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Chapter 2

KEMPO1

Technical Guide to One-dimensional
Electromagnetic Particle Code

Yoshiharu Omura and Hiroshi Matsumoto

2.1 Introduction

We have developed a one-dimensional electromagnetic particle code which is a
simplified version of the original two-dimensional KEMPO: Kyoto university’s
ElectroMagnetic Particle cOde [Matsumoto and Omura, 1985]. The simplified
one-dimensional version is designed for a tutorial purpose so that the beginners
in the field of space plasma physics can study various types of micro-instabilities
and nonlinear processes involved in the instabilities. Hereafter, we will call the
simplified one-dimensional code as KEMPO1.

The KEMPOL1 is designed to assist physicists and engineers to develop their
own particle codes by studying the techniques implemented in it. The KEMPO1
consists of a set of subroutines, each of which is a relatively short program pro-
viding a definite function. There is a main program calling the subroutines to
formulate the algorithm of the simulation code. By configuring calls for the
subroutines properly, one can construct different codes other than the electro-
magnetic code such as a test particle code or an electrostatic code. One can
also modify the subroutines for diagnostics or develop one’s own diagnostic
subroutines.

For eflicient diagnostics, a graphic subroutine package is provided. This
package consists of subroutines calling a set of basic graphic subroutines such as
PLOT for drawing lines and SYMBOL for drawing characters. These are the so-
called CALCOMP graphic subroutines, which are available in many computer
systems and can be implemented by writing simple interface subroutines for
any graphic systems.
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22 CHAPTER 2. KEMPOI1

We describe function and usage of each of major subroutines of the KEMPO1
in each of the following sections. Among them, Section 2.2 for the MAIN pro-
gram gives an overall description of the structure of the KEMPO1. Section 2.3
for the subroutine INPUT serves as User’s Guide of the KEMPO1 giving ex-
planation of the input parameters to be specified for a run of the KEMPO1.
Sections 2.4 — 2.13 provide explanations of the essential subroutines forming the
KEMPOL1. Section 2.14 describes the diagnostic subroutines in the KEMPO1
with examples of the graphic outputs. Section 2.15 gives a series of exercises
with the KEMPOL.

In the following subsections, we describe the basic equations and the asso-
ciated technical subjects of the KEMPO1.

2.1.1 Basic equations

We solve Maxwell’s equations for the electric field F = (E,, E,, E,) and mag-
netic field B = (B,, E,, E.)

1 0FE
B=p,J+ —— 2.1
V x ,uJ—i—C2 5 (2.1)
0B
== 2.2
VxE 5 (2.2)

where J = (J,, Jy, J.), ¢ and p, are the current density, light speed and mag-
netic permeability, respectively. We assume a one-dimensional system taken
along the z-axis. The electric field E, should satisfy the initial condition given

by Poisson’s equation
OE, p

P 2~3

or € (2.3)

where p and €, are charge density and electric permittivity, respectively. It
is noted that Poisson’s equation is solved only for the initial condition. It is
satisfied automatically, if (2.1) is solved correctly in time based on the cur-
rent density J satisfying the continuity equation of the charge density p. The
magnetic field B, should satisfy the initial condition given by

0B,

7 =0 (2.4)

This condition means that B, is constant in space and time, because there is
no term for B, in Maxwell’s equations (2.1) and (2.2).
The current density J and charge density p are computed from the motion
of a large number of particles. The equations of motion for particles with a
charge ¢ and a mass m is
dv

(E+ v x B) (2.5)

@w_41
dt m
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Figure 2.1: Grid assignment.

dr
dt
The basic equations described above are written in the form of the MKS unit

system. In a simulation, however, values of the permittivity €, and permeability
tto can be defined arbitrarily, as far as they satisfy the relation

Vs (2.6)

1
Eollo = ? (27)

In the KEMPOI, for simplicity, we adopt the following definition

e =1, o= (2.8)
c
In the following sections, we write equations in terms of the above definition.
The E, B and J are defined at the spatial grid points, while particles can
take arbitrary positions. The E and B in the equations of motion (2.5) are
interpolated from those at the adjacent grid points.

2.1.2 Grid assignment

We define full-integer grids at iAz (i = 1,2,3,..., N,) and half-integer grids at
(i+1/2)Az. The E,, By, J, and p are defined at the full-integer grids, and E,,
E., B., J., J. at the half-inter grids as shown in Figure 2.1. This assignment of
the electric and magnetic fields E and B realizes centered difference forms for
the spatial derivatives in Maxwell’s equations. The components J,, J,, J, of the
current density must be assigned to the same grids of E,, E,, E., respectively,
because J contributes directly to the time integration of E as in (2.1).

2.1.3 Time step chart

The quantities of the field and particles are advanced in time based on the
sequence shown in Figure 2.2. We define a full-integer time nA¢ and a half-
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Figure 2.2: Time step chart.

integer time (n 4+ 1/2)At with a time step At. Basically, the electric field E
at the full-integer time and the magnetic field B at the half-integer time are
integrated in time by the leap-frog method. However, the magnetic field B is
advanced twice by a half time step At/2 to obtain intermediate values for the
particle pushing fields at the full-integer time. The particle positions x at the
full-integer time and velocities v at the half-integer time are also advanced by
the leap-frog method. The positions are advanced twice with a half time step
At/2 to obtain intermediate values for computation of the current density J
at the half-integer time. The current density J is computed from the positions

and velocities of particles based on the method described in Section 2.12 for the
subroutine CURRNT.

2.1.4 Courant condition

In solving Maxwell’s equations by the centered difference scheme in space and
by the leap-frog method in time, the grid spacing Az and the time step At
should satisfy the following inequality, which is called the Courant condition,

Az > cAt (2.9)

where c is the light speed.

The condition is easily derived from the numerical dispersion relation of the
light mode. Let us see the numerical effect in solving the a differential equation
by a centered difference equation. We assume a quantity A(z,t) has a wave
structure with a wavenumber £ and a frequency w as

Az, t) = Asexp(ikz — iwt) (2.10)
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We compute the derivative by a centered-difference equation as

AA Az, + Az /2,t) — A(z, — Az /2,t)
Ar Az
_exp(ikAx/2) — exp(—ikAz/2)
- AL A(xovt)
_ sin(kAz/2)

Comparing the AA/Ax withe the spatial derivative 9A/dx, we find that the
wavenumber k is replaced by K represented by

sin(kAx/2)

K= Ax/2

(2.12)
in converting the differential equations to the difference equations. In the same
manner, we find that the frequency w is replaced by € defined as

sin(wAt/2)

0= —At_/Q— (2.13)

The dispersion relation of the light mode is obtained by neglecting the cur-
rent density J and assuming the electromagnetic wave with a frequency w and
the wavenumber k as

w? = 2k? (2.14)

Replacing £ and w with K and €, we have the numerical dispersion relation for
the light wave
0 = *K? (2.15)

For the maximum wavenunber k., = 7/Ax, we have

At

sin?(wAt/2) = ( Ax

)2 (2.16)
If cAt/Ax > 1, then the w becomes complex, giving rise to a numerical insta-
bility. If cAt/Az = 1, then the system is marginally stable. Therefore, we have
the Courant condition (2.9).

2.1.5 Debye length

To avoid a nonphysical instability caused by the grids [Birdsall and Langdon,
1985], we should choose the grid spacing Az not much larger than the Debye
length A, given by

A = “the (2.17)

Whe
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where vy, . and wy. are the thermal velocity and the plasma frequency of elec-
trons in a plasma, respectively.

An empirical condition for the linear weighting method used in the KEMPO1
is the following, although it is not a clear and critical condition such as the
Courant condition.

Az < 3)\, (2.18)

2.2 MAIN

This program controls the sequence of computations performed in the KEMPO1.
In the following, we show the source code of the MAIN program, and make a
brief description for each line of the program. The several subroutine calls prior
to the DO-loop (100) statement is needed for setting up the initial conditions.
The DO-loop provides a set of computations to advance the wave fields and
particle motions by one time step. Diagnostics are made before the DO-loop
for the initial condition and at each time step in the DO-loop.

The main program consists of subroutine calls which can be arranged flexibly
so that the code is used as an electrostatic code. In the following we first
describe the main program for the full-electromagnetic particle code, and then
we describe a modification for an electrostatic code.

2.2.1 Electromagnetic simulation
The source code of the main program is the following.

common /timecm/ itime,ntime,iecrct,iwrite,jobnum
common /diagcm/ iediag,ifdiag,ikdiag,

# ipdiag,isdiag,ivdiag,
# ieplot,ifplot,ikplot,
# ipplot,isplot,ivplot
c
call plots
call factor(0.9)
call input

call chkprm
call pltprm
call renorm
if (jobnum.le.1) then
itime = 0
call inital
call positn
call charge
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call ecrrct
else

call reader
endif
call fldplt
call phsplt
call vdsplt
ist = itime

do 100 j = ist+l, ist+ntime

itime = j
call bfield
call velcty
call positn
c call currnt
call curntv
call positn
call bfield
call efield

if ( mod(j,iecrct).eq.0) then

call charge
call ecrrct
endif

if( mod(j,ifdiag).eq.0 ) then
if ( mod(ifdiag,iecrct) .ne

call fldplt
endif
if( mod(j,ikdiag) .
if ( mod(j,ipdiag) .
if( mod(j,ivdiag) .
if( mod(j,isdiag).
if ( mod(j,iediag).
if( mod(j,iwrite).
100 continue

call writer

call plot(0.,0.,999)

stop

end

call
call
call
call
call
call

27

.0 ) call charge

kspplt
phsplt
vdsplt
spectr
energy
writer

Among these subroutine calls, some of them are essential for the computation,
and others are for graphic diagnostics which can be omitted. We explain the
essential subroutines first and then diagnostics subroutines.



28 CHAPTER 2. KEMPOI

The initialization of the simulation run is made by the subroutines INPUT,
RENORM, INITAL, POSITN, CHARGE and ECRRCT. In the main DO-loop,
particle motion is solved by VELCTY and POSITN. Maxwell’s equations are
solved by CURRNT (vectorized version: CURNTYV), BFIELD and EFIELD.
Poisson’s equation is solved by CHARGE and ECRRCT. As an electromagnetic
code, Poisson’s equation does not have to be solved at each time step, because
the continuity equation for the charge density and currnt density is strictly
satisfied in computing the current density in CURRNT (CURNTYV). To avoid
accumulation of round-off errors in the electrostatic field, we compute the charge
density and correct the electrostatic field using Poisson’s equation at an interval
specified by the parameter IECRCT.

Diagnostics of the fields and particles are made by subroutines FLDPLT,
KSPPLT, PHSPLT, VDSPLT, SPECTR and ENERGY. Among these subrou-
tines, FLDPLT, KSPPLT, PHSPLT and VDSPLT plot snap-shots of the field,
wavenumber spectra, and particle diagnostics at intervals specified by the pa-
rameters [FDIAG, IKDIAG, IPDIAG, respectively. The subroutines SPECTR
and ENERGY perform diagnostics of the wave spectra and energy densities at
intervals specified by ISDIAG and IEDIAG, respectively. These subroutines
store the data to the arrays defined in the subroutines. After the data are accu-
mulated for a certain number of time steps, the subroutines plot time histories of
the wave modes and energy densities. In addition to the history plots of wave
modes, SPECTR also plots the w — k& diagrams showing the wave dispersion
relations.

The input parameters are checked for their appropriateness by the subrou-
tine CHKPRM. If the input parameters violate the Courant condition 2.9, the
program is terminated by executing a STOP FORTRAN statement. The pro-
gram is also terminated if the specified numbers of grid points and number of
particles exceed the declared array sizes, which are specified by the parameters
in the file “paramt.h” included in each subroutine.

parameter(ix=1026, is=3, in = 32768)

where IX should satisfy the condition NX + 2 < IX, and IS and IN are the
maximum numbers of particle species and superparticles, respectively. After
the checking, the input parameters are plotted as a graphic output by the
subroutine PLTPRM.

To perform a very long run, we need to split the run into several jobs. To
connect, jobs, we need to save all the on-memory data such as parameters and
variables to a data file. To start a subsequent job, we need to load the saved
data to the on-line memory. These functions are provided by the subroutines
WRITER and READER. For an unexpected trouble of the computer system,
the WRITER is called at a certain interval specified by the parameter IWRITE.
Therefore, even if a job is terminated abnormally before completing the time
steps specified by NTIME, one can resume the job from the latest time step
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when the WRITER was called. A parameter JOBNUM is defined as a job
number in the sequence of subsequent jobs. For the initial job, we assign the
JOBNUM = 0 or 1. If JOBNUM = 0, the data file for a subsequent job is not
created.

The call for the subroutine PLOTS at the beginning of the main program is
for initialization of the graphics. The call for FACTOR(0.9) is just an adjust-
ment of the graphic outputs. With this argument 0.9, the size of output figures
is reduced by 90 %. One can modify the size by changing the argument. The
call for PLOT(0.,0.,999) at the end of the MAIN program is for termination of
the graphics.

Most of the CPU time is spent in the subroutines VELCTY and CURRNT.
On a vector processor, the subroutine VELCTY is vectorized by the vector
compiler without difficulty. However, the subroutine CURRNT cannot be vec-
torized without incorporating a special algorithm. For the vector processor,
we have prepaired the subroutine CURNTV, in which a large two-dimensional
arrays are used as a working memory area for vectorization. The size of the
working area is

IX x LVEC x 3words (2.19)

where X is the size of arrays for the current density defined at grid points.
The parameter LV EC' is a number of repetition in the vectorized DO-loop of
the current density computation.

2.2.2 Electrostatic simulation

The KEMPOL1 is converted to an electrostatic particle simulation code by re-
placing the DO-loop (100) by the following source code. The advantage of the
electrostatic simulation is that the time step At is not restricted by the Courant
condition.

do 100 j = ist+l, ist+ntime
itime = j
call velcty
call positn
call positn
call charge
call ecrrct

if( mod(j,ikdiag).eq.0 ) call kspplt
if( mod(j,ipdiag).eq.0 ) call phsplt
if( mod(j,ivdiag).eq.0 ) call vdsplt
if( mod(j,isdiag).eq.0 ) call spectr
if( mod(j,iediag).eq.0 ) call energy
if( mod(j,iwrite).eq.0 ) call writer

100 continue
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2.3 INPUT

The subroutine INPUT specifies the input parameters for the simulation rum.
One can change the input parameters by editing the source file of the subroutine
INPUT.

In the following we describe each of the parameters specified in the subrou-
tine INPUT.

DX : Grid spacing.
DT : Time step.
CV : Light speed.

WC': Cyclotron frequency of Species 1, ;. From the cyclotron frequency,
we compute the magnitude of the the static magnetic field B,, using

(21
B, = DR (2.20)

where (g/m); is the charge-to-mass ratio of Species 1.

ANGLE : Angle between the static magnetic field B, and the wavenumber
vector k. The static magnetic field B, is taken in the 2-y plane.

VMIN, VMAX : The minimum and maximum values of the velocity scales
used in the diagnostics made by the subroutines PHSPLT and VDSPLT.
If VMIN = VMAX, then the range is automatically computed from the
particle velocities.

NX : Number of grid points. The NX must be a power of 2, because the
FFT is used to solve Poisson’s equation in the subroutine ECRRCT.

NTIME : Number of time steps in a simulation run. It is recommended to
set the number which is a power of 2, because we use the FFT to obtain
frequency spectra as diagnostics.

IEDIAG : Number of time steps in an interval at which the energy diag-

nostics is made.

ISDIAG : Number of time steps in an interval at which the wavenumber
spectra is computed for the further analyses of the time history plots of
wavenumber modes and the wave frequency spectra(w — k diagram).

IFDIAG : Number of time steps in an interval at which the spatial profiles
of the electric field (E,, E,, E.) and the magnetic field (B,, B.) are plotted.

IKDIAG : Number of time steps in an interval at which the wavenumber
spectra are computed and plotted.

IPDIAG : Number of time steps in an interval at which the phase diagrams
of particles are plotted.
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e [VDIAG : Number of time steps in an interval at which the velocity dis-
tribution function is plotted. The distribution functions for three velocity
components of v,, v, and v, are plotted.

e [EPLOT : Control parameter for time history plots of the energy diag-
nostics made by the subroutine ENERGY. After the IJEPLOT times of
samplings are made in time, the subroutine ENERGY plots a set of his-
tory plots of energy densities such as thermal energy, drift energy, electric
field energy, magnetic field energy and total energy. The maximum value
of IEPLOT is the parameter IW specified in the subroutine ENERGY.

e ISPLOT : Control parameter for w - k diagrams plotted by the subroutine
SPECTR. The subroutine SPECTR computes the wavenumber spectra at
an interval specified by ISDIAG. After ISPLOT times of such computation,
the accumulated wavenumber spectra are Fourier transformed in time. The
ISPLOT should be a power of 2. The maximum value of ISPLOT is the
parameter JMAX specified in the subroutine SPECTR.

e /KPLOT: Control parameter for the wavenumber diagnostics made by the
subroutine KSPPLT. The IKPLOT is the maximum mode number to be
plotted in snap-shot plots of the wavenumber spectra.

e J/FPLOT : Control parameter for the diagnostics made in the subroutine
FLDPLT. Two different diagnostics for the wave fields are available. One
is a combination of 6 panels showing the spatial variations of five field
components E,, E,, E., B,, B, and the charge density p (Case 1). The
other is a combination of 3 panels showing the spatial variations of E,, p
and the electrostatic potential ¢ (Case 2). This diagnostics is especially
useful for an analysis of electrostatic waves.

If IFPLOT = 1 or 3, the diagnostics of Case 1 is made.
If IFPLOT = 2 or 3, the diagnostics of Case 2 is made.

e IPPLOT : Control parameter for the diagnostics made in the subroutine

PHSPLT. Phase diagrams are plotted for different combinations of the
components such as x — v,, v, — V14 and v — vy,,. The Vlgay is one of
the two velocity components forming the velocity v, perpendicular to the
static magnetic field B, assumed in the x — y plane. The other perpen-
dicular component is v,.
One can specify any combination of these diagrams by giving a number
(1 -7) to IPPLOT, which is the sum of the three numbers nl, n2 and
n3, corresponding to switches for the phase spaces z — v,, v, — v, 4, and
v — v, respectively. The numbers nl, n2 and n3 take the values 1, 2 and
4, if the phase diagrams are plotted. Otherwise, they take 0’s.

If IPPLOT =1, 3, 5 or 7, the z — v, diagram is plotted.
If IPPLOT = 2, 3,6 or 7, the v, — v, diagram is plotted.
If IPPLOT = 4,5, 6 or 7, the z; — v, diagram is plotted.
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e IECRCT : Control parameter to solve Poisson’s equation for correction of

the longitudinal electric field E,. At every JECRCT time step, the charge
density is computed, and Poisson’s equation is solved.

IWRITE : Control parameter to save all the parameters and variables to a
data file “kempol.cont”, which is used to restart the run for further time
steps. In case of an abnormal end of the run because of an unexpected
system trouble, one can restart the run from the last time step when the
on-memory data was saved to the file. For a relatively long run, it is
recommended to save the data at a certain interval specified by IWRITE.

JOBNUM : The job number for a continuous run staring from the final
time step of the previous run. If JOBNUM > 2, ll the on-memory data are
loaded from the file “kempol.cont”. If JOBNUM = 1, the simulation run
is initialized with the input parameters, and all the on-memory data are
saved in the data file “kempol.cont” at the end of the run. If JOBNUM
= 0, the run is initialized with the input parameters, but the data file
“kempol.cont” is not created.

Input parameters for particles are specified for each different species of par-
ticles. These parameters are stored in the arrays defined in the COMMON

area:

common /ptprmc/ wp(is), qm(is), q(is), vpe(is), vpa(is),
# vd(is), pch(is), np(is)

where IS is the maximum number of species declared in the parameter file
“paramt.h” to be included in the source file on compilation.

NS : Number of particle species (NS < IS).

@M(i) : Charge-to-mass ratio of Species i: ¢;/m;. For electrons, QM(i)
must be negative.

WP(i) : Plasma frequency of Species i, defined by

2
n;q;
m;

wpi = (2.21)
where n;, ¢; and m; are number density, charge and mass of Species i,
respectively. The WP(i) and QM(i) determine the charge density p; of
Species 4, which is given by
2
w.
pi
i = —ri_ 2.22)
' qi/m; (
In a system where both electrons and ions are assumed as mobile particles,
the following charge neutrality condition must be satisfied.

Zﬂz Z

2

” /ml = (2.23)
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On the other hand, in a system where only electrons are computed as
superparticles, the charge density of the background immobile ions are
automatically computed to establish the charge neutrality.

e VPE(i) : Thermal velocity perpendicular to the static magnetic field
e VPA(i): Thermal velocity parallel to the static magnetic field

e VD(i) : Drift velocity. In combination with the pitch angle PCH(i), the
drift velocities of parallel and perpendicular components are specified as
follows;

Vir = Vysing (2.24)
Vi = Vacose (2.25)

where V; and ¢ are drift velocity and pitch angle, respectively. The parallel
drift velocity is an average velocity of parallel velocities. The perpendic-
ular drift velocity is defined as a radius of a ring distribution function in
the velocity phase space formed by two components of the perpendicular
velocity. First, the particles are distributed uniformly in phase of v, with
a constant |v.|. Then, they are scattered to realize a thermal spread of
the perpendicular thermal velocity VPE.

e PCH(i): pitch angle to define parallel and perpendicular drift velocity Vj
and le.

e NP(i) : Number of superparticles for Species 7 in the simulation system.
The number of superparticles has nothing to do with the physical number
density n;. It determines thermal fluctuation levels of the electrostatic
and electromagnetic fields. In a plasma at an equilibrium, it is well known
that the energy density W of the electrostatic thermal fluctuation is pro-
portional to the temperature of the plasma T., that is, [e.g., Nicholson,
1983; Ueda et al., 1993],

T, rdk 1
W= 27 14 kA2 (2:26)

where T, is an electron temperature given by m.v?,. The temperature is a
statistical quantity defined for a single particle. Since a single superparticle
in a simulation system represents a number of real particles, the mass of a
superparticle is inversely proportional to the number of superparticles in a
system. Therefore, the energy density of the electrostatic fluctuations are
inversely proportional to NP(i).

To make the thermal fluctuation level low, we need to assign a sufficient

number of superparticles to the major species which contributes mostly to
the kinetic energy in the system.
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2.4 RENORM

This subroutine renormalizes the input parameters so that they are converted
to those normalized to the unit system used in the simulation. This subroutine
must be called before calling the INITAL subroutine which initializes physical
quantities computed in the simulation.

In order to attain computational efficiency, it is necessary to reduce the num-
ber of operations involved in the difference equations of the fields and particles.
Since the operations of multiplication and division are frequently performed
with the grid spacing Az and the half time step At/2, we renormalize distance
and time by Az and At/2, respectively. Let us define two different unit systems.
One is a unit system for real physical quantities used as the input parameters.
The other is a renormalized unit system used in the simulation code. Let us
call the former “R-unit system”, and the latter “S-unit system”. We distin-
guish quantities in the two different unit systems by adding a subscript R or
S. The grid spacing (Az)g and time step (At)g for the R-unit system can take
arbitrary values. However, in the S-unit system, they are fixed as (Azx)s = 1
and (At)s = 2.

All input parameters other than the grid spacing DX and time step DT are
renormalized as follows, before they are used for initialization by the subroutine

INITAL.

distance xs = (1/Ax)zg
time ts = (2/At)tg
velocity vs = (At/2)(1/Ax)vg

electric field Es = (At/2)%(1/Az)ER

magnetic field  Bg = (At/2)Bg

charge density  pg = (At/2)%pr

current density Js = (At/2)3(1/Ax)Jg

energy density og = (At/2)*(1/Az)%0R

number density ng = Azng

charge gs = (At/2)*(1/Az)qr

mass ms = (At/2)%(1/Ax)mg

The renormalization coefficients are defined in the subroutine, and they

are kept in the COMMON area named /RESCLC/. It is noted that the
coefficients for the electric filed, charge and mass are identical.

2.5 INITAL

This subroutine sets up the initial condition of the simulation. One can modify
this subroutine to set up an arbitrary initial condition. The quantities to be
initialized are itemized in the following.

1. Constants defined in the COMMON /CONSTC/,
J/ROTATC/ and /ECRCTC/
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2. Initial values of particles: z, v, vy and v, defined in the COMMON
/PRTCLC/

3. Initial values of fields: E,, E,, E,, B, and B, defined in the COMMON
J/FIELDC/

These quantities are initialized by simple methods as implemented in the fol-
lowing source program. One may use a more sophisticated method of particle
initialization to suppress fluctuations of the initial field (see, for example, Bird-
sall and Langdon [1985]).

The initial values of the particle positions, velocities and the magnetic fields
are defined at t = —At/2, while those of the electric fields are defined at t = 0.
One should take care of the time difference of the initial magnetic fields and
electric fields in setting up a plasma wave as an initial condition.

common /inputc/ dx, dt, cv, wc, angle

common /ptprmc/ wp(is), qm(is), q(is), vpe(is), vpa(is),
# vd(is), pch(is), np(is) -

common /constc/ tcs, bx0, rhoO, slx, nx, nxpl, nxp2, npt, ns
common /rotatc/ sinth, costh

common /ecrctc/ rkfact(ix)

common /prtclc/ x(in), vx(in), vy(in),vz(in)

common /fieldc/ ex(ix), ey(ix), ez(ix), by(ix), bz(ix),

# ajx(ix), ajy(ix), ajz(ix), rho(ix)
c

dimension xs(is),x1(is)
c

twopi = 6.283185308

theta = twopi/360.0*angle

sinth = sin(theta)

costh = cos(theta)

bx0 = wc/qm(1)*costh

by0 = wc/qm(1)*sinth

tcs = 2.0%cv*xcv

slx = nx

nxpl = nx + 1

nxp2 = nx + 2
c

npt=0

rho0 = 0.0

xs(1)=0.0

x1(1)=slx

xs(2)=0.0

x1(2)=slx

xs(3)=0.0
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x1(3)=s1x%*0.25
do 10 k = 1,ns
npt=npt+np (k)
q(k) = (slx/float(np(k))) * (wp(k)**2) / gm(k)
rho0 = rhoO + q(k)*np(k)
10 continue
rho0 = -rho0/slx

rkmin = twopi/slx
nxh = nx/2
fft = 1.0/float(nxh)
do 300 i=1,nxh-1
rk = sin(rkmin*i*0.5)*2.0
rkfact (2*i+1) = (1.0/rk**2) * fft
rkfact (2*xi+2) = rkfact(2*i+1)
300 continue
rkfact(1) = 0.0
rk = sin(rkmin*nxh*0.5)*2.0
rkfact(2) = (1.0/rk**2) * fft
————————————— Particle Initialization ---------——--——--

8
[
o

n2=0
do 200 k=1,ns
nl=n2
n2=n1+np (k)
phi = twopi/360.0*pch (k)
vdpa = vd(k)*cos(phi)
vdpe = vd(k)*sin(phi)
do 100 i=ni1+1,n2
x(1) = xs(k) + x1(k)*(i-n1-1)/float(np(k))

vxi = vpa(k)*strndm(l) + vdpa
phase = twopi*unrndm(m)
vyi = vpe(k)*strndm(l) + vdpexcos(phase)

vz(i) = vpe(k)*strndm(l) + vdpe*sin(phase)
vx(i) = costh*vxi - sinth*vyi
vy(i) = sinth*vxi + costhx*vyi

100  continue

200 continue

————————————— Field Initialization ----——————=——=---

do 20 i = 1,nxp2
0.0
0.0

o O

< X
~
SRS
N S

o
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ez(i) = 0.0
by(i) = by0
bz(i) = 0.0

20 continue

2.6 POSITN

This subroutine advances particle positions x using velocities v,. In one time
step At, particle positions are advanced twice each by a half time step At/2 as
in the following.

A2 — gt U;+At/2% (2.27)
fﬂn:xwmm+vymm%f (2.28)

These operations can be performed by calling the subroutine POSITN with the
following source code twice in a cycle of one time step.

do 100 i = 1, npt
x(1) x(1)+vx (i)
if(x(1).1t.0.0) x(i) = x(i)+slx
if (x(i).ge.slx) x(i) = x(i)-slx
100 continue

where SLX is the size of the spatial simulation region.

2.7 VELCTY

This subroutine advances particle velocities by integrating the equation of mo-
tion J
v ds
—=—"(F+vxB 2.29
o n%( ) (2.29)
The difference equation of (2.29) is

ot TAL/2 _ gyt=At/2 VITAL2 | yt=A/2

& :
A7 = mS(E + 5 x BY) (2.30)
Defining new variables v~ and v™ as
s At
v o=yt b ot (2.31)
Mg 2
ot = ptTAY2 _ &Etﬁ (2.32)

ms 2
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Figure 2.3: Vector relation in Buneman-Boris method.

we rewrite Eq. (2.30) as

+_71‘
ETEK-:§%4u++vszw (2.33)

Taking the inner product of (2.33) with (vt + v™), we have
(v)* = (v7)? (2.34)

As shown in Figure 2.3, this means that Eq. (2.33) expresses a rotation by an
angle 6
At g
0 = —2tan~1 (= do Y (2.35)
2 mg

The actual computation is realized by the following four steps, which are
called Buneman-Boris method [Hockney and Eastwood, 1981; Birdsall and
Langdon, 1985].

At
v =0 (q/m) B = (2.36)

At
v=v +v X (q/m)th7 (2.37)

2 At
t =" °x B'— 2.
VY M T @Bt <P (2:38)
A

A2 =t 4 (q/m)sEtg (2.39)

where E' and B' are electric and magnetic fields linearly interpolated from
the values at the adjacent grid points, respectively. The quantity (q/m), is
a charge-to-mass ratio for a particle species ’s’. All v, E and B are vector
quantities.

Since we have adopted the staggered dual grid system for different compo-
nents of electric and magnetic fields, the interpolation must be done differently
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for different components of the fileds. Before the interpolation, however, relo-
cation of the field quantities is necessary to avoid the electrostatic and magne-
tostatic self-forces.

The electrostatic field £, is computed from the charge density p so that they
satisfy the equation

OFE,
= 2.40
r (2.40)
whose difference form in the code is
Ez,i+1/2 - Ez,i—l/2 = pi (2.41)

The electric field E, is defined at half-integer grids, while the charge density
p is defined at the full-integer grids. Let us assume we have a single charged
particle in a simulation system. We distribute the charge of the particle to the
adjacent full-integer grid points by the linear weighting to compute the charge
density p. The electric field satisfying the above equation is computed at the
half-integer grid points. If the electric filed acting on the particle is interpolated
linearly from E, at the adjacent half-integer grid points, the particle feels a self-
force (E, # 0) which varies depending on the distance between the particle and
the grid points. To avoid the self-force, we need to relocate the electric field
defined at the half-integer grid points to the full-integer grid points [Matsumoto
and Omura, 1985]. The relocation is made by the following equation.

1
Ez,i = E(Ex,i~l/2 + E:t,i+l/2) (242)

The electric field acting on the particle is then interpolated from the relocated
Ez,i~

The principle of the self-force cancellation is that the same grid points must
be used for distribution of the particle charge and for interpolation of the elec-
trostatic field at the particle.

The same principle is also applied to the current density J and the magnetic
field B related by the magnetostatic equation

1
c
whose difference form in the code is written as,

Jy,i
B.it12 = B.ic1p = — Cy2, (2.44)

Jzi
Byis1 — By = ’021/2 (2.45)

Since B, and J, in (2.44) and B, and J, in (2.45) are defined at different
grid points, we need to relocate them. As we will see in the subroutine CUR-
RNT/CURNTYV, however, the current density Jy is first computed at the half-
grid points, and then it is relocated to the full-grid points. Therefore, relocation
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of B, is not necessary. Since the J, is computed at the half-grid points, the B,
defined at the full-grid points must be relocated to the half-grid points by the
following equation.

1
Byit12 = i(By,i + Byit1) (2.46)

In the following source code of the VELCTY subroutine, we first relocate
the fields F, and By, and then advance velocities of particles interpolating the
fields at particle positions from the adjacent grid points. Interpolation of E,
and E, is performed from the full-integer grid points, while interpolation of £,
B, and B, is performed from the half-integer grid points.

do 100 i =
work1 (i)

100 continue
workl (nxp2) = workl(2)

2, nxpl
= 0.5 % ( ex(i-1) + ex(i) )

do 110 i =
work2 (i)

110 continue
work2(1) = work2(nxpl)

2, nxpl
= 0.5 * ( by(i+l) + by(i) )

c
n2=0
do 210 k=1,ns
nl = n2
n2 = nl + np(k)
bx1 = bxO*qgm(k)
const = 1.0 + bx1lxbxl
do 200 m = ni1+1, n2
C

i = x(m) + 2.0
sf2 = (x(m) + 2.0 - i)*qgm(k)
sfl = gm(k) - sf2

ih = x(m) + 1.5

sh2 = (x(m) + 1.5 - ih)*qm(k)
shl = gm(k) - sh2

il =1+ 1

ihl = ih+ 1

exl = sfilxwork1(i) + sf2*work1(il)
eyl = sfilxey(i) + sf2xey(il)
ezl = shixez(ih) + sh2*ez(ih1l)
byl = shil*work2(ih) + sh2*work2(ih1l)
bzl = shixbz(ih) + sh2*bz(ih1)
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boris = 2./(const + bylxbyl + bzl*bzl)

c
vx(m) = vx(m) + ex1
vy(m) = vy(m) + eyl
vz(m) = vz(m) + ezl

c
vxt = vx(m) + vy(m)*bzl - vz(m)*byl
vyt = vy(m) + vz(m)*bxl - vx(m)*bzl
vzt = vz(m) + vx(m)*byl - vy(m)=bx1

c
vx(m) = vx(m) + boris*(vyt bzl - vztxbyl)
vy(m) = vy(m) + boris*(vztxbxl - vxt*bzl)
vz(m) = vz(m) + boris*(vxt¥byl - vyt*bxl)

c
vx(m) = vx(m) + exl
vy(m) = vy(m) + eyl
vz(m) = vz(m) + ezl

c

200 continue
210 continue
2.8 EFIELD

This subroutine advances the electric field in time by integrating one of Maxwell’s

equations
OF

o = AV xB-J (2.47)
We can rewrite the above equation for the one-dimensional system as
%f% ) (2.48)
R ) (2.49)
B (2.50)

These equations are integrated for one time step of Atg = 2. The FORTRAN
source program is written as follows;

do 100 i=2,nxpl
ex(i) = ex(i) - 2.*ajx(i)
ey(i) = ey(i) - tes*( bz(i) - bz(i-1) ) - 2.*ajy(i)
ez(i) = ez(i) + tcsx( by(i+1) - by(i) ) - 2.*ajz(i)
100 continue
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ey(nxp2) = ey(2)
ez (1) = ez(nxpl)
ex(1) = ex(nxpl)

The last three lines are for the periodic boundary condition.

2.9 BFIELD

This subroutine advances the magnetic field in time by integrating one of
Maxwell’s equations

0B
= E 2.51
T V x (2.51)
We can rewrite the above equation for the one-dimensional system as
0B, OE,
— = 2.52
ot ox (2:52)
0B, O0E,
=—— 2.
ot ox (2.53)

These equations are integrated for a half time step of Atg/2 = 1. Therefore,
this subroutine must be called twice within a loop of one time step before and
after advancing particle velocities with electric fields and magnetic field.

The FORTRAN source program are writted as follows;

do 200 i=2,nxpl

by(i) = by(i) + ez(i) - ez(i-1)
bz(i) = bz(i) - ey(i+l) + ey(i)
200 continue
by (nxp2) = by(2)
bz (1) = bz(nxpl)

The last two lines are for the periodic boundary condition.

2.10 CHARGE

This subroutine computes the charge density p from superparticles which have a
square-shaped charge ¢ with a width of a grid spacing Az as shown in Figure 2.4.
A superparticle at a position x, has a charge density distribution ¢/Az in the
range

T, — Ax/2 < xp < 1, + Az /2 (2.54)

On the other hand, each grid point at X; has a territory which covers a range
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Territory of Grid i iTerritory of Grid i+1

Az Az E
=) © =
X;
' b a
a b
a = xp— X;

b = XH-l‘-”p
- Al‘*(l

Figure 2.4: Area weighting method in computing charge density.

A superparticle which falls into the range X; < z, < X,;; has the charge
distribution in the territories of the adjacent grid points at X; and X,,,. The
charge distribution in each territory of the grid points is assigned to the grid
points to form charge densities p defined at the grid points. In other words, the
charge g of the superparticle is divided to the adjacent grid points proportional
to the areas shared by the grid points. Numerically, ¢(z, — X;)/Ax is assigned
to p(Xiy1), and ¢(X;1 — z,)/Ax is assigned to p(X;).

c
do 100 i=1,nxp2
rho(i) = rho0
100 continue

n2 =0
do 210 k=1,ns
nl = n2
n2 = n1 + np(k)
do 200 m = n1+1, n2
i = x(m+ 2.0
s2 = (x(m)+ 2.0 - i)*q(k)
sl = q(k) - s2
rho(i) = rho(i) + si1
rho(i+1) = rho(i+1) + s2
200 continue
210 continue
rho(2) = rho(2) + rho(nxp2) - rhoO
rho(1) = rho(nxpl)
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rho(nxp2) = rho(2)

It is noted that the most time-consuming DO loop (200) is not vectorized,
because of the recurrent accumulation of charges to the arrays RHO. Since
this subroutine does not have to be called at every time step, we have not
prepared the vectorized version. However, it is straightforward to vectorize this
subroutine with the same algorithm used in the subroutine CURNTV, and left
as an exercise.

2.11 ECRRCT

This subroutine corrects the electric field E, so that it satisfies Poisson’s equa-
tion. This subroutine is called at the beginning of the simulation to set up
an initial electric field F, based on a charge density distribution computed by
the subroutine CHARGE. Although the charge conservation algorithm used in
the computation of the current density J, assures that the electric field E,
should satisfy Poisson’s equation, the accumulation of round-off error requires
correction of the electric field E, at a certain interval.

For the one-dimensional model, the electric field E, is purely electrostatic.
Therefore, we may directly solve Poisson’s equation

0E,
ox
In two- or three-dimensional models, however, we use the following procedure
used to correct the electric field in two-dimensional or three-dimensional model.

Assuming that we have the electric field E which contain an error, we com-
pute a correcting electric field E. which satisfies the following equation,

(2.56)

V- (E+E,)=p (2.57)
Defining
pe=p—V-E (2.58)
we have
V-E.=p. (2.59)
Assuming a potential ¢, satisfying
E. = -V, (2.60)
we have Poisson’s equation
V2¢e = —pe (2.61)

whose difference form is

Poe _ Ge(@iv1) — 20c(x:) + Pe(wi-1)
or? (Ax)?

(2.62)
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There are a number of methods to solve Poisson’s equation. For a periodic
system, we apply the Fast Fourier Transform (FFT) to p.(z;) to obtain p.(k.,),
and compute ¢.(k,,) from Poisson’s equation in the wavenumber domain,

K2 e(km) = pe(km) (2.63)
where k,, = 2rm/L:m =1,2,...., N, /2, and

_ sin(ky, Ax/2)
= (2.64)

We apply the Inverse-FFT to ¢.(k.,) to obtain ¢.(x;). We compute E,.(2;41/2)

by

Ere(Tiv1)2) = 22 _Ai%(zi“) (2.65)

Finally, the F,. is added to the E,.

The above operations are implemented in the following source code. The
FFT and Inverse-FFT are performed by the subroutine REALFT which calcu-
late the Fourier and Inverse-Fourier transforms of a set of N.X real-valued data
points. The coefficients RKFACT(I) are computed in the subroutine INITAL.

do 100 i=2,nxpl
work1(i-1) = rho(i) - ex(i) + ex(i-1)
100 continue
call realft(workl,nx,1)
do 200 i=1,nx
workl1(i) = workl(i)*rkfact(i)
200 continue
call realft(workl,nx,-1)
workl (nxpl) = workl(1l)
do 300 i=2,nxpl
ex(i) = ex(i) + work1(i-1) - workl(i)
300 continue
ex(1) = ex(nxpl)

2.12 CURRNT

This subroutine computes the current density J from velocities and positions
of particles. For the difference forms of Maxwell’s equations, J, and J, are
defined at the half-integer grid points, while J, are defined at the full-integer
grid points. However, all components of J are computed at the half-grid points.
After computing the current density, J, is relocated from the half-integer grid
points to the full-integer grid points. This makes the computation of the current
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density simple, and also has an effect to eliminate the magnetostatic self-force
from B, field.

For J, and J., we use the linear weighting to distribute the current gsv
of a particle as we do in computing the charge density. As for J, we use the
charge conservation method, proposed by Villasenor and Buneman [1991], which
assures that the following equation of continuity for charge is satisfied locally.

dp
—+V-J=0 2.66
ETi (2.66)
whose difference form is written as
At
PRt = ol = = = I (2:67)

where J is the x-component J,. Since we use a square-shaped superparticle
with a width Az in computing the charge density p at the full-grid points, we
can compute the current density J at the half-grid points by taking into account
the amount of charge crossing the half-grid points from time ¢ to ¢ + At.

In the subroutine EFIELD, we use the current density J**2%/2 to advance
the electric field by the difference equation

A A
— JHRAt = B DY — Bl (2.68)

where J and E are J, and E,, respectively. Substituting J.tfm/ > and J'T5Y% in
1/2

i i+1/2
(2.67) by (2.68), we have

1
pirAt = ph = (Efif/tg —Ef - Eﬁf/g + Ef~1/2)£ (2.69)
which is rewritten as
t+At t+At
p§+At _ Ei-tl/Z - Eijl/Q _ ptﬂ . Ef+1/2 - Eit—l/Q (2 70)
! Az ¢ Az ' ’

Therefore, if the electric field E* at time ¢ satisfies the electrostatic equation,
ie.,
Eivipp— Eisyjp
Az B
then, the electric field field E**2¢ also satisfied the above equation.
To compute the current JEHA4/2 satisfying (2.67), we have to think of two
cases, assuming that a particle does not move more than one grid spacing Ax
by one time step At, i.e.,

xp(t + At) — z,(t) < Az, (2.72)

where x,(t) is a particle position at time ¢. One is Case 1 shown in Figure 2.5
where both z,(t) and z,(t + At) are in the same cell between X; and X,,,. The
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Figure 2.5: Charge conservation method in computing current density: Case 1.
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Figure 2.6: Charge conservation method in computing current density: Case 2.
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other is Case 2 shown in Figure 2.6 where z,(t) and z,(¢ + At) are in different
cells. In Case 1, the current I, /2 at X112 is given by computing the amount
of the charge passing through the point of X;.;/,, within the time step At.

dAa — 4B

Liv12 = AL (2.73)
where g4 and g are given by
X —x,(t X —z,(t + At
0 =g, i = BER)
z Az

In Case 2, the particle motion contributes to the currents at X, s2 and X3/,
which are give by

qA q
Ii+1/2 = E’ Ii+3/2 = —A—B;f, (2-75)

respectively. In Figures 2.5 and 2.6, we assumed that the particle velocity is
positive. For the cases with a negative velocity, we need to multiply —1 to the
left hand side of equations (2.73) and (2.75). These computation for different
cases are realized by the simple coding without an “IF ” statement as shown in
the following listing of the subroutine CURRNT.

In a periodic system, a spatially uniform component of the current den-
sity J, give rise to a spatially uniform component of the electric field E,,,
which oscillates in time with the plasma frequency in an unmagnetized plasma.
Assuming an unmagnetized plasma with an electron density n., we have the
following two equations from the equation of motion and Maxwell’s equations,

OJ,  nee?

8 2.76
ot Me ( )
OFE

v g, 2.77

5 (2.77)
where —e and m, are the charge and mass of an electron. As a solution we have
Ju = Joexp(wpet), E, = ’ Joexp(wpet) (2.78)

Whe

where wpe = (/n.e2/m.. This uniform oscillation of E, and J, is not of our
interest in doing simulations. It perturbs the simulation system, and makes it
difficult to see the real physical process. Therefore, we need to eliminate the
uniform component from the current density. We first compute the average of
the current densities and subtract it from the current density at each half-grid
point.

The above operations are implemented in the following source code.
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do 100 i=1,
ajx(i) =
ajy(i)
ajz(i)

100 continue

nxp2
0.0
0.0
0.0

n2 =0
do 210 k=1,ns

nl = n2

n2 = n1 + np(k)

gh = q(k)*0.5

do 200 m = ni+1, n2
ih = x(m) + 1.5
s2 = (x(m) + 1.5 - ih)*q(k)
s1 = q(k) - s2
ihl = ih + 1
ajy(ih) = ajy(ih) + vy(m)*si
ajy(ihl) = ajy(ihl) + vy(m)*s2
ajz(ih) = ajz(ih) + vz(m)*sl
ajz(ihl) = ajz(ihl) + vz(m)*s2

C————==—-= charge conservation method --—=—------

ghs = gh * sign(1.0, vx(m))
avx=abs (vx(m))
x1 = x(m) + 2.0 - avx
x2 = x(m) + 2.0 + avx
il = x1
i2 = x2
ajx(il) = ajx(il) + (i2 - x1)*ghs
ajx(i2) = ajx(i2) + (x2 - i2)*ghs

200 continue
210 continue

ajx(nxpl) =
ajx(2) =
ajy(nxpl)
ajy(2) =
ajy(1) =
ajz(nxpl) =
ajz(2) =

do 300 i =

ajx(1) +
ajx(2) +
+

= ajy(1)

ajy(2) +

ajy(nxpl)

ajz(1) +
ajz(2) +

nxpl, 2,-1

ajx(nxpl)
ajx(nxp2)
ajy(nxpl)
ajy(nxp2)

ajz(nxpl)
ajz(nxp2)

49
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ajy(i) = (ajy(i) + ajy(i-1))%0.5
300 continue
C——————-- cancel the uniform component -------——-------
juncan =1
if (juncan.eq.1) then
ajxu = 0.
ajyu = 0
ajzu = 0.
i

o o o

do 400 2,nxpl
ajxu = ajxu + ajx(i)
ajyu = ajyu + ajy(i)
ajzu = ajzu + ajz(i)
400 continue
ajxu = ajxu/float(nx)
ajyu = ajyu/float(nx)
ajzu = ajzu/float(nx)
do 500 i = 2,nxpl
ajx(i) = ajx(i) - ajxu
ajy(i) = ajy(@i) - ajyu
ajz(i) = ajz(i) - ajzu
500 continue
endif

It is noted that the most time-consuming DO loop (200) can not be vector-
ized, because of the recurrent accumulation of currents to the arrays AJX, AJY
and AJZ. For a computer with a vector processor, we have prepared a different
subroutine named CURNTYV, which should be called in place of the subroutine
CURRNT in the MAIN program.

It is also noted that J, is computed at the half-grid points, and then relocated
to the full-grid points by the following procedure.

Jyi-1/2 + Jyit1/2
2

This procedure has the following three advantages compared with a direct com-
putation of J, at the full-grid points.

Jyi =

(2.79)

e The computation is simplified, because we can use the same area weightings
for J, and J..

e A relocation of B, in interpolating the particle-pushing field in the sub-
routine VELCTY is not necessary, because the same area weightings are
used as those in the computation of J,.

e The electromagnetic fluctuations at the short wavelength consisting of sev-
eral grid points are suppressed because of the filtering effect of the above
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operation of Eq. (2.79). The fluctuations of .J, are suppressed by the factor
cos(kdx/2), which varies from 1 to 0 with for 0 < k < 7/6z.

2.13 CURNTV

This subroutine is the vectorized version of the CURRNT subroutine, which
computes the current density. The vectorization is achieved by preparing large
two-dimensional arrays with a size of (LVEC x IX). The parameter LV EC
is a number of repetition in the most inner DO-loop which is vectorized. A
larger value of LVEC increases the vector efficiency in the DO-loop 200, while it
increases the amount of computation in the DO-loop 300. There is an optimum
value of LVEC for a different type of vector computers. We normally set LVEC=
32 ~ 128 depending of the availability of the main memory.

Some vector compilers require an explicit declaration that the recurrence
does not occur in the most inner DO-loop 200 such as shown in the following
source code.

parameter (lvec=64)
dimension wrkl(lvec,ix),wrk2(1lvec,ix),wrk3(lvec,ix)

C
do 100 i=1,nxp2
ajx(i) = 0.0

ajy(i) = 0.0

ajz(i) = 0.0

100 continue
do 150 i=1,nxp2
do 150 1=1,1lvec
wrk1(1l,1i) =
wrk2(1l,1i) =
wrk3(1,1)
150 continue

O O O
o O O

n2 =0
do 210 k=1,ns
nl = n2
n2 = n1 + np(k)
gh = q(k)*0.5
do 200 ik = ni1+1,n2,lvec
c$dir no_recurrence
do 200 m = ik,min(ik+lvec-1,n2)
l=m- ik + 1
ih = x(m) + 1.5
s2 = (x(m) + 1.5 - ih)*q(k)
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sl = q(k) - s2
ihl = ih + 1
wrk2(1,ih ) = wrk2(l,ih ) + vy(m)*sl
wrk2(1,ih1) = wrk2(1l,ih1) + vy(m)*s2
wrk3(1l,ih ) = wrk3(1l,ih ) + vz(m)*s1l
wrk3(1l,ih1) = wrk3(1l,ih1) + vz(m)*s2
C————————= charge conservation method ---------
ghs = gh * sign(1.0, vx(m))
avx=abs (vx(m))
x1 = x(m) + 2.0 - avx
x2 = x(m) + 2.0 + avx
il = x1
i2 = x2
wrk1(1l,i1) = wrk1(1l,i1) + (i2 - x1)*qghs
wrk1(1,i2) = wrk1(1,i2) + (x2 - i2)*qhs
€

200 continue

210 continue

do 300 i=1,nxp2
do 300 1=1,1lvec
ajx(i) + wrk1(1l,i)
ajy(i) + wrk2(1,i)
ajz(i) + wrk3(1,i)

ajx(i)
ajy(i)
ajz(i)
300 continue

ajx(nxpl) = ajx(1) + ajx(nxpl)
ajx(2) = ajx(2) + ajx(nxp2)
ajy(nxpl) = ajy(1) + ajy(nxpl)
ajy(2) = ajy(2) + ajy(nxp2)
ajy(1) = ajy(nxpl)
ajz(nxpl) = ajz(1l) + ajz(nxpl)
ajz(2) = ajz(2) + ajz(nxp2)

c
do 350 i = nxpl, 2,-1

ajy(i) = (ajy(i) + ajy(i-1))*0.5
350 continue

C—=——==== cancel the uniform component
juncan = 1
if (juncan.eq.1) then
ajxu = 0.0
ajyu = 0.0
ajzu = 0.0
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do 400 i = 2,nxpl
ajxu = ajxu + ajx(i)
ajyu = ajyu + ajy(i)
ajzu = ajzu + ajz(i)
400 continue
ajxu = ajxu/float(nx)
ajyu = ajyu/float(nx)
ajzu = ajzu/float(nx)
do 500 i = 2,nxpl
ajx(i) = ajx(i) - ajxu

ajy(i) = ajy(i) - ajyu
ajz(i) = ajz(i) - ajzu
500 continue
endif

2.14 Diagnostics of KEMPO1

A run of KEMPOT1 generates a series of on-line graphic diagnostics when it is
executed on a computer. The first page of the KEMPO1 graphic outputs shows
the input parameters, which are plotted by the subroutine PLTPRM. After the
list of the input parameters, various diagnostics are plotted to show the ini-
tial condition and subsequent time evolution of the simulation system. These
diagnostics are generated by the subroutines FLDPLT, KSPPLT, PHSPLT,
VDSPLT, SPECTR and ENERGY, which are called from the MAIN program.
There are two different kinds of diagnostics. One is a snap shot of the physical
quantities showing their variation in space or configuration in phase spaces at
a specific time, as generated by the subroutines KSPPLT, PHSPLT and VD-
SPLT. The other is a history plot of physical quantities showing their variation
in time or frequency spectra, as generated by the subroutines SPECTR and
ENERGY. In these subroutines, physical quantities are plotted in the R-unit
system being converted from the S-unit system based on the coefficients given
by the COMMON statements /RESCLC/.

As described in Section 2.3, the timings of the snap shot diagnostics are
specified by the input parameters IFDIAG, IKDIAG, IPDIAG and IVDIAG.
The functions of these diagnostic subroutines are switched by the control pa-
rameters [IFPLOT, IKPLOT, IPPLOT and IVPLOT. The data for the history
plots generated by SPECTR and ENERGY are stored in the internal mem-
ory at time step intervals specified by ISDIAG and IEDIAG, and the history
plots are generated at the timings specified by the ISPLOT and IEPLOT. The
techniques used in the diagnostics subroutines and some examples of graphic
outputs are given in the following subsections with the names of the diagnostic
subroutines.
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2.14.1 FLDPLT

This subroutine plots spatial profiles of the field quantities defined at grid points.
Two different types of plots are implemented. One is for an electrostatic simula-
tion, and it plots the electrostatic potential, electric field E, and charge density
p as shown in Figure 2.7(a). The dashed lines in the top and bottom panels
indicate the zero levels of the potential and charge density, respectively. The
other is for an electromagnetic simulation, and it plots the five elements of the
electromagnetic field E,, Ey, E,, B,, B, and the charge density p as shown in
Figure 2.7(b). These plots can be selected by the input parameter [FPLOT,
as described in Section 2.3.

2.14.2 KSPPLT

This subroutine plots wavenumber spectra of the fields E,, E,, E., B, and B,
at a time step interval specified by the parameter IK DIAG. The minimum
and maximum wavenumbers to be plotted are

2m
kmin = m, kmaz = km'm x IKPLOT (280)

where IK PLOT < NX/2. It is necessary to specify an appropriate I K PLOT
so that we can see wave spectra of our interest. An example of the output is
given in Figure 2.8.

2.14.3 PHSPLT

This subroutine plots phase diagrams of particles in three different sets of coor-
dinates at an interval specified by IPDIAG. The first one is in the = — v, phase
space which is suitable for analyzing the dynamics of particles interacting with
electrostatic waves. The second one is in the v, — v, 4, which corresponds to the
velocity space of the perpendicular velocity vper,. This diagnostics is useful for
viewing diffusion of a ring distribution of particles or perpendicular heating of
particles. The third one is in the v —v, phase space which is useful for checking
pitch angle scattering of particles by electromagnetic waves like whistler mode
waves or ion cyclotron waves. The velocity range for these phase space plots can
be specified by the input parameters VMIN and VM AX, while an automatic
scaling is activated by setting VMIN = VMAX. In case the number of par-
ticles is very large, the subroutine can limit the number of plotted particles by
skipping the particles with an interval. One can change the maximum number
of plotted particles by the parameter IPM AX defined in the beginning of the
subroutine. An example of these plots is given in Figure 2.9.
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Figure 2.7: An example of outputs by FLDPLT subroutine. (a) IFPLOT =1,
(b) IFPLOT = 2.
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Figure 2.8: An example of outputs by KSPPLT subroutine.
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Figure 2.9: An example of outputs by PHSPLT subroutine.
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Figure 2.10: An example of the outputs by VDSPLT subroutine.

2.14.4 VDSPLT

This subroutine plots velocity distribution functions of particles for v,, v, and v,
at an time step interval specified by IV DIAG. The input parameter IV PLOT
is currently a dummy parameter for possible variations of the diagnostics. The
range of the velocities for the distribution functions is specified by the input
parameter VMIN and VMAX. When VMIN = VMAX is specified, the
range is automatically taken from the minimum and maximum values of the
velocities. The scale of the distribution functions is given so that the integration
of f(v;) over v; becomes unity. An example of the outputs is given in Figure 2.10.

2.14.5 SPECTR

This subroutine generates two different diagnostics based on the time history of
each component of electromagnetic field E,, E,, E., B, and B;. One is a mode
history plot with a fixed wavenumber k; = k,,;, X i as shown in Figure 2.11.
The other is a w — k diagram showing spectra of each component of the fields
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Figure 2.11: An example of the mode history plots by SPECTR subroutine.

as shown in Figure 2.12. The range of mode numbers to be plotted as the mode
history plot is specified by the parameters MINMOD and MAXMOD in the
subroutine. The w — k diagram plots spectra for the wavenumbers from 0 to
(Kmin X I K P) and for the frequencies from 0 to (wpi, x IW P), where I K P and
IW P are parameters defined in the subroutine. The minimum frequency wpin
is given by

27
“min = DT % ISDIAG x ISPLOT

(2.81)

The parameters IK P and /W P cannot exceed IMAX/2 and ISPLOT/2, re-
spectively. The w — £k diagram is produced by calling the subroutines WKFFT
and WKPLOT. The technique to generate the spectrum is described in Mat-
sumoto and Omura [1985]. We can separate the forward and backward traveling
waves by this technique, and it can be specified by modifying the parameter
IFB in the subroutine. If I[FB = 0, the sum of the forward and backward
wave spectra is plotted. If IFB = 1(—1), then only forward (backward) wave
spectra are plotted. For purely electrostatic simulation, we only need to make
diagnostics for E,. This can be done by setting the parameter [COMP = 1
instead of JCOM P = 5 in the subroutine.
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Figure 2.12: An example of w — k diagrams by SPECTR, subroutine.

2.14.6 ENERGY

Every time this subroutine is called at an interval specified by the input pa-
rameter [SDIAG, the energy diagnostics is made for the field and particles.
The results are stored in the internal array. After accumulating the data for
ISPLOT time sequences, the subroutine plots time histories of the energies
of fields and particles. In the first page of the energy diagnostics, the kinetic,
electric, magnetic, and total energy are plotted. In the second page, variations
of these energies from the initial values are plotted. In each of the subsequent
pages, the drift and thermal energy, and their summation and temperature
anisotropy are plotted for each species. The temperature anisotropy A; of par-
ticle species 7 is defined as a temperature ratio

o Ty,i + Tz,i

A;
2T,

(2.82)

rather than a temperature ratio between perpendicular and parallel tempera-
tures with respect to the static magnetic field. Examples of these energy history
plots are given in Figure 2.13.

2.15 Exercises of KEMPO1

2.15.1 Single particle motion

Put a single electron in the system with a drift velocity in parallel and/or
perpendicular direction. Confirm that there is no electrostatic self-force acting
on a particle, and the kinetic energy of the particle is conserved.
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Figure 2.13: An example of outputs by ENERGY subroutine.

Modify the source code of the VELCTY subroutine so that the electrostatic
field E, is interpolated from the half-grid points rather than the relocated FE,
at the full-grid points. Find out what will happen.

2.15.2 Thermal fluctuations

Set up a magnetized plasma consisting of thermal electrons. Call the SPECTR
subroutine at a proper interval, and draw the w — k diagram for each component
of the fields. Compare the spectra with the normal modes of the plasma. Vary
the plasma parameters such as the plasma frequency, thermal velocity or angle
of the static magnetic field.

2.15.3 Two stream instability

Set up two streams of electrons with different drift velocities and with equal
electron densities. Find formation of an electrostatic field and nonlinear dy-
namics of beam electrons. Change the density ratio between the two electron
beams to find a weak beam instability.



62 CHAPTER 2. KEMPOI1

2.15.4 Buneman instability

Set up an unmagnetized plasma consisting of cold electrons and drifting cold
ions forming a current. Find the nonlinear evolution of the famous Buneman
instability [e.g, Melrose, 1986].

2.15.5 Non-cancellation of the uniform current

Modify the CURRNT/CURNTYV subroutine not to cancel the uniform compo-
nent of the current J,. Run a job with the same parameters used for Buneman
instability.

2.15.6 Whistler mode beam instability

Eliminate the electrostatic interaction in the KEMPO1 by setting J, = 0. Put a
weak electron beam in a plasma and find that whistler mode waves are generated
through the cyclotron resonance interaction.

2.15.7 Weibel instability

Set up an unmagnetized electron plasma with a distribution with the large
perpendicular thermal velocity and a small parallel thermal velocity. The “per-
pendicular” and “parallel” is referenced with respect to the wavenumber vector
k in the x direction. Specify proper diagnostics of particle and field to find
particle scattering in the vy — v, phase space by the unstable magnetic field.
Also modify the subroutine PHSPLT to plot the phase diagram in = — vy phase
space.

2.15.8 Violation of Courant condition

Comment out the call of the CHKPRM subroutine in the MAIN program.
Specify the time step which does not satisfy the Courant condition, and run the
program.

2.15.9 Numerical heating of a plasma

Set up an unmagnetized plasma with a very small thermal velocity, where the
Debye length Ap is much smaller than the grid spacing Az. Examine the energy
conservation.

2.15.10 Electrostatic simulation

Modify the main program to solve only the electrostatic field FE, using the
ECRRCT subroutine. Run the program with the parameters of two-stream
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instability with a time step not satisfying the Courant condition.

2.15.11 Vectorization of CHARGE

Using the vectorization algorithm of the CURNTYV subroutine, we can also vec-
torize the CHARGE subroutine. Make the vectorized version of the CHARGE
subroutine (ex. CHARGYV). Run the code with the electrostatic MAIN program,
and compare the CPU time with the run with the non-vectorized CHARGE
subroutine.

2.16 LIBKEMPO1

To run the KEMPO1, we need various subroutines other than those described
above. We prepared the subroutine library named LIBKEMPO1, which consists
of 25 subroutines categorized as follows;

e Fast Fourier Transform
REALFT, FOUR1

e Spectrum Analyses
WKFFT, RKFFT, SKFFT

e Random Number Generator
UNRNDM, STRNDM

e Graphics
QLOOK, QLOOK2, PRMPLT, WKPLOT, XAXIS1, XAXIS2, YAXISI,
YAXIS2, LXAXIS, LYAXIS, ENUMBR, GNUMBR DPLOT

e Miscellaneous

MAXMIN, RNDOFF, ETRANS, ASCALE, XYROT

The graphic application programs uses the following basic graphic subrou-
tines as external references.

PLOT, SYMBOL, NUMBER, NEWPEN
These are the basic subroutines in the CALCOMP graphic library.

2.17 Installation of KEMPO1

To install the KEMPO1, you have to prepare two libraries on your computer
system. One is the LIBKEMPO1 whose source code is distributed with the
KEMPOI1. The other is the graphic subroutine library which consists of the
basic graphic subroutines of the so-called CALCOMP graphics. They are the
followings.
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e PLOTS : initialize the graphics. We assume the virtual graphic window of
34.5 x 26.5 mapped onto a graphic output area of a paper or a terminal
screen of any size. A position (X,Y’) specified by the graphic subroutines
should be inside the virtual widow, i.e., 0 < X x FF <345, 0<Y x F <
26.5, where F is the factor specified by the FACTOR subroutine.

e PLOT(X,Y,IPEN) : draw lines by moving the pen to a point (X,Y).

e SYMBOL(X,Y,HIGHT,TEXT,ANGLE ,NT) : draw a set of characters
TEXT.

e NUMBER(X,Y,HIGHT,R, ANGLE, NR) : draw a number R.

e NEWPEN(IC) : change the color or width of the pen. As color graphics,
we assume that IC = 1,2,3,4,5,6,7 correspond to white, blue, cyan,
green, yellow, red, magenta, respectively.

e FACTOR(F) : change the factor of the figures to be drawn after this
subroutine.

To control the paging of the graphic outputs, we need the following subroutine

e CHART : control the paging of the graphic outpus. If the graphics is
operated on a graphic terminal, this subroutine holds an execution of an
application program to wait for an input from the terminal. After the
input (this can be just a carriage return), it clears the graphic terminal
and resumes the execution of the program.

On most of supercomputer systems, the CALCOMP graphics is available.
If not, it is relatively easy to realize the CALCOMP basic graphic subroutines
using other graphic libraries on various computer systems. We can make the
NUMBER subroutine by calling the SYMBOL subroutine. We can implement
the SYMBOL subroutine by calling the PLOT subroutine, if the vector font
data are available. If not, we may use the text output subroutine in the graphic
library. Then, what is essential is to write the PLOT subroutine to draw lines,
which is easily implemented on any graphics systems. An example of the graphic
interface subroutines for the X Window System is given in Chapter 8.
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