (ro <r < )
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with x(0) = 0 and x(oo) finite. To suit these conditions the wave function
may be chosen as follows:

x(r) =sin ar, O<r<rg,
x(r) = B exp (—fr), To < T <00,
where a = 1 /2m(E + W), 8= } V-2mE.
From the boundary condition that at r = rg, x and x’ should be con-
tinuous we get —a cot arg = 8. Defining € = arg, 7 = Bro, we have

&+ n* = 2mVorg/R?,
~€cot&E=m.

Each set of the positive numbers &,n satisfying these equations gives
a bound state. In Fig. 2.6 curve 1 represents n=~—£ cot € and curve 2,
€2 +n? =22 for example. As shown in the figure, for a given value of V,
to have two intersections in the quadrant we require

2mVorg y_2,
2 T\ 2

9m2h2

(¢ Bl 5 )
8mrg

which is the minimum potential depth needed to achieve two bound states
of zero angular momentum.

or

"
3
2 2 l
1
o 112 3 155
r KLy
2
Fig. 2.6

(b) With a potential of depth given above, one intersection occurs at
n = 0, for which g8 =+/-2mFE = 0, i.e., E =0. The other intersection

occurs at €2+ n? = (%"")2, ie., &= §2l'. \/1- (2%2)2, and —€ cot £ =17, i.e,
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1 (3n _(2Pn0 2 3 26ro\?
s (F) V- (5) = |7 - (BR) | =2

Solving for 3, we get the second eigenvalue of the Hamiltonian,

,32h2
T 2m

(c) Setting the normalized ground state wave function as

x{r) = A sin ar, 0<r<mr,
x(r) = Asin argexp[B(ro—7)], 7 >0,

we have
00 oo
471'/ R’r?dr = 4n / u?dr
0 0
To
= 47 A? ‘1 sin? ar dr + 4n A? sin® are?Pre
{o o]
X / e Prdr =1,
To
or

1 L _ Lo
—_— = —{aTp — — .
A 2 0 — Sin arg cos arg) 5 sin“ arg

The wave function and probability distribution are shown in Figs 2.7(a)
and 2.7(b) respectively.

It can be seen that the probability of finding the particle is very large
for r <rg and it attenuates exponentially for r > ro, and we can regard
the particle as being bound in the square-well potential.

(d) The kinetic energy of the particle, Er = p?/2m, is a function depen-
dent solely on the momentum p; thus the probability of finding a certain
value of the kinetic energy by a single measurement is the same as that of
finding the corresponding value of the momentum p, | %(p)|2. Here 1(p)
is the Fourier transform of the ground state coordinate wave function,
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Xir)

2

90 1 =19@) = by [ X eerinar

T

oo g 2w
/ / / —X(T) g ipreos8/h oy 9d9dc,or2 dr
0 o Jo T

2

1
"~ 4n(2mwh)3

_ 1 /°° x(r) sin (§) 2 dr
0

T 2r2p8 r (%)

The integration can be effected when the expression for x(r)in (c) is
substituted in the integrand. The average kinetic energy Er is

— p2
ET=<1/11 ¢1>=E1—(¢11VW1)

2m

T0o 1
=E1+Vo/ A% sin? or - = -4mr? dr
a T
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sin 2arg
2 '

= E; + 2nVp A2 (ro -

(e) From the above we see that the wave function in space coordinates
in (c) gives the space probability distribution, whereas the wave function in
p-space in (d) gives the momentum probability distribution. The product
of uncertainities of one simultaneous measurement of the position and the
momentum must satisfy the uncertainty principle

ApAr > h/2.

That is to say, the two complement each other.

2019

(@) Given a one-dimensional potential (Fig. 2.8)

V=-W, |x|<a’
V =0, |z|>a,

show that there is always at least one bound state for attractive potentials
Vo > 0. (You may solve the eigenvalue condition by graphical means.)

(b) Compare the Schrédinger equation for the above one-dimensional
case with that for the radial part U(r) of the three-dimensional wave func-
tion when L =0,

Y(r) = r~U(r) Yo (9),

where (r) is the solution of the Schrédinger equation for the potential

V=-W r<a,
v =0, r>a.

Why is there not always a bound state for V4 > 0 in the three-dimen-
sional case?
(MIT)



158 Problems and Solutions on Electromagnetism

Vix)
A
-a a
— - _0 ______ — X
-V
Fig. 2.8

Solution:

(@) For the bound state of a particle, E < 0. For |z|>a, V =0 and
the Schrédinger equation

d*> 2mE
TR v

has solutions

Ae ¥z x > a,
¥(z) =

BeF=*, < -—a,

where
2mE
Rz -’

For |z | < a, the Schrodinger equation

K =4/~

d*p  2m
;1—1;_2_+ﬁ(V0+E)¢=0

has solutions
¥(x)~ cos kz, (even parity)

Y(z) ~ sinkz, (odd parity)

k= 2m(Vy + E)
VTR

provided E > —V4. Here we need only consider states of even parity which
include the ground state.

where
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The continuity of the wave function and its derivative at x = xa requires
k tan ka = k’. Set ka = &, kia = 5. Then the following equations determine
the energy levels of the bound states:

¢ tan§ =,
&% + n? = 2mVpa®/h?,

These equations must in general be solved by graphical means. In
Fig. 2.9(a), curve 1 is a plot of 7= £ tan &, and curve 2 plots €2+ n? = 1.
The dashed line 3 is the asymtotic curve for the former with £ = w/2. Since
curve 1 goes through the origin, there is at least one solution no matter how
small is the value of Vpa?. Thus there is always at least one bound state
for a one-dimensional symmetrical square-well potential.

1
3 |

1
0o 1 2 3 & &

Fig. 2.9(a)

b — ————

0 1 2 3 A 3

Fig. 2.9(b)
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(b) For r > a, the radial Schrédinger equation

ﬂf_ + 2mE
dr? h?

has solution U(r) = A exp(—«'r), where

U=o0,

, 2mE
FENTTR
For r < a, the equation is
d?U  2m
ey + Fz W+EYU=0

and the solution that satisfies the boundary condition U(r)rigo isU(r) =

B sin kr, where
2m(Vo + E)
K= —-hz——‘ .

The continuity of the wave function and its derivative at r = a, requires

K cot ka = —K'. Setting ka = &, x'a = n we get

{ cot 6 =-n,

£+’ = 2mVoa2/h2.
These are again to be solved by graphical means. Fig. 2.9(b) shows curve 1
which is a plot of £ cot £ = —1, and the dashed line 2 which is its asymptotic
if £ = 7. It can be seen that only when

2
€2 + n? = 2mVpa® /K2 > (%) ,
or
Voa? > n2h?/8m,

can the equations have a solution. Hence, unlike the one-dimensional case,
only when Vya? > 72h%/8m can there be a bound state.

2020

(a) Consider a particle of mass m moving in a three-dimensional square-
well potential V(| r |). Show that for a well of fixed radius R, a bound state
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exists only if the depth of the well has at least a certain minimum value.
Calculate that minimum value.

(b) The analogous problem in one dimension leads to a different answer.
What is that answer?

(c) Can you show that the general nature of the answers to (a) and (b)
above remains the same for a well of arbitrary shape? For example, in the
one-dimensional case (b)

Viz)= M(z)<0, a<z<b,
V(z) = 0, r<a or z>b,

consider various values of A while keeping f(x) unchanged.
(CUSPEA)

Solution:

(@) Suppose that there is a bound state ¥(r) and that it is the ground
state (I = 0), so that ¥(r) = ¢(r). The eigenequation is

e g (P 5 90) + Ve = Evr),

where E <0, and
V(r)=0, r> R,
V(1) =-Vp, 0<7<R,

with Vg > 0, as shown in Fig. 2.10. The solution is

vir)

Fig. 2.10
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A sin(kr)/r,r < R, k:\/w,

—2mE

R
where A and B are normalization constants. The continuity of ¢ and ¢’ at
r =R, or equivalently

¥(r) =
Be-*7/r, r>R, k'=

In(rg(r))—r- = In(ry(r)]r=g+ »
gives
k cot (kR)= -k,
while the definitions of k, k¥’ require

_ 2mWy

2 r2
k“+ k 2

These equations can be solved graphically as in Problem 2018. In a
similar way, we can show that for there to be at least a bound state we

require
277'1,‘/'0}22 , [T 2
7= ()
ie.,
w2h?
> —_
® = 8mR?

(b) If the potential is a one-dimensional rectangular well potential, no
matter how deep the well is, there is always a bound state. The ground
state is always symmetric about the origin which is the center of the well.
The eigenequation is

d? 2m
T3 9(@) + 5 [E-V(@)]¥(@) =0,
where, as shown in the Fig. 2.11,

Vi) =-Vo, (V0>0),|z|< R/2,
V(z) = 0, lz| > R/2.
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Vix)
-R/2 R/2 x
-Vo
Fig. 2.11

For bound states, we require 0 > E > V5. As V(z) = V(-z), the
equation has solution

A cos(kz), |z|< g,

Be¥lzl x| > g,

P(z) =

where k, k' have the same definitions as in (a). The continuity of ¥ and 3’
at z = & gives
tan(kR/2) = k' /k.

or
\%
2 _ 0
sec’(kR/2) = Bt Vi’
re.,
E+V,
cos (kR/2) == :; oy

Since Vp > -E > 0, there is always a bound-state solution for any V.
(c) For a one-dimensional potential well of arbitrary shape, we can al-
ways define a rectangular potential well Vy(z) such that

Vi(z) = -V, |z| < R/2,
V;(:L‘):O, |IL'!>R/2,

and —Vu> V(x) always (see Fig. 2.12). From (b) we see that there always
exists a |¢o(z)) which is a bound eigenstate of V;(z) for which

<¢o bl +Vs(z1 ¢(> <0.

2m
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Vix)

Fig. 2.12
Since
p? p?
(0| £+ V(@ |9o) < (Yo| =4 vita) o)
we have
p2
<1/10 o + V() 1/10> <Q.

This means that there is always a bound state for a one-dimensional
well of any shape.

2021
Calculate Greenis function for a nonrelativistic electron in the potential
Viz, y, 2) = o0, z £ 0, (any y, 2z)
V(z,y,2) =0, x>0, (anyy,2)
and evaluate |G(r, ri, t) |2. Describe the evolution in time of the pattern

of probability and interpret physically the reason for this behavior.
(Berkeley)

Solution:

The potential in this problem can be replaced by the boundary condition
G(r, ri, t)=0 and z = 0. The boundary problem can then be solved by
the method of images. Suppose at r” is the image of the electron at r’
about z = 0. Then

(ihd, — HYG (r, ri, t) =8(t) [6(r — ri) —d(r—1")]. (1)
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The Greenis function is zero for x <0 and for x > 0 is equal to the
x > 0 part of the solution of (1). Let

G(r,r',t) = (77153 / d3k / ek Tt Gk, v, w) dw . (2)

“— O

We have 169G = hwG and H = ﬁ;";, and the substitution of (2) in (1)
gives

~ 1 —ik-r’ —ik- "

Gk, r',w) = m(e kor_emk ) 3)

2m

Re-substituting (3) in (2) gives

d3 zk r—iwt (e-zk i —ik.r")
ol v, 1) = )4J J . (&)

2m

We first integrate with respect to w. The path I' is chosen to satisfy the
causality condition.

Causality requires that when t< O,G(r, ri, t) = 0. First let the polar

point of w shift a little, say by —ie, where ¢ is a small positive number.
Finally letting € = 0, we get

G(r, r , )= h(2 ) /exp (’Lk . r_i;i_,::t> (e—ik.r'_e—ik- M) &3k
1 _m 132 im(r —r')? im(r — /)2
— Lol oo [ | -exo [__m_]}('S)

Hence when both x and t are greater than zero, the Greenis function is
given by (5); otherwise, it is zero. When x>0 and t >0,

60,00 =7z (53]

m. r2 "2 o e M ‘
{2 2Reexp<2ht{ _r 2r - (r r)])}

If the potential V(z,y, z) were absent, the Greenis function for the free
space, |G(r,r',t)|?, would be proportional to t~3. But because of the
presence of the reflection wall the interference term occurs.
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2022

An electron moves above an impenetrable conducting surface. It is
attracted toward this surface by its own image charge so that classically it
bounces along the surface as shown in Fig. 2.13.

(a) Write the Schrodinger equation for the energy eigenstates and energy
eigenvalues of the electron. (Call y the distance above the surface.) Ignore
inertial effects of the image.

y

Fig. 2.13

(b) What is the x and z dependence of the eigenstates?
(c) What are the remaining boundary conditions?
(d) Find the ground state and its energy.
[Hint: they are closely related to those for the usual hydrogen atom).
(e) What is the complete set of discrete and/or continuous energy eigen-
values?
( Columbia)

Solution:

(a) Figure 2.14 shows the electron and its image Accordingly the elec-
tric energy for the system is V(r) =33, a:Vi=3[e. 35+ (-e) . 5] =
—e?/4y. The Schrédinger equation is then

R _, €2
<_;n" Ve - '4_y> 11’(1‘1 Y, Z) = E’l/)(:l, Y, Z) .
(b) Separating the variables by assuming solutions of the type

Y(z, ¥, 2) = ¥n () $(, 2) = ¥n (¥) 62 () $2(2),
we can write the above equation as
h2 d2 2

“om @E Yr W)~ g ¥ () = Eytn (v), )
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elx,yz)

'
1
1
|
$
elx,-y, z)

Fig. 2.14

W d i
2m dz? 9z (2) = 2m 92 (),

h2 d2 2
o 25 9:(2) = 2= 4.(2),
with
P2 A

E,+ =2+ Z%2=E.
+2m+2m

Note that since V(y) = - % depends on y only, p; and p, are constants
of the motion. Hence

$(z, 2) = ¢z (2) ¢z (2) ~ e P=24P2/R,

and
1/1(1', Y, Z) 3 'l/)n (y) ei(PzaH-p,z)/ﬁ, .

(c) The remaining boundary condition is ¥(z,y, z) = 0 for y <0.
(d) Now consider a hydrogen-like atom of nuclear charge Z. The Schro-
dinger equation in the radial direction is

2 2 2
R 1.d. (rzﬁ)_ﬁ?_RJrMR:ER

2m r2 dr dr r 2mr?
On setting R = x/r, the above becomes

R d%ix zé? I(1 +1)A?
om drz ¢ X Tgme X Ex:
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In particular, when [ = 0 we have

————— x=Ex, (2)

which is identical with (1) with the replacements r =y, Z —+%. Hence the
solutions of (1) are simply ¥ multiplied by the radial wave functions of the
ground state of the atom. Thus

7\ 3/2
s1 (¥) = yR10 (¥) - 2u (;) e Zvle.
where a = mi:, With Z = 1, we have

me2\ 32 me?y
Y1(y) = 2y (Zﬁ) exp [- e ]

Note that the boundary condition in (c) is satisfied by this wave func-
tion. The ground-state energy due to y motion is similarly obtained:

B __Z2me4_ me?
YT 22 T 32m2

(e) The complete energy eigenvalue for quantum state n is

4
me 1
E"szsz =—m+% (p3:+p§)a (n:'l) 27 3"‘-)

with wave function

¥n,pe,p. (¥) = AyRuno () exp [% (pzz + pzZ)] ,

where A is the normalization constant.

2023

A nonrelativistic electron moves in the region above a large flat
grounded conductor. The electron is attracted by its image charge but
cannot penetrate the conductoris surface.
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(a) Write down the appropriate Hamiltonian for the three-dimensional
motion of this electron. What boundary conditions must the electronis
wave function satisfy?

(b) Find the energy levels of the electron.

(c) For the state of lowest energy, find the average distance of the elec-
tron above the conductoris surface.

(Columbia)

Solution:

(a) Take Cartesian coordinates with the origin on and the z-axis per-
pendicular to the conductor surface such that the conductor occupies the
half-space z< 0. As in Problem 2022, the electron is subject to a poten-
tial V(z) = —%. Hence the Hamiltonian is

H= 1 (P2 +p2 + 2 e
= om Py T Dy T Dy iz
h2 62 82 32 62
= om (@*5@*@)' iz
The wave function of the electron satisfies the boundary condition
Y(z,y,2z) = 0 for 2< 0.
(b) As shown in Problem 2022 the energy eigenvalues are

me? 1

1
Ep=o— (;;iﬂ;f,)—m —- (n=123..)
(c) The ground state has energy
1 me?
E=— 2 2y _ e
3m P= T Py) ~ 330
and wave function
AZ /a3’
Y100 (IL‘, Y, Z) = m e z/a 7

where
, 4Rh?

me?’
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and A is the normalization constant. Hence

=f Yloo 2 Y100 dz dy dz
J 900 Y100 dz dy dz

_ f0°° 236—2;/0' dz

B fooo z2e~2z/0' gy

(2)

3 (%)3
T (2 a2
_3,, _ 5K
T2 T me?’



3. SPIN AND ANGULAR MOMENTUM

3001

Consider four Hermitian 2 x 2 matrices I, o1, 02, and o3, where 1 is the
unit matrix, and the others satisfy o;0; + 0 0 = 24;;.

You must prove the following without using a specific representation or
form for the matrices.

(@) Prove that Tr(o;) = 0.

(b) Show that the eigenvalues of o; are £1 and that det(o; ) = -1.

(c) Show that the four matrices are linearly independent and therefore
that any 2 x 2 matrix can be expanded in terms of them.

(d) Prom (c) we know that

3
M :moI-}-Z mi0i,

where M is any 2 x 2 matrix. Derive an expression for m;(i=0, 1, 2, 3).

(Buffalo)
Solution:
(a) As
oioj=—ojo; (1#37), ojo;=1,
we have
0y = 0y{0j0; = —00;0;,
and thus

Tr(o;) = —Tr(ojoi0;) = ~Tr(oiojo;) = ~Tr(o;).

Hence T'r (o; ) = 0.

(b) Suppose a; has eigenvector ¢ and eigenvalue A;, i.e.

gip=Aio.
Then
010 =0 Mip = Xioip =\ ¢.
On the other hand,
oioip=Ip=4¢.

171
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Hence

A =1,
or

A = =+1.
AS

T’I‘(O’,’) =)\ +/\2 =0,

the two eigenvalues of o; are A; = +1, ;= —1, and so Det(s; ) =
AtAe = -1.

(c) If 1,044 =1, 2, 3, were linearly dependent, then four constants
me, m; could be found such that

3
moI+Z mio; =0.

i=1
Multiplying by o; from the right and from the left we have

3
moo; + E mio;o; = 0,
=1
and
3
moad; + E miojo; = 0.

=1

Adding the above two equations gives

2moa]~ + E mi(O',‘O'j +0’j0,') + ijI =0,
i#j
or
Moo ; +ij=0.

Thus
Tr(mooj +m;I) =mg Tr(o;)+2m; =0.

As Tr(o;) =0, we would have m; = 0, and so mg = 0. Therefore the
four matrices 1and ¢; are linearly independent and any 2 x 2 matrix can
be expanded in terms of them.
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(d) Given M any 2 x 2 matrix, we can write

3
M=mol+z mi0; .

i=1
To determine the coefficients mg, m;, take the trace of the above:
Tr (M) =2my,

or

1
mo = 5 Tr(M)

Consider ]

o;M =mpyo; + E m;o;o;,

i=1

and
3
M0'j=m00‘j+ E m;0;0;.

i=1

Adding the last two equations gives
O'jM + MO’j = 2mpa; + 2ij.

Thus
Tr(o; M + Mo;)=2Tr(o; M) = 4m; ,

or 1
my; = -2- TT(G’]'M).

3002

The three matrix operators for spin one satisfy s s, — s, sz =15; and
cyclic permutations. Show that

s3=s,, (szxisy)®=o0.

( Wisconsin)



174 Problems and Solutions on Quantum Mechanics

Solution:

The matrix forms of the spin angular momentum operator (s=1) in
the (s2,s,) representation, in which s, s, are diagonal, are

010 0 - O
Sy = 1 1 01 s ! i 0 )
T = ) y = — = - 3
\/5 010 V2 1 (
1 0 0
s;=10 0 0
0 0 -1
Direct calculation gives
1 0 o\> /10 o
=00 0] ={00 O0}=s,,
0 0 -1 0 0 -1
[, (0 2 0\
(sz+isy)>=|—= {0 0 2 =0,
_\/5 00 0/]
[, (000 }3
(sz—isy)¥=|—= (2 0 0O =0.
_\/5 02 0/]

3003

Three matrices M, M,, M,, each with 256 rows and columns, are
known to obey the commutation rules [M;, M, ]=iM, (with cyclic per-
mutations of z,y and z). The eigenvalues of the matrix M, are £2, each
once; £3/2, each 8 times; %1, each 28 times; +1/2, each 56 times; and 0,
70 times. State the 256 eigenvalues of the matrix M?= M2 + M2 + M?2.

( Wisconsin)

Solution:

M? commutes with M,. So we can select the common eigenstate
IM, M,;). Then

M2 M, M) =m(m+1)| M, M,),
My | M, M) =mz | M, M,).
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For the same m, m, can have the values +m,m -1, ..., —m, while
M? has eigenvalue m(m + 1). Thus

m mg M?%Z=m(m+1)
+2
2 +1 } each once 6 5% 1 =75 times
0
+3/2 . 15 _ .
3/2 +1/2 } each 8 times n 4 x 8 = 32 times
+1 . _ .
1 0 each 27 times 2 3 x 27 = 81 times
1/2 +1/2 each 48 times % 2 x 48 = 96 times
0 0, each 42 times 0 1 x 42 = 42 times
Total 256 eigenvalues

3004

A certain state |4) is an eigenstate of L2 and L,:
L29) =10+ )R |9), L:|9) =mh|y).

For this state calculate (L) and (L2).
(MIT)

Solution:
As L, is a Hermitian operator, we have

L |9) = mh|9) = (| L. = mh ().
Then
. 1 . 1 X s . -
(La) = @) o (Ly, Lol 19) = o W1 Ly L — Lo Ly | 9)
mh N 2
= 5 (I Ly [9) - W Ly ) = 0.
Considering the symmetry with respect to x,y, we have

A ~ 1 - A 1 - ~
(E2) = (£2) = 5 (L2 + £2) = 5 (E2 - D),
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and so )
(1) = @I = B2 9) =S [+ 1) —m?| W2,

It can also be calculated using the TraisingT and TloweringT operators.

3005

The spin functions for a free electron in a basis where §, is diagonal
can be written as () and (?) with eigenvalues of §, being +1/2 and —1/2

respectively. Using this basis find a normalized eigenfunction of §, with
eigenvalue —-1/2.

(MIT)
Solution:

In the diagonal representation of §2,3,, we can represent 5y by

. 10 —i _
W=z ) =
Let the required eigenfunction of §, be o, = (}). Then as
1 /0 —i ayl_ 1 [a
2\« O b/ 2 \b/)’

we have a = ib, and so oy, = b(;)
Normalization

o oy = b3 (4, 1) (;) =262 =1,

i ()

3006

Consider a spinless particle represented by the wave function

gives b = 715 Hence

v=K(z+y+2z)e ™",
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where 7= 1/z2 + y2 + 22, and K and « are real constants.

(a) What is the total angular momentum of the particle?

(b) What is the expectation value of the t-component of angular mo-
mentum?

(c) If the z-component of angular momentum, L., were measured, what
is the probability that the result would be L,=+h?

(d) What is the probability of finding the particle at 8, ¢ and in solid
angle dQ? Here 8, ¢ are the usual angles of spherical coordinates.

You may find the following expressions for the first few spherical har-
monics useful:

/1 /3 -
0 = B +1 = — Sj il¢
Y, et Y; Fy gz sin 6e™*?,
3 .
Yo = ”ZI;COSG’ Y = :‘:ﬂé—zsm()coseei“ﬁ

(CUS)
Solution:

The wave function may be rewritten in spherical coordinates as
¥ = Kr(cos¢sin@ + sinpsinf + 2cosf) e™*",
its angular part being
¥(6, #) = K'(cos psinf + sin ¢sind + 2cosh),
where K’ is the normalization constant such that
T 27
K" / de / sinO(cos¢sin9+sin¢sin0+2cos0)2dq5= 1.
0 0
Since
Lo o -ty o 1 io_ o
cos p=3 (6 + %), sing == (e¥—e7),
2 21
we have

(0, ¢) = K' [—;— (e + e7®) sin 9 + % (¢’ — e7**) sin 6 + cos 26],

1 8 _ 4m
:K’[—%(l—i) %”Yll+§(1+i)\/§yl ‘+2\/?Y1°]~
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The normalization condition and the orthonormality of Y;™ then give

1 8 1 8n« ar
KIZ - .20 -0 4 - —
[2 3 +2 3 + 3] L
or
1
K' =4/—,
8
and thus

N B R Lt
w00 =/g [-3a-9/5
+%(1+i)\/§yl_l+2\/gylo}-

(a) The total angular momentum of the particle is
VL) = Il +1)h=V2h.

as the wave function corresponds to I = 1.
(b) The z-component of the angular momentum is

187r

R RS

W 1L K25 5
e 4§<0) ooy

1 1 8« 1 8«
& [5 BT S ?“"')] =
(c) The probability of finding L, = +A is

P=|{(L.=+h|%(6,¢)
1 1 8r 1

8 2 3" 6
(d) The probability of finding the particle in the solid angle d? at 8, ¢
is

/ P*(8,0)¥ (0, ¢)d = [sm 8(sin ¢ + cos ¢) + 2 cos 8]% d2.
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3007

A particle in a central potential has an orbital angular momentum 1 = 2k
and a spin s = 1A. Find the energy levels and degeneracies associated with
a spin-orbit interaction term of the form Hg, = AL . S, where A is a
constant.

(MIT)
Solution:

Choose {H, J2,J,,L? 8%} as a complete set of mechanical variables.
The wave function associated with angle and spin is ¢;jm;is, for which

J2¢jm_,—la = hz](] + 1) ¢jm,-lsy de’jmjls - h2l(l + 1) ¢jm,—ls ’

Szd’jm_.,-ls = h2s(s + 1) ¢jmjls, Jz¢jm,~ls = ﬁmj ¢jm,~ls ’
with 1
Ho=AL .S = EA(Jz—L2—S2),

as J = L + S. Thus the energy levels and degeneracies are respectively

B = ALiG+ 1) ~ 1+ 1) ~s(s + 1)

2AR2, ji=3,
- _Ah27 .7=2’
—34R%, j =1,
7, j=3,
d=2j+1=¢ 5, 3=2,
3, j=1.
3008

One can show that the TraisingT and TloweringT operators for angular
momentum, Jy = Jz+14J,, commute with J%, and that, if j, m are the
eigenvalues of J, J;, then

Jelj,m)y=h\i(G+1) —mim*1) |j,m=1),

for appropriately chosen phase conventions of the state vectors. Use these
properties to express those states |j, m) for which m = {—1/2 in terms of
the states |I,my;s, m,) with s =1/2.

(MIT)
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Solution:

According to the theory of angular momentum coupling, the possible
values of the total angular momentum are j=1!+1/2and j=1-1/2for

_1
3—2.

(@ For j=1+1/2,since |1 +1/2,1+1/2)=]1,1;1/2,1/2), we have

J_|L+1/2,1+1/2) = (L_ + S_)|1,1;1/2,1/2).

Using the properties of J-, L- and S_

1 1
Jo|l+= “N=hv
‘z+2, 2> T ’z+ 2>,
1 1 1 1
I T - Vi |1, =
L "l7212> h I l 72 2>7
11 11
S_ll,l,§,§>—hll,l,—,——§>

in the above equation, we get

1 1 2l 11>
P+§J—§>—VZ:TPJ‘L§’2

Vg |1

N
\/

(b) For j=1-1/2, let

1 1
‘I—E,l~—2->—a

The orthonormality of the eigenvectors gives

1 1 1 1
I+=,1-=|l—-2,1-2)=
<+2’ zl 2’ 2> %,

11 11
Li-1 3, §>+b‘l,l,§,—§

(2)
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Using the result of (a), Eg. (1) can be written as

(Ve (oo ot (o)
(a l,l—l;%, %>+b\l,l;%, —%>>
=a\/2l2-|l—1+b\/211-1=0'

Similarly, Eq. (2) can be written as

a?+b2=1.

The last two equations show that a, b are both real and can be taken as
a=—+/1/(21+ 1), b =y/2l/(20 + 1). Hence

1 1 1 1 1
‘l‘i’l"§>“\/5u_1'l’l‘l’§’§>
2l 1 1
Vo |LL S, =2 ).
+ 2l+1\’l’2’ 2>

3009

Suppose an electron is in a state described by the wave function

1 .

— i$ i

= ——(e'®sin @ + cos 8) g(r) ,

P \/E( ) 9(r)
where
oo
| 1smprrar=1,
0

and ¢,0 are the azimuth and polar angles respectively.

(a) What are the possible results of a measurement of the z-component
L, of the angular momentum of the electron in this state?
(b) What is the probability of obtaining each of the possible results in
part (a)?
(c) What is the expectation value of L,?
( Wisconsin)
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Solution:
(a) As

Y0 = ‘/icos 8, Y1.41- :{:\/—?,—sinOeﬂ"’,
4 ’ 8

the wave function can be written as

v =/} VIV Y00t

Hence the possible values of L, are +A,0.
(b) Since

27
/|1/)]2d'r——/ |2r2dr/ dO/ (1 + cos ¢sin 20) sin @ do

=}/ sinfd@ = 1,
2 /o

the given wave function is normalized. The probability density is then given
by P =}4|2. Thus the probability of L,=+h is (\/g)2 or 2/3 and that
of L,=0is (—\}—3)2 or 1/3.

© t

/w*szﬂsin 0d0d¢dr:/[

x L,

\/—Yu + Ym)

\/g (=v2 Y11 + Yio )}

x| g(r) |2r? drsin 0 d d¢
2 us 2r 5 2
=3 hJ daJO Y11d¢—§h.

3010

OOI

r

If U(B, §) refers to a rotation through an angle 3 about the y-axis, show
that the matrix elements

<]am|U(ﬂ$ )I]: >1 —'jsm1mISj)
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are polynomials of degree 2j with respect to the variables sin (8/2) and

cos (8/2). Here | j, m) refers to an eigenstate of the square and z-component
of the angular momentum:

7214,m) = 3@ + 1) K |4, m),

Jz1d,m) = mh|j, m).

( Wisconsin)
Solution:

We use the method of mathematical induction. If j = 0, then m
mi = 0 and the statement is obviously correct. If j = 1/2, let

N h h (0 —i
Jy=§0'y 5 i .

Consider Pauli’s matrices o, where k = z, y or z. Since

10

the unit matrix, we have for a =constant

. . 2 . 3
exp (tiaor) =1+ w;rk + (iu;?k) + (il?;k) +

o ot

. a o ad
ﬂ:’LO’k(ﬁ—g‘Fﬁ—"')

=cosa T iogsina.

Thus

U(B, §) = exp(—i87,/h) =exp ( - zg ay) = cos g —i0ysin —g—
=cos A _ ih—f';,sin b

2 2’
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1 1, 1
<5”"\U‘5”">-<§””

_ B i2 /1
—6mm:cosz—h 2,m

exp (-i6, /)| . ')

1 m sing.
2’ 2

As the matrix elements of 3’,, in the second term are independent of g,

Jy

(112, m|U[1/2,m’)

is a linear homogeneous form of cos (3/2) and sin (3/2) and the statement
is Correct also.

If the statement is correct for j, i.e.,

(j?m | U[], ml> = (]am | exp[—iﬁjy/h] | j, m)
2 2j-n n
= };An (cos g) (Sin g) ,

where A, depends on j, m, m/, i.e.,
A, = Ay (§, m, m'),

we shall prove that the statement is also correct for j +1/2. Let J= j+31,

where the quantum numbers of j and jl are jand 1/ 2 respectively. We can
expand

| J,m)=1j+1/2,m)
in the coupling representation using terms of the uncoupling representation:

'm+l 1 :
.7, 21 2

2

) 1 1
cafm-3)E3)

where C; and C; (independent of 8) are Clebsch-Gordan coefficients. Ap-
plying the expansion to

'+£m
J 2’

A
‘]+§,m>=C'1

exp =80, + )15+ 5. ).
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we reduce the procedure to calculating the matrix elements
1 1)/ .1 e IN|L ]
T2\ F 3 I 2/ |22 F2/)

1 1 . 1 o - . 1 1 1
(33| (iom= 3 |exet-i0G, +dnim i 7 5) | 355 )

2

For example,
11 'm+l
2 2 |\” 2
/11
T\2" 2

€Xp [-iﬂ(.:iy + jly)/h]

R N 1\|1 1
exp -G, + i)/ |5+ 3|3, -3)

exp =i/ | 5 - 5)

 (somes g | exp i) |+ )
2j—n
:(alcosé+blsm )ZA (cosé)J (sin:)”
2(z+2)

It

> o (i o) ()7 ()

Thus the statement is also valid for j +1/2. That is to say, the matrix
elements
(3, m|UB, §)| 4, m') = (j, m| exp(=iBly/R)| j, m'),

are polynomials of degree 2j with respect to the variables cos {(3/2) and

sin (3/2).

3011

An operator f describing the interaction of two spin-112 particles has
the form
f=a+bar- o2,

where a and b are constants, oy and 2 are Pauli matrices. The total spin
angular momentum is J = j1 + jo =3 (01 + 02).



186 Problems and Solutions on Quantum Mechanics

(a) Show that f,J? and J, can be simultaneously measured.
(b) Derive the matrix representation for f in the|J, M, j1, j2) basis.
(Label rows and columns of your matrix).
(c) Derive the matrix representation for f in the| j1, j2,m1, m2) basis.
( Wisconsin)

Solution:

(@) f, 3% and J, can be measured simultaneously if each pair of them
commute. We know that J% and J, commute, also that either commutes
with a, a constant.

From definition,

K2

J2:?(U¥+0’§+20’1’02),

or
232 1,,
0‘1'0'2:7{2—'—5(014-0'2).

Now for each particle

a2=ag+a§+af=31,

| being the unit matrix, so

2J2
al_as:h-2-3.

Hence

3%, F1 = (3%, 0] + b[I%, 01 . 03]

2
{J,,f]:{Jz,a]+b{Jz,%—3} ~0.

Therefore, 1,32 and J, can be measured simultaneously.
(b) In the | J, M, j1, j2) basis,

(Jv Ma jl? j2'f|‘],a M/7 jlv ]2) = a(SJJI 6MM' +b<J, M: jl) jZ lal ]
IJ,a Mla jl:j?)
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=06JJ’6MM’+ b |:h2

J(J + 1) -3
|
X 857 Omme
=[a+ 2bJ(J+ 1) —3b] Syp O

where J, M are row labels, J’, M’ are column labels.

187

(c) Denote the state of J =0 and the state of J=1 and J, =M as
xo0 and xia, respectively. Since j1= j2 =1/2, we can denote the state

| 41, J2, ™1, me) simply as | my, mz). Then as
( 1 1 1 11
w=75il3-2)- |- 5))
P )
2272 2’2
1= | E

we have

L ) i;> \/—( X0 + X10) -

Using the above expressions and the result of (b) we can write the matrix

elements {my,ma| f|m}, mb) in the basis | j1, j2, m1,m2) as follows:

mi,mf/ 12 12 1 1 _1 1 __ 1.1

mi, ma 21 2 2i 2 21 2 2i
L 1 a+b 0 0 0
2, 2

i1 0 a-b 2b 0
2 2

Lol 0 26 a-b 0
-2 2

1 1

- - T = 0 0 0 a+b
2’ 2
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3012
Consider the following two-particle wave function in position space:
$(r1,r2) = f(r}) 9(r3) [a(a-r1) (b-r2)+B(b-r1) (a-r2)+7(a-b) (r1-r2)],

where a and b are arbitrary constant vectors, f and g are arbitrary func-
tions, and a, 8 and v are constants.

(@) What are the eigenvalues of the squared angular momentum for each
particle (L2 and L2)?

(b) With an appropriate choice of «, 3 and ~, ¥2(r1,r2) can also be
an eigenfunction of the total angular momentum squared J2 = (L, + Ly)2.
What are the possible values of the total angular momentum squared and
what are the appropriate values of «,3 and « for each state?

(MIT)
Solution:

(a) We first note that
r
Vi) = fi(r) -,

rx Vf(r) = fi(n) =X =o0,

r

or

and that
rxV{a-r)=rxa,
(rxV) -(rxa)=-2a-r.
AsL=rxp=—ithrxV, we have

Liy(ry,r2) = — A%(r1 x V1) . (r1 x V1) {f(rD) g(r}) [a(a . r1) (b . 12)
+ B(b . 1) (a. r2) + v(a. b)(r1.r2)]}
—R2f(r})g(r3) (r1 x V1) . (r1 x V1) [a(a . r1)(b 12
+ B(b r1)(a . r2)+ v(a. b)(ri. r2)
—Rf(})g(r3) (t1x V1) . fafry x a) (b . r2)
+ B(r1x b) (a . r2) + v(a . b)(r1 x r2)]
=22f(r})g(r3)la(a . r1)(b . 12) + B(b . 11)(a  ra)

+ v(a.b)(r1. r2)]
= 1(1 + 1) B29(ry, 12),
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and similarly
Lig(ry-r2) = —h%(rz x Va)-(rax Va)i(r1-r2)
=1(1 + 1) E%Y(ry,r2).

Hence the eigenvalues of L? and L2 are each equal to 2k?, and so each
particle has the quantum number 1 = 1.
(b) We further note that

(rxV)-(a-rje=(rxa)-c,
(axb) -(cxd)=(a-c)b -d)—(a-d)b -c).

Thus we require
Ly Log(ry, r2) = — A¥(r1 x Vi)~ (rax V2) {f(r1)g(r3) [a(a . 1)
x(b.rz)+B(b .r1)(a.rz)+v(a. b)(r. r)}}
—R2f(r})g(r3) (r1 x V1) . (r2x V) [afa - r1) (b - 12)
+ B(b . 1) (a.T2) + 7(a.b)(r1.r2)]
— R f(r}g(r3) (r1x V1) . [a(a . r1)(r2x b)
+B(b . r1)(r2x a) + v(a . b) (rzxry)]
= — R f(r})9(r3)[a(r1 x @) - (rz x b)

+B(rix b) . (r2xa) + v(a. b)(2r; . r2)]
=—Rf(r}) gD [-Ba.r) (b-r2) —a(b-r1)(a ;)

+(a+ B +2y)(a-b)(r-r2)]
= — h2A1(ry, 12)

for ¢(r1,rz) to be an eigenfunction of L; - La. This demands that

—B=Ada, —a=A3, a+B+2y=Ay,

which give three possible values of A:
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Therefore the possible values of the total angular momentum squared,
J2 = L? + L% + 2L; -L,, and the corresponding values of «, 3 and -y are

2(2 + 1)A2, (a:ﬂ: —27>
1(1 + 1)’7'2, (a = —ﬂ’ Y= O)
0. (=g =0)

J2 = 2K% + 2R — 2R3\ =

3013

A guantum-mechanical state of a particle, with Cartesian coordinates
X, ¥ and z, is described by the normalized wave function
o5/?
Y@y, 2) = —= zexp [~a(a® +y? + )/,

/T

Show that the system is in a state of definite angular momentum and
give the values of L% and L, associated with the state.

( Wisconsin)
Solution:
Transforming to spherical coordinates by

X = rsinfcosy, y=r sinfsiny, z=r cosh,

we have
ab/?

VT
Hence the particle is in a state of definite angular momentum. For this
state, [ =1, L2=1(1+ 1) R2=2K% L, = 0.

Y(r, 0, ) =

Tcosee = f(r)Yo

3014

A free atom of carbon has four paired electrons in s-states and two more
electrons with p-wave orbital wave functions.

(a) How many states are permitted by the Pauli exclusion principle for
the latter pair of electrons in this configuration?
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(b) Under the assumption of L-S coupling what are the 1doodT quantum
numbers? Give sets of values of these for the configuration of the two pwave
electrons.

(c) Add up the degeneracies of the terms found in (b), and show that it
is the same as the number of terms found in (a).

(Buffalo)
Solution:

(a) Each electron can occupy one of the (21 +1) (2s+1)=3x2=6
states, but it is not permitted that two electrons occupy the same state. So
the number of permitted states is C$ = 15.

(b) The 1goodT quantum numbers are L?,5%,J% and J,. Under the
assumption of L-S coupling, the total spin quantum numbers for two elec-
trons, S = s; +sg,are § = 0, 1 and the total orbital quantum numbers,
L=1+ly,are L=0, 1, 2. Considering the symmetry of exchange, for
the singlet S = 0, L should be even: L =0, 2, corresponding to *Sp,!Ds
respectively; for the triplet $ =1, L odd: L = 1, corresponding 3Py, 1, 2.

(c) The degeneracy equals to 2J + 1. For J=0,2and 0, 1, 2 in (b),
the total number of degeneraciesis1 +5+ 1 + 3 +5=15.

3015

(a) Determine the energy levels of a particle bound by the isotropic
potential V(r) = kr?/2, where k is a positive constant.

(b) Derive a formula for the degeneracy of the Nth excited state.
(c) Identify the angular momenta and parities of the Nth excited state.
(Columbia)

Solution:

(a) The Hamiltonian is
H=—(K?/2m)V? + kr?/2.

Choose (IQI,P,I}) to have common eigenstates. The energy levels of
bound states are given by

E=(2n, +1+3/2) hwg = (N + 3/2) hwy, wo = Vk/m.
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(b) The degeneracy of the states is determined by n,.and 1. As N =
2n, + 1, the odd-even feature of N is the same as that of /. For N even

(i.e., ! even), the degeneracy is

fo S ey 3 (5ad)oe (ra)

1=0 (l even) 1=0 (Il even)
1
=S (N+1)(V +2).

For N odd (i.e., I odd),

N N (N-1)/2 3
f= Z(zl +1)= 2[2(l—1)+3]:4 z <II+Z>

I=1(1 odd) 1=1( odd) U=0

=5 (N+ 1) (N +2).

Hence the degeneracy of the Nth excited state is f = (N + 1) (N + 2)/2.
(c) In the common eigenstates of (H,12,1,), the wave function of the

system is
¢nrl (T’ 97 SO) - R(T) Ylm (0’ ‘P) )
and the eigenenergy is
En,.t=(2n, +1+3/2) huwg .
As N = 2n, + 1, the angular momentum 1 of the Nth excited state has
%+1valueso,2, 4, 6, . . ., Nfor Neven, or%(N + 1) values 1, 3,5,...,
N for N odd. Furthermore, the parity is

P = (-1) = (-1)".

3016

The ground state of the realistic helium atom is of course nondegenerate.
However, consider a hypothetical helium atom in which the two electrons
are replaced by two identical, spin-one particles of negative charge. Neglect
spin-dependent forces. For this hypothetical atom, what is the degeneracy

of the ground state? Give your reasoning.
(CUS)
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Solution:

The two new particles are Bosons; thus the wave function must be
symmetrical. In the ground state, the two particles must stay in 1s orbit.
Then the space wave function is symmetrical, and consequently the spin
wave function is symmetrical too. As s; =1 and sz = 1, the total S has
three possible values:

S = 2, the spin wave function is symmetric and its degeneracy is
2S5 +1=5.

S =1, the spin wave function is antisymmetric and its degeneracy is
25+1=3.

S = 0, the spin wave function is symmetric and its degeneracy is
25+1=1.

If the spin-dependent forces are neglected, the degeneracy of the ground
stateis5+3+1=09.

3017

The z-component of the spin of an electron in free space (no electro-
magnetic fields) is measured and found to be +F/2.

(a) If a subsequent measurement is made of the s-component of the
spin, what are the possible results?

(b) What is the probability of finding these various results?

(c) If the axis defining the measured spin direction makes an angle 6
with respect to the original z-axis, what is the probability of the various
possible results?

(d) What is the expectation value of the spin measurement in (c)?

(Berkeley)

Solution:

(@) In the o, representation, the spin wave function is ((1,), the eigen-
functions of o are \%(i),%(_}), corresponding to eigenvalues +1, -1
respectively. Expanding ((1,) in these two states, we see that the possible
results of a measurement of s, are £h/2 since §, = 305, the mean value
being zero:

1 j—
30 0"

(sz) = (1, 0) 0.
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(b) The probabilities of finding the result to be +§ and —% are P+ and
P_ respectively:

2 g

_5,

s ()
neon(l, -

(c) Suppose the spin axis is n = n(#,p)=.(sinf cosy, sin  sin y,
cosf). Then the eigenstates for s, =s. n are

cos Q e~w/2 —sin 2 e~ i/2
2
' o
in - e¥/2 Z etw/2
sin e cos 5 €

corresponding to eigenvalues +%/2 and —#/2 respectively. The probability
of finding the eigenvalues +A/2 and —h/2 are cos? (§/2) and sin?(8/2)
respectively.

(d) The expectation value of the spin is

k h h 8 h 6 h
- P —Z\p == 2 - _Zgin2l=2_
++< 2) 5 Cos” 5 5 Sin” 5 2cosé).

3018

(@) Consider a system of spin 1/2. What are the eigenvalues and nor-
malized eigenvector of the operator A $,+B §,, where §,, 3, are the angular
momentum operators, and A and B are real constants.

(b) Assume that the system is in a state corresponding to the upper
eigenvalue. What is the probability that a measurement of 3§, will yield the
value %/27 The Pauli matrices are

, (01 o _ (0 —i (1 0
2=\1 o) T\i o) %2T\0 -1)-

Solution:

(CUS)

(a) Using the definition of angular momentum operators let

T=A§y+B§z=A%hay+B%fwz.
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Then
(D) = JF(42 + B? + AB{oy,0.)) = R4 + BY),
as
ol = <(1) 2) =I, i=1,2,3,
and

{O'i, O'j} =0i0; + 0;0;= 251']' .

Hence the two eigenvalues of T are
1
T, = %h\/ﬁ +B2 T,= —Eh\/A2 + B2,
In the representation of 82 and 3,

. h h (B —-iA

Let the eigenvector be (7). Then the eigenequation is

15 9 ()7 0)

here
" o B (VD 0 )
) 0 FVA?+BZ)’
or
B ¥ VAZ + B2 —iA ) (a) 0
iA —Bx+/A?+ B? =
Hence

a:b=iA: BF+A?+ B?,

and so the normalized eigenvector is

(5)- [A2+<B¢i/m)2f (55 vareer)

(b) In the representation of 4% and 3., the eigenvector of 3, is

-3 ()
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Hence the probability of finding s, = h/2 is

NEN AN P _(BFVAYBI- AP
Py = E(zl)(b) =| 75 e+t " 2(BF VAZ+ B2+ A%

Note that P- is the probability corresponding to the system in the state
of eigenvalue T = kv A2 + B2/2, and Py is that corresponding to the state
of T = —hy/ A2 + B%/2.

3019

A system of three (non-identical) spin one-half particles, whose spin
operators are sj, s and sz, is governed by the Hamiltonian

H=As) . Sz/h2+B(Sl+S2) . Sa/ﬁz.

Find the energy levels and their degeneracies.
(Princeton)

Solution:

Using a complete set of dynamical variables of the system (H, s,,
s2,53), Where s1o = s1 + 82,5 = 812 + 83 = 51 + Sz + 83, the eigenfunction
is| s12 838 m,), and the stationary state equation is

ﬁ\ s12838m) = E| s12835m5) .

As
3 10
sf:s%:s%:zhz (0 1),
_1 5 2 2
S1.82=3 (s12 — sy —s3),
1.2 2 2
(s1+s2)-s3 = 5(5 —Si3 —s3) .
we have
. A B
H=g2'51 Sz+ﬁ(sl+82)~83
A1 , 3 3
P
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Now as the expectation value of s is s(s +1), etc., we have

N A 3
H | s12835m,) = {5 [312(312 +1) — 51

+ g [ (s + 1) = s12(s12+ 1) - Tﬂ} I $12835Ms),

and hence

A 3
FE = 5 [812 (812 + 1) — —2-]

+ E [s(s+ 1) - 312(312 + 1) — §1 |
2 4
It follows that for s12 =0, s =1/2: E = —3A4/4, the degeneracy of
the energy level, 2s + 1, is 2; for s12=1,s=1/2: E = A/4 — B, the
degeneracy of the energy level, is 2; for s12=1,s=3/2: E = A/4 + B/2,
the degeneracy of the energy level is 4.

3020

A particle of spin one is subject to the Hamiltonian H = As, + Bs2,
where A and B are constants. Calculate the energy levels of this system.
If at time zero the spin is in an eigenstate of s with s, = +h, calculate the
expectation value of the spin at time t.

(Princeton)

Solution:

We first find the stationary energy levels of the system. The stationary
Schrédinger equation is

E¢=ﬁ¢=(Asz+Bsi)¢,

where
U1

u3
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is a vector in the spin space. As

00 0
s:=10 0 —i}| h,
0 ¢ 0
0 —i 0
s; =i 0 0} A,
0 0 0
0 00
s2=10 1 0} n?,
0 01
we have
) 0 —iA 0
H=As, +Bs2=|i4 B 0],
0O 0 B’

where Al = Ah, B’ = Bh%. The energy levels are given by the eigenvalues
of the above matrix, which are roots of the equation

-E  —id 0
Det | 1A’ B'-F 0 =0,
0 0 B - E

(E-Bi) (E2—B'E-A')=0.
Thus the energy levels are
Ey=B', Ei= (BT tw)h/2,

where w = VB + 4A"2/h, BT = B’/h = Bh. The corresponding eigen-
functions are 0
E() = B’ L WPse = 0 ,
0

—_

1

B’ + VB + 4A” w— B" . Jw+ B"
Ei==5 = s+ =4/ W —= |
2 2 2w w—B”

0
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1
-2 .xx BN Py L=
T 2 PP 2w ‘Vor B
0

The general wave function of the system is therefore

i BA  E
ws (t) = Crpsoexp [— ZT t + Capsy exp [—z —*]i

— h
E_
+Cips— exp{i 5 t]--

Initially,
Sz ¥Ps (0) = h"ps (0) .
Let
a
Ps (0) = ﬁ) .
Y

The above requires
Thus we can take the initial wave function (normalized) as

1 1
<Ps(0)=7—5 8 .

Equating ¢s (0) with Crpso + Caps+ + Csps— gives

O = O
|
OO =
[~ NN
v
N
R >R
S——
il
PN
X W®™R
\—/

1e.,
B=ia, v=0.

(w+ BII)1/2 + (w - B//)1/2
2wl/2 ’

_(w+Bll)1/2_ (W _Bu)1/2

- 2w1/2

C1=0,Cy=

Cs
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We can now find the expectation value of the spin:
(s2) = ¢ (1) szps(t) = 0,
where we have used the orthogonality of ¢so,¥s+and ps-. Similarly,

(sy> =0,
2 52
(520 =% @52 5 () = [1 = “ s (wt/2) .

3021

A system of two particles each with spin 1/2 is described by an effective
Hamiltonian

H=A(Slz +Szz) + Bs; - S2,

where s; and sp are the two spins, si1, and sz, are their z-components, and
A and B are constants. Find all the energy levels of this Hamiltonian.
(Wisconsin)

Solution:

We choose xsms as the common eigenstate of S? = (s; + s2)? and
S, =81+ 82,. For S=1, Mg =0, £1, it is a triplet and is symmetric
when the two electrons are exchanged. For $ =0, Mg =0, it is a singlet
and is antisymmetric. For stationary states we use the time-independent
Schrodinger equation

Hxsms = EXsMs -

As
S*xims = S(S+1) BPxims = 2 xams, S%x00 = 0,
S?2=(s;+82)?=s2+83+2s; -5,
3”2 3
= +2RH+ 2s . 82,
Z 4 1.2
we have

Sz 3 3 K2
S1 - S2X1Ms = (7 -2 ﬁz) X1Ms = (hz -1 ﬁz) X1Ms = & X1Ms >
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3 3
S1 - S2X00 = (0— = h2> Xo0 = —~ ¥ Xoo ,
4 4
and
S.X1Ms = (812 + 822) Xims = Mshxims ,
Szx00 = 0.
Hence for the triplet state, the energy levels are
h2 .
E=MshA+T B, with Mg=0, £1,
comprising three lines
2 h2 ﬁ2
E1=hA+fl—B, E;=— B, E3=-hA+— B.
4 4 4
For the singlet state, the energy level consists of only one line

3
Eo=—Z K B.

3022

Suppose an atom is initially in an excited 'Sy state (Fig. 3.1) and subse-
quently decays into a lower, short-lived ! P, state with emission of a photon
71 (Fig. 3.2). Soon after, it decays into the 1Sy ground state by emitting
a second photon v (Fig. 3.3). Let 8 be the angle between the two emitted
photons.

Fig. 3.1

Fig. 3.2
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Y, \i / Y,

Fig. 3.3

(a) What is the relative probability of é in this process?

(b) What is the ratio of finding both photons with thej same circular
polarization to that of finding the photons with opposite circular polariza-
tions?

It may be of some help to know the rotation matrices dmm, which
relate one angular momentum representation in one coordinate system to
another angular momentum representation in a rotated coordinate system,
given below:

m=1 _m=gs m=-1
. 1+cosa? V21 1 —2cosa
mi=1 ——"°— S
Omm=m'= 0 — sina oS a L sina
V2 V2
, 1—cosa 1 . 1+ cosa
m=-11"-——  — sina ——
2 V2 2

where a is the angle between the t-axis of one system and the z’-axis of
the other.
( Columbia)

Solution:

The atom is initially in the excited state !Sp. Thus the projection
of the atomic angular momentum on an arbitrary z direction is L, = 0.
We can take the direction of the first photon emission as the z direction.
After the emission of the photon and the atom goes into the ! P, state, if the
angular momentum of that photon is L, = +k, correspondingly the angular
momentum of the atomic state 1 Py is L, = Fh, i.e., m, = F1. If we let the
direction of emission of the second photon be the z’-axis the projection of
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the eigenstate of the a-component of angular momentum on the 2’ direction
is equivalent to multiplying the initial state with the d,,.,, matrix. Only
atoms that are in states m/, = +1 can emit photon (as L, = +h must
be satisfied) in 2’ direction and make the atom decay into the 1Sy state
(m/,=0). Then the transitions are from m = £1 to mi = +1, and we have

Cl =(mz’ = -1 i dm’m | m, = -}—1)

1+ cos@ i 1 sine 1 —cos@
2 V2 2
0,0, 1) 1'0 cosf line (1)
= — sin - =
il H ﬁ \/i O
1—cosf 1 sin 6 1+ cosf
2 V2
_1—cosf
=— ,(
02 = (mzl = +1 |dm/m|mz:+1)
1 1 1
=(1,0,0) \ ﬁlircosﬁnsmo \/icos(ﬂsmg V-2 cosBsind 0
0
1—cos8 Lsine 1+ cos@
V2
_ 1+cos@
=—
1-—- /]
Cs =(my = +1|dpm |m, = —1) = __;&
1+ cosé
C4 =(mzl = —lldmlmlml = —1) = T'

(@) The relative probability of 8 is
P(6) x |C1|>+|Cal2+|C3|% +|Ca)? =1+ cos® 8.

(b) The ratio of the probability of finding both photons with the same
circular polarization to that of finding the photons with opposite circular
polarizations is

(G P+ 1C PGP + 16 ) = (1 +cosh)?/(1 - cosh)?.



204 Problems and Solutions on Quantum Mechanics

3023

Consider an electron in a uniform magnetic field in the positive z di-
rection. The result of a measurement has shown that the electron spin is
along the positive z direction at t = 0. Use Ehrenfestis theorem to compute
the probability for t> 0 that the electron is in the state (a) s; =1/2, (b)
sz = —1/2, (Q sy =1/2,(d) sy = —1/2, (e) s, =1/2, (f) s, = —=1/2.

Ehrenfestls theorem states that the expectation values of a quantum
mechanical operator obey the classical equation of motion.

[Hint: Recall the connection between expectation values and probability
considerations].

(Wisconsin)
Solution:

In the classical picture, an electron spinning with angular momentum
s in a magnetic field B will, if the directions of s and B do not coincide,
precess about the direction of B with an angular velocity w given by

ds

dt
where w = -2 B, m being the electron mass. Ehrenfestis theorem then
states that in quantum mechanics we have

=sXw,

d _ e
E(s)—m—c(s)xB.

This can be derived directly as follows.
An electron with spin angular momentum s has a magnetic moment
p# == s and consequently a Hamiltonian

H=-p-B=--Bs,,
mc

taking the z axis along the direction of B. Then

d(s) 1 - eB = - ~
dt _7/_7;;1 S, H]—‘—zﬁmc {Szx+5yY+3zZ, SZ}
eB . n
= T hme {[sz, szl X + [sy, 5:] ¥}
e
= — S B(~(s,)) %+ (s2) 9
© B(~{s) %+ (s2)9)
=< (s)x B,
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in agreement with the above. Note that use has been made of the commu-
tation relations [s,, s,| = ihs,, etc.

Initially (s,) = 1/2,(sy)=(s,) = 0, and so we can write for ¢ > 0,
(s,) = (coswt)/2,(sy)=(sinwt)/2,(s,) = O.

Let the probability for ¢ > 0 of the electron being in the state s, =1/2

be P and being in the state s, = —1/2be 1 — P since these are the only
two states of s,. Then

P (%) +(1-P) (-%) - —;-coswt,

P = cos(wt/2), 1- P = sin’(wt/2).

giving

Similarly, let the probabilities for the electron being in the states s, =
1/2,8,=—-1/2be P and 1 — P respectively. Then

1 1 1. 1 T
P (5) +(1-P) (—5) = Esmwt~ 5 cos (5 —wt) ,
1+ cos Z _wt)| = cos? wr_ T
2 B 2 4’

and hence 1 — P = sinz(%‘—@. Lastly for (e) and (f), we have

or
P =

N =

P -

1 . 1
5—0, giving P = =, l—P_2.

3024

A particle with magnetic moment p = s and spin s, with magnitude
1/2, is placed in a constant magnetic field pointing along the z-axis. At
t=0,the particle is found to have s, = +1/2. Find the probabilities at
any later time of finding the particle with s, =+1/2.

(Columbia)
Solution:

The Hamiltonian (spin part) of the system is

. 1
H=—pod - B=—35.Bp,
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as s = 1 hoz, being in the x direction. In the o, representation, the
Schrodinger equation that the spin wave function (;‘;) satisfies is

d al 1 01 ay
ih — — uoB =0,
R <a2) T gk (1 o) (az)

d
R4
YVt

or )
ay + EﬂoBaz =0,

d 1
ik — = poBa; =0.
1,hdtaz+2;io a; =0
Elimination of a; or a2 gives
d2 (2)B2
78 M2 + gz 012 = 0,
which have solutions

a2 = A1 2€™ + Byge ™,

where

_ uoB
Y= "on

and A, 2, B2 are constants. As

so=to =l (10
FT27F T 2\0 -1

<()-30)

the initial spin wave function is (3), i.e. a1(0) = 1, a2(0)=0.The
Schrédinger equation then gives

das(0) o daa(0) _ B

and

dt ’ dt 2h

=1w
These four initial conditions give

A +B; =1, A+ By =0,
w(Al—Bl) =0, w(Az— B2) = w,
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with the solution A; = A = By = —By =1/2. Substitution in the
expressions for a2 results in

(ex) =  fome)

As the eigenstate of s, = +1/2is

1 1
| sy(+)) = 75 (z)
and that of s, =—-1/2is

s == ()

the probability of finding s, = +1/2is
P(+) = [{sy(+) [9(®)) |7

1 coswt
=|—=(1-1
‘\/5( ) (isinwt)

1
=3 (1 + sin 2wt) .

2

Similarly the probability of finding s, = —1/2is

P(-) = sy () [ 9O = 5 (1 ~ sin2wt).

3025

The Hamiltonian for a spin—% particle with charge +e in an external
magnetic field is

- _9 5.
T 2me S
Calculate the operator ds/dt if B = Bj. What is s.(t) in matrix form?
( Wisconsin)
Solution:
In the Heisenberg picture,
ds 1 ge

%~ BH =5 58 Bl
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As
[s,8-B]=[s;,s-B]X+[sy,s B|y + [s,, s - B]z
and
(82,8 - B] = [z, 5] By + [8g, Sy] By + sz, 8] B,
=ih(s; By—sy B,)
= ih(B x s),, etc
we have
[s,s-B] = —ithsx B ,
and hence d
s, ge
dt — +2mc sxB.

If B = By, the above gives

dsz(t) _ geB

dt = 2mec s:(t),

ds, 1) geB

and so

with the solution
s2(t) = ¢1 cos (gut) + ¢z sin (gwt),
where w = eB/2mc. At t = 0 we have
5:(0) =c1, 83(0) = cogw = gwsz(0),

and hence

geB . {geB
zt =S —1 x o
sz(t) = s,(0) cos (2 - )+s(0)sm (2mct

m

).
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3026

Two electrons are tightly bound to different neighboring sites in a cer-
tain solid. They are, therefore, distinguishable particles which can be de-
scribed in terms of their respective Pauli spin matrices (! and ¢(®. The
Hamiltonian of these electrons takes the form

H=—J(o® o® 4+ oV @),

where Jis a constant.

(&) How many energy levels does the system have? What are their
energies? What is the degeneracy of the different levels?

(b) Now add a magnetic field in the z direction. What are the new
energy levels? Draw an energy level diagram as a function of B,.

(Chicago)
Solution:

(a) The Hamiltonian of the system is

H=-Jo ¢ + a!(ll) 052)]

J [(a(l) -+ 0—(2))2 - 0-(1)2 —_— 0'(2)2

2

2
__ [leW+g@p-3-3
N 2

v o) W7 @ 1

2

(o) * a®)2— (oD + o)
——J . 2|
2J
=—ﬁ(sz—33—h2),

where
s= s 4 6@ = ’_;_ (@) + o@)
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is the total spin of the system and
h
S;= 821) + 39) =3 (09) + af))

is its total t-component. s2, s, and H are commutable. Using the above
and the coupling theory of angular momentum, we have (noting the eigen-
value of 52 is s(s + 1)h?)

s Sz number of states energy
1 1 0
1 { 0 2 -2J
-1 1 0
0 0 2 2J

(a) As seen from the table, the system has three energy levels —2J, 0,
2J, each with a degeneracy of 2. Note that if the electrons are indistin-
guishable, the second and fourth rows of the table would be different from
the above.

(b) In the presence of a magnetic field | B |= B,,
H = —Jo® o 4 ol o] -y - B,

where

€

=—-——35
© me >

-e and m being the electron charge and mass respectively. Thus

e
H=—-Jo®as®+ J!(,l) 052) ]+ e 52 B,

2
_ 8z eB,
=-2J [s(s+1) 73 1+

Sy

s2, s, and H are still commutable, so the new energy levels are: 2J,
eB,h/mc,—eB,h/mc,—2J. The energy level diagram is shown in Fig. 3.4
as a function of B, (lines 1, 2, 3 and 4 for the above levels respectively).
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2

2J /1

RN

Fig. 3.4

3

3027

A free atom of carbon has four paired electrons in s-states and two
electrons in pstates. Assume there is the fine structure coupling L . S, i.e.,
L?,8% and J? are igoodT quantum numbers.

(a) Give the values of S, L and J of possible states by a table, indicating
the corresponding multiplicities.

(b) Which state has the lowest energy? Give your reasoning.
(Columbia)
Solution:

(a) A carbon atom has two 1s electrons and two 2s electrons, which form
two closed shells. Thus the atomic states are determined by the combination
of the two 2p electrons. InL ~ S coupling, asl1=12=1, s1=s2=1/2,
we have L=|1; +12]=0,1, 2; S =81 +82|=0, 1. Taking into account
Pauli’s exclusion principle and the antisymmetry of the total wave function,
we obtain the following table.

(b) According to Hundis rule, the 3P, state has the lowest energy.
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L S| g | Zs*L; multiplicity

0 0 0 ' SO 1

1 1|2 3P,

1 T P 3

1 1 |o 3P

2 1o | 2 1D, 1
3028

A negatively charged #— meason (a pseudoscalar particle: zero spin,
odd parity) is initially bound in the lowest-energy Coulomb wave function
around a deuteron. It is captured by the deuteron (a proton and a neutron
in a 38 state), which is converted into a pair of neutrons:

T +d—->n+n.

(a) What is the orbital angular momentum of the neutron pair?

(b) What is their total spin angular momentum?

(c) What is the probability for finding both neutron spins directed op-
posite to the spin of the deuteron?

(d) If the deuteronis spin is initially 100% polarized in the R direction,
what is the angular distribution of the neutron emission probability (per
unit solid angle) for a neutron whose spin is opposite to that of the initial
deuteron?

You may find some of the first few (not normalized) spherical harmonics
useful: )

Y0=1, Y = Fsing e*i¢,
Y2 =cos 8, Y;'= Fsin20eti®,
(CUS)
Solution:

(a), (b) Because of the conservation of parity in strong interactions, we
have

p(r7) p(d) (1) = p(n) p(n) (-1)*2,

where L;, Ly are the orbital angular momenta of #=+ d and n + n re-
spectively. As the 7, being captured, is in the lowest energy state of the
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Coulomb potential before the reaction, L, = 0. Since p(z~) = -1, p(d) =
1, p(n) p(n) = 1, we have

and so
Ly=2m+1, m=0,1, 2, ....

The deutron has J =1 and »~ has zero spin, so that J = 1 before the
reaction takes place. The conservation of angular momentum requires that
after the reaction, Ly + S = J. The identity of n and n demands that the
total wave function be antisymmetric. Then since the spacial wave function
is antisymmetric, the spin wave function must be symmetric, i.e. S=1
and so Lz =2, 1 or 0. As L3 is odd, we must have L,=1, 5 = 1.

A
R

<——_

spin

Fig. 3.5

The total orbital angular momentum and the total spin angular mo-
mentum are both /1(1 +1) 5 =2 FL.

(c) Assume that the deuteron spin is in the direction J, =1k before the
reaction. If both neutrons had spins in the reversed direction, we would
have S, =-~1h,L, =2k, which is impossible since Ls=1. Hence the
probability is zero.

(d) Take the z-axis along the R direction. Then the initial state is
|3, J.) =11, 1). In the noncoupling representation, the state is |L,L,,
S,8,),withL=1,8=1. Thus

V2 V2

=¥%11,0,1,1) - X2 1,1, 1, 0).
@ 1=% 11011~ )
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The state
11,1,1,0) = Y1 (8, ¢)[1, 0) = —+/3/87 sinfe*? |1, 0)

has S, = 0 and so there must be one neutron with s, = —F#/2. Hence the
probability distribution required is

1 3 3
P ==, —sin?0 = — sin® 6.
dP(0, ¢)/d 5 g Sin 0 I, Sin 6
3029

An Q™ hyperon (spin 3/2, mass 1672 MeV/c2?, intrinsic parity +) can de-
cay via the weak interaction into a A hyperon (spin 1/2, mass 1116 MeV/c?,
intrinsic parity +) and a K~ meson (spin 0, mass 494 MeV/c?, intrinsic
parity —),i.e, Q"> A+ K.

(a) What is the most general form of the angular distribution of the
K~ mesons relative to the spin direction of the Q~ for the case when the
2~ has a maximum possible component of angular momentum along the
a-axis, i.e., the initial state IQ;”)=|Q;/32/2). (Assume that the 2~ is at
rest).

(b) What restrictions, if any, would be imposed on the form of the
angular distribution if parity were conserved in the decay process?

(Berkeley)

Solution:

(a) The initial state of the system is|3/2, 3/2), where the values are
the orbital and spin momenta of the §2~. The spin part of the final state
is 11/2,5,)10,0)=]1/2, s,), and the orbital part is Yi, (6, ) =1, m).
Thus the total final state of this system is

I, my|1/2, s,).

By conservation of angular momentum I=1, 2; m = 3/2—s,. Thus
the final state is a p wave if [ = 1, the state being |1, 1)|1/2,1/2);a
d wave if I= 2, the state being a combination of |2,2)1/2,-1/2) and
12,1)] 1/2,1/2).

Hence the wave functions are

b= 8,9 (1)
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[ /4 1 1 1 1 1
Ya = -\/;|2, 2)'5, —§>—\/;|2, 1)\5, —§>]
Vivae.0
5 21 y P
4 )
\ \/; Y22(9, ¢)

and
Y =aqPq + apPp
1
apY11(0, ) — aq \/; Y21 (0, )
4
\/; aqY22 (0, ¢)
Therefore

3
Y = = sin®0 [|ap|* +|aa|?® - 2Reapaq cos],
i.e., the intensity of the emitted particles is
I ocsin® 8(1 + acosé),

where
a = -2Re ayaq/(|ap 12+ | aq|?).

This is the most general form of the angular distribution of the K~ mesons.
(b) If parity were conserved in the decay process, the final state would
have positive parity, i.e.

(—1)'PgPp = +1.

Since
PPy = (-1) (+1) = -1,

we get!=1. It would follow that

vr=Yn(6, 9) (é) :
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and 3 3
* — 2 ainlp = 2 = 2
Y5 = g, Sit 0 o (1 —cos®8).

Hence parity conservation would impose an angular distribution of the
form

| x (1 —cos?6).

3030

Given two angular momenta J; and J2 (for example, L and S) and the
corresponding wave functions, where j; =1 and j2 = 1/2. Compute the
Clebsch-Gordan coefficients for the states with J = Jy+ J2, m = my +mg,
where:

(@ =3/2,m=3/2,

() j=3/2,m=1/2.

Consider the reactions

K-p -2 nF,
-t
- 2070,
K-n - X %
- X0,
Assume they proceed through a resonance and hence a pure I-spin state.
Find the relative rates based on I-spin conservation:
(c) for an | = 1 resonance state,
(d) for an | = 0 resonance state.

Use the Clebsch-Gordan cofficients supplied. The I-spins for K, n, &,
and w are 1/2,1/2, 1, and 1 respectively.

(Berkeley)
Solution:
(a) As j1=1, j2= 3, we have

13/2,3/2)=|1,1)|1/2, 1/2) .
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(b) Defining the operator J_ = J;_ + J>_, we have
J-13/2,3/2) = (Ji— + Jo-) |1, 1) 1 1/2,1/2),
or, using the properties of J_ (Problem 3008),
h313/2,1/2) = hv2(1,0)(1/2,1/2) + k| 1, 1) |1/2,-1/2),
and hence

13/2,1/2) = v/2/3|1, 0)|1/2,1/2) +/1/3]1,1)|1/2, —1/2) .

To calculate the relative reaction cross sections, we use the coupling
representation to describe the initial and final I-spin states:

| K~ p) = 11/2,-1/2) | 1/2,1/2) = V/1/2{1, 0) - \/1/2]0, 0),
[57rt) = |1,-1)11, 1) = V/1/6]2, 0) —v/1/2]1, 0) + 1/1/3]0,0),
I=*ta7) =11, 1)11,-1)=+/1/6| 2, 0) + V1/2| 1, 0) ++/1/3| 0, 0) ,
1=°7%) =|1, 0) | 1, 0) = v/2/3|2,0) —/1/3]0,0),
|K~n)=11/2,-1/2)|1/2,-1/2) = |1,-1),
)=
)=

Il

2=7% =(1,-1) | 1, 0) = /1/2| 2, -1) —4/1/2] 1, -1),
207y =1,0)|1, -1) = /1/2| 2, -1) + /1/2] 1, -1).

To K-p reactions going through the resonance state | = 1, the fi-
nal states |£~n*) contributes —4/3]1, 0), |[E¥#~) contributes \/g] 1, 0),
while | £%7%) does not contribute. Hence

o(Z ) :o(T ) : 0(Z%%)=1:1:0.
Similarly for K-n reactions we have
o(Z" %) :o(Z077)=1: 1.

Only the K-p reactions go through the | = 0 resonance state. A similar
consideration gives the following reaction cross section ratios:

(X nt) o) 0(X%%) =1 :1: 1.
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3031

(a) Compute the Clebsch-Gordan coefficients for the states with J =
Ji+Jd9, M = m; + mg, where j; =1 and j; = 1/2,and j = 3/2,M=1/2
for the various possible m; and mg values.

(b) Consider the reactions:

a*tp 3 7tp @)
n-p =" p (i)
77p - 7%n (iii)

These reactions, which conserve isospin, can occur in the isospin | =3/2
state (A resonance ) or the | = 1/2 state (N* resonance). Calculate the
ratios of these cross-sections, oj: oy : 0disi, for an energy corresponding to
a A resonance and an N* resonance respectively. At a resonance energy
you can neglect the effect due to the other isospin states. Note that the
pion is an isospin | =1 state and the nucleon an isospin I =1/2 state.

(Berkeley)
Solution:

(@) As M = my+ma =1/2,(my, m2) can only be (1, —1/2) or (0, 1/2).
Consider

13/2,3/2) = |1,1)|1/2,1/2) .

As
M_|3/2,3/2) = V3|3/2,1/2),
and
M_|3/2,3/2) = (My_ + M;_)|1, 1) |1/2,1/2)
= V2]1,0),1/2,1/2) + |1,1) 1 1/2,-1/2),
we have
(1,1,1/2,-1/213/2,1/2) = 1/V3,
(1, 0, 1/2,1/213/2,1/2) = \/2/3.
(b) As

= |L,1, x®=|1,0), x ={1,-1),
p=11/2,1/2), n=11/2,-1/2),
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we have

| 7¥p) =11,1)1/2,1/2) =|3/2, 3/2),
|77p) =11, -1) 11/2,1/2) = a |3/2,-1/2) + b|1/2,-1/2),
| 7°n) =1, 0) {1/2,~1/2) = ¢ |3/2,-1/2) + d|1/2,-1/2).

From a table of Clebsch-Gordan coefficients, we find a = {/1/3,b=
—v/2/3,c=+/2/3,d =4/1/3. For the A resonance state, | = 3/2 and the
ratios of the cross sections are
1 2
ooy om=1: la|* :|acP=1: 39

For the N* resonance state, I =1/2,and the ratios are

4 2
gi . O : Oiii = 0: |b|4:|bd|2=0:§ : 5

3032

Consider an electron in a uniform magnetic field along the z direction.
Let the result of a measurement be that the electron spin is along the
positive y direction at ¢t = 0. Find the Schrédinger state vector for the
spin, and the average polarization (expectation value of s;)along the
direction for t > 0.

( Wisconsin)
Solution:

As we are only interested in the spin state and the magnetic field is
uniform in space, we can leave out the space part of the wave function.
Then the Hamiltonian can be taken to be

H=-p B=py.o  B=lwo,,

where p=—p.o,w = u.B/k = eB/2mc, i being the Bohr magneton
£ As the electron is initially along the y direction, the initial spin wave

2me
wa-5 ()

function is
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Let the spin wave function at a later time ¢ be (3). The Schrodinger
equation

th dy/dt = Hy
then gives
., [ o 1 0 o
#(5)=r 0 1) (5)
or
a = —iwa, ﬁ::iwﬂ,

with the solution
_ a(t) _ e—iwt aO) B —1_ < e—iut
¢(t) - <ﬂ(t)) - ( eiwt ﬁO - 2 ie~iwt> :

(52 = (1) 32 19(0)
= 2 Wl lv)

. h 1 twit s —twt 01 e—i“)t
=3z ST ieiwt)

—2iwt)

Hence

— %(eﬁut —e

=— g sin (2wt) .

3033

Consider an electron in a uniform magnetic field pointing along the z
direction. The electron spin is measured (at time ) to be pointing along
the positive y-axis. What is the polarization along the x and z directions
(i.e. the expectation values of 2s, and 2s,) for t >¢¢?

( Wisconsin)

Solution:
The Schrédinger equation for the spin state vector is

5 (o) =2 () == 2 (1)
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where g =|e|k/2m.c is the magnitude of the magnetic moment of an
electron. As B is along the z direction, the above becomes

wa (o) = (o 1) (o)
{ ih 8 a(t) = peBal(t),
th 8, b(t) = —pneBb(t) .

or

The solutions are
a(t) = a(to) e~ HeB(t=to)
b(t) = b(to) e HeBlt=t0)

At time ¢y, the electron spin is in the positive y direction. Thus

v (em) =3 (0 70) ) =3 ()

or )
-i b(to) = alto),
ia(to) = b(to) .
The normalization condition
la(to) I + | bto) I* =1,
then gives

| a(to) 12 = | b(to) 12 = .

As 2o — j we can take
a(to

a(te) = 1/v2, blte) =14/V2.

Hence for time t > to, the polarizations along = and z directions are

respectively
_ . 1% 0 1 a
(2sz) = ha , b%) (1 0) (b)

2pe
= h(a"b + b*a) = —hsin [ £ B(t — to)] ;

h

(25,) = h(a", b") (é _‘1’) (‘;)

= h(a*a — b*b) =0.
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3034

Two spin—% particles form a composite system. Spin A is in the eigen-
state S, =+1/2 and spin B in the eigenstate S;=+1/2. What is the
probability that a measurement of the total spin will give the value zero?

(CUS)

Solution:

In the uncoupling representation, the state in which the total spin is

zero can be written as
1 1 1 1 1
|0)=‘\—/—§ ( SAz—§> SBz—‘§>— SAz-—§> SBz—‘§>> )

where S4, and Sg, denote the z-components of the spins of A and B
respectively. As these two spin-i particles are now in the state

1Q) = |54z = +1/2)| Sps = +1/2),
the probability of finding the total spin to be zero is
P=1{(0|Q) .
In the representation of $?and S;, the spin angular momentum operator

S, is defined as
¢ _h__R( o1
z——EO':,;——z 1 0 .

Solving the eigenequation of S'z, we find that its eigenfunction |.S, =
+1/2) can be expressed in the representation of S? and S as

1S, = +1/2) = %usz = 1/2) + | S, = —1/2)).

Thus
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and hence
1 ‘ 1 1 1
0 = Sa,==184, = += . = =+~
(01Q) > (< Az =35 |5a 2> <SB 5 Sg +2>
1 1 1 1
- <SAz = _'2‘ SAz = '2'> <SBz '2' SBz = +‘2'>>
1 1 1 1
= S z = —= zr = _ = -,
5 < B 5 Sp +2> 2
Therefore

P=1{0]Q)f = ; = 25%.

3035

(a) An electron has been observed to have its spin in the direction of
the t-axis of a rectangular coordinate system. What is the probability that
a second observation will show the spin to be directed in x — z plane at an
angle @ with respect to the z-axis?

(b) The total spin of the neutron and proton in a deuteron is a triplet
state. The resultant spin has been observed to be parallel to the t-axis
of a rectangular coordinate system. What is the probability that a second

observation will show the proton spin to be parallel to the z-axis?
(Berkeley)

Solution:
(a) The initial spin state of the electron is

o) = (é)

The state whose spin is directed in x-z plane at an angle § with respect
to the z-axis is
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Thus the probability that a second observation will show the spin to be
directed in x — z plane at an angle & with respect to the z-axis is

P(0)=| (¥ o) | = (COS 5o g) <<1>>

0
—ecos? [ 2
= COS (2) .
(b) The initial spin state of the neutron-proton system is
[o) =11,1)=1]1/2, 1/2), | 1/2, 1/2),.

Suppose a second observation shows the proton spin to be parallel to the
z-axis. Since the neutron spin is parallel to the proton spin in the deuteron,
the final state remains, as before,

sy =11/2,1/2)a|1/2,1/2)p .

Hence the probability that a second observation will show the proton
spin to be parallel to the z-axis is 1.

2

3036

The deuteron is a bound state of a proton and a neutron of total angular
momentum J = 1. It is known to be principally an S (L = 0) state with a
small admixture of a D (L = 2) state.

(a) Explain why a P state cannot contribute.

(b) Explain why a G state cannot contribute.

(c) Calculate the magnetic moment of the pure D state n — p system
with J = 1. Assume that the n and p spins are to be coupled to make
the total spin S which is then coupled to the orbital angular momentum
L to give the total angular momentum J. Express your result in nuclear
magnetons. The proton and neutron magnetic moments are 2.79 and -1.91
nuclear magnetons respectively.

(CUS)

Solution:

(a) The parities of the S and D states are positive, while the parity
of the P state is negative. Because of the conservation of parity in strong
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interaction, a quantum state that is initially an $ state cannot have a P
state component at any later moment.

(b) The possible spin values for a system composed of a proton and a
neutron are 1 and 0. We aregivenJ=L+Sand J=1.If$=0,L=1,
the system would be in a P state, which must be excluded as we have seen
in (a). The allowed values are then S =1,L =2, 1, 0. Therefore a G state
(L = 4) cannot contribute.

(c) The total spin is S = s, + s,. For a pure D state with J =1, the
orbital angular momentum (relative to the center of mass of the n and p)
is L = 2 and the total spin must be § = 1. The total magnetic moment
arises from the coupling of the magnetic moment of the total spin, g, with
that of the orbital angular momentum, gz, where p = pip + pin, fip, tin
being the spin magnetic moments of p and n respectively.

The average value of the component of g in the direction of the total
spin Sis

(9pinSp + gninsn) - S 1
Hs = & £ S; = S=§(gp+gn)ﬂNS;
where
__ch = 558, g, = -3.82
BN =goo0 9 = 558 g0 = 382,

as s, =sp, =18S.
The motion of the proton relative to the center of mass gives rise to
a magnetic moment, while the motion of the neutron does not as it is
uncharged. Thus
L = pnLp |

where L, is the angular momentum of the proton relative to the center of
mass. As L, +L, = L and we may assume L, = L, , we have L, = L/2 (the
center of mass is at the mid-point of the connecting line, taking m,=~m,).
Consequently, gz =punL/2.

The total coupled magnetic moment along the direction of J is then

1 1
suNL - T+ o (9p+gn) NS - J1J
1

0+ 1)

SinceJ=L+S,S -L=1(J2-L2=8%). WithJ=1,L=28=1
and so J2=2,L%2=6,582=2 wehave S-L=-3and thusL -J =3,
S-J = -1. Hence

HT =
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1 1
KT = |5 BN . 3+§(gp+gn)u1v(—1) J/2

1 1
= [1-5 —§(gp + gn) B pnd = 0.31unJd.

Taking the direction of J as the z-axis and letting J, take the maximum
value J, = 1, we have ur =0.31uy.

3037

A preparatory Stern-Gerlach experiment has established that the 2-
component of the spin of an electron is —#/2. A uniform magnetic field in
the x-direction of magnitude B (use cgs units) is then switched on at time
t=0.

(a) Predict the result of a single measurement of the z-component of
the spin after elapse of time T.

(b) If, instead of measuring the x-component of the spin, the x-compo-
nent is measured, predict the result of such a single measurement after
elapse of time T.

(Berkeley)
Solution:

Method 1
The spin wave function (3) satisfies

o (1) -2 (3)-» (¢ ) (5) -~ ()

where w = eB/2me, or
{ ia = wb,
ib = wa.

i = —iwb = —w?a,

Thus

the solution being

a=A eiwt + C e—iwt

b

b= —4=— twt _ ~iwt
~a (Ae Ce ™),
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where A and C are arbitrary constants. From the initial condition a(0) = 0
and b(0) = 1 as the initial spin is in the —z direction, we get A=—-1/2,C =
1/2. Hence

1 ; : .
a=3 (e~ — ey = —i sinwt »

1, . .
b= 3 (e™?t + e~wt) = coswt ,

and the wave function at time tis

w(t) = <—isinwt) .

coswit

(@ At t=T,

—isinwT .. 1 0
1»b(T)~( coswt >=—zsmwT(0)+cosz (1> .

As ( (1) )and (‘l’ ) are the eigenvectors for o, with eigenvalues +1and — 1
respectively the probability that the measured z-component of the spin is
positive is sin? wT; the probability that it is negative is cos? wT.

(b) In the diagonal representation of o, the eigenvectors of o are

woe=n = (1) we=-0=755 ().

As we can write

—isinwT 1 1 1 1 . 1 -1
w0 = ()= (1) 5 ()
— _l_e—in,d)(o.z:l)+_\_/1_§ein,¢(a.z:_1) '

V2

the probabilities that the measured x-component of the spin is positive and
is negative are equal, being

2 2

e—in

V2

ein

vz

1

=3

Method 2
The Hamiltonian for spin energy is
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H = —-p-B =eBho,/2mec.

The eigenstates of o, are

i) (4)

We can write the initial wave function as

e (2) -5 [ ()3 (D)

The Hamiltonian then gives

/1y e 1 1Y ot _ B
1/1(t)—-2-(1)e —5<_1>e I

w(t) = (—z’sinwt) ’

(a) As

coswt

the probabilities at t=T are
P,y = sin? wT, P, 1= cos? wT.

(b) As in method 1 above,

1 )
PZ‘T =| ﬁe—‘l«wt — %,
1
Pz¢:§ .
3038

An alkali atom in its ground state passes through a Stern-Gerlach ap-
paratus adjusted so as to transmit atoms that have their spins in the +z
direction. The atom then spends time 7 in a magnetic field H in the
x direction. At the end of this time what is the probability that the atom
would pass through a Stern-Gerlach selector for spins in the —z direction?
Can this probability be made equal to unity? if so, how?

(Berkeley)
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Solution:
The Hamiltonian

le| H
w=—

2me ’

gives the equation of motion

hd () _ 0 1 P\ _ (2
a ()= (3 o) (8) = (%)

or

i = Wi,
iy = wiby .
and hence )
1 +wiP =o.

The solution is ¢ = (!), with
¢1 (t) — aeiwt + be—iwt ,

Po(t) = i ¥1 = —ae™t + be~ Wt
w

a1
then gives a = b=1/2. Thus
(¥ _1 et +e™™ \ [ coswt
1/) - 1/)2 - 2 _eiwt + e—iwt - —¢sinwt
_ 1y .. ¢ 0
=coswt | o isinwt| ;).

In the above (}) is the eigenvector o, for eigenvalue -1. Hence the
probability that the spins are in the —z direction at time 7 after the atom
passes through the Stern-Gerlach selector is

2
COSWT
l (0 1) (—isinwr)

The initial condition

. 2 1~ cos2wTr
= sin“wrt = —a
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The probability equals 1, if

1 - cos2wr =2,

or
cos 2wt = —1,
i.e. at time @ 1
n+1l)m mcnm
== 7 —{(2 1 .
T 2w @n+ 1)y

Hence the probability will become unity at times = (2n + 1) men/
le| H.

3039

A beam of particles of spin 1/2 is sent through a Stern-Gerlach appa-
ratus, which divides the incident beam into two spatially separated com-
ponents depending on the quantum number m of the particles. One of the
resulting beams is removed and the other beam is sent through another
similar apparatus, the magnetic field of which has an inclination « with
respect to that of the firstiapparatus (see Fig. 3.6). What are the rela-
tive numbers of particles that appear in the two beams leaving the second
apparatus?

Derive the result using the Pauli spin formalism.

(Berkeley)

Solution:

For an arbitrary direction in space n = (sin 8 cos ¢, sin § sin ¢, cos 8) the
spin operator is

Fig. 3.6
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o . N =0;sinfcosy + gysinfsiny + o, cosd

B cos@  sinBe W )
" \sinfe® —cosf /'

01 (0 —i) (1 0)
Oz = y Oy = . y Oz = )
1 0 ) 0 0 -1

are Pauli’s spin matrices. Let its eigenfunction and eigenvalue be (}) and

A respectively. Then
o-n(%)=x(¢
b~ b/’

a(cosf—-))+be ¥ sing =0,

where

or

ae*sinf — b(\ + cosd) =O0.
For a, b not to vanish identically,

cosf— A e ®sing

o = A —cos? 0 —sin? 9= 0,
e?sind —(A+cosf)

or A2=1, i.e., A= =1, corresponding to spin angular momenta :t%h. Also,
normalization requires

(a*b") <‘;) =la?+ b =1.
For A =+1, we have

b _ 1—cos§ _ sin}

L — et?
a - e ¥sing cos-g-

7

and, with normalization, the eigenvector

0
cos —

| tn) =

€' sin —
2
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For A = —1, we have
b cosf+1 cos %
a e~ sinf e—i¥ sin %

and, with normalization, the eigenvector

—e~ sing
[ Ln) =

cos —
2

For the first Stern—Gerlach apparatus take the direction of the magnetic
field as the z direction. Take n along the magnetic field in the second Stern—
Gerlach apparatus. Then ¢ = 0, § = « in the above.

If the particles which are sent into the second S — G apparatus have
spin up, we have

|t2z)=cltn)+d|in),
c={(1n|12)=(cos(a/2), sin(a/2)) ((1)) = cos(a/2),

d=(ln|?t2) = (—sin(a/2), cos (a/2)) ( (1)) = —sin (a/2).

Therefore, after they leave the second S — G apparatus, the ratio of the
numbers of the two beams of particles is

lc]? _ cos®(a/2) _

ld|?  sin®(a/2)

cot?

d
5

If the particles which are sent into the second S — G apparatus have
spin down, we have

[{2) =c|tn)+d|ln),
c=(tn|lz)=(cos(a/2), sin(a/2)) ((1)) = sin(a/2),

d=({n|lz)=(-sin(a/2), cos(a/2)) ((1)) = cos (a/2),
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and the ratio of the numbers of the two beams of the particles is

sin? (a/2)
cos? (a/2)

2

= tan a
- 5 -

3040

The magnetic moment of a silver atom is essentially equal to the mag-
netic moment of its unpaired valence electron which is g = —<s, where
v = e/mc and s is the electron’s spin.

Suppose that a beam of silver atoms having velocity V is passed through
a Stern—Gerlach apparatus having its field gradient in the z direction, and
that only the beam with m, = h/2 is to be considered in what follows.
This beam then enters a region of length L having a constant magnetic
field By directly along the axis of the beam (y-axis). It next enters an-
other Stern—-Gerlach apparatus identical to the first as shown in Fig. 3.7.
Describe clearly what is seen when the beam exits from the second Stern—
Gerlach apparatus. Express the intensities of the resulting beams in terms
of V, L, By and the constants of the problem.

Use quantum mechanical equations of motion to derive your result.

(Berkeley)

—Bo_

| NN

ot N

z

2a B
ks

Fig. 3.7

Solution:

If we took a picture at the exit of the second S — G apparatus, we would
see two black lines arising from the deposition of the two kinds of silver
atoms with m, = h/2 and m, = —h/2.

Denote the state of the system in the region L by |t). If we consider
only atoms of ms; = h/2 in the beam that enters the region L at ¢t = 0, then
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0-(3)

The Hamiltonian of the system in the region of length L is

H:_”.B:'MB"

Ty,

and so

R

—ex _ iy Byt o 1

—exp 2 % J\o

_ ¥YBot . . Byt 1)
= cos —— —igy sin 0

_ ~vBot [1 . ’}’Bot 0
= COSs 3 (0)+sm—§——- 1/

Hence at the exit of the region, the intensities of beams with m, = %
and m, =~} are respectively

I4) = exp (—th> It = 0)

_ o [ 7Bot I = In sin? vBot
I, = Iycos (———2 ), - o sin ( > ),

where Iy is the intensity of the beam that enters the region.

When the beam leaves the region L, t = L/V. So the ratio of intensities
is

cot?(yBoL/2V).

The splitting of the beam is seen when it exists from the second Stern—
Gerlach apparatus.

3041

Two oppositely charged spin-% particles (spins s1 and s2) are coupled
in a system with a spin-spin interaction energy AE.

The system is placed in a uniform magnetic field H = HP. The Hamil-
tonian for the spin interaction is

H = (AE/4)(o1 . 62)— (1 +p2)-H
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where p; = g;pos; is the magnetic moment of the ith particle.
The spin wave functions for the 4 states of the system, in terms of the
eigenstates of the z-component of the operators ¢; = 2s;, are

Y1 = o1, Y2 = sBaz + confBa, Y3 = cras — sauf2, Y4 = Fif2,

where

(@2)ics =i, (02)ifi=—Bi, s=(1/V2)-(1-z/V1+22)V%,

c=(1/v?2) 1+ z/vV1+x2)V?,
T = /,l,oH(gz - gl)/AE.
(a) Find the energy eigenvalues associated with each state ;. Discuss
the limiting cases poH/AE > 1 and pyoH/AE < 1.
(b) Assume that an initial state (0} is prepared in which particle 1 is

polarized along the field direction z, but particle 2 is unpolarized. Find the
time dependence of the polarization of particle 1:

Pr(t) = (¥(t) | o1z | 9(1)) .

Again discuss the limiting cases pugH/AE < 1 and uygH/AE > 1.
(Columbia)
Solution:

(a) o,a,8 may be represented by matrices

(0 8) (0 0) (6 )
«=(6)- #=(2):

for which the following relations hold:
Oiz @i = Bi, OB = i,
iy =103, oyl = —ia;,

Oiz 0 =y, 00 =-P0;.
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Then as

H=(AE/4)(o1 . 02)~ (1 + ) H

- (AE/4) (015025 + T1y02y + 01,02;)
1
— 5 kol (91012 + 9202.) |

where we have used u = guos =3 guoor, We have

. A 1
Hyy = Hoop = (AE/4) (8182 — B1B2 + arag) — 3 toH (g1 + g2) arag
+
- (AE/4 ~adte M,H) a0 = (AE/4 ~ute M,H) o
and hence

1
El = AE/4—§ (gl +92) ﬂOH

Similarly,
. AE
Hypp = e [s(a1f2 + a1f2 — Braz) + c(Bras + Bras — a1 B2))]

+ % (91— 92) poH (sB102 — ca1B2)
= [(AE/4) (2c — s) — (AE/2)zs] Braa
+ [(AE/4) (25~ ¢) + (AE/2)zc| o1 52
= (AE/4)(2c/s — 2z — 1) sPiaa + (AE/4) (2s/c + 2X ~1)cay B2 .

Then as

5 (A +z/V1+2%)/2
2c/s—-2x—2(1_x/m)l/2 ~2z=21+22

=2(V1+ 22 —-x) +2x = 2s/c+ 2x,

we have

Hypy - (AE/4) (21 + 22 — 1) 93,
or

E2 = (AE/4)(2V1 + 22 - 1).
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By the same procedure we obtain

Es-(~AE/4)(2\/1+ 22 + 1),
Ey = (AE/4) + 91_’;9-2 woH .

(b) As particle 2 is unpolarized and can be considered as in a mixed
state, its state & can be expanded in terms of az and B2:

&2 = aaz + b,
where | a|?=|b|2=1/2. Then the initial total wave function is

Y(0) - a2 = cu(acs + b)
c -1
St et

= a1 + beys — bsys

2 2

1 T 1 T
S O PP S DV SN S Y
s 2(+\/1+z2) 2( \/1+x2)

Hence

E
P(t) = a1 exp (—z —ﬁl- t) + beyrn exp (—i % t)
E
— bsyz exp (—i =3 t) .
h
Then using the relations

O1z%1 = 01,0102 - ajag,

o192 = 012 (sB102 + cayfa) - —sPiaz + cai1f2,

01293 = 01, (cBroz — soufB2) = —(chro2 + sa1fz),
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we obtain

Pz (1) = (¥(t) |01 | ¥(¥))
= |al?® + |b|? (exp (—iEat/h) c(sBraa + caif)
— exp (—iE3t/h) s(cBraz — sa1B2) | (exp (—iEqt/h)
X c(~sBrag + ca1f2) + exp(—iE3/h) s(cfraz + sayfs))

=3+ -;- [(s* = )?* + 4522 cos (B, ~ E3)t/h)
1 1 2

=y — V1+ 22 AFEt/h
2+2(1+x2)[x Foos(Vite ™)

Cl-& sin? (V1+22 AEt/2h) .
(c) In the limit poH/AE > 1, i.e., z>» 1, we have

1
___._-—[I,QH%_E (91+92)#0Hy
AE !
EZ:T( 1+z2~1)z(AE/4)x2x=§ (92 — 91) moH,
A
E3=__4§ (1+2\/1+z2)z—% (92~ 91) o H,

AE gitg 1
= T mH RS (g1 +g2) woH,

P,(t)=1.

Ey

When uoH/AE < 1, i.e., x < 1, we have

Elz E4%AE/4,
E2=é4£ (2\/1+z2—1)z%€,

By~ -
3 4

Pi. (t) ~ 1 —sin® (AEt/2h).
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3042

A hydrogen atom is in a 2P1/2 state with total angular momentum up
along the t-axis. In all parts of this problem show your computations and
reasoning carefully.

(a) With what probability will the electron be found with spin down?

(b) Compute the probability per unit solid angle P(8, ) that the elec-
tron will be found at spherical angles 8, (independent of radial distance
and spin).

(c) An experimenter applies a weak magnetic field along the positive
z-axis. What is the effective magnetic moment of the atom in this field?

(d) Starting from the original state, the experimenter slowly raises the
magnetic field until it overpowers the fine structure. What are the orbital
and spin quantum numbers of the final state?

[Assume the Hamiltonian is linear in the magnetic field.]

(e) What is the effective magnetic moment of this final state?

(Berkeley)

Solution:

(a) For the state 2Pyl =1, s=1/2,J =1/2,J,=1/2. Trans-
forming the coupling representation into the uncoupling representation, we
have

[J, J.) =11/2,1/2) = \/2/3|1,1) | 1/2, -1/2)
—V/1/3|1,0)|1/2,1/2).

Therefore P, =2/3.
(b) As
(1 (V2
MM—ﬁ(ho)

1 - *
P9, p)dQ = 3 (2Y11Y11 + YipYe) dQ.

we have

Hence the probability per unit solid angle is

1 3 3 1
P == {2 = sin2 + — 2 = —,
6, ¢) 3 < X g o b an 0) ar
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(c) In the weak magnetic field, J and J, are 1doodT quantum numbers
and the state remains unchanged. The effective magnetic moment is

ll_ e 11 1 1_ eh
2'2/ " 9 me \2' 2 2'2/79 ame’

where m is the electron mass and

b J,

_1+J(J +1) —ll+1) +s(s+1) 2
- 2J(J +1) -

wi

Hence u = ek/6mec.

(d) In a strong magnetic field, the interaction of the magnetic moment
with the field is much stronger than the coupling interaction of spin and
orbit, so that the latter can be neglected. Here { and s are good quantum
numbers. The Hamiltonian related to the magnetic field is

W=—u -B-p, .B =eBl,/2mc+eB3,/mc.

When the magnetic field is increased slowly from zero, the state remains
at the lowest energy. From the expression of W, we see that when the
magnetic field becomes strong, only if 1, = —h, s, = -A/2 can the state
remain at the lowest energy. Thus the quantum numbers of the final state
are l=1,1,=-1,s=1/2,3, = —1/2.

(e) the effective magnetic moment of the final state is

w= Ty, + B,, = —eh/2mc — eh/2mc = —eh/mc.

3043

Consider a neutral particle with intrinsic angular momentum +/s(s + 1),
where s = k/2, i.e., a spin-1/2 particle.

Assume the particle has a magnetic moment M = ~s, where v is a con-
stant. The quantum-mechanical state of the particle can be described in a
spin space spanned by the eigenvectors |+) and |-} representing alignments
parallel and antiparallel to the z-axis:

L= 24, sl = -

h
2 EH'
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At time t = 0 the state of the system is |¢(t = 0)) = 1+). The particle
moves along the y-axis through a uniform magnetic field B = By oriented
along the y-axis.

(a) As expressed in the I+), |~) basis, what is |1¥(t))?
(b) What would be the expectation values for measurements of the
observables sg, sy, s, as functions of time?
(CUS)

Solution:
(a) The Hamiltonian of the particle is

H=-M.B=—3B.

In the representation of §2,3,,

. R (0 —i)
Sy = )
Y2\ o0

and so the two eigenstates of 3, are

u,,:n/z):% (_;) , 1sy=-n/2>=% (i)
As

~

H

sy:%h>=—'yB

H h

sy=——;- h>='yB

any state of the particle can be expressed as

1 1
sy=§h> exp (+i E'th)

1
sy——-—% h> exp(—i-z—'th>.

Then the initial condition

%) =

+ c2

lo(t = 0)) = |s. = h/2)
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gives
1 1
sz—§h>—c1 sy=—h>+cz sy——§h>,
and so
1 1.\ 1 7_\" /1
Cl‘<§h‘3y s‘“§h>_ 2 < 1) (0)
1 1 1
= —— 1 =—-1,,
\/i(z)<0) V3
1 1 1 [\ (1
a=(-grmala-3n-35 (1) )
1 1\ _ 1
Ly (3) -k
Therefore
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(sy) = 0, because (sy) = 0 att =0 and sy is conserved.
1 1 1 01
= = -si ~ 0
(8z) (cos (2 'th) sin (2 'th)> 5 (1 0)
1
cos (5 '7Bt) 1 1
X 1 = (—sin <§ 'th) cos (§ 7Bt)>
—sin (5 'th)
1
cos (-2— 'th)
h

L
2 . 1
—sin (5 'th)

3044

A particle of spin 1/2 and magnetic moment g is placed in a magnetic
field

X = —% Fsin (vBt).

B =DByz+ BycoswtXx — Bysinwty,

which is often employed in magnetic resonance experiments.

Assume that the particle has spin up along the +z-axis at t =0
(ms=+1/2). Derive the probability to find the particle with spin down
(m, = —1/2) at time t > 0.

(Berkeley)
Solution:

The Hamiltonian of the system is
H=-upo -B.

Letting
Wwo = /_I,B()/ﬁ, w1 = ﬂBl/h,

we have

H = — u{Boo, + Bi1o; cos wt — Byoy sinwt)

0 eiwt
= h“)Oa'z - h‘wl ( ) ’

e—iwt 0
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01 0 —i 1 0
92=%10)%T\i 0/)'%%%\o0o -1/

Let the wave function of the system be

= (i)

The Schrodinger equation hd:{t) = H | t), or

() (6 D)6) - () (),

{ @ = twoa + iwre™th,

where

gives

b = —iwpb + iwie~“tq.
Try a solution of the type
a = a exp (iwot),
{ b = exp (—iwot).
Substitution in the above equations gives

{ & = iwy exp [i(—2wp + w)t] B,

B =iwy exp [—i(—2wp + wit] a.
Assume that a and 8 have the forms
a = Ajexp [i(—2wp + W + Q)] ,
{ B = A e,
where A;, As, and © are constants. Substitution gives

(~2(U()+w+Q)A1 —wAs = 0,
—wi Ay + QA, = 0.

For this set of equations to have nontrivial solutions the determinant o
the coefficients of A;, A2 must be zero, i.e.,

(“2wo+w+ Q)0 -w?=0,
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giving

Q= —(——wo-l- %)) + \/(—w0+w/2)2+wf.
Therefore the general form of 8 is
B = A2y exp (i24+8) + Az— exp (1Q-t),
and that of a is
oo Bexp [i(—2wp + w)t]
Wi

=wi exp [i(—2wo + W) t)[Q4 Aoy exp (iQ24t)
1

+Q_ Az exp (iQ2_t)].
Initially the spin is up along the z-axis, so

=0-(3)-(8) - (59)-

1
— (R4 A2+ + Q_Ay_)
Wi

giving

1,

0.

A2+ + A
The solution is
Asy = — Ay_ = w1 /(04 - Q)
w1

2/(wo — w/2)2 +

&

Hence
b(t) = exp (—iwot) B(t)
= exp (—iwot) Az
X [exp (i§24t) — exp (i2-t)]
= exp (—iwt/2)2i Az

X sin (\/(wo — ayf2)2+ wit)

_ tw exp [—i(w/2)t]
(wo — w/2)? + w?

xsin(\/(wo - w/2)? + wit).
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The probability that the particle has spin down along the t-axis at time
tis

P=[(z [t}

wisin® ( wp —w/2)2 + w?t)

2

=1b(t) > = o= 2+

3045

A spin- % system with magnetic moment g = poo is located in a uniform
time-independent magnetic field By in the positive z direction. For the
time interval 0 <t < T an additional uniform time-independent field B;
is applied in the positive x direction. During this interval, the system is
again in a uniform constant magnetic field, but of different magnitude and
direction 2’ from the initial one. At and before t = 0, the system is in the
m =1/2 state with respect to the z-axis .

(a) At t =04, what are the amplitudes for finding the system with spin
projections m’ = +1/2 with respect to the 2’ direction?

(b) What is the time development of the energy eigenstates with respect
to the 2’ direction, during the time interval 0 <t < T?
(c) What is the probability amplitude at t=T of observing the system
in the spin state m = —1/2 along the original z-axis?
[Express your answers in terms of the angle @ between the z and 2’ axes
and the frequency wg = o Bo/ .
(Berkeley)

Solution:
(@) In the representation of s,, the eigenvectors of s, are
cos o in
- —Ssin —
2

sin — cos —
2 2

corresponding to the eigenvalues s, =1/2 and —1/2 respectively. Then
the probability amplitudes for m'=+1/2 are respectively
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1
Cy = cosE sin 3 0’ " cos 7

e o) G).mt
__<—sin2 co® 8/ ="""2

(b) The Hamiltonian in the interval 0 < t<T is

H=—-—p-B=—up (BQO'; + Blaz)
_ By B
=—Ho B1 —'Bo .

The initial eigenfunctions are

cOs 9 i 0

ey —Ssin -

2 2

X+(0) = 8 y  X- (0) = 9 ’
sin - cos 3

where

B
_ -1 1
0 = tan <_Bo) .

Substitution in the Schrédinger equation Hx+(0) = +Ex+(0) gives

E = —pupBy/cosd = —poB,

B=+/Bf+B?.

At a later time tin 0 <t< T, the eigenstates are

where

x+(t) = exp (FiBt/h) x+(0) = exp (xipoBt/h) x+(0) .
(c) The probability amplitude at ¢t =T is
C (T)=(01)exp (—iHT/HR) 0(1)

= (iBy/y/ B% + B2) sin (15T 4/ B3 + B2/HR)
=i sin @ sin (uo BT/h).
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An alternative way is to make use of

¥(0) :(;) = Cos g X+(0) — sin g x-(0),

and so
P(t) =x+(0) cosgexp (ipoBt/h)

0
—~x_(0) sin 3 eXp (—ipeBt/h),
to get

C-(T) = B ¢(T) = cos g sin g

x {exp (inoBT/k) — exp (—ipoBT/h)},

0
=isinfsin llosT , where 8= (1) .

3046

Aspin-% system of magnetic moment p is placed in a dc magnetic field
Hye, in which the energy of the spin state | +1/2} is hwy, that of | —1/2)
being taken as 0. The system is in the state |—1/2) when at¢t =0, a
magnetic field H (e, cos wot + e, sin wpt) is suddenly turned on. Ignoring

relaxation find the energy of the spin system as a function of wg, H, ¢ and
t, where

¢ = (+1/2 pa + ipy | — 1/2).
Why is the energy of the spin system not conserved?

(Columbia)
Solution:

The Hamiltonian is
H=—p.- (H+H,) = —uo - (H+Hp)
= — p(Hoz coswot + Hoy sinwgt + Hyo,)

_ ( Ho H exp (—iwot) )
N exp (iwot) —Hy ’
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In the Schrodinger equation

ihoy/ot = Hy,

setting
= (9)
b))’
we get d .
E% = % [Hoa + H exp (—iwgt) b],
Z—It) = —l;—; [H exp (twot) a — Hob] .

Try a solution of the type
. 1
a = Aexp [——z (Q+—2- wo)t} ,
. 1
b =Bexp [-—z (Q— 3 wo) t] ,

where A, B and Q are constants. Substitution gives
1 /
Q+§ wotw A+w B=0,
)

(Q——;—wo—w B+wWw A=0,
)

where
_ kHo
w—-——h y
,_pH
w = B .

For nontrivial solutions we require

1
Q+(—2-wo+w) W'
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1 2
in\/w’2+ (5 wo+w) =+Q,

where Q = l\/w'2 + (3 wo +w)?|. Hence

giving

Y(t) = (A1e79 + Aye'?t) exp <—i % t) a
+ (B1e7'% + Bye'¥) exp (Z % t) B,

where

1
91,2+ <w+ 5 w())

wl

Bi,2 - —A;2

3

the subscripts 1, 2 corresponding to the values of 2 with +,— signs respec-

tively, and
“=(0)- #-(1)

At t = 0 the system is in the |—%) state and ¢ = (‘1’). Thus B; +
By=1, A+ A =0. Then as

1
(Q+ 5(4)0 +w) A +w'Bl =0,

1
(—Q+ 5&)04—&)) A2+w’32=0,

we have

QA1 — Ap) + ' =0,

1
(Ewo N w) (A1 — Az) + /(B - By) =0,
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giving
W' W'
A= ~20° Az 20
1
Q+ (w + = wo)
By — 2
1 2Q )
1
Q - <w+ - uJo)
B, = 2
2 20

Therefore the wave function of the system is

P(t) =% isin(Qt)exp(—i % t) a

1
(w+§wo) w
+ [cos@Qt—i —— sinQt exp(iz%)ﬁ,

and the energy of the system is

E=@|H|¢) =—#[—H06082Qt

2
w'2Hy — (w + % wo) Hy—2w'H (w + %)
+ o7 sin? Qt]

Note that as

251
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As the energy of the system changes with time ¢, it is not conserved.
This is because with regard to spin it is not an isolated system.

3047

A beam of neutrons of velocity v passes from a region (I) (where the
magnetic field is B = Bje,) to a region (11) (where the field is B = Bze;).
In region (l) the beam is completely polarized in the +z direction.

(a) Assuming that a given particle passes from (1) to (Il) at time t=0,
what is the spin wave function of that particle for t> 0?

(b) As a function of time, what fraction of the particles would be
observed to have spins in the +z direction; the +y direction; the +z
direction?

(c) As a practical matter, how abrupt must the transition between (1)
and (Il) be to have the above description valid?

( Wisconsin)

Solution:

(a) Considering only the spin wave function, the Schrédinger equation

ihd|x)/0t = H|x),

where
H=—-u-B = —p,B0,;,

with p, = -1.9103 pn being the anomalous magnetic moment of the neu-
tron, un = eh/2m, ¢ the nuclear magneton, m, the mass of a proton. Thus

LX) = 1 unBaoa|X) = —iwnga | X),
where wsz = L“—"h@. Let |x)=(§)- The above gives
a = —iwgb,
{ b= —iwea .
The initial condition is a(0) = 1, b(0) = 0 as the beam is initially

polarized in the +z direction. Solving for a and b and using the initial
condition we obtain for t>0
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cos wot
xX)={ . :
—isinwsgt

(b) The mean value of the spin in the state | x), i.e., the polarized vector
for neutron, is

P =<X|U|X) = <X|Uzez +oyey, +0.€, |X)
= (0, -sin 2 wat, cos 2 wst)

Thus in the region (11), the neutron spin is in the yz plane and precesses
about the x direction with angular velocity 2ws.

(c) For the descriptions in (a) and (b) to be valid, the time of the
transition between (1) and (I1) must satisfy

2 P
w2 |pn|Bz

For example if By~ 102 Gs, then ¢t < 0.7 ps.
If the kinetic energy of the incident neutrons is given, we can calculate
the upper limit of the width of the transition region.

3048

The Hamiltonian for a (#*e~) atom in the n =1, = 0 state in an
external magnetic field B is

H = as, - s+ |e| Se -B—MS”-B.
MeC myc
(a) What is the physical significance of each term? Which term domi-
nates in the interaction with the external field?
(b) Choosing the z-axis along B and using the notation (F, M), where
F =s, +s., show that (1, +1) is an eigenstate of H and give its eigenvalue.
(c) An rf field can be applied to cause transitions to the state (0, 0).
Describe qualitatively how an observation of the decay u*— e*vev, could
be used to detect the occurrence of this transition.
(' Wisconsin)
Solution:

(@) The first term in H is due to the magnetic interaction between pu
and e, the second and third terms respectively account for the magnetic
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interactions of p and e with the external field B. Of the latter, the term
|e|se . B/mec is dominant as me = m,, /200.

(b) As

Consider the state

- (2,00,

As the eigenvalues of F2,s2,s2,s,;,5.; are 1(1+ 1) k%, 1 (1 + 1)R?,
1(3+ 1) n?, 3R, 1K respectively, we have

- 1 ., 3 eh eh
. Bl -9 .= B - B (1, +1
H(1, +1) {2 ah [2 2 4] t ome Imc }( )

(! .2 eh )
—(4ah +5-1n—eéB &uB)(l,'}‘l)

Thus (1, +1) is an eigenstate of H, with the eigenvalue
ah?/4 + ehB/2m.c — ehB/2m,¢c.

(c) The decay u* — etr,v, can be detected through the observation
of the annihilation of the positronium ete™ — 2v. For the state (1, +1),
the total angular momentum of the e*e™ system is 1, and so e*e~ cannot
decay into 2y whose total angular momentum is 0. For the state (0, 0), the
total angular momentum of the eTe~ system is 0 and so it can decay into
2v. Hence, detection of ete™ — 2v implies the decay p* — et vy, of the
{(s*e™) system in the state (0, 0), as well as the transition (1, +1}— (0, 0).
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4001

We may generalize the semi-classical Bohr-Sommerfeld relation

fP -dr =(n+1/2) h,

(where the integral is along a closed orbit) to apply to the case where
electromagnetic field is present by replacing P with p —eA./¢c, where e is
the charge of the particle. Use this and the equation of motion for the linear
momentum p to derive a quantization condition on the magnetic flux of a
semi-classical electron which is in a magnetic field B in an arbitrary orbit.
For electrons in solids this condition can be restated in terms of the size S
of the orbit in k-space. Obtain the quantization condition on S in terms of
B (Ignore spin effects).

(Chicago)
Solution:

In the presence of an electromagnetic field, the mechanical momentum
P is
P=p-—eA/c,
where p is the canonical momentum, e is the charge of particle. The gen-
eralized Bohr-Sommerfeld relation becomes

j[P'dr:?{ (p—%A) dr=(n+1/2)h,

fp . dr'—cf¢=(n+1/2)h,

d):/SB-ds:/S(VxA)-ds:fA-dr,

using Stokes theorem. The classical equation of the motion of an electron
in a constant magnetic field B,

d_£_ e dr

dt cthB’

or

where

gives p = -er x B/c and
fp-dr=—}{f(rx13).dr=/ VX (Bxr) - ds
C s C

255
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= / 2B ds = 2Zeg/c.
¢ Js
Hence
¢=(n+1/2) ¢o,
where ¢o = he/e.
Defining k by p = ik = -er x B/c, we have, assuming r is perpendicular
to B,

RAk = -Be Ar/c,

or
Ar =—he Ak/Be

Therefore, if the orbit occupies an area S, in k-space and an area A,
in r-space, we have the relation

A, = (hc/Be)? S, .

As
he \? he \?
¢=/BdAn = (ECZ) /BdSn = (B—e) BS, = (n+1/2)he/e,

we have
S, = 2mBe(n +1/2)/hc.

4002

A particle of charge ¢ and mass m is subject to a uniform electrostatic
field E.

(a) Write down the time-dependent Schrodinger equation for this
system.

(b) Show that the expectation value of the position operator obeys New-
tonis second law of motion when the particle is in an arbitrary state «(r, t).

(c) It can be shown that this result is valid if there is also a uniform mag-
netostatic field present. Do these results have any practical application to
the design of instruments such as mass spectrometers, particle accelerators,
etc.? Explain.

(Buffalo)
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Solution:

(@) The Schrodinger equation for the particle is

oY 2 2
rF__ L _4E . )
ih n o Ve —q ry
(b) The Hamiltonian of the particle is
p2
H=_—-qgE r
2m
Then
dr 1 1 P2l pz 1 _ Pz
Et"_z'h [z, H] = & [‘E Zm} ='m in @ Pl =10
dpz 1 qE,
dt = [Pa;, ]— {'ﬁ [va-Ezw]:_'E [pza :E] =qE;,
and hence
dir) _ {p)
dt m’
dlp) _
7 =qE.
Thus
d? 1 d(p)

or
2

d
mes {r) = qE,
which is just Newtonis second law of motion.
(c) These results show that we could use classical mechanics directly

when we are computing the trajectory of a charged particle in instruments
such as mass spectrometers, particle accelerators, etc.

4003

The Hamiltonian for a spinless charged particle in a magnetic field

B=VxAis
1 e 2
H=— (p--A
5 <p p (r)>,

where e is the charge of particle, p = (p; py, p.) is the momentum conjugate
to the particleis position r. Let A.= —Bgye, corresponding to a constant
magnetic field B = Bye,.
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(a) Prove that p, and p, are constants of motion.
(b) Find the (quantum) energy levels of this system.
(MIT)

Solution:
The Hamiltonian for the particle can be written as

1 eBy \* 1 1
H:—(pz+——° y) +— p2+ — pl.
2m c

(a) As H does not depend on x and z explicitly, the basic commutation
relations in guantum mechanics

[zi, p;] = 1hdsj, [Pi, Ps]=CI ,
require
[pz, H] = 0,[p,, H] = 0,
which show that p,, p. are constants of the motion.
(b) In view of (a) we can choose {H, p:,p.} as a complete set of
mechanical variables. The corresponding eigenfunction is
Y(z, y, 2) = PR g(y),
where p., p. are no longer operators but are now constants. The Schro-
dinger equation
H(z,y, z) = EP(z,y, z)
then gives

1 [( ot i’f—"@g% , pz]¢(y) - B4(y),

2m

R d% m [eBo)’ ps \ 2 P2
“om d_y§+3('r_n2) <y+630) "5“(5‘57; ¢

Setting

or

le| Bo ’ CPx y Pf
= = y E = E T e
“ me 'Y TV * eBo 2m
we can write the equation as
R d%¢

m 2 n
magE Tz eV e Ee

which is the energy eigenequation for a one-dimensional harmonic oscillator.
The energy eigenvalues are therefore

Ef = E -p2/2m=(n+1/2)lw,n=0,1, 2, ...
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Hence the energy levels for the system are

E,=p2/2m + (n +1/2)hw,n =0, 1, 2, ..

4004

An electron of mass m and charge -e moves in a region where a uniform
magnetic field B =V x A exists in z direction.

(a) Set up the Schrodinger equation in rectangular coordinates.
(b) Solve the equation for all energy levels.
(c) Discuss the motion of the electron.

(Buffalo)
Solution:
(&) The Hamiltonian is
7- L (P+%a :
T 2m
As
0A, O0A,
ay 9z '
0A; 04, _ 0
Oz oz ’
0A,y 0A,
R
we can take A, = A, = 0, A, = Bx, i.e. A = Bzy, and write the
Schrédinger equation as
2
oy = - [P3+ (ﬁy+e”i) +}33]¢=E1/).
2m c

(b) As [P, H]=[P,,H] =0, P, and P, are conserved. Choose
H, P,, P, as a complete set of mechanical variables and write the Schrod-
inger equation as

1 5, 1 (5  eBz\*] P?
7 P (B ) Jo=(5-52)

Let {=x + cPy/eB, P; = P,. Then [¢, P;]=1ik and
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‘_LAz m 2 ___2
H—ZmPE+2( ){ P;

~ P2
The above shows that H — {}n— is the Hamiltonian of a one-dimensional
harmonic oscillator of angular frequency w = fn—ﬁ. Hence the energy levels
of the system are

E=n+1/2)hw+P2/2m, n=0,1,2,...

Because the expression of E does not contain P, explicitly, the degen-
eracies of the energy levels are infinite.

(c) In the coordinate frame chosen, the energy eigenstates correspond to
free motion in the z direction and circular motion in the X —y plane, i.e. a
helical motion. In the z direction, the mechanical momentum muv, = P, is
conserved, describing a uniform linear motion. In the x direction there is a
simple harmonic oscillation round the equilibrium point x = —cP,/eB. In
the y direction, the mechanical momentum is mv, = Py +eBz/c = eB/
¢ = mw§ and so there is a simple harmonic oscillation with the same am-
plitude and frequency.

4005

Write down the Hamiltonian for a spinless charged particle in a mag-
netic field. Show that the gauge transformation A(r) — A(r) + Vf(r)is
equivalent to multiplying the wave function by the factor exp {ief(r)/fc].
What is the significance of this result? Consider the case of a uniform field
B directed along the z-axis. Show that the energy levels can be written as
]e ] I B4 ok h2k2

2m
Discuss the qualitative features of the wave functions.
Hint: use the gauge where A, = -By, A, = A, = 0.

=(n+1/2) —

( Wisconsin)
Solution:
The Hamiltonian for the particle is

- 1 e 2
H=——(13——A> s
2m c

where A is related to the magnetic field by
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B=VxA.
The Schrédinger equation is then

1
2m

2
. e
() - A> P(r) = Ey(r).
Suppose we make the transformation

A(r) = AI(r) = A(r) + Vf(r),

() = ) = ) e {12 700
and consider

(f» -: A') ¥(x) = pv/(r) - [E A+l Vf(r)] exp [;—‘Z f(r)] ¥(r)

pY(r) = A v {exp [% f(r)] 1/)(1‘)} = exp [g f(r)} E Vf(r)+ f’} Y(r).
Substitution in Schrédinger’s equation gives

1 N e ., 2 ’ '
3 (P~ SA7) W) = BV,

This shows that under the gauge transformation AT = A + Of, the
Schrodinger equation remains the same and that there is only a phase dif-
ference between the original and the new wave functions. Thus the system
has gauge invariance.

Now consider the case of a uniform field B = V x A = Be_, for which
we have

A, = -By, A, =A,=0.

The Hamiltonian can be written as

Ko 1 - €B 2 A2 A2
HZ% [(Pz'l'—(‘;y) +py +Pz| -
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Since [pz, H] = [p., H] = 0 as H does not depend on x, z explicitly,
we may choose the complete set of mechanical variables (p., ., H). The
corresponding eigenstate is

w(z_, Y, Z) - ei(p,,x+pzz)/h x(y)

Substituting it into the Schrédinger equation, we have

1 eB \2, 82 1,
Ey [(pz+7y—)h o5 +zjzx(y)—Ex(y)<

Let cp./eB = —yq. Then the above equation becomes

B2 m (eB

2
o i = _ 2 _ a2
X T3 (mc) (¥ —v0)" x = (E—p;/2m)x,

which is the equation of motion of a harmonic oscillator. Hence the energy

levels are

h2 1 B

E=—k+{n+= plelB n=012,....
2m 2 me

where k,=p,/k, and the wave functions are

'lppzpzn(l'y v, Z) — ei(P:x+PzZ)/h Xn(y - yo) |

where

Xn(y — o) ~ exp [— I;}Lf (y -yo)z] H, (@(y - yo)) ,

H,, being Hermite polynomials. As the expressions for energy does not
depend on p, and p, explicitly, there are infinite degeneracies with respect
to pr and p,.

4006
A point particle of mass m and charge ¢ moves in spatially constant
crossed magnetic and electric fields B = Boi, E = Egx.

(a) Solve for the complete energy spectrum.

(b) Evaluate the expectation value of the velocity v in a state of zero
momentum.

(Princeton)
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Solution:

(a) Choose a gauge A = Byzy,¢ = —FEpz so that V X A = B3,
-V -p=Ey. Then

2 2
1 q 1 q
H = - = A =— |p? - =B 2| - .
om (p > + qyp 7 [pz + (py - 0:c> + p; qEox

As H does not depend on y and z explicitly, p, and p, each commutes
with H, so that p, and p, are conserved. Thus they can be replaced by
their eigenvalues ”'{M“" Bnce

75y 2p2
H= B
Im pz+2mc2 0 o Py _*mEy 2
2mc? qBy qB2
1, R mc*E§  cpyEp _ Lpz
* om®* 2B2 By, 2m‘*t

m 5.9, 1 2_mcE0_ cpy Ey
MEC IR Chryv go”

where

pezpz’ £:x_;_

are a new pair of conjugate variables. Let w = | q | Bp/mc. By comparing
the expression of H with that for a one-dimensional harmonic oscillator,
we get the eigenvalues of H:

En = (n +1/2)hw + p?/2m — mc*E2/2B% — cp,Eo/By, n=0,1,2,....
The fact that only p, and p., but not y and z, appear in the expression
for energy indicates an infinite degeneracy exists with respect to p, and to
Dz-
(b) A state of zero momentum signifies one in which the eigenvalues of

py and p, as well as the expectation value of p, are all zero. As velocity is
defined as

its expectation value is

= (p-2a)=—L(a) - Lo pg

Then as

_ cpy  mc2E mc?Ey
X) = + — + —
) (6) qBo qu qu ’
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since (&) = 0 for a harmonic oscillator and p, = 0, we have

cEp .
(v) = —B—OY-

4007

Determine the energy levels, their degeneracy and the corresponding
eigenfunctions of an electron contained in a cube of essentially infinite vol-
ume L3. The electron is in an electromagnetic field characterized by the
vector potential

A =Hyzé, (|&]=1).
(Chicago)
Solution:
As A = Hpzé,, we have the Schrédinger equation

. 1 A .
Hy = o— [z + b7 + (by — Hoze/)’] ¥ = EY,
where e is the elegtron charge (e < 0). A
As [H,p,) = [H,p;] = 0, [Py, P:] = 0, we can choose H,py, P as a
complete set of mechanical variables, the corresponding eigenfunction being
A )

where py, p, are arbitrary real numbers. Substitution of 1 in the Schré-
dinger equation gives

1.
o (2 + (eHo/c)? (z — cpy/eHo)?| %o - Eoto ,
where Eg = E — p2/2m, or
R o 2 m 2 2
—2——md ’lﬁo/dfc + ——2—(Hoe/cm) (X —:l‘()) ’l/)o = Eolp(),
where o = cpy/eHy.

The last equation is the energy eigenequation of a one-dimensional oscil-
lator of natural frequency wo = —Hoe/mc and equilibrium position x = zo,
the energy eigenvalues being

Eo=(n+1/2Yhw, n=01,2 ...,
or
E = p3/2m— (n +1/2) Hpeh/me, n=0,1,2,....
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The corresponding eigenfunctions are

Yon ~ €xp {62—[72 (z - 10)2} Hy ( - fhico(f- xo)>,
where H,, are Hermite polynomials.
As no p, terms occur in the expression for energy levels and py can be
any arbitrary real number, the degeneracies of energy levels are infinite.
The eigenfunctions for the original system are therefore

Y(x) =C, exp [___i(pyyf—:pzz) + % (x — mo)z}

><Hn<—%‘1 z—zo)),

where C,, is the normalization constant.

4008

Consider a loop of thin wire in the shape of a circle of radius R (Fig. 4.1).
A constant magnetic field perpendicular to the plane of the loop produces a
magnetic flux passing through the loop. Imagine that the wire contains only
one electron which is free to move. This electron has a wave function ¥(6)
which depends only upon the angular coordinate 8. Neglect all interactions
between the electron spin and the magnetic field as well as all magnetic
fields produced by the electron itself.

Fig. 4.1

(a) How does the ground state energy of the electron depend upon the
value of the applied magnetic field in the approximation we have described?
Derive a formula and give a rough picture of the result.
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(b) Imagine that we start with the wire in its ground state in the pres-
ence of a magnetic flux ¢. Next the magnetic field is turned off. Calculate
the current in the loop.

(c) Calculate the current in amps assuming R =2 cm and ¢ = 0.6
gauss cm 2.

(Chicago)

Solution:

(&) In cylindrical coordinates r,0,z,as V x A =B &, where B is a

constant, we can take A, = A, = 0, Ae—’f, ie, A= ﬂeo, and

consider the Schrédinger equation for the electron,

1
2m

<p__A-) ¢=E¢,

where e is the electron charge (e < 0). Let

¢=¢’6XP(E/ A - dx).
ch
Then as

. e ie [T e e
—~ZA = i . 5 = i '
(p p )1/) exp(ch/ A dx) (p CA+CA)¢
_ e [* . L
= exp (ch / A dx) pY
e 2 e [T
D— - A = = . 524
(p p )111 exp(ch/ A dX)pw,
the Schrédinger equation becomes
1 ~2 1t 7
2m v =Ey.
Since the electron is confined to a loop of radius R, we have
’ ie , 1e o
P=19(0)=v¢" exp 7 A - dx) =19 exp (—/ ARdB)
r=R ch

o< exp( ARO)
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_ s_ _ihd
Note that ¢’ = ¢’() and p = -2 . Thus we have

LR
ompz —agz - 2V )

with solution
,(/)/(0) ~ etcla’

where ¢; is a constant given by E = 2—’:;%;,. Thus
P(8) ~ exp [i{c1 + eAR/ch)8)].
For single-valuedness, ¥(8)=1(8 + 27), i.e.,
2w (c1 + eAR/ch) = 2nm,
where n is zero or an integer (0, £1,+2,...). Solving for ¢; we have
c1=n—eAR/ch = n —eR%B/2ch,

and hence

h2 h2
E, = Iz (n —¢3R23/2cﬁ)2 = m (n + ¢/¢0)2 ’

where ¢ = mR2B, ¢o = —ch/e. It is seen that the dependence of E, on the
external magnetic field B or the flux ¢ is parabolic, as shown in Fig. 4.2.

E,B)
A

->» B

Fig. 4.2

As n is an integer, the ground state (lowest energy level) energy E, is
given by
h2

g — m ['n.* - CRZB/ZCh]2 s
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where n* is the integer nearest to eR2B/2ch (or e¢/ch), which is negative
as e is negative for an electron.

(b) Suppose we start with a state E, which is the ground state, n will
remain the same when B is turned off. Thus the wave function will be
¥ = Cexp (ind) and the electric current density is

. koo . oo 2 .

j=es WV~ YV lrer = o (i) £ ¥V
ehn .

~mR YV

where C is the normalization constant. Let S denote the cross section of
the thin wire. We have from the normalization condition

J Y*ydldS =27R|C |28 =1

that )
Ccl*= .
1€l 2TRS
Hence 5 "
ehn ehin
= |j-dS="—=+=|C]?S=—_..
\] J mR 1€l 2rmR2

Note that j has been considered to be uniform in any cross section as
the wire is thin.
Because the electron is initially in the ground state, for which E, is the
minimum energy, we have
ed
—| -1
IR

I3

where [A] denotes the greatest integer which is not greater than A.

For the case of macroscopic magnetudes as in part (c), the quantum
number is numerically large and we can simply use n ~e¢/ch, in which
case

| ~ep/an’R*me.

(c) For R=2cm, ¢ = 0.6 gausscm?, we have in Sl units
I=¢e*¢/am®R*m = (1.6 x107%)%2 x 0.6 x 107%x107*/[4x>
X (2x1072)?x 0.9 x 1073 = 1.1 x 107 A
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4009

(a) Assuming that nonrelativistic quantum mechanics is invariant un-

der time reversal, derive the time reversed form of the Schrodinger wave
function.

(b) What is the quantum mechanical Hamiltonian for a free electron
with magnetic moment g in the external constant magnetic field H, in the
z-direction, in the reference frame of the electron?

(c) Suppose that an extra constant magnetic field H, is imposed in the
y-direction. Determine the form of the quantum mechanical operator for
the time rate of change of u in this case.

(Buffalo)

Solution:

(a) Consider the Schrodinger equation

0 ~

Making the time reversal transformation t — —%, we obtain

0 -
—thm (=t) = H(=t)y(-1),

or
. 0 * _ Irx *
Zhai/f (=t) = H*(-t)y"(-t).

If H*(—t)=H(t), then the Schrodinger equation is covariant under
time reversal and the time reversed form of the wave function is *(—t).

(b) Let -e be the charge of the electron. Then p = *ﬁc“ and in the
reference frame of the electron,

. h
H=-p - H=-u,H, = e—asz.
2me

(c) The magnetic field is now Hyy + H,z, and so

- eh
H = 2_’]77,6 (O'sz + O'yHy) s
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)

d“——l—[ A]—l ch 2[—0)’(—0“—02

at P T R ome aX T OyY T 0%,
2 eh 2 . .

o, H,+0oyHy| = 7 \Zme (cyH, — 0. Hy) & — 0. H.j
2
. . 2 [ eh

+202Hyz]:ﬁ<§n_c) ocxH
=inp,
me

where use has been made of the relations o oy = i0;,0y0, =i0y,
020z = 10y.

4010

A particle has mass m, charge q, intrinsic angular momentum s (s is
not necessarily equal to /2) and a magnetic dipole moment p = ggs/2mec.
The particle moves in a uniform magnetic field B with a velocity small
compared with c.

(a) Write down the Hamiltonian for this system. (The vector potential
for the uniform magnetic field may be written as A =B x r/2)

(b) Derive the quantum mechanical (Heisenberg) equations of motion
from this Hamiltonian, for the linear momentum P and for the angular
momentum s. The A? term may be neglected in this nonrelativistic ap-
proximation.

(Note that the results look exactly like the classical equations of motion.)

(c) Without solving these equations, identify the value of the constant
g for which the helicity will remain constant. {Helicity is defined here as
the cosine of the angle between the vectors P and s)

(d) What is the actual value of the constant g for any one of the following
particles: e, p, n,w?

(Berkeley)

Solution:
(a) The Hamiltonian for the system is
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2

1 q I 5o q

H=—|P--A}) —p-B=—P°"-—A P
2m( c ) H 2m me

' A2 94

-2 . B
2mc? 2me S

“+

(b) Neglecting terms A? and higher in H we have

ap; 1 1 a4
G B LT
99 iq
A S = —_ [P, A;P;
2mcS | hmc[P J J]

g
= Ame (PiA; P; — A; P P)
g
=+ (Rd;) P+ A;RP; - A;P; P}
g

q
— 2 (P A = AN P
ey (PA;) P; - (0;A;) P;

dsi 1 1 9q
— = —— | 84 = — iy —=—S - B
@ e =g [s ome ]

99 .
= — % (B X S)i ,
as [s;, s;] = ithsx. Note that we have used the convention that repetition
of a subscript implies summation over that subscript.
(c) As P and s commute we can consider the problem in the common
eigenstates of P, s% and s; .
The helicity h is defined as

P,‘Si

h=P-s/|P||s|= i,

and as 1 1
Ai=§ (B x r)i=§sijkB,~xk,
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we have

[h, _%A . p] =E-C-IS—I|P—|[SZP,,A P
= ﬁ’ﬂ [P, A; ;)
= e ST |§l Bedu
B iﬁq Si Pj

2me 5] [P

[h, —;:fc s - B] = ﬁm[siﬂ, s;B;]

= 2m:|gg|P|iP| (55, 3,53]

Higq 8; Pj
2me “9* [s] |P]

If the helicity is a constant of the motion. then

[h,H]:[h, ——q—A-PJ+[h L B Bl 0,
me 2mc

which requires g =1.
(d) The values of g for the various particles are

Particle e P n
9 -2.0 5.6 -3.8 0

4011

In a recent classic table-top experiment, a monochromatic neutron beam
(A =1.445 A) was split by Bragg reflection at point A of an interferometer
into two beams which were recombined (after another reflection) at point
D (see Fig. 4.3). One beam passes through a region of transverse magnetic
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field of strength B for a distance 1. Assume that the two paths from A to
D are identical except for the region of the field.

Fig. 4.3

Find the explicit expressions for the dependence of the intensity at point

D on B, 1 and the neutron wavelength, with the neutron polarized either
parallel or anti-parallel to the magnetic field.

(Chicago)

Solution:

This is a problem on spinor interference. Consider a neutron in the
beam. There is a magnetic field B in the region where the Schrodinger
equation for the (uncharged) neutron is

h2
(—%Vz—ua-B>¢=E¢-

Supposing B to be constant and uniform, we have
P(t1) = exp [—iH (t1 —to)/h] ¥(to),

where ty,t; are respectively the instants when the neutron enters and leaves
the magnetic field.

Write 9(t) =v¥(r, t)¢¥ (s, t), where ¥(r,t) and ¥(s,t) are respectively
the space and spin parts of ¢. Then

Y(r, t1) = exp{ —i}—i (— Ll V2) (t — to)} Y(r, to),

2m

which is the same as the wave function of a free particle, and
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)
W(s, t1) = exp | - po - B(t —to) | 9(s, to).-

The interference arises from the action of B on the spin wave function.
As y(r,t) is the wave function of a free particle, we have t;~ty=1/v =
ml/kk and

¥(s,t1) = exp [i2mumira . B/h?] ¢(s, to),

where k = —Zf = ¢ is the wave number of the neutron. The intensity of
the interference of the two beams at D is then proportional to

5 (r, )95 (s, 8) + %12 (r, )9 (s, 1) |2
o | 95 (s, 8) + P (5, ) 1> = | 9@ (s, t0) + v (s,41) 2.

As
C 2mpuml A 2rumiAB B
exp <z 2 a~B> :cosh—2 +w~—§
2rpmi\B
n —

and o . B = £¢B depending on whether o is parallel or anti-parallel to
B, we have

2

| 92(s, to) + v P (s, t1) |2 = ' 1+ exp (z 2“;72”1’\ o - B> | (s, to) |°
=|1 + cos ZTHTUAB Z;l’\B + iosin 2"“}:;”’\3 ’
= (1 + cos _27TIL’7;D\B >2
+ sin? ZTHTAB Z;MB: 4c0s? ”N”Zzl)\B .

Therefore, the interference intensity at D « cos? (mumiAB/h?), where
 is the intrinsic magnetic moment of the neutron (u < 0).
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4012

A neutron interferometer beam splitter plus mirrors as shown in
Fig. 4.4 has been built out of a single crystal.

> » out

- thin plate

>
-
1

 J

}n\ inc

Fig. 4.4

() By varying the thickness of a thin plastic sheet placed in the beam
in one arm of the interferometer one can vary the relative phase and hence
shift the fringes. Give a brief qualitative explanation of the origin of the
phase shift.

(b) By inserting in one arm a magnetic field which is normal to the
beam, time independent and very nearly uniform so that the force on, the
neutrons can be neglected, and by choosing the field so each neutron spin
vector precesses through just one rotation, one finds the relative phase of
the two beams is shifted by = radians, or one-half cycle. Explain, with
appropriate equations, why this is so.

(Princeton)

Solution:

(@) When a neutron passes through the thin plastic sheet, it is under the
action of an additional potential, and so its momentum changes together
with its de Broglie wavelength. The phase change of the neutron when
it passes through the plastic sheet is different from that when it passes
through a vacuum of the same thickness. If the thickness of the plastic
sheet is varied, the relative phase of the two beams (originating from the
same beam) also changes, causing a shift in the fringes.

(b) The neutron possesses an anomalous magnetic moment g, = —p, o
and its Schrodinger equation is
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(P*/2Mn + o - B = Ep.

We may neglect the reflection that occurs when a neutron wave is inci-
dent on the isurfaceT of the sheet-like magnetic field as the action of the
field on the neutron is rather weak. Under such an approximation we may
show (by solving the above two-spin-component Schrodinger equation for
a one-dimensional square well): The wave function ;. for a neutron inci-
dent normally on the sheet-like magnetic field is related to the transmitted
wave function .t out of the field by a unitary transformation

'wout = exp (——’iO’ . p/2) winc )

where p =wrTeg, with wy, =2u,B/k being the Larmor frequency, = =
Lm,, /kk the time taken for the neutron to pass through the magnetic field
of thickness L, e g the unit vector in the direction of B, k the wave number
of the incident neutron.

If a neutron is polarized in the (8, ¢) direction before entering the field,
i.e., its polarized vector is

(Yinc | & | inc) = {sin 8 cos , sin  sin p,cosd},

then we can take 0
e~ /2 cog—
2 ik -
winc = e )
ei¢/2 Si ne-
2

where @ is the angle the polarized vector makes with the direction of the
magnetic field. Taking the latter as the z direction, we have p-o = po,.

Then as
1 0
exp(—igaz):coszgi'a,sin B:(()s’—) 1)

. pfl O e"#/? 0
_’LSln§ 0-1 ( 0 eip/2 ,

e=ilo+0)/2 o5

e”w/2 7 .
'wout = < ) '(pinc = ezk-x .

ip/2
0 e’ et(pt+p)/2 sing
2

(g

we have
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By adjusting B (or L) so that p =27, we make the polarized vector
of a neutron precess through one rotation as it traverses the region of the
magnetic field. Then

g~ we/2 cosg
d)out — 2 ei(k xX+m)

(/2 .
/2 sin—
2

i.e., the phase of the transmitted wave increases by =. Hence, compared
with the wave traversing the other arm (without magnetic field), the relative
phase of the beam changes by a half-cycle.

4013

(a) A hydrogen atom is in its 2P state, in a state of L, = +h. At time
t = 0 a strong magnetic field of strength | B | pointing in the z direction is
switched on. Assuming that the effects of electron spin can be neglected,
calculate the time dependence of the expectation value of L,.

(b) How strong must the magnetic field in part (a) be so that the effects
of electron spin can actually be neglected? The answer should be expressed
in standard macroscopic units.

(c) Suppose that, instead, the magnetic field is very weak. Suppose,
further, that at t = 0 the atom has L, = +k and sy = 1 4, and the
magnetic field is still oriented in the z direction. Sketch how you would
calculate the time dependence of the expectation value of L, in this case.
You need not do the full calculation, but explain clearly what the main
steps would be.

Note: All effects of nuclear spin are to be ignored in this problem.

(Princeton)

Solution:
(a) The initial wave function of the atom is

P(r,t - 0) - Rai(r)© (0, ¢)

where 1
08, ¢) = —2-(Y11 + Y114+ V2Yy),
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is the eigenstate of L, = FL.

Att = 0 a strong magnetic field Be, is switched on. Then for t > O the
Hamiltonian of the system is
ae p?  eBl, e*B%*x? +y?) €?

T 2m, + 2mec 8m.c? r

For a not too strong magnetic field B ~10% Gs, we can neglect the B2
term and take as the Hamiltonian

. 2
i P + eBl, e

2

T 2m.  2mec 1
The Schrédinger equation
ihoY /0t = Hy
then gives the eigenstate solutions
Yn(r, 8) = Ru(r) Yim (6, ) €7 57mt/%,

where
eB

h.
2mec m

Enim = Eni +

Thus the genera solution is

P(r, t) = Z anPnim(r) exp (=1 E';;m t).

n,l,m
For t = O, we then have

1 1 1
> antuim(r) = Ra(r) (5 Yt 5 Yo+ Yw) ,

n,l,m
or .
azon(r) = §R21(r) Yy, etc.

Hence

Y(r, t) = Rgl(r)[é Yi1 exp ( i E;in t)

1 . Ep1 s
+§Y1_1exp<—t 5 t)

1 . E210 >]
+ —Yigex —1 t).
72 10 P( R




Motion in Electromagnetic Field 279

The expectation value of L is given by (¢(r,t) | Lz |¥(r, t)). As L, =
(L+ + L—)/27

LiYip =hV(+m+1)({1-m)Y me1,
LYym=hy/(l-m+1)({+m)Ym_1,

we have
h h
LYy - —=Yi, LgYi_1 - —= Yo,
2 2
LYo - —& (Vi1 +
zL10 = \/§ 11 K-1)
and hence

L.(t) = (¥(x,t}| Lz | ¥(r, t)) = hcos 5

MeC

(b) The effects of electron spin can be neglected if the additional energy
due to the strong magnetic field is much greater than the coupling energy
for spin-orbit interaction, i.e.,

ehB
2mec

> AE‘spin-orbit ~ 10_3 eV,

or
B >10% Gs.

Thus when the magnetic field B is greater than 108 Gs, the effects of
electron spin can be neglected.

(c) If the magnetic field is very weak, the effects of electron spin must
be taken into consideration. To calculate the time dependence of the ex-
pectation value of L,, follow the steps outlined below.

(i) The Hamiltonian is now

2 2 2 . B - eB |
P ¢ s L)+ 82,

H=
2m. v 2m2c?rd

z
2mec 2m,c

which is the Hamiltonian for anomalous Zeeman effect and we can use
the coupling representation. When calculating the additional energy due
to the 5, term, we can regard §; as approximately diagonal in this repre-
sentation.
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(i) Write down the time-dependent wave function which satisfies the
initial condition L, = +A and s, = —h At time t = O the wave function is
Yo(r, sz) = Ra1(r)© (8, ¢) ¢s |
where © and ¢, are the eigenfunctions of L, = A and s, = K/2 in the

representations (2, 1,), (s?, s) respectively. Explicitly,
Yo(r, s2) = Ra1(r) 5 [Yu + Yo 1+\/—Y10] fa B)

R]z(’!‘)
= Yiia+ Y + Yi_ja+Y_
2\/- (Yna 1108 1-1a+Y1.,06

+ V2 Yo + V2Y100).
As
3 3 1 2
¢j=§, mj=§=Y11a, ¢g%=\/;Yuﬂ+\/;Yloa,
1 2
b3 1 = 3 i+ \/;Ywﬁ, ¢3_3s =Y1.0,

1o can be written in the coupling representation as
wO(r 3:1:) \/—-RQI + \/_d)
+ */§¢%—% +63-1),

where ¢;.,, is the eigenfunction of (52, 5.) for the energy level E,ijm,
Therefore, the time-dependent wave function for the system is

Egzs
Y(r, s, t) = \/_Rgl(r) [ %%exp<—z__g2_2_t>

E,s1
+v38¢si exp —i 21”t>
(

2
2

N
N

1
2

[T

(iii) Cdculate the expectation value of L, in the usua manner:

(x5, )| Lz | P(r, s, 1))
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4014

Consider the one-dimensional motion of an uncharged particle of spin
1/2 and magnetic moment p = —2ues/A. The particle is confined in an
infinite square well extending from z =-L to z = L. In region | (z < 0)
there is a uniform magnetic field in the 2z direction B = Bge,; in region
Il (x > 0) there is a uniform field of the same magnitude but pointing in
the x direction B = Bge,. Here e; and e, are unit vectors in the x and z
directions.

(a) Use perturbation theory to find the ground state energy and ground
state wave function (both space and spin parts) in the weak field limit
Bo < (R/L)?/2muy.

(b) Now consider fields with By of arbitrary strength. Find the general
form of the energy eigenfunction 1 (both space and spin parts) in region |
which satisfies the left-hand boundary condition. Find also the form 2y
that the eigenfunction has in region Il which satisfies the right-hand bound-
ary condition (Fig. 4.5).

(c) Obtain an explicit determinantal equation whose solutions would
give the energy eigenvalues E.

(MIT)

Vix)

=Bje, Bn=Boex

- > X
-L 0 L

Fig. 4.5

Solution:

(@) In the absence of magnetic field, H = Hy and the energy eigenfunc-
tions (space part) and eigenvalues are respectively

Yn = /1/L sin HL;%’L)’
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m2h2n?

TR h=1, 2 3
" 8mL?

As for the spin part, we know that each energy level has a degeneracy
of 2. When a magnetic field is present, H = Hy+ Hi, where

poBoo,, —L<z<0,
H=-p B="""" = p0 B={ pbBoo,, 0<z<L,

0 elsewhere.

If the field is weak, let uj=¥1(x)(}), u2 = 1/)1(:16)((1)) be the base
vectors. Then

Hiy = {(ur| H' 1 w1) = poBo(10) <(1) —(1)) ((1))

/ Y1 (@) (o) do = 2220

Hél :le = (ullH fuz)

(1) (2) [ s

Hjy =(ua | H' | p2)

w00 (5 1) (1) [ siwnman= -2,

and from det (Hi —EMT) =0 we get

2 np2
(HOZBO -E<1>> (- “OTBO _Eu)) _ H%Bﬂ —0,

or 1
EM = £+ — 4By,
\/i Ho Do

The ground state energy level is therefore
w2h2 1
8mL2 /2

(HT —EMV]) (:) _ <8>,

0= tioBo

From
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we get the ground state wave function

o = auy + bug = ¥ (x) (1*\6)

1 (unnormalized)

(b) The space part of the wave function in region | is

" {Asinkl(x+L)+Bcosk1(x+L), -L<z<0,
1k, =

’ < —L.

The continuity condition of the wave function gives B = 0. In region |,

the spin is aligned to the z direction, the eigenvectors being (?) forz | and
(g) for z t. Hence

2.2
Y1k, 2, = sinky(z + L) <O), E = ki

1 om HoDy ;
1 h2k2

Yk 2t = SN k(x4 L) , E=—""14 yB,.
0 2m

In a similar way we obtain the eigenfunctions for region Il (0 <x< L)

1 21.2
Yl kz) = SN k2(xz — L) <* ) E Pk

1 o — HoBos
Y = sin k2(z — L) 1 E = k3 + poB
I kaxt = 2 1 = Sm Lo Do .

(c) Considering the whole space the energy eigenfunction is

Atrg, .+ By =1, -L<z<0,
YE = { C¥likyey + D¥rigyar, 0<z<L,
0, elsewhere.

Thus
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Hyg =

h2k? B2k
( el uoBo> Ag, . + < o + uoBo) By 1, —~L <z <0,

R2k3 A2k
o~ HoBo | Ctikyay + 5 T HoBo ) D¥nikzr,  Osz <,

0. elsewhere.

From Hvg = Evyg for each region we have

ﬁ2k% h2k/2 2k2
E = —— upBg = L By = 2 _ uoB
om Lo Do 2m+#00 - o Do
h2k/2
= 2 +/‘L0B07
2m

and so k1= kg =k, ki =k} = ki.
Then the continuity of the wave function at x = 0 gives

B sin k'L = -C sin kL — D sin k'L,
A sin kL = C sin kL — D sin k'L,
and the continuity of the derivative of the wave function at x = 0 gives

Bki cos k'L = Ck cos kL + Dk’ cos k'L,
Ak cos kL = -Ck cos kL + DKki cos k'L .

To solve for A, B, C, D, for nonzero solutions we require

0 sink’L sinkL sink'L
sinkL 0 -sin kL sink’L 0
0 k'cosk'L -kcoskL —k cosk'L| =’

kcoskL 0 kcoskL —k'cosk’'L
ie.,
k sin kL cos k'L — kisin k'L cos kL = 0
This and 2k P24
=om T moBo = + poBo

determine the eigenvalues E.
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4015

Consider an infinitely long solenoid which carries a current | so that
there is a constant magnetic field inside the solenoid. Suppose in the region
outside the solenoid the motion of a particle with charge e and mass m is

described by the Schrodinger equation. Assume that for | = 0, the solution
of the equation is given by

Yo(x,t) = eFPolyhp(x). (h=1)

(a) Write down and solve the Schrodinger equation in the region outside
the solenoid for the case I # 0.

(b) Consider a two-slit diffraction experiment for the particles described
above (see Fig. 4.6). Assume that the distance d between the two splits
is large compared to the diameter of the solenoid. Compute the shift AS

[

screen
source

l solenoid

Fig. 4.6

of the diffraction pattern on the screen due to the presence of the solenoid
with | #0. Assume 1 > AS.

Hint: Let
1/J(X, t) = wo(xv t)’(/jA (x) 5
where
(V—ig A(x)) Ya(x)=0. (h=1).
(Chicago)
Solution:

(a) In the presence of a vector potential A, p = p —eA/c. In the
absence of electromagnetic field the Schrodinger equation is

i%d)o(x, t) = [L p? + V(x] Po(x, t),

2m
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where, as below, we shall use units such that A = 1. The Schrodinger
equation in the presence of an electromagnetic field can thus be obtained
(using the minimum electromagnetic coupling theory) as

i%¢(x, £) = [517)-1- (—iV—§A>2+V(x)} Wix, 1),

where A is given by V x A = B. Let

Cc

[T e

’l[)(x, t) = ’lﬁl(x, t) exp (2 / - A dx) .

Then the above becomes
0 1 .,

— o — |4 t),

P g0 - g B VO
which is the Schrodinger equation for zero magnetic field. Hence

Yi(x, 1) = Yo(x,t) - €40 (x),
and so
. i x e
P(x,t) = eFothy(x) exp (z/ - A ~_dx)

(b) This is a problem on the Aharonov-Bohm effect. When | = 0,
for any point on the screen the probability amplitude fis f = f,+ f-
where f+ and f- represent the contributions of the upper and lower slits
respectively. When the current is on, i.e., |3 0, we have the probability
amplitude fi = f, + f’ with

;zexp<i/ A dx) f+,
cy €

f/_=exp<i/x gA-dx) f-,

where ¢4 and c_ denote integral paths above and below the solenoid re-
spectively. Thus

fr=r+i :exp<i/ SA'dX> f++exp<i/ A-dx)f_
c4+ c.
. €
~exp(z}4;A-dx) f-+f+,
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e

on dividing the two contributions by a common phase factor exp(i fc’:c
dx), which does not affect the interference pattern. The closed line integral,
to be taken counterclockwise along an arbitrary closed path around the

solenoid, gives

?{EA-dx:f/vXA.ds:f\]B.ds:@,
C C c c

where ¢ is the magnetic flux through the solenoid.
Thus the introduction of the solenoid gives a phase factor e¢/c to the
probability amplitude at points on the screen contributed by the lower slit.
Using a method analogous to the treatment of Youngis interference in
optics, we see that the interference pattern is shifted by AS. Assuming
[>dand 1> AS, we have

d
AS‘T

e
-k =- ¢)

[
k being the wave number of the particles, and so

A= o dd
" edk cdy2mEg

Note the treatment is only valid nonrelativistically.

4016

(a) What are the energies and energy eigenfunctions for a nonrelativistic
particle of mass m moving on a ring of radius R as shown in the Fig. 4.7.7

Fig. 4.7

(b) What are the energies and energy eigenfunctions if the ring is dou-
bled (each loop still has radius R) as shown in Fig. 4.87
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—

Fig. 4.8

(c) If the particle has charge q, what are the energies and energy eigen-
functions if a very long solenoid containing a magnetic flux passes the rings
in (a) as shown in the Fig. 4.9.7 and in (b)? Assume the system does not

radiate electromagnetically.

3>
3

Fig. 4.9

Solution:

(@) As o 52 B B2
T 2mR?  2mR2? 492’

we have the Schrédinger equation

K% d?
~3] 362 () = E¥(6),
where
| = mR?,
o 20(9)
2 _
W +n ‘11(9) = 0,
with , 21E
n® = —(—-—
52

Thus the solutions are
¥, (0)=Aemd.
For single-valuedness we require

(0 + 27) = ¥(6),

(Columbia)
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n=0%1, ® z..

Normalization requires

1
*A=1 = .
A , or A oL

Hence the eigenfunctions are

e™  n =0 +1,42,..,

’

¥ (6)

3 -
3

and the energy eigenvalues are

(b) The same Hamiltonian applies, and so we still have the same
Schrodinger equation

R? d?

—57 23 V(0)=EY(6).

However, the single valuedness of the solutions now requires
U0 +4w) = ¥(F).
Hence the normalized eigenfunctions and the energy eigenvalues are now

L g0 =g +1,42,. ..,

b

and
n2h?

(c) The Hamiltonian in the presence of a magnetic field is

H= ~—(p—qA(X))2=—ﬁ (V - 2%IA(X))Z-
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In the region where the particle moves, B =V x A = 0 and we can
choose A = V. From the symmetry, we have A = Ageg, Ag = constant.
Then

2
}4 A dl= Ag RdO = 2rRAy = ¢, say.
0

Thus

A= 250 = v(gt/2m),

and we can take ¢ = ¢f8/2m, neglecting possibly a constant phase factor in
the wave functions. The Schrodinger equation is

2
Ay =_n v—@ive v
2m 27

h? qe iqp
:—%exp( 5 he) [xp( 30h >\I!]—E\Il

On writing
¥(0) = exp <—z’ﬂ ) (),
it becomes
K2 d? ,
—o7 75 V' (O) = BV'(©),
with solutions
1/)(9)_exp<j: 2’{12}30).
Hence
¥(8) = cexp (iab) ¥'(6)
= cexpli(a £ 8)9],
where
a9 UE

= 8= ¢ = a constant

2nh’ h2

For the ring of (a), the single-valuedness condition

(0 + 21) = T(H),
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requires
axtf=n, n=0,+£1+2 ..
ie.,
9 | TE/R =n.
2nh
Hence )
g, e
Y otk )’
and 1
n(0) = — et .
where

n =0, +£1,£2,..

Similarly for the ring of (b), we have

R (n gp\® R
&—ﬁ(iﬁﬁ>—u"

and )
1/)"(0)2 ﬁexp (lg 0) ’

n=0,£1,+2,....

where

9

7h

).

291
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5001

(a) Show that in the usual stationary state perturbation theory, if the
Hamiltonian can be written H = Hy+ H’ with Ho¢g = Eo¢o, then the
correction AEy is

AEy = (¢olH'|¢o) .

(b) For a spherical nucleus, the nucleons may be assumed to be in a
0, r<R,

oo, >R,

For a slightly deformed nucleus, it may be correspondingly assumed that
the nucleons are in an elliptical well, again with infinite wall height, that
is:

spherical potential well of radius R given by V;p, = {

2 2 2
. . T4y z
0 inside the ellipsoid —— + — =1,
Va = P 2 a2
oo otherwise,

where a @ R(1+26/3),b=R(I —3/3),and <K 1.

Calculate the approximate change in the ground state energy Eg due
to the ellipticity of the non-spherical nucleus by finding an appropriate H’
and using the result obtained in (a). HINT: Try to find a transformation
of variables that will make the well look spherical.

(Buffalo)
Solution:

(@) Assuming that HI is very small compared with Hy so that the wave
function ¥ can be expanded as

¥ =|¢go) + Arld1) + -+ Anldn) + -+,
where A;--- A, --- are small parameters. The Schrodinger equation is then
(H' + Ho) (I¢o) + A1lé1) + - + Anlon) + . --)
= (Eo+AEo)(Igo)+ Mlé1) + . . + Anln) + . .- )-
Considering only the first order correction, we have
H'|¢o) + Ho(M1|¢1) + -+ Anln) +---)
= AEo|¢o) + Eo(A|é1) + -+ Anldn) +---).
Multiplying both sides of the equation by {¢¢| and noting the orthonormal-

ity of the eigenfunctions we get

292
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AEy = (¢o|H'l¢o).
(b) For the stationary state,
2

N 2
H=-—V*1V,
2m

where
2+y 2
v = { 0 inside the ellipsoid ——— + — =1,

oo otherwise.

Replacing the variables z,y, z by %5, %n,%g respectively, we can write
the equation of the ellipsoid as &2+ 7%+ ¢? = R? and

ﬁ2 (92 82 (92
H=?%($ﬂ5?+£ﬂ
K2 R?2 92 Rz 92 R? 52
=-— |5 =+ —= 75+ =5
<b2 02 " b2 oz | a2 a@)

N K2 82 + 2 4+ 2 0?2
~ 352 a¢2

. h?3 [O? 82 9
3m \0& On? a¢?
2 2 2 2 2
M ge_ #E (O O,
2m 3m \ 9 On? o¢?
The second term in H can be considered a perturbation as 8 < 1. Thus

, h? 62 82
ABs = (o) = (ol - 50 (o5 + o~ 23 ) 1),

where ¢g is the ground state wave function for the spherical potential well,

2 sin
bo=1% TR, =g+t + %

As ¢y is spherically symmetric,

82
(¢o 1352 |$o) = (ol 5= B2 |o) = <¢>o| |#o)

and so AEg=0

ag?
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5002

Employing first order perturbation theory, calculate the energy of the
first three states for an infinite square well of width a, whose portion AB
has been sliced off. (Note: The line OA is a straight line).

Vix)p® ©

) N
<

— E—-

Fig. 5.1

(Buffalo)
Solution:

The modification to the Hamiltonian, H' = %z (0 <x< a), can
be considered as a perturbation. The unperturbed eigenfunctions and the
corresponding eigenvalues of the first three states are

2 2¢2
\y?:\/jsn']zm’ E?:ﬂ;

a a 2ua?

2 2 272 R2
\Ifg:\/:sinlx, Ey =T,

a a pa

2 .3 972 h?
\I/g:\/jsm—wx, BO=2"2
a a 2pa2

The first order energy corrections are then

%
WHH' ) = =

1%
(WSIH'YE) = 5>,

%

(WSIH' 1) = =
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and the energies of the first three states are
™ W 272h2 WV, 9In2h?

2ua? + 2’ pa? ta 2ua? 2

5003

A particle of mass m moves one-dimensionally in the oscillator potential
V(x) = 3 mw?z?. In the nonrelativistic limit, where the Kinetic energy T

and momentum p are related by T = p?/2m, the ground state energy is
well known to be 3 fuw.

Allow for relativistic corrections in the relation between T and p and
compute the ground state level shift AE to order ;17 (c =speed of light).
(Buffalo)

Solution:
In relativistic motion, the kinetic energy T is

= E —mc? = /m2ct + p2c? — mc?

2 0\ 73
=mc? (1+ P > — mc?

m2c?
2 4
2 p p 2
Amc {1+ 5 — —— ] —mc
m < 2m?2c? 8m4c4)
p? pt

2m  8m3c?

to order . The g‘,fa’ic; term may be considered as a perturbation. Then
the energy shift of the ground state is

oo~ )= | (k) o
- [ G oel 5
X (—% 66—;) (%)%exp [—Tg—:xr‘)] dx

15 (hw)?
T 32 me?
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5004

An electron moves in a Coulomb field centered at the origin of coor-
dinates. With neglect of spin and relativistic corrections the first excited
level (n = 2) is well known to be 4-fold degenerate: 1 = 0, m;=0;1 =
1, m;y =1, 0, -1. Consider what happens to this level in the presence of
an additional non-central potential Vpert: Vpert = f(r)zy, where f(r) is
some central function, well-behaved but not otherwise specified (it falls off
rapidly enough as r —o0). This perturbation is to be treated to first or-
der. To this order the originally degenerate n = 2 level splits into several
levels of different energies, each characterized by an energy shift AE and

by a degeneracy (perhaps singly degenerate, i.e., nondegenerate; perhaps
multiply degenerate).

(a) How many distinct energy levels are there?
(b) What is the degeneracy of each?

(c) Given the energy shift, call it A (A > 0), for one of the levels, what
are the values of the shifts for all the others?

(Princeton)
Solution:

With V = f(r)zy = f(r)r?sin® @ sin  cos ¢ treated as perturbation, the
unperturbed wave functions for energy level n = 2 are

, Ra20(r)Yoo,
-1, m=1Ru(rYi,
l=1 m=0, Rau(r)Yi,
1= 1 my=-1, Ra(r)Yi_:.

As they all correspond to the same energy, i.e., degeneracy occurs, we have
first to calculate

Hj\ i, = (I'm’|V|lm)
= / Ry (r) Ry (r)r? £(r) Yy, sin® @ sin o cos @Y, dV .

The required spherical harmonics are
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1 1
1\? 3\?
= —_— Y = - i i
Yoo (47r> : 11 <87r> sin 6e**
3\? 3\?
Yio=| -] cosé, Yi,-1=| 5= ) sinfe™".
4m ' 8

Considering the factor involving ¢ in the matrix elements Hym 1, we note
that all such elements have one of the following factors:

2w 2
/ sin ¢ cos pdp =0, / eT2% sin p cos wdp =0,
0 0

except Hj _, 1, and Hi,,,,_, which have nonzero values
3 ™
H _141==— / [Ra1(r))2r* £(7) dr/ sin® 6d0
’ e 871' [i]
27 )
X / sin o cos we *¥dp=iA,
0
. . _ 1 o 4
Hi,,,,,_, = —tA, with A=z [R(r)])* r* £(r) dr
We then calculate the secular equation
0 0 00 AE 0 0 0
0 0 0 A 0 AE 0 i A
ol N (= ' 0,
0 0 00 0 0 AE 0 =
0 —iA 0 O 0 —iA 0 AE

whose solutions are AE = 0, AE = 0, AE = A, AE = -A.
Thus with the perturbation there are three distinct energy levels with
n=2. The energy shifts and degeneracies are as follow.

A, one-fold degeneracy,
AE = ( -A one-fold degeneracy,

0, two-fold degeneracy.
Thus there are three distinct energy levels with n = 2.

5005

A particle moves in a one-dimensional box with a small potential dip
(Fig. 5.2):
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V =

\
Vv

Treat the potential dip

Problems and Solutions on Quantum Mechanics

o~
~ pan-

Fig. 5.2

oo forz<0andz>1,
—bfor0<xz<(1/2),
0 for(1/2)l<x<l.

as a perturbation to a iregular? rigid box (V =

ocoforz<0andx>1, V = O for0<x < 1). Find the first order energy

of the ground state.
(Wisconsin)

Solution:
For the regular rigid box, the energy and wave function of the ground

state are respectively
2
#0) =7 s 72

The perturbation is H(")=—b,0 <z <%. Hence the energy correction of
first order perturbation is

2h2
(0 _ T
E 2mi?’

B0 = [T 40 @)(-b)p® @iz
0

%2.2 T
:/O ? sin (Z2)(-byda
!
3 b
:_l—)/z(l—cosm)dz:—-—
L Jo l 2
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Thus the energy of the ground state with first order perturbation correction
is

R*n? b

2mi?2 2

E=EO 4 g1 =

5006

An infinitely deep one-dimensional square well has walls at x = 0 and

x = L. Two small perturbing potentials of width a and height V are located
at x = L/4, x = (3/4)L, where a is small (a < L/100, say) as shown in
Fig. 5.3. Using perturbation methods, estimate the difference in the energy
shifts between the n = 2 and n = 4 energy levels due to this perturbation.
( Wisconsin)

—.|

717777777y ///

-+ &~
—+4 bl

L
|
i

Fig. 5.3

Solution:

The energy levels and wave functions for a one-dimensional infinite po-
tential well are respectively

(0)_ 2h2 2
" 2;LL2 ’

2 nrw
wn(z)zwzsmz—ﬁc, n= 1,2,....

The shift of the energy level n, E(l) = HJ,,,, according to first order per-
turbation is given by
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L/4+a/2
H,'m=/ V-Zsin2 (—@m) dx
L/d—a/2 L L

3L/4+a/2 2
+/ V. Zsin? (Er) dz.
3L/4—a/2 L L

As a « L/100, we can apply the mean value theorem to the integrals and

obtain
2Va m L m 3L
ro_sYa | .o L 2 (T oL
Hon = 2 [ () w0 (5]

2Va [ . o ™n . 9 3TN
=—{(sin” —/— +sin” — | .
L 4 4

Therefore, the change of energy difference between energy levels n=2 and
n=4Iis

3
EM _ B — 2‘:“_ <Sin2 2 + sin? = — sin’ 7 — sin’ 37r>

4Va

L

5007

A particle of mass m moves in a one-dimensional potential box

oo for |z|>3la},

0 fora< < 3a,
V(x) =
0 for —3a<z< —a,

Vo for —a<z<a,

as shown in Fig. 5.4.
Consider the V4 part as a perturbation on a flat box (v =0 for -3a <
X < 3a,V = o for |z| > 3}al) of length 6a. Use the first order perturbation
method to calculate the energy of the ground state.
( Wisconsin)
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-3a -a a 3a
Fig. 5.4

Solution:

The energies and wave functions of a particle in a flat box of length 6a
are respectively

[1 .
d)(o)(l‘) =13 cos ?g, n = odd integer,

1 nwT
(0) =4/ —sin —= = n in r.
P& (x) \/3a sin ——, n=even | tege

Particularly for the ground state, we have

The energy correction of first order perturbation is given by
ED = (), V¢{(@),
where V =V, for -a <z < a. Thus

* WV T 1 V3
COIY A . (__) =V lo+2).
E /o 3a cos ™ dx o3 + o

Hence the energy of ground state given by first order perturbation is

252
E-E®  gu_ T P +V (l+£) .
72ma

2 3 2
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5008

A one-dimensional simple harmonic oscillator is subjected to a small
perturbing potential W(x), producing a idimpleT at the center of the mo-
tion. Thus

P2 1 A p?
=%+5'ﬂw21’2+$2—+a2=%+v+5v.
Calculate the correction to the ground state energy of the oscillator to first
order in A in the event that
(a) a <<y/A/muw,
(b) a >+/h/mw.

Hints: the normalized ground state wave function of a simple harmonic
oscillator is

mw 1/4 )
Yo(z) = (w_h) exp(—mwz*®/2h),
and
/°° dx
oo Z2+a? a’
(Columbia)
Solution:

The energy correction for the ground state given by first order pertur-
bation is

mw 1/2 +Ooe—mw12/h
) / dx

wh
(a) a < V/h/mw,

AE:A(ZE)”2/+wEZTiifdy

wh o a{y?+1)
A (%)1/2 /+°° dy A [mwr
“a \nh o Y2+l a h

(b) @ > /Rjmw,

AE:é(

mwn 1/2 +00 e—mwazyz/h
2 (77)

Th oo y2+1

+
%é (mw) 1/2 / oo e_mwazyz/ﬁdy _ )\/0,2 .
a

h oo

dy
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5009

A perfectly elastic ball is bouncing between two parallel walls.

(a) Using classical mechanics, calculate the change in energy per unit
time of the ball as the walls are slowly and uniformly moved closer together.

(b) Show that this change in energy is the same as the quantum me-
chanical result if the ballis quantum number does not change.

(c) If the ball is in the quantum state with n = 1, under what conditions
of wall motion will it remain in that state?

(Chicago)
2 L’
s
<1
L
L
m 4] #
L O—> > X
0 L
Fig. 5.5

Solution:

(@) In classical mechanics, the energy of the ball is

dE _ p d
50 G Tm dtﬂ_' )

At a certain instant ¢, the walls are separated by L and the ball moves
to the right with speed v5. Because the collision is perfectly elastic, the

speed of the ball relative to the right wall before and after bouncing from
it remains the same:

v +v1 = v2 + (—v1),
where vy is the speed of the ball after bouncing. Thus,
U’z — Vg = —-2’()1 y
Ap = m(vy—v3) = —2muy,
V2 puivz

P
~ __2 [, s
mdt . m At Y L

2
I
|
I
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where At = % is the time interval between two successive collisions. As

the right wall moves very slowly,

_ pe__ p p dL
L e e

2 p*dL  2EdL

T L2mdt L dt’

which is the rate of change of the energy of the ball according to classical
mechanics.
(b) As the motion of the right wall is very slow, the problem can be

treated as one of perturbation. If the wall motion can be neglected, we
have

_ nm’h?
™ 2mL?”
If n does not change,
n2r2h? 1 dL 2F,
= 2)
dE, /dt o (-2) I3 3 7 dL/dt,

same as the classical result.

(c) If the energy change during one collision is much smaller than E;—
E,, the ball can remain in the state m = 1 (analogous to adiabatic processes
in thermodynamics). More precisely, as

we have
[2E
AE = ﬂAp—_: Vo 2muy = —2V2mE v .

The condition

E, — E; > |AE]
then gives
w2ht L, w2h2
— 2m, ———
oL 2°-1%)>» 2 Mo lvad,
or
3rh
[v1] € —
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This means that the speed of the right wall should be much smaller than
3nh
4mL

5010

Consider an electron in a 1one-dimensional boxT of length 1 A.

(a) Find the first 4 wave functions (normalize the wave functions) and
sketch them).

(b) Compute the corresponding 4 energy levels and sketch an energy
level diagram.

(c) At t = 0, the particle is known to be in the state for which n=1.
Att = 0, a rectangular potential well Vo =—10%eV, centered at a/2 and
of width 10~12 ¢m, is suddenly introduced into the well and kept there for
5x10~ 8 sec, at which time it is removed. After removal of the perturbation,
what is the probability that the system will be found in each of the states
n=2,,n=3, and n = 4?7 (The height and width of the potential well is
characteristic of a neutron interacting with an electron).

Note: you can use your sketch to help you estimate the relevant matrix
elements.

(Berkeley)
Solution:
(a) The potential box can be represented by

(@) 0, 0<Lzx<a,
Vix) =
oo, otherwise,

where a = 1 A is the length of the box. The schrédinger equation for the

electron is
2mFE

,Ivbll (1:) + h2

subject to the condition

(@) =0, wcl0,al,

Y(z) =0, zE€[0, a].

As E =T + V is positive, the solutions must be sinusoidal with nodes at
x =0 and x = a. Hence the normalized solutions are

Pp = —Si'nn:—x, z€[0,a, n=12,....
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The first 4 wave functions in [0, a] are as shown in Fig. 5.6:

Pix)
)

Yy
A AMVA
AV
¢,
&
0, \J
£;
¢,
E, x
0 a
Fig. 5.6

(b) Substitution of %, in the Schrédinger equation gives

or

nm\2 2mkE

(?) TR

2,22
En_hwn =19,
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The first four energy levels are
E, = 2% /2ma® = 0.602 x 10" %erg = 37.4 €V.
Ey=4F; = 2.408 x 10~ erg = 149.6 eV
E3=9E;=5.418 x 10~ erg = 336.6 eV
E;=16E; = 9.632 x 10 erg = 598.4 eV .

These are shown in Fig. 5.7.

El. n=4
E, nz=3
Epp—1 f
£, n:=
0 a
Fig. 5.7

(c) The probability for finding the system in state n after the perturba-
tion is ) )
__ piwnito 1
P, = lH., 1—e _ 2H], sin wnito 7
h‘ﬂml hwnl 2

1
Wnl1 = E(En "El)y

where

z+b 2V¢ LR Y ™
= / Y Vouhdr = il Sin — sin —-dz
2-b a Jo2-p a a
As b « a, the mean value theorem can be applied to the above integral

with x ~ £, dx = 2b and we have

’ 4bVp Si M

i~ ——sin ==
Thus Ha; = 0, Hay = 0, Hay =210 2x10°_ 5 V. Therefore,
P2 = P4 =0 y
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16

P = ——
2 2
h?ws,

1
sin? <§w31t0) =1.45x 1074,
with

hwg; = 336.6 - 37.4 = 299.2 eV,
to= 5 X 10_185.

5011

A charged particle is bound in a harmonic oscillator potential V =
%kacz. The system is placed in an external electric field E that is constant
in space and time. Calculate the shift of the energy of the ground state to
order E2.

(Columbia)

Solution:

Take the direction of electric field as the x-direction. The Hamiltonian
of the system is

2 72

. 1

H=— R d + kx? — qEzx = Ho + H',
2m dz?

where H' = -qEx is to be treated as a perturbation.
The wave function of the ground state of a harmonic oscillator is

Yex)= (2]0) = Mw—?ﬁexp (——%oﬁmz) ,
_ [ _\/E
a = T, W = m.

As tp is an even function, the first order correction {0|H’|0) = 0 and we
have to go to the second order. For the harmonic oscillator we have

n’+1
(n'|zIn) = bnymr—1 + bnmiz]| s

where
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and hence
H,n = —qE(Olzin) = —(¢E/vV2a) 8n 1.

Thus the energy correction for the ground state to order E?is

Hy |2 P LB 5

AE(2) — a on — 2aZ M,

Yo T
2E? 2B

= 2hwa? 2mw?’

where the partial sum 5. excludes n = 0.

5012

For a one-dimensional harmonic oscillator, introduction of the dimen-
sionless coordinate and energy variables y = z(mwg/h)}/? and €,
2En/hw0 gives a Schrédinger equatlon with kinetic energy operator T

f—; and potential energy V =

(a) Using the fact that the only non-vanishing dipole matrix element is

(n +1yln) = \/"—%T (and its Hermitean conjugate), find values for all the
non-vanishing matrix elements of y3 that connect to the ground state |0).
(b) The oscillator is perturbed by an harmonic potential Vi = ay3.
Find the correction to the ground state energy in the lowest non-vanishing
order. (If you did not get complete answers in part(a), leave your result in

terms of clearly defined matrix elements, etc.)
(Berkeley)

Solution:
(a) As

m n
(i) = [ Snimes + [ Bt

the non-vanishing matrix elements connected to |0),

(mfy®10) = > (mlylk) (klyll) {U|y]0),

k,l
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are those withm =3 k=2 1{=1 andwithm=1, andk =0, = 1, or
k = 2,1=1, namely

V3 3
7 5m,3 and 2——\/—5 5m,1 .

(b) Because % is an even function, (0|y3|0) = 0, or the first order
energy correction {0]ay?|0) is zero, and we have to calculate the second
order energy correction:

AE, =3 [Oloy®in) | _ lof? (l(0|y3l1>l2 N ‘<0|ysl3)>

o 1—¢, 1—g 1—¢3
As
2F,
En_EZZTL*‘l,
O[y*1)]> | 1{0ly®]3)? 11
AE: 2 '( — - 2.
ot (1R [ 2 o
5013

Consider a one-dimensional harmonic oscillator of frequency wg. Denote
the energy eigenstates by n, starting with n = 0 for the lowest. To the
original harmonic oscillator potential a time-independent perturbation H =
V(z)is added. Instead of giving the form of the perturbation V'(z), we shall
give explicitly its matrix elements, calculated in the representation of the
unperturbed eigenstates. The matrix elements H are zero unless m and
n are even. A portion of the matrix is given below, where ¢ is a small
dimensionless constant. [Note that the indices on this matrix run from
n=0to 4)]

L0 VI o Vi
0

0

0 0 0 0 0

ehwo \-/3/82 @ —/3/16 § -+3/816
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(a) Find the new energies for the first five energy levels to first order in
perturbation theory.

(b) Find the new energies for n = 0 and 1 to second order in perturbation
theory.

(Berkeley)
Solution:

(a) The energy levels to first order in perturbation theory are
E:r, = En + Hrlvn .

where E, = (n + 1)hwo, H,,, = (n|H|n). Thus the energy for the first five

energy levels are
1
(3+¢) mo

o]
il
g
+
m
£
Il
4
™

" &R M
Il Il Il
NI~ L N o=
g veF
S + S
el

™

N’

F

1ol
|

9 3
= <§+§E> hwq .

(b) The energies for n = 0 and 1 to the second order in perturbation
theory are

| Hio|?

Eg = E0+H(I)0+
o — Ex

k#0

1 1
=3 Fuwo + ehwo + Z I |Hol?
k0 0

1 , (1 3
—hu)o [§+6—6 (Z+32+ )},
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IHkll
—E1+H11+Z —_
k20 — Ex
3 2
=§m0+0+2(1 k)hw |H},|
k#1

3 3
= hwp <§+0+0) Zihwo.

5014

A mass m is attached by a massless rod of length [ to a pivot P and
swings in a vertical plane under the influence of gravity (see Fig. 5.8).

P

Fig. 5.8

(@) In the small angle approximation find the energy levels of the system.
(b) Find the lowest order correction to the ground state energy resulting
from inaccuracy of the small angle approximation.

(Columbia)

Solution:

(a) Take the equilibrium position of the point mass as the zero point
of potential energy. For small angle approximation, the potential energy of
the system is

V = mgl(l — cosf) =~ —;- mgl?,

and the Hamiltonian is
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_ L as 1 2
H—2ml9 +2mgl0.

By comparing it with the one-dimensional harmonic oscillator, we obtain
the energy levels of the system

where w =/g/l.

(b) The perturbation Hamiltonian is

1
H' = mgl(1 — cos8) — 5 mgl6?

1 1 mg
~ ——mglet = — — " 44
24™ 224 3 T

with x = [§. The ground state wave function for a harmonic oscillator is

_ a 1 4.
wo—\/meXp<—§az)

with a=,/%=. The lowest order correction to the ground state energy
resulting from inaccuracy of the small angle approximation is

Ef = (0|H'|0) = —— —Z(0|z*|0).
(01810) = 5= 22 (0]2%0)
As
am & * 4 2.2 _3
{0]z*|0) = ﬁ /_m z* exp(—a“x )dz—w ,
S
32mli?’

5015

A quantum mechanical rigid rotor constrained to rotate in one plane has
moment of inertia | about its axis of rotation and electric dipole moment
p (in the plane).
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This rotor is placed in a weak uniform electric field &, which is in the
plane of rotation. Treating the electric field as a perturbation, find the first
non-vanishing corrections to the energy levels of the rotor.

( Wisconsin)

A m
\
8 X €-—>
.
Fig. 5.9

Solution:

Take the plane of rotation of the rotor as the zy plane with the z-axis
parallel to € as shown in Fig. 5.9. In the absence of external electric field
the Hamiltonian of rotor is

h? 82

Ho = =71 262

and the eigenequation is

_h? 9%

Y _E
21 962 v

which has solutions

e m=0,+1,%2,...,

corresponding to energy levels

h2m2
By = 21

When the external electric field acts on the system and may be treated as
perturbation, the Hamiltonian of perturbation is

H =—p-e = —pecosh.
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The first order energy correction is
2r
£
EM = (m|H'|m) = e / cos6df = 0
2w Jo
The second order energy correction is

2
@ _ < [m|H'|m)|
EY = Z E7(’(l)) —E(o,) ’

m’'#m
As
27
(m/|H'|m) = _/21_5 e (M=% cos 6 df
T Jo
2
— __ii;_ W[ei(m—m'-}-l)e + ei(m—m'—l)e] dé
£
=_% (5m’,m+1 + 6m’,m—1)7
we have
E(Z) _ [,1,252 2 1 1
4 m m?-(m-12 m?2-(m+1)?
_ pPelr 1
T R? 4m?2-1

5016

The polarization of a diatomic molecule in weak electric fields may be
treated by considering a rigid rotator with moment of inertia | and electric
dipole moment d in a weak electric field E.

(@) Ignoring the motion of the center of mass write down the Hamilto-
nian H of the rigid rotator in the form of Hy + Hi.

(b) Solve the unperturbed problem exactly. How are the levels degen-
erate?

(c) Calculate the lowest order correction to all the energy levels by non-
degenerate perturbation method.

(d) Explain why is nondegenerate perturbation method applicable here
and how are the levels degenerate.
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The following relation may be useful:

(+1-m)(l+1+m) + (I +m)(l —m)
@+ 1)20+1) HLm A Rl (2 - 1)

cos Yy, = }/l—l,m .

( Buffalo)
Solution:

(a) Take the z-axis in the direction of the field. The Hamiltonian of the
rotator is
i d-E > dE cos@
H= o 4 E=57- cos@.
Considering -dE cos 8 as a perturbation, we have
J2
Hy = TR H' = —dE cos@.

(b) The eigenfunctions of the unperturbed system are
1pjm = ij(ov <P) )

where m = -j, (-j + 1),...,(j —1), 4, and the energy eigenvalues are
S 2
EJ(?,Z iL;}lL.Th eleve s are (2j + 1)-fold degenerate since EJ(?,E does not
depend on m at all.
(c) The first order energy correction is

(jm]—dE cos 8|jm) = —dE(jmj| cos 8|jm)

T 2n
= -dE/ﬁ) Jé cosfsinfdbdy = 0.
For the second order correction we calculate

r |{n|H'|D)|?
7 EY _E
where n, i denote pairs of j, m and the prime signifies exclusion of 2 =nin
the summation. As the non-vanishing matrix elements are only

j+1-m)F+1+m)
(27 +1)(25 + 3) ’

(j + 1, m|—dEcosf|jm)= -dE\/(

G+m)G-—m)

j — 1, m|—dEcos8|jm) = -dE/ —F—~F—7—,
0 | ) (2j + 1)(25 - 1)
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the lowest order energy correction is

y { G+1-m)(G+1+m)
(25 +1)(25 +3)[i(G +1) = (G + 1)(4 +2)]
(j +m) (i —m) }
+ (25 + DI -DHG+ 1) -G -1))
IEE*[j(j + 1) — 3m?]_
= P50 +1)(25 —1)(2j + 3) -

(d) Because H’ is already diagonal in the j subspace, the nondegenerate
perturbation theory is still applicable. However even with the perturbation,
degeneracy does not completely disappear. In fact states with same j but
opposite m are still degenerate.

5017

A rigid rotator with electric dipole moment P is confined to rotate in
a plane. The rotator has moment of inertia I about the (fixed) rotation
axis. A weak uniform electric field E lies in the rotation plane. What are
the energies of the three lowest quantum states to order E2??

(MIT)
Solution:

The Hamiltonian for the free rotator is

Fig. 5.10
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1 R d?
Hy= — L2 = —— —
ST 91 7¢ T T2l dg?

A Schrédinger equation then gives the eigenvalues and eigenfunctions

»O () = \/—;—; em?

(m=0,£1,+2,...)

h2m2

E©) —
m 2’

When a weak uniform electric fiedd E is applied, the perturbation Hamil-
tonian is
=-E-P = Acos¢,

where A= —-EP. The matrix elements of the perturbation Hamiltonian is

(n|H'|m) = % [:, e cosgdd = (nmﬂ +0nm-1)-
Define EX and E by
Holm) = EQm), (Ho + H')) = El),
and expand |)in|m)= (0)(¢)

> Cmlm).

Then
(Ho+ H')Y  Cmlm) =) CmEjm),

or
Zc (E — ED)m) - Zc H'lm) =0.

Multiplying both sides by (n| we have, on account of the orthonormality of
|mm) and the property of (n|H’|m) given above,

A
Em: Co(E = EN i — . Em: Com(mn—1+ b ny1) =0,

or
A A

acn-—l - §Cn+1 = 0.
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Expanding E and C, as power series in A:
o0 oo
E= Z E®@)\p, C, = z 07(1/2),\#’
p=0 p=0

and substituting in the above, we obtain perturbation equations of different
orders:

X (B@ - E®) cO =0,
1 1
M (BO-E®)cO + BOCP - 20 -2 ¢ =0,

A2: (E@ - E®)c®+ EWCY + EDCPO)
1

e
9 Yn-1 2

1
c), =o,

To find the energy level EQ, we first see that the zeroth order equation
(E,(co)-E,(,o))C,(,o) = 0 requires C,(,O) =0if k# n. Hence we write

CO = aybnk + a—kbn k- (1)
Substitution in the first order equation gives
(E,(CO) -~ ENCD + EM (abpn i + a—kn,—k)
- % (@kOn-1,k + G—kOn—1,—k + QkOni1,k + G_kOnt1,—k) = 0.

When n = +k, we have
EM =0.

When n # fk, we have

1 1
o == 2 W(ak&n—l,k + a_k0n-1,—k + QkOnt+1,k + G—kOn+1,—k)
" — )’

1 1

S S ORI,
2 g0 _ g0 (Crzy + Cna)-
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Substituting C,(ll) in the second order equation gives for n =k

1
(B - EO)CR + BOCO - ¢, - ¢l =0,

1
E(2)C’(c0) — E (C£1)1 + C(l)l)

— —_— —_—— )

_1 _1—(0(0) + C(O) }

(0) (0)
2E. K+T E.

_ " 1 0) (0)
=—4 { (C( +Cy )
0) — 0) k-2
El(c—)1 El(c

L O) m>}
+ ——= (Cp 7+ Cr)s) (2)
B, - B0 O
For the ground state ¥ = 0, Eq. (1) gives Céo);é 0, C(_OQ) = Céo) =0, and
so Eg. (2) becomes

1 1 1
Eww§>:—-{l }CW
0) 0 0 0 ¢ -
4;?( E() Eg)_E(())

Hence
2 1 1 |

e R = ORI~ X
2E0 _E» = h

For the first exited state k = fl, Eq. (1) gives C(iol)?é 0, and Eq. (2)
becomes

0 1 1 ©) , ~(0)
E( )Cx -——Z{E(O)—E(o) (CcH+ )

1 ©0) , ~(0)
+ g _gp O @

Y (F S
BRSO

1
3
BN
S
\—/
AP
=
e
|~
e
Q
s
Lo )
H,—J
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and

0
E(Z)C(_l) R

P

—_— — +

1 { 1 -~ ! 1 (0)}
=-2 - =00+ - cOt,
{-a (e o)

asE%o) =0, C'(iog) =0, or

1 1 1 1 1
_Z _ _ E(Z):l C(O) + 2 C(O) _0
0 0 0 1 —y U
[ 4 <E§>_E§> E§>> 4 g0

and

1 1 (0) 1 1 1 2 ()
~—C; + |—-= - —-E@ c9 —¢
4 gD [ 4 <E§°) - EY E§°)> 1

These are homogeneous equations in C? and C?,. Solving the secular
equation, we obtain for the first excited state two energies

po Ll (L 1) sl
4 E§0) 4 Eé()) _ Efo) Efo) = K2’

go_ 1.1 1(5 1 1) |
1- = "7 70 1 |0 RO TS
150 1 \g® _ g0 EO 6h2 .

For the second exited state k= +2, Eq. (1) gives C(ioz)yé 0 and Eg. (2)
becomes

@c@ - _1 1 ! (©)
ECn =3 ( E® _E® + g0 _g® Ciz-

Thus

1 1 1 |
EY® = + = :
2 4 E§0) _ Eéo) Eéo) _ Eéo) 15k2
Therefore, the energy correction to the second order perturbation for the
ground state is
I(Ep)®

Eo = AE{Y = - =
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for the first exited state is

1 I(Ep)®
ol 6 hR2 ° T2 6 A2
and for the second exited state is

2h? 1 I(Ep)?®
BT R

El+ =

5018

A rod of length d and uniform mass distribution is pivoted at its center
and constrained to rotate in a plane. The rod has mass M and charge +Q
and -Q fixed at either end.

(a) Describe this system quantum mechanically, finding its Hamiltonian,
eigenfunctions and their eigenvalues.

(b) If a constant weak electric field E lying in the plane of rotation is

applied to this system, what are the new eigenfunctions and energies to
first order in E?

(c) If the applied electric field is very strong, find an approximate wave
function and energy for the ground state.

(CUS)

-Q\

Fig. 5.11

Solution:

(a) Take the plane of rotation as the zy plane as shown in Fig. 5.11.
The Hamiltonian of the system is
. 2 32
i k

T 2] 962’
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where | = {5 Md?, and the eigenequation is

2 2
57 357 ¥m(0) = Emm(0).

The solutions of the eigenequation are
wm(o) — ce‘ikme ,
where §2=2E=_ For single-valuedness, i.e. ¥m(6+27) = ¥m(6), w

require
knm = 0, fl, £2,....

The normalization of the eigenfunctions requires

-2r=1,0rc=

i

Thus the eigenfunctions are
1 ikm 0
1/)m(0) = \/—226 m ,km = 0,:i:1,:t2,...,
T

and the corresponding eigenvalues are

B, _ 6

2
2™ Md2k

Em =

(b) Take the direction of the constant field E as the x direction. Then
E = Ee,, and the Hamiltonian of the system is

. ﬁ2 82
= \4 (]
H=-57 52 +V0O),
where
V(@)=-P-E = —QdEcos§.
Let ) K2 52
Ho = =71 53¢

and consider V (8) as perturbation, i.e., H' = -QdE cos 6.
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The unperturbed eigenfunctions and eigenvalues have been given in (a)
and are respectively

R2m?  6R’m?

Ym(6)= 2~ Md&

esz’ Em —

5~
3

m =0, £1,£2,....

As E,, is determined by m?,v,,(8) and ¥_,,(8) are degenerate. However
as

2
(=m|V(6) |m) = / (—QdE) cos 6 - 51; eZmigy =0,
0

we can still use the results of nondegenerate perturbation theory:

27
EWY = (m|Hylm) = 51; A (—QdE) cosede =0,

W _ ~ (nHim) o
mel B

n

As
R ] 2 )
(n|Hy|m)= — / (—QdE) cos @ . (™~ de
27 Jo

1 1
2_2? (—QdE) 5 ' 27"((sm—n+l,0 + Jm—n—l,O)

1
=~ 5=QdE (bn-n+1,0 + Sm-n-10),

(1) _ MdSQE 1 1 ei(m+l)9
m 12h2 2m+1 /27
+ Md3QI:? i1t cilm=18
12h2 1-2m /2r
_ MdsQE ) 11 eim+1)8 + i(m-1)6 '
12R2\2r |2m+1 I-2m

Hence in first order perturbation, the energies and wave functions as are as
follows:
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6h%m?
E,, =E,(,?) +E$) = M
1 eimo MdBQE

=@ 4D = + 22 x5
Y =Vm’ + Y NL 12K2\27

1 1(m+1)9 1(m— 1)6
X [Zm +1 T om ’

C If the electric field is very strong, the probability that @ is in the
small-angle region is very large. Thus cos@ = 1 —%02 and the Hamiltonian
is

N K2 9?2 1,
H = - = = + (-QdE) <1—§0)
2 92
ZI (;992+1QdE92 QdE.

This has the form of the Hamiltonian of a harmonic oscillator (Prob-

lem 5008) with wo = y/22E and a perturbation H’ = -QdE. Then
for the ground state we have

1 w1 [QEd _ . [3QE
Eo=3 hwo +(0H'I0) = 5 M/ —7— — QdE = b 5= — QdE,

(0) (n|H'|0) 0) — (XN —Llap?
1/) '(tb +Z _(0) _ E(.()O) ¢n - ('7;) e 2 3

where o = /2L as (n|H'|0) = —~QdE(n|0) = 0.

5019
(a) State all the energy levels of a symmetric top with principal moments
of inertia 1 = I, = | # 13.
(b) A slightly asymmetric top has no two 1is exactly equal, but I; — I, =
A#0, I+ 1I,=2I, (Al21) <« 1. Compute the J =0 and J = 1 energies
through O(A).

(Berkeley)
Solution:

(a) Let (z, y, z) denote the rotating coordinates fixed in the top. The
Hamiltonian of the system is
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1 J2 J2 J2
H== z _y Yz
2 (Il + 13>

_1 2 2 2
_2I(J +J)+2IJ

1 /1 1
—_ 2 = - _ = 2
N zzJ 2 (13 I) Jz
Hence a state with quantum numbers J, m has energy
h2 R (1 1
E= J J+)+—[——-=~ 2
(J+1)+ 5 ( A 1) m*,

which gives the energy levels of the symmetric top.
(b) For the slightly asymmetric top the Hamiltonian is

1 1 1
—ZJ2 (IB I)J2+__(J2_J2)
=H0+Hla

where H' = 35 (J2 — J2), to be considered as a perturbation.
Defining J+ = J.£i J, we have

2T = %(13+JE).
Noting that
Jelim) = /(G +m+1)(G - m)lj,m +1),
J_lgm) = /(G —m+1)(G + m)|j,m — 1),
JElim) = Jx(Jxlim)),
we have

J3100)=J2 (00) =0,

J2[10) = J2|10) =

J31,1) =0, J2[1,-1) = 2A%11),
J2|1,-1) =0, J2|11)=2R%1, -
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Hence for the perturbed states:
(i) J =0, m =0, (nondegenerate):
E) = E + (00|H'|00) = E” =0.

(ii) J =1, m = 0, (nondegenerate):
" , _ R
\ = By’ + (10|H'|10) = E; =—|“.
(iii) J = 1, m = fl, (two-fold degenerate):

As degeneracy occurs, we first calculate

(11 _1|Hllla '1) = (171|H/l11) = 01

AR?
-1|H'|11) = (11}H|1, -1) = —.
(1 -1 = QLA -D = 75

We then form the secular equation

AR?
e
Xl — AR2 , =0,
412
ie, 2
A _ AR
412 _ ¢
AR? A\
412
This equation has two solutions
AR?
A=

which means that the energy of the states J =1, m = fl, Ey 11, splits
into two levels:
E _ h2 + 2 L AR?
bEL T oI T oL T Az

5020

(a) Using a simple hydrogenic wave function for each electron, calculate
by perturbation theory the energy in the ground state of the He atom as-
sociated with the electron-electron Coulomb interaction (neglect exchange
effects). Use this result to estimate the ionization energy of helium.
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(b) Calculate the ionization energy by using the variational method,
with the effective charge Z in the hydrogenic wave function as the varia-
tional parameter. Compare the results of (a) and (b) with the experimental
ionization energy of 1.807Ey, where Ey = azmc2/2.

Note:
[ 23 R?
Ps(r) = aexp(—Zr/ao), G = —3>
dPridPrae™ 142 [ip) — o) = 2072 /08
J J
(Columbia)
Solution:

(a) The unperturbed Hamiltonian of the system is

Z Z
Ho=-—(v2+v2)-—e—-_i.
T T2

The wave functions have the form

® - ¢(r1, r2) Xo(S12, 522)

For the ground state,

#(r1, r2) = Yi00(r1)¥100(r2) ,

73
Yro0(r) = pas exp{—2r/ao}

with ag = A2/me?. Treating the electron-electron interaction T—_r;[ as
perturbation, the energy correction to first order in perturbation theory |

where

d3r1d3r2
J J Iri—r2f
32 3r1d3 27
e2 (%) J i_uexp [.___ (Tl + 7-2)]
mayg r1 — 1o a0
. ( z3 )2 20n2  5Ze?
e — " — .
NG
ao

= (H')=¢® [¥100(r1) 1% |¥100(r2))?
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The energy levels of a hydrogen-like atom are given by

e Z?
E, = T
ag N

and so the energy of the ground state of the system excluding the electron-
electron Coulomb interaction is
272 272
e“Z e“Z
Ey=-2 = - .
2ag 8o

Hence the corrected energy of the ground state of helium is

B 22 5Ze?  1lé?
B a0 + 8a0 B 4a9

)

with Z = 2 for helium nucleus.

The ionization energy is the energy required to remove the two electrons
of helium atom to infinity. Thus for the ground state

I=-

VA ( e?Z? +5Z62) ﬁi

2ao ap 8ao - 4ao

with Z = 2 for helium nucleus, i.e.,
I= 1.5E0,

with

2 2\ 2
e 1 [e 1
Ey=—==|=—) me=Za’me?,
7 200 2 ( )
a being the fine structure constant.
(b) The Hamiltonian of He with electron-electron interaction is

32

H=—2”;n (V34 V2) = Ze/r1 — Ze*[ry + €2 /12

with Z =2, 12 =|r; —ra|. For the ground state use a trial wave function

A3
é(ry, re, A) = = e Mritra)
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Let u(r) = e=*". Then

ie.,
h 2 )‘h2 B A2ﬁ2
(_% B mr) u(r) = 2m u(r)
Setting )
Ze? — i\h— =0,
m

we have, using the above results,

_ K2 K2 Ze? Zet e
H_//d ridry® ( 2m Vi om 2 n T2 T2
N2 o o €2
_//d3r1d3r2<1>* (-— —— -+ —) @
m T1 T2 T12
252 3 —2Ar —2/\(r1+r2)
_ MR _20)\_/6 ! r1+_—//d3r1d3r2
m ™ 1
As
—2Ar 00 ,—2Ary
/ € ! d3r; = / ¢ 4rridry = w/A2,
71 0 T1
_ 2p2 A6 2072
me (2X)5
252 5
:A h — (2Z bt '—> €2A
m
Letting 0, we get

me? 5
A= T ( 2Z — -8-) .
Therefore, the energy of the ground state is

B 7 5 2me“_ 272_6_?_
“16) R T \16/) a0’
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asZ=2ap= ;’%, and the ground state ionization energy is

Z%e? 5\2 e2 27\ 2 e?
I= - Z-=2) Z=|(Z) -2| = =169E
2a0 ( 16) ao (16) ao 0

Thus the result from the variational method is in better agreement with
experiment.

5021

A particle of mass m moves in one dimension in the periodic potential
2wz
V(x) = Voc(s —) .
(81

We know that the energy eigenstates can be divided into classes character-
ized by an angle § with wave functions ¢(z) that obey ¢(z + a) = e ¢(z)
for all x. For the class 6 = , this becomes ¢(z + a) = ~¢(z) (antiperiodic
over length a).

(a) Even when V= 0, we can still classify eigenstates by 6. For which
values of k does the plane wave ¢(x) = e'** satisfy the antiperiodic con-
dition over length a? What is the energy spectrum of the class 8 = = for
Vo =07

(b) When V, is small (i.e. Vo <« h%/ma?), calculate the lowest two
energy eigenvalues by first order perturbation theory.

(MIT)
Solution:

(a) For the plane wave ¥(z) = e**, we have
w(z + a) — eik(z+a) — Cika‘(/}(.’ll).

If k satisfies
ka=(2n +)m, (n =0, %1, f2,. ..)

the plane wave satisfies the antiperiodic condition

¥(z + a) = —Y(z).



332 Problems and Solutions on Quantum Mechanics

The corresponding energy spectrum is

h2r2

E,=——(2 2, =
n 2ma2(n+1) (n=0,%+1,%2,...)

(b) If Vo < mizf, one can treat

H' =V, cos (27r_x)
a

as a perturbation imposed on the free motion of a particle. For the ground
state, the eigenvalue and eigenfunction of the free particle are respectively
(n=0, -1 ie, ka =n,—7)

h2 2
EO® _
(%) 2ma2 '
(0) 17r1:/a,
(z) = ﬁ :
0 1 —inz/a
) (z) = 73 ° /e

Let 2= = 3 and consider (m|H'|n). We have

(-1|H'| - 1) = (0|H’'|0)= VOA cos(27rz) dr =0,

a

Q

Vi ) ) .
(=1}H’|0) = (O|F| - 1) = 22 [D eEB7 (i85 4 o-ife) gy

T2
Hence for ground state,
0o Y
Hl = 2
Voo ’
2
and the secular equation for first order perturbation is
EMD Y
=0
V") )
= E
2
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giving
Vo
EM =12
2
Thus the ground state energy level splits into two levels

K2V, K22 Vo

1= oma? 2 2T omar T 2

These are the lowest energy eigenvalues of the system.

5022

An electron is moving in one dimension (z) subject to the periodic
boundary condition that the wave function reproduces itself after a length
L (L is large).

(a) What is the Hamiltonian for the free particle, and what are the
stationary states of the system? What is the degeneracy of these states?
(b) Now add a perturbation

V(z) =ecos gz,

where gL =27 N (N is a large integer), recalculate the energy levels and
stationary states to first order in € for an electron momentum of g/2.

(c) Calculate the correction to the energy of order 2 to your answer in
part (b).

(d) Repeat part (b) for electron momentum near, but not equal to, g/2.
(Omit the calculation for stationary states.)

(Berkeley)
Solution:
(a) The Hamiltonian of a free particle of mass m is

K d?
2m dz?

The wave functions of its stationary states are

¢k(x) — L eik:c ,

vL
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where

k = 2%71. (n=41,%2,...)

All the energy states E = %’%;n? have two-fold degeneracy.

(b) Because N is a large integer, we can treat 4 = "N as the middle
point of the Brillouin zone and take

2 /2
(e) = Zeonl o) = 120 ©

as the state vectors. On introducing the perturbation H' = E cos gx, where
g =28 we first calculate (m|H’|n):

(11H'|2) = (2]H'|1)

L
= gé-: sin E Ccos E cos qxdx =0,
L Jjp 2 2

QH'N1) = - (2|H'|2)

2 5
——E A cos2 ((—I;) cos qzdr = 3

Hence the perturbation matrix is

O N,

As it is already diagonalized the energy corrections to first order perturba-

tion are &£. Thus the energy levels and wave functions of the system are,
respectively,

B? rq\2 ¢ qz
v _ (4 = = 1=,
Er=om (2) vty )=y 7 cos 2’

B2 /q\2 ¢ 2 . gz
o _ " 1 = / — = khad
B = om (2) 30 )=y psing
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(c) The energy corrections accuracte to order €% are given by non-
degenerate perturbation theory as

(VI
AE® = S Vv
2 BB

’ 1 2e L, qz
NZ E _E [(—L-/O smklzcosqxcos7 dx)

2
2 L
+ (f/o cosk,xcosqxcos%dx) ]

2

_ e/4
Ll (2)2_“Ei 3¢
2m \2 2m \ 2
2
™me
Z—W’ (k1> 0)

r [V IYs?
AE§2) - I(wl 2
2 BB

2
' 1 L
zzl E-F [<2L_6/0 sink,xcosqxsin% dx)
2

2 L ) . qx
N (f/o cosk,xcosqxsm—-z—dx) ]

_ e2/4
22y 2 ()
2m \2 2m \ 2

__ me

- 4h2q2

Hence the corrected energy levels are
2 2 2
B=l N\, e me
2m 0 2 2 4h?%q?

B= (2o £ _ anlg
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(d) Let the momentum be £ + A, where A is a small number of either
sign, and take for the wave functions

—./2 g ~ /2 9z gz
P(x) = Lcos(2+A)x~ f(cos—é——Aa:sm2),
_1/_2_~ g ~ /2 (sin @ azr
Pa(x) = Lsm(2+A)z~ L(sm2+Axcos 2).

Following the procedure in (b), we find that the elements of the first-
order perturbation matrix are the same as in (b) if small quantities of order
€A are neglected. Thus the first order energy corrections are equal to those
given in (b).

5023

Consider the one-dimensional motion of an electron confined to a po-
tential well V(x) = %ka and subjected also to a perturbing electric field
F = Fx

(a) Determine the shift in the energy levels of this system due to the
electric field.

(b) The dipole moment of this system in state n is defined as P, =
—e{z)n, Where (X), is the expectation value of x in the state n. Find the
dipole moment of the system in the presence of the electric field.

( Wisconsin)

Solution:
(a) The Hamiltonian of the system is

2 1
H=—%V2+§kz2—qFx
h2 1 gF\?* ¢?F?
=— V24 -k -} -
om © 12 (“’ k) ok
h? 2 1 2 q2F2
“am Y TR T
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Hence the energy shift due to the perturbing electric field Fx is

22 22
;9 F e F
E‘2k‘2k

(b) The expectation value of z in state n is

(T = <m'+g§> = (z’)+<%> = QI—CF—

Therefore the dipole moment of the system is

F
= —e — = 2-— = —
P, = e e k,(q e).

5024

If a very small uniform-density sphere of charge is in an electrostatic
potential V(r), its potential energy is U(r) = V(r) + V3V (r)+---,
where r is the position of the center of the charge and ¢ is its very small
radius. The iLamb shiftT can be thought of as the small correction to the
energy levels of the hydrogen atom because the physical electron does have
this property. If the r2 term of U is treated as a very small perturbation
compared to the Coulomb interaction V(r) = —e?/r., what are the Lamb
shifts for the 1s and 2p levels of the hydrogen atom? Express your result
in terms of r¢ and fundamental constants.

The unperturbed wave functions are

_ 1 —
Yis(r) = 2057 €YY Yoy (r) = —= a5 Fre T/ 2eR Y

V24 B

where ag = h?/m.e?.
(CUS)

Solution:
The state 1s is nondegenerate, so the energy correction is

AE = (1s|H'|ls).
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As
2 2
’__ ﬁ)_ 2 — 7‘_0 _ 2 21
H—6VV(r)-6( e“)V -
2
2
~ %(_62)(—4w)5(r) = %r%e%(r),
1\?
Yo =~
*~ (%)
we have

AE= [ sl dx

rie?

= S(0))2 == )
3 o€ W}l ( )l 3 a“?B

The perturbation Hi, being a b-function, has an effect only if 1(0)#0. As

Y2pm (0} = 0, H' has no effect on the energy, i.e., AE;pm = 0.

5025

Positronium is a hydrogen atom but with a positron as InucleusT, in-
stead of a proton. In the nonrelativistic limit, the energy levels and wave
functions are the same as for hydrogen, except for scale.

(@) Prom your knowledge of the hydrogen atom, write down the normal-
ized wave function for the 1s ground state of positronium. Use spherical
coordinates and the hydrogenic Bohr radius ag as a scale parameter.

(b) Evaluate the root-mean-square radius for the 1s state in units of as.
Is this an estimate of the physical diameter or the radius of positronium?

(c) In the s states of positronium there is a contact hyperfine interaction

8w

Hint = —3 He- Ky d(r),

where p. and i, are the electron and positron magnetic moments

e
(“_g2mcs)’
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For electrons and positrons, |g] = 2. Using first order perturbation theory
compute the energy difference between the singlet and triplet ground states.
Determine which state lies lowest. Express the energy splitting in GHz (i.e.,
energy divided by Planckis constant). Get a number!

(Berkeley)

Solution:

(a) By analogy with the hydrogen atom the normalized wave function
for the 1s ground state of positronium is

1 1\** _ .,
r) = — . e—’r‘ ao
P100(r) - ( 2a0)
with ag = -2, m being the electron rest mass. Note that the factor 2 in
front of as is to account for the fact that the reduced mass is u = %m

(b) The mean-square radius for the 1s state is

oo
(7'2) = ! / e~/ p2 . r2dr
0

3
8may
2 poo 2
a _ 3a
=0 e *zidr = =2,
8 0 T

and the root-mean-square radius is

\/<72‘>=\/§a0.

This can be considered a physical estimate of the radius of positronium.

(c) Taking the spin into account a state of the system is to be described
by |n,l,m, S, S.), where S and S; are respectively the total spin and the
z-component of the spin. Thus

(1005’S",| Hint|100SS.,)

= [ @ritonte) (=) 80vnan(r) xS - (52

T (£ ) o @RS se - 5px0(52)

1/e2\? e [1 3
- (=) .=—. |z 1) — -| bss:8s,5" ,
3 (hc) a0 [2S(S+ ) 4] §5795.5,
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where we have used
S=s.+s,

and so

se.sp% 8% - (s2 + s2)]

= [ssen-2(3) (5+1)]

For the singlet state, S=0, S, =0,

1 /e2\? e2
-~ (£) £ <o,
Ay = -1 (hc)

For the triplet state, S=1, 5,=0, 1,
1 2 % g2
BB =15 hey o

Thus the singlet ground state has the lowest energy and the energy splitting
of the ground state is

1 1\ [e2\? e 1 /e2\*' ,
AEl—AEo-——(—l—2+Z) ({C) a—o—-§<E> mc

1 1\*
== — .051x10°=4.83x107%eV,
3 437, N

corresponding to

v=AE/h =117 x 10'"'Hz = 117 GHz.

5626

Consider the proton to be a spherical shell of charge of radius R. Using
first order perturbation theory calculate the change in the binding energy
of hydrogen due to the non-point-like nature of the proton. Does the sign
of your answer make sense physically? Explain,

Note: You may use the approximation R < ap throughout this problem,
where ag is the Bohr radius.

(MIT)
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Solution:

If we consider the proton to be a spherical shell of radius R and charge
e, the potential energy of the electron, of charge -e, is

Vir) =

Take the difference between the above V() and the potential energy —5;
due to a point-charge proton as perturbation:

2 2
e e
P — <r<
w={ 7 R TR
0 R<r<owm.

The energy correction given by first order perturbation is

R 2 2
AE = /0 (fr— - %) r2R?, dr

R 2 2
4 e e -
P _3 e ,,.26 27‘/00 dr
0

ap r R
4 [Rre?2 2\ , 2e*R?
H— - - = dr = . (R
a3 Jo ( r R) T 3ad (R < ao)

As AE > 0, the ground state energy level of the hydrogen atom would
increase due to the non-point-like nature of the proton, i.e., the binding
energy of the hydrogen atom would decrease. Physically, comparing the
point-like and shell-shape models of the proton nucleus, we see that in the
latter model there is an additional repulsive action. As the hydrogen atom
is held together by attractive force, any non-point-like nature of the proton

would weaken the attractive interaction in the system, thus reducing the
binding energy.

5027

Assume that the proton has a nonzero radius r, ~ 10713 cm and that its
charge is distributed uniformly over this size. Find the shift in the energy
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of the 1s and 2p states of hydrogen due to the difference between a point

charge distribution and this extended charge.
(Columbia)

Solution:

The Coulomb force an electron inside the sphere of the proton experi-
ences is
o [T 3 e?
F=—¢ — _237_=——3-rer.
™/ T Tp
The electrical potential energy of the electron is

2

e
Vi=—=r2+C for r<rp,

2r3

e2
V2=—7 for r>ry,

Continuity at r, requires that Vi(rp) = Va(rp), giving C = —%% Thus
, T> Tp,

a1 -

The Hamiltonian of the system is
H = f{() + f{I '

where
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Hence
71 = (nlm|H'|nlm) = (nl|H'|nl)
=/ R R H' (r)r?dr
0
S ARCLNEG
0
2 2
X~ [(L> +2&— } 2dr,
2ry Tp T
where

2 .
Rio = ,5e 3, Ry
a
. _ R?
with a = =5 .
As rp, < a we Can take e~"/*~ 1. Integrating the above gives the
energy shifts of 1s and 2p states:

2,.2
— ! ~ P
;.0 - (1O|H IIO>~ 503 )
627'4
v = (21|H'|21) =~ P_.
By = QUERY ~ o2

5028

An atom has a nucleus of charge Z and one electron. The nucleus has
a radius R, inside which the charge (protons) is uniformly distributed. We
want to study the effect of the finite size of the nucleus on the electron
energy levels:

(a) Calculate the potential taking into account the finite size of the
nucleus.

(b) Calculate the level shift due to the finite size of the nucleus for the
1s state of Pb2%® using perturbation theory.

(Assume that R is much smaller than the Bohr radius and approximate
the wave function accordingly)

(c) Give a numerical answer to (b) in cm-i assuming R = roA/3, where

ro = 1.2 fermi,
(Columbia)



344 Problems and Solutions on Quantum Mechanics

Solution:

(a) The electric field E of a uniform sphere of radius R and charge Q is
given by Gaussi theorem

4rQ, r>R,
4nriE = dn 3
4r '—T3 =47 - I_
(Fre) =4 (5) @ r<r.
to be
9 r2m
E = ,
ﬁQ, r<R.

Then the electrical potential energy of an electron in the Coulomb field of
the finite-sized nucleus of charge Ze is

V=—/ eEdr

Ze?
- T2 Ra
T (T)Z]
Ze? R/ |12 Ze? —Ze? r\2
I ) [1‘ E "R R [3‘(5) ] y TR
(b) Rewrite the potential energy as
V=VW+V,
where
0, r> R,
Vi={ Ze?  Ze? ry\2
1 NI

and treat Vi as a perturbation. The energy correction for the 1s state to
first order is

AE;, = (1s|V'|1s) =/ [¥14 |2V dmr2dr
0

3 R 2 2

AT — V'ridr ~ Z_e (E) ,
Ta 0 a a

(SN V)
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h2
where a = -, as

3 1 1
Z\ 2 —zr 1 2 Z3 2
Y1s = Rio(r)Yoo(0,¢) = 2 <E> e - (E) ~ (m)

forr<R < a.
(c) Pb?°® has Z = 82, A = 208, thus

2 62 4 273 R 2 4

2/ 4x(051x106)3x 1.2 x 10~13 x 208% 2)(824
T 5 \ 137 ' 6.58 x 10—16 x 3 x 1010

=8.83eV.

The corresponding wavenumber is

1 v AE _ 8.83
Ac ~ hc = 4135 x 1015 x 3 x 1010
=7.12x10% cm-1 .
5029

Consider the hydrogen-like atom resulting when an aluminum atom
(Z =13, A = 27) has been stripped of all but one of its electrons. Com-
pute the effect of the finite size of the nucleus (assumed to be a uniformly
charged sphere) on the electronic ground state, i.e., compute the difference
between the ground state energy when the nucleus has a physically realistic
size and the ground state energy for a point-nucleus. Express the result: a)
in electron volts, b) as a fraction of the ionization energy of this atom.

(Berkeley)

Solution:

If we treat the nucleus as a uniformly charged sphere, the electrical
potential energy of the electron is

Vi = —Ze?/r for r > p,
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p being the radius of the nucleus. Inside the nuclues the electron suffers a

3
Coulomb force FZ_Z@%% &=—Ze%r/p®, the corresponding poten-

tial energy being v= £ p r2+4 C, where C is a constant. The continuity
of the potentlal at the surface of the nucleus, Vi(p)=Va(p), requires that
C = 3 Ze . Thus

_Ze2

——"I' szy

v Ze;Z r 2
271(;) ]f TSP

The Hamiltonian of the electron can be written as

H=-5)2¥10(T>+Hi'
where )
Vo(r) —, (c0o>r>0)
and 0, r>p.
H ={ 7

T 2 2
<_> +_e_:|7 TSP
2p p T

is to be treated as a perturbation.
The first order energy correction is then

(100|H'{100) Jﬁ R}o(T)Ryo(r)H' (r)r2dr

J» o
where a = h%/mee? = 5.3 x 1072 cm (Bohr radius).
As

VA 1/3
p=roAY3 1y = 1.2 «x 10_13cm,?p _ A2 2088 x 1073« 1,
a
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we can take e~227/¢ 2 1 and
AE = (100|H’|100)

4z /" . 3r2+i ir
e 20 2p8

242462 (ﬁ _ P pS)

ad 2 2 1003
=27%2p? ~ 5 a%- 74 0 p2
5a3 a
(@) As e2/2a =13.6eV,

2 4
AE:% 13.6- 24 ( 3) = = x136x18%x (088 X 107%)?= 1.4 x 10 %eV.
a

- - . _ Z2e2
(b) In terms of the ionization energy of the atom E; =

a b}

2,2 2 2
AE:_EZC (Q) =3<Q) Er=31x10""E;.
a

a a 5

5030

A proposal has been made to study the properties of an atom composed
of a nt(my+ = 237.2m.) and a p~ (m,,- = 206.77m.) in order to measure
the charge radius of the pion. Assume that all of the pion charge is spread
uniformly on a spherical shell at Ry = 10713 cm and that the ¢ is a point
charge. Express the potential as a Coulomb potential for a point charge
plus a perturbation and use perturbation theory to calculate a numerical
value for the percentage shift in the Is-2p energy difference A. Neglect spin
orbit effects and Lamb shift. Given

3
h? 1\? 1 \4 r er/oo
=—, R ={ =] 27/% R =l —) — .
ao a2’ 10(r) (ao) € 21(7) (2a0) 2 V3
(Wisconsin)

Solution:

The Coulomb potential energy of the muon is

2
~— forr >R,
r

&)

¢
R

forr<R.
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It can be written in the form
2
V=Vo+V' =-=+V,

where
0 for r > R,
vi= B
L el forr<R,
(r R

is to be treated as a perturbation.
The energy levels and wave functions of the unperturbed system are

62

E, = PO = Roy(r)Yim(8, )

2a9n?’

As spin orbit and Lamb effects are to be neglected, we need only consider
R, in perturbation calculations. Thus

o 4e? (F (1 1
2 a, —_——— 2
AEy, = 62/0 RioV'rdr = 7 /0 e % (r R) ridr,

where ao=mi:,, m being the reduced mass of the system:

_ MMy Py
m = =
Me+m, p+1
with m
T
p=— =115
My
Hence
Me h? 1 -8 -11
=———]=——x053x107°=48x10 cm.
= (meez> 110.5

Thus ag >> R and the factor exp(—2r/ag) in the integrand above may be
neglected. Hence

42 (B (1 1Y o, 2 /(€ R>2
AEISN?{A (;—E) redr = 3 <a0 20 ’
e2 (B/1 1 4, 1 e? R)2
AEZp ~ —-24(1(5) A (; - E) T d’l' = 480 a0 0 .
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Therefore
2e (R 2
AEy, - AE;, _ 349 (I) 16 (R’
Eap — E1s e [ 1 9 (a—())
S (i)
=—-77x107%=-7.7x107%.

5031

Muonic atoms consist of mu mesons (mass m, = 206m.) bound to
atomic nuclei in hydrogenic orbits. The energies of the mu mesic levels
are shifted relative to their values for a point nucleus because the nuclear
charge is distributed over a region with radius R. The effective Coulomb
potential can be approximated as

_ 7.2
Ze, r>R,

viy={
—Z¢? é_lr r<R
R 2 2 R? =0

(@) State qualitatively how the energies of the 1s,2s,2p,3s,3p,3d
muonic levels will be shifted absolutely and relative to each other, and
explain physically any differences in the shifts. Sketch the unperturbed
and perturbed energy level diagrams for these states.

(b) Give an expression for the first order change in energy of the 1s state
associated with the fact that the nucleus is not point-like.

(c) Estimate the 2s-2p energy shift under the assumption that R/a, <
1, where a, is the 1Bohr radiust for the muon and show that this shift
gives a measure of R.

(d) When is the method of part (b) likely to fail? Does this method
underestimate or overestimate the energy shift? Explain your answer in
physical terms. Useful information:

Y1s = 2Noe™ /% Yoo(6, ¢)
1 r -r/2a
has = —=Np{2— e “Yoo(6, ¢),

N

e™%% Vi (6, 9),

\/_
7——_
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3/2
No= ()
Cp

where

( Wisconsin)
Solution:

(a) If the nucleus were a point particle of charge Ze, the Coulomb
potential energy of the muon would be Vp = —552—. Let H' =V -V,
and consider it as perturbation. Then the perturbation Hamiltonian of the
system is

0, r>R,

H = 1 1 /3 172
2|2 (22— <
Ze [7‘ R(2 232)]’ r<R

When r < R, H’ > 0 and the energy levels shift up on account of the
perturbation. The shifts of energy levels of s states are larger than those of
p and d states becuase a muon in s state has a greater probability of staying
in the r ~ 0 region than a muon in p and d states. Besides, the larger
the quantum number I, the greater is the corresponding orbital angular
momentum and the farther is the spread of g cloud from the center, leading
to less energy correction. In Fig. 5.12, the solid lines represent unperturbed
energy levels, while the dotted lines represent perturbed energy levels. It
is seen that the unperturbed energy level of d state almost overlaps the
perturbed energy level.
(b) The energy shift of 1s state to first order perturbation is given by

AE; = (1s|H'|1s).

Fig. 5.12
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AsR< a, we can take e~ "/% = 1. Thus

AN§Ze* (R 1 1 (3 172 )
N0 e e I
A ar /0 r R\2 2R? Trar

2 (R\? zée?
"5 \an/) au’

(c) By the same procedure,

2
AE, ~ L Z¢ (E) ,

20 a, a,

AEzp ~ 0,

and so

1 Ze* (R 2
ABy — AEyp = DB, = o5 . (Z) ,

1 ze2 (R\? (m,)°

T2 ao (a_0> <me) ’
where ag is the Bohr radius. Thus by measuring the energy shift, we can
deduce the value of R Or, if we assume R=10"1cm, Z = 5, we get
AE23 - AEzp =~ 2Xx10™ V

(d) In the calculation in (b) the approximation R <« a, is used. If R

is not much smaller than a,, the calculation is not correct. In such a case,
the actual energy shifts of p and d states are larger than what we obtain in
(b) while the actual energy shifts of s states are smaller than those given
in (b). In fact the calculation in (b) overestimates the probability that the
muon is located inside the nucleus (probability density o|t1s(0)|%).

5032

(a) Using an energy-level diagram give the complete set of electronic
guantum numbers (total angular momentum, spin, parity) for the ground
state and the first two excited states of a helium atom.

(b) Explain qualitatively the role of the Pauli principle in determining
the level order of these states.
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(c) Assuming Coulomb forces only and a knowledge of Z = 2 hydrogenic
wave functions, denoted by [1s},|2s),|2p), etc., together with associated
Z = 2 hydrogenic energy eigenvalues E.;, Eas, Eop, ..., give perturbation
formulas for the energies of these helium states. Do not evaluate integrals,
but carefully explain the notation in which you express your result.

(Berkeley)

Solution:

(a) Figure 5.13 shows the ground and first two excited states of a helium
atom in para (left) and ortho states with the quantum numbers {J, S, P).

(b) Pauli’s exclusion principle requires that a system of electrons must
be described by an antisymmetric total wave function. For the two electrons
of a helium atom, as the triplet states have symmetric spin wave functions
the space wave functions must be antisymmetry. Likewise, the singlet states
must have symmetric space wave functions. In the latter case, the overlap
of the electron clouds is large and as the repulsive energy between the

electrons is greater (because |r;--rz| is smaller). So the corresponding
energy levels are higher.

E
| 1s 2s 'S10,0,+)
Is251,+)
Is? '$10,0,+)
Fig. 5.13

(c) The Hamiltonian of a helium atom is

- K2 K2 2e2  2e2 e?
A=l Ko

2m 2m oo m-rg

Treating the last term as perturbation, the energy correction of |1s1s) state

IS 62
AFE;, = {1sls ———

1sls).
llr1 = r2 )
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The perturbation energy correction of spin triplet states is

2
AESD = [((lsnll — (nl1s)) lei

1
2 ST
1
= - <1snl
2 |ry —raof

1
— — (1snl
2 < |r1 - I‘2|
2

= <lsnl £

vy — rof

(|1snl) — |nils))

2 2

lsnl> - % <nlls _¢
nlls> + L <nlls _
2
2
nlls>.

lsnl> - <lsnl S —
The perturbation energy correction of spin singlet states is

|r1 — 1o
lsnl>
|ry — r2f

2
+ <lsnl nlls>.

The first term of the above result is called direct integral and the second
term, exchange integral.

2

2
AEY) = <lsnl

|ty —rof

5033

A particle of mass m is confined to a circle of radius a, but is otherwise
free. A perturbing potential H = Asinfcos@ is applied, where 8 is the
angular position on the circle. Find the correct zero-order wave functions for
the two lowest states of this system and calculate their perturbed energies
to second order.

(Berkeley)
Solution:

The unperturbed wave functions and energy levels of the system are
respectively

iné

Pn (9) =

3~
b=

2h2
" 2ma?’

3

n=+1,42,....
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The two lowest states are given by n = £1, which correspond to the same
energy. To first order perturbation, we calculate for the two degenerate
states n = +1

A 27
(£1|H|x 1) = ———/ sin@ cos8d8 = 0,
2 0

27
(+1|H[~-1) = 2%/@ e~%% sin @ cos #d0

A 27
=-—Jo (cos26—1'sin 26) sin 26d6
4
_—iA
=
A
(-1H|+ 1) = =2
4
The perturbation matrix is thus
o _H4
4
tA
T 0

Diagonalizing, we obtain AE®) = +4. Hence the two non-vanishing wave
functions and the corresponding energy corrections are

¥ =(-1) +i1)/v2, AEY = _44
Yh= () +i-1)/VE, AED = -2

To second order perturbation, the energy correction is given by

AE® =3 (Wil H'm)[*
nitk Ek -En

As
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A .
H'|n)= 7 sin 20|n)

Al i —i in
=Zi_ 27’-(620—6 20)619
A1 ) )
_ = i(n+2)8 _ _i(n-2)8
% oo [e e ]
A A
=S+ - Sin-2),
we have
AE® = Y Wn 2 - Win - (AN’
! h2 o A 4
n¥+l ( - ) + —
2ma? 4
1
_ 2 y (A ’
TR A \4
2ma2 [1 - ( 3)2] + T
1
3 A\?
+ B2 » A 04
2ma? (-39« 4
ma?A?
64h2 ’
.. 2 ma?A2
and similarly AES? ~ —mat4®
Therefore

_ R? A ma2A?
Y7 2ma? + 4 64RZ
K2 A ma2A?

2T oma? " 3 64h2

5034

An electron at a distance x from a liquid helium surface feels a potential
K
V(x) = ——, x>0, K=constant,
z

V(z) =00, 2<0.
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(a) Find the ground state energy level. Neglect spin.
(b) Compute the Stark shift in the ground state using first order per-
turbation theory.
(Berkeley)

Solution:

(@) At < 0, the wave function is ¥(z) = 0. At x > 0, the Schrodinger
equation is

_ R4 K

( 2mdz?  x

) $(z) = E(z).

In the case of the hydrogen atom, the radial wave function R(r) satisfies
the equation

B21d [,d\ I+ 1R
T —— = —= —_— —_— V = .
[ 2m r? dr (T dr) t o T (T)l R= ER

Let R(r) = x(r)/r. For [ = 0, the equation becomes

2 2 2
(- S i ™ %) X0 = Bxto).

This is mathematically identical with the Schrédinger equation above and
both satisfy the same boundary condition, so the solutions must also be
the same (with < X, €2+ K).

As the wave function and energy of the ground state of the hydrogen
atom are respectively

mel

Em:-‘gﬁg,

2 .
X10(7‘) 2—77‘26—7'/0'0 with ao=h2/me2,

Qg
the required wave function and energy are

mK?

Br=—Sm

2
— s>z/a _ 2
¥1(z) =57 z€*® a=h’/mK.
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(b) Suppose an electric field €. is applied in the z direction. Then the
perturbation potential is VI = es.z and the energy correction to the ground
state to first order in perturbation theory is

AE; = (4 |V |41)

= -5/ 2
= / 3R ze ™0 ecox - ——ze %/ dx
0 .

a3/2
3 ec.a 3h2ec,
T2 77 = 2mK
5035

Discuss and compute the Stark effect for the ground state of the hydro-
gen atom.

(Berkeley)
Solution:

Suppose the external electric field is along the z-axis, and consider its
potential as a perturbation. The perturbation Hamiltonian of the system
is

Hi =ee.r=eez.
As the ground state of the hydrogen atom is nondegenerate, we can employ

the stationary perturbation theory. To first order perturbation, the energy
correction is

EM = (n=1,1=0, m=0leez|ln =1, [=0,m=0)
For the hydrogen atom the parity is (—1)!, so the ground state (I = 0) has

even parity. Then as z is an odd parity operator, E(V) =0,
To second order perturbation, the energy correction is given by

E® — 2.2 Z (1,0, 0|z|n,l,m)|

n;él

As E, = E,/n?, where E; = —%, a= ;;’Ez, we have Ey—E, <0, (n #
1). Thus the energy correction E® is negative and has a magnitude
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proportional to 2. Hence increasing the electric field strength would lower
the energy level of the ground state. We can easily perform the above
summation, noting that only matrix elements with =41, m =0 are
non-vanishing.

5036

Describe and calculate the Zeeman effect of the hydrogen 2p state.
(Berkeley)

Solution:

The change in the energy levels of an atom caused by an external uni-
form magnetic field is called the Zeeman effect. We shall consider such
change for a hydrogen atom to first order in the field strength H. We
shall first neglect any interaction between the magnetic moment associated
with the electron spin and the magnetic field. The effect of electron spin
will be discussed later. A charge e in an external magnetic field H has
Harmiltonian

f1=2i (P—%A)2+e¢,

m
which gives the Schrédinger equation
81,[) 2 h 'Leh 62 2
= - — A -V+ V —A .
th at ( 2m v Y A+ 2mc ted) v

As H is uniform it can be represented by the vector potential
1
A=-Hx
2 I

since H=V xA. Then V-A=3(r-VxH-H-Vx r) = 0and so the
only terms involving A that appear in the Hamiltonian for an electron of
charge -e and reduced mass p are

e2?

. 2
ieh 5. € _AZ- (er) P+gsHXD. (H x r)

e 2

=—H- L+ — H*?%sin%9,
2nc +8uc2 77 sIin

where L = r x P and @ is the angle between r and H.
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To first order in H, we can take the perturbation Hamiltonian as

by €
T 2uc

Taking the direction of the magnetic field as the z direction we can choose
for the energy eigenfunctions of the unperturbed hydrogen atom the eigen-
states of L, with eigenvalues mh, where m is the magnetic quantum num-
ber. Then the energy correction from first order perturbation is

Wi = (m|H'lm) = Ech Hmbh.

Thus the degeneracy of the 21 + 1 states of given n and [ is removed in
the first order. In particular, for the 2p state, where { = 1, the three-fold
degeneracy is removed.

We shall now consider the effect of electron spin. The electron has
an intrinsic magnetic moment in the direction of its spin, giving rise to a
magnetic moment operator ~(e/mc)S.

For a weak field, we shall consider only the first order effects of H. The
Hamiltonian is

H= e VZ2+V(T) + &ML .S +e(l, + 2s;) with -4
T T 2m T ' 2T 8% ~ 2mc’
where the field is taken to be along the z-axis.

We choose the following eigenfunctions of J2 and J; as the wave func-
tions:

(= % (+)Y11,
.;. 3‘%[2‘5‘(+)Y1,0 + (=)Y11],
2
P% 1 1
- 2' 3_% [22 (—)YI,O + (+)Yl,—1],
- 2 (=)Yh-1,
2p, m= % 373 [—(+)V1,0 + 27(—) Y1),
2 - % 3_%[(—)}’1,0 + 2%(+)Yl,—1}7
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2g m= (+)Yo,0,

1
2

—_ N =

2' (—)YO,Oa

where Yy,0, Y1,0, Y1,1 and Yy,_; are spherical harmonic functions, (+) and
(-) are spin wave functions. It can be shown that the magnetic energy
e(l, +2s,;)=€(J, + s,) has non-vanishing matrix elements between states
of different j, but not between states of the same j and different m. We can
neglect the former because of the relatively large energy separation between
states of different j. Thus the magnetic energy is diagonal with respect to
m for each j and shifts the energy of each state above by its expectation
value for the state. In each case, J, is diagonal, and so its expectation value
is mh. The expectation value of s, for the P3/, state with m =1/2, for
example, is

JJ 3742 (1)1 + (2175 A3 HRE (1) Vi + (-)¥a,1]sin s

G \]\] (22 ()15 + ()1¥i] (23 (+)Y,0 — (-)Y2,] sin 0B

h h
==(2-1)= —.
6 ( ) 6
Hence the magnetic energy of this state is ei (3 + &) = 2¢h.

This and similar results for the other states can be expressed in terms
of the Landé g-factor as emhg, with

4 2
g =3 for 2Py, g = 3 for 2Py, g=2 for 2Sy,.

5037

Explain why excited states of atomic hydrogen can show a linear Stark
effect in an electric field, but the excited states of atomic sodium show only
a guadratic one.

(MIT)
Solution:

The potential energy of the electron of the atom in an external electric

field E is
H =¢eE-r.



Perturbation Theory 361

If we make the replacement r — -r in (I'|H’|l), as the value of the integral
does not change we have

(IH' () = (' |H'1)(~r)
= (DTN ().
This means that if the !’ and ! states have the same parity (i.e. I and !’ are
both even or both odd) we must have {I'|H'|l) = 0.

If the electric field is not too small, we need not consider the fine struc-
ture of the energy spectrum caused by electron spin. In such cases, an ex-
ited state of the hydrogen atom is a superposition of different parity states,
i.e. there is degeneracy with respect to ! and the perturbation theory for
degenerate states is to be used. Because of the existence of non-vanishing
perturbation Hamiltonian matrix elements, exited states of the hydrogen
atom can show a linear Stark effect.

For exited states of atomic sodium, each energy level corresponds to a
definite parity, i.e., there is no degeneracy in I. When we treat it by non-
degenerate perturbation theory, the first order energy correction (I’|H'|l)
vanishes. We then have to go to second order energy correction. Thus the
exited states of atomic sodium show only quadratic Stark effect.

5038

The Stark effect. The energy levels of the n = 2 states of atomic hydro-
gen are illustrated in Fig. 5.14.

Ege A — P,

€of — S1,—— Py,

Fig. 5.14

The Sy/2 and Py3 levels are degenerate at an energy &o and the Psj2
level is degenerate at an energy €o + A.

A uniform static electric field E applied to the atom shifts the states to
energies €1,€2 and €3. Assuming that all states other than these three are
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far enough away to be neglected, determine the energies €1, 2 and €3 to
second order in the electric field E.

(Princeton)

Solution:

Suppose the matrix elements of the perturbation Hamiltonian H' =
~eE . rare
Py Py Si2
Py, O 0 b
Py O 0 a’
Syj2 b* a* 0

since (I'| H'|ly = 0 for I’, I states of the same parity (Problem 5037). Then
for energy level P3/,, we have

[(Ps/2|H'|S1/2)?

Ep3jy = Eﬁf:i/z "

(0) (0)
EP3/2 - E51/2
|b]?
= A+ —
o +A+ A

For energy levels P, ;5 and Sy /2, we diagonalize the Hamiltonian in the
corresponding subspace, i.e, solve

-2 a —0
ja* =\

The roots are A = %|a|, which give the new wave functions

-1 (a . _alPy)  lallSiy2)
= 75 (1P + 151a) ) = S0z il

_L _a _ —a|P1/2) + |al|51/2)
=75 (g )+ 15 ) = SR

with energies
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1|H'|P, 2
E1=E§°)+|a|+< |H'|P3/2)|

(0) (0)
E\” - Ep;)y
=¢go + la| + o1
2(-4)
_ lb|?
=¢€o + la’l 2A )
2|H'| P, 2
By =E® — o] + I( (!0) | 3(3))|
Ey” — Epy)y
=go—|al— Ib21,62\'
5039

The Stark effect in atoms (shift of energy levels by a uniform electric
field) is usually observed to be quadratic in the field strength. Explain
why. But for some states of the hydrogen atom the Start effect is observed
to be linear in the field strength. Explain why. lllustrate by making a
perturbation calculation of the Stark effect to lowest non-vanishing order
for the ground and first excited states of the hydrogen atom.

To within an uninteresting overall constant, the wave functions are

Y100 = 4V2a0e” /%0,

Yoo = (2a0 — ) e 7/2%0

Y141 = e~ T/?%sin Beii"’/\/i,

-r/2a9

'lf)zlo =Te cos 6.

( Wisconsin)
Solution:
The electric dipole moment of an atomic system with several electrons

d=—Zeir,-
7

In general, the energy levels do not have degeneracy other than with respect
to 1,. The energy depends on the quantum numbers n and 1. As the

is
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perturbation Hamiltonian Hi = -d - E is an odd parity operator, only
matrix elements between opposite parity states do not vanish. Thus its
expectation value for any one given state is zero, i.e.,

(nlm{- d . E|nim')=0.

This means that first order energy corrections are always zero and one
needs to consider energy corrections of second order perturbation. Hence
the energy corrections are proportional to E2.

As regards the hydrogen atom, degeneracy occurs for the same n but
different 1. And so not all the matrix elements (nl’'|H'[nl) between such
states are zero. So shifts of energy levels under first order (degenerate)
perturbation may be nonzero, and the Stark effect is a linear function of
the electric field E. Write the perturbation Hamiltonian in spherical coor-
dinates, taking the z-axis in the direction of E. As H' =eFEz = eEr cos 8,
the ground state, which is not degenerate, has wave function

Y100 = 4v2a0e ™"/,
and so (Problem 5037)
v = (100/H’|100) = 0.

The second order energy correction is

Hl |2
v — §V_1Hnol”
n#El: E11‘(0)_E7(10)

o0

— 22 E |(nl0]z|100)|?

2
n=2 1-— l e_
n? ) 2a
9 9
=2aE?. §a2 = :1(13E'2 .
Note that for H,,# 0 we require AZ = fl.
The first exited state n = 2 is four-fold degenerate, the wave functions
being
%200, Y210, Y21,+1.
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AS

I-m+1){l+m+1) 3
eE(n,l+1,m|z|n,l,m):—eE\/( mtl+m+1) aon\/n2—l2

(2l +1)(2l+ 3) 2
= - 3€an

are the only non-vanishing elements of H' for n = 2, we have the secular
equation

—E)  —=3eFag 0 0
—3¢Eay —-EW 0 0
/ 9 Jpu -
\H - EVIl= o _g» o |79
0 0 0 _gm

which gives the energy corrections
EM = £3¢E,,0,0.

Therefore, the energy level for n = 2 splits into
e 1

—— . —+ 3eFay,
200 22

62

- - —3eE
8ao e~ao,

where gy is the Bohr radius ;—n’% The splitting of the first excited state n =
2 is shown in Fig. 5.15. Note that the two other states are still degenerate.

Ve
Ez—("‘_J
~

~
Nerv——

L.:’»eEa(,
Fig. 5.15

5040

Consider an ionized atom (Z, A) with only a single electron remaining.
Calculate the Zeeman splitting in the n = 2 state in a “weak” magnetic
field

(a) for an electron
(b) for a hypothetical spin= 0 particle with electron mass.
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(c) Calculate the first-order Stark effect (energy levels and wave func-
tions) for an electron in the n = 2 state.

(After you define the radial integrals you can express the term by a pa-
rameter; you need not evaluate them. The same holds for nonzero angular
integrals.)

(Berkeley)

Solution:

(a) Take the direction of the external magnetic field as the z direction.
For an electron and a weak external magnetic field, in comparison with
its effect the spin-orbit coupling cannot be neglected, which gives rise to
anomalous Zeeman effect. The Hamiltonian of the system

. 2 Ze? eB
=P _Z°

(0, + 23) + €5

2me r 2mec
can be written as
R eB . eB |
= S ,
H = Ho + 2mec]z + 2mec -
with
p2 Ze?

0= —_r‘+€(r)§|, .;z:iz-l-éz-

2me
Before applying the magnetic field, we have

. 1
Hownljmj = nljd’nljm,- . (] =[x 5)

If we neglect the term 2£-3,, (L2,32,7,) are still conserved quantities.

2m.c

Then {jm;|j.|m;) = m;h and the energy of the system is

Enlj + m]-th,
where
eB
2m.c’
When the weak magnetic field is applied, the contribution of the term
eB_ 5. is (Problem 5057)

2me.c

WL =

e

wrd; = (Gm;|62|3m;)

Moy, j=l+}
25

m;
27 + 2

hwp, j=1-3%.
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Hence

1 . 1
(1+2—j)mjth, j=l+3,

Enljmj = Enlj + 1
— : i=1-1
(1 2j+2> m;hwr, J 3

For n = 2, we have

1
Ezo%mj = E20% +2thL¢)L, m] = ii,

4
Ezlgm,-=E21g+§mjﬁwL, mj=i%,:t%,
2 1
E21§m,~=E21§+§mjwa, mj==+3.
(b) When spin=0, there is no spin-related effect so that
A2
N P eB -
H= v l,.
21 V() + 2mec

The eigenfunction is

¢nlm(ra 07 ‘P) = Rnlm(’I')Y[m (95 <P) ]
and the energy eigenvalue is

eB
2mec

Entm = Enl + mh.

Forn=2,
Eago = Ex |

Ejyp = Ea,

eB
2mec
(c) See the solution of Problem 5042.

EZl,j;l = E21 + h.

5041

Stark showed experimentally that, by applying an external weak uni-
form electric field, the 4-fold degeneracy in the n = 2 level of atomic hy-
drogen could be removed. Investigate this effect by applying perturbation
theory, neglecting spin and relativistic effects.
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Specifically:

(@) What are the expressions for the first order corrections to the energy
level? (Do not attempt to evaluate the radial integrals).

(b) Are there any remaining degeneracies?

(c) Draw an energy level diagram for n = 2 which shows the levels before
and after application of the electric field. Describe the spectral lines that
originate from these levels which can be observed.

(Chicago)

Solution:
Write the Hamiltonian of the system as H = He + Hi, where

2 2

e L
Ho= -S4+ —,
0 T +2mr2
H' =eEz,

taking the direction of the electric field E as the z direction. For a weak
field, H' < Hy and we can treat H' as perturbation.

Let (0,0), (LO), (1,1) and (1,-1) represent the four degenerate eigenfunc-
tions (I, m) of the state n = 2 of the hydrogen atom.

The matrix representation of Hi in the subspace is

0 (0,0lH’[1,0) 0 0

g - | GOIH10,0) o 0 0
0 0 N I
0 0 00

where
(1,0[H’|0,0) = (0,0|H’|1,0)"

—e E/uam(r)r cos Quago(r)d>r

hZ

= — 3€an, ag = —Y
me

being the Bohr radius. Note that (I'| H'|l) = 0 unless the I’,! states have
opposite parties.
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Solving the secular equation

—w, ©,0H'11,0) 0 0
<1701H’l0a 0) —wy 0 0
0 0 —w; 0 |=0,
0 0 0 —w

we get four roots
wgl) =3eFay,

wi(2) =w§3)= 0
w§4) = —3eFag.
(a) The first order energy corrections are thus
3eFEay,
0,
0,
—3eEay.

AE=w1=

(b) As w§2) = w§3) = 0, there is still a two-fold degeneracy.

(c) Figure 5.16 shows the n = 2 energy levels. The selection rules for
electric dipole transitions are Al = £1, Am =0, £1, which give rise to two
spectral lines:

hvy = 3eapE, vi = 3eapE/h;
hvy = 2 X 3eapE, v, =6eapE/h.

n=2 .
i+ U200+ U210 )
’
e JeaqyE
n-= 2 7/
H & ———= —— 211U,
N
without E AN 3eapk 1
N J7 (U200 - U210)
with applied E

Fig. 5.16
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5042

Consider the n = 2 levels of a hydrogen-like atom. Suppose the spins of
the orbiting particle and nucleus to be zero. Neglect all relativistic effects.

(a) Calculate to lowest order the energy splittings in the presence of a
uniform magnetic field.

(b) Do the same for the case of a uniform electric field.

(c) Do the same for both fields present simultaneously and at right
angles to each other.

(Any integral over radial wave functions need not be evaluated; it can
be replaced by a parameter for the rest of the calculation. The same may be
done for any integral over angular wave function, once you have ascertained
that it does not vanish.)

(Berkeley)

Solution:

(a) Take the direction of the magnetic field as the z direction. Then the
Hamiltonian of the system is

1 eB .
H= 24v —
2m, p*+Vi(r)+ 2m..c L
where V(r) :—5;. Considering Hi = 2fn‘fcizas perturbation, the eigen-

functions for the unperturbed states are
Ynim (7, 6, ) = Rt (r)Yim (8, ),
withn=1,2,3,..., [=0,1,2,...,n-1.
m=-l,~-1+1,...l-1,1.

As (H,1%,1,) are still conserved quantities, (nlm|l,|nlm) = mh and the
energy splittings to first order for n = 2 are given by

eB
Eym =E21+2mcmﬁ
C
( Eso, I=0;
eB
2mec m= 1,
Exn+1]0, l=1{ m=0,
'eBh’ m = -1
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(b) The energy level for n = 2 without considering spin is four-fold
degenerate. The corresponding energy and states are respectively
Z%?% 1
Ey=——— 55, %200, %210, %211, ¥21-1.
2ap 2
Suppose a uniform electric field is applied along the z-axis. Take as
perturbation H'=eez = EgV’, where Eg = ecao, VI = z/ag = r cosf/a,
2 .
ag = iz . Since
(1 +1)2 —m? Y
@i+1)@2+3)

l2_m2 Y
+Vei+n@Ei-1)

H) it i # 0 fOr only Al = £1, Am = 0. Hence the non-vanishing
elements of the perturbation matrix are

cos Y, =

(H")200,210 = /¢500H'¢210d3x = /¢200Hl¢210dSX,

(H")210, 200 /¢510H'¢200dsx = /¢210H'¢200d3x-

Let (Hl)goo,zlo = (Hl)210,200 = Ef, ie., H01 = H10 = Ef, and solve the
secular equation
det |H,, — EMé,,| = 0.

The roots are E{V) = £ E’,0,0. Hence the energy state n = 2 splits into
three levels:

E;+ FE' E, (two-fold degeneracy for Es).

(c) Assuming that the magnetic field is along the z-axis and the electric
field is along the z-axis, the perturbation Hamiltonian of the system is

o = eB

e l; +esx=0l,/h +\/§'yz/3a,

where
B = eBh/2m.c, vy = 3eca/V2, a = ao/Z
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The non-vanishing matrix elements of = are

-1, I,m—1
(x)l mol = (x),_"; m

n2—2)(I—m+1)(— m)
QI+1)(2 - 1) @

n2=012)(+m -1)(l + m)
@l +1)(2l- 1) 4

Thus, for n =2,
1 _ 3 __ o0
00 = \/ia Ty,
00 3 _
= e =l

The secular equation

B—EW 0 -7
det 0 -8 —-EW® 7 =0
-7 7 _EW

has roots
EN =0, E{) = +/87 1 242.
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Hence the energy state n = 2 splits into three levels, of energies

E2,E2:t ﬁ2+2’)’2.

5043

A nonrelativistic hydrogen atom, with a spinless electron, is placed in an
electric field € in the 2z direction and a magnetic field H in the x direction.
The effect of the two fields on the energy levels are comparable.

(a) If the atom is in a state with n, the principal quantum number,
equal to two, state which matrix elements in the first-order perturbation
calculation of the energy shifts are zero.

(b) Now obtain an equation for the energy shifts; once you have the
determinantal equation you need not go through the algebra of evaluating
the determinant. Do not insert the precise forms of the radial wave func-
tions; express your results in terms of matrix elements of r™ (where n is an
appropriate power) between radial wave functions.

Lz i), m)y=/{(lFm)ltm+1)[,mE1).

(Berkeley)
Solution:
(a) The perturbation Hamiltonian is

eB

H = —
2me

fz +eez.

Let the state vectors for n = 2 be |200),|210),]211},|21, -1). As

(fz £ i), m) = V{(€Fm) (€t m+1)|6,m=1),

we have

3

) ) . 2
[:10,0) = 0,211, 1) = L1, -1) = S~ AlL,0),

is1.0) = Y2 A1 1) 11 1))
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As z =1 cos 8, we have
(210]r cos 8]200) = (200} cos 6]210) = \/g ")

with (r) = *° 13 RooRa1dr, other matrix elements of z being zero. Hence
0 g

the perturbation matrix is
\/T
% ee(r) 0 0

- 0
\[ﬁgles(rh 0 —— ——\/2Bhy2eBH
H = 4mc 4mc
0 v2eBh 0 0
4mc
0 ——\2eBh 0 0
4mc

(b) The secular equation |[H—MI|=0, i.e.,

A« 0 0
a -A B B
0 B =X 0
0 B 0 =X

where a = \/g es(r), 8 = 3%%’5, has roots A=0, 0, /2432 + o2, which
are the energy shifts. Note that a two-fold degeneracy still remains.

5044

Two non-identical particles, each of mass m, are confined in one di-
mension to an impenetrable box of length L. What are the wave functions
and energies of the three lowest-energy states of the system (i.e., in which
at most one particle is excited out of its ground state)? If an interaction
potential of the form Vi = A8(z;1 — z2) is added, calculate to first order
in A the energies of these three lowest states and their wave functions to
zeroth order in A.

( Wisconsin)



Perturbation Theory 375

Solution:

Both particles can stay in the ground state because they are not iden-
tical. The energy and wave function are respectively
K2n? TT] . Lo
Eu———2 v = sm I sin 7.

If one particle is in the ground state, the other in the first exited state,
the energies and corresponding wave functions are

22
FEip - g%% , 1/)12:% sin ™ sin 27T
5h272 2mxy T
Eqy - = n in —.
21 = 573 Y2 =] sin —— sin —

When both particles are in the single-particle ground state, i.e., the
system is in the ground state, we have the energy correction

. )
EW = (11, Vigypyy) = Iz A /a sin’ (Wzl) oo oL

and the wave function to zeroth order in A

411 = Y11.

When one particles is in the ground state and the other in the first
excited state, the energy level is two-fold degenerate and we have to use the
perturbation theory for degenerate states. We first calculate the elements
of the perturbation Hamiltonian matrix:

//¢f2V121/112d$1d$2= //¢§1V12¢21d$1d$2

4 Lo, omm | , 2Ty A
L2/\/ sin Tsm T dxl_f

-
JJ $Vigndeidz; = JJ ViVapndnds, — -,

We then solve secular equation
A
2 _EW

L

det A A =0,

?

>
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and obtain the roots

22
L 3
which are the energy corrections. The corresponding zeroth order wave
functions are

EY = EY =0,

d12 = \—}—5 (Y12 £ ¢21) .

5045

Consider a three-level system described by the Hermitian Hamiltonian
H = Hy + M\H,,

where A is a real number. The eigenstates of Hp are [1),]2) and |3), and

Holl) =0,
Hol2) = AJ2),
Hol3) = Al3).

(a) Write down the most general 3 x 3 matrix representation of H, in
the {|1),]2),]3)} basis.

(b) When the spectrum of H is computed using perturbation theory,
it is found that the eigenstates of H to lowest order in A are |1),|+)=
ﬁ (12) £ (3)) and that the corresponding eigenvalues are

A2 5
Ey=-T + O(X),

2
E+=A+/\+)‘X+O()\3),

E_=A-Xx+0\).

Determine as many of the matrix elements of H; from part (a) as you
can.

(Buffalo)
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Solution:

(a) Since A is a real number, the Hermition perturbation Hamiltonian
matrix has the form

a d e
H=1d b f
et f* ¢

where a, b, c are real numbers.

(b) To first order approximation, energy eigenvalue is the expectation
value of the Hamiltonian with respect to the selected state vectors. Thus

E+ = (+]|Ho + AHi|+)
= (+|Hol+) + A(+|Hi|+)
A2 3
=A + /\+Z+O(A ).
Comparing the coefficients of A gives
(+|Ha|+) = 1.

Similarly
(=|H1|-) = -1.
As the energy levels corresponding to |2) and |3) are degenerate, we
transform to the following state vectors in whose representation the degen-
eracy disappears,

) = 7= (2 £1).

7%
Thus H is transformed to a representation in basic vectors |1), |+), [-):
1 0 0 1 0 0
S U B B N O S )
V2 V2 d b f V2 V2
o L | \e o) |p L o
V2 V2 V2 V2
a d+e d-e
VZ V2
d*+ e*
= 7 1 0
d*—e* 0 1
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In the above we have used

(+HHil4)= 5 b+ F+ 1 +0) =1,

(lHi=) =3 (b~ f = f"+ ) =1
and chosen the solution
b=c=0, f=f=1.
Perturbation theory for nondegenerate states gives

H, .2
1Hmnl” +0(A\3).

E, = EO 4 \H' 2y~
W AHp + A2 y

n#Em
Thus
N|d+el2  N|d—el?
2(0-4A) 2(0— A)

d+e? |d—el?
= \a — 2 I 3
a—A ( AT aA +0(X7),

Ei=0+Xa+

+0O(A%)

A2|d + e]? s
Ez—A+/\+T+O()\ ),
- A%ld —ef? 3
Es= A - A+ =1+ O(X?).

ldentifying FE4, Es, Es with the given energies E;, E+, E_ and compar-
ing the coefficients of A and A% give a = 0 and

|d + el +|d—ef® = 2,
|d + e|?
Id—elzzov

ord+e=+/2e* d—e=0,where § is an arbitrary constant.
T i
Hence a = 0, d=e=e$and

21

0 —=e — ¢
V2 V2
1 )
H1 = E€~16 0 1
1 .
— e ¥ 1 0
V2

is the representation in state vectors [1),]2),|3).
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5046

Two identical spin—% fermions are bound in a three-dimensional
isotropic harmonic oscillator potential with classical frequency w. There
is, in addition, a weak short-range spin-independent interaction between
the fermions.

(a) Give the spectroscopic notation for the energy eigenstates up
through energy 5hw (measured from the bottom of the well).

(b) Write the appropriate approximate (i.e., to lowest order in the inter-
action) wave functions of the system, expressed in terms of single-particle
harmonic oscillator wave functions, for all states up through energy 4hw.

(c) For a specific interparticle interaction Vy3 = —A83(r; — ra), find the
energies of the states of (b) correct to first order in A. You may leave your
result in the form of integrals.

(- Wisconsin)
Solution:

(a) For a three-dimensional harmonic oscillator,
3
E,.= n+- hw, n=2n,+1,
)

where n, and 1 are integers not smaller than zero. For the system of two

identical fermions in harmonic oscillator potential, we have, from the Hamil-
tonian,

3 3
En = <n1+§) hw+(n2+§> hw=(N+3)w, N=n1+n,.

Consequently, for
Eo = 3ﬁw, (11, l2) = (0, 0) ,

there is only one state *Sp; for
11
Bu = 4ho,(,12) = 0,0) or (0.1)G1.52) = (5.3 )

there are two states ! Py and 3 Pyo; for
E,; = 5hw, and
(1) (n17n2) = (270) or (012)1
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(l1,12) = (0,0), there are two states 1Sp,35;;
(l,,l)= (2,0) or (0,2), there are two states' Dy, 3D3;;
(2) (m,n2) = (1,1),(lh,l2) = (1, 1), there are three states Sy, ! Ds,
Pa10.
(b) Let 9o be the ground state and ¥1,, the first exited state of a single-
particle system, where m = 0, fl, and xo and x,,» be spin singlet and

triplet states. With the states labeled as {NLL,SS.), the wave functions
required are

|00000) = xoto(1)¥0(2), state !So;

I11m00) - Xo%a v Pra) do()thim(2), state ‘P

1 .
[11mIM) = x1m 7 (1 - Pr3) o(1)9h1m(2), state 3Pao;
where m, M =0, +1(L,=m, S; = M).

(c) For the ground state €Se, the energy correction to first order in A is

<ISQ|V12|ISO> ~—A / drldrzé(n - rz) ['(/)0(1'1) ’lpo(r2)]2

o o - {)

with a = y/mw/hk. Hence the ground state energy is
15)) = 3hw — A[™2)"
E('So)) = 3hw - A(35)

The first exited state consists of 12 degenerate states (but as there is
no spin in Viz, (* P|Vi2>P1) = 0).

As the spatial wave function is antisymmetric when S = 1, the expec-
tation value of —A§3(r; —r3) equals to zero, i.e., (11m/1M’'|Vi2|11lm1M) =
darrpr (Im/|Via|1lm) = 0. As

E(]Pro)) =4hw,

(11m/00|V12|11m00) = — A / %dmpg(r)w;m, (r)1m(r)

_ oA / dr (o (£)t1m (1) 26

3
[0
=-A|—= (sm’ma
<\/27r)
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we have 3/2
mw
B('Pim)) = 4w = A (3)

where m is the eigenvalue of L,.

5047

The Hamiltonian for an isotropic harmonic oscillator in two dimensions

H=w(ni+ny+1),
where n; = a}a;, with [ai,a;“] = 6;; and [ai, a;]= 0.
(@) Work out the commutation relations of the set of operators
{H,Jy ,J2,J3} where
1

1
J1 = 5 (a2+a1 + a1+a2), Jo = 5 (a;al - af’az) s

1
J3 = 5 (a'fal — a'z"ag) .

(b) Show that J2=J2 + J2+ J2 and J3 form a complete commuting
set and write down their orthonormalized eigenvectors and eigenvalues .
(c) Discuss the degeneracy of the spectrum and its splitting due to a
small perturbation V - J where V is a constant three-component vector.
(Buffalo)

Solution:

(a) The system can be considered a system of bosons, which has two
single-particle states. The operators a;" and a; are respectively creation
and destruction operators. As among their commulators only [a;, a;‘] is not
zero, we can use the relation

[ab, cd] = a[b, ¢]d + ac(b,d] + [a, c|bd +c[a,d]b
to obtain
[at a1, afai] = [af a2, afas]) = [afai,afas] = 0,
[ata1, afai) = —[af a2, afai] = —afay,
[aTai, afas] = — [afaz,a} az] = aTas,

+ o1 o+ +
[a3a1,ala2]=aja2—ala;.
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Hence

[H, Ji] - [H, J2) = [H,J3] - 0,

(1, Ja| = iJs, [J2, J3] = iJy, [J3, J1] = iJs.

(b) The above commutation relations show that Ji, Js, J3 have the same
properties as the components of the angular momentum L. Hence J2 and
J3 commute and form a complete set of dynamical variables of the two-
dimensional system.

The commutation relations of a, a™,

[a:,af] = dij,  [ai,a5] =0,
can be satisfied if we define

a1ln1, n2) = Vnylny — 1,n3),  azlni,n2) = Vnglny,ng ~ 1)

ai"|n1,n2) - vni + 1|n1 + 1,n2>, a;Inl,ng) =vng + 1|n1,n2 +1 )

and thus .
[ni,m2) = (n1!n2!) ™7 (a1)™ (a3)"?]0,0) .

These can be taken as the common normalized eigenvectors of the complete
set of dynamical variables J? and J3. As

1
2 _ + +,.32 + +,.12 + + 32
J? = :1-{(aza,1—f-a1 a2)® — (ay a1 —ay az)® + (afa1—ajaz)*}
Liognto ot +oo0t +,. 0t
= Z{Za2 a1a7 a2 + 2a¥ aza3 a1 + afa1a] a4
+afazafas — afaiadas — afazatar}
__1_{ *YoraTan + atarata azlai, af
—4(12(11611 2 + G; Q204 1+a2 21a1, @,
+ + 4.0t +o o+
+alailez, a7} + e ar1a] 01 + aj azad az}
1
= 2 fatasat +, ot + + o o
= Z{a1 azaiaz + ajaiazay +ajaz+ ajay + afejafay + afazad as},

where use has been made of

a;alafag = a;alaza} = a;agalaf", etc.,
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and

af az|n1, n2) =/ (n1 + 1)nz|ni, na),

afai|ni, n2) = /miaf ny — 1,m2) = ni|n1, n2), etc,
we find

- 1
Py, ng) = 7l + Dng+ (ng + 1)ng + n3+ nk + ny 4 naljna,n2)
1 1
= 5 (nl +'n,2) E (n1 + nz) +1 |n1,n2)

and
7 L+ +
Jz|n1,ng) = 3 (aT a1 — a7 az)|ny, n2)

1
= 5 (nl - nz)lnl,nz) .

Thus the eigenvalues of 32,7, are respectively
7= % (n1 + n2) B (ny +na) + 11
JZ=%(n1—n2) :
Furthermore with
nm=j+m, np=j-m,
the above give

3215, m) =G + 1|5, m),

lej’ m) = ml]a m>

(c) Energy levels with the same value of Jare degenerate. The situation
is exactly analogous to that of the general angular momemtum. Adding the
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perturbation 'V -J will remove the degeneracy because the different energy
levels have different value of JV in the direction of the vector V.

5048

Consider a two-dimensional oscillator
H = 1( 2+ 2 1 2 2
= 5 Px py) + 5 (112 +y )

(a) What are the wave functions and energies of the 3 lowest states?
(b) Next consider a perturbation to the Hamiltonian

1
V= 55.’133}((1)2 +9%), (ex1).

Compute to first order in perturbation theory the effect of V on the
energies of the states calculated in part (a).
(Wisconsin)

Solution:

The Hamiltonian is given in units for which Ai=m=w=1.
(@) The wave function and energy of the two-dimensional harmonic os-
cillator are respectively

wnan = annz e_(22+y2)/2Hn1 (l‘) an (y) )
En1n2=n1+n2+1=N+1,

where H; are Hermite polynomials. For the lowest three states, we have

Poo(z,y) = % exp{—%(ac2 +y2)}, Epo =1,

Y10(z,y) 5\/gxexp{—%(x2+y2)}, Ep = 2,
2 1,5, o
Yor(x,y) = ;yexp{—-z-(w +y )}, Ey

as Ho =1, Hl(é) = 2{.

1l
N
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(b) The first order energy correction for the ground state is
Voo = (%00|V|00) =0,

as the integral in either x of y is an odd function.
When N =1, there is a two-fold degeneracy, and

Vit = Vo =0,

o]
V12 = V21 = g// Exye—(l‘g‘i'yz) ;L-y(z2 + y2) dxdy
s

—0o

oo
= E// e‘(zzﬂ’z) (:1:2 + yz)zzyzdzdy == %
™
—~00

The secular equation for the perturbation Hamiltonian matrix is

Vii— E® Via

= O,
Vo Va2 — EW

giving the corrected energies as

3
E10=E101V12=2ﬂ:z€.

5049

A particle of mass m moves (nonrelativistically) in the three-dimensional
potential

1
V:§k(xz+y2+22+/\my).

(@) Consider A as a small parameter and calculate the ground state
energy through second order perturbation theory.

(b) Consider A as a small parameter and calculate the first excited
energy levels to first order in perturbation theory.
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Formulas from the standard solution of the one-dimensional harmonic

oscillator:
1 1
w= (k/m)?, E, = <n+ i)hu, n=0,1,2,...,
AN N
z = (M) (a+a”), a¥hn = Vnipn_1,
[a’a+] =1, a+¢n =vVn+1ny.
(Berkeley)

Solution:

(a) The ground state has wave function

Yooo (T, ¥, 2) = Yo(x)o(¥)Yo(2)

and energy -g-hw. Consider % Xxy as perturbation, the first order energy
correction is

EW = (000|l“2i xy|000) = 0,

as the integral is an odd function with respect to x or y. The second order
energy correction is

kX
E® = 3" |(000] 5 zy|lninana)?/(—ny — na)hw

ny,n2
XZ
— hw
32

kA A
(0,0, 0] 7@/!”1”2”3) = Zﬁw51m51n250n3 .

Therefore, the ground state energy corrected to second order is

M _ 3 N
ES _-hw<2 32).

(b) The first excited energy level Elz-ghw is three-fold degenerate,
the three states being

|1,0,0), {0,1,0), ]0,0,1).



Perturbation Theory 387

The matrix of the perturbation ’\—fxy is

010
AP

4
— \@ 00

and the secular equation

iV 22 g
4
& EM o =0
o o EW
has roots
EM =0 Mw A
é41 4

Thus the first excited energy level splits into three levels
5 A 5 5 A
(§+Z) b, 5’70), (§—Z> hw .

5050

Consider the following model for the Van der Waals force between two

atoms. Each atom consists of one electron bound to a very massive nucleus

by a potential V' (r;) = 4 mw?r2. Assume that the two nuclei are d 3> 1/ L

mw

apart along the x-axis, as shown in Fig. 5.17, and that there is an interaction
2
Vi2 = B B5#% . Ignore the fact that the particles are indistinguishable.

e e

/ﬁ ﬁz
l——— d*—l —_—X

Fig. 5.17

(a) Consider the ground state of the entire system when g = 0. Give
its energy and wave function in terms of r; and rs.
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(b) Calculate the lowest nonzero correction to the energy, AE, and to
the wave function due to V.

(c) Calculate the r.m.s. separation along the z direction of the two
electrons to lowest order in 3.
1/2 )
) 6_227:“, ;

1/2
/ zzmw

di(z) = (511) = ( _}13) re- SR
(n|zlm) = 0, for [n—m|# 1
(n —1|z|n) = (nh/2mw)/?,
(n +1|zjn) = ((n + 1)k/2mw)'/?

bo(z) = (z]0) = (

= S

( Wisconsin)
Solution:
(a) The Schrédinger equation of the system is
1
{——— (V24 V3 + - mwz(rl +r+ 8 1126 } v = Ey.

When 3 = 0 the system is equal to two independent three-dimensional
harmonic oscillators and the energy and wave function of the ground state
are

3 3
B = S hw + 5 hw = 3hw,

T (r1,12) = Yo(z1)Yo(y1)vo(21)%o(z2) 10 (y2) v (22)

1 3
= | — e—'% (7‘¥+T§)
VT ’

where 7% =z? + y? + 23, etc.
(b) Treating
6 2

B I1x2
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as perturbation we have the first order energy correction

2
AEY _ Efa- (00|21 200)

; [’e (Wolz1)lza o (1)) (o (22) 22 b0 (z2)) - O

as(n|zlk)=0for k #n=x 1.
For the second order energy correction, we have
ﬂ 2
(00|H'|n1n2) = —5- (Olz1|m1) (Olz2|n2)

ﬂe h
= et
and hence

AEP = 5 {001 H'[n1n2)|?

n1,na£0 EO - Enlng
_ 0O H'II? 1 (Be® _h 2
- Eo - Eu 2hw d3 2mw ’

as Eayny = (n1 + 3)hw + (ng + 3)hw. Thus the energy corrected to lowest
order is o\ 2
1 (e h
Po=h-g (&) el
and the corrected wave function is

OOIH'Hl) (0)
=00t (Q0IH11L) o
Ey — En

© Bt 1 ()
Yo 443 mwz\I/ !

where ¥{” - 41 (21)%0(y1)%o(21)91 (22) Yo (y2) Yo (22).
(c) Let S12 = z2—z1. Then (S12) = (x2) —{z1) = 0 as ¥, remains the
same when 1 and 2 are interchanged showing that {z;) = (22). Consider

(Sf )y = (x? + :c2 2z172) = 2(x?) - 2(z122) -
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We have
(z122) = (T — AT |z125| — AL(?)
=— /\{(‘I/(()O)lil,‘lxz"l’(lo)) + complex conjugate}

~2((0fel1)? = A -,

where
Be? 1

=i A

A

and

(@) = (@ - 2|23 el” - 2v ()
= (0]z2|0) + A%(1]2?|1)
= (0|22|0) + O(\?).

Also according to the virial theorem

1 1
3 mw2(0|m2|0) =1 hw,

or K
2(z?) = — + O(A\?).
mw
Hence

(St = 2(z}) — 2(z122)

h
R L2 oyl @+ 2x).
mw mw

Thus the root-mean-square distance between the two electrons in x direc-
tion is

i@+ S = \/d + 24(S12) + (SE)

h h Be?
~ald2 4+ —— = —_ LA I
N\/d +mw(1+2)\) d\/1+md2 <1+2mw2d3>
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5051

The first excited state of three-dimensional isotropic harmonic oscillator
(of natural angular frequency we and mass m) is three-dold degenerate,
Use the perturbation method to calculate the splitting (to the first order)
of this three-fold degenerate state due to a small perturbation of the form
H' = bxy, where b is a constant. Give the first-order wave functions of
the three split levels in terms of the wave functions of the unperturbed
three-dimensional harmonic oscillator, given that, for a one-dimensional
harmonic oscillator,

(n|z|n + 1) = \/M

2muwg

( Wisconsin)
Solution:
Write the unperturbed energy eigenstate as

[nznyn.) = [nz)ny)|n.),
where In) is the nth eigenstate of a one-dimensional harmonic oscillator.

The first excited state of the 3-dimensional isotropic harmonic oscillator is
degenerate in the states

l¥1) = [100), |3p2) =]010), |1h3) =[001) .
Calculating the matrix elements
Hj; = b(ilzyle;),
we find
Hj; = b(100|zy|100) = b(1|z|1) {0ly|0) = O = H3, = Hys,
Hj, =b(100|zy|010) = b(1|x|0) (Oly|1) = b(0lz|1)"*(0ly|1) = 57% = Hy,,

L)

Hjs = b(100]y|001) = b(1]2]0) (0]y[0) = 0 = Hjy,
Hjs = b(010]zy[001) = b(0]<|0) (1[y[0) = 0 = H3,.
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Thus

2muwy

S = O
S O
o O O

The secular equation
det |[H'—~EM|=0

has roots EW =0, E® = £ The unperturbed oscillator has energy

E,(,O) = (n+%)7‘uu. The first excited state, n = 1, now splits into three levels
with the wave functions indicated:

5 5
E() = Shw+0=Zhw, [95) - ) - [001).
m_?3 b my - 1 +101

5052

A guantum mechanical system is described by the Hamiltonian H =
Hy+ HI, where HT = iA[A, Hp) is a perturbation on the unperturbed Hamil-
tonian Hp, A is a Hermitian operator and A is a real number. Let B be a
second Hermitian operator and let C = i[B, A].

(a) You are given the expectation values of the operators A, B and Cin
the unperturbed (and nondegenerate) ground states; call these (A)o, (B)o
and (Co). With perturbation switched on, evaluate the expectation value
of B in the perturbed ground state to first order in A.

(b) Test this result on the following three-dimensional problem.

3 2
- 1 P
HO:Z(Q%E+_2'W2$?)’ HI = Azxs,

i=1

by computing the ground state expectation value (z;),{=1,2, 3) to lowest
order in A. Compare this result with an exact evaluation of {z;).
(Princeton)
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Solution:
(8 Assume that the eigenstates and the corresponding energies of an
unperturbed system are respectively
K)©, E2,
then
Holk)© = EO|k)©
The matrix elements of the perturbation Hamiltonian are
Hly = O A'10)O=O (nlixAH, — iAH,A|0)®
=i/\(Eé0) _ E,(,O))(O)(RIAI())(O).

Then, the ground state wave function with first order perturbation cor-
rection is

o0 H,
0 =100 + 37 —Fm0 )0
nZ;;o E(O) E,(,O) )

0) + 3 A9 ) 410) ) ®
n#0

]

11— iAA))0)® + Zz)\ (n|A]0YO|n)(©)
Hence

(0|B|0) = [<°>(0|(1 + iM(A)o) + (—iA)
i @ n| 410 nl] B L(I - iX4))i0)®

+ A E<°><m|A|o)<°>|m><°>}

m=0n
~ (B)o — A0liAB — iBA4|0)®
= (Blo + XP0[c10)® = By, + A(C)e,
(to first order in X).
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Note that the completness of [k)(®),
SR Ok © =1,
k

has been assumed in the above calculation.
(b) The given Hamiltonians

3 2
- Pl 202 H =)\
HO—Z(2m+2mw:v,), z3

i=1

satisfy HI =i)\[A4, Ho| = Az if we set A = —B3%=. Using the results of (a)
we have the following: For B =z, as

C, =1[B, Al= ﬁ [z1,p3] = 0,
we have
(z1) - (B) = (B)o + MCi)o = (z1)o + MC1)o = 0.

Note that {z;) = 0 as the integral is an odd function of x;. For B = x2,
a similar calculation gives (z2) = 0. For B = z3, as

_ y Py 1
C3=1i[B,A] =1 [x3, mw2h] =T
and so 1

(Ca)o = ——,
we have

(z3) =(B) = {z3)o + MC3)o
A

mw?’

For an accurate solution for H = Hy + Hi, write

3

H= iy —mw?r? Az
=1 2m 2 )}

. - - A A2
=Hoi(z1) + Hoz(z2) + Ho3 (563 + mw2> Rt
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where Hy;(z;) = 2"1:(%:; + 1 mw?z? is the Hamiltonian of a one-
dimensional harmonic osc111ator. As the constant term —X2%/2mw? does
not affect the dynamics of the system, the accurate wave function of the
ground state is just that for an isotropic harmonic oscillator:

0=(22)"" oo (32 ) o (55

2
mw A
X exp [—75 (x3+;r—w—2) ] .

It follows that
A

(1) =0,{z2) =0, (z3) = ———=.

mu?2
These results are exactly the same as those obtained in a)

5053
A particle of mass m is moving in the three dimensional harmonic os-
cillator potential V(z,y, z) = £ mw?(z? + y2 + 2%). A weak perturbation is

applied in the form of the functlon AV = kxyz + L4 :c y%2%, where k is a
small constant. Note the same constant k appears |n both terms.

(a) Calculate the shift in the ground state energy to second order in k.

(b) Using an argument that does not depend on perturbation theory,
what is the expectation value of x in the ground state of this system?

Note: You may wish to know the first few wave functions of the one-
dimensional harmonic oscillator:

ground state
1/4 mw
o) - (Z3) "o (-5 ).
first excited state

e = (22)" e (-522).

second excited state

wi - (3" g (B -1) e (-50)

(Princeton)
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Solution:
The ground state of a particle in the potential well of three-dimensional

harmonic oscillator is

QO(:E’ Y, 2) = wo(x)d}o(y)d}o(z)

3/4 2
- (5 oo [ e ]

The first order energy correction is

2
(AE>1 = / @0(1‘, Y, Z) (k:tyz + f‘%}— 5521/222) Qo(x7ya Z) d3x

- (wh)aﬁ :: [/:onexp (—Tﬁw—mz) dmr

h\° k2
= \22mw Aw’
While the perturbation AV’ = kxyz does not give rise to first order
correction, it is to be considered for second order perturbation in order to
calculate the energy shift accurate to k2. Its perturbation Hamiltonian has

matrix elements
(n]AV'|0) = /<I>n(a:,y,z) kxyz ®o(z,y, 2)dz

+o0 +oo
=k [ Yo (@)eo(a)dz  ¥na(W)yvoly)dy
+o0

X Yns (2)2100(2)dz

2mw
where n = nj + ny + ng, and so the second order energy correction is

3/2
—k <—h—) 5(n1—1)8(ng —1)8(n3— 1) .

=y Lnavion K nlAV’IO )2

n#0 EO -

_@:_(_ﬁ_)sﬁ

Ey - E; 2mw ) 3Shw’
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Therefore the energy shift of the ground state accurate to k2 is
2k ( B \°
AE = (AE); + (AE)2=§}£} <2mw) ‘
(b) V + AV is not changed by the inversion x =+ —x,y = —y,i.e.,
H(z,y, z) = H(-z,-y,2).

Furthermore the wave function of the ground state is not degenerate,
so yY(—z,—y,2) = ¥(z,y,z) and, consequently,

<fl§) = (11)’ zw)
+o0 +00 +00
— / dz' / ¢*(z',yf, z')x'¢(z’,y',z')dw’dy'

+o0 +o0o0  p+o00
:—/ dZ/ ¢*($,y,z)'$'¢($vy,z)dxdy = —(.’L‘),

where we have applied the transformation xi = —z,yi = —y, 2z’ = z. Hence
(x) = 0. In the same way we find (y) =0, (z) = 0. Thus (x) = 0.

5054

A spin—% particle of mass m moves in spherical harmonic oscillator po-
tential V = $mw?r? and is subject to an interaction Ao -r (spin orbit forces
are to be ignored). The net Hamiltonian is therefore

HZI{()+I{'7

where
2

Ho=%+§mw2r2, H =X)o-r.
Compute the shift of the ground state energy through second order in the
perturbation Hi.
(Princeton)
Solution:

The unperturbed ground state is two-fold degenerate with spin up and
spin down along the a-axis.
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Using the perturbation method for degenerate states, if the degeneracy
does not disappear after diagonalizing the perturbation Hamiltonian, one
has to diagonalize the following matrix to find the energy positions:

(nVIm) (m|V|n')
(n|V|n'> + Z E7(10) _ E,’('?)

=(n|W|n')

Let|nynyn, 1) and |ngnyn, }) be the unperturbation quantum states,
where ng, n, and n, are the oscillation quantum numbers in the x, y and z
direction, 1 ({Jepresents the spin up (down) state. As

8]
2
=)
I

3
amy s (nz +ny +n; + 5) hw ,
the matrix has elements

2 .
(000 1 [W[000 1) = 2000 T|or-x|001 1) (001 Tl . ri0001)

3 5
5 fw — 5w
+A2(000 1 | o -T|100 |) (100 | |o - r|000 1)
3 5
+ A2(000 1 |o-r|010 ) (010 | |o - r|000 1)
3 5
5 hw — 5w
2 (000 1 |0,2|001 1)|2 + (000 1 |o5z(100 |
—hw —hw
+ [{000 1 |oyy|010 )|?
— hw
_ 3x2
T 2mw?’
32
(000 | |W]000 |) = — el

(000 1 |W]000 1) =0.

In the above calculation we have used the fact that

[(n; + DA
(nilxilni"' 1) = (;T)y r = Yz,
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all other elements being zero. It is seen that a two fold degeneracy still
exists for the eigenvalue % This means that the degeneracy will not
disappear until at least the second order approximation is used. The ground
state, which is still degenerate, has energy %fw—%,

5055

Consider a spinless particle of mass m and charge e confined in a spher-
ical cavity of radius R: that is, the potential energy is zero for |x|<R and
infinite for |x|> R.

(a) What is the ground state energy of this system?

(b) Suppose that a weak uniform magnetic field of strength |Bj|is
switched on. Calculate the shift in the ground state energy.

(c) Suppose that, instead, a weak uniform electric field of strength |E|
is switched on. Will the ground state energy increase or decrease? Write
down, but do not attempt to evaluate, a formula for the shift in the ground
state energy due to the electric field.

(d) If, instead, a very strong magnetic field of strength |B| is turned on,
approximately what would be the ground state energy?

(Princeton)

Solution:

The radial part of the Schrédinger equation for the particle in the po-
tential well is

R+ lry e WD eo r<n),
r r2

where k =+/2mE/k?, the boundary condition being R(r)|r=gr, = 0. In-
troducing a dimensionless variable p = kr, we can rewrite the equation
as

d?R 2 dR I(L+1)
i =41 =0.
2 T pdp " [ p? R=0
This equation has solutions j;(p) that are finite for p— 0, 7i(p) being
related to Besselis function by

™

ilp) = (5)% Ty ).
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Thus the radial wave function is
Rpi(r) = Cugi(kr),

where Cy,; is the normalization constant.
The boundary condition requires

Ji(kRo) =0
which has solutions
kRo = an;, N=1,2,3--.

Hence the bound state of the particle has energy levels

2

Ey=——=ad’
nl 2mR3 n

n=123....

For the ground state, p =0 and jo(p) = Si—’;ﬂ, so that a;p = 7 and the
energy of the ground state is

Ey = h*n%/2mR3.
(b) Take the direction of the magnetic field as the z direction. Then the
vector potential A has components

B B
A.’z,‘:__, = —T, z = s
5 Y Ay 21;A 0

and the Hamiltonian of the system is

o1 eB \? eB \?
= = == 1%
H 5 <p, + P y) + (py 7 z) + pz:| + V(r)

1 T eB e?B?

= om -Pz— C_(xpy_ypz) + 12 (@ + y3)|+ V(T)
1 [, eB e?B? ,

- |p2-& V().
i [Pt g @) V)

As the magnetic field is weak we can treat —ﬁlz+v(x +yYasa
perturbation. When the system is in the ground state { =0, 1, = 0 we only
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need to consider the effect of the term m(m +y?). The wave function
of the ground state is

1)[}(7‘7 9) (P w k’l‘ Y(OO) 9 (P)
/ sm(kr)
jo(k’!‘ RO r )

and the first order energy correction is

B = (vr0.0) | 5 o 4|0 X0
ezB Ro .3
=g 27rRo / r? sin (kr)dr 4 27 sin® 8d@

(1 1) e*B%R}
T \3  2x2 12mc?
Note that in the above calculation we have used
z? + y* =r?sin? 0, sin(kRy) = 0 or kRp = .

(c) Suppose a weak uniform electric field E is applied in the z direction,
instead of the magnetic field. The corresponding potential energy of the
particle is Vi = —eEz, which is to be taken as the perturbation. The shift
of the ground state energy is then

= (¢(r,8, )| — eErcos8|y(r,8,¢)) .

As E! is negative, the energy of the ground state decreases as a result.
(d) If a strong magnetic field, instead of the weak one, is applied then

p2 6232

H=
2m  8mc?

(=* +9°)

and the B2 term can no longer be considered as a perturbation. The particle
is now to be treated as a two-dimensional harmonic oscillator with

, €’B? eB

mw =S5 or w =
8me 2mc’

N -
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Hence the ground state energy is approximately

Eo=tw= <24
2mc

5056

A particle of mass m and electric charge Q moves in a three-dimensional
isotropic harmonic-oscillator potential V = %kr?

(a) What are the energy levels and their degeneracies?

(b) If a uniform electric field is applied, what are the new energy levels
and their degeneracies?

(c) If, instead, a uniform magnetic field is applied, what are the energies

of the four lowest states?
(Columbia)

Solution:
(a) The Hamiltonian of the system is

2 1
H:—%—V2+§kr2:Hx+Hy+Hz,,

where
R 8% 1
+ Ekz? (i=uxy,2).

‘= Tom 822
The energy levels are given by

En= (N +3/2)fwp,

where wo = \/k/m, N =n; + ny + n,.
The degeneracy of state N is

N
f:Z(N—nz+1)=_;.(N+1)(N+2).

ne=0
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(b) Take the direction of the uniform electric field as the z direction.
Then the Hamiltonian is

H =p%/2m + %krz——QEz

a2

Dx 1 2 ~2 1 2

= | = + <kzx +|p m+ — ky
(27” 2 ) |: y/2 2

[p2r2m + k- 0B/ - Q7B 2.

Comparing this with the Hamiltonian in (a), we get
En= (N + 3/2)hwo— Q*E®/2k,
1
f:§(N+1)(N+2).

(c) Consider the case where a magnetic field, instead of the electric field,
is applied. In cylindrical coordinates, the vector potential has components

A¢=%Bp, A, =A.=0.

Thus the Hamiltonian is

2
2 Q@ . Q 2 , 1, 9 1, 4
=—p2— 2p-A A% + Ckp+Zk
p mcp +2mc2 +2p 2%

where we have used r2 = p? +22,and V- A = O whichmeansp- A = A- p.
Write

N h? 1 P2 1 Q -

H=|-— 2 - 2 2 Yz - 21 = .

2 Vt+2mw P+ 2m+2kz |Q}wL
=H,+H,Fwl,,

where

VZ=V2+VZiw=|Q|B/2me,w? = w?+ W3, L, = p.p,
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and the symbols F correspond to positive and negative values of Q. Of the
partial Hamiltonians, H; corresponds to a two-dimensional harmonic oscil-
lator normal to the z-axis, H, corresponds to a one-dimensional harmonic

oscillator along the a-axis. Therefore, the energy levels of the system are
given by

1
Enpnem = (2n, + 1 + |m|)iw’ + (nz + 5) hwo F mhw

1
= (hw’ + 3 ﬁwo) + 2n,hw’ + |mlhw’ F mhw + n,hwo ,

where
n,=0,1,2,...,
n,=0,1,2,...,
m=0,+1,%2,....

The four lowest energy levels are thus
;1
Eooo = fw’ + 2 Fuwg |
— / 1 ’ 7 1
Epo1 = hw +§h’~”0+h(w—w)=2ﬁw—hw+§muo,
r 1 ;3
Eop = hw' + 5 hwo + hwo = hw +§ﬁw0’

1
E002=h0/+§h0 +2fi(w'—w):3ﬁw’—2hw+% hu)o .

5057

(a) Describe the splitting of atomic energy levels by a weak magnetic
field. Include in your discussion a calculation of the Landé g-factor (assume
LS couplings).

(b) Describe the splitting in a strong magnetic field (Paschen-Back ef-
fect).

(Columbia)



Perturbation Theory 405

Solution:

In LS coupling the magnetic moment of an atomic system is the sum of
contributions of the orbital and spin angular momenta:
it = po(gil + g48)
= polgij + (g5 — 90)8],

where p is the Bohr magneton. Taking the direction of the magnetic field

as the z direction, the change of the Hamiltonian caused by the magnetic
field is

Hy=-p-B=—qu.Bj. — (95 — gi)poBs: .
(a) The Hamiltonian of system is

H:H()+H1=f)2/2m+V(7‘)+€(T)§~i+ 1:11-

Considering —(gs — gi)uoBs, as perturbation and operating (Ho—
qipoBj.) on the common state of 12, j2and j, we have

(Ho — guptoB32)¥nijm; = (Entj — gito Bm; ) Wnijm,

If B is very weak, then

% for j=1+1,
_ J
5. = 2 lmyloslimg) =4
—2_ for j=1-1,
2+ 1)

where we have used the relations

1 1> I¥m;+3
; e )

. _ l:i:mj-f-%
mi) =\l 1 ™ "2 3 A+ 1

1 1
™t T3

forj=1+1,and

Oz

1 1
mj:{:i,:b5>=:i:

2’72

Hence the energy level of the system becomes

1 1
m; + :|:->.

Enljmj ~ BEnly — glﬂOij
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my

-
2% J=it+

Nl=
.

~(0: —)mBy  _p,

— =1
2j+2) 7

-

As g; = -1, gs = -2 we can write
Enijm; = Enij — guoBm; ,

where

iGi+1 = 1I{l
2j(43 + 1)
is the Landé g-factor. Thus an energy level of the atom splits into (2j + 1)
levels.

(b) If the magnetic field is very strong, we can neglect the term £(r)s-1
and the Hamiltonian of the system is

}?I=f)2/2m+V(T) +ﬂ1 = I;[o-i-f{l.
Operating on the common eigenstate of (Hy,12,1,,82,s,), we get

Hwnlm;ms = nlm,mswnlm;ms 3

where

Enlm;ms = Enl - gl/J'OBml - gsp,oBms

= En + poB(my + 2ms),

as g1 = -1, g, = -2. For an electron, mg = %1. Then, due to the
selection rule Amg = 0, transitions can only occur within energy levels
of mg = +% and within energy levels of mg = —%. The split levels for
a given [ are shown in Fig. 5.18. For the two sets of energy levels witt
my+2mg = —l+1 to I —1 (one set with mg = %, the other with mg = —%
i.e., 2l — 1 levels for each set), there is still a two-fold degeneracy. So tht

total number of energy levels is 2(2] + 1) — (21 — 1) = 2l + 3 as shown.
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m;+2m
{* s
% le1 ml’zms
S {
¥ em————— -1
& { - 2 e = = = ep— | _ D
o ' t
© ] 1
o ' )
o° ' 1
Rl [ 7Y P N B Y
o —— - ——— L ]
z ‘I01 fl1
-1

(Mms= +p) (mg=-Yy)

Fig. 5.18

5058

Consider an atom with a single valence electron. Its fine-structure
Hamiltonian is given by £L . S.

(a) Determine the difference in the energies of the levels characterized
by J=L+1/2and J =L —1/2 (fine structure interval) in terms of &.

(b) This atom is placed in a weak external magnetic field of magnitude
H. Use perturbation theory to determine the energy splitting between
adjacent magnetic (Zeeman) sublevels of the atom.

(c) Describe qualitatively how things change in a very strong magnetic

field.
(Columbia)

Solution:

(a) In the representation of (32,12, 7,),

§.L=2(7-12-8

h2
=—[iG+1) — 1+ 1) —s(s +1)]

2
2
=% [j(j+1)—l(l+1)—z |

As (Z+ 1)(I+2)-(-3)U+3) =21+ 1, the energy difference is

k2
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(b) If the atom is placed in a weak magnetic field of magnitude H whose
direction is taken to be the z direction, the Hamiltonian of the system is
-2
. P eH - N PO
= — (L, + 285, S-L
H m+V(r)+2mc( +2S;) + &(r)

o
~ 2
P eH . P eH .
= = Lo+—28,
2m Vi) + 2me 7= +£(n)S +2mc S
N H .
EH0+6——SZ,
2me

where J, =L, + .. )
Let Ynijm; be a common eigenstate of (J2,L?,5,) for the unperturbed
Hamiltonian H,. Then

. eHhR
HoYnijm; = (Entj + my %) Ynljm; -

To consider the effect of the perturbation term -£L 3, use spherical

Ime Sz
coordinates and Write Ynijm; = Rn(r)@iym; (8, ), where the angular wave
functions are

Jj+m;
Pljm; = \/ 25 an—%,m;‘-%

Jj—mj
27

j—m]' +1
Pijm; = = \/aTaYﬁ%,m,-—%

j+mj+1 . 1
+\/_Té—]-'+—2_ﬂyj+‘li’mi+l'i for]—l——z—,

-+

. 1
’B)fj—%,mj’+% fOI'j:l—i—E,

a, B being eigenstates of S, of eigenvalues % and —% respectively. Thus for
i=l+3

jt+mh

2; 2 atj-3.m;-3

S'Z(Plenj = S'Zl]mJ) :\/

j-—m]’ h
— \/—-—é—]— Eﬁyj_%'mj+%?
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and

(mj) 8, jmyy = I XM R _gomi B g m;

2 2 2j 2 G
and for j=1-1
. & (s _ h m;
Hence
/7 '—~l+1
eH <S>_eHh mild, 7= 2’
2me T 4me 1
and so
. 1
mja ]:l+—’
eHh 2
Enljmj = Enlj + 5—17; , 1
23+2 M I=ET g
Therefore,
1 1
— i=1+=,
/LBH(1+2],), 7 +2
AE= . )
H{1- , j=1-=,
KB ( 2j+2) I 2
where pp =52 |

(c) If the magnetic field is very strong, £(r)S-L « ppB and the Hamil-
tonian of the system is

2
P eH . N
——m + V(’I‘) + e (lz + 2Sz) .

H=

V]

Since (ro,fJ2,f/Z,§2, S,) form a complete set of dynamical variables,

H
Enlmm, = by t 'e_ h(m + 2ms)
2mc
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as m,==+3 . Hence
AFE = ugH .

5059

Positronium is a hydrogen-like system consisting of a positron and an
electron. Consider positronium in its ground state (I = 0). The Hamil-
tonian H can be written: H = Ho + Hg + Hg, where Hy is the usual
spin-independent part due to the Coulomb forces, Hg = As,, - s is the part
due to the interaction of the spins of the positron and the electron, and
Hp=—(pp + pe)- B is the part due to the interaction with an externally
applied magnetic field B.

(@) In the absence of an externally applied field what choice of spin
and angular momentum eigenfunctions is most convenient? Calculate the
energy shifts for each of these states due to Hs.

(b) A very weak magnetic field is applied (Hg <« Hs). What are the
allowed energies for this system in this case?

(c) Now suppose the applied magnetic field is increased such that Hg >
Hg. What kind of eigenfunctions are now most appropriate? What are the
energy shifts for each of these states due to Hg?

(d) Indicate how you would solve this problem for the energies and the
corresponding eigenfunctions in the general case; however, do not try to
carry out the algebra unless you have nothing better to do. No long essays,
please.

(Berkeley)

Solution:

(a) In the absense of the external field B take H, as perturbation. The
total spin of the system is S =s, + s, and so

5 (8%~ 82— 82) = SIS(5 + 1) —splsp + 1) = selse + 1)

It is most convenient to choose the eigenfunctions in the form [ImSS,).
The ground state I = 0 consists of four states S =1, §, =0, fl; S =
0,S,=0.Forl=0,S=1, as

Sp *Se=

Asp - s.|lm1S;) = f;i:[u + 1) —g} R?|lm1S.,),
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we have 9

et (S;=0,%£1),
which is the energy shift for the triplet state. For [=0,S5 =0, as

E, = (Im1S,|H|lmlS,) =

Hs|lm00) = g(o —)h2|lm00),

the energy shifts is —3 AR2.

(b) The external field B is switched on, but as Hg <« Hg we can consider
the effect of the external field as a perturbation (H = (Ho + H,) + Hp).

Taking |ImSS;) as the state vector and the direction of B as the z direction,
i.e., we have B = Be,,

eB R
Hp=—(pp+pe)- B = %(SEZ”SPZ)’
and (cf. Problem 5066 (b))
Hg|0000) =ET% |0010), Hp|0011) = O,

Bh
Hp|0010) :%c— |0000), Hp|001, -1) = O.

Hence {(ImSS,|Hg|lmSS,) = 0 and the energy levels do not change
further for first order perturbation, in addition to the splitting into singlet
and triplet states described in (a).

We have

Hpli)|?
E,=EO9 . ! I(nl—

As only the following matrix elements are nonzero:

(0010]H3[0000) = £B7
mc

Bh
(0000(Hg|0010) = <= |
mc

the energy levels from second order perturbation are, for |0000):

3 ., . (eBh\’ 3 .., 1,
S N C YT

3., 1 (eB\?
__4Ah_A(%>’
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for j0011) and 001, -1):

E2=E4=211—Ah2,

for |0010):

1,5, (eBR\® /(1,2 3 .,
pa=tar e (22) ) (Lar s San

1 1 [eB)\?
=—ARP+ = { = .
4 T2 (mc)

(c) As now Hp>>» Hg, we can neglect the H, term and consider only
a perturbation consisting of Hg = % {(8ez— 8pz). It is then convenient to
choose [Ims.sp.) as the eigenfunctions. Then for states |Im, +3, 1), we
have

(§ez - §p2)

2 22 2" 2

-l

and the corresponding energy shifts are zero. For states |lm,i%,q:%), we
have Bh
1 1 e 1 1
* St/ = t— 1% a2 Tao /o
T2 <2 7)
and hence the energy shifts + <52,

2" 2 mce
(d) In the general case, take |lmS$S,) as the state vector and Hi = Hg+
Hp as the perturbation Hamiltonian. Then treat the problem using the
perturbation method for degenerate states, i.e., solve the secular equation
det |H},, — Edmn|=0 to find the energy corrections and the corresponding
wave functions.

1 1 R
+ E,i—> = Sez

1 1 1 1
:&:—,:t->—§p, :{:—,:I:—>

Hp

5060

An atom is in a state of total electron spin S, total orbital angular
momentum L, and total angular momentum J. (The nuclear spin can be
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ignored for this problem). The z component of the atomic total angular
momentum is J,. By how much does the energy of this atomic state change
if a weak magnetic field of strength B is applied in the z direction? Assume
that the interaction with the field is small compared with the fine structure
interaction.

The answer should be given as an explicit expression in terms of the
guantium numbers J, L, S, J, and natural constants.

(Princeton)
Solution:

The Hamiltonian and eigenfunctions before the introduction of magnetic
field are as follows:

H=H,,
YnrLiMy; = Rapg(r1,...,™n) dsLam, »

where the subscripts of r,1,2,... ,n, represent the different electrons in
the atom, and ¢sz, s, is the common eigenstate of (L?,S2,32,J,),i.e,

$sLam, = O (LMLS, My — ML|IM;) Yir, ©s,m,—my
ML

(LMLS,M;—Mr|JM;) being Clebsch-Gordan coefficients. The corre-
sponding unperturbed energy is Ensr -

After switching on the weak magnetic field, the Hamiltonian becomes
eB . eB

H=Hy+ —J
Ho + 2Mec 2 2Mec

S,

As B is very small, we can still consider (L2,82,J2,J,) as conserved
guantities and take the wave function of the system as approximately
Ynrsm,. The energy change caused by the term By isAE;= Mjh £

2me 2me

asJ, has eigenvalue Mjh. The matrix of =2 S, is diagonal in the sub-

2mc

space of the 2 J + 1 state vectors for the energy E,r 7, and hence the energy
change caused by it is

N B N
AE, = (8,) = % (TMy|8,|T M),

eB
2me
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where

(IM3|8.1IMy) = 3" h(My — ML)[(LMLS, My — ML |TM)}.
ML

The total energy change is then

AE = Mjhw; — hw; +Z(M_]“‘ML) -[(LMLS, MJ—MLIJMJ)]z,

ML

where
eB

wp = .
2me

5061

The deuteron is a bound state of a proton and a neutron. The Hamil-
tonian in the center of mass system has the form

H=E v taponta)+ [ (o X) (on- %) - 3lop-on)] 1300,

Here X = Xp— Xp, 7 = |x},0p and o, are the Pauli matrices for the
spins of the proton and neutron, g is the reduced mass, and p is conjugate
to x

(a) The total angular momentum J2 = J(J + 1) and parity are good
guantum numbers. Show that if V3 = 0, the total orbital angular momen-
tum L2 = L(L +1), total spin $?=S(§+ 1) and S=1 0, + 3 ox are good
guantum numbers. Show that If V3# 0, S is still a good quantum number.
(It may help to consider interchange of proton and neutron spins.)

(b) The deuteron has J = 1 and positive parity. What are the possible
values of L? What is the value of S?

(c) Assume that V3 can be treated as a small perturbation. Show that in
zeroth order (i.e. V3 = 0) the wave function of the state with J, = +1is of
the form vo(r)|e, a) where |o, ) is the spin state with sp, = sp, = +1/2.
What is the differential equation satisfied by wq(r)?

(d) What is the first order shift in energy due to the term in V3?7 Suppose
that to first order the wave function is

Po(r)le, a) +Pr(x)la, o) + Ya(x)(|e, B) + 18, @) + P3(x)IB, B) ,
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where |3) is a state with S, =—1/2 and ¥y is as defined in part (c). By
selecting out the part of the Schrodinger equation that is first order in V3
and proportional to (a, a) find the differential equation statisfied by ¥ (x).
Separate out the angular dependence of %1 (X) and write down a differential
equation for its radial dependence.

(MIT)
Solution:

(@) Use units such that & = 1. First consider the case where V3 =0. As

) 1 8% 1_,

P lga Ve 1= Vo
we have
[L%,p?] =0,
[L2, Vi + (05 - on)Va] = [L2, Vi] + (0 - o) (L2, V3]
=0+ (op-0,)-0=0,
and so

[L?, Hy,—0] = 0 .

Thus L? is a good quantum number. Now consider the total spin 82. As

1l 2 .2 5 1/ 13 13 1 3
S”.S":E(S_Sp_s")=§. Sé— .- —-=.= =_2_ S2__ ,

2 2 2 2 2
1 1
SP_EUP’ Sn——Z'O'n,
we have 1
[S%,0p - 00 = 3 [0p-On, 0p-00] =0,
Furthermore,

[S?%,p%]=0, [S%Vi(r)]=0.

Hence [S2, Hy,—o0] = 0 and S? is also a good quantum number.
If V3£ 0, we have to consider also

(oo 2l 2= {2 (002 (o 37,
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AsoOp+ 0, =2(5, +5,) =28 and
(70 3) = (o0 ) (- B) = %2 %)
= D e DT (X
using the formula
(0-A)(c-B)=A -B+io-(AxB),

the above becomes

(o 2) (o D) =252 1

Then as \ X \ zi
s (s-3)] =2 1%81(3) =0,
we have
[$° (o 3) (o 7)] =0,
and so

[S%,H]=0, [S,H]=0.

Hence S is still a good quantum number if V3#0.
(b) The parity of the deuteron nucleus is

P=P(p) - P(n) - PL =(+1) - (+1) - (-1)% = (-1)*.

Since the parity is positive, L =even. Then as S can only be 0 or 1 and
J =1, we must have S equal to 1 and L equal to O or 2.

(c) In zeroth order perturbation V3=0, L, S are good quantum num-
bers.

For the lowest state, L =0 and so L,=0. Then for the state J, =
L,+8S,=1,5,=1and hence S = 1, sp; = +1,s,,=+3. Because
L =0, the spatial wave function is spherically symmetric i.e., 19 = ¥o(r).
Thus the wave function of state J, =1 is ¢o(r), and

Hapo(r)|a, a) = Evo(r)|a, o) .

As
Op On =48, -8, =287 — 252 — 252 =282~ 3,
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and so
op - onla,a) = (28% - 3)|e,a) = 2 x 2 = 3)|a,a) = o, @),

we have

Hiorllo) = -3 % 2 (7 2 ) + v

X ’t/)o(?‘)'a, Cl) + Vz(r)%(r)laa CY) .

Hence the differential equation satisfied by g is

1 d 5 dibo 2u
;E-d—r (7‘ ?)‘*‘{'ﬁi’[E"Vl(r)—‘é(T)] P =0.
For L # 0, the wave functions of states with J, =1 do not have the

above form.
(d) In first order approximation, write the Hamiltonian of the system

as
H=Hy,+ H',

where

= [l 3) (en3) = 5on o]

and the wave function as

¢ = 1/)0!0, (l) .
The energy correction is given by
AE = (Y|H'|[¢).
As
X - o sinds 0 cos§  sin Ge‘i“’l)
o-— =0;sInfco z = i .
- z S S + oy SINUSsIn @ + o, cos sin Bei — cos

(@ x| )= (1 0) cosf sinfe™*¥ (1) _ 9
ol = sin fe'® €08 0 o)~
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we have
X b4 1 2 1
{a, al (0',,- ;) <an . ;—) - -3—ap-an[a,a) = cos“ 9 — 3
and hence
AE = (y|H'|[¢)

- /|¢0|2V3(r) <c0820 - %)dx

oo . 27
- J Va(r) o r2dr / / <0032 6 %) sin 6d8dy
Q Q

=0.

Note that as S is conserved and L is not, the wave function is a super-
position of the spin-triplet states (S = 1):

$(x) = Yo(r)la, o) + Pr(x)la, a) +h2(x) (|, B)
+ 18,a)) + ¥3(x)18, B)
and
Hy=(Ho+ H)p=E+ED+ .. ).
Therefore, in first order approximation, making use of
EM=AE=0
and
Hoyola, a) = Evpola, o),
we obtain
Ho[th|a, ) + ¥2(la, )+ 18, @) + ¥316, B)] + H'¢ola, a)
= Elhla, a) +¢2(le, 8) + 18, @) + ¥316, 8)] -

To calculate the perturbation term H’yg|a, a):

Hlo) =0 | (7 %) (on- %) = o 00)] fove)

cos§ cos@ 1
=V; ‘ : - = .
3(r)o [(sin fe*¥ )p (sin fe*¥ )n 3 Iaa)}
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cos @ . 0 1 + sin Bei® 0
cingei® | = cos 0 sin fe 1

=acosf + Bsinfe' |

H'yola, a) = Va(r)o [:os2 e — %] ey, a)+ Va(r)o sin 0e'2%|3, 8) .

By considering the terms in the above equation that are proportional
to|a, ), we can obtain the equation for the wave function ; (x):

R (1 8 a L2
-5 (72 - (rz _a_r) _ W) P1(x) + Vi (r)
+ Va(r)1 + Va(r)o(r) (cos2 [ %) =Ev, .

Writing ¥1(x) = R1(r)®1(6, ), we can obtain from the above

1 1 /16w
®,(0,¢) = cos? — 3= 5\/ —5-—Y20(9, ®)s

and thus L2®; = 2(2 + 1)h2®,. The equation for R; is

1 d [ ,dR1\  2u 6
73 gr (’I‘ ar ) + R [E—Vl('l') —Vg(T‘) — 7‘_2] R,

= i—l: Vg(’r‘)’l/)o(’r) .

Here, it should be noted, even though the normalization factor of &,
will affect the normalization factor of Ry, their product will remain the
same. It is noted also that ,(x) corresponds to L =2, L, = 0. By
considering the term in H'to|aa) that is proportional to |3, 3), we see that
¥3(x) corresponds to L = 2, L, = 2. Then from the given J, = 1, we can
see that v¥2(x) corresponds to L = 2, L, = 1 (note that J, is also conserved
if V3# 0). In other words, the existence of V3 requires the ground state of
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deuteron to be a combination of the L = 0 and L = 2 states, so that J =1,
S=1,J,=1 and parity = positive.

5062

Consider the bound states of a system of two non-identical, nonrela-
tivistic, spin one-half particles interacting via a spin-independent central
potential. Focus in particular on the 3P, and * P, levels (3 P: spin-triplet,
L=1,J=2 P :spin-singlet, L =1,J=1). A tensor force term
H' =X3c(1).t0o(2).f—a(l) - a(2)] is added to the Hamiltonian as a
perturbation, where X is a constant, r is a unit vector along the line joining
the two particles, o(1) and a(2) are the Pauli spin operators for particles
land 2.

(a) Using the fact that Hi commutes with all components of the totall
angular momentum, show that the perturbed energies are independent of
m, the eigenvalues of J,.

(b) The energy is most easily evaluated for the triplet state when the
eigenvalue of J, takes on its maximum value m = j = 2. Find the pertur-
bation energy AE(3P,).

(c) Find AE(* Py).

(Princeton)
Solution:

(a) Use units for which h=1. As S = ; [a(l) + o(2)], the perturbation
Hamiltonian Hi can be written as

Hi =A{§[(28-f)2—(a<1>-f)2— (a(2) -#)?]
1
-3 [48% — 0(1)? — o(2)?] }
= A[6(S - £)? — 287,
where we have also used the relation

(0- %)% = (00 +0y+0,)(0z + 0y + 72)

=02 +ol+ol=0?,
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on account of
0i0; + 0;0; = 26ij .

To prove that Hi commutes with all components of the total angular
momentum J, we show for example [J,, Hi]1 = 0. As [S,, S?% = 0,[L,,S8%=
0, we have [J,,8?] = 0. Also, as [Sz, Sy] = ikS,, etc, L, = ~ik 5"’5, we have

(J2,S - £] =[S, S £} + [L.,S - §

= [S,, sin  cos ¢S, + sin 8 sin pSy + cos 65,
+[L,, sin 8 cos ¢S + sin @ sin S, + cos 65,]

=ih sin 6 COS pS, —ih sin @ sin S,
—ih—aa— (sin @ cos @Sy + sin @ sin Sy + cos 8S,)

v
=0,
and hence
(o (S 8)3] = (S %) (Js, S+ 8]+ [J;,S- 7] (S %) =0.

Combining the above results, we have [J,, Hi] = 0.
Similarly we can show

[Jz, H')=[Jy, HI] = 0.
It follows that J, = J; +4J, also commutes with Hi. J+ has the property
J+|j,m)=aljm+1).
where a is a constant. Suppose there are two unperturbed states
|7, m1) and |j, ma), where my = my + 1,

which are degenerate and whose energies to first order perturbation are E;
and E» respectively. Then

(4, m2|[J+, Ho + H']|j, m1)

= (JymalJs(Ho + H')|j,m1) ~ (4, ma|(Ho + H')J1|j,m1)
(E1— E2)(j, ma|J+|J, m)
a(E1—E3)=0
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as

(HO + H,)|j’m1> :Elljam1> y
(Ho + H')Jy|j,m1) = (Ho + H')alj,ma)
= Eaalj,m2) = EaJy|j,my).

Since the matrix element a # 0, Ey = E», i.e., the perturbation energies
are independent of m.
(b) The perturbation energy is
AE(GP)=(j=2 m=2|H|j=2,m=2).

Since

=2, m=2) = |l:1,ml:1)[S=1,m5=1),

AE(SPQ) :/dQYl*l(G,go)(S = 1,m3 = 1|H'|S = 1,7713 = 1>Y11(0,<,0)
- 3 - ‘2 2 -
= — X [ sin“e(3 cos” e — 1) 2 sin 6df
87
3 "3 2
=Z/\ sin®(3cos“ @ — 1) df
2
=-F Al
(c) For the state 'P,,as S =0, m, = 0 and so H' = 0, we have

AE(lpl) =0.

5063

A hydrogen atom is initially in its absolute ground state, the F =0
state of the hyperfine structure. (F is the sum of the proton spin I, the
electron spin s and the orbital angular momentum L.) The F = O state is
split from the F = 1 state by a small energy difference AE.
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A weak, time-dependent magnetic field is applied. It is oriented in the
z direction and has the form B, =0, t <0, B, = Byexp(—~t), t > 0. Here
By and <y are constants.

(a) Calculate the probability that in the far future when the field dies
away, the atom will be left in the F = 1 state of the hyperfine structure.
(b) Explain why, in solving this problem, you may neglect the interaction
of the proton with the magnetic field.
(Princeton)

Solution:

(a) When considering the hyperfine structure of the hydrogen atom, we
write the Hamiltonian of the system as

H=H0+f(r)ap'68;

where Hp is the Hamiltonian used for considering the fine structure of the
hydrogen atom, f(r)o,- . is the energy correction due to the hyperfine
structure, op and o, being the Pauli spin matrices for the proton and
electron respectively.

When the atom is in its absolute ground state with L=0,j=s= %, the
hyperfine structure states with F = 0 and F = 1 respectively correspond
to spin parallel and spin antiparallel states of the proton and electron.

The initial wave function of the system is

¥(r, F) = R10Yo00(0, ¥)O00 -

Letting a, B represent the spinors ((1)),(‘1’), we have the spin wave function
Qoo = ! (—apBe + aefp)
00 = \/i pHe eMp/>

which makes ¥ antisymmetric. When t > 0, a weak magnetic field B, =
Boe~"* acts on the system and the Hamiltonian becomes

H=H 4 feB:
= Ho+ f(T')O'p ‘O 2NC ez

neglecting any interaction between the magnetic field and the proton.
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Suppose the wave function of the system at t>0is
P(r, F,t) = R1o(r)Yoo[C1(t)Bgo + C2(t)O11 + C3(t)O10 + Cs(t)O1,-1],
where
O11 = opa, |

O1,-1 =060,

1
O10 = E(apﬂe + aefp)

Then the probability that the system is at hyperfine structure state
F=1attimetis
A = 1- |G,
and the initial conditions are

C1(0) = 1, C2(0) = C3(0) = Cy(0) =

As
oza =0, oz8=a,
oya =18, 0,0 = —ia,
oa=a, 008=-0,
we have

1
Op - 7.000 =(0'pz0'ez + OpyOey + Upzaez)ﬁ(_apﬁe + aeﬁp)

= — 300,

and similarly
Op - 0eO91m = O1m .

Finally, from the Schrédinger equation iA2 v = Hy we obtain

dC dcC dC dC
dtl G0 + dt2 O + d3 O10 + — 91 —1)

= Riyo(r)Yoo{[E10 — 3f(a0)]C1(t)B0o
+ [Er0 + f(a0)] [C2(t)O11 + C5(t)O10 + Cu(t)On,-1]}
+ Ri1o(r)Yooro B:[C3(t)Oo0 + C2(t)O11
+ C1(t)B10 — C4(t)O1,-1] .

iﬁRlo(T)Yoo (
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Comparing the coefficient of G and of ©10 on the two sides of the
equation, we get

th % Ci(t) = [Elo — 3f(a0)] Ci(t) + Cs(t)uoBoe——'yt ’

ih S Cs(t) = [Bro + £(a0)]Ca(®)+ CrlthoBoe™".

As the energy of the hyperfine structure, f(ao), is much smaller than
E1o, energy of the fine structure, it can be neglected when calculating Ci(t).
Then the above equations give

Cl(t):% e i ALt {eﬂﬁé}"ﬂl (1=e™™) e—i—"?ii‘h(l—f")}_

Ast — oo,

|C1(t)]* — cos? (%—?) .

B . B
Alt)ltsoo=1 — cos? (———#:ho) = sin? (—H?yho) ;

which is the probability that the hydrogen atom stays in state F = 1.

(b) The interaction between the magnetic moment of the proton and
the magnetic field can be neglected because the magnetic moment of the
proton is only 18% of the magnetic moment of the electron.

Hence

5064

A spinless nonrelativistic particle in a central field is prepared in an
s-state, which is degenerate in energy with a p-level (m¢=0, *1). Attime
t=0an electric field E = Eg sin wti is turned on. Ignoring the possibility of
transitions to other than the above-mentioned states but making no further
approximations, calculate the occupation probability for each of the four
states at time ¢, in terms of the nonzero matrix elements of z.

( Wisconsin)

Solution:

Choose the four given states as the state vectors and the level of energy
such that the degenerate energy E = 0. The Hamiltonian of the system is

H=Hy+ H H =—-gE .r = —gEpzsin wt.
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To find the perturbation energy matrix one notes that only elements
{ + 1,my|z|nare non-vanishing. Thus we have

|00} {10) |1, —-1) |11)

(00| 0o 1 0 0

A= iw‘ ) (1) g g 0| (CoBol00lz10)sinwt).
1, -
(11] 0o 0 0 0

Suppose the wave function is ¥ = (x1, 2,3, Z4), and initially ¥{t =
0) = (1,0,0,0), where zy,z9,z3,24 are the four state vectors. The
Schrédinger equation ik % 1 = Hv can then be written as

d I . 01 I
. el [ 1
mdt (m2> Asmwt(l 0> <z2> , 0))]

d T3
i =0, 2
ind (m) (2)

where A = gF4(00|2|10) is a real number.
Equation (2) and the initial condition give

() - ()= ()

which means that the probability that the system occupies the states m; =
+1 of the p-level is zero. To solve Eq. (1), we first diagonalize the matrix

by solving the secular equation
Al I
=0,

1 A

which gives A = fl. Hence the first two components of  are to be trans-

formed to
-3 (272)= ()
- \/i Iy — T2 - b )

Then Eq. (1) becomes

d [a . 1 0 a
. — _ " ,
mdt (b) Asinw (O _1) (b)
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subject to the initial condition

()7 0)

Solving the equation we find

- oo {2 1~ coson)

b V2 exp{——%(l—coswt)}

To get back to the original state vectors,

()50
B ) - \/5 a—b
cos [% (1- coswt)]
isin [% (1- coswt)]
Therefore, the occupation probability for each of the four states at time
tis
2 [9E0(00|2]10)
hw

. gE0(00|2|10)
Pp(m,=0) ()= |IIU2|2 = sin? [—T (1 — coswt)

P,(t) = |z1|? = cos (1 —coswt)l

Pp(ml=ﬂ:l) (t)=0,

where (00|z]10) is to be calculated using wave functions RniYim (6, ¢) for a
particle in a central field and is a real number.

5065

An ion of a certain atom has L =1 and S = 0 when it is in free space.
The ion is implanted in a crystalline solid (at z =y =z = 0) and sees
a local environment of 4 point charges as shown in the Fig. 5.19. One
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can show by applying the Wigner-Eckart theorem (DONIT TRY) that the
effective perturbation to the Hamiltonian caused by this environment can
be written as

83
Hl:ﬁ(Lg_L?/)v

where L, and L, are the x and y components of the orbital angular mo-
mentum operator, and a is a constant. In addition, a magnetic field is
applied in the z direction and causes a further perturbation H, = @5'? L,,

where L, is the z component of the angular momentum operator and g is
a constant.

-

-Q

Fig. 5.19

(a) Express the perturbation Hamiltionian HT = H, + H, in terms

of L+ and L_, the TraisingT and iloweringT operators for orbital angular
momentum.

(b) Find the matrix of the perturbation Hamiltonian in the basis set
using the three states |1,0),|1,1)and |1, -1).

(c) Find the energy levels of the ion as a function of B. Make a careful
sketch of your result.

(d) When B =0, what are the eigenfunctions describing the ion?
(MIT)
Solution:
(a) From the definitions Ly = Ly +iL,, we get

(Ly,L_] = —2i[Ly, L) = 2hL,,

1 1
2= L= (Lot L)P + (Lo~ L)P = 2 (L2 + I2).

DO | b
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Thus the perturbation Hamiltonian is

B
H = %(Lf,— L;)+ﬁ—Lz
BB
2h2 (L3 + I2) + o (Lol = LoL#).

(b) Using the formula

Li|lL, ML) = Av/L(L + 1) —M(Mp+ 1) | L, M+ 1),
we find the following non-vanishing elements
L%]1,1) = V2RL_|1,0)

2R%11, —1),

L21, -1) = 2R%|1,1),

LyL_|1,1)=2K%1,1),

L,L_|1,0) = 2K%1,0),

L_L.|1,0) = 2k%|1,0),
L_L,|1, -1) = 2R?1, -

and hence the matrix (LT, Mz|H'| L, ML})) as follows:
‘1a1> |1’0) |17_1>

(1)1| ﬂB 0 [0 4
H' = (1,0 0 0 0
1,-1| « 0 -pBB

(c) The perturbation energy E is determined by the matrix equation

6B —-FE 0 a a
0 - E 0 bl =0,
a 0 -6B-F C
whose secular equation
BB - FE 0 a
0 - E 0
a 0 —-pGB-F
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gives the corrections
Ei=-+/(BB)? + a2,
E, =0,
E; =/(BB)? + a?.

The perturbation energy levels are shown in Fig. 5.20 as functions of B,
where the dashed lines are the asymptotes.

[
//
at”
Ez
0 > B
-lal ‘\\
\

E,
Fig. 5.20

(d) If B =0, the energy levels are
Ey=-a E;=0, E;3=aq«a,
and the eigenstates are given, respectively, by
a=—-¢#0,b=0;
a=c=0, b#0;
a=c#0, b=0.

Thus the corresponding energy eigenstates are

a ) -1 a 0

b = — 0 , b =111,
2

c \/_ 1 c 0

(1) (2



Perturbation Theory 431

1

V2

(3)
In terms of the state vectors |1,1),|1,0),|1, -1) the wave functions are

E, - — =

|E1 = —a) \/_{11 \/_|1 -1)
|E2 = 0) =11,0),
|E3=a)=ﬁ|1, 1) + %11,

5066

The spin-dependent part of the effective Hamiltonian for a positronium
(bound state of electron and positron) in a magnetic field B may be written
as

Hspin = Ao, - Op t+ NBB(Uez - Upz) )
where o, and o, are the Pauli spin matrices for the electron and the
positron, and pp is the Bohr magneton.

(a) At zero magnetic field the singlet state lies 8 x 10~% eV below the
triplet state. What is the value of A?

(b) Hlustrate by a sketch the dependence of the energy of each of the
four spin states on the magnetic field B, including both the weak and strong
field cases.

(c) If the positronium atom is in its lowest energy state in a strong
magnetic field and the field is instantaneously switched off, what is the
probability of finding the atom in the singlet state?

(d) How would the result of (c) be changed if the field is switched off
very slowly?

( Wisconsin)

Solution:
(a) When B =0, the effective Hamiltonian has the expectation value
(Hspin) = A(F'miplo. - oy|Fmp),

where F = s, + s,
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As

2 2
EQ-(FQ_Sz_sp))

E = (Hspin) = 2A[F(F +1) = se(se + 1) —sp(sp + 1)]- 6prp- Omipme -
For the triplet state, F = 1,50 Epo1=2A (1-2-3.2-1.3)=A,
For the singlet state, F = 0, S0 Ep_p = -3A.

Hence, Ep—1— Ep—q =44 =8x10"%eV, giving A =2 X 10~4eV.
(b) We first transform from representation in coupling state vectors to
that in non-coupling state vectors:

Oc-0Op=

1 1 1 1
!F:]-: mF:1):Sezivmsez’ivspzivmsp=§>’

|F=1,mp=0)= %{

Se =

Then as MBB(Uez_ Upz) =2 f?B(

Sez — Spz) an((
1
(Sez — $pz)|F =0, mp = 0) = — (Sez — Spz)
2
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(Sez — 8pz)|F =1,mp=0) = h|F =0,mp=0),
(Sez = Sp)|F =1, mp=1) = (Sez — $pz)|[F =1,mp =—-1) =0

and using the results of (a), we have in the order of |1,1),]1,-1),|1,0),
[0, 0),

A 0 0 0
Hypn = 0 A 0 0
0 0 A 2upB
0 0 2upB -34
The secular equation
A-E 0 0 0
0 A-E 0 0 _
0 0 A-E 2ugB |
0 0 2upB  -3A-FE
then gives the spin-energy eigenvalues
E,=FE;=A,

E3=—A+2¢/A? + 43 B2,

Ey=—A—2\/A2+ 43 B
The variation of E with B is shown in Fig. 5.21. If the magnetic field
B is weak we can consider the term pgB(0.,— 0p.) as perturbation. The
energy correction is zero in first order perturbation and is proportional to
B?in second order perturbation. When the magnetic field B is very strong,
the energy correction is linear in B.
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(c) When the positronium is placed in a strong magnetic field (zgB >
A), the lowest energy state, i.e., the eigenstate whose energy is approxi-
mately -A —2ugB,is

1 1> 1
m8€=_§, msp:-z = —5 {,1,0)—|0,0>},

where we have considered Au, . a5, as perturbation. If the magnetic field
is switched off suddenly, the probability that the atom is in state |F =
0, mp=0) is

2

1 1 2 1

(d) If the magnetic field is switched off very slowly, no transition occurs
and the atom will remain in the state |1,-1,43), and the energy of the
system is E = -A.

5067

Positronium consists of an electron and a positron bound by their
Coulomb attraction.

(a) What is the radius of the ground state? The binding energy of the
ground state?

(b) The singlet and triplet ground states are split by their spin-spin
interaction such that the singlet state lies about 10~2 volts below the triplet
state. Explain the behavior of positronium in a magnetic field. Draw an
energy level diagram to illustrate any dependence on the magnetic field.

(Berkeley)

Solution:
(a) The hydrogen atom has ground state radius and binding energy
ag = 77,2/,ue2 ~ 053 A,
E; = pe* /2%~ 13.6 eV,

where p =mem;/(me + mp), the Coulomb potential V(r)=—e?/|r; —ro|
having been used.
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The results may be applied to any hydrogen-like atom of nuclear charge
Ze with the replacements

V(r) —)V’(’I‘) = —Ze2/|r1— r2|,
p— ' - myma/(my + ma),

ml, m; being the mass of the nucleus and that of the orbiting electron. For
positronium, p' =%, Z =1, and so

ap = h*/p'e® = aop/u' = 2a0~ 1 A,
1
Ei=p'e*/2h? = WE/p = 3 B1~68eV.

(b) Choose |0,0, S,S;) as the eigenstate and take as the perturbation
Hamiltonian

eB
Hl — ASe ‘Sp —+ T_V:E(SEZ_ sz) y

where A = “’—;}e—v.-Using the results of Problem 5066 we have the
perturbation energy matrix

AR?/4 0 0 0 (1,1)
0 Ah?/4 0 0 1,-1)
Hon=| o o ana B | @wo
mc
B
0 o - 3] (00
mc 4

from which we find the perturbation energies

E;

E, = AR?/4,
2\ 2 B\?2
—An2/4+,/(éh—) +R2 (i-) :
2 mc
2\ 2 B\ 2
E4 = —AR2/4— ,/(ﬁi—) +h? (e—> .
2 mc

The dependence of the energy levels on B is shown in Fig. 5.22.

E;
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The result shows that the energy levels of the hyperfine structure is
further split in the presence of a weak magnetic field, whereas the hyperfine
structure is destroyed in the presence of a strong magnetic field. These
limiting situations have been discussed in Problem 5059.

E
A &
O
~ ~
2 -~
Ah/ld — Ey =EZ B
TY A -
-34h%, S
J Sy
Fig. 5.22
5068

Estimate the magnetic susceptibility of a He atom in its ground state.
Is it paramagnetic or diamagnetic?

(Chicago)
Solution:

Suppose the He atom is in an external uniform magnetic field H = Hé,
(H being a constant). The vector potential A, defined by H=V x A, can
be taken to be A =1 H(—yé; + zé,). The Hamiltonian of the system is

then
2
-A) —py-H.

3|~
/—\

-y

=1

As the helium atom is in the ground state, ps=0. Thus

a=S L (P,-—%A)z,

2m

e

i=1

where m and e are respectively the mass and charge of an electron.
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The magnetic susceptibility is given by x = —41r%’%}|g=0. For helium
atom in its ground state,
2 e e e?
H=S — [ P?--A.P,—-P;-A+ A},
; 2m ( e c ! c? )

2

8*H e’ 2 2 e? 2, .2
OH? _; 4mc? (@ +y7) = 2mc? (= +v7),

1

and so

0’E

X=~ 4" 5m

H=0
2

— 4x 5% (He ground state |H|He ground state)

2

€ 2 2
— A T (He ground state |z” + y°|He ground state)

2

— 4 (22 +y?).

2mc?
As 22 + y% + 22 = r?, we can take

— = 1,
z? = y2 ~ §rHeg,s. )
where 7%, , 1S the mean-square distance of each electron from the He

nucleus in the ground state, which gives

2.2
dm €Ty, ,
X ¢ 3m

in Gaussian units. Note that as x < 0, helium atom in its ground state is
diamagnetic.

5069

An atom with no permanent magnetic moment is said to be diamagnetic.
In this problem the object is to calculate the induced diamagnetic moment
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for a hydrogen atom in a weak magnetic field B ignoring the spins of the
electron and proton.

(a) Write down the nonrelativistic Hamiltonian for a particle of mass m
and charge q in a combined vector and scalar electromagnetic field.

(b) Using the fact that a satisfactory vector potential A for a uniform
magnetic field is A = —%rx B, write down the steady-state Schrédinger
equation for the hydrogen atom. Assume the proton to be infinitely massive
so center of mass motion can be ignored.

(c) Treat the terms arising from the magnetic field as a perturbation
and calculate the shift in the ground state energy due to the existence of
the magnetic field.

(d) Calculate the induced diamagnetic moment per atom.

(MIT)

Solution:

(a) A particle of mass m and charge ¢ in an electromagnetic field of
potentials (¢, A) has Hamiltonian

= o =24 e

(b) If the motion of the proton is neglected, the Schrédinger equation
for a hydrogen atom in a uniform magnetic field B is

2

Bxr) - | vie) = Eu),

e
2c

[2me (o

where ¢=-e for an electron, or
2
1 . € e e? N
{2me [p +%p-er+%er'p+E(er) I:T Y(r)

= E+(r).

As

p-Bxr—-Bxr-p=—-ihiV-(B xr)
=—il(VxB) - r+iiB-Vxr=0
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because B is uniform and V xr = 0, we have
p-Bxr=Bxr-p=B.-rxp=B-L.

Taking the direction of the uniform magnetic field B as the z direction, we
have B = Bé,,B-L = BL, = ihB(% and

(B x r)? = (—Byé, + Bzé,)? = B%(2* + y*) = B*r?sin? 9

in spherical coordinates.
The Schrodinger equation can then be written as

2 Y 22
(—j— Vz—e—-éﬂ;ZmecieBh&pa + ;ch2°2T2 sin? 9) W(r,8,¢)
m. e 1 Imlde .
= EY(r,0,¢)
in spherical coordinates.
(c) Treat

H' r?sin? 9

= +
2mee © 8mec?

as a perturbation. The energy shift of the ground state is

AE = (100{H’|100)

1 _
100) = Rio(r)Yoo(6, %) =4/ —3e

2
where a = ;2. Thus

T 0o 3 2p2
21r/ sin0d9/ 1‘2d1"l (l) e~ 2r/2p2 gin? 0:| "‘c;'i
0 o T \a 8mec

1
a30

with

15!

AFE =

e?B? a%e?’B?
3mec? 4dmec?

rie= /e gr .

Note that for the ground state, I = 0, m; = 0, and the first term of H”
makes no contribution to AE.
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(d) The above energy shift is equal to the energy of a magnetic dipole
in a magnetic field B,

AE=-u-B,
if the dipole moment is
e%a?
B et

This can be considered as the dipole moment induced by the field. The
atom is diamgnetic as p is antiparallel to B.

5070

The magnetic polarizability of an atom is defined by ag=-

2
?a—’i},’ﬂm:o, where E(H) is the energy of the atom in a constant external
magnetic field.

(a) Estimate the magnetic polarizability of the F = 0, 1s hyperfine
ground state of a hydrogen atom.

(b) Estimate the magnetic polarizability of the ground state 1s2of a
helium.

(CUSPEA)
Solution:
(a) If the magnetic field H is very weak, the perturbation Hamiltonian
isH = —-p-H.
Taking the direction of H as that of the z-axis and letting the spins of
the electron and proton be S and | respectively we have

p- H = 57 (geusS, + obtpl:)H

=h! [% (gers + doltp) (S: + L) + % (oot — o) (5, - 1) | H.

The first order perturbation makes no contribution to ay as (cf. Prob-
lem 5066). (F = 0,mp = 0|S, £ L|F = 0,mp = 0) = 0.We then
consider the energy correction of second order perturbation for the ground
state F = 0, Ls:

1
F = 1|-p-HIF=0)?
(H) Z Ep_o— Er=1

m=-—1
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where m is the quantum number of the projection on z axis of F.

E@(H) = z|(F_ 1, m|—p-H|F = 0, 0)[*/(Er=0— Ep=1)

m=-1

1
- 1
R Y F = 1, mis (gens = goip) (S:— L)IF = 0,0)1

m=-1

/(EF=0 — EF=1),

as (S, + 1,)|00) = 0. Then as (S;—1.)|0,0) = h|1,0), the matrix elements
are all zero except for m = 0. Thus

E(z)(H) = |( =1, m=0|; (gellfB gpﬂp) (Sz—Iz)

|F =0,0)|?H?h"%/(Ep=0 — Er=1) -

As pp < B, ge = 1, and the spectral line F =1 — F =0 has frequency
140 MHz, corresponding to Ep—1—Er—o=0.58 x 1075V,
Iy
2(Er=1— Er=0)
=29x10" " eV/Gs?.

a(H) =

= (5.8 x 107%eV/Gs)?/(2x 5.8 x 107" eV)

(b) Consider a helium atom in a uniform magnetic field H. The vector
potential is A =1H xr and it contributes e>A%/2mc?® per electron to
the perturbation Hamiltonian that gives rise to the magnetic polarizability
a(H) (Problem 5068). If the helium atom is in the ground state 1s?
then L =8 =) = 0. Taking the direction of H as the z direction, we have

2A2 o2 H2
2mc? ~

H' =2 =z @ +y7),

the factor of 2 being added to account for the two electrons of helium atom.
The energy correction is thus

62H2
n o _ 2 2
B(E") = (| gz (2 + 1) )
e?H? e?H? 2
— 2 4 2 = L2
4mc? Ty dme2 370"
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where rg is the root-mean-square radius of helium atom in the ground state,

as g = F+?+z—2and z2 = F = 22. Since rg = —Z%s; = %, ao being
the Bohr radius of hydrogen atom,
’E e2 2 sap\? 1 [ ek \? 2a
0H? ,_, 2me? 3 \ 2 6 \2mc/ e
- _ M
6E;’
where ug = ﬁ‘c is the Bohr magneton, E = -2%:—0 is the ionization potential

of hydrogen. Thus

(06x107%)* _,, 19 2
- — = 4. V .
ol H) 5 X 136 x 107" eV/Gs

5071

A particle of mass m moves in a three-dimensional harmonic oscillator
well. The Hamiltonian is

_p 1,
H= % + '2—kI' .
(a) Find the energy and orbital angular momentum of the ground state
and the first three excited states.
(b) If eight identical non-interacting (spin-i) particles are placed in such
a harmonic potential, find the ground state energy for the eight-particle
system.
(c) Assume that these particles have magnetic moment of magnitude p.
If a magnetic field B is applied, what is the approximate ground state energy
of the eight-particle system as a function of B. Plot the magnetization
—g—g) for the ground state as a function of B.
(Columbia)

Solution:
(a) A three-dimensional harmonic oscillator has energy levels

ENZ(N+%)M,
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where wy/£,
N=2n.+l,N=0,1,2,...,n,=0,1,2,...,
1=N-2n,.

For the ground state, N = 0 and the energy is Ep = %hw, the orbit angular
momentum is L = 0.

For the first exited state, N = 1, E; = %hw, L =~Ah.Asl =1 the level
contains three degenerate states.

(b) For spin—% particles, two can fill up a state. Thus when fully filled.
The ground state contains two particles and the first three excited states
contain six particles. Thus the ground state energy of the eight-particle
system is Eo=2 X 3 hw + 6 X 3w = 18hw.

(c) The Hamiltonian of the system is

&L/ p? 8 2
Ao3 (Bmrikt) -Lw - Lt B
i=1 i=1 i=1

8 2 8
[ 1 av 7‘,‘)
+ E Az(ri) + E 5. 5.3 ( L‘i + 84,
i=1 i=1

2mc? 2m?2c?r]  dry

where V(r;) = %kr?, A is the vector potential %er giving rise to B.
As the eight particles occupy two shells, all the shells are full and we
have S=0,L=0,j=0.
The wave functions of the system are the products of the following
functions (excluding the radial parts):

Yoo(e1)Yoo(ez2) 75 {(1)8(2) — a(2)B(1)}
Yii(es)Yu(es) 75 {a(3)8(4) - a(4)6(3)},
Yio(es)Yio(es) o5 {a(5)8(6) - a(6)4(5)},
Yi_1(er)Y1-1(es) 5 {a(7)B(8) — a(8)B(7)},

where e; =r;/r;. Note that the two space sub-wave functions in each are
same. Then as the total space wave function is symmetric, the total spin
wave function must be antisymmetric. As

oz = 3, oya = if, o, =q,

Uzﬁ = Q, O'yﬁ = _ia7 02/8 = _/61
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we have

712 75 {(1)8(2) ~ o)D)} = 75 (BLBE) - 2L},
722 25 {a()B) — )N} = =5 {BBER) - @D},
71y 75 {6(1)8(2) - a()B()} = 5 {BAER) + a@a(D)},
72y 75 (a(1)B(R) ~ B} = == (BB + ()},
712 75 (a(DB2) - a2)B(1)} = 5 {a(DA(E) + @B},
720 75 {a(1)B(2) = (A1)} = =5 {a(DBER) + a2)B(V).

Their inner products with the bra %{a(l)ﬁ(z)—a(z)ﬁ(l)}+ will result in
(012)s (02z), (T1y), (02y), as well as (01, + 02,) being zero. Hence

0
(Ullez + U2zL2z> = 7«h< <01z + a“_ : 02z>
P2

= —ih Ka—gl-> (o12) + <—é%> (@J]

17]
= —‘Lh<%> (Ulz +0’2;> =0.

Thus the ground state energy is

E_.

8
Z(an

=18hw + €2B%/8mc? i (r?sin® 9;),
i=1
and the magnetization is 1
8
- gg = %25 2 (r?sin®8;) = xB,
giving x :‘ﬁZ?ﬂ(’"? sin29) as the diamagnetic susceptibility. aB as
a function of B is shown in Fig. 5.23.
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*E
a8

B
¢=-arc tanx

Fig. 5.23

5072

Suppose one has an electron in an S state of a hydrogen atom which
is in a magnetic field along the z direction of strength H,. Attimet=0
a magnetic field along the x direction is turned on; its strength increases
uniformly from zero to H, at time t=T (H, <« H;) and then remains
constant after = T. Assume the nucleus has no spin and that

H\' _ He
H, H,’

Consider only the interaction between the electron spin and the mag-
netic field. Neglect all terms of order (%5)2 or higher. If the electron has
its spin in the z direction at t = 0, find the state of the electron when
t=T. Show that the state is an eigenstate of the Hamiltonian due to the
combined magnetic fields H = (H,, 0, H,) provided that T is sufficiently
long. Explain what sufficiently long means in this case.

(Berkeley)
Solution:
Treat the potential energy H> = —% p- Hé, = Heels.g,H, =

T Tme

gTe_g% sz as a perturbation. Before H, is turned on, the electron in the S

state of a hydrogen has two spin states, |1) with energy E+ = Ll—,fw-
LRH, = £ H,, and |- 1) with energy E_ = & H,.

Use time-dependent perturbation theory, taking the wave function as

1
2 )

’(/J(t) — e-—iE+t/h

1 —iE_t/h
2> +a_e
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where a_ is given by

1 T

a ( l‘ﬁ'<l> e~ By ~E_)t/h g
h 2

A 2
_L [TeHa b [ LN NN e g
“ihJy me T 2 P me
eH, T eH,
= t —1 dt
2imcT J exp ( “mc t)
1 (H, .eH,
=3 (E) exp (—z p— T)
imcH, eH
-z Y Dt -1
2¢TH?2 [exp( Yme T) } ’

where we have used sz|3)=%|—3).

Thus the spin state of the electron at time T is
eH, 1 1 (H, eH
T - s T2z T - - Tr . z
V(T) = exp( "2me )'2>+{2 (Hz>exp( Yme T>
imcH, eH
_ ___:l: . z _ 1
2eTH? [exp( Yme T) } }
xexp(ieHzT)l—l>.
2me 2

If the time T is sufficiently long so that Z£ < H,, we can neglected the
second term of a_ and obtain
1
5 .

eH, 1 1 H,
T) = —1 - -
v(T) = ex z2ch) 02> T3 m,

The Hamiltonian due to the combined magnetic field H = (H,, 0, H,)
is

~ eH eH
H=-p B=-—2g 4 %22,
K Csx CSz

ﬁlLet1>a = ;& and consider Hy(T). As sz|+3)=2|F1),s,|+1) =
3|+ 35) we have for T =0
2 2 )
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I:I"/’(T) = Qaexp (“ iOJZIZT> (Hys: + Hs,) (

_oh o T\ (1 1\ 1H;
= P 2 @ 2

2
1 1 1
5>"5H2 ‘§>)

N
~o—
+
N
=] =

q

ahH, taH,T 1 + 1 H, 1 __ehH, W(T)
7 &P 2 2/ 2H, |7 2/) T 2me :
The result shows that when T is sufficiently large ¥(T") is an eigenstate

of the Hamiltonian due to the combined magnetic field with eigenvalue
ehH

Jme -

5073

An electron is in the n = 1 eigenstate of a one-dimensional infinite
square-well potential which extends from x = -a/2 tox =a/2. At t=0a
uniform electric field E is applied in the x direction. It is left on for a time
7 and then removed. Use time-dependent perturbation theory to calculate
the probabilities P, and Ps that the electron will be, respectively, in the
n =2 and n = 3 eigenstates at t > 7. Assume that 7 is short in the sense
that 7 < -Elf—EQ, where E,, is the energy of the eigenstate n. Specify any
requirements on the parameters of the problem necessary for the validity of
the approximations made in the application of time-dependent perturbation
theory.

(Columbia)

Solution:
The electron in the n = 1 eigenstate of the potential well

{0 lz| < a/2,

oo otherwise
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has wave functions and corresponding energies

2 . ™ sa
o) =2 [ (5 +2)]
E, = B®n’n?/2ma?, n=1,2,....
The uniform electric field Eé, has potential ¢ = — [ Edx =—E,.

The potential energy of the electron (charge -e) due to E, H' =eEz,is
considered as a perturbation. We have

Hy,p, = (n2lH'Iny)
-2 / sin [27 (a4 2)] sin [%27 (2 + 2)] eods

[ e[z o 2

a

-
2

ny 4 Na) a
- cos[—a r(x—{- 2)] }zdx

B ey S VLRt

a (n1 — n2)27r2

a?

o e (0 -1

4eEa ning n1+na

ECE

1 h?
Wnany = ’—i (Eng — En;) = W (’n% — TL%) ,

1 /7 . ‘
Ck/k(t) = ﬁ/o Hllc’k ewrratgy — % Hllc’k (1 —einaT)

For the transition 1 — 2,

W'k

16eE
Hy = 2H'|1) = - 9‘;2‘1 ,  wa1 = 3kn?/2ma?,

and so the probability of finding the electron in the n = 2 state at ¢ > 7 is

1
P - [Cxh(D)? - =—
2 = |Cn(t)] - W,

_ {1642 3 eEmi 3hn? 2~ 16 eEa \2
T\ 9n2 hzwsn 4ma2T “\orZ h T

11521 (1 _ eiwglr) (1 B e—iwn-r)
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for T < EIEEQ.
For the transition 1 — 3,

Hy = (3|H'|1) = 0,

and so
P; = |(C1(t)> = 0.

The validity of the time-dependent perturbation theory requires the
time T during which the perturbation acts should be small. The perturba-
tion potential itself should also be small.

5074

For a particle of mass m in a one-dimensional box of length 1, the
eigenfunctions and energies are

Pn(z) = \/gsin"_’;f 0 <z< 1,

2
nzﬁ (T{E) Cno= 41,42,

Suppose the particle is originally in a state |n) and the box length is
increased to a length of 21 (0 < x<2I)in a time t« h/E,,. After-
wards what is the probability that the particle will be found in an energy

eigenstate with energy E,?
(MIT)

Solution:

First consider the process in which the box length is increased from !
to 21. As t <<E’-‘:, it is reasonable to assume that the state of the particle
in the box is unable to respond to the change during such a short time.
Therefore the wave function of the particle after the change is completed is

sin—, 0 <z X1,

P(z) = 2 l
e

J2 . nmx I<z<2.
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On the other hand, the eigenstates and eigenvalues of the same particle in
the one-dimensional box of length 21 would be, respectively,

/
s () :\/g sin "27;”" , (0<z<al,

EN 2
E, _2; ("—27;—) i o= £1,42,..0).

The energy E,, of the particle corresponds to the energy level E,in the
21 box, where } = 37, i.e, n’ = 2n. The corresponding eigenstate is then
¢2n. Thus the probability amplitude is

f L2 e 1
dx = —,
A= [ ennie / V2
and the probability of finding the particle in an eigenstate with energy E,
is
=|A]? = !
5075

A particle is initially in its ground state in a box with infinite walls at
0 and L. The wall of the box at x = L is suddenly moved to x = 2L.

(a) Calculate the probability that the particle will be found in the
ground state of the expanded box.

(b) Find the state of the expanded box most likely to be occupied by
the particle.

(c) Suppose the walls of the original box [0, L] are suddenly dissolved

and that the particle was in the ground state. Construct the probability
distribution for the momentum of the freed particle.

(Berkeley)
Solution:
(a) The wave function of the particle before the box expands is

W(z) = { \/%sin%, ze [0,1],

0 otherwise.
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The wave function for the ground state of the system after the box has

expanded is
1 T
—sin — 0,2L),
hi(z) - \/LsmzL, z €0,2L]

0 otherwise.
The probability required is then

2 V2t T Tz
\ T /0 sin o7 sin —-dz

(b) The probability that the particle is found in the first exited state of
the expanded box is

P, = l/ ¢3(z x)d:c

P=| [ i@

“/—/ m?”alav2

_1
T2
where
1 g
—sin—, X € [0,2L},
d2(z) = \/: L | }

0 otherwise.

For the particle to be found in a state n> 3, the probability IS

P, —\\/—/ n——smIdea:

. (N 2
9 sm(E—l)‘rr sm(§+1)7r

2

72 (n—2) (n+2)

32 sin? (% + 1)A
w2 (n? _ 4)2
32 1

L—=<L =
- 25X2< 27

Hence the particle is most likely to occupy the first excited state of the
expanded box.
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(c) The wave function of the freed particle with a momentum p is
—\/L)I_Trl e’P*/%, The probability amplitude is then

L
2(p) = /0 \/;W_Le_i”z/h \/%sinzg-dz
1 L/n
ThL 1 — (pL/hm)?"
The probability distribution for the momentum is therefore

2rh3L pL
d(p))? = ___‘( r~

5076

A particle of mass M is in a one-dimensional harmonic oscillator poten-
tial Vi = %kxz.

1+ e‘i”L/ﬁ}

(@) It is initially in its ground state. The spring constant is suddenly
doubled (k- 2k) so that the new potential is V; = kz2. The particleis
energy is then measured. What is the probability for finding that particle
in the ground state of the new potential V,?

(b) The spring constant is suddenly doubled as in part (a), so that ¥,
suddenly becomes V3, but the energy of the particle in the new potential
V5 is not measured. Instead, after a time T has elapsed since the doubling
of the spring constant, the spring constant is suddenly restored back to the
original value. For what values of T would the initial ground state in V; be
restored with 100% certainty?

(CUSPEA)
Solution:
(a) The wave function of the system before k change is

1/4
¥(@) = - (Mwo) e} Muwoz?/R

v Uk
Suppose that the particle is also in the ground state of the new potential
well after k change. Then the new wave function is

1/4
W)= = (M) epmesn

NN
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The transition matrix element is

= [ 2 ()" Goten g ietsly,

™ h
1 M 1/2
T (_) (wow )4 el
™ h 1 M(wo+wsy)
2 A
(w1w0)1/4

B \/%(w0+w1).

When k changes into 2k, wp changes into w; = V2w, thus

(@iwo)'/? _ (VEw)'/?

’ 2 _
[ 1) = Two+w1) L(V2Z +1)wo
21/4
“1Va+1) 22y
2

Hence the probability that the particle is in the state ¢’(x) is
28(v2 - ).

(b) The quantum state is not destroyed as the energy is not measured.

At t =0, ¥(z,0) = ¥o(x), ¥ (z) being the eigenstates of Vi. We expand
¥(z,0) in the set of eigenstates of V;:

$(2,0) = (Praltho) Y], () -

Here and below we shall use the convention that a repeated index implies

summation over that index. Then

Yz, t) = e Hat/Ryp(z,0) = (Pl |4ho) Y], (x))e i Emt/R

where Hj is the Hamiltonian corresponding to Vs. Since yg{z) has even
parity, parity conservation gives

0, m=2n+1,

(¥ (@) [0(z)) = { #0, m=2n,
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and so

(2, 7)) = [Y2m () (bamltbo)e " F2m /"

Hence |(z, 7)) = |vo(x)) can be expected only if Ez,,7/h=2Nr +c,
where N is a natural number and c is a constant, for any m. As

1
E;, = <2m+ 5) ﬁb.)ll,

we require
1
<2m+ 5) wiT=2Nm+c.
Setting
1 !
c= -wT
21
we require
2mwiT = 2N,
or
2wiT = 2N'w
ie.,
N’
T=-—,
Wy

where N’ =0,1,2,....

Thus only if 7= N'm /3 will the state change into 1o(z) with 100%
certainty.

5077

A particle which moves only in the x direction is confined between ver-
tical walls at x = 0 and x = a. If the particle is in the ground state, what
is the energy? Suppose the walls are suddenly separated to infinity; what
is the probability that the particle has momentum of magnitude between p
and p + dp? What is the energy of such a particle? If this does not agree
with the ground state energy, how do you account for energy conservation?

(Chicago)
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Solution:

When the particle is confined between x = 0 and x = a in the ground
state, its wave function is

\/5_ T 0<s<
Zsin —= z<a
o = a a’ -T o

0 otherwise,

and its energy is
n2h?

" 2ma?

When the walls are suddenly removed to infinity, the wave function of
the particle cannot follow the change in such a short time but will remain in
the original form. However, the Hamiltonian of the system is now changed
and the original wave function is not an eigenstate of the new Hamiltonian.
The original wave function is to be taken as the initial condition in solving
the Schrodinger equation for the freed particle. The wave packet of the
ground state in the original potential well will expand and become uniformly
distributed in the whole space when ¢ — oo.

Transforming the original wave packet to one in momentum (p = hk),
representation, we have

1 C 12 o mEN g
1/1(p)———2_7rh./0 \/;s1n(7)-e dz
_ ﬂr.l +eika
T VR (ka)2—n?

During the short time period of separating the walls the probability that
the momentum is in the range p — p + dp is given by

fp)dp ={I¥®)I* + 1% (~p)I*}dp

ur cos? (lc2_a) dp
=8 N2/ __ ifp Ao,
SHikay o TP

ONM2 A — 2 & e
F(0)dp =[$(O)Pdp=4 = dp ifp=0.



456 Problems and Solutions on Quantum Mechanics

Because the new Hamiltonian is not time-dependent, we can calculate
the average value of the energy using the original wave function:

d(hk)

ros? (ka)
co 2 oo 21.2 o
E=/O p—f(p)dp=/o . -8[(17r

2m 2m h'|(ka)? — n2)2

iy
a2 o ¥ cosz(—2—y) n2h2

ma?y, GPoDT W

= 2ma?’

wherey = "7“ This means that the energy of the system is not changed
during the short time period of separating walls, which is to be expected as

("pO'Hbeforele ‘] 1/)0 - Il)ud:l,‘ ,

(W(t)|Hatter|(2)) = (%ol exP(iHaftert/h) X Hafter exp

zHafter ) WJO)

= ("/)OlHafter!'wO) = 7/)0 —_— ’(ﬁod.’l:

Jo

= (o] Hpefore|%0) .

If the walls are separating to an infinite distance slowly or if the walls
are not infinite high, there would be energy exchange between the particle
and the walls. Consequently, the energy of the particle would change during
the time of wall separation.

5078

A nucleus of charge Z has its atomic number suddenly changed to Z + 1
by P-decay as shown in Fig. 5.24. What is the probability that a K-electron
before the decay remains a K-electron around the new nucleus after the -
decay? Ignore all electron-electron interactions.

(CUSPEA)
Solution:

The wave function of a K-electron in an atom of nuclear charge Z is

P(r) = NZ3/2er%/e,
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As f(;co r2drNZ2e—2r/e = 1, the probability that the K-electron remains in

the original orbit is
3

e (14)
P=|[(Yz+1(n)lvz(r)° = i+ %)6'
-—>
e e”

Fig. 5.24
5079

A tritium atom (3H) can undergo spontaneous radioactive decay into

a helium-3 ion (3He*) by emission of a beta particle. The departure of

the electron is so fast that to the orbital electron the process appears as

simply an instantaneous change in the nuclear charge from Z=1to Z = 2.
Calculate the probability that the He ion will be left in its ground state.

(Berkeley)

Solution:
The wave function of the ground state of He+ is
1 /2\%?
He+ _ ﬁ (E) exp{—2r/a},
where a is the Bohr radius. Let the wave function of 3H be ¢(r).
As the process of 8 decay takes place very fast, during the time period

in which the 3H becomes 3*He* the wave function does not have time to
change. Hence the probability that the 3He™ is in the ground state is

_ @i )2
[(ele)

Initially, the H is in the ground state so that

o(c) = % (%)3/28_7/,
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Therefore,

2

3/2 oo
P=‘4 (%) / rzexp{—ﬁ}dr
a 0 a

2 9

2

5080

Tritium (hydrogen of mass 3 i.e. 3H) is beta-radioactive and decays
into a helium nucleus of mass 3 (3He) with the emission of an electron
and a neutrino. Assume that the electron, originally bound to the tritium
atom, was in its ground state and remains associated with the 3 He nucleus
resulting from the decay, forming a 3He* ion.

(a) Calculate the probability that the 3He* ion is found in its 1s state.
(b) What is the probability that it is found in a 2p state?
(MIT)

Solution:

Neglect the small difference in reduced mass between the hydrogen atom
and the helium atom systems. The radius of the ion 3He* is ag/2, where
ag is the Bohr radius, so the wave functions are

2
ﬁ Yoo V7] e~ "/a0
Qg
Het ¢ —2r
Ise _YOO-(ZG 3/26 /aoa
1 2r
'lp r,+ —= Y —_— e—T/ao
%7 = M 9V (a0/2)¥/2 30
(m=1,0,-1).

(a) The amplitude of the probability that the ion He+ is in the state 1s
7/2 [0
A= / Hde = 2 7‘26_‘37./‘10(11" = M

is

ag 0 27 )
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Hence the probability is|A|? = 2 (38)?=0.702.
(b) On account of the orthonormality of spherical harmonics, the prob-
ability that the ion 3He™ is in a state 2p is zero ({Y1m| Yoo) = 0).

5081

A beam of excited hydrogen atoms in the 2s state passes between the
plates of a capacitor in which a uniform electric field E exists over a distance
£. The hydrogen atoms have velocity v along the x-axis and the E field is
directed along the z-axis, as shown in Fig. 5.25.

z
A

Y. te

Fig. 5.25

All the n = 2 states of hydrogen are degenerate in the absence of the E
field, but certain of them mix when the field is present.

(&) Which of the n = 2 states are connected in first order via the
perturbation?

(b) Find the linear combination of n = 2 states which removes the
degeneracy as much as possible.

(c) For a system which starts out in the 2s state at ¢t = 0, express the
wave function at time t <%.

(d) Find the probability that the emergent beam contains hydrogen in
the various n = 2 states.

(MIT)

Solution:

Consider the potential energy eEz of the electron (charge -€) of a
hydrogen atom in the external electric field E€é,as a perturbation. As the
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n = 2 states are degenerate, we calculate (2¢'m’|H’|2¢m), where H' = eEz,
and £=0, m = 0. It is known that only the following matrix elements are
non-vanishing:

-—m+1)(+m+1)
(26 +1)(2¢+3)

(2, £+ 1, m|z|2,¢,m) = —\/ 2, £+1r)2,0),

with 3
2 £+17i2,0)= S nVn? = 82
Thus all the matrix elements are zero except
(210|H'j200) = -3eEa.

(a) The 2s and 2p states are connected via the perturbation in first
order since for the H’ matrix only elements with A¢=+1 are nonzero.
(b) The perturbation Hamiltonian is

H'—( 0 —SeEa)
~ \ -3eEa 0 '

whose secular equation

‘ —-A -3eEa
-3eEa —-A

gives eigenvalues *3eFEa, the corresponding eigenstate vectors being
\/%(;11). The degeneracy of the state n = 2 is now removed.
(c) Ast =0, just before the atoms enter the electric field,

$(0) = %(H)H—)),

o= (hermds ()

are the state vectors obtained in (b).

where
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At time 0 < ¢t <% when the atoms are subject to the electric field,

|¢(t)) - L (eiSeEat/h|+) + e—iBeEat/hl_»

V2

where

2= 254 + 1) = (),

29 = 75141 = 1)) = ((1’) |

(d) For t >4, we find from (c) the probabilities

20017 = cos® 222
|(210fp(e))? = sin? 222
5082

(a) Consider a particle of mass m moving in a time-dependent potential
V(x,1) in one dimension. Write down the Schrédinger equations appropri-
ate for two reference systems (x, t) and (xi, t) moving with respect to each
other with velocity v (i.e. x = xi + vt).

Vix)
A t<0

Fig. 5.26
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(b) Imaging that a particle sits in a one-dimensional well (Fig. 5.26)
such that the well generates a potential of the form mw 12/2 Atl =0 the
well is instantly given a kick and moves to the right with velocity v (see
Fig. 5.27). In other words, assume that V(z,t) has the form

J —mw?z? fort <0,
V{z,t)
1 Zmw?z? for t > 0.

If for t < O the particle is in the ground state as viewed from the (z,t)
coordinate system, what is the probability that for t > 0 it will be in the
ground state as viewed from the (xi, t) system?

(Columbia)

Vix)

Fig. 5.27

Solution:

(a) Both (z,t) and (xi, t) are inertial systems, and so the Schrédinger
equations are: for the (x, t) system,
R2 g2
[ o T2 + V{xz, t)] Y(z, t)—zh 1b(x t),

for the (xi, t) system,
2 d?
[ 2m da?

where V/(z', t) = Vi(x —vt, t) = V(z, t).

FVE 0] U0 = i ),
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(b) This problem is the same as Problem 6052 for the following reason.

Consider an observer at rest in the (z’,t) system. At ¢ < 0 he sees the
particle as sitting in the ground state of the potential well V. Att =0,
the potential well V instantly requires a velocity v to the right along the z
direction. The situation is the same as if V remains stationary while the
particle acquires a velocity —v along the —z direction. It is required to find
the probability that the particle remains in the ground state. Problem
6052 deals with an Al nucleus which by emitting a - to the right acquires
a uniform velocity to the left. The physics involved is exactly the same as
the present problem and we can just make use of the results there.

5083

If the baryon number is conserved, the transition n < #a known as
ineutron oscillation is forbidden. The experimental limit on the time scale
of such oscillations in free space and zero magnetic field is 7n—7> 3 x 108
sec. Since neutrons occur abundantly in stable nuclei, one would naively
think it possible to obtain a much better limit on 7,—s. The object of
this problem is to understand why the limit is so poor. Let Hp be the
Hamiltonian of the world in the absence of any interaction which mixes n
and 7. Then

Holn) = mnc®ln) and Ho|n) = muc?|n)

for states at rest. Let H’ be thefinteraction which turns n into # and vice
Versa:

H'\n) = ¢|n) and H'|A) = ¢|n),

where ¢ is real and H' does not flip spin.

(a) Start with a neutron at t =0 and calculate the probability that it
will be observed to be an antineutron at time £. When the probability is
first equal to 50%, call that time 7.—#. In this way convert the experimental
limit on 7,_ into a limit on €. Note m,c? = 940 MeV.

(b) Now reconsider the problem in the presence of the earthis magnetic
field (Bozé gauss). The magnetic moment of the neutron is g, = -6 x
10~18 MeV/gauss. The magnetic moment of the antineutron is opposite.
Begin with a neutron at t =0 and calculate the probability it will be
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observed to be an antineutron at time ¢. (Hint: work to lowest order in
small quantities.) Ignore possible radiative transitions.

(¢) Nuclel with spin have non-vanishing magnetic fields. Explain briefly
and qualitatively, in sight of part (b), how neutrons in such nuclei can be
so stable while 7,—# is only bounded by Tn—7 >3 x 108 sec.

(d) Nuclei with zero spin have vanishing average magnetic field. Explain
briefly why neutron oscillation in such nuclel is also suppressed.

(MIT)

Solution:

(@) To find the eigenstates of the Hamiltonian H = Ho+H’ we introduce
in the neutron-antineutron representation the state vectors

() 0)

(n|Ho + H'|n) = mpc?,
(n|Ho + H'|n) =¢

As

we have energy eigenvalue eguation

muc?— E € )(a)_o
€ mpc— E b)

Solving the equation, we get
v 2., (a) 1

= MnC , = —

T b N \/-2-

boomece 3) - (1)

At t = 0, the system is in the neutron state and so

|
TN
—
——

Sl-

m = J51E + 5IE),

e (-5 (1),

where

[ )
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At time ¢, the state of the system becomes
1 . 1 )
,t — __e—lE+t/h E N+ _e—’zE._t/fi E_ ).
|, t) 7 |E+) 7 |E-)

In the neutron-antineutron representation, we thus have

et

_ 2m cos T

— —tMnpC

|w$ t) =€ L Et
—isin —

fL

and hence
—i gt . . &t

[, t) =e imnc’t/h oog 7 |n) — ie imnc®t/h gin + |72) .

The probability that at time ¢ the particle is observed as an antineutron
is therefore

: : 2¢/k et 2
P(t) = fe‘"”"c t/% sin | = sin®(et/h) .
Tn-n is defined as the time at which P =1, i.e,

Tn—f = }—i arcsin L = W—h
€ N
Then as T,z >3 x 10%s, the experimental limit on ¢is e <g3frer =
1.7 x 102 MeV.
(b) Noting that H’ does not change the spin, after introducing the
magnetic field one can take the neutron-antineutron representation

1 0 0 0
o| _ _ 0
0 0 0 1

and calculate the matrix elements of H’'+ uBy. Thus one obtains the
perturbation Hamiltonian

€ —uaBo 0 0
0 0 pnBo £
—u0.Bo 0 e wabBo

with gn, =~ -6 x 107 MeV/Gs, s =~ 6 x 1078 MeV/Gs.
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This gives rise to two eigenequations:

—pnBy — EW € at

( pnBo = By b1y
pnBo — E(W € al

( ~imBo—EWy( biy

where we have used the relation us = —pn,.
Solving the two equations, we obtain

EY = £ = £/ + (ua Bo)?,

and hence

(aT) :L (vA—unBo) (aT) _ 1 (\/A+ﬂnBo)
b1/, V2x \VA+ By b1)_ VoA \-VA— B/’
(ai) _ 1 (x//\+unBo) (al) _ 1 (\/)\—unBo
b1/, V2x \VA=pBs bl/)_ V2x —\/—)\+MOBO>’

Ast = 0, the system is in the neutron state
nT~ )\_/l«nB() (lT + A+I—LnBO CLT ’
V 2 bt /. V 2 bt/ _
o (), R ()
b/, 2X bl/_
At time t, the states of the system are

~ —imnc?t/h 1_
(t)~e X
y ((A — knBo)e™ M/ 4 (X + iy By)etM/P )

/(32 ~ (tnBo)? (e=Ne/h — eirt/Ry

~ —im,c2t/h l_
() ~e o3

y ( A+ pnB)e™ /P 4+ (X — pp By)et/ )

(/\2 _ (ﬂnBO)z (€~Mt/h _ ei,\t/h)
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Therefore the probability of n t— A1 is

2
€4 o At
Prroar(t) = 2 sin N
2 \/ﬁ
_ € sin? VE2+ (unBo)?t ,
€2 + (unBo)? R
and thatof n J— Al is
2
g% oM
Prisay(t) = 3 S
= e sin? £+ (unBo)t .
€2 + (unBo)? h
Finally, if the neutron is not polarized the probability of n — ii is

1 1
P(t) = 2 Pryoar(t) + 3 Prioal(t)

g2 . 2 \/62 + ([.LnBo)zt
= sin ,
E2+(,unBo)2 h
which means that the polarization of the neutron has no effect on the
transition probability.

AS pnBo> e,
1.65 x 10~28

< —_—
P@#) < (6 X 10-18 x1/2

which shows that the transition probability is extremely small.
(c) If nuclear spin is not zero, the magnetic field inside a nucleus is
strong, much larger than 0.5 Gs. Then the result of (b) shows that

Pn—)ﬁ <<10—20 )

2
) ~ 0.3 x107%°,

which explains why the neutron is stable inside a nucleus.

(d) If nuclear spin is zero, then the average magnetic field in the nucleus
is zero. Generally this means that the magnetic field outside the nucleus
is zero while that inside the nucleus may not be zero, but may even be
very large, with the result that P, is very small. Besides, even if the
magnetic field inside the nucleus averaged over a long period of time is
zero, it may not be zero at every instant. So long as magnetic field exists
inside the nucleus, P, becomes very small. Neutron oscillation is again
suppressed.
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6001
Derive the quantum mechanical expression for the s-wave cross section
for scattering from a hard sphere of radius R.
(MIT)
Solution:
The effect of the rigid sphere is equal to that of the potential
oo (r <R),
V(r) =
0 (r>R).
Let the radial wave function of the s-wave be Ro{r) = xo(r)/r. Then
the Schraédinger equation can be written as
Xo(r) + E®xo(r) =0  (r>R),
with

xo(r) = 0 (r <R), k= 2mE .

P e

The solution for r > R is xo(r) = sin(kr +dp). The continuity of the
wave function at r = R gives

sin(kR + 89)=0,

which requires 8 = nm — kR, or sin & = (~1)"*!sinkR (n =0, 1, 2,...).
Therefore the total cross-section of the s-wave is
4 4
oy = k—‘g— sin? do = kTW sin® kR.
For low energies, k — 0, sin kR ~ kR, and so a; = 4w R2. For high energies,
k — o0 and oy = 0.

6002

The range of the potential between two hydrogen atoms is approxi-
mately 4 A. For a gas in thermal equilibrium, obtain a numerical estimate
of the temperature below which the atom-atom scattering is essentially
s-wave.

(MIT)

468
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Solution:

The problem concerns atom-atom scatterings insde a gas. If mainly
s partial waves are involved, the uncertainty principle requires pv,.a < F,
where g =1 m, is the reduced mass of the two atoms, v, = vi — v is
the relative velocity between the two atoms, of velocities vy, ve, a=4A.
When therma equilibrium is reached,

1 3
(v) =0, 2 ™ (v?) = §kT’

k being Boltzmannis constant and T the absolute temperature. The mean-
square value of the relative speed v, is

(vz) = ((V]_ - V2)2) = (Uf + Ug— 2V1 - V2> = 2<U2> = %

1

since on average Vi . vy = 0, (v?) = (v3) = (v?). Thus

pav, ~ 722 [HL <
Mp
i.e,
e = _ _ _2x(658x1071%2 /3x100\* 1
~ 3myc? Og 2k 3 x 938 x 106 4x10-8 ) 8.62x10-5

=2°K.
Hence under normal temperatures the scattering of other partiad waves

must aso be taken into account.

6003

A nonrelativistic particle of mass m and energy E scatters quantum-
mechanicaly in a centra potentid V(r) given by

h2 22
V(r):% vm. ulr) =_;( cosh/\> !
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where A is a parameter. This particle potential has the property that the
cross section a(E) grows larger and larger as E — 0, diverging for E = O.
Clearly, for E very small the cross section is dominated by the s-wave
(I = 0) contribution. Thus for small E one needs to compute only the 1 =0
partial wave amplitude. In connection with this, to save you mathematical
efforts, you are told mathematically that the equation

d?¢
pay +Ap=U(r)¢
where A is a positive constant, has a general solution

é = a(A tanh Ar —ik) e 4+ B() tanh Ar + ik) e ™",

where k=vAand aand 8 are integration constants. Recall tanhx =
8 —e

e = and compute o(E) for E = 0.
(CUS)
Solution:
The s partial wave function is spherically symmetric, its equation being

K2 1 d d h?
e (P o) V)6l = Bt

2m

With R(r) = ¢(r) r, the above becomes

R'(r)+

2m h?
2m

T |E - g v0[RO) = 0,

R"(r) 4 amE R(r) U(r)R(r).

The solution is

R(r) = a(\tanh Ar—ik)e™™ + B() tanh Ar + ik) e ="

where
2mE

k= =
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Consider r— 0. As ¢(0) is finite, R — 0. Then as tanh Ar — Ar,
ekt — 1, we have for r— 0

R(r) =~ a(\*r — ik) + B(\?r + ik) = o—ik) + B(ik) = 0,
giving a = 3. Consider r — 0o. As tanh Ar — 1, we have for r — o0
R(r) = oA — ik) e*" + B(\ + ik) e~ "
= af(A - ik) e + (X + ik) e~
—a \/m (eikr—iax + e—ikr+ia,)
=a V2 +k2 .2 cos(kr — 1)

= 2av/A% + k2 sin (kr + %— al) ~sin(kr + &) ,

where

and a; is defined by
tan ay;=k/A, or ap = tan-i k/A

Thus the total cross section for scattering is

Y 4T
ot = 7o sin® 8y = —- cos? a; .

k k2

For low energies, E -0, k = 0, a; — 0, and so

o ar 2mh2
T k2 T mE
6004

A particle of mass m is interacting in three dimensions with a spherically
symmetric potential of the form V(r) = —C4(|r|—a).

In other words, the potential is a delta function that vanishes unless the
particle is precisely a distance 1al from the center of the potential. Here
C is a positive constant.

(a) Find the minimum value of C for which there is bound state.
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(b) Consider a scattering experiment in which the particle is incident on
the potential with a low velocity. In the limit of small incident velocities,
what is the scattering cross section? What is the angular distribution?

(Princeton)

Solution:

(a) Suppose the eigenfunction of a bound state of the single-particle
system has the form

¥(r) = R(r) Yim (6, ) -

Then the radial function R(r) satisfies

27;:20 (x| —a)— L)

RT +§-R|’+[(ik)2+ } R=0, (1)

r2

where k=4/-2mE/h?. Note E <0 for a bound state. If r # a, the
equation is an imaginary-variable spherical Bessel equation. For r < a it
has the solution that is finite at r =0

R(r) = Axgi(ikr),

where j, is spherical Bessel function of the first kind of order {. For r > a
it has the solution that is finite for r — oo

R(r) = ByhV (ikr),

where hfl) is spherical Bessel function of the third kind. (spherical Hankel
function) of order 1. The wave function is continuous at r = a. Thus

Ay ju(ika) = BehiV (ika).

Integrating Eqg. (1) from a —eto a +¢, where ¢ is a small positive
number, and then letting € — 0, we have

Ri(a + 0) — Ri(a —0) = —C'R(a), (2)

where
2mC

“="

il i 1%
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Suppose there is at least a bound state. Consider the ground state =0,

for which sin(ikr)
Ajo(ikr) = A — ,
ikr
R(r) = (_1) e—kr
BRY (ikr) = B e T >

Differentiating R(r) and letting » — a, we have

, _B‘e—ka l
R(a+0)——k a k+a )

r<a,

, A 1k cosh(ka sinh (ka
R(a—O):E[ a( )——- az( )

Substituting these in Eq. (2) gives

2ka

-
aC’ = T o—2ka "

Asforx>0,x>1 —e %, we have aC’> 1 and

4 h2

min = l/a, or Crin = — .

- 2ma

This is the minimum value of C for which there is a bound state.

(b) We use the method of partial waves. When the particle is incident on
the potential with a low velocity, only the £ = 0 partial wave is important,

for which the radial wave equation

R’ + —2—R’ + k% + 2m05(r—a) R=
T h?
On setting R(r) = xo(r)/r it becomes
2mcC
%+ |+ e alr o)) xo =0,

which has solutions finite at r—>0and r -

( A sin kr, r<a,
Xo\r) =
o) sin(kr + &), T > a.

O.
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As xo(r) is continuous at 7 = a, we require
A sin ka = sin(ka + dg).
Integrating Eq. (3) from a —eto a + € gives

2mC
Xo(a+€) = Xola — &) = ==~ xo(a)

Substituting in the expressions for xo(r), it becomes

ka ka B 2mCa

tan(ka + 6) tanka A2

For k — 0, the above becomes

ka __ZmCu
tan & - K2
or
tan Gp = — 2
an % = el
1=
i.e.,
ka ka

sindg = - N .
2 2maC
\/k +(1-729) (1-%)

Hence the total scattering cross section is

Note that for low velocities only s-waves (I = 0) need be considered and
the differential cross section is simply

-2
o(f) = % sin? 8o = a? (1 - 2";:210> ,

which is independent of the angles. Thus the angular distribution is
isotropic.
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6005

(a) Find the s-wave phase shift, as a function of wave number k, for
a spherically symmetric potential which is infinitely repulsive inside of a
radius rq, and vanishes outside of rp.

(b) For k — 0 discuss the behavior of the phase shifts in the higher
partial waves.

(Wisconsin)
Solution:

(a) This is a typical scattering problem that can be readily solved by
the method of partial waves. The potential can be expressed as

oo, r<To,
V(r) =
0, rT>T0.
The radial wave function for the £ partial wave is

0, r<To,

Ry(kr) = { (2)

Je(kr)cos 8g—mne(kr)sinde, r>r9.

Here jr and n, are spherical Bessel function and spherical Neumann
function of order £. These functions have the asymptotic forms

z oo 1 .
je(z) =2 2 sin(z — €n/2),

00

ne(x) - %cos(z —fin/2).

Hence for r > ro we have
Re(kr) £22%3 sin <kr - -[23 + 5,) .
The phase shift §; can be determined by the continuity of the wave
function at r = ry. Writing kro = X, the continuity condition
Re(x) = je(x)cosbp—mne(z)sindy; = 0
gives

tandy = __]g(:l:)

ne(z)
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In the low-energy limit z — 0, the functions have the asymptotic forms

£

]l(x) :—bOﬁ\ T
(2¢ + DI
z-0 20 — 1N
nl(x) = ? _( .’El+1) ’
so that
] 20+1
tang, = 26@) am0, 2P
ne(z) [(2¢- )12 (2¢ +1)

Thus the s-wave (£ = 0) phase shift is
tanédyp = —x = —kry.

It gives a finite contribution to the scattering and the corresponding
total cross section is
47r 4
o = —smzéoz—k%é% A~ 4l .
The scattering is spherically symmetric, and the total cross section is
four times the classical value nr3.
(b) Consider the low-energy limit k— 0.

As
w20+1
£

=D (2e + 1)’

4, falls off very rapidly as £ increases. All the phase shifts vanish as k — 0,
except for the { = 0 partial wave. Hence s-waves predominate in low-energy
scattering. Physically, particles with higher partial waves are farther away
from the force center so the effect of the force on such particles is smaller,

causing |d,| to be smaller.

tandy, ~ —

6006
A particle of mass m is scattered by the central potential

K2 1

v = ma? cosh®(r/a)’



Scattering Theory and Quantum Transitions 477

where a is a constant. Given that the equation

d?y 2 2
—+ky+- ¥ = o0
dz? y cosh® x

has the solutions y = e**2 (tanh x ¥ ik), caculate the swave contribution
to the total scattering cross section at energy E.

(MIT)
Solution:

Letting xo{r) = rR(r)we have for the radial part of the Schrodinger
equation for swaves (£ = 0)

d*xo (r) 2m h2 1
Xo () [ — ———5—— ] Xo(r) =0.
ma* cosh®(r/a)
With X =r/a, y(X) = xo(r) and k = \/2’7:5@, the above becomes

d?y(z)
dxz?

2
2.2
ROV Gy Y =

This equation has solutions y = e****%(tanhz F iak). For R finite at
r = 0 we require y(0) = 0. The solution that satisfies this condition has
the form

y0oO = e'*® (tanh x — iak) + e ****(tanh x + iak)
= 2 cos(akx) tanh x + 2ak sin(akx) ,
or .
Xo(r) = 2cos(kr) tanh oa + 2ak sin(kr) .
Thus

2 — K si T 1 2 T
1 dxo ak® cos(kr) — k sin(kr) tanh oz + 7 cos(kr) sech -

Xo dr ak sin(kr) + cos(kr) tanhog

52 cos(kr) — k sin(kr) _ akcot (kr) — 1
ak sin(kr)+cos(kr) = cot (kr) + ak
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On the other hand if we write xo in the form

Xxo(r) = sin(kr + &),

then as 1d t(kr) cot dg— 1
X0 _ cot{Kr) COl 0g —
— =Kk kr + 4 ,
xo dr cot (kr 0) = cot(kr) + cot dp
we have to put
cot dp = ak,
or
Si.Il2 &g = ;
07 T+ a2k

Hence the s-wave contribution to the total scattering cross section is

4m 4 1 _ 2w h? 1
o, = k2 sin®8g = %2 1 +a2k2  mE 2a2mE
1+ ==
72
6007

A spinless particle of mass m, energy E scatters through angle 8 in an
attractive square-well potential V(T):

-V, O0<r<a, V>0,
(r) = 0

r>a.

(a) Establish a relation among the parameters Vp, a, m and universal
constants which guarantees that the cross section vanishes at zero energy
E = 0. This will involve a definite but transcendental equation, which you
must derive but need not solve numerically. For parameters meeting the
above condition, the differential cross section, as E — 0, will behave like

0
% =0 E’\F(cos 6).

(b) What is the numerical value of the exponent A?

(c) The angular distribution function F(cos #) is a polynomial in cos#.
What is the highest power of cos# in this polynomial?

(Princeton)
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Solution:

(2) When the energy is near zero, only the partial wave with { =0 is
important. Writing the radial wave function as R(r) = x(r)/r, then x(r)
must satisfy the equations

2mE

"

x=0, r>a,

2
X"+ —ﬁz—l(E +W)x=0, 0<r<a

with k = /2mE K =, /2=E}Ve) The above has solutions

x(r) = sin{kr + &o), r>a,
x(r) = Asin(Kr), 0<r<a.
As both x(r) and x/(r)are continuous at r = a, we require
sin(ka + dp) = A sin(Ka),
k cos(ka + &p) = KA cos(Ka),

or
K tan(ka + o) = k tan(Ka),
and hence X
do = tan-’ [E tan(Ka)] — ka.
ForE—0
2mV
k— 0, K — ko = 'ﬁ—20 y
and so can(k
5 k [M _ a] ,
ko
For the total cross section to be zero at E = 0, we require
2 —
4T . o o [tan(koa)
— —_— - =0
% sin“ 69 — 4ma [ koa )
or

tan(koa) = koa ,
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\/2mV0 \/2mV0
tan a) = a,
h h
which is the transcendental equation that the parameters V4, a, m and
universal constant & must satisfy.
(b) & (c) When k — 0, the partial wave with £ =0 is still very important
for the differential cross-section, although its contribution also goes to zero.
Expanding tan(Ka) as a Taylor series in k, we have

ak?

- 2 4 k2) = ___ek®
tan(Ka) = tan(a 1/ k2 + k&) = tan(koa) + 2o cos2 (koa) +

Neglecting terms of orders higher than k2, we have

do

tan-’ [% tan(Ka)]— ka

k k? k%a

. —_—— —_— —k
ko (1 2k§) [tan(koa) + 2ko COSZ(koa)] } a4
k

k3 3
=~ tan-’ {—— tan(koa) — —3 tan(koa) + k—a} — ka

%
o
7

0 2k 2kZ cos?(koa)

k3a N k3a

2k 2k cos?(koa)
k3a _ k% _k%a®

2k0 cos?(koa)  2k? 3

}-ka

Hence

do
an k2

~k*F(ko, @)

- B (2’;{‘) Flko, a).

Thus the differential cross section per unit solid angle is approximately
isotropic and proportional to E? for E — 0. To find the contribution of
partial wave with £ = 1, consider its radial wave equations

1 d d 2
e (TZE;R)+<K2——)R 0 (r<a),

sin? &g
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1d (,d A
T_2£"- (T‘ dTR)+ (k—;-é')R—O(T>a)
The solutions have the form of the first-order spherical Bessel function
ir(p) = X2 - <52, or
sin(Kr)  cos(Kr)
(Kr)? Kr ’
sin(kr + 61)  cos(kr + é1)
(kr)? kr =’

0<r<a,

R1:

1r>a.

The continuity of R; and the first derivative of 2R at r = a gives

sinKa cos Ka _ A din(tka + &) cos(ka+51)1
(Ka)? Ka (ka)2 ka ’

sin Ka = A sin(ka + é1) .

Taking the ratios we have k?[1-Ka cot(Ka)] = K2 [1-ka cot(ka+41)],

or
k?  k%a cot(K
tan (ka + 61) = ka 1+—2—L(“)+0(k4)
k2 ko |
= ka + O(k%),
o 1 k2
K =/k?+k}~ko [1+———2-+O(k4) .
2 k2

Hence
) 1
8, = tan-é[ka + O(k®)]— ka = —g(ka)3+0(k3) = O(k%).
Thus its contribution to $%,

9 |
—sin? 6 cos® 0,

k2
is also proportional to k%. Similarly, for | = 2,
3 1 . 3 cos(KT)
S —_ 7 O<r<a,
[(Kr)3 Krl sin(K'r) TODE r<a

3 cos(kr + 62)

[~ 5] soter =80 2 > e
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The continuity of R and (r3R2)’ at r = a then gives

k? [tan(ka + 82) — ka] _ [3 —(ka)?]tan(ka + 62) — 3ka
K? Ttan(Ka) — Ka]  [3-(Ka)?tan(Ka)—~ 3Ka

Let y = tan{ka + d2) — ka. The above becomes

[ 3 1] y—1= Y1 0)

(ka)®  ka ~ bK2(1 + O(k?))’
where
_ a
"~ 2 cos2(koa) — ko
Therefore
y=—3 1
-9 1 1
ToaP " Fa *+ 0 + O(k)
-3 (ka)?  (ka)®
(ka)® [1' e S |
_ (_kqﬁ (ka)®  (ka)®
B [1 -3 W+0(k4)1
ko, (e’ o)
and

82 = tan~!(y + ka) — ka
~y=0(k*).

Thus the contribution of partial waves with [=2 to % is also propor-
tional to k%. This is true for all £ for E — 0. Hence

2
Z (21 + 1) € sin &P (cos 8)
=0

—— k*F(cosf) ~ E*F(cosb),
E—0

-lf( W=




Scattering Theory and Quantum Tmnsitions 483

and the exponent of E is A = 2. The highest power of cosé in the angular
distribution function is also 2 since the waves consist mainly of £=0 and
g =1 partial waves.

6008

1. The shell potential for the three-dimensional Schrodinger equation is
V(r) = ad(r —ro).

(@ Find the s-state (I = 0) wave function for E > 0. Include an
expression that determines the phase shift 6. With ik = v2m£E show that
in the limit k — 0, § > Ak, where A is a constant (called the scattering
length). Solve for A in terms of « and ro.

(b) How many bound states can exist for { = 0 and how does their
existence depend on a? (Graphical proof is acceptable)

(c) What is the scattering length A when a bound state appears at
E = O? Describe the behavior of A as a changes from repulsive (a > 0) to
attractive, and then when a becomes sufficiently negative to bind. Is the
range of A distinctive for each range of a? Sketch A as a function of a.

(MIT)
Solution:
(@) The radial part of the Schrodinger equation for £=10 is
10 (,90
“2m ror ( 5"’) VY =Ey.
With v = u/r, V(T) = ad(r — o) it becomes
—h—z p+ad(r —ro)u=Eu

2m ’

i.e.,
n

K= B8(r —ro) p=—k2p, (1)

where

2mao k= 2mE .

P="w R
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The equation has solution for which =0 at r =0 and g = finite for

r— oo
sin kr, r < 1o,
N { asin(kr+46), r>ry.
Integrating Eq. (1) from ro —e to g + € and letting € — 0 give
p (ro+) — p'(ro—) = Bu(ro) -
The continuity of p at =79 and this condition give
sin kro = a sin(krp + 6) ,

B sin kro = a cos(kro + 6) — cos kro

k
Hence
2712 2 _ 2 _ é . ﬂ2 .9
a*[sin“(krg + 6) + cos*(kro+d)]=a* =1 + . sin 2krg + %z sin kro |
k
tan(krg + 6) = te[;n—ro, (2)
1+ = tan krg

k
which determine a and the phase shift 6. In the limiting case of k —0, the
above equation becomes

kro+ tan é N krg
1—krotand 1+ fBrg’

or
tan ¢ z@"-z-k,
1 + fro

neglecting O(k?). Then, as k — 0, we have tan 6 — 0 and so

5~ — Tokl
14+ —
Bro

= Ak,

Where T
A — 0
h2

2mary

is the scattering length.
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(b) For bound states, E <0 and Eq. (1) can be written as
p'—B8(r —ro) p = k*u
with
2mE
b= T
The solution in which ¢ =0 atr =0 and g = finite for r » 0o is

sinhkr, r <ro,
l],:

2ma 2
e P T

ae™*",  r>rg.

The continuity conditions, as in (a), give
sinh krg = ae k",
H= { Bae k70 = —ake~k™o — k cosh krg .
Eliminating a we have
(8 + k) sinh kry = -k cosh kro,

or

2kr
—2krg =14+ ___0 .
‘ Bro

ol 'B’o\A) 2kr,

Fig. 6.1

485

For bound states E < 0. Between E =—co and E =0, or between
2kry = o0 and 2krg = 0, there is one intersection between the curves (1)
y=e "2 and (1) y =1+ 2 if -1 < 5= < 0, as shown in Fig. 6.1.
Thus if this condition is satisfied there will be one bound state with £=0.

This condition requires
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_R2 _R2
—1<W, or a<2mr0:a0
(c) In (a) it is found that
A=__TO —=- Toh2
bt % 1+ 2mroa

The behavior of Ais shown in Fig. 6.2, where it is seen that for a =0,
A =0; for a=ap =5, A = +ooja = 200, A = —1p. With E — +0,
a bound state appears at E = 0. At this energy a = a9, 6 = £7/2 and
A = co.
A
A

«— bound

Fig. 6.2

6009

The nucleus 8Be is unstable with respect to dissociation into two o
particles, but experiments on nuclear reactions characterize the two lowest
unstable levels as J =0, even parity, ~ 95 keV above the dissociation level,
and J = 2, even parity, ~ 3 MeV above the dissociation level.

Consider how the existence of these levels influences the scattering of a
particles from helium gas, specifically:

(a) Write the wave function for elastic scattering, in its partial wave
expansion, for r — oo.
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(b) Describe qualitatively how the relevant phase shifts vary as functions
of energy in the proximity of each level.
(c) Describe how this variation affects the angular distribution of «
particles.
(Chicago)
Solution:

(a) The spin of a particle is zero, so the two-a-particle (identical par-
ticles) system obeys Bose-Einstein statistics and the quantum number £ of
the relative angular momentum must be an even number. There are two
additive phase shifts: §§ caused by Coulomb interaction and 6} caused by
nuclear force. Thus as r — oo, the wave function is

p= > @+1)dexpli(s + &) (kr)~!

1=0,2,4,...

l
X sin (cr~%r+élc+6fv—'yln 2kr) Py(cos 6),

where k is the wave number in the c.m. frame, v =(2e)%/hv,.

(b) As the energy increases to a certain value, 65" also increases from
zero because of the action of the nuclear force. Particularly, when the
energy is near an unstable energy level of the compound nucleus with a
definite 1, every & near w changes very rapidly. For 8Be, this happens
when [ = 0 and the energy is near 95 keV, and when 1 = 2 and the energy
is near 3 MeV.

Generally, if the energy is lower than the Coulomb potential, nuclear
force can be neglected. In such a situation ) is near 0 or nr.

(c) To see the effect of nuclear force on the angular distribution, we
rewrite the partial wave expansion as

P = i 20+ 1) it exp(i&,c) (k:r)_1 {sin (kr - l_"

1=0,2,4,... 2

SNy
—vIn2kr + 6,0) + (M&L) exp [z’(kr - %T

~v1n2kr + JIC)]} Pycos 8) y
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where the first term inside the large brackets is the Coulomb scattering
wave function, which is not affected by nuclear force. We sum it over £ to

get
exp i{kr cos — v In[kr(1—cos8)] + 65} — v(kr)™!
x exp i{kr cos@ —vIn(kr) + 65}

y \/I {exp[—i'y In (1 — cos@)] + exp[—iyIn(l + cos 6)] }
2

1—cosf 1+ cosé

The two terms in the last large brackets above arise from the identity
of the two He++. These in general do not occur in Rutherford scattering.

The second term in the large brackets in the expansion of ¥ is caused
by the nuclear force which interferes with the Coulomb scattering. But this
effect is quite trivial when &Y is near na.

6010

Consider the guantum-mechanical scattering problem in the presence of
inelastic scattering. Suppose one can write the partial wave expansion of
the scattering amplitude for the elastic channel in the form

oo &
f(k,0) = E(2l+ 1) %B(COSG),
1=0

where &;(k) and n;(k) are real quantities with 0 << 1, the wave number
is denoted by k, and @ is the scattering angle. For a given partial wave,
obtain the lower and upper bounds for the elastic cross section ¥

L elastic in
terms of ai(nllastic'
(Chicago)
Solution:
As
obfhstic = TX?(2L + 1)| 1 — me®®|?,
l .
ai(nllastic =mX220 + 1) (1 —|me®®|?,
where

e e
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we have _
@ l-—me¥P

T dtastic — 1 —lnlezialli _ Oinelastic

As 11, é; are real numbers and 0 <7, < 1, we have

(L=m)? _[L—me®? _ (1+m)?
1-n ~1_|ge¥u2= 1-pn2 "’

or
(1-m)? <0 0 + m)? O

2 inelastic — “elastic = 2 inelastic °
1—n; 1—n;

Therefore the upper and lower bounds of o are respectively

elastic
Q+m) @ Q-m)?® q
1-— nl2 Tinelastic and 1— 77[2 Ui(n)elastic .

6011

A slow electron of wave number K is scattered by a neutral atom of
effective (maximum) radius R, such that kR « 1.

(@) Assuming that the electron-atom potential is known, explain how the
relevant phase shift 6 is related to the solution of a Schrédinger equation.

(b) Give a formula for the differential scattering cross section in terms
of 6 and k. (If you do not remember the formula, try to guess it using
dimensional reasoning.)

(c) Explain, with a diagram of the Schrédinger-equation solution, how
a non-vanishing purely attractive potential might, at a particular k, give
no scattering.

(d) Explain, again with a diagram, how a potential that is attractive
at short distances but repulsive at large distances might give resonance
scattering near a particular k.

(e) What is the maximum value of the total cross section at the center
of the resonance?

(Berkeley)
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Solution:

(a) We need only consider the s partial wave as kR <« 1. The solution
of the Schrodinger equation has for r — oo the asymptotic form

sin (kr + 6)
—_—

b(r) =

The phase shift ¢ is thus related to the solution of the Schrédinger
equation.
(b) The differential scattering cross section is given by

sin? §

o(9) = 2

(c) The phase shift § in general is a function of the wave number k.
When é =nr,0(8) =0, 8; = 0 and no scattering takes place. The
asymptotic solution of the Schrédinger equation with £ = 0 is shown in
Fig. 6.3(a)

sinkr sinlkrem)

Fig. 6.3(a)

Fig. 6.3(b)

(d) Consider a potential well as that given in Fig. 6.3(b). If the energy
of the incident particle is near an eigenvalue of the well (a bound state), its
wave function inside the well will be strongly coupled with its wave function
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outside and the wave function in the well will have a large amplitude,
resulting in resonance scattering.

(e) The maximum value of the total cross section at the center of the
resonance peak is 4rR?, where R is the range of the force of interaction.

6012

For an attractive square-well potential (V =—-Vy,r<a;V=0,r>a)
find the imatching equationT at a positive energy, which determines the
energy dependence of the £ = 0 phase shift §q. From this show that at high
energies, 6(K) aﬂh“,%‘l, and obtain this result from the Born approximation.

( Wisconsin)

Solution:

Let x = rR. For the £ = 0 partial wave, the Schrédinger equation
becomes

X'+ K2 =0, k'2=k2( - YE9> r<a,
X"+ k*x=0, k2=——2;E, r>a.

The solutions are
sin( k'r) r<a,
x= { Asin(kr+6), r>a.
The continuity condition
(In x)'lr=a- = (In x)'|p=a+
gives an equation for determining do:
ki tan (ka + do) = k tan (kfa) .
As

| 2mE
2 2 0 2 _
k“=k (1+—E) and k= IR

when k — 00, k' — k. Hence

k
do = arctan [P tan(k'a)} —ka— (k' —k)a as k— .
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Thus, letting k — oo we obtain

5 k2 — k2 _kVo  maW
T\ FTxk )T 2ET R

The Born approximation expression for the phase shift for =0 is

2mk [*® 2 s, 2mkVy [* sin’kr
6oz—-7 A V(r) jo(kryr®dr = 2 A 2 dr
mV 1 .
= m% [ka —Esm(Zka) l
whence . mVoa
7" TRk

as k — co, in agreement with the partial-wave calculation.

6013

Calculate the scattering cross section for a low energy particle from a
potential given by V = -V, for r <a, V=0 for r > a. Compare this with
the Born approximation result.

(Columbia)
Solution:
The radial Schrédinger equation can be written in the form

X (r) + [kz - l—(l—+1—)} xi(r)=0, r>a,

7,2
X} (r) + [k” - l—(l—;;i)] xi(r) = 0, 7 < a,
where x = rR(r),
w=2E k'2=2m(Eh+V°).

Scattering at low energies is dominated by the s partial wave, for which
£ =0, and the above become

X/ () + K®x(r) =0, r>a,
x; (r) + k?xi(r) =0, r<a,
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whose solutions are
Asin(k'r), r<a,
xi(r) = )
sin(kr + &), r>a.
The continuity condition (In x;)'|,=a-=(In x;)'|,=¢+ gives
k tan(kia) = ki tan(ka + ),
or k
8o = arctan [P tan (k'a)] - ka.
For low energies

2mVy

k—)O,k'—)k(): —hz—-,

and the above becomes
tan(k
8o~ ka [M - '1 _
koa
The total scattering cross section is then

%y 4 5
U~——sm250z k—72r¢5§=47ra2 [M _11

k2 koa
If koa < 1,
koa (koa)3 2 16madm2V2
~ 4 2 = hdahelidedg
77 ana [koa N oh?
In the Born approximation,
___m —ik-r ik’ r 43
f(O)= S h? e Vir)e™ Td°r,

where ki, k are respectively the wave vectors of the incident and scattered
waves. Let q =k — ki, with |k’|=|k| = k for elastic scattering. Then
g=2k sin §, where @ is the scattering angle. Thus

() 21rh2 / V(r)r? dr/ e~ <os on sin ¢ dg’
2 a
/ Viry ——= sm(qr) r?dr = ;;Vo / r sin(gr) dr
0

2mV, . .
= h—zng [sin(ga) - ga cos (qa)] .
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Hence

4m2‘/02

a(6) = 1fO)1* = — o [sin(ga) — ga cos(ga))?.

For low energies k= 0,¢q— 0,

. 1 1
sn () ~qa-g(ga)’,  cos(ga)m 1 - (ga)?,
and hence fn2V 25
o) ~ — 32—
9h4

The total cross section for scattering at low energies is then

16mm2VZab

Therefore at low energies for which k— 0, ka <« 1, the two methods
give the same result.

6014

In scattering from a potential V(1), the wave function may be written

as an incident plane wave plus an outgoing scattered wave: ¢ = e*** + v(r).
Derive a differential equation for v(r) in the first Born approximation.

( Wisconsin)

Solution:
Two methods may be used for this problem.
Method 1:
For a particle of mass m in a central field V(7), the Schrédinger equation

can be written as
(V2 + k)9 = Uy,
where
U= Zh—’—;‘ V, k= 2’2—2’9 .
Define Greenis function G(r —r’) by

(V2 + k) G(r—1') = —4né(r — ri) .
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This is satisfied by the function

G(r—ri) = exp(ik|r — r'|)

r—rf 7

and the Schrédinger equation is satisfied by
1 - -
P(r) = z/;o(r)—E/ G(r — ri) U (ri) ¥(r') .
As the incident wave is a plane wave e***', we replace U(r') ¢ (ri) by

U(r') e*#" 1n the first Born approximation:

; 1 [ exp(ik|r — r'|) ke g3
— pikz _ U tkz’ 13,
Yr)= e - o U

Hence the scattered wave is

. ) o,
’U(T)= ___1_ / exp (’Lkll‘ r |) U(rl) ezkz dBrI.

4 v — /|

Applying the operator (V2 + k?) to the two sides of the equation, we
get

(V2+k2) V(F):—Z]; J (VZ + k2) exp (!lk( a ,)) U(r I) eikz'dS,’_/

= J S(r—ri) U (i) % @ ri = U(r) e**
Hence the differential equation for u(r) is

(V2 + k%) v(r) = U(r) e'*=

Method 2:
Writing the radial Schrodinger equation as

(V2 + k%) = Uy,

where omE 0
2 m _ m
Ve Uswh



496 Problems and Solutions on Quantum Mechanics
and substituting in ¥ = % + v(r), we get
(V2 + kY e + (V2 + k%) (r) = Ule™*® + v(r)],

or
2 )
(V2 + K)o (r) = 23 VIR + o),
as (V2 + k?) e*** = 0. In the first Born approximation, e*** 4 v(r) ~ e,

and so the differential equation for v(r) is

(V2 + kD) (r) ~ %" Veiks

6015

In the quantum theory of scattering from a fixed potential, we get the
following expression for the asymptotic form of the wave function

eikr

P(r) —— & + £(8, ) —.
=00 T

(a) If the entire Hamiltonian is rotationally invariant, give the argument
that the scattering amplitude f should be independent of the angle .

(b) Why cannot this argument be extended (considering rotation about
any axis) to conclude that f should be independent of 8 as well?

(c) Reconsider part(b) in the case where the incident energy approaches
zero.

(d) What is the formula for the scattering cross section in terms of f?

(e) What is the formula for the first Born approximation for f? (Be
sure to define all quantities introduced. You need not worry about simple
dimensionless factors like 2 or 7).

(f) Under what conditions is the Born approximation valid?

(Berkeley)

Solution:

(a) The incident wave e*** = ei*7<0s ¢ is the eigenstate of I, third
component of the angular momentum L, with eigenvalue m = 0. If the
Hamiltonian is rotationally invariant, the angular momentum is conserved
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and the outgoing wave is still the eigenstate of [, with eigenvalue m =0,
that is,

I,f(6,0) = mf(6,¢) =0.

Since [, = &2, this means that 8(6,¢)/d¢ = 0.

(b) As the asymptotic form of the wave function ¥(r) is not an eigen-
function of L2, we cannot extend the above argument to conclude that fis
independent of 4.

(c) When the energy E — 0, i.e., k— 0, the incident wave consists
mainly only of the I = 0 partial wave; other partial waves have very small
amplitudes and can be neglected. Under such conditions, the rotational
invariance of H results in the conservation of L2. Then the outgoing wave
must also be the eigenstate of L2 with eigenvalue 1 = 0 (approximately).

As
1 92

) 1 8 8
2 _ _ g2y _- = : Il - =
L= —h [sin080 <Smoaa>+sin2aa¢2]’

. {C)
| d #O)| _
sin 8 de [Sme da] 0.

we have

As f(6) must be a wave function with all the appropriate properties,
this means

df (6)/do = o.

(d) The differential scattering cross section is given by

do 2
Z= 116, 9P

(e) In the first Born approximation, for scattering from a central field
V(r'), f is given by

m

10, p)= o

V(r')exp(—iq . ') d3r

2 e o}
= —h—;n& / 'V (r') sin (¢r') dr’,
0

where q = k — kg, k and ko being respectively the momenta of the particle
before and after scattering.
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(f) The validity of Born approximation requires that the interaction
potential is small compared with the energy of the incident particle.

6016

Consider a particle of mass m which scatters off a potential V' (z) in one
dimension.

(a) Show that

G ( ) 1 /OO dk eikr
e(z) = o— — T
2 h2k?
T J-oo E - om + i€

with e positive infinitesimal, is the free-particle Greenis function for the

time-independent Schriodinger equation with energy E and outgoing-wave
boundary conditions.

(b) Write down an integral equation for the energy eigenfunction cor-
responding to an incident wave traveling in the positive z direction. Using
this equation find the reflection probability in the first Born approximation

for the potential
Vo, |z} < a/2,
V=] lz| < a/
0, lz|>a/2.
For what values of E do you expect this to be a good approximation?
(Buffalo)
Solution:

(@) To solve the one-dimensional time-independent Schrédinger equation
h? d?
(2— 5+ E) Y=Vy,

m dz?
we define a Greenis function Gg(x) by

h2 d2
(%‘ 2 +E) Gg(z) =46(x).
Expressing G g(x) and b(x) as Fourier integrals

1 © .
Ge(z) = —/ f(k) e** dk ,

21 J_

1 [~ .
6(x) = 5- / e** dk
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and substituting these into the equation for Gg(z), we obtain

21.2
(55 1 5) sy -1,

1
T R2R2
E h°k

or

fk) =

2m
As the singularity of f(k) is on the path of integration and the Fourier
integral can be understood as an integral in the complex k-plane, we can
add ie, where ¢ is a small positive number, to the denominator of f(k). We
can then let ¢ — 0 after the integration. Consider

1k:z:
GE(K) = -—/ h2k2

+ ie
The intergral is singular where

2k2

(E +1ie) —

I

i.e., at
k = :tkl y
where

Ky = V2m(E + ig) .
h
When x > 0, the integral becomes a contour integral on the upper
half-plane with a singularity at k; with residue

me’iklz

M= TR

Cauchyis integral formula then gives
Gg(z) = 2miay = -i h_;nk_ etz (x > 0).
As

2mE
e— 0, k1 — .
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This is the value of k; to be used in the expression for Gg(z). Similarly,
when x < 0, we can carry out the integration along a contour on the lower
half-plane and get

Gp(zx) = —i e”hz  (x <0).

. m
h2ky
Here k; = ‘/?E— also. Thus the free-particle Greenis function Gg(z)
represents the outgoing wave whether x > 0 or x <0.
(b) The solution of the stationary Schrédinger equation satisfies the
integral equation

Ye(z) = ¥°(x) + GE(z) * [V(2)¥E(2))
=@+ [ Gela - 9V©usle) de,

where ¢°(z) is a solution of the equation

h2 d2
(% d_zl,'z- +E> 'l[)(l‘) =0.
In the first-order Born approximation we replace 1o and ¥g on the right
side of the integral equation by the incident wave function and get

YvE(z) = ™ + /oo Ge(z — ) V() e* de = ek

/ (—% 1 e~ tk(z=8) V(€) L d¢ .
For reflection we require ¥g(z) for x — -co. For x ——o0,

* N M ik(z— i
/ (—Z)mek( DV(g)e*tde =0,

o (i) 2 gmike G2kE V(g e = a/2 (—i) T eiha v (k€ g
z h2k —a/2 H2k

= n;;/kz sin( ka) e~=,
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Hence the reflection probability is

m2v32
R = |pp(—00)|*/Ivol® = h4—I:4 sin® ka .

When the energy is high,
o0 - -
\ / Gel(z - &) V(€) e*ede | «|e*|,

and replacing ¥(z) by e*** is a good approximation.

6017

Calculate the Born approximation to the differential and total cross
sections for scattering a particle of mass m off the d-function potential
V(r) = g83(r).

( Wisconsin)
Solution:
In Born approximation,

FO)=—55

/e—k'~r'V(rl)eik-r' dri ,

where k and k' are respectively the wave vectors of the incident and scat-
tered waves. Let q = ki — k. Then

- —iq- ri) §(¢') dri = 29 —i0q) = —2_
0= 27r529/ exp(—iq- 1) 8() drl = 5 exp(~i00) = 5053

and the differential cross section is
2.2
_ 2_ M9
oO)=1fO)* = 155 -
As the distribution is isotropic, the total cross section is
2,2

m-g
wht

o= 4no =
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6018

Consider a particle of mass m, energy E scattering from the spherically
symmetric potential Bé(r — a), where B and a are constants.

(a) In the case of very high energy (but nonrelativistic) scattering, use
the Born approximation to calculate the differential scattering cross section.

(b) In the case of very low energy scattering (A > a), what is the
differential scattering cross section?

Note: In part (b) you may find the algebra somewhat lengthy. In this
case, work the problem far enough that the remainder of the solution in-
volves only straightforward algebra.

(Princeton)

Solution:
() As shown in Problem 6013,

2m [ 2 sin gr
R Jo gr
2m sin ga

=-———Ba.
h2q

Bé(r —a)dr

Hence the differential cross section for scattering is
do 2m sin qa 2
— =|f|*=( ~—=——Ba
an = ! ( h2q )

(b) At low energies only the partial wave with I =0 is important. If we
set the radial wave function R(x)= x(r)/r, then x(r) will satisfy

2m
X"+ —h—2~[E — Bé(r —a)]x=0.

The solutions are

x = A sin(kr), r<a,
x =sin (kr + &), r>a,

where
2mE

k= 72
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The continuity of x(r) at r = a requires
x(a +0) = x(a—0).
Integrating the wave equation for x froma —¢toa +¢,wherecisa
small positive number, and then letting € — 0, we get

xX'(a+0)— x'(a —0)— 25—? Bx(a)=0.

These two conditions give

k 2m k

_——— = — B4 —.
tan(ka + 8p)  h? + tam( ka)
AsE—0,k—0and

tan(ka) + tan &g R ka + do
1 —tan(ka) tan 8o 1 —kadp’

tan(ka) - ka, tan(ka + So) =
Substituting the above gives

k
50 ~ ————-—2m B N l
h? a
Hence
da

-— l|e"5°sin6o|2z —r 2.
dQ = k? imp4l

As there is no angular dependence the scattering is isotropic.

6019

A nucleon is scattered elastically from a heavy nucleus. The effect of
the heavy nucleus can be represented by a fixed potential

-Vo T7<R,
V(r) =
0, r>R,

where Vp is a positive constant. Calculate the deferential cross section to
the lowest order in Vp.

(Berkeley)
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Solution:

Let i be the reduced moves of the nucleon and the nucleus, g = k —k”
where ki, k are respectively the wave vectors of the nucleon before and after
the scattering. In the Born approximation, as in Problem 6013, we have

2

o©) - FOF - s

/ PV (r')singri dr’
0

42V
higb

where ¢ = 2k sin(8/2), k = |k} = |k'|.

(sin gR —qR cos qR)?,

6020

A particle of mass m, charge e, momentum p scatters in the electrostatic
potential produced by a spherically symmetric distribution of charge. You
are given the quantity [r2pd3z = A, p(r) d*z being the charge in a vol-
ume element d3z. Supposing that p vanishes rapidly as r = oc and that
J pd3z =0; working in the first Born approximation, compute the differ-
ential cross section for forward scattering. (That is j—g|9=o, where @ is the
scattering angle.)

(Princeton)

Solution:
In the first Born approximation, we have

2

/ U(r) exp(iq - r) dz| ,

do  m2e?
dQ ~ 4n’hA

where 0 9 9
q=k-k,q=2k sin 3 L

being the wave vectors of the particle before and after the scattering, U(r)

is the electrostatic Coulomb potential and satisfies the Poission equation

k' and k

V32U = —dnp(r).

Let
F(q) =J o(r) expliq- 1) &z
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where F(g) is the Fourier transform of p(r). Using the Poisson equation we

have 0
/ U(r) exp(iq - r) &3z = 211;- F(q).

Hence

do m?? (4m)? o 4m2e? 9
70 = e TlF(Q)I = g |F(q)] -

For forward scattering, @ is small and so ¢ is small also. Then

Fo) = / p(r) explia - ) d%
= / p(r) [1 +iq.r+ Eli(iq-r)2+--- d3z
= J x5 Jomr @ e -

"1 9 2.3 _ A¢®
~-¢ J e rda= 7L,

since as [ pd3x =0, f; cos?*1 9-sin d6 =0, the lowest order term for

9 —0is |
1 .
2! \] p(r) (lq'r)2d3m‘% \] p(r)r2 &z
Hence
da| e
|,  9R
6021

Use Born approximation to find, up to a multiplicative constant, the
differential scattering cross section for a particle of mass m moving in a
repulsive potential

V=AeT/"
(Berkeley)
Solution:

In Born approximation we have (Problem 6013)

f6) =

o0

2
m rV(r) sin(gqr) dr ,

h%q J,
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where g = 2k sin(6/2), hk being the momentum of incident particle. As

f(6) =~ % /O°° re " /e’ sin(gr) dr = — 7—;_:% /—0:0 re" /e sin(gr) dr
=% J_Z (e7/") sin(gr) dr = —%;‘2 J_Z &7/ cos(gr ) dr
=- %:3 J_: e~ (r/a* cos <qa £>d <£>
=- %(213/00 e cos (gar)dr

-0
mAa® [ iga\?
--me {exp[_<r_7) }
+exp [ — (r + %)2] } e~ 4 gr
= — %gsﬁ e—q2a2/4 ’
o0) = 1fOF = T2 pe-rtera
6022

A nonrelativistic particle is scattered by a square-well potential

-VWwWr< R, V> 0
v(r) = 0 (o> 0)
0, r > R.

(a) Assuming the bombarding energy is sufficiently high, calculate the
scattering cross section in the first Born approximation (normalization is
not essential), and sketch the shape of the angular distribution, indicating
angular units.

(b) How can this result be used to measure R?

(c) Assuming the validity of the Born approximation, if the particle is
a proton and R =5 x10~13 ¢cm, roughly how high must the energy be in
order for the scattering to be sensitive to R?

(' Wisconsin)
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Solution:
(a) Using Born approximation we have (Problem 6013)

f(8) x -_;11 / rV(r) sin(gr) dr
0
R
= % / r sin{gr)dr = K:)13(Sin gR —qR cos qR) .
q /o

Hence

. 2
ggo( sin X — X €0S X
an ( z3 ) ’

where x = gR = 2kRsin § .
The angular distribution is shown in Fig. 6.4

Bla

L —___o, X
0 T 2w

Fig. 6.4

(b) The first zero of j—g occurs at x for which x = tan x, whose solution
is X &= 1.43~. This gives

R = 1.43n

.0
2k sin —
"3

By measuring the minimum angle 6; for which j—g =0, R can be deter-
mined.

(c) In order that R may be determined from the zero points of j—g, we
require that the maximum value of x, 2kR, is larger than 1.43w, or
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508
> 1 (143w ? (143m)? R (3)2
T 2mp \ 2R B 8 mpc? \R
(1.437)%  (6.58 x 10~22)2 3 x 1010 \?
~7 s ~ g 38 5 x 10-13
= 4.2MeV.
6023

Elastic scattering from some central potential V may be adequately cal-
culated using the first Born approximation. Experimental results give the
following general behavior of the cross section as a function of momentum

transfer ¢ =k —k'|.

o
Qf-----f-
(=)

Fig. 6.6

In terms of the parameters shown in Fig. 6.6:
(a) What is the approximate size (extension in space) of the potential

V? (Hint: Expand the Born approximation for the scattering amplitude

for small q.)
(b) What is the behavior of the potential V at very small distances?
(Berkeley)
Solution:

() The Born approximation gives (Problem 6013)

f(6 = —%;—:;— rV{r) sin{qr) dr ,

where ¢fi is the magnitude of the momentum transfer and ¢ = 2k sin g. For

q—)o,
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R
f(0) = —2h—72n / r2V(r)dr= ——R3
0

replacing V by V', some average value of the potential in the effective force
range R. For a small momentum transfer gg, we have
1
flqo) =~ —hzz—rZ rV(r) (qor ~ & qS’rB) dr
mqg 5\ qg 2
= = f(0) —— 0).
f0) + gz BV = 1(0) — {5 R*/(0)

Thus an approximate value of R is given by

10
R= \/—z—l—f—(—o—)—l (1) =1f(g)l)-

Note that |f(go)|? is the measured value of & 76 g0 for some small go,
|£(0)|2 is the value of d" for a set of small go extrapolated to ¢=0. From
these values the effectlve range of the potential can be estimated.

(b) In view of the behavior of the scattering cross section for large g,
we can say that the Born integral consists mainly of contributions from the
region gr <, outside which, on account of the oscillation between the
limits +1 of the sine function, the contributions of the integrand are nearly
zero. Thus we need only consider the integral from ¢r =0 to . Assuming
V(r) ~ r™ for small r, where n is to be determined, we have

£(60) = 2V (r) ——“;1@ dr

/ (qr)?V (gr) S2407) S‘““”) = d(qr)

1 2
= e (—-;_g / 22V (x) sin da:) .
0

A comparison with the given data gives % =3+ n. Hence V behaves
like r(§-3),

6024

A convenient model for the potential energy V of a particle of charge
g scattering on an atom of nuclear charge Q is V = ﬂge“", where a~!
represents the screening length of the atomic electrons.
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(a) Use the Born approximation

1 i 2m
—_ o —iAkr
f— —411' /e ﬁV(r)dar

to calculate the scattering cross section o.

(b) How should « depend on the nuclear charge Z7
(Columbia)

Solution:

For the elastic scattering, |k|=lke| =k, and |Ak|=|k—kg|= 2k sin g,
8 being the scattering angle. Thus

1 —idkr 2M 3
f= —G [ -h_ZV(r) d’r
m o5} 27 kg ) ,
- ridr / dp / e iBkrcos 8y (ry sin 6 df’
= 27mh? Jo 0 0
=" 2;’;‘;;2 2 e™ %" sin(Akr) dr
_ 2mqQ 1

i

h? (a? + Ak?)
Therefore

4m2q2Q2
[a2 + 4k2? sin® (8/2)]2°

o= IFO)F = o

(b) In the Thomas-Fermi approximation, when Z is large, the atomic
electrons can be regarded as a Fermi gas. As such an electron is in a bound
state in the atom; its energy is lower than E(oo) = 0. Then its maximum
possible momentum pp,,x at r must satisfy

L p2 (1) —ed(r) =0, (1)

2m

where ¢(r) is the potential at distance r from the nucleus, since its energy
is negative. Thus the Fermi momentum at ris

P#(7) = Pmax(r) = [2meg(r)]'/% .
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For a Fermi gas,
pf = fi.(37r2n)1/3 ,

where n is the number density. Comparing the above expressions we have

n(r) = 5z (2med (]2

1 Ze _ 4
= 3708 (Zme Pl ) !

where Ze is the nuclear charge. As the atom is neutral,

Z=/nd3r=47r/ n(r) r2dr
0

o0
(2mZez)3/2/ e~3om pl/2 gp
0

Hence

, /3
oo dme? (AN s 404 ' L g
3h2 o 3 \9rn ag ’

where ag = A%/me? is the Bohr radius.

6025
A particle of mass m is scattered by a potential V(r) = Vp exp(-r/a).

(a) Find the differential scattering cross section in the first Born ap-
proximation. Sketch the angular dependence for small and large &, where
k is the wave number of the particle being scattered. At what k value does
the scattering begin to be significantly non-isotropic? Compare this value
with the one given by elementary arguments based on angular momentum.

(b) The criterion for the validity of the Born approximation is

1Ay (0)/4@(0)] <1,
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where Ay is the first order correction to the incident plane wave ().
Evaluate this criterion explicitly for the present potential. What is the low-
k limit of your result? Relate it to the strength of the attractive potential
required for the existence of bound states (see the statement of problem).
Is the high-k limit of the criterion less or more restrictive on the strength
of the potential?

(Berkeley)
Solution:

(&) The first Born approximation gives

00

f0)=——= 'V (r') sin(gr’) dr’
q Jo

= - 2;;;/(1 Jé ' sin(gr’) exp(—r'/a) dr’

4mVpa®
= R2(1 + q2a®)?’

where g = 2k sin (8/2), ¢k being the magnitude of the momentum transfer
in the scattering. Hence

16m?V2ab

0 4
B4 <1 + 4k2q2 sinZE)

a(8) = 1O =

The angular distribution o(8)/a(0} is plotted in Fig. 6.5 for ka = 0 and
ka=1.

It can be seen that for ka 2 1, the scattering is significantly non-
isotropic. The angular momentum at which only s-wave scattering, which
is isotropic, is important must satisfy

a-kh<h, e, ka< Ll

When ka ~ 1, the scattering begins to be significantly non-isotropic.
This is in agreement with the result given by the first Born approximation.
(b) The wave function to the first order is

1 etk Je—r'} 2 .y
—— [ = V() ¥ V'
ar | |r—r'| R2 )

Y(r) =€
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g(e)
glo)
A
ka:=0
ka =1
—— > 6
0 7
Fig. 6.5
Hence
Ay ( 0) Ve ik’ 2_m_e-r’/a+ik1' av’
@) | |4 r k2

h2

2m|Vola? V1 + 4k2a? 2m|Vyla?
h2(4k2a? + 1) = A2 /1 + 4k2a?

The criterion for the validity of the first Born approximation is then

— mVp / r eikr’—r'/a+ikr' cos §’ sin 8 d¢'dr'

2m|V0‘ a2

< 1
K2 V1 + 4k2a?
In the low-k limit, ka <1, the above becomes

2m|Vp| a? h?
——1}13—1- <1, or Vol <« oy

In the high-k limit, ka > 1, the criterion becomes

il e
=7 <1, or |Vo| < a
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Since in this case k >>% the restriction on |Vp] is less than for the low-k
limit.

6026

For an interaction V(r) = 8r~lexp(—ar) find the differential scattering
cross section in Born approximation. What are the conditions for validity?
Suggest one or more physical applications of this model.

(Berkeley)

Solution:

In Born approximation, we first calculate (Problem 6013)

f(6) = —,21—;2 'V (') sin ¢r' dr’
0
__22mg [ _. . _ =2mp
- hzq € sin gr dr = m y

where g = 2k sin % and m is the mass of the particle, and then the differ-
ential cross section

4m262
o(0) = fOF = szt oy

The derivation is based on the assumption that the interaction potential
can be treated as a perturbation, so that the wave function of the scattered
particle can be written as

Y(r) = Po(r) + ¥i(r), where  |91| < 9ol

¢0(l‘) — eikz ,

ik |r—r'|
P1(r) = m / c V(r') o(r'ydr .

" 2rh? |r — 1|

Specifically, we shall consider two cases, taking a as the extent of space
where the potential is appreciable.
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(i) The potential is sufficiently weak or the potential is sufficiently lo-
calized. As

il < oz [ I ol

m 4riidr
~ 5 V1 ol /0 .

~m|V|a® |vo|/h2,

for |11] < [¥o| we require

m|V|a?

= <L

h? h

14 L — or a K .
Vi< — =

This means that where the potential is weak enough or where the field
is sufficiently localized, the Born approximation is valid. Note that the con-
dition does not involve the velocity of the incident particle, so that as long
as the interaction potential satisfies this condition the Born approximation
is valid for an incident particle of any energy.

(i) High energy scattering with ka > 1. The Born approximation
assumes 1o = e*** and a v, that satisfies

Vi + k2, = %:;—1 Veiks

Let ¢, = €% £(8, ¢). The above becomes

of _ _im
8z~ Rk
and so
'l/) - thf_ im zkz/de
K2k
Then as
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for {¥1|<|¥o| = 1 we require

2
vielh M
ma a
where v is the speed of the incident particle, v = £ = "’—"’f Thus as long as
the energy of the incident particle is large enough, the Born approximation
is valid.

From the above results we see that if a potential field can be treated
as a small perturbation for incident particles of low energy, it can always
be so treated for incident particles of high energy. The reverse, however, is
not true. In the present problem, the range of interaction can be taken to
be a ~ 1, so that V(a) ~ § The conditions then become

(i) 18] < 22,
(ii) |8l < hw = Bk where k = ,/2mE

The given potentlal was used by Yukawa to represent the interaction
between two nuclei and explain the short range of the strong nuclear force.

6027

Consider the scattering of a 1 keV proton by a hydrogen atom.

(a) What do you expect the angular distribution to look like? (Sketch
a graph and comment on its shape).
(b) Estimate the total cross section. Give a numerical answer in cm?,
m? or barns = 10~24cm?, and a reason for you answer.
( Wisconsin)

Solution:

The problem is equivalent to the scattering of a particle of reduced mass
[T %mp =470 MeV, energy E, = 0.5 keV by a potential which, on account
of electron shielding, can be roughly represented by %e"/“, where a is the
range of interaction given by the Bohr radius 0.53 A. As

ka = ﬁ% vV 2uc?E,
3 x10-8 2 X 0.5 x 103
_ 053 X 100X VX ATY X A0 0K 05 X 100 o) w1021
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for Born approximation to be valid we require (Problem 6026)

e? hv
IV|N_<< 77 i'e'1

Since

1
LHS = ———-73X10_

[2E 2x 0.5 x 103
RHS = S feRabiRa R -
ucz o xioe — e x 107

the condition is not strictly satisfied. But in view of the roughness of the
estimates, we still make use of the Born approximation.

(a) When the proton collides with the hydrogen atom, it experiences
a repulsive Coulomb interaction with the nucleus, as well as an attractive
one with the orbital electron having the appearance of a cloud of charge
density ep(r). The potential energy is then

_e pr’)
v(r) = T S dr’ .

Using Born approximation and the formula

elar 4r
[Fa=F

we obtain
2 /
pe iqr | 1 p(r’)
0 - _ qr |- /
f(6) 2 /e [r /|r—r'|dr dr
2ue
g (1-F()],
where
.0
= s =2k _
I q sin 55
zqr
F() = // dr'dr
|r—r'I

, Qr
T p(r") dr'/e_ dr
F

€97 p(r) dr .

Il
\ gl-aw gl-aw "’|§
—
4]



518 Problems and Solutions on Quantum Mechanics

For the ground state of the hydrogen atom, we have

1
- 2 = -2
p(r) = [¥100] 3¢ e,

and so
F(6)= R T

" 7ad
azqz -2
= (1 + T) .

Hence
e? 1 1
f0) =% [

- 1-— .
2h2k2 . sin?(8/2)| (I + aZkZsin?9/2)2

Taking into account the identical nature of the two colliding particles
(two protons), we have for the singlet state: o, =|f(8) + f(m — 8)}?, the
triplet state: o4 =|f(8)— f(m — 0)|%.

Hence the scattering cross section (not considering polarization) is

g = la + 3 o
Tgr Tt
Some special cases are considered below.
()8 =~ o:

b K& [L=F(6) +1- F(r - 6) 2
* 7 4h%k* | sin? 6/2 cos? 9/2 1

p2e!

2
1
~ 2a%k? 4 —o
YTy ( CEF o 9/2)
2
pet ot = mp a2
h4 2m, ’

use having been made of the approximation for x = 0

2

1/(1+z)2=1- 2X)
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as well as the expression

h? h?

( )
mee llle 2me

2
_ (T 2
on- (o) e
(if) @ = m: A similar calculation gives
2
m.
Os = O'A:(2 p) 0.2.
Me
(iii) a®k? sin®§ = 10 or 8 0.07x: For 0.077 < 8 < 0.937, we have
1 p2et 1 1 2
o(f) =7 u4e T\ 52 +—
4 4h4k* \sin® 8/2  cos? 6/2
3 p2et 1 1 2
t 44h%* \sin® /2 cos? 6/2
plet [3cos?6+ 1
~ RikA

sin? 0
Yy (3 cos?f+ 1
o0 sin? 0 ’
2,4 . . . . . .
where gg = &5z The angular distribution is shown in Fig. 6.7.

aie)
A

I ERS
[VERS

57:‘1 'rLr > 0
Fig. 6.7

(b) As f(8) — oo for § — 0, § — m, to estimate the total scattering

cross section, consider the total cross section for large scattering angles
(0.077r <8 <0.937) and for small scattering angles:
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0.93n 2
3 ]
Otlarge = 2T00 / (M) sin 6 df

0.07n sin” €
0937 4 34n2p
= 2nog ll *
\D.07r sin® €9
0 t o 0.93n
= 2mop |—1In (tan - —2C?
2 sin 8 | |g o7
= 155mayg ,

0.071
Otsmall > 2T J 0(0.077) sin 8d6 x 2

= 27r X 170309 (1 ~ c0s(0.077)] x 2
= 164nog.

6028

The study of the scattering of high-energy electrons from nuclei has
yielded much interesting information about the charge distributions in nu-
clei and nucleons. We shall here consider a simple version of the theory,
in which the ielectronT is assumed to have zero spin. We also assume
that the nucleus, of charge Ze, remains fixed in space (i.e., its mass is as-
sumed infinite). Let p(x) denote the charge density in the nucleus. The
charge distribution is assumed to be spherically symmetric, but otherwise
arbitrary.

Let f.(p:, Ps), Where p; is the initial, and py is the final momentum, be
the scattering amplitude in the first Born approximation for the scattering
of an electron from a point nucleus of charge Ze. Let f(pi, ps) be the
scattering amplitude, also in the first Born approximation, for the scattering
of an electron from a real nucleus of the same charge. Let q = p; —py
denote the momentum transfer. The quantity F defined by f(p;,ps)=
F(q?) f.(p:, py) is called the form factor: it is easily seen that Fin fact
depends on p; and py only through the quantity q?.

(a) The form factor F(q2) and the Fourier transform of the charge
density p(x) are related in a very simple manner: state and derive this
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relationship within the framework of the nonrelativistic Schrodinger theory.
The assumption that the electrons are inonrelativistic is here made so that
the problem will appear as simple as possible, but if you think about the
matter it will probably be clear that the assumption is irrelevant: the same
result applies in the irelativistict case of the actual experiments. It is also
the case that the neglect of the electron spin does not affect the essence of
what we are here concerned with.

(b) The graph in Fig. 6.8 shows some experimental results pertaining to
the form factor for the proton, and we shall regard our theory as applicable
to these data. On the basis of the data shown, compute the root-mean-
square (charge) radius of the proton. Hint: Note that there is a simple
relationship between the root-mean-square radius and derivative of F(q?)
with respect to q? at g2 = 0. Find this relationship, and then compute.

(Berkeley)
12
N
X
“ 06 :
04 B
*eb =1 T14 8] AR
02Fab=12
e b=z14
0 2 & 6 8 10 12 14 16 18

g2 x 10%%cm™2
Fig. 6.8

Solution:

(@) In the nonrelativistic Schrédinger theory the first Born approxima-
tion gives the scattering amplitude of an electron (charge -e) due to a
central force field as

2m [

) = 2 ' "o N dr'
f(pi, Py) 7q ), 'V (r') sin(gr’) dr’,

where g is the magnitude of the momentum transfer in the scattering.
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For a point nucleus, the scattering potential energy is

Ze?
Ve(r) = ——T— .

For a real nucleus of charge density p(r), the scattering potential energy

Viry=-e / p(r) dr' = —élme/oo p(r) 2 dr’
v — 1| (i

e~ r'|

H

which satisfies Poissonis equation

2 1 a2 -
ViV (r)= o) (rV) = +4mep(r). 1)

Consider the integral in the expression for f:

/ rV 9 dr = —1— e (rV — —1- (rvy
0 q 19
- 1_ * 1% " iqrd
2 Jo (rV)'e? dr.

By a method due to Wentzel, the first term can be made to vanish and

(=]

0

SO

2m [ )
f(pi,ps) = —th A rV(r) sin (¢r) dr

2t 1\ [®
- _th” (q; ) A (V)" sin qr dr

2m 4me 1= .
= W & \1 rp(r) sin (qr) dr, (2)
use having been made of Eqg. (1).

In the case of a point-charge nucleus, only the region near r = 0 makes
appreciable contribution to the integral and so

e o]

o o]
4r / rp(r) sin (gr) dr = 4mq / r2p(r)dr = qZe .
0 0
Hence for a point nucleus,

2mZe?
fe(Pi, pry = g
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For an extended nucleus we can then write
4r [ sin (gr
f(pi, Ps) = fe(Pis Pf) - Ze /o 2 p(r) —%dr .

By definition the form factor is

P =gz [ o) e, ®
or 1
F(a) = 5 [ o) emar.

This is the required relation with the Fourier transform of the charge
density.

(b) Differentiating Eq. (3) with respect to ¢ we have

ﬂzfll/ rp(r) rcos(qr) _ sin(qgr) dr.,
dqg Ze Jo q?r

and hence

dF dF dq 1 4_7r/ 2,()[rcos(qr) sin(qr)] dr

d(g?) = dq d(¢?) = 29 Ze g’r

To find gy lg2=0 We first calculate

- [r cos(gr) _sin (qr)]

g—0 q3r q3r

r. [1 - %(qr)2] qr_% @)’

=‘}1_£r(1) q°r - q3r
. 1, r2
= (—5’)—"?
Then
dF 1 1 1 f°° o 1
= —= = Ty - dwrldr = - Z(r?).
8¢ | oy s Ze J, rp(r) - )
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From Fig. 6.8 can be found the slope of the curve F(g?)atg¢? = 0,
whence the root-mean-square charge radius of the nucleus:

AF 1/2
(r2) = | -6 — .
g?=0
6029

d(q?)

In the early 1920’s, Ramsauer (and independently Townsend) discovered
that the scattering cross-section for electrons with an energy of ~0.4eV
was very much smaller than geometrical (wa2, with a the radius of the atom)
for scattering by argon atoms in gaseous form. It was also found that the
cross section for 6-volt electrons was 3.5 times as great as the geometrical
cross section and that the scattering was approximately isotropic. What is
the origin of the TanomalousT cross sections? (What is the maximum pos-
sible cross section for scattering of low-energy electrons (with wavelength
A> a)?

(Princeton)
Solution:

If the attractive potential is strong enough, at a certain energy the
partial wave with £ = 0 has exactly a half-cycle more of oscillation inside
the atomic potential. Then it has a phase shift of § == and so contributes
nothing to f(0) and hence the cross section. At low energies, the wavelength
of the electron is large compared with a so the higher-C partial waves’
contribution is also negligible. This accounts for the Ramsauer-Townsend
effect that the scattering cross section is very small at a certain low energy.
For low-energy electrons, the maximum possible cross section for scattering
is four times the geometrical cross section. It should be noted that a rare-
gas atom, which consists entirely of closed shells, is relatively small, and
the combined force of nucleus and orbital electrons exerted on an incident
electron is strong and sharply defined as to range.

6030

Let f(w) be the scattering amplitude for forward scattering of light at
an individual scattering center in an optical medium. If the amplitude
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for incoming and outgoing light waves are denoted by A, (w)and Agyt(w)
respectively, one has Aout(w) = f(w) Ain(w). Suppose the Fourier transform

+
An(o—t) = —— [ e A () do
1n \/2—7r oo n

vanishes for x —t > 0.

(a) Use the causality condition (no propagation faster than the speed
of light ¢ = 1) to show that f(w) is an analytic function in the half-plane
Imw > 0.

(b) Use the analyticity of f(w) and the reality of Ain(w) and Aoyt (w),
and assume that f(w) is bounded at infinity to derive the dispersion relation

) Im f(w' + i€)
Re[f(w + ig)— [ dw ——~ 2 ST o)
with e arbitrarily small and positive.
(Chicago)
Solution:
(@) fim(w— t) = 0 for t <z means fiout(:z~ t) =0 for t<z. Then

0
A;:t(w)=\/%_ﬂ / e A (r)dr

is a regular function when Im w > 0, since when t < 0 the factor exp (Im wr)
of the integrand converges. As Aoy (w) = f(W) Ain(w), f(W) is also analytic
when Imw > 0.

(b) For w — 00,0< argw <m, we have |f (w)] < M, some positive
number.

Assume that f (0) is finite (if not we can choose another point at which
f is finite). Then x(w)= —E);ng is sufficiently small at infinity, and so

L[y,

3 0 Imw > 0.

x(w)=

— 00
When w is a real number, using

1 —
w-w-—i0 o —

. ’
- + (W — w),
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we aet .
P * Im +10
Rex(w)= —/ —X(w i0)
T Jooo W' —w
A in (w) being a real number means that 4%, (—w*) = in. (w). Hence

f* (w ) = f(-w), and so Im f(w + i0) = —Imf(—w+10), and
1 0 ,
Re{f(w+ i0) —j(O)] = P / ;I} i(/‘:_+u,lz)) dw

where P denotes the principal value of the integral.

6031

A spin-one-half projectile of mass m and energy FE = h ’“ scatters off
an infinitely heavy spin-one-half target. The interaction Hamlltonlan is

e“"

Hine = Aoy . (u>0),

where o, and o are the Pauli spin operators of the projectile and target
respectively. Compute the differential scattering cross section "” in lowest
order Born approximation, averaging over initial and summlng over final
states of spin polarization. Express gg as a function of k and the scattering
angle e.

(Princeton)

Solution:

Suppose that the projectile is incident on the target along the z-axis, i.e.,
ko = ke;. In lowest order Born approximation, the scattering amplitude is

- e
1O) =~z [ €007 40 -0

’
-m i e H
=517 J et Aoy . 02 = d37A'

— 0o
—{] R L0 .
= Aoy - oq J e ! dr! J €7 <5 0 5in 6 do

’
n
d3r’
T’
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where q = ko — k, g=2k sin g . Denote the total spin of the system by S.
Then S = (o1 + 02) and

h2
0'1-0'2=% (az—of—a§)=—2—[4S(S+ 1) -3-3]
h2

For § =0, ;- o2=—3Ak% and

6Am  doyg (6Am)?
0 = ee——— —_— T e———
fo(6) g dY T (B + g2

For S=1, 0, -09=Hk and

f1(9)=__.2{4'lz, doy _ _(24m)*
prtgr’ d (p?+¢?)?

If the initial states of spin of the projectile and target are ((l))p =ap,
(},)TzaT respectively, then the initial state of spin of the system is ©1; =
apar, the scattered wave function is f1(8) e':r 0,1, and the corresponding
differential scattering cross section is given by

doe (11 11
70 (5 37 3 5) = A0,

ds (11 1 1\ do (11 11
ar\22'2 2/ 4daa\22' 22

_do (11 1 1y _,
Tda\22' 2’ 2]
Noting that the triplet state vectors are
1
©11 = apar,©,,_1 = Bpfr, ©10 - —= (apfBr + Bpar),
V2
the singlet state vector is

©¢0 - % (apBr — BpaT)

and that
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1
apfr = 7 (@10 + ©oo), etc.,

we can obtain the remaining differential cross sections:

do (1 1 1 1\ 1 .

E (5) —57 Ea _E) _Zlfl(a)_f()(g)l ’

do (1 1 11\ 1 )

T (0 -3'-13) _1n@ - s,
da /1 1 11y do (1 1 1 1
@ \2’ 2°22/=d0 \2° 2’ 2’ "2
m( 11 1 1\ 1 ,

dQ \ —5 553 5 ) - 7 1f1(8) = fo(O),

do (11 1 1
= d0 2 2 72 772
|f1(0)|2a

do (1
= dQ 2’

_do (1
T d0 2’

)
)
)
© (S 1s) b sor,
:3)
)
)

Averaging over the initial states (i) and summing over the final states

(f) of spin polarization, we obtain

da 1 do () i
BT XX T shsssd)
SE. 50 s s

12A2m?

372(6) + £3(6)) =

W | =

u? + 4k2 sin? g




Scattering Theory and Quantum Transitions 529

6032

Calculate in the Born approximation the differential scattering cross sec-
tion for neutron-neutron scattering, assuming that the interaction potential
responsible for scattering vanishes for the triplet spin state and is equal to
Viry =W “':' for the singlet spin state. [Evaluate the cross section for an
unpolarized (random spin orientation) initial state.]

(Berkeley)
Solution:
The Born approximation gives (Problem 6013)

o
fs(8) = —;TTZ | rV(r) sin grdr
o0
= _iTrz Vo e #" sin gr dr
2mV0 a _ .
= — Fl,zq q—i—m, q—2ksm(0/2),

where k is the wave vector of the relative motion of the neutrons, m = m, /2
is the reduced mass.

As the spin wave function of the spin singlet state is antisymmetric, its
spatial wave function must be symmetric. Thus

os = f(0) + f(z - 0)?
2
_ 4m?V? 1 . 1
A p? + 4k?sin®$ 42 + 4k2 cos? § |

_ 16m2Vg@ (u? + 2k?)?

B (u® + 4k2 sin? %)2 (1? + 4k? cos? %)2 .

Because the neutrons are initially unpolarized, the scattering cross sec-
tion is
1 3 1
0’(0) = ZO'S + ZO't = ZO'S

4m2‘/02(#2 + 2k2)2

2 2"
B4 <u2 + 4k? sin? g) (p2 + 4k? cos? §>
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6033

The scattering of low-energy neutrons on protons is spin dependent.
When the neutron-proton system is in the singlet spin state the cross section
is o1 = 78 x 10~22 cm?, whereas in the triplet spin state the cross section
is g3 =2 x 1072 cm?. Let f)and f3 be the corresponding scattering
amplitudes. Express your answers below in terms of f; and f;.

(a) What is the total scattering cross section for unpolarized neutrons
on unpolarized protons?

(b) Suppose a neutron which initially has its spin up scatters from a
proton which initially has its spin down. What is the probability that the
neutron and proton flip their spins? (Assume s-wave scattering only.)

(c) The Hz molecule exists in two forms: ortho-hydrogen for which the
total spin of the protons is 1 and para-hydrogen for which the total spin of
the protons is 0. Suppose now a very low energy neutron (A, > (d), the
average separation between the protons in the molecule) scatters from such
molecules. What is the ratio of the cross section for scattering unpolarized
neutrons from unpolarized ortho-hydrogen to that for scattering them from
para-hydrogen?

(Berkeley)
Solution:

(a) The triplet and singlet spin states of a neutron-proton system can
respectively be expressed as
1
"\/“5 (anﬂp + apﬂn)» X3—1 = ﬁnﬂp?

3 3 _
X1 = 0nQp, Xo =

1
Xl—l = %— (anﬁp - ap:Bn) ,

with a =(g), 8 =(%). If we define an operator f by

1

= %fs+if1+z(f3“fl)(0'n-°'p)r

then as

Opn Op = OngOpg + OnyOpy + Onz0pz,

lo e

00

83, oyo = i3, o=,

«, O'yﬂ = _iay UZIB = _ﬁv
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we have
£ ¢ 3 £33 — 3
E=md, Md=rxe  fx2i=faxcs
£l 1
fx21= hix-a,

i.e., the eigenvalues of f for the triplet and singlet spin states are f3 and
fi respectively.

Similarly, if we define
p 3 1 1
2= Zf§+zf12+z(f32—f12)(0n-ap)

then f2 has eigenvalues f2 and fZ for the triplet and singlet states, and we
can express the total cross section for the scattering as o; = 4 f2.
Assume the spin state of the incident neutron is

e~ cos O
e sing /)’
Note here (23,2a) are the polar angles of the spin direction of the neutron.
If the state of the polarized proton is (5), then the cross section is

. e—ia COSﬂ + (1)+ f'-‘2 <1> (e—ia cosﬂ)
g = e*sing /, \0/, 0/, e*sinf ),
As
1>+ 1
(on op)
(0 o 00 .

={1 0), [an, ((1)>p+i0ny (2>p+0nz (é)p]

=O0nz,
e~ cos B\ T e~ cos ﬂ)
] g : .
e*sing /, e e*sin B8/,

i —ie 1 0 e~ cos ,(3)
= (e!* cos B e *sinf)y, 0 -1 e*sing /,

—ia
= (¢'* cos Be ™ sin B)n ¢ COS. .
(-e7** sin G,

=cos? B —sin® B = cos 23,
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we have
or = {3f] + £ — (f3 — f1) cos 26}

Since the incident neutrons are unpolarized, cos 28 =0 and so

30’ 10’
O3 = — + — .
t 43 41

Because the direction of the z-axis is arbitrary, the total scattering cross
section of unpolarized protons is as the same as that of polarized protons.
(b) The state vector before interaction is

), (),

We can expand this in terms of the wave functions of the singlet and
triplet states:

(). -5 {H [0, 0, (). 0
6,00, 6

The scattered wave is then

e m (0. 0,0.0)
s [0, (,-0). G}
- B2 (). (0,52 0. 0))

Hence the probability that the neutron and proton both flip their spins

(f3 - fl)2 1_(f3 - fl)2
(fa+f)2+(fs—fi)? - 2 f2+ f2
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(c) Let
F=fi+fi= '31?—“+%(f3—f1)0'n-5
with 1
S=3 (op: +0p2) = (Sp, +5p,) .
As
0z0y =103,
OyO, = 10z,
0,0z =10y,
005 + 050, = 205 ,
we have
(0n-8)*=82-0, 8,
and hence

P =2 {Gfs+ 1)+ GF ~2hfs—3 ) on. s
+ (fs—f)?8%}.
For para-hydrogen, S = 0 and so
op = w(3f3+ f1)°.
In this case, as there is no preferred direction the cross section is inde-
pendent of the polarization of the incident neutrons.
For ortho-hydrogen, S? = 1(1+ 1) = 2. Taking the proton states as
((l))Pl(é)Pw using
on- S = %(o’n “Opy+ Op - Op,)
and following the calculation in (a) we have
oS =cos 283.
Hence
oo =n{(3fs+ f1)*+ (5f3— 2f1fs — 3fF) cos 28
+ 2(fs— f1)?},
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where 243 is the angle between S and o,,. If the neutrons are unpolarized,
cos 23 =0 and so

oo =m[(3f3 + f1)2 + 2(fs— f1)}].

This result is independent of the polarization of the hydrogen. The ratio
we require is:

;—0 =1+ 2(fs— f1)*/(f1 + 3f3)%.
P

6034

Consider a hypothetical neutron-neutron scattering at zero energy. The
interaction potential is

where o1 and o5 are the Pauli spin matrices of the two neutrons. Compute
the total scattering cross section. Both the incident and target neutrons
are unpolarized.

(CUS)
Solution:

Consider the problem in the coupling representation. Let

S—S S — 0+ g
1 2 2 1 2 2-

1
0'1-02=§(4S2—0f—cr§)

_ %[4S(S+ 1) - 33
= 25(5+1) -3,

where S =1 or 0. It is noted that an eigenstate of S is also an eigenstate
of V(r). For zero-energy scattering we need to consider only the s partial
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wave, which is symmetrical. The Pauli principle then requires the spin wave
function to be antisymmetric. Thus we have S = 0 and

-3V, r<a,
Vv =
0, r>a.

For s-waves, the wave equation for r < a is

d2
d2+k0u_0

where u(r) = 4, % being the radial wave function, kZ =6mVy/h%, and the
solution is u(r) = A sin (kor). For r > a, the wave equation is

d2

where k3=2tE, and the solution is u(r) = sin(ky7 + be).
The continuity of u and u’ at r = a gives

k1 tan(koa) = ko tan(kia + o).

For E—0 ki—0and

by _ tan (kia)+tan do
%o 21 (kod) = T N kra) tan 6o

—kia + tan 4,

tan (koa)
— -1
koa |

For collisions of identical particles,

a(6) = 1£(8) + f(m — O)*

do =~ kia [

2
22(21 +1) e sin §,P, (cos 8)
1=0,2,4

k2
Considering only the s partial wave, we have the differential cross section

o(0) = — sin® 6 ~ — 62

1 k2
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and the total cross section

tan(k 2
0, = 410 = 16ma? [M - 11
koa

As the incident and target neutrons are unpolarized the probability that
S =0 (i.e., opposite spins) is }—1. Hence

2
koa

6035

A beam of spin-i particles of mass m is scattered from a target con-
sisting of heavy nuclei, also of spin 1/2. The interaction of a test particle
with a nucleus is cs; - s3 §3(x; — x2), where ¢ is a small constant, s; and s,

are the test particle and nuclear spins respectively, and x; and x, are their
respective positions.

(a) Calculate the differential scattering cross section, averaging over the
initial spin states. What is the total cross section?

(b) If the incident test particles all have spin up along the z-axis but
the nuclear spins are oriented at random, what is the probability that after
scattering the test particles still have spin up along the z-axis?

(Princeton)
Solution:

(a) As the nuclear target, being heavy, acts as a fixed scattering center,

the center-of-mass and laboratory frames coincide. Then the equation of
relative motion is

h2
[—— V2 + csy 5269 (r)l Y(r) = Ey(r).

2m

As c is a small constant, we can employ the Born approximation

F0)=

..2:;2 / ei(k—k')Ar’ csy - 825(3) (rl) d3,rl
- Cm-
- 2mh?

S; . 82,
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using the property of 83 (ri). The differential scattering cross section is

c22
o) =IfOF = gy 5132l

where
liqe 2 2
81'52=§[S — 8] — s3]
1 1 3 1 2
=3 S(S+1)—2-2—2- R,
S =s;+s;.
For the state of total spin S = 0,
c2m? 3 2 (3me)?
2 (1 22V B2 =
0'(0) = (27Th2)2 2 ( 2) (87()2
ForS=1,
m?2 1 1, (me)?
06) =Gz 3| = G
(2mh2)?12 2 (87)

Averaging over the initial spin states, the differential scattering cross

section is
3(mc)?

oi(6) =3 00(6) + 3 01(6) = (g3

Alternative solution:

Let jap) denote the initial spin state of the incident particle. The spin
of the target is unpolarized, so its state is a IMixtureT of |a) and |8) states
(not TsuperpositionT), cl(t) jan)+c2(t)|Bn). Here cl(t) and c2(t) have no
fixed phase difference, and so the mean-square values are each 1/2. In the
coupling representation, the initial spin state is a mixture of the states

mmm,%gm@+w»

where  |x) = |ap)|an),
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Ixo) = 7 (lap) 1BN) + 1Bp)lan))
Ix0) = —\/—5 (lop) 1BN) = |Bp)lan)) -

After scattering, the spin state of the system, with part of the asymp-
totic spatial states, becomes

(S = ex(t) 1(8) 1xh) + ﬁ 1(6)
£ Fo(6) DAY

Taking the dot product of the different |x) states with |1) s, we obtain
the corresponding probability amplitudes, which are then added together
to give the total cross section

1
0:(6) = lex(8)1? a1 (6) + Elcz(t)l2 o1(6)
+ “|02(t) o0(8).
As c1(t), c2 (t) each has the mean-square value §, we have

G’t(e) = l0'1(9) + '1-0’1(0) + %0’0(9)

2 4
3 1
= 10'1(9) + 100(0),

same as that obtained before.
(b) After scattering the two irrelevant spin states of the system are

x)  and —j—i () + 1xd)).-

Taking the dot product of the two states with |t), we obtain the cor-
responding scattering amplitudes. Hence the scattering cross section is

”—161(t)|201(9)+ le2(t)[ [ [£1(6) + fo(8)] 7.
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Averaging over the ensemble, we have

m2

(8m)?

o0 =3 o)+ % 1£1(6) + f20)" =

The probability that the test particles still have spin up is

_9

1
gt 3

6036

(&) Two identical particles of spin % and mass m interact through
a screened Coulomb potential V(r) = e?exp(—Ar)/r, where I/X is the
screening length. Consider a scattering experiment in which each particle
has kinetic energy E in the center-of-mass frame. Assume that E is large.
The incoming spins are oriented at random. Calculate (in the center-of-
mass frame) the scattering cross section gg for observation of a particle
emerging at an angle 4 relative to the axis of the incoming particles as
shown in Fig. 6.9.

outgoing

incoming 8  incoming

-

8

outgoing
Fig. 6.9

(b) Assuming that the outgoing particles are observed at an angle 8
relative to the beam axis, what is the probability that after the scattering
event the two particles are in a state of total spin one? What is the prob-
ability that, if one particle has spin up along the z-axis, the other particle
also has spin up along the z-axis?
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(c) How large must the energy be for your approximations to be valid?
Suppose that, instead, the energy is much less than this. In the limit of low
energies, what is the probability that after being scattered the two particles
are left in a state of S =17

(Princeton)

Solution:

In the CM frame, the motions of the two particles are symmetric. The

interaction is equivalent to a potential centered at the midpoint of the line
joining the particles.

V(p) = €® exp (—2Xp)/2p,

where p = 7,7 being the separation of the two particles. As the energy E
is large, we can use the first Born approximation

f(0)= -

m

s / e V(p) d’p

2m [ €2

€ .
2 J, - exp(=2Ap) sin(gp) dp

me?

TR+ 2N

where ¢ is the momentum transfer during the scattering, g =2k sin(6/2).

Considering the symmetry of the wave function of the two-identical-particle
system, we have

for S =0,  04(0) = |f(0)+ f(x —0))?,
for S =1, oa(8) = |f(8) — f(m —0))%.
Thus 4

N 2
o,(6)=-1 ﬁme2 A 1 1

- -+
k2 sin?® 22 + A2 k2 cos? 22 + A2 I

me? 2

0(0)_1 (me2)2 [ k%cos @
¢ 4 (k2 sinzg + A2) (k2 cos? § + ’\2)I

2
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Hence the total cross section is

1
o't:ZUs+Zo'a

1 (me2)2 (k% + 22%)% + 3(k? cos 6)?
16 K2 2 .
[(kz sin? g + )\2) (k2 cos2§ + )\2)]

(b) If the incident particle is unpolarized, then the probability that after
the scattering the two particles are in a state of total spin one is

3
77 3(k? cos 6)?2
oy = (k?+2A2)2 + 3(k? cos 6)2 .

The probability that after the scattering both particles have spin up
along the t-axis is

1
27 (k% cos )2
ot = (k% +2X2)2+ 3(k2 cos 6)2 .

(c) The £ = 0 partial wave has the symmetry f(8)= f(w—8). It makes
no contribution to the S = 1 state, while it is the main contributor to the
S = 0 state. Therefore the ratio of the scattering cross section of the S =1
state to that of the S = 0 state is equal to the ratio of the scattering cross
section of the ¢ = 1 partial wave to that of the ¢ = 0 partial wave. It tends
to zero in the low energy limit.

6037

An electron (mass m) of momentum p scatters through angle & in a
spin-dependent (and parity-violating) potential V = e=#r’ (A + Bo-),
where p(>0), A, B are constants and o, gy, o, are the usual Pauli spin
matrices. Let % be the differential scattering cross section, summed over
final spin states but for definite initial spin state, labeled by the index ¢, of
the incident electron. In particular, quantizing spin along the line of flight
of the incident electron, we may consider alternatively: incident spin “up”
(i=1) or tdownT (i=l).
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Compute %‘;{ and a—"ias functions of p and @ in lowest order Born
approximation.

(Princeton)
Solution:

Let the incident direction of the electron be along the x-axis. In a

diagonal representation of o,, the spin wave function of the incident electron
may be expressed as

wn () ()

Let n be the unit vector along the r direction, i.e., n = (sin § cos ¢, sin 8
sin g, cos 8). Then

0 1Y ecosy + O g esi
o-n= sin sin esin
10 "\i o v
1 0 cos @ sin fe ¥
+ cosf@=|( . , .
0 -1 sinfe* —cosé
First consider %,:

(o-n) v, = 1 (cos@+§in06"‘ﬂ)

V2 \ sl e’ ~cos ¢
1 .
= 7 (cos 6 +sin fe~ ") a + 7: (sin 8€** — cos 6) 3,

where a = ((1)), 8= (‘l’) are the eigenstates of o, in Pauli’s representation.
In first Born approximation the scattering amplitude (including spin) is
given by

m

" 27h? / el V(') ¢y dia’,

where q = £ (ps—p), ld| = q:%fsin(e/z). This can be written as

f0)=

f(e):_ 27:’;’12 / e-iqr' cos 6’ e—y.rm

x[Apy + r'B (o - n) ¥4]d° 2’ = L(B)a+ I(6) B,
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where
m - ’ 2 1
L) = - —— —igr’ cos 8° _—pr’t _*
19) 2nh? € NG
X [A + TiB (cos 8 + sin 8 €)1 sin 0 dr’ d9’ dyo'
B > ’ 14 12 :oal
5L(9) = - % 7 emiar’ cos 0’ =i (in 0 €' _ cos §) "
X sin @' dr' d9 dy’ .
As .
/ ei:‘i&p' d(pl =0 ,
0
We have

m w e Lo ’ 2 1
- —igr’ cos 6 _—pur’ _*
I,(6) SeRE /0 do e e 5
X (A + 11 B cos 0’)1"2 sin ¢’ d¢’ dr’ s

or, integrating over &',
2m A [* 2 i

L(0) = — — - ——/ r'e P sin(gr') dr' — ——

1) h2q V2 Jo @) q

x = lw " e cos(qr') dr’
V2

2m| B o0 7 2
s e ' e™#7 sin (gr')dr’.
hq® 2
As
, 1 [m 2
flu,q) = e—ur? cos(qTi) dr' = 3 %exp <—Z—#) i
We have

f ' —ur'? ’ ' 1 m q2 ( )
of _ El r &' = - 2 I ,
7 e sin (gr') dr 5 exp 1

or
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as well as

o
of _ —/ r* e # cos(qr')dr' = 111
ou 0 B
T

or
o
/ 2 e_‘”l2 cos gr’ dr' = 1 \/E exp (-—
0 p y p
Vi (-5)
X f—exp | —
P
Thus
2m A [m g q>
ney=-2.2 T .4 o (-L
0= e e (-4
2mi B T exp (_ﬁ (i_
R%g V2 Vu 4p
h%qz /2 u© "
T m . Bgq (
= /—  —— | —A — Jex
V 2u 2ﬁ2u( H?u) P
Hence
9oy 5 wm? q° ( 2
—L = = ——eXx — A%+
5q = 110 sm P (7o,
Similarly we obtain
mA [« q>
L) - - T2 1/5 exp ( 4#)
imBq [7 ex __qi
sz \ 2p OP\ T4
and hence

9oy _ y _ pm? _Z (A2
36 - |I2(0)| - 8#3ﬁ4 exp 2u +

The same results are found for ¥-—.

q2 B2
442

)
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6038

A spinless charged particle P; is bound in a spherically symmetric
state whose wave function is ¥;(r) = (ra)=3/2e=""/2¢*_If a spinless,
nonrelativistic projectile P, interacts with P, via the contact potential
V(r = ri) = Vub263(r — ri), calculate, in first Born approximation, the
amplitude for the elastic scattering of P, from the above bound state of P,
(without worrying about the overall normalization). Assuming P is suffi-
ciently massive that its recoil energy is negligible, sketch the shape of the
angular dlstrlbutlon G of the scattered projectiles. How does this shape
change with bombardmg energy, and how can it be used to determine the
size of the P, bound state? What determines the minimum energy of P,
necessary to measure this size?

( Wisconsin)

Solution:

Because P is very heavy and so can be considered as fixed, the Schréd-
inger equation of Pa is

2
[_% vt [ ar o) aba(e - ”)1 Y()=Bulr)

(—— o r) = Eufy)

where p;(r) = |¢ (r)|? is the probability density of the particle P, at r and
m is the mass of P,. Then Born approximation gives

or

2m oo ’ 3 AP ' ’
f(9)=—g§a r'Vob®p1 (r') sin(qr’) dr'|.
Thus
3 [ o] /2
f(@oc%(%) / r exp (—%) sin(qr’) dr’
0
3 1A,
b* exp [ 1 (q(_lL ,
and hence

ZQ |£(8)1? = o0 exp [—— (qa) ]

= 0p exp [—Z(Ica)2 sin? g} ,
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Gyl8)
E3>E>E,
51
3 2
0 v > 8
E increasing
Fig. 6.10
where k=%, go=0(8 = O) G Vs. 8 for different energies are shown in

the Fig. 6. 10

When the incident energy is increased, & & will more rapidly decrease
with increasing 6. As

In g—g— = —2k%a? sin? —g +c,
where ¢ is a constant, a plot of In 22 76 against sm2(9/2) will give a straight
line with slope —2k%a? = -2 ()2 a2, which can be used to determine the
size a of the P, bound state. The expression for % does not appear to
impose any restriction on the incident energy, except where the validity of
Born approximation, on the basis of which the expression was derived, is
concerned. In fact (Problem 6026), the validity of Born approximation

reauires s
h2k b
2w~ (£
ma a

mb®Vj
Fumin ~ Ja2 -

6039

(a) State the electric-dipole selection rules for atomic states connected
by emission or absorption of a photon.

(b) Interpret the selection rule in terms of photon orbital angular mo-
mentum, spin, helicity and parity.
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(c) Make a semi-classical estimate of the lifetime of the 2p state of
hydrogen, using the Bohr model and the classical formula

2 2

33"

(c.g.s. units)

for the power radiated by a particle of charge g and acceleration 4. Express
your result in terms of e, FL, ¢, a and w, where a is the Bohr radius and w
is the angular velocity in the circular orbit.
(d) Using the answer from (c), what is the width of the 2p state in
electron volts?
(Berkeley)

Solution:
(a) The selection rules are

Al = 1, Am=+1,0.

(b) A photon has orbital angular momentum 0, spin 1, helicity fl, and
negative parity. The conservation of angular momentum requires

Al = 0, fl, Am = +1,0,
while the conservation of parity requires
(DF = —(=1)", ie, I#1L

Therefore,
Al = fl, Am = +1,0.

(c) Classically, the power radiated by an electron of acceleration v is
2e? .,
=33 [v]*.
An electron in a circular orbit of radius a has acceleration
2

V] = w?a,

where w?a is given by
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For the 2p state, n = 2,1 = 1, so the average radius of the electron orbit

a:—;-[3n2—l(l+1)]:5ao,

where ag is the Bohr radius. This can also be obtained by a direct integra-
tion

where Ry1 xr exp(—ﬁ;). Thus the power radiated is

p_2_ ¢
3 (5ap)*m?2c?

In a transition to the ground state, the energy difference is
2 2
e 1 1 3e
AE=E-Ei=—— |5 —7)=—.
E=E - 2a (22 1) 8ag
Hence the lifetime of the 2p state is
75 2 a3m?2c®
4) et

_7'52mc2 a3
T\ 4 e2 ¢

2 2 -8\3
75 1 (0.53 x 1078) s
=| — =22 .
( 4) (2.82 X 10—13> X T3 x 100 X 1077s

(d) The width of the 2p state is

T =AE/P =

[=h/T=30x10"%eV.

6040

The neutral K-meson states |K°) and | K°) can be expressed in terms
of states |K1),|Ks):

K%)= (1K) +1Ks)),

&%) = %(m) ~IKs)),
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where |K) and |Kg) are states with definite lifetimes 71 = ;1: and g = ;1;
and distinct rest energies myc?# mgc?. Attime t = 0, a meson is produced
in the state |¢(t = 0)) = |K°). Let the probability of finding the system
in state |K°) at time t be P,(t) and that of finding the system in state
|K°) at time t be P,(t). Find an expression for Py(t)— Po(t) in terms of
vL,vs, mrc? and msc?. Neglect CP violation.

(Columbia)

Solution:

Suppose the K meson is a metastable state of width T" at energy &p. In
the region of energy

1
E:EO_EF’

its wave function may be expressed as

W) = L) exp [— i (mLc2/n _ §7L> t]

+ |Ks) exp[—i mgct/h— )t]s t
(
= % [|KL) exp (—impc®t/h) exp ( —%’nt)

+ |KS> e—imsczt/h e—‘ygt/Z] .
The probability of its being in the |K°) state at time ¢t is
Po(t) = (K (@)

— j‘_l le—imcht/h e—‘y[,t/2 + e—imsczt/h e—-yst/2 2

_ % (et + 775t 4 2= (A1) U2 (og [(my — mg) Pt/H)},
and the probability of its being in the K° state is
Po(t) =I(K° 1))
= % {e= Lt + gmvst 2= (Lt) /2 [(my — mg) c2t/H)}.
Thus
Py(t) — Po(t) = e~ OL+79)/2 cos[my, — ms) c*t/h)].



550 Problems and Solutions on Quantum Mechanics

6041
The energy levels of the four lowest states of an atom are
E, = -14.0 eV,
E; = -9.0 eV,
Ey; = -7.0 eV,
E; = .55 eV.
E3

£
E, .JI
S

Fig. 6.11

and the transition rates A;; (Einsteinis A coefficients) for the i — j transi-
tions are

Ao =30 x10%8571, Ay =12x108s"1, Az =45 x 107s7!,
Az1 = 8.0 x 1078_1, A3; =0, A3=10X 107571,

Imagine a vessel containing a substantial number of atoms in the level
E,.

(@ Find the ratio of the energy emitted per unit time for the E; — E
transition to that for the E, — E; transition.
(b) Calculate the radiative lifetime of the E; level.

( Wisconsin)
Solution:

(@) The energy emitted per unit time is given by (E;— E;) A;;, and so
the ratio is
E;—Ey Ax 7 12
E;s—E Ay 2 8
(b) An atom at level E; can transit to Ep or E; through spontaneous
transition. So the decrease in the number of such atoms in the time period

dtis

= 5.25.
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dN2 - —(Ag + A21) Nodt.

dN.
7\,?2 = —(A20 + A1) dt ,

or, by integration,
Ny - Nygexp [—(Az0 + A1) 1],

where Nyg is the number of atoms at energy level E; at time t = 0. The
mean lifetime is then

1 lo o] o0
T= T/ t(—dN2) = (A2 + Az) / texp[—(Azo + A21)t]dt
20 WJ1) 0

1

—— =50x107%;s.
= Az + -421

6042

A hydrogen atom in its first excited (2p) state is placed in a cavity. At
what temperature of the cavity are the transition probabilities for sponta-
neous and induced emissions equal?

(Berkeley)
Solution:
The probability of induced transition per unit time in a cavity is
4 2

2
e
wi2 = W ‘r12‘2 p(wZI) )

and that of spontaneous transition is

2,3
e wy,

A12 =

If they are equal, then we have

2 w3
— plwyy) = =21,
5 p(w21) 3
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As for black body radiation

) Fuw3 1
plw) = n2¢3 exp(hw/kT)— 1"’
we have

—1 =1

exp () -1
and

T= huwyy
kln2 "

With

_ me* (1 )

me® (e2\? 3 051x10% / 1\? 3
=2 (= = — =171x10°K.
T==% (hc) 8In2 862x10-° (137) 81n 2 X

6043

A hydrogen atom (with spinless electron and proton) in its ground state
is placed between the plates of a condenser and subjected to a uniform weak
electric field

E = Ege o),

where 6(t) is the step function: 6(t) = 0 for t <0 and 6(t) = 1 for t > 0.
Find the first order probability for the atom to be in any of the n = 2 states
after a long time. Some hydrogenic wave functions in spherical coordinates
are

1 e.‘..r/a,o 1 e—r/200 L cos 9’

Y100 = T ) Pa10 = m o
1 r
—_—— 1 —- — e—r/2ao ,
200 ’__3-87ra0 ( 2a0>

1 T /200 4
Vo141 = F——= — e /2% sin fe*?.
\/647rao3 ao
A useful integral is f;° z" e™%* dr = 2.
( Wisconsin)
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Solution:

Take the direction of the electric field as the z direction. Then the
perturbation Hamiltonian is

H' =er . E(t) = ezE(t).

The non-vanishing matrix elements of H' are those between states of
opposite parities. Thus P(1s— 2s) = 0. Consider P(1s— 2p).
The 2p state is three-fold degenerate, i.e.,

|2p, m}, with m = 1, 0, -1.
For {m’|z}m") not to vanish, the rule is Am = 0. Thus
(2p,1|H’|1s, 0) = (2p,—1|H’|1s, 0) =

and finding the probability of the transition 1s — 2p is reduced to finding
that of |1s, 0) —|2p, 0). As

(2p,0|H'|1s, 0) = eE(t)/d;;lor cos 8100 dr

“ig L ()

x 7 cos? @ sin @drdfdy

2 4! 7
_ _eB(t) 9r - 2. = 2 \/§5aoe Et),
4\/_7ra0 3 3 3
2(10

the probability amplitude is
1 e ’ iwoyt d
C2p0,150 = — (2p, 0|H'|1s, 0) € t
th J_ o

_ 'i27 V2age E, /°° e-Ttgiwat gy
ih 35 0

_ 27 \/iaero 1

- 35ih .- iLU21 ’
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where wo; = 4 (E2— Ey). Hence the probability of the transition [1s, 0) -
|2p, 0) is
21502¢2 E2

B 2 400 Lgy
P(1s — 2p) = |Capo,150]° - 372 (T2 + ul;)’

Note that
1 e? 1 1 3e?
= Z(By— Ey) = ——-)= .
wn = g (B2 Ey) = 55 (22 1) Baoh
6044

A diatomic molecule with equally massive atoms, each with mass M,
separated by D is electrically polarized, rotating about an axis perpendic-
ular to D and running through the center of mass of the molecule.

(a) Express the energy of the rotational state of the molecule with an-
gular momentum quantum number J in terms of its mechanical properties. ;

(b) What is the selection rule for electric dipole radiation emission from
the molecule in one of its rotational states? (DERIVE ANSWER)

(c) Determine the frequency of the electric dipole radiation emitted from
the rotating molecule as a function of J. (Express answer as a function of
J, M, D and any universal constants that may enter).

(Buffalo)

Solution:

(@) As H= 2‘—, J2, where J is the total angular momentum operator,
= %MD2 is the moment of inertia of the molecule about the rotating
axis, the energy of the rotating state of quantum number J is

E; JO + 1) B2,

_ 1
MD?
(b) The eigenfunctions of the rotational states are the spherical har-

monic functions Y;,, . Take the z-axis along the electric field and consider
the requirements for {j”m”|cos 8 |3'm')# 0. As



Scattering Theory and Quantum Transitions 555

(J"m"| cos 8| J'm’)

(J'+1-m) (J’+1+m’)5 5
(2J' +1) (2J' + 3) T I+ 10m m?

0T 7 —m)
611 ' 5 o
+\/(2J|+1)(2J| —q) I mems

we require
AT =3"—j§ =+1,
Am=m"-m'=0.

(c) For the transition from energy level Jto J — 1, we have

2JR?
hw=E;—Ej_;= MD2 J(J+ 1) R~ MD? Jd-1) Jk MDD
giving
_2Jh
T MD?%’
6045

(a) Find the energies above the bottom of the potential well of the
ground state and first two excited states of a particle of mass m bound in a
deep one-dimensional square-well potential of width £ as shown in Fig. 6.12.
Sketch the corresponding wave functions.

{

-4 0 4
—
Vs
A
A
/]
/)
/]

A /2

Fig. 6.12

(b) Calculate the matrix elements for electric dipole transitions from
the first two excited states to the ground state, and explain any qualitative
differences. [You need not carry out all the integration]



556 Problems and Solutions on Quantum Mechanics

(c) Give the general selection rule for electric dipole transition between
any two states in the system.

( Wisconsin)
Solution:
(a) The energy levels of the system are
72 h?n?
~ omiz
The wave functions of even parity are given by

wheren=1, 2, ....

2
Yl (z) = \/—; cos n—TE-, where n = an odd integer.

The wave functions of odd parity are

2 .
Y ()= \/; sin 7—ml—$, where n = an even integer.

The ground state and the first two excited states are respectively

h2x? + \/5 T
n=1, El—'2—n—ll—2y Y7 (x) = 7005 (7)1
2 2
n=2, E, = 4E,, w;(x)z\/;s'm <—$),
2 3
n=3, E; = 9E,, ¢;’(x)=\/;cos (——7—)

These wave functions are sketched in Fig. 6.13.

8

Yoy,

’

’
-’Iq,z q,3
Fig. 6.13

(b) The Einstein coefficient for electric dipole transition is
4e’wi,,
3hc3

2
App = leprer 1
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The matrix element for the transition of an electric dipole from the first
excited state to the ground state is

1/2

(z)21 = Y1 (x) zp2(x) dz
/2

2 [i/2 T . 27X
—/ X €0S — Sin —dzx.
U_1)2 l l

The matrix element for the transition of an electric dipole from the
second excited state to the ground state is

/2
(z)a1 = P Y1(x) z¢3(x) dz

2 /l/2 T 3rz
- X COS — C0S —— dzx.
= U l !

The second matrix element (z)s; is zero because the integrand is an
odd function. Thus the second excited state cannot transit to the ground
state by electric dipole transition. There is however no such restriction on
electric dipole transition from the first excited state.

(c) The matrix element for electric dipole transition from a state kto a
state &' of the system is

12
(@)rr = B Y (%) Yr(x) - 2dT .

If the initial and final states have the same parity, the integrand is
an odd function and {z)k« vanishes. Thus the general selection rule for
electric dipole transition is that any such transition between states of the
same parity is forbidden.

6046

Consider a particle in a one-dimensional infinite potential well. Let the
origin be at the center as shown in Fig. 6.14.
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Fig. 6.14

(a) What are the allowed energies?
(b) What are the allowed wave functions?
(c) For what class of solutions will a perturbing potential AV (z)=kz
have no first order effect on the energy?
(d) If transitions between states can occur by dipole radiation, what are
the selection rules?
( Wisconsin)

Solution:

(a) The allowed energies are

h2x2n?
E,=———.
" 8ma?

(b) There are two classes of allowed wave functions, one of even parity,

1 nrT
i) - [Ton 2,

where n is an odd integer, and one of odd parity,

_ 1 . nnx
'([1,,(:1:) =\/;Sln_2_a_)

where n is an even integer.
(c) First order perturbation gives the energy as

E.=E® + (AV), = E® + (kz)p, .

As AV = kx is an odd function, the diagonal matrix elements are all
zero, This means that, as long as the wave function has a definite parity
(whatever it is), there is no energy correction of the first order. Only for
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states of mixed parities will there be energy correction arising from first
order perturbation.
(d) Electric dipole transitions are determined by {z)x. Since

(x)kk' = (k'|x|k)0( <kl|a+ + a‘k)
=~ Vk+ 10k k41 + \/—I;?Jk',k—l )

the selection rule is Ak = +1.

6047

A particle of charge g moving in one dimension is initially bound to a
delta function potential at the origin. From time t =0 tot =7 it is exposed
to a constant electric field €¢ in the x direction as shown in Fig. 6.15. The
object of this problem is to find the probability that for ¢t >t the particle
will be found in an unbound state with energy between Ei and Ex + dEk.

Exlt)
A
so____l
0 T —>t

Fig. 6.15

(a) Find the normalized bound-state energy eigenfunction corresponding
to the delta function potential V(x) = —Aé(z).

(b) Assume that the unbound states may be approximated by free parti-
cle states with periodic boundary conditions in a box of length L. Find the
normalized wave function of wave vector k, ¥x(z), the density of states as a
function of k, D(k), and the density of states as a function of free-particle
energy, D(Ey).

(c) Assume that the electric field may be treated as a perturbation.
Write down the perturbation term in the Hamiltonian, H’l, and find the ma-
trix element of H; between the initial state and the final state, © II:III k).

(d) The probability of a transition between an initially occupied state
[I) and a final state |F) due to a weak perturbation Hamiltonian Hj(t) is
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given by . )

; / (FIHL()] 1) err

Pr,p(t) = 7z
where wry=(Er—Er)/h. Find an expression for the probability P(Ex)
dE}, that the particle will be in an unbound state with energy between Ex
and Ei + dE), for t > 7.

(MIT)
Solution:
(a) The energy eigenfunction satisfies the Schrodinger equation

h? d%p _
T —As(x)y = EY,
where E < 0. or
d?y 9
E_k Y+ Apd(x)p =0

with

[2m| E | 2mA
k= h2 3 A0=—h2—

Integrating this equation from —eto +¢,€ being an arbitrary small
positive number and then letting € — 0, we get

Y'(+0) — ¥’ (=0) = — A (0) .
We also have from the continuity of the wave function at x =0
P(+0) = %(-0) = ¥(0).

Thus
Y(+0)  _¥(=0) _Aq.
PY(+0)  ¥(-0)
Solving the Schrodinger equation for x # 0 we get ¥(z) = Ce~*l=l,
Then as ¥(x) = Ce~*= for x > 0 and (x) = Ce** for x < 0 we have

Y'(+0) ¥'(-0) _
@(+0)  ¥(-0) 2k

Hence
k__A_o_mA
T2 7 RS
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The energy level for the bound state is

R ma?
2m 2K’

and the corresponding normalized eigenfunction is

$) =\ ot exp (—%—‘ilml) :

(b) If the unbound states can be approximately represented by a plane
wave %% in a one-dimensional box of length L with periodic boundary
conditions, we have

exp [zk(—%)] = exp (ik g)
which gives e**F =1, or
kL = 2nm. (n =0, £1,%2,...)
Hence o 2o _ , "
7 " .

Thus the normalized plane wave function for wave vector k is

Yr(x) = % etke = % exp[i (MTW z)] )

Note that the state of energy Ex is two-fold degenerate when k # 0, so
the number of states with momenta between pand p+dp is

Ldp

= D(k dk——DE dE
onh (k) (Ex) dE .

As k, p and Ej are related by

P
k=2 EB=2_=
Bk
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we have
L m

D(k) =50, D(Bx) = /o0

(c) Treating g as a perturbation, the perturbation Hamiltonian is H =
—geoz. Its matrix element between the initial and final states is

(k|I§I1|0)=/ Yi(—qeoz) Y dz

+oo
_ 450 /"’:f / X exp(—ikz — ko |z]) dx
€ m +oo
_ 9% /hz / exp(—ikz — ko |z|) dz

A d
_ _:]/i% m [/ exp(—ikz + koz) dz

+ / exp (—ikz — ko) dx
0

geg [mA . 1
= 24 2 (—dikky————
VIV iRk

_ 4igeg (mA)a/2 k
= — -
VL h !:k2+ (mA)2

(d) The perturbation Hamiltonian is

07 (_00<t<0)
Hy =4 —geoz, (0 <t<T)
0. (T <t< +00)

The transition probability at ¢t> 7 is
2

1 T
PrLr(t) = 7 [{ dt’ exp(iwpy t')
0
1 ~ sin2 (wp17'/2)
= — |(k|H1]0)|?
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AS
R2k? mA? 1
Ep=_" g =_02 ~Y . _Ep,
F=—_—, Er orz + wFI=7% (EF 1)

we have 2
sin? h—T k2 + (n—l—?-)
sin(wpy7/2) 4m h

(wr1/2)2 {Z% [k2+(mh—;4)2}}2

Hence the probability required is
P(Ey)dEy = Pip(t) D(E)dEy
(16ge0)?m3k3
2mEk)6

2mEk

mh? (kg + =3

6048

Consider a two-level atom with internal states |1) and |2) of energy
separation E;-— E; = hws;. It is initially in its ground state |1) and is
exposed to electromagnetic radiation described by E = E,, (€% + e~t).

(a) If w = wy2, calculate the probability that the atom will be in the
state |2) at a later time t.

(b) If w is only approximately equal to w;2, what qualitative difference
will this make? Calculate the same probability for this case as you did in

part (a).
(Buffalo)
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Solution:
Let
Ho (1) = E1 |1) = hwy 1),
Ho|2) = Ez[2) = hwy|2).
The Hamiltonian can be written as
H=Hy+ H',
where
H/ = _ex - Em(eiwt + e—iwt)
is the perturbation arising from the presence of the electromagnetic radia-
tion. The time-dependent Schrédinger equation

0
ih = [t) = H )

is to be solved with the initial condition |t = 0) =|1). Suppose the solution
is
1Y) = c1(t) e 1) + co(t) e ™2t |2)

with ¢1(0) = 1, c2(0) = 0. Substitution in the Schrédinger equation gives
ih(¢1e” ™t 1) — dcjwy e ™1t |1)
t gge it [2) — icowge w2t 12))
= Cle—iwlthldl ll) + ¢y e'i“’zth/.uz l2>
t eIt HI 1)+ cpe ™2t Hi |2).
As

., 0
lhb—t'(

the above simplifies to

e~ 1)) = hw; e ™1t 1), etc.,

ihéy e 1) + thég e ™2 |2)
= ¢y €7t Hi |1) +cpe™ ™2t HI |2).

Multiplying the above equation by (1 | and by (2|, we obtain
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c1 (1H'|1) + ¢z e™* 2=t (1 H'|2),
o] eilwrwn)t (2|H'|1) + co (2|H'|2).

1héy

1héy

Writing
(¢|—ex . Em|j) = hai; ,

of
(i|H'|) = (e** + e"*")hay;,

the above equations become
’ih(31=61 (eiwt + e—iwt) ﬁau +co e—iwzﬂ (eiut + e——iwt)halz,
’LhCz =¢ eiwglt (eiwt + e—iwt) ﬁa21 +C2 (eiwt + e—iut) ha22’

where wg1 = w2 —wi. If By, is small, the fast-oscillation terms can be
neglected and the equations written as

—1a12C2 gilw—wn)t ,

1

w1 —w)t

¢2 = —iagicy €
Eliminating ¢; from the above we find
ép — i(wa1 — w) é2 +a1202102=0.
As |t = 0) = |1), we have the initial conditions
a0) -1, c2(0) = 0,
¢2(0) = —iag1¢1(0) = —iag; .
(a) For w = wq; the above becomes
o+ 0% =0 ,
where Q2 = ay2a21 = |aj2|%.

The solution is
cy = Actﬂt + Be—th
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The boundary conditions for c2 give

az1
=—B=——2%,
4 2Q
Hence a
cz(t)=~i—§ sin §t,

and the probability that the atom will be in the state |2} at time t is
le2(t)]? = sin? Qt.
(b) For w = wsy, try a solution cg ~ et . Substitution gives
cy= Ae*+t + Ber-

where L
)\:t = 5 [(wzl - w) + A]

with A = [(w21 — w)? + 4032 The boundary conditions for ¢z thus give

2ia21

A exp [_12_ (w21 -W)t] sin (%—t)

Hence the probability is

4lan|? . A
2 _ 21relt 2 1=
lea(t))* = T t

Cz(t) = -

6049

In HCI a number of absorption lines with wave numbers (in em™!) 83.03,
103.73, 124.30, 145.03, 165.51 and 185.86 have been observed. Are these
vibrational or rotational transition? If the former, what is the characteristic
frequency? If the latter, what J values do they correspond to, and what is
the moment of inertia of HCI?

In that case, estimate the separation between the nuclei.

(Chicago)
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Solution:

Diatomic molecular energy levels are given to a first approximation by
1 J(J + 1) h
Why = -Up + (n+ 5) ﬁw-f-w,

where n is an integer, M and R are the reduced mass and separation of
the two atoms. On the right-hand side, the terms are energies associated
with, respectively, the electronic structure, nuclear vibrational motion, and
rotation of the molecule. As

Wnt1,7 — Wh, g = Aw,
the vibrational lines have only one frequency, and so the lines are not due
to vibrational transitions. The rotational energy levels
fi2
Eyj= —JJ+1

where | = MR?, and the selection rule | AJ| =1 give the wave number for
the line arising from J +1 —J as

.1 1 R*(J +1)
V= T R A T T
Hence 52
b Scan
For J— J— 1, the energy of the spectral line is
N
hCV = T ,

which is proportional to J. The spacing of the neighboring lines A7 =
2 2 . -
B AJ=2is a constant. For the given lines we have

p=% (cm-€)  Transition J = J -1 A (3)(ecm™})

83.03 43 20.70
103.73 5—4 20.57
124.30 65 20.73
145.03 76 20.48
165.51 8—7 20.35
185.86 938

(@ = 20.57 (cm-&)
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The moment of inertia of the HCl molecule is therefore

h2

6.63 x 10734
(27)? x 3.0 x 108 x 20.57 x 102

2.72 x 1074 kg - m?.

As M~ = mg' + mg}], the nuclear separation is

()]
My Ml
- [ (1 + 35)

1 x 35 x 1.67 x 10~27
1.29 x 1071%m =1.29A.

R

1/2
X 2.72 x 10747

6050

An arbitrary quantum mechanical system is initially in the ground state
|0). At t = 0, a perturbation of the form Hi(t) = Hoe~*/T is applied. Show
that at large times the probability that the system is in state |1) is given

by

(0| Hol1)
R Z '
O-T- + (As)T

where Ace is the difference in energy of states |0) and |1}. Be specific about
what assumption, if any, were made arriving at your conclusion.

(Columbia)
Solution:

In the first order perturbation method the transition probability ampli-.

tude is given by
1 [t o
Ck'k(t) = / Hl/c'k elwklkt dt, s
Zh 0 .
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where Hj,, = (k'|H’|k). Then

1
Y -
1
= —ﬁ 1 < 1|H0|0>
(? zw10>
-1 1| Hol0)
_i(h/T)—+Ae( |Ho|0) ,

where Ae = wyoh is the energy difference between the (0) and [1) states.
Hence the probability that the system is in state |1) at large times is

{01 Ho|1) 2

Py = |Clo(t) m

It has been assumed in the above that Hjy is very small so that first
order perturbation method is applicable.

6051

A particle of charge e is confined to a three-dimensional cubical box of
side 2b. An electric field E given by

0, t< 0, o
E = (a = a positive constant),
Ege ™, t> 0,

is applied to the system. The vector Es is perpendicular to one of the
surfaces of the box. Calculate to lowest order in Eq the probability that
the charged particle, in the ground state at t =0, is excited to the first
excited state by the time t = oo. (If you wish, you can leave your result in
terms of properly defined dimensionless definite integrals.)

(Berkeley)

Solution:
Replace the cubical box by the potential

0, 0<zx<2bh,0<y<2b 0<2<2b,
Viz,y,2) =

oo, otherwise.
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The zero order wave function of the particle in the box is

1 | mz . mmny | nnz
Yimn(z, ¥, 2) = ”EE sin 7= sin == sin —-~ = HImn).

Then the ground state is |111), the first excited states are |211),|121),
[112). Let E be in the x direction, i.e., Eg = Epe,. Then H' = —eEyze°t.
Calculate the matrix elements for the transitions between the ground and
the first excited states:

1 r% . T . TX 32b
111|z{211) =~ SIN — Sin — dx = ——.
(111z]211) b/g, XS o SN &= ~92

(111)z|121)=(111]z]112)=0.

Hence the transition probability is

1 oo iAEt 2
P=— 211|H’ —_—

72 /0 (211]H'|111) exp ( 5 ) dt| ,
where 252 252

T 3r“h

AE = 2 4 12 2_12_12_12y_
F- (2 1°+1 1 1 1 ) B
Thus

2

_ [32beEo\* | [ _AEt
P= (9’”2 ) /0 exp (—at+z = )dt

[ 32beEy\” K2
~\ 9hn? a?h? + (AE)?’

6052

An 27 Al nucleus is bound in a one-dimensional harmonic oscillator po-
tential with natural frequency w. Label the states as ¥ma = Ym(Z) fa,
where ¥ (z),m =0, 1, 2, ..., an eigenstate of the harmonic oscillator po-
tential, describes center-of-mass motion and ¢.(z),a=0, 1, 2,...,is the
wave function specifying the intrinsic nuclear state. Suppose the nucleus
is initially in the state vo(x) ¢; and then decays to the ground state ¢ by
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emitting a photon in the —z direction. Assume that the nuclear excita-
tion energy is much greater than the harmonic oscillator excitation energy:
E* = (EO,:] - Ea:O) > hw.

(a) What is the wave function for the nucleus after the photon has been
emitted?
(b) Write an expression for the relative probability Py/P,, where Py is
the probability for the nucleus to be left in the state ¥no = ¥n(x) do.
(c) Estimate numerically P;/P, with E* = 840 keV and fuw = 1 keV.
(MIT)

Solution:
(a) The Galilean transformation

' =x—-vt, V=t

transforms a wave function ¥(z, t) by

2
wia0)= o (273 %) ),
where v is the velocity of frame L’ with respect to frame L and is taken to
be in the x direction, and M is the mass of the particle.

By emitting a photon of energy E*in the —z direction the nucleus
acquires a velocity v = —f% in the x direction. At the same time it decays
to the ground state ¢q. Thus initially (ti =t = 0) the nucleus has a velocity
v and is, in its own frame of reference Li, in the ground state ¢¢. Hence
after emitting the photon the nucleus is initially in the state % given by
(t=0,z=1)

¥(z, 0) = exp ( My ) bo(z) do

in the observeris frame L.
(b) The probability that the nucleus is in the state ¥, = ¥n(z) @0 is

Pn = |(¢no|1/)($» 0))|2

2

<¢n(z)¢olexp( My >|¢>0¢0(z))

(n| exp (i%x)w) 2
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where |n) = |¢,(x)). Using the creation and destructron operators a+, a,

We can express
h
X =4/ +
2Mw (a + a)7

and as eAtB = eAeBe~[4.Bl/2 ([A, B] commutes with A, B) we have

P, =|(n]| exp (1% \/ 21(;&) (a* +a)> IO)’
=|(n|ex , My b ot ex z%}— ——h a
=\ e 9w @ PV 7 Vome
Muv? 2
X exp <— 4’M)IO)
m { 2
S b () (v
M’U 2hw 2
— _ +
e xpm) 3 - —2 {nl(a*)" 10}
m,l=0
n 2
L 2
M’U2 (E glht«;) \/_
= - -  ————————— '
) P
1 %M’u2 e 1 Af02
U ) P (_2 )
Fu
Then
P M B 0.842
Py 2hw  opMe2hw - 2 X 27 X 9315 x 103
~1.4x1072.
6053

Consider the situation which arises when a negative muon is captured
by an aluminum atom (atomic number Z = 13). After the muon gets
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inside the ielectron cloudT it forms a hydrogen-like muonic atom with the
aluminum nucleus. The mass of the muon is 105.7MeV.

(a) Compute the wavelength (in A) of the photon emitted when this

muonic atom decays from the 3d state. (Slide rule accuracy; neglect nuclear
motion)

(b) Compute the mean life of the above muonic atom in the 3d state,
taking into account the fact that the mean life of a hydrogen atom in the
3d state is 1.6 x 1078 sec.

(Berkeley)
Solution:

(a) For spontaneous transitions from the 3d state, the largest probability
is for 3d — 2p. In nonrelativistic approximation, the photon energy is given

by
m,, 7% 1 1
= = ('2_ - ﬁ)
_muc’Z? (e ’ 3
T2 he 36

2 2
_ 1057 x18% (L NS Y _ 661 x 10-2MeV.
2 137) \36

The corresponding wavelength is

Az S %’E = 4 4435 BEHI %100 = 1.88 X 10 %cm.
14 v
(b) The transition probability per unit time is

A xwdrip 2.

For hydrogen-like atoms, as

1
reer|oc = wex mZzZ?, ~ andso  Acxm®Z*,

the mean life of the muonic atom in the 3d state is
_ Ao _ mgo 3 To
n-(%)n-(7) 7

3
0.51 1
= ——) x—x16x108=63x10"2s.

(105.7) 133 °
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6054

A paticle of mass M, charge e, and spin zero moves in an attractive
potential k(x? + y? + 2%). Neglect relativistic effects.

() Find the three lowest energy levels Ey, B}, E»; in each case state
the degeneracy.

(b) Suppose the particle is perturbed by a smal constant magnetic field
of magnitude B in the z direction. Considering only states with unper-
turbed energy E-, find the perturbations to the energy.

(c) Suppose a smal perturbing potential Az cos wt causes transitions
among the various states in (a). Using a convenient basis for degenerate
states, specify in detail the allowed transitions, neglecting effects propor-
tional to A% or higher powers of A.

(d) In (c), suppose the particle is in the ground state at time t = O.
Find the probability the energy is E; at time t.

(e) For the unperturbed Hamiltonian, what are the constants of the
motion?

(Berkeley)
Solution:

(8 The Schrédinger equation for the particle in a rectangular coordinate
system,

h2 82 62 82
[‘27,: (a‘f o T 5‘2) +’f<z2+y2+z2>] ¥z, y, 2)
= E’(/)(x’ yi z) b

can be reduced to three equations of the harmonic oscillator type and the
energy of the particle can be written as a sum

3
EN=E,+Em+En=§hw+(l+m+n)hw,
where
w =+/2k/M, N=l4+m+n=0,1,2,....

Therefore,

Eo= gfw: gh\/%/M,
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no degeneracy;
5 5
El = —2-ﬁ/.u= 5h\/2k/M,

three-fold degeneracy (100, %010, Y001);

7
hw = = R/2k/M,

N~

B =

six-fold degeneracy (1200, Y020, Y002, Y110, Y101, Yo11).
In spherical coordinates the wave function is

"/Jnlm("'a 0, 90) = Rn,l('r) Ylm(07 (P)’

where

1/2

9l+2—n, (2l + 2n, + 1) (ar)’ e‘a2r2/2

_ 3/2
Bni(r) = [ S (2 + DI
X F(—n,, 1+ 3/2, a*r?),

0,2,...N, (N=even),
l=N~2n, =
1,3,...N, (N =odd),

N being related to the energy by
3
EN=(N+§>M, N=0,12,...,

and the degeneracy is fy = % (N-+1)(N+2).
(b) For a weak magnetic field B in the z direction, the perturbation

Hamiltonian is
eB .

I -
= 2McLz'

Then in spherical coordinates we have

eB

Enlm = Enl - W’C‘

mh,
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where mh is the eigenvalue of L,. Thus the different degenerate states of
E5 have perturbed energies:

Es00 = E3o
B
Ej22 = Egz — '\%— R,
Eg = Eg — 5%/[B—ch’
E520 = En2,
Ep_1=Exn+ 2615 R,
Ej 9 = B9+ f'\% h.

It is seen that the degeneracy is partially destroyed.

(c) At time t =0, H' = Az cos (wt). Consider the three-dimensional
harmonic oscillator in the rectangular coordinate system. The first order
perturbation gives, with { being the quantum number for the component
oscillator along the x-axis,

(U'm'n/|H' (z, t)| Imn) = Smrmbnrn | H' (z, t)|1)

= A c0S (Wt) Om'mOnin l(L‘ll)

= A o~ ! cos(wt) [\/ Svv1 + [51'1 1]

X m'mOnin

where a =1/ i‘@ — (2kM/HK?Y/4. Thus the allowed transitions are

those between states for which
Am=An=20, Al = +1.

(d) Between the states Ep and E,, the selection rules allow only the
transition g0 — ¥100- The probability is

t 2
LS Y
/ H{O euut dt’
0

2

A2 t s Il
= / cos(wt'y et dt’| ,
0

1
Pro = h2 2a2h?
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where

W =4/ Hl, = (100|H’|000)

|

‘l cos(wt w't’ dt' = / ( iwt’ iwt') eiw’t’ dr’

1 [1(w tw)t _q e‘i(w'—w) t_ 1

+ =
21 w' +w w-wi

|
In the microscope world, w and w’ are usually very large. Only when w ~

" will the above integral make a significant contribution to the integral.

Hence )

A% sin? [(wi —w)t/2]

Po~ goom [(wi —w)/2’

or, when t is large enough,

Note that when ¢ is large,

[sin(m' - z)t/2?

~ / —_
T = 2rtd(z’ — z) .

(e) The energy, angular momentum, third component of the angular
momentum, and parity are constants of the motion.

6055

(@ Suppose the state of a certain harmonic oscillator with angular fre-
guency w is given by the wave function

mw 4

i N= e lal’/2
2h ¢

- an —nw —
P = N;\/—ﬁ:! Yn(2)e™™ o =m0

Calculate the average position of the oscillator, (xc), in this state and
show that the time dependence of (x) is that of a classical oscillator with
amplitude z¢ and phase ¢.
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(b) The Hamiltonian for a one-dimensional harmonic oscillator in a laser
electromagnetic field is given by

2

1 1
H= %+2—6@E0 sin wt—Eeon cos wt+2mngz

where wg, m and e are the angular frequency, mass and charge of the
oscillator, and w is the angular frequency of the radiation.

Assume the laser is turned on att = 0 with the oscillator in its ground
state . Treat the electromagnetic interaction as a perturbation in first
order, and find the probability for any time ¢t > 0 that the oscillator will be
found in one of its excited states .

Useful information: The normalized oscillator wave functions ¢, (z)

have the property that
2hn
) 1/11: \/——' lbn 1,

h d
( mw dz
(m—%%) "/)n: V 25(::,’: 1) 'ﬂ/)n+1

( Wisconsin)
Solution:

(a) Adding up the two equations for ¥, given in the question, we have

2z, = :W—h; (\/;”.bn—l +vn+ 1"/)n+1),

or

z|n) = VR/2mw (Vn|n—-1) + Vn+1|n+1)).

Hence
@ = walw) =" 3 ?/m > SR i)
— N2 = & ik_ i(n—k)wt __h__
N ,;,\/77 kz:=0 e me(ni[\/_}k 1)
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ot *n k .
=Ny f/ﬁ 3 - =Rt (Vg 1+ VEF 16kno1)
n=0 ° k=0 -
o0
h a*n c!n+1 .
=N2 _n [ - /n+le—twt
nz=o 2nw [Vl /(n+ 1)

*(n+1) .
a n + 1 ezwt

=N2 h i lalZn (a e—iwt + a*eiwt)
|
2mw =

2 . )
— N2 glal 5 ae” Wt 4 a"e“"t)
mw

= Lgg [eit#-wt) + gmite—w)

2

=t

=1xg cos (¢ — wt).

Thus (z} is the same as that for a classical oscillator of amplitude zg
and initial phase ¢.

(b) Initially the oscillator is in the state g =|0). Writing wg for w, the
given equations for ¥ give

z|n) = VA/2mwo (Vr|n—1) +vVn+1|n+1)),
pln) =ivhmwe/2(VR+1|n+1)—n|n-1)),

where p = —ih &. It follows that

z|0) = v/h/2muw (1),
$10) =i /hmuwo/21) .

The perturbation Hamiltonian is

N p . 1
H = —iEo sin wt —=eEyz cos wt.
2mw 2
As (n|1)=68p1, H/o=0for n # 1. Hence P = 0 for n > 1. Consider

Hj,. We have
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0>
eE i [hmwy | [ h
B 9 sin wt — cos wit
2 mw 2 2muwg

eEy h . Wo .
—_ (z — sin wt — cos wt) ,
2 2muwy w

p 1
Hi, = <1\—2%E0 sin wt — Eeon cos wt

and hence the probability that the oscillator transits to state ; at time ¢

t . ’
P, _ L eEo h i 20 sin wt' — cos wt' ) et g’
7Rz Jy 2 2muwg w
2
— 862Egh /‘t [;)_0 (eiwt' _ e—iwt') _ %(eiwt' + e—iumt')] eiut' dr’
W0 0 w

22 2
© E° [ 1 8wo . COS 2Wt1

~ 8mwoh | 2w? (wd — w?)? 2w?

e?Eg [cos(wo+w)t cos(wo—w)t
dmwh |

(wo + w)? (wo —~ w)?

6056

Suppose that, because of a small parity-violating force, the 2 25, /2 level
of the hydrogen atom has a small P-wave admixture

1 .1
1/}<n=27]:§)=¢3 (n=27.7:§’l=0)
, 1

+ efp (n=2,J=§,l=1>.

What first-order radiative decay will de-excite this state? What is the
form of the decay matrix element? What does it become if € 0, and
why?

( Wisconsin)
Solution:

The first-order radiative decay is related to electric dipole transition. It
causes the state to decay to ¥(n =1, j=f), which is two-fold degenerate,
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corresponding to m; = :t% , 1 = 0. The matrix element for such an electric
dipole transition is given by

1
H{2=<1/1 (n:l, j=%)|—er|1jz (n:z, j:§)>
=5<¢ <n=1,j=%> | —er|p (n:z’j=%,l=1>>

because of the selection rule Al = £1 for the transition. Using non-coupling
representation basic vectors to denote the relevant coupling representation
basic vectors we have the following final and initial states:

1

w(n=1,j=§,mj:§)=|100> (0)
1 1 0

v (n=1=5.m=-3) =lo0) (%)

Hence the non-vanishing matrix elements of Hj, are

(oot (o)
1 1
= \/;es (100} r|210) = \/;ee (100| z|210) e,

A
=f§ (100|  |200) e, = %— e, .
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where A = (100|r|200), e, is a unit vector along the z direction,

1 1 1
€ <w <’n:1,j=§,mj=———2-) [ —er|yp (mj=—2-)>
2
= _\/; ec (100 r (211)

2 .
= —\/;CE (100' Trey + ye, |211) = __e_eéé (e, + ley) ,

(o (=== ) 1=y (=)

1 A
~—\/;ee (10| [210) = 6—53— ex .

In the above we have used the relations

1
a 0 =1, a o0 =0, etc.,
00 0

r=ze;+ye,+ze,
=r sin @ cos p e; + 7 sin O sin pe, + 1 cos fe,,

(100]2|210) = (100|r|200) (£ =0, m = 0| cos 6|£=1, m=0), etc,
and the selection rules
Am =0 for the z-component of er ,
Am = %1 for the x-, y-components of er.

Thus if the parity of the 2251/2 state is destroyed by the inclusion of
the ¢ term the electric dipole radiation would cause transition from the 2
281/2 state to the ground state 1 281/2, the probability of such de-excitation
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being x £2. If £ = 0 electric dipole radiation does not allow de-excitation
from the state

1
P <n=2,j=%,l=0) tothestatezlz(n:l,j:E,l:O)

because the perturbation H’ is a polar vector whose the matrix elements
are nonzero only when Al = fl.

6057

(a) The part of the Hamiltonian describing the hyperfine interaction
between the electron and proton in atomic hydrogen is given by

8
H = - pe - pp8°(r),

where p; = %nﬂ—cs, is the magnetic moment and S; = %ai is the spin of
particle i (the ¢’s are Pauli matrices). Calculate the hyperfine splitting
between the 1s38; and 15! Sy states of atomic hydrogen. Which state has
the lower energy? Explain why physically.

(b) The vector potential of the radiation field emitted in a transition

between the states in part (a) has the general form that, as r — oo,

w w e we
A=|—1~— 3 — 1) L ;T .
[ zc(x)+zcnx2 eC( )+12 cznx(ae)+...]
ei%’-r—iut

X )

r

where 11 is a unit vector along the direction of propagation of the radiation
and (-) denotes the matrix element for this transition. Show explicitly for
each of the three terms whether or not (-) is nonzero. What is the character
of the radiation emitted in the transition?
{ Wisconsin)

Solution:

Let the spatial wave function of 1s state be 14(r), the spin singlet state
be xo0, and the spin triplet state be x1p (A4 =0, £1).

(a) The perturbation method for degenerate states is to be used, the
perturbation Hamiltonian being
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27 €2geg B
H == -Ws *8p 8(r) = T [(Sc + 8p)”

~ $216%(r) =§ [s2 - g n2] 5(r),

where B = 2"—879—”% and S =8, +S,, with §2=62=1.3h If
Yo(r) xo0 and ¥o(r) X1am are chosen to be the basis vectors, then H' is a
diagonal matrix. For the 1s!S, energy level, $ = 0 and we have

AE; = (voxo0 |H'|1ox00)
3
=-3 Bh? | o(r = 0) .
For the 1s3S; energy level, $2=1(1 + 1) A% and we have

AB; = (boxam B boxam) = 7 BR | hole = 0) .

AS |
e o =0)P = —.
Ta

1 2
Wo(r) = Var a2

Hence the hyperfine splitting is
AE = AE;- AE, = — B,
Ta

The above calculation shows that the singlet state (1So) has lower en-
ergy. The reason is as follows. The intensity of the field produced by
a magnetic dipole decreases rapidly with increasing distance. So for the
magnetic dipole interaction between the electron and proton we have to
consider the case when they are very close. When u. is parallel to pp, the
energy of the magnetic interaction is lower (as E = —u . B) than when
they are antiparallel. Since when e and pp, are parallel, S; and S, are
antiparallel. The gap in singlet state has the lower energy.

(b) For the transition from the triplet state to the singlet state, due
to the vector potential A, as the terms for x and L do not contain spin
operators, we have

(x) = (Yoxoo |X|Pox1nm) - (WolX|vho) (xoo | x1m) = 0,
(L) = (Woxoo |L Ioxim) =0,
(oe) = (Woxoo | Telboxim) = {xooloelx1n) -
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w32 [0, (), (), ()]
w=(3), (),
w3 [, (0,0, ()
w=(2). ),

and if we take the z-axis parallel to n the z component of {o.) will con-
tribute nothing to n x (a,), thus we have effectively

585
As

(V)

1 1 1 1
{xoolTelx11)= -7 OVoe \g)="H&= 75 ¢

V2 o2
(xooloelXi 1) = = (1 0)oe o = —mes- = e
X0010e|X1,-1) = \/5(1 Yoe 0l T
(X00|0’e|X1o)=%(10)ae<(1)>_% (© 1)0'e<(1))=ez,

where e, ey, €, are unit vectors along the z-, y-, z-axis respectively. Hence
(o) # 0. Note that the direction of A is parallel to n x (o). It is similar to

the vector potential of magnetic dipole radiation, so the radiation emitted
in the transition has the character of magnetic dipole radiation.

6058

Protons (magnetic moment u) are in a magnetic field of the form

B;
B.

Bgcos wt B, = By sin wt ,
constant, By« B, .

Att = 0 all the protons are polarized in the +2z direction.

(a) What value of w gives resonant transitions?
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(b) What is the probability for a proton at time ¢ to have spin in the
—z direction? (Assume Be < B,)

(Princeton)
Solution:

(@) As By< B,, Bi = B;x+ B,¥ may be considered as a perturbation.
Then the unperturbed Hamiltonian (spin part) He = —uB,0o, gives the
energy difference of the two states (§)and (¢ ) with spins along +z and —z
directions as 2uB,. Hence resonant transition occurs at angular frequency
w =2uB,/h.

(b) As

H=-po-B

= —p(0zBz + 0yBy + 0,B;)

~ B. B,-iB,
- #\B,+iB, -B, )’

the Schrodinger equation can be written as

| B,  Boe ™!
m% (Z):_“ (Boeiwt TBZ ) (Z)

where a and b are the probability amplitudes of the electron with its spin
oriented along +z and —z directions respectively. Letting

— i &
a=e'Tf, b=e'tlg,

one obtains-the equations for T and g:

7]
R F+iRSL 4 B+ uBog =0, )
., O0g w
;LBof+zh6—t—h—2-g—uBzg—0. 2)

Taking the time derivative of Eq. (2) and substituting in the expressions
of %{,%‘f from (1) and (2), we obtain
8%g

52 T 2% =0, ©)
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where 5
1 hw
0% = 72 [ung + ('E- + MBz) jl .

Initially the protons are polarized in the +z direction. Hence |fl=1,
g =0 att = 0. Then the solution of (3) is g = A sin Rt, where A is a
constant. Assume f =B sin {2t + C cos §2t and substitute these in (1).
Supposing f=iatt=0, we have

_ . _ 1 hw _ [I,BQ
C=i, B——--—m (?‘FMB;), A= e
Hence
1 w . .
f =~ (ﬁ—z—-i—uB,)stt+zcoth,
—uB,
g= ;:Qosinﬂt.

Thus the probability for the protons to have spin in the —z direction at

time tis
Bo\?
P=|b2=g?= (%) sin? Qi
with
1 Fw 2 1w
S 2R2 — ~ - | — .
Q h\/}t BO+<2 +P'Bz) ﬁ(2 +I‘LBZ) as B;> Bp

6059

A piece of paraffin is placed in a uniform magnetic field Ho. The sample
contains many hydrogen nuclei. The spins of these nuclei are relatively
free from interaction with their environment and, to first approximation,
interact only with the applied magnetic field.

(a) Give an expression for the numbers of protons in the various mag-
netic substates at a temperature T.

(b) A radio-frequency coil is to be introduced in order to observe reso-
nance absorption produced by an oscillating magnetic field. What should
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be the direction of the oscillating field relative to the steady magnetic field
Hp and why?

(c) At what frequency will resonance absorption be observed? Give the
units of all quantities appearing in your expression so that the frequency
will be given in megacycles per second.

(d) In terms of the transition mechanism of the proton spins, explain
why the absorption of energy from the radio-frequency field does not dis-
appear after an initial pulse, but in fact continues at a steady rate. What
happens to the absorption rate as the strength of the oscillating field is
increased to very large values? Explain.

(CUS)

Solution:

(@) As the spins of the hydrogen nuclei are assumed to interact only
with the external field, the interaction Hamiltonian is

H=-m-Hy = —guns, Ho,
taking the z-axis in the direction of Ho. Then there are two states |s, = 1)

and |s, = —%) with respective energies

1 1
Eija - —3 gunHo, E_1)2 - EQP'NHOy

where g = 5.6 is a constant and px the nuclear magneton ux = eh/2myc.
The condition for statistical equilibrium at temperature T gives the
probabilities for a nucleus to be in the two states as

for |s, = 3):
- 1 !
P =exp <§g;4NH0/kT>/[exp <§gﬂNHo/kT)

1
+ exp <—§ guNHo/kT) } ;

for |s; = —1):

)

1 1
= exp <—§ gunHo/kT) /[exp (5 guNHo/kT)

1
+ exp (—5 gﬂNHo/kT>] |

which are also the proportions of protons in the two states.
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(b) The oscillating magnetic field H; must be perpendicular to Hg,
say along the x direction. This is because only if the spin part of the
Hamiltonian has the form

H=-m.H=—guns; Ho— gunss Hi

will the matrix elements (s, =3|H|s,=~1) and (s,= ~1|H|s,=1)
be non-vanishing and transitions between the spin states occur, since

1 1 1 1 0 0

= --)y==00 =0,
<2 2> 2{ )(0 —1) (1)

1 1 1 01 0 1

= —-=-)y==-(10 = —.
<2 2> 2( ) (1 0> (1) 2

(c) Resonance absorption occurs only when the oscillating frequency

satisfies the condition

Sz

Sz

hw = E_1/5—Ey 2,

or
w = gunHo/h.
With g = 5.6, A = 1.054 x 10734 Js,
eii eh m. 9.274x10°% 1
= = =272 3G
wN 2mpc  2mec my 1836 5

and w in megacycles per second is given by

56 _ 9.274 x 10~28
w = g5 X Tosa x10-% X 1078 Hy=2.7 x 1072 H,..
where Hp is in gauss.

(d) Spin interactions between the protons tend to maintain a thermal
equilibrium, so that even if the external field vanishes the magnetic interac-
tion between a proton and the magnetic field caused by other protons still
exists and the transitions take place. When the external magnetic field is

very strong, the absorption rate saturates.

6060
An electron is bound in the ground state by a potential
B
T >0 )
V= T ¥

o0, =<0,
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which is independent of y and z. Find the cross section for absorption of
plane-wave light of energy wh, direction k, polarization . Specify the final
state of the electron. Take

2
m
%«fw«m&.

( Wisconsin)
Solution:

As initially the electron moves freely in the y, z directions, its initial
state is given by

¥i(r) = p(x) exp (M) )

h
with 2P 3
Ve P
omdz? z? Ee, z>0,
p=0, X<o0.

The equation for ¢ is the same as the radial equation of a hydrogen
atom with £ = 0. Hence the energy states are

mB? 1

En=—p oz

n=12,....

Thus the ground (initial) state for x motion has energy and wave func-
tion )
mp
El=—-———
! 2R2

2z  _
%1(x)=m€ =/e, x>0,

where
h2
a = m_ﬂ .
The condition hw>>ﬂh§3z |E1lmeans that the photon energy is much
higher than the mean binding energy of the electron and can therefore
liberate it from the potential well. However, as hw < mc?, this energy is
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much lower than the electron rest mass and cannot produce electron pairs.
So the electron initial state is

i(r) = (xli) = Cir () exp [i(k{Ty + k{7 2)],

where k,(,") = py/h, kﬁe): p./h are the wave numbers of the electron in
the y, z directions respectively, C = (71—2)2:3 if the initial-state wave
function is normalized to one electron in a P-dimensional box of sides L in
the y— z plane. The final state of the electron is that of a free electron
moving in direction k(;) (direction of observation):

3/2
Vs (r) = (x| f) = (%) exp(ik{? . 1),

where L3 is the 3-dimensional box used for normalization. The perturbation
Hamiltonian is

1 e \2 1
H=H-Hy=<3— (p+-= —{—p2
0 {2m (6+ CA) +V} {2mp +v}
~ % Ap.
mc
where A is the vector potential of the photon field and the charge of the
electron is -e. In the above we have chosen the gauge V-A =0 and omitted
terms of orders higher than A2. Let the corresponding initial electric field
be
E = Ee sin (wt—k;-r + &),

where k; is the wave vector of the incident photon and € = {e;, €y, €., } is
a unit vector in the direction of E. The vector potential can be taken to be

cE
A = —ecos(wt—k;-r + be)
w
as E=-122 and the perturbation Hamiltonian is then

e —~ihe
— - D = — ] - k;‘ . 6
— A-p 5 {exp [i(wt r + dp))

+ exp [—i(wt—ki-r + )]} EeV.

H ~
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In photon absorption, E¢ > E; and we need to consider only the second
term (the first term is for photo-emission); so the perturbation Hamiltonian
is

H = ;’__he exp [—i(wt — ki - + 6)] E€V .
mw

For a plane electromagnetic wave,

H=%kxE,

and so the Poynting vector is

=& = _° g2
S=—(ExH)= — Fk.

Averaging over time we have

- cE?

Hence the number of incident photons crossing unit area per unit time

_ S _ cE?
" hw T Srhw
The differential absorption cross section for photoelectric effect is given
b
de - n '’

where w;, is the number of electrons in solid angle dQ; which transit from
the initial state to final states f near energy Ey in unit time. First order
perturbation theory gives the transition probability per unit time as

27
wisyg Ay = — p(Ef) |Wyi|* dQy,

where p(Ey) is the density of the final states per unit energy range.
For nonrelativistic electrons,

(e) 73
_mkf L

P = 78n3R2
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where kj(f) is the wave number of the electrons in the final states of energies

near Ey,
Wi = (fIH'l) =( f L [~i(=k; . r + &)] Ee. V|4
fi = = 2w p i - 0 . 1
+ 00
—i oo
:—z—h—?e_m/ dx/ dydz-L'a/2
2mw 0
-0

x eXp [—z'k?)' r+ik; 1] (Ee. V) Cr(z)
x exp [i(k{® y + k{9 2)]

. ~ibo
- THheCBe ™ 1 a2 / dz dy dz {sz (% - l)

2mw a
+ ey k® + ie k) —ikl® 1+ ik,
vky k2 ¢ o1(x) exp [—ik;” v +ikq. r]

x exp [i(k() y + k{9 2)]
_ 4n?\/a FeEe~ %
 mwL52[1 + da(k) — kP)}
— eyk{®) — €k} 6 (~k{D + K
+ k(Y6 (k) + kD) + k(D)

(e (K — k)

Hence the differential absorption cross section is

do  8makge?
dQy  mwe(l + a2A2)2

x & (kD + k(D — ki) 6 (k) + k) — k)

A eykz(f) — £,k{®))?

In above calculation, we have made the change of symbols

kP & = (6, kD, KD}, ki - kO = (60, k), k),

ES D =A
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and used

1 e 1 Lz i e
[B(SD + k() — k)2 = o= / (kS + k{P — kD)
1+ /2

x exp [iy (k&) + k(& — k)] dy

L i
=5 §(k$ + kLD — k{1,

and
i [ 2 L i) 4+ e

Note that the two &functions express momentum conservation in the
directions of y and z. Also, energy conservation requires

i N U U S
= 1 + ——
2m 2m

2 2
B2k + k897
= —|E1| + Wlky k + hw .
2m

+ hw

The § functions mean that the y and z components of ky are fixed,
and so is the x component of k¢ . The physical reason why the &functions
appear in the expression for the differential absorption cross section is that
when an electron which has definite momenta in the y and z directions
collide with an incident photon which also has a definite momentum, energy
and momentum conservation laws require the scattering direction of the
electron in the final state to be fixed.

To find the total absorption cross section, we note that

§az) = % 6(x)

and so

, () | (o)
sk - kD — k(D) = kifa (sin 0y sin gy — TR :f’“y ) :

(), (0
1 e 1 z z
5 kD~ k)= L6 (cosy - = TE)
kg kg
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2
y gkl + e, k80
1+ g2 [\/k? _ (k!(;) + kg(/e))z _ (k?) + kge))z B k;(;)]2

6061

A system of two distinguishable spin-i particles is described by the
Hamiltonian
— Y e
2mo 2t 2 my +mo

ﬁ2
=—-—V2_
H 2m1 1

with g < hw.

1 myms 2 9
wi(ry — 1) + goy- o

(a) What are the energy levels of the system? Give the explicit form of
the wave functions for the two lowest energy levels (you need not specify
the normalization).

(b) The system is in its ground state at time ¢ — —oo. An external
time-dependent potential is applied which has the form

V(t) = {vx T ;”} ft)oy - %
with f(t) = 0 as |t| — oco. Derive a set of coupled equations for the
probability amplitudes Cr(t) = (n|¥(t)), where |n) denotes an eigenstate
of Hg and ¥(t) is the time-dependent wave function.

(c) Calculate Cy, (o0) for the case

0, t<O0Oand t>rT,
)=

1, O0<t<T

with &£ <« 1 and V3 very small. Work through first order in V2 and specify
clearly the quantum numbers for the states.

(MIT)
Solution:
(a) Let

_‘
|

= rp—ry,

miry + Mmary

my+mg

1
S:81+SQ:—2-(0'1+0‘2).
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Then the Hamiltonian of the system can be reduced to

h2 9 h2

3
MR 2

V$+gw2r2+2g [S(S+1)— 5] ,

H=-

where M =m;+mg, p= 1725 is the total spin.

Note that in the expression for H, the first term is due to the motion
of the system as a whole, the second and third terms together are the
Hamiltonian of a spinless isotropic harmonic oscillator, and the last term
is due to the spins of the particles. Hence the energy of the system is

2
E,s = 2P—M (n+g)hw+29 [S(S+1)—g] )

n=2o012....

For energy levels of the internal motion, we shall omit the first term
on the right-hand side of the above. For the ground state of the internal
motion, n =0, S =0 and

3
Eo() = E hw — 3g .

Write the wave function as 1o =|0) age. For the first excited state, we
similarly have

3
Ep = —Zﬁw + 0, Y1 - [0) a0, 1,11 .

Note that |0) is the wave function of the harmonic oscillator ground
state and asr is the coupled spin wave function.

(b) Let
2
H0=—h—Vf+Ew2r2+Zg [S(S+1)— §] )
2 2 2
Hy|n) = By, |n> ’

(Ho + VO] (1) =i 22

Expanding ¥(t):

[$(£)) = D Cn(t) exp (=iEnt/h) |n),
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and substituting it in the last equation we obtain

[Ho + V(1)) ZC e 5 n) = ik Z Cn e n)

+chC (

=) e ).
Multiplying both sides by {m|e =#* and summing over m we get
3 CnEm + 3.3 Codt =T (m|V(t) )
—ih Y CntinY O (ZEm
m m h ,

ihCn(t) = > (n|V(t)Im) exp(—i(Em — En) t/h] Cm (),

m

or

which is the required set of coupled equations.
(c) Denote the initial state by [000aqe), the final state by |nimasga).
As

o1 X =sin 6 cos po1; +sin 8 sin oy + cos B 01, ;
1
oo = 7 (12 — Praz),
a1l = 00, o1.-1 = f1B2,

a0 —

1
= E (alﬁ2 + azﬂl);

gz = B, Oy = 10y, Tay = a1y 0101 = o

owb = —ia;, 0161 = —br;

we have

. 1 . . . .
01 © Xag =—‘7—5 (sm 06’“"(11,_1— sinfe "”au + \/Q cos 0010) .
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Therefore, as Y= | & sin 0e, Y11 = y/& sin e Y=

4
\/ ?ﬂ Yo,
4 47
-\ 5 Yi-10m + 1/ = Y10e10 |000)
3 3
1

= \/;67105!1651 (0mo dm0 — Omi1 Oar,—1

— 0m1dan) =0,

] & cos 8, we have

(nlmagp |o1- X | age000) = <nlma5M

since £=0 for n = 0. Thus to first order perturbation the first term
Vif(t) o1 - % in V() makes no contribution to the transition. Consider next

{nlmag| r cos 8oy . X | gy 000)

4T 47
T <— \/ 03 Yaag,-1 - \/ I Yo, 1011
1 /16« 1
=¥, - 0
+ 3 5 20010 + 3 alo) 00 >

2 1
= M012051 | —= 6mo dmo — ——= Om1 0p,-
11251[3\/5 00Mo /15 10M,-1

= <nlma3M

1 1
e G161 | = MB10851 Smoato
\/1—5_ ,—1 Ml] 3 1010981 OmOOMO
where
o oo
M :/ Ru-Roo-r3dr=  RnyReorddr.
0 Jo

For the three-dimensional harmonic oscillator, n = I +2n, =2(1+n,)
= even. We have

1 Ry
Cr{oo) = T 3 et (nlmas |V (t) |000ago) dt
1 " inwt z N
RTA et dt <nlm015M (V1 + VW, f) o1 - X|000agq)
1 inwT V; “
= (e -1) <nlma5M fz r cos 8 oy - T |agp000) ,
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and

Cak—1(00) =0,

, V
eiZkwT _ 1) T2 A

Car(o0) = m(

2 1
X 051 |—=0mobmo — —=Om,1 O —
S1 [3\/5 'm0 OMO \/ﬁ 1 M, 1

1
——b0n 10 ,
/5o 1 Ml]

where k=1, 2,...,1=2 A = [;°r3 Rak)2Roo dr.



7. MANY-PARTICLE SYSTEMS

7001

In one dimension, a particle of mass m is attracted to the origin by a
linear force —kz. Its Schrédinger equation has eigenfunctions

#(©) = Hal€)exo (~3€7) |

&\ /4
- ()"

and H,, is the Hermite polynomial of order n. The eigenvalues are

1/2
E, = (n+ l) hw , where w= <£) .

where

2 m

Consider two non-interacting distinguishable particles (i =1, 2), each of
mass m, each attracted to the origin by a force —kz;. Write down ex-
pressions for the eigenfunctions, eigenvalues, and degeneracies for the two-
particle system using each of the following coordinate systems:

(a) single-particle coordinates z; and z3,
(b) relative (x = z2—z1) and center-of-mass (X = ﬂ%‘) coordinates.
(MIT)
Solution:
(a) For the single-particle system, the Hamiltonian is

R 421, .,
“omazz T 2™

B[ 4,2
“%(2{2‘”)

with o= %,’5 The Schrédinger equation can be written as

d%y 2y
d_§2+('\_€ )Y =0,

where

¢ = ax, A=

SN
|3
&1

601
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The eigenfunctions are

4nl6) = Hu@ exp (36

1
En—(n+'2'> FILL’,

m
Using the single-particle coordinates x; and z3, we can write the Hamilto-
nian for the two-particle system as

with eigenvalues

where

R 9 K 97 1 1
H=_ o a2 1o a9
2m 823 2m 0z 2 1T ™R

= Hl + H2 .
The energy eigenfunctions can be obtained as the common eigenfunctions

of {Hy, Ha}, i.e., ¥(x1,z2) = ¥(x1) ¥(z2), the corresponding energy being
E=F +E,;. Thus

1
Ynm (21, 22) = Hy(oz) )Hpm (az2) exp [—:2-03(:1@ +z3)| |

E®M =(n+m+1)hw=(N+1)hw,

B\ /4 1/2
az(%—) , w:<—li) , N=n+m.
h m

The degeneracy of the energy level E,(,],vn) is equal to the number of non-

negative integer pairs (n, m) which satisfy the condition n+m=N, i.e,,

where

f™M=N+1.

(b) Using the relative and center-of-mass coordinates X = x5 —x; and
X= ﬂ—*ziz, we can write the Hamiltonian for the system as

B2 9% K9 1, , , 1
—— — — — - 4 — + 2.2
2moX: ouom YW X gH ®
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L)I/Z

= . As in (a) we have

where M =2m, p=3m,w =

Yrm(X, z) = Ho(aX)Hm(Bz) exp [——12—(042X2 + ﬂ%z)] ,

EXN) = (n+m+ 1)hw = (N + 1)hw,
fM=N+1,

where M\ 12 oy 172
= ()" ="

7002

Consider two identical linear oscillators with spring constant k. The
interaction potential is given by H =ex1x2, where z; and x2 are oscillator
variables.

(a) Find the exact energy levels.
(b) Assume e < k. Give the energy levels to first order in /k.
( Buffalo)

Solution:
(a) The Hamiltonian of the system is

K2 92 B2 8% 1 1
H=_——_ 9 _ 2 9 | Zmu?r?+ Smw?z?
2m ax% 2m 31% 2'"%) .’1:1 + 2mw 12 + ET1X2,

where w? = £ Setting

1 1
T = = (yl + y2)s T2 = _(yl - y2) )
V2 V2

we can write H as

R 9% R2 9% 1, ,
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Hence the system can be regarded as consisting two independent harmonic
oscillations of coordinates y,,y2. Thus, the exact total energy levels are

1
Enm = (n’+—)h‘/w2+~5—+ (n+—1')h,/w2—i,
2 m 2 m

where n’,n=0,1,2,3,....
(b) For € <k, the energy levels to first order in /k are

e

~(nf +n+1)hw + (nf - n)rw% )

7003

(a) Write down the Hamiltonian and Schrédinger equation for a one-
dimensional harmonic oscillator.

(b) If ze~¥®" is a solution find v and then give the energy E; and the
expectation values for (z),(z?),(p?), (pz).

(c) Show that for two equal particles in a single one-dimensional har-
monic oscillator well the ground state may be written either as ¢g(m, ;)
x ¢o(m, x3) or

o (2771, 331_}2) o (%, (1 — 12)) ,

where ¢¢{m, z) is the ground state solution for a single particle of mass m.
( Wisconsin)
Solution:
(a) The Hamiltonian for a one-dimensional harmonic oscillator is

2
p 1 2.2
H=—+-mw .
2m+2 a:

The stationary Schrédinger equation is

(_ R 42 lmww) $(x) - Ep(x).

om dz? " 2
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(b) Substitution of ¥ = ze~¥® inthe Schrodinger equation gives

2

=|—va[:m&p - -}z gev
In? ? 202

D:Cz

h? 1 5.,
[—%(—21/)(3 - 21/3:2) + —mwr } e ¥F

=F) ze~

Equating the coefficients gives

1 2h%12
- — d =0,
2 m
3h2
El = —V,
m
whose solution is
, T
T 2R’
3
El = 5

From the symmetry we know (z) = 0. The Virial theorem gives
1 50 1 5 5 13
5m P = gmwE) = 5 She.

Therefore
3 3

2y _ 9 2y _ 2
p*) = 2mhw, (x*) 3

To find (pz) we first normalize the wave function:

o0 2
A2/ w2 e dr=1,
—0oQ

giving
2v
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Then consider

K[> d
{pz) = -7 ~wwa(m¢) dz
h o 2 d
- _A2/ —-vz 2,-vx
: . ze = (z%e )dz
h 2 ® 2 4y —2w
==-A 2(z* —vz*)e " dx
8 —c0
R
T2

(c) The Schrédinger equation for the two-particle system is

h? 1
[ - ——(V34+VH+ 2mw2(:c1 + 332)] Pz, z2) = EY(z1,12) -
Suppose ¥(z1,x2) = ¢(x1)¢(z2). The variables can be separated:

K2 1
(-~v? - Tmuts? )qs(x,) Biglws), i=12,

2m

with E = El -1- E2 .
Hence the system can be considered as consisting of two identical har-
monic oscillators without coupling. The ground state is then

Po(z1, 22) = do(m, T1)Po(m, z2) .

On the other hand, introducing the Jacobi coordinates
L
R:E(xl+x2)y T=x— 2,

the Schrodinger equation becomes

w 1V +2V2) + 2mw? (2R2 4+ 12 Y(R,r) = E¥(R
“om r) T3 2 o7) = EY(R,m).

Writing ¢¥(R, r) = ¢(R)p(r), itcan also be separated in the variables to

2
(_%V§+W2R2) AR) = Er¢(R),

(-Zvz+ fmos ?) olo) = Brolr),
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where Eg + E,. = E, with Eg, E, respectively describing the motion of the
center of mass and the relative motion.
Therefore the wave function of the ground state can be written as

Yoz, T2) = do(2m, R)do (_ 'r)

=¢0<2 x1+w2>¢o( ml—wz)-

7004

Consider two particles of masses my # my interacting via the Hamilto-
nian

P1 P2

1
H= =2 2
om, +2m2+2mwx1+

1 1

—mow?z? + - K(z1 — 13)*.

2 2

(a) Find the exact solutions.

(b) Sketch the spectrum in the weak coupling limit K <« pw?, where

is the reduced mass.

(Berkeley)
Solution:
(@) Let
R:(mlzl +m212)/(m1 +mg), r=I)—23.
We have
d _oR d .o d
dz1  Oz1dR Bz, dr
_ my d + d
my; +my dR dr’
and so
d? my \? d2 m d? d?
a2 \mi+tm./ dRZ o+ -,
T4 my + mg dR my +mg drdR  dr
and similarly
@ _(m P2, om ¢ &
d:l,‘% - my -+ Mg dR? my + may dRdr dr?’
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We also have

z? =R2+2— "% pRr. M2
my + my (m1 + m2)2 ’
2
I% = R2 -2 —ml Rr —ml 7'2
my + ma (my + my)?
Hence
H=— K2 _d2 ) h2_ my + mq d?
2(my + mg) dR? 2 mimay dr?
1 1
+ S(m1+ my)w?R2 + - N2 22 Kr
2 2 my +mg
Let
mimey

M = mj + maq, U= ——-".:
my + mo
The equation of motion becomes

hz dz 1 W2R2 hz dz lt K 2,2
=Ey(R, 7).

It can be reduced to two independent oscillator equations with energy states
and wave functions

1
E=E,=E+E,=(l+~-) hw+ m+1 hw 1+_I{__,
2 2 pw?

Pim(Ror) = 1R (r) = NiNm exp [——alR } Hy(eaR)

1
coxp [t ntom
where
\1/2 1/2
N, L@ (Mw\Y
Nz ! ")

1/2 1/4

a2 pw\ 1/2 K

Np= (—22_) | - (™ X
< ﬁme!) @2 (h) (1+ uw?) ’

and H,, are Hermite polynomials.
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(b) For K <« uw?, if we can take
K \/2
i

we have
Ep~(l+m+1)hw=(N+1) hw, N=Il+m=0,12,....

This means that the degeneracy of the Nth energy level is N + 1:

N--.
N=3 [=3m=0;, [=2,m=1;, |=1,m=2; [=0,m=3.

l=1,m=1;, [=0,m=2.

N=2 =2, m=0;
N=1 Il=1,m=0; [=0,m=1.

N=0 [=m=0.
If K is not so small and we have to take

K K

14— =1
ot

then the energy levels with the same m will move upward by

(e (o),

and so the degeneracy is destroyed.

7005
A potential has the form shown in Fig. 7.1, where V is very large but
finite.
(i) If a particle is originally in one of the wells, give a formula for the
order of magnitude of the rate at which it tunnels into the other. Do not

attempt to calculate numerical factors of order unity.
(ii) Sketch the wave functions for the lowest two states.
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(iii) If two identical bosons with a small repulsive force between them are
placed in the wells, write down approximate wave functions for the lowest
two states for each of the two cases where the effect of the inter-particle
force is much less and much greater than the effect of the fact that V is not
infinite.

(Berkeley)

Fig. 7.1

Solution:

(i) Denote the ground state by 1 and the first excited state by s. 43
is symmetric about the axis of symmetry of the potential well, 3 is anti-

symmetric. Assume the particle is initially in the left semi-well and write
the initial wave function as

U(x,0) = (¥1 +¥a)/V2.

(We can see that this is a good approximation from the diagram given in
(ii)) Then

‘I’(iE, t) — [,‘/)le—iElt/h + ¢26—iE2t/ﬁ.]/\/§‘

At time ¢, for which e~iEite/h /e—iEzto/h = .1 we have

U(z,t0) = C(¢1 — 9¥2)/V2, |CI* =1.

At this moment the particle is in the other semi-well (i.e., with a large
probability). As -1 = '™, this happens at time

mh mh

b= E _E T AE
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For V very large, it can be taken as infinite and

w2 h2n2
~ 2mL2?
Thus 2h2 3 2h2
™ o
AE ~E,—E; = 2_1) = i
R e A iy 5>

Hence the rate of tunneling per unit time is of the order

1 3rh
B~ =

to - 2mL?’

(ii) The wave functions of the two lowest states are sketched in Fig. 7.2.

Pix)
$,(x)

$,(x)

Fig. 7.2

(iii) If the repulsive potential between the bosons is much smaller than
V, the wave functions of the two lowest states are approximately

U1 = 91(1)¢1(2),
Uy = % [¥1(1)92(2) + P2 (1)1 (2)] -

If the repulsive potential is much larger than Vv, transmission through the
central potential barrier is very small, and the wave functions are approxi-
mately

Ty = ¥1(1)¥1(2),

L

Yy = 7 [¥1(1)92(2) — 2(1)91(2)]



612 Problems and Solutions on Quantum Mechanics

7006

Consider a system defined by the Schrodinger eigenvalue equation
h2 2 2 k 2
“om (Vi+V3)+ 3 [ty — r2]® p ¥(r1, r2) = E(ry,r2).

(a) List all symmetries of this Schrodinger equation.
(b) Indicate all constants of motion.
(c) Indicate the form of the ground-state wave function.
You may assume that the ground-state wave function of one-dimensional
harmonic oscillator is a Gaussian.
(Berkeley)

Solution:

(@) The Schrodinger equation has symmetries with respect to time trans-
lation, space inversion, translation of the whole system, and the exchange of
ri and rg, as well as symmetry with respect to the Galilean transformation.

(b) Letr=r;—ro, R = %(rl + r2). The Schrodinger equation can
then be written as

n v h2v2+k 2V ¥(R, ) = Ey(R
{—m R~ —~V; 57‘} , 1) =Ey(R, ).
This equation can be separated into two, one for the motion of a particle
of mass 2m at the center of mass and one for the motion of a harmonic
oscillator of mass m/2 relative to the second particle. The motion of the
center of mass is a free motion, so that P}%,Pz,Py,Pz,ER,L%,LI,Ly,Lz
are all constants of the motion. Of the relative motion, E,., L2, L,, as well
as the parity of the wave function, are constants of the motion.
(c) The ground-state wave function has the form ¥(R,r) = ¢(R)p(r).
¢(r) is the wave function of a harmonic oscillator of mass 7:

1
p(r)~ exp (— 56‘427"2)

with
2_ [Tk
o = 252'

¢(R) is the wave function of a free particle of mass 2m:

#(R) ~ exp(—ip . R/R)
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with

1 {2k
‘p|:V4mER1 ER=E_—2‘h ;l-

7007

Two identical bosons, each of mass m, move in the one-dimensional
harmonic oscillator potential V = %mwz)? They also interact with each
other via the potential

Vint(z1, z2) = aePE1-=2)"

where 3 is a positive parameter. Compute the ground state energy of the
system to first order in the interaction strength parameter a.

(Berkeley)
Solution:

Being bosons the two particles can simultaneously stay in the ground
state. Taking Vint as perturbation, the unperturbed wave function of the
ground state for the system is

to(x1, T2) = do(x1)do(x2) = % exp [—%a%(mf + 33%)] , Og= %

The perturbation energy to first order in « is then

oo
A E = // wa(xly1;2)‘/;nt,(1:1,x2)1/)0($1)$2)dx1d1_2

aoa // exp[—ad(z? + z3) - B(z1 — z2)?] dz1d2

R (574104
- (af + 28/

where the integration has been facilitated by the transformation

xry + 2 Ty — Ty _
7 =W, - Y2
The ground state energy of the system is therefore
B apa . mw 1/2
E = ﬁw + W1/2 Wlth [0 1)) :('h—)
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7008

A one-dimensional square well of infinite depth and 1 A width contains
3 electrons. The potential well is described by V=0for0<z<1A4
and V = 400 for z < 0 and z > 1 A. For a temperature of T=0 K,
the average energy of the 3 electrons is E = 12.4 ¢V in the approximation
that one neglects the Coulomb interaction between electrons. In the same
approximation and for T = 0 K, what is the average energy for 4 electrons
in this potential well?

( Wisconsin)

Solution:
For a one-dimensional potential well the energy levels are given by
En = Elnz,

where E, is the ground state energy and n = 1,2,....Pauli’s exclusion
principle and the lowest energy principle require that two of the three elec-
trons are in the energy level E; and the third one is in the energy level E,.
Thus 12 - 4x3 = 2E; + 4F,, giving E;=6 - 2eV. For the case of four
electrons, two are in E; and the other two in E», and so the average energy
is

1
E= Z(2E1 +2E2) = :;)-El =15.5eV.

(Note: the correct value of E; is

wh2 1 (mhe\? 1 ™ X 6.58 x 10716 x 3 x 1010\ ?
2ma? ~ 2mc? \ a / = 102 x 108 10-8
=377 eV.))
7009

Consider two electrons moving in a central potential well in which there
are only three single-particle states v, s and 3.

(@) Write down all of the wave functions ¥(r;, r3) for the two-electron
system.

(b) If now the electrons interact with a Hamiltonian §H =V'(ry,rp)=
V’(rz,r1), show that the following expression for the matrix element is :
correct;
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(13|60 H |[¢12) =@W3(r1)1 (r2)|V' (1, r2) 92 (r1)i1 (r2))
— (W1(r1)¥a(r2) |V (r1, r2)|9h2(r1) ¢ (r2)) -
(Buffalo)

Solution:

(a) The wave functions for a fermion system are antisymmetric for in-
terchange of particles, so the possible wave functions for the system are

aiz - ;/1—5(«pl(rl)wz(rz)—wl(rz)wz(rl)),
s - J% (@1 (e1)s(r2) — 91 (£2)3(r1))

o3 =

5 (e (e2) — galeal(er).
(b) We can write
(Wisl6HI12) = 5 (W1 (ra ) (r2) V' (1, w2) b (1 ba(e2))
— SV (r1, ) () o (r2))
— SR )V (51, £2) 9 (k1) ae2)
b S W) ()IV (5, 72) () ¥ (r2)).
Since the particles are identical, ry and r2 may be interchanged in each

term. Do this and as V'(r1,r2) = V'(rz,r1), we again obtain the same
expression, showing its correctness.

7010

Two identical nonrelativistic fermions of mass m, spin 1/2 are in a one-
dimensional square well of length L, with V infinitely large and repulsive
outside the well. The fermions are subject to a repulsive inter-particle
potential V(x1— z2), which may be treated as a perturbation. Classify the
three lowest-energy states in terms of the states of the individual particles
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and state the spin of each. Calculate [in first-order perturbation theory)
the energies of second- and third-lowest states; leave your result in the form
of an integral. Neglect spin-dependent forces throughout.

(Berkeley)

Solution:

For the unperturbed potential

Vi) = { 0, =zelo, L]

00, otherwise,

the single-particle spatial wave functions are

nlz) = \/%s'm "_ZE, z € [0, Lj

0, otherwise,

where n is an integer.

The spin wave function of a single particle has the form (3 )-

As we do not consider spin-dependent forces, the wave function of the
two particles can be written as the product of a space part and a spin part.
The spin part xs(M)=x sm is chosen as the eigenstate of S = s;+s2 and
S, = S1,+ 82z, i.€,,

S2xsm=J(J +1) Xam |,

Syxam=Mxinm .

J = 0 gives the spin singlet state, which is antisymmetric for interchange
of the two particles. J = 1 gives the spin triplet state, which is symmetric
for interchange of the two particles. Symmetrizing and antisymmetrizing
the space wave functions of the two-particle system we have

Ym(T15 X2) =%[¢n($1)¢m($2)—¢n(1‘2)¢m(1‘1)],
it a4 5 n @ (@2) + ()],
Yn(z1)¥n(z2), n=m.
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The corresponding energies are

7!’2 h2
2mlL2

(n® +m?), nm=12,---.
The total wave functions, which are antisymmetric, can be written as
w;?m (:1,‘1, ‘7"2) XjM )

’l,b:m(:l:l, 12) Xf‘]‘M .

The three lowest energy states are the following.

(i) Ground state, n = m = 1. The space wave function is symmetric, so
the spin state must be singlet. Thus

Yo = Y11(z1,T2) Xo0 -
(ii) First excited states, n =1, m = 2.
’lﬁ { wﬁ(mlaaa)XlM, M = Ov:tl’
1 =
Yia(Z1, T2) Xo0 -

The degeneracy is 4.

(iii) Second excited state, n = 2, m = 2. The space wave function is
symmetric, the spin state is singlet:

a2 = ¥35(x1, 22) Xo00,

which is nondegenerate. Because the perturbation Hamiltonian is indepen-
dent of spin, the calculation of perturbation of the first excited state can
be treated as a nondegenerate case. The perturbation energies of second
and third lowest energy states are given by

AED = / derdis | Wiy(m1, 22)[PV (@1 — 72),
AE3 :/dmldzg|¢f2(11,$2)12V(9¢1—E2),

AE, :/dxldxz|1/)§2(zl,z2)[2V(z1—$2)-
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7011

A one-dimensional box of width L contains two spinless particles each of
mass m. The interaction between the particles is described by a potential
energy V(z1,z2) = aé(z; — x2). Calculate the ground state energy to first
order in a.

(Columbia)
Solution:
Neglecting the h-potential, we have

07 OSIIaI2SL7

V(IL‘I, .’E2) = {

oo, otherwise |,
52 d2 hz d2
Tomd m dZ +V(x1,22)

Using the results for an infinitely deep potential well, we have

Hy =

Yni(x1, 2) = Pn(z1)91(22)
= %sin (%zl) sin <%$2) ,

h2n?
;n%(,n?_'_ﬂ)’ nl=12,-.-.

For the ground state, n =1 =1,

E,. =

E, = h27r2/mL2.
Now consider the d-potential as a perturbation
H = ab(z,— Z3).
The correction to the ground state energy due to the perturbation is

H' = (11}1A)11)
Lok 2
. ™ . s 2
=/; /0 ad(xy ~ x3) sin? (le) sin? (—Earg) (f) dz,dzs
2\? [F 3a
_a(z) /0 sin (le)dzlzﬁ’
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and the ground state energy is
72k 3a

Eh:En*'H':m-i-i.

7012

Two electrons at fixed positions on the z-axis have a magnetic dipole-
dipole interaction (energy) E = A(sy.s2—3s1,52:), where s;-30,0;
being Pauli’s spin matrix, A = constant.

(a) Express E/A in terms of the total spin operator S =s; + s,.
(b) State the eigenvalues of E/A and their degeneracy (statistical
weights).

(Berkeley)
Solution:
(a) As 1
522102:}_(02 0-2 0-2):3 2 _ 512 1
4 4T LY =, S.=120 2
4 z 2 i
we have 3
§% = (51 + 83)% = 3+ 2s1 - S2,
1
5% = (51, + s92)% = 2t 281,82z,
and hence

E/A = (sy. s2 —351.822) = (82_ 353)/2

(b) For the common eigenstate |S, M) of S and S;, we have

E 1 ang?
Z|S, M) = §{S(S+ 1) - 3M?) 1S, M).

Thus
IS, M) E/A D(E/A)
10,0) 0 1
1
i1, £1) ~3 2
i1,0) 1 1

Note that for states with M # 0, the energy levels are two-fold degenerate,
ie, D=2
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7013

(@) A 2-fermion system has a wave function (1, 2). What condition
must it satisfy if the particles are identical?

(b) How does this imply the elementary statement of the Pauli exclusion
principle that no two electrons in an atom can have identical quantum
numbers?

(c) The first excited state of Mg has the configuration (3s, 3p) for the
valence electrons. In the LS-coupling limit, which values of L and S are
possible? What is the form of the spatial part of their wave functions using
the single-particle functions ,(r)and ¢,(r)? Which will have the lowest
energy, and Why?

(Berkeley)

Solution:

(@) ¥(1, 2) must satisfy the condition of antisymmetry for interchange
of the two particles:

Py(1, 2) = ¥(2,1) = —y(1,2).

(b) In an atom, if there are two electrons having identical quantum
numbers then ¥(1,2) = %(2,1). The antisymmetry condition above then
gives ¥(1,2) = 0, implying that such a state does not exist.

(c) The electron configuration (3s, 3p) correspond to

=0, =1,
s1= s =1/2.
Hence
L=1, §=0,1.
¥5(1,2) = ¢5(1,2) xs(1,2),
where

($4(1,2) = —\}—i(mm)%(m) + 65(£2)6p(r1)

< = (1+ P12)¢s(rl)¢p(r2),

Sl

| 401,2) = %(1 — Pia)a(r1)dp(ra).
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The lowest energy state is ¥1(1,2), i.e. the state of S = 1. Because the
spatial part of the state S = 1 is antisymmetric for the interchange 1 & 2,
the probability that the two electrons get close together is small, and so
the Coulomb repulsive energy is small, resulting in a lower total energy.

7014

Two particles, each of mass M, are bound in a one-dimensional har-
monic oscillator potential V = %kmz and interact with each other through

an attractive harmonic force Fiz =—K(x;—z2). You may take K to be
small.

(a) What are the energies of the three lowest states of this system?

(b) If the particles are identical and spinless, which of the states of (a)
are allowed?

(c) If the particles are identical and have spin 1/2, what is the total spin
of each of the states of (a)?

( Wisconsin)
Solution:

The Hamiltonian of the system is

~ —h? [ 5? b 2
H—_—(BZ_%+8:D2)+ k(1+x2)+—(x1—x2).

Let £ = %(1’1+x2)77l=‘%(1‘1—.’22) and write H as

~ R (62 &? )
H_— (a€2+ >+2k(§ +7%) + Kn?
h2 N 1
= (a£2+ >+2k5 + - (k+2K)n

The system can be considered as consisting of two independent harmonic
oscillators of angular frequencies w; and w2 given by

k kE+2K
W) = —_ Wy = .
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The total energy is therefore
1 1
E.n= n4—§ hwy + n1+-§ hws ,
and the corresponding eigenstate is

Inm) = Ynm = @ () 95K (m)

where n,m =0,1,2,.--, and <p5,k) is the nth eigenstate of a harmonic
oscillator of spring constant k.

(a) The energies of the three lowest states of the system are
1
EOO = -z-h(wl + wz),
1
Ep = -2- h(wl +u.12) + hwy ,

Ep

1
3 B(wi + wa) + hws .

(b) If the particles are identical and spinless, the wave function must be
symmetric with respect to the interchange of the two particles. Thus the
states |00),|10) are allowed, while the state |01) is not allowed.

(c) If the particles are identical with spin 1/2, the total wave function,
including both spatial and spin, must be antisymmetric with respect to an
interchange of the two particles. As the spin function for total spin S = 0
is antisymmetric and that for S = 1 is symmetric, we have

S=0 for|00),

S=0 for |10),

S= 1 for |01).
7015

A particular one-dimensional potential well has the following bound-
state single-particle energy eigenfunctions:

Ya(z), Ys(z), Yelz)---, where E,<Ey<E.--..
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Two non-interacting particles are placed in the well. For each of the cases
(@), (b), (c) listed below write down:

the two lowest total energies available to the two-particle system, the
degeneracy of each of the two energy levels, the possible two-particle wave
functions associated with each of the levels.

(Use ¥ to express the spatial part and a ket |S,m,) to express the spin
part. S is the total spin.)

(a) Two distinguishable spin-i particles.
(b) Two identical spin-i particles.
(c) Two identical spin-0 particles.
(MIT)
Solution:

As the two particles, each of mass M, have no mutual interaction, their
spatial wave functions separately satisfy the Schrodinger equation:

h2 32
Pﬁqag+vuo]wwn=&wun,
Kz 9?2
l:——z—M '67% + V($2):| "/Jj(z2) = Ej'l/)j(l'z) .

(i, i =a,bc...)
The equations may also be combined to give
| K 92
—_— -~ _+V Viz ) ;
-7~ 3 a * Ve V@) wE i)
=(Ei + Ej) ¢u(z1) ¥;(z2) -

Consider the two lowest energy levels (i) and (ii).

(a) Two distinguishable spin-$ particles.
(i) Total energy = E, + E,, degeneracy = 4. The wave functions are

Ya(21) Ya(x2)0,0),
{%@nmuammr(m=min
(i) Total energy = E, + Ep, degeneracy = 8. The wave functions are
Ya(Z1)¥a(22)10,0), Ya(z1)¥s(z2) 0,0),
{ Ya(T1)Pa(z2) |1, M), { Ya(z1)¥(22)|1,m)  (m - 0,%£1)
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(b) Two identical spin-1/2 particles.
(i) total energy = E, + E,, degeneracy = 1. The wave function is

Ya(z1)¢a(22) |0, 0).

(i) total energy = E, + Ej, degeneracy = 4. The wave functions are
1
7 [Ya(z1)¥(22) & Yu(z1)9a(z2)}(0,0),

% [d}a(xl)'l/)b(xQ) - ¢b(xl)¢a(x2)] l]-:m) . (m = Oa il)

(c) Two identical spin-0 particles.
(i) Total energy = E, + E,, degeneracy = 1. The wave function is

Ya(T1) Ya(2)[0,0).

(ii) Total energy = E, + E,, degeneracy = 1. The wave function is

\/iiwa(xl)wb(xa) + (1) a(@2)[0,0)

7016

Two electrons move in a central field. Consider the electrostatic inter-
action e?/|r; —rz| between the electrons as a perturbation.

(a) Find the first order energy shifts for the states (terms) of the (1s)(2s)
configuration. (Express your answers in terms of unperturbed quantities
and matrix elements of the interaction e2/|r; —r2|)

(b) Discuss the symmetry of the two-particle wave function for the states
in part (a).

2s

=

Fig. 7.3
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(c) Suppose that, at time ¢ = 0, one electron is found to be in the 1s
unperturbed state with spin up and the other electron in the 2s unper-
turbed state with spin down as shown in Fig. 7.3. At what time t will the
occupation of the states be reversed?

(Berkeley)
Solution:

(8 The zero order wave function of the two eectrons has the forms

¢+ (r1,7r2) X00(S12,522)

d-(r1,r2) xam, (512, 52z)

where
Pe = \/_[uls (Dugs(2) + euys(2)vas (1)}, € = £1,

being the normalized symmetric (+) and antisymmetric (-) wave functions,
Xo and x; denote the singlet and triplet spin states respectively. Denoting
u15(1)v25(2) by [1,2) and u15(2) v25(1) by (2, 1), we can write the above as

[6e) = (|1, 2) + £]2,1))/V2.

Because the perturbation Hamiltonian is independent of spin, we need
not consider x. Thus

e2

AE, = J d3rid3rot b

“[r1—ro
2

r1 — 12|
= 5[(1, 20411, 2) + (2,1|4]2, 1)

((1 2l +e(2,1) (11,2) + €[2,1))

+ e(1,2(A412,1)+£(2, 1AL, 2)] = K + &,

where A = e?/[r1—r2|, K = (1,2|4]1, 2) = (2,1|A4|2,1) is the direct inte-
gra, J =(1,2|A|2,1) =(2,1]A|1, 2) is the exchange integral.

(b) The singlet state xo is antisymmetric for interchange of spins. The
triplet state x; is symmetric for interchange of spins. Similarly, ¢, is
symmetric for the interchange of r; and rp, and ¢_ is antisymmetric for
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the interchange. Hence the total wave function is always antisymmetric for
interchange of the electrons.

(c) The initial state of the system is
Uit = 0) = —=([1e2s) | 1)~ [251) | )]

1
=37 [(11,2) + 12, 1) (| 1)) =1 4t)
+(5L,2) =12, 1) (1) + 1 i)
= % (¥4 Xx00 + ¥-Xx10),
and so the wave function at ¢ is

1 . ,
Y(t) = 7 (¥+Xo00e EXP 4 h_x0e T E-/R)

When e~ tE~t/h Je=iE+t/h — _1 the wave function becomes

W(tn) = e~ Brtnln % (W2 x00 — $—x10)

_ oExta/h, %“2, DIt - 11,2) 1 41)],

which shows that at this time the 1s electron has spin down and the 2s
electron has spin up i.e., the spins are reversed. As -1 = ¢2nt)r n —
0,1,2---, this happens at times

A (@n+1)rh

t=(2n+ )7 -
@nt+Dm g5 27

7017

(a) Show that the parity operator commutes with the orbital angular
momentum operator. What is the parity quantum number of the spherical
harmonic Yi,,, (8, ¢)?

(b) Show for a one-dimensional harmonic oscillator in state E, = (n +
%) Fw that (Az2),(Ap?), = (n + %)zhz.
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(c) Consider the rotation of a hydrogen molecule H;. What are its
rotational energy levels? How does the identity of the two nuclei affect this
spectrum? What type of radiative transition occurs between these levels?
Remember that the proton is a fermion.

(d) Show that (n-o)2= 1, where n is a unit vector in an arbitrary
direction and o are the Pauli spin matrices.

(Berkeley)
Solution:

(a) Applying the parity operator P and the orbital angular momentum
operator

L=rxp

to an arbitrary wave function f(r), we have

PLf(r) = P(r x p)f(r) = (1) x (~p)f(-T)
=r x pf(-r) = LPf(r).

Hence P and L commute, i.e.,
[P,L] = 0.

As

PYim(8,9) = Yim(m = 0,7 + ¢) = (=1)Yim(6, ¢),

the parity quantum number of Yi,(8,¢) is (-1)é.
(b) For a one-dimensional harmonic oscillator, we can use the Fock
representation

x=V2,Zw(a+a+), p=i\/m?d(a+ -a),

where a, e* are annihilation and creation operators having the properties
aln) = vnjn - 1),
atiny=vn+1jn+ 1).

Using these operators we have

(nlz|n) = \/5—2—; (nla + a%t|n)

R (vVn{nln—1) + vVrn+1{n|Jn+ 1) =0,

Vo
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(nl2?n) = ——(ni(a +a*)(a+ a*)ln)
2muw

= —E—(\/ﬁ(n[a +at|n —1)+Vn+1{nla+at|n+1)
2mw

= 2 [y/aln ~ il - 2) + ninin)
+ (n + D){(nn) + /(n +1)(n+ 2){(n|n + 2)]
h
= 2—77;(271‘5' 1))

and similarly
(nlpln) =0,
(nlpIny = T2 (2n + 1),
AS

(Az?), = {(z — (2))%)n = (@%)n — (z)2 —Zniw—(Zn +1),

hw
(B = (PP — () = T (2n + 1),
we find
1\ 2
(B8)n (A7) = 1 (n+ 3)
(c) The rotational energy levels of a hydrogen molecule are given by

E, = PK(K +1)/2I,,

where Io= MR? is the moment of inertia of the molecule about the rotating
axis, which is perpendicular to the line connecting the two nuclei, K is the
angular momentum quantum number, K =0, 1,2,.--.Since the spin of a
proton is i/2, the total wave function of the molecule is antisymmetric for
interchange of the two protons. When the two protons are interchanged, the
wave function for the motion of the center of mass and the wave function for
the atomic vibration are not changed; only the wave function for rotation

is altered:

Yieme (0,90) = Yeear (1 — 0,7+ @) = (=1)XYiar,c (6, ) -
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If K is even, (=1)XYx am, (0, ¢) = Y a, (8, ) and the spin wave function
Xo Must be antisymmetric, i.e., xo IS a spin singlet state; If K is odd,
(=1)%Ygn, (0,0) = =Yk, (8,9) and the spin wave function x; must be
symmetric, i.e., xi is a spin triplet state. The hydrogen molecule in the
former case is called a para-hydrogen, and in the latter case is called an
ortho-hydrogen. There is no inter-conversion between para-hydrogen and
ortho-hydrogen. Transitions can take place between rotational energy levels
with AK = 2,4, 6,--- within each type. Electric quadruple transitions may
also occur between these levels.

(d)
2
(n . 0')2: (Zniai) ZZninjaioj
i 17

= % anj{m,crj} =Y nmyby =y mni=1.
beke 1,3 i

In the above i, j refer to x,y,z, and {0y,0;} =0i0; + 0j0; =26;;.

7018

Two particles of mass m are placed in a rectangular box of sides a>b
>cin the lowest energy state of the system compatible with the conditions
below. The particles interact with each other according to the potential
V = Aé(r1—r3). Using first order perturbation theory to calculate the
energy of the system under the following conditions:

(a) Particles not identical.
(b) Identical particles of spin zero.
(c) Identical particles of spin one-half with spins parallel.
(Berkeley)
Solution:

(@) The unperturbed system can be treated as consisting of two separate
single-particle systems and the wave function as a product of two single-
particle wave functions:

P(r1, r2) = P(r1)Y(rs).

The lowest energy state wave function is thus
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8 TXy TIg Y1 Y2 mTZ1 7rzz
—— sin —= sin —= sin —— sin —— sin — sin
abe a a b c
Yo(r1,r2) = forO<z;<a, O<yi<b, 0<z<c, =12
0, otherwise,

corresponding to an energy

h2n? 1 1
Ey= —
= "m ( Tt )
First order perturbation theory gives an energy correction

AFE = /'(/)6(1’1, I‘2)A6(1‘1 - 1'2) ‘wo(rl, I‘2)d37‘1d37‘2

~ [ Aoter, v = /// (abc)

LTI L Ty zl) 27A
X (sin — sin — sin — } dxzidyidz; = ——
( a b c 14514z 8abc’

s L, L, 1), 24
m \aZ b 2 Babc
(b) For a system of spin-0 particles, the total wave function must be

symmetric for interchange of a pair of particles. Hence the lowest energy
state is

and hence

Ps(r1,r2) = Po(ry, ra2),
which is the same as that in (a). The energy to first order perturbation is
also
B K22 1,1 1)  27A
s m \a? b2 2 8abc

(c) For a system of Spin-% particles the total wave function must be an-
tisymmetric. As the spins are parallel, the spin wave function is symmetric
and so the spatial wave function must be antisymmetric. As ;1,<31, < El'ﬁ
the lowest energy state is

Ya(ry,r2) = \/—[111211(1’1)1#111(1‘2) Ya11(r2)¥111(r1)],
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where 711 (r) and 1211 (r) are the ground and first excited single-particle
states respectively. The unperturbed energy is

Eoan = hw? 5 + 1 + l
A0 T \2e2 T2 2
First order perturbation theory gives

AE = /dzz(rl, I‘2)A5(l‘1 - r2)1/JA(l‘1, rz)d3T1d3T2 = 0.

Therefore
B - hr? (5 LR
A m \2a2 b2 ¢2/°

7019

A porphyrin ring is a molecule which is present in chlorophyll, hemo-
globin, and other important compounds. Some aspects of the physics
of its molecular properties can be described by representing it as a one-
dimensional circular path of radius r = 4 A, along which 18 electrons are
constrained to move.

(a) Write down the normalized one-particle energy eigenfunctions of the
system, assuming that the electrons do not interact with each other.

(b) How many electrons are there in each level in the ground state of
the molecule?

(c) What is the lowest electronic excitation energy of the molecule?
What is the corresponding wavelength (give a numerical value) at which
the molecule can absorb radiation?

(Berkeley)
Solution:

(a) Denote the angular coordinate of an electron by 6. The Schrédinger
equation of an electron

K2 92
—Wgo—zfﬁ(o) = Ey(0)
has solution 1
8) = k@ .
"/)( ) \/‘2_7'_‘6

The single-valuedness of ¥(6),¥(8) = ¥(8+ 2x), requires k = O, fl, £2-.-.
The energy levels are given by
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_ B,

E= 2mr?-lc )
(b) Let 0,1,2,... denote the energy levels Ey, Ey, Es, . . . respectively.
In accordance with Pauli’s exclusion principle, Eq can accommodate two
electrons of opposite spins, while Ey, k # 0, which is 2-fold degenerate
with respect to %|k|, can accommodate four electrons. Thus the electron

configuration of the ground state of the system is

0714243441,
(c) The electron configuration of the first excited state is
0°1%243%4351
The energy difference between E4and Esis

hz
mr?2

9h?

52 _ 42 —
( ) 2mr?

AE =FEs —Ey = 3
and the corresponding absorption wavelength is

ch 82 (mC) o  8m? 42
—_— ré = ——

A-’:——‘: - —_—
AE 9 o * Gooaz = 98004,

h

where # =0.0242 A is the Compton wavelength of electron.

7020

A large number N of spinless fermions of mass m are placed in a one-
dimensional oscillator well, with a repulsive d-function potential between
each pair:

N
V=§fo+%2§(xi—mj), k,A>0.
i=1 i#]

(@) In terms of normalized single-particle harmonic oscillator functions
Yn(z), obtain the normalized wave functions and energies for the three
lowest energies. What are the degeneracies of these levels?

(b) Compute the expectation value of Zile for each of these states.

For partial credit, you may do parts (a) and (b) with A =0.

(Berkeley)
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Solution:

(a) Treat the d-function potential as perturbation. As for a system of
fermions, the total wave function is antisymmetric, the zero-order wave
function for the system can be written as the determinant

d)nx (.’131) w'nx(x2) T wnx(IN)

1 Yn, (21) Yna(z2) -+ Yny(zN)
'd)nx-nn)v(zl ce JJN) = \/—ﬁ

Unn (1) Yny(x2) --- Yoy (TN)
= = S S Plbn (w0) Y )
P

where n; label the states from ground state up, P denotes permutation of z;
and dp=+1, -1 for even and odd permutations respectively. On account
of the &function, the matrix elements of the perturbation Hamiltonian are
all zero. Thus the energy levels are

N
N
E(nngymn) = (na- - nn|Hing - ony) = hw <7 + Zni) )
' i=1

where w = y/k/m.

(i) For the ground state: n;---ny are respectively 0, 1,...,N—-1, the
energy is

Eq,.. . n-1) = hw [

and the wave function is

E_F_]VV(]V__I). :EN2’
2 2 2

Yo1,.. N-1(z1. --ZN)= % Z dpPvo(z1) - Yn-1(zN)]-
L&

(ii) For the first excited state: ny---ny are respectively 0,1, ..., N —
2, N, the energy is

.....

and the wave function is

Yo,1..N-2,N(T1--- TN) = \/—%}I_;lsPP[l/)o(wl)'"wN-z(xN—l)le(xN)]-
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(iii) For the second excited state: n, ---nn are respectively either 0, 1,
..N-2,N+1,0r0,1,...N—3, N—1, N. The energy is

Eq,.N-2,n+1) = B0, . N-3N-1,N) = —2—(1\’2 +4),

and the corresponding wave functions are
1
Yo, .N-2,N+1(T1---TN) = —— Z5PPWJO(371) e
VN! 5

Yn—2@EN-1)¥N+1(zN)],

Yo, .N-3,N-1,N(T1 . ZTN) = %Zﬁp[%(l‘l)“'
P

Yn_z(@n_2)¥n-1(@N-1)¥N(zN)].

It can be seen that the ground and first excited states are nondegenerate,
where the second excited state is two-fold degenerate.
(b) For stationary states,

As
<z IOk Z %6(:51- - :z,)> =0,
k i#j
o [k
(S (534)) =+(54).
we have

N
2T) =k <Zz?> :

The virial theorem
(T) = (V(z1...2N)),
or
E=2(),

then gives



Many-Particle Systems 635

Hence

=1
N K
<1 > a? 1>=—(N2+2),
=1
N N A
2 _[o 2|9 \ 2
<2 ;:v 2>_<2 ;x, 2> 2mw(N +4),

where |0),]1),]2), and |2') are the ground state, the first excited state and
the two second excited states respectively.

7021

What is the energy difference in eV between the two lowest rotational
levels of the HD molecule? The HD (D is a deuteron) distance is 0.75 A.
(Berkeley)

Solution:

The rotational energy levels are given by

h2
E; = -27J(J+1).

Thus for the two lowest levels,

K2 h?
AE10=-2‘iJ(J+1)J —ﬁ,’.](.]-i-l)J =T.

As the mass mp of the deuteron is approximately twice that of the hydrogen
nucleus m,, we have

and hence
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AEIO = h2 3 (hC)2 1 15

%mprg = Emr_z =§mp1‘2 938 x 106

6.582 x 10~16 x 3 x 1010
0.75 x 108

2
) =111 x 10 2%eV.

7022

Consider the (homonuclear) molecule N}%. Use the fact that a nitro-
gen nucleus has spin I =1 in order to derive the result that the ratio of
intensities of adjacent rotational lines in the moleculefs spectrum is 2:1.

(Chicago)

Solution:

In the adiabatic approximation, the wave function of N2 molecule whose
center of mass is at rest can be expressed as the product of the electron wave
function %, the total nuclear spin wave function ,, the vibrational wave
function %, and the rotational wave function y; that is, ¥ = Yets1oyr.
For the molecular rotational spectrum, the wave functions of the energy
states involved in the transition have the same ., 1y, but different 1, ¥;.
For interchange of the nitrogen nuclei, we have 1.1 — ®etbo OF —1)efy.

The N nucleus is a boson as its spin is 1, so the total nuclear spin of
the Ny molecule can only be 0, 1 or 2, making it a boson also. For the
exchange operator P between the N nuclei, we have

. +1s forS=0,2, . Y1 for 1 = even integer,
Py, = { Pyr = {

—ys for §=1, —y for | = odd integer.

As N2 obeys the Bose-Einstein statistics, the total wave function does not
change on interchange of the two nitrogen nuclei. So for adjacent rotational
energy levels with Al = 1, one must have S =0 or 2, the other S =1, and
the ratio of their degeneracies is [2x2+1+2x0+1}]:(2x1+1)=2:1.

For the molecular rotational spectrum, the transition rule is AJ = 2.
As S usually remains unchanged in optical transitions, two adjacent lines
are formed by transitions from | = even to even and 1 = odd to odd. Since
the energy difference between two adjacent rotational energy levels is very
small compared with kT at room temperature, we can neglect the effect of
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any heat distribution. Therefore, the ratio of intensities of adjacent spectral
lines is equal to the ratio of the degeneracy of | = even rotational energy
level to that of the adjacent | = odd rotational energy level, which has
been given above as 2:1.

7023

(a) Assuming that two protons of H;" molecule are fixed at their normal
separation of 1.06 A, sketch the potential energy of the electron along an
axis passing through the protons.

(b) Sketch the electron wave functions for the two lowest states in
H;, indicating roughly how they are related to hydrogenic wave functions.
Which wave function corresponds to the ground state, and why?

(c) What happens to the two lowest energy levels of H3 in the limit
that the protons are moved far apart?

( Wisconsin)

Solution:

(a) As the protons are fixed, the potential energy of the system is that
of the electron, apart from the potential energy due to the Coulomb inter-
- . 02
action between the nuclei . Thus

e? e?

il el

where ri,r; are as shown in Fig. 7.4. When the electron is on the line
connecting the two protons, the potential energy is

e? e?

lz| |[R—=z| ’
where X is the distance from the proton on the left. V is shown in Fig. 7.5 as
a function of z. The wave function must be symmetrical or antisymmetrical
with respect to the interchange of the protons. Thus the wave functions of
the two lowest states are

Vi = —lﬁwrl) + ¢(r2)],

where ¢(r) has the form of the wave function of the ground state hydrogen
atom:;
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Fig. 7.5

"N

Fig. 7.6

o(r) = —\}—7}- (%)3/2 g~ r/a

where a is the Bohr radius and A is a constant. The shape of the two wave
functions along the x-axis are sketched in Fig. 7.6. It can be seen that
the probability that the electron is near the two nuclei is larger for 4.
Hence 1, corresponds to a lower V and is therefore the ground state wave
function. The fact that E; < E_ can also be seen from

— X

Ey = (Yx|Hz)
= (¢(r1)|H|¢(r1)) £ (o(r1)|H|¢(r2)),
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since

(¢(r1)|Hg(r1)) - (¢(r2)|H|g(r2))
(#(r1)|H|g(r2)) = (#(r2)|H|¢(r1)) .

and all the integrals are negative.

(c) As the protons are being moved apart, the overlap of the two bound
states ¢(r;) and ¢(rz) becomes less and less, and so (¢(r1)|H|¢(r2)) and
(¢(r2)|H|@(r1)) — 0. In other words, the two lowest energy levels will
become the same, same as the ground state energy of a hydrogen atom.

7024
Write the Schrédinger equation for atomic helium, treating the nucleus
as an infinitely heavy point charge.
(Berkeley)
Solution:
Treating the nucleus as an infinitely heavy point charge, we can neglect
its motion, as well as the interaction between the nucleons inside the nucleus

and the distribution of the nuclear charge.
The Schrédinger equation is then

2 2 2 2 2

Pi P2 2e 2e e

™ Ry, R2) = Ey(Ry, Ry),
(2 e"_2me R R2+[R1—R2|>¢( 1, Rz) P(R1, Ra)

where Ry, R, are as shown in Fig. 7.7.

-e

rR| R

+2e

Fig. 7.7

On the left side of the equation, the first and second terms are the
kinetic energies of the electrons, the third and fourth terms correspond to
the attractive potentials between the nucleus and the electrons, and the
last term is the repulsive potential between the two electrons.
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7025

The excited electronic configuration (1s)}(2s)! of the helium atom can
exist as either a singlet or a triplet state. Tell which state has the lower
energy and explain why. Give an expression which represents the energy
separation between the singlet and triplet states in terms of the one-electron
orbitals ¥1,(r) and 2,(r).

(MIT)
Solution:

Electrons being fermions, the total wave function of a system of elec-
trons must be antisymmetric for the interchange of any two electrons. As
the spin triplet state of helium atom is symmetric, its spatial wave func-
tion must be antisymmetric. In this state the electrons have parallel spins
so the probability for them to get close is small (Pauli’s principle), and
consequently the repulsive energy, which is positive, is small. Whereas for
the spin singlet state the reverse is true, i.e., the probability for the two

electrons to get close is larger, so is the repulsive energy. Hence the triplet
state has the lower energy.

Consider the interaction between the electrons as perturbation. The
perturbation Hamiltonian is

H ==

T2

where r12 =|r; —ra|. For the singlet state, using the one-electron wave
functions vy, 125, We have

M = \/—[@013 r1)Y2s(r2) + Y1s(r2)2s(r1)]x00 ,
and for the triplet state
1
Sy = —ﬁ[%s(rl)%s(m) — P15(r2)2s(r1)]X1m
withm =1, 0, -1. The energy separation between the states is
AE = ("9|H'|'Y) - ColH'PY) .
With ¥, = ¥n,, we have

2
AE = 2J e (e (01 (2 s ()
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7026

(@) Suppose you have solved the Schrédinger equation for the singly-
ionized helium atom and found a set of eigenfunctions ¥n(r).

(1) How do the ¢n(r fompare with the hydrogen atom wave functions?

(2) If we include a spin part o™ (or o~ ) for spin up (or spin down), how
do you combine the ¢’s and uis to form an eigenfunction of definite spin?

(b) Now consider the helium atom to have two electrons, but ignore the
electromagnetic interactions between them.

(1) Write down a typical two-electron wave function, in terms of the ¢’s
and ¢’s, of definite spin. Do not choose the ground state.

(2) What is the total spin in your example?

(3) Demonstrate that your example is consistent with the Pauli exclu-
sion principle.

(4) Demonstrate that your example is antisymmetric with respect to
electron interchange.

(Buffalo)

Solution:

(a) (1) The Sctrédinger equation for singly-charged He atom is the same
as that for H atom with €2 — Ze?, where Z is the charge of the He nucleus.
Hence the wave functions for hydrogen-like ion are the same as those for H
atom with the Bohr radius replaced:

h? h?
pe? —e= uZe?’
u being the reduced mass of the system. For helium Z = 2.

(2) As ¢n and o belong to different spaces we can simply multiply
them to form an eigenfunction of a definite spin.

(b) (1), (2) A He atom, which has two electrons, may be represented by
a wave function

1 - -
ﬁ¢~(1)¢~(2)[a+(1)a (2)~ 0= (1)o™(2)]

if the total spin is zero, and by

%[m(l)ma) ~ na(L)ém@)lo* (1)o (2)

To =

if the total spin is 1. (3) If o =0, ¢n1=0n2, the wave functions vanish,
in agreement with the Pauli exclusion principle.
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(4) Denote the wave functions by (1, 2). Interchanging particles 1 and
2 we have

111(2; |) = —¢(172)'

7027

Ignoring electron spin, the Hamiltonian for the two electrons of helium
atom, whose positions relative to the nucleus are r;(i =1, 2), can be written

as
e
"= Z(Zm |n|)+v’ V=

lry —r2|

2

(a) Show that there are 8 orbital wave functions that are eigenfunctions
of H — V with one electron in the hydrogenic ground state and the others
in the first excited state.

(b) Using symmetry arguments show that all the matrix elements of V
among these 8 states can be expressed in terms of four of them. [Hint:
It may be helpful to use linear combinations of 1 = 1 spherical harmonics
proportional to

e’ W )

(c) Show that the variational principle leads to a determinantsl equation
for the energies of the 8 excited states if a linear combination of the 8
eigenfunctions of H — V is used as a trial function. Express the energy
splitting in terms of the four independent matrix elements of V.

(d) Discuss the degeneracies of the levels due to the Pauli principle.

(Buffalo)

Solution:

Treating V as perturbation, the zero-order wave function is a product
of two eigenfunctions |n, !, m}) of a hydrogen-like atom. Thus the 8 eigen-
functions for Hy = H — V with one electron in the hydrogen ground state
can be written as

lim+) = (100),(2im)2) + |(21m)1(100)2)]

|
V2
with 1 =0,1,m = -1,...l, where the subscripts 1 and 2 refer to the two
electrons. The corresponding energies are
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p(2e?)? 1 5uet
E,=E +E;=— 1+= )=~ .
bm T = 2h2 Y 2h2
To take account of the perturbation we have to calculate the matrix ele-
ments

(i £ |V|im).
As V is rotation-invariant and symmetric in the two electrons and |lm+)
are spatial rotation eigenstates, we have
(100, (21'm’)2| V| (100)1 (2Im)2)
- ((2U'm")1(100)2|V |(21m)1 (100)z)
- O bmmi Al
{(100)1(20'm’)2|V|(2lm)1(100)2)
= {(2I'm’)1(100)2|V[(100)1 (2im)2)
= 8 lmm Bi |

and hence

Zini + |Vilm+) = dwdmm (A1+Bi) ,
{'m' +|V]|lm-)=0,
(I'm’ - |V|im+) =0,
(zini —|V|lm=)= 81 bmm:(Ai— Bi).

Because the wave functions were formed taking into account the symmetry
with respect to the interchange of the two electrons, the perturbation matrix
is diagonal, whence the four discrete energy levels follow:

The first levels |1m+) have energy E, + A; + By, second levels |1m—)
have energy Ep + A1 — By, the third level |00+) has energy Ejp + Ag + By,
the fourth level |00—) has energy E, + Ag — Bg. Note that the levels [Im+)
and |1m—) are each three-fold degenerate (m = %1, 0).

According to Pauli’s principle, we must also consider the spin wave
functions. Neglecting spin-orbit coupling, the total spin wave functions are
Xo, antisymmetric, a singlet state; x1s., Symmetric, a triplet state.

Since the total electron wave function must be antisymmetric for inter-
change of the electrons, we must take combinations as follows,
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[Im+)xo,

|lm'>Xls, .
Hence the degeneracies of the energy levels are

Ey+A9—-Bp: 1x3=3
E,+Ap+Bp: 1x1=1
Ey+Ai—By: 3x3=9
Ey+A1+B1: 3x1=3.

7028

Describe approximate wave functions and energy levels of the lowest set
of P-states (L = 1) of the neutral helium atom, using as a starting basis
the known wave functions for the hydrogen atom of nuclear charge Z:

VY15 = &~ V273/271/0 52 ay/27,
WYop my =0 = (3211) "1/ 2a75/2pe /22 05 9, etc.

(a) There are a total of 12 states (2 spin components x 2 spin com-
ponents x 3 orbital components) which you should classify according to
the Russell-Saunders coupling scheme, giving all the appropriate quantum
numbers. Be sure that the states are properly antisymmetrized.

(b) Give an estimate (to the nearest integer) for the values of “Z” to use
for each of the two orbital wave functions. What energy above the ground
state results? What mathematical process could be used to calculate the
optimum Z values?

(c) Write down an integral which gives the separation between two sub
sets of these 12 states due to the Coulomb repulsion between the two elec-
trons. Which states are lower in energy?

(d) Which of these P-states, if any, can decay to the atomic ground
state by the emission of a single photon. (Electric dipole only)

(e) Do there exist any other excited states with L =1 which can decay
to any one of the P-states discussed above by emission of a single photon
by electric dipole interaction? If so, give an example of such a state in the
usual scheme of spectroscopic notation.

(Berkeley)
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Solution:
(@) Since L = 1+ 12, L, =11,+12,, L=1means that {;,l2=0,1o0r
1, 0, i.e. one electron is in 1s state, the other in 2p state. For convenience,
Dirac’s bra-ket notation is used to represent the states. The symmetrized
and antisymmetrized spatial wave functions are
1
= = 1s)|2 ymip =1 2 :1>|18))
1) \/Q(l Y2p Y+ 2p,my

pn) = \i@alsnzp, mi = 1) — 2, = D|1s)),
ls) - —\%(Ils>l2p, my = 0) + |2p,my = 0)[1s)),

tha) = \i@(usnzp,m, = 0) —[2p,m; = 0)|1s)),

bs) - %(us)lzp,ml: ‘1) +[2p,my = ~1)1s)),
be) - %(usnzp,ml = -1) —|2p,my = ~1)[1s)).

For the total wave functions to be antisymmetric, we must choose the prod-
ucts of the spin singlet state xoo and the symmetric space wave functions
[¥1), %), 1¥s), forming three singlet states |v;)xo0 (i =1,3,5); and the
products of the spin triplet states xi11 and the antisymmetric space wave
functions [¥2),|%4),l1s), forming nine triplet states |t;)x11 (i = 2,4,6,
m = 0,x1). To denote the twelve states in the coupling representation,
we must combine the above antisymmetrized wave functions: The wave
functions of the three singlet states are

P |ms =1) = [¥1)x00,
imy = 0) = [¥a)xo0 ,
Imgs = —1) = |[¥5)xo00 -
The wave functions of the nine triplet states are

3Py Imy = 2) = ¥2)xu,

lmy = 1)

%(l"/@)XlO + [a)x11),
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2
Imy=0) = \/glll)z)xl.—l + \/;IW)Xm + \/%W’s))(n ,

lmy - ‘1>=%(|¢4>X1,—1 + ) x10),

lmy = =2) - Je)x1,-1-

3Py: Imy 2 1) - T(W)z X10 — {4)x11)
lmJ = \/— I'l/)2 —|T//6)X11)1

Imy - —1) - %lw)xl,—l—llﬁs)xw)-

1
2Py :jmy = 0) = %(W’z))ﬂ,—l — |Ya)x10 + 1¥6)x11) -

(b) As the electron cloud of the 2p orbits is mainly outside the electron
cloud of the 1s orbit, the value of Z of the {1s) wave function is 2 and that
of the |2p) wave function is 1. The energy levels of a hydrogen-like atom is
given by
mZ2et
2h2n2
Hence the energy of the 2p states above the ground state is

me2 (e2\2 /1 2
- @050

2

E=—

051 X106 )

= 51 V.

The optimum Z can be obtained from shielding effect calculations using
the given wave functions.

(c) Denote the two subsets of symmetric and antisymmetric spatial wave
functions with a parameter ¢ =+1 and write

le) = %amlzm + el2p)[15)).
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The repulsive interaction between the electrons,
2 ]
— €
H = |rl;l'2 |_

results in a splitting of the energy levels of the two sets of wave functions.
As

(el H'Ibe) = = ((Ls}{2p] + e(2p|(1s) B (|15)[2p) + el2p)l1s)

2
= (1s2p|H'|1s2p) + e(1s2p|H’|2p1s),

the splitting is equal to twice the exchange integral in the second term of
the right-hand side, i.e.,

2

K = [0y r)nen) —dnudes.
As K > 0, the energy of the triplet state (e = -1) is lower than that of the
singlet state. (This is to be expected since when the space wave function is
antisymmetric, the two electrons having parallel spins tend to avoid each
other.)

(d) The selection rules for electric dipole radiation transition are AL =
0, £1; AS = 0; AJ = 0, +1 and a change of parity. Hence the state that
can transit to the ground state €Se is the ! P; state.

(e) Such excited states do exist. For example, the 3P, state of the
electronic configuration 2p3p can transit to any of the above 3P2,1,0 states
through electric dipole interaction.

7029

Justify, as well as you can, the following statement: iln the system of
two ground state H atoms, there are three repulsive states and one attrac-
tive (bound) state.”

( Wisconsin)

Solution:

In the adiabatic approximation, when discussing the motion of the two
electrons in the two H atoms we can treat the distance between the nuclei



|
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as fixed and consider only the wave functions of the motion of the two
electrons. For total spin S =1, the total spin wave function is symmetric
for interchange of the two electrons and so the total space wave function is
antisymmetric. Pauli’s principle requires the electrons, which in this case
have parallel spins, to get away from each other as far as possible. This
means that the probability for the two electrons to come near each other
is small and the states are repulsive states. As § = 1 there are three such
states. For total spin S = 0, the space wave function is symmetric. The
probability of the electrons being close together is rather large and so the
state is an attractive one. As S = 0, there is only one such state.

7030

In a simplified model for a deuteron the potential energy part of the
Hamiltonian is V = V4(r) + V,(r)s, . sp,. The spin operators for the two
spin-1/2 particles are s, and sp; the masses are m,, and my; V; and V, are
functions of the particle separation r.

(a) The energy eigenvalue problem can be reduced to a one-dimensional
problem in the one variable r. Write out this one-dimensional equation.

(b) Given that V, and V, both are negative or zero, state (and explain)
whether the ground state is singlet or triplet.

(Princeton)
Solution:

(@) In units where h = 1, we have for the singlet state (S = 0) of the
deuteron,

1 1/1 3
Sn-Sp = > (Sn +8p)" — =% — ESZ =72 (_ g 2) -3
and the potential energy

3
Vsinglet = ‘/a(r) - Z‘/b(r) .

The Hamiltonian is then
1

2my

H=-

2_ 1 o 3
Vi = G Vo Valr) = (),

whence the Hamiltonian describing the relative motion
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H, = _—v2 + Vo(r) - —Vb(r)

where V2 is the Laplacian with respect to the relative position coordinate
r=|rp,—ry,), m= % is the reduced mass of the two particles.

After separating out the angular variables from the Schrédinger equa-
tion, the energy eigenvalues are obtained from the one-dimensional equation
satisfied by the radial wave function R(r):

1 ( R) + [l(ln-:l)

2mr dr2

+ Va(r )——Vb(r) (7R) = E(rR).
Similarly, for the triplet state (S = 1) we have

1
‘/triplet = Va(r) + ZVb(T) y

and the corresponding one-dimensional equation

1 +y |
- TR+ [ 2mr?

+ Va(r) + Vb(") (rR) = E(Rr) .

(b) We shall make use of the lemma: For a one-dimensional problem
of energy eigenvalues, if the conditions are all the same except that two
potential energies satisfy the inequality

Vi(z) >V(z), (o <2<co),

then the corresponding energy levels satisfy the inequality EJ, > E,. For
the ground state, I =0. As V4 < 0 for a stable deuteron, Viinglet > Viriplet
and so the triplet state is the ground state.

7031

(a) The ground state of the hydrogen atom is split by the hyperfine
interaction. Indicate the level diagram and show from first principles which
state lies higher in energy.

(b) The ground state of the hydrogen molecule is split into total nuclear
spin triplet and singlet states. Show from first principles which state lies
higher in energy.

(Chicago)



650 Problems and Solutions on Quantum Mechanics

Solution:

(a) The hyperfine interaction is one between the intrinsic magnetic mo-
ment p,, of the proton nucleus and the magnetic field B, arising from
the external electron structure, and is represented by the Hamiltonian
H,y = —p,, . B,. For the ground state, the probability density for the
electron is spherically symmetric and so B, can be considered to be in the

same direction as p., the intrinsic magnetic moment of the electron. Then

as
€

€dp
Se; “p =

Be = e 2mye

Sp, (gp > 0)
B. is antiparallel to s, and —(u, . B,) has the same sign as (s. - sp).
Let S = s, + s, and consider the eigenstates of S2and S,. We have

1
(se5p) = (8> —s2—sD)

1 3 3
=z 1)h% — Sh? — K2
2[S(S+) i i

[25(S + 1) — 3]K?.

N

As the spins of electron and proton are both %h, we can have

5 0, singlet state,
- 1, triplet state,

and correspondingly

3 .
—Zh2< 0, singlet state,

(se - sp) = 1

ZhZ >0, triplet state.
The hyperfine interaction causes the ground state to split into two states,
S =0 and S =1 (respectively the singlet and triplet total spin states). As
H, s has the same sign as (s. - sp), the energy of the triplet states is higher.
The diagram of the energy levels of the ground state is shown in Fig. 7.8.
Physically, hyperfine splitting is caused by the interaction of the intrinsic
magnetic moments of the electron and the proton. For the electron the
intrinsic magnetic moment is antiparallel to its spin; while for the proton
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P S 1 (triplet)
'

4
Id
E ~

S= 0 (singlet )
without Hpe with Hyy

Fig. 7.8

the magnetic moment is parallel to its spin. For the spin triplet, the spins
of the electron and the proton are parallel, and so their magnetic moments
are antiparallel. For the spin singlet, the reverse is true. If the spatial wave
functions are same, the Coulomb energy between the election and proton
is higher for the triplet state.

(b) For the hydrogen molecule Ha, as protons are fermions, the total
wave function must be antisymmetric for interchange of the two protons.
Then for the nuclear spin singlet, the rotation quantum number can only
be L =0,2,4..., where L =0 has the lowest energy; for the spin triplet,
the rotation quantum number can only be L=1,3,5,..., where L=1
has the lowest energy. As the energy difference caused by difference of L
is larger than that caused by difference of nuclear spins, the energy of the
state L =1 (total nuclear spin S = 1) is higher than that of the state
L = 0 (total nuclear spin S = 0). So for the ground state splitting of Ha,
the nuclear spin triplet (S = 1) has the higher energy.

Because the spatial wave functions of L =1 and L = 0 states are an-
tisymmetric and symmetric respectively, the probability for the protons to
come close is larger in the latter case than in the former, and so the Coulomb
interaction energy is higher (for the same principal quantum number n).
However, the difference between the energies of L=1and L =0 is larger
for the rotational energy levels than for the Coulomb energy levels. So for
the ground state splitting of hydrogen atom, the nuclear spin triplet (S = 1)
has the higher energy.

7032

The wave function for a system of two hydrogen atoms can be described
approximately in terms of hydrogenic wave functions.
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(a) Give the complete wave functions for the lowest states of the system
for singlet and triplet spin configurations. Sketch the spatial part of each
wave function along a line through the two atoms.

(b) Sketch the effective potential energy for the atoms in the two cases as
functions of the internuclear separation. (Neglect rotation of the system.)
Explain the physical origin of the main features of the curves, and of any
differences between them.

( Wisconsin)

Solution:

The Hamiltonian of the system of two hydrogen atoms can be written
as H=H, + H., and correspondingly the total wave function is ¥ = %, ¢,
consisting of a nuclear part ¥, and an electron part ¢, with

R,(r)Y1m(6,9)xe, forI=even, (para-hydrogen),
" R,(")Y1m(8,9)x1, forl=odd, (ortho-hydrogen),

where v denotes vibration, | denotes rotation quantum numbers, and Xxo, X1
are nuclear spin singlet and triplet wave functions.

Fig. 7.9

(a) The configuration of the system is shown in Fig. 7.9. The wave
function of a single electron is taken to be approximately

o(r) = 7= (g)s/ze—wa

Note that when A =1, ¢(r) is the wave function of an electron in the
ground state of a hydrogen atom. For two electrons, the lowest singlet state
wave function is

b5 = %[90(7‘:11)50(7‘172) + @(ra2)e(T1)]X0e »
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and the lowest triplet state wave function is
b1 = —lp(rar)o(rea) — o(raz)e(rm) e
\/5 )

where xoe and xie are electron spin singlet and triplet wave functions.
Taking the x-axis along ab with the origin at a, we can express the spatial
parts of ¢, and ¢, by

by = b(e—klx1|e—k|R~z2l + e—k|z2|e—k|R—x1|)’

¢ = b(e"k”"e"km’”’ - e‘k’“’e‘km‘x").

Keeping one variable (say z2) fixed, we sketch the variation of the spatial
wave functions with the other variable in Fig. 7.10. It is seen that if one
electron gets close to a nucleus, the probability is large for the other electron
to be close to the other nucleus.

Fig. 7.10

(b)

1 1 1 1
V=- (—+—+—+——>e2
Tal Ta2  Thi Th2

The effective potential energy, V =(¢|V|¢), for the ground state as a
function of R/a is shown in Fig. 7.11. It is seen that the potential energy
vanishes when the neutral atoms are infinitely far apart: R — cm, V —
0. When R = 0, the potential energy between the two hydrogen nuclei
becomes infinitely large while that between the electrons and the nuclei is
finite, similar to the electron potential energy of a He atom. Hence R — 0,
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,__L_J.__I__.A_._%R
0123456 7%

Fig. 7.11

V — +00. As R decreases from a large value, the repulsive potential
between the nuclei increases, at the same time the attractive potential be
tween the electrons and the nuclei increases also, competing against each
other. For the singlet state, the probability that the electrons are close to
the adjacent nuclei is large, and so the potential has a minimum value. For
the triplet state, the probability that the electrons are close to the nuclei is
small, and so the decrease of the potential energy due to the attractive force
between the electrons and nuclei, which is negative, has. a small value, and
the repulsive potential between the nuclei, which is positive, is the main
part of the total potential. Therefore V > 0 and no minimum occurs.

7033

(a) Using hydrogen atom ground state wave functions (including the
electron spin), write wave functions for the hydrogen molecule which satisfy
the Pauli exclusion principle. Omit terms which place both electrons on
the same nucleus. Classify the wave functions in terms of their total spin.

(b) Assuming that the only potential energy terms in the Hamiltonian
arise from Coulomb forces, discuss qualitatively the energies of the above
states at the normal internuclear separation in the molecule and in the limit
of very large internuclear separation.

(c) What is meant by an iexchange forceT?

( Wisconsin)

Solution:

(a) The configuration of a hydrogen molecule is as shown in Fig. 7.9.
Denote the ground state wave function of hydrogen atom by |100) and let
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o(r) = (|]100))*, where A is a parameter to be determined. Then the singlet
state (S = 0) wave function of hydrogen molecule is

= %[‘P(ral)‘P(rm) + @(ra2)e(re1)]xoo ,

and the triplet state (S = 1) wave functions are

¥s - 71—§[<p<ra1)sa(m> — (rar)plren)Xane

with M =-1,0, 1.
(b) The energy of a hydrogen atom is

me? 1 m
E”*‘"Wﬁ‘“_z"( )

0.511 x 108 1
= ——— X B —— —_—
2 137 n2

= ——-eV.

Thus the sum of the energies of two separate ground-state hydrogen atoms
is -2 x 13.6 = -27.2 €V. On the other hand, for the He atom which also
contains two protons and two electrons, the ground state energy is

ZI2 4 5 2
EHe—'ZX——th' 2X136X<2—1—6')
= -77.5 eV.
where the factor 2 is for the two electrons of He atom and Z’ =2 — —— is

the effective charge number of the He nucleus.

(i) For the singlet state, the probability for the two electrons to be
close to each other is rather large (on account of the Pauli principle), which
enhances the repulsive exchange potential energy between them. The prob-
ability that the two electrons are near to the two nuclei is also large which
tends to increase the attractive exchange potential. Taking both into ac-
count the exchange interaction potential lowers the energy. It is easily seen
that for the singlet state, -77.5 eV < E; < -27.2 eV. For the triplet state,
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the spins are parallel and so the spatial wave function is antisymmetric. In
this case the potential energy is increased by the exchange interaction and
so E3> -27.2 eV, which makes it difficult to form a bound state.

(ii) When the distance between the nuclei — oo, Ha reduces to two
separate hydrogen atoms. Hence the energy — -27.2 eV.

(c) The symmetrization or antisymmetrization of the wave function
causes a mean shift of the potential energy by

AV = // So(ral)i/’(rbg)V(p(rﬂ)(P(rbl )dridrs .

This is said to be caused by an iexchange forcel.

7034

Describe the low-lying states of the Hs molecule. Give a rough value
for their excitation energies. Characterize the radiative transitions of the
first two excited states to the ground state.

(Wisconsin)
Solution:

In an approximate treatment of hydrogen atom, the zero order wave
function is taken to be the product of two ground state hydrogen-like wave
functions, which have the form

. 1 A —Ar/ao
#lr) = ﬁ( a() ‘ ’

where ag is the Bohr radius, A is a parameter to be determined. The spin
part of the electron wave function of the Hz molecule ground state (S = 0)
is antisymmetric which requires the spatial part to be symmetric. As the
spins of the two electrons are antiparallel, they can get quite close to each
other (Pauli’s principle). This means that the density of €*electron cloud”
is rather large in the region of space between the two nuclei. In this region,
the attractive potential between the two electrons and the two nuclei is
quite large and thus can form a bound state, with wave function

T/)=71‘-2-[<P(ra1)<ﬁ(rb2)+ e(ra2)p(re)xo00 |

where the variables are as shown in Fig. 7.9.
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If the spins of the electrons are parallel (S = 1), then the spatial wave
function must be antisymmetric, the probability that the two electrons
getting close is small, and no bound state occurs.

Of the energy levels related to the electronic, vibrational and rotational
motions of Ha, the rotational levels have the smallest spacing between two
adjacent levels. For simplicity, we shall only consider rotational energy
levels with the electrons in the ground state initially and in the absence
of vibration between the nuclei. With no loss of generality, we can take
the moleculeis energy to be zero when there is no rotation. The rotational
levels are given by

h2
= — +
E=7J(J+1),

where I is the moment of inertia and J is the total angular momentum of
the two-nuclei system. When J = even, the total spin of the two protons
in Hyis S = 0 and para-hydrogen results; when J = odd, the total spin of
the two protons is S = 1 and ortho-hydrogen results. Suppose the distance
between the two protons is R = 1.5 x 0.53 = 0.80 A (Fig. 7.11). As

R 1 (ke
2]  uR?  pc® \ R
2 (6582 x107x 3 x 1010)2

= 938 x 108 \ 0.8 x 10-8
=13 x 1072eV,

the energies of the low-lying states are as follows.

02 4

Para-hydrogen :
YAroSeN © p10-2evy 0 7.8 26.0

1 3 5

Ortho-hydrogen :
yarog E(1072eV) 26 156 39.0

As the interactions between two atoms are spin-independent, para-
hydrogen and ortho-hydrogen cannot transform to each other, hence the
selection rule AJ = even. In nature the ratio of the number of molecules
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of ortho-hydrogen to that of para-hydrogen is 3:1. This means that the
spectral line for J=2 —J =0 is weaker than for J=3 —»J=1.

7035

The density matrix for a collection of atoms of spin J is p. If these spins
are subject to a randomly fluctuating magnetic field, it is found that the
density matrix relaxes according to the following equation:

ap 1

o = 7 Hon . pTop = J(J +1)g].

Prove that the relaxation equation implies the following:

(a) 5 P
5= = 77 Tr(Jopp) = —%(‘]l>’

(b) 5
9y - 92 3 J(J +1
[Hint: Raising and lowering operators are useful here]
( Columbia)
Solution:

From definition,{J,) = Tr(pJ;). Thus the following:

7] op 1
§<JZ) =Tr ( _E‘:JZ) = TTI'(JOP ’pJosz - J(.J + l)sz]

1
= U JepJods + JypdyJs + JopJ7 — 30 + 1)pJy] .

As
TrAB = TYBA,
Jody = Ty = id,,
Jydz = JoJy

iJz,
Jode = Jody = iy,
J2J, =30 + 1)J,,
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(using units in which & = 1) we have

3} 1
E(JZ) = T’I‘r[prJzJ, + pdyJody + pJE — pJ(J +1)J;]

1
T'I‘r{p[(Jg + 7+ TN+ idedy —idyJdz — JQ + 1))}

1 1
_T‘I\r(p‘]z) = _"T'(Jz> .

(b)
Op
- J2 2
50D =77 (%72)
= T’I\r[szJfo + JypJyJ? + J.pJ3 = 33 + 1)pJY
1
= T’I‘r[pJ,Jf Jo + pJyJ2dy + pJ2 — pJ(J + 1) J3
1
= FTlp(Jadsdods + JyJodyJs + idod,Jy —idyJo e + JhH
~ 3@ + 1)pJ7]
1
= T'D‘{p[]ﬁ.]zz + J2J2 4 TR+ idoJyd, — idyJod, + id: 0,y
—iJyJoJe — I3+ 1)J2)}
1
= FI{pli(i:)J: + iJa( Iy i) + ie(—ie) — iy (Jo )
—i Jy(i Jy)]}

—Tr{p[— JE+J2+ J2 +1i(i J;) .|}

'~]

= T’I‘r{p[—&fz2 + (Jﬁ + J: + Jf)]}

3 LJU+1)
—TUZ) —T
since 1
T’I‘r[pJ(J +1)] = (3@ + 1) =IJJ + 1).



660 Problems and Solutions on Quantum Mechanics

7036

A molecule is made up of three identical atoms at the corners of an
equilateral triangle as shown in Fig. 7.12. We consider its ion to be made
by adding one electron with some amplitude on each site. Suppose the
matrix element of the Hamiltonian for the electron on two adjacent sites 1,
jis (i|Hlj) = -a for i#£j.

1

O
o* o
Fig. 7.12

(a) Calculate the energy splittings.

(b) Suppose an electric field in the z direction is applied, so that the
potential energy for the electron on top is lowered by b with |b] <]a|. Now
calculate the levels.

(c) Suppose the electron is in the ground state. Suddenly the field is
rotated by 12017 and points toward site 2. Calculate the probability for the
electron to remain in the ground state.

(Princeton)

Solution:

(a) Denote the basis vectors by |1),]2),|3) and let (i|H|i) = Eq,¢ =
1,2,3. Then
E() —-a —a

H = —-a Eo —-a
—-a —a Ey
To diagonalize H, solve
Ey— A -a -a
-a Eg— A -a =0.
-a -a Ey— A

The solution gives energy levels E1 2 = Ey+ a (two-fold degenerate} and
E3 = E() — 2a.
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(b) The H matrix is now

Ey — b -a - a

H= -a Ey -a

-a -a Eo

Its diagonalization gives energy levels
E,=FEy+a,
a+b++/(a—b)?+8a?
2 k)

a+b—+/(a—0)2+ 8aZ
E3=Eo-— (2 )

E; = Eo

E> has the lowest energy and thus corresponds to the ground state, with
wave function

o 1

=\/(E0—E2—a)2 + 2a?
+ al2) + a|3)].

(Bo — E2 - a)|1)

(c) After the rotation of the field the system has the same configuration
as before but the sites are renamed:

122,233,321,

Hence the new ground state is

, 1
Yo = 5
\/(Eo —Ez—-a)? + 2a
Hence the probability for the electron to remain in the ground state is
2a(Eo — By — a) + a’
(Eo— E2—a)? + 2a2

[a[1) + (Eo— E2—a)[2)+al3)].

Wl 2 = [

7037

Consider three particles, each of mass m, moving in one dimension and
bound to each other by harmonic forces, i.e.,

v

- %[(xl —22)2 + (zg — 23)2 + (x3 — z1)?].
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(a) Write the Schrédinger equation for the system.

(b) Transform to a center-of-mass coordinate system in which it is ap-
parent that the wave functions and eigenenergies may be solved for exactly.

(c) Using (b) find the ground state energy if the particles are identical

bosons.

(d) What is the ground state energy if the particles are identical spin

—1/2 fermions?

Solution:

(a) As

3 P2
E:;ﬁﬁv’

The Schrodinger equation is

2
inY I

ot 2m

o L o
o7 "oz T o2 )Y

+ g[(xl —x9)% + (2 — z3)2 + (23 — 9:1)2]1/).

(b) Using the Jacobi coordinates

or

we have

4

Y1 = 21— 22,
Ty + T2
Y2 = 7 — I3,
1+ Ty +x3
kY3=f:
¢ Y1 Y2
T = + =+ =,
1 =Y3 2 3
Y1 Y2
$ $2:y3—?+§,
Ta— 2
L 3=1Y3 3y27

k(3
V= 3 ('2'1/%4'2?!%) )

( Wisconsin)
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p _ h2<1a2 & 3a2>

TP A
om 3 0y3? 0y  20y3

i=1

and hence the stationary eigenequation

K82y R (0% 38 }
—— e —— { D) —— + ——s
6m 0y2 Zm{ oy: 20y} v

k(3
+ = 2 {2?/%'*‘21!2}1/)

¥ = Y(y3)o(v1,92) -
The equation is separated into two equations:

2 2
e aYE:Y

Ery =—

Try

“om 0y2

2 32 3 32 3
B (28y 282)¢+ (Eyf+2y§>¢=E¢,
1

where E. = E — Er is the energy due to the motion of the center of mass.
The first equation gives

1 iv6émE ys/h
Y = \/—2_;e VemEcya/h
With
¢ = d1(y1)$2(y2)
the second equation is separated into two equations
_R 0%
m By}
. 3h2.0%¢,
4m Jy?

3
+ Zkyf% =Ei1¢1,

+ ky2¢o = Ez2éo.

where E = Ey + E,.

These are equations for harmonic oscillators of masses 7%, 2;" and force
constants 2k and 3k respectively, both having the same angular frequency
w= % -Hence the total energy is

1 3k 1 3k
— = = = — VB =,
E=FE +E, <n+2)h +<l+2>

with n,1 =0,1,2,3,....
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(c) Let a? = T2, The ground state wave functions of ¢;,¢2 are

1\Y* 1
¢>10(1/1)=<E) Vaexp (——Myf) )

4
2\ 194
d20(y2) = (57;) Vaexp <—§a y2> ,

and so

1/4 o
ol ) - dror)omiun) - (373)  aep [Tt +ad)

e |

where

3y% + 4yg = 3(.’L‘1 - .’152)2 + (.’L‘l + T — 2.23)2

= 4(2? + 22 + 2 — 2122 -X2X3 —1x31)) .

As y3 = %(zl + z2 + x3) it is obvious that the spatial wave function g is
symmetric for the interchange of any two of the particles, which is required
as the bosons are identical. The ground state energy of the three bosons,

excluding the translational energy of the center of mass, is

2Vm " 2 Vm V m

(d) If the particles are identical spin-1/2 fermions, as spin is not involved
in the expression for the Hamiltonian, the eigenfunction is a product of the
spatial wave function and the spin wave function, and must be antisym-

metric for interchange of particles.
For the coordinate transformation in (b), we could have used

'}
Y1 = x2 — X3,

, ] + T2+ x3
=3

and still obtain the same result. In this case the spatial eigenfunction is

D(Yh, vh, Uh) = d1n(¥1)Pu(¥h)Y (vh)
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E:(n+l+1)h\/%.
m

Since ¢10(y1)d20(y2) = d10(y1)P20(v5), the spatial wave function is sym-
metric for the interchange of two particles. However, for three spin-1/2
fermions it is not possible to construct a spin wave function which is anti-
symmetric. Hence this state cannot be formed for three spin-1/2 fermions
and higher states are to be considered.

Looking a the wave functions of a harmonic oscillator, we see that the

exponential part of ¢1n(y1)d2(y2) is the same as that of ¢10(y1)P20(y2) and
is symmetric. Let

and the energy is

@1 - d11(y1)d20(y2),
s = d11(y1)d20(va) -

and construct the total wave function

- (), (0,0), (2, (.00,
—(<1>2+<I>1)(t1))1<(1))2((1)>3'

As &, = C(.’L’l—m‘z),q)g = C(:Ez—CL':;),‘I)l + @2 = C(.’Itl—.'rg), where C is
symmetric for interchange of the particles, ® is antisymmetric as required
for a system of identicad fermions. Hence the ground state energy of the
system, excluding the trandational energy of the center of mass, is

Ey =2h %
m
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8001
(%5)
Express e\ 20/ as a2 x 2 matrix; ais a positive constant.
(Berkeley)

Solution 1:

Let

(53) _o(50)
S(@) = e\7%0/ =¢ \ 710/ = ¢4

with

A

e (GGG -

| being the unit matrix, we have

diaS(a) = AS(a),

d? S 2
752 S(a) = A%S(a) = -S(a),
and thus

Si(a) + S(a) = 0.

The general solution is
S(@) = c1e*® + cpe ',

subject to boundary conditions S(0) = I, Si(0) = A.

Hence
Cl+C2:I,
01—62:—iA,
giving
. _I—iA
1 - 2 )
c _I+iA
2 = 7 -

666
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Therefore
I—1A I+:iA _,
S — ? —1ia
(a) 5 ef 5 ¢
I . ) A ) )
=3 (e +e ")+ % (e7*® —e**)=1Icosa+ A sina
< cosa sin a)
"\ —sina cosa/
Solution 2:
0 1 1 0
LetA=( ).ASA2=—( ):—I,A3=—A,A4=I,....
-1 0 01
o0 n An o0 2k o 2k+1
0A a"A™ ( 1)k ( 1)k
¢ _Zo nl _,;) TR Z_: 2k + 1)!
n= = _

. cosa sina
=C0Sal +sinagA = .

—sina cosa

8002

(@) Sum the seriesy = 1 + 2x + 3z2+ 423+ ... |z|< 1.
(b) If f(x) = ze~=/* over the interval 0 < x < oo, find the mean and
most probable values of x. f(x) is the probability density of x.
o _d
(c) Evaluate I = [ ;5.
(d) Find the eigenvalues and normalized eigenvectors of the matrix

1 2 4
230
5 0 3
Are the eigenvectors orthogonal? Comment on this.
(Chicago)
Solution:
(a) As |z| < 1,

1
2+ 3+...=
’ 1-g2)’

y—xy = l14+x+zx
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or

V=T-22
(b) The mean value of zx is

:7::/000 ar:f(ac)dnv://ooo f(z)dz
:/000 x-a:e"/’\dx//ooo xe */ Mg

The probability density is an extremum when

fi(x) =e‘“°/)‘——/1{xe_z/>‘=0,

i.e.a x =Aorx— co. Note that A > 0if f (x) isto be finitein 0 < X < 0.
As

1
fi(X) = —~e 1<0, f(A) = e !> lim f(x) =0,
A T—00
the probability density is maximum at x = A. Hence the most probable

value of X is A.
(c) Consider the complex integral

dz __/ dz +/ dz
cd+2t 4+, 4+

along the contour ¢ = ¢; + ¢2 as shown in Fig. 8.1.

Fig. 8.1

The integrand has singular points -1 + ¢, 1 + ¢ inside the closed contour
c. Hence the residue theorem gives
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dz . ) )
f; i A 27i [Res(1 + i) + Res( -1 + 1))

IR T N E A
=AM\ 16 % )1

d
[ 2o
4tz ‘
Then as

dz _/0 dx +/°° dx _2/‘” dx
4+t J_ o d+zt  Jp a4+t o 4+zt’

have
we /-oo dX B E
o 4+zt 8

(d) Let the eigenvalue be E and the eigenvector be

NOW let R — oo, we have

T
X=| z2
T3
Then
1 2 4 1 I
2 30 o | = E | z2
5 0 3 z3 T3
For non-vanishing X, we require
E-I -2 -4
-2 E-3 0 =0.

-5 0 E-3

The solution is
E1 =3, E2= -3, E3=7.

Substitution in the matrix equation gives the eigenvectors, which, after
normalization, are
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for E = F; and

-6

1

Xo=— 21,

2 \/6—5
5
4

1
Xg=——x 2
3 3\/5 .

for E = E;, E3. Note that these eigenvectors are not orthogonal. Generally,
only for a Hermition matrix are the eigenvectors corresponding to different
eigenvalues orthogonal.

8003

Please indicate briefly (in one sentence) what contributions to physics
are associated with the following pairs of names. (Where applicable write
an appropriate equation.)

(a) Franck-Hertz

(b) Davisson-Germer

(c) Breit-Wigner

(d) Hartree-Fock

(e) Lee-Yang

(f) duLong—Petit

(g) Cockroft-Walton

(h) Hahn-Strassmann

(i) Ramsauer—-Townsend

() Thomas-Fermi

(Berkeley)
Solution:

(a) Franck and Hertz verified experimentally the existence of discrete
energy levels of an atom.

(b) Davisson and Germer verified the wave properties of electrons by
demonstrating their diffraction in a crystal.

(c) Breit and Wigner discovered the Breit-Wigner resonance formula in
nuclear physics.
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(d) Hartree and Fock developed a self-consistent field method for ob-
taining approximate many-electron wave functions.

(e) Lee and Yang proposed the non-conservation of parity in weak in-
teractions.

(f) dulong and Petit discovered that atomic heat is the same for all solids
at high temperatures, being equal to 3R, R being the ideal gas constant.

(g) Cockroft and Walton effected the first artificial disintegration of an
atomic nucleus.

(h) Hahn and Strassmann first demonstrated the fission of uranium by
neutrons.

(i) Ramsauer and Townsend first observed the resonant transmission of
low energy electrons through rare-gas atoms.

(j) Thomas and Fermi proposed an approximate statistical model for
the structure of metals.

8004
Give estimates of magnitude order for the following quantities.

(a) The kinetic energy of a nucleon in a typical nucleus.

(b) The magnetic field in gauss required to give a Zeeman splitting in
atomic hydrogen comparable to the Coulomb binding energy of the ground
state.

(c) The occupation number n of the harmonic oscillator energy eigen-
state that contributes most to- the wave function of a classical one-
dimensional oscillator with mass m =1 gram, period T =1 sec,
amplitude zo =1 cm.

(d) The ratio of the hyperfine structure splitting to the binding energy
in the 1s state of atomic hydrogen, expressed in terms of the fine structure
constant o, the electron mass m., and the proton mass m;,.

(Berkeley)

Solution:

(a) The Kinetic energy T = 5’% of a nucleon in a nucleus can be estimated
using the approximation p ~ Ap and the uncertainty principle AzAp ~ h.

As Ax ~ 1072 cm, Ap ~ £,
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oM (1Y _ 1 (he)?
2m \Az /)  2mc? \ Az
1 /41X 10715 x 3 x 1019\ ?
2 x 938 x 106 \ 10-12
150
2000
(b) The Zeeman splitting is given by AE ~ ug- B, up being the Bohr
magneton, and the Coulomb binding energy of a hydrogen atom is 13.6 eV.
For the two to be comparable we require

x 108 ~ 107 eV.

13.6 x 1.6 x 107 X
B~ —ga5qo-m — = Bt x 10 wbm™? ~ 10°Gs.

(c) The energy of a classical one-dimensional oscillator is

E = -T—;L— (wx0)? = 2n%mzd/T? = 2n%erg.
For
nhw=F,

we require

E 272 T 7TxI
— i T =3 x 107,

hw  hw kA 1,054 x10-%

(d) The energy shift due to hyperfine-structure splitting of a hydrogen
atom in the ground state (in units wherec=h =1) is

n =

AE ~m2a*/m,

where a is the fine-structure constant. The binding energy of the electron
in the ground state is E, = m.a?/2. Hence

AE/E = 20? (1>

mp

8005
Some short questions to warm you up.
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(@) What can be said about the Hamiltonian operator if L is a constant
in time?

(b) State the optical theorem in scattering theory.
(c) Why is the optical theorem not satisfied in first Born approximation?
(d) Explain why the proton cannot have an electric quadrupole moment.

(e) What is the sign of the phase shift when a particle scatters from a
weak short range attractive potential? Justify your answer.

(Berkeley)

Solution:

(@) If L, does not vary with time, [H, L,] = 0. What this means is that
in a spherical coordinate system H does not contain ¢ explicity, i.e., H is
invariant in respect of rotation about the z-axis. (However, H may still
contain & explicitly).

(b) The optical theorem states that the total cross section for elastic
scattering oy is given by

o= T Imj(0),

where k is the wave number of the incident particle and f(0) is the ampli-
tude of the scattered wave in the forward direction.

(c) In first Born approximation when V (r) is real, which is usually the
case, f(8) is also real and gives a nonzero total cross section, the imaginary
part of f(8) appearing only in Born approximation of higher orders. Hence
the optical theorem does not apply to Born approximation in the first order.

(d) From the definition of electric quadrupole and the form of spherical
harmonic functions, we know that particles of spin s < 1 cannot have
electric quadripole. This includes proton which has a spin of %

(e) When V (r) falls off more rapidly than %, i.e. when the potential
is short-ranged, the phase shift é; of the Ith partial wave is given by the
asymptotic form

o0
i~ -k / V(r)j2(kr)ridr,
0

where j; is the spherical Bessel function. Hence for attractive forces, V(r) <
0 and so &> 0.
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8006

Answer each of the following questions with a brief and, where possible,
guantitative statement. Give your reasoning.

(a) A beam of neutral atoms passes through a Stern-Gerlach appara-
tus. Five equally-spaced lines are observed. What is the total angular
momentum of the atom?

(b) What is the magnetic moment of an atom in the state 3P,? (Disre-
gard nuclear effects)

(c) Why are the noble gases chemically inert?

(d) Estimate the energy density of black body radiation in this room in
erg cm~3. Assume the walls are black.

(e) In a hydrogen gas discharge both the spectral lines corresponding
to the transitions 22Py/; 125, and 2%P;,, —125,/, are observed.
Estimate the ratios of their intensities.

(f) What is the cause for the existence of two independent term level
schemes, the singlet and triplet systems, in atomic helium?

(Chicago)
Solution:

(a) When unpolarized neutral atoms of total angular momentum J pass
through the Stern-Gerlach apparatus, the incident beam will split into
2) + 1 lines. Thus 2) + 1 = 5, giving J = 2.

(b) An atom in the state 3Py has total angular momentum J = 0. Hence
its magnetic moment is equal to zero, if nuclear spin is neglected.

(c) The molecules of noble gases consist of atoms with full-shell struc-
tures, which makes it very difficult for the atoms to gain or lose electrons.
Hence noble gases are chemically inert.

(d) The energy density of black body radiation at room temperature
T~ 300 K is

4
p=-oT*
c

4
= m X 5.7 x 10_5 X 3004

6 x 1075 erg/cm®.

M it 2 e
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(e)

I(22Py, — 138120 +1
1(22P3/2 — 1251/2) 2Jo+1

2x1/2+1_1
=2x3/2+1 2°

(f) The helium atom contains two spin-l/2 electrons, whose total spin
S = s; + s2 can have two values S = 1 (triplet) and S = 0 (singlet).
Transition between the two states is forbidden by the selection rule AS = 0.
As a result we have two independent term level schemes in atomic helium.

800i7

(a) Derive the conditions for the validity of the WKB approximation for
the one-dimensional time-independent Schrédinger equation, and show that
the approximation must fail in the immediate neighborhood of a classical
turning point.

(b) Explain, using perturbation theory, why the ground state energy of
an atom always decreases when the atom is placed in an external electric
field.

(Berkeley)
Solution:
(a) The WKB method starts from the Schrédinger equation
h? d?
[—% prois V(z)] Y(z) = E¥(z),
where it is assumed .
1/)(.’2) = ezs(z)/h‘
Substitution in the Schrodinger equation gives
1 (ds\? h 1 d%
—_— — + - = — i
2m (da:) t 2m dx? E- V@) ()

Expanding s as a series in powers of £/i,

h AN
S=So+;‘31+ 7 S+,
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and substituting it in Eq. (1), we obtain

1 ho1 h\?
! 2
Gy 8¢ + z (s + 28ps7) + (;) (s + 2spsh + s

4= E = V(). ()

If we impose the conditions

|hsg| < Isg ], (3)
|2hsgs!| < |sgl 4

Eqg. (2) can be approximated by

which is equivalent to setting
2s5¢s1 + 55 =0,
2sqsh +s2 +s{ =0,

(3) and (4) are the conditions for the validity of the WKB method. Inte-
gration of Eq. (5) gives

so(z) = & /z V2m(E-V(2)) dx =+ /z pdz

so that (3) can be written as

h d
Fﬁ'@’ (6)

d (1
re (= 1
’dz(p))<<’

dA
dx

or
<1,
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where
h

V2m(E = V(X))
Near a turning point V(x) ~ E, p— 0 and (6) is not satisfied. Hence the
WKB method cannot be used near classical turning points.

(b) Consider an atom in an external electric field € in the z direction.
The perturbation Hamiltonian is

h
A== =
p

H' = —ecz,

where z =3, z; is the sum of the z coordinates of the electrons of the
atom, and the energy correction is
AEo=Hy + Y |H}|?/(Bo — En).
n#0

As z is an odd operator and the parity of the ground state is definite,
H{y = 0. Futhermore Ep— E, < 0. Hence AEp < 0. This means that the
energy of the ground state decreases when the atom is placed in an electric
field.

8008

A particle of mass m moves with zero angular momentum in a spheri-
cally symmetric attractive potential V(T).

(a) Write down the differential equation of radial motion, defining your
radial wave function carefully and specifying the boundary conditions on
it for bound states. What is the WKB eigenvalue condition for s-states in
such a potential? (Be careful to incorporate in your one-dimensional WKB
analysis the constraints of radial motion (0 < r < o0).

(b) For V(r) = —Vpexp(—r/a), use the WKB relation to estimate the
minimum value of Vp such that there will be one and only one bound state,
just barely bound. Compare your value to the exact result for the expo-
nential potential, 2mVpa?/h% = 1.44.

(Berkeley)

Solution:

(a) The wave function of the particle can be written as the product of a
radial part and an angular part, ¥(r) = R(r)Yim (8, ). Here R(r) satisfies
the equation
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[—% 712 dii (ﬁ %) + V(r)} R(r) = ER(r),

in which I = 0 for zero angular momentum has been incorporated. The

boundary conditions for a bound state are R(r) finite for -— 0, R(r)— 0
for 1=

Let x(r)-R(r)/r, the above becomes

R d*y
5 c—ir_z +V(r)x =Ex, (0<r <o)

subject to the condition
x(r)y—>0 as r—0.
Thus the problem becomes that of the one-dimensional motion of a particle

in a potential V(r) defined for -0 only. The WKB eigenvalue condition
for s-state is

f\/Zm(E Vdr-—(n+ )h n=20,1,2,.

(b) Substituting V = —Vyexp(—r/a) in the loop integral we have

/\/Zm[E+ Vo exp(—r/a)]dr = % (n+ %) h.

For a bound state, E = —|E| and the above becomes

\/-_]E_/aln |Elexp( ;‘)—ldrz(nﬁ-g-) h72.

Within the requirements that Vj is finite and that there is one and only
one bound state which is just barely bound, we can consider the limit-
ing case where |E|~ V,. Then the integral on the left-hand side can be
approximated by

Vo
aln TE]

\/2mVo[0 exp(—r/2a)dr.
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Hence
h
2

1

|ETY 3
2mVp-2a | 1 7 = n+4

giving

3 2
En_ |1t
2a+/2mVy

If there is to be one and only one bound state, we require -E = |E| <V,
for n = 0 but not for n = 1, or equivalently

3 7
s7h 47rh

—E <1< — ==
2a/2mVy — 2a+/2mV,
The minimum V, that satisties this condition is given by

2 2
2mVoa” _ 977 1 39,
h2 64

which is very close to the exact result of 1.44.

8009

Set up the relevant equations with estimates of all missing parameters.
The molecular bond (spring constant) of HCI is about 470 N/m. The
moment of inertia is 2.3 x 10747 kg-m?2.

(a) At 300 K what is the probability that the molecule is in its lowest
excited vibrational state?

(c) Of the molecules in the vibrational ground state what is the ratio of
the number in the ground rotational state to the number in the first excited
rotational state?

( Wisconsin)
Solution:
(a) The Hamiltonian for the vibrational motion of the system is
P

1

242

i,
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and the vibrational states are

E,E")=(n+2) ho, n=0,1,2 ,...,

with w = /K /u, K being the force constant and g the reduced mass of
the oscillating atoms.

Statistically, the number of molecules in state E(™ is proportional to
exp(—nz), where z = kT, k being Boltzmannis constant and T is the
absolute temperature. Thus the probability that the molecule is in the first
excited state is

_ e™" -z -z
P1_1+e—x+e"2”+‘--:e (=€),

As

1x35
=———— | m,~ = 1.67 x 10~%k
(1+35> My &

o= B _ 1,054 x 10734 x

— 138X myz
kT ~ 0-H{4m0/1 LSFT0-10 W2 _ e

we have Py =e~135=1.37 x 108,
(b) The Hamiltonian for rotation is

_ L os
H, = 21.1 ,
and the energy states are
h2
ESJ)=2—IJ(J+1),J:0, 1,2,....

Since the number of molecules in rotational state J is proportional to (2J+
.I
1) exp ( ) as the J state is (2J+1)-times degenerate (my = ~J, -J+

-+ J), we have
NJ= 0 1 h?
——— _zexpl|l+=] -
N(J=1)=3 IkT
As
2 0 34\2
chT = 2310~ 0 10—23%-360 = 0.117,
N(J=0)

— ,0.117 jq _
VO = 1) e '/3 = 0.37.



Miscellaneous Topics 681

8010

The potential curves for the ground electronic state (A) and an excited
electronic state (B) of a diatomic molecule are shown in Fig. 8.2. Each
electronic state has a series of vibrational levels which are labelled by the
guantum number v.

(@) The energy differences between the two lowest vibrational levels are
designated as A 4 and A g for the electronic states A and B respectively. Is
A4 larger or smaller than Ag? Why?

(b) Some molecules were initially at the lowest vibrational level of the
electronic state B, followed by subsequent transitions to the various vi-
brational levels of the electronic state A through spontaneous emission of
radiation. Which vibrational level of the electronic state A would be most
favorably populated by these transitions? Explain your reasoning.

( Wisconsin)

Solution:

(a) The force constant is K = (%—i‘f—) |,—,,,» Where o is the equilibrium

position. It can be seen from Fig. 8.2 that K4 > Kg. The vibrational
energy levels are given by

E(")=<n+l) hw, w= —Iﬁ

2 Vu

Aa=h —K—A,Agzh &,
\ w \V

Hence

and so A4>Ap.
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(b) Electrons move much faster than nuclel in vibration. When an elec-
tron transits to another state, the distance between the vibrating nuclei
remains practically unchanged. Hence the probability of an electron to
transit to the various levels is determined by the electronsi initial distri-
bution probability. As the molecules are initially on the ground state of
vibrational levels, the probability that the eectrons are a the equilibrium
position r =rgp is largest. Then from Fig. 8.2 we see that the vibrational
level v= 5 of A is most favorably occupied.

8011

Singlet positronium decays by emitting two photons which are polarized
a right angles with respect to each other. An experiment is performed with
photon detectors behind polarization analyzers, as shown in Fig. 8.3. Each
analyzer has a preferred axis such that light polarized in that direction is
transmitted perfectly, while light polarized in the perpendicular direction
is absorbed completely. The analyzer axes are at right angles with respect
to each other. When many events are observed, what is the ratio of the
number of events in which both detectors record a photon to the number
in which only one detector records a photon?

@{@ ~ ) ﬁ I
Anulyzers

Photon detectors

(MIT)

Fig. 8.3

Solution:

Suppose the positronium is initialy a rest. Then the two photons will
move in opposite directions to conserve momentum, and will reach the re-
spective analyzers at the same time. Assume further that the detector solid
angle is very smaller. Then the directions of those photons that reach the
analyzers must be amost perpendicular to the latter. Hence the directions
of polarization of these photons are parallel to the anayzers.

it i
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Denote by @ the angle between one photonis direction of polarizationn
and the direction of transmission of the analyzer reached by it. The prob-
ability that it can pass through the analyzer is cos? 8. Consider the second
photon produced in the same decay. As it is polarized at right angles with
respect to the first one, the angle between its direction of polarization and
the direction of transmission of the second analyzer, which is oriented at
right angles to that of the first analyzer, is also 8. Hence the probability
that, of the two detectors, only one records the passage of a photon is

27 n
P, xQ [LJ cos? (1 — cos? ) do + L ‘1 (1 - cos® 6) cos® 8df
27 27

_2
-

where 2 is the solid angle subtended by the detector, and the probability
that both detectors record the passage of photons is

2w
P,x [L‘] cos? Bcos?9dl| = @ .
2m 8

Hence the ratio of the number of events of both detectors recording to that
of only one detector recording in a given time is

8012

A point source Q emits coherent light isotropically at two frequencies w
and w + Aw with equal power | joules/sec at each frequency. Two detectors
A and B each with a (small) sensitive area s, capable of responding to
individual photons are located at distances {4 and g from Q as shown in
Fig. 8.4. In the following take Aw/w < 1 and assume the experiment is
carried out in vacuum.

(a) Calculate the individual photon counting rates (photons/sec) at A
and B as functions of time. Consider time scales > I/w.

(b) If now the output pulses from A and B are put into a coincidence
circuit of resolving time 7, what is the time-averaged coincidence counting
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rate? Assume that r <« 1/Aw and recall that a coincidence circuit will
produce an output pulse if the two input pulses arrive within a time 7 of
each other.

(CUS)

Solution:
(a) The wave function of a photon at A is

Ya(la, t) - Cy [eiw(ic‘i—t) + ei(w+Aw)(£CA_t)] 7

where Cy is real and, hence, the probability of finding a proton at A in unit
time is

Py = Y1
=C? {2+2cos [Aw (l—c‘i —t)]}
= 4C% cos? [% (lajc— 1)] .

If there is only a single frequency, P4 = C2. As each photon has energy
hw, the number of photons arriving at A per second is

s I
47rl31 hw
Hence
2 Is

- aml hw’
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and
Is

% hw

Pa= cos? [92—“’(1A/c— t)] .

Similarly we have
Aw
Pa= 403 cost [S5(e - ).

where

Is
2—__._.
Cz = amidhw

(b) In a coincidence of resolving time 7, the time-averaged coincidence
counting rate

T T
P=1lm = [ dt| Pat)Ps(t+z)dz
T—o0 2T -T —
1 T T
= b - dt/ 4C*(1 + cos Aw(la/c—t)]
T 2T -T —-T

l
X [1+c0sAw (—CB -t —x)] dz

T
= lim — [ 4C*-{1 + cos|(la/c — t)Aw])
-7

T a1
lp
X <217 + 27 cos |Aw ?—t dt,
where -
I S 2 ~2
T ——— e {61 4
¢ 16721412 h2w? 172
as

/—: cos[Aw(lg/c —t —z))dz = Zl—u; 2sin(rhw) cos [(%B - t> A“’]

~ 27 cos[Aw(lg/c—1t)].
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Hence

T
P =8rC? lim ——},1—,/_ {1 +cos[(la/c—t)Aw]}
-T

Vi de o)

v oo

1 T lB
_ 4 14 . = _
=87C Thm T | o {1+cos [( p t) Au]

ro(t=) o ]2 a2 )

1 (T 1 Aw
= 4 i gund 1 - - l i l
8rC Tll)moo T ‘T{ +3 cos[ c (la B)]

+ cos [(———IA +1p - t) Aw] cos [(ZA — lB) Aw}
2c 2c
+lcos [(lA t s - 2t) AV\]} dt
2 c

=8rC* lim —1—{2T+?-Zcos[<l—A-:—l§)AW]}

T—oo 2T 2
= 8rC* {1 + %cos [—Aw(l,; — ZB)]}

c
TI%s? 1 Aw
_ s L eos |2 (a1l
= 2n21%1% h2w? {1 g 008 [ c (ta B)] }

8013

A charged oscillating (nearly) classical system is losing energy by radi-
ation. At energy E it is radiating (and oscillating) at frequency v(E) =
a(E/Ey)~P, where a, 8 and E, are positive constants. Compute the quan-
tum energy levels (of the system) E,, for large n.

(Berkeley)

Solution:

According to the Bohr correspondence principle: the quantum frequency
approaches the classical frequency for n > 1, i.e. vgu —+vg as n—cm. As
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0H

un:'r-éj—,

where J =nh, r=n-m, and m, n >> 1. We have, with T =1,

dE
hv = o= ha(E/Ep) ™",

or
EPdE = haESdn.
Integrating s
/ " EPAE = haE{,’/ dn,
0 0
we have

3
1+8

E, = [ha(ﬂ + 1)nE{,’]

8014

A spinless particle of mass m and charge q is constrained to move in a
circle of radius R as shown in Fig. 8.5. Find its allowed energy levels (up
to a common additive constant) for each of the following cases:

(a) The motion of the particle is nonrelativistic.

(b) There is a uniform magnetic field B perpendicular to the plane of
the circle.

(c) The same magnetic flux which passed through the circle is now
contained into a solenoid of radius b(b < R).

(d) There is a very strong electric field F in the plane of the circle
(alF| > B2/mR?).

(e) F and B are zero, but the electronis motion around the circle is
extremely relativistic.

(F) The circle is replaced by an ellipse with the same perimeter but half
the area.

(CUs)
Solution:

(a) Let the momentum of the particle be p. The quantization condition

p-2nR=nh
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gives
_ nh

P=7

and hence \
2 2
E=F _ ARy _h__nz,
2m  2m \ R 2mR2
where
n=0,+1,%2,....

{a) @

(b)/
X/

g

X

{d) F\Q

Fig. 8.5

(b) Take coordinates with origin at the center of the circle and the z-
axis along the direction of B. Then the vector potential at a point on the
circle is )

A= —2- BRe‘,, .

The Schrodinger equation
Hy =Ey,
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where

can be written as
. 2

_—— .= = F .
R g 5 BR) Y(p) = EY(p)

Its solution is ¥(y) = Ce™¥, The single-valuedness condition () =¥ (p+
27) demands n = 0, £1,+2,.... Substituting the solution in the equation

gives )
1 nh ¢
=—|—=--—-BR} .
E 2m ( R 2 )

{¢) When the magnetic flux is confined to the inside of a solonoid of
radius b enclosed by the circle, magnetic field is zero on the circular path.
AsVxA = B = 0, Acan be taken to be a constant which is equal to
7 BRwhen b —R. Then

A_EBWR“’_ )
~ 2 xR ~ 27R’

As ¢ remains the same, the energy levels are the same as in (b).
(d) Take the z-axis parallel to F. Then

F = F(cos ¢, —sing),dr = (0, Rdy),

and hence
\Y =—/qF-dr:qFR/sin<pd<p = —qFRcosy.

Thus the Hamiltonian is

—R2 1 d?

H= e Rz

—qFRcos ¢.

Because the electric field F is very strong, the probability that the particle
moves near ¢ ~ 0 is large. Hence we can make the approximation

2

1
cos<p=1——2-cp2+0(<p4)z1—?
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and obtain 2o
y 1 2
H= 2mR2dcp2—qFR(1_§(p>’
or 9 d2
R K 1
H+ qFR = -~ —— —— + = ¢FRy?
+a 2mR? dgo2+2q Re”,

which has the form of the Hamiltonian of a harmonic oscillator of mass M =
mR? and angular frequency w given by Mw? = ¢FR, whose eigenvalues are

En.+qFR = n+% huw
( )

or 1
En: n+§ ﬁw—qFR,

( )
with
_ qFR_ qF _
w =4/ i _”mR’ n=0,1,2 ,....
Therefore
1 qF
E, =—-qFR =) hy/ —.
. +(n+2) .

() The quantization condition gives
p-2rR=nh,

or p = nh/R.
If the particle is highly relativigtic,

he
E=pc:%, n=0,1,2,....

(f) The quantization condition gives

p=nh/R,
and hence e
n
E = = —
pc R’

same as for a circular orbit.



Miscellaneous Topics 691

8015

Consider the scattering of a particle by a regular lattice of basis a, b,

c. The interaction with the lattice can be written as V =3, V(|r —r;|).
where V(|r ~r;}) is the potential of each atom and is spherically symmetric
about the atomis lattice point. Show using the Born approximation that
the condition for non-vanishing scattering is that the Bragg law be satisfied.
(Berkeley)

Solution:

The Born approximation gives

m i(k—ko)-r
16) =~ 3 [ €4V (I -y

s 3 et [ ek v,
= T -
7

where r = r; + ri. Consider the sum ¥ e*(k~ko)rs,

As we are to sum over all the lattice points, for the sum to be nonzero
we require (k — ko) . r; = 2nm.

Thus the condition for non-vanishing scattering is

rj- (k —ko)=2nm
for all the lattice vectors r;, whence

a-(k—ko)=2ml,

b - (k — ko) = 27y,

c- (k — ko) = 2nl3.

l1,12,13 being integers. This is the Bragg law.

8016

To find approximate eigenfunctions of the Hamiltonian H we can use
trial functions of the form ¢ = Z:=1 ardk in the variational method (where
the ¢ are given functions, and the ax are parameters to be varied). Show
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that one gets n solutions ¥, with energies 4 = (Yol H| Vo) / (Yaltba), Where
H is the Hamiltonian. We will order them so that g, <ep<eg---
Show from the Hermitian properties of the Hamiltonian that the v, either
automatically have or can be chosen to have the properties (¥a|¥p) = 8ug,
(YalH|¥g) = €adap. From the fact that one can certainly find a linear
combination of %1 and ¥2 which is orthogonal to ¥, the exact ground
state of H with eigenvalue Ej, prove that &2 > Ep, where E; is the exact
energy of the first excited tate.

( Wisconsin)

Solution:

Suppose {¢x} is the set of linearly independent functions. We may
assume that {¢;|¢;) = d;;, first using Schmidtis orthogonalization process
if necessary. Then

n

= > aja;Aij
(’d’Iw} Z a;aj(sij ij
i’j

where @
Z,‘ la;|?

Note that

Do lal? =1
i=1

As A is Hermitian, we can choose a rotational transformation X = pY,
such that A = p*Ap = p~1Ap is a diagonal matrix with diagonal elements

A11 € A2 < Ass. Then
B=>" Auluil?,
i=1

where y; satisfy > o lyil?= 1.
Applying the variational principle

SR -
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where « is the Lagrange multiplier, we get
Z(An - a)lwildlysl =
or
(Aii_a)lyi|=01 (1:=1’2"")
i.e., a = Aﬁ or |yi| =0.
Hence the solutions of the variational equations are

a—A“,y(') —6’ =4d;, (1=1,2,---,n).

Thus we get n solutions ., the ath solution y("‘) = 6("‘) corresponding to
energy

("pa|H|"/)a A (a2 _
o= i~ Ml =

with g1<ez<e3....
For ¢a = ¥a[X (Y)], we have

Waltp) = Y ala®

- [T RS
J j i

J

=\/Z|a§a)|2zia§ﬁ)|2 Zy(a)* ®) :[Zla?’)I} Sus,
J J

(ol Hltog) Za“”*A 0l

Z |a§0)|2 z Iagﬁ)lz . E .’I:ga) /\ijxgﬁ)
3 J ¥
_ \/Z la§“)|2 ¥ |a§ﬁ)12 Z oW ”yj(m
3 j

= | D" 1a{1?| adap-
F
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Then, by setting Yo = %a/1/3; 1a§°)|2, we have
(Val¥p) = bap, (YalH|¥p) = €alap -

Let the exact wave functions of the ground state and the first excited state
of H be ®; and ®,, their exact energies be E; and E; respectively. Then
there must exist two numbers p; and po such that &3 = p) ¥y + pe ¥y,
lu1]? + |p2/2=1. From the orthogonality of &; and &;, we have &, =
u3¥; —pui¥a, and hence

Ey = 51|/‘1|2 + 62'#2[2 ,

2
E2 = El|”2| +82|u1|2=(51_62)|[J2|2—}—52552_

8017

Find the value of the parameter X in the trial function ¢(z)= Ae=*%",
where A is a normalization constant, which would lead to the best approx-
imation for the energy of the ground state of the one-particle Hamiltonian

H = 'f;, Tt bz*, where b is a constant. The following integrals may be
useful:
/ _azdz_\[/ ey _ \/‘
oo 4
/_oo e~ gy = Z $.
( Wisconsin)
Solution:

Using the trial function ¢ = Ae"\z”z, consider the integrals

/ ¢*(z)¢(m)dx=/ Aze—z,\zzzdsz2 T -1,

i o0 . 2 2
/ ¢*(x)H¢(ZL')d.’L‘ = / A2€_)‘22 <—£— _(1_ + b$4> e—-/\zxzdx
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= A? / [——(2,\4 22 )\2)+bz4] e~ gy
h2

2 4

=4 [ m (2)‘ 2V ( 2/\2 V2)\2>
3
4 (w)s

_a LR [T T3

=4 [Zm 22T 2 Tem)

[ ¢*Hedz 1 (K _)
(H) -W—a(nﬂ Then) -

As 2(a+b+c) > (abc) 1/3 for positive numbers a, b, ¢, we have

1

1 /K222 R2XZ2 3 3/ Kt 3b\°
=~ —— — > — =
(H) 2(2m+2m+8,\4)—2(4m2 8)

Hence the best approximation for the energy of the ground state is
3 /3\? /bt 3
e =3 (3) (55)

8018

Consider the energy levels of the potential V = giz|.

+b

and obtain

(a) By dimensional analysis, reason the dependence of a general eigen-
value on the parameters m =mass, h, g.
(b) With the simple trial function

V = cf(z +a)f(a— ) (1— ‘xl)

a

compute (to the bitter end) a variational estimate of the ground state en-
ergy. Here ¢,a are variable parameters, 6(x) = 0 for x < 0, 8(z) = 1 for
z>0.
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(c) Why is the trial function ¥ = cf(z + a)8(a — z) not a good one?
(d) Describe briefly (no equations) how you would go about a variational
estimate of the energy of the first excited state.

(Berkeley)
Solution:
(@) The Schrodinger equation

h: 9?2
<—% Fyois glzl) Y(z) = Ey(x)

can be written as

|75z = 33 € =sleb] wia) =0.
AS
5] = 1 ) = 1,
we have
58] - [Ger)
or

Hence the eigenvalue has the form

2 1/3
Ea= () s,

where f(n) is a function of a positive integer n.
(b) First normalize the trial wave function. As

1= /w*(z)d}(m)dz =|c|2/ [0(3: +a)8(a—z) ( - 'ai')} de

a 2
el _lal = Zap
=i [ (1) o= Fer,
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we have 3
2 —_— —_—
el = 2a

Then calculate the average value of the Hamiltonian:
H= /d}*Hl/)d:E
B2 i d? &
=3 /—ooq,b (z) wt/)(z)dx +g/_001[) (z)\z]Y(z)dz .

As

/_Z¢*(z)|x|w(z)dz =!c|2{— /_Oax (1+ —z—>2dx + /0

= a®|c|*/6 = a/4,

a

2
CL‘(]_—E) dx}

d ||
= Y(z) = cé(z + a)b{a — ) <1 - 7)
—cf(z +a)é(z —a) (1 - %)
lz] 1
+cb(z+a)(zr—a) ———
()

we have
00 d2? d . o (dy 2
/_Oo ¥(2) gy la) do = 9(z) - 9(@)| 7, - /_oo <a> &
e 9] dd) 2
- [ (&)
a 2
= —IC|2/_ <—%) dz
=—2|¢[*/a = —3/a?,
and hence

3K2 a

H=_"_+-
2ma2+4g
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For its minimum value, let

6H _ 3R*
Sa ~ mad

1252\ /3
Q =
(o)
Hence an estimate of the ground state energy is
35 (gm )2/3 +g 1252\ /3 3 3h%g? 1/3
1272 4 \ gm 4\ 2m :
(c) If we had used a trial function ¢ = cf(z + a)f(a — z) and repeat the

above calculation. we would have obtained

9
2.0
+4 )

which gives

ll

H

/°° P* (x)|zlddz = a®c?,
oo 2
/ Y Yo =

a
1= J Yidz = 2ac?,

ga?c* ga

T2ac2 T 2

and hence

As 8H
ba 2 7& 0,
H obviously has no extreme point. Therefore this trial function is not a
good one.
(d) We first choose a trial wave function for the first excited state. It
must be orthogonal to that of the ground state. Then use the above method
to find a variational estimate of the first excited state energy.

8019

(Use nonrelativistic methods to solve this problem.)
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Most mesons can be described as bound quark-antiquark states (gq).
Consider the case of a meson made of a (gg) pair in an s-state. Let mg be
the quark mass.

Assume the potential binding the qto the § can be written as V =
é + Br with A <0 and B > 0. You are asked to find a reasonable approx-
imation to the ground state energy of this system in terms of A, B, m4and
k. Unfortunately, for a class of trial functions appropriate to this problem,
a cubic equation has to be solved. If this happens to you, and you do not
want to spend your limited time trying to solve such a cubic equation, you
may complete your solution for the case A =0 (without loss of credit).
Please express your final answer in terms of a numerical constant, which
you should explicitly evaluate, multiplying a function of B, mgand A.

(Berkeley)

Solution:

Method |
Use for the trial function the wave function of a ground state hydrogen
atom.

Y(r) = e7rle

and calculate
H = (|HIp)/($ly)
*° R2 1 0 7]
— 2, ,—rfa|_ " =+ Y 2 2
\1 drr”e [ 2u 2 Or (T ar)
-1 ﬁ_r/a, * 2 -2r/a
+Ar~"+Br e / drr©e
e 0
_3Ba M1 A
T2 2p a? a ’
where p = %—‘1 is the reduced mass of the ¢g system. Vary a to minimize H
by letting ¢ = 0, which gives

h2
§Ba3—Aa——=0,
2 7

1/3
When A = 0, the solution is a :(;gi) . Hence the estimated ground
state energy is
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3 /36B2R2\'/3 B2R2\ /3
Eg:H:—< ) :2.48( )
4 my Mg

Method 11

Another estimate of the energy of the ground state can be obtained
from the uncertainty principle. Consider

2 A
H=L +Z B
20 T
As the principle requires
h h h
pzl'Zgapyng:pzzZ?y
we take the equal sign for the ground state and obtain
IS S

H = v
8uxr?  8uy? 8uz?

A
+-r—+BT‘.

To minimize H, let

~-h?  Ax  Bx
dpz? 3 r

As H is symmetric with respect to x,¥,z, when it reaches the optimal value,
we have x =y = z,orr = \/§x, and the above equation becomes

h? A B

e~ — = 0.
dprd 3322 V3

Letting A = 0 we get

h? 1/3 ghQ 1/3
xr = 36 —_— y or T —_— 9
4uB 4uB /B

Hence
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8020

All attractive potential well in one dimension satisfies

+oo + oo
V(z) < o,l V (z)dz finite, \1 2V (z)dz finite.

o0 o0

{(a) Using trial wave functions of the form e‘ﬁxz/z, prove that the po-
tential has at least one bound state.

(b) Assuming further that the potential is quite weak (ff:: V(z)dz,

fj:: xA/(x) dx are both “small”), find the best upper bound (for the en-
ergy) for this class of trial functions.

(c) In a dimensionless statement, state precisely what is meant by
ismallT in part (b).

(Berkeley)
Solution:

(a) The given trial function is the ground state wave function of a one-
dimensional harmonic oscillator. We shall use the normalized function

1/4
Y(z)= ( E) e Pz,

™

where g ==£. The Hamiltonian can be written as

R d? 2.2 1 2.2 1
= _%@+§ mwz” 4+ V(x) —Emw z°=Hy+ V(X) ~3 mw?z?
As 1
(V| Holy) = 5 hw,
we have
_ 1
H = IH) = 5 b + 91V (z) ~ 5 maz?/y)
_1 B 1% = h—2[3+ V(z)
=7 w + @V @)IY) = — 8+ @IV@IW),
and

I 2
‘2—’; . §%<¢|V(x>|w> ~ W2V (@)l)
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Since when 8 — 0,

1 1 [ B
—2—ﬂ<w:V1w>—5B\/;/_deH o0

(|22 ViY) = \/g /_o; ?Vdz — 0,
sH

we have $5 >~ as B8 — 0. When ﬂ—>oo, 55 -—> " > 0. Therefore

Sf% =0 at least for a certain positive 3, say Bo. Thus the trial function is
suitable and the energy for the corresponding state is

k200
am

as V is negative,

B = 52 o (- -+ Ve >|w>)

G
4m

+ 2060 (Y|z*V (2)|9) <

Therefore the system has at least one bound state. Note that we have used
the fact (%%)ﬂ = 0, which gives, for 8 = o,
0

2
AV @)IY) = 26 (—f—m V@)

(b) (c) Let % V(z)dz =A, [7 z?V(z)dz =B. The requirement
that A and B are small means that the potential V(x) can have large
values only in the region of small |z|. Furthermore, for large |z|, V(x) must
attenuate rapidly. This means that we can expand the integrals

A = \1: 05"V (z)dz ~ I; (l _ 824V (z)d=A- 0B,

o0 2 oo
B; = ‘1 22 PV (z)dz ~ / z?V(z)dz =B ,
oo -0

Then the minimization condition % 0 gives

fi2 A, 5
2\/ $

B; =0,
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or

2
i._’_ A 3 éB: ,
m  2yn3 2Vmw

Vb= \/ LA
12mB 144m?2B? 3B

Hence the bound state energy is estimated to be

_ h2
E = _ip +2064/ A B
4dm e
2
_ [ /=R +\/ mht AN (=R [ k4B
~ \ 12mB 144m2B? ' 3B 12m 36m2 3

As A and B are both negative, E < 0. Hence

2
, VTh? \/ 7hA A h?
E< <12mB + 144m?2B? + 3B dm )’
Since for two arbitrary real numbers a and b, (a +b)?>4ab, the upper
bound of £ is given by

F<ad VTh? h4 —mh® / 48m2AB
“4m ) 12mB 144m232 BB = Taam3B?

8021

A particle moves in ar-sttractive central potential V (r)=—g?/r%/2,
Use the variational principle to find an upper bound to the lowest s-state
energy. Use a hydrogenic wave function as your trial function.

(Chicago)
Solution:

As the trial function we use the normalized ground state wave function

of the hydrogen atom,
k3 12 kr
= = —kr/2
v=(5) <
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to calculate the energy. For an s-state, [ =0 and

H(k) = / W Hipdr
Jo a2 ()] o

k3 oo A2 1 8 ) 2
_Z 4 2 —kr/2 | _ U 29\ _ 9 | —krs2
87 7r/0 re [ 2m r2 Br (r 8r> raz| € dr

g3 ptoo 2 22
=5 e"’"[ gzrl/2 :—mkr—ksh r? dr
0 m
B k_3 K2 JTg?
T2 lamk  2k3/2
— % k'2 \/—g k3/2

For H to be a minimum, 28 =0, ie. L. k —EC g%kl/2 =0, giving two
solutions k; =0,
kL2 2 3ymg*m
2h2
The first solution implies 1 = 0 and is to be discarded. On the other hand,
if k3/2 = 3Tg'm 3 reaches a minium — 2w amd This is the upper bound
to the lowest s-state energy.

8022

A system of spin-l particles consists of an incoherent mixture of the
following 3 pure spin states, each state being equally probable, i.e. one
third of the particles are in state (1, etc.

0 0 0

1
=10 ’,(/,(2):7~5 1l+—=1]0],v® =10

(a) Find the polarization vector for each of these 3 pure states.
(b) Find the polarization vector per particle P for the above mixed
state.
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(c) Calculate the density matrix p for the system and verify that Trp =1

(d) Using p, find the polarization vector P and check against (b).
Reminder: for J =1,

010 6 -1t O 1 0 0
1 1
J=—1101]|,dy=—1|7 0 —},J,=]0 0 O
r \/i y \/5 . z
010 0 i 0 0 0 -1
(Chicago)
Solution:

(a) The polarization vector for a state i is given by

P = <¢(i) ‘ J|¢(i)>
Thus

01 0 1

1
Py = —@10])101 0ol =0,
T \/5 b

010 0

0 -1 0
qwnﬁuow i ()4)0 =0,

0 i 0

0 0 1
PY=@o0,0) OO0 O 0]|=1.

0 -1 0

and so P(M) =(0,0, 1).
Similarly we have

1 1
P(z) = ('—707_—) ’

V2 2
P® = (0,0, -1).

(b) For the incoherent mixture, P is the sum of the polarization vectors:

p = Pm+Pm+Pﬁ $(v2,0,-1).
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© In terms of the orthonormal vectors

0
m=1lo],2={1}, 3= ;
0
we have
W) = 1, 1) = 5 (12) + 1)),

W) = 3).

Generally a state can be expressed as

) = i CyIn),
n=1
where i =1,2,3. The density matrix is defined as
p=2 WO,
where w(¥ is the probability that the system is in the pure state |3(9), or
prn = 3 CirCl = % 32 CiCh

as w® = Lfor all i in the present case. The matrix of the coefficients is

1 0O 0\
c 0 1 1
RV AR R
0 0 1
and so 1 -
3
1 1 1
=-C%C = B —
P=3 © 5 &
1 1
0o = =
6 2
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and 111
Trp=-+-+4+==1.
TP=3tEts

(d) As P = (J) = Tr(pJ), we have

r 1
0 -
3 0
1 |1 11 1 /1 1
P, = Tr{pJy)=Tr{ — | = = = =—|-+2)=v2/8
.= Trph)=Tr{ == | & & 3 2(6+6) vafe,
\l 11
\ 6 2 6
r —i
0 .
5 0
1l i —i 1 (i i
Py=Tr(pJy)=Tr{ —= | = = — =—[(=--2)=0
Y (0J) V2|6 6 6 2(6 6)
K ) —1
\ 6 2 6
1
3 00
1 1 1 1
P,=Tr(pJ,)=T 2=z =-2
z 7'(pz) T 0 0 6 3 2 6’
0o o -1
2

same as in (b)

8023

The deuteron is a bound state of a neutron and a proton in which the
two spins are coupled with a resultant total angular momentum S = 1. By
absorbing a gamma ray of more than 2.2 MeV the deuteron may disintegrate
into a free neutron and a free proton.

(a) Write a wave function for the final state in the reaction y+ D —n+p
using plane waves and being sure to include properly the spin coordinates
for the two particles. Assume that the interaction with the gamma ray is
via electric dipole coupling.

(b) Suppose the neutron and the proton are to be detected far apart from
each other after the disintegration of the deuteron. Looking at this in the
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center-of-mass system, what correlations will be found in time and space,
and in spin? Assume that the target consists of unpolarized deuterons.
(You may use the following definition of spin correlation: If a proton is
detected with spin “up”, what is the probability that the corresponding
deuteron will also be detected with spin “up”?)

(Berkeley)
Solution:

(a) The ground state deuteron 3S; has positive parity. The electric
dipole transition requires a change of parity between the initial and fi-
nal states. Hence the parity of the free (n,p) system must have parity
-1. Assume that the wave function of (n,p) can be written as ¥(n,p)~
¥(rn,rp)x(n, p). For x = x3, after the nucleons are interchanged the wave
function becomes ¥(p, n) = (~1)!¥(n,p). For x = x}, after the nucle-
ons are interchanged, the wave function becomes ¥(p,n) = (~1)"*1¥(n, p).
A fermion system must be antisymmetric with respect to interchange of
any two particles, which means that for the former case, {=1,3,..., and
for the latter case, 1 =0,2,4,..., and so the parities are —1{I = odd)
and +1(! = even) respectively. Considering the requirement we see that
only states with x = x3, i.e. spin triplet states, are possible. Further,
S=1,L=1,3,...,and so J=0, 1,2,.... As the deuterons are unpo-
larized, its spin wave function has the same probability of being xi1, x10
or x1—1- Therefore, after the transition (n,p) can be represented by the
product of a plane wave and the average spin wave function:

¥(n,p) ~ eillenTntlepTp) | g=ilwnt+wnt) (1 /3/3)(x11 + x10 + x1-1).

(b) The correlation of time and space is manifested in conservation of
energy and conservation of momentum. In the center-of-mass coordinates,
if the energy of the proton is measured to be E,, the energy of the neutron
is B, = Ecm — Ep; if the momentum of the proton is p, the momentum
of the neutron is —p. Let a be the spin function for TupT spin, and 8
be that for “down” spin. Then xi1 = a(n)a(p), x1-1 = B(n)B(p), Xx10 =
% ([a(n)B(p) + a(p)B(n)], and the spin wave function is

1 1 1 1
= Lo + = (] alp) + 2 (T5al) + )] 50).
x(n, P) ﬁ[a(n) 73 (Ml RV AN (n) +

Thus, if the spin of p is detected to be up, we have

x= —\}3 a(n)alp) + 71% Bn)a(p) .
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Hence the probability that the spin state of n is also up is

O

2 27 q°

)+ °
8024

(@) You are given a system of two identical particles which may occupy
any of three energy levels €, = ne,n =0, 1,2. The lowest energy state,
€p = 0, is doubly degenerate. The system is in thermal equilibrium at
temperature T. For each of the following cases, determine the partition
function and the energy and carefully enumerate the configurations.

(1) The particles obey Fermi statistics.
(2) The particles obey Bose statistics.
(3) The (now distinguishable) particles obey Boltzmann statistics.

(b) Discuss the conditions under which fermions or bosons might be
treated as Boltzmann particles.

(Buffalo)
Solution:

Denote the two states with 9 = 0 by A and B and the states with e
and 2¢ by 1 and 2 respectively.

(1) The system can have the following configurations if the particles
obey fermi statistics:

Configuration: (A, B) (A, 1) (B, 1) (A, 2) (B, 2) (1 2)

Energy: 0 €€2¢2¢3e

Thus the partition function is Z =1 + 2e™¢ + 2e72¢ + 73,

and the mean energy is & = (2ce™° + 4ce ™% + 3ce™3¢)/Z

(2) If the particles obey Bose statistics, in addition to the above states,
the following configurations are also possible:

Configuration: (A, A) (B, B) (1, 1) (2, 2)

Energy: 0 0 2 4¢

Hence the partition function and average energy are

Z=3+2+3e ¥ +e 3 e

b

£ = (2ee7 4+ 6ce % + 3ce % + 4ce %) /2.



710 Problems and Solutions on Quantum Mechanics

(3) for destinguisable particles obeying Boltzmann statistics, more con-
figurations are possible. These are (B, A), (1, A), (1, B), (2, A), (2, B) and
(2, 1). Thus we have

Z =4+ 4e ¢+ 5e7 % 4 2e7% + 74

£ = (4ee™® + 10ee™ % + 6ee™% + 4ee™) /2.

(b) Fermions and bosons can be treated as Boltzmann particles when
the number of particles is much less than the number of energy levels, for
then the exchange effect can be neglected.

8025

Consider a free electron near a boundary surface.

(a) If ¢x(z)’s are the electron eigenfunctions, show that the function

(@,8) = 3 63 (2) b (0) exp  —=
u ; k\Z )Pk p( i )

satisfies a diffusion-type equation. Identify the corresponding diffusion co-
efficient.

(b) From the theory of diffusion how would you expect u(0,t) to be
influenced by the presence of a boundary at a distance I from the origin?
Would the boundary be felt immediately or only after an elapse of time?

(c) Examine the expression for u(0,t) as a sum over k as given in (a).
What is the range of &, which contribute significantly to «(0, t) at the time
when the influence of the boundary is felt by the electron?

(Buffalo)

Solution:

(@) The wave function ¢ (x) satisfies the Schrédinger equation of a free
particle

R oo
“5m (X)) = exdr(x).
Thus s
V2u(x, t) Zskq&k(x )k (0) exp < 2 )
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Since

%u(x,t) ~% Zekq’)k )0k (0) exp ( ;t) :

u(z,t) satisfies the following diffusion-type equation:

0 h s
el - ¢
5 u(x,t) 5 Vu(x, t)

The corresponding diffusion coefficient is £/2m.

(b) Initially u(z,0) = 6(z). When t > 0, the function u starts diffusing
to both sides. The boundary will not be felt by the electron before a lapse
of time.

(c) Suppose the boundary is at z =1. The solution of the diffusion
equation is

u(x,t)=cexp [- o (47 + %)

X {exp [—-%xz]—exp[ 2 (z - 21) ]}

When there is no boundary (i.e., I — o), the solution is

u(x,t) = cexp [ Shi (W? + 22)] exp ( 27;; 2)

From the above two expressions, we see that only when 5’,%(0—2l)2~ 1 ie,
at t ~2mi?/h, will the electron start to feel the existence of the boundary.

Consider ot
D0 -

Only states ¢y, for which the energy e is such that Ebi <1 will contribute

significantly to u(0,t). At the time t~ﬂ, we require 5k<ﬁn—zf for ¢z
to make a significant contribution.

8026

Symmetrizing Maxwellis equations by postulating a magnetic monopole
charge of strength g, Dirac derived a quantization condition
eg
— = n’
he
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where n = an integer, e is the electronic charge, and g is the magnetic
charge.

In the spirit of the Bohr-Sommerfeld quantization procedure, derive
semi-classically a similar quantization condition by quantizing the angular
momentum of the field in the imixed dipoleT system shown in Fig. 8.6.
Hint: How is the angular momentum of the field related to the Poynting
vector?

(Columbia)

Fig. 8.6

Solution:
The electromagnetic field consists of two components

g e )
lx— 3513

_9(x+3%)
|x+ ZI3 .

In cylindrical coordinates (p, 8, z), we can write r = 2aes, where a =

/2, and
X = pcosfe; + psinfe; + zez,

The angular momentum of the electromagnetic field is

L., - 1-/xx (E x B)d3z.

" 4dre



Miscellaneous Topics 713

As
(c —5) % (x + )
ExB= 2) 2
T P x 3R
_ egx X r
N 2 213/2 "
[ = 5)*(x+ 3)°]
)
xx (E x B) = egl(x . r)x — 2%r]
(P + 22+ a2 — 2az)(p? + 22 + a2 + 2a2)]3/2
_ 2aeg(zp cos fey + zp sin feq ~ p2e3)
[(pT + 2%+ a2) — 4a222]3/2 ’
27 2n
/ cos 6d6 =/ sinfd@ = 0
0 0
we have
+00 27 3
aey p dp
Lep = ——2
93/ dz/ d0/ [(02 + 22 + a2)2 — 4022372

- e /+o°dt/ s3ds
- 3 [(s2 + 2 + 1)2 — 422]3/2°

where s = p/a, t = z/a. It can be shown that

/+°° it /°° s3ds )
oo o [(S2+2+1)2—a?23/2=""

eg
l—em = ‘—‘: e3.

Hence

The quantization condition is therefore

[
Lem:z| = -2 = nh,
C

or
%ngn, n=0,+1,42,....
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8027

In a crude picture, a metal is viewed as a system of free electrons en-
closed in a well of potential difference V3. Due to thermal agitations, elec-
trons with sufficiently high energies will escape from the well. Find and
discuss the emission current density for this model.

( Buffalo)

current density

Fig. 8.7

Solution:

The system of free electrons can be considered as an electron gas of
volume V which obeys the Fermi statistics. At absolute temperature T the
number density of electrons with momenta between P and P + dP, where
P = (P, P, P,),is

dN 1 dFP;dF,dP, 2V

NV TV eE-w/kT + 1 RS

where the factor 2 is the degeneracy due to the electrons having two spin
directions.

Consider the number of electrons, j,, leaving V in the z direction per
unit cross sectional area per unit time. Such electrons must have a speed

v 2mV0 .

P,

V= — 2
m

1
m

Hence

dN 2 *©
jn:/vz-—:—sf P.dP,
V mh /2mVo

. /°° /°° dP,dP,
oo J—co exp { [z (P2 + P2+ P2) — p] [kT} +1°
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or, by setting P2 + P2 = P2, dP,dP, = 2xrP,dP,, and neglecting the
number 1 in the denominator,

j ~4—’r/°° P,dP /ooex ! (P2+P2) P.dP
Jnth3 — 2047 A Y kT rQLr

4nkT [ 1 [P,
- —— (= _ )| pdpP
5 L i (o “)] .

Armk?T?
T R

e—(Vo—w)/kT

The electric current density is then

Armek?T?

= o~ (Vo—p)/KT

Je = —€jn = —
Note that in the above, to simplify the integration, we have assumed
1
KT —-2mVp—u=Vy —
2m

At T =0 the electron number density is

2 4r 5 1

n=q 3 5/-= In2h3

3 2
h3 3 (2m/_l,0) /

where Py, pg, are the limiting momentum and energy. At ordinary temper-
atures we have

R o o vo3
B = %(3" n)*/3.

The quantity Vp — i is the work function of the metal and the emission of
electrons from incandescent cathodes is known as Richardsonis effect.

8028

It is generally recognized that there are at least three different kinds
of neutrinos. They can be distinguished by the reactions in which the
neutrinos are created or absorbed. Let us call these three types of neutrino
ve,v, and vr. It has been speculated that each of the neutrinos has a small
but finite rest mass, possibly different for each type. Let us suppose, for
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this exam question, that there is a small perturbing interaction between
these neutrino types, in the absence of which all three types have the same
nonzero rest mass Me. Let the matrix element of this perturbation have
the same real value fw; between each pair of neutino types. Let it have
zero expectation value in each of the states ve,v, and v;.

(a) A neutrino of type v, is produced at rest at time zero. What is the
probability, as a function of time, that the neutrino will be in each of the
other two states?

(b) [Can be answered independently of (a)] An experiment to detect
these ineutrino oscillationsT is being performed. The flight path of the
neutrinos is 2000 meters. Their energy is 100 GeV. The sensitivity is such
that the presence of 1% of neutrinos of one type different from that pro-
duced at the start of the flight path can be measured with confidence. Take
My to be 20 electron volts. What is the smallest value of Aw, that can be
detected? How does this depend on My?

(Berkeley)

Solution:

(a) In the representation of |ve),|v,) and |v,|, the matrix of the Hamil-
tonian of the system is

My hwy hn
H= fiwl Mo hu)l
by, Ay My
The Schrédinger equation
h ov¥
- - =0
i Ot +H ’
ai
where ¥ = | a5 |, a; being the wave function for state v;, has the matrix
as
form
a1 My hwy a
ih dz = ﬁwl Mo hwl az
d3 hwl hﬂ-’l MO as
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with the initial condition
a1(0) = 1, a2(0) = a3(0) = 0.

The solution is
( ; 2, 1 _,
al(t) = e—iMot/h (§ ewlt + g e z2u1t) ’

a2(t) — e—-iMot/ﬁ (e—2wlt _ e‘iwlt),

G,3(t) — e—iMot/h (e—2w1t N eiwlt) .

Wl W

\

Hence the probabilities of the neutrino being in states v, and v, are

P(v,) = |aa(t)/?

2
3 (1 — cos 3wt}

P(v;) = |as(t)|?

2
3 (1 — cos3wst).

(b) The time of flight of v is At =% in the laboratory time, or AT =
At/1 — (%)7 = LC "—;’32, where E is the total energy, in the rest frame of ve.
For P(v,)>1%, i.e.

g [1— cos(3w1AT)] 2 0.01,

we require
cos-10.955 0.301 0.1cE
wy 2 = = ;
3AT 3AT  IM,
o 0.1 x 3 x 108 x 100 x 10° x 6.58 x 1016
L1 X X X X X 0. X -
> =0. V.
Py 2 2000 x 20 0.05 e
8029

To a good approximation, an electron in a crystal lattice experiences a
periodic potential as shown in Fig. 8.8.

It is a theorem (Floquetis), and a physical fact, that the spectrum of
any such periodic potential sparates into continuous “bands” with forbidden
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igapsT. To construct a very crude model of (the lowest band of) this effect,
imagine that the barriers are high, so that the set of 1ground statesT |n)
(—oo<n<+o00) (one for each well) are approximate eigenstates. Call Ey
the energy of each |n). Now suppose ¢ = [¢|e** is the (small) amplitude for
tunneling between any two nearest-neighbor wells (probability for |n— 1) «
|n) —|n+1 > is |g|?). Setup a Hermitian Hamiltonian that describes this.
Compute the energy E(8) of the state(s)

+oo )
18y = Z e™ln) .

n=—oo

What is the width of your band?
(Berkeley)

Solution:

We write the Hamiltonian as a matrix, choosing In) as basis vectors.
Supposing

Hin) = Eo(1 — € — €*)|n) + Egeln + 1) + Eoe*in —1),

we have
{(m|H|n)= / Y (x — ma)Hy(z — na)dz

= Fy /¢* (x — ma)y(z — na)dz

= JmnEO(l —&— 5*) + 6m,n+15E0 + ‘Sm,n—la*Em
where we have used the assumption that tunneling occurs only between
adjacent potential wells and the amplitude for tunneling to the right is
€ = |ele®, that to the left is €* = |e|e~**. Thus the matrix of H is
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(1] (( Eo(1 —e—¢€*) eEy 0
(2 e*Eq Eo(l—e—¢") eEo .
(3] e*Ey Eo(1—€—¢*) e
H= - « e . R
0
!
(1) |2) 3).........
and
+o00 ) +oo ]
H|)=Ey Y e™n)(1—-c—e*)+Ey Y €™(eln+1)+e*n—1)

+o00
= Fo(l — 2|e| cosa}|f) + Ey Z [e (P10 + in+DOex)|p)
= Ep[l — 2|e| cosa + 2|¢| cos(8 — a)]16).
Hence the energy eigenvalue of |6) is
Ep = Ep[1 — 2|e]{cos a — cos(f — a))]

= Ey [1 — 4le| sin g sin (;0— o >] .

From these results it can be concluded as follows:

(i) Since a continuous variation of # results in a continuous variation of
the energy, the energy levels become an energy band. Furthermore, when
0 = a, Eg = Enax = Eo{l + 2|e}(1 —cosa)}, and when 6 =7 + a, Ey =
Enmin = Eo{1 —2|e|(1+ cos @) }. so the width of the band is Emax — Emin =
4|E|E0.

(if) When a, which depends on the shape of the periodic potential well,
is sufficintly small, tunneling between neighboring wells always results in a
lowering of the ground state energy.

8030

Consider an idealized (point charge) Al atom (Z =13, A=27). Ifa
negative lepton or meson is captured by this atom it rapidly cascades down
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to the lower n states which are inside the electron shells. In the case of
p-capture:

(a) Compute the energy E, for the x in the n =1 orbit; estimate also
a mean radius. Neglect relativistic effects and nuclear motion.

(b) Now compute a correction to E; to take into account the nuclear
motion.

(c) Find a perturbation term to the Hamiltonian due to relativistic
kinematics, ignoring spin. Estimate the resulting correction to E;.

(d) Define a nuclear radius. How does this radius for Al compare to
the mean radius for the n = 1 orbit from (a)? Discuss qualitatively what
happens to the = when the g~ atomic wave function overlaps the nucleus
substantially. What happens to a =~ under the circumstances? Information
that may be relevant:

M, = 105MeV/c?, SPIN(p) = 1/2,
M,=140MeV/c?, SPIN(r) = 0.

(Berkeley)
Solution:

(a) We shall neglect the effects of the electrons outside the nucleus and
consider only the motion of the g in the Coulomb field of the Al nucleus.
The energy levels of x in a hydrogen-like atom of nuclear charge Z (in the
nonrelativistic approximation) are given by

Thus
B = —mﬂe "z‘h‘; 2= m% x 13.6 x 132 eV
= -0.4732 MeV,,
B om. R 0.5

- = = 0.53 A
@ Zme?2 Zm mee? 13 x 105 x

=19x107% A,
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(b) To take into account the motion of the nucleus, we simply have to
replace the mass m of the meson with its reduced mass p = AI,}/I—_::;, M
being the nuclear mass. Thus

, B 1 _-0.4732
E1=;L-E1_1+ﬂ 1 1+ 105
M 27x938
=-0.471 MeV.

(c) Taking into account the relativistic effects the muon kinetic energy

= v/p2c? + m2ct — mc -—%—-—L+

8m3c2
The relativistic correction introduces a perturbation Hamiltonian

p4

H=—-———-.
8m3c?

The energy correction AE for E is then

4

AE = (100~ & L 3oz 1100)

1 p> P
__ PP 00
2mc? (100 2m 2m 1100)

1 Ze? Ze?
_ ze 100
=5 (100] (H +— ) (H+ )l )

Il

2
1 Ze?
- E, + — 100) .
2m02(100|( 1 — ) |100)
For a rough estimate, take r= a. Then

2\ 2 2 _ 2
AE =~ — ! (E1 + _Z_e_) =— B 0477 1.06 x 1073 MeV
a

2mc? 2me2 2 x 105

(d) In the scattering of neutrons by a nucleus, an attractive strong
nuclear force sets in when the distance becomes smaller than r ~ roA§,
where ro~ 1.2 x 10~ 3cm and A is the atomic mass number of the nucleus.
r is generally taken to be the radius of the nuclues, which for Al is

r=12x10"%x274 =36x107%A.
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The difference between the radius of the nucleus of Al and that of the
first orbit of the p-mesic atom is not very large, so that there is a consider-
able overlap of the wave functions of the nucleus and the muon. This effect,
due to the finite volume of the nucleus, will give rise to a positive energy
correction. At the same time thereiis also a large interaction between the
muon and the magnetic moment of the nucleus.

Under similar circumstances, for the w-mesic atom there is also the
volume effect, but no interaction with the magnetic moment of the nucleus
as pions have zero spin.

8031

Low energy neutrons from a nuclear reactor have been used to test
gravitationally induced quantum interference. In Fig. 8.9, neutrons incident
from A can follow two paths of equal lengths, ABCEF and ABDEF, and
interfere after they recombine at E. The three parallel slabs which diffract
the neutrons are cut from one single crystal. To change the effects of the
gravitational potential energy, the system can be rotated about the line
ABD. Suppose ¢ is the angle of this rotation (¢ = 0 for the path ABCEF
horizontal).

(a) Show that the phase difference at point E due to the effect of gravity
can be expressed as 3 =  sin ¢, where g = KAS? sin 28, A being the neutron
wavelength and K an appropriate constant which depends on neutron mass
m, gravitational acceleration g, Planckis constant A, and numerical factors.
Determine the constant K. Assume here that the gravitational potential
energy differencs are very small compared to the neutron kinetic energies.
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(b) The neutron wavelength used in the experiment is 1.45 A. What is
the corresponding Kinetic energy in electron volts?

©)IfS=4cm, #=22.5°and A=1.45 A, how many maxima should
be seen by a neutron counter at F as ¢ goes from -90T to +90°?

Mass of neutron = 939 MeV/c?, hc = 1.97 x10~ 11 MeV . cm.

(CUS)
Solution:

(a) The wave function of the incident neutrons can be taken as
'(ﬁ(r,t) — Ce(ip~r—iEt)/h ,

where ¢ is a constant. When they move along a certain orbit from x = 0 to
x = 1 it becomes

. 1 .
Y(r,t) = cexp {% / V2m(E - V)dz — %Et
0

Thus the phase is

—l/l\/Zm(E—V)dx—lEt
LA Cia

The neutrons are separated at point B into two beams 1 and 2, for which
¥B, = ¥B;-

The situations on lines BC and DE are same and so for the two neutron
beams, Agcs =Apep. On line BD, we can set the gravitational potential
V =0,FE = Eyp, and so

LT
AwDB:’—i \/\/2mEoda: - %Eo- s
0

Vo

= -’1; (\/2mEoS - % vV 2mEy S) = % V2mEy,

where g is the neutron velocity ;%\/ZmEo.
On line CE, the gravitational potential is

V = mgh = mg- BEsinfsin¢, with BE =2Scos#,
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V = mgSsin20sin ¢,

and

lJS 1
Appe = ;l v2m(Ey — V)dz — ﬁ Ept
\/ Eoﬂl—
[2(Eo—V) Eo
\/2mEo ) 1__‘_/__ 1
2h V' E v ]

0

!
n

Thus the phase difference of the two beams of neutrons at point F is

S \% 1
B =Appp — Apgc = =3 V2mE, 1—2,/1————#———
2h Ep 1- X
Eo
1 %4 vV
<1_ 2E0) " <1+ 2E0)]

Q

| v

N

3

o
'_T'

[

N

2h
3vs
_4hE 2mE0
as V <« Ey. Thus
g = gsing,
where
3 m?g
~ — = §%sin29
1% S hamE, S o
= K)S? sin 213
with
A= _212 _ 27h
P - ZmEo ’
3 m?g
K= 4 Th?
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(b) The neutron has momentum

and hence kinetic energy

2 2
E =2 = 2 (7he
2m  mc2 A A
2 7 x 1.97 x 1075\ 2
= 039 x 108 1.45x10-8
= 0.039eV

(c) In the range -1 < sin¢ < 1, the number of maxima seen by a
neutron counter at F is

2
24 _3 (_Smcz) gAsin 20

n= E;(z 4 \ mhc? )
3 4 x 939 2
_ -8y i »
-7 X197 x10-Tx3 x 100 x 980 x 1.45 x 107° x sin 45
=30.
8032
Consider the Dirac equation in one dimension
oY
Hy=ih—
b=iho,

where

H = cap, + Bmc® + V(2) = ca (—z’h %) + Bmc® + V(2),

(0 o3 (1 0 (I 0
=(a §) »=(6 8) -0 %)
I being the 2 x 2 unit matrix.

(a) Show that o = (%3 : ) commutes with H.
3
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(b) Use the results of (a) to show that the one-dimensional Dirac equa-
tion can be written as two coupled first order differential equations.

(Buffalo)
Solution:
(@) As
= ((3 0) (m €)=
0 I 0
wa-[(7 2). (2 %)
we have

[0, H] =[o,cap, + fmc? +V] = clo, alp, + [0, Blme® = 0.

(b) As |o,H)= 0,0 and H have common eigenfunctions. ¢ is a diagonal

2!
matrix. Let its eigenfunction be :/;2 As
3 .
04
U2} 2} (2} 0
a Y| | %2 | _ O (¥
V3 V3 V3 o’
Yq / %4, 0 L2
0 b
W !

o has eigenfunctions

=4

0 and ‘w0 with eigenvalues +1 and -1 re-

spectively.
Substituting these in the Dirac equation, we obtain

Y3 ! %1
0 0 0

(—ihci +V) + mc? _inl ,
92 (2! 3 ot | 3

0 0 0
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0 0 0

. 7] —14 g o P2

< ) P > 0 + mc 0 ih 5 0
—n —1i4 P4

Each of these represents two coupled differential equations. However, the
two sets of equations become identical if we let 13— —14, 91— 2. Thus
the one-dimensional Dirac equation can be written as two coupled first
order differential equations.

8033

(a) Write down the Dirac equation in Hamiltonian form for a free par-
ticle, and give explicit forms for the Dirac matrices.

(b) Show that the Hamiltonian H commutes with the operator o- P
where P is the momentum operator and o is the Pauli spin operator in the
space of four component spinors.

(c) Find plane wave solutions of the Dirac equation in the representation
in which o - P is diagonal. Here P is the eigenvalue of the momentum
operator.

(Buffalo)

Solution:

(a)
H=ca P+ pmc = ca- (—ihV) + fmc?,

«=(03)2=( 5)

are the Dirac matrices.

(b) Write
p 00 p ( 0 a-P)
* _<0' 0) " \o-P 0

o-P 0]
a’-P:a-Pl:( ),
0 o-P

where

As
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=77 ) e (e 7)) (5 %)
(" %) (e %))
e [(7F %) (5 )] =ovo=e

1 0
(c) Let P be along the z direction. Then as o, = (0 _1), we have
1
o, 0 -1
o-P= P, = pP,,
0 o, 1

where the unspecfied elements are all zeros, which is diagonal. Then as
shown in Problem 8032 the plane wave solutions of the Dirac equation in
0

this representation are etP=2/% gnd g etP=2/" \where a and v, 8

]
and 6 take two sets of different values. Substituting the eigenfunctions in

the Schrédinger equation

a
0
v
0

A

Ay =ih = = By
we have c¢P,y + mc?a = Ea,
{ cP,a—mc*y = Ey,
giving

Ey =+ m2ct+ P22,
1

0
Y= Ey— me? ei(Pzz—E:tt)/ﬁ;
cP,
0
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and
{ —cP,6 + me?B3 = EB,

—cP,8 — mc?6 = E§,
giving
Ei =+ m2ct + P22,
0

1
W= 0 i(Psz=Ext)/h

mc? — Ey
cP,

8034

Consider a free real scalar field ¢(z,.), where z, =x,y, zfor p=1,2,3
and x4 = ict, satisfying the Klein-Gordon equation.

(a) Write down the Lagrangian density for the system.

(b) Using Euleris equations of motion, verify that ¢ does satisfy the
Klein-Gordon equation.

(c) Derive the Hamiltonian density for the system. Write down Hamil-
tonis equations and show that they are consistent with the equation derived
in (b)

(Buffalo)
Solution:

(a) The Lagrangian density is
1 m?
L(z) = =3 0u0(x)8u(x) — - $x)$(x) .

(b) Using the above expression for £ in Euleris equations of motion

oL(®M  OL(x)
Ou [a(a#d_ d¢(x) =0

we obtain
0,0,¢(x) — m2p(x) = 0,
which is just the Klein-Gordon equation.
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(c) The Hamiltonian density of the system is

oL

1 m? ,
=m6“¢~£—-58,,¢6#¢+—2—¢ .

H(x)

Hamiltonis canonical equations

oH OH
55 = —6“Pp, 517” = —de),
where or
b= 5@ -
then give
-0,P, = m2¢,
ie.,

8,0, —m?¢ =0,

same as obtained in (b).

8035

It can be shown that the probability for an on-shell charged particle
with initial momentum P to emit a virtual photon with momentum ¢ is
proportional to the covariant tensor

W,‘u = Ag;w + BP“P,, + Cq“qu + D(q#P., + quu),

where A, B, C and D are real Lorentz-invariant scalar functions of ¢2,q- P
and P%=m2.

(@) Use current conservation to show that W,,,, has the form
9uq q-P q-P
W,, = W, (g#u_ ;;) W, (PM —q“—qT) . (P.,—q,, . ) ,

i.e., only two of A, B, C and D are independent.
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(b) Compute W1 and W> for a Dirac particle of mass m for which

Wi = Tr((P~ ¢+ m)y,(P+™)%],

(Buffalo)
Solution:

(@) Current conservation requires ¢*W,., =0, i.e.,

k)

where q-P = ¢*P,,q, = ¢*g,., etc. As P,,q, are independent and ¢*# 0,
this gives

A+Cg*+D(g-P)=0,
B(g-P)+Dg*=0.

Solving for C and D and writing A = Wy, B = W, we have

-P W, Wa(q - P)?
D=—W2“'2), C:——}+M.
q q q
Hence
v -P .P
W =W (g‘w_q;g )+W2(Pu—quq—q2—->.(P,,~q,,q—qz—).

(b) We are given

Wiy =Tr([(P— 4+ m}nu(P+ m)n/]
=Te [Py Pv + Prumve — 7 Pr

- é'}’“m’b + m'YuP’Vu + m’Yum'Yu] »
where P = P,v“, f = go¥*. The Dirac matrices satisfy the anticommuta-
tion relation
{7} =+ = 29",
and so
Tr(y#9") = 4¢*,
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Tr(y#14#2...4#) = 0 for n = odd,
Tr(v#7"y*°) = 4(g* g7 — g"**g"" + g#7g"*).

Hence in W, the terms involving an odd number of -y vanish. Consider

Tr(PyuPv) = Te(Pav* 907 Ps7?90077)

= PoguaPsguoTr(v*v*+%7)

= 4Pagux Psguo(9%977 — g*Pg* + 9%7g )
4(Padl Pol — PP P3dtgus + PoglPséh)
4(P,P, - P%g,, + P,P,),
TV Pr) = 4@uPo — q-Pgun + 9Pu) ,

Tr(m2v, ) = m29,agusTE(Y*YP)

= 4ng,mg,,gg°’ﬂ = 4m2g,m,5,‘,’ = 4ngu,, .
Then, as for an on-shell particle P%2x=m?, we have
Wy, = 4q- Py, + 8P, P, — 4(quP, + ¢, P,).
A comparison with the given expression for W pv we find
Wy, =4q-P, W, =28.
Note that for an on-shell charge emitting a virtual photon, initially P? =

m?, and finally (P — q)2 = P2—2q- P + ¢ = m?, and so the two expressions
for W, are consistent.

8036

In order to account for the anomalous magnetic moments of particles,
the Dirac equation given below can be used:

(1Y — eA+ K4—‘:; T F* — m)y(z) =
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Here e and m are the charge and mass of the particle, K is a dimensionless
parameter, A@(x) is the four-dimensional potential and F** is the electro-
magnetic field tensor, i.e.

0A*  04A¥ T

=6:L' -yt 0;“’25[7}“7"]7

§ O
Oz,

where v, is a Dirac matrix, v =+° = 8,7 = =i = Ba*,i=1,2,3.

(a) It is well known that the above equation is covariant if K=0. We
have

P (z') = Sy(z),

where z'# = a¥z¥ and a#vy¥ = S~14#S. Show that if K #0, the equation
is still covariant.

(b) Write the equation in the Hamiltonian form and show that the ad-
ditional interaction does not destroy the Hermiticity of the original Hamil-
tonian.

( Buffalo)
Solution:

(a) As
S™yuS = alv

and aj, commutes with S and 7, we have
S~1y,Sak = alahv, = 8570 = Ya
Consider
TapF Y (@) = 5 (Yars — 1%a) afal F* S/ (z)
- % (S5~ 7488 1y5 — SS7 195587 1,) atal F* Sy
=5 % (S~ 1yaSa% S~ ysSal — S~ 1Sl S~ e Sag) ¥y

i v
=5 '2' (7#7:/ - 'YI/Yu)F” Y

= S0, F*y.
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Hence
S7lol g F'*PY (2) = 0, F* ().

Then as ¢(z) =S~ 14'(z') and Yand A are invariant, under transformation
the Dirac equation becomes
Ke
st (iy—eA+ %o’;ﬂF'aﬂ + m) P'(z) =0,
i.e. the equation is covariant.
(b) As

0
V—’Yaéx—a—ﬂ—*"?"v’

A=7aA% = fA° + A = BA° + 49, A
= IBAO e A A ’

the Dirac equation can be written as
.0 . o e v
8=y = (—z'y-V-i—e,BA -ey-A-K—o, F* +m) ¥
ot am
Note that we have used units such that A=c=1.

Mutiplying both sides by 8 from the left, as 5% = 1, Bv; = Bai = o,
we have the equation in the Hamiltonian form:

oy
Y _ g
> Y,
where
H=—ia-V+eA°—ea-A—Kﬁﬁa,wF’“W—mﬁ,
with

_ 0 o _ I 0
a_(a 0)’ ﬁ*(o _1)’

01,092,053 being Pauli’s matrices and | the unit matrix. By definition

{0'1', O'j} = 004 0;0;= 2[5,']' -
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(i,7 =1,2,3)
It follows that
{ai, o} =216i;, {8, s} = 0,
and so
{vi, i} = 2955,
{8,7}=0.
Then

18, 0i5] = [ﬂ, %('Yi'Yj - ’Yj’Yi)]

i
=3 (BYivi — BviYi — viviB + vvB) = 0,
since v;vi 8 = —viBv; = Bviv;, etc, and similarly,

1
{;37001}=—£ﬂ[ﬂ:71]+[137 7t] IB) = 0.
Since by definition o; and 8 are Hermitian, v, = 8 is Hermitian and ~; =
Ba; is anti-Hermitian. It follows that o;; is Hermitian and oy;, 0y are
anti-Hermitian. Then
oy Bt =0kt + o} Bt + 05,8t = 0i58 — 0i08 — 00iB
= Poi; + Boio + Booi = Pou .

Hence the Hermitian conjugate of the additional interaction term is

e*
am*

e «
— —_— [ - —K* + A+ puv
( K y Bou F ) K T BT F

€
:—K%ﬁa‘",F‘"’,

noting that K, e, m and F#¥ are real numbers. Therefore the additional
interaction is Hermitian, and it does not destroy the Hermiticity of the
original Hamiltonian.

8037

Proton and neutron may be regarded as two iisospinT states of a single
particle, the nucleon. Denote proton by |+) and neutron by |-) and define
the following operators:
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1
t3|£) = +5 [£), tz|F) = |£), tx|F) =0.

The operators t; =3 (t4+t_),t2=—%(t4+ —t_), and t3 can be represented
by one-half times the 2 x 2 Pauli matrices. Together they form a vector t
in isospin space.

In a simple model the Hamiltonian for a system of N nucleons all in the
same spatial state is the sum of three terms:

H=NE+C1 Y ti-t; +C2Q?,

>3

where Ey, Cy and C are positive constants with C; > C,, t; is the isospin
of the i-th nucleon, and Q is the total electric charge in units of e. The
sum is over all pairs of nucleons.

(@) Show that 3°,. - t;-t;=3[T(T +1) -2 N], where T is the Ttotal
isospinT quantum number of the system.

In the rest of this problem it is essential to remember that neutrons and
protons are spin-1/2 particles obeying Fermi statistics.

(b) What are the energy eigenstates and eigenvalues of a P-nucleon
system? What is the total spin of each state?

(c) What are the energy eigenstates and eigenvalues of a 4-nucleon Sys-
tem?

(d) What are the energy eigenvalues of a 3-nucleon system?
(MIT)
Solution:

(a) As T?=(}],t:)? has eigenvalue T(T + 1) and t2 has eigenvalue
3(3+1), we have

] N 2 N A
Zt"'tj:§ Elti _Zti

i>j i=1

1 3

= T - - .

5 [T( +1) 1 N]

(b) A system of identical spin-2 particles must have an antisymmetric
2

total wave function. Hence a system of two nucleons has the following
possible structures:
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Configuration Isospin State Spin State
1
(pp) l-6)+) 7 (le)18) — |8 ex))

1

2
1 1

(pn) 7 (H)1=) + =) 7 (Io)18) — 1B)]e))

(nn) I=)1=) (lo}18) = 18)e)

S

(pm) % (+)1=) = =)1+)) % (12)18) + 1B)la0),
la), or 16)(6)

The corresponding eigenvalues are as follows,

Configuration T SIN) E
pp) 1 0 2 C; +4C,
(nn) 10 0 €1
(pn) 1 0 1 ¢ +C
(pn) 011 Cs

In the above, |a),|BFepresent single-particle states with spin + and
spin — respectively, and E is the energy above (2Eo—§Cl).

(c) On account of Paulis principle, there can at most be 2 protons and
2 neutrons, each pair of opposite spins, in a given energy state. For the or-
dered combination (pnpn) the spin states have four forms (aaf8),(88aq),
(aBBa), (BaaB). For other ordered combinations similar spin states ap-
ply. However, in this case the total wave function cannot be expressed as
a simple product of the spin wave function and the isospin wave function.

For the possible isospin values T = 2,1, 0, the corresponding energy values
are

3 1
E=4E0+402+—2-Cl, 4E0+4C'2—§Cl,
3
4E0 + 402"*501
But as the spatial wave functions of the four nucleons are the same and

there are only two spin states for a nucleon, Pauli’s principle requires the
systemis total isospin to be 0 and its energy state can only be the eigenstate
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[+)iar |06 |=)hiea =16
[+)2a2  [+)202 =)o |=)20a

1,2,3,4) -
vt ) +)3as  [+)3aB3 |—)saz |—)30s3
[+)aaa  |+)aBs |—)aca |—)aBs

(d) The configurations for a three-nucleon system are (ppn) or (nnp),
and the isospin can be 3 or %

For (ppn):
E = 3E0+402:t201,

for (nnp):
E = 3Ep + Czﬂ:gcl.

8038

A molecule in the form of an equilateral triangle can capture an extra
electron. To a good approximation, this electron can go into one of three
orthogonal states vy 4, B, ¥ ¢ localized near the corners of the triangle. To
a better approximation, the energy eigenstates of the electron are linear
combinations of ¥ 4,%p,%¢c determined by an effective Hamiltonian which
has equal expectation values for ¥4, ¥ s, ¥c and equal matrix elements V4
between each pair of ¥4, ¥, Yc.

(@) What does the symmetry under a rotation through 27 /3 imply about
the coefficients of ¥ 4,% g, ¥ in the eigenstates of the effective Hamilto-
nian? There is also symmetry under interchange of B and C; what ad-
ditional information does this give about the eigenvalues of the effective
Hamiltonian?

(b) At time t = 0 an electron is captured into the state 1 4. Find the
probability that it is in 14 at time ¢.

(MIT)
Solution:

(a) Under the rotation through 27 /3, we have

Rya= ayp, RYp = a¥c, RyYc = ayha.
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Then as
R*y4 =aRy5 = a®y0,
R4 =a’Rypc = a®ya,
we have o® = 1 and hence

i2m idn

a=1,¢e3 and e3 .
Suppose the eigenstate of the effective Hamiltonian is
Y =a1%a +azx¥B +azc.
Symmetry under the rotation through -2—3’5 means that Ry =1, i.e.
ajaYp + azac + azaPs = a1¥a + a2¥B + aszc .
Then the orthogonality of ¥a,%¥s,¥c requires
ala = as,a0a = az,aza = a;.

For a = 1 letting a; = 1, for a = exp (i3F) letting a; = 1, and for a =
exp (14} letting a2 = 1, we have the three combinations

1 1 e—i47r/3
1 1 . 3 1
¢(1) =—111], ¢(2) = | ei2n/3 , 1/)( ) — 1
\/5 1 \/ﬁ ei41r/3 \/§ ei47r/3

Let the equal expectation values of H for the eigenstates a4, %5, ¥ ¢ be
zero, then the effective Hamiltonian can be represented by the matrix

o vV Vv
H=|V 0 V
Vv Vv o

As Hy® = 2y Hyp@ = _ vy Hy®) = _vy®) the energies
corresponding to 91,4 3 are 2V, -V, -V repectively.

There is symmetry in the interchange of B and C. Denote by P the
operator for the interchange of the two atoms. As P does not commute
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with R, it cannot be represented by a diagonal matrix on the basis of
P 2 3 However, ¢ is an eigenstate of P and %,y are de-
generate states, though not eigenstates, of P. So P imposes no condition
on the eigenvalues of H.

(b) At t =0, we can expand the wave function 4 as
1 )
’ll)A(O) = % [¢(1) + ¢(2) + 6—12"/31/}(3)]‘
At a later time t we have

bat) = —

%[e—iZVt/ﬁw(l) + e+in/h¢(2) + 6-1‘21r/3e+in/h,d}(3)].
Hence the probability of an electron, initially in state ¥4, being in state
P4 at time tis

2
‘('PA(t)‘wA(O))]z = ’% (eiwt/h + e "Vt/h +ei2"/3e_in/he_i2"/3)

_ 1 v g2 L 3Vt
—gle + 2] =3 5+ 4 cos )

8039

The energy of a molecule is the sum of the kinetic energies of the elec-
trons and of the nuclei and of the various Coulomb energies. Suppose that
for a particular many-particle normalized wave function ¥(x,,...,xxy), the
expectation value of the kinetic energy is T and of the potential energy is
-U(U > 0).

(a) Find a variational estimate of the ground state energy using a wave
function A3N/24(Ax,,.. ., Axn) Where X is a parameter.

(b) Suppose ¥ is the true ground state wave function and that the true
ground state energy is -B(B > 0). What are the true values of T and U?

(MIT)
Solution:

() The mean kinetic energy T of the system is given by the sum of
terms like

2 2
{';fzb*(xl,...xN)%_,w(xl,... ,XN)dXy, ... ,dxN

J*(x1,...,xn)¥(x1,. .., xN)dX1, ..., dXN
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When the trial wave function is used, the mean kinetic energy T is given
by the sum of terms like

RSN [t (ke - - -, xw) Zep(Axy, ., Axw)dxy, ., dxy

ABN fl,[)*()\xl, . ,AXN)’I[)()\Xl, e ,)\xN)dxl, . ,de

B2 [ (O, AxN) grgr (X1, - Axn)dAxy, -, dAxy
J*(Ox1,. .., AxnN)P(AXy, ..., AXN)dAXY, ..., dAXN

B [ 6 yN) ¥, YNy, dyw
= f¢’*(YI7-~- ny)w(YI, 7}’N)dYIy--- 7dyN ’

where y;, = Ax;, etc. Hence Ti1 = X2T. Similarly, —U is given by the sum
of terms like

eie; [ U (X1, XN) e ¥(X1, - XN )dxy, L dXN

J*(x1,.. . xn)(x1,. .. xn)dx1, .. dxy

and so —U’ = — AU. Thus the mean value of the energy is
E\)=NT-\U .

For the ground state, -‘?%\& = 0, giving A = &%. Hence the variational
estimate of the ground state energy is

U2
E=—-——.
4T
(b) If ¢ is the true ground state wave function, then A = 1. Hence

U=2T and E=T-U=-T.

As E = —B, we have
T=B,U=2B.

8040

In diatomic molecules, nuclear motions are generally much slower than
are those of the electrons, leading to the use of adiabatic approximation.
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This effectively means that the electron wave functions at any time are
obtained for the instantaneous positions of the protons. A highly idealized
version of a 1singly-ionized hydrogen moleculeT is provided by the one-
dimensional TelectronT Hamiltonian

= ———?—95(10—330)*95@'*'330),
where +x4 are the proton coordinates.
A

b/
y (3

\/A’
IS

Fig. 8.10

z

(a) What are the eigenfunctions and eigenvalues of all bound states for
arbitrary zo? You may specify eigenvalues in terms of a transcendental
equation. Give the analytic results for the limiting cases =& > 1 and
e L 1.

(b) Assume that the protons (mass M > m) move adiabatically and
have a repulsive potential V' (2z) = g/200x, acting between them. Calcu-
late approximately the equilibrium separation of the protons.

(c) Calculate approximately the frequency for harmonic vibrations of
the protons about the equilibrium position. Is the adiabatic approximation
justified?

(MIT)
Solution:

(a) The Schrédinger equation can be written as
d2w 2

—— + Bl8(x — x0) + 8(z + zo)|Y = K, (1)

where 3 = 2;7";‘1, k"’ 2’"5 ———L—l as E is negative for bound states.

For x # tz, the equatlon becomes d—;é = k2. Furthermore as H is
invariant under space inversion, its eigenstates are of two types, with odd
and even parities as:
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odd parity:

sinhkx, 0 <z < xg,
Y(z) -

ae~k® gy <z,

even parity:

coshkx, 0 <z < z9,
Y(z) =

be~kz, o <z,

where a, b are constants. Integrating both sides of Eq. (1) from zo—e¢ to
zg + € and letting € — 0, we find

V' (zo + €) — ¥ (20— €) + Bp(zo) = 0.
The continuity of ¥ across xo requires
W(zo+ €)= Y(xg—€).

These two conditions give, for odd parity,

Bzo ’
for even parity,
e-2kzo -1 2}6:130 )
Bxo

As shown in Fig. 8.10, k and hence the eigenvalue E are given by the
intercept of y = e~* with either
¥4

=1-— gor yg=—14—
vo Pxo ﬁzo

where z =2kzg. When Bzp < 1, as
_ 1 > dy
,3:1:0 dz

y and yo do not intercept and there is only solution for even parity. For
this the interception occurs at small z given by

dyo

dz =1,

1—Z~—1+_
Bzo’

or z =20zo(1- Bxo), i.e. k = B(1— Bxo).



744 Problems and Solutions on Quantum Mechanics

Hence
hZ 2
E=~-— ﬁ

(1 - Bzo)®.

When Bzo> 1, the interceptions occur near z = f3z¢. Using this we
have for the odd and even parities respectively
k g (1 :F e—ﬁzo)
2
and hence 2 a2
E = _KS 1= e=B=o)?
8m
Note that for odd parity the energy
hZﬁZ

Ex~-— 1— e f=)’
8m (1-e

decreases as xo increases, even before we consider the repulsive force be-
tween the protons. Thus the system is unstable and the state is not a bound

state. Therefore, in both the limiting cases only the even parity solutions
are valid.

(b) The total energy of the system including the protonis is
H) = B+ T, +V,,

where E, is the electron energy obtained above for even parity, T, =0 in
adiabatic approximation, and Vj = 5.
The equilibrium separation Zg of the protons is given by

which gives
100(8z0)%(1 + e P%0) = Pf%0.

If Bxo <« 1, we have
R

(8%0)2(2 — BZo) ~ 05

or

1
e 7 - .
10v/28
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If Bxo> 1, we have
100(8%o)2 ~ P

Consider

d2

dz?

g
..3 .
100:5.0

B'(Z0) = g (H)lsg= =3 §° (1 + 267P%0) e™P%0 4

For Bzg < 1, we have

W"(30) ~ Ton=s (1~ 150(850)"] =

g
>
0023 0z~ 0

100z5

and the equilibrium is stable. For Bz > 1 we have
hl/ = ~— g =
(Zo) 5002 (Bzo—2) <0,

and the equilibrium is unstable. Hence the equilibrium separation is

1
o~ ——.
°~ T0v28
(¢ Consider the case of stable equilibrium Bz¢< 1. The force constant

K = h"(Zo) ~20v298°,

and so the vibrational frequency is

_ [K 4 x200"*mg?
“TVm -~ h3

As the kinetic energy of protons is of the order

1. 98
T,=-Kii~ Z—
P 2770 1042
while the electron has energy
h2 2
IEel ~ 2% - gﬂy

we have T, < |E.| and the adiabatic approximation is valid, i.e. the protons
may be taken to be stationary.
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one-dimensional 1008, 1018, 1055
Short questions 8005, 8006
Spin
matrices 3001
of deuteron 3035
of free electron 3005, 3017, 3035
Spin-magnetic field interaction 3043, 3044, 3045, 3046, 3047, 4014, 6059
Spin-orbit interaction 3007, 5058
Spin-spin interaction 3011, 3041
Stern-Gerlach experiment 3037, 3038, 3039, 3040
System of particles in harmonic oscillator potential 5071
Theorem on eigenvalues 1061
Three-particle system 7008, 7036, 7037
Time reversal 4009
Transition probability 6047, 6048, 6050, 6052
Transmission and reflection at
delta-function potential 1053
potential barrier 1046, 1054, 1056
potential step 1049, 1050, 1051, 1052
potential well 1047, 1048
Two-boson system 7007
Two-fermion system 7012, 7013, 7016
Two-hydrogen system 7029, 7032
Two-particle system 2016, 3012, 5062, 7002, 7003, 7004, 7006, 8024
in potential well 7005, 7009, 7010, 7011, 7014, 7015, 7018
in relative and cms coordinates 7001
in time-dependent potential 6061
Two-slit diffraction experiment 4015
Uncertainty principle 1036
Variational method 8016, 8017, 8018, 8020, 8021
Virtual photon emission 8035
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Wave function
changing with time 1010, 1011, 1031, 1035, 1040, 1042, 1043
under Galilean transformation 1058

WKB approximation 2015, 8008
validity of 8007
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