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Preface 

Plasmas occur pervasively in nature: indeed, most of the known matter in 
the Universe is in the ionized state, and many naturally occurring plasmas, 
such as the surface regions of the Sun, interstellar gas clouds and the Earth’s 
magnetosphere, exhibit distinctively plasma-dynamical phenomena arising from 
the effects of electric and magnetic forces. The science of plasma physics was 
developed both to provide an understanding of these naturally occurring plasmas 
and in furtherance of the quest for controlled nuclear fusion. Plasma science has 
now been used in a number of other practical applications, such as the etching 
of advanced semiconductor chips and the development of compact x-ray lasers. 
Many of the conceptual tools developed in the course of fundamental research 
on the plasma state, such as the theory of Hamiltonian chaos, have found wide 
application outside the plasma field. 

Research on controlled thermonuclear fusion has long been a world-wide 
enterprise. Major experimental facilities in Europe, Japan and the United States, 
as well as smaller facilities elsewhere including Russia, are making remarkable 
progress toward the realization of fusion conditions in a confined plasma. The 
use, for the first time, of a deuterium-tritium plasma in the tokamak experimental 
fusion device at the Princeton Plasma Physics Laboratory has recently produced 
slightly in excess of ten megawatts of fusion power, albeit for less than a second. 
In 1992, an agreement was signed by the European Union, Japan, the Russian 
Federation and the United States of America to undertake jointly the engineering 
design of an experimental reactor to demonstrate the practical feasibility of fusion 
power. 

This book is based on a one-semester course offered at Princeton University 
to advanced undergraduates majoring in physics, astrophysics or engineering 
physics. If the more advanced material, identified by an asterisk after the Chapter 
heading or Section heading, is included then the book would also be suitable as 
an introductory text for graduate students entering the field of plasma physics. 

We have attempted to cover all of the basic concepts of plasma physics with 
reasonable rigor but without striving for complete generality-especially where 
this would result in excessive algebraic complexity. Although single-particle, 

... 
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xiv Preface 

fluid and kinetic approaches are introduced independently, we emphasize the 
interconnections between different descriptions of plasma behavior; particular 
phenomena which illustrate these interconnections are highlighted. Indeed, a 
unifying theme of our book is the attempt at a deeper understanding of the 
underlying physics through the presentation of multiple perspectives on the same 
physical effects. Although there is some discussion of weakly ionized gases, 
such as are used in plasma etching or occur naturally in the Earth’s ionosphere, 
our emphasis is on fully ionized plasmas, such as those encountered in many 
astrophysical settings and employed in research on controlled thermonuclear 
fusion, the field in which both of us work. The physical issues we address are, 
however, applicable to a wide range of plasma phenomena. We have included 
problems for the student, which range in difficulty from fairly straightforward 
to quite challenging; most of the problems have been used as homework in our 
course. 

Standard international (SI) units are employed throughout the book, except 
that temperatures appearing in formulae are in units of energy (i.e. joules) 
to avoid repeated writing of Boltzmann’s constant; for practical applications, 
temperatures are generally stated in electron-volts (eV). Appendices A and C 
allow the reader to convert from SI units to other units in common use. 

The student should be well-prepared in electromagnetic theory, including 
Maxwell’s equations, which are provided in SI units in Appendix B. The student 
should also have some knowledge of thermodynamics and statistical mechanics, 
including the Maxwell-Boltzmann distribution. Preparation in mathematics must 
have included vectors and vector calculus, including the Gauss and Stokes 
theorems, some familiarity with tensors or at least the underlying linear algebra, 
and complex analysis including contour integration. Appendix D contains all 
of the vector formulae that are used, while Appendix E gives expressions 
for the relevant differential operators in various coordinate systems. Higher 
transcendental functions, such as Bessel functions, are avoided. Suggestions for 
further reading are given in Appendix F. 

In addition to the regular problems, which are to be found in all chapters, 
we have provided a disk containing two graphics programs, which allow the 
student to experiment visually with mathematical models of quite complex 
plasma phenomena and which form the basis for some homework problems 
and for optional semester-long student projects. These programs are provided 
in both Macintosh’ and IBM PC-compatible format. In the first of these two 
computer programs, the reader is introduced to the relatively advanced topic of 
area-preserving maps and Hamiltonian chaos; these topics, which form another 
of the underlying themes of the book, reappear later in our discussions both 
of the magnetic islands caused by resistive tearing modes and of the nonlinear 

’ Macintosh is a registered trademark of Apple Computer, Inc. 

Copyright © 1995 IOP Publishing Ltd.



Preface xv 

phase of electron plasma waves. 
We are deeply indebted to Janet Hergenhan, who prepared the manuscript in 

L*Ts format, patiently resetting draft after draft as we reworked our arguments 
and clarified our presentations. We would also like to thank Greg Czechowicz, 
who has drawn many of the figures, John Wright, who produced the IBM-PC 
versions of our programs, and Keith Voss, who served for three years as our 
‘grader’, working all of the problems used in the course and offering numerous 
excellent suggestions on the course material. 

We are grateful to Maureen Clarke and, more recently, James Revill of 
Institute of Physics Publishing, who have suffered patiently through our many 
delays in producing a completed manuscript. 

Our own research in plasma physics and controlled fusion has been 
supported by the United States Department of Energy, Contract No. DE-AC02- 
76-CHO-3073. 

Robert J Goldston 
Paul H Rutherford 

Princeton, 1995 

Copyright © 1995 IOP Publishing Ltd.



Introduction 

After an initial Chapter, which introduces plasmas, both in the laboratory and in 
nature, and derives the defining characteristics of the plasma state, this book is 
divided into six ‘Units’. In Unit 1, the plasma is considered as an assemblage 
of charged particles, each moving independently in prescribed electromagnetic 
fields. After deriving all of the main features of the particle orbits, the topic 
of ‘adiabatic’ invariants is introduced, as well as the conditions for ‘non- 
adiabaticity’, illustrating the latter by means of the modern dynamical concepts 
of mappings and the onset of stochasticity. In Unit 2, the fluid model of a 
plasma is introduced, in which the electromagnetic fields are required to be 
self-consistent with the currents and charges in the plasma. Particular attention 
is given to demonstrating the equivalence of the particle and fluid approaches. 
In Unit 3, after an initial Chapter which describes the most important atomic 
processes that occur in a plasma, the effects of Coulomb collisions are treated 
in some detail. In Unit 4, the topic of small-amplitude waves is covered in 
both the ‘cold’ and ‘warm’ plasma approximations. The treatment of waves 
in the low-frequency branch of the spectrum leads naturally, in Unit 5 ,  to an 
analysis of three of the most important instabilities in non-spatially-uniform 
configurations: the Rayleigh-Taylor (flute), resistive tearing, and drift-wave 
instabilities. In Unit 6,  the kinetic treatment of ‘hot’ plasma phenomena is 
introduced, from which the Landau treatment of wave-particle interactions and 
associated instabilities is derived; this is then extended to the non-uniform plasma 
in the drift-kinetic approximation. 

xvii 
Copyright © 1995 IOP Publishing Ltd.



Chapter 1 

Introduction to plasmas 

1.1 WHAT IS A PLASMA? 

First and foremost, a plasma is an ionized gas. When a solid is heated sufficiently 
that the thermal motion of the atoms break the crystal lattice structure apart, 
usually a liquid is formed. When a liquid is heated enough that atoms vaporize 
off the surface faster than they recondense, a gas is formed. When a gas is heated 
enough that the atoms collide with each other and knock their electrons off in 
the process, a plasma is formed: the so-called ‘fourth state of matter’. Exactly 
when the transition between a ‘very weakly ionized gas’ and a ‘plasma’ occurs 
is largely a matter of nomenclature. The important point is that an ionized gas 
has unique properties. In most materials the dynamics of motion are determined 
by forces between near-neighbor regions of the material. In a plasma, charge 
separation between ions and electrons gives rise to electric fields, and charged- 
particle flows give rise to currents and magnetic fields. These fields result in 
‘action at a distance’, and a range of phenomena of startling complexity, of 
considerable practical utility and sometimes of great beauty. 

Irving Langmuir, the Nobel laureate who pioneered the scientific study 
of ionized gases, gave this new state of matter the name ‘plasma’. In greek 
nAaapa means ‘moldable substance’, or ‘jelly’, and indeed the mercury arc 
plasmas with which he worked tended to diffuse throughout their glass vacuum 
chambers, filling them like jelly in a mold’. 

’ We also like to imagine that Langmuir listened to the blues. Maybe he was thinking of the song 
‘Must be Jelly ’cause Jam don’t Shake Like That’, recorded by J Chalmers MacGregor and Sonny 
Skylar. This song was popular in the late 1920s, when Langmuir, Tonks and Moa-Smith were 
studying oscillations in plasmas. 

1 
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2 Introduction to plasmas 

1.2 HOW ARE PLASMAS MADE? 

A plasma is not usually made simply by heating up a container of gas. The 
problem is that for the most part a container cannot be as hot as a plasma needs 
to be in order to be ionized-or the container itself would vaporize and become 
plasma as well. 

Typically, in the laboratory, a small amount of gas is heated and ionized 
by driving an electric current through it, or by shining radio waves into it. 
Either the thermal capacity of the container is used to keep it from getting hot 
enough to melt-let alone ionizeduring a short heating pulse, or the container 
is actively cooled (for example with water) for longer-pulse operation. Generally, 
these means of plasma formation give energy to free electrons in the plasma 
directly, and then electron-atom collisions liberate more electrons, and the 
process cascades until the desired degree of ionization is achieved. Sometimes 
the electrons end up quite a bit hotter than the ions, since the electrons carry the 
electrical current or absorb the radio waves. 

1.3 WHAT ARE PLASMAS USED FOR? 

There are all sorts of uses for plasmas. To give one example, if we want 
to make a short-wavelength laser we need to generate a population inversion in 
highly excited atomic states. Generally, gas lasers are ‘pumped’ into their lasing 
states by driving an electric current through the gas, and using electron-atom 
collisions to excite the atoms. X-ray lasers depend on collisional excitation 
of more energetic states of partially ionized atoms in a plasma. Sometimes a 
magnetic field is used to hold the plasma together long enough to create the 
highly ionized states. 

A whole field of ‘plasma chemistry’ exists where the chemical processes 
that can be accessed through highly excited atomic states are exploited. Plasma 
etching and deposition in semiconductor technology is a very important related 
enterprise. Plasmas used for these purposes are sometimes called ‘process 
plasmas’. 

Perhaps the most exciting application of plasmas such as the ones we 
will be studying is the production of power from thermonuclear fusion. A 
deuterium ion and a tritium ion which collide with energy in the range of tens 
of keV have a significant probability of fusing, and producing an alpha particle 
(helium nucleus) and a neutron, with 17.6MeV of excess energy (alpha particle - 3.5 MeV, neutron - 14.1 MeV). A promising way to access this energy is 
to produce a plasma with a density in the range 1020m-3 and average particle 
energies of tens of keV. The characteristic time for the thermal energy contained 
within such a plasma to escape to the surrounding material surfaces must exceed 
about five seconds, in order that the power produced in alpha particles can 

Copyright © 1995 IOP Publishing Ltd.



Electron currentjlow in a vacuum tube 3 

sustain the temperature of the plasma. This is not a simple requirement to meet, 
since electrons within a fusion plasma travel at velocities of N lo8 m s-l, while 
a fusion device must have a characteristic size of - 2m,  in order to be an 
economic power source. We will learn how magnetic fields are used to contain 
a hot plasma. 

The goal of producing a plentiful and environmentally benign energy source 
is still decades away, but at the present writing fusion power levels of 2- 
10 MW have been produced in deuterium-tritium plasmas with temperatures 
of 2040 keV and energy confinement times of 0.25-1 s. This compares with 
power levels in the 10 mW range that were produced in deuterium plasmas with 
temperatures of - 1 keV and energy confinement times of N 5ms in the early 
1970s. It is the quest for a limitless energy source from controlled thermonuclear 
fusion which has been the strongest impetus driving the development of the 
physics of hot plasmas. 

1.4 ELECTRON CURRENT FLOW IN A VACUUM TUBE 

Let us look more closely now at how a plasma is made with a dc electric current. 
Consider a vacuum tube (not filled with gas), with a simple planar electrode 
structure, as shown in Figure 1.1. Imagine that the cathode is sufficiently heated 
that copious electrons are boiling off of its surface, and (in the absence of an 
applied electric field) returning again. Now imagine we apply a potential to 
draw some of the electrons to the anode. First, let us look at the equation of 
motion for the electrons: 

where me is the electron mass (9.1 x kg), Ve is the vector electron velocity 
(m s-'), e is the unit charge (1.6 x C), E is the vector electric field (V m-I), 
and 4 is the electrical potential (V). To derive energy conservation, we take the 
dot product of both sides with v,: 

dv, duz 
dt dt 

meve - - - - Tm,- = eve - V4. 

The total (or convective) derivative, moving with the particle, is defined by 

(1.3) 

Thus the total (convective) time derivative of the electric potential, 4, moving 
with the electron, can be viewed as being made up of a part having to do with 
the potential changing in time at a fixed location (the partial derivative; alar) ,  
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4 Introduction to plasmas 

plus a part having to do with the changing location at which we must evaluate 
4. Since in this case we are considering a steady-state electric field, the partial 
(non-convective) time derivatives are zero. Thus we have 

or, moving along the trajectory of an electron, 

Cathode (-) 

Vacuum Boundary - 
Figure 1.1. Vacuum-tube geometry for a hot-cathode Child-Langmuir calculation. 

Equation (1.5) gives us some important information about the electron 
velocity in the inter-electrode space of our vacuum tube. If for simplicity we 
assign Cp = 0 to the cathode (since the offset to Cp can be chosen arbitrarily), and 
negligibly small energy to the random ‘boiling’ energy of the electrons near the 
cathode, then the constant on the right-hand side of equation (1.5) can be taken 
to be zero, and 

112 
v e % ( ? )  . 

Note that, in this case, ue is not a random thermal velocity, but rather a directed 
flow of the electrons-the individual velocities of the electrons and the average 
velocity of the electron ‘fluid’ are the same. As a consequence of this ‘fluid’ 
velocity of the electrons, there is a net current density j (amperes/meter2) 
-neev, flowing between the two electrodes, where ne is the number density 
of electrons-the electron ‘count’ per cubic meter. In order to understand this 
current, it is helpful to think of a differential cube, as shown in Figure 1.2, 
with edges of length dl, volume (dl)3, and total electron count in the cube of 
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Electron currentflow in a vacuum tube 5 

ne(dZ)3. Imagine that the electron velocity is directed so that the contents are 
flowing out of one face of the cube (see Figure 1.2). If the fluid is moving 
at ue (meters/second), the cube of electrons is emptied out across that face in 
time dl/u, seconds. Thus, ene(dZ)3 units of charge cross (d1)2 square meters of 
surface in dZ/u, seconds-the current density is thus ene(dZ)3/[(dZ/~,)(dZ)2] = 
neeue (coulombs/second . meter2, i.e. amperedmete?), as we stated above. 

flux - 

Figure 1.2. Geometry for interpreting j = -n,ev,. 

If we now consider the integral of this particle current over the surface area 
of a given volume, we have the total flow of particles out of the volume per 
second, and so the time derivative of the total number of particles in a given 
volume of our vacuum tube is given by 

- a Ne = - / n , v e . d S = O  
a t  

where Ne is the total number of particles in a volume, and dS is an element of 
area of its surface. Here we assume that there are no sources or sinks of electrons 
within the volume; by setting the result to zero we are positing a steady-state 
condition. By Gauss’s theorem, this can be expressed in differential notation as 

Poisson’s equation is of course 

V * ( E o V ~ )  = ene (1.9) 

where E O ,  the permittivity of free space, is 8.85 x CV-’ m-I 

Copyright © 1995 IOP Publishing Ltd.



6 Introduction to plasmas 

The complete set of equations we need to solve in order to understand the 
current flow in our evacuated tube is then made up of equations (1.6), (leg), 
and (1.9). Before we go on to solve these equations, we can immediately see a 
useful overall scaling relation. If we imagine taking any valid solution of this 
set of equations, and scaling 4 by a factor a everywhere, then equation (1.9) 
tells us that ne must scale by the same factor a. Equation (1.6) says that v, 
must scale everywhere by all2. Equation (1.8) is also satisfied by this result, 
since neve is scaled everywhere equally by a3I2. In the conditions we have been 
describing, with plenty of electrons boiling off the cathode (so there is no limit 
to the source of electrons at the boundary of our problem), the total current in 
the tube scales as 43/2. This is called the Child-Langmuir law. 

The condition we are considering is called space-charge-limited current 
flow. If too few electrons are available from the cathode, the current can fall 
below the Child-Langmuir law. It is then called emission-limited current flow. 
For the specific case of planar electrodes, with a gap smaller than the typical 
electrode dimensions, we can approximate the situation using one-dimensional 
versions of equations (1.8) and (1.9): 

-n,ev, = j = constant (1.10) 

and 
(60:) = en,. 

Substituting equation (1.6), we have 

( 1 . 1 1 )  

(1.12) 

We can find a solution to this nonlinear equation simply by assuming that 4 a xp, 
where ,!3 is some constant power. Looking at the powers of x that occur on each 
side, we come to the conclusion that 

,9 - 2 =  -812 or ,!3 =4/3. (1.13) 

So now we can assume that 4 = Ax4I3 which, when substituted into equation 
(1.12), gives 

or 

m 112 

2e A 
roA(4/3)(1/3) = -j (’) (1.14) 

(1.15) 

This solution is appropriate for our conditions, where we have taken the potential 
to be zero at the cathode, and since so many electrons are ‘boiling’ around the 
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cathode, we have assumed that negligible electric field strength is required to 
extract electrons from this region. Thus we have chosen the solution that has 
d4/dx = 0 where 4 = 0, i.e. at x = 0. Let us now make the last step of deriving 
the current-voltage characteristics of our vacuum tube. At x = L (where L is 
the inter-electrode spacing), let the potential be V volts. Then we can solve 
equation (1.15) for the current density: 

(1.16) 

Finally, let us evaluate the performance of a specific configuration. Let us take 
a fairly large tube: an inter-electrode spacing of 0.01 m, and an electrode area 
of 0.05 m x 0.20m = 0.01 m2, For a voltage drop of 50V, we get a current 
drain of 8.3 A m-2, or only 83 mA-we need much larger electric fields to draw 
significant power in a vacuum tube. The cloud of electrons at a density of about 
2 x lOI3 m-3 impedes the flow of current rather effectively. For perspective, 
note that a tungsten cathode of this area can provide an emission current of 
hundreds of amperes. 

1.5 THE ARC DISCHARGE 

We have now in our vacuum tube a population of electrons with energies 
up to 50eV. Let us imagine introducing gas at a pressure of - 1 Pa (about 

of an atmosphere). The electrons emitted from the cathode will collide 
with the gas molecules, transferring momentum and energy efficiently to the 
bound electrons within these gas molecules. Since typical binding energies 
of outer-shell electrons are in the few eV range, these collisions have a good 
probability of ionizing the gas, resulting in more free electrons. The ‘secondary’ 
electrons created in this way are then heated by collisions with the incoming 
primary electrons from the hot cathode, and cause further ionizations themselves. 
Eventually the ions and electrons come into thermal equilibrium with each other 
at temperatures corresponding to particle energies in the range of 2eV, in the 
plasma generated in such an ‘arc’ discharge. Since most of the electrons are 
now thermalized-not monoenergetic as in the Child-Langmuir problem-they 
have a range of velocities. The energy of some of the secondary electrons, as 
well as that of the primaries, is high enough to continue to cause ionization. 
This continual ionization process balances the loss of ions which drift out of 
the plasma and recombine with electrons at the cathode or on the walls of the 
discharge chamber, and the system comes into steady state. Ion and electron 
densities in the range of 10l8 m-3 are easily obtained in such a system. 

Matters have changed dramatically from the original Child-Langmuir 
problem. The electron density has risen by five orders of magnitude, but 
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nonetheless the space-charge effect impeding the flow of the electron current 
is greatly reduced. The presence of the plasma, which is an excellent conductor 
of electricity, greatly reduces the potential gradient in most of the inter-electrode 
space. Only in the region close to the cathode are the neutralizing ions absent- 
because there they are rapidly drawn into the cathode by its negative potential. 
Almost all of the potential drop occurs then across this narrow ‘sheath’ in front 
of the cathode. If we return to equation (1.16), we see that the current extracted 
from the cathode must then increase by about the ratio (,!,/As)*, where As is the 
width of the cathode sheath. 

The current-voltage characteristic of an arc plasma is very different from 
the Child-Langmuir relation: indeed in a certain sense its resistance is negative. 
The external circuit driving the arc must include a resistive element as well as a 
voltage source. If the resistance of this element is reduced, allowing more current 
to flow through the arc, the plasma density increases due to the increased input 
power, the cathode sheath narrows due to the higher plasma density, and the 
voltage drop across the arc falls! Of course even though the voltage decreases 
with rising current, the input power, ZV, increases. This nonetheless strange 
situation pertains up to the point where the full electron emission from the 
cathode is drawn into the arc. The voltage drop at this point might be 10-20V 
in our case, the current hundreds of amperes, and the input power would be 
thousands of watts. If the current is raised further the arc makes the transition 
from space-charge-limited to emission-limited, and the voltage across the arc 
rises with rising current, since a higher voltage is needed to pull ions into the 
cathode. 

Thus, as we can see, by introducing gas-and therefore plasma-into the 
problem, we have created a very different situation. From an engineering point 
of view, we now have to consider how to handle kilowatts of heat outflow from 
a small volume. From a physics point of view, it is interesting now to try to 
understand the behavior of the new state of matter we have just created. 

Of course we do not always have to make a plasma in order to study one. 
The Sun is a plasma; so are the Van Allen radiation belts surrounding the Earth. 
The solar wind is a streaming plasma that fills the solar system. These plasmas in 
our solar system provide many unsolved mysteries. How is the Sun’s magnetic 
field generated, and why does it flip every eleven years? How is the solar corona 
heated to temperatures greater than the surface temperature of the Sun? What 
causes the magnetic storms that result in a rain of energetic particles into the 
Earth’s atmosphere, and disturbances in the Earth’s magnetic field? Outside of 
the solar system there are also many plasma-related topics. What is the role of 
magnetic fields in galactic dynamics? The signals from pulsars are thought to be 
synchrotron radiation from rotating, highly magnetized neutron stars. What can 
we learn from these signals about the atmospheres of neutron stars and about 
the interstellar medium? All of these are very active areas of research. 
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Some typical parameters of naturally occurring and laboratory plasmas 
are given in Table 1.1. Their density and temperature parameter regimes are 
illustrated in Figure 1.3. We see that the plasma state spans enormous ranges in 
scale-length, density of particles and temperature. 

1.6 THERMAL DISTRIBUTION OF VELOCITIES IN A PLASMA 

If we have a plasma in some form of near-equilibrium, i.e. where the particles 
collide with each other frequently compared to the characteristic time-scale 
over which energy and particles are replaced, it is reasonable to expect the 
laws of equilibrium statistical mechanics to give a good approximation to the 
distribution of velocities of the particles. We will assume for the time being that 
the distribution with respect to space is uniform. 
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Table 1.1. Qpical parameters of naturally occurring and laboratory plasmas. 

Length Particle Electron Magnetic 
scale density temperature field 
(m) (m-? (eV) (7) 

Interstellar gas 10'6 106 1 10-lO 
Solar wind IO"J 107 10 10-8 
Van Allen belts lo6 109 102 10-6 
Earth's ionosphere IO5 IO" 10-1 3 x 10-5 
Solar corona 108 1013 1 02 10-9 
Gas discharges 10-2 1018 2 
Process plasmas IO-' IOLs  102 10-1 
Fusion experiment 1 1019-102(~ 103-1 04 5 
Fusion reactor 2 102" 1 04 5 

- 

Consider any one specific particle, labeled ' r ' ,  in the plasma as a 
distinguishable microsystem. We will ignore quantum-mechanical effects 
that make distinguishability invalid, and consider only particles that behave 
classically. 

Problem 1.1 : What are some plasma parameters (electron temperatures 
and densities) where quantum-mechanical effects might be important? 

We now ask the question: what is the probability Pr of finding our specific 
particle in any one particular state of energy W,? The particle has to have gained 
this energy W, from its interaction with the others, so the remaining thermal 
'bath' of particles must have energy W,, - W,, where W,, is the total thermal 
energy in the plasma. If the particles have collided with each other enough, 
we can expect the fundamental theorem of statistical mechanics to hold. This 
theorem amounts to saying that we know as little as could possibly be known 
about any given thermal system: all possible accessible microstates of the total 
system are populated with equal probability. Thus in order to determine the 
probability Pr of any given state of our specific particle, we need only evaluate 
the number of microstates accessible to the 'bath' with energy W,,, - W,.  Let us 
define S2 as the number of microstates accessible to the bath with total energy 
W .  Then, for any thermal system statistical mechanics defines its temperature, 
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T. bv the relation 
1 kdln52 dS 
T dW dW 

- - - - (1.17) 

where k is the Boltzmann constant, and the entropy, S, of the system is defined 
by S k lnS2. Since the energy of our specific particle is small compared to the 
energy of the bath, we can approximate the number of microstates available to 
the system by 

ln ~ I w , ~ - w ,  = In ~ I W , ~ ,  - Wr/kT. (1.18) 
Taking the exponential of both sides, we obtain 

~Iw,,,,-w, = 52 IW,, exp(-Wr/kT) (1.19) 

which is just the result we are seeking. The relative probability P, of the particle 
having energy W, is given by the famous 'Boltzmann factor', exp(-Wr/kT), 
since 52 evaluated at W,,, is not a function of Wr. 

If we ignore, for the time being, any potential energy associated with the 
position of the particle, we have the result that the relative probability that 
the velocity of our particle lies in some range of velocities du,du,du, centered 
around velocity (U,, U,, U,) is given by 

d v, du, du, (1.20) 

where m is the mass of the particle. Since there was nothing special about 
our particular particle (which was chosen arbitrarily from the bath), this same 
relative probability distribution is appropriate for all the particles in the bath. 
It is convenient to define a 'phase-space density of particles', f (x, v), which 
gives the number of particles per unit of dxdydzdv,du,du,, the volume element 
of six-dimensional phase space. The three-dimensional integral of f over all 
velocities, v, gives the number density of particles per unit volume of ordinary 
physical space, which we denote n. The units of f are given by 

(1.21) 

For a Maxwell-Boltzmann distribution, f is simply the Boltzmann factor 
with an appropriate normalization. If we carry through the necessary integral 
over all v to ensure that 

[ f l  = m-3(m S-ll-3 = s3 m-6. 

f dv,dv,du, = n (1.22) s 
thereby obtaining the correct normalizing factor, the result is that the Maxwell- 
Boltzmann (or Maxwellian) distribution function is given by 

(1.23) 
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where the thermal velocity, ut,  is given by 

ut ( k T / m > ' l 2 .  (1.24) 

Equation (1.24) is the last time that we will show the Boltzmann constant, 
k .  Henceforth we will drop k ,  writing for example simply ut = (T /m) ' I2 .  The 
Boltzmann constant k has the role of converting temperature from degrees Kelvin 
to units of energy (see equation (1.17)). In plasma physics, we generally find 
it more convenient to express temperature directly in energy units. In practical 
applications, we tend to discuss the temperature in units of electron-volts (eV), 
the kinetic energy an electron gains in free-fall down a potential of 1 V, but the 
equations we write, such as ut = (T/m) '12  above, are in SI units for velocity 
and mass, so T is expressed in joules. Since when a charge of one coulomb 
falls down a potential of one volt, the kinetic energy gain is by definition one 
joule, the energy in an electron-volt, expressed in joules, is numerically equal 
to the electron charge expressed in coulombs. Rather than refer to a plasma as 
having temperature 1 1  600 K, we say its temperature is 1 eV, and evaluate T in 
SI units as 1.60 x J (see Appendix C). Often, however, we will encounter 
the expressions ( T / e )  or ( W / e )  in plasma physics equations. When evaluating 
such expressions, it is even more convenient to insert the temperature, T ,  or 
particle energy, W ,  in units of eV, for the whole expression. An eV divided by 
e is a V-a perfectly good unit in SI! In other words, the expression ( W / e )  for 
a 10 keV particle becomes in SI lo4 V. Remember, however, that the average 
kinetic energy of a particle in a Maxwellian distribution is ( W )  = (3 /2 )kT-  
or, in our nomenclature, ( W )  = ( 3 / 2 ) T .  This is because the distribution 
contains three degrees of freedom per particle, corresponding to the three velocity 
components ( u x ,  u y ,  U,). From statistical mechanics we know that the typical 
energy associated with each degree of freedom is T / 2 .  

One important use of the velocity-space distribution function f is to find 
the value of some quantity averaged over the distribution. For any quantity X, 
the local velocity-space average of X, which we denote (X), is given by 

(1.25) 

In particular, if we take X = W = mu2/2 ,  we find, for a Maxwellian distribution, 
that (W), = ( 3 / 2 ) T ,  as we discussed above. If we are interested in the average 
energy of motion that a particle has in any one direction, say the z direction, 
W, = mu2/2, we find ( W Z ) ,  = T / 2  for a Maxwellian distribution function. The 
average of U? is simply T l m ,  or U: as defined by equation (1.24). Thus the 
quantity ut, as we have defined it, is the 'root-mean-square' of the velocities in 
any one direction. (Beware that some researchers use an alternative definition, 
namely ut (2T/m)'12.)  
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In some cases, a plasma has an anisotropic distribution function, which 
can be approximated as a ‘bi-Maxwellian’ with a different temperature along 
the magnetic field than across the field. This can happen in the laboratory or in 
natural plasmas due to forms of heating that add perpendicular or parallel energy 
preferentially to the particles, or loss processes that take out one or the other 
form of energy rapidly compared to collisions. In this case, taking the direction 
of the magnetic field to be the z direction, we have 

where 
u , ~  (TL/m)’/2 utll = (?l/m)’/* (1.27) 

and (WZ), = (Wll), = m(ui) , /2  = TIf/2, because the parallel direction 
represents one degree of freedom. Similarly, defining U: = U,’ + U;, (WX), = 
(WY), = m(u:),/4 = T L / ~ ,  so (WL)” = (WX), + (W,), = TL, because the 
perpendicular direction represents two degrees of freedom. In an isotropic 
plasma, with = TL = T, (WL), = ~ ( W I I ) , .  

Problem 1.2: Sketch a three-dimensional plot of an anisotropic 
distribution function f ,  with = 2TL. Show that Sfd3u = n for f given 
by equation (1.26). 

1.7 DEBYE SHIELDING 

We have now done some very basic statistical mechanics to understand the 
Maxwell-Boltzmann distribution function of a plasma. Maxwell-Boltzmann 
statistics arise repeatedly in plasma physics, and the next example is fundamental 
to the very definition of a plasma. Consider a charge artificially immersed 
in a plasma which is in thermodynamic equilibrium. The equilibrium state 
implies that the plasma must be changing very slowly compared to the particle 
collision time, and that there is no significant temperature variation over distances 
comparable to a collision mean-free path. For present purposes, we will assume 
that the plasma is ‘isothermal’-at a constant temperature, independent of 
position. Once again, consider the particle distribution function to be a heat 
‘bath’ at a given temperature. And again consider a single specific particle, but 
now allow the particle to have both kinetic and potential energy: 

W, = mv2/2 + q4 (1.28) 
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where q is the charge of the particle ( -e  for an electron, + Ze for an ion of 
charge Z), and so the Boltzmann factor becomes 

The relative probability of a given energy of the particle now depends 
on position implicitly, through @. The point worth noting is that this 
same Boltzmann factor (with a constant normalization in front-independent 
of position) gives the relative probability and therefore the relative particle 
distribution function over the whole volume in thermal equilibrium. If we 
integrate the distribution function over velocity space to obtain a relative local 
particle density, we find that the spatial dependence that remains comes only 
from the Boltzmann factor: 

n a exp(-q@/T). (1.30) 

This means physically that electrons will tend to gather near a positive 
charge in a plasma, and therefore they will tend to shield out the electric field 
from the charge, preventing the field from penetrating into the plasma. By the 
same token, ions will have the opposite tendency, to ‘shy away from’ a positive 
charge, and gather near a negative one. 

A fundamental property of a plasma is the distance over which the field 
from such a charge is shielded out. Indeed, it is considered one of two formal 
defining characteristics of a plasma that this shielding length (called the Debye 
length, AD, which was first calculated in the theory of electrolytes by Debye and 
Huckel in 1923) be much smaller than the plasma size. The second defining 
characteristic of a plasma is that there should be many particles within a Debye 
sphere, which has volume (4/3)nAh, with the consequence that the statistical 
treatment of Debye shielding is valid. 

It is fairly easy to calculate the Debye length for an idealized system. Let 
us suppose that we have immersed a planar charge in a plasma. Assume the 
plasma ions have charge Ze, and far from the electrode the ion and electron 
densities are ne = Zni nbo. This boundary condition at infinity is required in 
order to provide charge neutrality over the bulk of the plasma, so as to keep the 
electric field, E, from building up indefinitely. Let us also choose to set 4 = 0 
at infinity for simplicity. Given our assumptions at infinity, from the Boltzmann 
factor we know that 

(1.31) 

We are allowing T, # F ,  for generality, but both Ti and T, are spatially 
homogeneous, i.e. the electrons are in thermal equilibrium among themselves, 
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and the ions are in thermal equilibrium among themselves, but the ions and 
electrons are not necessarily in thermal equilibrium with each other. At first 
sight this may seem unphysical, but it happens often in plasmas because electron- 
electron energy transfer by collisions and ion-ion energy transfer by collisions 
are both faster than collisional electron-ion energy transfer, due to the large 
mass discrepancy. We will study this in Unit 3. For the time being, it might 
be helpful to think about the example of collisional equilibration in a system of 
ping-pong balls and bumper-cars. At first the ping-pong balls and bumper-cars 
will each, separately, come to thermal equilibrium, because their self-collisions 
are efficient at transferring energy as well as momentum. It will take longer for 
the balls and cars to come into thermal equilibrium with each other, because the 
transfer of energy in their collisions is weak. 

The Poisson equation for our one-dimensional planar geometry is 

d24 
60- = e(ne - Zni) = ene,[exp(e4/Te) - exp(-eZ4/Ti)] (1.32) 

where EO is again the permittivity of free space. It is difficult to solve this 
equation in the region near the electrode, where e+/ T may be large, but we can 
obtain a qualitative sense of the solution by assuming that e#/T is small, and 
expanding the exponential in e@/ T. Equation (1.32) then becomes 

d x 2  

i.e. 

(1.33) 

(1.34) 

which can be solved to obtain the characteristic exponential decay length which 
we are seeking: 

4 a exp(-x/AD) (1.35) 
where 

/ \ 1/2 

(1.36) 

Often 'the ion term is not included in the definition of the Debye length, 
giving AD (roTe/nee2)'/2. For typical laboratory plasmas, the Debye length 
is indeed small. For a 3 eV electric arc discharge at a density of IOl9 mP3, we 
find that AD M 3 x m. The number of particles in the Debye sphere for this 
case is about one thousand, making our statistical treatment reasonably valid. 

Problem 1.3: Derive the equivalent of equation (1.34) in spherical 
coordinates (i.e. for the case of a point charge immersed in a plasma). 
Show that the solution is 4 a exp(-r/kD)/r. 
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Problem 1.4: The typical distance between two electrons in a plasma is 
of order Show that the potential energy associated with bringing 
two electrons this close together is much less than their typical kinetic 
energy, so long as n& >> 1. 

1.8 MATERIAL PROBES IN A PLASMA 

In our discussion of Debye shielding, we considered the response of an 
equilibrium plasma to a localized charge. We did not, however, consider the 
possibility of collisions between plasma particles and whatever was carrying the 
charge. The situation is very different in the case of a real material probe inserted 
into a plasma. Such a probe intercepts particle trajectories, resulting in violation 
of the assumption of equilibrium in its near vicinity. If the probe is biased 
negative with respect to the plasma, with potential # << -Te/e, few electron 
trajectories are intercepted, since most electrons cannot reach the probe, so the 
electrons will be close to equilibrium and maintain ne - n,,exp(e#/T). A 
sheath region will develop around the probe, whose width scales with the Debye 
length, as in the case we just considered, because the electron population will 
be exponentially depleted close to the negatively biased probe. Ions, however, 
will be accelerated across the sheath, and into the material electrode. In the 
case of cold ions, T << T,, the calculation of the ion density reduces to the 
ion analog of the Child-Langmuir calculation we performed at the beginning 
of this Chapter. While the electron density falls exponentially in the vicinity 
of a negatively biased material probe, the ion density is depressed as well, but 
more weakly, as (see equation (1.12)). The ion density, in this case, is 
not enhanced by the negative bias, due to the depleting collisions with the probe 
surface. The ion current density to a negatively biased probe in a Z = 1 plasma 
is given approximately by ji - niooeCsr where C, is the so-called 'ion sound 
speed' C, SE [(T, + T)/n~j ] ' /~ ,  which shows up in situations like this where both 
ion and electron temperatures contribute to ion motion, and njm is the ion density 
far from the probe. (We will encounter C, again when we study ion acoustic 
waves in Unit 4.) This ion current is called the 'ion saturation current', jsat,i, 

because the ion current saturates at this value as the probe bias is driven further 
negative. The sheath width grows as the potential becomes more negative, in 
just such a way as to keep the ion Child-Langmuir current constant at j sa , i .  

Problem 1.5: Perform an ion Child-Langmuir calculation to model the 
plasma sheath at a material probe. Assume an inter-electrode spacing 
of AD E (roTe/n,e2)1/2 to model the sheath width, and a potential drop 
of e 4  = -Te. Take Ti = 0. You may assume that the electron density is 
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negligible in the sheath region, to make the ion Child-Langmuir calculation 
valid. Determine the ion current density, j, across this model sheath. 

The electron current to a material probe depends exponentially on the probe 
potential, since the electron density at the probe face varies exponentially with 
e#/ T, and the particle flux from a Maxwell-Boltzmann electron distribution into 
a material wall is given by r [particless-' m-'I = n e ( 8 T e / ~ m e ) ' / '  - neut,e. A 
potential of e# - 3.3Te is required to reduce the electron current to the probe 
to equal the ion current, in a hydrogen plasma. This is called the 'floating' 
potential, because the potential of a probe that is not allowed to draw any net 
current will 'float' to this value. Such a strong potential is required, of course, 
because Vt,e  N CS(mi/me)'/', SO the electron current in the absence of negative 
probe bias is much larger in absolute magnitude than jsat,i. 
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Chapter 2 

Particle drifts in uniform fields 

Many plasmas are immersed in externally imposed magnetic andor electric 
fields. All plasmas have the potential to generate their own electromagnetic 
fields as well. Thus, as a first step towards understanding plasma dynamics, 
in this Chapter we begin by considering the behavior of charged plasmas in 
uniform fields, thus constructing the most fundamental aspects of a magnetized 
plasma. We also carefully introduce some of the mathematical formalisms that 
we will use throughout the book. 

2.1 GYRO-MOTION 

In the presence of a uniform magnetic field, the equation of motion of a charged 
particle is given by 

(2.1) 

where q is the (signed) charge of the particle. Taking 2 to be the direction of B 
(i.e. B = B2 or we sometimes say 6 BIB which, in this case, is the same as 
L ) ,  we have 

mv = qv x B 

v, = q u y B / m  
vy = - q v , B / m  
U, = 0. 

For a specific trajectory, we also need initial conditions at t = 0: these we take 
to be x = X i ,  y = yi, z = ~ i ,  uX = Uxi, uY = uYi,  U, = u,i. If we take the time 
derivative of both sides of equation (2.2), we can use equation (2.3) to substitute 
for vy, and obtain 

d2 U, 
dt2 (2.5) 
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If we define o, E ( q ( B / m ,  it is clear that the solution of this equation is 

U, = Acos(o,t) + Bsin(w,t) (2.6) 

where A and B are integration constants. Evidently w,, called the ‘cyclotron 
frequency’ (also sometimes called the ‘Larmor frequency’ or the ‘gyro- 
frequency’), is going to prove to be a very important quantity in a magnetized 
plasma. It is convenient to use complex-variable notation, and rewrite 
equation (2.6) as 

U, = Re[Aexp(io,t)] - Re[Biexp(iw,t)] 
= Re [(A - iB)exp(io,t)] = Re { [u~exp(iS)] exp(io,t)} 
= Re [ ulexp(iw,t + is)] (2.7) 

where Re indicates the real part of the subsequent expression, V I  is an absolute 
speed perpendicular to B, and 6 is a phase angle. The quantities u l  and 6 have 
become our new integration constants. (We will now drop the Re in this notation, 
since it is clear that we are dealing with real quantities.) In this formulation, uL 
and S are chosen to match the initial velocity conditions. Equation (2.2) gives 

uy = i((ql/q)uLexp(iw,t + is) = fiulexp(io,t + is) (2.8) 

where f evidently indicates the sign of q.  From the initial conditions, we now 
can say that UL = + u:i)1/2 and S = ~tan-l(uyi/u,i) ,  where the upper 
sign is for positive q. Note that U, and uy are 90” out of phase, so we have 
circular motion in the plane perpendicular to B. Equation (2.4) indicates that 
U, is a constant, and so the motion constitutes a helix along B. If we integrate 
equations (2.4), (2.7) and (2.8) in time, we obtain 

x = xi - i(ul/w,)[exp(iw,t + is) - exp(iS)] 
y = yi f (ul/o,)[exp(iw,t + is) - exp(iS)] (2.9) 
Z = Zi + UZif 

where the integration constants have been chosen to match the initial position 
conditions. 

Clearly, then, another fundamental quantity in a magnetized plasma is the 
length rL E ( u l / o c ) ,  called the ‘Larmor radius’ or ‘gyro-radius’. This is the 
radius of the helix described by the particle as it travels along the magnetic 
field line. Figure 2.1 shows an electron and a proton gyro-orbit, drawn more 
or less to scale, for equal particle energies W = mu:/2. The ratio of the two 
gyro-radii is the square-root of the ratio of the proton mass to the electron mass, 
J1837 x 43. Note that UL is proportional to ( W / m ) ’ / 2 ,  and oc is proportional 
to l / m ,  so rL is proportional to 
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Electron 

4 

Figure 2.1. Ion and electron gyro-motion in a magnetic field. For fixed energy, the ion’s 
gyro-orbit is much larger than the electron’s. ‘X’ indicates that the magnetic field faces 
into the page. 

The centers of the gyro-orbits are referred to as their ‘guiding centers’, 
or ‘gyro-centers’, and give a measure of a particle’s average location during 
a gyro-orbit. Averaging equation (2.9) over a gyro-period, the guiding-center 
position for the particular initial values considered here is seen to be given by 

(2.10) 

so that the particle’s position described in terms of its guiding-center position is 
given by 

x = xgc - i(ul/o,)exp(io,t + is) 

xgc  = xi + i(ul/w,)exp(iJ) Y ~ C  = Yi F (ul/oc)exp(iJ) 

y = ysc f i(ul/wc)exp(iwct + is) (2.1 1) 

z = zgc = Zi + UZit. 
Thus we can think of particle gyro-centers as sliding along magnetic field lines, 
like beads on a wire. Note that electrons and ions rotate around the field lines in 
opposite directions, with the upper sign giving the phase for positively charged 
particles. If you point your two thumbs along the direction of the magnetic field, 
the fingers of your left hand curl in the direction of rotation of positively charged 
ions, while those of your right hand do the same for electrons. These directions 
of rotation are both such that the tiny perturbation of the magnetic field inside 
the particle orbits, due to the current represented by the particle motion, acts to 
reduce the ambient magnetic field. High-pressure plasmas reduce the externally 
imposed magnetic field through the superposition of this ‘diamagnetic’ effect 
from a high density of energetic particles. 

The ion and electron Larmor radii and gyro-frequencies provide 
fundamental space-scales and time-scales in a magnetized plasma. Phenomena 
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which occur on space-scales much smaller than the gyro-radius, or on time- 
scales much faster than a gyro-period, are often insensitive to the presence of 
the magnetic field, and can be described using equations appropriate for an 
unmagnetized plasma. In the opposite limit of large space-scales and long time- 
scales, gyro-motion is crucial to plasma behavior, and generates some surprising 
phenomena-somewhat akin to the behavior of a gyroscope which responds 
to any attempt to change the orientation of its axis of rotation by moving at 
90" to the applied torque. Some plasma phenomena, especially in the Earth's 
magnetosphere, can occur at intermediate space-scales and time-scales, such 
that the electrons can be considered magnetized, while the ions are essentially 
unmagnetized. In our discussion of particle motion, however, we will generally 
consider space-scales much greater than a gyro-radius, and time-scales much 
longer than a gyro-period of either species, unless we specifically state otherwise. 

Problem 2.1 : Look through articles in Physical Review Letters, Plasma 
Physics, Physics of Fluids B (recently renamed Physics of Plasmas) or in 
other journals over recent years and find at least one article each about 
laboratory, solar or terrestrial, and astrophysical plasmas immersed in 
magnetic fields. Give the reference and a few-sentence description of 
each article. For the plasmas you find described, evaluate the ion and 
electron gyro-radii and the Debye radius (ignoring ion shielding), insofar 
as the authors give you the required information. Compare these to the 
system sizes. Calculate how many particles are within a Debye sphere 
for each case. Evaluate the ion and electron cyclotron frequencies and 
compare to the evolution time-scale of the overall plasma. Which of 
these systems are really plasmas? Which of these are magnetized versus 
unmagnetized plasmas? 

2.2 UNIFORM E FIELD AND UNIFORM B FIELD: E x B DRIFT 

Starting from the configuration we have just discussed, with B = BZ, let us 
add a uniform electric field E. We will assume that both the electric and the 
magnetic field are time-independent. The non-relativistic equation of motion 
becomes 

(2.12) 
Now we will employ a mathematical transformation, which we will justify later, 
in order to solve this equation expeditiously. Let us define a velocity U by 

U = v - (E x B ) / B 2 .  (2.13) 

In other words, U is the particle velocity that we would see in a frame moving 
at velocity (E x B)/B2. Since E and B are time-independent, we have v = U 

mv = q(E + v x B). 
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and so, substituting for v in terms of U, equation (2.12) for U becomes 

mu = q [ E + u  x B +  (E x B) x B/B2]. (2.14) 

Now, we use the vector identity 

(A x B) x C = (A - C)B - (B * C)A (2.15) 

(see Appendix D) to obtain 

mu = q [ E + u  x B +  (E - B)B/B2 - E ]  
= q[6(E - 6) + U  x B]. (2.16) 

To obtain the equation for the velocity parallel to B, we take the dot-product of 
equation (2.16) with 6, giving 

mill = 4Ell (2.17) 

where we are defining 

U I I  = U * $  Ell =Em6 U I I  ~ v . 6 .  (2.18) 

From equation (2.13) we see that U I I  = q ,  and so the solution for U I I  is just 
free-fall in the electric field: 

U11 = (qEll/m)t + qi. (2.19) 

To obtain the equation for the velocity perpendicular to B, we multiply both 
sides of equation (2.17) by 6, and subtract from equation (2.16). We obtain 

m u 1  = q u l  x B (2.20) 
,. ,. 

where UI = U - q b ,  E l  = E - Ellb and VI TV - q 6 .  
Thus, in the direction perpendicular to b, we have precisely the same 

equation for U as we had for v in the absence of an electric field, i.e. 
equation (2.11). We have found that the solution of this equation implies that 
the guiding center does not move at all perpendicular to B, and we know that it 
slides along B with velocity U I I  = U I I  as given by equation (2.19). Thus, in the 
frame moving at speed (E x B)/B2, the only guiding-center velocity we see is 
parallel to B, so in the laboratory frame we see a guiding-center velocity 

vgC = U , I ~  + (E x B)/B2 E ~116 + VE. (2.21) 

The velocity V E  E x BIB2 is called the ‘E x B drift’. It is particularly easy 
to evaluate this drift in SI units: E is in units of voltslmeter, B is evaluated in 
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units of teslas and VE results in metershecond. Notice that VE is independent of 
q ,  m, q ,  and u l .  This means that the whole plasma drifts together across the 
electric and magnetic fields with the same velocity. 

What we have actually done here is performed a simplified Lorentz 
transformation, using the B field to eliminate the E field in the moving frame, 
and so simplified the equation of motion. Of course the Lorentz transformation 
works the same for all particles, so the whole plasma vE-drifts together, relative 
to what it would have done without the E field. Since we have chosen to use a 
non-relativistic equation of motion, our Lorentz transformation is particularly 
simple. The approximation we have used is equivalent to assuming that 
y [ I  - (LJ/C)*]-'/~ M 1, or (LJIC)' << 1. 

For a more physical picture of the origin of the E x B drift without resorting 
to the Lorentz transformation, consider how the particles are accelerated by the 
electric field during part of their gyro-orbits, and are decelerated during the 
other part. The result of these accelerations and decelerations is that the radii 
of curvature of the gyro-orbits will be slightly larger on the side where the 
particles have greater kinetic energy than on the side where the particles have 
less kinetic energy, due to having climbed a potential hill. This gives rise to a 
drift perpendicular to E, as illustrated in Figure 2.2. 

E- 

o" 

Figure 2.2. Electron E x B drift motion. The half-orbit on the left-hand side is larger 
than that on the right, because the electron has gained energy from the electric field. The 
dot indicates that the magnetic field faces out of the page. 

Incidentally, in our derivation of the E x B drift, we did not have to assume 
anything about the relative size of U and I v E I .  Indeed, the whole guiding center 
formalism can be developed for the case where I V E  I is of order U (at the expense 
of a greater complexity of terms), but we will hereafter assume lvEl << U in our 
derivations. 
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2.3 GRAVITATIONAL DRIFT 

In the presence of any other simple force on the charged particles in a plasma, we 
can apply directly the results we have derived for the electric force. In particular, 
if we imagine a plasma in the Earth’s magnetic field, we might wonder what 
effect the Earth’s gravity would have on it. We can simply replace the electric 
force qE with a general force, F, in both the equation of motion and in its 
solution (e.g. in the definition of U). This gives a guiding-center drift 

VF = (F x B)/qB2 (2.22) 

or, in the case of gravity, where F = mg, 

vg = m(g x B ) / q B 2  (2.23) 

which is usually called the ‘gravitational drift’. 
Note that vg, unlike VE, depends on m and q.  The presence of gravity gives 

rise to a net current in a plasma; the ions drift one way and the electrons the 
other-the ions, which are much heavier, drift much faster. In a finite plasma, 
this current therefore gives rise to charge separation. Generally speaking, the 
actual gravitational drift vg is very small, and we introduce it mainly for later 
application of the idea of a ‘general force’ drift to the case of centrifugal force. 

It is interesting to ask why it is that a plasma ‘cloud’ above the Earth does 
not seem to fall down in the gravitational field. In fact, the gravitational drift is 
horizontal, not vertical! (Galileo, for one, might have found this disturbing.) The 
qualitative answer is that the ion and electron drifts are in opposite directions, 
and so if the plasma is finite in the horizontal direction, perpendicular to B and 
g ,  charge separation occurs, an electric field builds up (in the horizontal direction 
and perpendicular to B), and the plasma does indeed drift downwards, after all, 
due to the VE drift. To analyze this situation quantitatively-and to determine 
whether the plasma falls with acceleration g-we must first understand how a 
plasma responds to a time-varying electric field, E. We will return to this topic 
in Chapter 4. 

Problem 2.2: The ionosphere is composed mostly of a proton-electron 
plasma immersed in the Earth’s magnetic field of about 3 x 10-5T. How 
fast is the gravitational drift for each species? 
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Chapter 3 

Particle drifts in non-uniform magnetic 
fields 

In the previous Chapter, we studied particle drifts in uniform fields and developed 
the fundamental concepts of Larmor radius, gyro-frequency, and gyro-center 
motion. Now we consider magnetic field gradients both perpendicular and 
parallel to B, and curved magnetic fields. We will find gyro-center drifts across 
the magnetic field, and acceleration (or deceleration) along B. We will develop 
the concept of ‘ordering’ the drifts in the ratio of Larmor radius to gradient 
scale-length. To zeroth order, particles slide along B as before (but U I I  will now 
vary), and to first order they drift across B, but they still precisely conserve the 
sum of potential and kinetic energy at each order. 

3.1 V B  DRIFT 

We now proceed to examine particle guiding-center drifts in inhomogeneous 
magnetic fields. We will assume in all of these studies that the gyro-radius, 
rL, is much less than the typical scale-length of variation of the magnetic field. 
Thus 

(3.1) 

For example, if B has a sinusoidal variation, B c( exp(ikx), or an exponential 
variation, B 0: exp(kx), this is equivalent to saying krL << 1, where l / k  is a 
characteristic gradient scale-length for the problem. In this situation, the quantity 
krL becomes a useful ‘expansion parameter’ for studying the equations of motion 
by the method of asymptotic expansion. 

In our asymptotic expansion procedure, we will assume that the particle 
velocities can be expressed as a sum of terms 

rL lVBl << 1. 
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where the leading term is the particle's parallel velocity, qb, plus its gyro- 
motion perpendicular to B, and each successive term in the series is assumed to 
be smaller than the previous one, by approximately krL. We will be interested 
here in calculating the evolution of vo and of V I ,  and in fact at first order 
we will only need the guiding-center motion averaged over many gyro-periods. 
Substituting our form for v into the equation of motion, we will find that we 
have terms in the equation ofeach order: (krL)', (krL)' ,  (krL)2, etc. If we solve 
for VO, VI, v2, etc., so as to make the terms in the equation of each order balance 
separately, we will have an asymptotic series solution for v. This approach is 
justified by noting that, in the limit krL +. 0, terms of higher order in krL can 
never be used to balance terms of lower order, because for small enough krL, 
the higher-order terms must be negligible in comparison with the lower-order 
ones. 

We begin by considering the case where we have a perpendicular (i.e. 
perpendicular to B) gradient in the field strength, B .  For simplicity let us 
assume that B is in the z direction, and varies only with y .  (To generate this 
field, we need distributed volume currents, since V x B # 0. Such currents are 
common in plasmas, but do not affect directly our analysis of particle drifts. Of 
more importance is the fact that our model field does not violate V - B = 0.) 
We write 

(3.3) 

where ygc,i is the initial y position of the particle guiding-center, and Bgc,i is 
the value of B at ygc,i. We assume for the validity of our asymptotic expansion 
procedure that rL(dB/dy) << B.  The equations of motion in the perpendicular 
( x  and y) directions are 

Particle drifts in non-uniform magnetic fields 

dB A B = Bgc.if + (Y  - Ygc.i)-z 
dY 

mux = quy[Bgc,i + (Y  - ~gc, i ) (dB/d~)l  

muy = -qVx[Bgc.i + (Y  - ygc,i)(dB/dy)l. 
(3.4) 

Substituting the series expansion for v, we obtain 

mu10 + muxl = q ( U y 0  + Uyl)[Bgc.i + (YO - ygc,i)(dB/dy)l 
(3.5) 

mu,o + muy, = -q (uxo  + Uxl)[Bgc,i + (YO - ygc,i)(dB/dy)l. 

We have ignored some of the terms that are second order in krL, but we have 
kept all terms that might prove to be of lower order. 

In thinking carefully about this procedure, we encounter one of the 
interesting subtleties of using asymptotic expansions. We will assume that 
(y - ygc,i)(dB/dy) is smaller than Bgqi by one order in krL. This requires that 
(y - ygc,i) always be of order rL for our series expansion to be correct. However 
that means that y ( t ) ,  which we do not yet know, must not grow without bound, 
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because in that case the quantity (y - ygc,i) would not remain of order rL, as our 
ordering assumes. In particular y1 ( t )  must not grow without bound, so we must 
watch out for such ‘secularities’ in y. In the case at hand this turns out not to be 
a problem, as we will see; our solution will maintain (y - ygC,;) of order rL-so, 
a posteriori, our assumption will be proven correct. In more complex situations, 
special techniques may be needed to eliminate secularities, but a valid solution 
can often still be obtained via this asymptotic expansion procedure. 

So let us proceed with our order-by-order solution of equation (3.5). The 
zeroth-order terms in equation (3.5) constitute simply the equations of motion in 
a homogeneous magnetic field, which we gave first in equations (2.2) and (2.3), 
and whose solution is given in equations (2.7), (2.8) and (2.1 1). Our procedure 
calls for us to assume that the zeroth-order terms balance, implying that the 
zeroth-order velocities and positions must be given by our previous solution. 
Next we gather together all the first-order terms (terms of order krL compared 
to the largest ones) to generate a first-order equation that we must solve: 

To make further progress, we will now time-average both of these first- 
order equations over many gyro-periods, since we are only interested in the 
gyro-averaged particle motion, sometimes called the ‘guiding-center drift’. We 
use the notation ( ) here to indicate a time average. The left-hand side of both 
equations can be set to zero, because all that survives the gyro-averaging process 
are the time derivatives of m(u,l) and m ( u y l )  due to changes that are slow 
compared to a gyro-period, with the result that these terms are now very small 
compared to the first terms on the right-hand side. We say that the gyro-averaging 
process ‘annihilates’ these terms on the left-hand side. In effect it raises them by 
one order, since only time derivatives slow compared to a gyro-period survive 
the averaging. However for present purposes, the resulting second-order time 
derivatives can be neglected. Next we note that (uy0(yo - y,,,;)) = 0, since 
equations (2.8) and (2.1 1 )  show that uYo and yo - ygc,i are 90” out-of-phase, and 
of course, (uY~ygc,i) = 0. 

Problem 3.1: Prove that (uyo(yo - Y ~ ~ , ~ ) )  = 0 for all 6 .  

Thus ( u y l )  = 0, and so the particles do not steadily drift off in the 
y direction-justifying our expansion procedure (which required that y - ygc,i 
not grow without bound) a posteriori. The particles do, however, steadily drift 
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off in the x direction, since 

Referring to equation (2.11) and taking 6 = 0, we arrive at 

where the f sign goes with the charge of the particle. Note that ( u x l )  does not 
even have a slow time derivative, so our assumption that (muxl) was negligible 
is also consistent with our solution. Note also that B,, = Bgc,i, because the 
particle is drifting in a direction in which B is constant. 

Problem 3.2: Evaluate (uxo(y0 - Y,, ,~)) for arbitrary 6 .  

Recognizing that the choices for B to be in the z direction and for V B  to 
be in the y direction were arbitrary, we have for perpendicular gradients of B ,  
a guiding-center drift given by 

where vgad is the gyro-averaged drift of the guiding-center, due to a 
perpendicular gradient in B .  We call this the ‘ V B  drift’. In SI units, with 
energies in eV, equation (3.9) is particularly simple to evaluate: for a 1000eV 
particle (and all its energy in W l ) ,  in a 1 tesla magnetic field, with a gradient 
scale-length of 1 meter, the V B  drift velocity is simply lo3 metershecond. 

Note that the V B  drift, like the gravitational drift, depends on the sign of 
the charge of the particle, and so it gives rise to a net current, which in turn leads 
to charge separation in a finite plasma and, consequently, a volumetric electric 
field. Interestingly, at fixed energy the V B  drift is independent of particle mass. 
Notice that if UL is of order U I I ,  this first-order gyro-averaged drift is indeed a 
factor krL smaller than the parallel velocity of the particle along a field line, 
U I I  6 ,  which is the only zeroth-order motion that would survive gyro-averaging. 
This is consistent with our ordering procedure. 

Problem 3.3: Assume e 4  is of order W ,  a particle’s kinetic energy, and 
that the gradient scale-length of the electric potential is roughly the same 
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size, I l k ,  as the scale-length of variation of B. Show that VE is the same 
order in krL as Vgrad. 

There is a simple physical picture for the V B  drift, which follows from 
the fact that the local radius-of-curvature of the gyro-orbit is smaller on the 
larger-magnetic-field side of the orbit, and correspondingly larger on the smaller- 
magnetic-field side. If we construct a continuous trajectory from smaller orbits 
on one side, and larger orbits on the other, we find a net drift perpendicular to 
both B and V B ,  as illustrated in Figure 3.1. - "gc m) !B 

Figure 3.1. Ion VB drift motion. The combined effect of smaller gyro-orbits on the 
high-field side and larger gyro-orbits on the low-field side produces a net leftward drift 
of the guiding center. The dot indicates that the magnetic field faces out of the page. 

3.2 CURVATURE DRIFT 

In the previous Section, we made the assumption that there was a gradient in the 
magnetic field strength, B, but that the vector B was purely in the z direction, i.e. 
the magnetic field lines were straight. As we saw, this required volume currents, 
but these did not affect our analysis. Now we will make another special, but 
useful, simplifying assumption: that the field lines are locally curved with radius- 
of-curvature &, but that the field strength B is locally constant. A magnetic 
field with these properties can also be achieved with volume currents. Imagine 
a current-carrying cylinder with j ,  a r-l where j ,  is the current density in 
the z direction. The total current I in the z direction within any radius r then 
increases linearly with r ,  i.e. I a r ,  so that from the usual formula B a I / r ,  the 
&directed magnetic field is independent of r .  Again, these volume currents are 
an artifact employed to produce the assumed magnetic field; they do not enter 
into the analysis of particle drifts. 

Now we will solve for the guiding-center drift in a locally cylindrical 
coordinate system (r,  8, z )  matched to the local curvature of the magnetic field 
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lines, such that 8 = 6. To zeroth order in krL, particles move along the 8- 
directed field lines with parallel velocity q 6 ,  and spiral around the field lines 
with speed V I .  To solve for the first-order motion, we transform to the rotating 
frame that is moving with the zeroth-order particle motion in the 8 direction. In 
this frame, the usual equations of motion hold, except for a centrifugal ‘pseudo- 
force’ in the radial direction, namely 

Particle drifts in non-uniform magnetic fields 

(3.10) 

where we have defined a radius-of-curvature vector R, which is drawn from the 
local center-of-curvature to the field-line, as shown in Figure 3.2. (A Coriolis 
pseudo-force could also arise from drift motion in this rotating frame, but it will 
turn out that the drift motion is parallel to the axis of rotation, so the Coriolis 
force is zero in this particular case.) 

Figure 3.2. Geometry for calculating the curvature 
The radius-of-curvature vector is drawn from the 
center-of-curvature to the field line. 

drift. 
local 

Using equation (2.31), we can then directly deduce 

mu: R, x B 2wll R, x B 
Vcurv = - - - - - - 

qB2 R: qB2 R: 
(3.1 1) 

where Wll is the particle’s parallel energy. The vector radius-of-curvature, &, 
may not be a familiar way to describe local magnetic field geometry. In fact, 
however, any curved magnetic field can be characterized locally by a radius-of- 
curvature &, meaning that d6/ds (where s measures length along the field line) 
= -RJR:.  This is easily verified for the locally cylindrical geometry we have 
assumed, where the equivalent statement is just (1 /r)d8/d8 = -? / r .  Since the 
d/ds operator is just the derivative along the direction 6, the radius-of-curvature 
can be re-expressed 

R , / R , ~  = -(b. v)6 (3.12) 
giving a more common expression for the ‘curvature drift’ 

v,,, = ($) B x [(b V)6]. (3.13) 
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In many cases, especially when the plasma pressure is low and volume 
currents are low, the magnetic field in the plasma is approximately curl-free. In 
such cases, the magnetic field necessarily has both a gradient and curvature. For 
these so-called 'vacuum fields' (with no volume currents), the curvature drift 
can be put in a simpler form, closely related to that of the V B  drift. Referring 
to Figure 3.2, it is clear that if a vacuum field is characterized over a local 
region by this geometry, then the magnetic field strength must fall off in the 
perpendicular direction with 

( v B ) ~  = - B R , / R , ~  = ( B .  v)6 (3.14) 

in order for the field to have zero curl in all directions perpendicular to B. (This 
result is established more formally in Problem 3.9.) Thus we can rewrite the 
curvature drift for vacuum fields as 

U; B x V B  
Vcurv = f - - - - 

w, B 2  4 B3 
2wl,  B x V B  - (3.15) 

which is identical in form to the V B  drift given in equation (3.9), except that 
WL has been replaced by 2Wll. Note that the f sign again goes with the sign of 
the charge. In an anisotropic Maxwellian plasma, (Wll) = q1/2 and ( W l )  = T l ,  
where the average here is taken over the velocity distribution; so the average of 
the combined V B  and curvature guiding-center drifts for the particles in such 
a plasma, in a vacuum magnetic field, is 

Tll + T l  B x V B  (3.16) 
B 3  ' 

(vcurv + Vgrad) = - 
4 

For an isotropic plasma, Tll + TL = 2T.  
We have derived the E x B drift, the V B  drift, and the curvature drift 

each in a rather specialized geometry. However, these drifts do not interfere 
with each other. Imagine adding a magnetic field gradient perpendicular to B or 
an electric field perpendicular to B to the present proof. They would give rise 
to the same cross-field drift we calculated before: the larger and smaller sides 
of the gyro-orbits would be formed, and net drifts would result just as before. 
Parallel gradients in 6 (with gradient scale lengths >> rL) which gave rise to the 
curvature drift do not affect the other drifts, since the parallel motion played no 
role in those derivations. It is interesting, however, that the presence of these 
other drifts would give rise to a Coriolis force in the present calculation-but 
only in the direction parallel to B. We will return to this issue when we discuss 
conservation of energy and magnetic moment to first-order in krL. 

Problem 3.4: An anisotropic proton-electron plasma is immersed in the 
magnetic field from an infinite wire carrying current I ,  = 106A. This 
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plasma has uniform density n = 10'9m-3, TLe = Tli = 2keV and 
Tle = Tlli = 5 keV. At radius R away from the wire, what are the average 
ion and electron VB and curvature drift velocities? What is the total (ion + 
electron) guiding center current density, j = nqv, in the plasma (where 
the summation is over species), and in which direction does this current 
flow? (Ignore the magnetic field due to the current in the plasma.) 

3.3 STATIC B FIELD; CONSERVATION OF MAGNETIC MOMENT AT 
ZEROTH ORDER 

So far we have considered gradients of B which were perpendicular to B, and 
they gave rise to drifts which were also perpendicular to B. We have considered 
the equation of motion parallel to B only in the sense of noting that the solutions 
of the guiding-center motion have represented free acceleration or deceleration 
along 6 by a parallel electric field. Now we will consider the case of gradients 
of B along the direction of B, which result in significant modifications of the 
equation for the parallel velocity. 

Consider a static magnetic field which is pointed primarily in the z direction, 
and whose magnitude rises with IzI. To satisfy V - B = 0, the field lines must 
converge away from z = 0. This could be arranged, for example, by having 
a solenoidal current winding, with a higher density of turns near the ends, as 
illustrated schematically in Figure 3.3. 

As we have seen, a particle gyrating around a magnetic field line in 

Currents 

Magnetic Field Lines 

Magnitude of B 

Figure 3.3. Currents in a solenoidal winding and the resulting 'mirror' magnetic fields 
inside the solenoid, shown schematically. 
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this system will drift across the non-uniform magnetic field dominantly in the 
8 direction, due to the V B  and curvature drifts. However, we are concerned 
here with particle motion along the magnetic field, and-as it will turn out- 
changes in the mix of parallel and perpendicular velocity which result. Unlike 
the V B  and curvature drift velocities, these velocity changes will not be of 
order krL compared to vo-they will be of order unity. The case illustrated in 
Figure 3.3 is axisymmetric around the z axis, i.e. a/a8 = 0, and BO is zero, so 
the only component of B besides Bz is B,. This symmetry is not important to 
our analysis-the only geometrical property of the field that we will use is that 
the characteristic scale-length of variation of B is long compared to a gyro-radius 
(a by-now familiar condition). 

Consider a differential cylindrical volume centered around a magnetic field 
line somewhere in the system where the field lines are converging (such as, 
but not necessarily, along the z axis of Figure 3.3). Now choose a new local 
cylindrical coordinate system ( r ,  8, z)  centered on this cylinder, with 2 = 6 as 
shown in Figure 3.4. 

Figure 3.4. Geometry for calculating parallel acceleration. 

We must have V - B  = 0 everywhere in the volume, so Gauss’s law implies 
that there can be no net flux out of our differential volume. The net flux out 
through the end faces is n(Sr)2Sl(dB/dz). This plus the net flux out through the 
sides of the cylinder must be zero. Thus, the average radially directed B field 
in the local coordinate system, (B,) 

Ir(Sr)261(dB/dz) + 2nSrSl(B,) = 0 

(B - f ) ,  is determined by 

(3.17) 

or 
Sr dB 
2 dz 

(B,) = (3.18) 

Let us now suppose that the radius of the cylinder, Sr, is chosen to be the 
gyro-radius of a. particle whose guiding center lies on the axis of the cylinder. In 
this case, it is just this (B,)? which must be crossed with the azimuthal velocity 
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VI to give an average Lorentz force directed back along the magnetic field line. 
Averaging around a gyro-orbit we obtain (again assuming rL is small) 

(3.19) 

Equation (3.19) gives a force in the direction opposite to the field gradient for 
both electrons and ions. 

It is convenient at this point to note that the quantity mu:/2B = Wl/B 
is the magnetic moment, p,  of the gyrating particle, because it is indeed equal 
to ZA, the current represented by the moving charged particle times the area of 
the loop it circumnavigates. The current is I (amperes = coulombs per second) 
= Iqlwc/2rr, while the area is A = nr; = nv:/w:, so p = [qlvi/(2wc) = 
mvi/2B = WJB. 

Thus, we obtain 
dull dB m -  = - p -  
dt ds 

(3.20) 

where we have transformed back into a general coordinate system, in which we 
parameterize distance along the field line by the variable s. 

We can next use equation (3.20) to determine if p changes in time to zeroth 
order in krL. Multiplying both sides of this equation by vi / (= dsldt) in order 
to obtain an energy-conservation-type of equation, we have 

(3.21) 

where dB/dt is the total derivative, meaning the time-derivative as felt by the 
particle, due to its motion in the static magnetic field: specifically, dB/dt = 
aB/at + v ~ ~ V I I B ,  if we only include the zeroth-order guiding-center motion. 
(The partial time derivative, a B/at at any fixed position, is zero because of our 
assumption of a static B field.) We also know, however, that in the presence 
of only a static magnetic field, the total kinetic energy of the particle must 
be separately conserved at each order in krL, since higher-order terms cannot 
correct a mismatch in energy in a lower-order equation. Thus, we can ignore 
any energy in the V B  and curvature drifts as being second order (vic),  and any 
dB/dt due to them as being first order (vgc V), giving at zeroth order 

Substituting equation (3.21) into the last part of this equation, we have 

(3.22) 

dB d 
-/A- + -(pB) = 0 

dt dt 
(3.23) 
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which reduces to 
dp/dt = 0. (3.24) 

This invariance of p implies that the velocity component UL increases as the 
particle moves along magnetic field lines into a region of higher magnetic field 
strength, in just such a way as to maintain Wl/B constant. Since the particle’s 
energy is also constant, it follows that the parallel component U I I  decreases as 
uI increases. As a particle moves into a region of higher field-strength, e.g. 
towards an end of the solenoid shown in Figure 3.3, its velocity along the field 
decreases. 

3.4 MAGNETIC MIRRORS 

With the understanding of particle motion in static non-uniform B fields that we 
have now developed, we are able to understand the basic principle of one of 
the primary ‘magnetic traps’ for confining plasma, both in the laboratory and in 
nature: the ‘magnetic mirror’. Since a particle’s kinetic energy, W, and magnetic 
moment, p, are both constant (in the absence of E fields) the particle’s parallel 
velocity will vary as it moves into regions of different field strength according 
to 

- W - pB. -- mu: 
2 

As the particle moves from a weak-field region 
course of its motion along a field line, it sees an 

(3.25) 

to a strong-field region in the 
increasing B, and therefore its 

parallel velocity U I I  decreases. If B is high enough in the ‘throat’ of the mirror 
(see Figure 3.3), U I I  becomes zero, and the particle is ‘reflected back’ toward the 
weak-field region, a process that serves to hold both electrons and ions within 
the solenoidal field structure. Mirror trapping does not work, however, for all 
values of the ratio u ~ ~ / u .  For instance, a particle with U I I  = U ,  UL = 0, has a zero 
magnetic moment p, and will not experience any decelerating force at all as it 
approaches a high-field region. 

If the minimum field along a field line at the midplane is defined to be 
Bfin and that at the mirror throat B,,, it is clear from the constancy of particle 
energy that all particles with p > W/B,, are trapped, because, if such a 
particle were to reach the mirror throat with ,LL conserved, this would imply 
FB,, = W l  > W, which is not possible. Translating to q / u  at the midplane 
we have, for the marginally trapped particles, 

Wl(midp1ane) = FBfin = WBfin/B,, 
WII (midplane)/ W = (1 - Bmin/Bm,) 

Copyright © 1995 IOP Publishing Ltd.



40 

that is, 

Particle drifts in non-uniform magnetic fields 

u~ (midplane)/u = ( Bdn/Bmm)’/* 

ull(midplane)/u = ( 1  - Bmin/B-)”2. 

Particles with lower u ~ ~ / u  at the midplane are trapped by the mirror field, while 
those with greater ull/u are in a ‘loss cone’ in velocity space, defined by 

(3.26) 

u / / / v  > (1 - Bmin/Bmax)”2 (3.27) 

or equivalently 
ull /v.~ > (Bmax/Bmin - I)’/* 

as shown in Figure 3.5. 

(3.28) 

Figure 3.5. Velocity-space ‘loss cones’ in a magnetic mirror. The angle of the loss cone 
is given by equation (3.26). 

The concept of a loss ‘cone’ derives from recognizing that the UI axis really 
represents two dimensions, and Figure 3.5 can be rotated around the U I I  axis to 
represent a fully three-dimensional velocity space. Since all particles below 
the diagonal lines are rapidly lost from the system, a mirror-trapped plasma is 
never isotropic in velocity space. The magnetic loss cone is independent of the 
charge and mass of the particles. However, when particles collide with each 
other, they change the direction of their velocity vectors and can ‘scatter’ into 
the loss cone. Thus the species that collides more frequently (the electrons for 
Te w q, as we will see in Chapter 11) will be lost preferentially. An electric 
field will then build up, corresponding to a positive electric potential in the 
central region, holding back the electrons along the magnetic field lines, and so 
electrostatically ‘plugging up’ the low-energy portion of the electron loss cone. 
This electric potential builds up to the point where it keeps the net outflux of 
electrons balanced with the slower outflux of ions. However, more energetic 
electrons will still escape over the ‘top’ of the electrostatic ‘plug’ in velocity 
space, so electron thermal losses still tend to dominate the energy balance of 
mirror-trapped plasmas, while ion scattering sets the pace for the particle loss. 
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Problem 3.5: Assume B = ZBo(l + y z 2 ) .  To lowest order in krL (i.e. only 
the vl16 motion), calculate the bounce period for a particle moving back 
and forth in this magnetic well. Note that ds = q d t .  

Problem 3.6: Consider a lOkeV energetic ion in the Van Allen belts - lo6 m above the Earth’s surface, in a dipole magnetic field of - 10-6T. 
Estimate the curvature and V B  drift speeds of this particle. Compare 
them with the gravitational drift speed. 

3.5 ENERGY AND MAGNETIC-MOMENT CONSERVATION TO 
FIRST ORDER FOR STATIC FIELDS* 

Although we have made use of the constancy of a particle’s kinetic energy in 
our proof of the constancy of p, it is important to note that p-invariance is valid 
in much more general circumstances, and to higher order, including cases where 
the kinetic energy is not constant (see Chapter 4, where we treat time-dependent 
fields). It is also important to understand how total energy conservation (kinetic 
plus potential) works to first order in krL. For this purpose, let us consider the 
case where there is a static electric field, as well as the static magnetic field, 
with arbitrary gradients but with krL small as usual. 

We will start by re-examining energy conservation in zeroth order, including 
E # 0. The parallel equation of motion is simply 

dull dB d# dB 
dt ds ds ds 

m -  = qEll- 1- = -9- - p- (3.29) 

obtained by adding a parallel electric field to equation (3.20), and using 
Ell = -d#/ds, which is possible because we have assumed aB/at = 0. Again 
we multiply by U I I  = ds/dt to see energy conservation from a ‘kinematic’ 
(following the trajectory) point of view, to zeroth order in krL: 

(3.30) 

where we are still ignoring any contribution of the V B  and curvature drifts to 
dB/dt and to d#/dt, as being higher order in krL. The sum of the particle’s 
kinetic plus potential energy must be conserved at each order in krL (and so 
specifically at zeroth order); thus we have a zeroth-order energy conservation 
equation from first-principles considerations: 

(3.31) 
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Using equation (3.30) to substitute for the first term in equation (3.31), we again 
obtain equations (3.23) and (3.24), and so p is conserved at zeroth order in krL, 
even in the presence of a static electric field. 

Next we move to first order. We will see that adding first-order effects to the 
analysis generates a flurry of additional terms, which reveal interesting transfers 
of energy between potential, perpendicular kinetic, and parallel kinetic energy, 
but all of which cancel perfectly in their effect on our proof of p conservation. 

We must begin by including a missing first-order term in the parallel 
acceleration equation, namely equation (3.29). This term arises from the Coriolis 
pseudo-force, for the case where wxvgc # 0. (Here we introduce a vector w 

- q 6  x RJR: whose magnitude is ulj / R, and whose direction points along the 
z axis of the local coordinate system we established in deriving the curvature 
drift.) The curvature drift, vcurv, as we noted when we derived it, satisfies 
wxvgc = 0, but the E x B drift, VE,  may not, and the result will be a parallel 
acceleration. (The case where WXVgrad # 0 is handled in Problem 3.7.) We 
calculated the curvature drift by locally approximating B as lying on a circle with 
radius-of-curvature R,, and transforming to the rotating frame where U I I  = 0. 
The E field in this frame is equal to the stationary-frame E field, since the local 
frame velocity is parallel to B. However, due to the VE drift, there is also a 
Coriolis pseudo-force in this frame, F, = -2m (WXVE).  This shows up as a 
new first-order term for m(dull /dt) in the rotating frame: 

The W X V E  subscript indicates the component of the total derivative due to the 
Coriolis force which arises from the E x B drift. The second equality follows 
from writing (WXVE) 6 = (6xw) - VE and noting that 6xw = UIIR,/R:. To 
translate this result to the laboratory frame, we note U I I  (lab) = U I I  (rotating)+wR,, 
and so 

Thus, in the laboratory frame, we have 

(3.33) 

(3.34) 
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This is a new first-order term that must be added to the right-hand side of 
equation (3.29). 

Note that by conservation of angular momentum, mull R must be constant 
if E is locally perpendicular to B and dB/ds = 0. Equation (3.34) nicely shows 
that the first-order drifts do indeed conserve angular momentum in this situation, 
when the parallel Coriolis force is included. Multiplying through by U I I  as we 
did to derive equation (3.30), and substituting the full expression for VE we have 

(3.35) 

(where the W X V E  subscript again indicates the component of the total derivative 
due to the Coriolis force-now in the laboratory frame). This is a new first-order 
term that must be added to the right-hand side of equation (3.30), the zeroth- 
order ‘kinematic’ energy balance equation, in order to make it correct to first 
order when W X V E  # 0. Note that the total derivatives in that equation were 
explicitly evaluated only in terms of the zeroth-order motion along 6. 

Now we will find the elegant result that afirst-order interpretation of the 
total derivatives on the right-hand side of equation (3.30) will provide just this 
new first-order term! In going from equation (3.29) (parallel acceleration) to 
equation (3.30) (kinematic energy balance), at lowest order in krL, we assumed 
d/dt = qd/ds ,  with a /a t  = 0 (static fields). Including terms at first order in 
krL-interpreting equation (3.30) as it stands as including first-order terms as 
well as zeroth-order terms-we take the total derivative d/dt as 

d/dt = a j a t  + vgC . v (3.36) 

where the first-order terms of vgc (the VB drift, the VE drift and the curvature 
drift) are now included. Thus the terms qdq5ldt and pdB/dt havefirst-order 
components that need to be evaluated in order to obtain all the first-order 
components in the right-hand side of equation (3.30). Surprisingly, this first- 
order interpretation of equation (3.30) will provide just the term we need to 
represent the new first-order term due to the Coriolis force. 

The extra first-order term on the right-hand-side of equation (3.30) due to 
the curvature drift dotted with Vq5 is 

-mu:(R, x B) 
B2 R: 

* vqj. -qvcurv ‘ v4 = (3.37) 

This term is exactly equal to the Coriolis force term (equation (3.35)) in its 
effect on the kinematic energy balance. Thus, equation (3.30), when interpreted 
as including vcUw in the total derivative, gives the correct answer for dWll/dr, 
including the first-order effect we just calculated from the Coriolis acceleration. 

Copyright © 1995 IOP Publishing Ltd.



44 Particle drifs in non-uniform magnetic fields 

Insofar as kinetic and potential energy are exchanged due to curvature drifts 
in the direction of V#, the particle absorbs this in the WII component, without 
changing p or WL. 

Problem 3.7: Calculate the analog to equation (3.35) where the V B  
drift causes the Coriolis force (this requires w x Vgrad # 0). In this case 
vcUw V B  # 0 also, so calculate the effect of the curvature drift on pdBldt. 
Then show that the first-order interpretation of dldt on the right-hand 
side of equation (3.30) including pvgrad V B  provides just the required 
effect of the Coriolis force on WII. In this case WII is exchanged with WL, 
again without changing p. (This particular situation can only arise when 
V x B # 0, i.e. when there are volume currents.) 

The V B  drift also gives rise to a first-order qd#/dt term 

-W,(B x VB)  -p(B x V B )  
B2 

*V# (3.38) * V # =  
B3 -qVgrad v# = 

but no additional pdB/dt term, since Vgrad * V B  = 0. The VE drift gives rise to 
an additional first-order pdBldt term, but no qd#/dt term, since VE - V# = 0. 
We have 

(3.39) 

We see from equations (3.38) and (3.39) that the contributions to the first-order 
interpretation of equation (3.30) from Vgrad to qd#/dt and from VE to pdBldt 
sum to zero, so there is no net change in equation (3.30) when we take into 
account the total derivative to first-order in krL due to the sum of the V B  and 
VE drifts. The change in kinetic energy, W, due to the V B  drift along V@ is 
absorbed into p times a change in B (i.e. a change in WL), with no required 
change in p and no change in Wll. Thus equation (3.30) is ful ly  correct tofirst 
order (including the Coriolis effects) when dldt is interpreted as including all 
of the first-order guiding-center drifs. Energy conservation (equation (3.3 1)) is 
correct as it stands to first order, since the first-order guiding center drifts would 
contribute to energy terms only at second order. The proof of p-conservation, 
now to first order, follows directly from these two equations as shown before at 
zeroth order in equations (3.23) and (3.24). 

In summary, when a particle’s curvature drift carries it across an electric 
potential, its VE drift moves it in the direction of the local radius-of-curvature. 
The particle balances the change of potential energy with a change in WII, thereby 
conserving angular momentum. When a particle’s V B  drift carries it across an 
electric potential, it balances the change in potential energy with a change in 
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WL, because at the same time its VE drift is carrying it to a region of changed 
B-and p is conserved. In the case where V x B # 0, curvature drifts can also 
move particles to regions of changed B, and then WL and WII are exchanged, 
conserving energy, angular momentum and magnetic moment, p. 

We have shown now that the nominally zeroth-order kinematic energy 
balance, equation (3.30), is also perfectly correct when the convective derivative 
is interpreted atfrrst order. We were able to show that the net effect of the extra 
terms which arose from considering the first-order interpretation of d/dt (i.e. 
including vgc - V in d/dt) is equal to the physical effect of the Coriolis force 
on WII .  Thus, equation (3.30) is a reliable basis for calculating q ( t )  for the 
purpose of evaluating particle drifts in time-independent fields. Note, however, 
that equation (3.29) for parallel acceleration is not accurate to first order. The 
correct result, starting from kinematic energy balance, equation (3.30), is 

(3.40) 

where the total derivatives include the contribution of all the first-order drifts. 
As we have seen, the effects of the V B  and VE drifts cancel perfectly on the 
right-hand side of this equation, but the curvature drift can have a net effect on 
-qd+/dt - pdB/dt. Equation (3.40) can be difficult to evaluate, so in time- 
independent situations it is usually easier to obtain ull from energy conservation: 
mui/2 + p B  + e 4  = constant. The simplest way to calculate WL is then from 
p conservation. 

Problem 3.8: Consider a particle orbiting at radius r in the magnetic field 
from an infinite wire carrying current I in the z direction. Imagine there is 
also a constant electric field of magnitude E pointing in the z direction. At 
t = 0, evaluate drldt, dz/dt, dWL/dt and dWll/dt for this particle’s guiding 
center, in terms of E ,  I ,  r ,  the particle’s mass m, charge q 1  and its initial 
parallel and perpendicular velocities ~ 1 1 0 ,  UIO. 

3.6 DERIVATION OF DRIFTS: GENERAL CASE* 

In this Chapter, in order to provide the clearest possible derivations of the V B  
and curvature drifts, we have used special geometries, in which the magnetic 
field had either a gradient but no curvature, or curvature but no gradient. In fact 
these two drifts describe completely the lowest-order cross-field guiding-center 
motion in any static non-uniform magnetic field. The addition of a perpendicular 
electric field perpendicular to the magnetic field simply adds the VE drift to the 
other first-order drifts, provided that the electric field is small enough for v E  
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to be a first-order velocity. These results can be derived formally by extending 
the methods used earlier in this Chapter to general field geometry, although the 
analysis requires more sophisticated vector manipulations. 

We begin with the particle’s equation of motion, which to zeroth order is 
simply 

(3.41) m- = qvo x B,, 

and describes gyration about a fixed guiding center, plus parallel motion. Note 
that, in equation (3.41), we have taken care to employ the magnetic field at 
the particle’s ‘average’ position, i.e. its guiding center. In this order, the vector 
relationship between the particle’s position xo and its guiding center x,,,~ can 
be written (for a positively charged particle) 

Particle drifts in non-uniform magnetic fields 

dv0 
dt 

A 

xo = xgC,o - vo x b/w,. (3.42) 

Moving now to first order in our expansion in krL, the equation of motion must 
take account of the difference between B at the particle’s position x and B,,, 
i.e. 

(3.43) 
1 
0, 

B = B,, - -[(vo x 6) * VIB,, 

and it must also allow for the first-order time dependences of the zeroth-order 
guiding-center velocity (i.e. time dependences much slower than gyro-motion), 
which we denote (d/dt)l. Keeping all these terms and also the electric field, the 
first-order equation of motion after time-averaging over many gyro-periods is 

m 
B 

m (ull6) = q(E + ( V I )  x B) - -(VO x [(VO x 6) VIB) (3.44) 

where ( ) denotes the time average. The time-average guiding-center velocity 
( V I )  is simply the drift across the magnetic field, which we denote Vd. Since 
we are considering here only time-independent fields, the left-hand side of 
equation (3.44) arises only from the spatial derivative following the guiding- 
center motion, i.e. 

(where we have implicitly included 
derivative). 

= U l l 6  * V(U,,6) (3.45) 

any time variation of U I I  as a spatial 

Taking the cross-product of equation (3.44) with B, we obtain 

1 
0, B2 

1 
wc B 

Vd = ( V I I )  = VE f -B X (Vo X [(Vo X 6) * V]B) 

f -B x [~ll6 * V ( V I , ~ ) ]  (3.46) 
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where VE = E x B I B 2  and f denotes the sign of the particle's charge. The 
second term on the right-hand side will give rise to the V B  drift. The last term, 
which arose from the slow change in mvo (equivalent to the centrifugal force in 
the rotating frame discussed in Section 3.2) will give rise to the curvature drift. 

First consider the second term on the right-hand side of equation (3.46). 
Since vo describes gyro-motion, the time-average of an element of the tensor 
formed by the product of two vo-vectors will be given, in index notation (see 
Appendix D), by 

(3.47) 

This result can be derived by considering a local coordinate system 6, Cl, 6 x Cl, 
where CL is a unit vector perpendicular to 6 at an arbitrary angle. Then we have 

v = ullb + ulcosut Cl + visinwr 6 x Cl. - 2  

Thus 

(w) = U@ + (u:/2)C,C, + (4 /2) (6  x Cl)($ x Cl) 

= (U; - u 3 2 ) 6 6  + (4 /2) [66  + C,C, + (6 x 6,)(6 x C,)]. 

Using index notation, the second term on the right-hand side in equation (3.46) 
can now be simplified as follows: 

A aBk 
(VO X [(VO X 6) * V I B ) i  = (cijkvoj~imnuombn-) 

axr 
- aBk - 2 c . .  6 .  b - 

2 

I l k  [J l l  n - 
8x1 

(3.48) 

where we have used the expression for the product of two Levi-Civita symbols 
in terms of Kronecker delta functions given in Appendix D. We have also used 
aBk/i3xk = V - B = 0. This term will clearly give rise to the V B  drift. 

= , ( V B ) j  vi 
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In the third term on the right-hand side of equation (3.46), only the term 
with the gradient operator applied to 6 and not to U I I  will survive, since the other 
term will contain 6 x 6 = 0. n u s  

B x - V(U~~I;)] = u ~ B  x (6 - V)6. (3.49) 

This term evidently will give rise to the curvature drift. 

final expression for the guiding-center drift 
Substituting equations (3.48) and (3.49) into equation (3.46), we obtain our 

W, B x VB 2Wll B x (6 - V)6 
(3.50) 

which is the U E  drift, together with the sum of the VB drift given in 
equation (3.9) and the curvature drift given in equation (3.13). This completes 
our formal proof that the previously derived drifts apply generally to non-uniform 
fields with gradient scale lengths >> r L .  

B* vd = VE + -~ +- 
4 B3 4 

Problem 3.9: For a field with V x B = 0, prove that the relationship 

B x ( 6 .  v)l; = 6 x V B  

holds generally, thereby formally demonstrating that the curvature drift 
takes the form given in equation (3.15) for vacuum fields. (Hint: start with 
0 = 6 x (V x B) written in index notation using the Levi-Civita symbols. 
Reduce this to a different vector equation and take its cross-product with 
6 to obtain the desired result.) 
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Chapter 4 

Particle drifts in time-dependent fields 

So far we have considered the guiding-center drifts that arise from perpendicular 
electric fields and from various types of non-uniformity of the magnetic field, 
all with gradient scale-lengths long compared to a gyro-radius. In these cases, 
the electric and magnetic fields were assumed to be constant in time. Now we 
complete the analysis by considering the effect of time-dependences of these 
fields, where we will consider only changes slow compared to a gyro-period. 

4.1 TIME-VARYING B FIELD 

First, let us consider the case of a time-varying B field, with a characteristic 
time variation a /a t  - w << wc. From the point of view of a moving particle, 
this slowness requirement is similar to the requirement on the spatial variation 
a/ax - k << 1/rL. Since d/dt gives the time derivative at the particle’s changing 
position, the requirement k << 1/rL already implies that the convective part of 
d/dt satisfies the slowness requirement, because U - (a/ax) << u/rL - wc. Thus 
we are requiring that the B field does not change much during a single gyro-orbit, 
either due to its intrinsic time variation or due to the particle’s motion. 

For simplicity, consider the case of a spatially homogeneous magnetic field, 
changing in time. The equation for the parallel particle velocity ull6 goes through 
as before. There is an interesting consequence for the perpendicular velocity, 
however. With any time-changing magnetic field, Maxwell’s equations tell us 
that there must be a curl to the electric field: 

or using Stokes’s theorem: 
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where dl is an element of arc length along the perimeter of an area and dS is 
an element of that area. The vector signs of dl and dS are determined by the 
right-hand rule (fingers following dl and thumb pointing in direction of dS). If 
we imagine following a negatively charged particle (q < 0, right-hand sense 
of gyration) around its gyro-orbit, when aB/at > 0, we see that qv e E is 
everywhere positive, so that the particle will be accelerated steadily in VI as it 
gyrates. Similarly, if we imagine following a positively charged particle around 
its orbit (in the left-hand direction now) both q and v have changed sign, so 
again the particle is steadily accelerated in VI as it gyrates. Taking the time 
average (indicated by ( ) )  around many gyro-orbits in order to determine the 
average qv - E and consequent time-averaged change in WL, we have 

So, as noted before, W_L grows steadily as B increases. Interestingly, WL 
grows in just such a way that p(= WI/B) is still conserved (again so long 
as the characteristic timescale of changes in B is very slow compared to Larmor 
gvration): 
II 

d p  1 dW1 W l a B  
dt B dt B2 a t  

- = 0. (4.4) 

Thus the magnetic moment is conserved in slowly time-varying magnetic 
fields. Taking this together with the results of Chapter 3, we conclude that so 
long as w << w, and k << 1/rL, the magnetic moment, p, is a good constant of 
motion in essentially all cases. It turns out that this implies that the magnetic 
flux enclosed in a gyro-orbit, nrzB, is also conserved, since 

By including the new energy source associated with aB/at into 
equation (3.30) we can now construct the full energy-conservation equation 
appropriate for the guiding-center drift equations to first order in krL, where 
we assume that all the drifts (including VE) are of order krL compared to the 
particle velocities: 

d aB 
- (;mu; + pB) = q V g c  E + p-.  dt a t  (4.6) 

Here vgc is the sum of the V B  drift, the VE drift, the curvature drift and the 
ullb guiding-center motion. The V E  drift of course does not contribute to vgc. E. 
(We are ignoring gravitational drifts, and gravitational potential energy.) Casting 
equation (4.6) as an equation for V I I  we have 

(4.7) 
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Thus the B field acts as a potential field for the parallel energy, even when 
aB/& # 0. For practical applications, equation (4.7) can be further simplified. 
From the considerations in the previous Chapter (equations (3.38) and (3.39)), 
the V E  drift contribution to equation (4.7) cancels the V B  drift contribution, so 
that all that is needed of vgc in this equation is the zeroth-order parallel motion 
(cx q )  and the first-order curvature drift (cx U:). This result that the relevant 
part of vgc scales at least linearly with U I I  is necessary in order that dullldt 
remain finite as U I I  + 0 at mirror reflection points, in the presence of arbitrary 
field gradients. When equation (4.7) is evaluated numerically, typically both 
sides are first divided by q, so that instead of evaluating vgc (qE - p V B )  
and later dividing by U I I  (giving 0/0 at mirror reflection points), one evaluates 
(vgC/q) - (qE - p V B )  to obtain mdul/dt. The relevant form of vgC/q  needed 
for this equation is just 6 + m q B  x (b - V)6/(qB2). 

Problem 4.1 : Show explicitly that the vE drift contribution to equation (4.7) 
precisely cancels the V B  drift contribution. 

The full set of equations required to solve for guiding-center particle motion 
in slowly time- and space-varying magnetic and electric fields, up to first order 
in krL and in w/wc,  are thus 

E x B W l B  x V B  + + 2WllB x (6 - V ) 6  
(4.8) 

4B2 4B3 
VgC = + 7 

together with W, = p B  ( p  constant) and the evolution of U I I  given by 
equation (4.7). 

4.2 ADIABATIC COMPRESSION 

The conservation of magnetic moment, p,  means that a changing magnetic field 
will heat (or cool) a plasma. Consider a cylindrical plasma in a solenoidal 
magnetic field. If the field is ramped up in time, the perpendicular energies W, 
of all the particles will rise as well. It is interesting to note that the plasma will 
be driven in towards the center of the solenoid, compressed away from the coils. 
By equation (4.2), we have 

2nrEe = -nr2aB,/at (4.9) 

and the radial drift velocity is 

(4.10) 
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If we track any annulus of plasma inwards in time, we can evaluate the 
time derivative of the amount of magnetic flux enclosed by this annulus: 

d 2  dr a BZ 
dt dt a t  
- (nr  Bz) = 27rrBz- + xr2- = 0 (4.1 1) 

where the last step is made by substituting drldt from equation (4.10). Thus 
the entire plasma conserves magnetic flux as it moves in radially, just as the 
gyro-orbits conserve flux. This property of plasma drifting at velocity VE is 
sometimes called being ‘frozen’ to the magnetic flux lines and is considered 
again in more detail in Chapter 8. (It is entertaining to observe that a plasma 
needs to be very hot, so that its collision frequency is very low, in order for it to 
befrozen to field lines.) As we will learn later, Coulomb collisions, whose rate 
drops rapidly with increasing temperature, allow plasmas to become ‘unfrozen’ 
and to diffuse slowly across magnetic field lines. 

Problem 4.2: Imagine that you have an isotropic magnetized plasma with 
qlo = Tlo = To. Double the magnetic field slowly compared to a gyro- 
period, but fast compared to the energy transfer time between TI and T1. 
What are the new values of TI and Tl (call them Till and Tll)? Now 
let the plasma sit long enough for qll  and TII to mix by collisions and 
come to an isotropic temperature Tl, but not long enough for the plasma 
to exchange energy with the outside world. What is TI? Reduce the 
magnetic field back down to its original value slowly compared to a gyro- 
period, but fast compared to the energy transfer time between Tll and TL. 
What are TII2 and T12? And after the plasma becomes isotropic, what is 
T2? This process is called ‘magnetic pumping’. 

4.3 TIME-VARYING E FIELD 

In order to understand plasma dynamics reasonably well from a particle-drift 
point of view, it is necessary to know about one further drift motion, the 
polarization drift, which is second order in w/w,.  Consider a situation with a 
uniform B field pointing in the z direction, and a time-varying spatially uniform 
E field, pointing in the x direction. Starting from the Lorentz force equation 

where the f indicates the sign of q ,  and differentiating once with respect to 
time, we obtain 

(4.12) 
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(4.13) 

If we assume that the characteristic time of variation of the electric field 
is long compared to a gyro-period, and take VE to be of order krL compared to 
v, the terms on the right-hand side of equation (4.12) are, respectively, zeroth 
order and second order (a/& is higher order than U,, and E /B  is higher order 
than U). The terms on the right-hand side of equation (4.13) are, respectively, 
zeroth order and first order. Ignoring the second-order term, we have just the 
equations we solved originally for the VE drift, using the Lorentz transformation. 
Thus the solution for vo is just the usual gyration and parallel motion, and VI is 
just the VE drift, in this case in the y direction. If we substitute for v our formal 
expansion in krL, the second-order parts of equation (4.12) are 

2 wc aE, - -0, u,2 f - -, d2Ux2 
dt2 B a t  

(4.14) 

Since we are only interested in the gyro-averaged drift, we can ‘annihilate’ 
the first term by averaging over many gyro-periods. If we do this average, then 
d2(ux2)/dt2 becomes much smaller than w~uX2-because we have smoothed out 
any fast time variation-so the term on the left-hand side becomes higher order 
than the other terms. It follows that u,2 = f(w,B)-’aE,/at. Equation (4.13), 
at second order and averaged over many gyro-periods, just gives uy2 = 0, by 
the same argument. Since we could have chosen the x direction arbitrarily (but 
perpendicular to B), we can express our result more generally, i.e. 

dEl/dt  m d E l  
w,B qB2 dt 

v1.2 = k- - - --. (4.15) 

The direction of vl2 depends on the sign of q ,  and its magnitude depends 
on m, so ions and electrons do not have equal velocities, and a net current is 
driven in the plasma. This current is analogous to the polarization current in 
dielectric materials (which is also proportional to dE/dt), so this drift is referred 
to as the ‘polarization drift’, vpol. Note that it is by far dominated by ions 
compared to electrons. 

Problem 4.3: Our energy conservation equation, equation (4.6), is 
consistent to order krL, but no higher. In other words, energy in the drift 
motion such as m(~,,,,,)~/2 is not included. However, as was mentioned 
before, one can also derive guiding-center drift equations in the case 
where v E  is not assumed to be small compared to vo. In this case one 
has to include mui/2 in the energy equation, as well as the polarization 
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drift in the first-order vgc e E. For the simplest geometry-a uniform time- 
independent B field in the z direction and a uniform, perpendicular, time- 
dependent E field in the x direction-show that (d/dt)mui/2 = qvpol - E. 
Draw what the drift orbits look like for ions and electrons in the case of 
E ,  constant and positive and E,  always greater than zero. Note that 
we have not calculated all the other drifts for the case where uE can 
be comparable to u-and there are indeed other terms which come into 
the complete calculation-so this is only an exercise. Equation (4.6) is 
as far as we will go self-consistently for energy conservation in the drift 
equations. 

Particle drijts in time-dependent fields 

It is interesting to use equation (4.15) to derive a low-frequency 
perpendicular dielectric constant, €1, for a plasma, where the polarization current 
is considered an ‘internal’ current, in contrast to an ‘external’ current density 
jeXt. We can write 

V x B = M Q e x t  +jpoi + EOE) = P o Q e x t  + €E) (4.16) 

or 
EE = cjpol + E O E ) .  (4.17) 

The polarization current density jpol carried by each species (ions or electrons) 
is just 

jpol = nqvpol = nmE/B 2 (4.18) 

where n is the density of the species. So we obtain 

€1 = €0 + p / B 2  (4.19) 

where p = nim, + neme is the total mass density of the plasma. For typical 
plasma parameters E >> EO by a factor of - lo3. Note that the plasma is a 
highly anisotropic medium: this dielectric constant only characterizes the plasma 
response perpendicular to the magnetic field. We will encounter €1 again when 
we discuss propagation of low-frequency electromagnetic waves in a plasma. 

The result for E L  can also be used to solve the problem of a plasma in 
a gravitational field, thereby gaining some insight into how the perpendicular 
dielectric property affects plasma motion. Imagine that we have a slab of 
magnetized proton4ectron plasma at density ne = ni = n in a gravitational 
field, as shown in Figure 4.1. We choose this slab-like geometry to simplify 
the calculation of the electric field which is created by charge separation. The 
gravitational drift gives rise to a net current perpendicular both to B and to the 
force of gravity, mg. The gravitational drift velocity is 

vg = m(g x B ) / q B 2  (4.20) 
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II 
f 

Figure 4.1. Geometry for calculating plasma motion in 
crossed magnetic and gravitational fields. / 

which is just equation (2.23). The total current density j = C n q v  (where 
the summation is over species) due to the gravitational force is j,,, = p g / B  
directed rightward in Figure 4.1, where p is the mass density of the plasma. 
We are taking the gravitational-drift current to be an ‘external’ current in the 
sense of not being part of the polarization current of the medium. Since this 
current density stops at the faces of our slab of plasma, we will assume that a 
‘free’ charge density steadily builds up there (as a consequence of the ‘external’ 
current). If we take a, to be the free surface charge density (in units of coulombs 
per square meter), we can easily convince ourselves that da,/dt = j .  This is 
most easily seen by recognizing that j is in units of coulombs per square meter 
per second, representing the coulombs per second that would pass through a 
surface of 1 square meter presented at right angles to the direction of j .  The 
relation da,/dt = j just expresses the fact that charge is conserved, and we 
are not letting it pass through the surface, but rather it must accumulate there. 
Given da,/dt at the faces, we can calculate dEl /d t  at each face, assuming that 
E l  outside the plasma is negligible, as in an infinite parallel-plate capacitor. 
Integrating Poisson’s equation across the plasma surface we obtain 

E ~ E L  = as 

(4.21) 

(4.22) 

Galileo would be satisfied with this solution (since he noted in Pisa that 
all bodies fall with the same acceleration), except for the small second term 
in the denominator, which reduces the downwara acceleration slightly. The 
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gravitational potential energy is being turned into kinetic energy as the plasma 
falls downward, as usual, with the exception of a small part of it. If we multiply 
both sides by (1 + coB2/p)puE,  we obtain 

(4.23) 

In this form, the equation is particularly troublesome, since it looks as if it 
violates energy conservation. However, let us evaluate the ratio of the energy 
density stored in the electric field, eoE2/2, to the plasma kinetic energy density 
of drift motion, i.e. 

(4.24) 

This is just the size of the apparent ‘error’ in energy conservation. We have 
tricked Galileo by transferring a small fraction of the gravitational potential 
energy to the plasma’s internal electric field, charging the plasma capacitor. For 
typical laboratory or geophysical plasma parameters, this is a very small fraction 
of the energy indeed (i.e. c l  >> CO), and in many plasma physics calculations 
the contribution from EO can be ignored. 

This is a good example of how the energetics of a plasma’s perpendicular 
dielectric constant works. This forms the basis for a ‘plasma capacitor’. In a 
laboratory experiment, if a surface charge density is built up externally, which 
in vacuum would have stored energy in the perpendicular electric field, the 
presence of a plasma causes this field to be shielded out via the polarization 
current, greatly reducing the stored electric field energy and putting the bulk of 
the energy into the kinetic energy associated with the VE drift. As with any 
capacitor, a high dielectric constant allows a larger free charge and a larger 
stored energy to be built up at a given electric field strength. 

Problem 4.4: For this calculation, we chose to consider cl a property of 
the medium, and thus to take the polarization drift into account implicitly 
through cl (and taking ug as causing a jext) .  We could instead have 
calculated the polarization drift’s contribution to j as part of jextr and also 
its self-consistent contribution to da,/dt (where a, would now be the total 
surface charge density), and then used the vacuum eo to characterize the 
remaining vacuum ‘medium’. Show that both approaches give the same 
answer for dEl/dt. 
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4.4 ADIABATIC INVARIANTS 

It is valuable at this point to consider our results for the drift equations in the 
wider context of Hamiltonian classical mechanics. Hamiltonian systems are 
those in which the equations of motion can be expressed in the form 

(4.25) 

where H(q,, . . . , qi, p1, . . . , p i )  is called the ‘Hamiltonian’ of the system. The 
pi are generalized momenta, and the 4i are generalized positions-so-called 
‘canonical’ variables. The classical equations of motion of a charged particle in 
the presence of electric and magnetic fields are Hamiltonian. The guiding-center 
drift equations we have derived, which are only correct to first order in krL, can 
also be cast in a strictly Hamiltonian form, with H = mui/2 + p B  + q+, The 
Hamiltonian is evidently very simple (even obvious)-the key is determining 
what to use as the canonical variables. To be precise, the Hamiltonian form 
does not give exact equations of the ‘true’ guiding-center particle motion to all 
orders in krL, nor does it give precisely the equations we have derived, but it is 
strictly Hamiltonian to all orders and it also agrees with our equations to order 
krL, which is as far as our equations are valid. This Hamiltonian nature of the 
drift equations justifies taking over results from classical mechanics (or even 
quantum mechanics!), and applying them to guiding-center drifts. 

One important result of the classical mechanics of Hamiltonian systems 
is that the action, defined as Jpdq around a loop which represents nearly 
periodic motion, is adiabatically invariant. The magnetic moment, p,  is an 
adiabatic invariant of the basic Lorentz force equations. In this case, the nearly 
periodic motion is the Larmor gyration with frequency wc. The appropriate 
momentum for this case, p ,  is the particle’s angular momentum, mrLu1, and 
q is its angular position, 8 .  Adiabatic invariance means that if the trajectory 
changes slowly, either because the fields are changing slowly, or because the 
loop is slowly drifting into a region of different field geometry, then the action 
changes much less, proportionally, than the field geometry. ‘Slow’ here means 
that the characteristic time of variation of the field is long compared to the 
oscillation period of the basic periodic motion, and the space scale of variation 
is large compared to the distance the loop drifts in one period. In the case 
of p conservation, for example, the relative change in the adiabatic invariant 
compared to the change in the magnetic field due to some time-dependent 
perturbation with frequency w is exp(-w,/w). This means that for wc/w of order 
unity, there are order unity changes in p.  However, as w,/w becomes much 
larger than unity, the changes in the adiabatic invariant become exponentially 
small. Since exp(-wc/w) cannot be expressed in a Taylor series of w/w, ,  we 
say that the adiabatic invariant is conserved ‘to all orders’. (Speaking precisely, 
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for this to be true it has been shown that the actual adiabatic invariant is p to 
lowest order but has corrections of higher order in the ratio of the Larmor radius 
to the scale-length of field variation.) 

Note that when we say that the scale-length or time of variation must be 

Particle drijls in time-dependent fields 

long, this is not only that 
1 dX 1 << - X dt t 
-- (4.26) 

where X is any field quantity, and t is the period of oscillation. If we impose a 
small-amplitude high-frequency oscillation on B or E, with a frequency greater 
than l / t ,  equation (4.26) may be satisfied, but the appropriate adiabatic invariant 
will not be well-conserved compared with the amplitude of that high-frequency 
component. Thus, if we require exponentially good conservation of h, for 
example, the high-frequency components in the range w x w, or greater must 
be exponentially small. 

4.5 SECOND ADIABATIC INVARIANT: J CONSERVATION 

Let us now go on to consider an adiabatic invariant of the guiding-center motion, 
rather than of the particle motion, which arises when the guiding-center parallel 
motion is of a periodic nature: for example, a trapped particle bouncing in a 
magnetic mirror. This is usually called the ‘second adiabatic invariant’ and is 
given by 

(4.27) 
J u  

i.e. the loop integral of the parallel velocity along a particle trajectory. The 
endpoints of the integral are taken at the two turning points, a and b, where 
U I I  = 0, but the total value of J is typically defined as the integral from 
a to b, and then back again to a .  A simple proof of J invariance can be 
constructed by invoking the correspondence principle, the Hamiltonian nature 
of the drift equations, and a basic understanding of quantum mechanics. In 
the action integral, equation (4.27), the momentum p corresponds to k, the 
quantum-mechanical wave number, so J is proportional to the phase integral, 
J kdl, along the trajectory. A quantized solution to the orbit would require the 
phase integral to equal some integer, n.  (In any macroscopic case, n is very 
large.) The conservation of J then corresponds to the quantum mechanical 
requirement that a perturbation with frequency of order the bounce frequency 
is required to cause a state transition to a different n .  (This is because the beat 
frequency between the nth and (n  - 1)th states is just the bounce frequency.) 
Thus J conservation corresponds to the quantum mechanical result that if a 
potential well is transformed adiabatically (slowly compared to a bounce time), 
the quantum number of a particle trapped in the well is not altered. 
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Figure 4.2. Particles trapped in the Earth’s dipole magnetic field, precessing around the 
Earth. The Earth’s field is shown schematically, distorted by pressure of the solar wind. 

For a specific example of J invariance, we might consider the motion of a 
high-energy particle trapped in the Earth’s magnetic field, which is dominantly 
a dipole field modified by the pressure of the solar wind, as illustrated in 
Figure 4.2. Protons with MeV energies arise, for example, from the decay 
of neutrons created by cosmic ray collisions. If we assume that the Earth’s 
magnetic field is essentially static, and the electric fields are modest, we may 
use in equation (4.27) simply 

VI1 = [2(W - p B ) / m ] ” 2 .  (4.28) 

High-energy particles ‘bounce’ between higher-field points near the North 
and South poles, and slowly precess around the Earth due to the VB and 
curvature drifts. It is the ‘bounce’ motion from North to South and back again 
that defines the trajectory for determining the invariant J .  The Earth’s field is 
distorted away from axisymmetry, however, by the action of the solar wind. 
Because of this asymmetry, there is no a priori reason to believe that a particle 
should return to its earlier trajectory as it makes a full turn around the globe. 
It might-as far as we know so far-return to its initial longitude (East-West 
location) but be at a new altitude. However, at a given longitude, each field 
line as a function of altitude above the equator has a different effective length 
($ ds) between turning points for a particle with given magnetic moment p and 
energy W ,  and different values of the field strength, B ,  along the field line. 
Each line thus represents a different J for that particle, and so if J is conserved, 
as well as p and W ,  then the particle must return to the same altitude after 
precessing around the Earth. Thus it cannot spiral in or out of the Van Allen 
belts (for example) without the presence of some fast-time-scale or short-space- 
scale perturbation. This explains the persistence of these radiation belts. 

The proper first-principles proof of J conservation, without simply taking 
over a result from Hamiltonian mechanics (or quantum mechanics), is very 
lengthy. It was first published by T G Northrop and E Teller (1960 Phys. Rev. 
117 215). Unfortunately, elementary textbooks abound with poor (but quick) 
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pseudo-proofs. While it is beyond our scope here to give the complete proof of 
J invariance for all cases, it is worth our while here to outline the classic proof 
for the case of time-independent fields. 

Northrop and Teller start by noting that J is a function of field line (as 
discussed above), and as such is a function of only two spatial dimensions. 
They introduce spatial coordinates, a! and /?, which do not vary along field lines, 
but rather distinguish between field lines. They show that a! and ,B can be chosen 
such that 

B = VU x Vg. (4.29) 

Note that by construction V - B = Vj3 - (V x V u )  - Va! * (V x Vj3) = 0. 
The fact that a! and /3 are constant along field lines can be seen from noting that 
B - Va! = B - Vj3 = 0. Now we are in a position to assert that J = J(a,  /I), 
because J characterizes a field line, for fixed p and W. (J (a ,  @) might also 
depend explicitly on time, in the presence of time-varying fields, but we will 
not discuss that case here.) 

If J = J(a,  j3), then to evaluate dJ/dt ,  averaged around a zeroth-order orbit 
(i.e. one with no motion other than V I , ) ,  is a well-defined operation. We average 
first-order guiding-center drifts around the zeroth-order orbit, symbolized by the 
( ) operator, to obtain the first-order change in J :  

(dJ/dt) = (da/dt)(aJ/a&) + (dB/dt)(aJ/dB). (4.30) 

The proof then proceeds by noting that 

(4.3 1) j vgc * V@dt - S N v g c  * Va)/ulllds - ($)= [dt j ( 1  /q )ds  

together with an equivalent expression for (dpldt), and 

a J  ajullds - 1 2 d s  = - (4.32) 
au aa s m aa! uII 

together with an equivalent expression for aJ /ag.  The second step in 
equation (4.32) follows because U I I  = 0 at the endpoints, so a/aa! of the endpoint 
positions gives no contribution. The third step follows because 

- 

au , ,  a[2(w - p B ) / m ] ' I 2  -paB/aa! 
au au mull 

- - (4.33) 

Thus we see that a J/aa depends on the bounce-integral of ( l/ull)aB/aa!. 
Equation (4.31) shows that (aa/at)  depends on a similar integral of vgc a V u .  
The guiding-center drift in the Va direction is, however, closely related to 
aB/aj3. Northrop and Teller indeed find that the bounce average of vgc Va! 

_ -  - 
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can be expressed in terms of a bounce-integral over aB/a/3 only. The result 
is that the first term on the right-hand side of equation (4.30) is a product of 
identical bounce-integrals over a B/aa and a B/a/3. The second term, of course, 
is structurally identical, and its sign turns out to be reversed, with the result that 
it cancels the first term, proving conservation of J to first order. 

Problem 4.5: Now we examine a case with time-dependent B fields, 
but ignoring spatial drifts. Assume B = fBo(l  + y z 2 ) ,  where y = y ( t ) .  
For a particle bouncing back and forth in the magnetic well defined by 
this field (cf Problem 3 3 ,  show that the second adiabatic invariant, J ,  
is conserved if y varies slowly compared to a bounce time. To do this, 
first evaluate J as a function of y ,  W ,  and p. Next evaluate (W) as a 
function of y ,  9 ,  W and p where ( ) indicates the time average around 
a zeroth-order orbit, i.e. an orbit over which y is taken to be constant 
for calculating the trajectory, but 9 is finite for evaluating W = paB/at .  
For any quantity x ,  ( x )  J x d t /  J dt = J ( x / q ) d s /  J ( l / u l l ) d s .  Finally show 
that j = (aJ /ay)p  + (aJ /aw)W = 0. 

The conservation of J is a very powerful tool for calculating particle 
trajectories in complex geometries. For numerical evaluation of the properties 
of different magnetic geometries, it is often superior to integrating the guiding- 
center equations of motion. For developing a qualitative understanding of 
particle orbits in moderately complex geometries, it is unsurpassed. One must 
be cautious, however, about assuming its validity in all cases. A particle can 
drift ‘over’ its trapping barrier, in cases where B has a local maximum which 
decreases in the direction that the ‘bounce’ orbit is drifting. The particle then 
undergoes a ‘jump’ in J .  Up to the jump, J is nicely conserved; after the jump 
quite a different value of J is also nicely conserved. However these jumps can 
often be the most important ingredient in determining particle transport in the 
given situation. The key requirement for J conservation is that the variation 
of the B field geometry (e.g. V B ,  (6 . V)6) along a bounce trajectory must in 
some sense accurately ‘predict’ the B field which will be experienced along the 
next bounce, for J to be conserved. 

4.6 PROOF OF J CONSERVATION IN TIME-INDEPENDENT 
FIELDS* 

In the previous Section, we only outlined Northrop and Teller’s proof of J 
conservation in time-independent fields. In this Section, we will construct the 
proof itself. 
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Figure 4.3. Geometry for establishing ar! CY, /?, s 
coordinate system. 

First we must prove that we can generally express B in the form B = 
Va x Vj3. It is only necessary to prove this locally in the close vicinity of 
a given field line of interest, where we are planning to perform the bounce- 
integrals required for the proof of J conservation. We have already shown that 
a and j3 are constant along field lines if B = Va x Vj3. Thus let us choose 
to develop a coordinate system in the vicinity of a specific field line, to which 
we assign the values (a = 0, j3 = 0). Let us arbitrarily choose a starting plane, 
perpendicular to this field line, where we will define s = 0. Now we have an 
origin for our coordinate system, a = j3 = s = 0 (see Figure 4.3). Next we 
assign to a differentially nearby field line the values (a = Sa, B = 0) in order 
to define a direction for the a axis in the s = 0 plane. Let us then take a 
third field line piercing the s = 0 plane to define the /3 axis on that plane and 
assign it the values (a = 0, j3 = Sj3). For simplicity, we choose the location of 
this third field line such that the j3 axis it defines is perpendicular to the a axis 
in the s = 0 plane. Furthermore, if we choose the location of the field line 
(i.e. the distance in the s = 0 plane away from the origin in the j3 direction) 
such that lVBl = B/IVal at the origin, then B = V a  x Vj3 at the origin, by 
construction. Obtaining the right answer at a single point may seem a meager 
result, but we will see that this sets the cornerstone for our coordinate system. 

To complete the coordinate system, we denote the length along any field 
line from the s = 0 plane by s. Now we have a fully defined three-dimensional 
coordinate system, (a, j3, s), in the vicinity of the field line (a = 0, jl = 0). 
This coordinate system is curvilinear and non-orthogonal, except at the origin 
where we have made the coordinate system orthogonal by construction. To prove 
that B = V a  x Vj3 will first require some basic results about such coordinate 
systems. 

The vector a x / a a  is defined as the variation of the usual Cartesian position 
vector, x, with respect to a, at fixed p and s. The quantity ax in this case is 
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just the differential vector that connects the field line (a = 0, = 0) to the field 
line (a = a a ,  g = 0) at a given fixed value of s. The vector ax/ap is defined 
similarly. The vector ax/as is the variation of x with s at fixed a and B, i.e. 
along a given field line. Thus ax/as is just the unit vector along B, the familiar 
6. By analogy we define 6 = (ax/aa)/lax/aal and b = (ax/ag)/px/agI.  
For completeness we also define i (ax/as)/lax/asl = (ax/&) = 6. In a 
non-orthogonal coordinate system, the dot products of the unit vectors along the 
axes (e.g. 6 - 6 )  are not necessarily zero, as they are in an orthogonal system. 
Another important set of vectors Vu, Vg ,  and Vs can be constructed from the 
equations 

v a  = a(aa/ax)  + jyaa/ay) + a(aa/az) 
v g  = a(ag/ax) + jqag/ay) + q a g / a z )  
VS = s(as/ax) + f(as/ay) + z(as/az) 

(4.34) 

where the partial derivative a/ax,  for example, means the derivative with respect 
to x at fixed y and z. It will be useful to note that, while Va, V g  and Vs are 
not orthogonal, it is nonetheless the case that 

(4.35) 

because in each case the partial derivative explicitly points in a direction along 
which the other coordinates do not vary. Furthermore, we will find it helpful to 
use 

(4.36) 

To prove this, consider, for example, the vector Vu. It points in the direction 
normal to a surface of a = constant, and its magnitude is aa/al ,  where a1 is the 
length element along the normal to that surface. The component of ax/aa in 
that same direction normal to the surface is just the reciprocal value, (aa/al)- '  
(see Figure 4.4). 

A final set of relations we will find helpful is 

V a =  - x ( v a x v g )  

vg=- - x(vaxvg). 
(3 (aa:) (4.37) 
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Surfaces of 
constant a 

Figure 4.4. Geometry for seeing that V a  - (ax/acr) = 1. 

Expanding the double cross-product in the expression for V a  we have 

Using equations (4.35) and (4.36) we see that this reduces to Va, as required. 
A similar analysis leads to the expression for V/3. 

We have now described some of the important properties of the curvilinear 
non-orthogonal coordinate system that we will use. (The use of such coordinates 
is often convenient in plasma physics, due to the special importance of 6, which 
is generally curvilinear.) This puts us in a position to prove in general that 
B = V a  x Vg in the vicinity of a = fl = 0 for the a(x), B(x) and s(x) we 
have constructed. First we show that the direction of V a  x Vg is correct. Our 
coordinate system satisfies 2. V a  = 2. Vg = 0 (see equation (4.35)) and 4 = 6 
by construction. The direction 6 is uniquely defined by being perpendicular to 
both Va and V g .  Thus V a  x Vg  certainly points in the same direction as 6 
everywhere in the vicinity of a = g = 0. This leaves open only the question of 
the magnitude of V a  x Vp .  From V * B = 0, we can write 

B(V .6)  + (6 - V)B = 0 ( 6 .  V)ln(B) = -(V - b). (4.39) 

Since we showed just after equation (4.29) that V - (Va x V g )  = 0, the same 
as equation (4.39) asserts about B and 6 can be asserted about the magnitude 
of V a  x Vp,  and the unit vector pointing in its direction. Furthermore, since 
we have just seen that the unit vector pointing in the direction of V a  x V p  is 
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identical to 6, we may conclude that 

( 6 .  V)ln(lVa x VSI) = (6 - V)ln(B). (4.40) 

In the vicinity of the origin, by construction, IVa x VgI = B, so IVa x VgI 
gives the proper magnitude of B all along s. Thus we have proven that 
B = Va x Vg in the vicinity of a = ,3 = 0 in our coordinate system. It 
is not the case, however, that the functions a and /3 are unique, as can be seen, 
for example, from how they were constructed. 

Now we proceed to give the heart of the Northrop and Teller proof of 
J invariance, specialized to the case of time-independent magnetic fields, and 
no electric fields. Let us start by focusing on vgc - V u ,  the key ingredient in 
equation (4.31): 

) .Va.  (4.41) 
WJ. B x V B  2Wll B x (6 * V)6 

B2 
+- 

4 

The vector VB can be expressed, in our coordinate system, by 

(4.42) 

This can be seen to be true, even though V u ,  Vg and Vs are not orthogonal, by 
dotting both sides of this equation with jZ,9 or 2. The j Z  components of VB, for 
example, is clearly given by aB/ax = (aB/aa)(aa/ax) + (aB/ag)(ag/ax) + 
(aB/as)(as/ax). The first term in equation (4.42) does not contribute to 
(B x VB) . Va in equation (4.41). The contribution from the second term 
can be simplified by noting that 

(B x V g )  - Va = B (Vg x VU) = -B2. (4.43) 

Finally we note that 6 - V is the same as a/&. Equation (4.41) then becomes 

Wi aB W i  (B x VS) - VU -+- aB 2Wll (B x $).v.. (4.44) 
B3 as 4 ~ 2  

vgc.vff = ---+- 
4 B  aP 4 

We will now work on the second and third terms on the right-hand side, and 
show that they cancel when they are integrated around a bounce orbit, as required 
for the evaluation of (daldt) in equation (4.31). 

Using the expression for Va in equation (4.37), we can simplify the second 
term on the right-hand side by writing 

(B x VS) - Va = (VU x B) - VS 
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(4.45) 

In the last step, we used 6 - Vs = 1 from equation (4.36) and Vs - (ax/ag) = 
0 from equation (4.35). 

Now we turn our attention to the third term on the right-hand side of 
equation (4.44). This can be put into a more useful form by writing 

,ax a6  
ag as 

B - . -  

(4.46) 

In the last step, we have used of 6 (ab/&) = (1/2)(a1612/as) = 0. We can 
simplify this result further by using 

(4.47) 

where, in the second step, we have used 6 = ax/&, and in the third step we 
have again used the fact that 1612 is constant everywhere. 

It is now time to collect our results, equations (4.45), (4.46) and (4.47) in 
order to rewrite equation (4.44) in a new form 

vgc - V a  = ---  pa^ + -  p ( . .  b . -  a”;); --1-(6.5). 2 w  a (4.48) 
4 ab 4 4 as 

The trick now is to note that the last two terms on the right can k. combined 
into a single term, which will vanish when we average equation (4.48) over a 

Copyright © 1995 IOP Publishing Ltd.



Proof of J conservation in time-independent$elds* 67 

complete 'bounce' orbit. To do this, we observe that WII = W - p B ,  where 
both W and p are constants of the particle's motion, and we note that 

(4.49) 

Equation (4.48) can then be written 

Recalling that averaging over the bounce orbit requires that we divide by U I I  

(which is proportional to Wlff2) and then integrate over all s, around a closed 
loop, we see that the second term in equation (4.50) will integrate to zero, and 
we obtain our final result, namely 

(4.5 1) 

where, in the last step, we have used equation (4.32). A similar result, but with 
a reversed sign, can be derived for the other cross-field component of vgc, i.e. 

ds m a J  
(vgc - vg>- = ---. s UII 4 aff (4.52) 

Substituting equation (4.51) into equation (4.31) (and equation (4.52) into 
the equivalent expression for (dgldt)), and then substituting these into 
equation (4.30), we obtain our final result 

Thus we have shown that, in the case of time-independent magnetic fields, the 
quantity J is an invariant of the particle's drift motion to first order in the 
guiding-center drifts. Perhaps not surprisingly, the quantities U and f i  used here 
are closely related to the canonical variables used in the explicitly Hamiltonian 
formulation of drift equations. 

If a static electric field is added, the generalization is straightforward. The 
constant of motion is no longer the particle's kinetic energy, but rather the sum 
of its kinetic and potential energy, W = mu2/2 + qq5. In calculating for this 
case, one must use 

(4.54) 

in the integral. The adiabatic invariance of J holds even in the case of slowly 
time-dependent fields, as Northrop and Teller showed in their more general proof, 

uII = [2(w - P B  - q 4 ) / m ] ' f 2  
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but it should be noted that the electric field is then not derivable from a scalar 
potential, and so there is no simple energy-quantity W that is a constant of the 
particle’s bounce motion. 

Those interested in pursuing further the topic of single-particle motion in 
slowly varying electric and magnetic fields are referred to a monograph by 
T G Northrop (1963 The Adiabatic Motion of Charged Particles New York: 
Interscience). 
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Chapter 5 

Mappings 

This Chapter uses non-J-conserving particle orbits to introduce the theory of 
Hamiltonian maps and chaos in dynamical systems. These powerful and elegant 
concepts are fundamental to many areas of modern plasma physics research, and 
indeed are now also used in such widely disparate fields as nonlinear mechanics 
and population ecology. The Chapter includes homework problems and two 
longer computational physics exercises based on the program ERGO provided 
with the text. The computational exercises can be used as independent work 
projects. 

5.1 NON-CONSERVATION OF J :  A SIMPLE MAPPING 

It is fun now to consider situations where J is not conserved. Imagine that the 
dipole magnetic field of the Earth (or other suitable source) has superimposed 
upon it some cos(n0) electric or magnetic perturbation-rather powerful aliens 
trying to meddle with the Van Allen belts, for example. Now we can imagine 
that if there is a component of the perturbation such that 277/n is comparable to 
or less than the circumferential angular motion (or ‘precession’) per bounce of 
fast particles, we will obtain substantial perturbations to the particle trajectories, 
which will not conserve J .  

A powerful modern technique to study problems of this sort is to consider 
the particle trajectories as ‘mappings’. Any possible trajectory (equator +. over 
Northern hemisphere --f over equator +. over Southern hemisphere +. over 
equator) is viewed as ‘mapping’ a particle from one location to another around 
in the circumferential direction, 8, and possibly up or down in altitude, r ,  but 
at fixed latitude-the equator. Iteration of this map can be used to create a 
‘puncture plot’ (or ‘Poincart plot’) in the (r,  8) plane, where we mark a dot 
every time a particle crosses the equator passing, for example, from South to 
North. In a pure dipole case without any ‘alien’ (or natural) perturbations, we 
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have a fairly simple map 

where 8,l, is the angular precession per bounce at the initial radius, ro, and the 
successive j ’ s  represent successive full particle cycles, or ‘bounces’. In general, 
8, will depend on r ,  for a given W and F,  since the gradient and curvature 
angular drift speeds depend on altitude. The quantity 8; is dOp/dr, to represent 
a linear approximation to the variation of precession speed with altitude. This 
map, as presented, is rather uninteresting. Particles do not move in r (we ignore 
the effect of the solar wind on B here) and they just precess around azimuthally 
at different rates, depending on r .  

The map becomes more interesting if we assume that the ‘alien’ perturbation 
modifies r each bounce with a cos(n8)-dependent ‘kick’ and that these kicks are 
not J-conserving, so the orbits do not necessarily return to the same altitude, ro, 
when they return to latitude 80. This would occur, for example, if n Oplr0 - 1. 
Then we have 

where E represents the ‘alien’ perturbation. By starting particles at various r and 
8, and following the mapping for many iterations, we can get a good sense for 
the nonlinear dynamics of this system, and for the types of effects E will have. 
The map is very much more complex than when E = 0. 

5.2 EXPERIMENTING WITH MAPPINGS 

This text includes a graphic program, ERGO, for the purpose of letting you 
experiment with mappings for yourself, so that you can develop a feel for 
their properties. It is provided in both Macintosh’ and IBM PC-compatible 
versions. Instructions on how to use this program are included in text files 
labeled README-ERGO on the Macintosh disk and ERGO.WR1 on the IBM PC 
disk. (Computer source code is included as well.) The program allows you to 
vary the precession per bounce at r = 0, the radial gradient of the precession 
per bounce, the amplitude of the perturbation, and the mode number of the 
perturbation. (It assumes non-J conservation for any n.) The display can be 
modified by varying the minimum and maximum radii shown on the screen. The 
computer beeps if the particle goes beyond these values. To see the process more 

Macintosh is a registered trademark of Apple Computer, Inc 
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clearly, you can vary the maximum rate at which the computer plots points. You 
can also toggle between the map we have been discussing here, the Chirikov- 
Taylor map, and a more complex two-step map treated in Problems 5.2 and 5.4. 
The Chirikov-Taylor map is named after its discoverers, B V Chirikov (1969 
Research Concerning the Theory of Nonlinear Resonances and Stochasticity, 
translated by A T Sanders, CERN Translation 71-40, Geneva; USSR Academy 
of Sciences Report 267, Novosibirsk) and J B Taylor (1969 Investigation of 
Charged Particle Invariants in UKAEA Culham Laboratory Progress Report 
CLM-PR 12). In the wider world of nonlinear mechanics, this has come to be 
known as the ‘standard’ map. 

Figure 5.1. Sample ERGO output. r and th  indicate location of pointer: r = -0.100; 
th = 1.552. 

Figure 5.1 shows a sample ERGO output. Twenty-five mappings (each with 
lots of iterations) were used to make Figure 5.1. 

Problem 5.1: Experiment with ERGO and find out what you can, 
qualitatively, about what goes on. Determine the effect of each parameter 
on the resulting map. For example, measure the variation of island width 
versus E ,  at n = 6; = 1. (From looking at the picture, you can guess 
that the ‘islands’ are the large elliptical regions containing fairly orderly 
trajectories.) How does the topology change as E increases? Study the 
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variation of island width and topology with N and 0;. Are there parameters 
you can vary together which expand or contract the map, without changing 
the overall topology? (Note: This problem should be attempted before 
proceeding to the next Section.) 

5.3 SCALING IN MAPS 

In the last Section, we discussed an iterative map of the form 

(5.3) 
rj+l = r, + Ecos(nej+,) 

and Problem 5.1 asked you, among other things, to find a combination of 
parameters which just sets the scale of the plots without changing the topology. 
This kind of activity, where we pare down a set of physical equations to their 
essentials, is sometimes called a ‘scaling analysis’. When we successfully 
complete a scaling analysis, even if we do not know the complete solution of the 
equations for any particular case, we do know what combination of parameters is 
important, so that we can reduce-in effect-the dimensionality of the problem. 
At first glance, it looks in our present case as though we have to understand a map 
that can be described in terms of five control parameters: Opplro, e;, ro, E and n. 
If we can reduce this to a simpler problem, with fewer control parameters, then 
a solution in terms of these fewer control parameters can be simply transformed 
into a solution for any values of $ I r o ,  e;, 10, E and n. 

Generally we make progress in this direction by recasting the equations in 
terms of those dimensionless variables that give the simplest possible equations. 
The coordinate 8 is already dimensionless, but since we suspect that we will see 
periodicity in 8 of 2rrln, let us see if the equation simplifies when we define a 
new angular coordinate p ne,  which will have periodicity 2 n ,  independent of 
n. If we do this, and then examine the first line of the transformed equation (5.3), 
we see that it will become very much simpler with a linear transformation from 
r, to a dimensionless x,: 

xj n$l, + nO;(rj - ro). (5.4) 

Now we have a much simpler set of equations: 

~ j + i  = Pj + xj 

xj+l = x j  + A c o s ~ ~ + ~  
(5 .5 )  

where A = En@;. By transforming the variables to dimensionless forms that 
make the equations as simple as possible, we have managed to lump all the 
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control parameters into the single parameter A. As a result, any answer we 
find in terms of the variables x and q~ can be transformed algebraically into the 
answer for any member of the class of problems that have the same value of 
me;. Alternatively, for any values of $ I r o ,  t9;, ro, E and n,  we simply evaluate 
A, look up a solution of equation (5.5) for that value of A, and scale the 
coordinates to the problem that interested us. Thus the quantity A must set 
all the topology of the m a p f o r  example, what fraction of space is filled by 
islands, and how chaotic the mapping looks. Note, also, that if we add 2n to 
x ,  and iterate the map, the 2n  will simply function as a one-time additive term 
in x and a sequentially additive 217 term in (o, but it will have no effect on the 
map, since is a periodic variable with period 2 x .  This is to say that the map 
repeats in the (p direction with period 2n (implying that it does indeed repeat 
with period 2 n / n  in the f3 coordinate), but it also repeats in the x direction, with 
period 2n as well! This implies that it repeats in the r direction, with period 
2nlnt9;. 

5.4 HAMILTONIAN MAPS AND AREA PRESERVATION 

The reason that rpj+l comes into the cosine term of equation ( 5 3 ,  rather than q j ,  
is interesting: it is because the map is constructed to maintain one of the basic 
features of a Hamiltonian system-it obeys Liouville’s theorem. Liouville’s 
theorem states that a Hamiltonian system (which is essentially a system with no 
energy input and no dissipation) preserves phase-space density. If we follow a 
group of particle’s trajectories in the phase space defined by their positions and 
momenta we find that, when they group together in position, they spread out 
in momentum, and vice versa, so as to preserve their total phase-space density. 
This is a result from classical mechanics, which we will actually re-derive in 
the course of developing the Vlasov equation in Chapter 22. The equivalent 
statement for a position mapping (where we are not anticipating changes in 
momentum) is that it should be area-preserving. Consider the differential square 
defined by ( x i ,  (pi), (xi  + S x ,  rpi), ( x i ,  ‘pi + Sp), ( x j  + a x ,  ‘pi + 69) in Figure 5.2.  
We would like the map to carry this square over to a new quadrilateral with the 
same area, to assure that our ‘particles’ will not bunch together. The area of our 
original square was (in appropriate units) SpSx. The first three corners of our 
new quadrilateral will be located at 
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' Many.iterations 
later, in an 
ergodic region 

Figure 5.2. Area preservation in a Hamiltonian map. 

These corners are enough to define two vectors, the magnitude of whose cross- 
product gives us the area of our new quadrilateral (a parallelogram). The result 
is 

Those familiar with coordinate transformations will recognize the term in 
square brackets as the Jacobian of the transformation, and it is a general result 
that its determinant must equal unity to assure that a transformation is area- 
preserving. However, it may not be completely obvious how to take the indicated 
partial derivatives through one full mapping step. Referring to equation (5.9, 
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we see that 

To find the partial derivatives of xj+l with respect to xj and p, (at fixed yi and 
xj, respectively), however, requires substituting for p,+l in terms of pj and xj 

oust because we have used p,+l here, as mentioned before). We obtain 

~ j + l  = ~j + A c o s ( ~ ~  + ~ j )  (5.8) 

so that 
(5.9) 

where the second term would not have been present if we had used pj, rather 
than pj+l, in the second step of the mapping. We also obtain 

(5.10) 

The argument of the sine function would be pj in this equation if we had used 
pj in the second step of the mapping, but this term itself would still have been 
present. Now evaluating the determinant of the Jacobian, we obtain 

1 - Asin(pj+l) + Asin(q+l) = 1 (5.1 1) 

as desired. The choice of pj+l in the second term was crucial for this result: 
otherwise the determinant would not have reduced to unity and the map would 
not have been area-preserving, Without this term, for example, in the Chirikov- 
Taylor map particle orbits flow rapidly out of the island structures and accumulate 
in the region between islands, violating the known underlying physics of the 
full system of equations of the drift orbits. Finding an area-preserving map 
is sometimes one of the main challenges in defining a mapping to correctly 
represent a Hamiltonian process. 

As we saw by experimenting with ERGO, this apparently very deterministic 
map gives what appears to be random or chaotic behavior, for large enough 
values of A = €ne;. What does area-preservation mean in this case? It means 
that an original compact area spreads out like a drop of ink in a glass of water 
into a more and more spidery shape, but with the same original area. 

It is important to recognize that there are also maps that are not area- 
preserving-and should not be, in order to represent non-Hamiltonian systems. 
In ‘dissipative maps’, which represent systems with energy input and dissipation, 
one finds that particle trajectories tend to collapse to ‘attractors’-patterns in 
phase space that ’attract’ trajectories from a ‘basin’ of initial positions. In some 
ways, these maps seem to represent the creation of order out of chaos, which is 
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made possible by the flow of energy through the systems they represent. These 
dissipative maps are proving to be useful representations of fluid turbulence, as 
well as useful models for other turbulent nonlinear systems, just as Hamiltonian 
maps have proven useful for understanding nonlinear energy-conserving systems. 

Problem 5.2: Consider a case where our dipole Earth has a line 
current driven through its center! Then the particle bounce orbits are not 
trajectories at fixed longitude, but they curve across the Earth at an angle 
(which itself depends on altitude), due to the 6 directed magnetic field. 
Let us assume we still have the ‘alien’ period-n perturbation, but now we 
have to consider the fact that the bounce angle of the orbits may arrange 
things so that the ‘kicks’ on each half-orbit add or cancel, or something in 
between. The new map becomes 

where the two-step feature comes from separately considering the kick on 
the top half and on the bottom half of the bounce. The 6 term represents 
the particle’s bounce motion, which takes it forward (+) on one half of 
the bounce, and backwards (-) on the other. Show that this map is area 
preserving. 

5.5 PARTICLE TRAJECTORIES 

Next, of course, it is interesting to try to determine how far the particles in 
our map depart from their original unperturbed trajectories. (Remember that 
we began this Chapter by being concerned about aliens bombarding us by 
perturbing the Van Allen belts. We might also be considering the perturbed 
orbits of energetic particles we want to contain in a fusion plasma.) As a first 
approximation, we assume that the particles do not move far enough in x that 
their precession speed changes significantly, so we can estimate 

Pj X PO + ~ X O  

X j + l  X j  + Acos (c~~+~)  (5.12) 
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where xo is the initial x coordinate. In the transformed equation ( 5 3 ,  it 
also represents the initial precession rate in q ~ .  Recognizing that we are only 
considering the real part of x we can write 

xj+l % X j  + Aexp(i(oj+l) (5.13) 

and substituting for qj+l we obtain 

or 

This is a simple recursion relation, which can be solved explicitly: 
X j  % Xj-1 + Aexp(iqIo)exp(ijxo). (5.14) 

m 

x m  X xo + Aexp(i(p0) exp(i jxo)  (5.15) 
j=1 

and the summation is a well-known result, i.e. 

so 
exp(ix0) - exp[i(m + l)xo] m 

exp(i jxo) = 
j = 1  1 - exp(ix0) 

(5.16) 

so that 
(5.17) exp(ix0) - exp[i(m + 1)xol 

1 - exp(ix0) 
x, - xo % Aexp(i(po) 

Thus, we would seem to have obtained our required answer, apparently in 
general. The right-hand side of equation (5.17) is of order A multiplied by a set 
of terms each of order unity. If A is small enough, we would expect xm - x o  to 
be small, as assumed. The terms multiplying A represent the fact that sequential 
radial kicks tend to cancel each other, rather than steadily accumulate. However, 
because the denominator can go to zero, we should carefully check our initial 
assumption that the particles do not drift far in the x direction from their original 
locations, no matter where they begin. A little analysis will show that there is 
trouble in small regions where the precession ‘resonates’ with the perturbation, 
i.e. xo is close to 2 n k  where k is any integer. In these regions, on each bounce 
the particle gets the same radial kick that it got the last time, so there is no 
sequential cancellation. Assume that x g  = 2 n k  + S, where S is a small enough 
number that even mS << 1. Then equation (5.17) becomes, approximately 

iS - i(m + 1)6 
-iS xm - xo Aexp(i(p0) = Amexp(i(p0). (5.18) 
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This result implies that, if we start on a resonance, the particle position will go 
to infinity as m + 00. However, this violates the assumption made in deriving 
equation (5.17), that the precession speed will stay approximately constant M XO. 

Thus equation (5.17) is suspect for starting points in a narrow region fa(< l /m) 
away from resonance, for large enough m. It is, of course, always suspect for 
large A. 

5.6 RESONANCES AND ISLANDS 

As a result of the breakdown of equation (5.17), we must try another 
approximation close to resonances. Specifically, we will assume that we are 
close enough to the resonance that p changes very little (modulo 277) on each 
bounce, but we will allow the precession speed to be a function of x ,  as x changes 
due to the accumulation of radial kicks. The physical effect we will find is that 
the particle will be ‘kicked’ radially away from the resonance by the perturbation, 
but then the subsequent kicks will no longer sequentially accumulate, so the 
particle will not drift off to infinity. Indeed it will eventually move in p to the 
location where the radial kicks have the reverse sign, so it will drift back to the 
resonant radius, and continue to oscillate around the resonance in this manner. 

For a small enough change in 6p (modulo 2n) per iteration, our mapping 
equations can be ‘reconstructed’ into diflerential equations, where the ‘unit of 
time’ is an iteration of the map: 

dpldt = x - xS dxldt = ACOSC~ (5.19) 

where xs is the resonant surface location, i.e. the location where the p precession 
angle per bounce is exactly 2nk. Differentiating the first equation with respect 
to ‘time’. we obtain 

d2v - = A C O S ~  
dt2 

(5.20) 

which is the equation for a ball rolling in a sinusoidal well. We can find some 
of its important properties from the conservation equations 

d’ d2’ - !?Acosp 
dr dt2 dt 

or 

-! ( - AsinCp = constant 
2 %  

(5.21) 

(5.22) 

where d/dt indicates the total derivative along the particle’s trajectory. 
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If the constant in equation (5.22) is chosen to be greater than A, then any 
value of p corresponds to a positive value of (dp/dt)2, and so p will increase 
or decrease indefinitely. If dp/dt starts positive, there is no place where it goes 
to zero, so it will stay positive for its whole trajectory; by the same argument, if 
dp/dt starts negative, it will stay negative. For values of the constant less than 
A, the value of p is trapped and oscillates between the zeros of (dp/dr)2. The 
combination of the oscillation in p and the associated oscillation in x creates 
a closed trajectory referred to as an ‘island’-by now you have seen plenty of 
these in ERGO. It is interesting to calculate the width of this island. From 
equation (5.19), we see that a particle reaches its maximum ( x  - x , )  at the 
same time that it reaches its maximum dp/dt. In the case where the constant 
in equation (5.22) is just equal to A (the barely trapped orbit, corresponding 
to the ‘separatrix’ between trapped and passing orbits in the ERGO plots), the 
maximum value obtained by dp/dt is 

(dp/dt)m, = (X - Xs)ma = 2 A  (5.23) 

so, by the definition of A €ne; and of xi = nO,l, + n(r, - r,)O;, we have 

(r - rs)” = 2 €/no . c (5.24) 

The island width is proportional to the square root of the perturbation 
strength, and inversely proportional to the square root of the gradient in the 
precession speed as a function of altitude, sometimes called the ‘shear’, in the 
precession. 

5.7 ONSET OF STOCHASTICITY 

So far, we have been talking as if all of the trajectories were nicely 
bounded. In fact, as A grows we have seen from ERGO that some of 
the trajectories eventually become ‘stochastic’ or apparently random in their 
behavior. Trajectories that randomly fill a region of space are called ‘ergodic’- 
hence the name ERGO. The transition to stochastic behavior is fascinating. The 
separatrix trajectories become stochastic first, long before the regions inside the 
islands. The stochasticity is sometimes characterized as being due to overlap of 
the islands which occur at radii with different resonances. The thought is that 
as A grows, trajectories cannot tell which island they are on. 

But what has really gone wrong with the derivation above, from which 
we obtained a simple non-stochastic island structure? Basically, the island we 
have been calculating has reached out so far from the resonant surface that the 
precession is significantly different from 217, so the jumps in the p direction 
(modulo 2n), namely 6p, are no longer small, and we cannot legitimately 
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model the mapping as a differential equation-thus, just like equation (5.17), our 
solution near the resonances is not valid in a situation with large A. A simple 
estimate of when the stochasticity enters would follow from noting that when 
6(p approaches unity the steps are no longer small relative to the scale length 
of variation of the potential well described by equation (5.22). Thus when the 
island width is equal to unity, in the scaled map, we should expect to begin to 
see breakdown of our differential-equation model near the separatrices. Using 
equation (5.23) for the island width, this condition can be written 

or 
A = 114. (5.25) 

There are further nonlinear features that enter as A grows to - 1, and these are 
not modeled by our differential equation, also because the jump in x (as well 
as in (p) is now no longer small. An order unity jump in x means an order 
unity change in the precession speed per jump, in which case the differential- 
equation model fails totally-n both variables! As A grows, secondary islands 
with periodicity p can be seen at x = 2nk + 2 n n / p ,  because at these radii 
trajectories repeat themselves after p iterations rather than average smoothly 
over all (p, so finite ‘kicks’ due to the nonlinearity of the map accumulate, and 
the resulting islands contribute to the island-overlap process (see Problem 5.5) .  
Furthermore, the trajectories circulating around in the volume within the islands 
have ‘shear’-the bounce time in a sinusoidal well depends on the depth into the 
well. Thus there are trajectories inside the primary islands which are resonant 
(for example, it takes six or seven circuits to go completely around the island at 
some distance from its center). Again orbits repeat over themselves and kicks 
accumulate. 

The primary islands therefore have island ‘daisy-chains’ within them! If 
you blow up the scale in ERGO you can see these chains. These island chains 
even have their own island daisy-chains inside, ad injinitum. Furthermore, if 
more than one ‘alien’ perturbation is present (e.g. there are various perturbations 
with different values of n) ,  then the islands from the different perturbations can 
overlap. In the pure Chirikov-Taylor map, trajectories become free to jump 
across periods of 2 n  in the x direction (a crucial moment) when A = cn6; = 
0.989. . ., where this numerical value is taken from Chirikov’s classic monograph 
(1979 Phys. Rep. 52 265). In this critical vicinity, however, it takes of order 
lo7 mappings for a typical orbit to ‘jump’ periods, so for your level of patience 
(and your computer’s speed), you may find the practical limit is around 1.05. In 
the range of A >> 1, the orbits end up with individual steps in radius which are 
effectively uncorrelated from one to the next. Using a ‘random walk’ model, 
we can estimate a radial diffusion coefficient of % A2/4 in this regime. 
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Problem 5.3: From the definition of the random-walk diffusion coefficient, 
D = ( A x 2 ) / 2 r ,  derive the radial diffusion coefficient for the standard map 
in the limit of large A. 

Problem 5.4: Toggle ERGO to the two-step map introduced in 
Problem 5.2 and study the onset of stochasticity in this map-investigate 
if it is roughly consistent with the following criterion for stochastic onset: 

(5.26) 

which was initially derived by R J Goldston, R B White and A H Boozer 
(1981 Phys. Rev. Lett. 47 647), both when 8; > 8; and when 8; < 8;. 
Explain the basis for this criterion. Hint: it is not exactly island overlap. 
(Note: this problem requires extensive independent work and has typically 
been set as a semester project.) 

Problem 5.5: There is an island chain that grows at r = n, when the 
parameters in the Chirikov-Taylor map are set at their defaults. You can 
see it in Figure 5.1 as a chain of two islands located vertically about 
halfway between the largest islands. Empirically determine the scaling of 
its width at constant 8, as a function of E .  Then explain why this scaling 
is observed. Hint: use the differential-equation approach developed in 
this Chapter, but consider a unit of ‘time’ to be two iterations of the map. 
Consider that A and ( x  - x,) are similarly small quantities, so terms of 
order A(x - x , )  and ( x  - x , ) ~  can be neglected compared to terms of order 
A or (X - x , ) .  Finally, note that you want to know the island’s full width at 
fixed 8, not its total extent in the x direction, which is different, since the 
line it is ‘riding’ oscillates in x .  (Note: like Problem 5.4, this problem has 
also typically been set as a semester project, as an alternative to Problem 
5.4.) 
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Chapter 6 

Fluid equations for a plasma 

We have been looking at plasmas as collections of individual charged particles. 
It is time now to consider the behavior of an ensemble of charged particles which 
we will find acts as a special kind of fluid. In this Chapter, we will derive fluid 
equations for each species of particles (i.e. ions and electrons) separately, and 
later we will see how to treat the whole plasma as a single fluid. 

6.1 CONTINUITY EQUATION 

Consider a differential element of volume in the shape of a cube whose sides 
are parallel to the coordinate surfaces, as shown in Figure 6.1. In order to 
display the similarity of each of the three coordinate directions, and especially 
because we will later want to sum various expressions over all three coordinate 
directions, we have labelled the coordinates XI, x2 and x3, rather than the more 
familiar x ,  y and z. 

The number of particles flowing out of this volume element across the 
surface shown in the figure per second will be n(q)dx2dx3 evaluated at XI +dxl, 
where ( V I )  is the average velocity of our species of particles in the xl-direction. 
(In the more conventional notation, the component V I  would be written u x ,  and 
similarly u2 and u3 would be written uY and U,.) The number of particles flowing 
into the volume element per second will be the same expression evaluated at 
XI. Assuming that no particles are gained or lost from the volume element other 
than by flow across its boundaries, we can express the rate of change of the 
number of particles in the cube shown in Figure 6.1 in terms of the flow of 
particles across each of the six sides, i.e. 
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where d3x = dxldx&3. Dividing by d3x and taking the limit as the size of the 
cube shrinks, we obtain the ‘continuity equation’ 

For clarity, we display the summation sign explicitly in equation (6.2) and 
elsewhere in this Chapter although, even without it, index notation under 
the Einstein convention would imply summation over the repeated suffix i .  
Changing to vector notation and writing U for the average velocity, (v) ,  the 
continuity equation may be written 

an 
- + V - (nu )  = S 
at (6.3) 

where we have added a volume source rate of particles S. For the charged 
particles of a plasma, a volume source term would arise from the ionization 
of neutral atoms; recombination- would give rise to a corresponding volume 
sink term. For the present, however, we will generally neglect ionization and 
recombination, but we should be aware that sources and sinks of particles do 
arise in plasmas and give additional terms in  all of the fluid equations. 

6.2 MOMENTUM BALANCE EQUATION 

We consider next the rate of change of momentum density in a differential 
element of volume. First, we will ignore the fact that particles move in and out 
of this volume, and consider just the macroscopic forces on the element. The 
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familiar Lorentz force, extended to all the particles of a given species per unit 
volume, is just 

F = n q ( E + u  x B) (6.4) 
where again U is the average velocity, (v), of our species of particles (for example 
the electrons) and 4 is their charge per particle. The force density F represents 
a local source rate of momentum density; the change in momentum density due 
to this force density is just 

a(nmu) 
at = F = n q ( E + u  x B). 

Next we have to consider the momentum density changes arising from 
particle motion carrying momentum with it. We have so far included momentum 
changes due to external forces acting on the particles that are ‘members’ 
of the element, but as particles move into or out of the element carrying 
momentum with them, this gives another contribution to the time derivative 
of the momentum in the element. Let us begin by considering the flux in the 
x1 direction of x2-directed momentum. This flux is just the number of particles 
per unit area per second passing through a surface of constant xl, times the 
momentum in the x2 direction, mu2, carried by each particle. 

In Chapter 1 we introduced the distribution function, f(x, v). We recall 
that f (x ,  v) is the relative probability of finding a particle with a given velocity 
vector v, normalized such that the integral of f(x, v) over all v gives the density 
n(x). Thus the differential number of particles in a phase space element d3ud3x 
located at (x, v) is simply f(x, v)d3ud3x. This element of phase space ‘empties 
out’ in the x1 direction in a time interval dt = dxl / U I .  The differential number 
of particles carried per second across the surface of constant x1 by this element 
of phase space is fd3ud3x/dt = ulfd3udx2dx3. These specific particles each 
carry x2-directed momentum mu2, so the differential amount of momentum in 
this direction carried per second across a surface of constant x1 by this element 
of phase space is mu2~1fd~udx2dxg. To obtain the total momentum flux, i.e. 
the total quantity of x2-directed momentum crossing a surface of constant x1 per 
unit area per second, we divide out the differential area dx2dx3 and integrate 
over velocity space. The total flux of x2-directed momentum in the XI direction 
becomes mu2u1 fd3u, which, by the definition of f ,  can be written simply 
mn(u2ul). The rate of change of x2-directed momentum, averaged over all of 
the particles, can now be expressed in terms of the divergence of fluxes of 
momentum across the various surfaces: 

Since we have not used any special properties of x2, we can replace it with 
an arbitrary suffix i. Furthermore, it now becomes clear that this momentum 
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flux is closely related to a generalized definition of pressure, in the case where 
pressure is viewed as a tensor quantity, the 'pressure tensor'. This pressure 
tensor P (we use boldface italics for tensors) is defined in index form by 

Fluid equations for a plasma 

where we have used the definition of mean velocity U, namely ui = ( v i ) .  
Thus, the flux in the i direction of j-directed momentum is just Pi, + mnuiu,. 
Incidentally, this derivation makes clear that the familiar concept of pressure 
is, in a more fundamental sense, a momentum flux. Note that it is only the 
divergence of this flux that results in acceleration. 

For the special case of a Maxwellian distribution, drifting at a given velocity 
U (i.e. f (v  - U) = Maxwellian), then Pi, = 0 for i # j ,  and Pi, = nT for 
i = j ,  where T is the temperature (measured in energy units, i.e. joules, so 
that the Boltzmann constant may be omitted). For a case where the plasma is 
characterized by different perpendicular and parallel temperatures, relative to the 
direction of the local magnetic field, then Pi, still is zero for i # j ,  but now, if 
i = j and is perpendicular to B, then Pi, = nTL, while if i = j and is parallel 
to B, then Pi, = nTII. If we take the direction of B to be the x3 direction, we 
obtain 

0 
Pi, = [ nTL "1 ,  (6.8) 

0 nTll 
It is interesting to note that, in all cases, Pi, = Pji. Furthermore, the off-diagonal 
elements (i # j )  constitute the flow in one direction of momentum in another 
direction. This is the mechanism of viscosity, whereby if a fluid has flow, for 
example in the XI direction, but that flow has a gradient in the x2 direction, then 
x1 momentum is transferred in the x2 direction to the slower moving fluid, acting 
so as to speed it up. However, in a plasma, if velocity-gradient scale-lengths, 
L, are much greater than a gyro-radius, rL, these off-diagonal elements of the 
pressure tensor are smaller than the diagonal elements, being -higher-order by at 
least one power of r L / L .  

Problem 6.1: Show that 

is an equivalent way of writing equation (6.8). Evaluate all of the nine 
elements Pij for the case where the magnetic field is oriented at 45" to 
the xI direction, in the (xl, x 2 )  plane. 
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Returning to our derivation of the momentum balance equation for a plasma, 
we now know that the flux in the XI direction of x:! momentum is given by 
PI:! + mnuluz. If we want to know the time derivative of x2 momentum density 
due to this flux, we need only use equation (6.6), which involves the divergence 
of this flux of momentum. Thus, the contribution to the rate of change of 
x:! momentum density from the motion of particles is 

-- a(mnu2) - aPl2 ap32 - (a(nul ;d  + a(nu2u~)  + a(nu3u2)) 
at axl axz ax3 ax axz ax3 

(6.9) 
with similar equations for the change of momentum in the XI and xg directions. 
In index notation, this becomes 

a(mnuj) a p i j  a 
at = - C z -  i ax i  

m -(nuiu,>. (6.10) 

Reverting to vector notation (where we do not need to specify a coordinate 
system) and denoting the pressure tensor by P ,  we can combine the two 
contributions to the rate of change of momentum density that we have evaluated, 
to obtain the ‘momentum balance equation’: 

a(mnu) -- - n q ( E + u  x B) - V - P - V - (mnuu).  
at 

(6.1 1) 

There are various alternative forms in which we can put the momentum 
balance equation. We can substitute for anlat from the continuity equation, 
equation (6.3), and we can expand the last term on the right-hand side in 
equation (6.1 l), by using 

m V  * (nuu) = m u ( V  - nu) + mn(u V ) u .  (6.12) 

In index notation and Cartesian coordinates, this is equivalent to 

In this way, the complete momentum balance equation can be reduced to its 
most standard form: 

mn (e + (U V ) u  = nq(E + u x B) - V P - mSu. (6.14) 

(Often, the term in S associated with particle sources and sinks is neglected. 
Furthermore, another term must be added if the ionization or recombination 
processes involve a net loss or gain of momentum.) 

at ) 
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Problem 6.2: Provide a simple physical picture of the appearance of 
the last term on the right-hand side of equation (6.14). For example, 
consider a boy standing on a bridge dropping bricks onto trucks passing 
underneath. What happens to the velocities of the bricks, and also of the 
trucks? 

Equation (6.14) is the ‘momentum balance equation’, but it is also 
sometimes referred to as the ‘fluid equation of motion’, since it equates an 
acceleration to the sum of a number of forces. Very often, we express it in 
terms of the total derivative, which gives the time rate of change in an element 
of fluid moving with the local flow 

d a  
dt at 
_ - -  - + u . v  (6.15) 

in which case equation (6.14), neglecting the term due to a source S, can be 
written in the transparent form 

(6.16) 

In the case where a plasma is nearly Maxwellian (or at least nearly 
isotropic), V . P  can be replaced by the gradient of a scalar pressure, Vp. If this 
is not the case, the more complete form for the pressure tensor must be retained. 
The fluid form of the plasma equations of motion can handle fairly complex 
situations, but it is too much to expect that any simple closed form for the 
pressure tensor can represent all the effects associated with the full distribution 
function of particles. In fact, we could now proceed to generate a higher-rank 
tensor (the ‘heat-flux tensor’), involving the divergence of averages of quantities 
like uiu,vk, and we could generate fluid-like equations for the evolution of the 
pressure tensor in terms of this heat-flux tensor. Frequently people have the 
fortitude to maintain some of the off-diagonal elements of the pressure tensor 
and even some elements of the heat-flux tensor in their calculations, but much of 
the heat-flux tensor generally falls by the wayside. This amounts to assuming that 
the pressure tensor, and the velocity dependences in its underlying distribution 
function, f (x, v), have fairly simple symmetrical forms. However the fluid 
equations cannot handle very complex features of f(x, v), such as subgroups 
of suprathermal particles, or complex anisotropies. Under these circumstances, 
the more complete kinetic theory (which will be introduced in Chapter 22) is 
required. 

It is somewhat surprising, however, that even in a fairly collisionless plasma 
the distribution function can be close to Maxwellian, and fluid concepts can 
apply. This is because the magnetic field prevents particles from free-streaming 

du 
dt 

mn- = ng(E + u x B) - V . P .  

Copyright © 1995 IOP Publishing Ltd.



Equations of state 91 

and accelerating across B, and so they are forced to remain close to their original 
neighbors in the same fluid element. Along the B field, it is easier for particles 
to stream and mix (and run in and out of the fluid elements rapidly), but for just 
this reason gradients along B tend to be very gentle, and situations usually do not 
arise, except transiently, where a very hot region is feeding extremely energetic 
particles into a cold region on the same field line and creating an anisotropic 
suprathermal tail on the distribution of particles. This does happen sometimes, 
however, and then kinetic theory is required to calculate even simple things like 
momentum balance. Waves that have a finite wavelength along the direction of 
B are especially likely to be subject to such an effect. Later we will learn about 
Landau damping, which is essentially a phenomenon of energy and momentum 
transfer between particles and waves, due to kinetic effects. 

6.3 EQUATIONS OF STATE 

Even in the very simplest cases where the pressure tensor is isotropic, some 
additional relationship must be introduced to describe how the scalar pressure 
p varies in time. To avoid dealing with the heat-flux tensor explicitly, we will 
approximate the heat flow by introducing a thermodynamic equation of state for 
a plasma. This is an equation of the form p = Cny ,  which relates the scalar 
pressure p to the density n.  The quantity y expresses how much the temperature 
of a plasma increases as it is compressed, since p V y  = constant, where V is 
the plasma volume. As such, the equation of state constitutes a simple (and 
therefore only approximate) statement about the heat flow. 

For the case of compression that is slow compared to thermal conduction, 
we have y = 1, i.e. ‘isothermal’ compression. The pressure goes up only 
because the density goes up. In many cases, because particles can freely stream 
along a magnetic field B, conduction parallel to B provides an avenue for the 
plasma to remain isothermal, if the compression is, for example, periodic or 
wave-like along B. 

On the other hand, if the compression is fast enough to be ‘adiabatic’ (faster 
than heat conduction), but slow enough that energy is collisionally exchanged 
between the three degrees of freedom, then y = 513,  the usual result for a 
three-dimensional ideal gas. This is a special case of the more general result 
for an ideal gas, y = (2 + N ) / N ,  where N denotes the number of degrees of 
freedom. Later, we will see that a plasma can support a number of different 
types of waves, some of which compress the plasma isothermally, while others 
compress it adiabatically, and this has a significant effect on the wave dynamics. 

An important third case can arise in a plasma if adiabatic compression is 
both fast compared to collisions and also anisotropic. In this case, the parallel 
and perpendicular degrees of freedom are separated, so that can be heated 
very effectively ( N  = 1, y = 3), as can, to a lesser degree, T l ( N  = 2, y = 2). 
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The adiabatic invariants of particle motion in a strong magnetic field can be 
used to derive generalizations of these relationships for the case of compression 
that involves components both parallel and perpendicular to the magnetic field, 
as we will now see. 

The perpendicular pressure can be expressed in terms of an average of the 
particles’ invariant magnetic moments p by means of the relation 

P I  = mn 2 = n ( p ) B .  (6.17) 

If the compression is fast compared to collisions but slow compared to the 
Larmor gyration of the particles, then the p value of each particle will be 
conserved, which leads to the adiabatic relation 

( 2  

- d (-) P I  =o.  
dt nB 

(6.18) 

For the case of pure perpendicular compression, which would typically be 
accomplished by increasing the strength of the magnetic field, conservation of 
particles and of magnetic flux as the area A of the plasma cross section is changed 
implies that n A  = constant and B A  = constant, so that n is proportional to B .  
We then see that equation (6.18) reduces to the simplest adiabatic relationship 
p/nY = constant, with y = 2, as is appropriate for two-dimensional adiabatic 
compression. (The conservation of magnetic flux B A  was demonstrated in 
Chapter 4 for the simple case of a straight cylinder of Larmor gyrating particles: 
an increase in B results in a decrease in the area A of each of the Larmor orbits, 
such that B A  = constant. The more general result is demonstrated in Chapter 8.) 

Similarly, the parallel pressure can be expressed in terms of the particles’ 
J invariants by means of the relations 

where L is some measure of the length of the plasma along the field lines. If 
the compression is slow compared to the motion of particles to-and-fro a!ong 
field lines, then the J value of each particle will be conserved. Again using 
the conservation of particles and of magnetic flux, in this case as the length 
L ,  the cross sectional area A and the volume V all change, we obtain the 
relationships V = A L ,  nV = constant and B A  = constant. Using these 
relationships to express L in terms of the physical quantities n and B ,  we obtain 
L = V / A  a B l n ;  substituting this into equation (6.19), we obtain the adiabatic 
relationship 

(6.20) 
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For the case of pure parallel compression, in which B is unchanged, this reduces 
to the simpler adiabatic relationship p/nY = constant, with y = 3, again as 
appropriate for one-dimensional compression. 

The two adiabatic relationships that we have derived here, equations (6.18) 
and (6.20), are called the ‘double adiabatic’ equations of state. 

6.4 TWO-FLUID EQUATIONS 

So far, we have derived fluid equations by considering only one species of 
particle at a time. In a plasma, there can be many different species of particle, 
and there will always be at least two species (ions and electrons) in any neutral 
plasma. The continuity equation (6.3) will, of course, apply separately to 
each of the different species. However, in applying the momentum balance 
equation (6.14) to the separate species, allowance must be made for the fact that 
particles of one species can collide with particles of another species, thereby 
transferring momentum between the different species. 

In the fluid approximation, the effect of collisions between particles of 
different species is often simply modeled by means of a set of ‘collision 
frequencies’, u , ~ ,  that express the rate at which the momentum of species CY 

is transferred by collisions to species #?. Since it is reasonable to estimate that 
the transfer of momentum will be proportional to the difference in the mean 
velocities of the two species, the rate at which momentum per unit volume is 
gained by species a due to collisions with species #? is given by 

(6.21) 

This gain (or loss) in momentum must be included in the momentum balance 
equation for species CY, which now becomes 

where the summation is over all species #?, not equal to CY, with which particles 
of species CY can collide. The quantity u,p is called the ‘collision frequency’ of 
species a! on species #?. For the case where up = 0, the quantity vas is simply 
the rate at which the momentum of species CY is lost due to the presence of 
another species /3 of particles that are at rest. 

Since the momentum density transferred to species CY from species /3, 
namely &p, and the momentum density transferred to species #? from species 
a!, namely Rp,, must obey momentum conservation, we can deduce that 

(6.23) 
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From this it follows that v,p and upa must obey a symmetry relation: 

6.5 PLASMA RESISTIVITY 

Collisions between electrons and ions in a plasma will impede the acceleration 
of electrons in response to an electric field applied along (or in the absence 
of) a magnetic field. Without such collisions, electrons would be accelerated 
indefinitely by an applied electric field, so that an infinitesimal voltage would 
be sufficient to drive a large current through a plasma, at least in the direction 
along a magnetic field. In practice, the acceleration of electrons is impeded by 
collisions with non-accelerated particles, in particular the ions, which, because 
of their much larger mass, are relatively unresponsive to the applied electric 
field. Collisions between electrons and ions, acting in this way to limit the 
current that can be driven by an electric field, give rise to an important plasma 
quantity, namely its electrical resistivity, usually denoted 7. 

We will conclude this Chapter by deriving a simple expression for the 
resistivity in the case of a hydrogen plasma, in which the electrons have charge 
-e and the ions are protons, with charge e. The resistivity may be expressed in 
terms of the electron-ion collision frequency, uei, by applying equations (6.21) 
and (6.22) to the case of electrons that have reached a steady-state equilibrium 
in the presence of an electric field Ell, applied either parallel to a magnetic field 
B or in the absence of any magnetic field. Because of the very small mass, and 
therefore negligible inertia, of the electrons, such an equilibrium will be reached 
relatively rapidly. Assuming that the electrons are homogeneous and therefore 
neglecting also in equation (6.22) the electron pressure and velocity gradients 
along B, we obtain 

Introducing the current density 

(6.26) 

By analogy with electrical properties of normal matter, we call the constant of 
proportionality between the applied electric field E and the current density j the 
resistivity q, which we see to be given by meveilnee*. 

Since the actual frequency with which electrons collide with ions will 
depend on the electron velocities, the collision frequency vei appearing in 

Copyright © 1995 IOP Publishing Ltd.



Plasma resistivity 95 

the resistivity and in all of the above expressions should be an average over 
an appropriate distribution of electron velocities, in which case the collision 
frequency should more correctly be written (vei). Accordingly, the resistivity q 
becomes 

(6.27) 

The momentum gained by electrons due to collisions with ions, R e i ,  may 
now be expressed in terms of the resistivity q and the current density j. We 
obtain 

Rei = -mene(vei)(ue - Ui) 
2 2  = -qn,e (U, - ui) 

= q neej. (6.28) 

For the case of an electron-proton plasma, we may substitute 
equation (6.28) into equation (6.22), to obtain two momentum balance equations, 
one for the electron mean velocity ue, and the other for the,proton mean velocity 
ui. Alternatively, the two equations can be added together, making use of 
the fact that Re, + Ri, = 0, with the result that the collisional terms vanish 
from this summed momentum balance equation, which determines the total 
momentum density of the plasma. However, since it is generally necessary to 
distinguish between the mean velocities ui and ue in order to evaluate the plasma 
current density, we will still need to work with two separate momentum balance 
equations, in some form. Equation (6.26) is an example of a momentum balance 
equation taking the form of a simplified ‘Ohm’s Law’ parallel to the magnetic 
field, involving the difference of the two mean velocities, which determines the 
current density j. We will return to this topic in more detail in Chapter 8. 

Although the resistivity was derived for the case of an electric field applied 
parallel to a magnetic field (or in the case where there is no magnetic field), 
the collisional transfer of momentum between electrons and ions due to the 
presence of an electrical current depends only moderately on the direction of 
the current. Specifically, we see from equation (6.27) that the resistivity is 
a quantity that is proportional to the mean electron-ion collision frequency 
(ve i ) .  The expression for %, given in equation (6.28) can be used in the 
momentum balance equation, for example equation (6.22), not only for the case 
where the electric field E and current density j are parallel to B, but also for 
arbitrary orientation of E, j and B. This requires, however, that the resistivity 
be expressed as a tensor quantity, specifically a diagonal tensor with diagonal 
elements (ql, ql, vir), where we have taken B to be in the z direction. As we 
will see in Chapters 10 and 11, this is because the magnitude of the resistivity 
is not the same parallel and perpendicular to a magnetic field. Indeed, these two 
resistivities differ by about a factor two. This is because the electron distribution 
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becomes significantly distorted from Maxwellian in the case of an electric field 
parallel to the magnetic field, which can accelerate the electrons relatively freely, 
thereby reducing the resistivity significantly. Although an accurate knowledge 
of the resistivity is often important, for example when verifying the consistency 
of current and voltage measurements in experimental plasmas, there are other 
resistive plasma phenomena, such as large-scale instabilities, for which factors 
of two are unimportant, in which case it is sufficient to treat the resistivity as a 
scalar quantity, as is implied by equation (6.28). 

To obtain the magnitude of the resistivity of a plasma, it is clearly necessary 
to know something about the magnitude of the electron-ion collision frequency 
u,i, and the distribution function f over which the collision frequency must 
be averaged. These topics are taken up in Chapters 10 and 11. For present 
purposes, it is sufficient to note that the resistivity of a plasma can be very small. 
Indeed, plasmas in fusion experiments can have resistivities lower than that of 
pure copper, implying that very large currents will be produced by quite small 
voltage differences. Resistivities of naturally occurring plasmas are generally 
somewhat higher, but this is more than compensated by the large size of these 
plasmas so that, again, small electric fields produce large total currents. 

Problem 6.3: An applied electric field does work against the ions and 
electrons of a plasma at the rate nqu - E per unit volume per second. 
By adding over both species, show that an electric field, Ell (parallel to 
the magnetic field), driving a current, jll, produces resistive heating of a 
plasma. Do you expect this resistive heating to heat mainly the electrons 
or the ions? 
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Chapter 7 

Relation between fluid equations and 
guiding-center drifts 

For the purpose of establishing the relationship between the guiding-center drifts 
discussed in Chapters 2-4 and the fluid equations derived in Chapter 6,  it is 
sufficient to consider a single species of particles and to ignore both collisions 
with other species and sources and sinks of particles. In this case, we may begin 
with the standard form of the momentum balance equation: 

mn ($ + ( U  - V)u) = nq(E+u x B) - V .  P .  (7.1) 

7.1 DIAMAGNETIC DRIFT 

If we imagine that the bulk velocities which would be obtained from solving 
equation (7.1) are of the same order as the guiding-center drift velocities that 
we obtained in Chapters 2-4 (implying that the flows are far subsonic), then 
we can say that the order of magnitude of u is roughly ut(krL). Here, ut is a 
thermal velocity, rL is the Larmor radius and k is an inverse distance (or wave- 
number) that characterizes the spatial scale-length of variation of the plasma. 
Time derivatives of any quantity can be estimated as having a size determined 
from a l a r  - ku - utkZrL. As a result, the two terms on the left-hand side in 
equation (7.1) can be estimated to be of size mnu:k3r;. If we assume E to be of 
order U B ,  the first two terms on the right-hand side of equation (7.1) are of order 
mnocutkrL = mnku:, which is the same order as the last term on the right-hand 
side, and larger by (krL)-* than the terms on the left-hand side. Thus, in the 
spirit of expanding in krL, we can simplify the equation even further: 
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This approximate equation is valid provided that U is of order ut(krL) and 
krL << 1. Thus, this equation is not valid for near-sonic flows, and we should 
make the cautionary remark that the flows arising from some of the more violent 
instabilities in a plasma can, at least in principle, approach sonic speeds; in 
addition, some laboratory-made and naturally occumng plasmas can have near- 
sonic equilibrium flows. 

For the more usual situation where our approximations (equivalent to those 
made in our treatment of single-particle motion in Chapters 2-4) are valid, 
however, we can now solve for the lowest-order perpendicular fluid velocity by 
taking the cross product of this equation with B: 

nq[E x B + (U x B) x B] = (V P )  x B. (7.3) 

Using the vector identity for the triple vector product (see Appendix D), we 
obtain 

(7.4) 
If we only consider the components of equation (7.4) perpendicular to B, we 

n q [ E  x B - uB2 + B(u B)] = (V . P )  x B. 

obtain 
E x B  B x ( V * P )  

nqB2 ‘ 
UL = - + B2 (7.5) 

The first term on the right-hand side of this equation is clearly the familiar E x B 
drift. The second term is something new, which is generally referred to as the 
‘diamagnetic drift’. If we imagine a cylindrical plasma in an essentially uniform 
magnetic field, with the high pressure in the center of the plasma, it is easy to 
see that both the electron (q = -e )  and the ion (q = e )  diamagnetic drifts as 
derived here give rise to currents in the plasma that serve to reduce the magnetic 
field inside the plasma. Hence the name ‘diamagnetic’ drift. (Note, however, 
that in a non-uniform magnetic field the diamagnetic drift includes a component 
of guiding-center motion. We will examine this case later in this Chapter.) 

Curiously, we did not find a ‘diamagnetic’ guiding-center drift in 
Chapters 2 4 .  We did note, however, that the ion and electron Larmor orbits 
themselves were intrinsically diamagnetic. The diamagnetic drift in a uniform 
magnetic field is the result of adding together these Larmor orbits in the presence 
of a density or temperature gradient. The effect of the density gradient is 
especially easy to see by examining Figure 7.1, which shows the Larmor orbits 
of positively charged particles (ions) about a magnetic field directed into the 
paper. 

It is clear that, in the shaded area of Figure 7.1, there is a greater current 
going to the left than to the right, despite the fact that the guiding centers are 
stationary. This can be made quantitative, starting with the particle picture, 
by introducing the ‘distribution function for guiding centers’, in addition to the 
distribution function for particles, with which we are now familiar. 
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Figure 7.1. Larmor orbits of ions in the presence of a density gradient. In the shaded 
region there is a net current to the left, even though the guiding centers have no net 
motion. 

To do this, we consider the various contributions to the mean drift in the 
y direction of particles located in a small element dx of the shaded area in 
Figure 7.1. If f ( x ,  v) is the distribution function of particles with velocity 
vectors v located at x ,  then the mean y-directed drift, u y ,  at location x due to 
particles in a differential length dx is obtained from 

nu,& = u y f ( x ,  v)d3udx s (7.6) 

where the integral is over the velocity variables only. Now the particles that are 
to be found at location x with velocity uy are those that have guiding centers at 
a location xgc that is related to x by the equation 

UY x = xgc - - 
WC 

(7.7) 

where wc is the cyclotron (Larmor) frequency of the particles. The quantity 
uy/wc is, in magnitude, closely related to the Larmor radius (see equation (2.9)), 
but it takes into account also the gyration phase of the particle. It is easy to verify 
by examination of Figure 7.1 that the signs in equation (7.7) work out correctly 
(but note carefully the direction of the coordinate axes in Figure 7.1). When a 
positively charged particle (as illustrated in Figure 7.1) has a positive value of 
uy,  it is displaced in the negative-x direction (i.e. upward in Figure 7.1) relative 
to its guiding center. The cyclotron frequency wc appearing in equation (7.7) is 
to be evaluated at the guiding-center location but, for the present discussion, we 
assume that the magnetic field is uniform, so that it does not matter where wc 
is evaluated (see later in this Chapter for the case of a non-uniform field). 

We can also define a distribution function of guiding centers, fgc (xgc ,  v), 
where v remains the particle velocity, not the guiding-center velocity. Then, 
the distribution function of particles located within an element dx at x can be 
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expressed in terms of the distribution function of guiding centers located within 
a differential element dxgc at xgc. Specifically 

For our case of a uniform magnetic field, there will be no tendency for particles 
to be ‘crowded’ in the x direction any more or less than are their guiding centers. 
Expressed formally, we can differentiate equation (7.7) with respect to xgc,  taking 
wc to be a constant, and we find simply 

dx = dxgc. (7.9) 

(Again, see later in this Chapter for the case of a non-uniform field, where this 
is no longer true.) 

Substituting equations (7.8) and (7.9) into equation (7.6), we now have an 
expression for the mean drift u y ,  namely 

(7.10) 

will cancel each other. 
contribution. Allowing 
easily be evaluated, and 

Taking a Maxwellian distribution of velocities for fgc(x, v), the first term in the 
integral will vanish, because contributions from positive and negative uy values 

The second term in the integral will give a non-zero 
for both density and temperature gradients, this may 
it leads to the diamagnetic drift 

(7.1 1) 

which is, of course, the same as equation (7.5) for an isotropic pressure and a 
geometry as shown in Figure 7.1. The pressure could be anisotropic, in which 
case p would be replaced by PI in equation (7.11). 

The diamagnetic drifts of ions and electrons given in equation (7.5) can be 
summed to form a ‘diamagnetic current’: 

jd = CnquI  = B x [V . (pi + P , ) ~ / B ~ .  (7.12) 

In Figure 7.1, the diamagnetic current will be to the left, and it will tend to 
reduce the magnetic field in the higher-density part of the plasma, i.e. below 
the shaded region. It should not really be surprising that a diamagnetic current 
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exists in a plasma even in the absence of guiding-center motion. Atoms in a 
piece of iron are essentially tiny ‘paramagnets’ (as opposed to Larmor orbit 
‘diamagnets’ in a plasma) and, when they are aligned by an external field, 
they give rise to a net magnetization current. This current exists, of course, 
without any steady net motion of the iron atoms. (Note again, however, that the 
diamagnetic current derived in equation (7.12) is identical to that coming from 
this ‘fixed diamagnets’ picture only in a uniform magnetic field. As we will see 
later, for magnetic fields with gradients and curvature, the diamagnetic current 
includes other contributions-and is not always even divergence-free.) 

7.2 FLUID DRIFTS AND GUIDING-CENTER DRIFTS 

What might seem strange at this point is the fact that we have not yet found in 
the fluid picture the familiar VB and curvature drifts. At first sight, it appears 
that the fluid theory is ignoring certain essential physical effects, but this is not 
so. It is legitimate to think of a plasma as a collection of particles moving 
according to their guiding-center velocities, and it is also correct to think in the 
fluid terms that we are now developing. The crucial point is that, while the two 
approaches are very different, if they are each carried through consistently to the 
same order, they give the same answer for any observable quantity at that order. 
In particular, if it is desired to calculate aPuid quantity such as a local current 
density using the guiding-center picture, it is not sufficient just to use the spatial 
density of guiding centers. It is also necessary to take the correct average of 
contributions from particles whose guiding centers are separated by a distance 
of order the Larmor radius, as we did in the previous Section. In all cases, it 
is necessary to be very careful not to mix the two approaches-guiding-center 
picture and fluid picture-in one calculation. For example, if the guiding-center 
VB drift is added to the fluid diamagnetic drift, the answer will not be physical. 

In order to focus on this concept of two independent but correct ways to 
view a plasma (and in order to find the equivalent of the VB and curvature 
drifts in the fluid picture), it is interesting to consider a specific situation that 
can be fully analyzed with the tools that we have developed. Consider a plasma 
confined by a purely &directed magnetic field, and which is also finite in the 
r and z directions, as shown in Figure 7.2. This field Be is produced by an 
external current-carrying conductor, as shown in Figure 7.2, and its strength must 
decrease with radius like r -I .  For simplicity, we suppose that the plasma density 
and pressure are uniform throughout the main body of the toroidal (‘doughnut’- 
shaped) plasma, falling to zero in a narrow edge layer at the boundary of the 
plasma. 

In this configuration, there are both VB and curvature guiding-center drifts. 
Since these guiding-center drifts are both in the z direction, charge builds up 
on the ‘top’ and ‘bottom’ surfaces of the plasma, giving rise to a z-directed 
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Figure 7.2. Illustration of guiding-center and fluid drifts for the case of a toroidal 
(‘doughnut-shaped’) plasma in a purely toroidal .%directed magnetic field B. The plasma 
pressure is assumed to be uniform in the ‘hot dense region’, falling to zero in a ‘gradient 
region’ at the boundary. 

(downward in Figure 7.2) time-dependent E field. This E field is largely, but not 
completely, shielded out by the plasma dielectric constant, or-equivalently- 
the polarization drift. The residual vertical electric field causes the plasma to 
E x B drift radially outward. 

Let us start by performing the guiding-center drift calculation in detail, 
considering first the case where p~ = p11 = p, for simplicity. Then the two 
guiding-center drifts can be added together and, averaging over a Maxwellian 
distribution of velocities, the sum is given by 

(7.13) 

where, as usual, 2 is the unit vector in the z direction. The rate of accumulation 
of surface charge density a, (i.e. charge per unit area) at the top and bottom 
surfaces of the plasma is just equal to the vertical current density and so, further 
assuming ne 

m(Ui + V : / 2 )  B x VB + Tl  B x VB 2T ---=- - 
4 B  B* 4 B 3  4 Br 

vgc = 

ni FZ n, we have 

(7.14) 

where the f apply to the top and bottom, respectively, of the plasma in the 
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geometry shown in Figure 7.2 .  Note that r B  is a constant (take r B  = roBo), 
since the magnetic field in this geometry must fall off as l / r .  The accumulation 
of surface charge due to the guiding-center drifts is thus straightforward. 

The question to be answered now is: what, in the fluid picture, gives rise 
to this charge accumulation? Figure 7 .2  shows that the Jluid ion drift (and 
by analogy the electron drift) is predominantly circulatory in character, and 
is confined to the region where the ion and electron pressures drop from their 
constant values in the main body of the plasma to zero at the boundary. However, 
charge accumulation will arise in the fluid picture if the diamagnetic current is 
not divergence-free. For simplicity, let us take the fall-off rate in pressure to be a 
constant, IVpl ,  throughout an edge layer of uniform width all around the plasma 
boundary. (Since = TL, we are dealing with a scalar pressure, and we do not 
need to consider the full pressure tensor.) The diamagnetic current flowing along 
the vertical sides of the plasma is constant, and thus divergence-free. However, 
in the gradient region at the top and bottom of the plasma, while we have taken 
lVpl  to be constant, B is falling off like l / r ,  and a non-zero divergence of the 
horizontally flowing diamagnetic current, j ,  = ~ l V p l / B  = Fr IVpl/(roBo) 
arises. We evaluate this divergence of the diamagnetic current to find the rate 
of accumulation of volume charge density B: 

where the f signs again indicate the top and bottom of the plasma. In order to 
obtain an equivalent surface charge density, in the limit that the fall-off scale- 
length of the plasma pressure becomes very short, we integrate the volume 
charge density c7 in the vertical direction to obtain the surface charge density us: 

dos 2P - =f-  
dt ro Bo 

(7.16) 

which is exactly the same result as was obtained from the guiding-center drifts 
(cf equation (7.14)). Thus, the guiding-center and the fluid picture give the same 
answers for a physically measurable quantity-in this case the surface charge 
density. 

7.3 ANISOTROPIC-PRESSURE CASE 

Now suppose that # TL, and let us see if the correspondence between the 
guiding-center and the fluid pictures still holds up. In this case, the guiding- 
center drifts indicate that the rate of charge accumulation is given by 
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where the f indicates top and bottom of the plasma again. 
In thejuid picture, if pi1 # PI, we must consider pressure as a tensor. 

To leading order, the tensor is diagonal (off-diagonal terms, i.e. viscosity, 
enter at higher order in k r ~ ) .  For this geometry, in tensor notation, we have 
P = plPi + pi188 + ~ 1 2 2 ,  where P, 8 and 2 are the three unit vectors in 
the coordinate directions. From our knowledge of the form of the divergence 
operator it is clear that, in cylindrical coordinates, the meaning of V. P is 

Fluid equations and guiding-center drifts 

A A  v . P = - -rP + - -0 + -2 . (plPP + pII 88 + p122) (t :r r ae az  a )  
i a  . i a  e a 

(7.18) 

Notice that this formalism takes into account explicitly the fact that 8 is a 
function of 8 .  Now, using 

i = fcose + Qsine 8 = Qcose - %sine (7.19) 

we easily see that a8/a6' = -i, giving finally 

(7.20) 

(The complete cylindrical-coordinates form for the divergence of a general 
tensor, including off-diagonal elements, is given in Appendix E.) 

The first three terms on the right-hand side are as expected. The last term 
arises, physically, from proper application of geometry to the basic idea of 
momentum flux, which was behind the derivation of the pressure tensor. Since 
in our problem apIl/ae is zero, this means that particles are streaming into 
a differential volume carrying the same parallel momentum with which other 
particles are streaming out. However, since a8/M is not zero, this is equivalent 
to a group of particles 'turning' within the differential volume, thereby leaving 
behind some radial momentum. It is easy to see that the pi1 contribution to the 
last term on the right in equation (7.20) reflects this. The p l  contribution to 
this term is even more basic. If we only consider the perpendicular contribution 
to the momentum flux into the differential volume, we must take account of the 
fact that the box has a larger side at large r than at small r ,  so there is a net flux 
of radial momentum out of the differential volume across the large-r surface, 
even for uniform PI. For p l  = pi1 these two effects cancel, as they must, since 
there can be no net divergence of momentum flux for an everywhere-Maxwellian 
uniform-pressure plasma. 

We are still not exactly where we want to be. Our previous calculation of 
the divergence of the diamagnetic current depended only on the z component of 
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V p ,  with p taken as a scalar. From equation (7.20), it is clear that this part of 
the derivation will go through unchanged when V P replaces V p ,  and it will 
produce a surface charge-density build-up as given by equation (7.16), except 
that p will be replaced by PI. Now, however, we have a new force density (a 
divergence of momentum flux), (pi1 - p J / r  in the r direction, which we must 
include. Substituting this part of equation (7.20) into equation (7.3,  we obtain 
a new part of the perpendicularfluid drift 

which gives rise to a vertical current, and a rate of charge accumulation 

(7.21) 

(7.22) 

with the k sign for top and bottom, respectively. As stated above, our derivation 
of the divergence of the diamagnetic current, which led to equation (7.16), 
is simply modified in the case of a tensor pressure by using p~ rather than 
p. Adding this contribution to the charge accumulation to that given in 
equation (7.22), we obtain altogether 

(7.23) 

which is consistent with equation (7.17), again demonstrating the equivalence 
of the guiding-center and fluid pictures. 

Problem 7.1: Applied to the isotropic and uniform-pressure core of the 
plasma shown in Figure 7.2, our results from the fluid picture mean that, 
despite the V B  and curvature drifts, there is no net current in this region. 
What happens in the case of an anisotropic-pressure plasma, with uniform 
but unequal pI and pi,? Is there a net current in this case? Using the 
fluid picture, calculate its magnitude. 

7.4 DIAMAGNETIC DRIFT IN NON-UNIFORM B FIELDS* 

Our discussion of guiding-center versus fluid drifts has not fully explained why 
there are no net currents in the isotropic and uniform-pressure core of the plasma 
shown in Figure 7.2 due to the VB and curvature drifts. The fluid picture 
clearly predicts that the current vanishes, because the diamagnetic drift given 
in equation (7.5) is zero for an isotropic, uniform-pressure plasma. On the 
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other hand, the particle picture has non-vanishing VB and curvature drifts. For 
an isotropic pressure, we will see that the net current properly derived from 
the guiding-center picture is also zero, because the volume currents due to the 
V B and curvature drifts are exactly cancelled by additional order-krL terms 
introduced by going from the guiding-center density to the actual particle density 
in the averaging procedure illustrated in Figure 7.1. The net volume current is 
a physically measurable quantity, and must be the same in the two pictures. 

Y C  

B 

VB 

X 

Figure 73. Larmor orbits of ions in the presence of a field gradient. For guiding centers 
with equal spacing dxgc, there are more particles with uy < 0 falling in the shaded region, 
and fewer particles with uy > 0, leading to a net current to the right. 

To see this, we generalize Figure 7.1 to the case where B has a gradient, 
which we take to be in the x direction. (For the time being, however, we 
will assume that the field has no curvature.) The new case is illustrated in 
Figure 7.3, which shows that the Larmor radii of particles with guiding centers 
above the shaded region are larger than those of particles with guiding centers 
below the shaded region. A particle’s instantaneous position x is still related 
to its guiding center xgc by equation (7.7), but it now becomes important that 
w, is to be evaluated at the particle’s average position, i.e. at its guiding center. 
Differentiating equation (7.7), we obtain 

(7.24) 

If B increases with x ,  as in Figure 7.3, the particles with uy > 0 in 
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the shaded region (guiding centers below the shaded region) are less densely 
packed than are the guiding centers themselves, i.e. dx > dx,,. Correspondingly, 
particles with U, e 0 are more densely packed than are their guiding centers. 
The result will be a preponderance of negative-u, particles, leading to an average 
drift in the negative-y direction, even in the case of a completely uniform plasma 
in which the guiding centers themselves are uniformly spaced. Figure 7.3 shows 
a case where, for guiding centers that are uniformly spaced in the x direction, 
there are two particles with U, e 0 falling in the shaded region (guiding centers 
above the shaded region) for every one particle with U, > 0 (guiding center 
below the shaded region). This average drift is in addition to any drift of the 
guiding centers themselves. 

Equation (7.24) replaces equation (7.9) and may be substituted into 
equation (7.8) to give 

f (x, V I  = fgc (x + 2 7 v) (1 + 

dfgc) ( wc B dx 
u y  dfgc ~y 1 dB = fgc + -- - --- fgc. 
wc dx wc B dx 

(7.25) 

The average velocity U, is given by 

uy = / uy f (x, v)d3u. (7.26) 

Substituting for f (x ,  v) from equation (7.25) and noting that only the terms 
quadratic in U, will survive in the integration, we obtain 

n 

1 dp T dB 
U Y  nqBdx qB2dx  (7.27) 

where we have assumed a Maxwellian distribution, so that we can write 
(U;) = T / m .  Equation (7.27), by construction, gives the average velocity 
ignoring any guiding-center velocity, i.e. in the frame in which the guiding 
centers have no motion. 

For this geometry, the V B  drift is also in the y direction and is given by 

(u:/2)dB T dB 
w,B dx qB2dx  

VDY = -- - (7.28) 

where we have again averaged over Maxwellian particles, writing (u:/2) = 
T / m .  
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Thus, if we add the average guiding-center velocity, equation (7.28), to 
the average velocity in the frame in which the guiding centers are at rest, 
equation (7.27), we recover, for the total fluid velocity, the diamagnetic drift; in 
this case 

1 dP uy = -- 
n q B d x '  

(7.29) 

Equation (7.29) applies to both ions and electrons. Thus, the current 
perpendicular to a magnetic field in a plasma arises only from the diamagnetic 
drift, i.e. it requires a gradient in the plasma pressure. There is no current in 
the uniform-pressure core of the plasma shown in Figure 7.2, despite the V B  
guiding-center drifts that carry ions upward and electrons downward. The V B  
drifts are cancelled by additional terms that arise from the field gradient in the 
averaging process used to obtain the fluid velocity. 

Figure 7.4. Larmor orbits of ions in the presence of field curvature. For guiding centers 
with equal spacing dzgC, the particles with uy < 0 are more crowded than those with 
uy > 0, leading to a net current in the negative-y direction. 

The calculation that we have just given treats the case of a field gradient, 
but not the case of field curvature. If the B field is curved, Figures 7.1 and 7.3 are 
not very useful, since they do not show the essential effect, which is that, if the 
guiding centers are equally spaced in the z direction, the particles themselves 
are unequally spaced in z in the shaded region. Figure 7.4 is an end view 
of Figure 7.1, looking from the right, for the case of a field that is concave 
downward. For this case, we see that the particles with uy < 0 in the shaded 
region are more densely spaced than those with uy > 0. Thus, the average drift 
will be in the negative-y direction. 

To analyze this case quantitatively, we start by observing that the spacing 
in the z direction of particles in the shaded region, relative to the spacing of the 
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particles’ guiding centers, is given by 

109 

(7.30) 

where Rc is the radius of curvature. Generalizing equation (7 .Q  the distribution 
function for particles will be related to the distribution function of guiding centers 
by 

The new effect will arise from 

(7.31) 

(7.32) 

The calculation now proceeds as before, and the average velocity in the 
guiding-center rest-frame is again obtained by substituting for f ( x ,  v) from 
equation (7.31) into equation (7.26). The additional term in the fluid velocity is 
now found to precisely cancel the average curvature drift in an isotropic plasma, 
which for this geometry is given by 

(7.33) 

The details are left as an exercise (see Problem 7.2). In an anisotropic plasma 
( P I ]  # P I ) ,  this cancellation does not occur, but the net drift calculated in this 
way from the particle picture exactly equals the fluid drift for the anisotropic 
case, i.e. equation (7.21) (see again Problem 7.2). 

It should be noted that these currents associated with finite gyro-radius, but 
stationary guiding centers, are of necessity divergence-free, so they do not affect 
the previous guiding-center calculation of charge accumulation. For the plasma 
shown in Figure 7.2, these currents are uniform and vertically directed in the 
core plasma. 

Problem 7.2: Complete the calculation of the diamagnetic drift in an 
isotropic plasma for a curved magnetic field, showing that the average 
velocity in the guiding-center frame, obtained from equations (7.26), (7.31) 
and (7.32), contains an additional term from field curvature that exactly 
cancels the average guiding-center curvature drift. For an anisotropic 
plasma, in which both pII and p I  are uniform, show from this guiding- 
center picture that there is a net drift similar to that given in equation (7.21). 
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7.5 POLARIZATION CURRENT IN THE FLUID MODEL 

The next question to be addressed is how to obtain the plasma dielectric effect 
in the fluid model. We derived this from guiding-center motion, and it is crucial 
for evaluating the rate of change of the electric field due to the charge build-up 
at the top and bottom of the torus in the problem illustrated in Figure 7.2 and 
discussed in the previous three Sections. Can we obtain the dielectric effect-or 
equivalently the polarization drift-from the fluid equations? 

Once again, we must apply our ideas about ordering procedures. In the 
presence of an electric field, in lowest order, we obtain a simple E x B drift by 
balancing the dominant terms in equation (7.1): 

(7.34) 

(For simplicity, we will ignore V P and any other spatial non-uniformity 
in this derivation of the polarization drifts.) Using the method of successive 
approximation, we simply substitute this drift velocity, assumed first-order in 
krL, into the small term on the left-hand side of equation (7.1). We then obtain 
an equation for the second-order correction to the velocity, which we will for 
now call up: 

(7.35) 

or 
mnuE = nqu, x B 

(7.36) 

This equation says nothing about the parallel component of U, ,  but the 
perpendicular component has a unique solution 

m h l  E l  u p = - -  - f- 
q B 2  w,B 

(7.37) 

where f now stands for the sign of q.  Thus we can identify up as the low- 
frequency 'polarization drift' that was calculated in Chapter 2, and so the 
previous arguments constructing a plasma dielectric constant go through exactly 
as before. Once again, the fluid calculation, carried out to the appropriate 
order, gives the same result as the guiding-center calculation for any physically 
measurable quantity. 

Problem 7.3: Working in the guiding-center drift formulation, calculate 
the outward acceleration of the plasma shown in Figure 7.2 due to the 
E x B drift that is created by the combination of VB, curvature and 
polarization drifts. Consider both isotropic and anisotropic pressure cases. 
In the anisotropic-pressure case, can you come up with a physical reason 
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why parallel energy density is twice as effective as perpendicular energy 
density in driving outward acceleration? (Hint: think of conservation of 
angular momentum and of magnetic moment ,U as constraints, which 
determine the energy available to the system as it moves outwards.) 

7.6 PARALLEL PRESSURE BALANCE 

We have now demonstrated a correspondence between each of the terms in the 
perpendicular components of equation (7.1) and one or more of the guiding- 
center drifts. Before leaving the fluid equation of motion for an individual 
species of particles, it is useful to consider the physical content of the parallel 
component of equation (7.1). 

In the scalar pressure situation, if we assume zero flow velocity and slow 
time derivatives, we have in dominant order 

(7.38) 

(7.39) 

where 4 is the electrostatic potential. If we assume that the parallel thermal 
conductivity is very rapid, so that the temperature T is constant along a field 
line, we can write 

nqVII4 + TVlln = 0 (7.40) 

or equivalently 
Inn + q@/ T = constant. (7.41) 

Taking the exponential of both sides of equation (7.41), we obtain a relation for 
the variation of the density along a field line in equilibrium: 

(7.42) 

This is just the Boltzmann relation for a system in contact with a heat bath, which 
we derived from fundamental principles of statistical mechanics in Chapter 1. 
We see here how the same result follows from our fluid equations. 

Obviously, both electrons and ions cannot simultaneously be in Boltzmann 
equilibrium in the presence of an electric potential that varies along the field 
lines, or else charge neutrality would be violated in the absence of some 
externally introduced charge. The only charge-neutral equilibrium under normal 
circumstances is one in which the electric potential and ion and electron densities 
are constant along the field lines. However, if a density variation, say a density 
‘hump’, is created dynamically along a field line in a charge-neutral plasma, 
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electron and ion flow velocities parallel to the magnetic field will arise. The 
larger mass of the ions results in them responding relatively slowly to the 
presence of the ‘hump’ in n (and therefore a non-zero Vl~pi) along a field 
line, with the characteristic time-scale being set by some t RZ L/(T/mi)”2. 
Meanwhile the lighter electrons respond much more quickly, t x L/(T/me)’/2, 
and rapidly set up a Boltzmann distribution in the presence of the density hump. 
This means that the electron force balance dictates that 

Fluid equations and guiding-center drifts 

Pe = ene VI1 4 (7.43) 

since the electrons come to equilibrium on a time-scale much faster than the ions. 
In a plasma with strong parallel thermal conductivity (and therefore uniform Te), 
this implies that 

which determines the variation in electric potential 4 that will arise: 

n e  a exP(e4l Te) (7.44) 

When this electric field has been created, the electrons are in force balance. 
Provided the scale-length of the density ‘hump’ is much larger than the Debye 
length, charge-neutrality will be maintained by ne remaining almost equal to n,. 

Problem 7.4: Suppose a small varying electric potential #(x) = 4lsinkx 
is created in an initially uniform, neutral plasma (e41 << Te). Show that 
the electrons will come to equilibrium with n e ( x )  = no + nelsinkx where 
n,l/no = e4l/Te.  Using Poisson’s equation, show that the ion density will 
be given by ni(x) = no + nilsinkx, where (nil - nel)/nel = k2A& 

Now, examining the ion equation of motion parallel to the field, we see 
that the electric field pulls the ions in the same direction as their own pressure 
gradient pushes them, tending to cause the ions to smooth out the original ‘hump’ 
more rapidly. In effect, the electrons contribute their pressure gradient to the 
force on the ions, via the Boltzmann electric field. The parallel force-balance 
equation for the ions, on the time-scale required for them to respond, becomes 

(7.46) miniuill = -n. , e  V 114 - VIIPi = -TeVIIne - VIIPi * -(T‘ + Z)Vlln 

the last step being valid if the ion temperature is also smoothed out along the 
field. 

An important feature of this result is that the electric field is derived from 
the electron Boltzmann relation, given the density perturbation. We assumed, 
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for time-scales where the electrons had plenty of time to come into equilibrium, 
that they would immediate!y set up force balance along the field line, thereby 
satisfying the Boltzmann relation without delay. An alternative way to work 
this problem would have been to solve for the electron dynamics as well as 
for the ion dynamics, and then to calculate the very small charge separation, 
e(ni - ne),  and use Poisson’s equation to find Ell. This would have been much 
more cumbersome, and insignificantly more accurate if we are only interested 
in the time-scale at which the overall density hump reiaxes via ion motion and 
so long as the spatial scale-length greatly exceeds the Debye length. In this 
situation, we say that ‘the electron inertia is negligible’. We will find that this 
trick of circumventing Poisson’s equation via the Boltzmann relation for the 
electrons is of great use in many problems of ‘low-frequency’ plasma dynamics. 
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Chapter 8 

Single-fluid magnetohydrodynamics 

We are now in a position to formulate a ‘single-fluid’ model of a fully ionized 
plasma, in which the plasma is treated as a single hydrodynamic fluid acted 
upon by electric and magnetic forces. This is called the ‘magnetohydrodynamic’ 
(MHD) model. The attraction of this model, relative to the more complex ‘two- 
fluid’ models, is that it provides a somewhat more tractable set of equations 
while retaining much of the important physics. Historically, this was one of the 
earliest plasma models to be developed and used, because it allowed application 
of many of the techniques of ordinary hydrodynamics to the plasma case, even 
though a plasma is much more complicated because of the variety of electric 
and magnetic forces that are possible. 

8.1 THE MAGNETOHYDRODYNAMIC EQUATIONS 

We will limit our derivation of the equations of magnetohydrodynamics to the 
case of a hydrogen plasma, in which the ions and electrons have charges fe, 
respectively. We will also assume that charge neutrality is at least approximately 
satisfied, so that ni M ne M n, but we will allow the possibility of a small non- 
vanishing charge density. The final equations, however, apply just as well to the 
case of a plasma in which the ions are multiply charged, i.e. have charges Ze, in 
which case the charge-neutrality condition will be ne Zni. The assumption of 
approximate charge neutrality will be valid whenever the spatial scale-lengths 
of the phenomena of interest greatly exceed the Debye length. We will here 
denote the electron and ion masses by m and M respectively. 

The magnetohydrodynamic model treats the plasma as a single fluid with 
mass density 

p = niM + n,m n ( M  + m )  x nM (8.1) 
charge density 

CJ = (ni - n,)e 
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mass velocity 

U = (niMui + nemue)/p X (MUi + mu,)/(M + m )  * ui + (m/M)ue (8.3) 

and current density 

j = e(niui - neue) ne(ui - U,). (8.4) 

These may be solved to obtain expressions for ui and U, in terms of U and j: 

(8.5) 

where we have dropped terms that are unambiguously small in m / M .  
The single-fluid magnetohydrodynamic equations can be obtained by taking 

various linear combinations of the individual ion and electron equations. In 
particular, the two individual continuity equations 

may be multiplied by the ion and electron masses M and m, respectively, and 
added together to produce a ‘mass continuity equation’: 

aP - + v - (pu) = 0. 
at (8.7) 

The individual continuity equations may be subtracted from one another, to 
produce the ‘charge continuity equation’: 

a 0  
a t  
- + V - j = O .  

In a similar way, the two individual momentum balance equations, which we 
will tend to refer to here as the individual fluid ‘equations of motion’ 

dui 
dt 

due 
dt 

Mni - = eni (E + ui x B) - Vpi + Rie 
(8.9) 

mn,- = -en,(E + U ,  x B) - Vp, + Ki 

(where Ri, and describe collisional transfer of momentum between the two 
species) may be added together, to produce the combined ‘singie-fluid equation 
of motion’: 

= o E + j x B - V p  (8.10) 
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where p = pe + pi is the total pressure. Additional non-electromagnetic forces, 
e.g. gravitational forces pg, may be included on the right-hand side of the 
single-fluid equation of motion, if necessary. In adding the two individual fluid 
equations of motion, the collision terms cancel each other, since = -Ri,. 
Although equations (8.9) and (8.10) have assumed that the electron and ion 
pressures are isotropic, this is not essential to the magnetohydrodynamic model; 
indeed, there are important cases where the electron pressure is isotropic, 
whereas the ion pressure, because of the larger ion Larmor orbits, must be 
taken as a tensor. 

Vu in the individual fluid 
equations of motion, being nonlinear in U, do not add together as simply as 
we have suggested. Moreover, the individual-species pressures were defined in 
terms of the random motion of particles of each species relative to the species’ 
own mean velocity. Thus, again, the two individual pressure gradients do not 
add together so simply, because there is an ambiguity about which mean velocity 
the random motions are measured against. This difficulty can be removed by 
redefining the pressure of each species in terms of random motion about the 
mass velocity. Equation (8.10), where U is this mass velocity and Vp involves 
the pressure defined in this way, then becomes exactly correct, including the 
convective derivative. In practice, however, the mass velocity of a plasma is 
generally dominated by the ions, being much heavier than the electrons, so there 
is no distinction between U and the ion mean velocity ui. Moreover, the electron 
random motions are so rapid compared with any mean velocity that it does not 
matter which mean velocity is used in the definition of electron pressure. It is 
evident that equation (8.10) is valid in this approximate sense also, where U in 
both terms on the left-hand side is interpreted as the ion velocity. 

To obtain a second single-fluid equation from the two individual fluid 
equations of motion, we must invoke two approximations. First, we must express 
the momentum transfer from ions to electrons in terms of the velocity difference 
and average collision frequency (or, equivalently, the resistivity q) ,  as we already 
did in Chapter 6, namely 

Strictly, the convected derivative terms U 

(8.1 1) &i = mn(u,,)(ui - U,) = qn e (ui -U,) = qnej .  

Second, we must neglect electron inertia entirely. This will be valid for 
phenomena that are sufficiently slow that electrons have time to reach dynamical 
equilibrium in regard to their motion along the magnetic field. With these two 
approximations, the single-fluid electron equation of motion may be rewritten 

2 2  

(8.12) V P e  E + Ue x B = q j  - - 
ne 

or 
j x B - V p ,  

ne 
E +  U x B = qj  + (8.13) 
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where, in obtaining the second form, we have substituted from equation (8.5) 
for ue in terms of j and U. Equation (8.13) is usually called the ‘generalized 
Ohm’s law’ for a plasma. If it is important to retain the distinction between 
resistivity perpendicular and parallel to a magnetic field, then the scalar q can 
be replaced by a diagonal tensor, with diagonal elements q i ,  71 and qll, for the 
case where the magnetic field is in the z direction. 

To provide a complete set of equations, some kind of ‘equation of state’ 
must be added to describe how the plasma pressure p changes in time. As we 
have seen in Chapter 6, the adiabatic law is often assumed, i.e. 

(8.14) 

but the isothermal law, p = n(Te + T j )  with T,, T j  = constant, 
provides an alternative model that is sometimes more appropriate. For 
magnetohydrodynamic phenomena that are rapid compared to collisions, the 
plasma pressure may become significantly anisotropic, in which case the double 
adiabatic laws introduced in Chapter 6 are employed. 

The system of equations is closed by including the four Maxwell equations: 

1 aE 
V x B = Foj+ -- 

c2 a t  
aB 

V X E = - -  
at 

V . B = O  
V * (EoE) = B. 

(8.15) 

(8.16) 

(8.17) 
(8.18) 

In these equations, we consider the plasma polarization current as external, so we 
use the vacuum form for the permittivity E .  Equations (8.7), (8.8), @.lo), and 
(8.13)-(8.18) constitute a full set of single-fluid equations for a plasma treated 
as an electrically conducting fluid. We will now examine various limiting forms 
of these equations. 

8.2 THE QUASI-NEUTRALITY APPROXIMATION 

So far, we have retained in our equations certain terms describing the effects of 
a non-zero charge density D. In particular, we have retained the electric force 
BE in the equation of motion and the charge separation acT/at in the charge 
continuity equation. Often, neither of these terms is very important. 

To see this, we adopt an estimation procedure that compares the size of the 
term in question with the size of another term (anticipated to be more important) 
in the same equation. For example, we compare the size of the electric force 

Copyright © 1995 IOP Publishing Ltd.



The quasi-neutrality approximation 119 

a E  to the size of the inertial term pu Vu in the equation of motion using the 
Maxwell equation V - (EoE) = a to estimate a: we find 

(8.19) 

where we have introduced a characteristic length scale L and have assumed that 
the plasma velocity U is of order E X  B/ B2 - E /  B .  The dimensionless parameter 
c o B 2 / p  is a small quantity in almost all plasmas of interest. (Equivalently, the 
plasma ‘dielectric constant’ 1 + p/coB2 is large-usually 102-103.) Thus, the 
electric force is negligible. 

The charge separation aa/ar in the charge continuity equation may be 
estimated in a similar way, by comparing its size to the size of the term V j. 
We find 

(8.20) 

where we have introduced a characteristic time-scale r and have estimated j by 
equating the magnetic force j x B to the inertial term paulat. Since this is again 
a small quantity and yet the terms in the numerator and denominator must, by 
equation (8.8), be equal and opposite to each other, it follows that j must be 
almost divergence-free, in which case the denominator is greatly overestimated 
in equation (8.20). 

In the limit p/coB2 >> 1, the terms a E  and acrlat may both be omitted from 
their respective equations. This is known as the ‘quasi-neutrality approximation’. 
It is important to note that the quasi-neutrality approximation does nor mean that 
the charge density a can be omitted from the Maxwell equation V (EoE) = a. 
What it means is that this Maxwell equation serves to define the magnitude of 
a, which turns out to be too small to be of importance elsewhere. This particular 
Maxwell equation can then be dropped from the system, since cr does not appear 
anywhere else. We only use it when we want to evaluate cr. However, it is nor 
correct to write V - (EoE) = 0. In particular, there will often be electric fields 
in the plasma, with finite divergence, such as those perpendicular to a magnetic 
field that define the perpendicular plasma motion. 

Problem 8.1 : A similar estimation procedure leads to the conclusion that 
the displacement current can also be omitted from the Maxwell equations 
as part of the same quasi-neutrality approximation. Show this. 

Usually the term ‘magnetohydrodynamics’ refers to the case where the 
quasi-neutrality approximation is invoked. In this limit, the term acrlar may 
be omitted from equation (8.8), the electric force a E  may be omitted from 
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equation @lo), and the displacement current a(EOE)/at may be omitted from 
equation (8.15). 

8.3 THE ‘SMALL LARMOR RADIUS’ APPROXIMATION 

We will now show that the second and third terms on the right-hand side in the 
generalized Ohm’s law, equation (8.13), are negligible in a special example of the 
‘small Larmor radius approximation’. We adopt the same estimation procedure 
used above, i.e. we compare the size of the term anticipated to be unimportant 
with the size of another term in the same equation thought to be more important. 
In a typical plasma-dynamical situation, the fluid motion U will be driven by 
pressure gradients and by magnetic forces and, in the limit where the motion 
is fully developed, for example as a result of a strong magnetohydrodynamic 
instability, the fluid velocity will reach an order-of-magnitude given by 

pus V u  - V p  - j x B. (8.21) 

The ExB drift, which will provide the dominant contribution to the fluid velocity 
U, is now taken to be much larger than the other drifts (such as the diamagnetic 
drift) unlike many of the cases considered in previous Chapters; these large fluid 
velocities are the result of large unbalanced forces or strong instabilities. 

Writing p = nT and p = n M ,  we obtain for this case U - ut,i N ( T / M ) ‘ ’ * ,  
the ion thermal velocity. Of course, not all plasma-dynamical phenomena 
produce fluid velocities as large as the ion thermal speed. However, in fully 
developed magnetohydrodynamic flows, where unbalanced V p  and j x B forces 
are reacted only by the inertia of the plasma, the plasma fluid velocity can, 
and does, attain such large values. It is in such situations that the ‘small 
Larmor radius’ approximation can be appropriate; it is usually not valid for 
weaker magnetohydrodynamic phenomena, for example phenomena where the 
fluid velocity, i.e. the E x B drift, is not larger than the diamagnetic drift or 
the guiding-center V B  or curvature drifts. We will use the relation U - ut,i to 
estimate the magnitude of the second and third terms on the right-hand side in 
the generalized Ohm’s law, equation (8.13), compared to one of the terms on 
the left-hand side, in particular the term U x B. Starting with the last term on 
the right-hand side in equation (8.13), the generalized Ohm’s law, we find 

where rLi is the ion Larmor radius. Since j x B - V p  (for the most general case 
where both pressure gradients and magnetic forces are about equally important 
in driving the fluid motion), a similar estimation of the second term on the right- 
hand side of equation (8.13) will give exactly the same result. We conclude that 
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the second and third terms on the right in equation (8.13) can be neglected ifthe 
ion Lurmor radius is very small compared to the scale-length of the Jluid motion, 
i.e. rLi/L << 1 and we are considering fluid velocities of order ut,i. Treatments 
that take these additional terms into account are often called ‘finite Larmor 
radius’ treatments. 

In the ‘small Larmor radius’ approximation, the Ohm’s law is simply 

E + u x B = ~ j .  (8.23) 

Magnetohydrodynamics (often abbreviated to ‘MHD’) usually refers to the set of 
equations with this ‘simple’ Ohm’s law replacing the ‘generalized’ Ohm’s law. 
Summarizing the other ‘MHD equations’, they are: 

aP - + v - (pu) = 0 
at 
V . j = O  
p- du = - v p  + j  x B 

dt 

together with the required versions of the Maxwell equations: 

V x B = poj 
aB 

V x E = - -  
at 

(8.24) 

(8 .25)  

Henceforth in this book, the term ‘magnetohydrodynamics’ (MHD) will mean the 
plasma model described by equations (8.23)-(8.25). 

The physical significance of each of these equations is evident by analogy 
with the usual equations of fluid mechanics and electrodynamics. The most novel 
feature is the replacement of E by E+u x B  in Ohm’s law. The quantity E+u x B  
is the effective electric field seen by a fluid element moving with velocity U 
across a magnetic field B, taking into account the Lorentz transformation for 
U << c. 

The MHD equations are standard tools for treating problems of large-scale 
plasma motion. Before giving some examples of their use, we must first discuss 
one final approximation, namely the one in which the resistivity is unimportant 
in regard to its effect on large-scale plasma motion. 

8.4 THE APPROXIMATION OF ‘INFINITE CONDUCTIVITY’ 

Since the magnitude of resistivity in a high-temperature plasma is very small, 
dynamical phenomena in a plasma can often be described in the approximation 
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of ‘infinite conductivity’, in which the plasma Ohm’s law is simply 

E + U x B = 0. (8.26) 

The approximation in which this infinite-conductivity form of the Ohm’s law is 
employed is usually called ‘ideal magnetohydrodynamics’. Later in this Chapter 
we will derive a dimensionless quantity, the ‘magnetic Reynolds number’, the 
magnitude of which will tell us whether or not this is a good approximation. 

The consequence of ‘infinite conductivity’ is that the plasma is tied to the 
magneticjeld lines, in a sense that we will now describe. 

Figure 8.1. Motion of two elements of plasma that lie initially on the same field line 
B(t) separated by a distance A t .  We prove that the final position of the elements lie also 
on the same field line B(t + dt). 

We will show that all fluid elements initially located on any given field 
line will still be located on the same field line after an arbitrary motion of 
an infinitely conducting plasma. Consider two neighboring fluid elements on 
some particular field line at time t;  the two elements are separated by a vector 
differential length A t ,  which must, by assumption, lie in the direction parallel 
to B(t). In a time interval dt, the two elements move udt and (U + Au)dt, 
respectively, as shown in Figure 8.1. To prove our assertion, we must show that 
Al+d(A4> is parallel to B(t +dt). (In this analysis, note that both d and A are 
used to denote differentials. The differential d is associated with the differential 
time-step dt, which carries the plasma from its initial location on a given field 
line to a subsequent displaced location. The differential A is associated with the 
differential length A4 between two plasma elements initially on the same field 
line.) 

First, let us calculate the quantity d(A4), meaning the differential change 
of A t  following the motion of the plasma for the differential time interval dt. 
The Taylor expansion for U gives 

AU = (A4 * V ) U  (8.27) 

and, by reference to Figure 8.1, we see that 

A t  + d(At)  = A4 + (U + Au)dr - udt (8.28) 
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since the combination of the three vectors on the right-hand side traces out the 
same path as the vector on the left-hand side, so that 

-- d(At) - Au = ( A t  - V)u .  
dt 

(8.29) 

Next, let us consider how B itself changes. By combining Faraday’s law with 
Ohm’s law, we have 

aB - = - V x E  
at 

= V x (U x B) 
= (B - V)U - (U * V ) B  - B ( V  * U) (8.30) 

where, in the final form, we have used a familiar expansion for the curl of a 
vector product (see Appendix D) and have also made use of V B = 0 to 
eliminate one of the four terms. The total derivative of B, following the motion 
of the plasma, may now be written 

= (B - V)U - B ( V  - U). (8.31) 

Let us now evaluate 

dB 
d(At) x B + A t  x - 

d 
dt dt dt -(At x B) = - 

= [ ( A t  - V)U] x B + A t  x [(B * V ) U  - B ( V  . U)] (8.32) 

where we have substituted from equations (8.29) and (8.31). The third term on 
the right-hand side in equation (8.32) must vanish for, initially, A t  is parallel 
to B, so that 

A t  x B = 0. (8.33) 

Moreover, when we examine the first two terms on the right-hand side in the 
second form of equation (8.32), we see that they cancel each other if A t  and 
B are parallel. For, if A t  and B are parallel, they may be interchanged in 
the first term on the right-hand side in equation (8.32), which then becomes 
[(B - V)u] x A t ,  which is equal and opposite to the second term on the right- 
hand side. Thus, altogether, 

(8.34) 
d 
dt 
-(At x B) = 0 

which shows that A t  moves so as to remain parallel to B. 
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Thus, our assertion is proved: any two elements of an ideal plasma that 
lie initially on a given field line will still lie on the same field line after an 
arbitrary motion of the plasma. The field configuration itself will, of course, 
have changed, and the plasma elements and their field line may have moved to 
a completely different location in physical space. But, in any such motion, 
however complicated, each field line retains its identity, since the plasma 
elements themselves must retain their identity. If one could ‘paint’ with a color 
those plasma elements that lie initially on some field line, this line of ‘colored’ 
plasma would move around in some complicated way in physical space, but it 
would always remain on a field line: i.e. the ‘colored’ elements of plasma would 
always find themselves aligned along the same field line. 

Of course, this otherwise very general result applies only to the extent that 
the simple Ohm’s law is valid. This means not only that the plasma resistivity 
must be negligible, but also that the fluid velocities arise from E x B drifts that 
are much larger than diamagnetic or guiding-center drifts. 

8.5 CONSERVATION OF MAGNETIC FLUX 

The tying of plasma to magnetic field lines has another important consequence: 
the magnetic flux through any closed contour that moves with the plasma is 
constant. By magnetic flux, we mean the integral of B over the area enclosed 
by some closed contour, i.e. 

@ =  B - d S  (8.35) 

where dS is a (vector) element of area. For the closed contour, we choose any 
closed line ‘painted’ on the plasma, not lying along a field line, and we imagine 
this line to move as the plasma moves. The change in @ is made up of two parts: 
the change due to time variation of B integrated over the area within the original 
closed contour, and the change due to the movement of the contour that bounds 
the area of integration. Using, from equation (8.30), aB/at = V x (U x B), we 

s 

obtain 
- = / S x ( u x B ) . d S +  d@ dt (8.36) 

We may use Stokes’ theorem to transform the first term on the right-hand side 
into a line integral around the contour bounding the area of integration; we 
denote the element of length along this contour by A t .  (As in the previous 
Sections, both d and A are used to denote differentials, the former with respect 
to the time step dt and the latter with respect to the length element along the 
contour. Since A t  is a legitimate vector differential length element, we can have 
a line integral over At . )  Referring to Figure 8.2, we also see that the increment 
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Figure 8.2. Area S bounded by some closed contour in the plasma. After a time increment 
dt, the plasma elements on the contour have moved to encompass an additional area dS, 
made up of pieces such as dAS, as shown. We prove that the new contour encloses the 
same amount of magnetic flux / B - dS. 

in the (vector) element of area produced by the plasma motion is given by 

d(AS)/dt = U x A t .  (8.37) 

Thus, altogether, we obtain 

d@ - = [(U x B ) . A t +  [ B . ( u  x At)  = 0 
dt 

(8.38) 

the two terms cancelling by the well-known property of the triple scalar product. 
Thus, our assertion is proved: the magneticflux through an area bounded by any 
closed contour ‘painted’ on the plasma is unchanged in any motion of the plasma. 
The conditions for the validity of this result are the same as those for the result 
of the preceding Section-negligible resistivity and dominantly E x B drifts. 

8.6 CONSERVATION OF ENERGY 

Using the equation of motion (8.10), and the equation for the convection of 
magnetic field B in a perfectly conducting plasma, equation (8.30), together with 
Maxwell equations as needed, we can derive the equation of energy conservation 
for a perfectly conducting plasma that obeys an adiabatic equation of state. The 
equation to be derived is 

dW - = o  
dt 

where the total energy W is given by 

(8.39) 

(8.40) 
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We start by taking the dot product of equation (8.10) with U and then integrating 
over all space. The contribution from the terms on the left-hand side in 
equation (8.10) is relatively straightforward to obtain. We have 

(8.41) 

where we have used Gauss's theorem and assumed that the surface integral at 
infinity vanishes in going from the first line to the second line. This gives the 
first term in the expression for W ,  which is the energy of directed motion. 

The treatment of the third term on the right-hand side of equation (8.10) 
from the pressure gradient is a little tricky and goes as follows. First we rewrite 
the adiabatic equation of state as 

1 d P - (Y - 1 ) p d p  o = -  - =-- - 
p y + l  dt d"t ( ; y )  p y - '  dt (i) 

(8.42) 

Using Gauss's theorem and assuming that the surface integral at infinity vanishes, 
because either p or U vanish there, and then using the above relation to substitute 
for V U, the term from the pressure gradient can be transformed as follows: 

/ u . V p d 3 x = - / p V - u d 3 x  

1 d P  - --/p-(-)d'x y - 1  dt p 

- - 1 s  [ p k  (:) + pu - V (91 d3x 
Y - 1  

Y - 1  

Y - 1  - 1 / [ p :  (:) + $1 d3x 
- 

(8.43) 
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This provides the essentials of the derivation of the second term in the expression 
for W, which is the energy of random motion. 

Problem 8.2: Complete the derivation of the other two terms in W.The 
plasma should be assumed to be an isolated system, so that fluxes of 
electromagnetic energy into or out of the system at its boundary may 
be taken to be zero. (Hint: in considering the magnetic force term 
in the equation of motion, you might find it helpful to use the identity 
( V  x B) x B = (B - V ) B  - V(B2/2).)  Although the derivation of this part of 
the energy conservation equation requires some lengthy analysis, which 
will take several pages of calculations, the final answer is revealing: in 
particular, it shows that the total energy is made up of the kinetic energy 
of directed motion, plus the energy associated with random motion, plus 
the usual electric and magnetic field ‘energy densities’ of eolEI2/2 and 
IBI2/2po, respectively. 

8.7 MAGNETIC REYNOLDS NUMBER 

The tying of plasma to magnetic field lines is a property peculiar to the limit 
of infinite conductivity. The question naturally arises: how good must the 
conductivity be for this approximation to be valid? 

Including resistivity, the time variation of the magnetic field is given by 

8B _ -  - - V x E  
at  

= V x (U x B) - V x (qj) 

= V x (U x B) + (q/po)V2B (8.44) 

where we have used Ampere’s law for j, assumed q to be constant, and made 
use of the familiar identity (see Appendix D) 

v x v x B = V(V . B )  - V*B (8.45) 

remembering also that V - B  = 0. Note that the meaning of V2B in index notation 
is a*Bi/ax,axj .  The first term on the right-hand side in equation (8.44) describes 
convection of the field with the plasma (and its amplification or reduction due 
to compressive motion perpendicular to the magnetic field), while the second 
(resistive) term describes diffusion of the field across the plasma. 

For some general magnetohydrodynamic motion with a characteristic scale- 
length L and a characteristic plasma velocity U ,  the ratio of the convection term 

Copyright © 1995 IOP Publishing Ltd.



128 Single-jhid magnetohydrodynamics 

to the (resistive) diffusion term is a dimensionless quantity 

which is sometimes called the ‘magnetic Reynolds number’. (It is also referred 
to as the ‘Lundquist number’, after its discoverer.) If the magnetic Reynolds 
number is sufficiently large, the infinite-conductivity assumption is valid. It is 
evident that the magnetic Reynolds number depends on the velocity of the plasma 
motion, and therefore its magnitude depends on the nature of the dynamical 
phenomenon under investigation. For fully developed magnetohydrodynamic 
motion, the characteristic velocities are very large, and magnetic Reynolds 
numbers in low-resistivity plasmas can range up to lo8, or higher. 

Problem 8.3: Estimate the magnetic Reynolds numbers for two of the 
typical plasmas with magnetic fields discussed in Chapter 1, namely the 
solar corona, in which the magnetic field may be taken to be about lo-* T, 
and an experimental fusion plasma, in which the magnetic field is about 
5T. The physical dimensions can be taken to be about lo8 m and 1 m, 
respectively. In both cases, you may assume that the plasma resistivity 
is about the same as that of copper, namely 2 x S2 m. In each case, 
an estimate will be needed of the velocity U of magnetohydrodynamic 
motion. This can be provided by balancing the inertia in the equation of 
motion against either the pressure gradient, V p ,  or the magnetic force, 
j x B. In the former case, the velocity of magnetohydrodynamic motion 
is approximately the sound speed, In the latter case, which is the 
one that you should assume here, the magnetic force should first be 
expressed in terms of the graulent of the magnetic pressure, V ( B 2 / 2 p o ) ,  
which results in the velocity of magnetohydrodynamic motion being of 
order B / ( ~ ~ p ) l / ~ ,  which is called the ‘Alfven speed’. (When the plasma 
pressure equals the magnetic pressure, the Alfven speed and the sound 
speed are essentially equal.) You should use this Alfven speed in your 
estimation of the magnetic Reynolds numbers. 
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Chapter 9 

Magnetohydrodynamic equilibrium 

In Chapters 2 4 ,  we discussed the orbits of individual charged particles in various 
types of electric and magnetic fields. In particular, in a strong static magnetic 
field, we found that charged particles gyrate in tight spirals about the magnetic 
field lines. If the magnetic field is non-uniform or curved-as it necessarily is 
in any real situation-charged particles also drift across the magnetic field lines. 
In our discussion of particle orbits, however, we analyzed this situation as if the 
magnetic field was externally generated, i.e. unaffected by the presence of the 
plasma particles. 

However, as more and more charged particles are added to a plasma, the 
currents that flow along the magnetic field, as well as the diamagnetic current 
perpendicular to the magnetic field arising from pressure non-uniformity, can 
become large enough to modify the externally created magnetic field. The 
plasma equilibrium must then be determined self-consistently: the presence of 
the plasma itself modifies the magnetic field configuration. 

The fluid equations that we have derived in the previous three Chapters 
are well-suited for addressing this problem. Even in the simplest ‘ideal 
magnetohydrodynamic’ approximation, these equations contain the essential 
ingredient, which is the requirement that the plasma currents needed for 
force balance be consistent with those required to form the magnetic field 
configuration. 

9.1 MAGNETOHYDRODYNAMIC EQUILIBRIUM EQUATIONS 

For a steady-state solution of the magnetohydrodynamic (MHD) equations for the 
special case with U = 0 and isotropic pressure, the plasma and magnetic field 
must satisfy the three equations 

V p = j x B  V - B = O  V x B = p ~ j .  (9.1) 
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The charge continuity equation, in the quasi-neutral approximation, V . j = 0, 
is redundant with the third of these; Ohm’s law provides no useful information, 
since both U and E are zero in this static equilibrium and resistivity is neglected. 

The first of these relations states that the plasma pressure gradient and the 
Lorentz force must be in balance. Consider, for example, a cylindrical plasma 
with the maximum pressure on the axis of the cylinder, so that the vector V p  is 
directed inwards. In the case where the magnetic field is directed along the axis 
of the cylinder, i.e. in the z direction, in the fluid picture the outward force of 
expansion must be counteracted by the Lorentz force arising from an azimuthal 
current flowing in the negative4 direction in the plasma, as shown in Figure 9.1. 

Figure 9.1. Cylindrical plasma equilibrium in which the inward j x B force from the 
azimuthal current balances the outward force from the pressure gradient. Note that the 
azimuthal current flows in the negative4 direction. 

From the point of view of a differential volume element, the net momentum 
flow associated with V p  arises from the fact that more radial momentum flows 
into the box from the small-r side than flows out of the box on the large-r 
side; ( U r u r ) l r  > ( V r U r ) l r + , j r .  On the other hand, the pressure gradient gives 
rise to a net diamagnetic current, and the j x B force that arises provides the 
needed force balance. In the particle picture, fluid force-balance does not play 
a role. The orbits spiral along B, and for the case of scalar pressure there is 
no net current due to gradient or curvature of the magnetic field. However the 
diamagnetic current arises as an observable current via the orbit overlaps and, in 
a self-consistent particle-picture of the plasma, would affect the magnetic field. 

In the general case, the fluid plasma current required for equilibrium can 
be found by taking the cross-product of the force-balance equation with B and 
using the well-known identity for the triple cross-product; this determines the 
component of the current density perpendicular to the magnetic field, i.e. 

(9.2) 

We of course encountered exactly this current in Chapter 7 and called it the 
‘diamagnetic current’. 

The component of current density along the magnetic field, j , , ,  is not 
determined by the force-balance equation. However, in  the general case where 
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j, is not divergence-free, a non-zero jll is needed to satisfy the quasi-neutrality 
requirement 

Specifically, writing 

and using V - B = 0, we obtain 

V - j = O .  (9.3) 

(9.4) j = j, + jllb 

from which jll can, in principle, be obtained, except for an arbitrary jll 
proportional everywhere to B.  Often, however, the j, vector turns out to be 
divergence-free by itself, in which case jl, can be zero. This is certainly the 
case, for example, in the equilibrium shown in Figure 9.1. 

9.2 MAGNETIC PRESSURE: THE CONCEPT OF BETA 

If we substitute for j from Ampere’s law into the force-balance equation, we 
obtain 

using the vector identity for ( V  x A) x B (see Appendix D). This may be 
rewritten 

(9.7) 

which is known as the ‘pressure-balance condition’. The terms on the left 
in equation (9.7) indicate that the magnetic field may be considered to have 
a ‘magnetic pressure’ given by B2/2p0. The term on the right-hand side 
of equation (9.7) comes from bending and parallel compression of the field, 
producing perpendicular and parallel forces, respectively. This may be seen by 
writing 

V(P + B2/2Po) = (B * V)B/Po 

(B - V)B = B(b * V)(Bb) 
= B2(b * V ) b  + b(6 - V)E2/2. 

Here, the first term on the second line is perpendicular to the magnetic field 
(taking the dot product with b gives (b - V)16l2/2 = 0), and represents the 
‘bending’ force. The second term on the second line is parallel to the magnetic 
field and represents a force due to parallel ‘compression’ of the field lines. 

In some interesting cases, the field lines may be taken as approximately 
straight and parallel, in which case the term on the right-hand side of 
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equation (9.7) vanishes identically. In these cases, the pressure balance condition 
becomes simply 

(9.8) 
i.e. the sum of the plasma pressure and the magnetic-field pressure is constant. 
One example of an equilibrium of this type is the cylindrical plasma with a 
magnetic field directed along the axis of the cylinder as shown in Figure 9.1. 
From the pressure-balance condition, we see that the magnetic field is lowered 
at the center of the plasma, where the plasma pressure is highest-a particular 
example of plasma diamagnetism. 

The ratio of the plasma pressure to the magnetic-field pressure (normally 
taken outside the plasma) is usually denoted by B ,  i.e. 

p + B2/2po = constant 

B = 2CLoP/B2. (9.9) 

The quantity ,!? is a measure of the degree to which the magnetic field is holding 
a non-uniform plasma in equilibrium. In a low-B plasma, the force balance is 
mainly a matter of different magnetic forces in balance with each other. At - 1, the magnetic and pressure forces are largely balancing, whereas for 
B >> 1 the magnetic field plays a minor role in the dynamics of the plasma. 
Astrophysical plasmas can have ,9 approaching unity, sometimes even ,9 >> 1. 
Laboratory plasmas tend to have ,f3 values in the range of a few per cent at most, 
although it is possible in special configurations to create laboratory plasmas with 
B values near unity. 

9.3 THE CYLINDRICAL PINCH 

Another interesting configuration is the ‘cylindrical pinch’ in which the magnetic 
field is azimuthal (i.e. Be only), while the plasma current is axial (i.e. j ,  only), 
as shown in Figure 9.2. In this case, the magnetic field is curved, and the 
pressure-balance condition must include the term on the right-hand side of 
equation (9.7), which in this case describes tension of the field lines holding 
the plasma in. Noting that the 8-derivative of the unit azimuthal vector 8 is the 
inwardly directed unit radial vector, -i, we obtain 

which may be integrated from 0 to r to give 

(9.10) 

(9.1 1) 

where po is the (peak) pressure, assumed in this case to occur at r = 0. 
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Figure 9.2. Cylindrical pinch equilibrium in which the azimuthal magnetic field is created 
by the axial plasma current j,. 

There are infinitely many possible equilibria of this sort. For an illustration, 
we might consider the case of a plasma carrying a uniformly distributed current 
surrounded by a vacuum: 

(9.12) 

giving a total plasma current I = n u 2  j z o .  Since the current density within the 
plasma is uniform, then by Ampere’s law the magnetic field strength Be must be 
proportional to the radius r .  Thus, we may write Be = Beur/a. Carrying out the 
integral over r in equation (9.1 l), we find that the third term on the right-hand 
side makes a contribution equal to that of the second term on the right. Thus, 
within r < a ,  the pressure is given by 

B& r 
= Po - - 

P0U2 
(9.13) 

where Beu is the azimuthal field at the edge of the plasma, related to the total 
current by Beu = ~ o I / 2 j ~ a .  We see that the pressure profile has a parabolic 
dependence on radius r .  Since the pressure must vanish at the edge of the 
plasma, i.e. p ( a )  = 0, we have 

(9.14) 

This is known as the ‘pinch condition’, describing a magnetically self-constricted 
current-carrying plasma. 

For this equilibrium, the plasma current comes entirely from the plasma 
diamagnetic current, and this current provides the entire magnetic field. The 
pressure gradient is proportional to r ,  as is the only field-component Be, 
consistent with a constant diamagnetic current j,. The pinch can be established 
dynamically, by applying a very large voltage difference across a pair of 
electrodes to drive a large plasma current j,. However, we will see in Chapter 19 
that this plasma is strongly unstable. 
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Figure 9.3. A plasma equilibrium in which a uniform plasma fills all space except for an 
evacuated cylindrical hole produced by a current-carrying conductor (see Problem 9.1). 

Problem 9.1: A plasma of uniform pressure p fills all of space except 
for an evacuated infinitely long cylindrical ‘hole’ of radius a,  which is 
produced by a conductor carrying a current I placed on the axis of the 
cylindrical hole. The conductor produces an azimuthal field Bo, as shown 
in Figure 9.3. Show that the maximum radius of the vacuum hole that can 
be created in equilibrium in this way is given by a2 = p 0 I 2 / 8 r r 2 p .  Is there 
a z-directed current in the plasma? What is its magnitude and where is it 
located? 

9.4 FORCE-FREE EQUILIBRIA: THE ‘CYLINDRICAL’ TOKAMAK 

Equilibria with small or negligible plasma pressure are of interest, since they 
describe magnetic configurations containing ‘low-@’ plasmas. If the pressure 
gradient is negligible, the Lorentz force must vanish, i.e. 

O = j x B .  (9.15) 

Such equilibria are called ‘force-free’ . 
Non-trivial force-free cylindrical equilibria are possible if both axial ( B , )  

and azimuthal (Be )  field-components are present. In this case, the pressure- 
balance condition becomes 

(9.16) 

There are again infinitely many solutions of this equation, one of which is 
illustrated in Figure 9.4, which applies to a current-carrying plasma cylinder of 
radius a. 

For an example of a configuration of this type, we might assume again 
that the current density j ,  is uniformly distributed within the plasma, so that 
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Be(r) = Beur/a. This allows us to integrate equation (9.16) to obtain 

135 

Here, BzO is the longitudinal field at the center of the plasma cylinder. Equation 
(9.17) applies in the region r < a .  Outside the plasma cylinder, i.e. for r > a ,  
there can be no current j,. The azimuthal field Be must then decrease with r 
like r - l .  Equation (9.16) then shows that B, must be constant in this region. 
The radial profiles of the B, and Be fields are shown in Figure 9.4. 

a r 

Figure 9.4. Cylindrical force-free equilibrium. The radius r = c1 is the edge of the 
plasma, outside of which no currents flow, so that BZ = constant and Bo cx r - ’ ,  

This is a cylindrical approximation to the ‘tokamak’ configuration at very 
low values of B (imagining the torus of the tokamak to be straightened out into 
an infinitely long cylinder). The strong field B, is produced by external coils; the 
weaker field Be is produced by currents in the plasma. At low B,  the tokamak is 
seen to be paramagnetic, in the sense that the B, field is actually stronger at the 
center than at the edge. When a moderate amount of plasma pressure is added 
(specifically, sufficient that p > B;/2po), the usual diamagnetic effect appears, 
and the B, field is lowered at the center of the plasma. 

Problem 9.2: Add a small amount of plasma pressure p ( r )  to the 
cylindrical tokamak equilibrium, assuming that this pressure falls to zero 
at the plasma edge. Show that the generalization of equation (9.17), still 
allowing an arbitrary current distribution within the plasma, is 

where po is the pressure at the center of the plasma cylinder. For the case 
of uniform current distribution, i.e. Be(r) = BeUr/a,  show that the plasma is 
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diamagnetic, i.e. &(a) > BZo, if PO > B ~ ( U ) ~ / ~ O .  Is this result dependent, 
or not, on the current and pressure distributions in the plasma? 

9.5 ANISOTROPIC PRESSURE: MIRROR EQUILIBRIA* 

Consider the component of the force-balance equation along the direction of the 
magnetic-field vector b 

or, if I denotes a length coordinate along field lines, 

a P  - = 0. 
ai 

(9.18) 

(9.19) 

This relation shows that plasma pressure must be constant along field lines in 
any plasma equilibrium. This implies that a magnetic configuration that has 
‘open’ field lines (i.e. lines that go out of the plasma), such as the ‘magnetic 
mirror’ configuration introduced in Chapter 3 and shown again in Figure 9.5, is 
incapable of confining a plasma with isotropic pressure. Nonetheless, we know 
that this type of magnetic field can contain individual ions and electrons. 

Coil coil ’ 
Figure 9.5. Plasma equilibrium in a ‘magnetic mirror’ configuration. 

This paradox is resolved, however, by recognizing that the plasma pressure 
in this case is by necessity anisotropic. Although our magnetohydrodynamic 
model has, thus far, assumed the pressure p to be a scalar, we have seen in 
Chapter 6 that the plasma pressure along the magnetic field, p11, can be different 
from the plasma pressure across the field, P I .  For a field in the z direction, the 
pressure would then be a diagonal tensor, with diagonal elements P I ,  P I  and 
pll. We can write such a tensor as 

(9.20) 
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where, as usual, 6 is the unit vector along B and I is the unit tensor (the tensor 
which, expressed in matrix form, would have diagonal elements all unity, and 
off-diagonal elements all zero). The force-balance relation 6 .  (V. P )  = 0 is 
most easily manipulated using index notation, as follows: 

axj 
- * a P I  

axj 
-bj-+Bj-  - 

(9.21) 

where in going from the first line to the second line we have used V - B 
aB,/?xj = 0, and in going from the second line to the third line we have used 
&(ab i /ax j )  = albl*/axj = 0. Equation (9.21) can be written 

aPll P I  - PI1 aB -+--=o, 
ai B ai 

(9.22) 

Here, 1 is again a coordinate measuring the distance along a field line. 
Many solutions of equation (9.22) are possible, corresponding to mirror- 

confined equilibria. These solutions have PI  > p11, with both P I  and p11 
decreasing with 1 as one moves from the center of the mirror-confined plasma to 
the ends. (The field strength B obviously increases with 1.) Thus, both P I  and 
p11 can have their peak values at the center of the mirror-confinement region. 
A particularly simple class of solutions of the above relation is obtained by 
assuming that both P I  and p11 depend on the magnitude of the field strength 
only, i.e. P I  = p l ( B )  and pI1 = p I I ( B ) .  Using apll /al  = ( d p l l / d B ) ( a B / a l )  in 
this case, we see that these functions must be related by 

dPIl P I  - PI1 -+-=o, 
dB B 

(9.23) 

This special class of solutions is of particular interest because it also 
provides for a simple solution of the perpendicular force balance equation 

V . P = j x B  (9.24) 

Copyright © 1995 IOP Publishing Ltd.



138 Magnetohydrodynamic equilibrium 

in the case of an anisotropic plasma in a mirror magnetic field. If we 
limit ourselves to the case of a low-@ plasma, in which the plasma currents 
make a negligible perturbation of an essentially vacuum magnetic field, the 
only requirement for MHD equilibrium is that the plasma currents derived 
from equation (9.24) be divergence-free. Although equation (9.24) provides 
information only on the perpendicular component of the plasma current, allowing 
parallel currents to arise to help satisfy the quasi-neutrality condition, V j = 0, 
an important special case is where the perpendicular currents are themselves 
everywhere divergence-free, i.e. V - j, = 0, so that parallel currents are not 
required for equilibrium. Such equilibria are of particular relevance to mirror 
configurations, where plasma currents cannot normally flow out of the ends of 
the mirror. For such cases, the condition for equilibrium is 

1 1 
= v * x v .  P 

) = v * ( z[6 x v p ,  + (pi1 - p , ) 6  x (6 ' V)6] 
1 

= 0. (9.25) 

In the next-to-last step here, we have made use of a property of vacuum magnetic 
fields that was derived during our discussion of V B  and curvature drifts in 
Chapter 3, namely 

6 x (6 - V ) 6  = (6 x V B ) / B .  (9.26) 

In the last step of equation (9.25), we have taken the particular case where 
p ,  = p l ( B )  and p11 = pl~(B).  For this special case, examination of the final 
expression on the right-hand side of equation (9.25) shows that all terms are of 
the form V [f(B)B x V B ]  for various functions f (B) .  All such terms must 
be zero, because the contribution from the gradient of f (B)  will vanish when 
dotted with B x V B ,  and the contribution from the divergence of B x V B  will 
expand into terms involving the curls of B and V B ,  both of which vanish. Thus, 
all solutions of form p~ = p , ( B )  and p11 ZE p l ~ ( B )  that satisfy equation (9.23) 
describe low-j3 plasma equilibria with V - j l  = 0 in a mirror magnetic field. 

Such solutions would not, however, describe useful equilibria in the simple 
axisymmetric mirror configuration, because the field strength B decreases as 
one moves radiully away from the central confinement region. To make use 
of these solutions, assuming that they can be realized in a practical situation, 
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special non-axisymmetric mirror configurations must be designed that have the 
field strength B increasing outward in every direction. 

9.6 RESISTIVE DISSIPATION IN PLASMA EQUILIBRIA 

In this Chapter, we have discussed equilibria in which magnetic fields are 
embedded in the plasma. However, since a perfectly conducting plasma will 
act to exclude magnetic flux that it does not already contain, the question arises 
as to how these magnetic fields succeed in penetrating into a plasma if they are 
not present at the time of formation of the plasma. To address this question, 
we must restore plasma resistivity into the magnetohydrodynamic equations. A 
more general question is how dissipation allows our plasma to return to full 
thermodynamic equilibrium with uniform pressure; this also requires plasma 
resistivity. 

/ x 

Figure 9.6. The tokamak equilibrium in the cylindrical approximation. The 
approximately uniform field B, is dominantly produced by external coils; the much 
weaker field Bo is produced by currents flowing in the plasma. 

The tokamak configuration in the cylindrical approximation, which has 
already been introduced and is illustrated again in Figure 9.6, provides a good 
example to consider. The actual tokamak geometry is toroidal, and the main 
magnetic field is toroidally directed, with a smaller field directed the short way 
around the torus. In the ‘cylindrical tokamak’, the main field B, (corresponding 
to the toroidal field in the actual tokamak geometry) is produced like that in the 
actual geometry largely by external coils surrounding the plasma. It is present 
before the initial formation of the plasma, which is normally accomplished by 
ionizing a rarefied neutral gas that is fed into the containment vessel, using 
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an induced toroidal voltage to produce a cascade of breakdown and ionization. 
When the plasma becomes well-conducting, the magnetic flux associated with 
the B, field is already embedded in it. 

However, the B,g field within the plasma requires currents that flow in the 
z direction in the plasma itself. Since such currents can be increased to significant 
values only after the plasma becomes reasonably well-conducting, there will be 
a tendency for the plasma to exclude the magnetic flux of the Be field produced 
by the current j,, as this current rises. By considering a closed loop drawn 
in some constant-B surface within the plasma, it is clear that no Be flux could 
ever penetrate into a fixed plasma in the perfectly conducting case. For present 
purposes we can consider the plasma to be fixed in place by the strong toroidal 
magnetic field while we examine the penetration of the poloidal field into this 
fixed plasma. 

When plasma resistivity is included in the analysis, the magnetic flux of 
the Be field is allowed to diffuse slowly into the plasma. To see this, we restore 
resistivity to the plasma Ohm’s law, i.e. 

E +  U x B = V j .  (9.27) 

Combining Ampere’s law and Faraday’s law, and assuming for simplicity that 
7 = constant, we obtain 

aB - = V x (U x B) - V x (7,) 
at  

= V x (U x B) - (~/po)V x V x B 
= V x (U x B) + (v/po)V2B (9.28) 

where in the final step we have used the familiar vector identity for V x V x B 
(see Appendix D) together with V - B  = 0. Physically, equation (9.28) describes 
a magnetic field that changes partly by convection (the first term on the right- 
hand side) and partly by diffusion (the second term on the right-hand side). 

In our present cylindrical tokamak example, we have a situation where 
the plasma is held in approximate equilibrium by the pressure of a very strong 
constant and near-uniform field B,, as shown in Figure 9.6. The z component of 
equation (9.28), coupled with the pressure-balance condition, will tell us exactly 
how long-lasting this equilibrium will be, i.e. at what rate the plasma can still 
leak across the confining B, field. Specifically, since the externally produced 
B, field is held constant, the z component of equation (9.28) gives 

l a  
0 = ---(ru,B,) + 

r ar 
or 

(9.29) 

(9.30) 
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the latter arising from pressure balance, p + B1/2po % constant, where the 
approximation reflects the neglect of small contributions from the Be field. The 
expression for the plasma velocity ur given in equation (9.30) describes a process 
of slow 'leakage' of plasma across a magnetic field due to resistivity-a topic 
to be taken up at length in Chapter 12. For now, we note simply that the plasma 
will leak only very slowly across the B, field, with a radial velocity that is of 
order ur  - qp/BZL where L is a radial scale length. For present purposes, 
it is sufficient to note that this leakage rate can be made arbitrarily small by 
increasing the magnitude of B,. 

The 6' component of equation (9.28) tells us how the azimuthal field can 
leak into the plasma. Using the appropriate expressions for curl and V2 of a 
vector in cylindrical coordinates (see Appendix E), we obtain 

1 
a ( r  ar ) a - --(urBe) + -- -- a Be 

at ar Po ar 
- -  (9.31) 

but, for ur of a magnitude given by equation (9.30), the first term on the right- 
hand side is too small to be of significance in a low-p tokamak (it is of order 
B - 2popIB;  relative to the second term on the right-hand side), and the 
equation reduces to 

aBe q a 1 a(rB0) 
at po ar 
- Fz -- (;--) (9.32) 

(The expression used in equation (9.31) for V2 of a vector in cylindrical 
coordinates, which is given in general in Appendix E, can be obtained for our 
present case, where it acts only on a &directed field Be(r) ,  as follows. The 
operator V2 means the successive application of, first, the gradient operator 

, a  A a a V = r- + 8- +2- 
ar rae  a z  

and, second, the divergence operator 

V . E  --ri.+--O+-z , 
( t ; r  r a g  l a *  a z  "1 

When these are applied to the vector Boa,  remembering that aila6' = 8 and 
ab/a6' = -i, we obtain 

[ 1: ( r z )  - 91 8 
r ar r ar 

which is the expression used in equation (9.31).) 
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The general nature of the solutions of equation (9.32) may be inferred from 
its mathematical form, which is very similar to that of a diffusion equation. The 
azimuthal magnetic field penetrates into the plasma by a diffusive process in 
a characteristic time t - p0L2/q,  where L is the scale size of the plasma- 
in this case, its radius. Thus the plasma behaves almost as if it were a solid 
conductor of resistivity q.  Although the characteristic time for penetration of 
the azimuthal field, i.e. p0L2/q,  may be quite long, it is short compared to the 
time for which the equilibrium holds together against ‘leakage’ of plasma across 
the B, field, which is a time of order L2Bz /pq ,  i.e. longer by a factor /?-I. 

(In practice, especially when the leakage of plasma is ‘anomalously’ rapid, it 
is usually necessary to maintain the plasma density and pressure by means of 
particle and heat sources.) 

This principle is employed in the tokamak to induce a current to flow around 
a toroidal plasma, which may be approximated by the cylindrical configuration 
shown in Figure 9.6, where the toroidal direction is represented by the z axis. 
The plasma is held in place by a strong externally generated axial field B,.  
The axial current j ,  (and its associated azimuthal field Be) is then established 
by induction (i.e. using the plasma as the secondary of a transformer). After 
the initial breakdown cascade in the induced electric field, as the current is 
inductively increased, at first the increased plasma current J, flows entirely on 
the outermost surface of the plasma in the form of a ‘skin current’. Subsequently, 
the axial current j ,  and the azimuthal field Be distribute themselves within 
the plasma in a characteristic time t - p0a2/q, where a is the radius of the 
plasma. Sometimes, in order to defeat this ‘skin effect’ and encourage more 
rapid penetration of current to the plasma interior, the radius of the plasma is 
‘grown’ along with the rise of current so that a distributed current may be created 
layer by layer. For quasi-steady operation, the transformer can continue to apply 
magnetic flux to the surface of the plasma. This flux diffuses inward, continually 
replenishing the flux that is ‘disappearing’ at r = 0, due to the non-zero value 
of E ,  = qj,  at r = 0. For completely steady operation, the current in a tokamak 
must be sustained by other means, since the transformer primary will not be 
able to maintain a voltage indefinitely. 

Problem 9.3: A cylindrical plasma with radius a in a strong longitudinal 
field B, (such that p (( B?/2pO) has a finite and uniform resistivity q. 
A current in the z direction is induced in the plasma. The total induced 
current Z, is then held constant in time, but initially it flows entirely in a thin 
skin at the surface of the plasma r = a. Sketch the radial profiles for j , (r)  
and Be(r) in the plasma at three different times: (i) just after t = 0; (ii) 
some intermediate time (i.e. t - poa2/q); and (iii) after a very long time (i.e. 
t >> poa2/q). At very long times, the difference between the asymptotic 
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steady-state field Be and the actual Be field will be a term that decays 
like exp(-t/r), where r is a time constant. If you are familiar with Bessel 
functions, try to solve equation (9.32) for the asymptotic time dependence 
and show that the decay time constant 5 is given by r = poa2/qh: where 
;II is the first zero of the Bessel function J l ( h ) .  
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Chapter 10 

Fully and partially ionized plasmas 

Collisions of charged particles in a plasma are of two types: collisions with 
other charged particles and collisions with neutral atoms and molecules. To 
most plasma physicists, the collisions with other charged particles are by far 
the more interesting, because they are dominant in high-temperature plasmas 
where the degree of ionization is high. Indeed, we will see in this Chapter 
that collisions with other charged particles tend to dominate over collisions with 
neutral particles even if the degree of ionization is only a few per cent. The 
opposite case-where the degree of ionization is so low that collisions with 
neutral particles are dominant-is usually called a ‘partially ionized plasma’ (or, 
better, a ‘weakly ionized gas’). Of course, weakly ionized gases are also of 
practical interest: high-pressure arcs, ionospheric plasmas, process plasmas and 
most low-current gas discharges fall into this category. 

Before we can estimate the relative importance of collisions of charged 
particles with other charged particles versus collisions with neutral particles, we 
must first estimate the density of neutral particles in a plasma-i.e. the degree 
of ionization. 

10.1 DEGREE OF IONIZATION OF A PLASMA 

Atomic processes determine the degree of ionization of a partially ionized gas. 
Depending on the average energy of the free electrons, the range of possibilities 
extends from cases where only a very small fraction of the particles are ionized 
to cases where the ionization is essentially complete (often with the remaining 
neutrals constituting only one part in about lo6). 

Recalling elementary quantum mechanics, we obtain a measure of both the 
‘size’ of the atom, and the energy needed to ionize it. The Bohr radius of the 
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hydrogen atom is given by 

(10.1) 

where A = h/2n is Planck's constant. The energy needed to ionize the hydrogen 
atom (the Rydberg) is the work needed to remove the electron from its negative- 
potential-energy bound state minus the kinetic energy of the bound electron, 
namely 

eL =-- eL mvL 
I -  - 13.6eV 

41rcoao 2 8 ~ ~ 0 ~ 0  
(10.2) 

where we have determined the velocity of an orbiting bound electron by 
balancing the outward centrifugal force, m v2/ao, against the inward electrostatic 
force, e 2 / 4 ~ c , 3 a i ,  which gives the well-known result that the kinetic energy of 
the orbiting electron is exactly half its negative potential energy. 

There are two basic processes of ionization, satisfying the conditions for 
conservation of momentum and energy: (a) impact ionization, where an electron 
strikes an atom, so that an ion and two electrons come off and (b) radiative 
ionization, where a photon with sufficient energy (often in the ultraviolet range) 
is absorbed by an atom, dissociating it into an ion and an electron. Ions 
can recombine into atoms by the reverse of these processes: (a) three-body 
recombination, where two electrons and an ion join to make a neutral atom plus 
a free electron; and (b) radiative recombination, where an electron and an ion 
combine into an atom, and a photon is emitted. These processes are illustrated 
in Figure 10.1. 

n 

Figure 10.1. Ionization and recombination processes in a plasma: (a) electron-impact 
ionization, and (b) radiative recombination. The processes of three-body recombination 
and radiative ionization are the inverse of these processes and are obtained by reversing 
the direction of the arrows in (a) and (b), respectively. Neutral atoms are represented by 
black dots, while electrons and protons are represented by open circles labeled (-) and 
(+), respectively. 

In strict thermodynamic equilibrium, the competing processes of ionization 
and recombination produce a certain ratio nj/nn of ions relative to neutrals, 
which can be calculated by statistical mechanics using the ratio of free to bound 
electron states. The ratio q / n ,  is found to depend on both electron temperature 
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and density. However this equilibrium applies only to large dense plasmas, such 
as stellar plasmas, where both the particles and the radiation are sufficiently well 
trapped that thermodynamic equilibrium is achieved between the particles and 
the radiation field. Most plasmas, certainly including all laboratory plasmas, 
are much too small to trap ultraviolet radiation. In this case, one can still have 
‘local thermodynamic equilibrium’ in plasmas with very high density, where 
impact ionization and three-body recombination are more important then either 
of the radiative ionization or recombination processes, provided of course that 
the plasma particles are themselves in thermodynamic equilibrium. However, for 
three-body recombination to exceed radiative recombination, the plasma density 
must exceed a critical density that is about m-3 in the few-eV temperature 
range, and is even larger at higher temperatures. 

At lower densities, radiative recombination is larger than three-body 
recombination, and a different steady-state arises, known as ‘coronal equilibrium’ 
because of its occurrence in the solar corona, in which impact ionization and 
radiative recombination are in balance. Here, the degree of ionization is a 
function only of the electron temperature, not of the density. We will give a 
semi-quantitative treatment of this case later in this Chapter: we find that the 
degree of ionization becomes very high at electron temperatures above a few 
eV . 

In still other cases, the charged particles and neutral atoms do not reach a 
state of local coronal equilibrium, often because of a continuous influx of new 
neutrals into the plasma from the outside. In these cases, the neutral density is 
set by balancing ionization against the external source of neutrals, rather than 
against recombination. We will also give a semi-quantitative treatment of this 
case later in this Chapter. The neutral density is, of course, much higher in this 
case than if recombination were the only source of neutrals. Nonetheless, it is 
still generally true that at temperatures of more than a few eV, the degree of 
ionization is very high. 

10.2 COLLISION CROSS SECTIONS, MEAN-FREE PATHS AND 
COLLISION FREQUENCIES 

Before proceeding with quantitative treatments of these effects, we must 
introduce the idea of a collision ‘cross section’. A cross section can be defined 
for any kind of collision, but for present purposes it is sufficient to consider 
the case of an electron colliding with a neutral atom. Even in this restricted 
case there can be two types of collisions: (i) ‘elastic collisions’ in which the 
electron essentially ‘bounces’ off the atom, with the two particles retaining their 
identities as electron and atom, and the atom remaining in the same energy state; 
and (ii) ‘inelastic collisions’, such as ionization or excitation, in which one or 
more of the particles changes its identity or internal energy state. In the first 
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case, the electron may lose any fraction of its initial momentum, depending 
on the angle at which it rebounds. The probability of momentum loss can be 
expressed in terms of the equivalent cross section a that the atoms would have 
if they were perfect absorbers of momentum. In the second case, the probability 
of ionization, for example, can be expressed in terms of the equivalent cross 
section a that an atom would have if it were ionized by all electrons striking 
within this cross sectional area. 

Fully and partially ionized plasmas 

(3- 

(3- 
Figure 10.2. Electrons incident on a thin slab of 
thickness dx containing neutral atoms of density n,. dx 

In Figure 10.2, electrons are incident upon a thin slab of thickness dx 
containing n, neutral atoms per unit volume. The atoms are imagined to be 
opaque spheres of cross sectional area a: i.e. every time an electron strikes the 
area blocked by the atom, either it loses all of its momentum (elastic collision) 
or it ionizes the atom (inelastic collision). The number of atoms per unit area 
of the slab is n,&, and the fraction of the slab blocked by atoms is n,adx. If a 
flux r of electrons is incident on the slab, the flux emerging on the other side is 
r + d r  = r(l - n,a&), so that the change of flux r with distance x is given 
bv 

(10.3) 

which has the solution 

r = roexp(-n,ax) = roexp(-x/Adp) (10.4) 

where 
A d p  = (n,a)-l (10.5) 

The quantity Amfp is called the mean-free path for collisions. In a distance Amfp, 
the flux would be decreased to l/e of its initial value. In other words, an electron 
travels a distance kmfp before it has a reasonable probability of colliding with an 
atom. For electrons of velocity U, the mean time between collisions is given by 

t = A m f p / U .  (10.6) 

The ‘collision frequency’, namely the inverse of t, is usually defined in terms of 
an average over all velocities in the Maxwellian distribution (which may have 
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different individual collision frequencies), namely 

(1 0.7) 

As is implied by this formula, for more complex collisional processes than that 
illustrated in Figure 10.2, the cross section 0 is often itself a function of the 
velocity U of the incident particle. 

10.3 DEGREE OF IONIZATION: CORONAL EQUILIBRIUM 

In the case where the collision of the electron with the atom results in ionization 
of the atom, we may calculate the rate of production of new electrons per unit 
volume simply by multiplying the ionization collision frequency of the electrons, 
equation (10.7), by the electron density, ne. This ‘source rate’ Se of electrons is 
given by 

where qon is the cross section for electron-impact ionization and where we 
assume that the electron velocities ue greatly exceed the neutral velocities U,,, 
so that the velocity of impact comes mainly from the electron’s motion. This 
cross section is definitely a strong function of electron velocity, at least below 
energies of about 30eV, so the averaging over the Maxwellian distribution of 
electrons is necessary. There is, of course, an equal and opposite ‘sink rate’ for 
neutral atoms, i.e. neutral atoms are lost by ionization at the same rate per unit 
volume, Se. 

The dependence of the ionization cross section aion for hydrogen atoms 
on the energy of the bombarding electron is shown in Figure 10.3, and the 
ionization rate (qonue)  averaged over a Maxwellian distribution of electrons is 
shown in Figure 10.4. The maximum cross section aion is reached for electrons 
with energies somewhat above Ei (the Rydberg ionization energy, which is about 
13.6eV for hydrogen) and is in the neighborhood of m2, the ‘size’ of the 
hydrogen atom. However, the ionization rate is significant even for electron 
temperatures well below Ei, because a Maxwellian distribution still contains a 
few energetic electrons that are efficient ionizers. A good approximation to the 
data is given by the simple formula 

Se = nenn(0ionUe) (10.8) 

2.0 x (-) Te(eV) exp (- ’””-) m3s-l. (10.9) 
6.0 + Te(eV)/13.6 13.6 Te (ev> 

(0ionUe) = 

The source rate for neutrals (corresponding to a sink term for electrons) in a 
plasma in coronal equilibrium is given by 

Sn = neni(0recUe) ( 1 0.1 0) 
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1 
me".+ (ev) 

Figure 10.3. Ionization cross section 0 for hydrogen atoms as a function of the energy 
of the bombarding electron. 

T, (ev) 

Figure 10.4. Ionization rate (oionuC) for electron-impact ionization of hydrogen atoms 
averaged over a Maxwellian distribution of electrons, temperature T,. 

where arec is the cross section for radiative recombination. For a neutral 
hydrogen plasma, ni = ne. A good approximation to the data on radiative 
recombination in the relevant temperature regime is given by the simple formula 

(10.11) 
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Ionization Equilibrium 
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Figure 10.5. Ionization equilibrium for hydrogen in the coronal equilibrium model, and 
at higher electron densities with three-body recombination included. 

(The formulae given in equations (10.9) and (10.11) are taken from 
R W P McWhirter (1965 Spectral Intensities in Plasma Diagnostic Techniques 
edited by R H Huddlestone and S L Leonard, New York: Academic).) 

The degree of ionization of a homogeneous hydrogen plasma in coronal 
equilibrium is given by balancing the source of electrons by collisional ionization 
against the sink of electrons by radiative recombination. We find that, at an 
electron temperature of approximately the ionization potential, i.e. 13.6 eV, the 
plasma is almost fully ionized so that the neutrals constitute only about one 
part in lo5. Only at electron temperatures below about 1.5eV is the plasma 
less than 50% ionized. Figure 10.5 shows the degree of ionization, i.e. n,/n,, 
against electron temperature for the coronal equilibrium model, and also for 
higher-density plasmas where three-body recombination has been included. 

The concept of coronal equilibrium can be generalized to the case of a 
plasma composed of, or containing an admixture of, high-Z ions. In such 
cases, depending mainly on the electron temperature, the ions will be stripped 
of their outer-shell electrons but will retain some bound inner-shell electrons. An 
equilibrium distribution among the various ionization states arises which, in the 
solar corona for example, is determined by balancing the processes of impact 
ionization and radiative recombination for each ionization state. A particular 
case is illustrated in Figure 10.6, which shows the fractional abundances in the 
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Figure 10.6. Fractional abundances in the various ionization levels for oxygen ions as 
a function of electron temperature in coronal equilibrium. Fully ionized oxygen has 
Z = 8. (Dielectronic recombination has been neglected in calculating these fractional 
abundances.) 

various ionization levels of oxygen as a function of electron temperature in 
coronal equilibrium. We see that oxygen ions are stripped of all six outer-shell 
electrons (giving an ion with charge-number 2 = 6 )  at electron temperatures of 
about 30eV, but to remove the final two inner-shell electrons to produce fully 
stripped oxygen with Z = 8 requires temperatures in excess of about 200 eV. The 
validity of any coronal equilibrium model depends on the time-scale for reaching 
ionizationhecombination balance (for the slowest such process, generally at the 
highest relevant ionization state, in the case of high-2 ions) being much shorter 
than the timescale on which particles are introduced into, or lost from, the 
plasma. If this ‘confinement’ time begins to be comparable to the slowest atomic 
processes, the ionization balance shifts towards lower charge states. If hydrogen 
neutrals are present, there is also the possibility of a ‘charge-exchange’ event, 
in which the electron of a neutral hydrogen atom is captured by a high-Z ion; 
this process also lowers the charge-state balance of the high-Z ions. 

For high-2 ions, another process known as ‘dielectric recombination’ can 
play a significant role in the charge-state balance. In this recombination process, 
a free electron is captured into an excited state and the excess energy that is 
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available is invested in excitation of a different bound electron to a higher state. 
Both electrons then decay to the ground state, emitting photons. Dielectronic 
recombination has not been included in calculating the charge-state distribution 
shown in Figure 10.6. 

10.4 PENETRATION OF NEUTRALS INTO PLASMAS 

To complete our discussion of neutrals in plasmas, we should consider what 
happens at the edge of a hot dense plasma that is enveloped by neutral gas. 
This situation arises in many laboratory plasmas-magnetically confined fusion 
plasmas or low-pressure arc discharges, for example. In such cases, the plasma 
is often hot and dense enough to be fully ionized, but the electrons and ions 
that diffuse out of the plasma recombine into neutral atoms when they strike the 
containing vessel. The neutral atoms thus formed are often reflected back into 
the plasma (or other neutrals are desorbed from ‘saturated’ vessel walls), where 
they are ionized again. Depending OQ the surface material of the containing 
vessel (and whether its surface is already saturated with a layer of hydrogen 
molecules), this process of recycling can be almost ‘perfect’, i.e. the plasma 
density is maintained almost indefinitely despite diffusive losses of charged 
particles, because the lost particles reappear one-for-one as neutrals which are 
readily ionized again by the plasma. For hot dense laboratory plasmas, this 
recycling process occurs entirely at the plasma edge, because the main body of 
the plasma is ‘opaque’ to neutrals, i.e. a neutral atom has almost no chance of 
reaching the center of the plasma before being ionized. 

Recombination in the plasma (as distinct from at the vessel surface itself) 
is usually unimportant in this situation: the neutral density in the edge region of 
the plasma is set by a balance between the influx from outside and the ionization 
within the plasma. 

Neutral atoms entering the plasma with velocity U, will penetrate a distance 
given by the neutral ‘mean-free path’ for ionization, i.e. 

(10.12) 

This can be derived by noting that the volumetric ionization rate is given by 
nenn(~ionUe) for ue >> Un, implying that the effective ‘collision frequency’ of 
the neutrals must be n,(q,,u,). The thermal velocity of neutral hydrogen atoms 
at ‘room temperature’ is about 2 x lo3 m s-’. If the electron temperature in 
the edge-region of the plasma reaches 10-20eV, the ionization rate (qionue) is 
about lO-I4m3 s-’. Thus, we have h,(m) = 2 x 10’7/ne(m-3). For example, 
if the density of the edge-region plasma is about 10’9m-3, typical of many 
magnetically confined fusion plasmas, the neutrals will only penetrate about 
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Figure 10.7. Charge-exchange process in which an energetic ion takes an electron 
from a cold neutral, thereby becoming an energetic neutral. A time just before the 
charge-exchange collision is shown to the left of the thick black arrow; a time just after 
the collision is shown to the right. 

2cm into the plasma. In many practical cases, such as neutrals re-emerging 
from a saturated surface, the hydrogen appears initially in molecular, rather than 
atomic, form. In such cases, the first effect of electron impact is molecular 
dissociation, which produces two atoms with equal and opposite momenta and 
each with energy of about 3eV; the atom with momentum directed toward the 
plasma can penetrate somewhat further into the plasma. 

A second atomic process-known as ‘charge exchange’-allows much 
deeper penetration of hot dense plasmas by neutrals. In hydrogen charge- 
exchange, an energetic plasma proton captures the electron from a lower-energy 

Hydrogen 

I I I I 
10 io2 i o3  i o 4  + mi VI (ev) 

Figure 10.8. Cross section for charge exchange in hydrogen against the energy of the 
bombarding ion. 
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Figure 10.9. Trajectories of two neutrals incident (thick arrows on the left) upon a plasma 
of increasing density. Neutral (a) is ionized. Neutral (b) undergoes charge exchange, 
producing a more energetic neutral that penetrates (thick arrows on the left) further into 
the plasma before being ionized. 

neutral. As a result, it can escape from the plasma, or move further into the 
plasma, as an energetic neutral, as illustrated in Figure 10.7. Not much energy 
is exchanged by the charge-exchange collision itself the emerging neutral has 
about the same energy as the incident plasma ion. 

The cross section for charge-exchange of hydrogen atoms bombarded by 
protons of various energies is shown in Figure 10.8. In the energy range of 
most interest for laboratory plasmas and the edge-region of fusion plasmas (10- 
100eV), the cross section is seen to be quite large (- 4 x lO-I9m2), almost 
a hundred times larger than the ionization cross section. (The cross section is 
large because charge exchange is a resonant process, where the initial and final 
quantum mechanical states have no difference in energy.) For a plasma with 
T, x T,, the charge-exchange rate (acxui) is usually two-to-three times larger 
than the ionization rate (qionu,).  

The process of charge exchange essentially prevents a hot-ion plasma from 
ever being formed with an appreciable neutral-gas density in the hot region. The 
cross section for charge exchange is so large that, if this were to occur, each 
energetic ion would readily turn into an energetic neutral, which would escape, 
so that the hot plasma would quickly be converted into cold plasma. 

A low-energy neutral atom injected into the edge-region of a plasma has 
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a somewhat higher probability of undergoing a charge-exchange event than 
of being ionized. Thus, it might appear that charge exchange would reduce 
the penetration of neutrals into hot dense plasmas. In fact the opposite is 
true, because charge exchange produces a second generation of more energetic 
neutrals, with energies comparable to the ion energies in  the region of the 
plasma where charge exchange occurs. While some of these more energetic 
second-generation charge-exchange neutrals will escape from the plasma, others 
will penetrate much more deeply into the plasma interior than did the first- 
generation neutrals, until these neutrals themselves are ionized or produce a 
third generation of charge-exchange neutrals with even higher energies. Two 
neutral trajectories-one ionized and one charge-exchanged-are illustrated in 
Figure 10.9. 

The production of multiple generations of increasingly penetrating neutral 
atoms by charge exchange is primarily responsible for the presence of any 
neutrals at all in the center of a hot dense plasma. In the core of the plasma, 
these neutrals have ‘thermalized’ with the plasma ions-i.e. they have about 
the same average energy. However, charge-exchange transport still provides an 
avenue for ion energy loss from the plasma. 

10.5 PENETRATION OF NEUTRALS INTO PLASMAS: 
QUANTITATIVE TREATMENT* 

An approximate analytic treatment of the penetration of hydrogen neutrals into 
hot dense plasmas, including the combined effects of ionization and charge 
exchange, can be given. We consider the case where the neutral mean-free 
path for charge-exchange collisions, namely kcx N U n / n i ( O c x U i ) ,  is quite short 
compared to the plasma size. Viewing charge exchange as simply a ‘direction- 
randomizing’ collision, in the sense that one incident neutral produces one 
charge-exchanged neutral with little correlation between the two velocities, the 
migration of neutrals due to successive charge-exchanges can be treated as a 
diffusive process, i.e. a random walk with step size kcx and frequency of steps 
U,, - n i ( o c , u i ) .  (The reader who is unfamiliar with the concept of a random 
walk and its description by means of a diffusion coefficient is referred to the 
discussion at the beginning of Chapter 12.) Thus, the diffusion coefficient for 
neutrals is essentially 

where we have replaced U, by ut,,,  the thermal velocity of ions since, after 
successive charge exchanges, the neutral energies will have reached approximate 
thermal equilibrium with ion energies. To consider the penetration distance in 
a particular case, we will take account of the fact that Dn 0: n r ’ ,  but we will 
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otherwise neglect the spatial dependence of the various quantities. In particular, 
we will treat the ion temperature and the quantity (acxui) as essentially constant 
throughout the edge-region of the plasma under consideration. 

We consider a simple one-dimensional case, in which a plasma occupies the 
entire region x > 0. The plasma is in contact with a material surface at x = 0, at 
which charged particles recombine into neutrals, which are then re-injected back 
into the plasma. When an equilibrium has been reached between the flow of 
plasma to the material surface at x = 0 and the flux of neutrals into the plasma, 
the density of charged particles, say the ion density ni(x) ,  will be an increasing 
function of x ,  with ni(0) = 0, while the density of neutrals n,(x) will be a 
decreasing function of x ,  with a finite value at x = 0, as shown in Figure 10.10, 
In order to obtain a specific form for the profiles ni(x)  and n,(x), it is necessary 
to make some assumption about what governs the rate of leftward plasma flow. 
For our calculation here, we assume that the plasma flow is diffusive, i.e. the 
particle flux is proportional (and opposite) to the density gradient, with a constant 
of proportionality which is called the ‘plasma diffusion coefficient’. Moreover, 
for present purposes we will simply take the diffusion coefficient D in the edge- 
region of the plasma to be a constant independent of the plasma parameters 
such as density and temperature. This contradicts the predictions of the theory 
of collisional plasma diffusion to be presented in Chapter 12. However, for 
practical cases where diffusion is dominated by turbulent processes, the choice of 
a constant D may be a reasonable approximation to the actual physical situation. 

The diffusion equations for ion density (equal to the electron density, by 
assumption) and neutral density, with appropriate source and sink terms from 
ionization, are 

(10.14) 

(10.15) 

where D is the assumed plasma diffusion coefficient. Assuming steady state 
(slat = 0), adding the two equations and integrating once, we obtain 

(10.16) 

(The constant of integration is chosen to be zero to express the fact that there 
is no net flux of particles to the wall, i.e. ‘perfect’ recycling.) Integrating once 
more, taking account of the inverse dependence of D, on ni, we obtain 

(10.17) 5 D(& - ni ) = Dnmnimnn 

where the suffix ‘CO’ refers to values in the plasma, in the region sufficiently 
deep into the plasma that it is not penetrated by neutrals and that corresponds to 

I 2 
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x + m in our present analysis, where the following boundary conditions apply: 

ni + nim n, + 0 D, + Dnm. (10.1 8) 

Substituting for n, into the equation for ni, we obtain 

(10.19) 

Writing 

and neglecting any spatial variation of (OionUe)r we can integrate this equation 
once more to produce 

which has the following solutions: 

(10.20) 

(10.21) 

n,o = Dnim/2Dn,. 

These solutions for the ion density profile ni(x) and the neutral density profile 
n,(x) have the shapes shown in Figure 10.10. The effective penetration distance 
of neutrals XO, is the geometric mean of the mean-free paths for ionization and 
charge-exchange for a neutral with a velocity of the order the thermal velocity of 
ions in the edge region of the plasma-much larger, of course, than the velocity 
of neutrals in the ‘room-temperature’ gas that is assumed to surround the plasma. 
Nonetheless, for many high-temperature dense plasmas, the penetration distance 
is still small, with the result that the core of the plasma is almost fully ionized. 

Problem 10.1 : Estimate the penetration distance of neutral atoms 
(including charge-exchange processes) into a thermonuclear plasma with 
a central density of 1020m-3, assuming that the ion temperature in the 
edge region is about 100eV. In our quantitative treatment of neutral 
penetration, we assumed that (aiionue) and (acxui) are roughly constant. 
In the temperature range of interest, examine the data in Figures 10.4 
and 10.8 to assess how good an approximation this is. 
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Figure 10.10. Profiles of ion (or electron) density and neutral density in the edge region 
of a plasma of sufficient density to be opaque to neutrals. Both charge exchange and 
ionization are included. 

Problem 10.2: Consider neutral penetration into plasmas as discussed in 
the preceding section, but ignore diffusion of the ions, simply assuming a 
uniform charged-particle density, i.e. ni = constant. Show that the neutral 
density profile shape in this case is proportional to exp(-2x/xo), with xo as 
given in equation (10.21). Why is the typical neutral penetration distance, 
i.e. x 0 / 2  versus X O ,  shorter in this case? 

10.6 RADIATION 

Certain inelastic scattering processes involving radiation can be important in 
plasmas, especially those composed of ions other than hydrogen, as well as 
hydrogen plasmas containing small admixtures of higher-2 ions. As we have 
already seen, in these cases there are collisional and radiative processes of 
ionization and recombination among the various partially stripped states (i.e. 
high-Z ions still with some bound electrons), and there are also collisional 
processes of excitation of ions to higher energy levels and the associated 
process of ‘line radiation’. For such processes, the total power radiated per 
unit volume is proportional to the product of the electron density and the high-Z 
ion density and is also a strong function of electron temperature. Typically, 
line radiation is somewhat larger than recombination radiation, although both 
processes contribute importantly. Line radiation is relatively intense when there 
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is a high fractional abundance in those ionization levels corresponding to partially 
filled shells. Thus, the dependence of the total radiated power on electron 
temperature is non-monotonic, reflecting the temperature dependence of the 
fractional abundances in these ionization levels (see, for example, Figure 10.6). 
The total radiated power for oxygen ions in coronal equilibrium (including both 
recombination and line radiation) as a function of electron temperature is shown 
in Figure 10.11. Figure 10,11 should be compared with Figure 10.6, which 
shows the fractional abundances among the various ionization levels for the 
same case. 

1034 
1 10 100 1000 

T, (ev) 

Figure 10.11. Power radiated per unit volume in line and recombination radiation, 
Prad(W m-3), in coronal equilibrium for oxygen. All densities are in m-3; no refers to 
the total density of oxygen in all ionization states. 

Even Coulomb collisions in a fully ionized plasma give rise to radiation, 
called ‘bremsstrahlung’ or sometimes ‘free-free bremsstrahlung’, which comes 
from electromagnetic waves emitted by the acceleratingldecelerating electrons 
as they are deflected by the Coulomb attraction of the ions. A derivation 
of bremsstrahlung is given in the next Chapter after the specific properties 
of Coulomb collisions have been analyzed. Bremsstrahlung from Coulomb 
collisions of electrons with high-Z ions is generally important relative to 
recombination and line radiation only when the electron temperature is high 
enough for the ion to be fully stripped. For example, the power radiated by 
bremsstrahlung from electron collisions with oxygen ions is insignificant across 
the range of electron temperatures depicted in Figure 10.11, 
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Another type of radiation arises in magnetized plasmas even without 
collisional effects, because the electrons are continuously accelerating (i.e. they 
have a v because of the changing direction of the velocity vector) as they execute 
their Larmor orbits. This is called ‘cyclotron radiation’ and occurs primarily at 
the electron cyclotron frequency and its low harmonics. At sufficiently high 
electron temperatures that relativistic effects become important, this radiation 
shifts to higher harmonics and, eventually, these harmonics overlap so much that 
the spectrum forms a continuum. In this case, the radiation is called ‘synchrotron 
radiation’. 

Except for this brief introduction to the topic, atomic processes involving 
high-Z ions and plasma radiation processes are outside the scope of this book. 
The reader interested in these topics is referred to the excellent texts by G Bekefi 
(1966 Radiation Processes in Plasmas New York: Wiley) and by H R Griem 
(1964 Plasma Spectroscopy New York: McGraw-Hill). Computations of the 
power radiated in coronal equilibrium by recombination and line radiation for a 
variety of high-Z ions have been given by D E Post and R V Jensen (1977 At. 
Data Nucl. Data Tables 20 5 ) .  

10.7 COLLISIONS WITH NEUTRALS AND WITH CHARGED 
PARTICLES: RELATIVE IMPORTANCE 

Finally, we return to the question raised of the beginning of this Chapter: what 
is the relative importance of collisions of charged particles in a plasma with 
other charged particles versus collisions with neutral particles? 

The cross section for elastic scattering of an electron by a neutral atom may 
be estimated very roughly as 

on - na,2 - m2. (10.22) 

At the distance ao, an incoming electron has a substantial chance of undergoing 
a large-angle collision. On the other hand, when an electron comes within a 
distance r of a singly charged (e.g. hydrogen) ion, it experiences an attractive 
Coulomb force: 

F, = -e2/4ncor2 (10.23) 

which tends to deflect the electron orbit toward the ion. When the angle of 
deflection is as much as 90”, the electron’s initial momentum is mostly lost. 
Thus, from the viewpoint of momentum exchange, a ‘close encounter’ with the 
Coulomb force of another charged particle is essentially the same as a ‘collision’. 
The angle of deflection will be large when the potential energy of the Coulomb 
interaction equals the kinetic energy of the colliding electron, i.e. 

e2/4nrob - mv2/2 - T, (10.24) 
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where m and U are the mass and velocity of the electron, and where b is the 
distance of closest approach of the electron to the ion. This serves to define an 
effective ‘Coulomb cross section’ of the ion, namely 

(10.25) 

where T,(eV) denotes the electron temperature measured in eV. (In fact, we 
will see in the next Chapter that the effective Coulomb cross section is actually 
almost two orders of magnitude larger than this because of the cumulative effect 
of multiple small-angle deflections.) 

Comparing on with ai, simply using equation (10.25) for the latter, and 
consulting Figure 10.5 to relate the degree of ionization to T,, we see that 
Coulomb collisions will dominate over collisions with neutrals in any plasma 
that is even just a few per cent ionized. Only if the ionization level is very 
low (< can neutral collisions dominate. Moreover, a plasma becomes 
almost fully ionized at electron temperatures above about 1 eV. Thus, the case 
of collisions with neutrals is not of much concern to the physicist interested in 
high-temperature plasmas. Not only are high-temperature plasmas almost fully 
ionized, but the dynamical behavior of charged particles even in partially ionized 
plasmas with more than very small ionization levels tends to be dominated by 
Coulomb collisions with other charged particles, rather than by collisions with 
neutrals. Of course, the various inelastic scattering processes involving high- 
Z ions discussed in the previous Section, i.e. ionization, recombination and 
excitation, are still more important than Coulomb collisions in determining the 
radiation from high-temperature plasmas, provided only that there remains a 
sufficient fraction of these ions in partially stripped ionization levels. 
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Chapter 11 

Collisions in fully ionized plasmas 

When an electron collides with an ion, the electron is gradually deflected by the 
long-range Coulomb field of the ion. It is still possible to think in terms of a 
cross section for this kind of collision. At the end of Chapter 10, we derived an 
estimate for the effective cross section of a hydrogen ion, namely 

(11.1) 

which was obtained by calculating how close the electron must come to the 
ion for the potential energy of the Coulomb interaction to be comparable to 
the electron’s kinetic energy. In fact, the effective cross section for Coulomb 
scattering is considerably larger than this, as we shall see from the following 
more detailed analysis that takes into account the effects of multiple small-angle 
deflections of the electron. 

11.1 COULOMB COLLISIONS 

We again consider an electron of mass m, charge -e and velocity U approaching 
a fixed ion of charge Z e .  To obtain the most general result possible, we will 
allow Z # 1, thereby including multiply charged ions as well as hydrogen. In 
the absence of Coulomb forces, the electron would have a distance of closest 
approach b, called the impact parameter, as illustrated in Figure 11 . l .  In the 
presence of the Coulomb attraction, the electron will be deflected through an 
angle 8, which will of course be related to the impact parameter b.  

It is well known that a particle acted upon by an inverse-square-law force 
will execute a hyperbolic orbit. It is shown in standard textbooks on classical 
mechanics (see also Problem 11.1) that the angle of deflection for a light particle 
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Figure 11.1. The orbit of an electron undergoing a Coulomb collision with a fixed ion 
of charge Ze. 

colliding with a much heavier (infinitely massive) stationary particle is given by 

(11.2) 

Problem 11.1 : Prove relationship (1 1.2) for the deflection of an electron 
of mass m in a Coulomb collision with a much heavier ion, charge Ze .  
(Hint: use polar coordinates centered on the scattering ion and remember 
that energy and angular momentum are conserved.) 

For scattering through 90"(8/2 = 45", tan(8/2) = 1), the impact parameter 

(11.3) 
Ze2 

4ZEomU2 
and equation (11.2) for the angle of deflection for a general impact parameter 
becomes tan(8/2) = bo/b. Thus the cross section of the ion for 90"-scattering 

b must have the value 
bo = 

is 
(11.4) 

which agrees with the rough estimate given previously. However, as we stated 
before, the effective cross section for Coulomb scattering is considerably larger 
than this. The reason is that the cross section given above is based on large-angle 
collisions alone. In practice, because of the long-range nature of the Coulomb 
force, small-angle collisions are much more frequent than large-angle collisions, 
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and the cumulative effect of many small-angle deflections turns out to be larger 
than the effect of the relatively fewer large-angle deflections. 

Figure 11.2. Electron Coulomb scattering by 
ions in an annular element of volume with impact 
parameters between b and b + db as the electron 
moves a distance udt. 

To see this, we must consider the cumulative effect of many scatterings by 
many different ions with different values of the impact parameter b. Consider an 
electron with initial velocity U in the I direction, and suppose that it undergoes 
a large number of small-angle scattering events. In each event, the electron will 
be given small incremental velocity components AV, and Au,, but since there 
is no preferred direction for scattering (i.e. the electron is just as likely to be 
given a negative Au, as a positive one), the averages must vanish, i.e. 

(Au,) = (Au,) = 0. (11.5) 

However, the mean square deflections do not vanish, so that 

(11.6) 

where I (and later 1 1 )  are relative to the particle’s initial direction of motion, 
here taken to be in the z direction. For Coulomb collisions, we have seen that 

6 bo tan- = - 
2 b  

(11.7) 

so that, using the trigonometric identities 

sine = 2sin(0/2)cos(0/2> = 2tan(e/2>cos2(e/2> = 2tan(0/2>/[1 + tan2(e/2)l 

we see that 
(11.8) 2(b/bO) 

1 + (b/bo)* 
sine = 
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For a single scattering event, i.e. a single electron passing a single ion, we have 

(11.9) 

Consider the average behavior of an electron passing many ions, as shown in 
Figure 11.2. In a time dr, the electron will move a distance vdt, and the number 
of ions in a scattering element defined by having impact parameter between b 
and b + db is obtained by multiplying the ion density ni by the volume of the 
scattering element, 2xbdbvdt, giving a number of ions 27rnibudbdt. Integrating 
over impact parameters and differentiating with respect to time, we find that, on 
the average, the electron is deflected so that its perpendicular velocity changes 
at the rate 

In principle, the integral should be taken over all values of b, from b = 0 to 
b = m. However, although the integral is well defined at the lower limit of 
integration, it diverges logarithmically at large values of b. For the moment, we 
will avoid this problem by simply introducing an ‘ad hoc’ cut-off at b = bma. 
Evaluating the integral explicitly by substituting y = 1 + (b/bo)2, we obtain 

(11.11) 

where the final two forms are for the case where 

A bmax/bO >> 1. (11.12) 

Since the electron energy is nearly conserved in the collision (a light particle 
scattering off a heavy particle loses its momentum but not much of its energy), 
there is a reduction Aull in the velocity parallel to the original direction of 
motion. Noting that the initial velocity U is, by definition, entirely in the parallel 
direction and that perpendicular velocities arise only from the collisions, the 
energy conservation equation (U + Au11)~ + ( A u ~ ) ~  = U; tells us that 

~(Aull)  + ~ ( A u L ) ~  = 0 (11.13) 

showing that A q  is second order in AUI and thus justifying the neglect of the 
fourth-order term from ( A u I I ) ~ .  We then obtain 

(11.14) 
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This relation allows us to define a collision rate Vei (dimensions of a frequency, 
i.e. inverse time) for loss of electron momentum, i.e. 

(1 1.15) 

(11.16) 

Note that the 'collision frequency' uei varies inversely with the cube of the 
electron velocity U .  

An estimate for the quantity A may be obtained by noting that a charged 
particle will interact weakly with particles further removed from it than the 
Debye length, AD. As was discussed in Chapter 1, the charged particle produces 
an electrostatic potential 4 = e /4n~or ,  which perturbs the density of neighboring 
particles. The effect of this local charge separation is to shield out the electric 
potential at distances r greater than a Debye length, AD NN (cOT/ne2)'/2. Indeed, 
in Problem 1.3, it was shown that Debye shielding results in an exponential 
decrease in the electric potential for r > AD. Thus, the maximum impact 
parameter should be taken to be AD, because Debye shielding suppresses the 
Coulomb field at larger distances. Accordingly 

(11.17) 

where, in evaluating bo as an average over a Maxwellian distribution of electrons, 
we have taken mu2 - 3T.  We see that A - (12n/Z)nAi, which shows that 
our definition of a plasma, i.e. nAi >> 1 (see Chapter 1) implies that A must 
also be a large number. 

Problem 11.2: Defining an electron mean-free path for Coulomb collisions 
with ions by AdP = u/u,i, show that the ratio of this length to the Debye 
length AD is given by Amfp1E.D - A/lnA >> 1. 

Although A depends on n and T ,  its logarithm is fairly insensitive to the 
exact values of these parameters. Typical values of 1nA are given in Table 1 1.1. 
It is evident that 1nA varies by not more than a factor of two as the plasma 
parameters range over many orders of magnitude. For rough estimates of 
collision rates, it is usually sufficient to consult a table such as this, rather 
than evaluate 1nA directly. 
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Table 11.1. Values of l n h  for naturally occurring and laboratory plasmas. 

Solar wind 
Van Allen belts 
Earth's ionosphere 
Solar corona 
Gas discharge 
Process plasma 
Fusion experiment 
Fusion reactor 

n(me3) 

10' 
10" 

1016 
1018 

102'' 

107 

1013 

1019 

T(eV) 
10 
102 
lo-' 
102 
10" 
102 
103 
104 

lnA 

26 
26 
14 
21 
12 
15 
17 
18 

- 

Problem 11.3: At high electron temperatures, the minimum impact 
parameter bo appearing in the Coulomb logarithm becomes so small that 
quantum mechanical effects must be included. Show that for this case, bo 
should be taken to be the de Broglie wavelength A / m u .  For Maxwellian 
electrons, we take v - ( 3 T / m ) ' / 2 .  For electron collisions, at what 
temperature will these quantum mechanical effects become important in 
determining bo? Which of the values of 1nA given for typical laboratory 
and naturally occurring plasmas in Table 11.1 have involved this quantum 
mechanical correction? 

We are now in a position to compare the total multiple-small-angle-collision 
Coulomb cross section with the 90O-scattering Coulomb cross section. The 
total cross section for scattering of electrons by massive stationary ions can 
be obtained from the usual relation between collision frequency u,i and cross 
section a,i, namely 

u,i = nioeiu (11.18) 

giving 

(1 1.19) 

We see that the actual cross section exceeds the 9O0-scattering cross section by 
a factor 41nh - 70. The large size of the Coulomb cross section arises from 
the cumulative effect of very many small-angle scatterings. It is peculiar to the 
r -2  force law: it does not happen for force laws with a sharper drop-off with 
increasing r .  As we have stated previously, this effect increases even further 
the ratio of the Coulomb cross section of an ion to the cross section of a neutral 
atom. 
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11.2 ELECTRON AND ION COLLISION FREQUENCIES 

We have obtained an expression for the collision frequency for (light) electrons 
striking (heavy) ions. The collision frequency varies with electron velocity as 
u - ~ ,  i.e. the more fast-moving the electron the less frequently it collides with ions 
(in contrast, of course, to a ‘hard-sphere’ collisional model). In order to define 
an average electron collision frequency, it is useful to evaluate the frictional 
force on a distribution of electrons drifting through essentially stationary ions, 
namely 

F = -nem(wejv) ( 1  1.20) 
where the average is over the distribution of electron velocities. For present 
purposes, we suppose that the drifting electrons have a ‘shifted Maxwellian’ 
distribution, i.e. a Maxwellian distribution relative to a non-zero mean velocity 
U, which we take to be in the z direction, i.e. U = U,% We assume also that 
U ,  << ut,,, where is the electron thermal velocity, (Te/m)’ /2 ,  and we expand 
the distribution function retaining terms up to first order in u, /ut ,e .  We then 
obtain 

where f e 0  is the “shifted’ Maxwellian distribution. Using this distribution in 
equation (1 1.20), we obtain 

Fz = -m veju, fed U = -mu, s 3  
where in the final step we have noted that f e0  is spherically symmetric in 
velocity space, so the integral over U: must be one third of the integral over u 2 .  
Substituting equation (11.16) for wej as a function of U, we see that there arises 
an integral which may be evaluated as follows: 

= (i>‘“ $. (1 1.21) 
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Our final expression for the frictional force becomes 

where 
21/ZniZ2e41nh (1 1.22) 

As we will see later in this Chapter, and again in Chapters 13 and 14, 
different collisional processes introduce different averagings over the Maxwellian 
distribution of colliding particles, each of which introduces a different numerical 
factor in the applicable collision frequency. However, it is useful to have a 
standardized definition of average electron collision frequency, and this is what 
is given in equation (11.22). Note that the ion mass does not appear in the 
expression for ( w e i ) ;  for practical purposes, it can be taken to be infinite. 

In addition to their collisions with ions, electrons also collide with other 
electrons. In this case, the Coulomb force is repulsive, and the impinging 
electron is deflected away from the scattering electron. Electron4ectron 
collisions are more complicated to analyze, since the scattering particle may 
no longer be taken to be fixed. However, since the Coulomb force has the same 
magnitude, an electron is deflected about the same amount in a collision with 
another electron as in a collision with a hydrogenic ion (at the same impact 
parameter). Thus, to within factors of order unity, we have 

( 1  1.23) 

In a hydrogenic plasma (Z = l),  electrons collide with other electrons as 
frequently as they collide with ions. However, in a plasma containing many 
different ions with differing Z values, the effective electron-ion collision 
frequency is higher than the electron-electron collision frequency by a factor 
of about Z,ff = Eini2f/ne, where the sum is over the ion species present. 

Ions make Coulomb collisions with other ions and with electrons. From the 
viewpoint of the relatively massive ion, momentum exchange through collisions 
with electrons is generally not very important, since the momentum gained or lost 
by the ion in such a collision is relatively small. Indeed, ion collisional processes 
are generally dominated by collisions of ions with other ions. Although the 
calculation presented above (for electrons) is not strictly applicable to this case 
(since we can no longer treat the scattering particle as infinitely heavy relative 
to the scattered particle), nonetheless it gives the correct result to within factors 
of order unity. 

In order to define an average ion-ion collision frequency, as we have just 
done for the electron-ion collision frequency, we consider the frictional force 
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on a population of ions drifting through another population of ions of the same 
species. Relative to the case of electrons colliding with massive ions, we might 
expect a somewhat smaller frictional force in this case (at the same relative 
drifting speed and the same collision frequency), because the scattering ion 
can take up some finite fraction of the momentum of the scattered ion. For 
both populations of ions added together, the total momentum must of course be 
conserved in ion-ion collisions. The formal method for treating the dynamics of 
a collision between two ions would be to go to the center-of-mass frame, in which 
an ion pair is ‘replaced’ by a particle with the combined mass moving at the 
mass velocity, together with a particle with the reduced mass, MI M2/(M1 +M2), 
moving at the relative velocity, v,~ = VI - v2. For the case of two populations 
of ions of the same species, the reduced mass in M/2. The calculation of the 
frictional force between the two populations of ions due to ion-ion collisions 
will go through just as for the case of electron-ion friction, except that the 
momentum transfer will be proportional to VI - v2 and the relevant collision 
frequency will vary as Ivl - v ~ I - ~ .  However, since the frictional force was 
found to be proportional to the square-root of the mass and the relevant mass 
here is the reduced mass, M/2, an additional numerical factor of 2-’/’ arises 
in the ion-ion case, as well as the change m -+ M, relative to the electron-ion 
case given in equation (1 1.22). Thus, we may define an average frequency for 
ions colliding with other similar ions, namely 

(11.24) 

Equation (1 1.24) gives the standard expression for the average ion collision 
frequency. Although individual ions scatter with frequency uii, it is important 
to remember that the total momentum and total energy of the ion population 
cannot be changed by ion-ion collisions alone, since momentum and energy are 
conserved in Coulomb collisions when both scattering and scattered particles are 
summed together. 

Comparing electron and ion collision frequencies in a plasma with Te - T i ,  
we see that 

uei/uii - (M/m)’l2. ( 1  1.25) 

Thus, electrons scatter about 40 times faster than ions in a hydrogen plasma. 
For a hydrogen plasma with an electron and ion density n (in particles per 

m3) and electron and ion temperatures Te,i (here the temperatures are in eV), the 
collision frequencies given by equations ( 1  1.22), ( 1  1.23) and ( 1  1.24) are 

(vei) - (vee) - 5 x IO-’ln/T,3/’ ( s - ’ )  
( u i i )  - I O - ~ * ~ / T ~ / ~  ( s -~ ) ,  
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Numerical values for collision frequencies vary enormously, depending on the 
plasma density and temperature. 

Consistent with the collision frequency varying as nT-3 /2 ,  the cross section 
U for Coulomb scattering varies as T-* and is independent of density. This 
allows us, for example, to compare Coulomb cross sections with the deuterium- 
tritium fusion cross section, as is done in Figure 1 1.3. We see that the Coulomb 
cross section is always much larger than the fusion cross section. Thus, ions in a 
fusion reactor must be confined for many collision times for them to have a good 
chance of fusing. To maximize fusion reactivity at a fixed value of the plasma 
pressure p (since the beta value, B = 2 p 0 p / B 2 ,  is limited by plasma physical 
constraints, and the field strength B is limited by technological constraints), the 
optimum plasma temperature in a fusion reactor is in the range 10-30 keV. In 
this range, Figure 11.3 shows that there will be of order ten thousand or more 
scattering events per fusion reaction. Although only a fraction of the ‘fuel’ (i.e. 
the deuterium-tritium ions) in a fusion reactor need actually fuse before being 
lost, since the energy produced per reaction is a thousand times larger than 
the average energy of the ions, it is clear nonetheless that concepts for fusion 
reactors must involve confinement of ions for many collision times, so that the 
ion velocity distribution must necessarily be essentially Maxwellian. 

11.3 PLASMA RESISTIVITY 

When an electric field is applied to a fully ionized plasma, the electrons are 
accelerated in one direction (opposite to E since their charge is negative) and 
the ions are accelerated in the other direction (along E). The increasing relative 
motion between electrons and ions produces an increasing electrical current in 
the direction of E. However, Coulomb collisions between electrons and ions 
impede this relative motion, and a steady state is reached after a few electron- 
ion collision times. In equilibrium, the electric field E and the plasma current 
density j are proportional to one another, i.e. 

E = qj. (11.26) 

The constant of proportionality q is the resistivity. So far, we have paid some 
attention to the effects arising from resistivity, but we have investigated neither 
the magnitude nor dependences of the resistivity itself. 

The resistivity was obtained in Chapter 6 by considering the equation of 
motion for electrons in a uniform plasma (no pressure gradients) either along a 
magnetic field B or with no magnetic field: 
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1 1 I i I Figure 11.3. Coulomb and fusion cross 
10 100 1000 sections compared for a deuterium ion 10-321 

DEUTERON ENERGY (keV) (deuteron) in a deuterium-tritium plasma. 

The term R e i ,  representing the momentum gain or loss of the electrons caused 
by collisions with ions, was written 

%i = -mne(uei)(ue - Ui) ( 1  1.28) 

where we assumed that the momentum exchange between the two species was 
proportional to the relative velocity ue - U,. Neglecting the inertia of the 
relatively light electrons, and expressing the current density j as -nee(ue - Ui),  
the resistivity was found to be 

(1 1.29) 

Substituting our previous expression, equation (1 1.22), for the average electron- 
ion collision frequency (uei) and using ne = Zni, we obtain an approximate 
value for the plasma resistivity, namely 

( 1  1.30) 
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This simple calculation overestimates the true resistivity of a hydrogen 
plasma by a factor of about two. The weakness in the present calculation lies 
in using a ‘standardized’ average electron-ion collision frequency ( uei) that was 
obtained by using a ‘shifted Maxwellian’ electron distribution, without taking 
into account the specific distortion of the electron velocity distribution that arises 
due to the presence of the electric field. 

In the real situation, electrons with different velocities respond differently 
to the combined effects of a driving electric field and collisions with ions. 
Specifically, electrons with higher velocities are accelerated more readily by 
the electric field, since their collision frequencies are smaller than those of 
lower-velocity electrons. This tends to distort the electron distribution function, 
allowing more current to be carried by the faster electrons. Electron-electron 
collisions tend to pull these high-velocity electrons back into the Maxwellian 
distribution, however, thereby reducing this distortion. When all these effects 
are included, the net result for a hydrogen plasma is a resistivity that is about 
two times smaller than that given above. We will return to this topic in more 
detail in Chapter 13. 

Our expression for q shows that the resistivity of a fully ionized plasma is 
independent of its density. This is a rather surprising result since, with a given 
E field, we might have expected the current density to increase if the number 
of charge carriers per unit volume, ne, increases. The reason this does not 
happen is that the collisional friction force on the electrons also increases with 
the number of scatterers ni. At fixed E, the current j is proportional to ne but 
inversely proportional to ni. Since ne = Zni, the two dependences cancel each 
other. Note that a fully ionized plasma behaves quite differently from a weakly 
ionized gas in this regard. In a weakly ionized gas, we still have j = -neeue, 
where ne is the density of charge carriers, i.e. electrons, but ue will now be 
inversely proportional to the neutral density, nn, if the principal contribution to 
resisting the electron flow comes from collisions with neutrals. In this case the 
current is proportional to n,/n,. 

Our expression for q also shows that the resistivity of a fully ionized 
plasma varies inversely with T2’2. As the temperature of a plasma is raised, 
its resistivity drops rapidly. Plasmas at very high temperatures are most likely 
to be ‘perfectly conducting’ or ‘collisionless’, meaning that their resistivity is 
negligible. We have seen in Chapter 8 the consequences of ‘perfect conductivity’ 
for the ‘freezing’ of plasma to magnetic field lines, which is now seen to be a 
concept that is particularly appropriate for high-temperature plasmas. However, 
the decrease in resistivity with increasing temperature has a severe disadvantage 
for one simple method of heating a plasma-namely, passing a current through it 
to dissipate some energy in heat (‘ohmic’ heating). The rate by which a plasma 
is heated by this method is q j 2  per unit volume (equivalent to 1 2 R  heating in 
electrical wires), which is simply due to the fact that the rate of energy transfer 
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to electrons from the electric field is -n,eu, E = j - E = q j 2 .  For fixed j ,  the 
heating rate drops as the temperature rises-so much so that ohmic heating is 
usually considered impractical, for example, at fusion temperatures. 

The numerical value for the resistivity of a hydrogen plasma, after 
correcting equation (1 1.30) by the factor two, in SI units is 

q = 5 x 10-51nA/T~/2 S-2 m (11.31) 

where T, is in eV. A plasma with T, = lOOeV has about the same resistivity 
as stainless steel (7 x a m ) ,  whereas a plasma at T, = 1 keV has as low a 
resistivity as copper (2 x ~ - 2  m). 

11.4 ENERGY TRANSFER 

Another collisional process that can be considered at this point is that of 
collisional energy transfer between a hotter electron component and a colder 
ion component. Specifically, we consider the temperature equilibration of a 
plasma in which T, >> T .  This situation is possible (and common), as we will 
see, because the electron-ion energy transfer time, or 'equilibration time' re,, is 
much longer than the characteristic times for the electrons and ions separately 
to come to thermodynamic equilibrium among themselves, which are U,' and 
vi;' respectively. 

When a light particle of mass m and initial velocity vo collides with a heavy 
particle of mass M initially at rest, the maximum energy and momentum transfer 
to the heavy particle occur for 180"-scattering (i.e. a 'head-on' collision). For 
this case of exactly 180"-scattering, the conservation of momentum and energy 
gives 

mu0 + mvl = M V  
Zmvo - imul  = Z M V '  1 2 1 2 1  

(11.32) 
(1 1.33) 

where v I  (backward) and V (forward) are the final velocities of the light and 
heavy particle, respectively. Combining these two equations yields V I  x vo and 

(11.34) 

Thus, only a fraction - 4m/M of the energy of the light particle is transferred 
to the heavy particle. This simple result carries over to the physically more 
appropriate case of multiple small-angle collisions, as we will now see. 

In the same spirit, we can calculate the rate at which energy is transferred 
from 'hot' electrons of mass m to 'cold' ions of mass M in a plasma. The 
change AV in the velocity of an electron as a result of a Coulomb collision with 

Copyright © 1995 IOP Publishing Ltd.



178 Collisions in fully ionized plasmas 

an ion initially at rest can be related by momentum conservation to the velocity 
AV acquired by the ion: 

mAv = -MAV. (11.35) 
Referring to Figure 1 1.1, it is apparent that the scattering ion gains some amount 
of momentum, MAV, at the expense of a corresponding loss of the impinging 
electron's momentum, mhv ,  resulting from the deflection of the electron away 
from its initial trajectory. However, averaged over many such colliding electrons, 
each of them deflected in a different direction, there can be no net gain in 
ion momentum, provided of course that the electrons have an isotropic, e.g. 
Maxwellian, distribution with zero mean velocity. If the scattering ions are 
all initially at rest, however, each collision also results in a small gain in the 
ion energy. These increases in ion energy will accumulate, i.e. each colliding 
electron will contribute something, and the contributions from different electrons 
will not cancel out, as they do in the case of the (vector) momentum. From 
equation (1 1.35), the increase in ion energy occurring in a single collision is 
given by 

mL 
2M 

;MlAVI2 = --JAvI2. (11.36) 

We have seen that the change AV in the velocity of the electron shown 
in Figure 11.1 is mainly in a direction perpendicular to its initial velocity 
vector, and the magnitude of this velocity change has been denoted A u ~ .  The 
contribution from A q  is smaller, since u A q  - ( A U ~ ) * ,  as we saw from lowest- 
order energy conservation for the colliding electron. Accordingly, we can write 

m2 
2 M  

;MlAVI2 = - ( A u ~ ) *  (1 1.37) 

where the quantity ( A u ~ ) ~  for a single electron colliding with a single ion has 
been given in equation (1 1.9). Equation (1 1.37) indicates that the electron energy 
transferred to the ion in this particular collision is (m2/2M)(Au1)2. 

Now consider the case where there are many electrons colliding with many 
ions, as in a plasma. We allow the electron and ion densities, ne and ni, 
respectively, to be unequal, as they must be for example in a plasma with 
Z # 1. An average electron with velocity v is deflected by its many encounters 
with ions according to equation ( l l . l l ) ,  i.e. 

d((Aui)2)  niZ2e41nh 
- - (1 1.38) 

dt 2neim2u ' 

Integrating over a Maxwellian distribution of electrons 

(1 1.39) 
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we obtain a total rate of energy loss from the electrons by collisional transfer to 
ions, namely 

(1 1.40) 

where We = ineTe is the energy density in the electrons. In each collision, the 
energy is transferred to a single ion, but this energy must then be shared among 
the entire population of ions, which are also assumed to be Maxwellian. The 
increase of the energy density in the ions, = $n,T,  must balance the energy 
loss from the electrons, i.e. 

( 1 1.4 1 )  
dt dt ’ 

Since only the average energies, and therefore the temperatures z and T,, but not 
the densities are changed by elastic Coulomb collisions of this sort, we obtain 
an expression for the rate of increase of ion temperature: 

dWi dWe - - -- - 

(1 1.42) 

( 1  1.43) 

For a Maxwellian fe, the integral in equation (11.43) is straightforward to 
evaluate (see equation (1 1.21)): 

giving our final result 
d z  Te _ - _  - 

where 

( 1  1.44) 

(1 1.45) 

(1 1.46) 

Comparing this ‘temperature equilibration rate’ to the average electron-ion 
collision frequency defined earlier in this Chapter, we see that 

rei’ % 2(m/~) (u , i ) .  (1 1.47) 

Since we assumed that the ion scatterers were all initially at rest, these 
results are only valid for the initial increase of ion temperature, starting from 
Ti x 0. If the ions have a finite temperature, individual collisions will sometimes 
transfer energy from electrons to ions, and sometimes from ions to electrons. 
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From thermodynamic arguments, we know that, averaging over many collisions, 
the net transfer of energy must be from electrons to ions if Ti e Te and from ions 
to electrons if Te < Ti.  Thus, our analysis, which neglected the ion temperature 
entirely, must only be valid in the case Ti << Te. However, if the ion scatterers 
are given some initial temperature 5, our results could be generalized to show 
that the values of Te and Ti approach each other at a rate given by 

Collisions in fully ionized plasmas 

(1 1.48) 

the latter following from energy conservation. Although equation (1 1.48) is a 
thermodynamically plausible generalization of equation (1 1.45) for the case of 
finite z, its rigorous derivation requires a more complete treatment of electron- 
ion Coulomb collisions than can be given here. A more complete treatment of 
Coulomb collisions, including a derivation of equation (1 1.48), may be found, 
for example, in the classic monograph by L Spitzer (1962 Physics of Fully 
Ionized Gases 2nd edn, New York: Interscience). 

Equation (1 1.48) implies that temperature equilibration (i.e. between 
electron and ion temperature) is a relatively slow process in a plasma. The rate 
at which electrons and ions exchange energy by collisions is not as rapid as the 
electron-ion or electron-electron collision frequencies, uej and uee, respectively, 
but is smaller by a factor of order m / M .  The rate of energy exchange is also 
smaller that the ion-ion collision frequency, wii, by a factor of order ( m / M ) ' / * .  

Problem 11.4: Consider a hydrogen plasma in which the initial velocity 
distributions of electrons and protons are entirely arbitrary, i.e. non- 
Maxwellian. (We may assume, however, that the mean kinetic energies 
of electrons and protons are of the same order of magnitude.) Eventually, 
the plasma must come to thermodynamic equilibrium in which the electron 
and ion velocity distributions are both Maxwellian with T, = Ti.  Describe 
qualitatively the various stages of the approach to thermodynamic 
equilibrium. What happens first, what happens next, and so on? 

11.5 BREMSSTRAHLUNG* 

The Coulomb interaction of an electron with an ion results in acceleration of 
the electron as it is attracted towards the ion and executes the orbit shown 
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in Figure 1 1.1, We know from electromagnetic theory that an accelerating 
charge produces electromagnetic radiation. The radiation of this sort produced 
by the electrons in a plasma making Coulomb collisions with the ions is called 
‘bremsstrahlung’, or sometimes ‘free-free bremsstrahlung’. (‘Bremsstrahlung’ 
is a German word for ‘stopping radiation’.) It should be noted that collisions 
of electrons with other electrons produce no radiation of this sort in lowest 
order, because the accelerations of the two electrons are equal and opposite: 
since no net electron current is produced, there can be no radiation in the dipole 
approximation. Accordingly, we consider only electron-ion collisions. 

Although an accurate treatment of bremsstrahlung for plasma parameters 
of interest generally requires a quantum mechanical calculation, we can obtain a 
reasonable approximation to the exact result by a classical calculation into which 
an appropriate quantum mechanical correction is introduced. From classical 
electromagnetic theory, we know that the power ri.I radiated by a non-relativistic 
electron with acceleration a is given by Larmor’s formula: 

e2a2 W = -  
6ncoc3 ‘ 

(1 1.49) 

The acceleration can be expressed in terms of the Coulomb force of attraction 
by means of the equation of motion: 

ma = ~ e ~ / 4 r r c O r ~  (11.50) 

where r is the distance of the electron from the ion at this particular point of its 
orbit. Substituting equation (1 1 S O )  into equation (1 1.49), we obtain 

(11.51) 

The total energy radiated as a result of this single collision is obtained by 
integrating equation ( 1  1.5 1 )  with respect to time along the electron’s orbit. 
Denoting the distance along the orbit by s, the differential time element may be 
written dt = ds/u, where U is the instantaneous velocity of the electron. We 
obtain 

(1 1.52) 

Since energy conservation provides a relation between the electron’s kinetic 
energy, m v 2 / 2 ,  and its potential energy in the Coulomb field of the ion, - Z e 2 / r ,  
we can express the instantaneous velocity U in terms of r ,  for a given value of 
the electron’s initial velocity, i.e. its velocity far from the ion. Since we also 
know the geometry (a hyperbola) of the electron’s orbit, we could in principle 
attempt to calculate the integral in equation (1 1 S 2 )  exactly. This would lead to 
an exact expression for the bremsstrahlung in the strictly classical case. 
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For present purposes, recognizing that our calculation must necessarily be 
approximate in its treatment of quantum mechanical effects, it is sufficient to 
evaluate the integral in equation (1 1 S2) approximately, by integrating along the 
unperturbed electron orbit. This approximation treats all collisions as if they 
result in only small-angle deflections of the electron from a straight-line orbit. 
In this approximation, U M constant and, measuring s from the mid-point of 
the orbit (i.e. the point at which the electron is closest to the ion), we have 
r2  = s2 + b2, where b is the usual impact parameter. The integral then reduces 
to 

n - -  ds 1 f = [I (s2 + b2)2 - 2b3 (1 1.53) 

where the last step has been accomplished with the substitution s = b tan a ,  
Our final expression for the energy radiated in this single collision becomes 

n Z2e6 
3 ( 4 n ~ o ) ~ m ~ c ~  ub3 Wrad (1 1.54) 

where the approximate equality sign is in recognition of the approximate 
treatment of the integral along the orbit. 

In a differential time element dt, the number of ions with which the electron 
collides at impact parameters in a differential range db is given by multiplying 
the ion density, ni, by the volume element 2nbdbudt. The power (i.e. energy 
per second) radiated per unit volume of a plasma is obtained by multiplying 
equation (1 1 S 4 )  by 2nnj ubdb, integrating over all b, and finally multiplying by 
the number of electrons in a unit volume, i.e. the electron density ne. We obtain 

2n2nin,z2e6 
3 ( 4 ~ ~ 0 ) 3 m ~ c ~ b h , ,  ' 

x (1 1.55) 

We note that it has not been necessary, in this calculation, to introduce an upper 
cut-off to the permitted values of the impact parameter, for example at the 
Debye length AD. This is because the integral over impact parameters does not 
diverge at large b: physically, large-angle collisions contribute about as much 
to bremsstrahlung as do multiple small-angle collisions. However, it has been 
necessary to introduce a lower cut-off to the permitted values of the impact 
parameter, which we have denoted b,,,j,,. For the strictly classical case, we could 
estimate b ~ , ,  bo, where bo is the impact parameter for 9O0-scattering, defined 
in equation (1 1.3) or equation (1 1.17). However, a more satisfactory procedure 
would be to calculate the integral along the electron orbit exactly, in which case 
the lower cut-off at approximately bo appears naturally. 
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We have found (see Problem 11.2) that quantum mechanical effects 
determine the minimum impact parameter in plasmas with T, > 10eV. 
Moreover, bremsstrahlung is of interest mainly in this higher-temperature regime, 
since it is generally exceeded by other forms of radiation, for example line 
radiation, at lower electron temperatures. Even for a pure hydrogen plasma, 
recombination radiation, together with line radiation arising from transitions 
among excited recombined states, generally exceeds free-free bremsstrahlung 
at Te -= lOeV (see Figure 10.11). Thus bremsstrahlung is of interest mainly 
in the quantum mechanical case where the minimum impact parameter is the 
de Broglie wavelength, i.e. 

k 
I ,  

bmjn = - 
m u  

(1 1.56) 

with U = (3Te/m)'/2. Substituting equation (11.56) into equation (11.55), we 
obtain the power radiated by bremsstrahlung per unit volume in the quantum 
mechanical case, namely 

(1 1.57) 

Equation (1 1.57) is only approximate, since an exact calculation must be 
explicitly quantum mechanical, rather than classical with an ad hoc quantum 
mechanical cut-off. In addition, a proper averaging over a Maxwellian 
distribution of electrons is needed. Nonetheless, equation (1 1.57) is high relative 
to the exact quantum mechanical result (in which a so-called 'Gaunt factor' 
appropriate to electron temperatures in the keV range is used) by only about 
34%. (The Gaunt factor is used to correct the original classical calculation 
for relativistic, as well as quantum mechanical, effects.) Including an additional 
factor of 0.75 on the right-hand side of equation (1 1.57) to correct this deficiency 
and substituting numerical values for the various physical constants which appear 
in equation (1 1.57), we obtain a final expression for the power radiated by 
bremsstrahlung: 

Pbr = 1.7 x 10-38Z2n,niT,'/2(Wm-3) (11.58) 

where ne and ni are in mV3 and Te is in eV. If the plasma contains several 
different ions with different charge numbers Zi, then n,Z2 in equation (11.58) 
must be replaced by CinjZ', where the summation is over the types of ions 
present. The reader interested in the exact quantum mechanical derivation of 
equation (1 1.58) is referred to W Heitler (1954 Quantum Theory of Radiation 
3rd edn, Oxford: Oxford University Press). 

Problem 11.5: Fusion reactions between deuterons and tritons produce 
charged helium ions ('alpha particles') with energy E ,  = 3.5 MeV. If these 
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ions remain confined, they will provide an internally generated plasma 
heating power of 

n ~ n ~  (0 U)DT E,  

per unit volume. In the temperature range 3-10 keV, the fusion reactivity, 
( D U ) ~ ~ ,  averaged over Maxwellian deuterons and tritons at the same 
temperature F ,  can be written ( c r ~ ) ~ ~ ( m ~ s - * )  = 10-34q3 where T is in 
eV. (Beware that this formula is not good at temperatures above 10 keV.) 
Show that the alpha-particle heating power exceeds the power radiated by 
bremsstrahlung in a pure deuterium-tritium plasma with nD = nT = n,/2 
and T, = Ti = T only if T > 4.3 keV. 

Collisions in fully ionized plasmas 

Copyright © 1995 IOP Publishing Ltd.



Chapter 12 

Diffusion in plasmas 

When a charged particle in a plasma collides with another particle, its velocity 
vector undergoes a small but abrupt change, causing the particle to move from 
one collisionless orbit to another. After a sufficient number of such collisions, 
the particle will have wandered a significant distance away from its original 
trajectory. In a non-uniform plasma, the result of this will be a net migration 
of particles from the highest-density region of the plasma to the lowest-density 
region, thereby tending to flatten-out the density gradient. This net migration is 
called ‘diffusion’. 

We will consider diffusion in weakly ionized gases, where collisions of 
charged particles with the much-more-abundant neutral atoms are more frequent 
than collisions with other charged particles, in addition to the case of diffusion 
in fully ionized plasmas. The case of the weakly ionized gas is of conceptual 
interest in the context of diffusion, not only because it serves to illustrate some 
of the physical ideas without too much algebraic complexity, but also because it 
differs importantly from the case of the fully ionized plasma in the mechanisms 
by which the charge neutrality of the ionized gas is maintained during the 
diffusion process. The weakly ionized gas is, of course, of practical interest 
in its own right, for example in high-pressure arcs and process plasmas. 

We will limit ourselves in this Chapter to singly charged (e.g. hydrogen) 
ions. The generalization to ions with a multiple charge Z e  is straightforward. 

12.1 DIFFUSION AS A RANDOM WALK 

It will be useful, first, to develop a heuristic understanding of the coefficient of 
diffusion (or ‘diffusivity’) of charged particles in a plasma. To do this, we need 
to introduce the concept of a ‘random walk’. 

Consider a group of particles moving along a straight line (the x axis) 
beginning at x = 0. The particles take one step at a time, each step of magnitude 
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Ax ,  and these steps are random in the sense that a step to the left is just as likely 
as a step to the right. Steps are taken at equal intervals of time A t .  On average, 
i.e. if very many similar particles are followed, all of them beginning at x = 0, 
an average particle will not move at all, since steps to the right are compensated 
by an approximately equal number of steps to the left. Thus, the 'average' 
position of the particles, denoted ( x ) ,  is at all times given by 

( x )  = 0. (12.1) 

However, after a sufficient length of time, the particles will have 'spread out' 
relative to their initial position, and a few of them will have succeeded in 
migrating quite far to the left or to the right. The root-mean-square spread 
in the particles' positions can be denoted ( x 2 ) ' I 2 ,  and we will show that the 
quantity ( x 2 )  increases in time according to the relation 

d(x2) (Ax)2 
-=- (12.2) 

dt At 

which can be integrated to give ( x 2 )  = ( A ~ ) ~ t / h t .  Thus, the 'spread' 
increases as the square root of the time. 

In Section 12.3, we will derive the equivalent of equation (12.2) by solving a 
diffusion equation for the density n ( x ,  t )  of particles on the line. The diffusion 
equation is applicable in the limit where Ax and At are both infinitesimally 
small. 

12.2 PROBABILITY THEORY FOR THE RANDOM WALK* 

Before introducing the diffusion equation, it may be of interest to some readers 
to derive equation (12.2) by analyzing the random walk using the methods of 
probability theory. This derivation is valid even in the case where Ax and At 
are not small. (Readers who are uninterested in such a derivation may omit this 
entire Section.) 

The derivation of equation (12.2) from probability theory goes as follows. 
Let us consider a total of n steps and define P,(r )  to be the probability that r 
of these steps are to the right, so that n - r of the steps must be to the left. 
The probability of one particular prescribed ordered sequence of such steps is 
2-' x 2-(n-r) = 2-", just as the probability of a prescribed sequence of heads 
and tails in n throws of a dice will be 2-". To obtain P n ( r ) ,  where it does not 
matter in which of the n steps the r rightward ones occur, we must multiply 
by the number of ways of choosing r indistinguishable items from a total of n 
items, which is n! l [ r ! (n  - r ) ! ] .  Thus 
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After these n steps, which occur in a time t = nAt ,  the particle has progressed a 
net distance to the right of r Ax - (n  - r ) A x  = (2r - n ) A x ,  and its mean-square 
position is given by 

To make progress at this point we will employ a subtle trick that at first 
seems off the track. We write down the binomial expansion of a function F,,(y) 
defined as follows: 

so that 

Substituting this into our expression for (x2), we obtain 

and now it is a simple matter to carry out these differentiations of the function 
F,,(y) and then to substitute y = 1 ,  which gives a value n/4  for the expression 
in square brackets. Thus 

( x 2 )  = n(Ax)' = t(Ax)2/At 

thereby proving equation (12.2). We want now to go to the limit in which the 
number of steps becomes extremely large, while the length of each step, Ax,  
and the time interval between steps, A t ,  become infinitesimally small. To do 
this in a way that keeps the mean-square distance (x')  finite for finite time t 
requires that Ax and At approach zero with a particular relationship between 
each other: specifically, it is necessary that Ax and A f  approach zero in such a 
manner that ( A x ) 2  0: Af. 

12.3 THE DIFFUSION EQUATION 

Returning now to the promised derivation of equation (12.2) by formulating and 
then solving a diffusion equation, which correctly models the random walk in 
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the limit of infinitesimal Ax and At,  we begin by defining a 'number density' 
of particles n(x, t),  such that the number of particles in an element of length dx 
at location x at time t is given by n(x, t)dx. We will show that this 'number 
density' (like a probability density) satisfies a 'diffusion equation' of the form 

(12.3) 

This equation, which is in the form of a continuity equation for our random 
walkers, is correct as long as the assumption that the flux r of particles 
in the x direction is proportional to the density gradient (with constant of 
proportionality - 0 )  is valid. In the limit of small individual steps Ax, we 
can obtain this flux directly from the random walk picture of particles moving 
along the x axis. Evaluating the flux across x = XO, we note that the positively 
directed flux arises from the particles in a line segment of length Ax, located 
immediately to the left of x = X O ,  'emptying out' in the x direction as a result of 
positive steps Ax in a time interval At. Noting that only half of these particles 
make rightward steps, the other half making leftward steps, we see that the 
positively directed flux is 

2At 2 dx 

Similarly, the negatively directed flux from particles in a similar line segment 
to the right of x = xo making leftward steps is 

1 XO+AX 
n(x)dx r- = -- 

2At lo 
2 dx 

x -- (nAx + -- 1 
2At' 

The net flux is 
  AX)^ dn 
2At dx 

r = r+ + r- = 

which corresponds to a diffusion coefficient in equation (12.3) given by 

(1 2.4) 

(12.5) 
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Thus the diffusion equation, equation (12.3), gives a correct fluid description 
of the flows that arise when many particles, with non-uniform density, execute 
random walks in the limit of a large number of steps with infinitesimal Ax and 
At. 

We can find an exact solution of the diffusion equation for the case where 
all of the particles begin at t = 0 at x = 0, namely 

N 
(4n Dt)’f2 

n(x, t )  = (12.6) 

where N is the total number of particles, i.e. N = n(x, t)dx. While this is an 
exact solution of equation (12.3), we should note that the diffusion equation is 
valid only in the limit of At << t and Ax << x. 

Problem 12.1: Show by direct substitution that equation (12.6) is indeed 
a solution of equation (12.3). By finding a counter-example where 
equation (12.6) (with equation (12.5) for D) cannot be valid, show that 
this solution is not correct for all x and t in the case where Ax and At are 
finite. 

At time t = 0, the particles are distributed in a &function at x = 0. This 
formulation allows us to derive the result for the root-mean-square spread in 
particle positions that was implied by equation (12.2), namely 

(x2) = N - ’  x2n(x, t)dx = 2Dt = (Ax)2t/At. 

The three-dimensional generalization of the diffusion equation, equa- 
tion (12.3), is clearly given by 

an 
- = V - (DVn).  
at 

(1 2.7) 

In a diffusion process, there is on balance a net migration of particles in the 
direction opposite to Vn. Since more particles are located in higher-density 
regions than in lower-density regions, when both spread out, there is a net flux 
in the -Vn direction. 

For a first example of diffusion in plasmas, we consider the case of a 
plasma not containing any significant electric or magnetic fields. In this case, 
a charged particle will move on a straight-line trajectory until it encounters, 
i.e. collides with, another particle-either another charged particle or a neutral 
atom. The diffusion coefficient D may be estimated based on our heuristic 
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model as follows. The step size in the random walk is the mean-free path 
A,,,fp. The interval between steps is the inverse of the collision frequency, i.e. 
r x U-’. Thus, according to the simple random-walk analysis discussed above, 
the diffusion coefficient is given by 

D - v A i f p .  (1 2.8) 

Equation (12.8) and subsequent estimates like it can be regarded as valid only in 
an order-of-magnitude sense; accordingly, we omit the factor 1/2 that appeared 
in our expression for D given in equation (12.5). Recalling that the mean-free 
path is obtained by dividing the particle velocity, which we take to be the thermal 
velocity of the diffusing species ut, by the collision frequency v ,  we can express 
the diffusion coefficient 

(12.9) 

Consider next the case of a plasma containing a strong magnetic field B. As 
illustrated in Figure 12.1, charged particles will move freely along the B field, 
unimpeded except by collisions with other particles. If the density of particles is 
non-uniform along the field, these non-uniformities will smooth themselves out 
by diffusion, in accordance with the relationship derived above for the case with 
no magnetic field, since B itself does not affect motion in the direction parallel 
to B. Accordingly, we can define a ‘parallel’ diffusion coefficient, Dll, which 
takes the form given in equation (12.9). 

Figure 12.1. Diffusion of a charged particle (open circle) in a magnetic field due to 
collisions with other particles, either neutral or charged (full circles). Two collisions are 
shown, each of which contributes to diffusion along the field and, by changing the phase 
angle of the Larmor gyration, to diffusion across the field. 

Note that in both of these cases, i.e. an unmagnetized plasma and diffusion 
parallel to a magnetic field, collisions actually reduce transport. In the case of 
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diffusion perpendicular to a magnetic field, collisions enhance transport. Indeed, 
if there are no collisions, particles will not migrate at all in the perpendicular 
direction-they will continue to gyrate indefinitely about the same field line. 
There are, of course, particle drifts across B, due to field gradients, curvature 
or electric fields perpendicular to B, but these are often arranged to form closed 
drift orbits within a bounded plasma. A particular example is the cylindrical 
plasma column, where the electric field and the gradients are all in the radial 
direction, so that the drifts are azimuthal. In such cases, the particle drifts do 
not carry particles out of the plasma. 

However, when there are collisions, particles migrate across B by a random 
walk process. When a charged particle collides with another particle, the 
direction of its velocity vector is turned through some finite angle. The particle 
continues to gyrate about the magnetic field in the same sense, but the phase 
of its gyration is changed discontinuously, thereby changing the location of the 
gyro-center. The radius of gyration (Larmor radius) may also change, but this 
is not essential to the process, and for now we can suppose for simplicity that 
the charged particle does not gain or lose perpendicular energy in the collision, 
so that the gyration radius is unchanged. 

Because of the change of phase, the center of gyration ('guiding center') 
shifts position as a result of the collision and, if there is a succession of 
such collisions, the center of gyration undergoes a random walk, as shown in 
Figure 12.1. We assume here that the collision frequency is much less than the 
gyration frequency, so that most Larmor orbits are completed. The step size in 
the random walk is no longer the mean-free path &,,fp, as in the magnetic-field- 
free case, but has instead the magnitude of the Larmor radius r L .  The interval 
between steps is again the inverse of the collision frequency, i.e. T = U-', giving 
a 'perpendicular' diffusion coefficient 

( 1 2.1 0) 2 DI - vrL. 

Although the estimate given in equation (12.10) is based on the pictorial 
representation of perpendicular diffusion shown in Figure 12.1, it is important to 
remember that Coulomb collisions act mainly through the cumulative effect of 
many small-angle scatterings, rather than the relatively infrequent 90" scatterings 
depicted in Figure 12.1. A typical particle experiences collisional scattering of 
its perpendicular velocity vector through an angle of order A0 - ( 2 n ~ / w , ) ' / ~  in 
one gyro-period ( A t  - 2n/w,). (Remember that collisional scattering is itself 
a diffusive process in velocity space, so the angle of scattering A0 is given by 
(A@)*  - v a t . )  If the perpendicular velocity vector is turned through an angle 
A0,  the particle's gyro-center moves by a distance Ax - rLAO, which gives rise 
to a spatial diffusion coefficient D - ( A x ) 2 / A t  - urz. Thus, a more correct 
approach based on multiple small-angle scattering events gives the same result 
as the heuristic derivation based on large-angle scatters, i.e. equation (12.10). 

Copyright © 1995 IOP Publishing Ltd.



192 Diffusion in plasmas 

12.4 DIFFUSION IN WEAKLY IONIZED GASES 

In a weakly ionized gas with a small enough ionization fraction, charged 
particles will interact primarily (by means of elastic collisions) with neutral 
atoms rather than with other charged particles. In this case, the applicable 
diffusion coefficients may be obtained from equations (12.9) and (12.10) by 
simply using the appropriate electron-neutral or ion-neutral collision frequency. 
Recalling that U = n,(a,,u) and noting that a neutral atom displays approximately 
the same cross section a,, to a colliding electron as to a colliding ion, we see 
that the electron-neutral and ion-neutral collision frequencies are related to each 
other according to 

(12.11) 

Here, ut,e and ut,i are the thermal velocities of electrons and ions and, in relating 
them to the electron and ion masses, we have assumed that the electron and ion 
temperatures are roughly equal. 

It follows that the electron and ion diffusion coefficients in the absence of 
a magnetic field (or along the field, if one is present) are related according to 

Ven/Vin  c~ ut,e/Ut,i - ( M l m ) ’ / 2  >> 1. 

D\le/Dlli N (M/m)”2 >> 1. (12.12) 

The diffusion coefficients perpendicular to a strong magnetic field are related 
according to 

DLe/DLi - ( m l M ) ] l 2  << 1 (12.13) 

because of the square-root dependence of the Larmor radius on the mass. 
In a plasma, which must remain charge neutral to a very high degree of 

approximation, net motion of electrons and ions at separate rates will not occur. 
If the plasma is to remain neutral, the fluxes of electrons and ions will somehow 
adjust themselves so that the two species leave the plasma at the same rate. 
Not surprisingly, the process of adjustment of the two loss rates involves the 
electric field that arises as soon as a slight charge imbalance occurs. In the 
case without a magnetic field (or diffusion along the field, if one is present), the 
electrons have the larger diffusivity and tend to leave the ions behind. A very 
small positive charge is left in the region of highest plasma density, sufficient 
to create an outwardly directed electric field of such a size that the preferential 
loss of electrons is eliminated, although the loss of ions will tend to be increased 
somewhat in the process. In the case of diffusion across a magnetic field, the 
electric field will be inwardly directed, i.e. toward the region of highest plasma 
density, to eliminate the preferential loss of ions. 

The results given in equations (12.9) and (12.10), which we have obtained 
from a heuristic single-particle picture, can be derived formally (but actually at 
the same level of approximation) using the fluid equations for a weakly ionized 
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gas. This approach will also lead to a quantitative determination of the electric 
field. The fluid equation of motion, including collisions with neutral atoms, for 
either species of a hydrogenic plasma, is 

du 
dr 

mn- = qnE - V p  - mnvu (12.14) 

where, as usual, q is the signed charge (i.e. &e for ions/electrons). We will 
assume that the collision frequency v has been averaged appropriately over the 
distribution of particle velocities and is a constant, i.e. independent of the fluid 
velocity. If we consider a steady state in which aula? = 0, and in which the 
fluid element does not move very far in a collision time (i.e. u / v  << L ,  where 
L is the characteristic dimension of the plasma), so that (U - V ) u  is negligible, 
then inertia and acceleration may be neglected, and we obtain 

(12.15) 
m v  m v  n 

Here, we have also assumed an isothermal plasma, so that V p  = T V n .  The 
constant of proportionality between the flux nu and V n  is the same as was 
obtained heuristically from the single-particle picture, see equation (1 2.9). 

Let us now consider equation (12.15) for ions (m j. M ,  q +- e )  and 
electrons (m + m, q +. -e)  separately. Equation (12.15) shows that electrons 
not only diffuse more rapidly than ions in the presence of a density gradient, 
but they also respond more readily to an electric field. (The coefficient of the 
electric field term in equation (12.15) is called the 'mobility'.) For the diffusion 
of ions and electrons to be at the same rate-sometimes called 'ambipolar 
diffusion'-the electric field must adjust itself so that the electron flow is reduced 
by a large factor of order ( M / m ) ' / * .  More precisely, we can determine the 
electric field from equation-(12.15) by setting U, = ui, to obtain 

V n .  Te -- 
ne 

( 1 2.1 6 )  

This is called the 'ambipolar electric field'. Substituting it back into 
equation (12.15), we find electron and ion fluxes 

nu, = nUi = -D,Vn (12.17) 

where D ,  is the ambipolar diffusion coefficient, given by 

(12.18) 
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For the case where T, z, the effect of the ambipolar electric field is to 
approximately double the diffusion coefficient of the ions; the electron pressure 
acts through the electric field effectively to push on the ions. The diffusion 
rate for the two species together is thus controlled primarily by the species that 
diffuses more slowly-in this case, the ions. Even if electron transport were 
infinitely faster, it would still only double the net particle transport. 

It is interesting to note that in the opposite limit of A d p  - u / u  >> L ,  
inertia and acceleration become dominant, collisions become unimportant, and 
the discussion in Chapter 7 of pressure balance parallel to a magnetic field 
in a collisionless plasma may be invoked. There too, the electron pressure is 
effectively added to the ion pressure through the action of the electric field, 
in that case driving ion acceleration rather than diffusion. Acceleration and 
diffusion are handled simultaneously by the fluid equations of motion when the 
collisional friction term is included. Thus, in the fluid picture, diffusive flow 
is a consequence of collisional friction between particles of different species 
becoming more important than acceleration in determining the fluid velocity 
that is produced as a response to pressure gradients. Diffusion appears naturally 
from the fluid equations including collisional friction and is absolutely not to be 
introduced separately, for example as an extra V - ( D V n )  term in the continuity 
equation. 

Consider next the case of a weakly ionized gas in a magnetic field. As 
before, we start with the fluid equation of motion for either species including 
collisions with neutral atoms. Since in the parallel direction the equation of 
motion is the same as for an unmagnetized plasma, we focus on the perpendicular 
components: 

(12.19) mn- = q n ( E  + u l  x B) - TVn - mnuu. 

We suppose that the magnetic field is in the z direction and that the density 
non-uniformity is in the x direction. The ambipolar electric field will also be 
in the x direction. Again assuming a steady state and neglecting inertia, we 
can solve the two perpendicular components of equation (12.19) for the two 
perpendicular components of the fluid velocity U. Because of the UI x B term, 
the two components of equation (12.19) are coupled, but it is a matter of simple 
algebra to solve the two equations simultaneously, to obtain 

d u l  
dt 

(12.20) 

(12.21) 

where t is the mean collision time, U-], and oc is the cyclotron frequency, 
e B l m .  
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Equation (12.20) compared with equation (12.15) shows that the effect of 
the magnetic field (U, # 0) is to reduce the mobility and diffusivity relative 
to an unmagnetized plasma by a factor 1 + u:t2. Equation (12.21) shows that 
the effect of collisions ( r  # CO) is to reduce the E x B and diamagnetic drifts 
relative to a collisionless plasma by a factor u:t2/( 1 + u:t2). Since the density 
gradient is in the x direction, the flow-velocity component uy does not contribute 
to diffusion, although this component is the larger in a collisionless plasma. The 
diffusive flows that carry particles from high-density to low-density regions of 
the plasma are contained in the component U , .  

When u:t2 << 1, the magnetic field has little effect on diffusion. On the 
other hand, in the case where u:t2 >> 1, the magnetic field significantly retards 
the rate of diffusion across B. In the limit u:r2 >> 1, we have 

(12.22) 

Again the constant of proportionality between the flux nu and V n ,  i.e. the 
diffusion coefficient D l ,  is the same as was obtained heuristically from the 
single-particle picture, equation (12.10). 

Compared with diffusion along a magnetic field (or in the magnetic-field- 
free case), we see that the role of the collision frequency has been reversed, as we 
found in the heuristic derivation. In diffusion along B, the diffusion rate varies 
inversely with U ,  since collisions impede the motion. In diffusion perpendicular 
to B, the diffusion rate is proportional to U, since collisions are needed for cross- 
field migration. The dependence on the particle's mass m has also been reversed. 
Keeping in mind that the collision frequency for charged particles colliding with 
neutral atoms is proportioned to m-' /2  and that wc varies inversely with m, we 
see that the diffusion rate along B varies as m-1/2,  whereas the diffusion rate 
perpendicular to B varies as m1/2. In diffusion along B, electrons move faster 
than ions because of their higher thermal velocities; in perpendicular diffusion, 
ions migrate more rapidly than electrons because of their larger Larmor radii. 

Let us now consider equation (12.22) for ions (m + M ,  q + e )  and 
electrons (m + m ,  q + - e )  separately. Because the diffusion coefficients 
are anisotropic in the presence of a magnetic field, the problem of ambipolar 
diffusion is not as straightforward as in the magnetic-field-free case. As we have 
just seen, in diffusion perpendicular to a magnetic field, the ion flux tends to 
exceed the electron flux. Ordinarily, a transverse electric field will then be set 
up so as to aid electron diffusion and retard ion diffusion. The electric field 
will be that needed to reduce the ion flow by a large factor of order ( M / m ) ' / 2  
which, from equation (12.22) for ions, can be seen to be given by 

(12.23) z E l  - V l n .  
ne 
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The ambipolar electron and ion fluxes are then obtained from equation (12.22) 
for electrons: 

nuel = nuil = - D , V l n  (12.24) 

where 

(12.25) 

where (rk) = T'/(mo;) = mTe/ (e2B2)  is the mean-square Larmor radius of 
the electrons. The diffusion coefficient D, is seen to be inversely proportional to 
B 2 .  Clearly, our result agrees-at least in some sense-with the heuristic result 
given in equation (12.10), except that ambipolar diffusion is at the slower rate 
similar in order-of-magnitude to that given by equation (12.10) for electrons. 

However, the electric field required for ambipolar diffusion perpendicular to 
a magnetic field can sometimes be short-circuited by an imbalance in fluxes along 
B. Specifically, the negative charge resulting from the net perpendicular outflux 
of ions can be dissipated by electrons escaping along field lines. Although the 
total diffusion must be ambipolar, the perpendicular part of the losses need not 
be ambipolar; the ions can diffuse across the field, while the electrons are lost 
primarily along the field. 

Whether or not this occurs depends on the geometry of the particular 
magnetic configuration and on experimental conditions. In a mirror-trapped 
plasma on open field lines, the losses of electrons along the field generally 
far exceed the ion cross-field losses, so the plasma tends to become positively 
charged, in accordance with the requirement for ambipolar diffusion along (or 
without) a magnetic field. In the opposite case of a 'closed' plasma configuration, 
in which the field lines close back on themselves so that there is no possibility 
of escape along the field, the cross-field losses of ions are dominant, and the 
plasma tends to become negatively charged, in accordance with the requirement 
for ambipolar diffusion across a magnetic field. In a cylindrical plasma column 
with the field lines terminating on conducting end-plates, the ambipolar electric 
field is short-circuited out; each species is then able to diffuse radially at a 
different rate, provided there is sufficiently rapid compensating diffusion of net 
charge in the parallel direction to the end-plates. 

12.5 DIFFUSION IN FULLY IONIZED PLASMAS 

We will consider next the diffusion perpendicular to a magnetic field in a 
fully ionized plasma, where Coulomb collisions dominate over collisions with 
neutral atoms. 
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As in the case of the weakly ionized gas, the formal treatment of diffusion 
proceeds from the fluid equations of motion for the two species, including 
collisions. For a fully ionized plasma, these are effectively the single-fluid 
equation of motion and the plasma Ohm’s law: 

du 
= - V p  + j x B pz 

- vj. 
Vpe j x B  E + u x B + - - - -  
ne ne 

(12.26) 

(12.27) 

Since we have seen that diffusion flow-velocities tend to be less than or of 
order of the diamagnetic speed, we use here the so-called ‘generalized Ohm’s 
law’. This is equivalent to a two-fluid picture with electron inertia neglected. 
Collisions between the two species, electrons and ions, appear through the 
resistivity term in the Ohm’s law. As in the case of the weakly ionized gas, 
we may assume that diffusion is a sufficiently slow process that the plasma is 
always in a state of equilibrium. We also assume that the diffusion velocity is 
much less than sonic, so that p(u - V)u can be neglected compared with Vp. 
These assumptions allow us to neglect the inertia of the ions, as well as that 
of the electrons, and to replace the equation of motion by the force balance 
equation: 

j x B = V p .  (12.28) 

We again suppose that the magnetic field is in the z direction, and that the 
pressure non-uniformity is in the x direction. The ambipolar electric field will 
also be in the x direction, since there is no variation of any of the quantities in 
the y direction. (The generalization to the case of a cylinder of plasma in which 
the non-uniformity and electric field are both in the radial direction and there is 
no azimuthal variation is straightforward.) The force balance equation tells us 
that 

(12.29) 

Since there is no variation in the y direction, these currents automatically satisfy 
the quasi-neutrality condition V j = 0. 

The generalized Ohm’s law may be solved for the perpendicular 
components of the plasma fluid velocity: 

(12.30) 

where we have substituted for j x  and j,. from equation (12.29). It is evident 
that the perpendicular velocity of the plasma is composed of two parts. First, 
there are the usual electric and diamagnetic drifts, perpendicular to the electric 
field and pressure gradient, respectively, and therefore not leading directly to 
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any loss of plasma from high-density to low-density regions. (These drifts are 
in the y direction in our case of a plasma slab that is non-uniform in x ,  and 
they would be in the 6 direction in the case of a cylinder of plasma that is 
non-uniform in r ) .  Second, there is a resistively driven flow that is anti-parallel 
to the pressure gradient and that does, therefore, lead to particle loss. More 
generally, the resistive flow can be written 

D 
B2 

UL = --vip. 

Substituting this into the mass continuity equation gives 

(12.31) 

(12.32) 

where, in the second form, we have made the further assumption for simplicity 
that the plasma can be assumed to be isothermal, i.e. p / p  = nT/nM = T / M  = 
constant. Equation (12.32) is a diffusion equation for the mass density. The 
diffusion coefficient is 

V P  DI = - 
B2 

(12.33) 

which is usually called the ‘classical diffusion coefficient’ for a fully ionized 
plasma. 

The classical diffusion coefficient is seen to be inversely proportional to 
B 2 ,  just as in the case of weakly ionized gases. This dependence can be traced 
back to the nature of diffusion as a random-walk process: for a random walk 
across a magnetic field, the step size must be the Larmor radius rL. Indeed, 
writing q mue,/ne2 and p = n(Te + Ti) we obtain 

(12.34) 

Thus cross-field diffusion in a fully ionized plasma can be described by a random 
walk of electrons, step size r h  and frequency of steps uei. 

The classical diffusion coeffic’ient is also seen to vary inversely with T;12. 
This is because the temperature variation of uei, namely Te-3’2, outweighs the 
temperature dependence of the Larmor radius r h ,  namely T;12. Thus, the 
diffusion coefficient decreases as the electron temperature is raised. The reason 
is, of course, the velocity dependence of the Coulomb cross section. The implied 
improvement in magnetic confinement as a plasma is heated would lead to very 
optimistic projections of confinement in controlled fusion devices-were it not 
for the effect of turbulent processes arising from plasma collective effects, which, 
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in practice, give rise to diffusion substantially exceeding the ‘classical’ processes 
described here. 

Nonetheless, let us discuss some properties of classical diffusion that are 
different in a fully ionized plasma from those in a weakly ionized gas and 
that were not evident in the heuristic derivation. Classical diffusion in fully 
ionized plasmas is intrinsically ambipolar. Since we have satisfied the quasi- 
neutrality condition V - j = 0 from the outset, it follows that both electrons and 
ions diflse out of the plasma at the same rate. Moreover, it is not necessary 
to have some particular electric field E to equalize the electron and ion loss 
rates. These features can be illustrated by the case of a cylindrical plasma 
equilibrium with a B field entirely in the z direction. In this case, the current 
density is entirely azimuthal, given by Bje = dp/dr and j ,  = 0; thus there 
is no tendency for preferential ion or electron radial loss. Moreover, a radial 
electric field E,  merely produces a plasma rotation ue = -E , /B ,  changing 
neither the electron nor the ion diffusion. The surprising property of intrinsic 
ambipolarity turns out to be a consequence of conservation of total momentum 
in electron-ion collisions: as we will see in the next Section, if two particles 
of equal and opposite charge gyrating in a magnetic field are given equal and 
opposite increments of momentum, their gyration centers are moved an exactly 
equal distance in the same direction across the magnetic field. Thus, electrons 
and ions tend to diffuse together across a magnetic field. 

Since the classical diffusion coefficient D is due to plasma resistivity, it 
arises from electron-ion collisions, and not from electron4ectron nor ion-ion 
collisions. This, again, is somewhat surprising. Naively, we might have expected 
to obtain a diffusion coefficient due to ion-ion collisions of order viir$-a factor 
(M/m)* /*  times larger than the actual diffusion coefficient, which is of order 
vei&. The reason this is absent is again related to the conservation of total 
momentum in collisions: if two ions gyrating in a magnetic field are given equal 
and opposite increments of momentum, their gyration centers are moved exactly 
equal and opposite distances across the magnetic field. As we will see in more 
detail in the next Section, this simple consequence of momentum conservation 
implies that, to the order at which a diffusive flux usually appears, there can be 
no net diffusion of particles due to like-particle (e.g. ion-ion) collisions. 

In the two-fluid version of the equations of motion (see for example 
Chapter 6), the resistivity appears in the frictional force between particles of the 
two species. It is important to emphasize again, as was noted in our discussion 
of diffusion in weakly ionized gases, that it is by solving the fluid equations in 
the presence of this frictional force that the diffusive flows appear. Diffusion 
appears naturally from solving the fluid equations and is not to be introduced 
separately in the continuity equation. 

It is worth noting that there are other collisional forces in the full fluid 
equations that are not being considered here; typically, these tend to be relatively 
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small because they are higher order in krL. For example, gradients in flow 
velocities give rise to viscous forces, and gradients in temperature give rise to 
‘thermal forces’. These appear in the fluid equation of motion as extra terms in 
the pressure tensor, whose divergence represents a force density giving rise to 
additional effects which must be considered in a more complete treatment. 

12.6 DIFFUSION DUE TO LIKE AND UNLIKE CHARGED-PARTICLE 
COLLISIONS 

Here, we will use the single-particle picture to understand more deeply the simple 
fluid results of the preceding Section, that like-particle collisions (e.g. ion-ion 
collisions) do not lead to any cross-field diffusion, and that transport from unlike- 
particle collisions (e.g. electron-ion collisions) is intrinsically ambipolar. 

Consider a magnetic field in the z direction and a density gradient in the 
x direction. We will focus on like-particle collisions involving ions, although 
our analysis is equally applicable to electron-electron collisions. Ions gyrate 
about the field, making circles in the (x, y)  plane. For such circular orbits, the 
x coordinate of the guiding center’s position, xgc, is related to the actual particle 
position x by the formula 

xgc = x + uy /wc  = x + Mu,/eB. (12.35) 

When two ions collide by arriving momentarily at the same location x,  their 
velocity vectors are suddenly changed, as are the positions of their guiding 
centers. However, conservation of momentum in the y direction, i.e. 

(12.36) 

where the summation is over the two ions, implies by equation (12.35) that 

(12.37) 

where ( 1 )  and (2) denote the two ions. Thus, conservation of momentum in 
the y direction assures that the center of mass of the two guiding centers along 
the direction of the density gradient, x, is unchanged. Figure 12.2 shows the 
special case of a 90” collision, with ions approaching each other on ‘initial’ 
Larmor orbits with velocity vectors in the f y  direction, where the upper sign 
corresponds to orbit (1) and the lower sign to orbit (2). After such a collision, 
the momentum in the y direction is completely destroyed, and the two ions move 
off in the f x  direction, thereafter executing the ‘final’ Larmor orbits shown in 
the figure. Since these like-particle collisions cannot produce any net movement 
of the ions in any one direction, even in a non-uniform plasma, it could be 
argued that there is no continuous net diffusion, although there is certainly some 
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Figure 12.2. Initial (full lines) and final (broken lines) Larmor orbits of two ions making 
a 90" collision. The initial positions of the two guiding centers are x:::, and x:!~; the 
final positions are x;:!~ and x ~ ~ , ~ .  ( 2 )  

small-scale rearrangement of the guiding centers on a scale-size of order the 
Larmor radius. 

When we view diffusion as a 'spreading' of the particles' guiding centers 
or, in the case of a non-uniform plasma, as a net flux of guiding centers opposite 
to V n ,  this result of vanishing diffusion may still however seem paradoxical. 
Indeed, if we consider a different collision event, which is the exact reverse of 
the collision event illustrated in Figure 12.2, i.e. it corresponds to f --f i (rather 
than i +. f) ,  we see that the two guiding centers at x = xgc , f ,  which start with 
zero spread in the x direction, have moved to the two locations x = xgc, i ,  which 
have a spread of approximately two Larmor radii. Thus, at least from this one 
collision, there is a non-zero spreading of the guiding centers. Moreover, if we 
evaluate the flux of guiding centers across some surface x = xo drawn to the 
right of the location of the collision in Figure 12.2, we see that one guiding 
center has moved rightward across this line in the reversed collision, i.e. a flux 
has arisen from this one collision. 

The resolution of this paradox comes from noting (i) that the frequency 
of collisions is proportional to the product of the densities at the locations of 
the two guiding centers, which are slightly different, and (ii) that the net flux 
involves an averaging over all collision events that cause a guiding center to 
cross the flux-evaluation surface, including that pair of collisions formed from 
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any one collision event plus the reversed version of this event. We then find that 
the net flux of guiding centers due to like-particle collisions to lowest significant 
order, i.e. the flux that is proportional to O n ,  vanishes. 

We can see this rather easily by examining the net flux of guiding centers 
from the pair of collisions illustrated in Figure 12.2, i.e. considering both 
‘forward’ (i + f) and ‘reverse’ (f + i )  collision events. If we again place an 
observation surface at x = xo just to the right of the location of the collision, we 
see that the forward collision event ( i  + f) results in the leftward movement 
of one guiding center across this surface, whereas the reverse collision event 
(f +. i )  results in the rightward movement of one guiding center across this 
same surface. The expected result of zero net flux can now be established 
by noting that, for this particular case, the frequencies of these two collision 
events are equal because, to first order in the size of the Larmor radius, the 
product of the guiding-center densities at x$ and xi$ is equal to the product 
of the guiding-center densities at and x:! f, even allowing for the presence 
of a non-zero density gradient in the x direction. Specifically, relative to a 
guiding-center density ngc at x = x(l) gc, = xgc, (*) f ,  the guiding-center densities at 

n& to first order in rL. The constancy, i.e. before and after the collision, of 
the position of the center-of-mass of the two guiding centers, which we found 
to be a consequence of momentum conservation, enters this argument via the 
geometrical constraint embodied in Figure 12.2 that xiaii and are equidistant 
to the left and right of x = xgc, = xi:!, . However, it is immediately apparent 
from this argument that the netJlux vanishes only to lowest significant order in 
rL: we can expect there to be non-zero fluxes which are higher order in rL 
and which involve higher-order derivatives of the guiding-center density, i.e. 
d2ngc/dx2, etc. 

This same argument applies equally well to the more general case in 
which the colliding particles have unequal Larmor radii and undergo collisional 
scattering of their velocity vectors through some general angle, not necessarily 
90”. To see this, consider Figure 12.3, which shows the guiding centers, x i : )  and 
x?, of two general particles that undergo a collision at x = xc, which causes the 
guiding centers to be displaced from their ‘initial’ locations, xgc , i ,  to their ‘final’ 
locations, xgc,f .  We suppose that the collision results in a rightward displacement 
Ax of xi:), together with an equal and opposite (by equation (12.37)) leftward 
displacement Ax of xi:). We place a flux-evaluation surface at a location x = xo 
that is crossed by xi:), as shown in Figure 12.3. 

If we consider all crossings of this flux evaluation surface by guiding 
centers, we must include both the ‘forward’ (i + f) collision, in which the 
guiding center of particle (1) moves from to xi:) f ,  thereby crossing the flux 

the two locations xgc,i (1)  and x::!i are ngc f rL(dngc/dx), whose product is just 

(1)  
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I I I X 
I I I * 

x=xc x=xo 

Figure 12.3. Illustration of two guiding centers at locations xgc, i  which are displaced to 
locations xgc, as a result of a collision occurring at x = x,. The initial and final Larmor 
orbits are shown by full and broken lines, respectively. The flux is evaluated at x = XO. 

evaluation surface in the rightward direction, as shown in Figure 12.3, and the 
‘reverse’ (f + i )  collision, in which the guiding center of particle (1) crosses 
the flux evaluation surface in the leftward direction. The frequency of each type 
of collision is proportional to the product of the distribution functions of guiding 
centers for the relevant velocities and at the respective, i.e. ‘initial’ or ‘final’, 
locations. The collision frequency is also proportional to o(ure], B)u,I, where 
the cross section o for this particular collision depends on the magnitude of 
the relative velocity of the colliding particles, uml, and on the scattering angle 
in the center-of-mass frame, B .  We assume that the guiding-center distribution 
function of particles with velocity v is given by f ( x g c ,  v) = n(xg,)fM(u), where 
~ M ( u )  is a Maxwellian distribution of velocities and where we allow a spatial 
gradient only in the density and not in the temperature. 

For the particular collision under consideration, the probability of the 
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(12.38) 

The total frequency of these ‘forward’ collisions is obtained by multiplying 
equation (12.38) by the product of the volume elements in velocity space of 
the two colliding particles, i.e. d3u!’)d3uy), and then integrating over the two 
velocity spaces. For like particles, for which the collision is essentially the same 
if particles (1) and (2) are interchanged, we should then divide by 2 to avoid 
counting the same collision twice. 

In the same way, the probability of the ‘reverse’ collision is proportional 
to 

(12.39) 

where to obtain the total frequency of these ‘reverse’ collisions, we must again 
multiply equation (12.39) by d 3 u ~ ’ d 3 u ~ ’  and integrate over the two velocity 
spaces. Again we should then divide by 2 to avoid counting the same collision 
twice. 

However, since each collision produces equal and opposite displacements 
Ax of the two guiding centers, we can again invoke equation (12.37), which 
shows that the terms in the large brackets of equations (12.38) and (12.39) are 
equal. Moreover, for Maxwellian distributions with the same temperature, the 
conservation of energy in a collision implies that the products of the two f~ 
in equations (12.38) and (12.39) are equal to each other. Also, the relative 
velocities, urel, for the forward and reverse collisions are the same, as are the 
scattering angles, 8, in the center-of-mass frame; thus the quantities CJ urel in 
equations (12.38) and (12.39) are the same. Finally, we note that the products 
of the two infinitesimal velocity-space volumes for the forward and reverse 
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collisions are equal, i.e. d3u!1)d3u!2) = d 3 u ~ ’ d 3 u ~ ’ ,  where these infinitesimals 
are defined by the scatterin dynamics of particles with initial velocities in the 
neighborhood of VI’) and 4). This result can be proved formally by showing 
that both of these velocity-space-volume products are equal to d3 Vd3urel, where 
V is the mass velocity and v,~ is the relative velocity. 

Problem 12.2: Prove this last statement, where the mass velocity V and 
relative velocity vrel are defined by 

(ml + m2)V = m,v(’) + m2v(2) 
V,el = V ( l )  - d 2 ) .  

(Hint: consider these relations as defining a transformation of coordinates, 
component by component. The transformation from ( u i l ) ,  U:*)) to (Vx ,  u , ~ , ~ )  
defines a Jacobian J .  Show that the determinant of the Jacobian, 
J ,  equals -1, which means that du!l)dui2) = dV,du,l,,. The other 
components can be handled similarly.) 

Thus when we integrate over the velocity spaces for every possible 
‘forward’ collision, we find that the integral necessarily includes an exactly 
compensating ‘reverse’ collision, because the forward and reverse collisions 
are equi-probable. Thus, the flux of particles in one direction across the flux 
evaluation surface due to forward collisions is exactly compensated by a flux in 
the opposite direction due to reverse collisions. 

Although on the basis of the simple random-walk picture presented at the 
beginning of this Chapter we might have expected a net second-order flux 
rx  - -u(Ax)2(dn/dx), in fact we have found that the net flux vanishes at 
this order; the rightward flux of guiding centers across x = xo in Figure 12.3 
is exactly cancelled by a leftward flux of guiding centers, even in the presence 
of a finite density gradient, dnldx. To take a particular example, in the case 
of a negative density gradient, dn/& < 0, in Figure 12.3, the rightward flux 
of particles ( i  --f f) across x = xo,  which is pro ortional to the product of 
the ‘intermediate’ densities at the two locations xi:! and is cancelled by 
the leftward flux (f +. i), which is proportional to the product of the ‘lowest’ 
density at x::!, and the ‘highest’ density at x:iir. It is apparent, however, that 
the exact flux to all orders in small quantities of order of the Larmor radius, 
need not vanish. Indeed, more detailed calculations show that there is a small 
non-vanishing higher-order flux, but this is not simply diffusion, since it is 
proportional to second and higher-order derivatives of n(x). 

Let us now apply the present type of analysis to the case of unlike- 
particle collisions. For unlike-particle collisions (e.g. electron-ion collisions), 
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conservation of momentum implies that 

(12.40) 

or equivalently 
( 1 )  (12.41) 

Both guiding centers make a step in the same direction. For some collisions, the 
steps will both be in one direction, and for other collisions the steps will both be 
in the other direction. For a non-uniform plasma, there will be a preponderance 
of steps in the direction opposite to the density gradient. If we consider a 
surface at fixed x = xg, if dn/dx > 0 there will be more guiding centers at 
x > xg to provide a source of negative flux across x = xg than guiding centers 
at x < x g  to provide positive flux. Hence, diffusion does occur. Moreover, 
since the displacements of the two guiding centers are equal for each collision, 
the diffusion is intrinsically ambipolar, i.e. the same for electrons and ions. 

(2) ( 1 )  - (2) - x  , . .  = x  ‘gc,tinal gc,iniual gc.tina1 ‘gc,initiaI. 

Problem 12.3: A fully ionized plasma contains two different types of ions, 
with different masses M and different charge numbers 2. Consider the 
diffusion across a magnetic field that arises from collisions of ions of one 
type with ions of the other type. By generalizing the discussion of diffusion 
due to like and unlike charged-particle collisions given here, show that, 
whereas the two types of ions may diffuse relative to each other, there 
can be no net movement of ion charge in any one direction across the 
magnetic field. Describe qualitatively how diffusion of the two individual 
ion types can occur while satisfying this constraint. Do the electrons 
diffuse? Is diffusion still intrinsically ambipolar? 

12.7 DIFFUSION AS STOCHASTIC MOTION* 

The vanishing of the lowest-order diffusive flux from like-particle collisions was 
first shown by C L Longmire and M N Rosenbluth (1956 Phys. Rev. 103 507), 
who also give a calculation of the non-zero flux proportional to the second and 
third derivatives of n(x) .  The Longmire and Rosenbluth analysis is based on 
solving the Fokker-Planck equation to obtain the particle flux due to Coulomb 
collisions for small spatial non-uniformities in a Maxwellian plasma. The 
underlying concept of a more general type of ‘stochastic motion’ is introduced 
in this Section and used to provide a simplified version of the Longmire and 
Rosenbluth proof of the vanishing of the second-order flux due to like-particle 
collisions in one special case. 
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The simplified version of the Longmire and Rosenbluth approach described 
in this Section, applied to the case of unlike-particle collisions, also demonstrates 
in a more formal way the intrinsic ambipolarity of the second-order particle 
fluxes. 

In order to provide this alternative demonstration both of the vanishing of 
the second-order diffusive flux due to like-particle collisions and of the intrinsic 
ambipolarity of diffusion due to unlike-particle collisions, we must first extend 
our concept of a random walk to include more general types of motion involving 
random steps, usually called 'stochastic motion'. In the simple random walk of 
particles on a straight line (the x axis), as discussed earlier in this Chapter, all of 
the particles take steps of exactly equal magnitude, Ax, and steps to the left are 
of exactly equal probability as steps to the right. We can generalize this concept 
in two ways. First, we can suppose that there is small difference in the average 
magnitudes of leftward and rightward steps. Redefining Ax now as the (signed) 
step in the positive-x direction, this means that there is a non-zero average net 
displacement (Ax) of the particles in the time interval At .  The spreading of the 
particles' positions is now described by the mean square displacement  A AX)^) in 
the same time interval At. The second generalization of the simple random walk 
is to allow the typical magnitude and degree of leftwardkightward imbalance of 
the steps to vary with location along the x axis, so that the quantities (Ax) and 
((Ax)*) become functions of x ,  

To evaluate the net x-directed flux r across a surface located at x = XO, we 
consider again the 'emptying out' of a line segment located immediately to the 
left of x = xo as a result of positive steps Ax in a time interval At. Allowing 
for x-dependent steps Ax, the length of the line-segment that empties out in the 
positive-x direction in the time interval At is 

The x-directed flux from the emptying out of this line-segment is 

1 xo r = -1 n(x)dx 
x"- (Ax) -  

nAx -nAx- - -- 
At dx 2 dx 

I d  
At ( 2dx 

x - n A x - - - [ n ( A ~ ) ~ ]  

(1 2.42) 

(12.43) 

Although we have derived this expression by considering a line-segment located 
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to the left of x = xo emptying out by means of positive steps Ax, the analysis 
applies equally well to the leftward emptying out of a line-segment located to 
the right of x = xo, provided Ax is taken to be a negative quantity. Thus we 
may average equation (12.43) over both rightward and leftward steps, to obtain 
our final expression for the average net flux: 

I d  
At ( 2dx F = - n(Ax) - -- [n((Ax)’)] ( 12.44) 

Equation (12.44) is the generalization of equation (12.4) that applies to the 
present situation where there are x-dependent steps Ax and a mean step that 
is not necessarily zero. It is clear from our derivation that equation (12.44) is 
valid only up to second order in the step size Ax. Moreover, equation (12.44) 
is of interest mainly in situations where the rightward and leftward steps are 
almost in balance, so that the term ( A x ) ,  while apparently of first order in 
Ax, is in fact as small as the second-order term. Clearly, however, even 
a small leftwardrightward imbalance is sufficient to produce a contribution 
to the flux that is as important as the contribution from diffusive spreading. 
Equation (12.44) describes just this situation. 

Problem 12.4: This simple derivation of equation (12.44) has assumed 
fixed (but slightly unequal) rightward and leftward steps, Ax, at each 
location x .  It has also implicitly assumed that particles do not jump 
over each other in making these steps. Generalize this derivation by 
considering the (more physical) case where there is a distribution of 
possible steps with varying magnitude, so that the quantities (Ax) and 
 A AX)^) now refer to the mean step and mean spreading averaged over 
this distribution. (Hint: begin by defining a probability, P ( x ,  Ax), for each 
step Ax (positive or negative) at location x .  Write down an expression for 
the flux of particles across a reference point x o ,  and expand n(x) around 
x = xo keeping only the terms in n(x0) and dn/dxI,, . The quantities ( A x )  
and  AX)^) are defined by 

CO 

(Ax) = AxP(x, Ax)d(Ax) 

 A AX)^) = / C O ( A x ) 2 P ( x ,  Ax)d(Ax). 
CO 

Your final result should be exactly the same as equation (12.44).) 

Let us return now to the topic of the flux due to like-particle collisions. For 
the collision illustrated in Figure 12.3, assuming a negative density gradient, 
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dn/dr < 0, we have seen that the ‘forward’ collision ( i  + f) produces a 
rightward flux of particles across x = x g ,  which has the character of diffusion in 
the sense that it is in the opposite direction to the density gradient. However, we 
have seen that the ‘reverse’ collision (f + i )  produces a compensating leftward 
flux, which is in the same direction as the density gradient. 

Expressed in the notation that we have introduced for describing general 
stochastic motion, the contribution to the flux that is in the same direction as 
the density gradient arises from a non-vanishing mean displacement ( A x )  per 
time interval A t ,  whereas the contribution to the flux that is opposite to the 
density gradient arises from the diffusive spreading  AX)^) in the same time 
interval. In this example of stochastic motion, the non-vanishing ( A x )  arises 
from the non-uniformity in the density of the scattering particles, as distinct 
from that of the scattered particles. Indeed the flux from the term in ( A x ) ,  i.e. 
the first term in the expression on the right-hand side of equation (12.44), is 
found to be proportional to the density gradient for scattering particles. The 
diffusive flux from the term in  A AX)^), i.e. the second term in the expression 
on the right-hand side of equation (12.44), has a term proportional to the density 
gradient for scattered particles, which appears explicitly in equation (1 2-44), 
and a term proportional to the density gradient for scattering particles, which 
appears implicitly through the dependence of  A AX)^) on the density of scattering 
particles. When both scattered and scattering particles are the same, e.g. ions, 
there is the possibility of exact cancellation of these two contributions to the net 
flux, and this is what actually occurs. 

We can see this most easily by considering a very simple case, somewhat 
like the case illustrated in Figures 12.2 and 12.3, in which the particles have 
velocities only perpendicular to the magnetic field, i.e. velocity components 
(ux ,  u y ) .  We suppose that the collisions are such as to preserve this situation, 
i.e. no parallel velocities U, are acquired as a result of collisions, so our analysis 
can be strictly two-dimensional in velocity space. We suppose that the velocity 
distribution function is Maxwellian in UI = ,/(U,’ + U:), and that the temperature 
T is spatially uniform. Since we want to demonstrate both the vanishing of the 
particle fluxes in the case of like-particle collisions and the intrinsic ambipolarity 
of these fluxes in the case of unlike-particle collisions, we consider the general 
case of collisions between particles of two different types, i.e. types (1) and 
(2), with charges ql and q2, masses ml and m2, and densities n l ( x )  and n2(x), 
respectively. The two temperatures are assumed to be the same. 

In treating a collision between a particle of type (1) and a particle of type 
(2), it is convenient to work in the ‘center-of-mass’ frame, in which the total 
momentum of the two colliding particles is zero. In this moving frame, as 

and since momentum is conserved in the collision, the ‘final’ velocity vectors 
likewise must satisfy m2vY) = -ml vy).  When center-of-mass velocity variables 

shown in Figure 12.4, the ‘initial’ velocity vectors satisfy m2vY’ = -mlvi (1)  , 
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are used, the sum of the kinetic energies of the two particles in the rest frame, 
W I  + W2, can be written as the sum of the kinetic energy of the combined mass, 
M = ml+m2, moving at the mass velocity V, defined by MV = m ] v ( ’ ) + m 2 ~ ( ~ ) ,  
and the kinetic energy of the ‘reduced mass’, m = mlm2/(ml +m2), moving at 
the relative velocity v,,] = v(l)  - v ( ~ ) .  In the center-of-mass frame, moving with 
velocity V, the total kinetic energy is simply n z ~ , 2 ~ / 2 .  Since energy is conserved, 
we see that U,] must be the same before and after the collision. 

m2 

Figure 12.4. A collision between a particle of type ( I ) ,  mass ml, and a particle of type 
(2), mass m2, shown in the center-of-mass frame in which the total momentum of the two 
colliding particles is zero. The relative speed of the colliding particles U,] = Id’) - vt2)I 
is the same before and after the collision. The scattering angle is 8 .  

A particle of type (1) collides with particles of type (2) with frequency 
W I Z  = 112(~12(~,el, 8)urel), where the cross section U I ~  is generally a function 
both of urel and of the scattering angle in the center-of-mass frame, 8 (as shown 
in Figure 12.4). For the simple case considered here, we assume that the cross 
section is independent of the scattering angle 8, i.e. in  the center-of-mass frame 
all scattering angles are equi-probable. We also assume that the quantity U I ~ U ~ ~ I  

may be treated as a constant, i.e. not dependent upon the relative velocity uIel. 
(The more correct case for Coulomb collisions, where o12urel depends on both 
uIeI and 8, is treated in  the previously cited paper by Longmire and Rosenbluth; 
no fundamentally different effects are introduced, but the various velocity-space 
averages become more complicated.) 

Let us focus our attention on a particle of type ( I )  and the average step 
( A x )  that its guiding center takes as a result of collisions with particles of type 
(2). The frequency of such collisions is proportional to the density of particles 
(2) at the location of the collision, x c ,  which is the same as the density of guiding 
centers at 

(1 2.45) 
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Here we have used equation ( 1  2.35) twice-once to relate xj:!i to xc and once 
to relate to x,. We have also introduced the gyro-frequencies, U,] and oC2, 

of the two types of particles. 
It is convenient at this point to transform from the initial individual particle 

velocities to the mass velocity, V, which is the same before and after the 
collision, and the initial relative velocity, vrel,i = v;” - v?’. In terms of these 
velocities, the individual particle velocities can be written 

m2 

ml + m 2  
n2 I 

m1 + m 2  

VI” = v + ~ Vre1,i 

VreI,i. v!2) = v - ~ 

Substituting the y components of these relations into equation (12.43, we obtain 

where we have again introduced the reduced mass, m = mlm2/(m1 + m2). 

step 
In the collision being considered, the guiding center of particle (1)  takes a 

(1)  ( 1 )  
Ax = ~ g c , !  - X g c , i  

(1)  (1)  = xc + U ) , j / W C ’  - X g c j  

= V,,f/WCl ( 1 )  - Uj;: j /W,,.  ( 1  2.47) 

We again transform from the individual particle velocities to the mass velocity 
and the relative velocity, now also defining a final relative velocity, v,l,f = 
vy) - v;). Equation ( 1  2.47) then becomes 

(12.48) 

with the terms in V,  cancelling each other. 
Because of our assumption that the cross section is independent of 

scattering angle, the angle through which the perpendicular velocity vector of 
particle (1) is scattered in the center-of-mass frame depicted in Figure 12.4 is 
entirely random-all angles 8 in  the range 0-2rr are equi-probable. Thus the 
y component of the relative velocity just after the collision, U ~ ~ I , ~ , ~ ,  takes on 
positive and negative values with equal probability and averages to zero. Thus 
in a first averaging process, which averages over all possible ‘final’ relative 
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velocity vectors while keeping the 'initial' relative velocity vector fixed, we can 

(1 2.49) 

Next, we must carry out a second averaging process, which averages over all 
possible initial relative velocity vectors. This averaging process must take into 
account the proportionality of the collision frequency to the density of guiding 
centers (2) at the location xi:!i  given in equation (12.46), which varies with the 
initial velocity vectors. Denoting the collision frequency by u12 = 1t2012ure1, 

this second averaging involves a weighted average of the right-hand side of 
equation (1 2.49) with weights proportional to the guiding-center density for 
particles (2) at x$. This gives an expression for the average displacement per 
unit time, namely 

(12.50) 

In the last step in  equation (12.50), we have substituted equation (12.46) for 
the quantity x ~ ~ ~ i  and we have then noted that only the term that is second 
order in urel,,,i survives in  the averaging process. This is because positive and 
negative values of urel,v,i occur with equal weight in  the averaging. In particular, 
the term in V, from equation (12.46), which in the averaging in equation (12.50) 
is multiplied by a first-order term U ~ ~ I , ~ , ~ ,  vanishes in the averaging process. Thus 
the mass velocity, V, disappears at this point from our calculation. 

The final averaging indicated in  equation (12.50) is to be carried out over all 
values of u,l,,,i that occur in  the velocity distributions of the colliding particles. 
We have assumed that the type-( 1 )  and type-(2) particles both have Maxwellian 
distributions with the same temperature, T .  We have also noted that the sum 
of the kinetic energies of two particles, one of each type, Wt + W2, can be 
written as the sum of the kinetic energy of the combined mass, M = ml + m2, 
moving at the mass velocity, V, and the kinetic energy of the reduced mass, 
m = mlm2/(ml + m2), moving at the relative velocity, vrel, i.e. 

WI + W, nz l (~ ," ' )~ /2  + m 2 ( ~ ! ~ ' ) ~ / 2  
= M V ~ / ~  + nz~,2~/2 

which means that the distribution of mass velocities and the distribution of 
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relative velocities are also both Maxwellian, with the same temperature, T ,  and 
with masses M and m, respectively. 

Problem 12.5: Verify this last statement formally by carrying out a 
transformation from the velocities v:” and “12’ to V and VreI. 

It then follows that 

(ureI,y,j) 2 T/m. (12.51) 

Substituting this into equation (12.50), we obtain our final result for the average 
displacement per unit time: 

(1 2.52) 

In equation (12.52), there are two terms in  ( A x ) / A t  proportional to the 
density gradient of scattering particles, dn2/dx, arising respectively from the 
‘unity’ and the ‘qI/q2’ terms inside the parenthesis. The first of these terms 
gives the effect of the higher frequency of collisions on that side of the Larmor 
orbit of particle (1) where the density of particles (2) (i.e. scattering particles) 
is higher. In all cases, this produces a flux of scattered particles in the direction 
of the density gradient of scattering particles which, in the case of like particles, 
is up the density gradient. The second of these terms, i.e. the term in ql/q2, 
gives the effect of the non-zero y-directed diamagnetic drift of particles (2), 
which exerts a y-directed frictional force on particle (1) thereby producing an 
x-directed drift. Specifically, the y-directed diamagnetic drift of particles (2) is 
( T / q z B q ) d ~ / d x ,  which is to be multiplied by the reduced mass, m, and by 
the collision frequency, n2a12urel, to give the rate of momentum transfer, i.e. the 
frictional force on particle ( I ) ,  Fy  = C12urel(mT/q2B)dn2/dx. This produces 
a drift, (F x B ) / ( q 1 B 2 ) ,  of particle ( I ) ,  which in this case is an x-directed 
drift of magnitude al2vrel(mT/qlq2B2)dn2/dx, i.e. exactly the term in ql / q 2  in 
equation (12.52). For like particles, this term produces another flux of scattered 
particles up the density gradient. However for unlike particles, in particular 
those with charges of opposite sign, the flux from this term is in the opposite 
direction. This is because the direction of the F x B drift depends on the sign of 
the charge of the drifting particle. For collisions between electrons and protons, 
it is apparent from equation (12.52) that these two terms cancel each other, so 
there is no net average displacement per unit  time, ( A x ) / A t ,  in this case. 

Next consider the diffusive spreading of the guiding centers of particles (1) 
as a result of collisions with particles (2). In the collision being considered, the 

Copyright © 1995 IOP Publishing Ltd.



214 Diffusion in plasmas 

guiding center of particle (1) takes a step A x ,  which is given in equation (12.47) 
and has been expressed in terms of the initial and final relative velocities in 
equation (12.48). Thus the average spreading of the guiding center positions 
per collision is given by 

= 2mT/q:B2. (12.53) 

Here we have carried out two averagings essentially simultaneously, i.e. the 
averaging over the relative velocities just after the collision, and the 
averaging over the relative velocities just before the collision, Because 
of our assumption that the cross section is independent of scattering angle in 
the center-of-mass frame, these averagings are independent, so the cross term, 
( u r e l , y , j U r e l , y , i )  vanishes. In the last step, in equation (12.53), we have made use 
of the fact that the relative velocities, both before and after the collision, have 
Maxwellian distributions in terms of the relative mass m and with temperature T, 
i.e. we have used both equation (12.51) and the similar relation for the relative 
velocities just after the collision. For collision frequency u12 = n2012~rel, the 
average spreading per unit time is now given by 

(12.54) 

We can now substitute equations ( 1  2.52) and (1 2.54) into our general expression 
for the particle flux in stochastic motion, i.e. equation (12.44), to obtain 

(12.55) 

Equation (12.55) gives the flux of particles of type (1) due to collisions with 
particles of type (2). For the case of like-particle collisions, where q1 = q2 
and nl (x) = n2(x), the flux vanishes. Specifically, for this case of like-particle 
collisions, the flux arising from the non-zero average displacement ( A x )  exactly 
cancels the flux from the ‘spreading’ term,  AX)^). 

The calculation presented here has made use of the simplifying assumptions 
that the collision cross section is independent of the scattering angle in the 
center-of-mass frame and that the quantity 0 1 2 ~ ~ 1  is independent of the relative 
velocity, U,]. As a result, this quantity appears as just a multiplicative constant 
in equation (12.55). In more general (and more physical) cases, the quantity 
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cq2urel must be included in the various averagings that are carried out over 
velocity space. 

The paper by Longmire and Rosenbluth cited at the beginning of this 
Section derives a result of the same general form as equation (1 2.55) for the more 
physical case of three velocity dimensions and the correct Coulomb scattering 
cross section. To obtain a non-zero net flux from like-particle collisions, it is 
necessary to retain terms of order ( A x ) 3  and   AX)^ in the analysis. 

Now consider equation (12.55) for the case of unlike-particle collisions. 
Noting a cancellation between the first part of the first term in the square bracket 
in equation (12.55) and that part of the second term containing dnzldx, we can 
write the flux of electrical charge of particles (1) due to collisions with particles 

(12.56) 

Clearly, this is exactly equal and opposite to the flux of charge of particles (2) 
due to collisions with particles (1). Thus 

(12.57) 

and we have demonstrated the intrinsic ambipolarity of the fluxes at this order 
due to unlike-particle collisions. In particular, in a hydrogen plasma, the fluxes 
of electrons and ions are exactly equal, which is what is generally meant by the 
statement that ‘diffusion is ambipolar’. 

12.8 DIFFUSION OF ENERGY (HEAT CONDUCTION) 

A systematic treatment of heat conduction in plasmas is beyond our scope 
here. Indeed, in applications of the plasma fluid equations, we have so far 
considered only two limiting situations: first, the adiabatic equation of state, 
d(p/pY)/dt = 0, corresponding to the case where heat conduction is negligible 
on the time-scales of interest; second, the isothermal equation of state, T = 
constant, corresponding to the case where heat conduction is very rapid. In 
practice, heat conduction in a fully ionized plasma is very anisotropic, i.e. it is 
extremely rapid along the magnetic field, but quite slow across the field. 

In our systematic development of the fluid equations for a plasma, we have 
chosen to stop at the equation for momentum transfer, which led to the fluid 
equation of motion, and not to proceed further to the energy transfer equation, 
which would describe heat transport by convection and conduction as well as 
various heat sources and sinks. To proceed to the energy transfer equation would 
require consideration of the energy flows into and out of a differential volume 
element, as well as the deposition of energy into this volume, for example 
by ohmic heating (j - E). Just as the pressure tensor arises in describing the 
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momentum flow into a volume element, a ‘heat-flux vector’ enters into the 
energy transfer equation; in index notation, the heat-flux vector for an individual 
species is Qi = (m/2)((ui  - ui ) (u ,  - u j ) ( u j  -U,)). (Note that a vector quantity 
is sufficient to describe the flux of heat, which is itself a scalar quantity, i.e. 
(m/2)((u,  - u,)(uj - U,)), whereas a tensor pressure is required to describe the 
flux of vector momentum.) 

Often, the dominant effect needed to evaluate the heat flux vector is the 
heat conduction, which is a heat flux driven by a temperature gradient, although 
other terms are generally present also, e.g. convection of heat. When conduction 
dominates, the energy transfer equation, allowing different processes of heat 
conduction perpendicular and parallel to a magnetic field, can be written 

3 aT  
-n- = - V .  Q = V I - (KIVIT) + V11(KIIVIIT). (12.58) 

The quantities KI and K I I  are the ‘thermal conductivities’ perpendicular and 
parallel to the magnetic field, respectively. For each K ,  the quantity K/n, which 
has the dimensions of a diffusion coefficient, is sometimes called the ‘thermal 
diffusivity’. It must be emphasized, however, that there are many processes 
of heat transport and heat generation or loss that have been omitted from 
equation (12.58). For example, in a plasma heat is convected at the fluid velocity 
U, and heat is generated by ohmic heating and lost by radiation. However, since 
heat transport is often dominated by thermal conduction, it is useful to examine 
the orders of magnitude of KI and K I I .  

Thermal conduction along the magnetic field arises mainly from electrons 
rather than ions. From our now-familiar random-walk argument, the two parallel 
diffusivities will take the form u:/v, which is larger for electrons than for ions 
by a factor (M/m) ’ /* .  Thus 

2 a t  

(12.59) 

where U, represents some combination of electron-electron and electron-ion 
collision frequencies, both of which will contribute. 

Thermal conduction across the magnetic field arises mainly from ions rather 
than electrons. Ions have relatively large Larmor orbits and, when these are 
perturbed by the collision of two ions, a quantity of energy is exchanged between 
the two ions. In addition, the two guiding centers are displaced from their 
original positions by an amount of order an ion Larmor radius. (Note that, 
unlike the case of particle diffusion, there is no conservation law that constrains 
the combined energy from taking a ‘step’ in one direction or the other.) Thus, 
the ‘energy’ has made a random walk with a step size of about a Larmor radius 
r ~ i  in a characteristic time U;’. Thus, the cross-field thermal diffusivity is 
approximately 

K l / n  yir;i. (12.60) 
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Comparing this result with the similar one for particle diffusion D ,  we 
see that the cross-jield thermal diffusivity arises mainly from ion-ion collisions, 
whereas cross-jield particle diffusion arises only from electron-ion collisions. 
Moreover, cross-field thermal diffusivity is larger than particle diffusivity by 
a factor ( M / ~ z ) ' / ~  - 40. The conservation of total momentum in collisions 
prevents a lowest-order contribution from ion-ion collisions to particle diffusion, 
but it does not prevent a contribution to thermal diffusion. The theory of 
plasma transport across a magnetic field, including both density and temperature 
gradients, was developed first by M N Rosenbluth and A N Kaufman (1958 
Phys. Rev. 109 l), who give expressions for the cross-field electron and ion 
thermal diffusivities. 

Problem 12.6: Our hydrogenic plasma is replaced by a plasma with 
multiply charged ions, each with charge Z e .  The plasma is fully ionized 
and charge neutral, so that ne = Zni. Give the dependence on Z of 
(i) the particle diffusivity perpendicular to a magnetic field, D I ,  (ii) the 
electron thermal diffusivity parallel to a magnetic field, q e / n , ,  and (iii) the 
ion thermal diffusivity perpendicular to a magnetic field, Kli/ni . Where 
density appears in your formulae, be careful to distinguish between ne 
and ni. 
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Chapter 13 

The Fokker-Planck equation for Coulomb 
collisions* 

As we have seen already, collisional effects in fully ionized plasmas are 
predominantly due to the cumulative effect of many small-angle deflections, 
rather than to the effect of a few close collisions. In Chapter 11, we obtained 
estimates for the effective collision frequencies and for the plasma resistivity, 
but we have not yet provided a rigorous formalism for describing the effects of 
multiple small-angle Coulomb collisions on the distribution function, f ( u ) .  

For the case of large-angle close collisions, a rigorous formalism is provided 
by the Boltzmann equation, which is discussed in standard textbooks on non- 
equilibrium statistical mechanics (see, for example, F Reif (1965 Fundamentals 
of Statistical and Thermal Physics New York: McGraw-Hill)) and which applies 
whenever the interparticle forces are of short range. The Fokker-Planck 
equation is the version of the Boltzmann equation applicable to the case of 
long-range interparticle forces. It can be derived from the Boltzmann equation 
by going to the limit of very-long-range interparticle forces (see, for example, 
D C Montgomery and D A Tidman (1964 P l a s m  Kinetic Theory New York: 
McGraw-Hill)), but our approach here is to derive the Fokker-Planck equation 
directly, by considering the effect of multiple small-angle Coulomb collisions 
on the distribution of velocities in a plasma. 

Viewed in this way, the Fokker-Planck equation provides a general 
formulation for treating changes in a distribution function that result from a 
succession of collision ‘events’, each of which produces only a small change 
in the velocity of a particle. The equation was formulated in the period 1914- 
17 by A D Fokker and M Planck to treat Brownian motion (see, for example, 
S Chandrasekhar (1943 Rev. Mod. Phys. 15 1). 
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13.1 THE FOKKER-PLANCK EQUATION: GENERAL FORM 

Since collisional processes change the distribution of particle velocities, it 
is necessary to use the ‘velocity distribution function’ f(v),  introduced in 
Chapter 1, which is the number-density of particles in phase space, i.e. the 
number of particles per unit volume of physical space and per unit volume of 
velocity space. The density in physical space is given in terms of f(v) by 

n = f(v)d3u. (13.1) 

The Fokker-Planck equation describes the evolution in time due to collisions of 
the function f(v). Since collisional effects depend only on the local properties 
of f ,  the spatial variation of f can be ignored for present purposes. 

We also define a function 4(v, AV), which is the probability that a particle 
with velocity v acquires an increment of velocity AV in a time interval At. We 
will assume that collisions occur randomly enough that 4 is independent of the 
history of the particle. From the definition of 4, it follows that the velocity 
distribution function at time t can be expressed in terms of the distribution 
function at a slightly earlier time, i.e. 

f (v ,  t )  = 1 f (v  - AV, t - At)$(v - AV, Av)d3Au (13.2) 

where the integral is over all possible velocity increments AV. Since the sum 
of the probabilities of all possible velocity increments must be unity, we have 

4 (v, Av)d3 AU = 1. (13.3) 

Since the effects of Coulomb interactions can be described in terms of a 
sequence of small-angle deflections, i.e. a sequence of small velocity increments 
AV, we may expand the integrand f +  of equation (13.2) in powers of AV. In the 
case of the factor 4(v  - AV, AV) appearing in this integrand, we can however 
only expand thefirst argument, in which AV can be treated as small compared 
with v, and we must leave 4 unexpanded in regard to the second argument, which 
describes a strong variation of $ with respect to AV. Specifically, keeping terms 
up to second order in the expansions, we have 

s 

f ( v  - AV, t - At) = f(v,  t - Af) 
a 1 a2  

a V  2 avav 
- A V  - -f(v, t - At) + -AvAv : -f(v, t - Ar) 

@(v - AV, AV) = d(v, AV) 
a 1 a2  

- AV * %@(V, AV) + -AvAv : -$(v, AV). 2 avav 
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The meaning of the somewhat unusual notation AvAv: and (a*/avav): should 
be reasonably obvious--each of these quantities is a dyadic from which a scalar 
is to be formed by taking the double-dot product (:) of i t  and a similar dyadic. 
For example, in index notation the quantity AvAv : a2f/avav is defined to 
mean AujAuj(a2 f/auiau,i), where repeated suffices are to be summed. 

We substitute these into equation (13.2) and retain only terms up to second 
order in AV in the product f 4. Using equation (1  3.3) and assuming At is small, 
we obtain 

- - -- a . / f@Avd3Av + -- : / f@AvAvd3Au (13.4) 
a V  2 avav 

where, to this order of approximation, f and @ appearing on the right-hand side 
are to be understood to mean f (v, t) and @(v, Av).The rate of change of f due 
to collisions can now be written 

f (v, t )  - f (v, t - At) 
At 

since f = f (v, t )  is independent of AV, where 

d(Av) 1 -- - - / @Avd3Av 
dt At 

d(AvAv) 1 
= - 1 @AvAvd3Au. 

dt At 

(13.6) 

Equation (13.5) for (af/at),oll is called the ‘Fokker-Planck equation’. 
The quantity d(Av)/dt is the average rate of change of the particle’s mean 

directed velocity ‘due to Coulomb collisions. In an isotropic plasma, there can 
be no preferred direction for momentum acquired in collisions, nor is there any 
preferred direction toward which the particle’s velocity vector can be deflected as 
it loses momentum. Thus the quantity d(Av)/dt will generally be in a direction 
exactly opposite to v. Its magnitude is called the ‘dynamical friction’. It gives 
rise to a slowing-down of the directed motion of the particle. 

The quantities d(AvAv)/dt are ‘velocity diffusion coefficients’, since they 
have the effect of spreading the particle velocities over a wider region of velocity 
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space. Often, velocity diffusion results in particular groups of particles gaining 
energy on average, e.g. a group of sub-thermal particles in a plasma with a 
Maxwellian distribution of velocities. Indeed it is the competition between, and 
eventual balance of, dynamical friction and velocity diffusion that gives rise to 
the Maxwellian distribution in steady state. 

The Fokker-Planck equation for Coulomb collisions* 

13.2 THE FOKKER-PLANCK EQUATION FOR ELECTRON-ION 
COLLISIONS 

In Chapter 1 1, we analyzed the kinematics of a sequence of small-angle Coulomb 
collisions and produced quantities that are closely related to the dynamical 
friction and velocity diffusion coefficients. We did this for the case of electrons 
of mass m colliding with much heavier ions of charge Ze. 

We obtained an expression for d (Aq) /d t ,  given in equation (1 1.14), which 
is identical to the dynamical friction, i.e. 

d(Av) niZ2e41nA 
V. (1 3.7) 

dt 4n 4m2u3 

To obtain the velocity diffusion coefficients, we start by supposing that the 
particle is travelling in the z direction. The tensor d(AvAv)/dt will have x x  
and yy components given by 

- = -  

(13.8) 

and no other components. The vanishing of the other components of the 
velocity diffusion tensor can be explained as follows. All components such 
as d(Au,Au,)/dt must vanish because of the absence of any preferred direction 
for Au,. A similar argument shows that d(Au,Au,)/dt must vanish. The 
component d(  ( Au,)2)/dt is, strictly speaking, non-vanishing, but it is of higher 
order than the components that have been retained, since conservation of energy 
in collisions with infinitely massive ions gives Auz - ( A u ~ ) ~ / ~ u ,  implying that 
(AV,)’ - ( A u d 4 ,  i.e. fourth-order in A u l .  

Using our expression for d((AuL)2)/dt from Chapter 11, i.e. equa- 
tion (1 l .  l l), we can write 

d((Aux)2) - d ( ( A q 2 )  - _  1 d((AUd2)  - - 
dt dt 2 dt 

d(AvAv) niZ2e41nA 
dt 4n+n2u3 

- -  - ( I 2  - vv) (13.9) 

where I denotes the unit tensor, and the final expression is independent of the 
original choice of v in the z direction. 
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Substituting these expressions for the dynamical friction and velocity 
diffusion coefficients into the Fokker-Planck equation, we obtain 

To cast equation (13.10) in a simpler form, it is convenient to use the identity 

2v 
a v  

(13.11) 

which is most easily proved using index notation with the summation convention. 
The expression on the left-hand side of equation (13.11) represents a vector 
whose ith component is 

where we have used a v i / a v j  = 6ij ,avj /av,  = 3 and v2 = V j V i  so that 

Using equation (13.11), we obtain our final result for the Fokker-Planck 

(%) = 2 5.( U3 - -). a v  (13.12) 

This form of the Fokker-Planck equation describes the evolution of the 
electron velocity distribution function fe(v, t )  due to collisions with fixed 
infinitely massive ions. Although the Fokker-Planck equation in this simple 
form applies only to electrons colliding with ions, a more general form of the 
Fokker-Planck equation can be derived that applies to electron-electron and ion- 
ion collisions as well. In all cases, the structure of the equation is preserved, 
i.e. there are dynamical friction and velocity diffusion coefficients, which appear 
exactly as in equation (1 3.5) and are derived by calculating the collisional effects 
on the velocities of individual particles of the species which the Fokker-Planck 
equation is to describe. The Fokker-Planck equation for a plasma was first 
derived in its complete form by M N Rosenbluth, W MacDonald and D Judd 
(1957 Phys. Rev. 107 1). 

a q a v ,  = u j / v .  

equation: 
niZ2e41nA a I v 2  - vv afe 

col1 8 z v  
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13.3 THE ‘LORENTZ-GAS’ APPROXIMATION 

The relatively simple form of the Fokker-Planck equation derived above 
describes electrons in the ‘Lorentz-gas’ approximation. A Lorentz gas is a 
plasma in which the electrons are supposed to collide only with (fixed) ions 
and not with other electrons. In practice, of course, in a Z = 1 plasma 
electron-electron collisions are about as frequent as electron-ion collisions. 
Nonetheless, the Lorentz-gas approximation is useful for many applications, 
especially since the resulting simple form of the Fokker-Planck equation is 
reasonably analytically tractable. The Lorentz-gas approximation will be quite 
accurate for a plasma composed of multiply charged ions of charge Z e ,  since 
for this case electron-ion collisions will be more frequent than electron-electron 
collisions by a factor of order n i Z 2 / n e  = Z .  

If we were to substitute a Maxwellian distribution fe a exp(-mu2/2T) 
into the preceding Fokker-Planck equation, the right-hand side of the equation 
would vanish. This must be true, of course, for any expression describing the 
effects of collisions, since the Maxwellian distribution implies thermodynamic 
equilibrium among the particles. However, the right-hand side of the Lorentz- 
gas form of the Fokker-Planck equation vanishes for any f e  that is isotropic in 
velocity space, i.e. any f e  that depends on U alone, because in this case 

(13.13) 

This property of the Lorentz-gas approximation arises from the fact that electron- 
ion collisions do not (to lowest order in m/M calculated here) change the 
magnitude of the electron velocity vectors; they only produce a scattering of 
the directions of the electron velocity vectors. 

A somewhat simpler form of the Lorentz-gas Fokker-Planck equation is 
obtained by transforming to spherical coordinates in velocity space. Choosing 
some convenient direction for z ,  and writing uz = ucose, U ,  = usinOcos4 
and uy = usinesin4, we can use the standard expressions for the gradient and 
divergence operators in spherical coordinates (see Appendix E, applied here to 
velocity space) to transform the Fokker-Planck equation to the form 

sine- + -- (13.14) 
niZ2e41nA [ -- 1. a ( ;3) 8r~c,2m2v3 sine a0 sm2e 

The absence of terms in a / a u  is a further manifestation of the constancy of the 
velocity magnitude in electron-ion collisions. 

Problem 13.1: Derive equation (13.14), beginning with equation (13.12) 
and using the formulae in Appendix E as appropriate. 
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13.4 PLASMA RESISTIVITY I N  THE LORENTZ-GAS 
APPROXIMATION 

As an application of the use of the Fokker-Planck equation, we will derive 
an exact expression for the plasma electrical resistivity in the Lorentz-gas 
approximation. 

Suppose that the electron distribution is approximately Maxwellian: 

(13.15) 

but that this equilibrium is slightly perturbed by the application of a small electric 
field in the z direction. The electric field will cause electrons to accelerate at a 
rate - e E / m ,  and so the velocity distribution function at time t can be expressed 
in terms of the distribution function at a slightly earlier time, t - A t ,  by 

fe(V, t )  = fe(V + e E A t / m ,  t - A t ) .  (13.16) 

For small A t ,  we may expand as follows: 

At 
(1 3.17) 

Here, the subscript E indicates a rate of change of f, due to the effect of the 
E field alone. We have also assumed that the electric field E gives rise to 
only a small perturbation of the velocity distribution, so that fe M fe0 may be 
substituted in the term containing E .  Equation (13.17) constitutes a step towards 
the full ‘Vlasov equation’, which treats the evolution of f ( x ,  v ,  t )  in a general 
force field. The Vlasov equation will be introduced in Chapter 22. 

When the electrons reach a steady-state in which the accelerating force of 
the electric field is balanced by the collisional drag from the ions, we must have 

i.e. 

o=”=.(!&),+(z?) 
at col1 

( 13.1 8) 

(13.19) 

This equation must be solved for the non-Maxwellian part of f,, which we 
will denote fe l .  The Fokker-Planck expression given in equation (13.14) will 
be used for the collision term on the right in equation (13.19). This expresgion 
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contains only the non-Maxwellian part of the distribution function, i.e. fe l ,  since 
we know that collisions can have no effect on a Maxwellian fee. For our present 
calculation, which uses the Lorentz-gas form of the Fokker-Planck equation, the 
isotropic property of the Maxwellian distribution is all that is needed to establish 
that only f e l ,  and not fee, enters into the Fokker-Planck expression. 

The distribution fel will be symmetric with respect to the azimuthal velocity 
angle about the z direction, i.e. there can be no dependence on 4, since E is 
in the z direction and the equation itself is symmetric in Cp. Substituting the 
Maxwellian for fee, the equation to be solved is 

which has the solution 

(13.21) 

The total electron distribution function obtained by adding the &independent 
Maxwellian distribution feo to the &dependent perturbation fel is a slightly 
asymmetric (in 0 )  distribution in which there are more electrons with n > 0 > 
n/2  than with n/2 > 8 > 0. In terms of Cartesian coordinates, there are slightly 
more electrons with U, < 0 than with U, > 0. This is what would be expected for 
an electric field in the z direction, which accelerates negatively charged electrons 
in the negative-z direction. 

We next calculate the current density in the z direction: 

j ,  = -e felucos~d3u 
J 

- 32n’f2c,2 E (2Te)3/2 - 
m’f2Ze21nh 

(13.22) 

where we have substituted d3u = 2nu2sint9d~du and have also made use 
of charge neutrality, i.e. ne = Zni. The integrals in equation (13.22) are 
straightforward to carry out: the integral over 8 is done by writing sinede = 
-d(cosO); the integral over U is done by first writing u7du = u6d(u2/2), then 
noting that feo - exp(-u2/2uf) so that the integral over u2/2 can be done by 
repeated integrations by parts. Thus, we obtain the plasma resistivity 

(13.23) 
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in the Lorentz-gas approximation. 
Comparing this with the simple estimate for resistivity obtained in 

Chapter 1 1 ,  i.e. equation ( 1  1.30), we see that the Lorentz-gas resistivity is 
smaller by a factor 3.4 than the simple estimate. The lower resistivity arises 
from the dominant role of higher-velocity electrons in carrying current in the 
Lorentz-gas approximation. 

To obtain the true resistivity, we must include electron-electron collisions, 
and this calculation can only be done numerically. The resulting resistivity for 
a hydrogen plasma, first obtained by L Spitzer and R Harm (1953 Phys. Rev. 
89 977), is about 1.7 times larger than the Lorentz-gas resistivity and about 2.0 
times smaller than the simple estimate obtained in Chapter 11, as already noted 
there. The role of electron-electron collisions is not to contribute directly to 
resistivity-which they do not, since they cannot affect the total momentum of 
the electron population-but rather to modify the electron distribution in such 
a way as to increase the total drag on electrons due to collisions with ions. 
The reason why the resistivity is increased by electron4ectron collisions is 
obvious: in the Lorentz-gas approximation it is the suprathermal electrons that 
tend to carry most of the current, since the electron-ion collision frequency 
(- u - ~ )  decreases with increasing electron velocity. When electron-electron 
collisions are included, these suprathermal electrons are more strongly coupled 
to, and slowed down by, the thermal electrons, thereby indirectly increasing their 
collisional coupling to the ions. 

Problem 13.2: Consider a neutral plasma composed of electrons and a 
single type of multiply charged ions, each with charge Z e .  By considering 
the relative magnitude of electron-ion and electron-electron collisions 
in this case, give a formula for the plasma resistivity with a numerical 
coefficient that should be accurate in the limit of large Z ,  even when 
electron-electron collisions are included. 

Problem 13.3: Describing electron-ion collisions by the Fokker-Planck 
equation, evaluate the plasma resistivity r]  in the case where electron- 
electron collisions are imagined to be infinitely frequent compared with 
electron-ion collisions. Obviously, this is the opposite limit from the 
Lorentz gas model. (Hint: remember that electron-electron collisions 
cannot cause resistivity on their own, but they can affect the resistivity 
by modifying the electron distribution function. In particular, they tend 
to lead to a Maxwellian distribution that is shifted about some non-zero 
mean electron velocity. This will arise from an electron-electron collision 
term in the Fokker-Planck equation that is dominant in determining the 
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electron distribution function, but which is of a form that conserves the total 
momentum of the electron population. The momentum transfer between 
electrons and ions is still determined by a Lorentz-gas Fokker-Planck 
expression, but one in which the shape of the electron velocity-space 
distribution is effectively known, i.e. a shifted Maxwellian. Since the 
electric field can be assumed to be small, the shift in the Maxwellian 
distribution can be taken to be small compared with a thermal velocity.) 
Express your result for in terms of the average electron-ion collision 
frequency, (uei), given in equation (1 1.22). 
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Chapter 14 

Collisions of fast ions in a plasma* 

A situation that arises in many naturally occurring plasmas, as well as fusion 
plasmas, is that of a ‘beam’ of fast ions moving through a plasma. The energy 
of the beam ions is typically much larger than the temperature of the background 
plasma, i.e. the beam-ion velocities are considerably ‘suprathermal’ relative to 
the background ions. The beam-ion velocities may be greater than, or less 
than, the thermal velocity of the background electrons. However, for the former 
case to apply, assuming a proton beam in a hydrogen plasma with Z X T,, 
the beam-ion velocity must exceed ( M / m ) ’ / 2  - 43 times the background-ion 
thermal velocity (and the beam-ion energy must exceed 1800 times the plasma 
temperature); this does not often occur, at least in laboratory plasmas. More 
usually, the beam-ion velocity is much less than the background electron thermal 
velocity. The beam ions may be of the same type (i.e. same mass M and charge- 
number Z) as the background plasma ions, or they may be of some different 
type. Before its interaction with the plasma, the ion beam may be almost mono- 
energetic and unidirectional, or it may already have a substantial ‘spread’ in 
velocity magnitudes and directions. 

14.1 FAST IONS IN FUSION PLASMAS 

A case of particular interest in fusion research is that of a plasma self-heated by 
the energetic ions produced by the fusion reactions themselves. In particular, the 
deuterium-tritium reaction produces an energetic helium ion, or ‘alpha particle’ 
(Z = 2, atomic mass = 4), with energy approximately 3.5MeV, which is about 
200 times the temperature of the background plasma that will be typically needed 
in a fusion reactor. These alpha particles are born with an isotropic distribution 
of velocities, i.e. there is no preferred direction for their initial velocity vectors. 

Experimental fusion plasmas are also often heated by energetic beams of 
ions, injected initially as neutral atoms, becoming ionized as they penetrate into 
the high-temperature plasma. Beam-ion energies of about 100 keV are presently 
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used for this purpose, which is typically about 10-20 times the temperature of 
the background experimental plasma. For reactor-scale plasmas, beam energies 
of about l M e V  will be needed. Such beams are usually highly directional, 
because their velocity vectors continue to point in the direction in which the 
beam was initially injected. Another commonly used heating technique is to 
accelerate a minority species of ions in the plasma to very high energies by 
radio-frequency waves, using a frequency equal to the cyclotron frequency of 
the minority ions. This produces a ‘beam’ of energetic ions with velocity vectors 
mainly perpendicular to the direction of the magnetic field. 

Energetic beam ions will thermalize with the background plasma particles 
as a result of multiple Coulomb collisions. In this Chapter, we will describe 
this thermalization process, using the various results on Coulomb collisions that 
were derived in Chapter 11. We will also construct a Fokker-Planck equation 
for beam ions, which is somewhat more complex than the Lorentz-gas Fokker- 
Planck equation for electrons derived in Chapter 13. 

The background plasma is assumed to be composed of Maxwellian ions and 
electrons. We will suppose that the density lib of the beam ions is much less 
than the density ni of the background plasma ions. Accordingly, the background 
plasma will itself be approximately charge-neutral, i.e. ne x Zni, without any 
significant contribution from the beam ions to the charge density. The beam 
ions are supposed to have velocities v b  (in this Chapter, we will consistently 
use upper case for beam-ion velocities and lower-case for background plasma 
particle velocities) that are very much greater than the thermal velocity of the 
background plasma ions, ut,i, but much less than the thermal velocity of the 
background electrons, i.e. 

ut,i << v b  << Ut,e. (14.1) 

For maximum generality, we will allow the beam ions to be of a different 
type than the background plasma ions. As usual, the background-ion mass and 
charge-number will be denoted M and Z, respectively. For the beam ions, we 
will denote these quantities Mb and z b .  

The beam ions will undergo Coulomb collisions with background ions and 
electrons. The result of these collisions will be frictional drag on the background 
ions and electrons, which will cause the beam ions to slow down, and angular 
scattering on the background ions, which will cause the beam ions to be deflected 
from their original direction. 

14.2 SLOWING-DOWN OF BEAM IONS DUE TO COLLISIONS WITH 
ELECTRONS 

First let us consider the collisions of beam ions with Maxwellian background 
plasma electrons. If we transform to the frame co-moving with the beam ions, we 
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find a collisional situation similar to that considered in Chapter 11, i.e. electrons 
colliding with relatively massive and essentially stationary ions, and we see that 
the plasma electrons can transfer momentum to the beam ions, but not much 
energy. On average, the beam ions will gain directed momentum since in this 
frame the plasma electrons have non-zero average directed momentum because 
of the transformation of the Maxwellian distribution to the moving frame. In 
this frame, the momentum gained by the beam will be in the direction of the 
average electron momentum; that is, it will be exactly opposite to the velocity 
of the beam ions, i.e. the velocity of the moving frame in relation to the original 
background-plasma frame. The beam ions will thus lose directed momentum and 
slow down due to collisions with the electrons, but they will not be deflected 
significantly from their original direction of motion. 

Indeed, the change in the beam-ion’s energy is almost entirely due to its 
loss of energy of directed motion, rather than to any gain of energy associated 
with random motion, either along the original direction of motion of the ion, or 
perpendicular to it. This can be seen by considering, in the original background- 
plasma frame, a typical momentum-transfer collision between a beam ion and 
an electron. If the beam-ion’s velocity changes by an amount A V ,  then 
conservation of momentum tells us that the electron must acquire a velocity 
- (Mb/m)AV.  By conservation of energy, the change in the beam-ion energy, 
i.e. AWb = (Mb/2)(1V+ AVI2 - V 2 )  % MbV - AV, must be equal and opposite 
to the change in electron energy, which is 

AW, = (m/2)(Mb/m)21Av12 = (Mt /2m)lAVI2.  (14.2) 

Writing AV1 for the component of AV in the direction of V (the quantity AVl 
will be negative), the energy conservation equation, i.e. AWb = - A w e ,  can be 
written 

where AV1 is the increment of the beam-ion’s velocity perpendicular to its 
original velocity vector V .  Two conclusions follow from this energy conservation 
equation. First, since M b ( A v ~ ) ’ / 2  < mVIAVllI << MbVIAVIII, we see that 
the energy in the beam-ion perpendicular velocity components arising from the 
deflection of the beam-ion’s velocity vector away from its original direction is 
much less than the energy decrement arising from slowing down without change 
of direction. Second, since equation (14.3) requires that [AY11 c (2m/Mb)V,  
we see that the collision results in the beam ion losing a fraction of order m / M b  
of its momentum, corresponding to the loss of a fraction of order m/Mb of its 
energy, i.e. an energy loss of order mV2. Combining these two inequalities, we 
also see that AV1 < (2m/Mb)V.  
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Essentially, the collision causes the beam-ion's velocity vector to be 
deflected through an angle at most of order m/iktb; the energy associated with 
this perpendicular motion is a fraction of order (m/Mb)' of the beam-ion's 
initial energy, to be compared with a fraction of order m/Mb that is lost 
by slowing down without change of direction. If the electron were also to 
transfer to the beam ion the maximum possible fraction of its thermal energy, 
which we saw in Chapter 11 to be of order (m/Mb)Te, the gain in energy 
of random motion from this effect would also be only a small fraction, i.e. 
(m/iktb)Te/(mVt) = Te/(MbV;) UtTi/Vt << 1, Of the loss Of  energy Of  
directed motion. (We have assumed here that Te and Ti are of similar order.) 
Thus, the force of the background electrons on the beam ions is mostly in the 
nature of a frictional drag, i.e. it directly opposes the motion of the beam, but 
does not cause any significant scattering of the beam. 

The magnitude of this frictional drag can be calculated as follows. The 
increase AV in the velocity of an electron as a result of a Coulomb collision 
with a beam ion can be related by momentum conservation to the velocity AV 
lost by the beam ion: 

mAv = -MbAV. (14.4) 
Now suppose that the beam ions have density nb and mean velocity (V), and 
that the electrons have a Maxwellian distribution 

(14.5) 

with number density ne. As a result of many collisions between beam ions 
and electrons, the beam-ion momentum decreases, and the electron momentum 
increases correspondingly: 

(14.6) 

The rate of change of the electron's directed velocity due to collisions with 
beam ions can be obtained by applying the formula obtained in Chapter 11, i.e. 
equation (1 1.19, appropriately adjusted to the laboratory frame, in which the 
ions have velocity V: 

-- - -veb(v - v) (14.7) d(v) 
dt 

where 
(14.8) 

Substituting this into the above expression for beam-ion slowing down, we obtain 

(14.9) 
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The evaluation of this integral over electron velocities requires first some 
vector calculus and then transformation to spherical coordinates in velocity space. 
The first step is to write 

a i  V - v  a -- - -(lV-V( ) - 
Iv - vi3 av av I V  - VI 

2 -112 - 

which amounts to noting that the velocity-space ‘force-field’ (v - V)/lv - VI3 
is derivable from a scalar potential field Iv - VI-’. 

Iv-VI *\: Iv-VI 

0 v 
Figure 14.1. Spherical coordinate system for calculating the integral in equation (14.1 I), 
which is analogous to the ‘gravitational potential’ at a point V on the axis due to ‘mass’ 
distributed uniformly over spherical shells with density ,fe(u). The integral includes shells 
with U > V and shells with U -= V .  Shells of both types are shown in the figure: P and 
P’ are typical points on shells with U > V and U < V ,  respectively. The magnitudes of 
the vectors v - V are indicated in both cases. 

We can then write 

where Z is the integral given by 

(14.10) 

(14.1 1)  

Although we are assuming a Maxwellian distribution for fe(v), it is instructive 
to evaluate the integral Z(V) for a slightly more general class of distributions, 
namely those which are isotropic in velocity space, i.e. f e  f e ( u ) .  Examining 
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equations (14.10) and (14.1 l), an analogy with inverse-square-law force fields, 
e.g. gravitation, is immediately apparent. Specifically, thinking of our velocity 
space as physical space, the vector -aI/aV is the gravitational force, described 
by a potential I (V) and acting at a point whose position is given by the vector 
V, due to the gravitational attraction of matter distributed in spherical shells with 
mass density fe(V). 

The integral I (V) can be evaluated for all values of the ratio of the beam- 
ion's speed V to the electron thermal velocity, as follows. First, we 
transform to a spherical coordinate system (U, 8,d)  in velocity space, with the 
8 = 0 axis of the coordinate system lying in the direction of the vector V. As 
indicated in Figure 14.1, we must distinguish between those shells in velocity 
space that lie outside the point V, i.e. U > V ,  and those that lie inside this point, 
i.e. U < V. In both cases, the distance between the point given by the vector V 
and a general point P or P' (see Figure 14.1) on one of the shells is 

I V  - V I  = ( u 2  + v2 - ~ u v c o s ~ ) ] / ~  

independent of the azimuthal coordinate p. Thus we may integrate over p from 
0 to 277 immediately, and then proceed as follows: 

d(cos6) m cos8=l 
= -2x u2fe(u)du / 

C O & = - ~  ( u 2  + v2 - ~ u v c o s ~ ) ~ / ~  
cOs8=l 1 cos8=-l 

m 
= -2n u2fe(u)du + V 2  - 2uVc0sO)'/~ 

At this point, we must distinguish between the shells that lie outside 
which Iu - VI = U - V ,  and those that lie inside V, on which Iu - VI = 

V ,  on 
v - U .  

Evaluating the two contributions to the integral separately and then adding these 
together, we obtain 

V 

uf,(u)du - $1 u2 fe(u)du. 

As is obvious from symmetry considerations, the quantity I depends only on 
the magnitude of V, and not on its direction. Differentiating this 'potential' to 
obtain the 'force field', we obtain 

Copyright © 1995 IOP Publishing Ltd.



Slowing-down of beam ions due to collisions with background ions 235 

noting that the contributions from differentiating the limits of integration of the 
two integrals cancel each other. Thus, in terms of the gravitational analogy, the 
gravitational force is the same as would arise if all of the spherical shells of 
matter lying outside V were absent, and all of the matter in the spherical shells 
lying inside V were concentrated at U = 0. 

the remaining integral can be 
calculated explicitly, i.e. 

For a Maxwellian f e ( u )  and for V << 

1” u2 fe(u)du = ne 
( 2 n ) 3 / 2 ~ : ~  

n e v 3  
3 ( 2x)3 /2  

x ‘ 

Putting all this together, we obtain our final result: 

d(V) 2’l2ne Zie4m’/’1nA 
- V. (14.12) 

We note that the characteristic time for slowing down of the beam ions due 
to collisions with electrons, sometimes called the ‘slowing down time’, does 
not depend on the beam velocity, but it does depend inversely on the electron 
density and as the 3/2 power of the electron temperature. The higher the electron 
temperature, the lower the electron frictional drag on the beam ions. Taking the 
scalar product of equation (14.12) with Mbv, we obtain an expression for the 
rate by which the beam-ion kinetic energy w b  is reduced: 

dt 1 2n 312 6; Mb T ~ I ’  

( 14.1 3) 

Again, the characteristic time for beam-ion energy loss does not depend on beam 
energy, but it is strongly dependent on electron density and temperature. 

14.3 SLOWING-DOWN OF BEAM IONS DUE TO COLLISIONS WITH 
BACKGROUND IONS 

Next let us consider the collisions of beam ions with background plasma ions. 
We recall that the beam ions are assumed to have directed velocities greatly 
exceeding the background-ion thermal velocity. In such cases, there will be two 
processes that will reduce the directed velocity of the beam ions on roughly 
comparable time scales-namely, deflection of the beam-ion velocity vectors by 
background ions, and energy transfer from beam ions to background ions. 

We will consider in turn the two limiting cases for the ratio of the beam-ion 
mass to the background-ion mass, i.e. the cases Mb/M >> 1 and Mb/M << 1 .  
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If the beam ions have larger mass than the background ions, then transfer 

of parallel energy to the background ions will be the dominant process by which 
directed momentum is lost, just as it was in the case of collisions of beam ions 
with electrons. This is because a heavier beam ion is only able to transfer a 
fraction of its energy to a stationary, lighter background ion, consistent with 
conservation of momentum. As we saw in our discussion of beam-ion collisions 
with background electrons (simply making the substitution m + M to treat 
collisions with background ions, mass M << Mb), the increment AV, of the 
beam-ion’s velocity perpendicular to its original velocity vector V is limited by 
M b ( A v ~ ) ~ / 2  < MVIAVIII << MbV1AVIII, whereas the velocity decrement AV11 
in the direction of V arising from a typical collision is IAYlI < (2M/Mb)V. 
Combining these two inequalities, we see that AV, < (2M/Mb)V. As in the 
case of beam ions colliding with electrons, the fraction of directed beam-ion 
momentum that is lost due to scattering at constant energy is of order (kf/Mb)’, 
versus a larger loss fraction of order M/Mb due to the frictional drag opposing 
the beam-ion’s directed motion. For Mb >> M ,  this results in energy and 
momentum loss without scattering. Thus, transfer of energy to background 
ions, without much scattering, will be the dominant process by which heavier 
beam ions lose momentum to lighter background ions. 

In this case of a heavier beam ion, we can proceed as before to relate the 
change AV in the velocity of a background ion to the change AV in the velocity 
of a beam ion: 

MAV = -MbAv. (14.14) 

Equation (14.14) expresses momentum conservation in a single collision. We 
now proceed exactly as we did in the case of slowing down due to collisions 
with electrons. Suppose that the background ions have a Maxwellian distribution 

(14.15) 

with spatial density ni. As a result of many collisions between beam and 
background ions, the average velocity of the beam ions decreases according 
to the relation 

(14.16) 

The rate of change of the background-ion’s velocity due to collisions with beam 
ions can again be obtained by applying the formula obtained in Chapter 11, i.e. 
equation (1 1.15), adjusted to the laboratory frame: 

(14.17) 
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(14.18) 

It should be remembered that this formula applies only to the case of heavier 
beam ions colliding with relatively light background ions. For the beam ions 
compared with thermal ions, as indicated by equation (14.1), we can still use 
the approximation V >> U. Combining equations (14.16), (14.17) and (14.18) in 
this way, we obtain 

(14.19) 

In the approximation used to obtain equation (14.19), the right-hand side 
of equation (14.17) becomes simply ybv, and the factor Iv - VI3 in the 
denominator of equation (14.18) becomes simply IVI3. The quantity d(v)/dt is 
then independent of the background-ion velocity v, so that the integral d(v)/dt 
over the background-ion distribution in equation (14.16) becomes trivial, simply 
introducing a factor ni. 

We note that the characteristic time for slowing down of the beam ions, 
the ‘slowing down time’, does not depend on the background-ion temperature, 
but it does depend, as V3, on the beam-ion velocity. Less energetic beams slow 
down more rapidly. The rate at which the beam-ion kinetic energy w b  decreases 
is obtained by taking the scalar product of equation (14.19) with Mbv, giving 

dwb 21/2niZ2Z~e4M~’21nA - - _  - (14.20) 
dt 8 7 r ~ ~ M W ~ ’ ~  

For this case of a heavier beam ion, the dominant effect of collisions with 
background ions is ‘pure’ slowing down, i.e. loss of directed momentum, as 
described by equation (14.19), without significant deflection of the beam-ion’s 
velocity vector from its initial direction. 

If the beam ions have smaller mass than the background ions, deflection 
of their velocity vectors will be the dominant process by which beam ions 
lose directed momentum. This is because the lighter beam ions can relatively 
easily transfer their momentum to the heavier background ions, without the latter 
gaining much of the beam-ions’ energy. Even if a lighter beam ion loses all of 
its directed momentum Mbv in a collision with a heavier background plasma 
ion, so that the background-ion’s velocity jumps to MbV/M, there would result 
an energy transfer of only M I M ~ V / M ~ ~ / ~  = (Mb/M)MbV2/2, i.e. a fraction 
Mb/M of the beam-ion’s initial energy. The deflection of the beam-ion’s velocity 
vector, a process usually termed ‘pitch-angle scattering’, in its pure form will not 
result in any change in the beam-ion’s energy. In this case of a lighter beam ion, 
equation (14.19) will not describe the dominant process-but it is still relevant 
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to ask at what rate the beam ion loses its energy to background ions, even if 
this occurs relatively slowly compared with pitch-angle scattering. In fact, it 
will turn out that equation (14.20) remains true for the case of a lighter beam 
ion, and this result applies equally well for all relative magnitudes of beam- and 
background-ion masses. 

The case of a lighter beam ion can be analyzed as follows. Begin again 
with the relationship between the changes AV and AV in the background- and 
beam-ion velocities, respectively: 

MAv = -MbAv. (14.21) 

The energy acquired by the background ion in a collision is 

-1A~l’ M = --AV] Mb2 2 

2 2M 
(14.22) 

which must be the same as the energy lost by the beam ion, so that AWb = 
-(M2/2M)IAV1‘. For small-angle collisions of interest to us here, as discussed 
in Chapter 11, the deflections AV in the beam-ion’s velocity are mainly 
perpendicular to its initial velocity vector, i.e. [AV\* M (AV,)’, and can be 
obtained from the analysis in Chapter 11 (for the corresponding case of electrons 
colliding with ions). The result of this analysis was expressed in equation (1 1.1 1) 
which, when applied to the present case, gives 

d(AV1)’ niZzZte41nA 

Thus, the beam-ion’s energy decreases according to 

- - (14.23) 
dt 2n €02 M i  vb ’ 

dwb Mb2 d(AVl)* n,Z2Zte41nA 2’/2niZ2Z~e4M~/21nA = -  - -  - - 
dt 2M dt 477€iMvb 877 6; M Wd ’ 

(14.24) 
i.e. the same as equation (14.20). 

Although we have derived the result for dWb/dt given in equations (14.20) 
and (14.24) only for the two limiting cases M << Mb and Mb << M ,  we will 
assume (as is indeed the case) that this result applies for all ratios of beam-ion 
mass to background-ion mass. 

14.4 ‘CRITICAL’ BEAM-ION ENERGY 

If we combine our two expressions for the rates of beam-ion slowing down due 
to electron collisions and due to ion collisions, i.e. equations (14.13) and (14.20), 
we have 

dwb 2’/’n,Z~e4m’/’1nA 
- = -  (14.25) dt 6n3/’€,2Mb 
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where 

= 57 
317 ’ I 2  Z MZl2 

4m’I2M 
C =  (14.26) 

the latter numerical value being for a case where both beam and background 
ions are protons. We see that above some ‘critical’ beam-ion energy Wb,c”t, the 
collisions with electrons dominate the slowing down process. On the other hand, 
for wb < Wb,cdt, the slowing down is mainly due to collisions with background 
ions. The critical beam energy (at which the slowing down rates on electrons 
and ions are exactly equal) is given by 

(14.27) 

the latter for the case where the beam and background ions are both protons. 
As beam ions slow down in a plasma, they give up their energy increasingly 

to background ions, rather than to background electrons. Although the two 
contributions to the instantaneous slowing down rate are exactly equal at 
wb = Wb,crit, the slowing down on background ions begins to dominate as 
soon as the beam-ion energy drops below &fit. 

Problem 14.1: Suppose that it is desired that the beam ions contribute 
exactly equal amounts of energy to background ions and electrons over 
the entire slowing down process. For a mono-energetic injected beam, 
obtain an estimate of the required injection energy in terms of Wb,crit. 

(Note: to do this, you may choose to carry out a simple integration 
numerically. A high degree of accuracy is not required; any simple 
numerical integration technique will suffice.) 

14.5 THE FOKKER-PLANCK EQUATION FOR ENERGETIC IONS 

Equations (14.12) and (14.19) give the two contributions to the dynamical 
friction for beam ions slowing down in a background plasma, and these may now 
be used to obtain a Fokker-Planck equation for the beam ions. As we have seen, 
the main effect of collisions with background plasma electrons is to slow down 
the motion of the beam ions, rather than to deflect the beam from its original 
direction. We have seen that collisions with background plasma ions also slow 
down the motion of the beam ions, although in this case, especially if the beam 
ions are lighter than the background plasma ions, there is also a significant 
pitch-angle scattering effect. However, if we choose for the present to ignore 
pitch angle scattering, as would be appropriate if our ‘beam’ originates from an 
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isotropic source, such as fusion reactions, we can examine the effects on the 
distribution of beam-ion energies of ‘pure’ slowing down due to collisions with 
background electrons and ions, as described by equations (14.12) and (14.19), 
respectively. Thus, returning to the general form of the Fokker-Planck equation 
given in equation (1 3 .3 ,  we can neglect the velocity diffusion coefficients 
relative to the dynamical friction, writing simply 

Collisions of fast ions in a plasma * 

(14.28) 

Substituting our expressions for the two contributions to the dynamical friction, 
i.e. equations (14.12) and (14.19), into equation (14.28), we obtain a Fokker- 
Planck equation for the beam-ion distribution function fb (V): 

where 

i.e. the beam-ion velocity at the ‘critical’ energy Wb,crit. 
If we are not interested in the direction of the beam velocities, but only 

in the magnitudes of the velocities, or if we have an energetic-ion population 
that is isotropic in velocity space, then it is more convenient to transform to 
spherical coordinates in velocity space. This will give an equation for fb(v), 
where V = (VI. Using the divergence operator in spherical coordinates (see 
Appendix E), we can transform equation (14.29) to 

Since our result for the rate of decrease of beam-ion energy applied equally well 
to lighter and heavier beam ions, similarly equation (14.30) applies for all ratios 
of beam-ion to background-ion mass. 

We can apply equation (14.30) to a variety of situations involving a 
population of energetic or ‘fast’ ions in a plasma. Although we will continue 
to refer to these particles as a ‘beam’ and denote their distribution function fb, 

this nomenclature and notation can refer also to the important practical case 
where the energetic ions are approximately isotropic in velocity space, either 
because they are injected isotropically or because they are born in the plasma 
itself with an isotropic distribution. For such cases, equation (14.28) gives an 
essentially complete description of the energetic ion distribution which results 
from collisions with background plasma particles. 
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Suppose, for example, that the energetic ions are injected into the plasma 
all at the same initial velocity VO. Then a source term must be added to the 
right-hand side of equation (14.30), and in this case the source term will be in 
the form of a &function in velocity space, centered at V = VO. Specifically, if 
S is the rate of injection of particles per second and if the particles are injected 
isotropically in velocity space, then the source term will be given by 

(14.31) 

(Integrating this equation over all velocity space with a velocity volume element 
in spherical coordinates of 4nV2dV gives dnldt equal to the source rate S.) 
Adding such a term to the right-hand side of equation (14.28) allows a steady- 
state solution to be found, in which the injected ions slow down until they are lost 
in a 'sink' at V = 0. In practice, this 'sink' does not require that the energetic 
ions be actually lost, only that there is a denser Maxwellian background-ion 
distribution into which they may be absorbed. (The inclusion of additional 
terms in the Fokker-Planck equation that become important when vb - ut,i 
will of course result in the complete 'Maxwellianization' of the slowed-down 
beam-ion distribution.) 

The steady-state distribution function may be obtained from equa- 
tion (14.30), with the source-term added, taking care to apply a 'boundary 
condition' at V = VO obtained by integrating across the &function. The first 
step is to note that, away from the source at V = VO, the right-hand side of 
equation (14.30) must in steady state be set to zero, giving 

(14.32) 

for V < VO, where C is a constant, as yet undetermined. For V > VO, we 
must have the trivial solution fb = 0, since the source at V = VO cannot supply 
particles to larger velocities. In our model, the beam particles are only slowed 
down by their interactions with the background plasma, not accelerated. The 
constant C in equation (14.32) is then obtained by including the source term 
in equation (14.30), assuming steady state, substituting our solution for fb, i.e. 
equation (14.32), multiplying by V2, and integrating just across V = VO, giving 

(14.33) 

thereby determining the constant C in terms of the source S .  Finally, then, the 
beam distribution function is given by 

1 s6iMMb ( ) v < v, (14.34) 
fb(v) = n,ZZie41nA 1 + V3/V2", 
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Figure 14.2. Steady-state velocity distribution , f(  V )  of energetic alpha particles in a 
deuterium-tritium plasma with T, = 20 keV. The vertical scale is arbitrary. 

with f b ( v )  = 0 for V > VO. Thus, we have obtained an explicit solution for an 
isotropic distribution function of slowing down beam ions, usually termed the 
‘slowing down distribution’. 

Equation (14.34) has an immediate application to the slowing down of alpha 
particles in a deuterium-tritium (D-T) fusion plasma, viewing the alpha particles 
as a ‘beam’ of energetic ions. Alpha particles, which are energetic helium ions 
(charge Z = 2, atomic mass = 4), are created continuously by the D-T fusion 
reaction at a ‘source rate’ S given by 

where nD and n~ are the deuterium and tritium ion densities (usually about equal 
to each other, and about half the electron density), and ([TU)DT is the product of 
the D-T fusion cross section o and the ion velocity averaged over a Maxwellian 
distribution of reacting ions. This quantity has a strong dependence on plasma 
temperature, but is given by ( [ T U ) D T  4.2 x 10-22m3s-1 at T, = 20keV. 
The alpha particles are born with energy approximately 3.5MeV, i.e. velocity 
1.3 x lo7 m s-’, and their birth distribution is isotropic in velocity direction. 
Thus, equation (14.34) describes the velocity distribution of energetic alpha 
particles in a D-T fusion plasma. The ‘critical energy’ Wb.c”t in this case 
(i.e. helium ions slowing down in a D-T plasma) is about 30Te, i.e. about 
600 keV assuming Te = 20 keV. Accordingly, slowing down due to collisions 
with electrons is the dominant process by which alpha particles give up their 
energy to the background plasma, until they have slowed down to energies of 
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about 600keV. Figure 14.2 shows the alpha particle distribution in this case. 
For purposes of these calculations, we have treated the background D-T plasma 
as if it were composed of a single species of Z = 1 ions with mass number 2.5. 

Problem 14.2: By integrating the appropriate slowing down distribution 
function 'iver all velocities (note: this can be done analytically), find the 
total density of energetic alpha particles and the average alpha particle 
energy in a deuterium-tritium fusion plasma. The background plasma 
should have an electron density ne = 1020 m-3, equal deuteron and triton 
densities, nD = nT = ne/2, and temperatures T = T, = 20 keV; it can be 
treated as if it had a single species of ions, mass-number 2.5. At these 
temperatures, we may take ( 0 ~ ) ~ ~  GZ 4.2 x 10-22m3s-1. Express the 
alpha particle density and pressure as fractions of the background-plasma 
density and pressure. Are these fractions dependent on the background 
plasma density? 

14.6 PITCH-ANGLE SCATTERING OF BEAM IONS 

As we have seen, in the case of relatively light beam ions the dominant effect 
of collisions with heavier background ions will be deflection of the beam-ion's 
velocity vector from its initial direction. The equivalent problem of scattering of 
electrons by ions was considered in Chapter 11, and the corresponding Fokker- 
Planck equation was derived in Chapter 13. Applied to the present case, the beam 
ion acquires velocity increments AV1 perpendicular to its initial direction, at a 
rate given by equation (14.23). This occurs at approximately constant beam- 
ion energy, so that + 2VAVll = 0, with the result that the directed 
momentum of the beam ion is reduced according to 

dvl niZ2Zte41nA 
dt 4 ~ r  E ~ M ;  V t  

- (14.36) 

(see equation (1 1.14) for the equivalent case of electrons colliding with ions). 
Consider next the case of a distribution of beam ions, produced for example 

by injection of a directed beam into a plasma. If the energetic ions are not 
injected isotropically, and it is necessary to follow their distribution in velocity 
directions as well as velocity magnitudes, then a velocity-angle scattering term 
of the type given in equation (13.14) must be added to the beam-ion Fokker- 
Planck equation. This will describe the angle-scattering of energetic beam ions 
by collisions with background ions. 

Strictly, equation (13.14) was derived only for the case where the colliding 
particles have much smaller mass than the scattering particles, e.g. electrons 
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colliding with ions. Applied here, a velocity-angle scattering term of this type 
will be strictly valid only in the case where the scattered beam-ion is lighter 
than the scattering ion. For this case-or  assuming that the same expression is 
at least a reasonable approximation even in the case where the two ion masses 
are comparable, which turns out in fact to be true-we can write 

niZ2Zte41nA 1 a 
Scatt 8 1 ~ 4 ~ t v 3  sine ae - - (sine $) . (14.37) 

Here, we have assumed that there is some direction, taken to be the z direction, 
about which the beam-ion distribution is symmetric in azimuthal velocity angle. 
Specifically, in spherical velocity coordinates, we have assumed that fb(v) is 
a function only of V and 8, but not of q5. In this case, the second term on 
the right-hand side in equation (13.14), which describes scattering in q5, can be 
dropped. Frequently, the presence of a strong magnetic field, taken to be in the 
z direction, ensures this kind of symmetry, because of the rapid Larmor gyration 
of the beam ions about the magnetic field. When the gyration frequency is much 
larger than any collision frequency, this Larmor gyration will rapidly average-out 
the azimuthal velocity phase-angles q5, so that fb becomes effectively a function 
only of V and 0. The polar coordinate 8 ,  which is given by 

sine = VJV (14.38) 

is often called the ‘pitch angle’ of the particle. 
Adding the ‘pitch-angle scattering’ term giver, in cquaiioil ji4.37 j to the 

‘slowing down’ term given in equation (14.30), we obtain a final combined 
Fokker-Planck equation for the beam ions: 

Physically, this equation describes a combination of slowing down in velocity- 
magnitude V and spreading in pitch-angle 8.  For example, if beam ions are 
injected at V = VO and all in a single direction, say 8 = 0, they will progressively 
spread over a wider range of 6’ values as they slow down to speeds below VO. 

Problem 14.3: A unidirectional beam of energetic ions, density nb, mass 
Mbr charge-number Zb, is continuously injected into a charge-neutral 
background plasma composed of electrons and ions with charge-number 
Z. The density of the beam can be considered to be very small compared 
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with the density of the background plasma. The momentum injected 
via the beam is balanced by ‘friction’ on the beam ions arising from 
collisions with background-plasma electrons and ions. The electrons 
thereby acquire a finite mean velocity in the direction of the beam. 
Collisional ‘friction’ between the electrons and the background-plasma 
ions must then arise. For simplicity, the background plasma ions should 
be taken to be infinitely massive, so that they acquire no directed velocity, 
but can ultimately absorb the injected momentum, allowing an equilibrium 
to arise. By writing down simple expressions for the various collisional 
‘frictional’ forces that arise in the direction of the beam, calculate the 
magnitude and direction of the net electrical current in this equilibrium, 
by adding together the current carried in the beam ions themselves and 
the current carried by the electrons. Show that the electrons tend to 
‘cancel out’ the beam-ion current, but that this cancellation is inexact if 
2 # zb. (Hint: you do not need to use the Fokker-Planck equation 
to solve this problem, but you do need implicitly to include pitch-angle 
scattering, where it contributes importantly to momentum loss, as part of 
the collisional ‘friction’.) 

14.7 ‘TWO-COMPONENT’ FUSION REACTIONS 

Our analysis of fast-ion slowing down in plasmas has another immediate and 
interesting application to fusion-namely, the idea of injecting a beam of 
reacting ions into a fusion plasma. 

For example, suppose a beam of deuterium ions is injected into a pure- 
tritium background plasma in order to generate fusion reactions. Since the peak 
of the D-T fusion cross section q , ~ ( u )  occurs at an energy of about 120 keV, the 
injected beam should be somewhat more energetic than this, so that it will pass 
through the region of peak reactivity as it slows down. The frictional drag on 
the beam from collisions with background ions will be irreducible: for a given 
beam energy, it will depend linearly on the background-ion density, as will the 
reaction rate also, with the result that the density dependence effectively cancels 
out. However, the frictional drag from collisions with background electrons can 
be reduced by raising the electron temperature; for a 140 keV deuterium beam, 
the electron temperature must be raised to 10 keV to reduce the electron drag to 
equal the tritium ion drag at the injection speed. 

Figure 14.3 shows the slowing down of a 180 keV beam deuteron injected 
into a pure tritium plasma with an electron temperature of 5 keV. The time- 
scale is normalized by plasma density, so that the figure applies for all plasma 
densities. As the deuteron’s energy WD (full line) decreases, cumulative energy 
increments A W (also full lines) are transferred to background electrons and 
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Figure 143. Slowing down of a I8OkeV deuteron injected into a tritium plasma with 
T, = 5 keV. The energy of the deuteron is WO, and energy increments A W are given to 
plasma tritons and electrons. An amount of fusion energy is produced, expressed as a 
fraction Q of the deuteron’s initial energy. 

tritons, as shown. At t += 03, the sum of the two A W  will equal the initial 
deuteron energy WD(O). As the deuteron moves through the plasma, it undergoes 
fusion reactions with instantaneous probability proportional to ODT(U)U, where 
U is the deuteron’s velocity. An amount of thermonuclear energy is released, 
which is expressed in Figure 14.3 as a fraction Q (broken line) of the initial 180 
keV energy of the deuteron. When the deuteron has completely slowed down, 
the Q value has reached about 1.15-indicating that about 200keV of fusion 
energy has been produced. For higher electron temperatures, the Q value can 
be somewhat higher, since slowing down by collisions with electrons is reduced 
further. Because of the inefficiencies of converting fusion energy to electricity, 
the Q value in a practical reactor must be very much larger than this (- 20)- 
implying that reactions among the Maxwellian background ions themselves must 
play the major role, rather than beam-plasma reactions. 

The use of ‘two-component’ fusion reactions of this type to produce 
Q values of about unity and significant levels of fusion power density in an 
experimental fusion reactor was first proposed by J M Dawson, H P Furth and 
F H Tenney (1971 Phys. Rev. Lett. 26 1156). Reactions of this sort typically 
contribute about a half of the fusion power produced in present-day beam-heated 
deuterium-tritium tokamaks. 
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Chapter 15 

Basic concepts of small-amplitude waves in 
anisotropic dispersive media 

Systems of linear differential equations can often be studied conveniently using 
Fourier analysis. If any one quantity oscillates sinusoidally at a particular 
frequency, w ,  then all the others must oscillate at the same frequency (or not 
at all), and the problem becomes one of finding the relative amplitudes and 
phases of the various oscillating quantities. The fluid plasma equations do 
not constitute a set of linear differential equations, so we cannot in general 
assume that nonlinear coupling between frequencies will be absent. However, 
if we consider only situations where the oscillations are small enough, then the 
equations can be ‘linearized’. This means that the fluid equations are solved 
to zeroth order with no waves present. In the simplest case, considered here, 
that solution is the trivial one-a uniform isotropic plasma immersed in a steady 
(or even zero) magnetic field. Next we consider a first-order expansion of the 
equations in terms of small wave-like perturbations, neglecting second- and 
higher-order terms. This means that whenever we see two oscillating quantities 
multiplied together, since they are both small, we consider this to be a higher- 
order term and we neglect it. For any real situation, we then have to go back and 
verify that this neglect is justified: are the amplitudes we calculate in our real 
situation small enough that the nonlinear terms are actually negligible compared 
to the linear ones? For now, however, we will consider just the idealized small- 
amplitude limit. 

15.1 EXPONENTIAL NOTATION 

In the linear regime, all oscillating quantities can be represented with 
‘exponential notation’. For example, the density perturbation could be 

nl = iilexp[i(k - x - ut +a,,)] (15.1) 
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where the overbar on the i i l  indicates that it is serving as a real wave amplitude, 
rather than an oscillating quantity (note that the overbar does not indicate a time 
average.) The quantity k is the vector wave-number, or 'wave-vector', and A, 
the wavelength, is 2 n l k .  The vector k can have components in all directions. 
In an anisotropic medium like a magnetized plasma, the direction as well as the 
magnitude of k plays a crucial role in the wave dynamics. Along directions in 
which the component of k is large, the wavelength is short, so quantities vary 
rapidly in space; along directions in which the component of k is small, the 
wavelength is long, and so quantities vary slowly in space. Of course, the fact 
that we have small-amplitude perturbations does not imply that this plane-wave 
spatial variation necessarily gives the best description of the oscillations. Indeed, 
planar geometry is too simple to treat a cylindrical or otherwise specially shaped 
real situation, if the size of the plasma is not much greater than a wavelength. 
Then only the exp( -iwt + is,) time dependence applies, and a different spatial 
dependence is appropriate. 

For now, we will deal with idealized plane waves only. In the particularly 
simple case where the plane wave-fronts align with surfaces of constant x ,  we 
can write 

nl = iilexp[i(k,x - wt + & ) I .  (15.2) 

For definiteness, we can take 8, to be 0 (i.e. no phase shift, an assumption that 
does not sacrifice generality since we can choose to measure the phase shift of 
everything else relative to n l ) .  If we choose the standard convention that the 
measurable part of nl is its real part, we have 

This represents a wave traveling with a phase velocity up E w/k,. 
In the case of a vector wave-number, we define a vector phase velocity 

vP E wklk2 = (wk,/k2)ri + (wk,/k2)9 + (ok,/k2)2. 

An observer traveling at speed w /  k in the direction of propagation of the wave, 
(k/k), stays at a constant wave phase. We can see this by supposing that x 
varies as v p t ,  in which case the argument of the exponential, i(k x - wt + S,), 
is independent of time. In this Unit we will always consider Re(w) to be 
positive, since a negative Re(w) corresponds to a wave propagating in the 
opposite direction from k; we will handle such a case with k + -k. The 
quantity Im(w) represents damping (Im(w) < 0) or growth (Im(w) > 0) of the 
wave in time. Similarly, Im(k) represents growth or damping in space. 

Other quantities such as flow velocities and electric and magnetic fields will 
have the same character of spatial and temporal variation, i.e. exp[i(k - x - u t ) ] ,  
but will have different phases and amplitudes. Indeed, each vector component 
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of each quantity has its own phase and amplitude. For example, we can write 
the electric field as 

EI = E,I%cos[(k * x - ut + SE,)] + E,lfcos[(k - x - wt + 8,vy)] 
+ E,lZcos[(k * x - wt + &E,)] 

+ E2l2exp[i(k x - wt + SE,)]] 

x exp[i(k - x - wt)] + E,I exp(isE,)fexp[i(k - x - wt)]) 

x exp[i(k x - w t ) ] }  (15.4) 

= Re{E,~%exp[i(k * x - wt + 8 ~ , ) ]  + E,~fexp[i(k x - wt + SE,)] 

= Re{E,l exp(is,v,)%exp[i(k x - u t ) ]  + E,] exp(isE,)f 

= Re{[E,I exp(isE,)% + E,I exp(isE,)f + E,I exp( i s~ , ) f ]  

where AE,,  SE^ and BE, are real phase delays between E , ] ,  E,1, E,] and n l ,  and 
all the amplitude factors (the quantities with the overbars) are again taken to be 
real. This is a painfully non-compact form for El. The same information can 
be written as 

El = Re{&exp[i(k - x - w t ) ] )  (15.5) 

where the underlined italic E ,  is now a complex vector (i.e. it has six scalars 
associated with it), but it is independent of time and space. To translate between 
these two notations recognize that, for example, 

tanas, = Im(El %)/Re@, - 2) (15.6) 

and 
E,1 = I&, -21 = [(El .%)(El 4 ) * ] 1 ’ *  (15.7) 

where the asterisk indicates a complex conjugate. In equations (15.6) and (15.7), 
the terms on the far left-hand side are the real phase delay and the real amplitude, 
while the other terms are built from the complex wave amplitudes. 

As we proceed to use this notation, we will take even more advantage of 
its compactness. All of the first-order terms in our equations (and therefore one 
multiplier in every additive term in the first-order equations) will contain the 
same exponential factor. Therefore we can simply drop the exponential factor 
without difficulty, so long as we are always clear about which are the first-order 
multiplicative terms. (For example, we will often find terms like E ,  x Bo, 
and it is important to remember which one is the perturbed quantity.) Finally, 
in the interest of further conciseness of notation, we will drop the underlined 
italics which indicates a complex wave amplitude: all the first-order terms will 
be complex wave amplitudes, so that we may return to using a simple bold-faced 
vector such as El, with the understanding that the exponential factor is implicit 
and that the physical vector quantity is the real part. We will, however, retain 
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the subscripts indicating order everywhere in this Unit, as well as the distinction 
of boldface versus plain to show vector versus scalar quantities. 

There is one pitfall in this more-or-less standard approach. Sometimes we 
find ourselves multiplying together two first-order quantities to evaluate some 
second-order quantity, and often then time-averaging this second-order quantity. 
For example, suppose we want the time average of A1 - B I ;  the proper answer 
is iRe[AI B;]. 

Problem 15.1: Show that the time average of the dot product of two 
physical vector fields, A, and B1,  is (Al - B1) = iRe[AI 0 By]. The left- 
hand side of this equation represents the time-average of the physical 
fields, while the right-hand side evaluates this time-average in terms of 
the complex wave amplitudes. Allow arbitrary phase differences between 
AI and B 1 .  

15.2 GROUP VELOCITIES 

We have already discussed the phase velocity of a wave-the speed at which 
a point of constant phase propagates forward along klk. If we make up a 
wave-packet of fast oscillations grouped together in time and space, as shown 
in Figure 15.1, this is the speed at which individual crests within the packet 
travel. However, these crests need not travel at the speed that the overall packet 
moves; the crests within the packet can slide forward or backward relative to 
the bundle of energy and information that constitutes the wave-packet. Indeed 
this frequently must be the case, since we will find that phase velocities in a 
plasma often exceed the speed of light, but the velocity of the group of waves 
(the ‘group velocity’) must be less than this, from fundamental considerations 
of special relativity. 

Figure 15.1 shows a packet of oscillations with a Gaussian envelope. The 
amplitude A ( x )  is given by 

A ( x )  = Re[exp( -x2/2a2)exp(ikox)] (15.8) 

where we have chosen koa >> 1, so that there are many oscillations within the 
packet. The question we would like to investigate is: how does this wave-packet 
propagate in a dispersive medium where w depends on k? Without deriving the 
principles of Fourier analysis, let us assert and later prove that the same A ( x )  
given in equation (15.8) can also be written 

m 
A ( x )  = Re (z / exp(ikx)exp[-a2(k - ko)*/2]dk 

&G -m 
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I 
I 

Figure 15.1. Wave-packet with a Gaussian envelope, constructed such that koa << 1. 

Equation (15.9) says that a wave-packet localized in space, x, can be considered 
to have been constructed of an integral over plane waves localized in wave- 
number, k .  

Problem 15.2: Prove that the two forms of A ( x )  given in equations (15.8) 
and (15.9) are equivalent. (A few tricks: transform k’ = k - ko; use 
the technique of completing the square in the exponent to transform the 
integral into an integral over a simple Gaussian; finally, use the facts that 
there are no poles in the complex plane for the resulting integrand, and 
that it goes to zero exponentially as Re k + f m ,  so that any integral 
along a contour parallel to the real axis will give the same result.) 

Equation (15.9) (and Figure 15.1) can be viewed as t = 0 freeze-frames of 
a set of propagating waves. The time evolution of this system is then just 

exp{i[kx - w(k)rI}exp[-a*(k - k0)*/21dk 
(15.10) 

where we have explicitly denoted the k dependence of o by using o ( k ) .  For 
a narrow enough wave-packet in k space (which means a large a ,  i.e. wide 
in physical space), we can approximate w ( k )  M o ( k 0 )  + ( a o / a k ) k , ( k  - ko) .  
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We further assume that the medium is dispersive, but not too dispersive, by 
neglecting quadratic terms in the expansion of w in (k - ko). So, proceeding for 
our moderately dispersive medium, we obtain 

00 

x (J [ exp(i[kx - k(aw/ak)~ot]]exp[-a2(k - ko)*/2]dk 6 -00 

(15.11) 

Now the factor beginning with a/& is exactly A(x  - (aw/ak)kot, 0)-in other 
words, the original t = 0 freeze-frame, but translating at velocity (aw/ak)k. 
This is just what we were looking for: the velocity of our wave-packet, So 
what is the factor on the first line? It is an overall space-independent time 
oscillation corresponding to the fact that the wave fronts are propagating at the 
phase velocity, w / k ,  while the wave-packet moves at the group velocity, aw/ak,  
not equal to w / k .  

15.3 RAY-TRACING EQUATIONS 

In an inhomogeneous plasma the trajectory of a wave-packet will be curved, 
responding to gradients in the plasma properties. We can derive the ray-tracing 
equations for the propagation of localized wave energy in a plasma simply 
from the considerations above. Consider a wave-packet localized not only in 
the longitudinal direction (parallel to b), but also in the transverse direction 
(perpendicular to b). For simplicity (but without loss of generality) let us 
assume b 11 8, giving b = koj2. Then the wave amplitude we desire can be 
expressed as 

A(x) = Re[exp(-x2/2aj - y2/2a3 - z2/2a~)exp(ikox)1. (15.12) 

By analogy with equation (15.9), we can re-express A(x) in terms of its Fourier 
transform: 

x exp[-a2(kx - k 0 ) ~ / 2  - a3ky2/2 - a:ki/2]d3k . (15.13) 1 
As before, we now consider this as a ‘freeze-frame’ picture at t = 0, and include 
a factor exp(-iwt), acknowledging that w = w(k), where k is a vector quantity 
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in our anisotropic medium. Carrying through a Taylor expansion as before, we 
approximate 

0 N w(ko) 4- (k - ko) . Vk@lko (15.14) 

where the meaning of Vkwlb is given by 

(15.15) 

evaluated at k = h. If we carry through the same analysis as equations (15.9)- 
(15.1 l), but in three dimensions, we will find our ‘freeze-frame’ A(x) translating 
at a vector group velocity given by 

a w  
vg = - ak (15.16) 

with an overall time-dependent oscillation superimposed, as before. Note that vg 
may not only have a different magnitude from vp, but even a different direction. 

Problem 15.3: Prove Equation (15.16), following the derivation given in 
one dimension in equations (15.9)-(15.11). 

We are assuming that the plasma medium is inhomogeneous so, based on 
our experience with light rays and lenses, there is no reason to expect the location 
of the peak of the k spectrum, ko, to be preserved. On the other hand, since 
the background medium is by hypothesis linear and time-independent, w (h) 
should be constant. This means that the total derivative of w, moving with the 
wave-packet, must vanish. Assuming we know w = w(x ,  k) for our medium, 
the total derivative of w can be expressed in terms of its partial derivatives by 

(1 5.17) 

The partial derivative with respect to x is at fixed k, and vice versa. Thus 
we have, in general, ‘equations of motion’ or ‘ray-tracing equations’ for our 
wave-packet: 

(15.18) 

As the wave-packet propagates it maintains the peak of its frequency 
spectrum, but its wave-number spectrum transforms. To trace out a ‘ray’ one 
must integrate forward in time the packet’s position in both x- and k-space, 
since the future propagation depends on both xo and b. 
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The analogy to Hamiltonian mechanics is evident, as is the parallel with 
quantum mechanics, where hw is identified as the energy of a photon and h k  as 
its momentum. The ray-tracing equations are only valid in the limit of so-called 
'geometrical optics', where the wave-packet is also well localized in physical 
space such that Sx awfax  << w ,  where Sx = a,% + ay9 + U$, and is well 
localized in k-space such that Sk. awfak  << U ,  where 6k = %/ax +9/ay +2/az. 

In this same limit of geometrical optics, we can use the Wentzel-Kramers- 
Brillouin (WKB) approximation to determine the wave phase at any location along 
the ray trajectory. In this approach we note that b ( t )  is implicitly a function 
of q ( t )  along the ray, since both are explicitly functions of t .  If we imagine 
sending out a steady beam of radiation, rather than a wave-packet, the energy 
will still propagate along the group velocity vector. Along this ray-trajectory, 
now, the continuous spatial derivative of the wave phase will be b, while the 
time-derivative of the phase will continue to be -WO (which does not vary in 
time or space). Thus the phase difference at fixed time between two points xo 
and XI along the ray path, 1, is given by 

A@ = lox' b - dl. 
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Waves in an unmagnetized plasma 

For simplicity we will begin by considering waves in an unmagnetized plasma- 
a simple homogeneous isotropic system. Such systems are somewhat unusual, 
since plasmas tend to be confined by magnetic fields, and they also tend to 
generate magnetic fields due to their own internal currents. Nonetheless this 
is an interesting situation to analyze. Furthermore, some plasma oscillations 
behave as if there were no magnetic field, even if one is present. For example at 
high enough frequencies, far above the electron cyclotron frequency, the particle 
trajectories cannot trace out any fraction of a cyclotron orbit before the wave 
fields reverse sign. (In the fluid equations this means the inertial, pressure, and/or 
electric-field terms dominate the j x B  term.) There are also waves whose electric 
fields are polarized along the equilibrium magnetic field, Bo, with the result that 
the driven particle motion never interacts with the magnetic field. 

16.1 LANGMUIR WAVES AND OSCILLATIONS 

If electrons in an unmagnetized plasma are displaced from their equilibrium 
positions as an initial condition, leaving the ions unmoved, the electric field 
that is created will act as a restoring force, pulling the electrons back towards 
exactly neutralizing the ion charge. The energy initially stored in the electric 
field will be converted into electron kinetic energy, however, and when the 
electrons arrive at their ‘home’ positions they will have kinetic energy, and as a 
result will overshoot, and build up a new out-of-equilibrium density distribution 
on the other side. This process, called a Langmuir oscillation, is illustrated in 
Figure 16.1. 

As we will see, the period of this oscillation is very short and in this 
short time the ions have too much inertia to respond. Thus we can consider 
the ions to be a stationary background to the calculation. On the other hand, 
the whole process depends on the electron inertia (which is what gives rise to 
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TIME + 
Figure 16.1. Schematic diagram of a Langmuir oscillation. The dots represent electron 
density; time flows to the right. 

the overshoot), so we have to include mn,h, in the electron-fluid equation of 
motion: the Boltzmann distribution will not describe the electron dynamics on 
this rapid time scale. Notice that we are finding a hierarchy of approaches to 
the equation of motion: 

(i) Very fast time scale-assume the species does not move at all. 
(ii) Medium time scale-include inertial effects. 
(iii) Very slow time scale-Boltzmann distribution. 

Having dispensed with the ion force balance equation by legislating that 
the ions remain at rest, let us consider the electrons. We will consider the case 
with no B field, but finite scalar electron pressure, so that the equation of motion 
of the electron fluid is 

mne[lie + (U ,  - V)U,] = -en,E - V p , .  (16.1) 

We will also make use of the electron continuity equation: 

ri, + v - (n,u,)  = 0. (16.2) 

With our assumptions, the ion continuity equation is uninteresting. Furthermore, 
since we are not going to circumvent Poisson’s equation via the Boltzmann 
relation, we need it also: assuming ions with Z = 1, it is 

COV - E = e(ni - ne) .  (16.3) 

In this analysis, we will oniy consider the case where the electrons move 
in the direction of propagation of a plane wave, and the electric field points 
in this direction as well. This is not the only possible physical situation, by 
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any means, but we will start with this case-the so-called ‘Langmuir wave’, or 
‘plasma wave’. Because of this restricted choice of motion, we will find that the 
displacement current (EOEI) is equal and opposite to the current carried by the 
electrons, so there is no first-order B field, and these are totally electrostatic (as 
opposed to electromagnetic) waves. For notational simplicity, we will assume 
that the wave is propagating in the x direction (we do not have a special direction 
such as a magnetic field in this case). The V operator simply becomes %/ax. 
If we take all of our first-order quantities to vary as exp[i(kx - w t ) ] ,  then alax is 
further simplified to ik, and slat becomes simply -iw. Dropping the subscript 
‘e’, since we are only considering the electrons here, linearizing equation (1 6. l ) ,  
and dotting with % we obtain 

-iwmnouI = -enoEl - ikpl (1 6.4) 

where we had to recognize that uo = 0 and Eo = 0. We have dropped terms 
quadratic in U I ,  consistent with our linearization scheme. 

The pressure perturbation, P I ,  needs to be related to nl from the equation 
of state. If we assume that the compression of the electrons happens one- 
dimensionally, and adiabatically (faster than thermal conduction), we have 
p a ny, y = 3, so that pl can be derived as follows: 

p = CnY 
dpldn = yCnY-’ = yp/n = y T  
dp = yTdn 
PI = yTn1. 

(16.5) 

Thus we have, for the equation of motion of the electron fluid, 

iwmnoul = enoEl + 3ikTnl. (16.6) 

The continuity equation linearizes to 

-iwnl + iknoul = 0. (1 6.7) 

(We can see here that interesting physics is probably contained in terms like nl u1, 
which must become important as the waves grow in amplitude, and something 
new could arise from uonl in a moving plasma, i.e. non-zero UO, but we leave 
these nonlinear physics aspects aside for now.) Poisson’s equation is just 

ikEoE1 = --en1 (16.8) 

where the ion contribution to the charge density has served only to neutralize the 
equilibrium electron contribution, and has no perturbed component. Since there 
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is no zeroth-order electron flow, the first-order current carried by the electrons 
is given by 

jl = -enoul = -e(w/k)nl = iweoEl = -coEl (1 6.9) 

which may be substituted into the Maxwell equation 

V x BI = PO j1 + POCOEI (16.10) 

to show that there is no perturbed magnetic field: this ‘longitudinal’ wave 
(‘longitudinal’ means El 11 k) is indeed electrostatic, as we claimed earlier. 
Another way to see that longitudinal waves in general must be electrostatic is to 
recognize that V X X I  for any perturbed quantity X I  varying as exp[i(k.x-ut)], 
is the same as ik x XI. If El is parallel to k, then V x El = 0, which tells us 
that iwBl = 0. 

Problem 16.1: Prove that V x X I  = ik x X I  for quantities XI that vary as 
exp[i(k * x - of)]. 

Now let us solve equation (16.7) for noul 

and equation (16.8) for El 

El = -enl/ikeo (16.12) 

and then substitute into equation (16.6) to arrive at an equation with nl as the 
only first-order quantity. We obtain 

iu2mnl -e2non1 
k ikeo 

- + 3iTnl. (16.13) 

Multiplying through by -ik/mnl, assuming we are not allowing the trivial 
solution nl = 0, we obtain the ‘Bohm-Gross dispersion relation’, first derived 
by D Bohm and E P Gross (1949 Phys. Rev. 75 185 1): 

2 (16.14) w = wpe + 3k Tlm = wf + 3k2v:, 2 2  

where wpe, the ‘electron plasma frequency’, is given by 

~f = n,e2/Come (16.15) 
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and ut,e = (T /m)’ /*  is the usual electron thermal velocity. There is also an ion 
plasma frequency, with all ion quantities in its definition, but it is less commonly 
encountered, so wp without a species subscript generally refers to wpe. 

Equation (16.14) can be cast in the form w = w(k)-this is referred to as a 
‘dispersion relation’, in this case for the electrostatic plasma wave, or Langmuir 
wave. It is useful to plot this Bohm-Gross dispersion relation on dimensionless 
axes, by dividing both sides by wp, as shown in Figure 16.2. 

Electrostatic Langmuir Wave 

4 -  

Bohm-Gross 

0 0.5 1 1.5 2 2.5 3 

kvt,$Op = khD 

Figure 16.2. 
Langmuir wave in an unmagnetized plasma. 

Bohm-Gross dispersion relation for the high-frequency electrostatic 

First of all, we note that there are no Langmuir waves at all with w < up. 
Furthermore, waves with w > wp only occur as a result of the finite-temperature 
effect. At long wavelength (low k ) ,  or low temperature, the wave phase velocity 
w / k  (which is proportional to the slope of a line from the origin to the dispersion 
curve) can become arbitrarily large, much greater than the electron thermal 
velocity, and even greater than c. This certainly justifies our approximation 
of adiabaticity, that thermal conduction cannot keep up with the moving wave 
front. By contrast, the group velocity aw/ak (which is proportional to the slope 
of a line tangent to the dispersion curve) goes to zero in this vicinity, so no 
information or energy propagates. This non-propagating wiggle at low k is 
sometimes referred to as a ‘plasma oscillation’, since it was the first oscillation 
observed in this new state of matter. 

At large k (short wavelength), or high temperature, the Bohm-Gross 
dispersion relation begins to look rather like an electron sound wave. The group 
and phase velocities both converge to and the wave propagates forward in 
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the manner of a sound wave. In contrast to a sound wave in  a gas, the dynamics 
are mediated both by the electric field and by Vp,. The greatest differences 
come, however, when we include collisionless kinetic effects associated with 
the class of particles that move at velocities close to the wave phase velocity. 
These effects, called Landau damping, will be discussed in Chapter 24. 

16.2 ION SOUND WAVES 

Let us now look at another longitudinal (k 11 El), and therefore electrostatic, 
wave in an unmagnetized plasma. In this case we will assume (and later verify) 
that the frequency is low enough that the ions can participate in the motion, but 
the electrons are able to establish nearly exact force balance (i.e. a Boltzmann 
distribution) on the oscillation time scale. We will continue to take Bo = 0, and 
since we will take k 11 El,  we have B1 = 0 as well. The ion fluid equation, for 
scalar pressure, is then 

Mni[Ui + (ui - V ) U ~ ]  = eniE - Vpi (16.16) 

where the upper-case M indicates an ion mass, and we have again assumed 
Z = 1. We now (as usual) linearize this equation, taking advantage of the 
electrostatic nature of the oscillation to write El as the gradient of a potential 
( V  x El = 0), and using the equation of state to relate pi1 to nil. We make our 
usual plane wave and sinusoidal assumptions and note that, in this unmagnetized 
longitudinal wave, the fluid motion has no reason to be in any direction other 
than k, so we treat U , ]  as a scalar, i.e. the component of U,]  in the k direction. 
Equation (1 6.16) becomes 

For the electrons, we assume a Boltzmann distribution: 

(16.18) 

Next we use Poisson’s equation. (If we were treating only the limit of 
small k ,  i.e. khD << 1, our knowledge of Debye shielding would tell us that we 
could instead use quasi-neutrality: nil = riel). We obtain 

EOV * E I  =  EO^ 2 41 = e(nil - riel) = e[ni~ - neo(&l / Te)1 (16.19) 

allowing us to solve for nil as a function of 41, i.e. 
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where we have assumed nio = neO, required for our case of Z = 1. We also 
need the linearized ion continuity equation: 

iwnil = nioikuil. (16.21) 

We can now cast all the first-order terms in equation (16.17) in terms of nil ,  
using equations (16.20) and (16.21). We obtain (multiplying throughout by i) 

(1 6.22) 

Dividing throughout by Mknil (again assuming we are not looking for the trivial 
solution nil = 0), we obtain 

( w / k ) 2  = T e / M  +YiTi /M 
1 + k2Ak 

(16.23) 

where we define A: E coTe/nee2 = 
In the long-wavelength ( k  --f 0) limit, this is very similar to a normal sound 

wave, where we note that the electrons and the ions both contribute pressure, 
but the ions contribute essentially all of the mass. The appearance, effectively, 
of ye = 1 is consistent with our assumption of a Boltzmann distribution, and 
so isothermal electrons. The phase velocity of this wave is of the order of the 
ion sound speed, so the electrons generally have plenty of time to free-stream 
and equilibrate their temperature ahead of the wave propagation. This is not 
the case for the ions. In the limit of sufficient collisions to prevent ion thermal 
diffusion at speeds close to the sound speed, we should take to be the usual 
adiabatic isotropic 513. In the absence of collisions, but with Ti << T, so ion 
thermal motion cannot keep up with the wave, we can assume a one-dimensional 
adiabatic compression for the ions, equivalent to yi = 3. Note that since many 
laboratory plasmas designed for wave studies have Ti << T,, the 'ion sound 
speed', Cs, is usually defined as ( T e / M ) I l 2 .  

For large wavelengths (small k ) ,  the ion sound wave is a constant phase 
velocity and constant group velocity wave. At short wavelengths (large k ) ,  i.e. 
less than a Debye length (where this A D  is defined without the T1 term shown 
in equation (1.36)), the ion sound wave turns into a constant-frequency wave, 
at the ion plasma frequency nP ( m / M ) 1 / 2 ~ p  (where the upper-case C2 here 
indicates ions). 

There is an interesting complementarity between the ion and electron 
longitudinal (k II El) electrostatic waves in an unmagnetized plasma. The 
electron waves have constant frequency wp at kVt,e/wp = kAD << 1, but travel at 
a constant phase velocity of at shorter wavelengths (larger k ) .  The ion 
waves, by contrast, travel at constant phase velocity C, for kAD << 1, but become 

as is common in the literature. 
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constant frequency Rp for k ; l D  >> 1. The electron waves look like electron sound 
waves at short wavelengths, and the ion waves look like ion plasma oscillations 
at short wavelengths. In Figure 16.3 we plot the ion sound dispersion relation, 
for Ti = 0, on appropriate dimensionless axes. In collisionless plasmas, unless 
T, >> T i ,  ion sound waves are subject to ion Landau damping, analogous to the 
electron effects for Langmuir waves, as will be discussed in Chapter 24. 

Waves in an unmagnetized plasma 

1 .o 

a 5 0.5 

0 

i 
0 1 2 3 

kVt,e/Wp = Idd 

Figure 16.3. Dispersion relation for the ion sound wave in an unmagnetized plasma. 

Both the Langmuir wave and the ion sound wave dispersion relations also 
apply in a magnetized plasma, for the special case of kl [El I /Bo, since the Lorentz 
force will not come into play in such geometry. 

16.3 HIGH-FREQUENCY ELECTROMAGNETIC WAVES IN AN 
UNMAGNETIZED PLASMA 

So far we have found two electrostatic waves in an unmagnetized plasma, the 
‘plasma wave’ with o >_ up, and the ion sound wave with o 5 R,. There is 
also a high-frequency electromagnetic wave in an unmagnetized plasma, which 
we will now study. To do this, we will need more of Maxwell’s equations. 

Given our assumption of sinusoidal plane waves, we can write 

ik x Bl = pojl - iwEl/c2 
ik x El = iwBI. 

(16.24) 
(16.25) 
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Taking the cross-product of equation (16.25) with k, we obtain 

ik x k x El = o(pQjl - ioEl/c2) = ( 0 2 / c 2 ) Q ~ / ( c ~ o )  - iE11 (16.26) 

or using a vector identity to simplify the left-hand side (see Appendix D) and 
multiplying throughout by i, we find 

k2Ei - k ( k . E i )  = (02/c2)[EI + ijl/(cOo)]. (16.27) 

The first terms on each side give rise to the usual result for electromagnetic 
waves propagating in vacuum. This equation was not needed in the electrostatic 
case. For k 11 El ,  the left-hand side is zero, and we see that the displacement 
current and the real current cancel each other, an effect we noted before. All 
the interesting physics came from the continuity equation and the electric fields 
associated with (T, the charge density-as would be expected in an electrostatic 
wave. Now, however, we will take El to be ‘transverse’, the opposite of 
longitudinal, i.e. k - El = 0. As we will show in Problem 16.2, there is no wave 
in an unmagnetized plasma with E at an oblique angle to k; the components of E 
longitudinal and transverse to k simply propagate separately as an electrostatic 
and an electromagnetic wave, respectively, in  an unmagnetized plasma. (Notice 
that we are not using the words ‘parallel’ and ‘perpendicular’ relative to k; 
we reserve those terms for use relative to Bo, when we introduce a zero-order 
magnetic field in the next Chapter.) Since k El = 0 (i.e. V - E = 0), we have 
(T = 0 at all times for the waves we are looking at here. Thus we do not need 
to consider the continuity equation in this calculation. 

We are working in the high-frequency regime where we can consider the 
ions to be stationary, so we write 

jl = -nom1 (16.28) 

where we have dropped the subscript ‘e’ since the ions are not of interest in this 
calculation. The relevant linearized fluid equation of motion for the electrons, 
for this case, is simply 

- i o ” ]  = -eEl (16.29) 

so that 
jl = -noe2El/iwm. (16.30) 

One might ask about the absence of V p ,  from the fluid equation of motion, 
This is because if (T = 0 due to k - E = 0, and the ions are not moving, then 
there is no n,l ,  and so no p e l ,  no matter what equation of state we use. We say 
‘the fluid motion is incompressible’, meaning that this particular wave does not 
compress the fluid. Equation (16.27) becomes 

(c2k2 - 02)E1 = iojI/co = (-noe2/mco)El (16.31) 
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or 
w2 = C2k2 + up' (16.32) 

so 
w = (c2k2 + w:)' l2 = ck(  1 + u : / c 2 k 2 ) ' l 2 .  (16.33) 

This is the dispersion relation for an electromagnetic wave propagating in an 
unmagnetized plasma. (This dispersion relation also holds for high-frequency 
electromagnetic waves in a weakly magnetized plasma, where w >> w,. 
Furthermore, it is also correct for high-frequency electromagnetic waves with 
El IIBo, since the Lorentz force will not affect such a wave.) This is the classic 
example of a wave in  a dispersive medium. Figure 16.4 shows this dispersion 
relation on appropriate dimensionless axes. 

Electromagnetic Wave, 
Unmagnetized Plasma 

t 
t 1 / /  t 

0 
0 1 2 3 4 5 

C k h ,  

Figure 16.4. Dispersion relation for the high-frequency electromagnetic wave in an 
unmagnetized plasma. 

Problem 16.2: Start with the electromagnetic wave equation, equa- 
tion (16.31), and substitute for jl in terms of El by using the electron fluid 
equation of motion ((equation (1 6.1), including the electron pressure) and 
then Poisson's equation. By separately dotting and crossing the resulting 
equation with k, show how to generate the dispersion relations for longi- 
tudinal plasma waves and for high-frequency electromagnetic waves, and 
show also that one dispersion relation w(k) must hold if k . El # 0, and 
the other must hold if k x E, # 0. This implies that there is no class of 
waves that propagates with k at an intermediate angle to E. 
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From the last step in equation (16.33), we see that 

up w / k  = c(1 + w;/c2k2)‘I2 > C .  (16.34) 

The phase velocity is greater than the speed of light, and varies with k (or, 
equivalently, with 0). Of course the group velocity cannot be greater than c. 
From the first step of equation (16.33), we have 

ug = aw/ak  = C2k/(C2k2 + 
= c/( l  + w;/c2k2)’I2 < C. (16.35) 

At low k (long wavelength, ck << wp), these are constant-frequency waves 
at w = wp, while as the frequency increases and the wavelength decreases (k 
increases), they turn into vacuum electromagnetic waves propagating at the speed 
of light. Eventually the frequency becomes so high that the electrons’ inertia 
keeps them from responding significantly. 

An interesting feature of this wave is that it cannot propagate in a plasma 
with wp > 0. There is a ‘cutoff density’ given by 

(16.36) 

above which a wave impinging on a plasma is reflected back. This is the 
means by which low-frequency electromagnetic waves are reflected from the 
ionosphere and propagate around the Earth, allowing short-wave buffs in the 
Northern hemisphere to talk with their friends in Australia. Fortunately for 
the Australians, high-frequency waves such as those used for high-bandwidth 
broadcasting, like television, are not reflected by the ionosphere, and so the 
Australians are not directly afflicted with American television (and vice versa). 

2 2  n, = mecow / e  

Problem 16.3: Based on the above observations estimate a lower and 
an upper bound for the electron density in the ionosphere. 

It is interesting to calculate how deeply an electromagnetic wave penetrates 
into an overdense plasma (one where w < up, or equivalently n > n,,.so the 
wave cannot propagate). The dispersion relation can be solved for real w but 
imaginary k in this case: 

(16.37) 

For our ‘plane wave’ geometry, which admits of evanescent solutions, we have 

exp(ikx) = exp[-x(wi - w2)’I2/c] (16.38) 

k = (w2 - w; ) ’ / * / c  = f i ( w p  2 - w 2 ) 112 / e .  
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where the sign of k is chosen to match the physical situation. The penetration 
depth is then c/ (w;  - w2)1/2. The solution at w = 0, namely c/wp, is sometimes 
referred to as the ‘collisionless skin depth’. Note that this evanescence is not 
caused by dissipation of the wave energy-the wave and its energy are simply 
reflected. In the presence of some dissipation, such as collisions, the penetration 
depth is finite (i.e. k has an imaginary part) even for w > up. 

Problem 16.4: A plasma with n I nc can bend electromagnetic radiation 
considerably. Consider a cylindrical plasma with a hollow n ( r )  profile, 
n ( r )  = n,r2/a2. Show that the ray-tracing equations for a wave-packet 
of electromagnetic radiation can form a circle of radius r = a/&. (You 
can think of the wave-fronts as ‘steering’ around the circle because A. is 
greater in the higher-density plasma on the outside than in the lower- 
density plasma further inside.) Hint: the mathematics is simplified if you 
work in terms of n / n c  = w ; / w 2 .  

Having referred to the electromagnetic waves we have just studied as ‘high- 
frequency’ waves, we might appropriately ask whether there are any ‘low- 
frequency’ electromagnetic waves in  an unmagnetized plasma. In fact, there 
are none. The electron motion ‘shorts’ them out, and no waves propagate with 
w < wp. When we include a magnetic field (in the next two Chapters), the 
electrons are prevented from shorting out certain waves, and as a result whole 
classes of new waves becomes possible at lower frequencies. The high-frequency 
waves also become more interesting-in particular, the electromagnetic waves 
are no longer purely transverse and incompressible. 
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Chapter 17 

High-frequency waves in a magnetized 
plasma 

In this Chapter, we will introduce a magnetic field, Bo, into the background 
plasma equilibrium, and begin to investigate propagation in the resulting 
anisotropic medium. The direction of propagation of the wave, k/ k ,  now affects 
the dynamics, as well as the polarization of the wave electric field relative to 
the equilibrium magnetic field. In this Chapter, we will assume that the wave 
frequency is high enough that the ions can be considered as stationary. The new 
dynamical effect (i.e. Larmor gyration) that is introduced by the magnetic field 
creates the possibilities of wave ‘resonances’ as well as ‘cutoffs’ such as we just 
derived for the unmagnetized electromagnetic wave at w = up. We will take this 
opportunity to ‘compare and contrast’ cutoffs and resonances. In this Chapter 
we will only examine waves propagating perfectly perpendicular and perfectly 
parallel to Bo. In Chapter 18 we will develop the formalism for arbitrary angles 
of propagation. 

17.1 HIGH-FREQUENCY ELECTROMAGNETIC WAVES 
PROPAGATING PERPENDICULAR TO THE MAGNETIC 
FIELD 

We now treat the case of high-frequency electromagnetic waves in the presence 
of a zeroth-order magnetic field, Bo. We will start with waves propagating 
perpendicular to Bo (i.e. k I Bo-‘perpendicular propagation’ as opposed to 
‘parallel propagation’, k 11 Bo, which we will study in the next Section. Note that 
we use the nomenclature ‘perpendicular’ and ‘parallel’ to describe the orientation 
of k or E relative to Bo.) For perpendicular waves we find another division of 
wave types, the ‘ordinary’ and ‘extraordinary’ waves. The ‘ordinary’ waves 
(sometimes abbreviated to ‘0-waves’) are just that-ordinary. They arise where 
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we have a wave propagating perpendicular to Bo, but the wave’s electric field 
is oriented along Bo. This means that the magnetic field plays no role in 
the wave dynamics, so we can apply the previous results for high-frequency 
electromagnetic waves in an unmagnetized plasma with UI 11 El. The Lorentz 
force U]  x Bo is null, i.e. the ordinary mode never notices Bo. Thus the previous 
calculation and its resulting dispersion relation go through as before for the 
ordinary mode. Remember that the high-frequency electromagnetic wave in an 
unmagnetized plasma is purely transverse (El I k); for the ordinary wave in 
a magnetized plasma with k I Bo (‘perpendicular waves’), this is just E1 I k 
and E, II BO. 

Problem 17.1: An 0-wave of angular frequency wo propagating through 
a plasma with ne < nc has a longer wavelength than a wave at the 
same frequency propagating in vacuum. For a wave propagating in the 
x direction, with a slowly varying spatially non-uniform wave-number, k ( x ) ,  
the formula for the phase factor of the wave at location xI and time t l  is 
given by the WKB approximation 

if we take the phase to be zero at t = to and x = xg. Find the difference in 
phase at location x1 and time tl between an 0-wave propagating between 
xo and x1 in a plasma, and a wave propagating the same distance through 
vacuum, given n e ( x )  along the path of propagation in the plasma. Assume 
ne/n,  to be small, but do the calculation to second order in n,/nc. 

The other possible orientation of El, i.e. El I Bo, has some extraordinary 
properties, and it is referred to, appropriately, as the ‘extraordinary’ wave 
(sometimes abbreviated to ‘X-wave’). It has both transverse and longitudinal 
components, depending. on the frequency w. When w is very close to the 
‘upper-hybrid’ resonance (which we will define shortly), it is purely longitudinal 
(El 11 k), but elsewhere it has a transverse component (El I k). In general, 
the electric field of this wave has a component along k (I to Bo) and also 
a component perpendicular to both k and Bo. If we choose Bo to lie in the 
z direction, and k to lie in the x direction, then E1 may have components in 
both the x and y directions. 

We will take the ions to be stationary, since their inertia is too large for 
them to respond to a high-frequency wave, and we will neglect the electron 
pressure-which actually can matter here since this wave is nor incompressible. 
This approximation is sometimes called ‘cold plasma’ theory; it is equivalent to 
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assuming T, = Ti = 0. 

electrons is 
With these assumptions, the linearized fluid equation of motion for the 

-iwmu,l = -e(E,l + U , I B O )  

-iwmu,l = -e(E,I - U , I B O )  
(17.1) 

which can be straightforwardly solved for u , ~  and U , ] .  We may use the method 
of determinants to solve this system of linear equations, expressed in the form 

e E , l / m  = iwuxl - wcuyl 

e E , l / m  = wcu,l + iwu,]. 
(17.2) 

The determinant is w,” - w 2 ,  and the solutions are 

(elmI(iwEx1 + wcEy1) 
(U: - w2) 

(e/”iwE,1 - WCEXI) 
(U,‘ - w2) 

Uxl = 

U Y l  = 
(17.3) 

We proceed to substitute these electron fluid velocities into the wave equation, 
i.e. equation (16.27): 

k2E1 - k(k e El) = (w2/c2)[E1 + ij1/(60w)l (17.4) 

with j l  = -noeul. First we break this vector equation into its two components in 
the x and y directions. The vector El has no component in the z direction, since 
this would correspond to the ordinary mode we have already treated. Remember 
that we have chosen k to point in the x direction, so the left-hand side of 
equation (17.4) has no x component. From the x component of the right-hand 
side of equation (17.4), we obtain 

(17.5) i(noe2/wn)(iwE,l + w , ~ , l )  
w(w,’ - w2) 

Ex1 = 

and from the y component, multiplying through by c2/w2,  we get 

i(noe2/60m)(iwE,I - w c E x t )  
(1 - c2k2/w2)E,1 = (17.6) 

w(w,’ - w2) 

Noting the presence of w; in these equations, and observing also that we have 
here two linear equations in two unknowns, we multiply through by (U: - w2)  
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and rewrite the equations as 

(wf - w2 + wi)E,1 - i(wiw,/w)E,, = 0 
(17.7) 

i(wiw,/w)E,1 + [(l - c2k2/w2)(of - w 2 )  + w;]E,l = 0. 

Once again we can solve these equations by the method of determinants, but we 
do not obtain the amplitude of El from these equations: when the right-hand- 
side of this matrix equation vanishes then the solution is degenerate, and instead 
we obtain a criterion on the coefficients, that their determinant should vanish. 
This gives us 

( ~ f  - w2 + ~ ; ) [ ( l  - C 2 k 2 / W 2 ) ( W :  - U’) +U; ]  - ( w ~ w ~ / w ) ~  = 0 (17.8) 

which is effectively the dispersion relation [U = w ( k ) ]  that we are seeking. 
We define the ‘upper-hybrid’ frequency as 

(17.9) w ; = w ; + w , .  2 

The dispersion relation may now be written 

(1 - C2k2/W2)(wf - 0’) +up” = ( w ~ w , / w ) ~ / ( ~  - 02). (17.10) 

Looking at this equation, we see clearly that something interesting will happen 
at w = wh, the upper-hybrid ‘resonance’. It looks as if something may happen 
as well at w = wc, but this is an illusion. If we substitute w = w, into 
equation (17.10), we obtain the null result that w; = w i ,  and the k value is then 
not defined by this equation. For w arbitrarily close to wc, however, the k value 
is perfectly well defined, and the same on either side. Thus it is helpful to remove 
this spurious apparent sign of activity, since it is not a physical result, and a more 
transparent form of the dispersion relation may exist. (We should, however, note 
that in the full kinetic treatment-the so-called ‘hot plasma’ theory-some new 
physics arises at w = wc, and indeed at w = nuc for all n;  new modes, called 
‘electron Bernstein modes’ appear, named for their discoverer; see I B Bernstein 
(1958 Phys. Rev. 109 lo).) In any event, to simplify the cold-plasma dispersion 
relation, we proceed as follows: 

-wp2(wp2 + U,’ - 0 2 )  + (wp2wc/w)2 

(w; - w2) 
(1 - c2k2/w2)(wf - w 2 )  = 

Then dividing through by (w: - w 2 )  and rearranging terms we obtain 

w i ( 0 2  - wp2) 

w2 up2 w2(w2- wll ) ’ 
= I -  c2k2 c2 - = -  (17. 
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Here we see the result that at the upper-hybrid resonance, k -+ 00, i.e. the 
wavelength goes to zero. This is what is meant by a resonance. When k += CO, 

the phase velocity goes to zero, and the wave-fronts ‘pile up’. We can see from 
the first part of equation (17.7), that when w = a, then E,I/E,I -+ 0. Since 
k is in the x direction, this means that the resonance has k 11 El, implying that 
the upper-hybrid resonance is purely electrostatic. 

The dispersion relation also has two cutoffs, defined as where k + 0, i.e. 
the wavelength goes to infinity. These can be found by setting 

2 2  2 2 2 2  w (0 - w, -up) = wp(w - w,’). (17.13) 

This is a quadratic equation for w2; dividing both sides by w2(w2 - ut), we 
obtain 

(17.14) 2 2  2 1 - w c / ( w  - wp) = w2/02 P 
and, continuing the algebraic manipulation, we have 

(1 - wpz/w2) = (w,2/w2)/(1 - w,’/w2) (17.15) 

from which we take the square root, to obtain 

( 1  - w;/w2> = * ( w c / w )  (17.16) 

which gives us two quadratic equations, with (presumably) a total of four 
solutions. The quadratic equations can be rewritten 

w2 f ww, - w; = 0 (17.17) 

and the (four) solutions contain two independent f symbols: 

w = i [ f w ,  f (U: + 4 ~ : ) ’ / ~ ] ,  (17.18) 

However, a negative w is meaningless-by convention w > 0, and k is a signed 
vector to give us the direction of propagation-so two of the solutions are not 
useful, and we obtain only two physically distinct cutoff frequencies: 

(17.19) 

The + sign gives the ‘right-hand’ cutoff frequency, and the - sign the ‘left- 
hand’ cutoff frequency, denoted W R  and WL respectively. The reason for this 
nomenclature is that these same frequencies will appear as cutoffs for left-hand 
and right-hand circularly polarized waves propagating parallel to Bo, which we 
will discuss in the next Section. Cutoff frequencies do nor vary with angle of 
propagation. By contrast, the upper-hybrid resonance falls in frequency as the 

Copyright © 1995 IOP Publishing Ltd.



274 High-frequency waves in a magnetized plasma 

wave moves away from perpendicular. It is also worthwhile noting here that 
the upper-hybrid resonance and the right-hand cutoff are clearly in the high- 
frequency domain. However, if wp << wc then the left-hand cutoff can appear at 
low frequencies, where ion dynamics can be important in the calculation of OL 
and in the wave dynamics in its vicinity. This is something we will investigate 
in the next Chapter. 

The cutoffs and resonances are important in part because they define the 
pass and stop bands where waves can propagate in a plasma. This is clearly 
illustrated in the dispersion relation for the extraordinary, or 'X-wave', where 
in Figure 17.1 we have chosen plasma parameters such that U,' = 2w;. This 
shows that waves can propagate in the pass band regions of w~ < w < a and 
w > OR, but a stop band exists in the range O h  < w < WR. The cutoffs are 
at the frequencies where the dispersion relation disappears into k = 0, and the 
resonances are where k + m. Note the curiosity that, for the lower pass band 
of the X-wave, up > c for w < wp, while up < c for w > up. 

W l ' i ' I  ' I  I '  I 

0 1 2 3 4 5 
Ck/O, 

Figure 17.1. Dispersion relation for the extraordinary wave propagating perpendicular 
to B in a magnetized plasma, with wf chosen to be equal to 2w;. 

In an experimental situation, generally we find a fixed-frequency wave being 
driven by a radio-frequency (rf) generator, and we are interested in studying the 
propagation of this wave in a specified plasma. Thus for a wave to reach the 
upper-hybrid resonance it must propagate down a density gradient or magnetic- 
field gradient, so that w < oh = (0: + w:)'/* in the propagation region, but 
then w = a at the resonance. F'ropagating a wave down a density gradient 
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is usually difficult to arrange, since the rf source is usually located outside of 
the plasma, so one has to rely instead on propagating down a magnetic-field 
gradient. To reach the W R  cutoff, by contrast, requires propagating up a density 
or magnetic-field gradient, which is easier to arrange. 

If we nonetheless imagine an X-wave propagating perpendicular to Bo, and 
directly down a density or magnetic-field gradient until it reaches the upper 
hybrid ‘layer’, something interesting is clearly going to happen as the phase 
velocity goes to zero. In this situation, it is also interesting to look at the 
group velocity, dwldk. In the vicinity of the upper hybrid resonance we can see 
graphically from Figure 17.1 that the group velocity is going to zero. Multiplying 
equation (17.12) by w2 and differentiating, we have, as w + Wh: 

2wp2wdo 2wp20,2wdo 
2c2kdk M 2wdw + + (17.20) 

(U,’ - w2) (U,’ - w2)2 
and the third term dominates near wh = w. Using an approximation for up 
obtained by solving equation (17.12) near w = wh, i.e. 

(17.21) 

If we consider a wave-packet as a bundle of energy and ug the velocity at which 
the bundle travels, then when ug goes to zero, the bundle stops moving. Since 
the rf generator keeps ‘sending in bundles’, it is interesting to ask whether the 
energy stops at the resonance and builds up wave energy-density until some 
process outside of linear cold-plasma theory absorbs or otherwise converts the 
energy, or whether the wave energy is reflected back out of the plasma. 

The concept of a discrete wave-packet begins to break down under these 
circumstances, but we can obtain a feel for the answer by examining the spatial 
dependence of the group velocity, ug. From the equation of motion of a ball 
rolling in a well, it is clear that for wave energy to be reflected we need the 
spatial derivative of up’ to be non-zero, in order for there to be finite acceleration 
at the top of the roll of the ball (or equivalently at the resonance, where ug 
is zero). Just as ordinary kinematics tells us that acceleration can be written 
(d/dx)(u2/2) = udu/dx = du/dt, the acceleration of a wave-packet is also 
given by (d/dx)(ui/2). If the spatial derivative of ug is  zero, the ball has found 
a shelf at the top of its roll, and stays there, as illustrated in Figure 17.2, and by 
analogy the wave energy in this case just steadily builds up at the resonance as 
more packets are sent in. 

Near the resonance, up’ varies as 
up’ = (w; - 0 2 3  ) c 2 /(wpw,m)2 (17.23) 
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Kinetic + 
potential 
energy 

Ball will return. 
Ball will be 
stacked at the top. 

/ 

/ 

I I Cutoff Resonance 

Figure 17.2. Mechanical analog to wave cutoffs and resonances. 

Assuming that the spatial profiles of all the plasma parameters are smooth, it is 
clear that the spatial derivative of U: will be zero at just the place where ug is 
zero, since a factor that vanishes at least as rapidly as (w; - w ) ~  will remain after 
the right-hand side of equation (17.23) is differentiated with respect to a spatial 
coordinate. Thus, within the confines of linear cold-plasma theory and assuming 
purely perpendicular wave propagation, the wave amplitude must grow steadily 
at the upper-hybrid layer when we pump energy in from the outside-which is 
why this is called a resonance! 

To see how cutoffs work-which is very different from resonances-it is 
simplest to consider the cutoff of the electromagnetic wave at w = wp in an 
unmagnetized plasma. (This has the same dispersion relation as the ordinary- 
mode (El 11 Bo) perpendicular (k I Bo) waves in a magnetized plasma.) There 
we had 

(17.24) 2 = w ; + k 2 c 2  

(17.25) 

so 

up' = c 2 / ( 1  + w i / k 2 c 2 )  

= c 2 / [  1 + w,2/(w2 - w33 

= c2/[w2/(w2 - U;)]  

= c2(1 - wi/w2)  (17.26) 

which clearly has a non-zero spatial derivative (assuming, of course, that the 
density has a non-zero gradient) at the place where n = n,, i.e. at w = wp. 
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Thus there is a ‘restoring force’ at the cutoff, accelerating the wave energy back 
out of the plasma, so that it does not accumulate at the cutoff. Generally wave 
energy is essentially fully reflected at a cutoff, although refraction effects need 
to be taken into account for the specific geometry under consideration. In some 
geometries refraction will bend the ray trajectory such that it never even reaches 
the cutoff. 

Problem 17.2: Show that wave energy does not in general accumulate 
at the wR and wL cutoffs of the X-wave. Hint: first re-express 
equation (17.12) in the elegant form: 

When you obtain the formula for the group velocity, note that it does not 
contain (w2 - U:) or (w2 - U:) to any power greater than unity, so the 
spatial gradient of the square of the group velocity at the cutoff need not 
be zero. (For some perverse choice of plasma parameters and gradients, 
the vanishing of this spatial gradient could be arranged, but it is not a 
fundamental feature of the equations, as at the upper-hybrid resonance.) 

17.2 HIGH-FREQUENCY ELECTROMAGNETIC WAVES 
PROPAGATING PARALLEL TO THE MAGNETIC FIELD 

In the previous Section, we treated high-frequency waves propagating 
perpendicular to Bo (i.e. k I Bo). Now we treat the case of parallel propagation, 
k 11 Bo, again in the high-frequency limit where the ions can be considered 
stationary compared to the electrons. 

As usual we will have Bo in the z direction, and so k is now also in the 
z direction. Once again, we use the wave equation 

k2El - k(k.  El) = (w2/c2)[E1 + ijl/(~ow)]. (17.27) 

There is a longitudinal mode (El 11 k) propagating parallel to Bo, i.e. with 
k ( 1  Bo, but it is just the electrostatic Langmuir wave which we have already 
studied for Bo = 0. In fact, in the cold-plasma limit we are using here, it 
is just the Langmuir oscillation at w = wP, independent of k .  To find a new 
electromagnetic mode, we will take k . El = 0. Remembering that we have 
taken k to be in the z direction, we have 
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In our calculation of the extraordinary wave, we calculated u , ~  and uyl in terms 
of E r ]  and Eyl ;  see equation (17.3). Since Bo was in the z direction in that 
calculation also, the results apply in our present case as well, i.e. 

(e/m)(iwE,1 + wcEy1) 
(0; - 0 2 )  

(e/m)(iwE,l - W,E,I) 
(U; - 0 2 )  

U X l  = 
(17.29) 

U y l  = 

Next we will substitute for jl into equation (17.27) using j1 = -n,eul. The 
y component of the equation goes through just as for the extraordinary wave 

i(noe2/com)(iwEyl - wCE,1) 
(1 - C2k2/W2)Ey1 = (17.30) 

w(w,2 - w2) 

and because k is now in the z direction, the x component this time looks very 
much like the y component, i.e. 

(17.31) 

Casting these in the appropriate form for solution by matrix methods, we have 

i(w;w,/w)E,l + [(l - c2k2/w2)(w: - w 2 )  + w;]EyI = 0 
[ ( I  - c2k2/w2)(w2 - w 2 )  + w;]E,I - i(wiw,/w)Eyl = 0 

(17.32) 

and again we require the determinant to be zero, i.e. 

(O ;W, /O)~  - [(l  - C2k2/w2)(w: - w 2 )  + = 0 (17.33) 

so we have two solutions: 

(w;wc/w) = f [ ( l  - c2k2/w2)(w: - w2)  + U ; ] .  (17.34) 

(where ii is the index of refraction) we To solve for ii2 c2k2/w2 = 
multiply through by f l  and divide through by (U," - w 2 )  to obtain 

(17.35) 
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For the upper and lower signs, we call these the ‘L-wave’ and ‘R-wave’, 
respectively. Both of these solutions correspond to circularly polarized waves. 
This means that E,I and E,l oscillate 7r/2 out of phase with each other, but 
have the same amplitude. This can be seen from the first part of equation (17.32) 
coupled with equation (17.34). The solution corresponding to the upper sign has 
E,l = -iE,I, and the solution corresponding to the lower sign has E,I = iE,I. 
As it turns out, this implies that the upper sign corresponds to a wave rotating 
according to a left-hand rule: left thumb along Bo, fingers showing the direction 
of rotation of the electric field vector. The lower sign follows the corresponding 
right-hand rule. To illustrate this let us take x = 0 and an overall phase delay 
of zero for E,l. Then the time dependences of E,l and E,l for the upper sign 
(L-wave) are given by 

E,l(t) = Re{&l[cos(-wt) + i sin(-ut)]] = E,lcos(ut) 
E,l(t) = Re{-iEXI[cos(-wt) + isin(-ut)]} = -E,lsin(wt) 

(17.36) 

where the overbarred quantities are real wave amplitudes, and the quantities on 
the left-hand side are the physical fields. Figure 17.3 shows what happens as 
time progresses from 0 to 1r/2w. The E-field vector rotates according to the 
left-hand rule, since Bo is in the z direction. 

Y 

t = o  

Figure 17.3. Time progression of the E-field vector 
for a left-hand circularly polarized wave with Bo 
along the z direction, out of the page. 

t = d20 

Physically, the direction of rotation of the wave has impact on the dispersion 
relation u(k), because it is connected with the direction of rotation of the 
particles which carry jl. Both the L- and R-waves can propagate in either 
direction along Bo; the dispersion relation only includes k2. The L-wave by 
definition always has its electric field vector rotating with the left-hand rule, 
in relation to the direction of Bo. Similarly, the R-wave will always rotate 
according to the right-hand rule along Bo, which is of course the sense in which 
the electrons gyrate about Bo. Thus it is not surprising that the R-wave has a 
resonance at U,. (Note that in plasma physics the ‘handedness’ of a circularly 
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polarized wave is defined relative to Bo, but in other research fields it is usually 
defined relative to k.) 

In the case of the ordinary (0) wave (propagating perpendicular to Bo), 
the electric field vector is always parallel to Bo, so it is a plane-polarized 
wave. The electric-field vector in the extraordinary (X) wave (also propagating 
perpendicular to Bo) has both longitudinal and transverse components (but 
always perpendicular to Bo) which are phased 90" apart, as can be seen from 
equation (17.7). However the amplitudes of the two components are not the 
same, so the wave is elliptically polarized. It becomes linearly polarized, with 
E1 11 k (longitudinal, electrostatic) at the q, resonance. Above and below the 
resonance, the direction of rotation of the electric field vector in the X-wave 
changes sign. 

Figure 17.4. Left-hand circularly polarized electromagnetic wave propagating parallel to 
Bo in a magnetized plasma, with CU: chosen to equal 2w;. 

It is interesting now to look at the w versus k diagrams for the R- 
and L-waves. Let us begin with the simpler L-wave, shown in Figure 17.4, 
which corresponds to the solution of equation (17.36) with the + sign in the 
denominator. For the case plotted, we chose w:/wi  = 2, although this ratio can 
take on any value, depending on plasma parameters. This wave evidently has a 
simple dispersion curve. It propagates with up > c and ug c c (necessarily) 
for any frequency above the cutoff frequency, w ~ .  This is rather like the 
electromagnetic wave in the absence of a Bo field, which is, however, cut off 
at w = up. As in the case of the 0-mode, wave energy is reflected from the 
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cutoff. Setting k = 0 in the dispersion relation with the upper sign gives us a 
quadratic equation for the cutoff frequency WL:  

WL 2 + WLW, - wp’ = 0 (17.37) 

which has the solution 

OL = [-U, + (0: + 4 ~ p ’ ) ” ~ ] / 2  (17.38) 

which we found before as a cutoff of the extraordinary wave. (A f sign is 
obtained before the square-root term from solving the quadratic equation, but 
since w > 0 by convention, we must take the + sign.) Note that wc plays no 
special role in the L-wave. This is to be expected, since the electrons rotate 
around the magnetic field in the right-hand sense (in the nomenclature we are 
using here), so there is no resonance for the L-wave. However, for wp << wc,  the 
cutoff WL M wp(wp/w , )  can be at a low enough frequency that the ion dynamics, 
which we have ignored so far, can become important. 

Figure 17.5. Right-hand circularly polarized electromagnetic wave. propagating parallel 
to Bo in a magnetized plasma, with U,’ chosen to equal 2wi.  

The w versus k plot for the R-wave is more complicated, as a result of the 
w, resonance, as shown in Figure 17.5. We have again chosen to plot the case 
wz/wi  = 2.  We find a cutoff at OR, given by setting k = 0 in the dispersion 
relation with the lower sign, i.e. 

wR = [wc + (w: + 4wp) 2 112 I /  2 (17.39) 
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which we have also found before as a cutoff of the extraordinary wave. Again 
the + sign before the square root term is forced by the requirement to have 
w > 0. We note that W R  > w, (unlike the case for OL) so ion dynamics cannot 
be important for this cutoff. 

Note that now we obtain a resonance at w = U,, a result that should 
not be too surprising. A resonance, as we can see here, has w l k  --f 0, or 
ii = c k / o  + 03, because k + 03, 1 --f 0, as we discussed with respect to the 
upper-hybrid resonance of the extraordinary wave propagating perpendicular to 
Bo. In that case, the resonant frequency was wi = 0; + wz, and the plasma- 
frequency term entered because the wave compresses electrons, and so generates 
an electrostatic restoring force. The cyclotron-frequency term came from the 
Lorentz force, which causes this perpendicular resonance to be affected by the 
magnetic field, unlike the Langmuir oscillation. In the present case, since the 
transverse wave propagating parallel to Bo has k - E = 0, there is no electron 
compression or charge-density buildup, and so no wi in the resonance frequency. 
However, fork 11 Bo, and right-circularly polarized waves, the electron cyclotron 
frequency enters strongly. 

Problem 17.3: We showed that the resonance of the X-wave at the upper- 
hybrid frequency was purely electrostatic. Is the R-wave resonance at the 
electron-cyclotron frequency electrostatic or electromagnetic? 

An especially interesting feature of the w versus k plot for the R-wave is 
the presence of a new wave in the region of w < w,. The low frequency part 
of the R-wave is called the ‘whistler’ wave. In the frequency region below w,, 
the group velocity increases with frequency. This means that white radio noise 
generated in a burst in the ionosphere due to lightning flashes, and propagating 
as a whistler, will travel faster at high frequencies than at low. A ground- 
based receiver in the northern hemisphere will then hear a ‘whistle’ going from 
high frequencies to low due to lightning flashes in  the southern hemisphere 
located along the same magnetic field lines. The ray trajectories of the whistler 
focus along Bo, so one can use the properties of the received signal to deduce 
plasma conditions along individual field lines. When we include ion dynamics 
in Chapter 18, we will see that a low-frequency pass band also appears for the 
L-wave. 

Another interesting feature of the L- and R-wave dispersion curves is that, 
if we choose a frequency in the upper band of the R-wave, it always has a higher 
phase velocity than the corresponding L-wave. This may be seen by examining 
Figures 17.4 and 17.5, in particular comparing the k values corresponding to the 
same w value (choosing the upper frequency band of Figure 17.5). Because of 
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this, when linearly polarized rf energy propagates parallel to Bo, the angle of 
polarization of the wave rotates as it travels. This is called ‘Faraday rotation’. 

A linearly polarized wave can be viewed as the superposition of two 
counter-rotating (right and left) circularly polarized waves-and this is just how 
the plasma treats parallel-propagating high-frequency electromagnetic waves. 
Let us assume that at z = 0, we have a linearly polarized electromagnetic wave 
at frequency w,  with E,  in the x direction and both k and Bo in the z direction. 
We can decompose the electric field vector at this location into the sum of two 
circularly polarized field vectors as follows: 

E(z = 0)  = PEoRe[exp(-iwt)] = &(ER +EL)  (17.40) 

where 

ER(Z = 0)  = (+2 + i?)) exp(-iwt) 

EL(Z = 0)  = ($2 - i T y )  . Eo ,. exp(-iwt). 

At a distance 1 away from z = 0, along Bo, ER and EL evolve to 

EL(Z = 1 )  = (%f - 
where 

01 

(17.41) 

(17.42) 

At a fixed w ,  k~ > k ~ ,  so #L will be greater than h. The result is that a plane 
wave reconstructed at z = 1 will have rotated from the incoming plane wave at 
z =o:  

E(z = 1 )  = Re[ER(Z = 1 )  + EL(Z 1)] 
EO = gYRe {exp(-iot)[exp(i&) + exp(i4~)l)  

EO 
2 

+ )-Re (iexp(-iwt)[exp(i@R) - exp(i@~)]) 

= Eo [- xcos (@L;@R) - +)sin (@L;+R)] - 

x Re {exp[i(h + ( P R ) / 2  - iwtll (17.44) 

(the last step will be proved in Problem 17.4). 
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For 4~ > 4~ this corresponds to a linearly polarized field at z = I ,  rotated 
at an angle (h - &)/2 in the R direction relative to the polarization at z = 0. 
Measuring this Faraday rotation is a convenient way to determine the magnetic 
field in a plasma, if we can first determine the plasma density, and thereby 
the plasma frequency, up, by other means (such as measuring the phase shift, 
using the same beam!). In astrophysical situations it is not possible to control the 
radiation source (perhaps a rapidly rotating neutron star), or provide a ‘reference’ 
beam, but much information can be gleaned about magnetic fields by studying 
Faraday rotation as a function of frequency. It is also possible to use pulse delay 
as a function of frequency to measure plasma densities. 

Problem 17.4: Prove the last step in equation (17.44). This can be done 
in a number of different ways using trigonometric identities. Then in the 
spirit of Problem 17.1, calculate the Faraday rotation of a plane-polarized 
transverse wave propagating parallel to Bo, given n,(z )  and B ( z ) .  In this 
case, assume w << wp, wc and go only to first order in &w2, w:/w2, w; /w2.  

Problem 17.5: How would you use pulse delay, as a function of 
frequency, to measure the average plasma density between the Earth 
and a radio pulsar? 
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Chapter 18 

Low-frequency waves in a magnetized 
plasma 

In this Chapter, we investigate classes of waves that become available at lower 
frequencies due to ion motion. These waves have considerable practical and 
theoretical interest. The equations, however, become considerably more complex 
with both ion and electron dynamics included, so it helps to introduce an overall 
formalism in which we consider the plasma to have either a complex tensor 
dispersive electrical conductivity or, more conventionally, a complex tensor 
dispersive dielectric response. This permits us to unify all the waves we have 
investigated: X- and 0-waves in the perpendicular direction, electrostatic waves, 
and R- and L-waves in the parallel direction, using a single formalism valid for 
all angles of propagation. 

18.1 A BROADER PERSPECTIVE-THE DIELECTRIC TENSOR 

Before we begin the algebraically formidable task of analyzing wave propagation 
at low frequencies where ion motion has to be taken into account, it is useful 
to take an overview of what we have been doing in the process of calculating 
dispersion relations. In doing so, we can generalize our results to include ion 
motion, finite pressure and arbitrary angle of propagation. First let us write 
down the linearized fluid equation of motion, where we will not be specific yet 
as to ions or electrons: 

(18.1) mno- = qno(E1 + U]  x Bo) - y T V n l .  

Without losing any generality in our plane-wave solutions, we have been taking 
Bo in the z direction, and the k-vector to have components only in the x and 
z directions. Insofar as k forms an angle with Bo, this shows up as k,. Fourier 

au1 
a t  
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analyzing the three components of this equation in the usual way, and dividing 
through by no, we obtain 

-iwmu,l = q ( E , 1  +u,lBo) - ik,yTnl/no 
-iwmu,l = q(E,1 - U,] Bo) 
-iwmu,l = qE,l - ik,yTnl/no. 

(1 8.2) 
(18.3) 
(18.4) 

The continuity equation is V - (noul) = -&]/at ,  which becomes 

ik,u,l + ik,u,l = iwn~/no. (1 8.5) 

Let us define 8 to be the angle between k and Bo, so that k,  = ksin8 and 
k, = kcos8. Then we have 

n l / n o  = (k/w)(u,lsin6' + uZlcos8). (18.6) 

This can be used to substitute for n l /no  in equations (18.2) and (18.4) above, so 
that we then have three equations for the unknown components of u1 in terms 
of the components of El. Equations (1 8.2) and (1 8.4) become 

-iwmu,l = q(E,I + u,lBo) - i(k2/w)yT(u,lsin28 + uzlsin8cos0) (18.7) 
-iwmu,l = 4E,1 - i(k2/~)yT(u,lsin8cos8 + u,lcos28). (1 8.8) 

Equations (18.3), (18.7) and (18.8) form a set of linear equations for the 
components of U ] .  They can be solved to give each of these components as a 
linear combination of the components of El. Indeed, we have done this in the 
two previous Chapters, but assuming either 8 = 0 or 8 = n/2, and T = 0. 
Combining the fluid velocities to form an electrical current, this result can be 
expressed as a complex frequency-dependent tensor electrical conductivity: 

(1 8.9) 

where the summation is over species and a is a tensor quantity. (As before, we 
indicate a tensor by bold italics but, where Greek characters are used, as in this 
case, we add underlining for additional clarity.) This tensor conductivity can be 
substituted into the wave equation to construct a dispersion relation. Reiterating 
the wave equation: 

k2E1 - k(k - El) = (w2/c2)[E1 + ijl/(row)] (18.10) 

we obtain 
k2E1 - k(k - El) = ( w 2 / c 2 ) ( 1  + ia/cow).El (18.11) 

where I is just the identity tensor or, in index notation, the matrix with ones 
along the main diagonal and zeros elsewhere, S i j .  It is more conventional to work 
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in terms of a dielectric tensor, replacing the usual scalar dielectric constant in the 
equation for wave propagation in a non-dispersive, isotropic dielectric medium: 

Thus in the plasma case we have a dielectric tensor, denoted by g, given by 

- E = EO(I + ig/cow (1 8.13) 

where we have used cop0c2 = 1. In the low-frequency limit for a cold 
plasma, we will see later that the diagonal components of this dielectric tensor 
corresponding to the directions perpendicular to Bo are just the perpendicular 
plasma dielectric constant cl = eo + p / B 2  that we have encountered before. 

Since we are using tensor notation, we re-express the left-hand side of the 
wave equation in tensor notation: 

k2X * El E [k2E1 - k(k El)] 

where X is the tensor defined by this equation, so X = I - kk/k’. 
Remembering that we have chosen k, = 0, so k = ksinQfi+ kcoseL, we can see 
that 

kk/k2 = (sin02 + coseP)(sinO% + coseP) 

so 
X = firicos2e + 0 - 22sinecose 

+ 0 + 99 + 0 (18.14) 
- ??sinecos6 + o + 2Zsin28 

where equation (18.14) is written in a manner so as to clearly display the 
corresponding matrix elements. Our wave equation is just 

( 0 ~ ~ 0 s  - k 2 X )  - El = 0. (18.15) 

The dispersion relation is then derived from the requirement that the determinant 
of the tensor quantity in parentheses in equation (18.15) be zero. 

For the equations of motion we have considered, including finite plasma 
pressure, this is sometimes called the ‘warm’ plasma dispersion relation. If 
we had taken T = 0 in these equations, we would have obtained the ‘cold’ 
plasma dispersion relation, which is a generalization of the dispersion relations 
we have been considering in the two previous Chapters, including ion motion 
and arbitrary angle of propagation. The nomenclature ‘hot’ is usually reserved 
for fully kinetic calculations, including the effects of classes of particles that 
move at velocities close to the wave phase velocity. Note, incidentally, by 
looking back at equations (18.3), (18.7) and (18.8), that (and therefore g) 
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does not contain the wave-vector k anywhere except in the T # 0 terms. In the 
coM plasma dispersion relation, then, we see that the wave-vector k enters only 
through the k2 term in equation (18.15), with its direction entering only through 
X. The additional k terms that enter for a warm plasma permit new solutions 
of the dispersion relation, such as the ion acoustic wave, which do not exist at 
all in a cold plasma, as well as modifications of waves by compressional motion 
and by finite Larmor radius effects, when krL is not small. The full ‘hot’ plasma 
dispersion relation effectively brings in terms to all higher orders in k. 

18.2 THE COLD-PLASMA DISPERSION RELATION 

One can straightforwardly calculate the matrix components of equation (18.15) 
for the case of a cold plasma. It is easier if we make the following conventional 
definitions: 

ii = ck/w = c / v p  
ck/w iisineji + iicosO2 

wp, np 
w,, nc 

electron and ion plasma frequencies 
electron and ion cyclotron frequencies 

R E 1 - ( w i / w ) / ( w  - - ( n i / w ) / ( w  + nc) 
L = 1 - (wp2/o)/(w + wc) - ( n i / w ) / ( w  - a,) 
S ( R  + L)/2 
D ( R  - L)/2 
P = 1 - - n;/w2. 

Equation (1 8.15), multiplied through by c2 /w2 ,  becomes 

[%%(S - ii2cos28) - 29iD + %iii2sinecos6 
+ p i  D + 9 9 ( S - i i 2 )  + 0 
+2jiii2sinecos8 + o + 22(P - ii2sin28)] El = 0 

( 1 8.1 6) 
where again we have arranged the terms to display the matrix elements. 

Problem 18.1: Derive equation (18.16) from equation (18.15), in the limit 
T = 0. (This involves a fair bit of algebra, but it is useful to do it once in 
order to be comfortable with the resulting cold-plasma dispersion relation.) 
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Setting the determinant to zero we obtain 

(S-ii2cos28)(S-ii2)( P -ii2sin2B)-ii4sin28cos28(S-ii2)- D2( P-ii2sin28) = 0. 
(1 8.17) 

At first glance this looks like a sixth-order equation for k ,  at any given 8 and 
w. Fortunately the ii6 terms cancel, and only io, i’ and ii4 terms remain. This 
means that we have a quadratic in i i2, which we can solve relatively easily. 
Gathering together terms by their powers of i i ,  we find 

(S2P - D’P) - fi2(SPcos28 + S P  + S2sin28 - D’sin’e) 
+ fi4( Pcos’e + &in2@) = 0. (1 8.18) 

This is a quadratic equation for fi’. Thus for any value of U ,  8 and plasma 
parameters, there are at most two real positive solutions for k, corresponding 
to the two ‘branches’ of the dispersion relation we have been studying for 
parallel propagation (R and L) and for perpendicular propagation (X and 0). 
Interestingly, all the sine and cos0 terms can be simplified, for the cold-plasma 
dispersion relation. Replacing cos28 with 1 - sin2 8 ,  and using S2 - D2 = RL, 
we obtain 

(18.19) RLP - ii2[2SP + (RL - SP)sin28] + Z4[P + (S - P)sin28] = 0 

or 
RLP - 2ii2sp + i i4p = i i 2 ( ~ ~  - SP)sin2e - ii4(s - P)sin2e 

or 
-P(ii4 - 2Sii’ + RL) 

Z4(S - P )  + i’(SP - RL)’ 
sin2e = (18.20) 

To proceed further toward a useful form of the dispersion relation, we put 
sin28 = 1 - cos28 in equation (18.19) and obtain 

RLP - fi2[SP + RL + (SP - RL)cos28] +fi4[S + ( P  - S ) C O S ~ ~ ]  = 0 (18.21) 

or 
S i 4  - ( P S  + RL)ii2 + PRL 

cos e = 
ii4(S - P )  + ii2(PS - RL) 

We can now divide equation (1 8.22) into equation (1 8.20) to obtain 

2 tan 8 = 
-P(h4 - 2SE2 + RL) 

Sii4 - (PS+ RL)ii’ + P R L ’  

(18.22) 

(1 8.23) 

Using the fact that 2 s  = (R + L) in the numerator, both the numerator and the 
denominator can now be factored to give 

-P(5’ - R)(ii2 - L) tan2e = 
(SE’ - RL)(ii2 - P) * 

( 1 8.24) 
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Equation (18.24) is a very useful form for the cold-plasma dispersion relation 
and it provides good physical insight. First, for parallel propagation (8 = 0), 
we have two solutions, ii' = R and ii' = L ,  which are the familiar right- and 
left-circularly polarized waves. For perpendicular propagation, we also have 
two roots, ii2 = P (the ordinary wave) and f i2  = R L / S  (the extraordinary wave), 
now with the ion dynamics included automatically through the definitions of 
R ,  L ,  S and P .  The resonances can be found from this equation by setting 
ii + CO ( k  +. 00, A + 0); we then have tan28 = - P / S .  Thus the resonance 
frequencies vary with the angle of propagation. For 8 = 0, they occur where 
P = 0, or S -+ CO. The case with P = 0 is the plasma resonance at up. 
(Remember that the Langmuir oscillation has w = up, independent of k ,  for a 
cold plasma.) The case S +. CO can be arranged via either R or L +. CO, which 
occur at the electron and ion cyclotron resonances respectively. At 8 = n/2 ,  we 
need P + 00, which cannot occur for finite w and wp, or we need S +. 0. This 
latter gives the upper- and lower-hybrid resonances, including ion dynamics. 
(We will learn about the lower-hybrid resonance later in this Chapter.) 

To obtain the cutoffs from this equation is not as straightforward, since 
setting A + CO, ii + 0 gives the curious result that - P R L / P R L  = tan28. 
Such a thing cannot occur for any real 8, unless P R L = 0, a result that can 
be obtained more explicitly by going back to equation (18.18), where we can 
see that ii' = 0 implies P(S' - D 2 )  = P R L  = 0. Note then that the cutoffs 
do not vary with 8, as we have observed before. Specifically, P = 0 is just 
the up cutoff of the ordinary wave and the cutofflresonance of the Langmuir 
oscillation. The cases R = 0 and L = 0 correspond to the w~ and WL cutoffs, 
with the ion dynamics included. 

18.3 COLDWAVE 

In order to let you study the properties of the cold-plasma dispersion relation, 
we have provided a simple graphical program, COLDWAVE, which solves 
equation (18.18) for i2. It works by stepping through a prescribed range in 
w, for given plasma parameters and given 8, and finding the ii and therefore k 
which corresponds to each w. The instructions for how to use this program are 
included in files called COLDWAVE.WR1 on the IBM PC disk and README- 
COLDWAVE on the Mac' disk. (Computer source code is included as well.) 
Note that in this program frequencies are normalized to the electron plasma 
frequency, and all wave-numbers to wp/c. 

The plot shown in Figure 18.1 has parameters w,/w, = 1.414, Zi = 1, Ai = 
1,8 = 7", W h n  = 0, wm = 5w,, linear w scale, k h n  = 0, k,, = 5 ,  and linear k 
scale. Each vertical pixel (w axis) corresponds to five evaluations of k(w).  You 

' Macintosh is a registered trademark of Apple Computer, Inc. 
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i 

kc/wp=4.357E+00 w/wp=9.899E-01) 

29 1 

Figure 18.1. Dispersion relation plot from COLDWAVE. 0 = 7", RE = 5, 0,' = 20;. 
k c l o ,  and w/op indicate location of pointer. kclo ,  = 4.357; w / o p  = 0.9899. 

can see that various sections of three different curves are about to vanish into 
the Langmuir oscillation at w = up when 8 reaches 0. One of the four curves 
vanishes in a different way as 8 goes to 90°, as you will see in Problem 18.2. 

Problem 18.2: Use COLDWAVE to study the angular range 0-90" for 
high-frequency waves, in the cases where w, = wp/2 and where wc = 2wp. 
Describe qualitatively how the different waves transform. 

Problem 18.3: Use COLDWAVE to explore the low-frequency range, 
U << n,, for 0 = 0". Find the relation between the phase velocity as 
w + 0 and the low-frequency perpendicular dielectric constant calculated 
in Chapter 4. 

18.4 THE SHEAR ALFVEN WAVE 

Now we proceed to consider the low-frequency range of the R- and L-waves. 
As before, let us consider propagation purely parallel to Bo, i.e. k 11 Bo. We will 
further take E, I Bo, and thus El I k. This is because the choice E1 (1 Bo )I k 
at low frequency, with a warm plasma, just gives the ion acoustic wave we 
studied previously-the Lorentz force plays no role in that mode. Just as we 
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saw that the electrostatic Langmuir wave is uncoupled from the high-frequency 
purely electromagnetic waves, so is the ion-acoustic wave decoupled from the 
low-frequency R- and L-waves, propagating parallel to Bo in the modes we 
are considering, and since Bo 1) 2, E,I = u , ~  = 0. Examining our equations of 
motion (equations (1 8.3), (18.7) and (1 8.8)), we see that T plays no role in these 
modes. As a result, our uxl  and uyl for the electrons-ven for finite pressure- 
are the same as those given in equation (17.3), when we first considered the 
case of uxl # 0, uyl # 0. For the ions, we simply use equation (17.3) with 
e --f -e,w, + -Rc, and m + M. (Remember that wc -q,B/m,, while 
Q, +qiB/mi) .  We then have for the ions 

-(elM)(iwExl - QcEyI) 
(52; - w2) 

-(elM)(iwEy1 + QcExI) 
(a: - w2) 

uxil = 
(18.25) 

uyil  = 

For the electrons we will assume w 5 Rc << w,, in which case the electron fluid 
exhibits pure E1 x Bo drift: 

(elm)E,1 eE,I 
MRC 

-(elm)& -e& 
MQC 

- 
(18.26) 

u x e l  = 
O C  

-- - U y e l  = 
WC 

The last step in the above equations was motivated by the desire to express 
frequencies in terms of ion quantities, and it conveniently brings a common 
factor of e/M in front of both the ion and the electron equations. 

Our conductivity tensor is then given by 

= o - E ~ .  - (1 8.27) 

Note that the conductivity tensor is reduced to a 2 x 2 tensor for the shear 
Alfvkn wave propagating parallel to Bo, because we have taken j , ~  = E,] = 0. 
If we take w + 0, the off-diagonal elements go to zero as w2,  while the 
diagonal elements go to zero as w ,  so we obtain a purely scalar (but imaginary) 
conductivity tensor. Using S2f noe2/Meo, so the first factor on the right-hand 
side in equation (18.27) is just r0!2f, this scalar conductivity becomes 

cr = -iwnoe2/MQ: = -iweOQi/ Q,. 2 (1 8.28) 
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We can also view this as giving rise to a low-frequency dielectric response. 
Remember from equation (18.13) that = EO(I + icr/roo), so we obtain 

€1 = €o(l + Qp”/ Q;) = €0 + n o M / B 2  (1 8.29) 

which is just the dielectric constant that we derived from the polarization drift 
in Chapter 4. 

Returning to finite w ,  in the general case the dispersion relation is given by 

(18.30) 1 1  w2pog - k2X 1 1  = 0 

where the double vertical bars indicate the determinant of the equivalent matrix. 
In terms of a, and multiplying through by c2/w2,  this is 

I 1 1  - ii2x + ia/eowl I = 0. (18.31) 

For 6’ = 0, we have X = 99 + @. Our calculations here did not find the 
22 component of a, but this does not matter since the matrix we have now 
constructed for the case of k 11 Bo has non-zero elements in the upper left 2 x 2 
area plus a single potentially non-zero component in the lower right corner. The 
other elements of a (2 currents driven by non-2 fields, and non4 currents driven 
by 2 fields) are zero. Thus the upper left 2 x 2 matrix must have determinant 
zero (the dispersion relation we are looking for) or the element in the lower 
right hand corner, corresponding to purely E 11 B dynamics, must be zero (the 
Langmuir wave at high frequencies and the ion-acoustic wave at low, for warm 
plasmas) for the whole matrix to have determinant zero. 

Thus for the case of interest here, which has El I Bo, we obtain 

1 - ti2 + Qt/(Q: - w 2 )  iQ;w/[Qc(Q: - w 2 ) ]  

(18.32) 

The symmetry of this matrix is reminiscent of the high-frequency parallel- 
propagating R- and L-waves. We obtain 

(18.33) 

and, once again, we have circularly polarized R- and L-waves. We can see 
this because E,, and E,1 are equal in magnitude and n / 2  out-of-phase, by 
the same arguments as before. To see this, we simply have to reconstruct the 
linear equations that come from dotting the matrix shown in equation (1 8.32) 
with El, and setting the result equal to zero. Given equation ( 1  8.33), the terms 
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multiplying E x ]  and E,] differ by a factor of f i .  Proceeding to find a more 
compact dispersion relation, we obtain 

Low-frequency waves in a magnetized plasma 

- 2  2 2 Q;Qc n;w 
- + Qc(s2,2 - w2) 

n = c k / w  - 

52; + Q; f Qcw 
(1 8.34) 

The upper signs go with right-hand polarization (R-wave), in the sense we 
defined in Chapter 17, while the lower signs go with left-hand polarization 
(L- wave). 

- - 
Qc(Qc f w )  

Thus for the R-wave, dividing top and bottom by Qc, we have 

- 2  2 2  2 Q, + Q;/QC + w 
n = c k / w  = 

(Qc + w> 
(1 8.35) 

The shear-AlfvCn R-wave has no cutoffs and no resonances in this low-frequency 
range, since neither the numerator nor the denominator can go to zero. This is 
not surprising, since ion motion is left-handed. As we go up in frequency, 
the shear-AlfvCn R-wave smoothly goes over into the whistler, which has its 
resonance at w = w,. At the low-frequency end, we have a ‘simple’ light wave 
propagating in a medium with a large scalar dielectric constant. As w + 0, 
equation (18.35) gives an index of refraction 

n = (1 + Q;/Q,2)”2 (1 8.36) 

and so a phase velocity 

up = w / k  = c / i i  = ~ ( l  + Q ~ / Q ~ ) - ‘ / 2 .  (18.37) 

If we define an ‘AlfvCn speed’, U A ,  by 

U A  = c Q c / Q p  = c ( e B / M > / ( n e 2 / c o M ) ‘ / 2  = CBI,/= 

= B / & a  (1 8.38) 

then the phase velocity can be written 

Multiplying top and bottom by VAIC, and then taking U A I C  = Qc/Qp << 1 
(which is correct for wp - q), we have 

up = u A / ( 1  + v i /c2) ’12  UA. (18.39) 
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Figure 18.2. Dispersion relation for the shear AlfvCn R-wave, with wz chosen to equal 
2 4 .  

Figure 18.2 shows an w versus k diagram for the shear-AlfvCn R-wave. As 
usual, we (arbitrarily) choose w,' = 2 4 ,  and we will also choose M/m = 1837. 
This fixes the relevant quantities in equation (18.35). For example 

U A / C  = a,/ ap = (Q/wc)(oc/wP)(wp/ Szp) = ( 1 / 1 8 3 7 ) ( 2 / 2 ) m  

= &/dm = 0.033. 

In order to allow comparison with our previous plots at high frequency, we use 
the same dimensionless axes, but in order to see these new results we must 
rescale the axes-and the two axes must be scaled differently from one another, 
since w / k  is now - c/30. 

The left-handed shear AlfvCn wave (L-wave) has the dispersion relation 

(18.40) 

which is shown in Figure 18.3. This has the same low-frequency behavior as 
the R-wave. At low frequencies, plane-polarized shear Alfvtn waves exist, and 
do not undergo Faraday rotation. The L-wave, however, clearly has a resonance 
at w = a,, associated with the left-handed ion cyclotron motion. In addition, 
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Figure 18.3. Dispersion relation for the shear AlfvCn L-wave, with 0: chosen to equal 
20; .  

it has a cutoff at w = WL = R, + Ri/R,  (Figure 18.3 does not go this high in  
frequency). This does not appear to be the ‘same’ WL as we encountered in our 
high-frequency calculation: in fact, however, it actually is the same L cutoff, 
just calculated with the assumption that w is low, and so different terms can be 
ignored. 

The full definitions of wL and OR, including both ion and electron effects- 
and not assuming anything in advance about their magnitude-an be derived 
from setting L = 0 or R = 0 respectively, using the general definitions for R 
and L given earlier in this Chapter. If we take R, << w, and R, << up, which 
are always justified for an ion-electron plasma, we obtain 

(18.41) 2 2 OR - wRwc - w,Qc - up = 0 

and 
(18.42) 

In the high-frequency range, the third term is negligible (and we did not include 
it in equation (17.38)), and in the low-frequency range (the present calculation) 
the first term has been neglected. There is no positive low-frequency solution 
for OR, and so no low-frequency right-hand cutoff. For some combinations 
of plasma parameters, however, wL may fall in the low-frequency range, and 

2 2 WL + @LO, - wcR, - up = 0. 
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then our shear AlfvCn dispersion relation will give the cutoff in approximately 
the correct place. However this cutoff usually falls (for wp of order U,) in a 
frequency range where electron motion must be taken into account beyond just 
the El x Bo drift, so the present calculation will be inaccurate. For example, 
for the parameters we have chosen in our plots, WL = 0 . 3 7 ~ ~  = 0.52wp, which 
violates our initial assumption of w << wc, so the high-frequency calculation of 
Chapter 17 is closer to the correct cutoff given in equation (18.42). The neglected 
ion terms in the previous calculation are much smaller and its approximations 
were therefore satisfactory. It is important to be clear that, for a given density 
and magnetic field, there is only one WL and one W R  cutoff frequency, which 
can be calculated from the full equations for WL and W R  above. 

So, finally, what are shear AlfvCn waves? In the lowest-frequency range 
(w << nc), both the ions and the electrons are El x Bo drifting, and the ions 
have a simple low-frequency polarization drift, which is small compared to their 
El x Bo drift. The magnetic field lines themselves also ‘move’ with the same 
VI = El x Bo/B2. As we learned in Chapter 8, this is described as the plasma 
being ‘frozen’ to the field lines, and we have encountered it before for low- 
frequency phenomena. In the present case, the field lines are twisting-moving 
circularly in the ( x ,  y) plane-with different phases of rotation along z rather 
like the lines on a barber pole. Thus the name ‘shear’ (or sometimes ‘torsional’) 
AlfvCn waves. The twisting of the field lines pulls the magnetic configuration 
away from its lowest energy state, and magnetic energy is stored in the ‘twist’. 
The ions provide the inertia for this wave, causing the field-lines to continue 
to move circularly, rather than come to rest. The twisting motion of the shear 
AlfvCn mode has V a ul = 0, so there is no compression, no perturbed pressure, 
PI ,  and hence no pressure effects on the waves. 

Problem 18.4: For finite w ,  the shear Alfven wave exhibits Faraday 
rotation. In the spirit of Problem 17.4 calculate the Faraday rotation given 
B ( z )  and n,(z) along the trajectory of the wave. 

Problem 18.5: Derive WR and WL for an electron-positron plasma. You 
may start from R and L as defined for use in the cold-plasma dispersion 
relation (1 8.24). 

Now we have completed our study of waves propagating parallel to Bo, i.e. 
with k 11 Bo. In Chapter 17, we had a curious asymmetry between the L-wave 
and the R-wave. The R-wave had two pass bands, with the whistler as the 
lower-frequency band, but the L-wave had only one pass band. Now that we 
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have included ion motion, we find another pass band for the L-wave, below the 
ion cyclotron frequency. Remember that left-hand circular polarization resonates 
with ion Larmor motion. So the total picture for k I( Bo, 8 = 0 in a cold plasma 
is as follows: 

R-Wave 
w > wR 

0 < wc 

L-Wave 
w > wL 

0 < R, 

(El I Bo, k 11 Bo) ( 2  pass bands) 
high-frequency pass band 
u p - + c  as w + 0 3  
‘whistler’ wave, becoming shear AlfvCn R-wave at low frequency 
up -+ U A  as w + 0 

(El I Bo, k II BO) ( 2  pass bands) 
high-frequency pass band 
u p + c  as U - 0 3  

shear AlfvCn L-wave 
up -+ U A  as w + 0 

Langmuir oscillation (El 11 Bo, k 1) Bo) 
w = wp zero group velocity Langmuir oscillation 

up undefined 

For finite temperature (E1 II BO, k II BO) 
w > wp Langmuir wave 

up -+ as w -+ 03 

w e R, ion sound wave 
up + C, as w + 0 

The high-frequency pass bands of the R- and L-waves become simple 
vacuum light waves at very high frequency. In the high-frequency range, 
they have a difference in phase velocity that causes Faraday rotation of plane- 
polarized waves. 

At all frequencies, the parallel (k 1) Bo) R- and L-waves are fully transverse, 
(k I El), and so have neither flows nor electric fields along Bo. They are 
completely compressionless, and do not give rise to any perturbed particle 
density nor charge density, and so they are not affected by finite pressure effects. 

By contrast, the Langmuir oscillation is fully electrostatic-B1 is 
exactly zero-so the physical effects come from differential ion and electron 
compression effects, giving rise to a perturbed charge directly, 01. In the cold- 
plasma limit, there is just one oscillation at wp. Warm-plasma effects give rise 
to the propagating Langmuir wave and the ion acoustic wave. If we take the 
warm-plasma calculation in the limit of T,, Tj + 0, the Langmuir wave collapses 
into the Langmuir oscillation at w = wp, and the ion acoustic wave disappears 
into the horizontal axis at w = 0. 
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18.5 THE MAGNETOSONIC WAVE 

The final class of waves we need to discuss are low-frequency waves propagating 
perpendicular to Bo. These can be broken up into the two categories of 
extraordinary (X) and ordinary (0) waves. The X-wave has its electric 
field oriented everywhere perpendicular to Bo, giving rise to 'extraordinary' 
phenomena due to the Lorentz force, while the O-wave is 'ordinary', with 
El 11 Bo. This categorization is academic, however, because the O-wave does 
not exist in this frequency range. It was cut off at w = up, and without the 
Lorentz force, the ion dynamics cannot bring it back at low frequency. Thus we 
have only the X-wave to analyze. 

The X-wave is tricky when ion dynamics are included, however. There 
are interesting phenomena in the X-wave at a frequency of order a so we 
have to be careful in our ordering of w relative to the two cyclotron frequencies 
if we want to recover all the important behavior. In particular, for this wave we 
must include the electron current in the direction of El (the polarization current) 
in the approximation w << wc. For the shear Alfvtn wave, we neglected the 
electron current along the diagonal of altogether relative to the ion current. 
At low frequencies this is valid (the ratio is M/m), but at higher frequencies we 
have to be careful. Looking ahead at equation (18.43) (where we have put in 
the electron polarization current), we can see that the ion polarization current's 
contribution along the diagonal for w >> Q, is approximately -52i/w2, while 
the electron polarization drift contribution for w << wc is w,'/w,". Setting these 
to be comparable in magnitude gives w2 - w ~ ( 5 2 ~ / w i ) ,  or w N a. Thus, 
in this 'lower hybrid' frequency range (i.e. frequencies of order a), we 
cannot neglect the electron polarization current as we did for the shear AlfvCn 
wave. Other than adding this extra term, the determinant we need to solve is 
only changed from equations (18.31) and (18.32) by the fact that the X tensor, 
given in equation (18.14), now needs to be evaluated for 0 = n/2, giving X 
= ff+22. We again need to evaluate only the upper left 2 x 2 part of because, 
for this geometry of wave propagation and electric field polarization, in the third 
row and column only the lower corner is potentially non-zero. The determinant 
is 

1 + Qi/(Q," - w2) + w,'/w," 

-iniw/[n,(Q: - w 2 ) ]  

isZiw/[sZ,(Q," - w 2 ) ]  

1 - ii2 + Q;/(~z: - w 2 )  + w,'/w,' 
= 0. 

(1 8.43) 
Equation (18.43) is very like equation (18.32). However, since ii2 does not 
appear twice here we will not obtain two waves, but only the one X-wave. We 
have retained enough electron dynamics to retrieve the WR and wL cutoffs of the 
X-wave in this determinant, but that is not the topic of interest here. Here we 
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are interested in the low-frequency dynamics, and the lower-hybrid resonance 
which forms the bottom of the stop band between the extraordinary ion wave 
and the high-frequency X-wave. The dispersion relation can be written 

Since a resonance is where k --+ CO, and ii = ck/w,  the term in brackets on the 
left-hand side must go to zero at the resonance. (Nothing special happens in the 
cold-plasma limit at w = aC, but hot-plasma theory introduces ion-Bernstein 
waves at all harmonics of aC.) The first term in brackets on the right-hand 
side will also be zero, but the second term should be well behaved. So, cross- 
multiplying, we obtain resonances where 

w;(a;  - w2) +@;(a; - w2 + a;) = 0 (1 8.45) 

or 

(18.46) 

The first and third terms in the numerator differ only due to their mass 
dependences. Specifically, the first term in the numerator is m / M  times the 
third term, and thus is negligible compared to it. To conform to conventional 
notation, we multiply top and bottom by m / M ,  and obtain 

(18.47) 

or even more conventionally (taking >> a,", which is the case if w; x U,"): 

w,i2 = s2;2 + (ncwc) - ' .  (1 8.48) 

Here, q h  is called the 'lower hybrid' frequency. We plot the dispersion relation 
for the low-frequency X-wave in Figure 18.4 (for our usual case of w," = 2 ~ ; ) .  
Note that in the limit of w + 0, we recover the AlfvCn wave dispersion relation: 

(18.49) ii2 = 1 + Sz;/a; + w;/w; 1 + a;/a,2 
which we can obtain from equation (18.44). 

This low-frequency X-wave is generally referred to as the 'magnetosonic 
wave'. It is clear from our derivation why this is so. Unlike the shear or torsional 
AlfvCn wave, this wave-sometimes also referred to as the 'compressional 
AlfvCn w a v e ' d o e s  have a finite ksul, and so 'compresses' the plasma. Again, 
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Figure 18.4. Dispersion relation for the magnetosonic wave in the cold plasma limit, 
with 0,‘ chosen to equal 20;. 

since plasma is ‘stuck’ to the field lines at the lowest frequencies considered here 
(o << Q,), the magnetic field is also compressed. The wave propagates across 
the magnetic field, alternately compressing and expanding it like the pressure in 
a sound wave, thus the name ‘magnetosonic’. If the plasma has finite pressure, 
this wave is affected by ‘warm’ plasma terms, and its phase velocity increases. 
To understand this better, we will next calculate the dispersion relation for AlfvCn 
waves in the very low-frequency limit, using the ‘warm plasma’ dielectric tensor. 
This will permit us to derive results for arbitrary angle of propagation, 8 ,  so we 
will also get a look at the low-frequency limit of the shear AlfvCn wave. 

18.6 LOW-FREQUENCY ALFVEN WAVES, FINITE T, ARBITRARY 
ANGLE OF PROPAGATION* 

To study AlfvCn waves in the low-frequency limit, (w << SZ,), including 
warm-plasma effects, we will follow the general prescription developed at the 
beginning of this Chapter, specialized for low frequencies. First we need to find 
the conductivity tensor a. To do this we recast equations (18.3), (18.7) and 
(18.8) as a set of linear equations for the fluid velocities, in a uniform format 
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for solution by matrix methods: 

Low-frequency waves in a magnetized plasma 

(1 8.50) 

where we have not yet specified species. To solve for we will need the 
determinant of the coefficients in equations (18.50), which we will denote A. 
We obtain 

(18.51) 

where the final simplification comes from assuming w << R, and krL << 1 
(the corresponding inequalities for electrons being even better satisfied). These 
approximations eliminate any differences between the ion and electron E1 x Bo 
drifts, with the result that the associated currents precisely cancel. This makes the 
dispersion relation for the R and L waves identical, so that in the low-frequency 
limit Alfvtn waves can be viewed as either linearly or circularly polarized at 
e = 0. As we will see, in the case where e can take on any value, it will be 
advantageous to consider linear polarization. 

Solving for U, we obtain 
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(18.52) 

Next we will use j = Xnqu = a - E and = €01 + ig/w to obtain the 
dielectric tensor. However, at this point we will explicitly form the sum over 
species. From our previous work, we will assume that w / k  - UA. If we assume 
Pi(= n i q / ( B 2 / 2 p o ) )  << 1, and Be(=  neTe/ (B2/2po))  >> m / M ,  then we can 
deduce U t , i  << U A  and >> UA. We will also assume Be << 1, resulting in 
C, << UA, pi >> m / M  and E L  = EO + n o M / B i  >> E O .  These assumptions will 
simplify the mathematics. 

Problem 18.6: Prove that if << 1 and Be >> m / M ,  then ut,i << vA and 
ut.e >> UA- 

We find the following components for the low-frequency warm-plasma 
dielectric tensor: 

E x y  = E y x  = 0 

k2y Tsinecose 
E x z  = E,, = - '$ (w2m - k2yTcos2e) 

nioM k2y,Tisinecose 
Bi 

- --( w2M 

nom w2m -k2yT nioM = " -k 
w2m - k2 yTcos2B - - - ( I -  B i  

k2y Tsinecose 
( 0 2 m  - k2yTcos2e) 

E y z  = -Ezy  = -1 
' - 

.;; ( ) - 1- 
k2 yeu~ec0s3e 

N nee2 /m - 
k2 ye u,Tec0s2e . (18.53) 

To derive E,,, we used M >> m .  For = e y x ,  the currents associated with 
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the ion and electron E1 x BO drifts canceled. For eXZ = eZx, we used pi >> m / M .  
For cyyr  we used M >> m .  For E,,, we used Be >> m / M .  In all cases, we have 
gone to first order in (ut,i/UA)' and in (uA/Ut , e )2 .  

If we now put the wave equation, equation (18.30), into a dimensionless 
form 

( 1  8.54) 

Low-frequency waves in a magnetized plasma 

11 W 2 p o g / k Z  - X [I= 0 

we can easily evaluate the order of each term in the matrix, assuming w / k  - u A ,  

as follows: 

xx term: 
o ( w ~ ~ ~ E , , / ~ ~  - cos2e) = 1 .  

xz, zx terms: 
O ( W ~ ~ O E , , / ~ ~  + sinOcos8) = O ( W ~ ~ O E , ~ / ~ ~  + sinecose) = 1 (with the plasma 
term of order (u t , i /uA)2) .  

yy term: 
O ( W ~ ~ O E ~ ~ / ~ ~  - 1 )  = 1 (with a correction term of order (ut,i/UA)'). 

gz, ZY terms: 

zz term: 
O ( ~ ~ p o ~ , , / k ~  - sin2€J) = (Q,/w)~(uA/C,)~ (with a correction term of order 
unity). 

Now we can evaluate the order of each of the terms that make up the 
determinant: 

O [ ( x x ) ( y y ) ( z z ) ]  = ( f i c / ~ ) 2 ( ~ ~ / C , ) 2  (with a correction term of order ( f i , / ~ ) ~ ) .  

0 [ - ( x z ) ( y y ) ( z x ) ]  = 1 (with correction terms of order (Vt , i /uA)2) .  

0 [ - ( x x ) ( z y ) ( y z ) ]  = ( f i , / ~ ) ~  (with correction terms of order ( ~ c / w ) 2 ( u t , i / v A ) 2  

and ( f i c / w > 2 ( v A / u t , e > 2 > .  

Clearly the second term in the determinant can be neglected compared with 
the others. Thus the dispersion relation we are seeking can be written 
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Setting the first term in parentheses to zero gives us the linearly polarized shear 
AlfvCn wave in the low-frequency limit: 

w = kuAcos0 = kllUA. (1 8.56) 

This also implies that the only non-zero electric field is in the x direction, giving 
rise to a divergence-free y-directed El x Bo drift, since k points only in the x and 
z directions. Equation (1 8.56) is the generalization of the low-frequency shear 
AlfvCn wave to arbitrary angle of propagation. At low frequency, the non- 
compressional nature of the wave is preserved in this linear polarization. With 
our approximation of krL e< 1, no warm-plasma effects are observed. 

Setting the term in square brackets in equation (18.55) to zero will allow 
finite E,  and E,.  The E ,  field gives rise to compression through the x-directed 
El x Bo drift. If there is any finite k,, there will be a density gradient along Bo. 
The nonzero E,  arises because ut,e >> up >> ut,i so the ions cannot flow down 
the density gradient, and the electrons establish a Boltzmann distribution along 
Bo, with a resulting E,.  Due to the large size of E,,, this electric field is much 
smaller than E,.  The dispersion relation for this compressional mode to lowest 
order is 

k2fiu;pin2o) w2 
- 1] ( w2po k2 k2 neoe2/m yeu~ecos20 - sin26) 

w2p$ n20e2 sin26 
- (1 8.57) k4 B i  cos20' 

If we neglect the final sin20 on the left-hand side, since it is small by a factor 
of (cs/uA)2(w/ Q, )~ ,  we can greatly simplify this expression: 

Here C: T J M .  When 0 = 0 there is no plasma compression, and finite 
temperature plays no role in this mode, as we observed previously when we 
examined the AlfvCn waves propagating parallel to Bo. Note that the phase 
velocity is independent of angle in a cold plasma, but increases as the wave 
points away from the magnetic field in a warm plasma. This is because 
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bending the magnetic field lines does not also store energy in the plasma 
pressure the way compressing them does. It is even clearer now why this 
mode, the compressional AlfvCn wave, is also called a ‘magnetic + sound’ 
= ‘magnetosonic’ wave. The proper values to use for ye and M depend on 
subtleties like the precise angle of propagation of the wave relative to Bo (the 
slightest angle away from perpendicular allows the electrons to be isothermal, 
ye = 1, since the phase velocity is assumed to be small compared to the electron 
thermal speed). The wave frequency relative to the ion-ion and electron-electron 
collision frequencies also plays a role in determining n and ye. 

18.7 SLOW WAVES AND FAST WAVES 

It is interesting to see how the shear AlfvCn L- and R-waves transform into the 
magnetosonic wave as 8 goes from 0 to n/2. The R-wave, with its resonance 
at w,, transforms into the magnetosonic wave, with its resonance at the lower 
hybrid frequency Wlh (remember that resonances, unlike cutoffs, vary with 8) ;  
this branch is sometimes called the ‘fast wave’, except near resonance where 
k + 00 and its propagation slows. The L-wave, with its 6’ = 0 resonance 
at a,, maintains the non-compressional character of a shear AlfvCn wave, and 
disappears into the w = 0 axis as 8 goes from 0 to n/2, and so it is sometimes 
referred to as the ‘slow wave’. In the lowest frequency range, w << a,, these 
waves are best classified as two linearly polarized modes, compressional and 
shear. In the cold-plasma limit, the compressional wave obeys w = ~ U A  and the 
shear wave obeys w = k l l ~ ~ .  

Problem 18.7: Show that in the limit w << a,, and T = 0, there are 
two linearly polarized Alfven modes, one with w = kuA and the other with 
w = kll uA. Show that the fluid flows give rise to plasma compression in the 
first case, while in the second case they do not. Work directly from the 
cold-plasma dielectric tensor, equation (18.16). Can you come up with 
a physical explanation for why the shear Alfven wave propagates more 
slowly as kll decreases? 

In general, for a given wave frequency, U ,  and a given set of plasma 
parameters, (wc, up, m / M ) ,  and angle of propagation, 8, there are at most two 
cold-plasma waves with distinct values of k. As 8 varies, the values of k never 
coalesce, so a distinct branch with a smaller k can be identified as the ‘fast’ 
wave, while the branch with the larger k is always the ‘slow’ wave. At 8 = 0, 
these branches are the R- and L-waves, and at e = 7c/2 they are the 0- and 
X-waves, which we have been studying. The identification of the R-, L-, 0- 
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and X-waves as ‘fast’ and ‘slow’, and the continuous interconnection of the 0- 
and X-waves at 8 = n/2 with the R- and L-waves at 8 = 0, as 8 varies, depend 
both on w and on the plasma parameters. 

Finally, it is appropriate to remark on the practical importance of the 
low-frequency resonances we have just examined. We found earlier that the 
shear AlfvCn L-wave has a resonance at w = a,, and we have now seen 
that the compressional AlfvCn wave has a resonance at wlh. These resonances 
are especially important for fusion applications, because plasma heating is a 
necessary element in almost any fusion experiment. High-power microwave 
sources in the frequency range of tens to hundreds of gigahertz are difficult to 
produce, because the components of such sources generally need to be small but 
high-powered. On the other hand, high-power systems in the tens to hundreds of 
megahertz frequency range are readily available, and have been commercialized 
for communications applications. Thus heating at the a, or Q h  resonances is 
attractive for very practical reasons, even though the physics is more complex 
than resonance heating at wc or the upper hybrid frequency, CUI,. The propagation 
of the waves to the resonance region is a complex issue in real geometry, and 
the heating mechanism at the resonance can be delicately dependent on plasma 
parameters. This is an active area of theoretical and experimental plasma physics 
research. 

Summarizing what we know about waves propagating in a cold plasma 
with k I Bo: 

(El I Bo, k 11 Bo)(l pass band) 
high-frequency pass band 
u p + c  as @ + C O  

(El I BO, k 11 Bo)(3 pass bands) 
high-pass region of X-mode 
u p + c  as w + o o  

mid-pass region of X-mode 
up = c at w = wp 

compressional AlfvCn wave, or magnetosonic wave 
up + UA as w + 0 

In the frequency range w << a,, the Alfvtn wave divides conveniently into 
two linear polarizations which are preserved as the angle of propagation varies. 
The shear AlfvCn wave propagates with w = k l l u ~ ,  and the compressional AlfvCn 
wave propagates with U = ~ U A ,  independent of angle. Warm-plasma effects 
accelerate the compressional wave when 8 # 0. 
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The cutoffs for k 11 Bo and k I Bo, in order from low frequency to high, 
are wL, up, w. Cutoffs do not vary with 8. The resonances at 8 = 0 or 7712 
are !&, Wlh, wc, wh (and for the Langmuir oscillation, wp is both a cutoff and a 
resonance), but the resonances do vary with 8. 

Problem 18.8: Show that the lower hybrid resonance of the X-wave is 
purely electrostatic. 

Problem 18.9: Use COLDWAVE to explore the variations of the all the 
resonances with 8. Do both the case U, = 2wp and also the case 
wc = wp/2. Plot each resonance frequency versus 8. (Be sure to explore 
the region near 8 = 90" that connects to the ion-cyclotron resonance at 
8 = 0". This region is sometimes called the Alfven resonance, since it is 
decoupled from the cyclotron motion.) 

There are many interesting and practical aspects of waves in plasmas that 
are impossible to treat in an introductory text. For a more complete overview 
of this field, we recommend T H Stix (1992 Waves in Plasmas New York: 
American Institute of Physics). 
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Chapter 19 

The Rayleigh-Taylor and flute instabilities 

In Chapter 9, we learned that magnetohydrodynamic plasma equilibria must 
be determined self-consistently, i.e. the presence of currents flowing in the 
plasma modifies the magnetic configuration in which the plasma rests. A static 
magnetohydrodynamic equilibrium (plasma fluid velocity U = 0, hence electric 
field E = 0) occurs when the plasma pressure gradients are balanced by magnetic 
(j x B) forces. 

However, even if a magnetohydrodynamic equilibrium exists in some 
particular case, the lack of plasma stability can lead to the spontaneous generation 
of E fields and associated plasma velocities U. For if the plasma is disturbed 
slightly, its motion can deform the magnetic field in such a way as to produce 
magnetic forces that tend to amplify the original disturbance. This type of 
phenomenon is called a ‘magnetohydrodynamic (MHD) instability’. 

Because of the complexity of the magnetohydrodynamic equations, we are 
generally only able to treat analytically the case of linear stability, i.e. stability 
against injinitesimally small disturbances, in relatively simple geometries. For 
spatially uniform plasmas, infinitesimal perturbations will generally have a wave- 
like spatial structure. In such cases, as was discussed in Chapter 15, a plane 
wave with a single wave-vector k will generally have a single frequency w. 
Thus, for a uniform plasma, this plane wave will be a ‘normal mode’. For 
non-uniform plasmas, such as those considered in the present Chapter, it will 
be necessary to find the ‘eigenfunctions’, describing the spatial structure in the 
direction of non-uniformity, of the normal modes of perturbations, i.e. the modes 
which oscillate (or grow) with a single (possibly complex) frequency w. 

The theory of magnetohydrodynamic stability has been developed 
rigorously and applied analytically and numerically for a variety of plasmas 
using a variational principle, known as the ‘MHD energy principle’. The MHD 
energy principle was formulated by I B Bernstein, E A Fneman, M D Kruskal 
and R M Kulsrud (1958 Proc. R. Soc. (London) A 744 17). The energy principle 

311 
Copyright © 1995 IOP Publishing Ltd.



312 The Rayleigh-Taylor and flute instabilities 

lies outside the scope of this book, however. Rather, we will limit ourselves to 
a simple configuration for which the normal modes can be obtained explicitly, 
and we will then use general arguments to extend our results qualitatively to 
other configurations. 

19.1 THE GRAVITATIONAL RAY LEIGH-TAY LOR INSTABILITY 

Perhaps the most important MHD instability is the Rayleigh-Taylor (or 
‘gravitational’) instability. In ordinary hydrodynamics, a Rayleigh-Taylor 
instability arises when one attempts to support a heavy fluid on top of a light 
fluid: the interface becomes ‘rippled’, allowing the heavy fluid to fall through 
the light fluid. In plasmas, a Rayleigh-Taylor instability can occur when a dense 
plasma is supported against gravity by the pressure of a magnetic field. 

The situation would not be of much interest or relevance in its own right, 
since actual gravitational forces are rarely of much importance in plasmas. 
However, in curved magnetic fields, the centrifugal force on the plasma due 
to particle motion along the curved field-lines acts like a ‘gravitational’ force. 
(Expressed differently, as we saw in Chapters 2 and 3, the electron and ion 
drifts due to magnetic-field gradient and curvature (VI3 and curvature drifts) 
are similar to the particle drifts that arise from a gravitational field (gravitational 
drift).) For this reason, the analysis of the Rayleigh-Taylor instability provides 
useful insight as to the stability properties of plasmas in curved magnetic fields. 
Rayleigh-Taylor-like instabilities driven by actual field curvature are the most 
virulent type of MHD instability in non-uniform plasmas. 

Figure 19.1. An equilibrium in which a plasma is supported against gravity by a magnetic 
field. 

To treat the simplest case, we consider a plasma that is non-uniform in 
the y direction only and is immersed in a magnetic field in the z direction. To 
be specific, we suppose that the density gradient Vp is in the y direction and 
that the gravitational field g is opposite to it, i.e. in the negative y direction. 
This corresponds to the case of a dense plasma supported against gravity by a 
magnetic field, as shown in Figure 19.1. Although Figure 19.1 suggests that 
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there is a sharp boundary between the plasma and the vacuum, this is only 
one possible case and is used here primarily for illustration; the density ‘profile’ 
p o ( y )  may, in practice, be a smoothly increasing function of y .  For the purposes 
of our present analysis, we will assume that the density has an exponential shape 
in y ,  i.e. 

Po(Y> 0: exp(y/s) (19.1) 

where s denotes the density-gradient ‘scale length’. The plasma is bounded by 
conducting walls at y = 0 and y = h .  This is illustrated in Figure 19.2. 

0, / Figure 19.2. The profile of plasma 
////////////* mass density p ~ ( y )  between conduct- 

The equilibrium situation has uo = 0, and PO, Bo and po functions of 
y alone. (Here, the subscript ‘0’ denotes an equilibrium quantity.) The 
pressure-balance condition (Chapter 9), including an additional gravitational 
force, requires that 

a (PO+ 2) +peg = o  
a y  

(19.2) 

where g is the magnitude of the gravitational acceleration, i.e. g = - g f .  From 
equation (19.2) and by referring to Figures 19.1 and 19.2, we see that the field 
strength Bo must be larger in the ‘vacuum’ region than in the ‘plasma’ region, 
both to support the pressure gradient and to balance the gravitational force, 
implying that a B o / a y  -= 0. 

We now embark on a linearized small-amplitude stability analysis of this 
equilibrium. We suppose that the plasma equilibrium is perturbed in some way, 
so that all quantities (densities, fields, etc.) differ from their equilibrium values 
by infinitesimal but non-zero amounts. However, we neglect all products of two 
or more infinitesimal quantities (linearized analysis). Unlike the equilibrium, the 
perturbations will vary in time. For linearized equations, the three types of time 
dependence that can arise for a perturbation quantity pb can all be expressed in the 
form @ a exp(-iwt), where a real value of the ‘frequency’ w will correspond 
to an oscillating perturbation, an w value with a positive imaginary part will 
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correspond to an exponentially growing perturbation (instability), and an w value 
with a negative imaginary part will correspond to a damped perturbation. 

For an equilibrium that is spatially uniform in some direction, say the 
x direction, the spatial eigenfunctions of the linearized system of equations will 
be sinusoidal in x ,  i.e. they can be expressed in the form I) 0: exp(ikx), where k 
is the wave-number. If the equilibrium is not only uniform but also infinitely long 
in the x direction, then all real k values are allowed. Thus, stability problems of 
this kind are generally analyzed by assuming that perturbation quantities vary, 
for example, like 

I) cx $(y)exp(ikx - iwt) (19.3) 
for some complex w to be determined. If w turns out to be imaginary (with a 
positive imaginary part), the system can be said to be ‘unstable’. 

Since the particular equilibrium under investigation here is uniform and 
infinitely long in the x direction, we adopt precisely the above form for 
all perturbation quantities. Moreover, the dynamics of the Rayleigh-Taylor 
instability is purely two-dimensional: there is no variation at all (equilibrium or 
perturbations) dong the magnetic field (z direction). Thus, while a more general 
perturbation would have the form 

+ cx $(y)exp(ik,x + ik,z - iwt) (1 9.4) 

we may take k, = 0 in this particular problem. In all cases, the eigenfunctions 
$(y) are to be determined by finding solutions that correspond to normal modes, 
i.e. perturbations that have a single (complex) frequency U.  

Accordingly, we are to investigate perturbations of the equilibrium shown 
in Figures 19.1 and 19.2, in which all quantities (densities, pressures, fields and 
so on) are of the form 

f = fo(Y) + f1(y)exp(ikx - (19.5) 

where the subscript ‘1’ denotes small perturbations, and where we have 
suppressed the suffix in k,, writing simply k for the x component of the k- 
vector. Such solutions represent wave-like perturbations of the plasma-vacuum 
interface, as illustrated in Figure 19.3. If the frequency w is real, the wave-like 
perturbation travels in the x direction. The wave-like perturbation is created by 
the periodic upward and downward (i.e. in the y direction) motion of plasma 
elements: the plasma elements themselves do not need to move significantly in 
the x direction. (The situation is exactly analogous to propagating water waves, 
which are caused mainly by the upward and downward motion of the water, 
rather than by any lateral motion of the water, so long as the wavelength is 
short compared with the water depth.) If the w value is purely imaginary, the 
wave-like perturbation grows in amplitude, but the wave pattern does not move 
in the x direction. 
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- 
Motion of wave 
pattern if Re o>O 

Figure 19.3. 
Figure 19.1. 

A wave-like perturbation of the plasma-vacuum interface shown in 

An important simplification results from noting that, for this type of 
perturbation, the field lines remain straight even in the perturbed state. This 
is intuitively obvious from our general result that plasma elements initially on 
some given field line remain on the same field line in any ‘ideal’ (i.e. infinite- 
conductivity) magnetohydrodynamic motion. For, if plasma elements simply 
move up or down in a wave-like pattern that extends uniformly to infinity in 
the z direction, then there is no way in which the field lines can become bent. 
The same result may be obtained formally by examining each component of the 
linearized version of the usual combination of Faraday’s law and the ideal MHD 
Ohm’s law, namely 

aB1 - = V x (UI x Bo) = (Bo - V ) U I  - (UI * V)Bo - Bo(V 
at UI) (19.6) 

where we have dropped a term in V . Bo from the right-hand side. (Note that, 
in this case, the plasma velocity ~0 is zero in the equilibrium and has only a 
perturbed value, denoted by UI.) If we examine the x and y components of 
equation (19.6) we see that, in each case, all three terms on the right-hand side 
vanish identically. The first term on the right-hand side always vanishes since 
Bo. V = Bo(a/az) = 0. The x and y components of the second and third terms 
vanish because Bo has only a z component. Thus, no components B, or By can 
arise, and the field lines remain straight. 

For straight field lines, the linearized perturbed fluid equation of motion is 
simply 

P o - = p l g - v  au1 at ( p 1 + -  Bz’)- (19.7) 

Here we have linearized the magnetic-pressure perturbation, i.e. (B2)1 = 2BoBZ1. 

Copyright © 1995 IOP Publishing Ltd.



3 16 The Rayleigh-Taylor and flute instabilities 

Both x and y components of this linearized equation of motion provide useful 
information. However, since we do not at present have much additional 
information about either pl or B,1, it is convenient to eliminate these two 
quantities by taking the z component of the curl of the equation of motion, 
i.e. operating on both sides of equation (19.7) with the operator 2 Vx. This 
corresponds to taking alax of the y component and subtracting a / a y  of the 
x component, eliminating the entire gradient term on the right-hand side, since 
the curl of a gradient vanishes. What remains is 

= -ikplg (19.8) 

where we have dropped the subscript ‘1’ from the velocity components. 

i.e. 
Let us, for the moment, suppose that the plasma motion is incompressible, 

au, 
a y  

0 = V - ul = iku, + - 
(19.9) 

(This assumption replaces the adoption of an adiabatic or isothermal equation 
of state. Its validity is only approximate, but will be verified later after we have 
completed our calculation.) With this assumption, the density perturbation can 
be obtained from the continuity equation, as follows: 

giving 

(19.10) 

aP0 POU, 

a y  
- i q l  = -U - = -- 

S 
(19.11) 

POU, 
PI = - ius 

the latter for our particular form of p o ( y ) .  Substituting from the continuity 
equation (19.1 1 )  for P I ,  and the incompressibility relation (19.9) for U, into the 
equation of motion (19.8), we obtain 

(~0%) - k2 ( 1  + 7) g U, = 0. 
Po a y  SW 

(19.12) 

This is a second-order differential equation for a single spatial variable, 
u y ( y ) ,  as a function of an unknown scalar quantity w, which can be solved 
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once the appropriate boundary conditions are specified. Since the differential 
equation is homogeneous, it will be possible to satisfy two boundary conditions 
only for some discrete set of ‘eigenvalues’, which will determine the allowed 
set of values for w.  As we have already indicated in Figure 19.2, we suppose 
that the plasma is bounded above and below by conducting walls, taken to be 
at y = 0 and y = h .  (A conducting wall cannot have any E field parallel to its 
surface, and thus the perpendicular component of the plasma velocity must also 
vanish. In this sense, the wall is a ‘rigid’ boundary in regard to fluid motion.) 
Thus, the boundary conditions are 

u y  = O  at y = 0 , h .  (19.13) 

By design, we chose a form for p ~ ( y )  for which the differential equation can 
be solved analytically. By using an integrating factor exp( -y /2s) ,  discrete 
solutions (‘eigenfunctions’) of equation (19.12) may be found of the form 

(19.14) 

for all integer values of n .  The ‘eigenvalues’, which for equation (19.12) will 
give the allowed values for the quantity g/ (sw2) ,  are given by the relation 

(19.15) 

Problem 19.1: Verify equation (19.15) by direct substitution of 
equation (19.14) into equation (19.12). 

For the case where g and s are both positive, as they are for the configuration 
illustrated by Figures 19.1 and 19.2, we see immediately that there are no 
solutions unless w2 is negative, corresponding to w being pure imaginary. 
Solving for w, we obtain 

(: n2x2 + h2k2 + h2/4s2 
w = f i  - (19.16) 

The solution for w with a positive imaginary part represents an exponentially 
growing perturbation, i.e. an instability. The solution with a negative imaginary 
part represents a decaying perturbation that is of no interest. 

The lowest mode that satisfies our boundary conditions has n = 1. This is 
the ‘longest wavelength’ mode in the y direction and is more rapidly growing 
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than modes with n > 1. The fastest growing modes tend to be those with the 
shortest wavelengths in the x direction, however, i.e. large k values. Indeed, 
for all modes with wavelengths in the x direction that are shorter than both the 
density scale-length s and the geometric height of the plasma h ,  i.e. those with 
hk >> j7 and ks >> 1 ,  the growth rate y (the imaginary part of w for the growing 
n = 1 mode) is given by 

y = (g/s)? (19.17) 
The ‘growth time’ y-I = (s/g)’l2 is just the time for ‘free fall’ over a distance 
s due to the gravitational acceleration g. 

If the sign of either g or s is reversed, corresponding to the case of 
the plasma density increasing in the direction of the gravitational force g, 
the solutions for w are all real. This case is stable, and the eigenmodes are 
propagating wave-like disturbances. 

19.2 ROLE OF INCOMPRESSIBILITY IN THE RAYLEIGH-TAYLOR 
INSTABILITY 

In the discussion of the Rayleigh-Taylor instability given in the previous Section, 
we assumed the plasma flow to be incompressible, i.e. 

v . u = o .  (19.18) 

We will now verify the validity of this approximation. 
Physically, incompressibility is a good approximation because the potential 

energy of the plasma in the gravitational field is usually insufficient to provide 
either the increase in thermal energy that occurs in compression of the plasma, 
or the increase in magnetic-field energy that occurs as the magnetic field is 
(necessarily) compressed along with the plasma. Let us consider this latter effect, 
since it is the more important in a plasma with a low fl value (p << B 2 / 2 p 0 ) .  

The geometrical configuration is the same as in the previous Section, as 
shown in Figure 19.1. As we saw before, the magnetic field lines remain straight, 
and no B, or By components arise. The perturbation in the Bz component may 
be obtained by combining Faraday’s and Ohm’s laws in the usual manner: 

- = V x (UI x Bo) = (Bo * V)UI - (UI * V)Bo - Bo(V * U]). (19.19) 
at 

Taking the z component gives 

a BO 
at ay 
- + (u1 - V ) B o  = -iwBzl + uy- = -Bo(V ‘uI). aB1z (19.20) 

This simply tells us that the magnetic field is convected and compressed along 
with the plasma. Henceforth, we again drop the subscript ‘1’ from the velocity 
components. 
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To relate the energy needed to produce this amount of compression to the 
potential energy that is available, we consider one of the individual components 
of the equation of motion, say the x component: 

(19.21) 

This equation balances the forces arising from compression of the plasma 
and magnetic field with the accelerating or decelerating flow that drives this 
compression. Recall that, in the previous Section, we conveniently eliminated 
both p~ and B,]  by taking a / a y  of this x component of the equation of motion 
and subtracting a / a x  of the y component. The assumption of incompressibility 
allowed us to use this trick to avoid treating the effects of p~ and B,1 directly. 
Here, we must retain these two quantities and use equation (19.21) in the form 

-iwpou, x -ik(pl + BoB,I/cLo). (19.22) 

We now use the adiabatic gas law to find the perturbation in the pressure, 
p1. From dp/dt = (yp/p)dp/dt, we obtain 

ap1 apo - + (UI - V)po = -iwpl + uy- = -ypo(V. ul). 
at ay 

(19.23) 

We may now substitute equation (19.20) for B,1 and equation (19.23) for p1 
into equation (19.22). After considerable rearranging of terms, equation (19.22) 
then becomes: 

iku, = -z k2 (T +*)V.ul+ -- k 2 U y  a ( P O  + 2) . (19.24) 
w POCLO W2P0 ay 

We may simplify the second term on the right-hand side of equation (19.24) by 
using the equilibrium relation (19.2). For the eigenfunctions and eigenvalues 
described by equations (19.14) and (19.16), respectively, it will then be seen 
that the second term on the right-hand side of equation (19.24) has the same 
order-of-magnitude as the term on the left-hand side. However, the coefficient 
of the first term on the right-hand side of equation (19.24) (for po << Bi/po) 
is approximately k 2 B i / 0 2 p o p o  = k2vi/w2. Thus, from equation (19.24), we 
obtain the order-of-magnitude relationship: 

V.Ul 0 2  
- N -  

iku, k2vi  

where V A  = Bo/(p~po)'/~ is the AlfvCn speed. Noting that 

(19.25) 

V - UI = iku, + - 8% 
ay 
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we see that equation (19.25) expresses the neglected quantity (V . ul) as a 
fraction of a retained quantity, in this case iku,. This fraction clearly measures 
how good the incompressibility approximation is. If the fraction is very small, 
the two terms in V . u1 must almost cancel, i.e. to a good approximation we 
may assume that V - U] = 0. Thus, the incompressibility approximation is valid 
whenever 

lo2/ << k 2 v i .  (19.26) 

Conversely, a flow with finite compression, i.e. in which V * U] is as large as 
either of its constituent parts, e.g. iku,, would result in a higher-frequency wave, 
whose phase velocity perpendicular to the magnetic field would be comparable 
to the AlfvCn speed. In the terminology of Chapter 18, this would be the 
‘compressional’ AlfvCn wave, or the ‘magnetosonic’ wave. 

In the case of an instability, the magnitude of the growth rate will 
be a measure of the amount of potential energy available to drive the 
compression. For the Rayleigh-Taylor instability, which has a growth rate (see 
equation (19.16)) given by 

g h2k2 
I d  = IY21 = sn + h2k2 + h2/4s2 

the incompressibility condition, equation (19.26), is valid whenever 

gs << v i  (y + k2s2 + (19.27) 

Equation (19.27) is least easily satisfied for the longest wavelengths, i.e. the 
smallest values of n and ks. Even then, it is satisfied whenever 

pgs << p v i  X B 2 / p o  (19.28) 

i.e. whenever the gravitational potential energy is much less than the magnetic 
field energy. For shorter wavelengths, the approximation is even better. 

This agrees with our initial intuitive observation: incompressibility should 
be a very good approximation whenever the potential energy that is available 
from the gravitational field is inadequate to provide the energy needed for 
compression of the magnetic field. 

It must be emphasized that the approximate incompressibility of the plasma 
is the consequence, for the particularly simple geometry under consideration 
here, of the plasma’s inability to compress the magnetic field due to the smallness 
of the available gravitational potential energy. Equivalently, the compressional 
AlfvCn wave, or magnetosonic wave, cannot be excited: the instability arises, 
in effect, in the ‘shear’ AlfvCn wave in the special case where kll = 0. For 
this wave, to minimize the effect of the magnetosonic branch, the perturbation 
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quantities B,1 and p1 are relatively small (although non-zero) and are related 
to each other through the equation of motion, e.g. equation (19.21). They 
are also both described in terms of a combination of convection and a small 
amount of compression, as given in equations (19.20) and (19.23), respectively. 
Equation (19.20) expresses the conservation of magnetic flux in our assumed 
perfectly conducting plasma which is exact, in contrast to incompressibility, 
which is only approximate. We will see below that there are other geometries in 
which the Rayleigh-Taylor instability can be driven by expansion (i.e. negative 
compression) of the plasma. In these cases, the expansion is just that necessary 
to conserve magnetic flux in a plasma that is convecting into a region of reduced 
magnetic field. There is still little expansionkompression of the magnetic jield, 
i.e. still little coupling to the magnetosonic wave. 

19.3 PHYSICAL MECHANISMS OF THE RAYLEIGH-TAYLOR 
INSTABILITY 

As a complement to the fluid picture developed above, the physical mechanism 
at work in the Rayleigh-Taylor instability can also be understood in terms of 
the gravitational drips of ions and electrons. 

From Chapter 2, we recall that an external force F (such as a gravitational 
force F = Mg) perpendicular to a magnetic field B causes a charged particle (in 
particular, an ion with charge +e) to drift with a velocity 

F x B  M g x B  v d = - = -  
e B2 eB2 ’ 

(19.29) 

In our case (see Figure 19.1), this gravitational drift is in the negative-x direction, 
and has the magnitude Ud = Mg/eB. There is also an electron drift in the 
opposite direction, but this is much smaller because of the smaller electron 
mass. 

Suppose a small wave-like ripple should develop on a ‘plasma-vacuum 
interface’, as shown in Figure 19.3. The gravitational drift of ions on the plasma 
side of the interface will cause positive charge to build up on one side of the 
ripple, as illustrated in Figure 19.4; the depletion of ions causes a negative charge 
to build up on the other side of the ripple. Due to this separation of charges, a 
small electric field El develops, and this electric field changes sign going from 
crest to trough of the perturbation, again as shown in Figure 19.4. It is apparent 
that the resulting El x Bo drift is always upward in those regions where the 
interface has already moved upward, and downward in those regions where the 
interface has already moved downward. Thus the initial ripple grows larger, as 
a result of E x B drifts that are phased so as to amplify the initial perturbation. 

The Rayleigh-Taylor instability can also be understood from an energy 
viewpoint, i.e. in terms of the lowering of the plasma’s potential energy in the 
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Ion Grav. Drift 
f-------------- 

g I 
ElxBo Drift 

Figure 19.4. The mechanism of the Rayleigh-Taylor instability. The ion gravitational 
drift leads to charge separation on the plasma-vacuum interface, producing electric fields 
and E x B drifts that increase the amplitude of the perturbation. 

gravitational field due to the growth of the instability. However, the change in 
potential energy is second order in the amplitude of the perturbations. For 
the simple case illustrated in Figure 19.3, this second-order change in the 
gravitational potential energy can be calculated explicitly. Suppose the plasma 
shown in Figure 19.3 has uniform density p and extends from the plasma- 
vacuum interface at y = 0 to some fixed upper boundary at y = h.  Before 
the onset of the wave-like perturbation of the plasma’s lower surface, the 
gravitational potential energy is simply 

where the integral over y has been taken from y = 0 to y = h and the 
integral over x has been taken over some length L.  Now add a sinusoidal 
perturbation of the plasma’s lower surface, which may be assumed to take the 
shape y = (sinkx, as shown in Figure 19.3. This perturbation satisfies the 
incompressibility constraint since the area of the plasma in the ( x ,  y) plane is 
unchanged (see Figure 19.3). The plasma fills the region above this deformed 
lower boundary, still with uniform mass density, p .  The gravitational potential 
energy is still Jpgydxdy, but the integral over y must now be taken from 
y = (sinkx to y = h and the integral over x may most conveniently be taken 
over the length of a full period, L = 2n/k; the gravitational potential energy 
becomes 

pg (h2 - ~*sin2kx)dx/2 = pgL(h2 - t2/2)/2. s 
Thus the gravitational potential energy is lowered by an amount p g L t 2 / 4  
(second order in the perturbation amplitude () by the onset of the perturbation. 
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When potential energy can be lowered by such a perturbation, so that the energy 
released can go into kinetic energy of plasma motion, this can provide the energy 
necessary to drive an instability. 

19.4 FLUTE INSTABILITY DUE TO FIELD CURVATURE 

Real gravitational forces are generally totally negligible in laboratory plasma 
physics: plasmas are much too rarefied for gravity to compete with the strong 
pressure gradients and magnetic forces. The importance of the Rayleigh-Taylor 
instability lies in the close analogy between gravitational drifis and the V B and 
curvature drifts that arise in non-uniform magnetic fields. 

In Chapter 3, we obtained the following expression for the combined V B  
and curvature drifts of an ion with charge e in a vacuum magnetic field (which 
should provide an adequate approximation to the actual magnetic field in a low-/I 
plasma without strong field-aligned currents): 

(19.30) 

where R, is the vector radius-of-curvature (a vector drawn from the local center- 
of-curvature to the field line, intersecting the field line normally and pointing 
away from the center-of-curvature). By comparing equation (19.30) with the 
expression for the gravitational drift given in equation (19.29), we see that the 
gravitational drift provides a good model for the drifts in a curved magnetic field, 
provided the vectors g and R, are in the same direction, and the magnitude of 
g is defined by 

(19.31) 

If we average over a thermal distribution of particle velocities uI and V I [ ,  

we can write (U;) = (u:/2) = T / M  = p/p, which shows that the magnitude 
of g should be related to the ion pressure p of a plasma in a curved magnetic 
field bv 

2P 
P Rc 

g = - .  (19.32) 

Since the thermal velocities of electrons are much larger than those of ions, 
both particle species have comparable curvature and V B drifts, whereas the 
gravitational drift is important only for ions. The effect of this is that the total 
pressure, ions and electrons, should be used for p in equation (19.32). 

Thus a plasma in a curved magnetic field can be viewed as having analogous 
particle drifts to a plasma in a gravitational field-and therefore a potential 
for charge build-up and unstable growth of perturbations. Since the Rayleigh- 
Taylor instability arises whenever the gravitational force is directed away from 
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the region of maximum plasma density, the corresponding instability of a plasma 
in a curved field arises whenever the radius-ofcurvature vector is directed away 
from the region of maximum plasma pressure, i.e. whenever the plasma is confined 
by a magnetic field that is concave towards the plasma. 

The growth rate y of the instability can be estimated by replacing g by 
2 p / p R c  in the expression for y given in equation (19.17) and by equating the 
scale-length s to the pressure-gradient scale-length, i.e. s-l = I V p l / p .  We 
obtain 

Y = (21VPl lPRc)1/2 .  (19.33) 

We reiterate that this instability occurs only if the radius-of-curvature vector is 
directed away from the region of maximum plasma pressure, i.e. only if R, and 
V p  are oppositely directed. 

This pressure-driven version of the Rayleigh-Taylor instability, which in 
the next Section we will learn to call the 'flute instability', is rapidly growing. 
The growth time (i.e. y - l )  can be estimated by noting that p / p  M C:, where 
C, is the sound speed in the plasma, giving 

y - C , / ( S R , ) ' / ~ .  (19.34) 

Thus, the characteristic growth time is the time it takes a sound wave to traverse 
a distance that is the geometric mean of the pressure-gradient scale-length and 
the radius-of-curvature. 

Problem 19.2: An annular cylindrical plasma, as shown in Figure 19.5, 
is infinitely long in the z direction. It has a purely azimuthal magnetic field 
Be(r) ,  produced mainly by the current I in a central conductor at r = 0. 
The plasma pressure p ( r )  falls to zero on both the inside of the annular 
cylinder, r = r l ,  and on the outside, r = r2, peaking somewhere between 
rI and r2. Describe carefully by means of an illustration why you would 
expect this plasma to be subject to the Rayleigh-Taylor flute instability. 
For simplicity, you may suppose that p << B i / p o ,  so that the field is 
approximately the vacuum field, Be a r - ' .  Indicate in your illustration the 
particle drifts that give rise to this instability, and show the form that the 
unstable perturbations will take. 

19.5 FLUTE INSTABILITY IN MAGNETIC MIRRORS 

One configuration that is obviously susceptible to the pressure-driven version 
of the Rayleigh-Taylor instability is the magnetic mirror, in which a cylindrical 
plasma with an approximately axial magnetic field is constricted at both ends 
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Figure 19.5. Annular cylindrical plasma, infinitely long in the z direction, has a purely 
azimuthal field & ( r )  produced by the current I in a central conductor at r = 0. See 
Problem 19.2. 

by regions of higher field strength, as shown in Figure 19.6. In this case, the 
curvature of the magnetic field is clearly concave toward the plasma in the central 
region. Approximating the plasma as a long cylinder, in which the pressure is 
considered to be a function of the radius r, the growth rate of the instability will 
be given by 

(19.35) 

where the prime denotes differentiation with respect to r. 

Coil coil ’ 
Figure 19.6. Plasma equilibrium in a ‘magnetic mirror’ configuration. Note that the 
magnetic field curvature is concave toward the plasma in the central region where the 
plasma pressure is largest. 
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Figure 19.7. 
Rayleigh-Taylor instability. 

Flute-like perturbation of a magnetic-mirror plasma produced by the 

This Rayleigh-Taylor instability will produce a rippling of the plasma 
surface in the azimuthal direction, and the ripples will extend uniformly along the 
length of the cylinder. The form of the perturbation is illustrated in Figure 19.7. 
The pressure-driven version of the Rayleigh-Taylor instability is called the ‘flute 
instability’ because of the resemblance of the perturbed surface of a quasi- 
cylindrical plasma such as this to a fluted Greek column. 

Problem 19.3: Consider a cylindrical plasma with an axial field Bo that 
is made flute-unstable by constricting the ends to form a magnetic- 
mirror configuration. Consider a flute instability with azimuthal mode 
number m, i.e. a mode in which the peflurbations vary as exp(im0). 
Use the appropriate expression for the growth rate y to show that the 
incompressibility approximation is valid whenever ,!?r/ R, << m2. 

The basic energy reason for the flute instability in a curved magnetic field is 
very similar to the energy reason for the gravitational instability. Just as a fluid 
supported against gravity can lower its potential energy by perturbations that 
push downward in the direction of g ,  so the thermal energy of a flute-unstable 
plasma can be lowered by perturbations that push outward in the direction of &. 
That such perturbations produce a net expansion of the plasma, and thus release 
thermal energy, can be shown explicitly in the case of a low-@ mirror-confined 
plasma, as follows. 

We have already seen that there is not enough energy to compress the 
magnetic field, but in a low-/3 plasma an even stronger condition applies, namely 
that the magnetic field is essentially a vacuum field and remains approximately 
unchanged even when the plasma pushes outward across this field. However, 
the total magnetic flux contained within the plasma, i.e. the quantity BdS 
integrated over the plasma cross section, must remain exactly constant, and so the 
only type of perturbation permitted is that illustrated in Figure 19.7, in which the 
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surface of the plasma becomes rippled by ‘filaments’ of plasma moving outward, 
while compensating ‘filaments of vacuum’ move inward so as to conserve the 
total magnetic flux. The perturbations must be ‘flutes’, i.e. uniform along the 
entire length of the plasma, so as to avoid ‘bending’ the magnetic field, which 
would require additional energy. To the extent that special effects occur at the 
ends of the magnetic mirror which limit the allowed perturbations in this area 
(e.g. conducting plates could be placed at the ends of the mirror), then these 
effects will have a stabilizing influence; this topic is beyond the scope of the 
present discussion. Such effects are required, however, to explain the stability 
of the Earth’s magnetosphere. 

If the strength of the magnetic field decreases in the radially outward 
direction (as it does in the central region of the magnetic mirror, where the field 
gradient arises because the field is concave towards the plasma), the rippling 
perturbation of the plasma surface that conserves magnetic flux must result in 
a small (second-order) increase in the area of the plasma cross section. This is 
because the filaments of plasma which move outward are moving into a region 
of lower field, and so these cross section areas must increase, relative to the cross 
sectional areas of the ‘vacuum filaments’ of equal magnetic flux which move 
inward into a region of higher field. This increase in net cross sectional area 
results in a corresponding increase in plasma volume. The concave (towards 
the plasma) curvature of the magnetic field results in another (second-order) 
increase in the plasma volume, because the plasma filaments moving outward 
are lengthened slightly, relative to the vacuum filaments moving inward, which 
are shortened. For vacuum magnetic fields the gradient and curvature effects 
are always additive (corresponding to the VB and curvature drifts always being 
in the same direction). The increase in volume, due both to increased cross 
sectional area and increased field-line length, corresponds to expansion of the 
plasma and a lowering of its thermal energy, thereby making energy available 
for the unstable perturbation. 

From a single-particle perspective, the drop in perpendicular and parallel 
particle kinetic energy associated with moving to lower B and higher R, is 
invested in j * E work, as discussed in Section 3.5. This j - E work drives the 
instability to higher amplitudes. 

Closer examination of the mirror field configuration, however, shows that 
there are regions of favorable curvature (convex toward the plasma) near 
the ends, in addition to the main region of unfavorable (concave) curvature 
at the center. In general, however, in axisymmetric mirror configurations 
the unfavorable curvature is dominant. However, non-axisymmetric mirror 
configurations have been designed for fusion applications in which current- 
carrying rods, first used by M C Ioffe (see Y B Gott et a1 1962 Nuclear Fusion 
Suppl. p 1042), are placed outside the plasma, parallel to its axis, so as to create 
a BO field with favorable curvature, i.e. convex toward the plasma. In such 
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cases, the combined curvature can be favorable everywhere; indeed the plasma 
is located in the region of an absolute minimum in the strength of the vacuum 
magnetic field. 

The correct weighting of the favorable and unfavorable regions in a ‘simple 
mirror’ can be derived as follows. Take cylindrical coordinates (r ,  6, z ) ,  with 
z along the axis of the mirror field. Overall stability will be determined by 
the average net angular drift of particles over their complete orbits along the 
mirror field from one end to the other. If the sign of this average net angular 
drift corresponds to field curvature that is concave toward the plasma, there 
will be a build-up of charges on the edges of the flutes which will give rise to 
azimuthal E fields that produce unstable growth in the amplitude of the flute-like 
perturbations. In the simple mirror geometry, the V B  and curvature drifts are 
entirely azimuthal in direction, so that the angular drift speed of an individual 
particle is given by 

r -  = - 
dt eR,B 

(19.36) 

In one complete orbit along the mirror field, the net angular drift of this particle 
is given by 

(19.37) 

where we have written dt = dC/vll, where C is a length coordinate along the field 
line. The particle’s velocity components, V I I  and V I ,  change as the particle moves 
along the field line, i.e. are functions of C in the integral in equation (19.37), 
and these changes will be such as to conserve the particle energy W = m v 2 / 2  
and the magnetic moment p = m v l / 2 B .  

To obtain the net angular drift averaged over all particles in a filamentary 
‘flux tube’, i.e. a thin tube which follows the magnetic field and contains a 
given number of magnetic field lines, it is simplest to return to equation (19.36) 
and average dtlldt over the velocity-space distribution function, f, and over 
a flux tube containing a small amount of magnetic flux, A@. At any point 
along this flux tube, its cross sectional area is given by A A  = A @ / B .  The 
total number of particles contained in the flux tube is AN = ndAdC. Dividing 
equation (19.36) by r ,  multiplying by the distribution function, f, and integrating 
both over velocity space and over the volume of the flux tube, we obtain 

f d3 vdC 
r R,  B2 

(19.38) 

Equation (19.38) gives the average rate at which the entire population of particles 
of a given species in a given flux tube drifts azimuthally in 6 to a neighboring 
flux tube. The direction of the drift is opposite for electrons and ions, as expected 
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for gradient and curvature drifts, so the contributions from both species to the 
drift of charge are additive. Carrying out the local velocity-space integrals in 
equation (19.38) and omitting various positive multiplicative factors, we find 
that the average angular drift of charge is given by 

($) 0: / m d l .  rR,B2 (19.39) 

Adopting the convention that field lines that are concave toward the plasma 
have positive radii-of-curvature, while convex field lines have negative radii-of- 
curvature, the condition for flute instability is that the integral in equation (19.39) 
be positive, i.e. that the regions of positive R, outweigh the regions of negative 
R,. The point of inflection, which separates these two regions, has an infinite 
R, and contributes negligibly to the integral in equation (19.39). 

Unfortunately, the weighting due to l / r B 2  in the integrand of 
equation (19.39) is unfavorable, in that B is smallest where R, is positive. 
In general, therefore, the simple mirror is unstable to flutes. 

The flute instability in magnetic mirrors was analyzed first by 
M N Rosenbluth and C L Longmire (1957 Ann. Phys. 1 120). 

19.6 FLUTE INSTABILITY IN CLOSED FIELD LINE 
CONFIGURATIONS* 

An even simpler stability criterion can be obtained for the case where the plasma 
pressure is isotropic, i.e. p11 = p~ = p .  In this case, the condition for equilibrium 
demands that the pressure be uniform along the field, i.e. B - Vp = 0. For a 
mirror-confined plasma, this condition can never be satisfied, or else the plasma 
would extend infinitely far along the field lines. However, it is possible to create 
certain ‘closed field line’ configurations in which each field line closes on itself, 
so that the plasma pressure can be exactly constant along field lines. An example 
of such a configuration is the ‘toroidal quadrupole’ shown in Figure 19.8. Here 
the plasma entirely surrounds the two coils that produce the magnetic field. (In a 
practical situation, the coils must either by supported and electrically fed by leads 
that pass through the plasma, or they must be superconducting and supported 
magnetically for the duration of the plasma pulse.) From Figure 19.8, it may 
be seen that some of the plasma lies on field lines that encircle only one coil, 
whereas the rest of the plasma lies on field lines that pass around both coils. 
On the inner sides of the plasma which face each single coil, the curvature of 
the magnetic field is convex toward the plasma, and this interface is stable to 
flutes. On the outer side of the plasma there are regions of both concave and 
convex curvature, and so the stability of this interface depends on the appropriate 
averaging of the favorable and unfavorable contributions, expressed in the form 
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of a criterion that we will now derive. We will do this for isotropic pressure, and 
we will assume that the plasma (as in the simple mirror) is axisymmetric, i.e. that 
the configuration is symmetric to rotation in 8 about the z axis in Figure 19.8. In 
such cases, the pressure can be brought outside the integral in equation (19.39), 
which then becomes 

(19.40) 

with instability corresponding to the case where this integral is positive. (The 
integral is to be taken along the entire closed field line.) 

Current-carrying 

Field 
Lines 

Plasma 

Figure 19.8. The toroidal quadrupole configuration. The plasma entirely surrounds the 
two current-carrying conductors that produce the magnetic field shown. The configuration 
is axisymmetric, i.e. symmetric to rotation in 6 about the z axis. 

In order to derive an even simpler stability criterion, consider two 
neighboring field lines in the same azimuthal plane (i.e. same 8 value) of 
an axisymmetric configuration. Examine two infinitesimal elements of these 
neighboring field lines bounded by the same two radius-of-curvature vectors, as 
shown in Figure 19.9. The field strengths on these two elements are denoted B 
and B + 6 B  and the (infinitesimal) lengths of the elements are denoted d.t and 
d l  + 6(d.t). For a vacuum magnetic field, we can use Stokes’ theorem to show 
that 

{B - de = / (V x B) 0 dS = 0 (19.41) 
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r 
a 

Figure 19.9. Two neighboring field lines in a mirror-like configuration with local 
radii-of-curvature Re and Rc + S R,. The configuration is axisymmetric, i.e. symmetric to 
rotation in 0 about the z axis. 

which, when applied to the infinitesimal closed contour shown in Figure 19.9, 
tells us that 

Bdt = (B + SB)[dL + S(dt)] (19.42) 

that is, 

(19.43) 

Here, in the final step, we have used simple geometry to relate S(dt) to the 
perpendicular distance between the two field lines, SR,. Since we want to apply 
equation (19.43) at all points along the two magnetic field lines, it is more 
convenient to define their separation not by the geometrical distance between 
them, 6Rc, which varies along the field line, but by the magnetic flux between 
them, which is the same at all points along the field line. A convenient measure 
of this is the magnetic flux passing through an annular band obtained by rotating 
the element SR, shown in Figure 19.9 by one revolution in 8 about the axis. 
Specifically, this magnetic flux is 

S@ = 2nrBSR, (19.44) 

so that 
SB S@ 
B 2nr  R, B * 

- = -- ( 19.45) 
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332 The Rayleigh-Taylor and flute instabilities 

We can now write equation (19.40) as 

(19.46) 

(omitting the factor 2n). Let us now consider the quantity $dL/B and its 
variation between neighboring field lines, such as those shown in Figure 19.9. 
We have 

(19.47) 

End-point variations do not need to be considered in this closed-loop integral. 
Using equation (19.43) to relate S(dL) to 6B, we obtain 

Thus, in the limit of vanishing differentials, equation (19.46) reduces to 

(19.48) 

(19.49) 

Thus, the condition for instability, which corresponds to a positive value of 
(deldt), is that the quantity $ dL/B be increasing outward. 

This is the simplest form of the stability condition for flute modes in closed 
field line configurations: in such configurations an isotropic-pressure plasma 
is stable or unstable depending on whether the quantity $ dL j B  decreases or 
increases away from the center of the plasma; the integral is to be taken 
completely around a closed field line. Quadrupole configurations, such as that 
shown in Figure 19.8, can be made flute-stable according to this criterion. 

The criterion for instability derived here, namely that $dL/B must be 
increasing outward (i.e. in the direction opposite to that of the pressure-gradient 
vector), has applicability to a broader class of closed field line configurations than 
the axisymmetric (i.e. rotationally symmetric about the z axis) configurations 
discussed so far. Indeed, from the fluid viewpoint, this criterion could be 
obtained intuitively by considering whether a net expansion of the plasma occurs 
(thereby releasing kinetic energy) when flux tubes containing equal amounts of 
magnetic flux are interchanged. Consider a thin flux tube containing an amount 
6 0  of magnetic flux. At different points along this flux tube, its area 6A is given 
by 6 @  = B6A, and so the volume of the entire flux tube is given by 

6V = 6A.d.t = 6 0  dL/B. I I 
Now consider a ‘rippling’ perturbation of the plasma surface in which a plasma 
flux tube moves outward, while a ‘vacuum flux tube’ containing exactly the same 

Copyright © 1995 IOP Publishing Ltd.



Flute instability in closed field line configurations* 333 

amount of magnetic flux moves inward; we could call this the ‘interchange’ of 
these two flux tubes. If the quantity $dl /B is increasing outward, the plasma 
flux tube will expand as it moves outward, while the vacuum flux tube will 
contract as it moves inward. The overall effect will be a net expansion of the 
plasma and a reduction in its thermal energy, which then provides the energy 
needed to drive the instability. 

It is clear from this discussion that these unstable flute perturbations do not 
occur only at a plasma-vacuum interface, but can occur interior to the plasma, 
in which case a flux-tube containing high-pressure plasma is interchanged with 
a flux-tube containing lower-pressure plasma. In this case, instability will occur 
if the quantity $dl /B is increasing in the direction of lower plasma pressure 
(the equivalent of ‘outward’ in the case of a plasma-vacuum interface). As in 
the case of the gravitational Rayleigh-Taylor instability, we note that the release 
of energy is again second order in a displacement vector e, since it scales as 
-(e VP>X * VC$ dt/B>l.  

One possible method for stabilizing the flute instability would be to add 
some ‘shear’ to the magnetic field. A magnetic field is said to be ‘sheared’ if 
the direction of the field vector rotates as one moves from one constant-pressure 
surface to the next. For example, in the quadrupole configuration shown in 
Figure 19.8, the addition of a Be component (e.g. by placing a current-carrying 
conductor along the z axis) would provide magnetic shear. In a sheared magnetic 
field, the interchange of two flux tubes cannot occur without ‘twisting’ the field 
lines, thereby increasing the magnetic energy. In this case, the energy made 
available by plasma expansion must compete with the increase required in the 
magnetic energy; this will generally impose a lower limit on the plasma /l value 
for the instability to be possible. 

Even in configurations that are flute-stable according to the $ d l /  B 
criterion, e.g. the quadrupole configuration shown in Figure 19.8, there are 
generally regions along each field line where the magnetic curvature is 
unfavorable, i.e. concave towards the plasma. Although the flute instabilities 
discussed in this Chapter all extend uniformly along the entire length of the 
field lines (hence their name ‘flutes’), it is clearly possible, in principle, for 
instabilities with the same driving mechanism to arise that are localized to finite 
regions of unfavorable curvature. Such instabilities will cause the plasma to 
‘balloon’ outward along these finite portions of field lines. Conservation of 
magnetic flux then requires that the field lines ‘bend’, and this bending will 
generally increase the magnetic energy. As in the case of a sheared field, the 
energy made available by plasma expansion must compete with this increase 
in magnetic energy, and the instabilities-called ‘ballooning instabilities’-also 
arise only above some threshold ,3 value. 
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19.7 FLUTE INSTABILITY OF THE PINCH 

Another configuration that is obviously susceptible to flute instabilities is the 
cylindrical ‘self-pinched plasma’ (see Chapter 9). Here, the magnetic field is 
produced by an axial current flowing in the plasma. The magnetic field is 
azimuthal (Be) and its radius-of-curvature is simply the radial coordinate r. 
Clearly, the field-curvature is always unfavorable (concave towards the plasma). 
In this case, the flute perturbations are azimuthal, as shown in Figure 19.10. 
From the shape of the perturbed plasma, this instability is sometimes called the 
‘sausage instability’. 

1 1 1 Be 

Figure 19.10. The flute, or ‘sausage’, instability of a self-pinched plasma. 

The growth of the sausage instability is very rapid, since the radius-of- 
curvature of the field lines is effectively just the radius of the pinch column. 
From our previous formula, we estimate the growth rate to be 

(19.50) 

where a prime denotes again a derivative with respect to the radial coordinate r. 

19.8 MHD STABILITY OF THE TOKAMAK* 

Before ending this Chapter, it may be useful to discuss very briefly the stability 
of the tokamak in the ‘ideal MHD’ model which has been used here to derive 
the Rayleigh-Taylor and flute instabilities. The tokamak configuration in the 
‘cylindrical approximation’ was introduced in Chapter 9 and is illustrated in 
Figure 9.6. The actual tokamak geometry is toroidal, and the main magnetic 
field (corresponding to B, in the cylindrical approximation) is toroidally directed, 
with the smaller magnetic field (Be in the cylindrical approximation) directed 
azimuthally the short way around the torus. The ‘cylindrical tokamak’ would 
clearly be vulnerable to flute instabilities, because the helical magnetic field 
produced by the combination of the B, and Be fields has its curvature concave 
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toward the plasma. On the other hand, the field also has considerable magnetic 
shear, which we have seen to be a stabilizing effect. In the actual toroidal 
geometry, however, it turns out that the effect of the additional curvature 
introduced by ‘bending’ the cylinder into a torus generally dominates over the 
effect of the helical curvature in regard to the stability of flute modes. For a 
torus with major radius R, the toroidal curvature is favorable (convex toward 
the plasma) on the small- R side of the plasma and unfavorable (concave toward 
the plasma) on the large-R side. When a calculation is carried out for the actual 
toroidal geometry, the ‘weighting’ of the small-R side turns out to be slightly 
greater than the weighting of the large-R side, so the net effect of the toroidal 
curvature is stabilizing. For the net favorable toroidal curvature to exceed the 
unfavorable helical curvature (in the case of a tokamak of approximately circular 
plasma cross section), it is necessary only that q = rB,/RBe > 1. In practice, 
the q value in a tokamak typically rises from about unity at the center of the 
plasma (r = 0) to three or higher at the plasma edge ( r  = a). Thus, this 
condition is usually satisfied in the tokamak, so that pure flutes are stable. 

Following any helical field line around the torus, it is clear that the field line 
will alternately lie on the small-R and large-R sides of the plasma. Thus, as in 
the case of the closed field line quadrupole configuration shown in Figure 19.8, 
there are regions of favorable curvature and regions of unfavorable curvature 
on each field line; as we saw, this gives rise to the possibility of ‘ballooning’ 
instabilities. Since the field line makes exactly q transits the long way around 
the torus for each transit the short way around, these regions of favorable 
and unfavorable curvature are a distance of order qR apart along a field line. 
For a displacement 6 ,  the energy released per unit volume by a flute-like 
instability is of order p’e2/R, whereas the energy per unit volume needed to 
bend the magnetic field over a distance of order qR (field-line bending being 
unavoidable for a ballooning instability, as distinct from a pure flute) is of order 
(B;/2p0)(e~/q~R*). Thus, ballooning instabilities will arise in tokamaks only 
when p‘/R > B;/2poq2R2, i.e. only for /I > % a/q2R, where we have 
estimated p’ - p la .  This result should be taken only as a rough order-of- 
magnitude estimate: in practical cases, tokamaks tend to be stable to ballooning 
instabilities up to /3 values in the range 3 4 % .  

The tokamak can, however, exhibit an entirely different type of MHD 
instability, which is driven by the magnetic energy that is available in the 
tokamak magnetic field, rather than by the thermal energy that is available 
from plasma expansion. This instability, which can arise also in the cylindrical 
tokamak approximation, is called the ‘kink’, and it takes the form of a helical 
displacement of the plasma cylinder. The instability arises whenever such a 
perturbation lowers the magnetic energy of the Be field-the field component 
that is produced by currents in the plasma itself. In practice, kink instabilities 
tend to arise only at relatively low q values. We will not pursue them further 
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here, except to note that kinks are closely related (in regard to their source of 
energy) to a more slowly growing, but also more pervasive, instability that arises 
when resistivity is added to the MHD model. This instability, which occurs in 
many types of laboratory and naturally occurring plasmas in magnetic fields, 
is discussed in the next Chapter. For simplicity, we choose there to consider a 
simpler magnetic configuration (a plane current slab), which we find to be stable 
in the ideal MHD model. 

The reader who is interested in pursuing further the topic of MHD 
instabilities in tokamaks is referred to J Wesson (1987 Tokamaks Oxford: 
Clarendon Press), or to R B White (1989 Theory of Tokamak Plasmas 
Amsterdam: North-Holland). 

The Rayleigh-Taylor and ju te  instabilities 
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Chapter 20 

The resistive tearing instability* 

In the previous Chapter, we analyzed an important instability, the Rayleigh- 
Taylor (or flute) instability, which can arise in an ideal magnetohydrodynamic 
(MHD) plasma, i.e. a plasma in which the electrical resistivity is assumed to be 
zero and where the additional terms that enter in the ‘generalized’ Ohm’s law are 
also negligible. For such cases, as we have seen, the plasma and the magnetic 
field are ‘frozen’ together. We found the flute instability to be very rapidly 
growing, with a growth time comparable to the time it takes a sound wave to 
travel a distance that is the geometric mean of the size of the plasma and the 
radius-of-curvature of the magnetic field. Since sound waves travel rapidly in 
high-temperature plasmas, such times are very short. 

Even if a plasma is not subject to MHD instabilities, to be certain that it 
is completely stable we must also examine non-MHD perturbations that have 
the potential to grow at much slower rates. We have seen that the ideal MHD 
approximation breaks down for very long time-scales: eventually, the plasma 
will ‘leak’ across the magnetic field or, equivalently, the magnetic field will 
‘diffuse’ into the plasma. Thus for slow plasma phenomena, non-zero resistivity 
must be included in the stability analysis, specifically in the plasma Ohm’s law. 
Although resistivity often acts to damp out perturbations, there are important 
cases where resistivity is actually destabilizing. Indeed, there is an entirely 
new class of plasma instabilities, of which the most important is the ‘resistive 
tearing instability’ to be discussed here, that arise only in the presence of 
resistivity. The reason why resistivity can be destabilizing is that it frees the 
plasma from the constraint that it remain ‘frozen’ to the magnetic field, thereby 
allowing qualitatively different types of plasma perturbations. In particular, 
these ‘resistive’ perturbations can more effectively draw upon the magnetic 
energy generated by currents in the plasma itself, which is available to drive 
instabilities. 

Intuitively, one might expect that ‘resistive instabilities’ would grow 
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exceedingly slowly, specifically on time-scales comparable to the characteristic 
times for resistive diffusion of plasma across a magnetic field. If so, they would 
be of little interest, since most plasma equilibria are changing on such time- 
scales anyway, and the occurrence of a comparably slowly growing mode of 
instability might not make much difference in practice. However, some resistive 
instabilities, certainly including the tearing instabilities to be considered here, 
grow much faster than this. The reason is that the instability is able to take 
whatever form most efficiently releases the magnetic energy on which it feeds. 
Just as the flute instability was found to be driven by the non-uniformity of 
the plasma pressure (i.e. by the plasma thermal energy), the resistive tearing 
instability in its simplest form is driven by various types of non-uniformity of 
the magneticfield (i.e. by the ability of the magnetic energy to find a path to a 
lower energy state). It is this ‘pent up’ energy in the magnetic field, trying to 
find a way to relax to a lower energy state, that drives the tearing instability. The 
growth rate can be larger than one might intuitively expect because the resistive 
diffusion of plasma across the magnetic field occurs on a much shorter spatial 
scale-length than the plasma size and yet still can release significant amounts 
of magnetic energy; because of the shorter scale-length, the resistive diffusion 
can proceed quite quickly. The theory of resistive tearing instabilities, including 
their surprisingly large growth rates, was developed first in a paper by H P Furth, 
J Killeen and M N Rosenbluth (1963 Phys. Fluids 6 459). 

20.1 THE PLASMA CURRENT SLAB 

We will analyze the resistive tearing instability for the simplest configuration 
in which it occurs, namely a ‘plasma current slab’. Specifically, we consider 
an infinite plasma that contains a finite slab (or thick sheet) of current, directed 
parallel to the surface of the slab, namely 

(20.1) 

The plasma is uniform in the y and z directions. 
V x B = pd, i.e. dB,/dx = po jz (x ) ,  we obtain 

Solving Ampere’s law, 

BlOX - a < x < a  
B y ( x )  = -Bloa x e -a (20.2) I B;Oa x > a  

where Blo = pojZo. The functions j z ( x )  and B y ( x )  are sketched in Figure 20.1. 
The magnetic field lines in the (x, y )  plane are illustrated in Figure 20.2. 

Here, we have indicated the strength of the By field at different locations x by 
the density of field lines at x: the field is stronger where the field lines are 
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Figure 20.1. The ‘plasma current sheet’ equilibrium. 

Y 

! I 
Figure 20.2. Magnetic field lines for the ‘plasma current sheet’ equilibrium. There is 
also a strong approximately uniform field B,. 

more crowded together. This plasma could possibly be subject to ideal MHD 
perturbations (although we will in fact find it to be ideal-MHD stable), but these 
would not change the basic configuration, since the magnetic flux through any 
plasma surface element in the ( x ,  2 )  plane (i.e. the number of magnetic field lines 
of the By field crossing such a surface element) must remain fixed. However, 
the inclusion of plasma resistivity will allow the negative By field on the left 
of x = 0 to diffuse into the region of positive By field on the right of x = 0, 
thereby annihilating it. This ‘annihilation’ (or ‘cancelling out’) of the magnetic 
field will clearly occur most effectively in the vicinity of x = 0, which is where 
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340 The resistive tearing instability * 
we will find the largest plasma flows in the resistive tearing instability. 

It is easy to see that this annihilation of magnetic field is energetically 
favored. For example, if we consider the modification of B y ( x )  that would 
result from cancellation of the positive and negative By components in some 
small region 1x1 < 6 ,  it is clear that the magnetic energy, s(B:/2)dV, would 
be reduced. The actual resistive tearing instability cannot annihilate magnetic 
field in such a neat and simple way: rather it involves wave-like perturbations 
of the entire plasma, well to the left and right of x = 0, which cause a wave-like 
‘break-up’ of the magnetic topology near x = 0. Overall, however, the magnetic 
energy is lowered by this type of perturbation. 

The current-slab configuration illustrated in Figure 20.2 may have an 
additional magnetic field in the z direction. If such a field is not present, the 
plasma can be in equilibrium only if it has a pressure p ( x )  that varies in x 
in such a way as to balance the variation in magnetic pressure, i.e. to satisfy 
p + B , 2 / 2 ~ 0  = constant. On the other hand, if a large B, field is introduced, 
small variations of it will easily be sufficient to balance the pressure variations 
(assuming p << B:/2po), and the functions p ( x )  and B y ( x )  become essentially 
independent of each other. A strong B, field will also play another role: as in 
the case of the Rayleigh-Taylor instability, it will constrain the plasma flow in 
the ( x ,  y) plane to be incompressible, satisfying V - UI = 0. In the particular 
example analyzed in this Chapter, we will assume that a strong B, field is in fact 
present. It should be emphasized that these assumptions are made largely for 
analytic simplicity. Resistive tearing instabilities can occur at a surface where 
B y @ )  = 0, if energetically favored, even with finite pressure in the equilibrium 
and a weak (or zero) B, field, so that the flow becomes compressible. 

Once the B, field is introduced, it becomes clear that the configuration we 
are considering is simply one particular example of more general ‘plane slab’ 
configurations with field components B y ( x )  and B , ( x ) .  Due to the variation of 
By and/or B, with x ,  the direction of the magnetic-field vector rotates as we 
move in the x direction. Such fields are said to be ‘sheared’. For sheared fields, 
the directions of the y and z axes can be chosen so that the field points exactly 
in the z direction at some selected point, say x = 0. The configuration then 
looks exactly like the one illustrated in Figures 20.1 and 20.2 (with a B, field 
added). Thus, in regard to tearing instabilities, our particular example is, in fact, 
representative of a wider class of sheared-field configurations. 

Since these plane slab equilibria are stationary in time and uniform in the 
y and z directions, linearized perturbations of the equilibria may be Fourier 
analyzed into normal modes of the form 

+I (x, t )  = $1 (x)exp(ik,y + ik,z - iwt) 

where + I  (x, t )  is any first-order perturbation quantity. For the particular 
equilibrium defined by equations (20.1) and (20.2), which has B , ( x )  = 0 on 
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the surface x = 0, the resistive tearing instabilities have k ,  = 0, i.e. the k-vector 
is exactly perpendicular to B at x = 0, i.e. k 0 B = 0 at the location of the 
tearing instability. When a B, field is introduced, so that we have a sheared- 
field configuration with both B y ( x )  and B , ( x ) ,  it is clear that all surfaces x = 
constant are potential locations for tearing instabilities, for we can orient the 
y and z axes so that the magnetic field lies in the z direction on any particular 
surface, and we can then choose a k-vector in the y direction, subject of course 
to this being allowed by the boundary conditions. For a plane slab that extends 
infinitely far in the y and z directions, all k,  and k, values are allowed: for a slab 
of finite extent, the allowed values are determined by the boundary conditions, 
which will then generally limit the surfaces on which tearing instabilities may 
be located. For the present analysis, we will limit ourselves to the equilibrium 
of equations (20.1) and (20.2) and perturbations with k,  only, i.e. k, = 0. This 
simply puts the ‘resonant surface’ where k .  B = 0 at the location x = 0. At this 
resonant surface, a zeroth-order magnetic field line lies along a line of constant 
phase in the wave-like perturbation, making it very susceptible to the first-order 
magnetic perturbation. We will further simplify the notation by dropping the 
suffix ‘y’ from k,, since this is the only non-zero component of the k-vector. 
Thus, for the remainder of this Chapter, the perturbations are assumed to vary 
as exp(iky). 

20.2 IDEAL MHD STABILITY OF THE CURRENT SLAB 

As we saw in our treatment of the Rayleigh-Taylor instability in Chapter 19, 
some general properties of the magnetic field perturbations can be obtained from 
the linearized version of the combination of Faraday’s law and Ohm’s law. First, 
we consider a perfectly conducting plasma, in which case we obtain 

- -V x El = V x (U, x Bo) aB1 
a t  
-- 

noting that the plasma velocity U is zero in the equilibrium and has only a 
perturbed value, denoted by ul. Unlike the geometry for the Rayleigh-Taylor 
instability, in the case considered here the field lines become bent, i.e. both 
a first-order B, component and a first-order perturbed By component arise. 
Accordingly, the x and y components of equation (20.3) provide some non- 
trivial information, namely 

aBX1 - = ikBy,p,l  
at 

(20.4) 
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and 

a BYo 
at ax 
- = ikB,ouyl - uxl - - Byo(V. ut) 
aBy1 

(20.5) 

(Equation (20.5) could also have been derived by combining equation (20.4) 
with the requirement that V B1 = 0.) For a normal mode with frequency w, 
i.e. with perturbation quantities varying as exp(-iwt) such as we are seeking, 
equation (20.4) can be written simply 

wB, = -kByOUx (20.6) 

in which, here and henceforth, we drop the suffix '1' from the velocity and field 
components U, and B,, respectively, since these components are zero in the 
equilibrium. We note, in passing, that equation (20.6) requires that B, vanish at 
any point where BYo = 0, in particular at x = 0 in our example: otherwise, the 
velocity component U, would be infinite. 

Let us now turn to the linearized first-order perturbed equation of motion, 
namely 

=-v  PI+- Bo B1  +  BO - V)B1+ (B1 V)Bo]. (20.7) ( Po ) Po 

We have used j = (V x B)/FO and the vector identity for ( V  x B) x B (see 
Appendix D). We have also linearized the magnetic pressure perturbation, writing 
(B2)1 = 2Bo.BI. Both x and y components of this linearized equation of motion 
provide useful information, namely 

BZOBZI + ByoByl) + -ikByoB, 1 
PO PO 

(20.8) 

(20.9) 

In the second-to-last term on the right-hand side in equation (20.9), we have 
used V B1 = 0 to express B,1 in terms of B,. Just as in our treatment of the 
Rayleigh-Taylor instability we take note of the fact that, beyond equations (20.8) 
and (20.9) themselves, we do not have any additional information on either 
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PI or B,I. In principle, we could obtain PI ,  for example from an adiabatic 
equation of state. Normally, we would obtain B,1 from the z component of 
equation (20.3), but this will involve the compressible, i.e. non-divergence-free, 
part of the plasma fluid velocity, which we expect to be very small. In the 
approximately incompressible case, B, 1 is determined from either equation (20.8) 
or equation (20.9); when the value so determined is substituted into the 
z component of equation (20.3), this will yield a value for the compressible part 
of the fluid velocity, i.e. for V SUI, but this is a small quantity that does not enter 
anywhere else. Physically, the very small B,1 produces whatever modification 
of the almost-uniform magnetic pressure B: is needed to maintain force balance 
against small changes in pressure, in approximately incompressible flow. Both 
the Rayleigh-Taylor (gravitational) instability and the tearing instability are thus 
essentially independent of plasma pressure. The Rayleigh-Taylor instability is 
driven by the energy available from the inverted density gradient (relative to 
the gravitational force), and the tearing instability can be driven purely by the 
energy available from the sheared magnetic field. We will see, however, that 
this magnetic energy will become available to the plasma motion only through 
resistivity. 

Just as we did in the case of the Rayleigh-Taylor instability, we can 
eliminate the two quantities p1 and B,I by forming the z component of the 
curl of the equation of motion. Specifically, we take a/ax of the y component, 
equation (20.9), and subtract ik times the x component, equation (20.8). This 
produces 

a 
-iw ( z ( p 0 u y )  - ikpou, 

ax 

- - -L [a [B:o: (2-1 - k2ByoB,] 
Po ax 

(20.1 0) 

At this point, our analysis is still valid for a general equilibrium B,o(x) and is 
not limited to the equilibrium defined by equation (20.2). 

Let us, for the moment, suppose that the plasma motion is exactly 
incompressible, i.e. 

(20.1 1) au, 
ax 

0 = V - u1 = - + iku,. 

As in the case of the Rayleigh-Taylor instability, this assumption is only 
approximately valid. Its validity could be verified after we have completed our 
calculation, in exactly the same way as was done in Chapter 19. Specifically, 
we could relate V * u1 to the perturbation B,I produced by compressing the 
strong magnetic field BzO (see equation (19.20)). We could then relate the force 
arising from the gradient of the perturbed magnetic pressure B,oB,l to either U, 
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or u y  (see, for example, equation (19.22)). Comparing the magnitude of V - u1 
with either of its constituent terms (in this case, au , /ax  or iku,), we would 
find that V u1 is smaller by a factor w2/k2ui, where UA is the AlfvCn speed, 
Bo/ (popo) ' /2 .  As in the case of the Rayleigh-Taylor instability, the frequencies 
(or growth rates) of even the fastest modes that will be found here are much 
less than kuA. Hence, again, the compressibility is negligible, and we may to a 
very good approximation write V ul = 0. 

Using equation (20.11) to substitute for U, in terms of U,, the left-hand 
side of equation (20.10) can be expressed entirely in terms of u x ,  so that this 
equation becomes 

-% k [ (PO$) - k2pau,] = & [B:o& ($)I - k2B,oB,. (20.12) 

For perfect conductivity, equation (20.6) is valid and can now be used in the 
form 

B,/B,o = - k u , / w  (20.13) 

to express the right-hand side of equation (20.12) also in terms of U,. Multiplying 
through by -wk and rearranging terms slightly, equation (20.12) can now be 
written 

- k2(popow2 - k2B:o)u, = 0. (20.14) 

Equation (20.14) is a homogeneous second-order differential equation for 
U,. It describes ideal MHD waves in the configuration being considered. 
With proper boundary conditions, eigenmode solutions to the equation could 
be found. However, certain general properties of such waves can be 
determined by examining the quadratic (in U,) expression formed by multiplying 
equation (20.14) by the complex conjugate U: and integrating over all x ,  i.e. from 
--oo to +CO. The result, after integrating by parts and noting that U, must vanish 
as x --+ f m ,  is 

00 

(popow2 - k2B:o) ( 1  2 /i + k2 dx = 0. (20.15) 

By examining equation (20.15), it is evident first that w2 must be real, so that w 
must be either real or pure imaginary. It is further evident that our plasma must 
be completely stable (under this assumption of perfect conductivity), since an 
instability must correspond to a pure imaginary value of w, i.e. w = iy for y > 0, 
which would render the left-hand side of equation (20.15) negative-definite, so 
that it certainly could not be equal to zero. 
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The stable oscillatory waves that are described by equation (20.14) are the 
‘shear AlfvCn waves’ in the low-frequency limit introduced in Chapter 18. We 
note that their frequencies are typically w - kll UA, where kll = k b = k, B,o/B, 
is the component of the wave vector in the direction of the equilibrium magnetic 
field. The particular configuration under discussion here, however, has a special 
property, namely that B,o depends on x .  If the value of w ( p ~ p o ) ] / ~  falls into the 
range of values assumed by kB,o(x) ,  then equation (20.14) becomes singular, 
in that the coefficient of the second derivative can vanish. Since our main 
interest here is in instabilities, not stable oscillations, we need not explore this 
matter further. It is sufficient to note that the spectrum of possible solutions of 
equation (20.14) contains discrete modes with w > k l B , ~ l ~ / ( p o p o ) ’ / ~  and a 
continuum of modes with smaller w values that are generally subject to strong 
damping at the location of the singularity due to effects not included in the ideal 
MHD analysis. 

20.3 INCLUSION OF RESISTIVITY: THE TEARING INSTABILITY 

Let us now introduce resistivity into the plasma Ohm’s law, i.e. 

E + U x B = qj .  (20.1 6) 

Combining this with Faraday’s law and linearizing, the magnetic field 
perturbation is now given by 

- -V x El = V x (ul x Bo) - qV x j, (20.17) 

where we have taken the resistivity to be uniform. Invoking Ampere’s law for 
j1, i.e. pojl = (V x B]) ,  and making use of the identity V x (V x B1) = 
V(V - B1) - V 2 B ~  = -V2B1 (see Appendix D), we obtain 

aB1 
at 
-- 

(20.18) 

Using the expansion of the first term on the right-hand side of equation (20.3), 
the x component of equation (20.18) becomes 

(20.19) 

Here we have approximated V2 x a 2 / a x 2  in anticipation of finding that 
resistivity is important only in a narrow region of x ,  within which B, is relatively 
sharply varying. Equation (20.19) replaces equation (20.6) in the resistive case. 
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Several important conclusions follow from examination of equation (20.19). 

First, it is clear that our previous ideal MHD treatment corresponds to the case 

(20.20) 

For the shear Alfvtn waves we have been studying, which generally have 
quite high frequencies o compared to resistive diffusion rates, this relation is 
valid in all but the most resistive plasmas. However, we might legitimately 
inquire whether other modes of perturbation are possible, which have much 
lower frequencies or much shorter scale-lengths, such that the two terms in 
equation (20.20) are comparable. 

For such modes, the resistive term in equation (20.19) must be retained. 
A second important conclusion now follows from equation (20.19): namely, 
it is no longer necessary for the first-order perturbation B, to vanish at points 
where By,-, = 0, i.e. at x = 0 in the particular example shown in Figures 20.1 
and 20.2. Physically, relaxing the constraint that B, = 0 wherever B,o = 0 
allows the plasma much more freedom in finding ways to lower its magnetic 
energy, corresponding to more possibilities for unstable perturbations. A third 
conclusion that follows from examination of equation (20.19) is that the resistive 
term is likely to be most important in a narrow region around the point where 
B,o = 0, i.e. around x = 0 in our particular example. We call this the ‘resistive 
layer’. Since k - B = 0 at x = 0, the perturbation can be considered to be 
‘resonant’ at x = 0, such that the unperturbed magnetic field lies parallel to 
wave-fronts on this surface. The non-zero q in the resistive layer then allows 
the magnetic field lines to connect across the resonance, via a finite value of B,. 

Well away from the resistive layer, both to the left and to the right 
of x = 0 in the particular case illustrated in Figure 20.1, we expect the 
ideal MHD approximation to remain valid. Since the frequencies w (or, more 
appropriately, the growth rates y ) are much less than Alfvtn-wave frequencies, 
the perturbations in these ideal MHD regions will be given by equation (20.14) 
(or, equivalently, equation (20.12)) but with the inertia terms omitted. Since it is 
more convenient to describe the perturbations in the ideal MHD regions in terms 
of B, rather than U,, we prefer to work from equation (20.12), obtaining 

(20.21) 

This equation describes the perturbations in the ‘outer-regions’ well to the left 
and well to the right of the resistive layer around x = 0. As x +- 0 (either 
from the left or from the right), taking B,(x) FZ B;,x, the possible forms for the 
solution B, as x +- 0 are twofold: either B, a x or B, x constant. 
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Problem 20.1: Prove the last statement by searching for solutions of 
equation (20.21) with B, 0: x p  as x + 0. You will find that the first term 
on the left-hand side of equation (20.21) tends to dominate as x + 0, 
allowing only solutions with ,!? = 0 or ,!? = 1. Why is it safe to assume that 
there are only these two solutions as x + O? 

It is possible to see, however, that the case B, a x as x + 0, is excluded for 
solutions that are well behaved as x + *c% for, if B,/B,o were finite as x + 0, 
it would be permissible to multiply equation (20.21) by B,*/B,o and integrate 
from x = -co to x = 0. If we then integrate the first term by parts, noting that 
B,o = 0 at x = 0, we obtain 

(20.22) 
Since we want a localized solution in which B, + 0 as x + CO (otherwise there 
would be infinite magnetic energy I B, 1 2 ,  which is not a physically interesting 
case), the first term on the left-hand side vanishes in the x + -c% limit. We 
then cannot allow B, 0: x as x + 0, for this would make the first term on 
the left-hand side vanish in the x + 0 limit also, and we would then have a 
negative-definite expression on the left, which is required to be zero. 

Thus, we conclude that the only allowed solutions of equation (20.21) are 
such that B, approaches some non-zero constant as x + 0, either from the 
left or from the right. Such solutions would not be allowed by the ideal MHD 
constraint, i.e. equation (20.6), applied exactly at the point x = 0, for this 
constraint requires B, to be Zero. Such solutions are allowed in the resistive 
case, in which equation (20.19) replaces equation (20.6) in the vicinity of x = 0. 
It is just this non-vanishing of B, at the point where By0 = 0 that characterizes 
the ‘resistive tearing’ instability. 

It is useful to think of the region around x = 0 as forming a ‘boundary 
layer’ between the two ideal MHD regions to the left and right of it. Moreover, 
it is possible to obtain some useful and revealing ‘boundary conditions’ by 
integrating various plasma equations over a thin box placed in this boundary 
layer, as illustrated in Figure 20.3. The box is supposed to have an infinitesimal 
width in x (but wider than the resistive layer) and a height in y that is finite 
but much less than the characteristic wavelength of the perturbation; its extent 
in z is arbitrary, since there are no variations in the z direction. Integrating the 
equation V - B1 = 0 over the volume of the box and applying Gauss’ theorem, 
we find that B, must be continuous across the boundary, i.e. 

B,(x + 0+) = B,(x + o-). (20.23) 
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A Y  

jx 
Figure 20.3. Thin box used for obtaining boundary conditions across the resistive layer. 

From this we deduce that the value of B, at each y-value may be taken to 
be constant throughout the resistive layer around x = 0. Similarly, integrating 
V xB = poj over the surface of the box in the ( x ,  y)-plane and applying Stokes’s 
theorem for the surface integral of a curl, we find that any discontinuity in B,1 
must be associated with a first-order ‘surface current’ J,1 flowing in the boundary 
layer, i.e. 

B,~(x + 0+) - B , ~ ( x  + 0-) = poJzl. (20.24) 

(By a ‘surface current’, we mean here a very large current density j,l 
concentrated in a very narrow layer of thickness Ax,  such that J,1 = j z lAx  
= finite. A highly conducting plasma has the capability to carry such currents; 
in the limit of resistivity decreasing toward zero, the thickness of the current 
layer approaches zero, and a true surface current arises.) Equation (20.24) thus 
indicates that the y component of the field perturbation can be discontinuous 
across the boundary layer. From the divergence-free property of BI ,  i.e. 

(20.25) 

we note that a discontinuity in B,l implies a discontinuity in aB,,lax. Thus, 
although B, itself is continuous across the boundary layer, its gradient in x is 
not. Indeed, the quantity 

where the notation [ I x ~  is seen to denote the discontinuous jump across the 
boundary layer at x = 0; this is an important quantity, which will turn out to 
determine the stability of resistive tearing modes. 

It is clear that the ‘outer-region’ solutions will completely determine the 
quantity A‘. We could imagine integrating equation (20.21) for B, in the region 
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well to the left of x = 0, applying the appropriate boundary condition (usually 
B, + 0) at x -+ -00 (or at some intervening boundary, e.g. a conducting 
wall). Indeed, we could carry out a numerical integration of equation (20.21), 
beginning at a conducting wall far to the left, where we would set B, = 0 and 
would choose some arbitrary non-zero value for a B , / a x ,  which simply measures 
the amplitude of our solution for B, in this region. This solution will give some 
finite value of B, at x = 0, approaching from the left, and this value provides 
an alternative measure of the amplitude of our solution. Thus, choosing some 
arbitrary value for the amplitude B, at x = 0 (noting that the amplitude of a 
linear perturbation will always be arbitrary, within the confines of the linearized 
theory), the outer-region solution for B, is then completely determined for x c 0, 
as is the value of a B , / a x  at x = 0-. Similarly, the outer-region solution for 
x > 0, including the value of a B , / a x  at x = 0+, is completely determined 
from the boundary condition at x -+ 00 (or at an intervening conducting wall) 
and the requirement that it have the same amplitude, B,, at x = 0 as has the 
solution for the left outer-region. It follows that the quantity A’ is completely 
determined by the outer-region solutions. Indeed, later in this Chapter, we will 
calculate A’ explicitly for our ‘plasma current slab’ configuration, but first we 
will analyze the resistive layer in more detail, to determine how it can provide 
the localized, concentrated currents j ,  needed to produce the sharp ‘jump’ in 
B y l  and in a B , / a x .  

Problem 20.2: Show that the first-order ‘surface current density’ Jzl,  
i.e. the perturbed volume current density integrated in x across the 
resistive layer at any point y, is related to the value of B, at this point 
y by poJzl = iA’B,/k. For the particular choice of phase in which 
Bx = i,sin(ky), show that p0Jzl = (A’&/k)cos(ky). 

20.4 THE RESISTIVE LAYER 

It is not sufficient merely to obtain ‘boundary conditions’ that apply across the 
resistive layer: it is necessary to resolve the fine-scale structure of this layer in 
order to determine the growth rate of the resistive tearing mode. Within the layer, 
we may certainly take BYo = Blox,  and we may also make use of our finding 
that the perturbed field component B, is approximately constant throughout the 
layer; this constant part of B, will be denoted &. 

Equation (20.19) then becomes 

(20.27) 
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where the term on the right-hand side evidently involves the non-constant part 
of B,. Plasma inertia must also be included in the resistive layer, since we will 
see that the plasma flow velocities tend to peak in this region, implying that 
the full form of equation (20.12) must be used. However equation (20.12) may 
be simplified by noting that the x derivatives will tend to dominate over the 
y derivatives (i.e. the k-factors) in the thin resistive layer. Thus, an approximate 
form of equation (20.12) will suffice, namely 

a2B, 

yo ax2 
= kB’ X--. 

Substituting for a2 B,/ax2 from equation (20.27), this becomes 

(20.28) 

(20.29) 

where we have also written w = iy in anticipation of finding the result that the 
tearing instability is purely growing. 

Figure 20.4. Qpical form of the function U,@) in the resistive layer. 

Since B, is constant, equation (20.29) can be solved to find an explicit 
solution for the x dependence of U,. Unfortunately, the solution cannot be 
given in terms of analytic functions but must be evaluated partially numerically. 
However, it is apparent from equation (20.29) that U, will decrease steadily 
away from the resistive layer. Specifically, U, - -iy&/kB$ox - l /x  as 
x + 00 and the term on the left-hand side of equation (20.29) becomes 
negligible. It is also apparent that the solution U, will be odd in x; its actual 
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form is sketched in Figure 20.4. This implicitly assumes that the solution of the 
inhomogeneous equation (20.29) is unique, i.e. that the homogeneous equation 
obtained by omitting the term including x B ,  has no permitted solutions. This 
latter result can be established easily, by multiplying the homogeneous equation 
by U; and integrating from -cm to +oo, thereby obtaining a negative-definite 
expression that must equal zero for any solution with U, -+ 0 as x + 00. The 
characteristic width of the resistive layer can be determined simply by inspection 
of equation (20.29). Balancing the term on the left-hand side against the second 
term on the right-hand side gives a characteristic width 

x - 8  = (Yt lPo) ' /4 /( kB' yo ) ' /2 .  (20.30) 

As we might have expected, the resistive layer becomes thinner as the resistivity 
q decreases. 

To complete the solution and find the growth rate y ,  it is necessary to 
obtain an explicit solution of equation (20.29) in some form. For this purpose, 
it is convenient to transform to scaled variables X and U ,  which are defined by 

In terms of these variables, equation (20.29) becomes 

a2u 
- = X(1+ XU). a x2 

(20.3 1) 

(20.32) 

The solution U(X) will be an odd function of X and, as long as a2U/aX2 is 
well-behaved as X + foo ,  U + -X-' as X + foo .  An explicit solution is 
obtainable in an integral form, namely 

(20.33) 
X2 

U(X) = -5 2 lni2 exp ( -TcosB) sin'/2Bdf3. 

That this is the desired solution can be verified by direct substitution into 
equation (20.32), after first differentiating equation (20.33) twice to obtain 

-- - - 6""exp (-$osB) ~in'/~f3(3cosB - X2cos2B)df3. (20.34) 
ax2 2 

Using equations (20.33) and (20.34), we then obtain 

- a2u - x2u = - lH'2 exp (+osB) ~ in '~~B(3cose  + X2sin2e)de 
ax2 

"12 d 
= X [ sin3/'f3exp (- fCosB)] df3 

= x  (20.35) 
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which establishes that equation (20.33) is indeed a solution of equation (20.32). 
Examination of the asymptotic form of equation (20.33) for large X, where the 
dominant contribution to the integral arises from values of 8 near n/2, shows 
that equation (20.33) also has the correct asymptotic form, namely U + -X-'. 
This may be seen by changing the integration variable in equation (20.33) from 
8 to (o = n/2  - 8, so that the asymptotic form for large X is obtained by 
approximating the integrand as exp(-X2 sin(o/2) % exp(-X2(o/2). 

The purpose of analyzing the resistive layer in such detail is to obtain the 
correct boundary conditions to be applied to the solutions to the left and right of 
the resistive layer. We have seen in the previous Section that these outer-region 
solutions are completely defined when the surface current Jzl or, equivalently, 
the jump in By' or in aB,/ax, is specified. From our equations for the resistive 
layer, the jump in aBX,lax can easily be obtained, for example by integrating 
equation (20.27) across the layer: 

(20.36) 

Reverting to our scaled variables X and U, and noting that the limits of 
integration in equation (20.36) may be taken as f c o  on the scale of the resistive- 
layer width, i.e. the scale of X, we obtain 

514 114 
(1 + XU)dX. (20.37) Y Po Po -CO 

v ~ / ~ ( ~ B '  YO [, 
The integral on the right-hand side of equation (20.37) can be evaluated 
numerically, using equation (20.33) for U(X>. It is also possible to reduce 
the integral to a particularly simple form using both equation (20.32) and its 
solution, equation (20.33). To do this, we proceed as follows: 

-CO 1 a2udX 
--CO x ax2 

i W ( l  + XU)dX = 1 -- 
-! 
2 -aJ 

dX ln/2 exp(-~X2cos8)sin1/28(3cos0 - X2cos28)d8 

ln" sin'/28d0 [, exp(- iX2cos8)(3cos0 - X2cos28)dX 
00 

(;)I/* g., ~in ' /~e (3cos ' /~0  - cos'/2e)de 

(20.3 8) 

where the final integral in equation (20.38) has been evaluated numerically. 
The left-hand side of equation (20.37) is equated to the quantity A' which was 
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introduced in the previous Section and was defined in terms of the outer-region 
solutions. Equation (20.37) then gives an expression for the growth rate y ,  
namely 

(20.39) 

Once the quantity A’ has been calculated from the properties of the outer 
solutions, equation (20.39) gives the growth rate of the resistive tearing 
instability. 

Examination of equation (20.39) reveals some important information about 
the magnitude of the growth rate y .  In many cases of interest, it is appropriate 
to think of the resistivity q as a small quantity, i.e. the plasma obeys ‘ideal 
magnetohydrodynamics’ to a good approximation. The introduction of non-zero 
resistivity into the equilibrium will produce diffusion of plasma relative to the 
magnetic field, but only at a very slow rate, proportional to q. The introduction of 
non-zero resistivity into the stability calculation has, however, produced unstable 
modes that grow at a much faster rate, proportional to q3l5. 

This argument can be made more quantitative by defining various 
characteristic times. Let us first introduce a characteristic macroscopic length 
scale a, e.g. the half-width of the current slab shown in Figure 20.1. One 
characteristic time is the inverse of the frequency W A  of a shear AlfvCn wave 
with wave-number k propagating in the y direction, i.e. almost perpendicular 
to the assumed very strong magnetic field B,. This shear Alfvtn wave has 
w = k l l ~ ~  = (k,B,o/B,)uA; evaluating B,o at the edge of the current slab, this 
time t A  is defined by 

y = 0.55A’4/5q3/5(kBi0)215/p0 115 po 415 . 

ti‘ = W A  X (k,B;,oa/B,o)uA 

zz k ,  B;oal(PoPo)’ /2 .  (20.40) 

A second characteristic time describes the diffusion of the field B,o into the 
plasma due to non-zero resistivity; since the ‘diffusion coefficient’ for this 
process is q/po (see, for example, equation (20.18)), this time tR is defined 

rR a 2 1 0 / q .  (20.41) 
by 

Equation (20.39) may be rewritten in terms of t A  and tR, giving 

(20.42) 

Equation (20.42) shows that resistive tearing instabilities grow on time-scales 
that are intermediate between the very short MHD time-scale, t A ,  and the very 
long resistive time-scale, t ~ .  Indeed the relevant time-scale is close to the 
geometric mean of TA and tR. Thus, resistive tearing instabilities grow much 
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more slowly than ideal MHD instabilities (e.g. the flute instability, which has 
characteristic growth time a/C, - B - ’ / 2 t ~ ,  i.e. approaching TA for finite B 
values), but much more rapidly than resistive diffusion of the equilibrium 
configuration. In this discussion, we have implicitly assumed that A’a is a 
quantity of order unity, which is generally valid, since A’ is a characteristic of 
the macroscopic configuration. We will find that this assumption is confirmed, 
for example, in the case of the current slab analyzed in detail in the next Section. 

20.5 THE OUTER MHD REGIONS 

Until this point, we have not made use of any specific form for B,o(x) in the 
outer MHD regions, only that Byo(x)  X Blox in the narrow resistive layer around 
x = 0. Let us now find an explicit solution for the form of the perturbation in 
the outer-regions for the particular case of the plasma current slab illustrated in 
Figure 20.1 and specified in equations (20.1) and (20.2). To do this, we must 
solve equation (20.21) for the particular B,o(x) given in equation (20.2). 

First consider the region x > a, where B y  = Bios = constant. Here, 
equation (20.2 1) becomes simply 

a2B, 
ax2 
- - k2B, = 0 (20.43) 

whose only solution, vanishing as x + CO, is 

B, = Cexp(-kx) (20.44) 

where C is an arbitrary constant that measures the amplitude of the perturbation. 
Here, 

equation (20.21) takes the form 
Next, consider the region 0 < x < a, where B,o = Blox.  

a [ x 2 -  a (-)I Bx - k 2 x B ,  = O  
ax ax x 

but the derivative term can be expanded, i.e. 

so that equation (20.45) also becomes simply 

(20.45) 

(20.46) 

a2B, 
ax2 
- - k2Bx = 0 (20.47) 
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whose general solution is 

BX = A exp(kx) + B exp(-kx) (20.48) 

where A and B are arbitrary constants. 
The 

correct matching conditions are obtained from equation (20.21), which applies 
throughout the outer region, including both x e a and x > a, and they are 

The solutions in the two regions must be matched at x = a. 

(20.49) 

the latter following from integrating equation (20.2 1 )  across an infinitesimal 
boundary layer at x = a. For the solutions given in equations (20.44) 
and (20.48), the two conditions expressed in equation (20.49) give 

A exp(ka) + B exp(-ka) = C exp(-ka) 
(20.50) 

A(ka - 1) exp(ka) - B(ka + 1) exp(-ka) = -Cka exp(-ka). 

C C 
2ka 2ka 

A = - exp(-2ka) B = -(2ka - 1 ) .  

From these relations, the constants A and B can easily be obtained in terms of 
C: 

(20.5 1)  

This completes the solution for x > 0. One arbitrary constant, in this case 
C, must remain, since the amplitude of a perturbation in linear theory is 
indeterminate. 

Since the form of the equilibrium to the left of x = 0 is exactly the same 
as that to the right of x = 0, the solution for x < 0 can be obtained by simply 
substituting -x for x in the solution which we have already found. Specifically, 
for -a < x < 0. the solution is 

and, for x e -a, it is 
B, = Cexp(kx) (20.53) 

with the same values of the constants A,  B and C. 

Specifically, 
It is now possible to calculate the quantity A' defined in equation (20.26). 

2k(A - B )  
(20.54) 
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Substituting for A and B in terms of C using equation (20.51), we obtain 

The resistive tearing instability * 

2ka[exp(-2ka) - 2ka + 11 
exp(-2ka) + 2ka - 1 

A’a = (20.55) ‘ 

In Figure 20.5, we plot the function A’a versus ka. We see that A’ is positive 
for small k (long wavelengths in the y direction) and negative for large k (short 
wavelengths in the y direction). 

0 

-2 

-A 

I I l 

- 

- 

Figure 20.5. The function A‘a describing tearing-mode stability plotted against k a ,  

Since A’ > 0 is the condition for the resistive tearing mode to be unstable, 
we have now shown that the ‘plasma current slab’ equilibrium is, in fact, unstable 
to all perturbations that are wave-like in the y direction and have sufficiently 
long wavelength. 

As we saw at the beginning of this Chapter, the annihilation of magnetic 
field, by means of the cancellation of positive and negative By components in a 
small region 1x1 < 6, is energetically favored, i.e. it lowers the magnetic energy. 
However, as we have now seen, a magnetic perturbation that is wave-like in 
the y direction is required to produce the B, component at x = 0 needed for 
the negative By field to connect to, and thereby annihilate, the positive By field. 
This wave-like perturbation necessarily involves bending of the field lines, which 
requires energy in an amount that increases as the wavelength decreases. Thus 
it should not be surprising that the resistive tearing mode is unstable only for 
sufficiently long wavelengths, i.e. wavelengths for which the energy released by 
field annihilation exceeds that needed for field bending. 

We also saw earlier in this Chapter that a general sheared-field plasma slab 
configuration with both B , ( x )  and B , ( x )  could be susceptible to resistive tearing 
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instabilities at many locations x ,  depending on which modes of perturbation 
are allowed by the boundary conditions. This has an important application 
to the ‘cylindrical tokamak’, which is a model configuration with a strong, 
approximately uniform axial field B, and a weaker azimuthal field Be(r) .  The 
normal modes of perturbation of an infinitely long cylindrical plasma are of 
the form exp(im0 + ik,z), where m must be an integer but k, can have any 
value. However, in the tokamak case, the cylinder is an approximation to a 
‘straightened out’ torus and should therefore be considered to have finite length 
2 n R ,  where R is the major (larger) radius of the torus. Moreover, ‘periodic 
boundary conditions’ should be applied at the ends of the now-finite-length 
cylinder, so that we must take k, = - n / R  where n is an integer (the choice 
of a negative sign being simply for convenience, as we will soon see, since 
both positive and negative integers are allowed). Such a perturbation can be 
‘resonant’, in the sense that k . B m B e / r  - n B , / R  will vanish at a radius 
r where q ( r )  r B , / [ R B e ( r ) ]  = m/n. This is the equivalent of the resonant 
surface in our ‘slab’ calculation at x = 0, where k - B = k,B,o = 0. For a 
tokamak with a current distribution j , ( r )  that peaks at r = 0 and decreases to 
zero at the plasma edge, r = a ,  the function q ( r )  will increase monotonically 
from a minimum value at r = 0 to a maximum value at r = a .  Clearly, infinitely 
many rational numbers m / n  can be ‘fitted in’ between 4 (0) and 4 (a) .  However, 
since we have seen that only large wavelengths tend to be unstable to resistive 
tearing modes, only ‘low-order’ rationals, i.e. those for which m and n are small 
integers, are of interest. By far the most unstable mode in a tokamak is that with 
m = n = 1, and the nonlinear evolution of this mode tends to strongly flatten 
the plasma profiles inside of the resonant surface; however, this mode can arise 
only when q(0) e 1. The mode with m = 2 ,  n = 1 is also dangerous, since 
it can occur whenever q(0) % 1 and q ( a )  > 2 .  However, the stability of any 
particular mode is determined not just by the presence of the associated resonant 
surface, but also by the form of the plasma current distribution; in many cases, 
all modes can be stable. 

Problem 20.3 Suppose that rigid conducting walls are introduced into our 
plasma current slab at x = fb (with b > a ) .  Find the generalization of 
equation (20.55) for Ala in this case. Do you expect the plasma to be 
more, or less, stable? Is this expectation confirmed by your expression 
for Ala? 

20.6 MAGNETIC ISLANDS 

The resistive tearing instability produces a change in the topology of the magnetic 
field. The magnetic configuration of the plasma current slab before onset of the 
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instability is illustrated in Figure 20.2. The field lines are straight and, assuming 
that a strong approximately uniform B, component is added to the By component 
shown in Figure 20.2, lie in flat surfaces parallel to the (y, z )  plane. The direction 
of the By component reverses across x = 0. After onset of the instability, the 
magnetic configuration is deformed, and the field lines now lie on modified 
surfaces, which are still uniform in the z direction (since there is no variation of 
the perturbation in the z direction) but which intersect the ( x ,  y) plane in curved 
lines determined by the relations dxldl = B , / B  and dyldl = B y / B .  In effect, 
all of the deformed field lines project in the z direction onto the ( x ,  y) plane to 
curved lines given by 

(20.56) 

In essence, the configuration illustrated in Figure 20.2 is modified to that given 
by the solution of equation (20.56). 

For small-amplitude perturbations, the By component can be approximated 
by its equilibrium value, By Bl,x.  For a particular choice of phase (in order 
to deal with real quantities, rather than complex ones such as exp(iky)), the 
B, component at some particular time t can be written 

B, = B,eY'sin(ky) (20.57) 

where, as we have seen, the quantity B, can be taken as approximately 
independent of x within the resistive layer around x = 0. Equation (20.56) 
can then be integrated to give 

- 

(20.58) 4 B ; , X ~  + -eY'cos(ky) = constant 

where different values of the constant give the projections of different field lines 
onto the ( x ,  y) plane. 

The solutions of equation (20.58) can easily be plotted in the ( x ,  y) plane, 
and a typical example is illustrated in Figure 20.6. At relatively large values 
of 1x1, corresponding to large values of the constant in equation (20.58), 
the field lines are only slightly distorted from the unperturbed configuration 
shown in Figure 20.2. However, the distortion increases for smaller values 
of 1x1, corresponding to smaller values of the constant in equation (20.58), 
and eventually the field lines become 'closed on themselves'. Inspection of 
equation (20.58) shows that these 'closed' field lines arise from values of the 
constant less than ( B x / k )  exp(yt), for which only a limited range of y values 
are possible, since for these values of the constant equation (20.58) does not 
allow cos(ky) to reach unity for any real value of x .  

The closed field line regions shown in Figure 20.6 are called 'magnetic 
islands'. When the strong approximately uniform B, field is taken into account, 

BX 
k 
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A Y  

Figure 20.6. Perturbed field line configuration of magnetic islands of half-width w 
produced by a resistive tearing instability. The pattem is repeated with period 2n/k in 
the y direction. 

the individual field lines will not actually close on themselves, but will traverse 
surfaces whose shapes will approximate elliptical cylinders, which are infinitely 
long in the z direction. In this case, Figure 20.6 depicts the intersections of 
these surfaces with the ( x ,  y) plane at z = 0 or, equivalently, the projection 
of the field lines onto this plane. A given field line will always remain on the 
same surface, and its projection onto the ( x ,  y)  plane at z = 0 will traverse the 
closed curves shown in Figure 20.6 over and over again as it proceeds further 
and further in the z direction. 

The surface that separates the closed field line surfaces from the open 
field line surfaces is usually called the 'magnetic separatrix'. The separatrix 
corresponds to a value of the constant in equation (20.58) exactly equal to 
(&/k)exp(yr). The half-width w of the magnetic island formed by the 
separatrix, which is of course the largest magnetic island (see Figure 20.6), 
is simply the value of x given by equation (20.58) for this value of the constant 
and at ky = 17, namely 

w = 2( B, / k B$'/2exp( yt/2). (20.59) 

The half-width of the magnetic island is proportional to the square-root of 
the field perturbation f ix ,  so it increases exponentially in time, as indicated in 
equation (20.59). In practice, nonlinear effects will limit the growth of magnetic 
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islands when significant modifications are produced in the underlying magnetic 
configuration on which our stability analysis was based. Such effects begin to 
appear as soon as the island width becomes comparable to the width of the 
resistive layer given by equation (20.30) ,  as was shown in a paper by one of the 
authors of this present book (P H Rutherford 1973 Phys. Fluids 16 1903). When 
the island grows to a significant fraction of the size of the overall configuration, 
it can affect the gross current profile, usually acting to reduce the value of A’u 
and thereby tending to stabilize the tearing mode. 

There is clearly a close connection between the magnetic islands and 
magnetic separatrix obtained here and the islands and separatrices found in the 
numerical analysis of area-preserving maps presented in connection with particle 
orbits in Chapter 5. Indeed, the field line equation of motion, equation (20.56) ,  
can be represented as a map, where a point is laid down each time a distance 
21rR is traversed in the z direction. The shear in the magnetic field is then 
equivalent to the sheared particle flow for the problem in Chapter 5, and many 
of the previous results carry through. The island width at the rational surface, for 
example, scales in both cases with the square-root of the perturbation strength. 
Were we to attempt a numerical treatment of the effects of resistive tearing 
instabilities, we would expect to find, at least in some cases, not only a primary 
island chain, but also secondary chains of smaller islands, as in Figure 5.2. 
When the mode amplitude grows so large that secondary islands begin to overlap 
with the primary island or, in cases where several different modes are unstable, 
primary island chains begin to overlap with each other, then the magnetic field 
structure becomes ‘stochastic’. When this occurs, an individual field line can find 
its way completely across the plasma (i.e. in the x direction for the plasma slab 
configuration considered in this Chapter), if followed a sufficient distance. As a 
practical consequence, this will generally mean that electron thermal conduction 
parallel to the magnetic field will rapidly flatten the electron temperature across 
the stochastic region. 

The origin of the name ‘tearing mode’ is now apparent. The magnetic 
configuration illustrated in Figure 20.2 ‘tears’ at its weakest points, i.e. along 
the plane x = 0. Provided the conditions for instability are satisfied (i.e. positive 
A’), the plasma current slab will then have a tendency to break up into discrete 
current ‘filaments’. 

Problem 20.4 The result of Problem 20.2 implies that the first-order 
perturbed current density in the z direction is negative at the O-point of 
the magnetic island, i.e. the point (0, x / k )  in Figure 20.6, for an unstable 
mode (A’ > 0), and positive at the X-point of the island, i.e. the point (0,O) 
in Figure 20.6. (It should be noted that this is a special property of our 
choice of geometry; the signs are reversed, for example, in a cylindrical 
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tokamak configuration with dq/dr > 0.) Verify this for the slab geometry 
by a different method, as follows. Consider the magnetic flux ‘trapped’ 
within the magnetic island. Referring to Figure 20.6, we may view this 
flux as that of the Bx field crossing the y axis between the X-point and 
the 0-point; per unit length in the z direction, this flux is 

nlk 
Q = Bx(O9 Y N Y .  

By employing the usual combination of Faraday’s law and Ohm’s law, 
show that 

(Hint: Note that the magnetic field is exact/y in the z direction at both 
the 0-point and the X-point, which precludes convection of flux across 
the boundaries of the surface under consideration.) The trapped flux Y 
must increase as the instability and island-width grow. What does this tell 
us about the magnitude of the perturbed current density j ,  at the island 
0-point, versus that at the X-point? 
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Drift waves and instabilities* 

We have now considered two types of instabilities that can arise in the fluid 
plasma model: the first, the ideal MHD flute instability (the pressure-driven 
version of the Rayleigh-Taylor instability), which draws upon the rhermal energy 
of the plasma as it expands unstably across a curved (concave toward the plasma) 
magnetic field, and the second, the resistive tearing instability, which draws upon 
the energy of the magnetic field in the plasma as it rearranges itself toward a 
configuration of lower magnetic energy. There is yet a third important class 
of instability of a fluid plasma, the so-called ‘drift-wave instability’, which 
requires neither a curved magnetic field nor a magnetic configuration for which 
lower magnetic-energy states exist. Indeed, drift-wave instabilities occur in the 
simplest and most ‘universal’ of configurations, namely a plasma of non-uniform 
density maintained in equilibrium by a strong and essentially straight magnetic 
field. Because of the pervasiveness of this situation, instabilities of this type have 
sometimes been called ‘universal instabilities’. Like flute instabilities, drift-wave 
instabilities draw upon the thermal energy of the plasma as it expands across a 
magnetic field. Unlike flute instabilities, however, they have finite wavelengths 
along the field, and the plasma motion is decoupled, to a significant extent, from 
that of the magnetic field, so as to avoid energetically unfavorable bending of 
the field lines. Because of the difficulty of drawing upon the thermal energy of 
expansion in this way, drift-wave instabilities tend to have rather small growth 
rates-certainly smaller than those characteristic of flute instabilities. 

Unlike Rayleigh-Taylor, flute and resistive-tearing instabilities, drift-wave 
instabilities are not purely growing, but have complex frequencies w, with the 
imaginary part, denoted by y (the growth rate), usually much smaller than the 
real part. Of course, any such mode of perturbation can be made purely growing 
by transforming to a moving frame in which the wave is at rest, but in such a 
frame the plasma itself will acquire a non-zero velocity. Normally, we choose 
to work in the ‘laboratory frame’ in which the plasma is assumed to be at rest 
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(more precisely, the mass velocity U is taken to be zero) in the unperturbed 
equilibrium state. In such a frame, the drift-wave instabilities have complex 
frequencies w ,  i.e. they are partly travelling waves and partly growing waves. 

Drift waves require non-zero plasma resistivity, or (as we will see in 
Chapter 26) other forms of dissipation, to be unstable. However, the waves 
themselves (i.e. without instability) can exist and propagate in any non-uniform 
plasma. Moreover, as we will see, except at relatively high values of the plasma 
p (but still p << l), drift waves do not produce a significant perturbation of 
the magnetic field. Rather they involve a self-consistent wave-like pattern of 
density perturbations and flow velocities that propagates partly along and partly 
across a fixed, approximately uniform, straight magnetic field. 

21.1 THE PLANE PLASMA SLAB 

We will analyze drift waves in the simplest possible configuration involving a 
non-uniform plasma, the so-called ‘plane plasma slab’. In this configuration, 
there is a plasma with non-uniform density n(x )  and pressure p ( x ) ,  maintained 
in equilibrium by a strong magnetic field, B,. There is no variation of the 
equilibrium in the y or z directions. The plasma is at rest in the equilibrium 
configuration, i.e. U = 0, but there is, of course, a non-zero current density jr (x) 
needed to provide equilibrium, i.e. to provide a j x B force that balances the 
pressure gradient V p .  The magnetic field B, will be modified (and will acquire 
a variation with x)  as a result of the plasma currents, so that the pressure-balance 
condition, p + B,2/2p0 = constant, is satisfied. However, for low values of p,  
the non-uniformity of B, is very small and will be neglected in our analysis. 
The suffix ‘0’ will be used to denote equilibrium quantities, e.g. no(x) ,  p ~ ( x )  
and B,o. 

The new element in our description of a plasma that is needed to 
produce drift waves is the full so-called ‘generalized’ Ohm’s law, introduced 
in equation (8.13), namely 

j x B - V p ,  
ne 

E + u x B =  q j +  (21.1) 

Before embarking upon our stability analysis, we must address the question of 
whether the use of this generalized Ohm’s law, rather than the simple version 
which omits the last two terms on the right-hand side of equation (21.1), has any 
effect on our description of the equilibrium configuration. Clearly, such an effect 
does arise, since satisfying the independent force-balance condition, j x B = V p ,  
where p = pe + pi, will leave an uncanceled term in V p i  on the right-hand 
side of equation (21.1). Thus, it will not be possible to have both U = 0 and 
E = 0 in the equilibrium configuration. Physically, we are encountering here 
the contribution to the fluid velocity from the ion diamagnetic drip which we 
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discussed previously in Chapter 7. Specifically, substituting j x B = V ( p ,  + p i )  
on the right-hand side of equation (21.1) and neglecting, for now, the resistivity 
term, we can solve equation (21.1) for UI, obtaining 

E x B  B x V p j  
+ neB2 ' 

U1 = - 
B2 

(21.2) 

Equation (21.2) tells us that the fluid (mass) velocity across the magnetic field is 
the sum of the E x B drift and the ion diamagnetic velocity, as we would have 
expected, since the ions make the dominant contribution to the plasma mass. 
Clearly, in a non-uniform plasma, U and E cannot both be zero in equilibrium. 
If we have an equilibrium in which the plasma is at rest, i.e. U = 0, there will 
necessarily be a non-zero electric field E, and, conversely, if the equilibrium has 
E = 0, we will need to take into account a non-zero mass-velocity U. 

For present purposes, however, we can simplify the analysis by restricting 
ourselves to the case where the ion pressure vanishes, while the electron pressure 
does not vanish. Physically, this corresponds to a situation where Ti << T,, which 
is a legitimate (and not uncommon) case to consider. Since the equilibrium ion 
diamagnetic drift is essentially zero, this allows us to assume that EO = uo = 0. 
There would be no fundamental difficulty in pursuing the more general case 
with non-zero ion pressure, for example by keeping a non-zero equilibrium 
E field in the stability analysis of a static (i.e. U = 0) equilibrium, but the 
algebraic complexity would be greater, without adding much more insight into 
the underlying drift-wave physics. 

The plasma is uniform and of infinite extent in the y and z directions. Thus 
we can assume that perturbations take the form of plane waves in these two 
directions, so that any perturbation quantity @l (x, t) can be written 

@1(x, t) = $l(x)exp(-iot + ik,y + ik,z) (21.3) 

where &(x) is the amplitude of the wave-like perturbation. Once again, since 
the equilibrium varies in the x direction, we cannot Fourier decompose into 
sinusoidal modes in the x direction, but rather must search for eigenfunctions 
&(x). Our method of analysis will be generally similar to that employed 
in the derivation of the Rayleigh-Taylor and resistive-tearing instabilities in 
Chapters 19 and 20, respectively, except that here we have k, # 0, implying 
that the perturbations have a variation along the main equilibrium magnetic field. 
However, we will look for waves satisfying 

k, << k, (21.4) 

and the outcome of our analysis will show that this inequality is valid for a 
typical drift-wave instability. 
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For our initial derivation of the drift waves, we will keep the magnetic 

perturbations as well as the electric-field perturbations, but we will then show 
that, for low-B plasmas, the magnetic perturbations are unimportant relative to 
the perturbed electric fields E and the associated E x B flow velocities. If 
the magnetic perturbations are neglected from the outset, so that the perturbed 
electric field can be assumed to be derivable from a scalar electric potential, 
i.e. E = -V4, the analysis of drift waves is simplified considerably. We will 
indeed discuss this ‘electrostatic’ limit after we have developed the analysis for 
the more general case. The value of first analyzing the more general ‘finite-B’ 
case in some detail is that it demonstrates the connection to the slow shear AlfvCn 
waves discussed in the previous two Chapters (and in Chapter lS), and it shows 
explicitly how the new drift-wave branch of the spectrum arises at frequencies 
much lower than all AlfvCn wave frequencies, i.e. o << k z U A  << k y U A .  

21.2 THE PERTURBED EQUATION OF MOTION IN THE 
INCOMPRESSIBLE CASE 

We begin with the perturbed equation of motion 

(21.5) 

where, as usual, we use the suffix ‘1’ to denote perturbed quantities. Noting that 
the equilibrium magnetic field is entirely in the z direction, the two components 
of equation (21.5) perpendicular to this equilibrium field are 

(21.6) 

(21.7) 

Here, and henceforth in this Chapter, we omit the suffix ‘1’ from perturbed 
quantities whose equilibrium values are zero, e.g. U, , u y  , B, and B y .  In deriving 
equations (21.6) and (21.7), we have noted that Bo has only a component in the 
z direction, so (BI -V)Bo does not contribute anything to the x and y components 
of equation (21.5). 

We now argue that the term in B,1 in equations (21.6) and (21.7) contributes 
significantly to the right-hand side of these equations, i.e. to the force arising 
from the gradient of the magnetic pressure, even for Bzl values that are so small 
that they do not make a significant contribution to the divergence of the magnetic 
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field. Using equation (21.7) for our estimates, we see that the contribution from 
B, 1 to the perturbed magnetic-pressure gradient is comparable to the contribution 
from By if 

B,l - (k,lky)By. (21.8) 

The condition that the perturbed magnetic field be divergence-free is 

(21.9) a BX - + ik, By + ik, B,] = 0 
ax 

and we see immediately that the contribution from B,1 is negligible compared 
with that from B, if k, << ky, as we have assumed. Thus, the divergence-free 
magnetic field condition becomes essentially 

a BX - + ik,B, = 0 
ax 

(21.10) 

the same as for the Rayleigh-Taylor (flute) and resistive-tearing instabilities, 
both of which had k, = 0. 

We will also see below that B,1 values which contribute significantly to the 
magnetic-pressure gradients in equations (21.6) and (21.7) are much smaller than 
those which would arise if we allowed the main magnetic field to be compressed 
significantly. Thus, as in the case of the Rayleigh-Taylor (flute) and resistive- 
tearing instabilities, we want to look for solutions with the property that the 
flow U is such that the B, field is not compressed. The consequence of these 
approximations is that the perturbed magnetic-field component B, 1 will play no 
role in determining the plasma flows and density perturbation, and it will not, 
finally, appear anywhere else in our analysis, except in equations (21.6) and 
(21.7). 

Accordingly, it is convenient to use our now-familiar technique for 
eliminating B,1 from equations (21.6) and (21.7), namely taking the x derivative 
of equation (21.7) and subtracting ik, times equation (21.6). We obtain 

- k;Bx) (21.11) 
Poky 

where we have used a/ax of equation (21.10) to obtain the second form of the 
right-hand side. 

Any flow U that arises will be associated with an electric field E l  E U x B 
and will result in compression of the magnetic field B,, described by 

E [V x (U x B)], (2 1 * 12) a Bz 
a t  
- 
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the approximate equality indicating that some smaller terms in Ohm’s law are 
being neglected. Equation (21.12), to first order, gives 

(21.13) 

Unless the right-hand side of equation (21.13) effectively vanishes, there would 
arise from compression of the B, field a perturbation of magnitude given roughly 
by B,I - B , o k y u y / ~ .  If we were to substitute this into equation (21.7), we would 
find the ratio of the inertia term on the left to the term in B,1 on the right to 
be co2/k;v i ,  where U A  is the AlfvBn speed, B / ( p o p ~ ) ’ / ~ .  Similarly, if we used 
the term U, in equation (21.13) to eliminate B , ] ,  then we would substitute this 
into equation (21.6) and would find the ratio of the inertia term on the left to 
the term in B,1 on the right to be u 2 / k : u i ,  where k, - a/ax. Since we will 
find that drift waves are generally characterized by k, - k,,  these two estimates 
are similar. However, we want to look for frequencies much smaller than k , u ~  
(at most of order ~ , u A ,  where k, << k,  - k x ) ,  so we cannot allow the large 
B,1 values that would arise if this degree of compression of the B, field were 
to occur. Thus, we can write 

- + ik,u, = 0. 
ax 

(21.14) 

We note that this is not, in this case, the condition for exactly incompressible 
fluid flow, which would involve an additional term ik,u, on the left-hand side of 
equation (21.14). Indeed, it is only the flow perpendicular to the magnetic field 
that is required to be incompressible; an arbitrary flow along the field can be 
added without contributing anything to the compression of the magnetic field. 
Nonetheless, for most cases of interest, including drift waves, both k ,  and U, 
are relatively small, so that a term ik,u,, even if added to the left-hand side of 
equation (2 1.14), would make little difference. 

Our argument for incompressibility, which has been invoked for the 
Rayleigh-Taylor (or flute) instability, the resistive-tearing instability and now 
for the drift wave, can be expressed in terms of the various types of Alfv6n 
waves discussed in Chapter 18. Essentially, these three instabilities all arise in 
the linearly polarized shear AlfXn wave branch of the low-frequency ‘spectrum’, 
rather than in the magnetosonic wave branch. The physical reason for this is 
that these shear AlfvCn waves do not require the large amount of energy that 
would be needed to compress the magnetic field, with the result that they are 
most easily driven unstable by relatively weak sources of free energy. Since 
perpendicular compression is not involved, the shear AlfvBn waves can also 
have much smaller frequencies, in the case k, << k, .  For the case of drift 
waves, for which we will derive a dispersion relation that displays explicitly 
the coupling to the shear AlfvBn waves, we will find frequencies in the range 
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w < kzvA (often w << kzuA), to be compared with the much larger frequencies, 
w - kyvA,  characteristic of the magnetosonic waves. 

Using the incompressibility condition, equation (21.14), to substitute for u y  
in terms of U, on the left-hand side, equation (21.11) becomes 

where, on the left-hand side, we have made the simplifying assumption that po is 
not strongly varying with x on the scale of distances over which the perturbations 
vary significantly. Basically, we are assuming here that the effective wavelength 
of the perturbation in the x direction is much shorter than the scale-length of 
the equilibrium density variation. 

In cases such as this, where the wavelength of a perturbation is much 
shorter than the scale-length over which an equilibrium varies, we can use the 
'WKB approximation', introduced in Chapter 15. The perturbation will adopt an 
approximately wave-like form, although the local wave-number k,  will adjust 
itself gradually to local conditions. For any general perturbed quantity $1 ( x ) ,  
the WKB approximation is adopted by writing 

(21.16) 

where the amplitude $1 and the effective wave-number k,  are both slowly 
varying functions of x ,  i.e. they vary on the scale of the equilibrium variation. 
A full application of the WKB approximation allows actual eigenfunctions to be 
obtained, i.e. forms for $1 ( x )  as well as for k , ( x ) ,  but for present purposes it is 
sufficient simply to introduce a wave-number k,,  as in equation (21.16), implying 
that the perturbation is wave-like in x .  (Effectively, the WKB approximation 
generates eigenfunctions by approximating to successive orders in an expansion 
in ( k X L n ) - ' ,  where L, is the typical scale-length of the density non-uniformity; 
equation (2 1.16) represents the lowest-order eigenfunction.) When x derivatives 
are taken, we may simply use the rule a / a x  + ik,, just as if the perturbation 
were exactly of plane-wave form. 

Applying this technique to equation (21.13, we obtain 

(21.17) 

where k: = k: + k;.  Equation (21.17) may be rewritten 

W U ,  = - k , v ~ B , / B , o .  (21.18) 

Equation (2 1.18) is as much information as we can obtain from the perpendicular 
components of the perturbed equation of motion, because we have now reduced 
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the independent variables to two, namely U, and B,, which will be related to 
each other also through Ohm’s law. 

21.3 THE PERTURBED GENERALIZED OHM’S LAW 

We turn next to the generalized Ohm’s law for the first-order perturbed quantities, 
namely 

El + U I  x Bo = qjl + -Q x B - Vpe)l (21.19) 
1 

ne 
which, when coupled with Faraday’s law, i.e. 

- -V x El aB1 
at  
-- (21.20) 

must yield another relation between B, and U, to combine with equation (21.18). 
Substituting equation (2 1.19) into equation (21.20) and employing our usual 
expansion of V x (u1 x Bo) (see, for example, equation (19.6)), we obtain 

aB1 
a t  1 1 

- (Bo-V)ul -(U1 *V)Bo-Bo(V.ul)-Vx qjl + -Q x B - Vp,)l . 
(21.21) 

Examination of the size of the various terms in the generalized Ohm’s law 
shows that the additional terms on the right-hand side of equation (21.19), i.e. 
the last two terms, are of much more importance in the component parallel to 
the magnetic field than they are in the components perpendicular to the field. 
To see this, we simply note that the equation of motion tells us that 

( ne 
-- 

au1 
a t  

Q x B - Vp,)l x po- = -iopoul (21.22) 

and so the ratio of the magnitude of the last two terms on the right-hand side in 
the perpendicular components of equation (21.19) to the magnitude of the second 
term on the left-hand side is of order opolul I/nelul IB M wM/eB X W/Wci ,  

where wci is the Larmor frequency of the ions. For waves, with o << oc,, 
these additional terms on the right-hand side in the perpendicular components 
of equation (21.19) are unimportant and may be neglected. However, the new 
terms must be retained in the parallel component of the generalized Ohm’s law, 
which becomes 

(21.23) Eli = vjil - ~ V i i ~ e .  

Noting that the equilibrium magnetic field is entirely in the z direction, 
equation (21.23) to first order in the perturbations can be written 

1 

E, = qj,  - - ne (‘ BzO dx Ikzpel + -- (21.24) 
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where, in accordance with our usual convention, we have dropped the suffix 
‘1’ from the perturbed quantities E,  and j,, whose equilibrium values are zero. 
Note the appearance of the third term on the right-hand side of equation (21.24), 
which arises from observing that the operator VII means (6 V), where b is the 
unit vector in the direction of B, so that 

(21.25) 

(Strictly, we should note that jy is non-zero in the equilibrium, and hence will 
require a small but non-zero -u,~B,o = qjyo. As we saw in Chapter 12, this 
u , ~  is the fluid velocity due to collisional diffusion. In the perturbed form of 
equation (21.23), there will be an additional term qByjyo/B,o on the right-hand 
side. This extra term is very small, since the resistivity q is generally very small; 
comparing it with the last term on the right-hand side of equation (21.24), we 
find it to be of relative order v,i/w,, where we have written q in term of uei 
and assumed B, - By.) 

Using equation (21.24) for the parallel component of the generalized Ohm’s 
law, but assuming that E l  = -U x B is a satisfactory approximation for 
the perpendicular components, so that the vector inside the curl operator in 
the last term in equation (21.21) retains only its component parallel to B, i.e. 
[qjll- (Vllpe)/ne]lb, the x and y components of equation (21.21) can be written 

-iwB, = ik,B,ou, - ik, 

-iwB, = ik,B,ou, + 
ax 

although the second of these equations is redundant once equations (21.10) and 
(21.14) have been established, and so it is not used further in our analysis. We 
now use Ampere’s law, V x B = together with equation (21.10) to express 
By in terms of B,, to obtain an expression for j, in terms of B,: 

(21.27) 

with k: = k,” + ky” and where the WKB approximation has been invoked in the 
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final step. From equation (21.26), we now obtain 

wBx +kzBzoux = --klBx - - ikzpel + -- Bx dpeo). (21.28) 
PO irl ne ky ( Bzo dx 

The electron pressure perturbation pel still needs to be eliminated in favor of 
B, and u X .  It will be determined by an equation of state, which relates pel  to the 
density perturbation riel, which in turn will be determined from the perturbed 
continuity equation. Physically, the most appropriate assumption will be that 
the electrons are isothermal, which is equivalent to assuming that the electron 
thermal conductivity is sufficiently large to maintain a uniform temperature Te 
along the magnetic field, i.e. 

B * V T e  = 0. (21.29) 

Allowing for the possibility of a temperature gradient across the field in the 
equilibrium, i.e. Te0 = Td(x), the perturbed form of equation (21.29) is 

(21.30) 

Using Pel = TeOnel + neoTel, it follows that the term in parenthesis on the 
right-hand side of equation (21.28) is given by 

(21.31) 

Equation (21.31) may be substituted into equation (21.28), which has the effect 
of eliminating the pressure perturbation pel  in favor of the density perturbation 
ne]. 

The continuity equation to first order in the perturbations, i.e. 

where we have used V . ul = 0, can be written 

(21.33) -iwnel + U,- + ikzneouz = 0. 

The perturbed velocity parallel to the equilibrium magnetic field, U,, must be 
obtained from the parallel component of the equation of motion. Although 

dneo 
dx 
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we have already made use of the perpendicular components of the equation of 
motion, we have not yet used the parallel component, which is 

To first order, the perturbed form of equation (21.34) becomes 

(21.34) 

(21.35) 

where we have again used equation (21.31). We can substitute equation (21.35) 
into equation (21.33), to obtain 

We have now obtained an expression for the density perturbation, and hence 
also the electron pressure perturbation, in terms of ux  and B,. 

We now substitute equation (21.31) into equation (21.28) and then 
substitute for n,l from equation (21.36). This involves a significant amount 
of straightforward manipulation, which proceeds most easily by first noting that 
equation (21.36) can be rewritten 

(21.37) 

where C, = (Te/M)'I2 is the plasma sound speed (i.e. the ion thermal speed 
evaluated with the electron temperature). Using this in equation (21.3 l) ,  which 
is then substituted into equation (21.28), we obtain 

Bx dneo 
B,o dx Bzo dx U~ - kZC: 

U dneo U& + kZBZoux ikznel + -- = -- 

Here 

(21.38) 

(21.39) 

is very similar in form to the electron diamagnetic drift velocity (see Chapter 7), 
the minus sign coming from the electron's charge, -e. (Note that ude is not 
exactly the electron diamagnetic drift velocity, as defined in Chapter 7, in which 
dpd/dx would appear, rather than Te(dn&/dx). Thus, U& differs from the 
diamagnetic drift velocity if there is a temperature gradient across the magnetic 
field. In magnitude and sign, however, the two velocities are, of course, generally 
similar.) 
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21.4 THE DISPERSION RELATION FOR DRIFT WAVES 

By combining equation (21.38) with the relation between U, and B, 
obtained from the perpendicular components of the equation of motion, i.e. 
equation (21.18), we obtain the dispersion relation for the waves under 
investigation, namely 

In the limit of zero resistivity, we see that there are two distinct branches of the 
dispersion relation. One branch has 

w = kzVA (21.41) 

and clearly corresponds to the shear AlfvCn wave. The second branch has a 
dispersion relation 

k: C: 
W - kyUde - - = 0 (21.42) 

and corresponds to the ‘drift waves’. In a uniform plasma, for which Vde = 0, 
this is just the ion sound wave encountered in Chapter 16, with kAD << 1. Since 
equation (21.42) is quadratic in w, for given values of k ,  and k, there are two 
branches of the drift wave, i.e. two possible values of w, as shown in Figure 21.1. 
The branch for which w has the same sign as k ,  (upper curve in Figure 2 1.1) 
is usually called the ‘electron drift wave’; the other branch (lower curve in 
Figure 21.1) is usually called the ‘ion branch’ of the drift wave, although, for 
reasons that will soon be apparent, this branch is of less interest. In the limit in 
which k,C,  << kyude, the electron drift wave has the frequency 

w 

O ky U&.  (21.43) 

(The ion branch of the drift wave as shown in Figure 21.1 violates the convention 
introduced in Chapter 15 that real frequencies w are taken to be positive. If we 
are interested in this branch, we can satisfy the convention by simply reversing 
the sign of k, .  Physically, the ion branch of the drift wave propagates in the 
direction opposite to that of the electron diamagnetic drift.) 

Problem 21.1 : By solving the quadratic equation, equation (21.42), 
for w exactly, draw a more accurate version of Figure 21.1, plotting 
the dimensionless frequency w / k y u d e  versus the dimensionless quantity 
kz cs/ ky ude . 
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Equation (21.40) indicates that the effects of non-zero resistivity are to 
couple the shear AlfvCn and drift-wave branches of the spectrum together and to 
add an imaginary part (either a growth rate or a damping decrement, depending 
on sign) to the frequencies of each of the branches. 

Figure 21.1. Electron and ion branches of the drift-wave dispersion relation. Both 
branches approach asymptotes w = &k,C,. 

In order to proceed further, we must consider the typical magnitudes of 
First, we note that the various frequencies appearing in equation (21.40). 

C, EE ( T e / M ) ' f 2  and U A  B / ( p o n M ) ' f 2 ,  SO that 

c s / V A  = (ponTe>' l2 /B W (8/2)'12 (21.44) 

indicating that the sound-wave frequency, k,C,, is very much smaller than the 
shear AlfvBn wave frequency in all cases where the plasma 8 value is very 
small. 

Second, we note that Vde = T e / e B L , ,  where L ,  = n/(dn/dx), the scale 
length of the density non-uniformity, so that 

ude/Cs = (MTe>'I2 /eBL,  PZ r h / L n  (21.45) 

where rLs: = ( M T e ) ' f 2 / e B  = Cs/wcir the average Larmor radius of the ions 
evaluated as if the ions had the electron temperature. The ion Larmor radius 
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rLi in a magnetized plasma is usually very much smaller than any macroscopic 
scale-length. Furthermore, although our treatment of drift waves has assumed, 
for simplicity of analysis, that << Te, the disparity in the two temperatures is 
not usually sufficient to make r h  more than a few times, at most, larger than rL,. 
Thus, in many cases of interest, we can assume that Vde << C,. It follows that 
the ratio of the two frequencies appearing in the drift-wave dispersion relation, 
equation (21.42), namely kyVde/kzC,, is very small, unless 

k, << k, (21.46) 

or, more specifically, k,/ky - rLs/Ln for the two frequencies kyUde and k,C, to 
be comparable. 

Since a finite number of wavelengths A, = 2n/k, and A, = 2n/k, must 
‘fit’ into the plasma in the y and z directions, respectively, it follows that our 
‘plane plasma slab’ must be much more extended in the z direction than in 
the y direction, by roughly the ratio L, , / rL ,  for the drift wave to be clearly 
distinguishable from the ion sound wave. If the plasma slab is infinite in both 
y and z directions, as it strictly is within our model, then all k, and k, values are 
allowed but, as we will see, the most unstable perturbations will be much more 
extended in the z direction. The infinite plasma slab will be a good representation 
of a finite-size plasma, provided the wavelengths in both y and z directions are 
much shorter than the y and z dimensions of the finite plasma, respectively. 

To retain both branches of the drift waves shown in Figure 21.1, we 
take kyvde - k,Cs, in which case the typical ordering of the frequencies in 
equation (21.40) is 

the inequality following from B << 1 .  

higher-frequency branch, the shear AlfvCn wave, with 

kyude ‘v kzCs << kzVA (21.47) 

In this case, even with resistivity included, equation (21.40) divides into a 

and a lower-frequency branch, the drift wave, with 

(21.48) 

(2 1.49) 

This separation into two branches of the dispersion relation (21.40) can 
be derived by first looking for high-frequency solutions, w - kzvA, for which 
the inequality given in equation (21.47) implies that the second of the two 
factors in parentheses on the left in equation (21.40) is approximately unity, 
thereby yielding equation (21.48). Next, looking for low-frequency solutions, 
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w - kyude - k,C,, the same inequality, i.e. equation (21.47), implies that the 
first of the two factors in parentheses on the left-hand side of equation (21.40) 
is simply -k:ui/w, thereby yielding equation (21.49). The fundamental 
assumption that permits this division into two distinct branches of the dispersion 
relation is that << 1 ,  which produces a wide separation between the lower 
frequency drift waves with w - kyude - kzCS, and the higher frequency shear 
AlfvCn waves with w - k, U A .  

We examine the effect of resistivity first on the shear AlfvCn waves. 
Neglecting the imaginary term from resistivity in equation (21.48), we have 
at lowest-order the familiar solution w - fk,uA. Treating the imaginary term 
on the right-hand side of equation (21.48) as a small correction and allowing 
w to acquire a correspondingly small imaginary part, w --f w + iy (where 
w and y are now both assumed real, with y / w  << 1), the imaginary part of 
the left-hand side of equation (21.48) is simply y + ( k z u i / w 2 ) y  x 2y, which 
yields y x - r ]kf /2 j .~o ,  indicating that the shear Alfvtn waves are damped 
by resistivity (negative y) .  The damping decrement is essentially the rate of 
resistive diffusion of magnetic field over a distance of order a perpendicular 
wavelength-a physically intuitive result unrelated to the present topic of drift- 
wave physics. 

Carrying out a similar analysis of equation (21.49), we find a lowest-order 
dispersion relation for w that is the same as equation (21.42) whose solutions are 
shown in Figure 21.1. Then, letting w + w+iy and equating the imaginary part 
of order y on the left-hand side of equation (21.49), which is y + (kzC: /w2)y ,  
to the imaginary expression on the right-hand side, in which only the real part 
of the frequency w need be used, we obtain 

r]k: w2(w2 - kzC:) 
PO kZui(w2 + k:C,2) ’ 

y = -  (21 S O )  

Equation (21.50) shows that the drift wave is unstable whenever JwI > Ik,C,I. 
Referring to Figure 21.1, we see that the electron drift wave (the upper curve 
in Figure 21.1) is always unstable (positive y) ,  although the growth rate will 
diminish rapidly as w approaches the asymptote k,C,, whereas the ion branch 
of the drift wave (the lower curve in Figure 21.1) is always damped. The 
electron drift wave destabilized by resistivity is usually called the ‘resistive drift 
instability’. 

In the simple case where kyude >> k,C,, the frequency and growth rate of 
the resistive drift wave instability are given by 

where, in the second form of the expression for the growth rate y ,  we have 
substituted r]  veim/ne2, where v,i is the electron-ion collision frequency, and 
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ut,e = (Te/m)'I2 is the electron thermal velocity. The growth rates of resistive 
drift instabilities tend to be quite small. Specifically, since k y u d e  << kzuA,  the 
first expression for y in equation (21.51) shows that the growth rate must be 
very small compared with the rate of resistive diffusion of magnetic field over 
a distance of order a perpendicular wavelength, i.e. g k i / p o .  For perpendicular 
wavelengths much longer than the ion Larmor radius (evaluated with the electron 
temperature), i.e. k l rLs  5 1, and for k y u d e  5 k,C, << kyUt ,e7  the second 
expression for y in equation (21.51) shows that the growth rate must also be 
very much less than the electron-ion collision frequency ve,. On the other 
hand, since y c( k:k;/k:,  the growth rate increases rapidly as the perpendicular 
wavelength decreases or as the parallel wavelength increases. Thus, for very 
short perpendicular wavelengths (down to some limit of order the ion Larmor 
radius, below which our analysis would not be valid) and for very long parallel 
wavelengths, the growth rates of resistive drift instabilities can be appreciable. 
Since the parallel wavelength is limited only by the length of the plasma slab in 
the z direction, drift-wave instabilities tend to be most serious for plasmas that are 
very extended along a straight, unidirectional magnetic field. Not surprisingly, 
drift waves are quite strongly affected by the introduction of magnetic shear, i.e. 
an equilibrium component B y 0 ( x ) ,  as was discussed in the context of resistive 
tearing instabilities in Chapter 20. 

Drip waves and i n s t a b i l i t i e s  * 

Problem 21.2: Using the same dimensionless quantities for the two 
axes, add the shear Alfven wave, whose dispersion relation is given by 
equation (21.41), to the figure drawn in Problem 21.1. To do this, you 
need to choose a specific value of j3 in order to relate C, to uA using 
equation (21.44): take j3 = 0.02. Using equation (21.40), indicate which 
branches of the dispersion relation in the upper (electron) half of your 
figure become unstable when a small amount of resistivity q is added. 
By what factor must our 'plane plasma slab be more extended in the 
z direction than in the y direction to allow waves with w - k y u d e  - kzuA:  
give your answer in terms of the quantities rLs/Ln and B .  

Problem 21.3: Examine analytically the region where the two branches 
of the dispersion relation in the upper half of the figure which you have 
produced in Problem 21.2 appear to cross each other, i.e. the region 
w = k y u d e  x k z u A .  For the purpose of this analytic calculation, you may 
assume j3 --f 0, i.e. C J U A  -+ 0. By choosing some particular k ,  value 
in this region, for example that given exactly by kzuA = k y u d e ,  show from 
equation (21.40) that there is an instability with a growth rate that scales 
like g ' l 2 ,  rather than like q ,  for small values of the resistivity. (Hint: You 
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will find it useful to note that the frequency is given approximately by 
0 x k y U &  = so that equation (21.40) may then be used only to 
calculate the small complex correction to this frequency.) This more- 
rapidly growing instability arises from a coupling between the drift wave 
and the shear Alfven wave. 

21.5 ‘ELECTROSTATIC’ DRIFT WAVES 

The astute reader may suspect that the limit w << k z u A ,  in which the 
lower-frequency drift wave separates from the shear AlfvCn wave in the 
dispersion relation equation (2 1.40), corresponds to the case where the magnetic 
perturbations play essentially no role in the dynamics. In this sense, the drift 
wave is sometimes called ‘electrostatic’. 

We can see this by noting that our analysis of the perturbed generalized 
Ohm’s law, with the added assumption that the perturbed electric field is 
constrained so as to produce negligible magnetic perturbations, is essentially 
sufficient by itself to produce the drift-wave dispersion relation: comparing 
equation (21.38) with equation (21.40), we see that the shear AlfvCn wave 
branch of the dispersion relation arises from retaining the term wB, in the 
first factor on the left-hand side of equation (21.38). This, in turn, arises from 
retaining the B term in the perturbed Ampere’s law, i.e. the term on the left- 
hand side of equation (21.26). Neglecting these terms is equivalent to looking 
for modes in which the perturbed E fields adjust themselves so as to avoid 
producing significant magnetic perturbations. This will necessarily involve a 
non-zero perturbed Ell as well as E l ,  but the generalized Ohm’s law allows 
this perturbed Ell to be balanced by the parallel perturbed electron pressure 
gradient. If we neglect the term wB, in the first factor of the left-hand side 
of equation (21.38), but keep all of the other terms, using equation (21.18) to 
provide another relation between U, and B,, we obtain the drift-wave branch of 
the dispersion relation, i.e. equation (21.49). 

The derivation of the drift-wave dispersion relation is simplified 
considerably if we make this ‘electrostatic’ assumption from the outset. 
Specifically, the ‘electrostatic” approximation amounts to assuming that the 
components of the perturbed electric field, El, are related to each other by 
the requirement that V x El = 0, which implies that the perturbed electric field 
can be written as the gradient of a scalar potential 9, i.e. 

E = -VI$ (21.52) 

where we have dropped the subscript ‘l’, since both E and I$ are zero in the 
equilibrium. 
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As we have seen, the generalized Ohm’s law for the perturbed quantities, 

i.e. equation (21.19), divides into components perpendicular to the magnetic 
field, for which the approximation 

UI x E x BIB2 (21.53) 

will suffice, and a component parallel to the magnetic field, in which all of the 
terms must be retained, i.e. 

(21.54) 

Noting that the equilibrium magnetic field is in the z direction and that the 
perturbed magnetic field is to be neglected, equation (21 S4) to first order in the 
perturbations can be written 

(21.55) 

In the electrostatic approximation, equation (21 S3) tells us that 

U, = E,/B,o = -ik,@/B,o (21.56) 

so that 
E ,  = -ik,@ = k, B,ou,/ k, 

in which case equation (21.55) becomes 
(21.57) 

ik T 
ne k,B,Ou, = k, ( q j ,  - %) = k, ( q j ,  - - &nel) .  (21.58) 

In the second form of equation (21.58), we have again made the assumption 
that the electron temperature must remain uniform along the (now straight and 
unperturbed) magnetic field. 

To obtain the density perturbation, riel, in terms of U,, we proceed in much 
the same way as before, i.e. we combine the continuity equation 

(21.59) 

with the parallel component of the equation of motion 

-iwpou, = -ik,Teonel (21.60) 

(see equations (21.33) and (21.35)). We substitute for U, from equation (21.60) 
into equation (21.59), thereby obtaining n,l in terms of U,, which is then 
substituted into equation (21 33). This gives 

(21.61) 
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It remains only to relate the perturbed current density j ,  to the mass velocity 
U, by the equation of motion. Our procedure here is somewhat different from 
before, in that we do not want to express the forces arising from current-density 
perturbations, such as j,, in terms of the perturbed magnetic fields, as was 
done in equations (21.5)-(21.1 l), because these perturbed magnetic fields are 
neglected, and so are not being otherwise calculated. Rather, we want to deal 
with the current-density perturbations directly. The x and y components of the 
perturbed equation of motion, equation (21 S), can be written 

(21.62) 

noting that terms such as j ,  By and j ,  B, will be second order in the perturbations 
and may therefore be omitted. Taking a/ax of the second of these and 
subtracting ik, times the first, thereby eliminating the pressure perturbation pl 

(a familiar procedure), we obtain 

= ik, B,ojz (21.63) 

where, in the second step, we have made use of the divergence-free property 
of the perturbed current density. Invoking the incompressibility of UI, i.e. 
equation (21.14), and using the WKB approximation to express a/ax as -ik,, 
equation (21.63) gives 

(21.64) 

where k: = kz + k;. 
dispersion relation 

Substituting this into equation (21.61) gives a final 

(21.65) 

exactly the same as equation (21.49). In the case where kyude << kzCs, the 
frequency of the drift wave becomes simply w kyude and its growth rate is 
given in equation (21.51). 

We conclude that magnetic-field perturbations play no essential role in 
the dynamics of the low-B drift wave. Rather, the drift wave is produced 
by a perturbed electric field, whose perpendicular components give rise to 
perpendicular plasma flows, and whose parallel component is force-balanced 
self-consistently by the perturbed electron pressure gradient along the magnetic 
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field. Without resistivity, equation (21.54) tells us that the peaks in the 
electron pressure (or equivalently, the electron density) along the magnetic field 
coincide exactly with the peaks in the electric potential 4. Indeed, assuming as 
before that the electron temperature remains uniform along the magnetic field, 
equation (21.54) (without the resistivity term) has the familiar exact nonlinear 
solution ne a exp(e$/ Td) ,  which reflects the tendency of the electrons to adopt 
a Boltzmann distribution along the magnetic field. In the drift wave, without 
resistivity, the electron density perturbation will be exactly in phase with electric 
potential perturbations. Introduction of non-zero resistivity produces a small 
phase shift between the density and potential perturbations. It is this phase shift 
that allows the drift-wave flow pattern to extract energy from the thermal energy 
available in the pressure gradient of the electrons to provide for unstable growth 
of the wave energy. 

The analysis of drift waves presented in this Chapter has made several 
simplifying assumptions, in particular that the equilibrium magnetic field is 
straight and essentially uniform and that the ions are essentially ‘cold’, i.e. 
Ti << T,. The introduction of non-zero ion temperature, i.e. - T,, would have 
the predictable effect of bringing the ion diamagnetic drift into the theory, in 
addition to the electron diamagnetic drift. However, this would not introduce 
any qualitative change in the stability properties of the drift wave, at least not 
for the ‘electron branch’. The frequency of the ‘ion branch’ of the drift wave 
would be modified and, if additional dissipative effects are included, this branch 
can sometimes be destabilized, but we defer this topic until we are able to 
treat drift waves from a ‘kinetic’ viewpoint (see Chapter 26). Modifications 
to the equilibrium geometry of greatest impact are those that eliminate very 
small values of the wave-vector parallel to the magnetic field, namely k, in 
our case of a straight, uniform field. Finite-length limitations, or the periodic 
boundary conditions that would be appropriate for a toroidal plasma, rather than 
an infinitely long plasma slab, are examples where lower limits are imposed on 
k,.  If the magnetic field is slightly sheared, i.e. a component B,,(x) is added to 
the larger B, component (see Chapter 2!), then the effective parallel component 
of the wave-vector becomes kll = k B x k, + k y B y ( x ) / B Z ,  which assumes a 
range of values as a function of x depending on the width of the mode in the 
x direction. All ‘finite-length’ and ‘shear’ effects tend to be stabilizing, but a 
detailed analysis of these effects is outside the scope of this book. 

Of perhaps more fundamental concern is the validity of the fluid model 
itself, with its implied assumption that the electrons remain Maxwellian, with 
a temperature that remains uniform along the magnetic field. We have seen 
in Chapter 12 that the electron thermal diffusivity along a magnetic field is a 
quantity of order u?,/uei. For the electron temperature to remain essentially 
uniform along the magnetic field in the presence of a drift wave with frequency 
o and wave-number k, along the field requires that o << k ~ u ~ , / u , i .  Thus, the 
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electron collision frequency cannot become arbitrarily large without violating our 
assumption of isothermal electrons and requiring a more complete fluid model 
including parallel temperature gradients. Moreover, inspection of the second 
form of the growth rate y given in equation (21.51) shows that for o - kyude 
the growth rate is then limited to values satisfying y / w  << kirzs .  Again, we see 
that drift-wave growth rates are appreciable only for perpendicular wavelengths 
that do not exceed by much the ion Larmor radius, although it should be noted 
that, because of our assumption that Tj << T’, our analysis has not implied an 
expansion in klrh. The validity of the fluid model also requires that the electron 
collision frequency not be too small. Specifically, for collisions to maintain a 
Maxwellian distribution along the magnetic field, the mean-free path must be 
shorter than the parallel wavelength, which requires k,vt.’ << u,i. If this latter 
requirement is not satisfied, a ‘kinetic’ version of the ‘electron branch’ of the 
drift wave must be found, which is discussed in Chapter 26. 

There is a vast literature on drift waves in non-uniform plasmas. An account 
of the early work in the field is to be found in an article by N A Krall (1968, 
in Advances in Plasma Physics 1, edited by A Simon and W B Thompson 
New York: Interscience), which discusses the ‘kinetic’ versions of the drift wave, 
to be introduced in Chapter 26, as well as the fluid versions which have been 
described in the present Chapter. 
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The Vlasov equation 

The fluid approximation is sufficiently accurate to describe the majority of 
macroscopic (i.e. large-scale) plasma phenomena that are typically encountered, 
such as the instabilities discussed in the previous Unit. We have also seen that 
the fluid model is sufficient for providing a good description of important types 
of wave-like behavior that are possible in a plasma. There are some phenomena, 
however, for which a fluid treatment is inadequate. For these, we need to work 
with the velocity distribution function f ( x ,  v, t), introduced in Chapter 1, for 
each of the species of particles in the plasma: such a treatment is called a 
‘kinetic theory’. 

22.1 THE NEED FOR A KINETIC THEORY 

In fluid theory the relevant dependent variables, such as density, fluid velocity 
and pressure, are functions of x and t only. This is possible because the velocity 
distribution of each species about some mean velocity is implicitly assumed 
to be Maxwellian (see Figure 22.l(a)) everywhere-uniquely specified by only 
two parameters, namely the density and temperature. In the hydrodynamics 
of ordinary fluids and gases, interparticle collisions are usually sufficiently 
frequent to maintain Maxwellian distributions of particles everywhere in the 
fluid. In high-temperature plasmas, however, interparticle collisions are 
relatively infrequent, and deviations from local thermodynamic equilibrium can 
be maintained for long times. For example, velocity distributions of the type 
shown in Figure 22.l(b) can often be created in a plasma, as well as, in the 
three-dimensional case, anisotropic distributions in which the ‘temperatures’ are 
different for different velocity-vector directions, e.g. parallel and perpendicular 
to a magnetic field. 

Since collisions are so infrequent in high-temperature plasmas, one might 
well wonder why a kinetic theory is not needed for all plasma problems. Why 
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0 V 0 V 

Figure 22.1. Examples of (a) Maxwellian and (b) non-Maxwellian one-dimensional 
velocity distributions. The distribution (b) has a ‘beam’ of suprathermal particles 
superimposed on an approximately Maxwellian background distribution. 

does a fluid theory work at all? The reason is that a strong magnetic field can 
play the role of collisions in maintaining approximately Maxwellian distributions 
and in providing the ‘localizing influence’ that is the essential ingredient in a 
fluid theory. For plasma phenomena that are ‘slow’ and ‘large scale’ in relation 
to particle gyration, in the sense that their typical time-scale is long compared 
with the Larmor period and their typical spatial length-scale large compared 
with the Larmor radius, all particles remain close to their initial field lines. An 
initially Maxwellian distribution of such particles would remain approximately 
Maxwellian. For this reason, the two-dimensionalflow of a plasma perpendicular 
to a strong magnetic field can often be treated by magnetohydrodynamics, even 
when collisions are very infrequent. For an example of a ‘two-dimensional flow’ 
exactly perpendicular to the magnetic field, we could cite the Rayleigh-Taylor 
(flute) instability discussed in Chapter 19. Often the plasma flow perpendicular to 
the magnetic field can be treated by magnetohydrodynamics even for phenomena 
that are not exactly two-dimensional, because commonly the length-scales are 
such that LII  >> L I :  the tearing and drift instabilities discussed in Chapters 20 
and 21 fall into this category. 

For flow along the magnetic field, however, the fluid theory will be valid 
only if collisions are frequent enough (specifically if the mean-free path is much 
shorter than some characteristic distance along the field). In the case where there 
are no collisions, the individual particles making up the plasma will freely stream 
for large distances along the field. To treat such problems, we need a kinetic 
theory, in which individual particle velocities are taken into account. Such a 
theory will also be needed to treat problems involving flow across a magnetic 
field in the case where the magnetic field is very weak, in the sense that the 
gyration period and gyration radius are not small compared with characteristic 
time-scales and length-scales of the flow. 

In summary, therefore, kinetic theory is needed to treat (i) problems 
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involving flow along a magnetic field (or in the absence of a magnetic field) in 
the case of long mean-free path (A,.,,@ 2 L I I ,  where LII  is the scale-length of the 
gradients along the field), and (ii) problems of high-frequency (U 2 U,) and/or 
short-wavelength (klrL 2 1) flow across a magnetic field. 

Before beginning our development of the kinetic theory of plasmas, 
however, we must first establish some important properties of the particle 
distribution function. 

22.2 THE PARTICLE DISTRIBUTION FUNCTION 

The basic element in the kinetic description of a plasma is the distribution 
function f(x,  v, t) that describes how particles are distributed in both physical 
space and velocity space. 

Consider a plasma as a collection of N charged particles, each with its own 
position and velocity vectors xi and vi. If the forces Fi on the various particles 
are given, the position and velocity vectors will evolve according to 

dxildt = Vi 

dvi/dt = ai = Fi lm.  
(22.1) 

The forces Fi will, in general, be composed of both a macroscopic, or slowly 
varying part, together with a microscopic, or rapidly varying part, due to 
short-range interparticle forces, i.e. collisions. The macroscopic part will be 
approximately the same for all particles with about the same xi and vi. Our 
fundamental assumption here is that the macroscopic forces are dominant over 
the microscopic, i.e. collisional, forces. Accordingly, rather than treat the entire 
array of 6 N  equations represented by equation (22.1), we simplify the problem 
by a statistical treatment based on the assumption that we need not distinguish 
between particles that have about the same velocity and are located at about the 
same place. 

Specifically, we can average over distances that are large compared with 
the interparticle spacing, n-1/3, but small compared with the Debye length, 
AD, which characterizes the minimum length-scale for the so-called ‘collective’ 
plasma phenomena we will treat. (Remember that a key definition of a plasma 
is that nAL >> 1 ,  so these two distances are very far apart.) Averaging over 
distances that are only a small fraction of the Debye length can effectively 
eliminate binary collisions, despite the fact that the Coulomb logarithm includes 
collisions out to impact parameters of order AD. For example, if we average 
all the electric fields over a distance of order one-tenth of the Debye length, 
we would be effectively reducing the Coulomb logarithm, 1nA (a quantity 
typically in the range 16-20), by only In 10 - 2.3. Since the kinetic theory is 
generally applied to plasma phenomena for which binary collisions are relatively 
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unimportant (indeed the Vlasov equation which we are about to derive describes 
the case where binary collisions are entirely neglected), a possible error of 
this magnitude in estimating the Coulomb logarithm will not matter. More 
important, ‘collective’ plasma phenomena, i.e. phenomena arising from electric 
fields averaged in this way, do occur for characteristic length-scales as small 
as a Debye length, or even somewhat smaller. It is important to note that our 
averaging process preserves the capability to describe such phenomena. 

As was done in Chapter 1, we can define a distributionfunction f (x, v, t )  
that represents the number density of particles found ‘near’ a point in the six- 
dimensional space (x, v). Specifically, the number of particles located within 
a volume element d3x of physical space and having velocities lying within a 
volume element d3u of velocity space is defined to be f(x, v, t)d3ud3x. The 
six-dimensional space whose volume element is d3xd3u is called ‘phase space’. 

The number density of particles in physical space is given simply by 

n(x, r )  = f(x,  v, t)d3u. (22.2) s 
The mean (fluid) velocity of the particles is given by 

nu = 1 vf(x, v, t)d3u. (22.3) 

A scalar pressure can be defined by 

(22.4) 

although it must be noted that f may not be isotropic in velocity space, in 
which case the concept of a scalar pressure may be inappropriate. Indeed, we 
recall that, as early as Chapter 1, we introduced the idea of different pressures 
parallel and perpendicular to the magnetic field, and a general pressure tensor 
was defined in Chapter 6. In equations (22.2)-(22.4), the integrals go from --oo 
to +CO for each of the three velocity components, U,, uy and U,. 

As discussed in Chapter 1, in thermal equilibrium, i.e. after many 
interparticle collisions have occurred, particle distribution functions will always 
relax toward the (three-dimensional) Maxwellian velocity distribution: 

fM(v) = n (&>,’’ exp (-g) (22.5) 

where the density n and temperature T will, in general, both be functions of x 
and t. The Maxwellian distribution is isotropic, and the mean square velocity is 
the same in any direction, namely 

3 T  
(U:) = (U;) = (U:) = - ( u , ) ~ M ( x ,  V, t)d U = -. n ‘ J  m 

(22.6) 
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The pressure is then given by p = n T ,  as usual. We can generalize the 
Maxwellian distribution to allow a non-zero mean velocity U, in which case u2 
should be replaced by ( v  - uI2 in the expression for f ~ ( v ) ;  for present purposes, 
however, it will generally be sufficient to consider Maxwellian distributions with 
zero mean velocity. 

Often we are interested in the one-dimensional velocity distribution, 
obtained by integrating over the other two components of velocity. For example, 
the distribution of velocities ux is given by 

(22.7) 

For a Maxwellian distribution 

FM(U,) = n ($)'I2exp (-2). (22.8) 

Since the three-dimensional distribution ~M(u,, U,,, U,) is isotropic, it is 
sometimes more convenient to work in spherical velocity coordinates. The 
volume element in spherical velocity coordinates (U, 8,d)  is given by d3u = 
u2sin8d4d8du, where U takes on all values from 0 to CO, 8 all values from 0 
to 7 7 ,  and 4 all values from 0 to 2n. Since fM is independent of 8 and 4, we 
can integrate over these two coordinates from 4 = 0 to 277 and from 8 = 0 
to n, respectively, to obtain sinOd4dO = 477. Having integrated over 8 and 
4 in this way, the volume element d3u becomes simply 4nu2du, which is of 
course simply the volume of a thin spherical shell in velocity space. We can 
now define a distribution gM(u) which represents the number of particles per 
unit volume and per unit magnitude U of the three-dimensional velocity-vector 
v (with U going from 0 to CO), namely 

(22.9) 

In a similar way, a distribution g ( u )  could be defined for any f(v) that is 
isotropic in velocity space. In such cases, the number density is given by 

and the scalar pressure is given by 

CO 

p ( x ,  t )  = 5 1 u2g(u)du. 

(22.10) 

(22.1 1 )  
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“x 

22.3 THE BOLTZMANN-VLASOV EQUATION 

A 

Figure 22.2. One-dimensional phase space 
(x, U,) in which a group of particles 

* occupying the region A move, after a 

Problem 22.1 Explain why the square shape of A changes to the 
parallelogram shape of B. 

The points on the surface of any volume in phase space move according to 
the rules 

dv F dx 
dt dt m 

= v  _ - _  - - (22.12) 

where F is the external force. The number of particles N in a volume of phase 
space is given by 

N = f ( x ,  U, t)d3ud3x. (22.13) 

Conservation of the number of particles demands that the total time derivative 
of N must vanish, where the ‘total’ time derivative means that we allow the 
boundary surface to move with the particles that lie on it: 

s 

O =  - dN =/ -d3ud3x+/  a f  f U - d S .  
dt a t  

(22.14) 
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Here, the second term on the far right-hand side arises from the additional 
volume captured or lost by the moving surface. It is important to note that the 
‘velocity vector’ U and the ‘surface area’ dS in this equation are both sir-vectors 
in (x, v) space: the six components of U are (x, v) = (v, F/m). By using the 
divergence theorem in six-dimensional space, we can rewrite the conservation 
equation 

dN 
dt 

0 = - = 1 (z + V. (fU) (22.15) 

Here V denotes a six-component divergence operator, whose components are 
(V,, 0,). Since equation (22.15) must hold for every volume element in phase 
space, we must have 

(22.16) af - + v * (fU) = 0 
at 

where, again, both V and U are six-vectors. 

a/av for V,, equation (22.16) may be written, for certain forms of F, as 
In terms of ordinary three-vectors, where we write simply V for V, and 

af F af - + v  * V f +  - ’ - = 0. 
at m av 

In obtaining this form, we have assumed 

F 
m 

v .U = v,. v +  v, . - = 0. 

(22.17) 

(22.18) 

In equation (22.18), the first term on the right-hand side vanishes since v is not a 
function of x: indeed x and v are independent coordinates in our six-dimensional 
space. The second term vanishes provided the force F is not a function of v (as 
will be true, for example, for electric and gravitational forces). 

Before proceeding further, we must stop and note that the Lorentz force is 
a function of v, namely 

F = qv x B. (22.19) 

However, evaluating the velocity-space divergence of this force, component by 
component, we obtain 

a 
a U, V, * (V x B) = -(u,B, - u,B,) +. . . = 0 (22.20) 

so that our result, i.e. equation (22.17), remains valid also for the particular 
v-dependence of the Lorentz force. 

We may now give our final result for the case of a plasma whose particles 
are acted upon by electric and magnetic forces, namely 

(22.21) F = q(E + v x B). 
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For this case, the equation for the evolution of the particle distribution function 
f becomes 

(22.22) 

We note that this equation could be thought of as D f /Dt = 0, where D/Dt means 
the total derivative following the particle along its trajectory in six-dimensional 
phase space. 

When collisions are important, an additional term (af/at),,ll must be 
included on the right-hand side of equation (22.22) to describe the effect 
of short-range interparticle forces, especially binary collisions whose effect 
was excluded in our initial ‘averaging’ of electric fields over some distance 
intermediate between the interparticle spacing and the Debye length. This 
additional term describes a local evolution of the velocity-space distribution 
at each point in physical space; it has no direct explicit effect on the distribution 
function elsewhere in physical space. For small-angle-scattering Coulomb 
collisions, an approximate form (af/at),,~I is the Fokker-Planck form derived 
in Chapter 13. When collisions are fully included, equation (22.22) is usually 
called the ‘Boltzmann equation’, after Boltzmann who was the first to obtain an 
expression for (af/at),,II for the case of short-range interparticle forces. The 
form of Boltzmann’s collision term is unlike that of the Fokker-Planck equation 
in that it is appropriate mainly for situations where large-angle scattering is 
dominant. However, the Boltzmann collision term can accommodate an arbitrary 
dependence of the cross section, o, on the impact parameter, b, and on the 
velocities of the colliding particles. When the Coulomb cross section is used 
and only the (dominant) contributions from small-angle scattering are retained, 
the Boltzmann form of the collision term reduces to the Fokker-Planck form. For 
more on this topic, the reader is referred to the monograph by D C Montgomery 
and D A Tidman (1964 Plasma Kinetic Theory New York: McGraw-Hill). 

When collisions of all kinds are neglected, the equation is usually called 
the ‘Vlasov equation’, after A A Vlasov who was the first to formulate the 
‘collisionless’ equation in the form of equation (22.22) (1938 Zh. Eksp. Teor. 
Fiz. 8 291 (in Russian)). 

af 4 af 
at m av 
- + v . V f  + - ( E + v  x B ) * -  = O .  

22.4 THE VLASOV-MAXWELL EQUATIONS 

We have now derived the Vlasov equation, (22.22), for the evolution of the 
particle distribution function f (x, v, t )  in a collisionless plasma. Typically, the 
electric and magnetic fields E and B making up the force q(E + v x B) are 
partly due to externally applied fields and partly due to internally generated 
fields. In order to have a closed set of equations, we must find some way of 
deriving the ‘internally generated’ parts of the electric and magnetic fields from 
the distribution function that describes the plasma particles themselves. 
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The internally generated force on a charged particle in a plasma can be 
divided roughly into two parts; one part is the average force due to a large 
number of relatively distant particles, and the other part is the force due to 
the near-neighbor particles, i.e. collisions. In a collisionless plasma, the former 
greatly exceeds the latter. Since ‘collisions’ in a plasma have been shown to 
include all Coulomb interactions at impact parameters up to a distance that 
greatly exceeds the interparticle spacing n-1/3 and approaches the Debye length, 
a ‘collisionless’ plasma is one in which the forces due to more distant particles 
(at distances of order the Debye length and larger) are dominant. Moreover, the 
average force due to distant particles does not depend on the exact location of 
these particles, but only on the density of such particles averaged over a small 
region with L >> n-1 /3  at each distant location. In other words, it depends only 
on the distribution function f (x, v, t )  itself. This average force due to distant 
plasma particles can be combined with any externally applied force. In this spirit, 
the electric and magnetic fields that make up the average force in the Vlasov 
equation are to be calculated self-consistently from the Maxwell equations: 

V - (EoE) = (T 

1 aE 
V x B = poj+ -- 

~2 at 

(22.23) 

which have been written in terms of the electric and magnetic fields E and B 
that appear in the force law, eliminating D(= EOE) and H(= B/po) by using the 
free-space permittivity, EO, and permeability, po, respectively. For completeness, 
we repeat the other two Maxwell equations: 

V . B = O  
aB V x E = - - .  
at 

(22.24) 

In equation (22.23), the charge density and current density are to be obtained 
at each point in space from the appropriate integrals of the distributionfunction 
itself: 

0 = fd3v 

j = c q / v f d 3 v  
(22.25) 

where the summation is over the species of particles present in the plasma. 
Superficially, the Vlasov-Maxwell equations, (22.22)-(22.24), resemble the 

Liouville equation for an ensemble of particles moving in externally generated 
E and B fields with fixed charge and current densities. The Liouville equation, 
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by itself, contains no terms that describe interactions among particles of the 
ensemble. However, the Vlasov-Maxwell equations are conceptually distinct 
from the Liouville equation, because a part (the main part in a collisionless 
plasma) of the interaction with all the other particles is retained by including 
‘smeared-out’ charge and current densities CJ and j derived from the distribution 
function itself (see equation (22.25)) in calculating the electric and magnetic 
fields. Although information is lost in treating the other particles in this 
‘smeared-out’ way, the Vlasov-Maxwell equations do contain the main part 
of the interparticle interaction in low-collisionality plasmas, and they provide 
the most realistic description of such a plasma that is analytically tractable. 

The addition of a Fokker-Planck collision term to the right-hand side of the 
Vlasov equation, i.e. to equation (22.22), provides an even superior description, 
in that this equation applies also to collisional plasmas and thus includes a very 
wide range of plasma-physical effects. However, analytic tractability is sacrificed 
substantially if the full Fokker-Planck term is used. It is sometimes possible 
to employ much simplified forms of the collision term in kinetic descriptions 
of complex phenomena such as plasma waves, where collision effects are often 
subdominant. For example, the expression (af/at),,ll = -v(f - fmm) is often 
used, where U represents a typical collision frequency, and where fmax is a 
Maxwellian distribution with the same number density and same energy density 
(i.e. temperature) as the distribution f (and sometimes in the case of like-particle 
collisions which conserve momentum, the same mass velocity). This simplified 
collisional model does not describe correctly the physical effects of collisional 
velocity-space scattering, but it does describe relaxation toward an appropriate 
Maxwellian distribution and it is, at least in some sense, linear in f. 

For the applications of kinetic models of plasmas that take up the remainder 
of this book, we will limit ourselves to low-collisionality plasmas for which 
equation (22.22) provides an adequate description, without the addition of a 
Fokker-Planck collision term to the right-hand side. 
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Chapter 23 

Kinetic effects on plasma waves: Vlasov’s 
treatment 

The Vlasov-Maxwell equations can be used to determine how the various types 
of plasma waves that were discussed in Chapters 15-18 are affected by the 
presence of a distribution of particle velocities. Even in the case where the 
velocity distribution in the absence of waves is Maxwellian, significant ‘kinetic 
effects’ can enter due to the presence of particles streaming along at speeds 
which are comparable to the wave phase velocity. The velocity distribution may, 
instead, be quite strongly non-Maxwellian, in which case new kinds of plasma 
waves can arise, including some that can be unstable, i.e. grow exponentially in 
amplitude in time. 

As our first illustration of the use of the Vlasov equation for treating plasma 
waves, we will derive the dispersion relation for electron plasma (Langmuir) 
waves. We have seen in Chapter 16 that electron plasma waves with k = 0 have 
a frequency 

w = wp = (ne*/eom)”* (23.1) 

but that ‘thermal effects’ (treated in Chapter 16 via a fluid model) modify this 
dispersion relation for electron plasma waves with non-zero wave-number k. 

Plasma waves are high-frequency oscillations in which electrons move back 
and forth relative to fixed ions, creating an oscillating space charge that is 
self-consistent with the oscillating electric field driving the electron motion. 
The oscillations take place either along a magnetic field, or in the absence of 
any significant magnetic field; in both cases, the magnetic field plays no role. 
The only Maxwell equation that enters into the theory of these waves is the 
Poisson equation, which relates the charge density to the electric field. Thus, 
the equations to be used for treating plasma waves are the Vlasov equation 
for the distribution function f (including an electric field E) and the Poisson 
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equation in which the charge density is expressed in terms of the appropriate 
integral of the distribution function f over velocity space. 

23.1 THE LINEARIZED VLASOV EQUATION 

We will assume here, as in Chapter 16, that the plasma waves are of very 
small amplitude, i.e. they represent only a small perturbation away from an 
initial equilibrium. Moreover, since the wavelength of plasma waves is very 
small, sometimes only a few times the Debye length, the background plasma 
equilibrium will be assumed to be spatially uniform over such short distances. 
Thus, in the equilibrium that exists before the perturbation is applied, the 
distribution function fo can be considered to be a function of v only, and not 
of x. The electron and ion equilibrium distribution functions fo must be chosen 
such that the electron and ion number densities are equal, so that they correspond 
to the physical case in which the plasma is charge-neutral. There will then be 
no electric field in the equilibrium state: the electric field will arise only when 
the perturbation is applied. 

We will further assume (see Chapter 16) that the plasma wave being 
considered takes the form of a plane wave travelling in the x direction, with the 
electric field having an x component only, given by 

E ( X ,  t )  = iexp(-iwt + ikx) (23.2) 

where E represents the wave amplitude. 
Since the uy and U, velocity components are not affected by the electric 

field, we may integrate the three-dimensional electron velocity distribution f (v) 
over uy and U, and work with the resulting one-dimensional distribution, which 
in Chapter 22 we denoted F(v , )  but which here we will simply denote f(u,)  
to retain the familiar appearance of the Vlasov equation. We may also drop 
the subscript x from U,, since the problem has in effect become purely one- 
dimensional. This one-dimensional electron distribution, now denoted simply 
f (U), must satisfy a Vlasov equation which is the same as would apply if the 
problem had been strictly one-dimensional from the outset, namely 

(23.3) 

where we have set q = -e for the electron charge. Moreover, for small- 
amplitude waves, the oscillating E field is small and leads to a small perturbation 
f, ( x ,  U, t )  (in effect, the first-order term in an expansion of the exact distribution 
function f in powers of E )  away from the initial, spatially uniform velocity 
distribution fi(u),  so that, if we write 

f ( x ,  U ,  t )  = fo(u) + f I ( X ,  U ,  t )  (23.4) 
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we can assume that f1 is small compared with fo. Simple estimation of the 
magnitude of the third term in equation (23.3) compared with the first term 
shows that the expansion is in the dimensionless parameter e E / ( o m u ) ;  for this 
parameter to be small for a typical particle requires that the acceleration in a 
wave period produces only a small change in velocity relative to ut, the thermal 
velocity. The ‘linearized Vlasov equation’ becomes 

(23.5) 

where we have neglected second-order terms that involve products of first-order 
quantities f~ and E .  

For electron plasma waves, the only relevant Maxwell equation is the 
Poisson equation 

€0’7 - E = U = -e / fld3u (23.6) 

where we have taken account of the fact that only the electrons, and not the 
ions, contribute significantly to the oscillating charge density. For our one- 
dimensional problem, in which our fl has already been integrated with respect 
to the other two velocity coordinates, we can write this Poisson equation 

03 aE 
E O -  = - e l ,  fldu. 

ax 
(23.7) 

The task is now to solve simultaneously equations (23.5) and (23.7). 

23.2 VLASOV’S SOLUTION 

To Vlasov, who was the first to attempt this problem, it seemed reasonable to 
suppose that f i  also has a wave-like form in both space and time, just like 
equation (23.2) for E ( x ,  t ) ,  namely 

The linearized Vlasov equation, equation (23.5), can then be written 

A e - a f i  
-i(o - k u ) f i  = -E- 

m a u  

which can be ‘solved’ to give 

(23.9) 

iek afo/av jl =-- 
m o - k u  

(23.10) 
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This ‘solution’ for j1 may be substituted into the Poisson equation, 
equation (23.7), which now takes the form 

Kinetic effects on plasma waves: Vlasov ’s treatment 

(23.1 1) 

After dividing through by ikcoi, noting that k cannot be zero by hypothesis (or 
else there would be no perturbation to study) and collecting both terms on the 
left-hand side, we obtain the relation 

D(k,w) 1 + - dv = 0. (23.12) 

The function D(k, w )  is often called the ‘plasma dispersion function’, and the 
equation D(k, w )  = 0 defines the dispersion relation, since this equation can, in 
principle, be solved to produce a relation of the type w = w(k). The function 
D(k, w ) ,  which was first obtained by A A Vlasov (1945 J.  Phys. USSR 9 25), 
is also sometimes called the ‘plasma dielectric function’, because the oscillating 
charge density cr can be viewed as internal to the plasma and absorbed into a 
frequency and wavelength-dependent kinetic ‘dielectric constant’, which would 
in this case be just @(k, w ) ,  so that Poisson’s equation becomes V a D = 0 
where D = @(k, w)E. 

It should be emphasized that the dispersion function given in 
equation (23.12) applies only to the case of electron plasma waves in 
an unmagnetized plasma. It corresponds to the high-frequency kinetic 
generalization of the ‘electrostatic’ term in the cold-plasma dielectric tensor 
introduced in Chapter 18, i.e. the term P22 in the dielectric tensor for 6 = 0 given 
in equation (18.16). A more complicated dispersion, or ‘dielectric’, function (in 
the form of a tensor) must be derived to describe the full range of plasma waves 
in a ‘hot’, kinetic plasma. This would correspond to the kinetic generalization of 
the full dielectric tensor. This kinetic dielectric tensor gives rise to a new class of 
waves in a magnetized plasma in the vicinity of harmonics of the ion and electron 
cyclotron frequencies, the so-called ‘Bernstein waves’. The full range of waves 
in a magnetized plasma described by kinetic theory is discussed in specialized 
texts, for example T H Stix (1992 Waves in Plasmas New York: American 
Institute of Physics), but is beyond the scope of the present book. In this 
Chapter and the following two Chapters, we will limit ourselves to the case of 
electrostatic waves in an unmagnetized plasma (or with k and E vectors directed 
along the magnetic field, so that the Lorentz force plays no role). The first fully 
kinetic treatment of waves in a magnetized plasma, including perpendicular 

Copyright © 1995 IOP Publishing Ltd.



Thermal effects on electron plasma waves 40 1 

wavelengths of order the Larmor radius and frequencies of order the cyclotron 
frequency and harmonics thereof, was given in a paper by I B Bernstein (1958 
Phys. Rev. 109 10). 

In principle, we have now solved our problem of high-frequency 
electrostatic waves in an unmagnetized plasma from a kinetic viewpoint. Given 
some initial velocity distribution fo and some wave-number k ,  we can carry 
out the integration over U in equation (23.12) to obtain an explicit form for 
the dispersion function D ( k ,  U ) .  We can then find the frequency w by solving 
the dispersion relation D(k ,  w )  = 0 for any given k value. In practice, this is 
difficult to do, because the integral over U can rarely be done analytically. 

23.3 THERMAL EFFECTS ON ELECTRON PLASMA WAVES 

An approximate solution for electron plasma waves can be obtained by assuming 
that, for almost all particle velocities U ,  the relation w >> ku  will be a good 
approximation. Since this states that the phase velocity of the wave is much 
larger than a typical particle velocity, we expect it to correspond to the adiabatic 
approximation in a fluid treatment. We may then expand the integrand in 
equation (23.12): 

1 1 ku  k2u2 k3u3 -= -+-+-  +- + . . .  . 
w - k u  0 w2 ~3 w4 

(23.13) 

For a Maxwellian distribution fo, i.e. the distribution given in equation (22.8), the 
integrals over the one-dimensional velocity U can then be carried out explicitly, 
noting that 

where ut = ( T / m ) ' I 2 .  Going this far but no further, the dispersion relation, 
equation (23.12), becomes 

D ( k , w )  1 - 6 (1 + F) = o  
0 2  

(23.15) 

where wp = (ne2/mco) ' /2 .  We may solve equation (23.15) by successive 
approximations, assuming w2 >> k2$.  First, we neglect completely the term in 
k2u:/w2 << 1, thereby obtaining the zeroth-order approximation to the solution, 
namely just w2 = m i .  Next we retain the correction term in k2u:/w2 but, to 
obtain a solution that is correct to first order in this small parameter, it suffices 
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to evaluate the correction term using the zeroth-order solution for w2,  namely 
w2 = w i .  Thus, correct to first order, the term in parenthesis in equation (23.15) 
can be written 1 + 3k2v?/wi, which makes equation (23.15) trivial to solve for 
w2.  Thus, for an approximate solution of equation (23.15) correct to first order 
in k2v:/wi, we obtain 

w2 x wp” + 3k2v: (23.16) 

which is exactly the dispersion relation obtained in the fluid treatment of 
Chapter 16 for the adiabatic case. 

Kinetic effects on plasma waves: Vlasov ’s treatment 

Problem 23.1: In the same limit, k2u:/w; << 1, find the other solution of 
equation (23.15) treated as a quadratic equation for 02, and explain why 
this solution is unphysical. 

Thus ‘thermal effects’ lead to a modification of the simple dispersion 
relation, w = up, for electron plasma waves. However, remembering that 
ut/wp = AD, the Debye length, we see that, as in the fluid model, the thermal 
corrections are small for wavelengths much longer than the Debye length. 
Moreover, we must be wary of using equation (23.16) for wavelengths as short 
as a Debye length (although, as we saw in Chapter 22, the underlying Vlasov- 
Maxwell equations are valid for length-scales as short as this), because the 
assumption on which our expansion was based, namely k2v:/w; << 1, would be 
violated. Nonetheless, even where the thermal effects represent small corrections 
to the dispersion relation, as we saw in Chapter 16, these effects provide plasma 
waves with features that would otherwise be absent; for example, there is now 
a non-zero group velocity dwldk, with the result that energy may be propagated 
by the waves from one part of the plasma to another. 

We should beware, however, that equation (23.16) does not account ful ly  
for thermal effects on electron plasma waves, since it has resulted from an 
approximate evaluation of the integral appearing in the dispersion relation, 
equation (23.12). We will return to this topic in Chapter 24. 

23.4 THE TWO-STREAM INSTABILITY 

For initial velocity distributions fo that depart substantially from Maxwellian, 
it is possible for electron plasma waves to become unstable. For example, 
suppose that the electron velocity distribution consists of two identical but 
oppositely directed streams with velocities f v o .  For simplicity, let us assume 
that each stream is ‘cold’, i.e. the particles in each stream have negligible thermal 
spread about their streaming velocity. Using &functions as a way of expressing 
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one-dimensional velocity distributions without any thermal spread (e.g. a one- 
dimensional Maxwellian with zero temperature is the &function n8 (U)), the 
distribution function for two such electron streams is 

where n is the total density of electrons, i.e. in both streams together. 
We substitute this distribution fo into the Vlasov dispersion relation, 

equation (23.12). At first sight, the velocity integral might appear intractable, 
since the integrand involves a derivative of a &function. However, integrals of 
this type may readily be evaluated using integration by parts, as follows: 

60 

fo du 
= -k l, (w - k u ) 2  

(23.18) 

the last form for the particular fo given in equation (23.17). In this way, the 
dispersion relation for this case becomes 

(23.19) 

where, as usual, wp” = ne2/mco. 
The function D(k ,  w )  plotted against w is shown in Figure 23.1 with either 

Case A or Case B possible in the region -kuo < w < kuo. 
Since the quartic equation for w represented by D(k ,  w )  = 0 must always 

have four roots, real or complex, Case B of Figure 23.1 must have two complex 
roots for w ,  since there are clearly only two real roots corresponding to the two 
crossings of the real axis. Since the complex roots w of a polynomial with 
real coefficients must be complex conjugates of one another, one of them must 
have a positive imaginary part, corresponding to exponential growth in time, i.e. 
instability. The condition for instability (i.e. Case B rather than Case A) can be 
expressed as D(k,O)  < 0, which becomes k2vi  < wp” Thus, the condition for 
instability is satisfied for all sufficiently long wavelengths. This is known as the 
‘two-stream instability’. 

The two-stream instability prevents two oppositely directed uniform beams 
of electrons from passing through each other, even if the electrons are neutralized 
by a uniform background of ions. The instability produces strong spatial 
inhomogeneities, in which the electrons become ‘bunched’ together, ultimately 
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\ 

Figure 23.1. The dispersion function D ( k ,  w )  for the two-stream instability plotted 
against w for the Cases A (four real roots w of D ( k ,  w )  = 0) and B (two real roots w of 
D(k ,  0) = 0). 

allowing the energy of the electron beams to be significantly dissipated into 
plasma waves. Other versions of the two-stream instability arise, some of which 
are discussed in Problems 23.2 and 23.5. 

Problem 23.2: A uniform plasma with fixed ions has a density n of 
'cold' bulk electrons at rest, together with a 'beam' of electrons with 
density nb and streaming velocity U. The density of electrons in the 
beam is much less than the density of bulk electrons, i.e. nb/n = E << 1. 
Neglecting thermal effects (i.e. assuming that the background plasma has 
zero temperature and that the beam has negligible velocity 'spread' about 
the streaming speed U), show that the dispersion relation for this version 
of the two-stream instability is 

By sketching D ( k , w )  as a function of w show that, in the limit of 
infinitesimally small but non-zero E ,  instability occurs for ku I up, 
approximately. Considering the case where ku is exactly equal to wp, 
and guessing that the (complex) frequency w will be very close to ku and 
wp, i.e. w = wp + Aw = ku + Aw where Aw is small, show that the growth 
rate has a magnitude y - E ' / ~ W ~ .  
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23.5 ION ACOUSTIC WAVES 

When both ions and electrons are allowed to oscillate in the wave-field E, a 
new type of ‘electrostatic’ wave (i.e. having its wave vector k parallel to E) 
can arise, called an ‘ion acoustic wave’. This wave was discussed in the fluid 
approximation in Chapter 16. 

To obtain the dispersion relation for ion acoustic waves, it is necessary 
to include perturbed distribution functions f i  for both ions and electrons, and 
to sum the two contributions to the charge-density perturbations in the Poisson 
equation. When this is done, a generalization of the dispersion relation given in 
equation (23.12) is obtained, namely 

e2 bo afo/av 
dv = 0. -s mkco - , w - k v  - 

D ( k ,  w )  1 + (23.20) 

Problem 23.3: If ion motions are included, derive the result quoted in 
equation (23.20) for the Vlasov plasma dispersion function, where the 
summation C is over species, i.e. ions and electrons. 

As we have seen, electron plasma waves have phase velocities w / k  that 
are much larger than the electron thermal speed V t , e ,  and therefore very much 
larger than the ion thermal speed vt,j. In this case, inclusion of the ions would 
not significantly change the dispersion relation. 

To find ion acoustic waves, however, we must look for waves with phase 
velocities that are intermediate between the thermal velocities of electrons and 
ions, i.e. 

kut,i << << kUt,e. (23.21) 
The approximation for the ions is the same as the one used for electrons in our 
treatment of electron plasma waves. The new approximation for electrons is, 
however, quite different from the one used previously, and a new method of 
evaluating the electron contribution to the dispersion relation is needed. 

For the ions, we may expand the factor in the integrand in equation (23.20): 
1 kv x-+- 

w - k v  w w2 

1 
(23.22) 

which is similar to the expansion already given in equation (23.13), except that 
here only the first two terms are retained, which is equivalent to neglecting ion 
thermal motion. We obtain 

(23.23) 
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For the electrons, we must expand in the opposite limit, i.e. 

to obtain 

(23.24) 

(23.25) 

Equation (23.25) was obtained by evaluating a f o / a v  for a Maxwellian electron 
distribution, namely 

(23.26) 

and noting that the factor U cancels between the numerator and the approximate 
form of the denominator. The dispersion function (23.20) becomes 

afo ufo - - -- 
2 

- 
av Ut.e  

wp' Qp' 

k U t . e  w2 
D ( k , w )  E 1 + 3 - -, (23.27) 

Here, up and Q, denote electron and ion plasma frequencies, respectively: 

(23.28) 

and is the electron thermal velocity, (Te/m) ' l2 .  For wavelengths much longer 
than the Debye length, i.e. kkD = kvt ,e /wp << 1 ,  the first term on the right-hand 
side of equation (23.27), i.e. the constant unity, can be neglected compared with 
the other terms, in which case the dispersion relation D ( k ,  w )  = 0, gives 

w = kC, (23.29) 

where C, = Ut,e(Qp/wp) = v t ,e (m/M)' /2  = (Te /M) ' /2 .  The phase velocity of 
these waves, C, ,  is called the 'sound' or 'ion acoustic' speed. As we have 
seen before, it is the appropriate phase velocity for ion acoustic waves when ion 
thermal effects are neglected; it is the thermal velocity of ions evaluated with 
the electron temperature. 

In Chapter 16, we obtained a slightly more general result for the dispersion 
relation of ion acoustic waves in the limit kkD << 1 ,  which was still of the form 
w = kC,, but with a sound speed C, = [ ( T e + f i Z ) / M ] 1 / 2 .  This same result (with 
f i  = 3, see Problem 23.4) could have been obtained here by retaining two more 
terms in the expansion, equation (23.22), used in evaluating the ion integral in 
the dispersion function, as was done for the electrons in the previous Section, i.e. 
equation (23.13). It follows that equation (23.29) is a good approximation only 
in the case T, >> T .  However, recalling that our expansion of the ion integral 
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is based on the assumption that w >> k q i ,  we see that the analysis leading to 
the dispersion relation, equation (23.29), is valid only if C, >> ut,,,  which itself 
requires Te >> Ti .  The extra contribution to C, arising from including the finite Ti 
terms in the ion integral can be retained as a small correction in the limit Ti << T,, 
but this correction would be large only in cases where the approximations used 
to derive it are not valid. The fluid model allows ion acoustic waves with some 
value of f i  for all ratios T / T , .  We will see in the next Chapter, however, that the 
kinetic treatment introduces an important, qualitative change in the dispersion 
relation for these waves in the case T, - T,. 
Problem 23.4: Carry out the calculation referred to above, by using 
the full expansion, equation (23.13), rather than just equation (23.22) in 
evaluating the ion integral in the ion acoustic wave dispersion function. 
You should still assume Ti << Te, but should retain first-order corrections in 
T j  in your dispersion relation for the case kkD << 1. Show that the resulting 
dispersion relation is the same as equation (23.29), except that first- 
order corrections in Ti modify the sound speed to C, = [(Te + 3T , ) /M] ' /2 .  
By analogy with isothermal and adiabatic fluids, explain why there are 
different coefficients of Te and Ti in the sound speed C,. 

Problem 23.5: A uniform plasma has ions that are initially at rest, but its 
electrons are streaming through the ions with velocity U. Again neglecting 
both ion and electron thermal effects (i.e. the ions are 'cold', and the 
electrons have negligible velocity 'spread' about the streaming speed U), 
show that the dispersion relation for electrostatic oscillations involving both 
ions and electrons is 

=o. m up" 
M w2 (0 - kU)2 

D ( k , w )  = 1 - -- - 

Show that, for any streaming speed U ,  the plasma is always unstable to 
modes with sufficiently long wavelengths, i.e. sufficiently small values of 
k. By analogy with Problem 23.2, show that the typical growth rate y has 
magnitude y - (m/M) ' /3wp.  

23.6 INADEQUACIES IN VLASOV'S TREATMENT OF THERMAL 
EFFECTS ON PLASMA WAVES 

Despite the apparent success of Vlasov's treatment in reproducing the dispersion 
relation describing the effect of thermal motions on electron plasma waves, 
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namely equation (23.16), as well as in yielding dispersion relations for other 
types of plasma waves such as two-stream instabilities and ion acoustic waves, 
there are serious inadequacies in this method of solving the Vlasov-Poisson 
equations. 

Using the Vlasov equation to find f, ,  which was then substituted into the 
Poisson equation, we obtained a dispersion relation for electron plasma waves 
including thermal effects, namely equation (23.12), from which an approximate 
description of thermal corrections to the dispersion relation for plasma waves 
was obtained by expanding the integrand for w >> kut, , ,  taking a Maxwellian 
for f , .  The problem with this solution is that the integral in equation (23.12) is 
singular at U = w /  k ,  and we have developed no prescription for how to treat this 
singularity. In the case of ion acoustic waves, singular integrals of this type arise 
in both electron and ion contributions (see equation (23.20)) and, in this case, 
the electron integral was expanded in the opposite limit, i.e. w << k q e ,  while 
the ions were treated in the limit w >> kut,i, without addressing the problem of 
the singularity in either case. 

For electron plasma waves, we have found the electrons to behave as an 
adiabatic fluid at this level of approximation and, for ion acoustic waves with 

<< T,, we have found that the electrons behave as an isothermal fluid whereas 
the ions behave as an adiabatic fluid. We could proceed to carry our expansions 
to higher order, thereby uncovering additional physics, but it is more fundamental 
at this point to address the problem of how to treat the singularity in the integrals 
at U = w / k ,  because behind this mathematical problem lies the new physics of 
strong wave-particle interactions. 

Vlasov argued that imaginary contributions to D ( k ,  w )  cannot be allowed 
and concluded that the principal values of the singular integrals should be taken. 
The principal value of an integral of this type is defined as 

(23.30) 

The principal value of a singular integral avoids the singularity by stopping 
infinitesimally short of it on the left, and starting again at an exactly equal 
distance on the right. This definition eliminates any possible imaginary 
contributions from integrating around the singularity in the complex plane. 
A proper treatment must, however, find some way to formulate the problem 
physically so as to avoid the singularity from the beginning. We cannot simply 
make the ad hoc assumption that the principal value must be used because we 
do not like the answer which we would otherwise obtain. The correct treatment 
was first given by L Landau (1946 J .  Phys. USSR 10 25), who found Vlasov's 
prescription for treating the singularity to be incorrect. Landau's treatment is 
the topic of the next Chapter. 
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Chapter 24 

Kinetic effects on plasma waves: Landau's 
treatment 

Landau used the method of Laplace transformation to obtain the full correct 
solution for the effects of a distribution of particle velocities on electron plasma 
waves, thereby correcting the treatment of Vlasov. His result extends the linear 
kinetic theory of small-amplitude perturbations to include the effects of particles 
traveling close to the wave's phase velocity, and so 'resonating' with the wave. 
Before describing Landau's treatment, we briefly review the mathematics of 
Laplace transforms and their inversion. 

24.1 LAPLACE TRANSFORMATION 

Laplace transformation is a well-developed mathematical technique for solving 
linear differential equations formulated as initial value problems. The technique 
may be summarized briefly as follows. To determine the time dependence of a 
function f ( t )  that is determined by a linear differential equation, we first define 
a 'Laplace transform': 

{ ( s )  = 1" f(t)e-"'dt (24.1) 

which is defined only for complex s with Re@) positive and sufficiently large, 
i.e. Re@) > SO, so that the integral converges at t + CO. 

We then solve for f ( s )  instead of f ( t )  by performing a Laplace transform 
on each term of the equation. Since the time derivative f = d f/dt will appear 
in the differential equation for f ( t ) ,  it is useful to have a rule for the Laplace 
transform of a time derivative. This is given by 

f = S f O )  - f(0) 
- 

(24.2) 

409 Copyright © 1995 IOP Publishing Ltd.



410 

where f(0) is the value of f ( t )  at t = 0. In this way, the initial condition 
is introduced explicitly into the solution for the Laplace transform. This rule 
may be proved easily using integration by parts. If a second derivative with 
respect to time should appear, the above rule may be applied twice, which will 
introduce a further initial condition, namely the value of f(0). Thus, Laplace 
transformation is an appropriate technique for solving differential equations 
describing initial value problems. The technique transforms the problem from a 
differential equation for f ( t )  to an algebraic equation for f(s). 

W s )  

Kinetic effects on plasma waves: Landau 's treatment 

1;our~ 

Singularities 
of i ( s )  

Figure 24.1. The Laplace inversion contour C for the general case where the transform 
, f (s)  has singularities in both the right half-plane and the left half-plane. 

Having obtained f(s), we must invert the transformation to find f ( t ) .  The 
appropriate inversion formula is 

e"'f(s)ds 
1 

2n i f(t) = - (24.3) 

where C is a contour in the complex plane that runs from -ico+so to +iw+so 
sufficiently far to the right of the imaginary axis (i.e. sufficiently large positive 
SO) to ensure that all singularities of f ( s )  lie to the left of the contour, as shown 
in Figure 24.1. Singularities in the right half-plane correspond to exponentially 
growing terms in f ( t )  which cause the integral in equation (24.1) defining f(s) 
to diverge unless Re(s) is sufficiently large (see Problem 24.1). Often such terms 
are absent, in which case the choice of a contour C running just to the right of 
the imaginary axis in the Laplace inversion formula is satisfactory. As a general 
approach, this integral is then evaluated by 'closing the contour to the left', i.e. 
adding the semi-circle at Re(s) = -co (which contributes nothing for t > 0) 
and noting that the integral around such a closed contour must equal 2 ~ r i  times 
the sum of the residues of all singularities within the closed contour. In some 
cases, however, there may be an infinite number of singularities encountered as 
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Re@) -+ -CO, in which case this approach will not yield a solution in closed 
form. 

Problem 24.1: As an exercise in Laplace transforms, find the transform 
of the function 

f ( t )  = Eiaiexp(-sit). 

Carry out the inversion of f(s) explicitly, using the Laplace inversion 
formula, to obtain f ( t )  again. 

The reader interested in pursuing further the theory of Laplace transforms is 
referred to J Matthews and R L Walker (1970 Mathematical Methods of Physics 
2nd edn, Menlo Park, CA: BenjamWCummings). 

24.2 LANDAU’S SOLUTION 

The problem with our previous solution of the Vlasov equation for electron 
plasma waves lies in the singularity at U = w/k that arises when we assume 
normal mode solutions for E ( x ,  t )  and fl ( x ,  U ,  t ) ,  i.e. solutions that vary like 
exp(ikx - io?). In particular, our assumption of Fourier normal modes in time 
effectively supposes that the wave can have existed for all time and will continue 
to exist to t = CO with a sinusoidal time dependence, i.e. exp(-io?). Possibly, 
then, it is the assumption of normal mode solutions-especially for fl ( x ,  U ,  t ) -  
that is invalid. In other words, there may simply not exist such a solution. 
Instead of assuming that the solutions are necessarily of this form, let us try 
to solve a problem that must be well-posed, namely the initial-value problem. 
Specifically, we create some initial disturbance at t = 0, which we assume to 
be wave-like in x space, and we follow its subsequent development without 
assuming that it must behave as exp(-iwt). We will find that this new approach 
provides a prescription for how to treat the singularity at U = w/k that arose in 
the integrals obtained in Vlasov’s normal mode method. In some cases, we will 
find that normal modes varying exactly as exp(-iwt) do exist, but in most cases 
they do not, and a sinusoidal variation with t represents at best an approximation 
to a more complicated time dependence. 

The solution must remain wave-like in physical space, since first-order 
perturbations of a spatially uniform equilibrium can be Fourier analyzed into 
independent Fourier components. Thus we can still assume 

(24.4) 
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but the time-dependence is, for now, not specified. (We henceforth drop the 
'hats' from the quantities k(t) and f1 (U, t )  without creating any ambiguity. As 
was discussed in Chapter 15, the quantities E ( t )  and f l (u ,  t )  are complex, but 
here only as associated with spatial phase differences.) We can, of course, 
specify the initial perturbations E(0)  and f i  (U, 0) at will, provided that the 
charge density given by f I ( u ,  0) is self-consistent with E(0)  in the Poisson 
equation. 

The linearized Vlasov equation for electrons, Fourier analyzed in space but 
not in time, is 

afl . e afo 
m a v  a t  

- lkufi - -E- = 0 (24.5) 

In principle, we could integrate f l  forward in time to obtain a complete solution. 
In this sense, the problem is well-posed. 

Since it is a standard mathematical technique for solving initial value 
problems of this kind, the method of Laplace transformation is very appropriate 
here. The Laplace transform of f l  (U, t )  is 

W 

f~ (U, s) = Jd f l  (U, t)e-s'dt. (24.6) 

Taking the Laplace transform of the linearized Vlasov equation, and using the 
rule for the Laplace transform of a time derivative, we obtain 

(24.7) 

where k(s) is the Laplace transform of E ( t ) .  We solve equation (24.7) for 
(U, s) and substitute it into the Laplace transform of the Poisson equation 

00 

ikeok(s) = -e [ J ( u ,  s)du (24.8) 
J -m 

to obtain, after some straightforward algebra, 

where 

(24.9) 

(24.10) 

In principle, given some initial perturbation f1 (U, 0), equations (24.9) 
and (24.10) give the complete solution for the time evolution of the electric field. 
Then equation (24.7) gives the solution for the perturbed velocity distribution. 
Of course, an explicit expression for E ( t )  can only be obtained by substituting 
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E ( s )  into the formula for inverting a Laplace transform. Although this cannot, 
in many cases, be done analytically, we can draw some conclusions about the 
behavior of E ( t )  from the general properties of D ( k ,  s). 

We note first that the expression for D ( k , s )  is very reminiscent of the 
Vlasov ‘dispersion function’ D ( k ,  w )  given in equation (23.12), which was 
obtained by Vlasov by assuming normal modes that are oscillating in time, with 
frequency w .  To avoid confusion, for the purposes of the present discussion we 
re-label the Vlasov dispersion function as Dv(k, w ) .  We then see that the two 
functions D(k ,  s) and Dv(k,  w )  are exactly the same if we substitute s + -iw 
or w +. is. However, since the Laplace transform is defined only for Re(s) > 0, 
and is only needed in this region to apply the inversion formula, the singularity 
that appeared in the definition of Dv(k ,  w )  (for real frequency w )  is absent from 
the definition of D ( k ,  s). 

To obtain E ( t ) ,  we must invert k(s) using the Laplace inversion formula. 
The Laplace inversion formula is 

1 
2 x  i 

E ( t )  = ~ E(s)esrds (24.1 1) 

where the contour C runs from - im + SO to + i m  + SO, at some real distance 
SO > 0 to the right of the imaginary axis, such that all singularities are located 
to the left of SO. This requirement can be understood by noting that the Laplace 
transform of E ( t ) ,  namely 

E ( s )  = E(t)e-s‘dt r (24.12) 

is defined only if Re(s) is sufficiently positive to overcome any exponentially 
growing terms in E ( [ ) .  Thus, the integration contour C in the Laplace inversion 
formula must lie sufficiently to the right in the complex s-plane and, in particular, 
to the right of all singularities of k(s). If we denote the singularities of E ( s )  
by SI, s2, . . ., where SI is the singularity furthest to the right, s:! is next, etc, the 
contour C must be of the type shown in Figure 24.1, and SO > Re(s1). 

In order to find the dominant behavior of E ( ? )  as t +. 00, we would like 
to move the contour C, in an appropriate fashion, as far as possible toward 
the left half of the s-plane, ultimately closing it by the infinite semi-circle at 
Re(s) = -m. Since the functions in the integral will all be analytic, or if 
defined only in certain regions of the s-plane can be extended into other regions 
by analytic continuation, except for singularities which we specifically identify, 
then the contour C can indeed by moved around in this way without changing 
the result for E ( t ) ,  provided no singularity is crossed. The reason for seeking to 
move C as far as possible to the left can be seen by examining equation (24.11). 
The first ‘obstacle’, i.e. singularity, that will be encountered as we do this will 
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give the dominant contribution as t + CO, with contributions from smaller values 
of Re(s) being subdominant. Once we have accounted for the contributions 
from all singularities, we have left only the contribution from the semicircle at 
infinity in the left half-plane, i.e. at Re(s) = -CO, which vanishes for all positive 
t .  Accordingly, we imagine moving C to the left by analytic continuation of 
k(s) (if necessary) until we encounter the first singularity of i ( s ) ,  which we 
have called SI. This first singularity may lie in the right half of the s-plane (as 
shown in Figure 24.1), or it may lie in the left half-plane. 

Before continuing, we must investigate the possible origins of singularities 
in k(s). These may arise (i) from singularities on the right-hand side of 
equation (24.9), i.e. singularities of the numerator N ( k ,  s) in the expression 
for k(s) 

Kinetic effects on plasma waves: Landau's treatment 

(24.13) 

or (ii) from zeros of the denominator, D ( k ,  s). Singularities of origin (i) cannot 
arise, because the integral in equation (24.13) defines (for smooth enough initial 
perturbations f l  (U, 0)) an entire function (finite everywhere) for Re(s) > 0, 
which may be analytically continued into the region Re@) < 0, where it must 
remain finite at least for some finite distance into the left half-plane. Hence, 
all singularities of i ( s ) ,  with the possible exception of those$nitely into the left 
halfplane, must arise from zeros of D(k ,  s ) .  Singularities of i ( s )  that arise 
from singularities of N ( k ,  s) in the left half-plane describe the damping-out of 
peculiar features of the initial velocity-distribution perturbation fl  (U, 0) and are 
of little interest to us here. Singularities that arise from zeros of D(k ,  s ) ,  on the 
other hand, describe the collective oscillations of the plasma, in this case the 
electron plasma waves. Let us consider three different cases, distinguished from 
each other by the location of these zeros. 

24.2.1 Case 1: First zero of D(k, s) has Re(s) > 0 

As we try to move our Laplace inversion contour C toward the left, suppose 
that we first encounter a singularity of b(s) (a zero of D ( k , s ) )  at s = SI in 
the right half-plane, i.e. with Re(s1) > 0. We can move our contour past SI, 
provided we include in E ( t )  a term arising from the residue at the pole at s = SI. 
Specifically, we can write 

E ( t )  = Res(sl)e"l' + 2ni 1 IC i(s)e"'ds (24.14) 

where Res(s1) denotes the residue at sI, and the contour C' is now to the left of 
SI, as shown in Figure 24.2. As t + CO, the residue term dominates, giving 

E ( t )  + Res(s1)e"". (24.15) 
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Since Re(s1) > 0, this dominant term represents an instability, i.e. an electric 
field that grows exponentially in time. Of course, in many cases, certainly 
including the case of a Maxwellian fo, there is no such zero SI, and no such 
instability. 

Figure 24.2. The Laplace inversion contour C of Figure 24.1 is moved as far as possible 
to the left, as shown in (a), and the contour is then ‘snapped’ into two pieces, one of 
which is the contour C’ and the other is a contour that encircles the singularity at SI, 
as shown in (b). The contributions from the two horizontal lines connecting the vertical 
contour to the circle around the singularity in (a) cancel zach other in the limit that 
these lines touch, and so leave no net contribution after the contour is ‘snapped’ into two 
pieces . 

We have seen in Chapter 23, however, that there are certain distributions 
f-, (in particular, ‘two-stream’ distributions) that do lead to instability. For such 
cases, we note that for Re(s) > 0, a zero SI of our function D ( k ,  s) corresponds 
exactly to a zero w1 of the Vlasov dispersion function Dv(k,  w ) ,  obtained by 
setting SI = -iw,. Since Im(wl) > 0, there is no singularity in the integral over 
U in the Vlasov dispersion function Dv(k,  0). In this case, a problem does not 
arise with Vlasov’s normal mode solution, in which the perturbation quantities 
were assumed to vary as exp(-iwt): the problem is resolved because w is now 
complex. Our conclusion from the Vlasov analysis for this case is as follows: 
an instability arising from a zero of the Vlasov dispersion function Dv(k,  w )  
with Im(w) > 0 is a pure normal mode; i.e. it has a single (complex) frequency 
w. For this case, Vlasov’s treatment turns out to have been valid. 

Our conclusion from the Landau analysis of the initial-value problem for 
this case is that, if such a zero of the function D ( k ,  s) given in equation (24.10) 
with Re@) > 0 exists, say at s = SI, inversion of the Laplace transform shows 
that the dominant term in the solution for E ( t )  as t + CO will be an exponentially 
growing term, i.e. an instability. There can be various types of ‘subdominant’ 
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terms, including other exponentially growing terms with smaller growth rates 
(which could be found by looking for the next zero, s2, etc.) and terms that 
describe oscillatory and damped terms in E( t ) .  

Although Landau’s Laplace transform approach can, in principle, yield the 
full time-dependent solution of the initial-value problem, it does not add much 
to Vlasov’s solution for this particular case. If there is a zero of D(k, s) in  the 
right half-plane, both approaches indicate that there will be an instability, i.e. 
an exponentially growing term in E ( t ) ,  which will represent the dominant time 
dependence as t 4 CO. 

24.2.2 Case 2: All zeros of D(k,  s) have Re(s) < 0 

If D(k ,  s) has no zeros in the right half-plane, we may move the contour C 
leftward until i t  lies along the imaginary axis. Provided there are no zeros on 
the imaginary axis itself, the contour C may be moved into the left half-plane, 
ROW running from -im - 6 to + icc - 6. Just as before, the dominant term in 
E ( [ )  as t 4 m is still the contribution from the residue at the first pole SI that 
is encountered, i.e. 

1 
2n 1 

E ( t )  = Res(sl)eS“ + - lJ, B(s)e”ds (24.16) 

where the contour C” is now even further to the left, as shown in Figure 24.3. 
However, the dominant term now describes a perturbation that decays in time, 
i.e. Re(s1) < 0. This is the case that occurs for a Maxwellian f o ;  the damping 
is called ‘Landau damping’. (There is, of course, an intermediate case where 
D ( k , s )  has its first zero exactly on the imaginary axis. This results in an 
oscillation that is neither growing nor damped.) 

In moving the contour C from the right half of the s-plane to the left half, 
the integrand-in particular, the function D ( k ,  s)-must be defined by analytic 
continuation, starting from the right half-plane, Re@) > 0. To ensure the proper 
analytic continuation of the function 

ie2 /m a fo /audu  
D ( k , s )  = 1 - - 

mkco - ,s+iku 
(24.17) 

the contour of integration in the v-plane must be deformed so that the singularity 
at U = i s / k  always lies on the same side of the v-contour. For values of s with a 
positive real part, the original contour is by definition correct, and as s is moved 
toward the imaginary axis, the contour still does not need to be deformed in the 
case Re(s) = Im(w) > 0 (instability; case (a) in Figure 24.4). However, if s 
moves to the left of the imaginary axis, the contour in u-space must be deformed 
to ensure smooth analytic continuation of D ( k ,  s) as a function of s. Thus, the 
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Contour , SI 

Figure 24.3. The Laplace inversion contour for the case where there are no singularities 
in the right half-plane. The contour C of Figure 24.1 has been 'snapped' into two pieces, 
one of which is the contour C" that is now well into the left half-plane and the other is 
a contour that encircles the first singularity $1  encountered in the left half-plane. 

iS/k 

I C  

Figure 24.4. The contour of integration is the u-plane for the cases: (a) instability, i.e. 
there is a zero of the dispersion function with Re@) > 0, corresponding to Im(o) > 0; 
(b) strong damping, i.e. all zeros of the dispersion function have Re(s) < 0; and (c) weak 
damping, i.e. there is a zero of the dispersion function with Re(s) RZ 0, corresponding to 
Im(o) RZ 0. 

contour does need to  be deformed in the case Re@) = Im(w) < 0 (damping; 
case (b) in Figure 24.4). 

It follows that a damped mode (Im(w) e 0) is not a solution of the Vlusov 
dispersion relation, but rather of a modified relation in which the contour of 
integration in the u-plane is deformed as described above. It therefore follows 
that this damped solution is not a normal mode, i.e. it does not correspond 
to a solution in which all perturbation quantities have only a single Fourier 
component in time, i.e. vary exactly as exp(-iwt). For if this solution were 
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a normal mode, it would satisfy the Vlasov dispersion relation as originally 
derived, i.e. with the u-integration running simply along the real axis, rather 
than along a deformed contour. True normal modes could be produced only 
by choosing very special non-physical initial perturbations f l  (U, 0). For most 
physical cases, the Landau mode described by the first term on the right-hand 
side in equation (24.16) represents the longest-lived term in a solution with a 
very complicated (but always decaying) time dependence. 

Our conclusion from the Landau analysis for this case is that all terms in 
E ( t )  damp out as r + 03. In general, we cannot identify any dominant ‘mode’ 
in this case, nor can we easily describe in detail the time-dependence of E ( t ) ,  
except to say that E ( t )  +. 0 as t + 00. However, to the extent that SI, the first 
zero of D(k ,  s) lies jus t  to the left of the imaginary axis, there is an identifiable 
dominant term as t + 03 which has only weak damping. This is a case of great 
physical interest and is considered next. 

24.2.3 Case 3: First zero of D(k, s) lies just to the left of the imaginary 
axis 

This is really a sub-category of Case 2, but it is of particular interest, since it 
describes weakly damped oscillations, which occur commonly in plasmas. We 
suppose that the first zero of D(k,s) lies just to the left of a point s = -iw 
on the imaginary axis. In this case, the contour of integration in the u-plane 
must be deformed to include a path passing below the singularity at U = w/k, 
as shown in Figure 24.4(c). 

Using s = -iw in order to return to more familiar notation, the dispersion 
function for w exactly real becomes 

where Pr denotes the principal value of the integral, defined in Chapter 23. The 
imaginary term comes from going 180” around the pole and is ni times the 
residue. (Note that this expression can be regarded as providing a general 
prescription for resolving the singularity originally noted by Vlasov in the 
integral in Dv(k, w).) 

As in our previous treatment of thermal effects on plasma waves 
(Chapter 23), we can expand the principal-value integral in the limit w >> ku,, 
to obtain 

wL 
w2 

D x l - J +  . . .  , (24.1 9) 

Thermal corrections of the type discussed in the previous Chapter (and from 
the fluid treatment in Chapter 16) would be obtained by retaining the next non- 

Copyright © 1995 IOP Publishing Ltd.



Landau's solution 419 

vanishing term in this expansion. For a Maxwellian fo, i.e. 

n 
fo = (2X)1/2u,exP (-6) (24.20) 

where ut = (T/m)'l2, equation (24.18) indicates that we must also include an 
imaginary term arising from the pole, giving altogether 

(24.21) 

Since this is explicitly an analytic function of w, it can be employed for values of 
w slightly away from the real axis. Treating the last term as a small correction, 
we can solve the dispersion relation, D = 0, corresponding to the Landau pole 
we have been treating, by iteration, obtaining 

i 
w = w - - 2 2  (H>I/~ g e x p  (24.22) 

This is our final expression for the frequency ( X  wp) and Landau-damping 
decrement y of electron plasma waves. We see that plasma waves are, in fact, 
always slightly damped. Remembering that ut/wp = AD, the Debye length, we 
see that the damping is exponentially small for long wavelengths ( k A D  << 1), but 
is large ( y  - up) for wavelengths of order the Debye length. The small Landau 
damping for k A D  << 1 can be interpreted as due to the fact that there are very few 
particles (i.e. very small fo and 8 f 0 / 8 u )  at U = w / k  = w, /k  x ut/kkD >> ut.  

However, the physical interest in Landau damping of plasma waves does 
not lie in the numerical magnitude of the damping decrement, which is usually 
small. Rather, it lies in the surprising discovery of wave-damping in an entirely 
collisionless system. This might seem to violate our sense that there are no 
strictly dissipative terms in the Vlasov-Maxwell equations. Moreover, the 
phenomenon of Landau damping appears in many other contexts in plasma 
physics-indeed, whenever there are particles whose velocity is approximately 
in resonance with the phase velocity w / k  of some type of plasma wave. 

Problem 24.2: For certain simple equilibrium distributions other than the 
Maxwellian, the Landau damping can be calculated explicitly. For the 
distribution 

use contour integration to evaluate the dispersion function D(k, S )  

explicitly, and show that plasma oscillations damp as exp(-kat). (Hint: 
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the explicit evaluation of D(k ,  s) uses contour integration in the u-plane, 
summing the contributions from poles within a closed contour; you should 
take care to choose the most convenient way to close the u-plane 
contour.) Qualitatively, why is the Landau damping larger for this case 
than for the Maxwellian distribution? 

Kinetic effects on plasma waves: Landau Is treatment 

24.3 PHYSICAL MEANING OF LANDAU DAMPING 

Physically, it is clear that Landau damping is associated with those particles in 
the distribution that have a velocity nearly equal to the phase velocity of the 
wave, w / k ,  since the contribution to the dispersion function, equation (24.18), 
that gives rise to Landau damping is the term in ( a f i / 8 u ) I w , k .  These may be 
called ‘resonant particles’. Resonant particles travel along at almost the same 
speed as the wave and tend to see a relatively static electric field, rather than a 
rapidly fluctuating one. They can, therefore, exchange energy very effectively 
with the wave. 

The electrons with U x w/k, which are nearly resonant with the plasma 
wave in the Landau problem, are analogous to the resonant particles in the 
mapping problem of Chapter 5 .  They see an essentially steady electric field, 
which can be positive or negative depending on their phase relative to the wave. 
Thus, some nearly resonant particles are accelerated by the wave, while others 
are decelerated. A resonant individual particle has an equal chance of being 
accelerated or decelerated, after averaging over all possible phases. Thus the 
population of particles that was originally moving slightly faster than w / k  is 
mixed with the population that was moving slightly slower. 

However, a Maxwellian distribution has more slower electrons than faster 
ones. Consequently, there are more particles being accelerated on average by 
this mixing process than being decelerated. Since this results in a net transfer 
of energy from the wave to the particles, the wave is damped. 

As particles with velocities near the phase velocity w / k  are speeded-up 
or slowed down in this way by the wave, the distribution f ( u )  (averaged over 
wave phase) tends to be ‘flattened’ in this region. Effectively, there arises a 
wave-induced diffusion in velocity space, concentrated in the region around the 
phase velocity w j k .  The new, modified distribution function contains the same 
number of particles, but it has gained a little energy at the expense of the wave. 
Strictly, this flattening of the distribution function is a nonlinear effect, because it 
is quadratic in the amplitude of the perturbation. For infinitesimal perturbations, 
the flattening would be imperceptible, but it is sufficient to account for the loss of 
wave energy, which is also quadratic in the perturbation amplitude. For larger 
wave amplitudes, such as those arising from unstable modes of perturbation, 
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wave-induced velocity diffusion can often be the dominant nonlinear effect, as 
in the ‘quasi-linear theory’ discussed in the next Chapter. 

If the amplitude of the perturbation is large, another specifically nonlinear 
effect can arise, namely the ‘trapping’ of particles at locations of minimal 
potential energy in the wave. This is analogous to the formation of islands in the 
mapping problem of Chapter 5 .  For the electrons, these trapping locations will 
be at the maxima of the electric potential. Trapping of electrons in a plasma 
wave will ‘compete’ with Landau damping, since once the electrons become 
trapped they can no longer take any more energy from the wave. For small- 
amplitude waves, for which the linear treatment is valid, trapping does not play 
a significant role. However, the trapping phenomenon will be discussed in the 
context of plasma-wave instabilities, for which larger field amplitudes can be 
expected to occur, in the next Chapter. 

It is important to point out that, unless collisions or some equivalent 
dissipative effects (such as orbit stochasticity, see Chapter 25) are introduced, 
Landau damping is not really a dissipative or irreversible process. Indeed, the 
‘information’ that was present in the initial perturbation is retained in a time- 
and space-dependent ‘microstructure’ of the velocity distribution function, even 
after the electric field has damped out almost to zero. Landau damping has been 
demonstrated in the laboratory by J H Malmberg and C B Wharton (1966 Phys. 
Rev. Lett. 17 175). Moreover, the reconstruction of a damped electric field 
perturbation from information contained entirely in the perturbed distribution 
function has also been demonstrated in an experiment on ‘plasma echoes’ by 
J H Malmberg, C B Wharton, R W Gould and T M O’Neill (1968 Phys. Fluids 
11 1147) and independently by A Y Wong and D R Baker (1969 Phys. Rev. 
188 326) using ion acoustic waves. 

24.4 THE NYQUIST DIAGRAM* 

It is possible to give a formal proof that there are no instabilities, i.e. no zeros 
of the dispersion relation D ( k ,  s) = 0 with Re(s) > 0, in the case of a spatially 
homogeneous plasma with Maxwellian distribution fo. Physically, of course, 
this result is obvious, since otherwise thermodynamics would be contradicted, 
in that a tendency would exist for the Maxwellian distribution to evolve toward 
some other distribution. Nonetheless, it is valuable to develop a technique for 
proving this rigorously, since the same technique can often be useful in searching 
for possible instabilities for non-Maxwellian distributions fo (see Problem 24.3). 

The technique, which is derived from a powerful electrical engineering 
technique due to Nyquist, is to consider a closed semicircular contour (with the 
semicircular part at infinity) that encloses the entire right half of the s-plane, 
as shown in Figure 24.5(a). As the complex s value traverses this contour in 
the anti-clockwise sense, so that the area Re(s) > 0 lies always on our left 
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(a) s-plane (b) o-plane (c) D-plane 

t 

Figure 24.5. The Nyquist diagram for a Maxwellian distribution fo. The analytic function 
D ( k ,  s) transforms the contour in the s-plane (a), or equivalently the contour in the 
w-plane (b) where s = -iw, into the contour in the D-plane (c). 

as we trace out the contour, the value of the function D(k, s) will trace out 
a corresponding closed contour in the complex D-plane. Assuming that this 
contour in the D-plane is simply connected (i.e. does not cross over itself), then 
the area enclosed by tracing out the D-plane contour, specifically the area formed 
to the left of the contour, corresponds to the area Re(s) > 0 in the s-plane. This 
mapping of regions to the left of a contour in one complex plane onto regions to 
the left of the corresponding contour in the other complex plane follows from the 
analytic nature of the function which defines the mapping, in this case D(k, s) 
as a function of the complex variable s in the half-plane Re($) > 0. (See, for 
example, the Chapters on conformal mappings in R V Churchill (1960 Complex 
Variables and Applications 2nd edn, New York: McGraw-Hill) or in E G Phillips 
(1957 Functions of a Complex Variable 8th edn, Edinburgh: Oliver and Boyd).) 
If this area in the D-plane contains the point D = 0, then there must be a solution 
of the dispersion relation, D(k, s) = 0, with Re@) > 0, i.e. an instability. On 
the other hand, if the area in the D-plane does not contain the point D = 0, then 
there will be no instability. The case where the contour in the D-plane is not 
simply connected represents a straightforward generalization. The area in the 
D-plane that corresponds to the area Re(s) > 0 in the s-plane will always be the 
area that lies on our left as we trace out the D-plane contour, when this contour 
is traced out by an anticlockwise traversal of the s-plane contour. Sometimes, of 
course, this area in the D-plane will extend to infinity. At other times, there will 
be certain areas of the D-plane that are encircled twice by the D-plane contour 
(on its left); within such areas, there will be two values of s with Re@) > 0 for 
every D value. The s-plane contour and its corresponding D-plane contour is 
called the ‘Nyquist diagram’. The contour in the D-plane is sometimes called 
the ‘Nyquist contour’. 
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The Nyquist-diagram technique can be illustrated by applying it to the case 
of the dispersion relation D(k, s) = 0 for a Maxwellian fo. It is convenient, 
however, to transform again from the variable s to a variable o, defined by 

s = -lo. (24.23) 

The semi-circular contour in the s-plane shown in Figure 24.5(a) becomes 
the contour in the w-plane shown in Figure 24.5(b). Just as the straight part of the 
contour in Figure 24.5(a) lies infinitesimally to the right of the imaginary-s axis, 
so the corresponding part of the contour in Figure 24.5(b) lies infinitesimally 
above the real-o axis. The corresponding contour in the D-plane is obtained by 
allowing w to trace out this contour, obtaining D values from the expression 

(24.24) 

for w on the semicircle at infinity, and 

for w on the straight part of the contour along the real axis. For a Maxwellian 
fo, it follows from equation (24.25) that 

(24.26) 

The contour in the D-plane can now easily be traced out. The entire semicircle 
at infinity in the o-plane transforms into the point D = 1. The contour in the D- 
plane can cross the real axis again only once, namely at the point corresponding 
to w = 0 . Moreover, for Re(o) e 0, we have Im(D) e 0, and for Re(@) > 0, 
we have Im(D) > 0. Finally, at the point corresponding to w = 0, we have 

Re(D) = 1 - - 
mk2ro -, U 

= 1 + -  Up' 

k2v: 
(24.27) 

which exceeds unity, implying that the crossing of the real D-axis corresponding 
to the point o = 0 lies to the right of the crossing corresponding to w values 
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on the semicircle at infinity. It follows that the D-plane contour must have the 
general shape shown in Figure 24.5(c). Tracing out this contour in the sense that 
corresponds to an anticlockwise traversal of the w-plane contour, we see that the 
region of the D-plane to the left of the contour is the area inside the contour, 
which excludes the point D = 0. Thus, there can be no solution of D(k, s) = 0 
with Re(s) > 0, i.e. no instability. 

Figure 24.6. A symmetric ‘double-humped’ electron distribution function corresponding 
to equal and opposite streams, each of which is given a spread in velocities (see 
Problem 24.4). 

To change this conclusion, for example for distributions fo other than 
Maxwellian, it is generally necessary for the Nyquist contour to have multiple 
crossings of the real axis in the D-plane. From equation (24.25), it is evident 
that this can occur only if there are multiple velocities U where afo/au = 0. 
For example, ‘double-humped’ distributions of the type shown in Figure 22.l(b) 
would have three velocities where afo/au = 0, and their Nyquist contours 
would have three crossings of the real axis in the D-plane. Since an extreme 
form of the double-humped distribution could be the two-stream distribution of 
equation (23.17), the instabilities arising with such double humped distributions 
are all essentially versions of the two-stream instability. An example of the use 
of the Nyquist diagram to determine the stability properties of a symmetrical 
double-humped distribution, shown in Figure 24.6, is given in Problem 24.3. 

Problem 24.3: Use the Nyquist diagram technique to search for possible 
instabilities of electron plasma waves in the case of a symmetric 
‘double-humped’ electron distribution function fo, such as that shown in 
Figure 24.6. Show that the condition for instability is that 

(Hint: It is not necessary to know the exact shape of the distribution 
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function fo, only that it is symmetric in U ,  which implies that a minimum 
occurs at U = 0. This is sufficient to be able to sketch the Nyquist diagram. 
However, it will be necessary to locate approximately the points where the 
Nyquist contour crosses the real axis. To do this, you will need to develop 
estimates for the principal-value term in equation (24.25). The symmetry 
of f o ( u )  will help in this regard.) 

By examining the instability condition that you have derived, do you 
conclude that all distributions of the type shown in Figure 24.6 will be 
unstable, or only those in which the ‘double-humpedness’ is sufficiently 
pronounced? 

24.5 ION ACOUSTIC WAVES: ION LANDAU DAMPING 

Electrons are not the only particles that can be in resonance with waves in a 
plasma. If the wave has a small enough phase velocity to match the thermal 
velocity of ions, then strong ion Landau damping can occur. For example, ‘ion 
acoustic waves’ have phase velocities of order the sound speed, defined here as 
[(T, + 3z>/M]’l2,  and should be strongly affected by ion Landau damping if 

It is trivial to generalize our derivation of the Landau form for the plasma 
dispersion function to the case where both species (electrons and ions) participate 
in the oscillation, just as was done in Chapter 23 for the Vlasov treatment. 
Referring to equations (23.20) and (24.18), we obtain 

- Te. 

where the summation is over species. (Our dispersion function is, of course, 
still limited to the case of electrostatic oscillations propagating along, or in the 
absence of, a magnetic field.) 

As in the treatment of ion acoustic waves given in Chapter 23, we assume 
that 

w << kvt,e w >> kUt,i. (24.29) 
Approximate expressions for the two principal-value integrals in equation (24.28) 
have been given in equations (23.23) and (23.25), assuming the relationships 
given in equation (24.29). (The approximations employed in Chapter 23 were, 
in effect, evaluating the integrals as principal values, since they did not include 
any contributions from the singularity in the integrand.) 

Reproducing these previous results, we have for the electrons 

(24.30) 
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and, for the ions, neglecting finite ion temperature effects (i.e. assuming 

Kinetic effects on plasma waves: Landau's treatment 

Ti << Te): 

(24.31) 

Keeping the imaginary (Landau damping) terms from both electrons and ions, 
with afo/avl,,,/k evaluated in the appropriate limits, we obtain 

w; s2; 
D ( k , o )  1 + - - - 

k2v:, w2 

This dispersion relation is identical with equation (23.27) except for the 
imaginary (Landau damping) terms which now appear. 

For wavelengths much longer than the Debye length (khD = kvt, , /wP << 1), 
the dispersion relation D ( k ,  U )  = 0 gives w M kC, - iy, where C, = (Te /M) ' l2  
is the sound speed (the thermal speed of ions at the electron temperature) for 
the case where Ti << T,, and y is a damping rate given by 

The Landau damping from electrons is always small, of order ( m / M ) ' / 2 .  The 
Landau damping from ions is small only if T, >> Ti, in which case it is 
exponentially small. We conclude that undamped (or weakly damped) ion 
acoustic waves occur only in the case Te >> Ti ; otherwise, they are subject 
to strong ion Landau damping. 

For T, >> T i ,  ion Landau damping of acoustic waves is small for the usual 
reason: the phase velocity w / k  is much larger than the ion thermal velocity, so 
there are very few particles in the resonance region and the slope a f o / a v  is very 
small. On the other hand, electron Landau damping of acoustic waves is small 
for a quite different reason: the phase velocity w / k  is much smaller than the 
electron thermal velocity, so the resonance falls into the low-velocity region of 
fo(v) where the slope afo /av  is also very small. The situation is illustrated in 
Figure 24.7. 

We saw in Chapter 16 and again in Chapter 23 (see Problem 23.3) that, 
when finite-Ti corrections are retained in the dispersion function, for khD << 1 
the dispersion relation for ion acoustic waves remains w x kC,, but the sound 
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Figure 24.7. Ion and electron distribution functions and the phase velocity o/k of the 
ion acoustic wave in the case where T, >> T,, so that C, >> 

speed is modified to C, = [(T, + 3 Z ) / M ] ' / 2 ,  although this result was limited 
still to the case T, << T, in the kinetic treatment of Chapter 23. If, nonetheless, 
we use this result to obtain an order-of-magnitude estimate for the ion Landau 
damping in the case Z X T,, by substituting w / k  = C, - 2 ( T / M ) ' l 2  into 
the second term on the right-hand side on the first line of equation (24.33), we 
obtain y / w  0.2. Such a large value of the damping decrement, y ,  indicates 
that the ion acoustic wave is essentially non-existent in such a plasma. 
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Chapter 25 

Velocity-space instabilities and nonlinear 
theory 

For initial velocity distributions that depart substantially from Maxwellian, we 
have already seen that it is possible for electron plasma waves to become 
unstable. The two-stream instability, discussed in Chapter 23, provides a simple 
example of this kind of ‘velocity-space instability’-an instability that can arise 
in a non-Maxwellian but homogeneous plasma. 

More generally, many different types of velocity-space instability are 
possible in a plasma, and these can arise in various modes of oscillation, not 
only in the electron plasma waves. Moreover, in some cases, a velocity-space 
instability can arise in situations where the unperturbed distribution function 
f o ( u )  departs only slightly from the Maxwellian. We will discuss two examples 
of velocity-space instabilities of this type, the first of which arises in the electron 
plasma waves, and the second in the ion acoustic waves. 

25.1 ‘INVERSE LANDAU DAMPING’ OF ELECTRON PLASMA 
WAVES 

The physical picture of Landau damping presented in Chapter 24 gives an 
immediate indication as to the type of velocity-space distribution function 
that will tend to destabilize the electron plasma wave. Specifically, if the 
unperturbed distribution function fo( U) contains more fast particles than slow 
particles in the vicinity of U = w / k ,  Landau damping is ‘inverse’, and the 
electron plasma waves can become unstable. If we suppose that the distribution 
fi(u) is approximately Maxwellian, except in some small region of suprathermal 
velocities, then we can assume a Maxwellian in calculating the principal-value 
integral in equation (24.181, but not in calculating the contribution from the pole 
at U = o/k. Keeping only the lowest-order contribution to the principal-value 
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integral for u >> kvt, we obtain the dispersion function 

Velocity-space instabilities and nonlinear theory 

nie2wp afo 
w = w p + 2  - 

(25.1) 

(25.2) 

We see that the plasma wave becomes unstable if the distribution fo is 
‘double-humped’ in some region of relatively large U, i.e. if a fo /au  > 0 at 
U = w/k.  Such a distribution is shown in Figure 25.1. For obvious reasons, 
this is sometimes called the ‘bump-on-the-tail’ distribution. Distributions of this 
kind are found in laboratory plasmas, such as those first studied by Langmuir, 
where energetic ‘primary’ electrons provide the power for plasma ionization. 
Such distributions are also common in magnetospheric plasmas, when energetic 
electrons precipitate to lower altitudes due to geomagnetic disturbances. 

U V 

Figure 25.1. A ‘double-humped’ electron distribution function. 

Waves with phase velocities w / k  in the region of the positive slope of 
fo(u) will be unstable, gaining energy at the expense of the resonant particles. 
Although the values of u are all close to the plasma frequency up, there is 
almost complete freedom in the choice of k value. The only restriction is 
that k values with kAD 2 1 are excluded, since these would introduce large 
thermal corrections to the dispersion relation. The effect of this restriction is to 
exclude phase velocities in the thermal range, i.e. w/k 5 ut. Thus, with this one 
restriction, we can always find a phase velocity o / k  that lies in the region of 
positive slope of f o ( v ) ,  implying that there is always some mode that is unstable. 
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Clearly, this type of instability is a generalization of the two-stream 
instability discussed in Chapter 23 (see also Problem 23.2). The distribution 
f o ( u )  shown in Figure 25.1 is the ‘finite temperature’ generalization of the 
distribution considered in Problem 23.2, in which each of the two streams is 
given a finite thermal spread. We see at once how much thermal spread is needed 
to stabilize the mode: the mode is stabilized only when the thermal spreads are 
sufficient to remove the minimum in fo(u), so that the distribution now becomes 
‘single-humped’ . The ‘bump-on-the-tail’ distribution is different, in this respect, 
from the symmetric double-humped distribution, shown in Figure 24.6 and 
analyzed in Problem 24.3. In the latter case, a degree of ‘double humpedness’ 
can be tolerated before instability arises. A region with afo/au > 0 (for positive 
U, the opposite inequality for negative U) is necessary, but not sufficient, for 
instability: there must also be a mode with phase velocity, w / k ,  in this region 
of reversed slope. 

25.2 QUASI-LINEAR THEORY OF UNSTABLE ELECTRON PLASMA 
WAVES* 

Thus far, our discussion of plasma instabilities has been limited to the linear 
regime, i.e. to perturbations that have very small amplitude. The theory of 
linear instabilities treats the perturbations as infinitesimal, thereby giving rise 
to homogeneous linear equations that are relatively amenable to mathematical 
analysis. In particular, if the unperturbed equilibrium is essentially uniform in 
space (at least on a scale-length much greater than that of the perturbations), then 
the eigenfunctions of linear perturbations will be sinusoidal in space, i.e. they 
will vary as exp(ik.x). Each such perturbation (i.e. each value of the wave-vector 
k) will have a temporal behavior like exp(-iwkt), where the frequency Wk is in 
general complex (real for an oscillatory mode, imaginary for a purely damped 
or growing mode). In linear theory, we can consider one Fourier component, 
i.e. one value of the wave-vector k, at a time: there will be no ‘interference’ 
between different Fourier components. 

For oscillatory modes (and even more so for damped modes), the linear 
approximation is often quite adequate, since the amplitude of the perturbation 
does not increase beyond its initial value. For unstable modes, however, 
the linear approximation must eventually break down, because it predicts 
that the amplitude of the mode increases exponentially in time without limit. 
Clearly, there must arise some nonlinear effects that limit the amplitude of the 
perturbation, or that change the ‘equilibrium’ in such a way that the mode is no 
longer unstable. 

Nonlinear effects in plasma physics can generally be divided into two 
categories: wave-particle interactions and wave-wave interactions. For certain 
types of plasma instabilities, for example the unstable electron plasma waves 
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that arise with ‘bump-on-the-tail’ distributions, the wave-particle interactions 
are sufficient to stabilize the waves at relatively small amplitude. In other 
cases, the waves grow to such large amplitude that interactions between the 
different waves are important in determining the final wave spectrum. Wave- 
wave interactions are beyond the scope of this book, but the interested reader is 
referred to the monographs by R Z Sagdeev and A A Galeev (1969 Nonlinear 
Plasma Theory edited by T M O’Neill and D L Book, New York: Benjamin) 
and by R C Davidson (1971 Methods in Nonlinear Plasma Theory New York: 
Academic). 

Our discussion of the physical meaning of Landau damping has shown 
that even a small-amplitude wave can interact strongly with particles that are 
almost resonant with it, tending to mix those particles that are travelling slightly 
slower than the wave with those particles that are travelling slightly faster than 
the wave. The result of this will be a flattening of the distribution function in 
the region of the phase velocity w / k .  A larger-amplitude wave existing for a 
long enough time can also ‘trap’ a significant number of particles in its potential 
troughs, analogous to the island-confined trajectories of the Chirikov-Taylor 
map in Chapter 5 .  These are examples of the nonlinear effects of wave-particle 
interactions. 

The ‘quasi-linear theory’ of unstable electron plasma waves provides a 
technique for describing the effects of wave-particle interactions. Quasi-linear 
theory assumes that the amplitudes of the various modes that are excited are 
still small enough that the structure, frequency and instantaneous growth rates 
of the modes are all adequately described by the linear theory. Thus, even 
in the small-amplitude limit, quasi-linear theory allows us to understand and 
quantify how waves and particles exchange energy, and how the flattening of 
the distribution function leads ultimately to the ‘saturation’ of the instability, i.e. 
the cessation of growth of the amplitude of the perturbation electric field. It is 
a basic assumption of the quasi-linear theory presented here that this process 
of saturation of the instability arises before the waves have sufficient amplitude 
that wave-wave interactions become important; otherwise the theory must be 
extended to include such effects. 

As we have seen, the linear theory of electron plasma waves proceeds from 
the Vlasov equation for the one-dimensional electron distribution f : 

which is linearized by writing 

(25.3) 

f ( x ,  U ,  t )  = f o ( u )  + fl(u)exp(-iwt + ikx) 
E(x ,  t )  = Eexp(-iwt + ikx) 

(25.4) 
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where the perturbations fi  and E are assumed small enough that second- 
order terms involving products of f1 and E may be neglected. With these 
approximations, the linearized Vlasov equation becomes 

e afo -i(w - k u ) f l  = - E - .  
m a u  (25.5) 

For the present treatment of an unstable mode, it is not necessary to introduce 
the more cumbersome Laplace-transform analysis of Landau, since we found 
that an unstable mode (complex frequency w having a positive imaginary part) 
is always an exact normal mode. For a weakly unstable (i.e. almost oscillatory) 
mode, we saw in Chapter 24 that the singularity at U = w / k  should be resolved 
by noting that w has a small positive imaginary part, i.e. w + w + iy. 

For a specific example of unstable electron plasma waves, we will consider 
the case of a ‘bump-on-the-tail’ electron distribution, as shown in Figure 25.1. 
We have already found the frequency and growth rate of the unstable mode that 
arises in this situation, and these are given in equation (25.2). 

The essence of quasi-linear theory is to suppose that the distribution fo 
does not merely describe some initial state, but also describes a slowly evolving 
‘background’ distribution that is changing due to the effects of the unstable 
waves themselves. With this in mind, we adopt a formal definition of fo as the 
spatially averaged (i.e. averaged over many wavelengths) part of the complete 
distribution function f ( x ,  U ,  t ) .  We also assume that a continuous spectrum of 
waves with different k values is excited, as would be the case for the instability 
we are considering here. (The opposite case-where there is only one wave 
excited-is discussed later in this Chapter.) 

Accordingly, we generalize equation (25.4) to allow perturbations 
containing waves with different k values: 

(25.6) 

E(x, r) = Ekexp(-iwkt + ikx). 
k 

We continue to limit ourselves to the ‘one-dimensional’ case which, in effect, 
assumes that the k-vectors of all excited waves are in the same direction, 
in this case the x direction, so that we may integrate out the other two 
velocity components and work with the one-dimensional Vlasov equation, 
equation (25.3), with one velocity component, in this case U , .  It is also important 
to remind ourselves of our convention (see Chapter 15) for describing waves 
with ‘exponential notation’ in expressions such as those in equation (25.6), which 
is that the measurable physical quantity is the real part of the right-hand side; 

Copyright © 1995 IOP Publishing Ltd.



434 Velocity-space instabilities and nonlinear theory 

for example, if there is only one k value with a real Ek, then equation (25.6) 
is understood to mean E ( x ,  t )  = Ekcos(wkt - k x ) .  We have also adopted the 
convention (without any loss of generality) that all frequencies Wk are positive 
(or, if complex, that their real parts are positive), noting of course that we must 
then include both positive and negative k values in order to allow both leftward 
and rightward propagating waves. The summations in equation (25.6) are then 
over whatever waves are present, perhaps some with positive and some with 
negative k values (if there are symmetric ‘bumps-on-the-tail’ of fo(u)); each 
physically distinct wave corresponds to one k value and therefore one term in 
the summation over k .  It is important to understand that we have chosen not 
to introduce an E-k = E; for each k value just to make the summations in 
equation (25.6) real, since this would require two terms in the summation over 
k to describe each physically distinct wave and would also require negative 
frequencies (since W-k = -Wk when f k  values are used to describe the same 
wave). This is, however, an alternative convention that is often used. 

We obtain an equation for the slow evolution in time of fo(u) by spatially 
averaging equation (25.3) over many wavelengths, yielding 

(25.7) 

noting that the term in afo/i3u must vanish, since all contributions to E ( x ,  t )  are 
oscillating in time. Moreover, only terms in E and f, with the same k value 
survive in the time averaging, since all other terms will be oscillating at some 
frequency Wk f Wk’,  which will be a finite frequency in all cases except where 
the negative sign is chosen and k’ = fk. (This assumes that the waves have at 
least some dispersion, which is almost always the case, even for electron plasma 
waves.) Recalling (from Chapter 15) that in our convention the time average 
of two first-order quantities A I  and B1 written in ‘exponential notation’ is 
Re(A;B1/2), we find that the spatially averaged part of the distribution function 
evolves according to the equation 

-=-Re E E C -  . 
at 2m e k 

(25.8) 

Since the right-hand side of equation (25.8) is second order in the perturbations, 
the evolution of fo is very slow. Thus, at any given time, we may treat fo as 
essentially constant for the purpose of describing the time dependence of the 
waves themselves. In particular, we may substitute for flk from the linearized 
Vlasov equation, i.e. equation (25.5), for a mode with complex frequency W k ,  

(25.9) 
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to obtain 

- a f o  at - - 2m2 e2 a u  a [1m (E lEk12L) Wk - kv E] (25.10) 
k 

where we have written E;& = / & I 2 .  If we divide the complex Ok into a real 
part O k  (frequency) and an imaginary part yk (growth rate), i.e. o k  + Ok + iyk, 
and take the imaginary part as indicated in equation (25.10), we obtain 

_ -  afo e2 a yk 3). (25.1 1) 
(Wk - ku)2 -k y; a U  

Our use here of the linearized perturbation f i k  is equivalent to the use of 
zeroth-order trajectories in calculating the first-order effect of the waves on the 
particle distribution function. It assumes implicitly that the distribution function 
does not develop significant structure in phase space beyond that involved 
in the linear calculation of f i k .  In the nonlinear case, the trajectories are of 
course strongly modified for special groups of particles, in particular those with 
velocities close to the phase velocity of the unstable waves. Indeed, nonlinearly, 
a ‘microstructure’ in the phase-space, i.e. ( x ,  U), plot of the particle trajectories 
can arise, similar to the ‘islands’ of the mapping problem discussed in Chapter 5, 
making the quasi-linear approach invalid. When a sufficiently broad spectrum of 
waves is present, however, the microstructure in the particle orbits is destroyed, 
just as the ‘islands’ in the mapping were destroyed by ‘stochastic overlap’. 
Interparticle collisions, even if relatively infrequent overall, can also serve to 
destroy the phase-space microstructure in the particle orbits. In these cases, the 
use of zeroth-order trajectories in calculating f l k  is valid; the opposite case, 
where quasi-linear theory would be inappropriate, is considered later in this 
Chapter in the context of trapping in a single wave. 

Often the spectrum of waves is sufficiently dense that the summation over 
discrete k values in equation (25.11) can be replaced by an integral over a 
continuous variable k .  The validity of this assumption must be verified in 
the particular case under consideration. For the ‘bump-on-the-tail’ distribution 
discussed in the previous Section, the phase velocities of unstable waves lie in 
some band of width Au about a mean phase velocity o / k  = U,,, where uo is 
in the region of the inverted slope of the equilibrium distribution f o ( u ) ,  and 
Au is the width of this region of inverted slope. Since the frequencies are all 
approximately up, the wave-numbers of unstable modes form a band of width 
Ak % ko(Au/uo) about some mean value ko wP/uo = u ~ , ~ / u o ~ . D .  If the overall 
size of the plasma in the x direction is L and periodic boundary conditions are 
applied at the plasma extremities, the wave-numbers allowed by the boundary 
conditions are k = 2 n n / L  for all integers n. The number NAk of modes (i.e. 
the number of integers n )  which have k values that ‘fit’ within the prescribed 
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range Ak is 

(25.12) 

The factors u ~ , ~ / u ~  and Au/u,-, are both moderately small quantities; for the 
distribution depicted in Figure 25.1, they are about 0.3 and 0.1, respectively. 
However, the first factor on the right-hand side of equation (25.12) is an 
exceedingly large quantity for a plasma, by definition, usually lo4 or larger. 
(Even if we divide our band of unstable k values, width Ak, into a large 
number of narrower 'sub-bands', within which the modes have not only the 
same frequency @k but also the same growth rate yk (because the slope of fo is 
essentially the same within the corresponding sub-band of phase velocities), the 
number of modes within each sub-band will still be large.) Thus, at least for this 
particular case, it is legitimate to consider the wave-number k as a continuous 
variable. It then becomes useful to define a measure of the amplitude of the 
field perturbation in a continuous spectrum. The appropriate quantity for our 
present needs is the energy density residing in the field perturbations within each 
band of k values, or more precisely within each differential dk of the continuous 
variable k. 

The energy density of an electric field has been found (see Chapter 8, 
Problem 8.2) to be e0E2/2. For the fluctuating electric field given by 
equation (25.6), remembering our result regarding the average of the product 
of two first-order wave quantities expressed in 'exponential notation', we have 
a spatially averaged energy density 

WE = 2 ((Re Ekexp(-iwkt + ikx) 
k 2 

(25.13) 

We now introduce a quantity &(k), which is the density in k-space of the average 
energy per unit volume of the electric-field perturbations. Specifically, we 
define E(k)dk = (e0/4) 1;'" IEkI2, where E:'" means the sum over all k 
values lying within the infinitesimal dk. With this definition, we may replace 
summations over all k values, e.g. the summation appearing in equation (25.1 l), 
by an integral over the continuous variable k ,  provided we substitute 

(25.14) 

The quantity &(k) is usually called the 'spectral energy density' of the electric 
field for the particular wave and k value. With our conventions that the real 
part is to be understood in expressions such as equation (25.6) and that all 
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Wk are positive, so that positive and negative k values therefore correspond 
to rightward and leftward propagating waves, respectively, the spectral energy 
density E ( k )  is not (necessarily) symmetric in k ,  as it is with some alternative 
conventions often used. In our case, E ( k )  for positive k is the spectral energy 
density in rightward propagating waves, which, for example, will be relatively 
large for phase velocities w / k  in the region of inverted slope of the 'bump- 
on-the-tail' distribution shown in Figure 25.1, while &(k) for negative k is the 
spectral energy density of leftward propagating waves, which will be negligible 
in the case of the (positive-u) 'bump-on-the-tail' distribution of Figure 25.1. The 
concept of spectral energy density can easily be generalized to three dimensions, 
in which case the electric field energy per unit volume EO(IE(X, t ) i 2 ) / 2  becomes 
1 E(k)d3k. By analogy with the one-dimensional case, the spectral energy 
density is defined by the relation E(k)d3k = (€0 /4 )  E:'" [ & I 2 ,  where Cydk 
means the sum over all k values lying within an infinitesimal volume d3k, which 
is the volume of a cuboid whose sides are dk,, dk, and dk,. 

When we use the procedure of equation (25.14) to transform the right- 
hand side of equation (25.11) to an integral over k ,  we may also make use of 
the fact that the growth rates yk are very small, so that the resonance term in 
equation (25.1 1 )  can be approximated by a &function, i.e. 

Problem 25.1: Verify equation (25.15) by the following 

(25.15) 

procedure. 
First sketch the left-hand side as a function of Wk for fixed ku  and 
for successively smaller values of yk, tending toward zero. Then, by 
integrating the left-hand side over Wk, show that the area under each of 
the curves you have sketched is n. (Hint: the integral is best evaluated 
by substituting Wk - k u  = yktanO.) 

In this case, we can write equation (25.11) as 

03 ) if] (25.16) 
afo 2ne2  a 
-=-- dk&(k)S(ok - k ~ )  - . 

This is the 'quasi-linear' equation for the evolution of fo. 

equation of the form 
The equation has the form of a difSusion equation in velocity space, i.e. an 

afo = a 
at au 

(25.17) 
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Moreover, the diffusion coefficient 

Velocity-space instabilities and nonlinear theory 

(25.1 8) 

is non-zero only in regions of velocity U corresponding to phase velocities w / k  
of excited waves. This corresponds nicely to our physical picture of Landau 
damping (or the inverse process leading to wave growth) arising from velocity- 
space diffusion in the region of wave-particle resonance. (Note that, for plasma 
waves, the frequencies wk are all approximately the same, i.e. Wk % w = up. 
This lack of a significant dependence on k was necessary to allow the simple 
evaluation of the &function integral in equation (25.18).) For the case of our 
‘bump-on-the-tail’ electron distribution, phase velocities of unstably excited 
waves occur only in regions where the slope of fo is inverted, i.e. where 
afo/au > 0. We suppose, as implied by Fig. 25.1, that this occurs for 
positive values of U, and this has already been assumed in the second form of 
equation (25.18). Unless there is some external ‘driver’ maintaining the inverted 
slope on the distribution function (such as an energetic electron beam injected 
continuously into the plasma), we can now see at once that the final state will 
be a distribution function that has become ‘flattened’ in the offending region. 
The original distribution shown by the full curve in Figure 25.2(a) is replaced 
by the flattened distribution shown by the broken curve in Figure 25.2(a). We 
see that the time evolution of the quasi-linear process has led to the distribution 
function being modified between the velocities V I  and u2, i.e. a slightly broader 
region than that of the original inverted slope. 

When the distribution function flattens, the growth of the unstable mode 
is arrested. We can, in fact, calculate the final spectral energy density of the 
electric field at each k value, by noting that €(k) is proportional to IEkl2 and so 
will increase exponentially with an instantaneous growth rate of 2yk: 

(25.19) 

where we have used the expression for yk given in equation (25.2). Combining 
this with the equation 

(25.20) 
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k,,, = o /V P I  kmi, = oP/v2 odk 

Figure 25.2. Results of quasi-linear evolution of the instability: (a) initial and final 
distribution functions; (b) final electric-field perturbation spectrum. During this evolution 
the spectrum spreads out somewhat, so as to extend throughout the range k,i, to k,,, 
corresponding to phase velocities from U I  to u2, which is seen to be somewhat broader 
than the range of velocities for which the initial distribution has an inverted slope. 

we obtain 

(25.21) 

Integrating this equation with respect to both U and t ,  we see that the final 
spectral energy density of field perturbations (for negligible initial amplitude) is 
given by 

where fo(u, 00) and fo(u, 0) denote the final and initial distribution functions, 
respectively. The lower limit of integration, u1, is the left-hand end of the 
flattened region, as indicated in Figure 25.2(a). The integral in equation (25.22) 
is always positive for w/k within the flattened region; at the right-hand end, 
where U = u2, the spectral energy density &(k) at k = 0 / u 2  has fallen to zero 
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again, because of conservation of the total number of particles, i.e. 

Velocity-space instabilities and nonlinear theory 

fo(v, = f d v ,  O W .  (25.23) 

Our result for the final spectral energy density of field perturbations is illustrated 
in Figure 25.2(b). 

The quasi-linear theory of electron plasma waves was formulated first by 
W E Drummond and D Pines (1962 Plasma Physics and Controlled Nuclear 
Fusion Research, Nuclear Fusion, 1962 Supplement, Part 3 p 1049) and 
independently by A A Vedenov, E P Velikhov and R Z Sagdeev (1961 Nuclear 
Fusion 1 82 (in Russian)). 

1: 

25.3 MOMENTUM AND ENERGY CONSERVATION IN QUASI- 
LINEAR THEORY * 

We have already used the fact that the total number of particles is conserved 
in quasi-linear theory. Indeed, this follows immediately from the ‘diffusion- 
equation’ form of equations (25.11) or (25.17), since these equations can be 
integrated over all velocities to show that the total number of particles is 
conserved, provided only that afo/au vanishes at U + &m. In quasi-linear 
saturation of the ‘bump-on-the-tail’ instability, particles with velocities near the 
phase velocity are simply redistributed (on balance toward lower velocities) as 
shown in Figure 25.2. 

Since, in this particular case, there has clearly been a loss of momentum 
of these ‘resonant’ particles, it is of interest to explore how overall momentum 
is conserved in quasi-linear theory. We return to the more exact form of the 
quasi-linear diffusion equation for fo, namely equation (25.1 1), multiply by m u  
and integrate over all U, integrating by parts on the right-hand side, to obtain 

where the initially complex frequency Wk has here been written explicitly in 
terms of a real frequency and a growth rate, Wk +. Ok + iyk. The &function 
approximation given in equation (25.15) can be used in the resonant region 
of velocities, whereas the integrand in equation (25.24) can be expanded for 
Wk >> ku >> yk in the non-resonant thermal region of velocities. Keeping terms 
of order k U / W k ,  but not terms of order y ; / o i  in the non-resonant region, and 
integrating by parts in U to evaluate the integral, equation (25.24) becomes 

e2 CO “1 mvfodu = - - z ( E k l 2  
2m k dt -CO 

= o  (25.25) 
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where in the last step we have substituted for yk from equation (25.2), and have 
also written Wk x up. Despite this last approximation, momentum conservation 
is of course exact, as can be seen by noting that the integral on the right-hand 
side of equation (25.24) vanishes by virtue of the vanishing of the imaginary 
part of the exact Vlasov dispersion relation. 

Problem 25.2: Verify this last statement by taking the imaginary part 
of the Vlasov dispersion relation, i.e. equation (23.12), for an unstable 
electron plasma wave with frequency Wk and growth rate yk. Remember 
that the Vlasov dispersion relation describes unstable waves without need 
for the Landau theory. 

Equation (25.25) indicates that the loss of momentum of the resonant 
particles is balanced by a small gain in the momentum of all the other particles. 
Purely electrostatic field perturbations themselves carry no momentum. 

Next we consider conservation of energy. In the particular case shown 
in Figure 25.2, the resonant particles have clearly lost energy, which must be 
accounted for. Again, beginning with equation (25.11), we now multiply by 
mv2/2 and integrate over all U, integrating by parts on the right-hand side, to 
obtain 

As before, the S-function approximation given in equation (25.15) can be used 
in the resonant region of velocities, whereas the integral can be expanded for 
Wk >> kv >> yk in the non-resonant regions. Keeping only the zeroth-order term 
in the expansion in the non-resonant regions and integrating again by parts in v ,  
equation (25.26) becomes 

(25.27) 

Here, in the next-to-last step, we have substituted for yk from equation (25.2), 
and in the last step we have written Wk up. (Energy conservation is of 
course exact; only our particular expressions for the loss of energy from resonant 
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particles and its gain by non-resonant particles are approximate.) Energy resides 
also in the electric field perturbations themselves, and the electric field energy at 
each k value, namely ~olEk1*/4 per unit volume, is growing exponentially with 
growth rate 2yk. Thus, the rate of change of the total energy per unit volume in 
the electric field is 

(25.28)  

Adding equations (25.27) and (25.28), we obtain the energy conservation relation 

(25.29)  

where we have gone to the continuous-k case, in which WE = s-: &(k)dk. 
The energy lost from the resonant particles goes partly into electric field 

energy and partly into kinetic energy of the non-resonant particles oscillating in 
the wave. Sometimes these last two are combined and called the 'wave energy'. 
With this terminology, the growth in wave energy is exactly balanced by the 
loss of energy in resonant particles. 

Problem 25.3: For electron plasma waves with w x up, such as those 
destabilized by a bump-on-the-tail distribution, show that the wave energy 
is divided equally between electric field energy and kinetic energy of the 
oscillating non-resonant electrons. By examining the first form of the right- 
hand side of equation (25.27), confirm that half the loss of energy from 
resonant particles is balanced by a gain in kinetic energy of non-resonant 
particles, the other half going into electric field energy. 

25.4 ELECTRON TRAPPING IN A SINGLE WAVE* 

Our discussion of the quasi-linear theory of plasma waves destabilized by a 
bump-on-the-tail electron distribution has noted that the number of unstable k 
values is usually very large, so much so that the spectrum becomes sufficiently 
dense for stochastic destruction of microstructures in the phase space of particle 
orbits to occur, giving rise to a continuous region of velocity-space diffusion. 
Nonetheless it is of interest to examine the opposite situation, where dominantly 
only one k value is excited. Let us choose the phase so that the electric field of 
this single wave may be written 

~ ( x ,  t )  = Esin(kx - wt ) .  (25.30)  
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The motion of an electron in this wave is given by 

- 
(25.31) m- = -eEsin(kx - w t )  

and if the (assumed real) amplitude, E ,  of the electric field is small, so that 
we may integrate equation (25.31) along the unperturbed orbit, dxldt = UO, we 
obtain 

(25.32) 

to first order in E .  If we plot U as a function of (x -wt/k) for a variety of values 
of uo, as is done in Figure 25.3, we obtain a pictorial depiction of the ‘trajectories’ 
u(x, t )  of all electrons relative to a frame moving at a velocity o /k .  Ignoring 
for the moment the ‘islands’ at the center of Figure 25.3 (which are not derived 
from equation (25.32)), we see that electrons with uo >> w/k move always 
rightward, although their velocities have maxima at x - wt/k = 0, f 2 n ,  f 4 n ,  
etc, whereas electrons with uo << o / k  move always leftward, their velocities 
having minima at these same values of x - wt/k.  (Figure 25.3 is drawn for the 
case where E and k are both positive.) However, if uo is very close to w/k ,  it is 
no longer permissible to integrate equation (25.3 1) along the unperturbed orbits. 
Specifically, equation (25.32) fails (because the first-order term is as large as the 
zeroth-order term) when 

dv 
dt 

eE  cos(kx - w t )  
m w - k u o  

U = t)o - - 

eE  
(U0 - ;)2 - --& (25.3 3) 

i.e. for electrons whose kinetic energy in the frame moving at the phase velocity 
is of order their potential energy in the electric field perturbation. 

Problem 25.4: Identify the equivalent of equation (25.33) in the mapping 
problem discussed in Chapter 5. 

The exact trajectories of electrons in a single electrostatic plasma wave 
can be obtained by first deriving an applicable constant of the motion, which is 
essentially the sum of the kinetic energy of the electron in a frame moving at 
the phase velocity and the potential energy of the electron in the electric field. 
We define an electric potential 

$(x, t )  = &os(kx - w t )  (25.34) 

so that 

E = -a$/ax 4 = E l k .  (25.35) 
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Figure 25.3. Phase-space trajectories of electrons in a frame moving at the phase velocity, 
w / k ,  of a plasma wave with E = @sin(kx - w t ) .  

Multiplying the electron’s equation of motion, equation (25.31), by (U - 
w/k), we obtain 

d m  ;r; [ 7 (U - :)2] = -e$(ku - w)sin(kx - ut) 

= e (: + U:) &os(kx - w t )  

d -  
dt 

= e- [&os(kx - ut)] (25.36) 

so that 
(U - :)2 - e&cos(kx - w t )  = constant. (25.37) 

(Equation (25.37) is equivalent to equation (5.22) in the mapping problem of 
Chapter 5 . )  

The trajectories shown in Figure 25.3 are the plots of U - w / k  versus x - 
w t / k  for various values of the constant on the right-hand side of equation (25.37). 
Values of this constant greater than e 4  or less than -e$ give the ‘open’ 
trajectories along which an electron’s velocity remains of one sign. Values of 
the constant in the range (-e&, e4) give the ‘closed’ trajectories, or ‘islands’, 
corresponding to electrons that are ‘trapped’ near locations of maximum electric 
potential (minimum electron potential energy). 

2 
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Figure 25.3 can be viewed as a continuous, rather than discrete, ‘area- 
preserving map’ of one-dimensional phase space ( x ,  U) from the equilibrium 
configuration to the perturbed configuration. (We know that the area of phase 
space occupied by any given set of particles is preserved.) We have encountered 
discrete mappings (and the associated ‘island chains’, leading eventually to 
the onset of stochasticity) in our analysis of non-1-conserving particle orbits 
(see Chapter 5 )  and other continuous structures of this kind in our treatment 
of the reconnection of magnetic flux by a resistive tearing instability (see 
Chapter 20). These previous discussions allow us to draw some immediate 
qualitative conclusions about the relationship between quasi-linear theory and 
the trapping of electrons in a single nonlinear wave. 

For the case of a single wave, particle trapping is the long-time consequence 
of the nonlinear wave-particle interaction. At early times, when the wave is still 
of very small amplitude, near-resonant particles are speeded-up and slowed-down 
by their interaction with the wave and, if the distribution function f i (u)  has an 
inverted slope at the phase-velocity w /  k ,  these interactions cause diffusion in 
velocity space that on balance feeds energy into the wave, so that it grows 
exponentially in time. The distribution function fo(u), averaged in space and 
time, then tends to flatten in the vicinity of the phase velocity. In some cases, 
this may be sufficient to stabilize the wave growth. However, as the wave grows, 
it traps an increasing number of particles, which can no longer contribute any 
more energy to increasing the wave amplitude; eventually, a saturated state 
may be reached in which further growth of the wave amplitude, accompanied 
by trapping of more particles, is energetically disfavored. In the case of a 
stable wave, which must be excited initially by some external disturbance of 
finite amplitude, particle trapping will ‘compete’ against Landau damping. If 
the initial amplitude is sufficiently large that significant particle trapping occurs 
before the damping has proceeded very far, then a saturated state can arise in 
which Landau damping is effectively ‘turned of f ,  since the oscillating motion 
no longer produces further flattening of the distribution function. In this case, 
Landau damping will prevail only for times up to the ‘bounce’ time of a particle 
trapped in the wave unless, as is very often the case, interparticle collisions 
or stochastic overlaps arising from a spectrum of wave effectively destroy the 
phase-space microstructure. The effect of particle trapping on Landau damping 
was first analyzed in a paper by T M O’Neill (1965 Phys. Fluids 8 2255). 

Now suppose that additional discrete waves with slightly different k values 
and phase velocities w / k  are unstable. As single waves, these will give rise 
to additional island chains centered at different values of U - w / k  in the 
particle trajectories shown in Figure 25.3. Indeed, Figure 25.3 would begin 
to look like the non-1-conserving particle-orbit maps depicted in Figure 5.2. 
When these different island chains begin to overlap, the trajectories become 
stochastic. In the context of the present discussion of electron trapping in 
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a nonlinear plasma wave, this means that velocity-space diffusion, leading to 
flattening of the distribution function f o ( u ) ,  will extend over the entire range 
of U corresponding to phase velocities of unstable waves-exactly as predicted 
by quasi-linear theory. Similarly, in the stable case, if a wave-packet with a 
range of k values is excited initially, rather than a pure single wave, particle 
trapping can be inhibited by island overlap, in which case Landau damping will 
continue essentially indefinitely. As we have seen, in many cases of interest, 
such as the electron plasma wave destabilized by a bump-on-the-tail distribution, 
there are very many unstable modes excited, with a large number of different 
k values. In such cases, quasi-linear theory generally gives a good description 
of the nonlinear behavior. (By contrast, we saw in Chapter 20 that only very 
few (typically not more than one, or at most two) resistive tearing modes can 
be unstable at the same time in the standard tokamak configuration. Individual 
chains of ‘magnetic islands’ are a fairly common occurrence in tokamaks, if 
such modes arise at all. However, when these island chains do overlap, the 
magnetic fields become stochastic, and severe plasma losses can occur.) 

25.5 ION ACOUSTIC WAVE INSTABILITIES 

The kinetic theory of ion acoustic waves was presented in Chapter 24. For 
Maxwellian distributions, we found that these waves have phase velocity 
w / k  M C, ( T e / M ) 1 / 2  and are subject to only weak Landau damping if 

It is interesting to consider whether ion acoustic waves can be destabilized. 
By analogy with the case of electron plasma waves, which are destabilized 
by creating a ‘double-humped’ or ‘bump-on-the-tail’ electron distribution fo(u) 
with a region of positive slope afo/au, we might expect acoustic waves to be 
destabilized by a region of positive slope afo/au on either the electron or ion 
distribution function in the region of the phase velocity U /  k .  

One important case in which this can occur is where the electrons are 
carrying a non-zero current, i.e. where the electron distribution foe is ‘shifted’ 
relative to the ion distribution foi. This would correspond to the case of a 
plasma carrying an electrical current and could be produced, for example, by 
an equilibrium electric field. Although the exact electron distribution function 
in this case would be that given by solving the Fokker-Planck equation, for 
a simple example we might suppose that the electron distribution function is 
still Maxwellian, but about some non-zero mean velocity U. Specifically, taking 
the non-zero mean velocity to be in the x direction and integrating out the 
unimportant uy and U, components of the velocity, the distribution function for 

Ti << Tee 
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electrons becomes 

(25.3 8) 

It is clear from Figure 25.4 that a potential for instability exists if the mean 
velocity U exceeds the sound speed C, = (Te/M)’/’. 

The analysis is very similar to that given in the Section on ion acoustic 
waves in Chapter 24. Indeed, to obtain the dispersion function D(k,  w ) ,  it is 
only necessary to make the substitution w + o - ku in the electron contribution 
given in equation (24.32). In this way, we obtain 

w; a; 
D(k ,  w )  = 1 + 22 - - 

k ut,, w2 

Problem 25.5: Verify that equation (25.39) is indeed the correct 
dispersion function for ion acoustic waves for the shifted Maxwellian 
electron distribution given in equation (25.38), with U << Ut,e. 

As before, for wavelengths longer than the Debye length, the solution is 
w = kC, + iy, where C, is still the sound speed, but where y is now an 
instability growth rate given by 

(25.40) 

The first (electron) term in equation (25.40) is destabilizing if U > C,. Whether 
or not the wave is actually unstable is a competition between the destabilizing 
electron term, which is small of order ( m / M ) ’ / 2 ,  and the stabilizing ion term, 
which is small if Ti << Te. 

The overall conclusion is that, if we try to drive a current in a plasma with 
Ti << Te (a common case), ion acoustic wave instabilities may set in when the 
electron streaming speed U exceeds the ion sound speed ( T e / M ) ’ / ’ .  Clearly, this 
constitutes a much lower instability threshold than for two-stream instabilities 
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0 cs ” V 

Figure 25.4. Ion and electron distribution functions and the phase velocity w / k  of the 
ion acoustic wave for the case where the electron distribution has a streaming speed U 
(cf Figure 24.7). As in Figure 24.7, the case T, >> Ti so that C, >> is shown. 

of electron plasma waves (see, for example, Problem 24.3), which require 
the electron streaming speed to exceed the electron thermal speed (T , /m)’ /* .  
Whether or not ion acoustic wave instabilities impede current flow has to do 
with the nonlinear effects of the waves. Do they create additional ‘resistivity’, 
or do they merely redistribute the electron velocities to create a stable, flattened 
distribution function foe in the low-velocity region where wave resonances 
occur? The quasi-linear theory, discussed earlier in this Chapter for the case 
of electron plasma waves, suggests strongly that the latter possibility will occur, 
and this is indeed the case: the electron distribution foe shown in Figure 25.4 
becomes flattened in the region 0 < U < U ,  while still having a non-zero 
mean velocity, i.e. a non-zero net current. To the extent that electron-electron 
collisions are important, however, there will be a tendency to restore the shifted- 
Maxwellian distribution. A competition will arise between these collisional 
effects and the quasi-linear effects of weakly unstable ion acoustic waves, the 
former tending to maintain an electron distribution with a positive slope, the 
latter attempting to flatten the electron distribution in the region 0 < U < U. 
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Chapter 26 

The drift-kinetic equation and kinetic drift 
waves* 

In Chapter 22, we introduced the Vlasov equation, which describes the evolution 
in time of the particle distribution function, f ( x ,  v, t), in six-dimensional phase 
space (x, v). In principle, the Vlasov equation may be used to generate, 
from some ‘given’ electric and magnetic fields, charge and current densities 
which may then modify the electric and magnetic fields through Maxwell’s 
equations. Although, in the general case, the Vlasov-Maxwell description of a 
plasma would be highly intractable mathematically (and even computationally), 
we succeeded in Chapters 23-25 in solving the relevant equations in a 
few interesting cases, specifically for ‘one-dimensional’ linearized wave-like 
perturbations in which the wave-vector k has a single component directed along 
(or in the absence of) a magnetic field. We also limited ourselves to electrostatic 
waves, in which there are no significant magnetic perturbations, so that the 
Maxwell equations reduce, essentially, to the Poisson equation. The plasma 
equilibria were assumed to be spatially uniform, at least on the scale of the 
perturbation wavelength. 

The same ‘kinetic’ approach can be extended to more realistic situations 
involving spatially non-uniform plasmas, perturbations with wave-vectors k 
having all three components, and magnetic perturbations. For example, in 
uniform magnetized plasmas, the full ‘hot plasma’ dispersion relation can be 
derived using a kinetic approach (see T H Stix (1992 Waves in Plasmus New 
York: American Institute of Physics)). In at least one case, namely where 
the perturbations have frequencies much smaller than the frequency of Larmor 
gyration and wavelengths much larger than the Larmor radius, non-uniform 
plasmas also become reasonably tractable. In this latter case, we can replace 
the particle distribution function, f ( x ,  v, t), by a guiding-center distribution 
fgc(xgc, V I ,  V I I ,  t), where xgc is the position of the guiding-center and VI and 
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LJII are velocity coordinates representing, respectively, the velocity perpendicular 
to the magnetic field (i.e. the speed with which the circular Larmor orbit is 
traversed) and the velocity parallel to the magnetic field (i.e. the speed at 
which the guiding center moves along the magnetic field). The motion of the 
guiding centers across the magnetic field can then be described in terms of 
the guiding-center drifts derived in Chapters 2 4 .  The ‘kinetic’ (i.e. Vlasov- 
like) equation for f S c  which can be formulated in this way is usually called the 
‘drift-kinetic equation’. The drift-kinetic equation can be constructed for quite 
complex magnetic configurations, in which case the V B and curvature drifts must 
certainly appear in the guiding-center motion, but we will limit ourselves here to 
a simple geometry, namely the ‘plane plasma slab’ introduced in Chapter 21, in 
which the magnetic field is essentially straight and uniform. We will also limit 
ourselves to ‘electrostatic’ perturbations in which the equilibrium magnetic field 
is undisturbed. 

26.1 THE ‘LOW-8’ PLANE PLASMA SLAB 

We consider an equilibrium in the form of a ‘plane plasma slab’ of the type 
that was used in our analysis of drift waves in Chapter 21. Indeed, the main 
application of our present analysis will be to look for kinetic modifications of 
the same drift waves, as well as new types of drift wave that arise only in a 
kinetic treatment. There is a strong, approximately uniform, straight magnetic 
field, taken to be in the z direction. The equilibrium plasma is non-uniform in 
one direction, taken to be the x direction, and it is assumed to be of infinite 
extent in the other two directions, i.e. the y and z directions. In the fluid 
treatment of Chapter 21, we described this non-uniformity by means of x -  
dependent equilibrium densities and temperatures no(x) and TO@), respectively. 
In the present ‘kinetic’ analysis, we must further describe the equilibrium by 
means of an x-dependent guiding-center distribution f o ( x ,  U I ,  U , ) ,  noting that, 
for a fixed magnetic field in the z direction, the parallel velocity U I I  becomes 
simply U , .  This distribution may or may not be Maxwellian in regard to its 
velocity-space dependences, but the Maxwellian case is obviously of particular 
interest, and so we will assume it here, i.e. 

where, of course, U = (U: + U;)’/*, the magnitude of the total velocity. (It is 
important to remind ourselves that all distribution functions employed in this 
Chapter, including the equilibrium distribution f o ( x ,  U L ,  U , ) ,  are guiding-center 
distributions, not particle distributions, and so strictly the equilibrium distribution 
should be written fgC(xgc ,  UL, uz) .  However, for simplicity of notation, we will 
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omit the subscript ‘gc’ throughout this Chapter. Note that, in this case, the 
particle distribution function is not symmetric in uy ,  reflecting the non-zero mean 
drift (diamagnetic drift) in the y direction, while the guiding-center distribution is 
symmetric in uy . Particle and guiding-center distributions with these properties 
have already been encountered in our discussion of the diamagnetic drift in 
Chapter 7.) 

We will consider wave-like perturbations of this equilibrium in which 
components of the k-vector are allowed in the y and z directions, so that any 
perturbation quantity $ can be written 

$(x, t )  = $(x)exp(-iwt + ikyy + ik,z) 

where 4 denotes the amplitude of the perturbed quantity $. 
We will limit ourselves, however, to the ‘electrostatic’ approximation, in 

which perturbations of the magnetic field may be neglected. In some general 
sense, this approximation will be valid for instabilities in low-@ plasmas, in 
which the available plasma thermal energy is insufficient to disturb significantly 
the magnetic field, which has much larger energy. More specifically, as we have 
seen in Chapter 21, the electrostatic approximation applies to low-frequency 
waves and instabilities, such as drift waves and ion acoustic waves, whose 
frequencies (kyUde and k,C,, respectively) are much less than the frequency of 
the shear AlfvBn wave (- kzuA). The electrostatic approximation implies that 
the perturbed electric field is derivable from a scalar potential 4, i.e. 

(26.2) 

E = -V$. (26.3) 

26.2 DERIVATION OF THE DRIFT-KINETIC EQUATION 

Let us begin by deriving the so-called ‘drift-kinetic equation’ for the electron 
guiding-center distribution fe(x, V I ,  U,, t). The reason for beginning with the 
electrons is that the assumptions underlying the guiding-center description, 
namely that the Larmor gyration frequency is very large and the Larmor radius 
very small compared with macroscopic time- and length-scales, respectively, are 
better satisfied for electrons than for ions. In particular, we will find it necessary 
to include some second-order corrections to the first-order guiding-center drifts, 
e.g. the polarization drift, in treating the ions. 

To derive the drift-kinetic equation, we follow the approach used in 
Chapter 22 to obtain the Vlasov equation. The total number of electron guiding- 
centers in a volume V of six-dimensional phase space is given by 

Ne = J fed3ud3x = J fedV. (26.4) 
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(In a sense, for guiding-centers, phase space has only five dimensions, since the 
guiding-center velocities are completely defined by the two ‘cylindrical’ velocity 
coordinates V I  and U, (equivalent to r and z in standard cylindrical coordinates 
in physical space), so that d3u = 2rculduidu,. In the ensuing analysis, the 
volume element d3u in velocity space should be understood to mean the thin 
annular ring of volume 2nulduldu,.) Conservation of the number of guiding 
centers demands that the total time derivative of N must vanish, i.e. 

O = - = J $ d V + J  dNe f U - d S  
dt 

(26.5) 

where U is a ‘six-dimensional’ velocity, components (x, U ) ,  which describes the 
motion of the phase-space surface that bounds the volume V. Applying the 
divergence theorem to equation (26.5), we obtain 

O =  J ($ + V ( f e u ) )  dV (26.6) 

and since this must apply to every volume element dV, we can write simply 

a f e  0 = - + V ’ ( f e u )  
at 

Here, in the second form, we have expressed the six-dimensional divergence in 
terms of its three-dimensional components and, in the third form, we have noted 
that the velocity-space coordinates applicable to the guiding-center description 
are the ‘cylindrical’ coordinates v i  and U,. 

In the low-B ‘plane plasma slab’ equilibrium, equation (26.7) simplifies 
dramatically. The magnetic field Bz is straight and essentially uniform; the only 
guiding-center drift that enters is the E x B drift. (The polarization drift is small 
for electrons.) Thus the guiding-center motion is described by 

x = V E  + uz2 (26.8) 

where V E  = E x BIB2 ,  and 2 is a unit vector in the z direction. Moreover, 
since in the electrostatic limit the E field is derivable from a scalar potential, as 
given by equation (26.3), and B, is essentially uniform, the E x B drift produces 
incompressible flow, i.e. 
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Moreover, the constancy of the magnetic moment mu:/2B in a uniform field 
B, implies that 

VI = 0. (26.10) 
Finally, the acceleration of electron guiding-centers along the magnetic field will 
be determined by the electric field, i.e. 

e 
m 

V z  = - - E , .  (26.1 1) 

Substituting equations (26.8), (26.9), (26.10) and (26.1 1) into equation (26.7), 
we obtain our simplified form for the drift-kinetic equation: 

Here we have identified the local electron density with the density of guiding 
centers because of the very small electron Larmor radius. Once this equation is 
solved, the electron density ne can be obtained by integrating over all velocities, 
i.e. 

ne = / fed3v = 21r fevldvldvz. (26.13) 

We could write down a similar drift-kinetic equation for the ions. Indeed, 
the equation would be exactly the same as equation (26.12), with e --f -e and 
m --f M. However, it is usually necessary to include second-order guiding- 
center drifts for the ions, i.e. the polarization drift which has been neglected in 
equation (26.12), and it is sometimes necessary to include other second-order 
effects, such as the corrections to the E x B drift that arise from taking the ‘finite 
size’ of the ion Larmor orbit into account. For present purposes, however, it is 
possible to circumvent these difficulties by supposing that the ions are ‘cold’, i.e. 
by limiting ourselves to the case where Ti << Te. (We had a similar limitation 
on our fluid analysis of drift waves in Chapter 21.) Physically, the assumption 
Ti << Te suppresses effects due to the finite size of the ion Larmor orbits, while 
retaining effects due to the plasma dielectric constant, EL,  which arises from the 
ion polarization drift but does not require finite ion temperature. Furthermore, 
if the ion thermal velocities are negligible, then a kinetic description involving 
the distribution function fi is unnecessary. Rather, it is sufficient to treat the 
ions as a ‘cold fluid’, obeying a continuity equation 

s 

(26.14) 

in which the velocity perpendicular to the magnetic field, ul, is simply the sum 
of the E x B and polarization drifts 

E x B  ME1 
U1 = - +- B2 e B 2 ‘  

(26.15) 
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The first part of this velocity, i.e. the E x B drift, will be divergence-free in the 
‘electrostatic’ case, as indicated in equation (26.9), but the second part, i.e. the 
polarization drift, will have a non-zero divergence. 

The velocity along the field, U,, is determined from the accelerating parallel 
electric field 

2 ‘  (26.1 6) M-=eE  

Equations (26.14)-(26.16) will suffice to determine the ion density ni in terms 
of the electric field E. At this point, then, we have equations for obtaining the 
electron and ion densities in terms of a single scalar variable, depending only on 
the spatial coordinates, namely the electric potential 4 from which E is derived, 
as given by equation (26.3). 

When the electron and ion densities, ne and ni, have both been obtained, 
they are to be substituted into the Poisson equation 

du, 
dt 

EOV 2 = -e(ni - ne) (26.17) 

from which the self-consistent electric potential 4 can, in principle, be 
determined. When khD << 1 and o << up, as is usually the case for phenomena 
described by the drift-kinetic equation (given its requirements on w and k for 
applicability), it is a satisfactory approximation to replace the Poisson equation 
by the quasi-neutrality condition, namely 

ni PZ ne. (26.18) 

Even this approximation, however, leaves a highly nonlinear equation to be 
solved for 4. For mathematical tractability, we limit ourselves here to a 
linearized treatment of small amplitude perturbations, for which the electric 
field E and the perturbations that it produces in the distribution function are 
both assumed to be infinitesimally small. 

26.3 ‘COLLISIONLESS’ DRIFT WAVES 

As an example of the use of the electron drift-kinetic equation to treat small- 
amplitude waves (and instabilities), we will consider the so-called ‘collisionless’ 
drift waves. These are, in a sense, the ‘kinetic versions’ of the resistive 
drift waves and instabilities (in the ‘electrostatic’ approximation) discussed in 
Chapter 21. Here, kinetic effects, rather than resistivity, provide the dissipation 
needed to release the energy that is available to make drift waves unstable. 

We have already described the equilibrium configuration to be considered, 
namely the ‘plane plasma slab’, with an assumed Maxwellian equilibrium 
electron distribution fraction fee, as given in equation (26.1). For an initial case 
to consider, we will suppose that there is a density gradient, but no temperature 
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gradient, i.e. dTeo/dx = 0. Thus, differentiating equation (26.1) with respect to 
x,  we have 

(26.19) 

There is no electric field in the equilibrium. 
We now proceed to linearize the electron drift-kinetic equation, 

equation (26.12), about this equilibrium, denoting the perturbation in the 
distribution function fel. (The suffix ‘1’  can be dropped from the electric field 
E, which is zero in the equilibrium.) All perturbation quantities, including both 
fel and E, can be expressed in the wave-like form given in equation (26.2). The 
linearized drift-kinetic equation then becomes 

(26.20) 

Writing E, = -ik,@ and E, = -ik,@, using equation (26.19) for af&/ax, and 
noting that afeo/au, = - (u, /u&) feo, where ut,e E (T&/m)’l2 is the electron 
thermal velocity, equation (26.20) can be solved for fel . We obtain 

kyude - k U 2-  e4feO 
fel = 

- kzuz TeO 

(26.21) 

where we have again defined an electron ‘diamagnetic drift’, U&, given by 

(26.22) 

as in Chapter 21. 

over all velocities, giving 
The electron density perturbation is obtained by integrating equation (26.2 1) 

(26.23) 

The first term on the right-hand side of equation (26.23) reflects the tendency of 
the electrons to relax toward a Boltzmann distribution, ne x n d  exp(e$/Td), 
along the magnetic field. In the second term on the right-hand side, the 
integrations over the perpendicular velocity components are trivial, i.e. 

(26.24) 

Copyright © 1995 IOP Publishing Ltd.



456 The drift-kinetic equation and kinetic dri3 waves* 

where Fee( U,) is now the ‘one-dimensional’ Maxwellian distribution 

(26.25) 

The most interesting case to consider is where 

<< kzut,e (26.26) 

which minimizes electron Landau damping of ion acoustic waves (see 
Chapter 24) and implies that the typical (i.e. thermal) electron streams along 
the magnetic field with a speed much faster than the phase velocity with which 
the wave itself moves along the field. Since, as we have already seen in 
Chapter 21, the phase velocity of drift waves along the magnetic field tends to 
be of order the ion acoustic, or ‘sound’, speed C, X (Te /M)’ /2 ,  this assumption 
that the electrons stream at a much faster speed will generally be valid, since 
vt,,/C, cz (M/m)’/2 >> 1. In this case, assuming w - kyude, a rough estimation 
of the magnitude of the second term on the right-hand side of equation (26.23) 
shows it to be much smaller than the first term on the right-hand side, by a 
factor of about w/kzut,e.  Examining equation (26.23), however, we observe that 
the integral in the second term on the right-hand side is singular, the integrand 
becoming infinite at U, = w / k , .  Fortunately, the analysis of Landau has provided 
us with a prescription of how to treat singular integrals such as this. Assuming 
that we will indeed find a wave with an approximately real frequency w, we 
should evaluate the singular integral as i f w  had a small positive imaginary part. 
( If, in fact, we find an instability, i.e. an w value that actually does have a 
positive imaginary part, the difficulty would not have arisen in the first place. 
Indeed, we saw in Chapter 24 that Landau’s detailed analysis of time behavior 

Figure 26.1. 
equation (26.24). 

Contour of integration in the U,-plane for evaluating the integral in 
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is unnecessary in the case of an unstable mode, which can be a single pure 
eigenmode with complex frequency w with a positive imaginary part.) 

Thus, according to Landau’s prescription, the integration over U ,  in 
equation (26.24) should be taken along a contour in the U,-plane that lies 
essentially along the real axis, but is deformed slightly so that it passes below 
the pole at U ,  = w/k,, as shown in Figure 26.1. (This assumes positive k,; the 
contour passes above the pole in the case of negative k,. Both cases correspond 
to Im(w) > 0.) In the limit w << k Z q e ,  the contribution from the small 
semicircular path around the pole actually gives the dominant contribution to 
the integral, i.e. larger than the contribution from the rest of the real axis. The 
contribution from the pole (i.e. ni times the residue) is evaluated as follows: 

(26.27) 

The contribution from the rest of the real axis (i.e. the principal value of the 
integral) may be estimated as follows: 

where, in the first step here, we have used the fact that Fe(uz) is symmetric 
in U,, so that the contributions from positive and negative values of U ,  may be 
combined. The contribution from the pole, given in equation (26.27), is seen 
to be larger than the principal-value contribution, given in equation (26.28), by 
a factor of about k,ut,e/w. Moreover, when inserted into equation (26.23), the 
contribution given in equation (26.28) is seen to be much smaller, by a factor of 
about w2/k:u&, than the first term on the right in equation (26.23). Accordingly, 
we neglect the principal-value contribution given in equation (26.28). 

Substituting equation (26.27) into equation (26.24), which is then used in 
equation (26.23), the electron density perturbation becomes 

(26.29) 

Let us now calculate the ion density perturbation, using linearized versions 
of equations (26.14)-(26.16). The linearization of equation (26.14) in the 
presence of a density gradient, using equation (26.15) for the perpendicular 
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velocity component UI, gives 

Here, in the term arising from the polarization drift, we have assumed that the 
gradient scale-length of perturbation quantities is much shorter than the scale- 
length of the equilibrium density variation, so that nio may be taken outside of 
the divergence operator. (If we were to compare the orders-of-magnitude of 
the second and third terms in equation (26.30) for a drift wave with frequency 
w - kyude, where U& is the electron diamagnetic drift speed, we would find that 
the third term is smaller by a factor of order k:C:/u2i, which is formally of 
second order the ratio of the ion Larmor radius to the perpendicular wavelength, 
since Cs/w,, is of order the ion Larmor radius, although evaluated at the electron 
temperature. Indeed a term arising from the polarization drift should be expected 
to be of this order. However, we retain this term in order to treat short 
perpendicular wavelengths, as will be seen below.) Equation (26.16) gives 
simply 

-iwMu, = eE,. (26.31) 
Using E, = -ik,$ and E ,  = -ik& to express the components of the 
electric field perturbation in terms of the first-order scalar potential 4, we can 
combine equations (26.30) and (26.31) to obtain a final result for the ion density 
perturbation, namely 

(26.32) 

Here, we have introduced the equilibrium electron temperature, Tea, in order to 
express our result in terms of familiar quantities such as the electron diamagnetic 
drift U&, given in equation (26.22), the sound speed C, = (Teo/M)1/2, and the 
ion Larmor radius evaluated with the electron temperature, rLs = Cs/w,i = 
(MTd)1/2/eB,o. We have also made use of the charge neutrality of the 
equilibrium, i.e. nio = n,0. In the last term on the right-hand side of 
equation (26.32), which arises from the divergence of the polarization drift, 
we have written 

V: = -k: = - (k: + k2) Y (26.33) 
invoking the ‘WKB approximation’ in which the perturbation is assumed to 
vary more rapidly in the x direction than does the equilibrium, so that any 
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perturbation quantity 1c/ ( x )  can be approximated as having the wave-like form, 
4 exp(i J" k,dx). 

The term in k l r h  in equation (26.32) arises from the polarization drift and 
is formally of second order in the Larmor radius, in the sense noted above. 
However, the term becomes of order unity for short perpendicular wavelengths, 
i.e. those of order r ~ ~ .  Since r k  is defined using the electron temperature, even 
the case k l r ~ ~  - 1 does not violate our assumption that k l r ~ i  << 1, since we 
have from the outset chosen to limit our analysis to the case Ti << Te. Although 
our restricted analysis will prove sufficient to identify most of the important 
classes of drift waves, the theory becomes more complicated in the case where 
klrLi is not so restricted, and in particular in the case k l r ~ ,  - 1 (see, for 
example, N A Krall and A W Trivelpiece (1986 Principles of Plasma Physics 
San Francisco, CA: San Francisco Press) and T H Stix (1992 Waves in Plasmas 
New York: American Institute of Physics)). 

Employing the quasi-neutrality approximation, nel = nil, and using 
equations (26.29) and (26.32) for n,l and nil, respectively, we obtain our final 

f "  
electron 

,' 

I electron 

Figure 26.2. Electron and ion branches of the collisionless drift wave. The electron 
branch is unstable if w < kyude, i.e. in the region shown. Both branches approach 
asymptotes w = fk,C,. 
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dispersion relation for collisionless drift waves with << Te, namely 

Let us examine this dispersion relation in some detail. First, neglecting 
the imaginary term on the right-hand side and solving the resulting quadratic 
equation for w ,  we find that there are two ‘branches’ of the dispersion relation, 
an ‘electron branch’ on which the frequency w has the same sign as kyUde, and 
an ‘ion branch’ on which the frequency has the opposite sign. The two branches 
of the dispersion relation are shown in Figure 26.2, where we have taken kyUde 
to be positive, so that the frequency w on the electron branch is also positive. 
(As was noted in the discussion of resistive drift waves in Chapter 21, the ion 
branch of the drift wave shown in Figure 26.2 violates the convention introduced 
in Chapter 15 that real frequencies w are taken to be positive. If we are interested 
in this branch, we could satisfy the convention by simply reversing the sign of 
k, .> 

Problem 26.1: Return to the figure that you drew in Problem 21.2, and 
add the plot of O/(kyUde) versus kzCs/(kyUde) obtained by setting the right- 
hand side of equation (26.34) to zero, for the case klrLs = 0.3. 

In the limit where k l r b  << 1 and k,C, << kyude, the electron branch has 
simply 

0 X k y U d e  (26.35) 
and it is this mode that is usually called the ‘drift wave’, or sometimes the 
‘electron drift wave’. Including the other two terms on the left-hand side of 
equation (26.34) as small corrections, we obtain a more accurate dispersion 
relation for the electron drift wave, namely 

(26.36) 

Because of the factor (w - kyude) appearing in the imaginary term on the right- 
hand side of equation (26.34), these correction terms are needed to provide a 
perturbative estimate for the non-zero imaginary part of the complex frequency 
w .  Letting w -+ w + iy and equating the imaginary parts on the two sides of 
equation (26.34), assuming that k l r b  and k,C,/k,ude are small but non-zero 
quantities, we obtain 

(26.37) 
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We see that the ‘collisionless’ electron drift wave is unstable only if k:rk > 
k ~ C ~ / k ~ u ~ , ,  implying w values that are less than k y U &  (see equation (26.36)). 
The region of instability is indicated on Figure 26.2. Since U& << Cs, we 
see that instability tends to arise only in situations where k, << k, and for 
perpendicular wavelengths that are at most a few times longer than the ion 
Larmor radius evaluated at the electron temperature. In the limit k, + 0, modes 
with smaller values of k l  will be unstable, but at some point our assumption 
that the perpendicular wavelength is much smaller than the scale-length of the 
equilibrium density gradient will be violated; the limit k, + 0 also implies an 
extremely large plasma scale-length along the magnetic field. 

The physical process that gives rise to instability is clearly inverse Landau 
dumping by electrons, i.e. the electrons in resonance with the parallel phase 
velocity w /  k, become destabilizing. We have already encountered this type 
of instability mechanism in Chapter 25, but only in cases where velocity 
distributions departed significantly from the Maxwellian (e.g. the ‘bump-on- 
the-tail’ distribution). Here, we have found a case of inverse Landau damping 
for a Maxwellian distribution, but where there is a non-zero density gradient. 
Examination of equation (26.34) shows that the essential feature that has allowed 
the interaction between the wave and resonant electrons to be destabilizing is 
that the wave frequency w is slightly less than the diamagnetic frequency, k, U&. 

From an energy viewpoint, the resonant interaction between the wave and 
the low-U, electrons allows the release of some of the energy that is available 
through expansion of the spatially non-uniform plasma in the x direction. 
The low-u, electrons drift outwards and inwards in the first-order fluctuating 
electric drifts, E , / B , ;  by analogy with the cases considered in Chapter 25, the 
principal nonlinear effect of this type of drift wave will be a flattening of the 
density gradient in physical space, rather than velocity-space flattening. That 
this flattening of the density gradient releases net energy to the wave can be 
seen as follows. Suppose that w ,  k ,  and are all positive, implying that 
dn,o/dx < 0 (see equation (26.22)); if k, is also positive, the wave will be 
resonant with positive-u, electrons. The motion of the resonant electrons in 
the fluctuating electric fields is given by U, = E , / B  and du,/dt = - e E , / m .  
Since E , / E ,  = k,/k, > 0, we see that ux and du,/dt are exactly 180” out- 
of-phase, i.e. du,/dt is negative when U, is positive and vice versa. Although 
resonant electrons drift in both the positive-x and negative-x directions in the 
fluctuating field, there will be a preponderance of electrons drifting in the 
positive-x direction because dn,o/dx < 0. Thus, on balance, the resonant 
electrons will lose parallel energy (i.e. the net du,/dt is negative for positive-u, 
electrons) as a result of the flattening of the density gradient. This is the energy 
that becomes available to drive the unstable wave. 

It is interesting to compare this collisionless drift instability with the 
resistive drift instability derived in Chapter 21. In the electrostatic limit, the 
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resistive drift instability was found to have frequency and growth rate given by 
equation (21.51). We see that the frequencies of the two modes are essentially 
the same, namely w % kyvde, and the growth rates (where the first term in the 
parenthesis in equation (26.37) is assumed to dominate over the second term) 
are of similar form, with the growth rate of the resistive mode being larger by 
a factor Uei/lk, 1Ut.e. Since ut,,/uei is the electron collisional mean-free path, we 
see that the growth rate of the resistive mode is the larger if the mean-free path 
is shorter than the parallel wavelength. This is what might have been expected, 
since in this case the electron motion along the magnetic field in response to the 
perturbed electric field will be disrupted by collisions before the electron can 
remain in resonance with the wave for a full wavelength. 

The other branch of the dispersion relation, equation (26.34), i.e. the 'ion 
branch' shown in Figure 26.2, has a frequency w opposite in sign to kyude. 
Again letting w + o + iy and equating the imaginary parts on the two sides 
of equation (26.34), we see immediately that this branch has y c 0, i.e. a 
damping decrement. Within the limitations of the present analysis (especially 
the assumption of cold ions), this branch is stable and is thus of less interest. 

Problem 26.2 Find the correction to the drift wave dispersion relation, 
i.e. equation (26.34), that arises when the Poisson equation is used 
rather than the quasi-neutrality approximation. In what regimes of plasma 
parameters would this correction be important? 

26.4 EFFECT OF AN ELECTRON TEMPERATURE GRADIENT 

The preceding analysis was limited to the case where there is a density gradient, 
but no electron temperature gradient. It is interesting to generalize our result to 
the case where the equilibrium electron distribution function is still Maxwellian, 
i.e. of the form given in equation (26.1), but where both the density, n,&), and 
the temperature, Te0(x), have significant variation in the x direction. 

In this case, equation (26.19) must be replaced by a more complicated 
expression 

(26.38) 
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where 

(26.39) 

(Here, V simply means d1d.x.) Equation (26.38) is obtained by differentiating 
equation (26.1) with respect to x ,  which requires that both appearances of T&(x) 
in equation (26.1) be included in the differentiation. 

The parameter qe is a dimensionless quantity, typically of order unity, and 
it is the ratio of the scale-length of the density variation to the scale-length of 
the temperature variation. When equation (26.38) is used in equation (26.20), 
the resulting expression for fel given in equation (26.21) must be modified, 
becoming 

The electron density perturbation is now 

n e l = - - -  " 1 - feod3u { W - k y U d e  [ l - q e  (z 2:ie)]]. (26.41) 
Teo Teo - kzuz 

The velocity-space integral in equation (26.41) is more complicated than that 
in equation (26.23), in view of the additional velocity-dependence in the term 
involving qe. Nonetheless, the integrations over the perpendicular velocity 
components can still be carried out, noting that u2 = U: + U: and that the 
average of u:/2 for a Maxwellian distribution is simply U:. We obtain 

(26.42) 
where F&(u,) is the 'one-dimensional' Maxwellian distribution given in 
equation (26.25). 

As before, we limit ourselves to the case w << k , q e ,  where the dominant 
contribution to the integral in equation (26.42) comes from the pole at uz = w/k,. 
Deforming the contour in the U,-phase so that it passes just below this pole, as 
shown in Figure 25.1, and evaluating the contribution from the pole as JC times 
the residue, we obtain 

112 exp(-w2/2k:ute) 
Ikz I Ut.e 

nel = - 
Teo 

(26.43) 
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where, in the second form, we have used w << k,Ut,e. Equation (26.43) replaces 
equation (26.29). We see that the only effect of the electron temperature gradient 
is to modify the small imaginary term. 

The ion density perturbation, nil, is unaltered by the introduction of an 
electron temperature gradient, and is still given by equation (26.32). Thus, the 
dispersion relation obtained by setting ne]  = nil is the same as equation (26.34), 
except for the modification of the imaginary term on the right-hand side: 

The additional term in qe on the right-hand side of equation (26.44) produces 
a qualitative change in the stability properties of the electron branch of the drift 
wave for, considering the simplest limit where k l r h  << 1 and k,C, << kyude, 
the real part of the frequency is, as usual, 

0 M kyUde (26.45) 

but the imaginary part no longer vanishes when this lowest-order frequency is 
used on the right-hand side of equation (26.44), giving a ‘growth rate’ 

(26.46) 

For most cases, where the density and temperature gradients are in the same 
direction. so that 

(26.47) 

the value of y will be negative, implying that the effect of a temperature gradient 
is to damp, rather than destabilize, the electron drift wave. Indeed, adding 
the damping decrement given in equation (26.46) to the growth rate given in 
equation (26.37), we see that the temperature gradient will stabilize all drift 
waves with k:rzs < qe, i.e. all except the shortest wavelength modes (assuming 
qe - 1). From an energy viewpoint, it is perhaps somewhat surprising that the 
effect of the temperature gradient is stabilizing in this case, since the temperature 
gradient adds another source of energy available through expansion of the 
plasma. However, drift waves resonate only with low-u, electrons; in this region 
of velocity space, the spatial gradient of the ‘one-dimensional’ Maxwellian 
distribution function (at a fixed value of U,, much less than the thermal velocity) 
has opposite contributions from density and temperature gradients. 

On the other hand, situations could occur where the density and temperature 
gradients are oppositely directed, i.e. 

(26.48) 

Copyright © 1995 IOP Publishing Ltd.



Effect of an electron current 465 

In such cases, equation (26.46) shows that the electron drift wave is quite strongly 
destabilized. Presumably, the effect of this instability in its nonlinear regime is 
to produce some kind of 'turbulent convection' of particles and heat that tends 
to reduce, or even eliminate, the oppositely directed density and temperature 
gradients. 

26.5 EFFECT OF AN ELECTRON CURRENT 

Let us now consider another case of interest, namely where the Maxwellian 
electron distribution is given a non-zero mean velocity, or 'streaming speed', 
ue0, along the magnetic field. In this case, the equilibrium distribution function, 
replacing equation (26. l), takes the form 

To simplify the analysis, we will limit ourselves to the case where there is no 
temperature gradient, i.e. TO = constant. Although the 'shifted Maxwellian' 
electron distribution function given in equation (26.49) is representative of the 
case where the plasma carries a net electrical current, i.e. the electrons have a 
non-zero average streaming speed relative to the ions, it must be noted that if this 
current is produced by a driving electric field, the electron distribution will have 
a somewhat different form, to be obtained by balancing the electric force against 
the collisional friction with the ions (see Chapter 13). Nonetheless, the analysis 
using equation (26.49) is qualitatively representative of the real situation. (see 
Problem 26.3). 

Going back to the linearized drift-kinetic equation for electrons, 
equation (26.20), we see that we must now write 

so that equation (26.21) is replaced by 

(26.50) 

Proceeding as before, we find that the electron density perturbation becomes 
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where Fe0(u,) is again the ‘one-dimensional’ electron distribution, which is now 

As before, we consider only the case w << k,ut,e,  and we further assume 
that U& << i.e. that the electron streaming speed is small compared 
with the electron thermal velocity (an assumption that is not very restrictive 
for many realistic conditions). The dominant contribution to the integral in 
equation (26.51) again comes from the pole at U, = w / k , ,  which may, as 
before, be evaluated as ni times the residue. We obtain 

(26.53) 

Equation (26.53) replaces equation (26.29). We see that the only effect of the 
electron streaming speed U e o  is to modify the small imaginary term. 

The ion density perturbation, nil, is still given by equation (26.32), and 
so the dispersion relation obtained by setting riel = nil is the same as 
equation (26.34), except for modification of the imaginary term on the right- 
hand side: 

k z u e o ) .  (26.54) k: C: . ( : ) ] I 2  O(0 - kyUde  - 
w(1 + k:r?,) - k y U d e  - - = -1 

w Ikz IUt,e 

As in the case of a temperature gradient, the modification of the imaginary term 
on the right-hand side produces a qualitative change in the stability properties of 
the electron drift wave. Again considering the simplest limit where klrLs << 1, 
the real part of the frequency of the electron branch is given by 

(26.55) 

where we have also assumed that k,C, << w a k y U d e ,  but have kept the first- 
order correction in the small quantity k:C:/w2, while neglecting the correction 
of order k:rts. The imaginary part of equation (26.54) then gives a growth rate 

(26.56) 

We see from equation (26.56) that there is a range of k ,  values for which y > 0, 
i.e. for which the wave is unstable. (It might seem that we have implicitly 
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assumed that U& > 0, i.e. that the electrons are streaming in the positive direction 
along the magnetic field. However this is not so, since the same instability would 
arise for ue0 < 0, but would then have a negative k, value. More generally, if 
we also abandon the convention that k y U d e  is positive, instability will arise in 
cases where kZueO and kyude have the same sign.) 

Problem 26.3 Expand the distribution function given in equation (26.49) 
as a power series in ueo keeping two terms in the expansion, i.e. the 
zeroth-order and first-order terms in ueo. For what range of values of 
ueo will this be valid? Next write down the distribution function that arises 
from solving the Fokker-Planck equation in the Lorentz-gas approximation 
when a driving electric field is present, i.e. equations (13.15) and (13.21). 
In equation (13.21) for f e l l  use equation (13.22) to substitute for E,  
in terms of j ,  and then write j ,  = -neueo. Now compare these two 
distributions, both of which have a Maxwellian zeroth-order term and a 
correction of first-order in ue0. How are these distributions similar? How 
are they different? In which case will the current-driven drift waves be 
more unstable, i.e. which has the larger value of a F e 0 / ~ u ,  at some fixed 
value U, << ut,e? 

It is appropriate at this point to ask whether we have found anything 
different from the ion acoustic wave instability driven by a non-zero electron 
streaming speed, which was derived in Chapter 25. The ion acoustic wave 
was found to be unstable only in cases where the electron streaming speed 
exceeded the ion thermal velocity. By contrast, within the limitations of the 
present analysis, there is no such ‘threshold’ value of the electron streaming 
speed which must be exceeded for the drift wave to be destabilized. Indeed, 
provided that we are allowed to have any k, value, then we can certainly choose 
a value sufficiently small that U % ky& >> k,C, 2 k,ut,i. Here we have 
introduced the ion thermal velocity, ut,i = ( F : , o / M ) ’ / ~ ,  which is less than, or 
comparable to, the sound speed, C, = (Teo/M)1’29 in all cases where To 5 Tea. 
For these k, values, the approximations that led to equation (26.56) are valid, as 
also is the neglect of ion Landau damping, which was initially a consequence 
of our assumption that TO << Te0 but is now seen to be valid more generally. 
For any non-zero electron steaming speed U&, we can certainly choose k ,  values 
that are within the range of validity of equation (26.56) and that are also small 
enough for the right-hand side of equation (26.56) to be positive. Thus, within 
the limitations of the present analysis, the electron dri3 wuve is unstable for 
any non-zero streaming speed, however small. Nonetheless, the inclusion of an 
electron temperature gradient (with qe > 0) introduces a stabilizing effect that 
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modifies this conclusion, as would the introduction of a finite parallel length, by 
setting a lower limit on the k, values. 

Problem 26.4 Consider the electron drift wave in the case where there is 
both an electron temperature gradient, described by an Q, value, and a 
non-zero electron streaming speed, ueo. Assuming kir;s << 1, show that 
the growth rate of the electron drift wave is 

112 k y U d e k z U e O  - k:C; - k;Vieqe 

IkzIut,e 
Y = (;) 

For positive values of T],, show that the plasma is completely stable, in 
the sense that there are no values of k ,  and k, for which y > 0, if 

Q, > o.25u;o/c,2. 

It should be noted, finally, that the dispersion relation for the ion acoustic 
wave can, of course, be obtained from equation (26.54) by going to the limit 
w - k,C, - kzueo >> kyude.  In this limit, the diamagnetic drift frequency kyude 
disappears, and we are left with two waves with w f k , C , ,  one of which is 
destabilized if Iud1 > C,. This is, of course, exactly the same result as was 
obtained in Chapter 25. For frequencies much larger than the diamagnetic drift 
frequency, the non-uniformity of the plasma does not enter in any significant 
way. It should not be surprising that such cases can be treated adequately with 
the Vlasov equation for a uniform plasma and do not require the drift-kinetic 
formulation. 

26.6 THE ‘ION TEMPERATURE GRADIENT’ INSTABILITY 

For the electron drift waves that have been considered so far in this Chapter, it 
has been sufficient to treat the ions as a ‘cold fluid’: the drift-kinetic equation 
was needed only for the electrons. This was justified by limiting ourselves to the 
case Ti << T,, which implies both that the ion diamagnetic drift speed is much 
less than the electron diamagnetic drift speed and that the ion thermal velocity, 
ut,i, is much less than the ion-sound speed, C,.  It is interesting to consider 
whether there are different types of drift waves (especially unstable waves) that 
arise from Landau-like resonances between the wave and thermal motion of the 
ions. In such cases, we will need to use the drift-kinetic equation for ions: 
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The use of the drift-kinetic equation in this form for the ions effectively neglects 
the ion polarization drift (of second order in the ion Larmor radius), as well as 
corrections of order k:r;i to the ion E x B drift. However, the instability that we 
will find in this Section can arise even in the case klrLi  << 1 ,  so it is sufficient 
for present purposes to carry out the analysis neglecting all effects of order k:rti. 

Let us consider the case where the equilibrium distribution function for 
ions is Maxwellian, i.e. as given by equation (26.1), and where both density 
and temperature gradients are included, so that both nio and Ti0 are functions 
of x. We consider electrostatic perturbations of this equilibrium by introducing 
a small wave-like electric field, described by an electric potential 4, exactly as 
before, and we linearize equation (26.57) to obtain the perturbed distribution 
function, $1, from which the ion density perturbation, nil, is obtained by 
integrating over all velocities. The analysis is exactly analogous to that carried 
out already for electrons in equations (26.20)426.24) and (with the inclusion 
of a temperature gradient) in equations (26.38)-(26.42). Indeed, the result 
given in equation (26.42) can be taken over in its entirety (with straightforward 
modifications for changing from electrons to ions), giving 

Here, we have defined an ion diamagnetic drift 

Ti0 dnio U& = -- 
niOeBzo 

and a dimensionless measure of the ion temperature gradient 

We have also defined the ‘one-dimensional’ Maxwellian distribution 

(26.59) 

(26.60) 

(26.61) 

Since we are interested in effects associated with strong resonant interactions 
between a wave and the ions, we must consider the case where o - k,ut,i, so 
that the integral in equation (26.58) cannot be evaluated by any simple expansion 
of the integrand. 

For the electron density perturbation, we can use the results already 
obtained, as given for example in equations (26.29) or (26.43). These 
expressions have been obtained under the assumption that o << kZut,e, but 
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they have retained a small imaginary term of order w/lkZIut,e. For the case 
w - k,ut,i, this assumption will be well satisfied, and the small imaginary term 
will be of order ( m / M ) ’ / * .  In fact, we will neglect this small imaginary term 
now altogether, since we will find, at least in some cases, unstable ion drift waves 
with growth rates that are as large as their frequencies. For such modes, terms 
of order (m/M)’ / ’  will produce only very small corrections. Thus, neglecting 
the small imaginary terms in equations (26.29) and (26.43), we have simply 

The drift-kinetic equation and kinetic drift waves* 

(26.62) 

Physically, this describes a situation in which the electrons have relaxed 
completely to a Boltzmann distribution, ne x neoexp(e@/Teo), along the 
magnetic field. 

The dispersion relation is obtained, as usual, by setting ne1 = nil. Using 
equations (26.58) and (26.62), we obtain the dispersion relation 

(26.63) 

where 

Our task now is to solve this dispersion relation for w ,  without making any 
a priori assumptions about the relative magnitude of w and kzut,i. 

The Nyquist diagram technique, introduced in Chapter 24, allows us to 
determine whether the dispersion relation given by equations (26.63) and (26.64) 
has any solutions corresponding to unstable modes, i.e. solutions with Im(w) > 
0. To apply this technique, we must let w trace out a closed contour in the 
complex w-plane that is composed of the real axis, going from -cc to +oo, 
together with a semicircle at infinity in the upper half-plane, traced out in an 
anti-clockwise sense. A contour of this type, which encloses on its left the entire 
region with Im(w) > 0, is shown in Figure 24.5(b). In evaluating a singular 
integral, such as the one in equation (26.64), the w-plane contour should be 
taken to lie just above the real axis, rather than exactly on it, so that o can 
be considered to have an infinitesimal positive imaginary part. As w traces out 
this closed contour, the function D(w)  given in equation (26.64) will trace out 
some closed contour in the complex D-plane, which we have called the ‘Nyquist 
contour’. If the point D = 1 + Z O / T ~  falls in a region encircled by, and lying 
to the left of, this contour, then the dispersion relation must have a root with 
Im(w) > 0, i.e. an instability. In the contrary case where the area enclosed on 
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the left of the Nyquist contour does not contain the point D = 1 + TO/ Td, there 
can be no unstable modes. 

To apply this technique in the present case, we first evaluate D(w)  for very 
large values of 101, i.e. for w lying at either of the two extremities of the real 
axis or on the semicircle at infinity in the upper half-plane. Expanding 

(26.65) kz U2 = I + - +  . . .  
w - kzVz 0 

1 

and keeping only these two terms (but noting that the second term makes no 
contribution because it is odd in U,), we obtain 

ky udi 

w 
D ( w )  x 1 - -. (26.66) 

Thus the entire semicircle at infinity in the w-plane maps onto the point D = 1 in 
the D plane. To be specific on how the Nyquist contour passes through the point 
D = 1, we must make some choice for the sign of k,udi. Since the electron and 
ion diamagnetic velocities are of opposite sign, for consistency with Figure 26.2 
we choose k,vdi < 0, noting that such a choice can be made without loss 
of generality, since the dispersion relation is invariant under simultaneous sign 
changes for kyu&, k, and Re(w). (Of course, making the choice kYu& < 0 means 
that we must allow both positive and negative values for the solutions Re(w) of 
the dispersion relation, thereby abandoning our usual convention that Re(o) > 0. 
In any case, the Nyquist diagram technique for obtaining information on the roots 
of a dispersion relation requires that both positive and negative values of Re(w) 
be considered. If we chose to adhere to our convention that Re(w) > 0 always, 
then we would construct the Nyquist diagram in terms of the variable Re(w)/k,, 
rather than w, and this variable can take on both positive and negative values 
depending on the sign of ky. There would, of course, be no difference in the 
physical results obtained. We have chosen here to describe the Nyquist technique 
in its standard form, in which Re(w) takes on both positive and negative values.) 
For real values of w that are large and positive, equation (26.66) shows that the 
value of D(w) slightly exceeds unity, whereas for large and negative w values, 
D(w)  is slightly less than unity. Thus, as w passes anti-clockwise around the 
semicircle at infinity (i.e. going from +CO to -CO), the Nyquist contour passes 
lefrward through the point D = 1 (i.e. going from D values just greater than, 
to values just less than, unity). The cases shown in Figure 26.3 all have this 
property * 

Next we evaluate D(w)  on (or just above) the real axis in the U-plane. The 
integral in equation (26.64) must be evaluated as the principal-value integral 
together with ni times the residue at the singularity U, = w / k ,  (for the case 
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Figure 26.3. The Nyquist D-plane contour for the ion branch of the drift wave, in the 
cases (a) A(2 - vi) 4 1, (b) 0 < A(2 - vi) < 1 and (c) vi > 2. 

k, > 0, and -n i  times the residue for the case kz < 0). We obtain 

x exp (-02 2 k : ~ : ~  j (26.67) 

For large Iw1 (i.e. for w values approaching either -CO or +CO), the imaginary 
part of D(w) is extremely small, and its sign is the same as the sign of the 
product VikyUdi (determined by the sign of the term in w2 in the imaginary part 
of 0). We will limit our analysis to the case vi > 0, and we recall that we chose 
k,udi < 0 for consistency with Figure 26.2. Thus, Im(D) e 0 for large JwJ, 
which tells us that the Nyquist contour in the vicinity of the point D = 1 must 
lie just below the real axis, again as shown in all three cases of Figure 26.3. 

The Nyquist contour in the D plane can cross the real axis only if 
there are values of w for which the imaginary part of D ( o )  vanishes. From 
equation (26.67), we see that this will occur only if there are real roots w of the 
quadratic equation 

(26.68) 

Using the usual formula for the roots of a quadratic equation, the roots of 
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equation (26.68) are given by 

w 1  { 1 f [ l  - A (2 - - = -  
kyudi A 

(26.69) 

(26.70) 

In order to determine the shape of the Nyquist curve, it is now important to 
determine the value of Re(D) where the Nyquist contour crosses the real axis 
in the D plane. (Of course, if there are no real roots of equation (26.68), the 
contour does not cross the real axis anywhere.) This can be done by substituting 
into the principal-value integral in equation (26.67) the value of w at which 
the imaginary part vanishes. The simplest approach algebraically is to rearrange 
equation (26.68) as an equation for w in terms of w2, and substitute this form into 
the principal-value integral in equation (26.67), noting the various cancellations 
which then occur. We obtain 

= { 1 f [ l  - A (2 - vi)]”2} (26.71) 

where, in the final form, we have substituted for w from equation (26.69). By 
comparing equation (26.71) with equation (26.69), we see that the values of 
Re(D) at crossings of the real-D axis are closely related to the corresponding 
values of w at these points. 

There are three cases to be considered. The first is where A(2 - vi) > 1 ,  
in which case equation (26.69) shows that there are no real roots of the 
quadratic equation, equation (26.68), and therefore no crossings of the real- 
D axis by the Nyquist contour: the Nyquist contour must be of the form 
illustrated in Figure 26.3(a). Clearly, the area to the left of the Nyquist contour 
does not contain the point D = 1 + ~ O / T ~ ,  which is the dispersion relation, 
equation (26.63), and so there can be no unstable mode. The second case 
is where 0 < h(2 - vi) < 1, in which case there are two real roots of 
the quadratic equation, equation (26.68), given in equation (26.69), both of 
which have w/kyvd > 0. However, equation (26.71) shows that the values of 
Re(D) at these w values are both less than unity, with the more negative root w 
corresponding to the larger value of Re(D), remembering that we have chosen 
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kyu& < 0. For this case, the Nyquist contour must cross the real axis twice to 
the left of the point D = 1 and must be of the form illustrated in Figure 26.3(b). 
Again we see that the area encircled to the left of the Nyquist contour does not 
contain the point D = 1 + Tjo/T,o, and so again there can be no unstable mode. 

The third case is where qi =- 2, in which case equation (26.69) shows that 
there are two real roots with opposite signs for w/k,udi. Equation (26.71) shows 
that the root with a positive value of w/k,udi (negative w value) has Re(D) > 1, 
whereas the root with a negative value of w / k y u &  (positive w value) has Re(D) 
e 0. For this case, the Nyquist contour (as w travels along the real axis from 
-w to +w) crosses the real axis in the D-plane first to the right of the point D 
= 1 and subsequently crosses it again to the left of the origin: the contour must 
be of the form illustrated in Figure 26.3(c). This contour encloses to its left an 
area that includes the point D = 1 + Tjo/T,o if the first (i.e. rightmost) crossing 
of the real axis occurs to the right of this point. Using equation (26.71) for the 
value of D at each crossing of the real axis, this occurs when 
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Ti0 1 { 1 + [ l  - A(2 - V i ) I ” 2 }  > + T,o 
2 (26.72) 

which is therefore the condition that an unstable mode exists. By some 
straightforward manipulation, inequality (26.72) can be expressed as a condition 

(26.73) 

For a plane plasma slab that is infinite in both y and z directions, it is 
possible to choose the wave-vector components k,  and k, at will, so that the 
parameter A given in equation (26.70) takes on all values. In particular, choosing 
sufficiently small values of the ratio k , / k ,  that the parameter A greatly exceeds 
unity, the condition for instability will approach a limiting case 

qi > 2. (26.74) 

However, since the diamagnetic drift speed is generally much less than the ion 
thermal speed, specifically U d i / V t , i  - rLi/LI << 1, where rLi is the ion Larmor 
radius and L l  is the scale-length of the density gradient perpendicular to the 
magnetic field, the ratio k , / k ,  must be exceedingly small to give A >> 1. In 
cases where arbitrarily small k, values are not allowed, such as a torus which is 
approximated as a finite-length cylinder with ‘periodic boundary conditions’, the 
condition for instability could be significantly more demanding than that given 
by equation (26.74). The addition of ‘magnetic shear’, i.e. where a small field 
B,(x) is added to the main field B,, also serves effectively to impose a lower 
limit on the component of the k-vector along the magnetic field. In this case also, 
stability is improved. On the other had, inclusion of shorter wavelength modes, 
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specifically these with klrLi - 1, is found to lower the instability threshold for 
vi to values close to unity. The effect of VB and curvature drifts in geometries 
other than the plane slab is also found to be destabilizing. 

This ‘ion temperature gradient’ instability poses a significant threat 
to confinement in high-temperature fusion plasmas-€or which the present 
‘collisionless’ approximation is applicable. As we saw in Chapter 10, neutral 
atoms will not penetrate far into a fusion-reactor plasma. There will thus be no 
source of deuterium-tritium ‘fuel’, except at the very edge of the plasma. Thus, 
unless turbulent flows drive net inward convection, the process of turbulent 
internal diffusion will establish an equilibrium density that is approximately 
uniform over almost all of the plasma, falling to zero only in a narrow edge 
layer. The density gradient will therefore be very small in the main part of 
the plasma (with gradient scale-length much greater than the plasma linear 
dimension). Thermal conduction will carry the heat that is generated from the 
charged particles produced by the fusion reactions from the central part of the 
plasma (where the temperature will be highest) to the edge of the plasma (where 
the temperature will be lowest). Thus the temperature gradient will be substantial 
in the main part of the plasma (with gradient scale-length of order the plasma 
linear dimension). It follows from these general considerations that vi values 
may be quite large in the main part of a fusion-reactor plasma, implying that ion 
temperature gradient instabilities might arise and cause turbulence and perhaps 
a highly enhanced rate of heat conduction. Indeed this has been a longstanding 
concern in fusion research. Fortunately, however, effects not considered in 
the present simple analysis tend to stabilize the ion temperature gradient mode. 
Moreover, even when the instability does arise, the enhanced thermal conduction 
caused by it may not exceed the ‘anomalous’ transport produced by a variety 
of drift-wave-like and other small-scale instabilities and turbulent processes- 
all of which are predicted to still allow an acceptable overall level of plasma 
confinement for fusion power production. 

There is an extensive literature on low-frequency drift waves and other 
related small-scale instabilities in magnetically confined plasmas. A review 
article, which describes all of the basic modes and their linear growth rates and 
gives simple estimates of the level of turbulent transport to be expected from 
them, has been written by two of the most prolific contributors to this field, 
B B Kadomtsev and 0 P Pogutse (1972 Review of Plasma Physics 5 edited by 
M A Leontovich, pp 249-400, New York: Consultants Bureau). More recently, 
this field has been developed to include linear calculations in very realistic 
plasma geometries, as distinct from the ‘plane plasma slab’ considered here, 
and to nonlinear calculations of the plasma turbulence produced by drift-wave- 
like instabilities. As might be expected, both of these developments involve 
extensive numerical computation. 

Over the years, many authors have attempted to explain experimental results 
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on anomalous transport in tokamaks using theoretical modes of drift wave 
turbulence, generally with only limited success. However, it is encouraging 
to note that, as the field becomes more sophisticated in its use of realistic 
geometries and advanced computational techniques, the level of agreement with 
experimental data appears to be improving markedly. - The development of 
computational techniques for following the kinetics of gyrating ions into regimes 
of nonlinear perturbations has been responsible for some of the most notable 
recent advances. 

Copyright © 1995 IOP Publishing Ltd.



Appendix A 

Physical quantities and their SI units 

SI unit Conversion formula 

Quantity Symbol Name Abbrev. to Gaussian units 

Length 
Ti me 
Velocity 
Mass 
Mass density 

Force 
Energy 
Power 
Pressure 
Temperature 
Charge 
Charge density 

Surface charge 

Current 
Current density 

density 

Electric field 
Electric potential 
Magnetic field 
Magnetic flux 
Electric resistance 
Resistivity 

L ,  a ,  r,  R meter 
second 
meter per second 
kilogram 
kilogram per 

newton 
joule 
watt (J s-') 
pascal 
kelvin 
coulomb 
coulomb per 

cubic meter 
coulomb per 

square meter 
ampere (C s-l) 

ampere per 
square meter 

volt per meter 
volt 
tesla 
weber (T m2) 
ohm 
ohm-meter 

cubic meter 

m 

m s-l 

kg 
kg m-3 

N 
J 
W 
Pa 
K 
C 
C m-3 

C m-2 

A 
A m-2 

V m-l 
V 
T 
Wb 
R 
R m  

S 
1 m = IO2 cm 

I m s-' = IO2 cm s-' 
1 kg = lo3 g 
1 kg m-3 

1 N = IO5 dyne 
1 J = lo7 erg 
1 W = io7 erg s-I 
1 Pa = 10 dyne c m 2  
1 eV = 1.16 x lo4 K 
1 C = 3 xlOy esu 
1 C m-3 

= 3 x io3 esu 
1 C m2 

= 3 x io5 esu cm-2 
1 A = 3 x 10' esu 
1 A m-2 

= 3 x io5 esu 
1 V m-' = 10-4/3 esu 
1 V = 10-2/3 esu 
1 T = lo4 gauss 
1 Wb = lo8 maxwell 
1 a = (IO-"/9) s cm-I 
1 a m = (10-'/9) s 

= g ~ m - ~  
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Equations in the SI system 

Maxwell’s equations (SI units): 

V . B = O  

V (EoE) = cr (Poisson’s equation) 

V x E = -aB/at 

V x B = poj + (1/c2)8E/at 

(Faraday’s law) 

(Ampere’s law) 

Lorentz force on charge q (SI units): 

F = q (E + v x B) 
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Physical constants 

Physical constant Symbol Value in SI units 

Elementary charge e 1.60 x 10-19c 

Boltzmann constant; k 1.38 x 10-23 J K - 1  

Planck constant (h /2n )  h 1.05 10-34 J 

Electron mass m 9.11 x kg 
Proton mass M 1.67 x loWz7 kg 

1.60 x J eV-' 
3.00 x 10' m s-' 

8.85 x lo-'* C m-l V-' 

Speed of light in vacuum c 

Permittivity of free space E(] 

Permeability of free space 4n x = 1.26 x 10-6TmA-1 

* Throughout this book, for simplicity of notation, the plasma temperature T is always 
in 'energy units', i.e. joules, so that the Boltzmann constant k never appears. The two 
values of k given here will allow a temperature in kelvin (K) or electron-volts (eV) to be 
converted into joules (J). Note that the quantities T / e  and W / e ,  where W is an energy, 
have units of volts. Thus, for example, the value of T / e  for a lOeV temperature is 1OV. 

479 

Copyright © 1995 IOP Publishing Ltd.



Appendix D 

Useful vector formulae 

D.l VECTOR IDENTITIES 

A * (B x C) = (A x B) * C 
A x (B x C) = (A * C)B - (A - B)C 

V - ( $ A ) = $ ( V * A ) + A . V $  
V x ($A) = $(V x A ) + V $  x A 

V * (A x B) = B * V x A - A *  V x B 
V x (A x B) = A(V .B) - B(V * A )  + (B * V)A - ( A .  V)B 
A x (V x B) = (VB) * A - (A * V ) B  
v x (V X A )  = V(V.A) - V ~ A  

D.2 MATRIX NOTATION 

Note that we employ the Einstein convention, in which repeated suffices are to 
be summed over the values 1, 2, 3. 

D.2.1 Kronecker deltas 

D.2.2 Levi-Civita symbols 

1 
-1 

i # j # k cyclic permutation of 1, 2, 3 
i # j # k anti - cyclic permutation of 1,2,  3 ~ i , k  3 I 0 i = j o r j = k o r i = k  
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Matrix notation with the Einstein convention can be used to derive all of 
the vector identities given in Section D.l of this Appendix. For example, we 
derive the expression for V x ( A  x B )  by proceeding as follows. 

which, after rearranging terms on the right-hand side, is the desired expression. 
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Differential operators in Cartesian and 
curvilinear coordinates 

E.l CARTESIAN COORDINATES (2, y, z)  

Gradient: 

Divergence: 
aA, aA, aA, 
a x  a y  az  

V . A = - + - + -  

Curl: 

ax ' ax a y  
VxA=(!!$-- aA, aAx aA, --- aA, 

az ' az 
Laplacian: 

a2+ a2+ a2+ v + = - + - + -  
ax2 ay2 a22  

Laplacian of a vector: 

V2A = (V2Ax, V2A,, V2A,) 

Divergence of a tensor: 

aPxx apYx ap,, (V a P)x = - +- +- a x  a y  az 
ap,, ap,, ap,, (V * P) ,  = - +- a x  a y  az 
aPx, ap,, ap,, (V - P) ,  = - +-+- 
a x  a y  az  
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E.2 CYLINDRICAL COORDINATES (T,  8, z) 

Gradient: 

Divergence: 

i a  aAe aA, 
r ar rae a z  V . A  = - - ( rAr)+ - + - 

Curl: 

Laplacian: 

Laplacian of a vector: 

2 aAe A,  2 aA, Ae ( r2 ae r2 r2 ae r2 
V2A = V2Ar  - -- - -, V Ae + -- - -, V2A,> 

Divergence of a tensor: 

i a  1 aper apzr Pee ( V  * P)r = --(rPrr) + -- + - - - 
r ar r a9 az  r 
i a  1 aPee aP,e Per ( V  - P)e = --(rPre) + -- + - - - 
r ar r a9 az r 

( V  P),  = --(rPrz) + -- + - r ar r ae az  
i a  1 ape, ap,, 

E.3 SPHERICAL COORDINATES (T,  8,qh) 

Gradient: 
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Divergence: 

Differential operators in Cartesian and curvilinear coordinates 

1 aA# 
(sinOAe) + - - i a  i a  

r2 a r  rsine 80 rsine a# V - A = --(r2Ar) + -- 
Curl: 

1 aAe  1 a A r  1 a 
r a r  V X A =  -- (sin @Ao) - - - - - - - - (rA#), 

( r  s L  rsine a# ' rsine a# 

r ae 
i a  - -(rAe) - -- 
r a r  

Laplacian: 
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Suggestions for further reading 

There are many textbooks on plasma physics that go into greater detail and 
cover somewhat more advanced material than has been possible in the present 
text. In particular, students at the graduate level specializing in plasma 
physics have found N A Krall and A W Trivelpiece (1963) Principles of 
Plasma Physics (New York: McGraw-Hill, reprinted 1986 by San Francisco 
Press), particularly useful. Similar material, with a stronger emphasis on 
fusion applications, can be found in K Miyamoto (1989) Plasma Physics for  
Nuclear Fusion (Cambridge, MA: MIT Press). A recent graduate-level text, 
which provides a good introduction to astrophysical, geophysical as well as 
fusion plasmas is P A Sturrock (1994) P l a s m  Physics (Cambridge: Cambridge 
University Press). Textbooks that take a kinetic, or statistical, approach to the 
formulation of basic plasma theory include S Ichimaru (1973) Basic Principles 
of Plasma Physics (Reading, MA: BenjamidCummings), D R Nicholson (1983) 
Introduction to Plasma Theory (New York: Wiley) and K Nishikawa and 
M Wakatani (1990) Plasma Physics (Berlin: Springer). A recent treatment that 
emphasizes the theoretical foundations of the subject from a fusion perspective 
can be found in R D Hazeltine and J D Meiss (1992) P l a s m  Confinement 
(New York: Addison-Wesley). A more advanced text that focuses on developing 
and applying the magnetohydrodynamic model is J P Freidberg (1987) Ideal 
Magnetohydrodynamics (New York: Plenum Press). 

The topic of waves in plasmas, including also instabilities such as drift 
waves etc, is treated extensively in T H Stix (1992) Waves in Plasmas (New 
York: American Institute of Physics). Students interested in the experimental 
techniques used for measuring plasma quantities in laboratory and fusion 
plasmas are referred to I H Hutchinson (1987) Principles of Plasma Diagnostics 
(Cambridge: Cambridge University Press). 

Those interested primarily in astrophysical and solar plasmas should first 
develop an overall understanding of modern astrophysics, for example by 
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studying F H Shu (1991, 1992) The Physics ofAstrophysics Volumes I and I1 
(Mill Valley, CA: University Science Books). They are then encouraged to read 
D B Melrose (1980) Plasma Astrophysics Volumes 1 and 2 (New York: Gordon 
and Breach) and H K Moffatt (1978) Magnetic Field Generation in Electrically 
Conducting Fluids (Cambridge: Cambridge University Press). Geophysical and 
space plasmas are described in G K Parks (1991) Physics of Space Plasmas 
(New York: Addison-Wesley). 

A series of articles outlining the fundamentals of magnetically confined 
fusion plasmas and the status (circa 1980) of fusion experiments can be found 
in Fusion Volume I, Parts A and B, ed E Teller (1981, New York: Academic). 
Fusion reactors from a more engineering perspective are described in R A Gross 
(1984) Fusion Energy (New York: Wiley) and in W M Stacey (1984) Fusion 
(New York: Wiley). 

Those who are interested in pursuing further the theory of plasma 
confinement and stability in tokamak configurations are referred to J Wesson 
(1989) Tokamaks (Oxford: Clarendon Press), to R B White (1989) Theory 
of Tokamak Plasmas (Amsterdam: North-Holland), to B B Kadomtsev (1992) 
Tokamak Plasma: A Complex Physical System (Bristol: Institute of Physics 
Publishing) and to D Biskamp (1993) Nonlinear Magnetohydrodynamics 
(Cambridge: Cambridge University Press). 
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