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Preface

Plasmas occur pervasively in nature: indeed, most of the known matter in
the Universe is in the ionized state, and many naturally occurring plasmas,
such as the surface regions of the Sun, interstellar gas clouds and the Earth’s
magnetosphere, exhibit distinctively plasma-dynamical phenomena arising from
the effects of electric and magnetic forces. The science of plasma physics was
developed both to provide an understanding of these naturally occurring plasmas
and in furtherance of the quest for controlled nuclear fusion. Plasma science has
now been used in a number of other practical applications, such as the etching
of advanced semiconductor chips and the development of compact x-ray lasers.
Many of the conceptual tools developed in the course of fundamental research
on the plasma state, such as the theory of Hamiltonian chaos, have found wide
application outside the plasma field.

Research on controlled thermonuclear fusion has long been a world-wide
enterprise. Major experimental facilities in Europe, Japan and the United States,
as well as smaller facilities elsewhere including Russia, are making remarkable
progress toward the realization of fusion conditions in a confined plasma. The
use, for the first time, of a deuterium—tritium plasma in the tokamak experimental
fusion device at the Princeton Plasma Physics Laboratory has recently produced
slightly in excess of ten megawatts of fusion power, albeit for less than a second.
In 1992, an agreement was signed by the European Union, Japan, the Russian
Federation and the United States of America to undertake jointly the engineering
design of an experimental reactor to demonstrate the practical feasibility of fusion
power.

This book is based on a one-semester course offered at Princeton University
to advanced undergraduates majoring in physics, astrophysics or engineering
physics. If the more advanced material, identified by an asterisk after the Chapter
heading or Section heading, is included then the book would also be suitable as
an introductory text for graduate students entering the field of plasma physics.

We have attempted to cover all of the basic concepts of plasma physics with
reasonable rigor but without striving for complete generality—especially where
this would result in excessive algebraic complexity. Although single-particle,

Copyright © 1995 IOP Publishing Ltd. xiii



Xiv Preface

fluid and kinetic approaches are introduced independently, we emphasize the
interconnections between different descriptions of plasma behavior; particular
phenomena which illustrate these interconnections are highlighted. Indeed, a
unifying theme of our book is the attempt at a deeper understanding of the
underlying physics through the presentation of multiple perspectives on the same
physical effects. Although there is some discussion of weakly ionized gases,
such as are used in plasma etching or occur naturally in the Earth’s ionosphere,
our emphasis is on fully ionized plasmas, such as those encountered in many
astrophysical settings and employed in research on controlled thermonuclear
fusion, the field in which both of us work. The physical issues we address are,
however, applicable to a wide range of plasma phenomena. We have included
problems for the student, which range in difficulty from fairly straightforward
to quite challenging; most of the problems have been used as homework in our
course.

Standard international (SI) units are employed throughout the book, except
that temperatures appearing in formulae are in units of energy (i.e. joules)
to avoid repeated writing of Boltzmann’s constant; for practical applications,
temperatures are generally stated in electron-volts (eV). Appendices A and C
allow the reader to convert from SI units to other units in common use.

The student should be well-prepared in electromagnetic theory, including
Maxwell’s equations, which are provided in SI units in Appendix B. The student
should also have some knowledge of thermodynamics and statistical mechanics,
including the Maxwell-Boltzmann distribution. Preparation in mathematics must
have included vectors and vector calculus, including the Gauss and Stokes
theorems, some familiarity with tensors or at least the underlying linear algebra,
and complex analysis including contour integration. Appendix D contains all
of the vector formulae that are used, while Appendix E gives expressions
for the relevant differential operators in various coordinate systems. Higher
transcendental functions, such as Bessel functions, are avoided. Suggestions for
further reading are given in Appendix F.

In addition to the regular problems, which are to be found in all chapters,
we have provided a disk containing two graphics programs, which allow the
student to experiment visually with mathematical models of quite complex
plasma phenomena and which form the basis for some homework problems
and for optional semester-long student projects. These programs are provided
in both Macintosh! and IBM PC-compatible format. In the first of these two
computer programs, the reader is introduced to the relatively advanced topic of
area-preserving maps and Hamiltonian chaos; these topics, which form another
of the underlying themes of the book, reappear later in our discussions both
of the magnetic islands caused by resistive tearing modes and of the nonlinear

' Macintosh is a registered trademark of Apple Computer, Inc.

Copyright © 1995 IOP Publishing Ltd.
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Introduction

After an initial Chapter, which introduces plasmas, both in the laboratory and in
nature, and derives the defining characteristics of the plasma state, this book is
divided into six ‘Units’. In Unit 1, the plasma is considered as an assemblage
of charged particles, each moving independently in prescribed electromagnetic
fields. After deriving all of the main features of the particle orbits, the topic
of ‘adiabatic’ invariants is introduced, as well as the conditions for ‘non-
adiabaticity’, illustrating the latter by means of the modern dynamical concepts
of mappings and the onset of stochasticity. In Unit 2, the fluid model of a
plasma is introduced, in which the electromagnetic fields are required to be
self-consistent with the currents and charges in the plasma. Particular attention
is given to demonstrating the equivalence of the particle and fluid approaches.
In Unit 3, after an initial Chapter which describes the most important atomic
processes that occur in a plasma, the effects of Coulomb collisions are treated
in some detail. In Unit 4, the topic of small-amplitude waves is covered in
both the ‘cold’ and ‘warm’ plasma approximations. The treatment of waves
in the low-frequency branch of the spectrum leads naturally, in Unit 5, to an
analysis of three of the most important instabilities in non-spatially-uniform
configurations: the Rayleigh—Taylor (flute), resistive tearing, and drift-wave
instabilities. In Unit 6, the kinetic treatment of ‘hot’ plasma phenomena is
introduced, from which the Landau treatment of wave-particle interactions and
associated instabilities is derived; this is then extended to the non-uniform plasma
in the drift-kinetic approximation.

Copyright © 1995 IOP Publishing Ltd.



Chapter 1

Introduction to plasmas

1.1 WHAT IS A PLASMA?

First and foremost, a plasma is an ionized gas. When a solid is heated sufficiently
that the thermal motion of the atoms break the crystal lattice structure apart,
usually a liquid is formed. When a liquid is heated enough that atoms vaporize
off the surface faster than they recondense, a gas is formed. When a gas is heated
enough that the atoms collide with each other and knock their electrons off in
the process, a plasma is formed: the so-called ‘fourth state of matter’. Exactly
when the transition between a ‘very weakly ionized gas’ and a ‘plasma’ occurs
is largely a matter of nomenclature. The important point is that an ionized gas
has unique properties. In most materials the dynamics of motion are determined
by forces between near-neighbor regions of the material. In a plasma, charge
separation between ions and electrons gives rise to electric fields, and charged-
particle flows give rise to currents and magnetic fields. These fields result in
‘action at a distance’, and a range of phenomena of startling complexity, of
considerable practical utility and sometimes of great beauty.

Irving Langmuir, the Nobel laureate who pioneered the scientific study
of ionized gases, gave this new state of matter the name ‘plasma’. In greek
mAaopoe means ‘moldable substance’, or ‘jelly’, and indeed the mercury arc
plasmas with which he worked tended to diffuse throughout their glass vacuum
chambers, filling them like jelly in a mold!.

! We also like to imagine that Langmuir listened to the blues. Maybe he was thinking of the song
‘Must be Jelly 'cause Jam don’t Shake Like That’, recorded by J Chalmers MacGregor and Sonny
Skylar. This song was popular in the late 1920s, when Langmuir, Tonks and Mott-Smith were
studying oscillations in plasmas. .

Copyright © 1995 IOP Publishing Ltd.



2 Introduction to plasmas

1.2 HOW ARE PLASMAS MADE?

A plasma is not usually made simply by heating up a container of gas. The
problem is that for the most part a container cannot be as hot as a plasma needs
to be in order to be ionized—or the container itself would vaporize and become
plasma as well.

Typically, in the laboratory, a small amount of gas is heated and ionized
by driving an electric current through it, or by shining radio waves into it.
Either the thermal capacity of the container is used to keep it from getting hot
enough to melt—Iet alone ionize—during a short heating pulse, or the container
is actively cooled (for example with water) for longer-pulse operation. Generally,
these means of plasma formation give energy to free electrons in the plasma
directly, and then electron—atom collisions liberate more electrons, and the
process cascades until the desired degree of ionization is achieved. Sometimes
the electrons end up quite a bit hotter than the ions, since the electrons carry the
electrical current or absorb the radio waves.

1.3 WHAT ARE PLASMAS USED FOR?

There are all sorts of uses for plasmas. To give one example, if we want
to make a short-wavelength laser we need to generate a population inversion in
highly excited atomic states. Generally, gas lasers are ‘pumped’ into their lasing
states by driving an electric current through the gas, and using electron—-atom
collisions to excite the atoms. X-ray lasers depend on collisional excitation
of more energetic states of partially ionized atoms in a plasma. Sometimes a
magnetic field is used to hold the plasma together long enough to create the
highly ionized states.

A whole field of ‘plasma chemistry’ exists where the chemical processes
that can be accessed through highly excited atomic states are exploited. Plasma
etching and deposition in semiconductor technology is a very important related
enterprise. Plasmas used for these purposes are sometimes called ‘process
plasmas’.

Perhaps the most exciting application of plasmas such as the ones we
will be studying is the production of power from thermonuclear fusion. A
deuterium ion and a tritium ion which collide with energy in the range of tens
of keV have a significant probability of fusing, and producing an alpha particle
(helium nucleus) and a neutron, with 17.6 MeV of excess energy (alpha particle
~ 3.5MeV, neutron ~ 14.1MeV). A promising way to access this energy is
to produce a plasma with a density in the range 10%° m~* and average particle
energies of tens of keV. The characteristic time for the thermal energy contained
within such a plasma to escape to the surrounding material surfaces must exceed
about five seconds, in order that the power produced in alpha particles can

Copyright © 1995 IOP Publishing Ltd.



Electron current flow in a vacuum tube 3

sustain the temperature of the plasma. This is not a simple requirement to meet,
since electrons within a fusion plasma travel at velocities of ~ 108 ms~!, while
a fusion device must have a characteristic size of ~ 2m, in order to be an
economic power source. We will learn how magnetic fields are used to contain
a hot plasma.

The goal of producing a plentiful and environmentally benign energy source
is still decades away, but at the present writing fusion power levels of 2-
10MW have been produced in deuterium—tritium plasmas with temperatures
of 20-40keV and energy confinement times of 0.25-1s. This compares with
power levels in the 10 mW range that were produced in deuterium plasmas with
temperatures of ~ 1keV and energy confinement times of ~ Sms in the early
1970s. It is the quest for a limitless energy source from controlled thermonuclear
fusion which has been the strongest impetus driving the development of the
physics of hot plasmas.

1.4 ELECTRON CURRENT FLOW IN A VACUUM TUBE

Let us look more closely now at how a plasma is made with a dc electric current.
Consider a vacuum tube (not filled with gas), with a simple planar electrode
structure, as shown in|Figure 1.1] Imagine that the cathode is sufficiently heated
that copious electrons are boiling off of its surface, and (in the absence of an
applied electric field) returning again. Now imagine we apply a potential to
draw some of the electrons to the anode. First, let us look at the equation of
motion for the electrons:

me% = —¢E =¢eV¢ a.n
dt
where m, is the electron mass (9.1 x 1073! kg), v is the vector electron velocity
(ms™!), e is the unit charge (1.6 x10~'° C), E is the vector electric field (Vm™!),
and ¢ is the electrical potential (V). To derive energy conservation, we take the
dot product of both sides with v,:

dv, dv? :
MmeVe + 'a'ts = %mei'ti =eve* Vo. (1.2)

The total (or convective) derivative, moving with the particle, is defined by
—=—+v-V. (1.3)

Thus the total (convective) time derivative of the electric potential, ¢, moving
with the electron, can be viewed as being made up of a part having to do with
the potential changing in time at a fixed location (the partial derivative, 8/dt),

Copyright © 1995 IOP Publishing Ltd.



4 Introduction to plasmas

plus a part having to do with the changing location at which we must evaluate
¢. Since in this case we are considering a steady-state electric field, the partial
(non-convective) time derivatives are zero. Thus we have

i(mwz)—i( 1.4
a\ ™2 )= @ (14)

or, moving along the trajectory of an electron,

mele o
R e¢ = constant, (1.5)

Vacuum Boundary

Cathode (-)

Anode (+)

Heater

Figure 1.1. Vacuum-tube geometry for a hot-cathode Child-Langmuir calculation.

Equation (1.5) gives us some important information about the electron
velocity in the inter-electrode space of our vacuum tube. If for simplicity we
assign ¢ = 0 to the cathode (since the offset to ¢ can be chosen arbitrarily), and
negligibly small energy to the random ‘boiling’ energy of the electrons near the
cathode, then the constant on the right-hand side of equation (1.5) can be taken

to be zero, and
2 172
%z(w) . (1.6)

me

Note that, in this case, v, is not a random thermal velocity, but rather a directed
flow of the electrons—the individual velocities of the electrons and the average
velocity of the electron ‘fluid’ are the same. As a consequence of this ‘fluid’
velocity of the electrons, there is a net current density j (amperes/meter?) =
—neev, flowing between the two electrodes, where ne is the number density
of electrons—the electron ‘count’ per cubic meter. In order to understand this
current, it is helpful to think of a differential cube, as shown in [Figure 1.2
with edges of length dI, volume (dD3, and total electron count in the cube of

Copyright © 1995 IOP Publishing Ltd.



Electron current flow in a vacuum tube 5

ne(dl)3. Imagine that the electron velocity is directed so that the contents are
flowing out of one face of the cube (see Figure 1.2). If the fluid is moving
at v. (meters/second), the cube of electrons is emptied out across that face in
time di/ve seconds. Thus, en.(d!) units of charge cross (d? square meters of
surface in d!/v. seconds—the current density is thus ene(dl)?/[(dl/ve)(d])?] =
neeve (coulombs/second - meter?, i.e. amperes/meter?), as we stated above.

Figure 1.2. Geometry for interpreting j = —n.ev..

If we now consider the integral of this particle current over the surface area
of a given volume, we have the total flow of particles out of the volume per
second, and so the time derivative of the total number of particles in a given
volume of our vacuum tube is given by

aNe:—/neve-dS=O (1.7
at

where N, is the total number of particles in a volume, and dS is an element of
area of its surface. Here we assume that there are no sources or sinks of electrons
within the volume; by setting the result to zero we are positing a steady-state
condition. By Gauss’s theorem, this can be expressed in differential notation as

an
a_: = -V - (neve) = 0. (1.8

Poisson’s equation is of course
V (V) = en. (1.9)

where €, the permittivity of free space, is 8.85 x 10712CV~Im™!,
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6 Introduction to plasmas

The complete set of equations we need to solve in order to understand the
current flow in our evacuated tube is then made up of equations (1.6), (1.8),
and (1.9). Before we go on to solve these equations, we can immediately see a
useful overall scaling relation. If we imagine taking any valid solution of this
set of equations, and scaling ¢ by a factor o everywhere, then equation (1.9)
tells us that n. must scale by the same factor «. Equation (1.6) says that v,
must scale everywhere by a!/2. Equation (1.8) is also satisfied by this result,
since 7.V, is scaled everywhere equally by 2. In the conditions we have been
describing, with plenty of electrons boiling off the cathode (so there is no limit
to the source of electrons at the boundary of our problem), the total current in
the tube scales as ¢>/2, This is called the Child-Langmuir law.

The condition we are considering is called space-charge-limited current
flow. If too few electrons are available from the cathode, the current can fall
below the Child-Langmuir law. It is then called emission-limited current flow.
For the specific case of planar electrodes, with a gap smaller than the typical
electrode dimensions, we can approximate the situation using one-dimensional
versions of equations (1.8) and (1.9):

—neev, = j = constant (1.10)
and d q
o (eoaxq—s) = en.. (1.1
Substituting equation (1.6), we have
&’ . (me )\
€033 =ene=—j/ve = —j (57;) . (1.12)

We can find a solution to this nonlinear equation simply by assuming that ¢ o x#,
where 8 is some constant power. Looking at the powers of x that occur on each
side, we come to the conclusion that

B-2=-B/2 o B=4/3. (1.13)

So now we can assume that ¢ = Ax*/> which, when substituted into equation
(1.12), gives

e \172
Q0AW@/3)(1/3) = -j (325) (1.14)
or 23
_ (=% me\'2 43
$(x) = (460) (52) =" (1.15)

This solution is appropriate for our conditions, where we have taken the potential
to be zero at the cathode, and since so many electrons are ‘boiling’ around the
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The arc discharge 7

cathode, we have assumed that negligible electric field strength is required to
extract electrons from this region. Thus we have chosen the solution that has
d¢/dx = 0 where ¢ =0, i.e. at x = 0. Let us now make the last step of deriving
the current—voltage characteristics of our vacuum tube. At x = L (where L is
the inter-electrode spacing), let the potential be V volts. Then we can solve
equation (1.15) for the current density:

. 4e 2¢\'?
= _Q_L‘; (-m—) V32, (1.16)
(3

Finally, let us evaluate the performance of a specific configuration. Let us take
a fairly large tube: an inter-electrode spacing of 0.01 m, and an electrode area
of 0.05m x 0.20m = 0.01m?, For a voltage drop of 50V, we get a current
drain of 8.3 Am™2, or only 83 mA—we need much larger electric fields to draw
significant power in a vacuum tube. The cloud of electrons at a density of about
2 x 103 m~? impedes the flow of current rather effectively. For perspective,
note that a tungsten cathode of this area can provide an emission current of
hundreds of amperes.

1.5 THE ARC DISCHARGE

We have now in our vacuum tube a population of electrons with energies
up to 50eV. Let us imagine introducing gas at a pressure of ~ 1Pa (about
1073 of an atmosphere). The electrons emitted from the cathode will collide
with the gas molecules, transferring momentum and energy efficiently to the
bound electrons within these gas molecules. Since typical binding energies
of outer-shell electrons are in the few eV range, these collisions have a good
probability of ionizing the gas, resulting in more free electrons. The ‘secondary’
electrons created in this way are then heated by collisions with the incoming
primary electrons from the hot cathode, and cause further ionizations themselves.
Eventually the ions and electrons come into thermal equilibrium with each other
at temperatures corresponding to particle energies in the range of 2eV, in the
plasma generated in such an ‘arc’ discharge. Since most of the electrons are
now thermalized—not monoenergetic as in the Child-Langmuir problem—they
have a range of velocities. The energy of some of the secondary electrons, as
well as that of the primaries, is high enough to continue to cause ionization.
This continual ionization process balances the loss of ions which drift out of
the plasma and recombine with electrons at the cathode or on the walls of the
discharge chamber, and the system comes into steady state. Ion and electron
densities in the range of 10'® m™3 are easily obtained in such a system.
Matters have changed dramatically from the original Child-Langmuir
problem. The electron density has risen by five orders of magnitude, but
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8 Introduction to plasmas

nonetheless the space-charge effect impeding the flow of the electron current
is greatly reduced. The presence of the plasma, which is an excellent conductor
of electricity, greatly reduces the potential gradient in most of the inter-electrode
space. Only in the region close to the cathode are the neutralizing ions absent—
because there they are rapidly drawn into the cathode by its negative potential.
Almost all of the potential drop occurs then across this narrow ‘sheath’ in front
of the cathode. If we return to equation (1.16), we see that the current extracted
from the cathode must then increase by about the ratio (L/As)?, where A, is the
width of the cathode sheath.

The current—voltage characteristic of an arc plasma is very different from
the Child—-Langmuir relation: indeed in a certain sense its resistance is negative.
The external circuit driving the arc must include a resistive element as well as a
voltage source. If the resistance of this element is reduced, allowing more current
to flow through the arc, the plasma density increases due to the increased input
power, the cathode sheath narrows due to the higher plasma density, and the
voltage drop across the arc falls! Of course even though the voltage decreases
with rising current, the input power, IV, increases. This nonetheless strange
situation pertains up to the point where the full electron emission from the
cathode is drawn into the arc. The voltage drop at this point might be 10-20V
in our case, the current hundreds of amperes, and the input power would be
thousands of watts. If the current is raised further the arc makes the transition
from space-charge-limited to emission-limited, and the voltage across the arc
rises with rising current, since a higher voltage is needed to pull ions into the
cathode.

Thus, as we can see, by introducing gas—and therefore plasma—into the
problem, we have created a very different situation. From an engineering point
of view, we now have to consider how to handle kilowatts of heat outflow from
a small volume. From a physics point of view, it is interesting now to try to
understand the behavior of the new state of matter we have just created.

Of course we do not always have to make a plasma in order to study one.
The Sun is a plasma; so are the Van Allen radiation belts surrounding the Earth.
The solar wind is a streaming plasma that fills the solar system. These plasmas in
our solar system provide many unsolved mysteries. How is the Sun’s magnetic
field generated, and why does it flip every eleven years? How is the solar corona
heated to temperatures greater than the surface temperature of the Sun? What
causes the magnetic storms that result in a rain of energetic particles into the
Earth’s atmosphere, and disturbances in the Earth’s magnetic field? Outside of
the solar system there are also many plasma-related topics. What is the role of
magnetic fields in galactic dynamics? The signals from pulsars are thought to be
synchrotron radiation from rotating, highly magnetized neutron stars. What can
we learn from these signals about the atmospheres of neutron stars and about
the interstellar medium? All of these are very active areas of research.
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Figure 1.3. Typical parameters of naturally occurring and laboratory plasmas.

Some typical parameters of naturally occurring and laboratory plasmas
are given in Their density and temperature parameter regimes are
illustrated in Figure 1.3. We see that the plasma state spans enormous ranges in
scale-length, density of particles and temperature.

I It ] a |

10°

1.6 THERMAL DISTRIBUTION OF VELOCITIES IN A PLASMA

If we have a plasma in some form of near-equilibrium, i.e. where the particles
collide with each other frequently compared to the characteristic time-scale
over which energy and particles are replaced, it is reasonable to expect the
laws of equilibrium statistical mechanics to give a good approximation to the
distribution of velocities of the particles. We will assume for the time being that
the distribution with respect to space is uniform.
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10 Introduction to plasmas

Table 1.1. Typical parameters of naturally occurring and laboratory plasmas.

Length  Particle Electron Magnetic

scale density temperature  field

(m) (m~?) V) M
Interstellar gas 1016 108 1 10-10
Solar wind 101 107 10 1078
Van Allen belts 108 10° 10? 10-6
Earth’s ionosphere  10° 10! 107! 3x 1073
Solar corona 108 1013 102 10-°
Gas discharges 1072 10'8 2 —
Process plasmas 107! 10 10? 107!
Fusion experiment 1 109-10%  103-10* 5
Fusion reactor 2 10% 104 5

[

Consider any one specific particle, labeled ‘r’, in the plasma as a
distinguishable microsystem. We will ignore quantum-mechanical effects
that make distinguishability invalid, and consider only particles that behave
classically.

Problem 1.1: What are some plasma parameters (electron temperatures
and densities) where quantum-mechanical effects might be important?

We now ask the question: what is the probability P, of finding our specific
particle in any one particular state of energy W,? The particle has to have gained
this energy W, from its interaction with the others, so the remaining thermal
‘bath’ of particles must have energy W, — W,, where W, is the total thermal
energy in the plasma. If the particles have collided with each other enough,
we can expect the fundamental theorem of statistical mechanics to hold. This
theorem amounts to saying that we know as little as could possibly be known
about any given thermal system: all possible accessible microstates of the total
system are populated with equal probability. Thus in order to determine the
probability P, of any given state of our specific particle, we need only evaluate
the number of microstates accessible to the ‘bath’ with energy Wio — W,. Let us
define Q as the number of microstates accessible to the bath with total energy
W. Then, for any thermal system statistical mechanics defines its temperature,
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T, by the relation

1 kdinQ dS

== 1.17

T dw dw (117
where k is the Boltzmann constant, and the entropy, S, of the system is defined
by S = kInQ. Since the energy of our specific particle is small compared to the
energy of the bath, we can approximate the number of microstates available to

the system by

ln QIWM—W, ~ ln Qlel - Wr/kT (118)
Taking the exponential of both sides, we obtain
Qlwun—wr ~ Q Wior CXp(—W,/kT) (119)

which is just the result we are seeking. The relative probability P, of the particle
having energy W, is given by the famous ‘Boltzmann factor’, exp(—W,/kT),
since 2 evaluated at W, is not a function of W,.

If we ignore, for the time being, any potential energy associated with the
position of the particle, we have the result that the relative probability that
the velocity of our particle lies in some range of velocities dv,dv,dv, centered
around velocity (vx, vy, v;) is given by

( ~m(v; + v} + v})
exp

AT ) dv,dv,dy, (1.20)

where m is the mass of the particle. Since there was nothing special about
our particular particle (which was chosen arbitrarily from the bath), this same
relative probability distribution is appropriate for all the particles in the bath.
It is convenient to define a ‘phase-space density of particles’, f(x,v), which
gives the number of particles per unit of dxdydzdv,dv,dv,, the volume element
of six-dimensional phase space. The three-dimensional integral of f over all
velocities, v, gives the number density of particles per unit volume of ordinary
physical space, which we denote n. The units of f are given by

[fl=m3(ms 3 =smS. (1.21)

For a Maxwell-Boltzmann distribution, f is simply the Boltzmann factor
with an appropriate normalization. If we carry through the necessary integral
over all v to ensure that

ffdv,dvydvz =n (1.22)

thereby obtaining the correct normalizing factor, the result is that the Maxwell-
Boltzmann (or Maxwellian) distribution function is given by

fu exp(—v?/2v2) (1.23)

n
T (V2mw)3
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12 Introduction to plasmas
where the thermal velocity, v, is given by
v= kT/m)'/2. (1.24)

Equation (1.24) is the last time that we will show the Boltzmann constant,
k. Henceforth we will drop k, writing for example simply v, = (T/m)"2. The
Boltzmann constant k has the role of converting temperature from degrees Kelvin
to units of energy (see equation (1.17)). In plasma physics, we generally find
it more convenient to express temperature directly in energy units. In practical
applications, we tend to discuss the temperature in units of electron-volts (eV),
the kinetic energy an electron gains in free-fall down a potential of 1V, but the
equations we write, such as v, = (T/m)!/? above, are in SI units for velocity
and mass, so T is expressed in joules. Since when a charge of one coulomb
falls down a potential of one volt, the kinetic energy gain is by definition one
joule, the energy in an electron-volt, expressed in joules, is numerically equal
to the electron charge expressed in coulombs. Rather than refer to a plasma as
having temperature 11 600 K, we say its temperature is 1 eV, and evaluate T in
SI units as 1.60 x 1079 J (see [Appendix C). Often, however, we will encounter
the expressions (T /e) or (W/e) in plasma physics equations. When evaluating
such expressions, it is even more convenient to insert the temperature, T, or
particle energy, W, in units of eV, for the whole expression. An eV divided by
e is a V—a perfectly good unit in SI! In other words, the expression (W/e) for
a 10keV particle becomes in SI 10* V. Remember, however, that the average
kinetic energy of a particle in a Maxwellian distribution is (W) = (3/2)kT—
or, in our nomenclature, (W) = (3/2)T. This is because the distribution
contains three degrees of freedom per particle, corresponding to the three velocity
components (vx, vy, v;). From statistical mechanics we know that the typical
energy associated with each degree of freedom is T'/2.

One important use of the velocity-space distribution function f is to find
the value of some quantity averaged over the distribution. For any quantity X,
the local velocity-space average of X, which we denote (X), is given by

[FXdv [ fXdv
ffdv = n

In particular, if we take X = W = mv? /2, we find, for a Maxwellian distribution,
that (W), = (3/2)T, as we discussed above. If we are interested in the average
energy of motion that a particle has in any one direction, say the z direction,
W, = mv?/2, we find (W,), = T/2 for a Maxwellian distribution function. The
average of vz2 is simply T/m, or v? as defined by equation (1.24). Thus the
quantity v;, as we have defined it, is the ‘root-mean-square’ of the velocities in
any one direction. (Beware that some researchers use an altematlve definition,
namely v, = (2T /m)'/2)

(X)y = (1.25)
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Debye shielding 13

In some cases, a plasma has an anisotropic distribution function, which
can be approximated as a ‘bi-Maxwellian’ with a different temperature along
the magnetic field than across the field. This can happen in the laboratory or in
natural plasmas due to forms of heating that add perpendicular or parallel energy
preferentially to the particles, or loss processes that take out one or the other
form of energy rapidly compared to collisions. In this case, taking the direction
of the magnetic field to be the z direction, we have

n v vE+4?
f= exp| ——% ~ z (1.26)
(V2 vy) (V27 v, )? ( 2v,2” 203,
where
vy = (To/m)'? vy = (T||/m)1/2 (1.27)

and (W), = (W), = m(vﬁ)v/2 = 7'“2/2, because the parallel direction
represents one degree of freedom. Similarly, defining v}_ = vf + vg, (W) =
(Wy)y = m(v})y/4 = T1/2, so (W)y = (W,)y + (W,)y = T, because the
perpendicular direction represents two degrees of freedom. In an isotropic
plasma, with Ty =T, =T, (W1), = 2(W)),.

Problem 1.2: Sketch a three-dimensional plot of an anisotropic
distribution function f, with Ty = 27,. Show that [ fd*v = n for f given
by equation (1.26).

1.7 DEBYE SHIELDING

We have now done some very basic statistical mechanics to understand the
Maxwell-Boltzmann distribution function of a plasma. Maxwell-Boltzmann
statistics arise repeatedly in plasma physics, and the next example is fundamental
to the very definition of a plasma. Consider a charge artificially immersed
in a plasma which is in thermodynamic equilibrium. The equilibrium state
implies that the plasma must be changing very slowly compared to the particle
collision time, and that there is no significant temperature variation over distances
comparable to a collision mean-free path. For present purposes, we will assume
that the plasma is ‘isothermal’—at a constant temperature, independent of
position. Once again, consider the particle distribution function to be a heat
‘bath’ at a given temperature. And again consider a single specific particle, but
now allow the particle to have both kinetic and potential energy:

W, = mv?/2 +q¢ (1.28)
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where g is the charge of the particle (—e for an electron, + Ze for an ion of
charge Z), and so the Boltzmann factor becomes

exp[—(mv?/2 4+ q¢)/T1. (1.29)

The relative probability of a given energy of the particle now depends
on position implicitly, through ¢. The point worth noting is that this
same Boltzmann factor (with a constant normalization in front—independent
of position) gives the relative probability and therefore the relative particle
distribution function over the whole volume in thermal equilibrium. If we
integrate the distribution function over velocity space to obtain a relative local
particle density, we find that the spatial dependence that remains comes only
from the Boltzmann factor:

n o exp(—q@¢/T). (1.30)

This means physically that electrons will tend to gather near a positive
charge in a plasma, and therefore they will tend to shield out the electric field
from the charge, preventing the field from penetrating into the plasma. By the
same token, ions will have the opposite tendency, to ‘shy away from’ a positive
charge, and gather near a negative one.

A fundamental property of a plasma is the distance over which the field
from such a charge is shielded out. Indeed, it is considered one of two formal
defining characteristics of a plasma that this shielding length (called the Debye
length, Ap, which was first calculated in the theory of electrolytes by Debye and
Hiickel in 1923) be much smaller than the plasma size. The second defining
characteristic of a plasma is that there should be many particles within a Debye
sphere, which has volume (4/3)7 3, with the consequence that the statistical
treatment of Debye shielding is valid.

It is fairly easy to calculate the Debye length for an idealized system. Let
us suppose that we have immersed a planar charge in a plasma. Assume the
plasma ions have charge Ze, and far from the electrode the ion and electron
densities are n, = Zn; = ny. This boundary condition at infinity is required in
order to provide charge neutrality over the bulk of the plasma, so as to keep the
electric field, E, from building up indefinitely. Let us also choose to set ¢ = 0
at infinity for simplicity. Given our assumptions at infinity, from the Boltzmann
factor we know that

ne(x) = neccexp(ed/Te)
Zni(x) = necexp(—eZi¢/ Tr).

(1.31)

We are allowing T, # T, for generality, but both 7; and 7, are spatially
homogeneous, i.e. the electrons are in thermal equilibrium among themselves,
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and the ions are in thermal equilibrium among themselves, but the ions and
electrons are not necessarily in thermal equilibrium with each other. At first
sight this may seem unphysical, but it happens often in plasmas because electron—
electron energy transfer by collisions and ion—ion energy transfer by collisions
are both faster than collisional electron-ion energy transfer, due to the large
mass discrepancy. We will study this in Unit 3. For the time being, it might
be helpful to think about the example of collisional equilibration in a system of
ping-pong balls and bumper-cars. At first the ping-pong balls and bumper-cars
will each, separately, come to thermal equilibrium, because their self-collisions
are efficient at transferring energy as well as momentum. It will take longer for
the balls and cars to come into thermal equilibrium with each other, because the
transfer of energy in their collisions is weak.
The Poisson equation for our one-dimensional planar geometry is
d2

éogxi; = e(ne — Zn;) = enccofexpled/Te) — exp(—eZ¢/Ti)] (1.32)

where €y is again the permittivity of free space. It is difficult to solve this
equation in the region near the electrode, where e¢/ T may be large, but we can
obtain a qualitative sense of the solution by assuming that e¢/T is small, and
expanding the exponential in e¢/T. Equation (1.32) then becomes

d%¢
€07 eNec(ed /T + eZ¢/T)) (1.33)

d’¢ _ €’neoo(l + ZT./T)
e . 1.
dx? oTe ¢ (1.34)

which can be solved to obtain the characteristic exponential decay length which
we are seeking:

¢ o exp(—x/Ap) (1.35)
where "
_ GoTe
o= (neel’(l + ZTe/n)) ' (139

Often the ion term is not included in the definition of the Debye length,
giving Ap = (€9T./n.e?)"/2. For typical laboratory plasmas, the Debye length
is indeed small. For a 3eV electric arc discharge at a density of 10" m~3, we
find that Ap &~ 3 x 1075 m. The number of particles in the Debye sphere for this
case is about one thousand, making our statistical treatment reasonably valid.

Problem 1.3: Derive the equivalent of equation (1.34) in spherical
coordinates (i.e. for the case of a point charge immersed in a plasma).
Show that the solution is ¢ o exp(—r/ip)/r.
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Problem 1.4: The typical distance between two electrons in a plasma is
of order n;'/>. Show that the potential energy associated with bringing
two electrons this close together is much less than their typical kinetic

energy, so long as neA3 > 1.

1.8 MATERIAL PROBES IN A PLASMA

In our discussion of Debye shielding, we considered the response of an
equilibrium plasma to a localized charge. We did not, however, consider the
possibility of collisions between plasma particles and whatever was carrying the
charge. The situation is very different in the case of a real material probe inserted
into a plasma. Such a probe intercepts particle trajectories, resulting in violation
of the assumption of equilibrium in its near vicinity. If the probe is biased
negative with respect to the plasma, with potential ¢ « —T./e, few electron
trajectories are intercepted, since most electrons cannot reach the probe, so the
electrons will be close to equilibrium and maintain n, ~ ne.expled/T). A
sheath region will develop around the probe, whose width scales with the Debye
length, as in the case we just considered, because the electron population will
be exponentially depleted close to the negatively biased probe. lons, however,
will be accelerated across the sheath, and into the material electrode. In the
case of cold ions, T, « T, the calculation of the ion density reduces to the
ion analog of the Child—-Langmuir calculation we performed at the beginning
of this Chapter. While the electron density falls exponentially in the vicinity
of a negatively biased material probe, the ion density is depressed as well, but
more weakly, as ¢~!/2 (see equation (1.12)). The ion density, in this case, is
not enhanced by the negative bias, due to the depleting collisions with the probe
surface. The ion current density to a negatively biased probe in a Z = 1 plasma
is given approximately by ji ~ njeCs, where C; is the so-called ‘ion sound
speed’ C; = [(T. + T;)/m;]1"/?, which shows up in situations like this where both
ion and electron temperatures contribute to ion motion, and n; is the ion density
far from the probe. (We will encounter C, again when we study ion acoustic
waves in Unit 4.) This ion current is called the ‘ion saturation current’, jsai,
because the ion current saturates at this value as the probe bias is driven further
negative. The sheath width grows as the potential becomes more negative, in
just such a way as to keep the ion Child-Langmuir current constant at jsa ;.

Problem 1.5: Perform an ion Child—Langmuir calculation to model the
plasma sheath at a material probe. Assume an inter-electrode spacing
of Ap = (eT./n.€%)'? to model the sheath width, and a potential drop
of ep = —T.. Take T; = 0. You may assume that the electron density is
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negligible in the sheath region, to make the jon Child—Langmuir calculation
valid. Determine the ion current density, ji, across this model sheath.

The electron current to a material probe depends exponentially on the probe
potential, since the electron density at the probe face varies exponentially with
e¢ /T, and the particle flux from a Maxwell-Boltzmann electron distribution into
a material wall is given by ' [particless™! m™2] = n.(8T./wme)"/? ~ nevre. A
potential of e¢ ~ 3.3T, is required to reduce the electron current to the probe
to equal the ion current, in a hydrogen plasma. This is called the ‘floating’
potential, because the potential of a probe that is not allowed to draw any net
current will ‘float’ to this value. Such a strong potential is required, of course,
because v, e ~ Cs(mi/me)!/2, so the electron current in the absence of negative
probe bias is much larger in absolute magnitude than jg ;.
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Chapter 2

Particle drifts in uniform fields

Many plasmas are immersed in externally imposed magnetic and/or electric
fields. All plasmas have the potential to generate their own electromagnetic
fields as well. Thus, as a first step towards understanding plasma dynamics,
in this Chapter we begin by considering the behavior of charged plasmas in
uniform fields, thus constructing the most fundamental aspects of a magnetized
plasma. We also carefully introduce some of the mathematical formalisms that
we will use throughout the book.

2.1 GYRO-MOTION

In the presence of a uniform magnetic field, the equation of motion of a charged
particle is given by

mv=gqvxB 2.1
where g is the (signed) charge of the particle. Taking 2 to be the direction of B

(i.e. B = BZ or we sometimes say b= B/B which, in this case, is the same as
Z), we have

vy =quy,B/m 2.2)
vy = —quyB/m 2.3
v, = 0. 2.4)

For a specific trajectory, we also need initial conditions at ¢t = 0: these we take
tobe x = x;, y = ¥i, 2 = 2, Ux = Uy, Uy = Uy, U = V. If we take the time
derivative of both sides of equation (2.2), we can use equation (2.3) to substitute

for vy, and obtain
dv B\? .
= <%) Uy : (2.5)
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22 Particle drifts in uniform fields
If we define w, = |q|B/m, it is clear that the solution of this equation is
v, = Acos(wct) + Bsin(w,t) (2.6)

where A and B are integration constants. Evidently ., called the ‘cyclotron
frequency’ (also sometimes called the ‘Larmor frequency’ or the ‘gyro-
frequency’), is going to prove to be a very important quantity in a magnetized
plasma. It is convenient to use complex-variable notation, and rewrite
equation (2.6) as

vy = Re[Aexp(iw.t)] — Re[Biexp(iw.t)]
= Re [(A - iB)exp(iwct)] = Re {[vJ_exp(icS)] exp(iwct)}
= Re [v exp(iwct + i8)] 2.7)

where Re indicates the real part of the subsequent expression, v, is an absolute
speed perpendicular to B, and § is a phase angle. The quantities v; and § have
become our new integration constants. (We will now drop the Re in this notation,
since it is clear that we are dealing with real quantities.) In this formulation, v
and § are chosen to match the initial velocity conditions. Equation (2.2) gives

vy = i(lg]/g)viexpliw.t + 18) = Fiviexp(iw.t + i8) (2.8)

where + evidently indicates the sign of g. From the initial conditions, we now
can say that vy = (v% + v3)"/? and § = Ftan™'(v,i/vy), where the upper
sign is for positive g. Note that v, and v, are 90° out of phase, so we have
circular motion in the plane perpendicular to B. Equation (2.4) indicates that
v, is a constant, and so the motion constitutes a helix along B. If we integrate
equations (2.4), (2.7) and (2.8) in time, we obtain

x =x; — i(vy /oc)lexplios + 18) — exp(id)]
y =y = (vi/wc)exp(iwet + 18) — exp(ié)] (2.9)
=2 + vt

where the integration constants have been chosen to match the initial position
conditions.

Clearly, then, another fundamental quantity in a magnetized plasma is the
length r, = (vL/w.), called the ‘Larmor radius’ or ‘gyro-radius’. This is the
radius of the helix described by the particle as it travels along the magnetic
field line. [Figure 2.1|shows an electron and a proton gyro-orbit, drawn more
or less to scale, for equal particle energies W = mv?% /2. The ratio of the two
gyro-radii is the square-root of the ratio of the proton mass to the electron mass,
/1837 &~ 43. Note that v, is proportional to (W/m)'/2, and w, is proportional
to 1/m, so r_ is proportional to (mW)!/2,
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Figure 2.1. Ion and electron gyro-motion in a magnetic field. For fixed energy, the ion’s
gyro-orbit is much larger than the electron’s. ‘X’ indicates that the magnetic field faces
into the page.

The centers of the gyro-orbits are referred to as their ‘guiding centers’,
or ‘gyro-centers’, and give a measure of a particle’s average location during
a gyro-orbit. Averaging equation (2.9) over a gyro-period, the guiding-center
position for the particular initial values considered here is seen to be given by

Xge = x; +i(vy /we)exp(id) Yee = ¥i F (vi/w)exp(id) (2.10)

so that the particle’s position described in terms of its guiding-center position is
given by

X = Xge — i(vL /wc)exp(iwct + i8)
Y = Yo £i(v1 /wc)expioct + i8) 2.11)
2 =2ge =2 + gt

Thus we can think of particle gyro-centers as sliding along magnetic field lines,
like beads on a wire. Note that electrons and ions rotate around the field lines in
opposite directions, with the upper sign giving the phase for positively charged
particles. If you point your two thumbs along the direction of the magnetic field,
the fingers of your left hand curl in the direction of rotation of positively charged
ions, while those of your right hand do the same for electrons. These directions
of rotation are both such that the tiny perturbation of the magnetic field inside
the particle orbits, due to the current represented by the particle motion, acts to
reduce the ambient magnetic field. High-pressure plasmas reduce the externally
imposed magnetic field through the superposition of this ‘diamagnetic’ effect
from a high density of energetic particles.

The ion and electron Larmor radii and gyro-frequencies provide
fundamental space-scales and time-scales in a magnetized plasma. Phenomena
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which occur on space-scales much smaller than the gyro-radius, or on time-
scales much faster than a gyro-period, are often insensitive to the presence of
the magnetic field, and can be described using equations appropriate for an
unmagnetized plasma. In the opposite limit of large space-scales and long time-
scales, gyro-motion is crucial to plasma behavior, and generates some surprising
phenomena—somewhat akin to the behavior of a gyroscope which responds
to any attempt to change the orientation of its axis of rotation by moving at
90° to the applied torque. Some plasma phenomena, especially in the Earth’s
magnetosphere, can occur at intermediate space-scales and time-scales, such
that the electrons can be considered magnetized, while the ions are essentially
unmagnetized. In our discussion of particle motion, however, we will generally
consider space-scales much greater than a gyro-radius, and time-scales much
longer than a gyro-period of either species, unless we specifically state otherwise.

Problem 2.1: Look through articles in Physical Review Letters, Plasma
Physics, Physics of Fluids B (recently renamed Physics of Plasmas) or in
other journals over recent years and find at least one article each about
laboratory, solar or terrestrial, and astrophysical plasmas immersed in
magnetic fields. Give the reference and a few-sentence description of
each article. For the plasmas you find described, evaluate the ion and
electron gyro-radii and the Debye radius (ignoring ion shielding), insofar
as the authors give you the required information. Compare these to the
system sizes. Calculate how many particles are within a Debye sphere
for each case. Evaluate the ion and electron cyclotron frequencies and
compare to the evolution time-scale of the overall plasma. Which of
these systems are reaily plasmas? Which of these are magnetized versus
unmagnetized plasmas?

2.2 UNIFORM E FIELD AND UNIFORM B FIELD: E x B DRIFT

Starting from the configuration we have just discussed, with B = BZ, let us
add a uniform electric field E. We will assume that both the electric and the
magnetic field are time-independent. The non-relativistic equation of motion
becomes

mv=gE+vxB). (2.12)

Now we will employ a mathematical transformation, which we will justify later,
in order to solve this equation expeditiously. Let us define a velocity u by

u=v-(E xB)/B% (2.13)
In other words, u is the particle velocity that we would see in a frame moving

at velocity (E x B)/B2. Since E and B are time-independent, we have v = u
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and so, substituting for v in terms of u, equation (2.12) for i becomes
mua = g[E +u x B + (E x B) x B/B?]. (2.14)
Now, we use the vector identity
AxB)xC=A-C)B-(B-0CA (2.15)

(see ) to obtain

mi = g[E+ux B+ (E-B)B/B? — E]
= g[b(E - b) +u x B]. (2.16)

To obtain the equation for the velocity parallel to B, we take the dot-product of
equation (2.16) with b, giving

mu| = qE| 217
where we are defining
uy=u-b E,=E-b vy =v-b. (2.18)
From equation (2.13) we see that u; = v, and so the solution for vy is just
free-fall in the electric field:
v = (qE /m)t + vy, (2.19)

To obtain the equation for the velocity perpendicular to B, we multiply both
sides of equation (2.17) by b, and subtract from equation (2.16). We obtain

mi; =qu; XB 2.20)

whereu; =u—ub,E; =E— E/band v, = v— yb.

Thus, in the direction perpendicular to b, we have precisely the same
equation for u as we had for v in the absence of an electric field, i.e.
equation (2.11). We have found that the solution of this equation implies that
the guiding center does not move at all perpendicular to B, and we know that it
slides along B with velocity u; = v| as given by equation (2.19). Thus, in the
frame moving at speed (E x B)/B?, the only guiding-center velocity we see is
parallel to B, so in the laboratory frame we see a guiding-center velocity

Vee = vyb + (E x B)/B* = vyb + v;. (2:21)

The velocity vg = E x B/B? is called the ‘E x B drift’. It is particularly easy
to evaluate this drift in SI units: E is in units of volts/meter, B is evaluated in
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units of teslas and vg results in meters/second. Notice that v is independent of
g, m, vy, and vy. This means that the whole plasma drifts together across the
electric and magnetic fields with the same velocity.

What we have actually done here is performed a simplified Lorentz
transformation, using the B field to eliminate the E field in the moving frame,
and so simplified the equation of motion. Of course the Lorentz transformation
works the same for all particles, so the whole plasma vg-drifts together, relative
to what it would have done without the E field. Since we have chosen to use a
non-relativistic equation of motion, our Lorentz transformation is particularly
simple. The approximation we have used is equivalent to assuming that
y=[1-@/c) 2 ~1, 0 (v/e) K< 1.

For a more physical picture of the origin of the E x B drift without resorting
to the Lorentz transformation, consider how the particles are accelerated by the
electric field during part of their gyro-orbits, and are decelerated during the
other part. The result of these accelerations and decelerations is that the radii
of curvature of the gyro-orbits will be slightly larger on the side where the
particles have greater kinetic energy than on the side where the particles have
less kinetic energy, due to having climbed a potential hill. This gives rise to a
drift perpendicular to E, as illustrated in Figure 2.2.

E —»

B

© T

Figure 2.2. Electron E x B drift motion. The half-orbit on the left-hand side is larger
than that on the right, because the electron has gained energy from the electric field. The
dot indicates that the magnetic field faces out of the page.

Incidentally, in our derivation of the E x B drift, we did not have to assume
anything about the relative size of v and |vg|. Indeed, the whole guiding center
formalism can be developed for the case where |vg| is of order v (at the expense

_ of a greater complexity of terms), but we will hereafter assume |vg| < v in our
derivations.
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2.3 GRAVITATIONAL DRIFT

In the presence of any other simple force on the charged particles in a plasma, we
can apply directly the results we have derived for the electric force. In particular,
if we imagine a plasma in the Earth’s magnetic field, we might wonder what
effect the Earth’s gravity would have on it. We can simply replace the electric
force gE with a general force, F, in both the equation of motion and in its
solution (e.g. in the definition of u). This gives a guiding-center drift

vr = (F x B)/q B? (2.22)
or, in the case of gravity, where F = mg,
v, = m(g x B)/q B* (2.23)

which is usually called the ‘gravitational drift’.

Note that vg, unlike vg, depends on m and g. The presence of gravity gives
rise to a net current in a plasma, the ions drift one way and the electrons the
other—the ions, which are much heavier, drift much faster. In a finite plasma,
this current therefore gives rise to charge separation. Generally speaking, the
actual gravitational drift v, is very small, and we introduce it mainly for later
application of the idea of a ‘general force’ drift to the case of centrifugal force.

It is interesting to ask why it is that a plasma ‘cloud’ above the Earth does
not seem to fall down in the gravitational field. In fact, the gravitational drift is
horizontal, not vertical! (Galileo, for one, might have found this disturbing.) The
qualitative answer is that the ion and electron drifts are in opposite directions,
and so if the plasma is finite in the horizontal direction, perpendicular to B and
g, charge separation occurs, an electric field builds up (in the horizontal direction
and perpendicular to B), and the plasma does indeed drift downwards, after all,
due to the vg drift. To analyze this situation quantitatively—and to determine
whether the plasma falls with acceleration g—we must first understand how a
plasma responds to a time-varying electric field, E. We will return to this topic

Problem 2.2: The ionosphere is composed mostly of a proton—electron
plasma immersed in the Earth’s magnetic field of about 3 x 10~5T. How
fast is the gravitational drift for each species?

Copyright © 1995 IOP Publishing Ltd.



Chapter 3

Particle drifts in non-uniform magnetic
fields

In the previous Chapter, we studied particle drifts in uniform fields and developed
the fundamental concepts of Larmor radius, gyro-frequency, and gyro-center
motion. Now we consider magnetic field gradients both perpendicular and
parallel to B, and curved magnetic fields. We will find gyro-center drifts across
the magnetic field, and acceleration (or deceleration) along B. We will develop
the concept of ‘ordering’ the drifts in the ratio of Larmor radius to gradient
scale-length. To zeroth order, particles slide along B as before (but v will now
vary), and to first order they drift across B, but they still precisely conserve the
sum of potential and kinetic energy at each order.

3.1 VB DRIFT

We now proceed to examine particle guiding-center drifts in inhomogeneous
magnetic fields. We will assume in all of these studies that the gyro-radius,
rL, is much less than the typical scale-length of variation of the magnetic field.
Thus

rL

3 IVB| L 1. 3.1

For example, if B has a sinusoidal variation, B < exp(ikx), or an exponential
variation, B o exp(kx), this is equivalent to saying krp « 1, where 1/k is a
characteristic gradient scale-length for the problem. In this situation, the quantity
kri. becomes a useful ‘expansion parameter’ for studying the equations of motion
by the method of asymptotic expansion.

In our asymptotic expansion procedure, we will assume that the particle
velocities can be expressed as a sum of terms

v=vog+vi+vr+... (3.2)
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30 Particle drifts in non-uniform magnetic fields

where the leading term is the particle’s parallel velocity, v"f), plus its gyro-
motion perpendicular to B, and each successive term in the series is assumed to
be smaller than the previous one, by approximately kr.. We will be interested
here in calculating the evolution of vy and of v, and in fact at first order
we will only need the guiding-center motion averaged over many gyro-periods.
Substituting our form for v into the equation of motion, we will find that we
have terms in the equation of each order: (krp)?, (kro)Y, (krL)?, etc. If we solve
for vg, vq, v, etc., so as to make the terms in the equation of each order balance
separately, we will have an asymptotic series solution for v. This approach is
justified by noting that, in the limit krp — 0, terms of higher order in kry can
never be used to balance terms of lower order, because for small enough krp,
the higher-order terms must be negligible in comparison with the lower-order
ones.

We begin by considering the case where we have a perpendicular (i.e.
perpendicular to B) gradient in the field strength, B. For simplicity let us
assume that B is in the z direction, and varies only with y. (To generate this
field, we need distributed volume currents, since V x B # 0. Such currents are
common in plasmas, but do not affect directly our analysis of particle drifts. Of
more importance is the fact that our model field does not violate V - B = 0.)
We write

A dB
B= BociZ + (y = ygei) -2 (3.3)
dy
where yg.; is the initial y position of the particle guiding-center, and Bg; is
the value of B at yg;. We assume for the validity of our asymptotic expansion

procedure that r; (dB/dy) « B. The equations of motion in the perpendicular
(x and y) directions are

mvy = quy[Bge i + (Y — Ygc,i)(dB/dy)]

] 3.4
mvy = "'qvx[Bgc,i +(y - )’gc.i)(dB/d)’)]-
Substituting the series expansion for v, we obtain
Mige + Miyy = q(UyO + vy])[Bgc,i + (yo— )’gc,i)(dB/dy)] 35)

mvyo + miy = —q(veo + vxl)[Bgc,i + (o — )’gc,i)(dB/dy)]-

We have ignored some of the terms that are second order in kri, but we have
kept all terms that might prove to be of lower order.

In thinking carefully about this procedure, we encounter one of the
interesting subtleties of using asymptotic expansions. We will assume that
(¥ = Yge.i)(dB/dy) is smaller than By ; by one order in krp. This requires that
(¥ — Yge.i) always be of order ry. for our series expansion to be correct. However
that means that y(r), which we do not yet know, must not grow without bound,
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because in that case the quantity (y — yg;) would not remain of order r., as our
ordering assumes. In particular y;(¢) must not grow without bound, so we must
watch out for such ‘secularities’ in y. In the case at hand this turns out not to be
a problem, as we will see; our solution will maintain (y — yg ;) of order rp—so,
a posteriori, our assumption will be proven correct. In more complex situations,
special techniques may be needed to eliminate secularities, but a valid solution
can often still be obtained via this asymptotic expansion procedure.

So let us proceed with our order-by-order solution of equation (3.5). The
zeroth-order terms in equation (3.5) constitute simply the equations of motion in
a homogeneous magnetic field, which we gave first in equations (2.2) and (2.3),
and whose solution is given in equations (2.7), (2.8) and (2.11). Our procedure
calls for us to assume that the zeroth-order terms balance, implying that the
zeroth-order velocities and positions must be given by our previous solution.
Next we gather together all the first-order terms (terms of order kri compared
to the largest ones) to generate a first-order equation that we must solve:

muyx| = quy Bge i + qVyo(Yo — Yge,i)(dB/dy)

. 3.6)
mvy; = —qUxi Bgei — qUxo(yo — ygc.i)(dB/dY)-

To make further progress, we will now time-average both of these first-
order equations over many gyro-periods, since we are only interested in the
gyro-averaged particle motion, sometimes called the ‘guiding-center drift’. We
use the notation ( ) here to indicate a time average. The left-hand side of both
equations can be set to zero, because all that survives the gyro-averaging process
are the time derivatives of m(vx1) and m(vy() due to changes that are slow
compared to a gyro-period, with the result that these terms are now very small
compared to the first terms on the right-hand side. We say that the gyro-averaging
process ‘annihilates’ these terms on the left-hand side. In effect it raises them by
one order, since only time derivatives slow compared to a gyro-period survive
the averaging. However for present purposes, the resulting second-order time
derivatives can be neglected. Next we note that (v,0(Yo — Yge.i)) = 0, since
equations (2.8) and (2.11) show that vyg and yo — yg; are 90° out-of-phase, and
of course, (vy0yge,i) = 0.

Problem 3.1: Prove that (v,o(yo — yg,i)) = 0 for all 5.

Thus (vy1) = 0, and so the particles do not steadily drift off in the
y direction—justifying our expansion procedure (which required that y — yg;
not grow without bound) a posteriori. The particles do, however, steadily drift
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off in the x direction, since

{vxo(Yo — Yge.i)) dB

= - . 3.7
(vx1) Bon, & (3.7
Referring to equation (2.11) and taking § = 0, we arrive at
(vxo(Yo — Yge.))) = E(Re[voexp(ivet)] Re[(vL/we)exp(iowet)])
= £v3 /Qw;) (3.8)

where the + sign goes with the charge of the particle. Note that (v.;) does not
even have a slow time derivative, so our assumption that (mv,;) was negligible
is also consistent with our solution. Note also that By = Bg;, because the
particle is drifting in a direction in which B is constant.

Problem 3.2: Evaluate (v:o(yo — yg,i)) for arbitrary 5.

Recognizing that the choices for B to be in the z direction and for VB to
be in the y direction were arbitrary, we have for perpendicular gradients of B,
a guiding-center drift given by

inVB_E’inVB
20 B> g B3

3.9)

Vgrad =

where Vgraa is the gyro-averaged drift of the guiding-center, due to a
perpendicular gradient in B. We call this the ‘V B drift’. In SI units, with
energies in eV, equation (3.9) is particularly simple to evaluate: for a 1000eV
particle (and all its energy in W, ), in a 1 tesla magnetic field, with a gradient
scale-length of 1 meter, the V B drift velocity is simply 10° meters/second.

Note that the V B drift, like the gravitational drift, depends on the sign of
the charge of the particle, and so it gives rise to a net current, which in turn leads
to charge separation in a finite plasma and, consequently, a volumetric electric
field. Interestingly, at fixed energy the V B drift is independent of particle mass.
Notice that if v, is of order vy, this first-order gyro-averaged drift is indeed a
factor kr;, smaller than the parallel velocity of the particle along a field line,
v"b which is the only zeroth-order motion that would survive gyro-averaging.
This is consistent with our ordering procedure.

Problem 3.3: Assume e¢ is of order W, a particle’s kinetic energy, and
that the gradient scale-length of the electric potential is roughly the same
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size, 1/k, as the scale-length of variation of B. Show that v is the same
order in kri @S Vgrad.

There is a simple physical picture for the VB drift, which follows from
the fact that the local radius-of-curvature of the gyro-orbit is smaller on the
larger-magnetic-field side of the orbit, and correspondingly larger on the smaller-
magnetic-field side. If we construct a continuous trajectory from smaller orbits
on one side, and larger orbits on the other, we find a net drift perpendicular to
both B and V B, as illustrated in Figure 3.1.

B B me——— T

©

VB

Figure 3.1. Ion VB drift motion. The combined effect of smaller gyro-orbits on the
high-field side and larger gyro-orbits on the low-field side produces a net leftward drift
of the guiding center. The dot indicates that the magnetic field faces out of the page.

3.2 CURVATURE DRIFT

In the previous Section, we made the assumption that there was a gradient in the
magnetic field strength, B, but that the vector B was purely in the z direction, i.e.
the magnetic field lines were straight. As we saw, this required volume currents,
but these did not affect our analysis. Now we will make another special, but
useful, simplifying assumption: that the field lines are locally curved with radius-
of-curvature R, but that the field strength B is locally constant. A magnetic
field with these properties can also be achieved with volume currents. Imagine
a current-carrying cylinder with j, o« r~! where j, is the current density in
the z direction. The total current I in the z direction within any radius r then
increases linearly with r, i.e. I o r, so that from the usual formula B o I/r, the
#-directed magnetic field is independent of r. Again, these volume currents are
an artifact employed to produce the assumed magnetic field; they do not enter
into the analysis of particle drifts.

Now we will solve for the guiding-center drift in a locally cylindrical
coordinate system (r, 6, z) matched to the local curvature of the magnetic field
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lines, such that & = b. To zeroth order in kry, particles move along the 6-
directed field lines with parallel velocity v)b, and spiral around the field lines
with speed v;. To solve for the first-order motion, we transform to the rotating
frame that is moving with the zeroth-order particle motion in the 6 direction. In
this frame, the usual equations of motion hold, except for a centrifugal ‘pseudo-
force’ in the radial direction, namely

Fcf= Tr:mv”—— (310)

where we have defined a radius-of-curvature vector R, which is drawn from the
local center-of-curvature to the field-line, as shown in Figure 3.2. (A Coriolis
pseudo-force could also arise from drift motion in this rotating frame, but it will
turn out that the drift motion is parallel to the axis of rotation, so the Coriolis
force is zero in this particular case.)

Figure 3.2. Geometry for calculating the curvature drift.
The radius-of-curvature vector is drawn from the local
center-of-curvature to the field line.

Using equation (2.31), we can then directly deduce

v = =
curv q B2 Rg q B2 Rg

(3.11)

where W, is the particle’s parallel energy. The vector radius-of-curvature, R,
may not be a familiar way to describe local magnetic field geometry. In fact,
however, any curved magnetic field can be characterized locally by a radius-of-
curvature R;, meaning that dﬁ/ds (where s measures length along the field line)
= —R./R2. This is easily verified for the locally cylindrical geometry we have
assumed, where the equivalent statement is just (1/r)d0/d9 = —f/r. Since the
d/ds operator is just the derivative along the direction b, the radius-of-curvature
can be re-expressed

R./R*=—(b- V)b (3.12)

giving a more common expression for the ‘curvature drift’

2w
Veurv = (qu> [(b V)b] (3.13)
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In many cases, especially when the plasma pressure is low and volume
currents are low, the magnetic field in the plasma is approximately curl-free. In
such cases, the magnetic field necessarily has both a gradient and curvature. For
these so-called ‘vacuum fields’ (with no volume currents), the curvature drift
can be put in a simpler form, closely related to that of the V B drift. Referring
to Figure 3.2, it is clear that if a vacuum field is characterized over a local
region by this geometry, then the magnetic ﬁeld strength must fall off in the
perpendicular direction with

(VB), = —BR./R>= (B- V)b (3.14)

in order for the field to have zero curl in all directions perpendicular to B. (This
result is established more formally in Problem 3.9.) Thus we can rewrite the
curvature drift for vacuum fields as

viBx VB _2W;Bx VB

3.15
w, B? q B3 (3.15)

VYeurv =
which is identical in form to the V B drift given in equation (3.9), except that
W, has been replaced by 2W;. Note that the % sign again goes with the sign of
the charge. In an anisotropic Maxwellian plasma, (W) = T}/2 and (W, ) =T,
where the average here is taken over the velocity distribution; so the average of
the combined V B and curvature guiding-center drifts for the particles in such
a plasma, in a vacuum magnetic field, is

T||+TJ_BXVB

= (3.16)

{Veurv + vgrad) =
For an isotropic plasma, T + T, = 2T.

We have derived the E x B drift, the V B drift, and the curvature drift
each in a rather specialized geometry. However, these drifts do not interfere
with each other. Imagine adding a magnetic field gradient perpendicular to B or
an electric field perpendicular to B to the present proof. They would give rise
to the same cross-field drift we calculated before: the larger and smaller sides
of the gyro-orbits would be formed, and net drifts would result just as before.
Parallel gradients in b (with gradient scale lengths >> ri.) which gave rise to the
curvature drift do not affect the other drifts, since the parallel motion played no
role in those derivations. It is interesting, however, that the presence of these
other drifts would give rise to a Coriolis force in the present calculation—but
only in the direction parallel to B. We will return to this issue when we discuss
conservation of energy and magnetic moment to first-order in kry.

Problem 3.4: An anisotropic proton—electron plasma is immersed in the
magnetic field from an infinite wire carrying current I, = 10°A. This
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plasma has uniform density n = 10°m=3, T, = T;; = 2keV and
Tie = Tj; = 5keV. At radius R away from the wire, what are the average
ion and electron V B and curvature drift velocities? What is the total (ion +
electron) guiding center current density, j = Y nqv, in the plasma (where
the summation is over species), and in which direction does this current
flow? (Ignore the magnetic field due to the current in the plasma.)

3.3 STATIC B FIELD; CONSERVATION OF MAGNETIC MOMENT AT
ZEROTH ORDER

So far we have considered gradients of B which were perpendicular to B, and
they gave rise to drifts which were also perpendicular to B. We have considered
the equation of motion parallel to B only in the sense of noting that the solutions
of the guiding-center motion have represented free acceleration or deceleration
along b by a parallel electric field. Now we will consider the case of gradients
of B along the direction of B, which result in significant modifications of the
equation for the parallel velocity.

Consider a static magnetic field which is pointed primarily in the z direction,
and whose magnitude rises with |z|. To satisfy V - B = 0, the field lines must
converge away from z = 0. This could be arranged, for example, by having
a solenoidal current winding, with a higher density of turns near the ends, as
illustrated schematically in Figure 3.3.

As we have seen, a particle gyrating around a magnetic field line in

Currents

Magnetic Field Lines

Magnitude of B

Figure 3.3. Currents in a solenoidal winding and the resulting ‘mirror’ magnetic fields
inside the solenoid, shown schematically.
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this system will drift across the non-uniform magnetic field dominantly in the
@ direction, due to the VB and curvature drifts. However, we are concerned
here with particle motion along the magnetic field, and—as it will turn out—
changes in the mix of parallel and perpendicular velocity which result. Unlike
the VB and curvature drift velocities, these velocity changes will not be of
order krp compared to vo—they will be of order unity. The case illustrated in
Figure 3.3 is axisymmetric around the z axis, i.e. 3/36 = 0, and By is zero, so
the only component of B besides B, is B,. This symmetry is not important to
our analysis—the only geometrical property of the field that we will use is that
the characteristic scale-length of variation of B is long compared to a gyro-radius
(a by-now familiar condition).

Consider a differential cylindrical volume centered around a magnetic field
line somewhere in the system where the field lines are converging (such as,
but not necessarily, along the z axis of Figure 3.3). Now choose a new local
cylindrical coordinate system (r, 6, z) centered on this cylinder, with 2 = b as
shown in Figure 3.4.

=%

Figure 3.4. Geometry for calculating parallel acceleration.

B

We must have V -B = 0 everywhere in the volume, so Gauss’s law implies
that there can be no net flux out of our differential volume. The net flux out
through the end faces is 7 (8r)?8£(dB/dz). This plus the net flux out through the
sides of the cylinder must be zero. Thus, the average radially directed B field
in the local coordinate system, (B,) = (B - ), is determined by

7(8r)28€(dB/dz) + 2m8r84(B,) = 0 (3.17)
o 5r dB
or

Let us now suppose that the radius of the cylinder, dr, is chosen to be the
gyro-radius of a particle whose guiding center lies on the axis of the cylinder. In
this case, it is just this (B,)F which must be crossed with the azimuthal velocity
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v, to give an average Lorentz force directed back along the magnetic field line.
Averaging around a gyro-orbit we obtain (again assuming r, is small)
lglvidB W, dB
20, dz = B dz’

(F) =— (3.19)
Equation (3.19) gives a force in the direction opposite to the field gradient for
both electrons and ions.

It is convenient at this point to note that the quantity mvi /2B =W, /B
is the magnetic moment, u, of the gyrating particle, because it is indeed equal
to I A, the current represented by the moving charged particle times the area of
the loop it circumnavigates. The current is / (amperes = coulombs per second)
= |glwc/2m, while the area is A = rrrﬁ = nvi/wf, SO U = |q|vi/(2wc) =
mv? /2B = W, /B.

Thus, we obtain g 4B

Yy
m e u P (3.20)
where we have transformed back into a general coordinate system, in which we
parameterize distance along the field line by the variable s.

We can next use equation (3.20) to determine if u changes in time to zeroth
order in kr. Multiplying both sides of this equation by vy (= ds/dt) in order
to obtain an energy-conservation-type of equation, we have

d {mvl dB ds dB
" (%) =—p—— = —p— (3.21)

where dB/dt is the total derivative, meaning the time-derivative as felt by the
particle, due to its motion in the static magnetic field: specifically, dB/dt =
dB/dt + v V| B, if we only include the zeroth-order guiding-center motion.
(The partial time derivative, 0 B/3t at any fixed position, is zero because of our
assumption of a static B field.) We also know, however, that in the presence
of only a static magnetic field, the total kinetic energy of the particle must
be separately conserved at each order in kri, since higher-order terms cannot
correct a mismatch in energy in a lower-order equation. Thus, we can ignore
any energy in the V B and curvature drifts as being second order (vgzc), and any
dB/dt due to them as being first order (vg - V), giving at zeroth order

d [mvi my? d [(mv?
@ (T"JFTl) ot (T”+“B> =0 62)

Substituting equation (3.21) into the last part of this equation, we have

dB

d
g + a(uB) =0 (3.23)
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which reduces to
du/de = 0. (3.24)

This invariance of p implies that the velocity component v increases as the
particle moves along magnetic field lines into a region of higher magnetic field
strength, in just such a way as to maintain W /B constant. Since the particle’s
energy is also constant, it follows that the parallel component v decreases as
v, increases. As a particle moves into a region of higher field-strength, e.g.
towards an end of the solenoid shown in Figure 3.3, its velocity along the field
decreases.

3.4 MAGNETIC MIRRORS

With the understanding of particle motion in static non-uniform B fields that we
have now developed, we are able to understand the basic principle of one of
the primary ‘magnetic traps’ for confining plasma, both in the laboratory and in
nature: the ‘magnetic mirror’. Since a particle’s kinetic energy, W, and magnetic’
moment, &, are both constant (in the absence of E fields) the particle’s paraliel
velocity will vary as it moves into regions of different field strength according
to

mv}

- = W — uB. (3.25)
As the particle moves from a weak-field region to a strong-field region in the
course of its motion along a field line, it sees an increasing B, and therefore its
parallel velocity v decreases. If B is high enough in the ‘throat’ of the mirror
(see Figure 3.3), v; becomes zero, and the particle is ‘reflected back’ toward the
weak-field region, a process that serves to hold both electrons and ions within
the solenoidal field structure. Mirror trapping does not work, however, for all
values of the ratio vy /v. For instance, a particle with vy = v, vz =0, has a zero
magnetic moment u, and will not experience any decelerating force at all as it
approaches a high-field region.

If the minimum field along a field line at the midplane is defined to be
Brin and that at the mirror throat Bp,;, it is clear from the constancy of particle
energy that all particles with u > W/B,, are trapped, because, if such a
particle were to reach the mirror throat with u conserved, this would imply
Bmax = W > W, which is not possible. Translating to v;/v at the midplane
we have, for the marginally trapped particles,

W, (midplane) = pBmin = W Bmin/ Bmax
W) (midplane)/ W = (1 — Buin/Bmax)

Copyright © 1995 IOP Publishing Ltd.



40 Particle drifts in non-uniform magnetic fields

that is,

vy (midplane)/v = (Bmin/ Bmax)'’*

vy (midplane)/v = (1 — Bunin/Brat)' 2. (3.26)

Particles with lower v /v at the midplane are trapped by the mirror field, while
those with greater vy /v are in a ‘loss cone’ in velocity space, defined by

vj/v > (1 = Buin/ Bmax) "2 (3.27)
or equivalently
v} /vL > (Bmax/Bmin — 1)'/2 (3.28)
as shown in Figure 3.5.
Vi

Vi vy
Figure 3.5. Velocity-space ‘loss cones’ in a magnetic mirror. The angle of the loss cone
is given by equation (3.26).

The concept of a loss ‘cone’ derives from recognizing that the v axis really
represents two dimensions, and Figure 3.5 can be rotated around the vy axis to
represent a fully three-dimensional velocity space. Since all particles below
the diagonal lines are rapidly lost from the system, a mirror-trapped plasma is
never isotropic in velocity space. The magnetic loss cone is independent of the
charge and mass of the particles. However, when particles collide with each
other, they change the direction of their velocity vectors and can ‘scatter’ into
the loss cone. Thus the species that collides more frequently (the electrons for
T. ~ T, as we will see in will be lost preferentially. An electric
field will then build up, corresponding to a positive electric potential in the
central region, holding back the electrons along the magnetic field lines, and so
electrostatically ‘plugging up’ the low-energy portion of the electron loss cone.
This electric potential builds up to the point where it keeps the net outflux of
electrons balanced with the slower outflux of ions. However, more energetic
electrons will still escape over the ‘top’ of the electrostatic ‘plug’ in velocity
space, so electron thermal losses still tend to dominate the energy balance of
mirror-trapped plasmas, while ion scattering sets the pace for the particle loss.
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Problgm 3.5: Assume B = ZBy(1 + yz2). To lowest order in kry (i.e. only
the v;b motion), calculate the bounce period for a particle moving back
and forth in this magnetic well. Note that ds = v;dt.

Problem 3.6: Consider a 10keV energetic ion in the Van Allen belts
~ 10¢ m above the Earth’s surface, in a dipole magnetic field of ~ 1076 T.
Estimate the curvature and VB drift speeds of this particle. Compare
them with the gravitational drift speed.

3.5 ENERGY AND MAGNETIC-MOMENT CONSERVATION TO
FIRST ORDER FOR STATIC FIELDS*

Although we have made use of the constancy of a particle’s kinetic energy in
our proof of the constancy of 4, it is important to note that p-invariance is valid
in much more general circumstances, and to higher order, including cases where
the kinetic energy is not constant (see {Chapter 4, where we treat time-dependent
fields). It is also important to understand how total energy conservation (kinetic
plus potential) works to first order in kry. For this purpose, let us consider the
case where there is a static electric field, as well as the static magnetic field,
with arbitrary gradients but with kri, small as usual.
We will start by re-examining energy conservation in zeroth order, including
E # 0. The parallel equation of motion is simply
dv dB d dB
m—t =B —puo- = —qa‘—f —ug (3.29)
obtained by adding a parallel electric field to equation (3.20), and using
E, = —d¢/ds, which is possible because we have assumed dB/d¢t = 0. Again

we multiply by vy = ds/dt to see energy conservation from a ‘kinematic’
(following the trajectory) point of view, to zeroth order in kry:

d (mv} d¢  dB

G (5)- g o

where we are still ignoring any contribution of the VB and curvature drifts to
dB/dt and to d¢/dt, as being higher order in kr.. The sum of the particle’s
kinetic plus potential energy must be conserved at each order in kr;, (and so
specifically at zeroth order); thus we have a zeroth-order energy conservation
equation from first-principles considerations:

d [mv}

Copyright © 1995 IOP Publishing Ltd.



42 Particle drifts in non-uniform magnetic fields

Using equation (3.30) to substitute for the first term in equation (3.31), we again
obtain equations (3.23) and (3.24), and so 1 is conserved at zeroth order in kry,
even in the presence of a static electric field.

Next we move to first order. We will see that adding first-order effects to the
analysis generates a flurry of additional terms, which reveal interesting transfers
of energy between potential, perpendicular kinetic, and parallel kinetic energy,
but all of which cancel perfectly in their effect on our proof of u conservation.

We must begin by including a missing first-order term in the parallel
acceleration equation, namely equation (3.29). This term arises from the Coriolis
pseudo-force, for the case where wxvg # 0. (Here we introduce a vector w
= —v“Bch /R? whose magnitude is vy /R and whose direction points along the
z axis of the local coordinate system we established in deriving the curvature
drift.) The curvature drift, v, as we noted when we derived it, satisfies
wxvVg = 0, but the E x B drift, vg, may not, and the result will be a parallel
acceleration. (The case where wXVgaq # O is handled in Problem 3.7.) We
calculated the curvature drift by locally approximating B as lying on a circle with
radius-of-curvature R., and transforming to the rotating frame where vy = 0.
The E field in this frame is equal to the stationary-frame E field, since the local
frame velocity is parallel to B. However, due to the v drift, there is also a
Coriolis pseudo-force in this frame, F. = —2m (wxvg). This shows up as a
new first-order term for m(dv/dt) in the rotating frame:

d )
m 2 = —2m(w x vg) - b = — Ty, . R.. (3.32)
2
dr WXVE Rc

The wxvg subscript indicates the component of the total derivative due to the
Coriolis force which arises from the E x B drift. The second equality follows
from writing (WXxvg) - b= (f)xw) . vp and noting that bxw = v"Rc/Rf. To
translate this result to the laboratory frame, we note v (lab) = v (rotating)+wR,,
and so

dv” _ dv,( + wdRc
dt |y dt | dr
dv”
= —| +4ovg-R/R
dt rot )
dy v
= —| + —=ve-R. 3.33
dt ot Rng C ( )

Thus, in the laboratory frame, we have

dv" mu)
m— = - vg - R.. (3.34)
dr WXVE Rc2 ¢
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This is a new first-order term that must be added to the right-hand side of
equation (3.29).

Note that by conservation of angular momentum, mv; R must be constant
if E is locally perpendicular to B and dB/ds = 0. Equation (3.34) nicely shows
that the first-order drifts do indeed conserve angular momentum in this situation,
when the parallel Coriolis force is included. Multiplying through by v, as we
did to derive equation (3.30), and substituting the full expression for vg we have

Wyl 8 (V6 xB) R my

= myy = 335
ar g B’R, R, (3.35)

WXVYp

(where the wxvg subscript again indicates the component of the total derivative
due to the Coriolis force—now in the laboratory frame). This is a new first-order
term that must be added to the right-hand side of equation (3.30), the zeroth-
order ‘kinematic’ energy balance equation, in order to make it correct to first
order when wxvg # 0. Note that the total derivatives in that equation were
explicitly evaluated only in terms of the zeroth-order motion along b.

Now we will find the elegant result that a first-order interpretation of the
total derivatives on the right-hand side of equation (3.30) will provide just this
new first-order term! In going from equation (3.29) (parallel acceleration) to
equation (3.30) (kinematic energy balance), at lowest order in krp, we assumed
d/dt = vyd/ds, with 3/3t = O (static fields). Including terms at first order in
krp—interpreting equation (3.30) as it stands as including first-order terms as
well as zeroth-order terms—we take the total derivative d/dr as

d/dt = 8/0t + Vg - V (3.36)

where the first-order terms of vy (the VB drift, the vg drift and the curvature
drift) are now included. Thus the terms gd¢/dt and udB/dt have first-order
components that need to be evaluated in order to obtain all the first-order
components in the right-hand side of equation (3.30). Surprisingly, this first-
order interpretation of equation (3.30) will provide just the term we need to
represent the new first-order term due to the Coriolis force.

The extra first-order term on the right-hand-side of equation (3.30) due to
the curvature drift dotted with V¢ is

—mvi (R x B)

—qVeury * Vo = B2 Rcz

Vo. (3.37)
This term is exactly equal to the Coriolis force term (equation (3.35)) in its
effect on the kinematic energy balance. Thus, equation (3.30), when interpreted
as including vy in the total derivative, gives the correct answer for dW,/dt,
including the first-order effect we just calculated from the Coriolis acceleration.
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Insofar as kinetic and potential energy are exchanged due to curvature drifts
in the direction of V¢, the particle absorbs this in the W component, without
changing u or W,

Problem 3.7: Calculate the analog to equation (3.35) where the VB
drift causes the Coriolis force (this requires w x vga¢ # 0). In this case
vaury* VB # 0 also, so calculate the effect of the curvature drift on udB/d:.
Then show that the first-order interpretation of d/dtr on the right-hand
side of equation (3.30) including uvg.q + VB provides just the required
effect of the Coriolis force on W,. In this case W is exchanged with W _,
again without changing u. (This particular situation can only arise when
V x B # 0, i.e. when there are volume currents.)

The V B drift also gives rise to a first-order gd¢ /dt term

-W,.(BxVB)

—u(B x VB)
B =—75 v

Vo 7

—qVgrad * V¢ = ¢ (3.38)
but no additional dB/dt term, since Vgraq + VB = 0. The vz drift gives rise to
an additional first-order udB/dr term, but no gd¢/dt term, since vg + V¢ = 0.
We have
(V¢ xB)
B2
We see from equations (3.38) and (3.39) that the contributions to the first-order
interpretation of equation (3.30) from Vy,q to gd¢/dt and from vz to udB/dr
sum to zero, so there is no net change in equation (3.30) when we take into
account the total derivative to first-order in kr. due to the sum of the VB and
v drifts. The change in kinetic energy, W, due to the V B drift along V¢ is
absorbed into p times a change in B (i.e. a change in W, ), with no required
change in 1 and no change in W). Thus equation (3.30) is fully correct to first
order (including the Coriolis effects) when d/dt is interpreted as including all
of the first-order guiding-center drifts. Energy conservation (equation (3.31)) is
correct as it stands to first order, since the first-order guiding center drifts would
contribute to energy terms only at second order. The proof of n-conservation,
now to first order, follows directly from these two equations as shown before at
zeroth order in equations (3.23) and (3.24).

In summary, when a particle’s curvature drift carries it across an electric
potential, its vz drift moves it in the direction of the local radius-of-curvature.
The particle balances the change of potential energy with a change in W), thereby
conserving angular momentum. When a particle’s V B drift carries it across an
electric potential, it balances the change in potential energy with a change in

~uve VB =pu VB. (3.39)

Copyright © 1995 IOP Publishing Ltd.



Derivation of drifts: general case* 45

W, because at the same time its vg drift is carrying it to a region of changed
B—and p is conserved. In the case where V x B # 0, curvature drifts can also
move particles to regions of changed B, and then W and W are exchanged,
conserving energy, angular momentumn and magnetic moment, u.

We have shown now that the nominally zeroth-order kinematic energy
balance, equation (3.30), is also perfectly correct when the convective derivative
is interpreted at first order. We were able to show that the net effect of the extra
terms which arose from considering the first-order interpretation of d/dt (i.e.
including vy + V in d/dt) is equal to the physical effect of the Coriolis force
on W;. Thus, equation (3.30) is a reliable basis for calculating vy (¢) for the
purpose of evaluating particle drifts in time-independent fields. Note, however,
that equation (3.29) for parallel acceleration is not accurate to first order. The
correct result, starting from kinematic energy balance, equation (3.30), is

dv" q d¢ 73 dB

" dt Y dr v dt (3.40)
where the total derivatives include the contribution of all the first-order drifts.
As we have seen, the effects of the VB and vy drifts cancel perfectly on the
right-hand side of this equation, but the curvature drift can have a net effect on
—qd¢/dt — ndB/dr. Equation (3.40) can be difficult to evaluate, so in time-
independent situations it is usually easier to obtain v, from energy conservation:
mvﬁ/Z + uB + e¢ = constant. The simplest way to calculate W, is then from
L conservation.

Problem 3.8: Consider a particle orbiting at radius r in the magnetic field
from an infinite wire carrying current I in the z direction. Imagine there is
also a constant electric field of magnitude E pointing in the z direction. At
t = 0, evaluate dr/dt, dz/dt, dW,./dt and dW, /d: for this particle’s guiding
center, in terms of E, I, r, the particle’s mass m, charge ¢, and its initial
parallel and perpendicular velocities vy, v 0.

3.6 DERIVATION OF DRIFTS: GENERAL CASE*

In this Chapter, in order to provide the clearest possible derivations of the VB
and curvature drifts, we have used special geometries, in which the magnetic
field had either a gradient but no curvature, or curvature but no gradient. In fact
these two drifts describe completely the lowest-order cross-field guiding-center
motion in any static non-uniform magnetic field. The addition of a perpendicular
electric field perpendicular to the magnetic field simply adds the vg drift to the
other first-order drifts, provided that the electric field is small enough for vg
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to be a first-order velocity. These results can be derived formally by extending
the methods used earlier in this Chapter to general field geometry, although the
analysis requires more sophisticated vector manipulations.
We begin with the particle’s equation of motion, which to zeroth order is
simply
dv

m—&tg = gvp X Bg (3.41)

and describes gyration about a fixed guiding center, plus parallel motion. Note
that, in equation (3.41), we have taken care to employ the magnetic field at
the particle’s ‘average’ position, i.e. its guiding center. In this order, the vector
relationship between the particle’s position xg and its guiding center X, o can
be written (for a positively charged particle)

Xo = Xge,0 — Vo X b/wc. (3.42)

Moving now to first order in our expansion in kry, the equation of motion must
take account of the difference between B at the particle’s position x and Bg,
i.e. :
B =By — —[(vo X b) - V1B, (3.43)
c

and it must also allow for the first-order time dependences of the zeroth-order
guiding-center velocity (i.e. time dependences much slower than gyro-motion),
which we denote (d/dt),. Keeping all these terms and also the electric field, the
first-order equation of motion after time-averaging over many gyro-periods is

m (ad;)l (vb) =q(E + (v) xB) — %(Vo x [(vo x b) - VIB) (3.44)
where ( ) denotes the time average. The time-average guiding-center velocity
{vy) is simply the drift across the magnetic field, which we denote v4. Since
we are considering here only time-independent fields, the left-hand side of
equation (3.44) arises only from the spatial derivative following the guiding-
center motion, i.e.

de

(where we have implicitly included any time variation of v as a spatial
derivative).
Taking the cross-product of equation (3.44) with B, we obtain

d . . .
<—> (vyb) = vyb - V(yyb) (3.45)
1

B x (vo x [(vg X b) - V]B)

= = +
Vg = (Vi) = Vg 0.5

1
w.B

+ ——B x [v;b - V(v;b)] (3.46)
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where vy = E x B/B? and £ denotes the sign of the particle’s charge. The
second term on the right-hand side will give rise to the V B drift. The last term,
which arose from the slow change in mvy (equivalent to the centrifugal force in
the rotating frame discussed in Section 3.2) will give rise to the curvature drift.

First consider the second term on the right-hand side of equation (3.46).
Since vy describes gyro-motion, the time-average of an element of the tensor
formed by the product of two vg-vectors will be given, in index notation (see

Repent ). b
AT
(U05U0j> = _81'_/' + v — = b;bj. (347)

This result can be derived by considering a local coordinate system b, & L, bxe 1,
where & is a unit vector perpendicular to b at an arbitrary angle. Then we have

v = yb + vicoswr &) + v? sinwt bxeé,.
Thus
(vv) = vibb + (v1/2)8 8, + (v1/2)(b x &1)(b x &1)
= (v} — v} /2)bb + (v} /2)[bb + 8,8, + (b x &,)(b x &.)].

Using index notation, the second term on the right-hand side in equation (3.46)
can now be simplified as follows:
- ~ 8By
(vo X [(vo x b) - VIB); = (GiijOjelanOmbn'g)
1
v2 ~ aBk
= —zieijkeljnbna_xl

2
vy I 3Bk
= = 5i6n_’8in5 bn_
5 (818 k) ox1

S (2252

2 ax; '"axk
2
_v (3B _,
- (2 i)
v2
= —%(VB),» (3.48)

where we have used the expression for the product of two Levi-Civita symbols
in terms of Kronecker delta functions given in Appendix D. We have also used
0By /dx; = V - B = 0. This term will clearly give rise to the VB drift.
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In the third term on the right-hand side of equation (3.46), only the term
with the gradient operator applied to b and not to v, will survive, since the other
term will contain b x b = 0. Thus

B x [y)b- V(vjb)] = v{B x (b- V)b. (3.49)

This term evidently will give rise to the curvature drift.
Substituting equations (3.48) and (3.49) into equation (3.46), we obtain our
final expression for the guiding-center drift

&BxVB_{_Z_WﬂBx(B-V)B

V4 = Ve B3 q B?

(3.50)
which is the vg drift, together with the sum of the VB drift given in
equation (3.9) and the curvature drift given in equation (3.13). This completes
our formal proof that the previously derived drifts apply generally to non-uniform
fields with gradient scale lengths > rp.

Problem 3.9: For a field with V x B = 0, prove that the relationship
Bx (b -V)b=bxVB

holds generally, thereby formally demonstrating that the curvature drift
takes the form given in equation (3.15) for vacuum fields. (Hint: start with
0 = b x (V x B) written in index notation using the Levi-Civita symbols.
Reduce this to a different vector equation and take its cross-product with
b to obtain the desired result.)
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Chapter 4

Particle drifts in time-dependent fields

So far we have considered the guiding-center drifts that arise from perpendicular
electric fields and from various types of non-uniformity of the magnetic field,
all with gradient scale-lengths long compared to a gyro-radius. In these cases,
the electric and magnetic fields were assumed to be constant in time. Now we
complete the analysis by considering the effect of time-dependences of these
fields, where we will consider only changes slow compared to a gyro-period.

4.1 TIME-VARYING B FIELD

First, let us consider the case of a time-varying B field, with a characteristic
time variation 3/9t ~ w « w.. From the point of view of a moving particle,
this slowness requirement is similar to the requirement on the spatial variation
d/dx ~k « 1/rL. Since d/dr gives the time derivative at the particle’s changing
position, the requirement & < 1/r already implies that the convective part of
d/dt satisfies the slowness requirement, because v - (3/8x) < v/r. ~ w.. Thus
we are requiring that the B field does not change much during a single gyro-orbit,
either due to its intrinsic time variation or due to the particle’s motion.

For simplicity, consider the case of a spatially homogeneous magnetic field,
changing in time. The equation for the parallel particle velocity v"f) goes through
as before. There is an interesting consequence for the perpendicular velocity,
however. With any time-changing magnetic field, Maxwell’s equations tell us
that there must be a curl to the electric field:

V xE = —3B/ot 4.1)

or using Stokes’s theorem:

fE-dl:/VxE-dS:—%(/B-dS) 4.2)
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where dl is an element of arc length along the perimeter of an area and dS is
an element of that area. The vector signs of dl and dS are determined by the
right-hand rule (fingers following dl and thumb pointing in direction of dS). If
we imagine following a negatively charged particle (¢ < 0, right-hand sense
of gyration) around its gyro-orbit, when dB/dt > 0, we see that gv -+ E is
everywhere positive, so that the particle will be accelerated steadily in v, as it
gyrates. Similarly, if we imagine following a positively charged particle around
its orbit (in the left-hand direction now) both ¢ and v have changed sign, so
again the particle is steadily accelerated in v, as it gyrates. Taking the time
average (indicated by ( )) around many gyro-orbits in order to determine the
average gv - E and consequent time-averaged change in W, , we have

d nrl 3B |q|lvi 3B W, 0B 3B

% (Wi)=¢q(v-E) = Iqlvl27‘rrL_{; = e 9 - B ot - v 4.3)
So, as noted before, W, grows steadily as B increases. Interestingly, W
grows in just such a way that u(= W, /B) is still conserved (again so long
as the characteristic timescale of changes in B is very slow compared to Larmor
gyration):

—=——=—-—=—=0. 44
dt B dt B? 3t (44)

Thus the magnetic moment is conserved in slowly time-varying magnetic
fields. Taking this together with the results of [Chapter 3, we conclude that so
long as w « w, and k « 1/r, the magnetic moment, 4, is a good constant of
motion in essentially all cases. It turns out that this implies that the magnetic
flux enclosed in a gyro-orbit, ytrEB, is also conserved, since

2 2,2
v B Tmev 2mm
ArfB=—i—=——=t =" 4.5)
wg q*‘B q

By including the new energy source associated with 9B/dt into
equation (3.30) we can now construct the full energy-conservation equation
appropriate for the guiding-center drift equations to first order in krp, where
we assume that all the drifts (including vg) are of order kr;, compared to the
particle velocities:

ad;(%mvﬁ—i—uB) =qvgc-E+u%. (4.6)
HeAre Vg is the sum of the VB drift, the v drift, the curvature drift and the
v b guiding-center motion. The vg drift of course does not contribute to vy « E.
(We are ignoring gravitational drifts, and gravitational potential energy.) Casting
equation (4.6) as an equation for vy we have

dv
mu,,d—t” =g+ (QE— uVB). 4.7
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Thus the B field acts as a potential field for the parallel energy, even when
aB/at # 0. For practical applications, equation (4.7) can be further simplified.
From the considerations in the previous Chapter (equations (3.38) and (3.39)),
the v drift contribution to equation (4.7) cancels the V B drift contribution, so
that all that is needed of v in this equation is the zeroth-order parallel motion
(x vy) and the first-order curvature drift ( vﬁ). This result that the relevant
part of vy scales at least linearly with vy is necessary in order that dvy/dt
remain finite as vy — 0 at mirror reflection points, in the presence of arbitrary
field gradients. When equation (4.7) is evaluated numerically, typically both
sides are first divided by vy, so that instead of evaluating v, - (9E — uV B)
and later dividing by vy (giving 0/0 at mirror reflection points), one evaluates
(Vge/vy) + (QE — 'V B) to obtain mdyy /dz. The relevant form of vg./v) needed
for this equation is just b+ my B x (b V)b/(qu)

Problem 4.1: Show explicitly that the vg drift contribution to equation (4.7)
precisely cancels the V B drift contribution.

The full set of equations required to solve for guiding-center particle motion
in slowly time- and space-varying magnetic and electric fields, up to first order
in kry and in w/w,, are thus

. ExB W BxVB 2WBx(b-V)b
vgc=v||b+ 3 -+ PYE + 7B

(4.8)

together with W, = uB (u constant) and the evolution of v given by
equation (4.7).

4.2 ADIABATIC COMPRESSION

The conservation of magnetic moment, u, means that a changing magnetic field
will heat (or cool) a plasma. Consider a cylindrical plasma in a solenoidal
magnetic field. If the field is ramped up in time, the perpendicular energies W
of all the particles will rise as well. It is interesting to note that the plasma will
be driven in towards the center of the solenoid, compressed away from the coils.
By equation (4.2), we have

2nrEg = —nr?3B, /ot 4.9)
and the radial drift velocity is

U S N (4.10)
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If we track any annulus of plasma inwards in time, we can evaluate the
time derivative of the amount of magnetic flux enclosed by this annulus:

d dr 0B
3 (nr?B,) = 27”Bza + yrrza—tz

where the last step is made by substituting dr/dr from equation (4.10). Thus
the entire plasma conserves magnetic flux as it moves in radially, just as the
gyro-orbits conserve flux. This property of plasma drifting at velocity vg is
sometimes called being ‘frozen’ to the magnetic flux lines and is considered
again in more detail in . (It is entertaining to observe that a plasma
needs to be very hot, so that its collision frequency is very low, in order for it to
be frozen to field lines.) As we will learn later, Coulomb collisions, whose rate
drops rapidly with increasing temperature, allow plasmas to become ‘unfrozen’
and to diffuse slowly across magnetic field lines.

=0 .11

Problem 4.2: Imagine that you have an isotropic magnetized plasma with
Tio = Tio = T;. Double the magnetic field slowly compared to a gyro-
period, but fast compared to the energy transfer time between T; and 7.
What are the new values of 7 and T, (call them T}, and T,;)? Now
let the plasma sit long enough for Tj; and 7.; to mix by collisions and
come to an isotropic temperature 7}, but not long enough for the plasma
to exchange energy with the outside world. What is 7;7 Reduce the
magnetic field back down to its original value slowly compared to a gyro-
period, but fast compared to the energy transfer time between T, and 7.
What are T, and T,,? And after the plasma becomes isotropic, what is
T,? This process is called ‘magnetic pumping’.

4.3 TIME-VARYING E FIELD

In order to understand plas'ma dynamics reasonably well from a particle-drift
point of view, it is necessary to know about one further drift motion, the
polarization drift, which is second order in w/w.. Consider a situation with a
uniform B field pointing in the z direction, and a time-varying spatially uniform
E field, pointing in the x direction. Starting from the Lorentz force equation

Uy = (gB/m)vy + (q/m)E,(t) = wcvy = (wc/B)Ex(t)
i)y = —vx(gB/m) = Fw.v,

where the + indicates the sign of g, and differentiating once with respect to
time, we obtain

o oy 4 @ IEO

4,12
dr? ¢ B 3t 4.12)
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E.(1)
=

d%v
y _ 2 2
— = —wvy — W

- : (4.13)

If we assume that the characteristic time of variation of the electric field
is long compared to a gyro-period, and take vg to be of order kr_ compared to
v, the terms on the right-hand side of equation (4.12) are, respectively, zeroth
order and second order (d/0¢ is higher order than ., and E/B is higher order
than v). The terms on the right-hand side of equation (4.13) are, respectively,
zeroth order and first order. Ignoring the second-order term, we have just the
equations we solved originally for the v drift, using the Lorentz transformation.
Thus the solution for vy is just the usual gyration and parallel motion, and v; is
just the vg drift, in this case in the y direction. If we substitute for v our formal
expansion in kry, the second-order parts of equation (4.12) are

(4.14)

Since we are only interested in the gyro-averaged drift, we can ‘annihilate’
the first term by averaging over many gyro-periods. If we do this average, then
d?(vy,)/d?? becomes much smaller than w?v,,—because we have smoothed out
any fast time variation—so the term on the left-hand side becomes higher order
than the other terms. It follows that v,y = +(w.B)"'3E,/dt. Equation (4.13),
at second order and averaged over many gyro-periods, just gives vy, = 0, by
the same argument. Since we could have chosen the x direction arbitrarily (but
perpendicular to B), we can express our result more generally, i.e.

dE, /dt _1dEL
wB ~ qB? dr’

vip== (4.15)

The direction of v, depends on the sign of g, and its magnitude depends
on m, so ions and electrons do not have equal velocities, and a net current is
driven in the plasma. This current is analogous to the polarization current in
dielectric materials (which is also proportional to dE/dt), so this drift is referred
to as the ‘polarization drift’, vp,. Note that it is by far dominated by ions
compared to electrons.

Problem 4.3: Our energy conservation equation, equation (4.8), is
consistent to order kr., but no higher. In other words, energy in the drift
motion such as m(vg,ad)2/2 is not included. However, as was mentioned
before, one can also derive guiding-center drift equations in the case
where vz is not assumed to be small compared to v,. In this case one
has to include mv%/2 in the energy equation, as well as the polarization
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drift in the first-order v, - E. For the simplest geometry—a uniform time-
independent B field in the z direction and a uniform, perpendicular, time-
dependent E field in the x direction—show that (d/df)mv%/2 = qVpo - E.
Draw what the drift orbits look like for ions and electrons in the case of
E, constant and positive and E, always greater than zero. Note that
we have not calculated all the other drifts for the case where vg can
be comparable to v—and there are indeed other terms which come into
the complete calculation—so this is only an exercise. Equation (4.6) is
as far as we will go self-consistently for energy conservation in the drift
equations.

It is interesting to use equation (4.15) to derive a low-frequency
perpendicular dielectric constant, €, , for a plasma, where the polarization current
is considered an ‘internal’ current, in contrast to an ‘external’ current density
Jext. We can write

V x B = 1o(jext +jpol + GOE) = (o Jext + EE) (4.16)

or . .
€E = (jpo + &E). 4.17)

The polarization current density jpo carried by each species (ions or electrons)
is just .
Jpol = ngVpo = nmE/B? (4.18)

where n is the density of the species. So we obtain
€. =€+ p/B* (4.19)

where p = nym; + nem. is the total mass density of the plasma. For typical
plasma parameters € > € by a factor of ~ 10°. Note that the plasma is a
highly anisotropic medium: this dielectric constant only characterizes the plasma
response perpendicular to the magnetic field. We will encounter €, again when
we discuss propagation of low-frequency electromagnetic waves in a plasma.

The result for €, can also be used to solve the problem of a plasma in
a gravitational field, thereby gaining some insight into how the perpendicular
dielectric property affects plasma motion. Imagine that we have a slab of
magnetized proton—electron plasma at density ne = n; = n in a gravitational
field, as shown in . We choose this slab-like geometry to simplify
the calculation of the electric field which is created by charge separation. The
gravitational drift gives rise to a net current perpendicular both to B and to the
force of gravity, mg. The gravitational drift velocity is

vy = m(g x B)/qB* (4.20)
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Figure 4.1. Geometry for calculating plasma motion in
crossed magnetic and gravitational fields.

which is just equation (2.23). The total current density j = > ngv (where
the summation is over species) due to the gravitational force is jexx = pg/B
directed rightward in Figure 4.1, where p is the mass density of the plasma.
We are taking the gravitational-drift current to be an ‘external’ current in the
sense of not being part of the polarization current of the medium. Since this
current density stops at the faces of our slab of plasma, we will assume that a
‘free’ charge density steadily builds up there (as a consequence of the ‘external’
current). If we take o, to be the free surface charge density (in units of coulombs
per square meter), we can easily convince ourselves that do,/dt = j. This is
most easily seen by recognizing that j is in units of coulombs per square meter
per second, representing the coulombs per second that would pass through a
surface of 1 square meter presented at right angles to the direction of j. The
relation do,/dt = j just expresses the fact that charge is conserved, and we
are not letting it pass through the surface, but rather it must accumulate there.
Given do,/dt at the faces, we can calculate dE /dt at each face, assuming that
E, outside the plasma is negligible, as in an infinite parallel-plate capacitor.
Integrating Poisson’s equation across the plasma surface we obtain

€ E) =0
and so ,
d_EJ:=M=.J"_"‘=&_ (4.21)
dt €1 €L €B
The resulting downward directed accelerating vg drift is:
d B?
ve _ pg &P/ _ 8 422)

At e B (eo+p/B)  (1+€B/p)

Galileo would be satisfied with this solution (since he noted in Pisa that
all bodies fall with the same acceleration), except for the small second term
in the denominator, which reduces the downward acceleration slightly. The
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gravitational potential energy is being turned into kinetic energy as the plasma
falls downward, as usual, with the exception of a small part of it. If we multiply
both sides by (1 + €9B?/p)pvEg, we obtain

€B?\ d [ pvi
l+—)—-|—==]= . 4.
() ()i am

In this form, the equation is particularly troublesome, since it looks as if it
violates energy conservation. However, let us evaluate the ratio of the energy
density stored in the electric field, €gE%/2, to the plasma kinetic energy density
of drift motion, i.e.

2
[)%5/2%5 — ¢B*/p. (4.24)
This is just the size of the apparent ‘error’ in energy conservation. We have
tricked Galileo by transferring a small fraction of the gravitational potential
energy to the plasma’s internal electric field, charging the plasma capacitor. For
typical laboratory or geophysical plasma parameters, this is a very small fraction
of the energy indeed (i.e. €, > €p), and in many plasma physics calculations
the contribution from €3 can be ignored.

This is a good example of how the energetics of a plasma’s perpendicular
dielectric constant works. This forms the basis for a ‘plasma capacitor’. In a
laboratory experiment, if a surface charge density is built up externally, which
in vacuum would have stored energy in the perpendicular electric field, the
presence of a plasma causes this field to be shielded out via the polarization
current, greatly reducing the stored electric field energy and putting the bulk of
the energy into the kinetic energy associated with the vg drift. As with any
capacitor, a high dielectric constant allows a larger free charge and a larger
stored energy to be built up at a given electric field strength.

Problem 4.4: For this calculation, we chose to consider ¢, a property of
the medium, and thus to take the polarization drift into account implicitly
through €, (and taking v; as causing a j.). We could instead have
calculated the polarization drift's contribution to j as part of j.,, and also
its self-consistent contribution to do/dt (where o; would now be the total
surface charge density), and then used the vacuum ¢; to characterize the
remaining vacuum ‘medium’. Show that both approaches give the same
answer for dE | /dt.
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4.4 ADIABATIC INVARIANTS

It is valuable at this point to consider our results for the drift equations in the
wider context of Hamiltonian classical mechanics. Hamiltonian systems are
those in which the equations of motion can be expressed in the form

. OH . aH
g = — pi=—7— (4.25)
api dq;
where H(q1,....4i, p1, ..., pi) is called the ‘Hamiltonian’ of the system. The

p; are generalized momenta, and the ¢; are generalized positions—so-called
‘canonical’ variables. The classical equations of motion of a charged particle in
the presence of electric and magnetic fields are Hamiltonian. The guiding-center
drift equations we have derived, which are only correct to first order in kry, can
also be cast in a strictly Hamiltonian form, with H = mvﬁ/Z + uB +q¢. The
Hamiltonian is evidently very simple (even obvious)—the key is determining
what to use as the canonical variables. To be precise, the Hamiltonian form
does not give exact equations of the ‘true’ guiding-center particle motion to all
orders in kry,, nor does it give precisely the equations we have derived, but it is
strictly Hamiltonian to all orders and it also agrees with our equations to order
krp, which is as far as our equations are valid. This Hamiltonian nature of the
drift equations justifies taking over results from classical mechanics (or even
quantum mechanics!), and applying them to guiding-center drifts.

One important result of the classical mechanics of Hamiltonian systems
is that the action, defined as [pdg around a loop which represents nearly
periodic motion, is adiabatically invariant. The magnetic moment, u, is an
adiabatic invariant of the basic Lorentz force equations. In this case, the nearly
periodic motion is the Larmor gyration with frequency w.. The appropriate
momentum for this case, p, is the particle’s angular momentum, mriv,, and
q is its angular position, 6. Adiabatic invariance means that if the trajectory
changes slowly, either because the fields are changing slowly, or because the
loop is slowly drifting into a region of different field geometry, then the action
changes much less, proportionally, than the field geometry. ‘Slow’ here means
that the characteristic time of variation of the field is long compared to the
oscillation period of the basic periodic motion, and the space scale of variation
is large compared to the distance the loop drifts in one period. In the case
of u conservation, for example, the relative change in the adiabatic invariant
compared to the change in the magnetic field due to some time-dependent
perturbation with frequency w is exp(—w./w). This means that for w./w of order
unity, there are order unity changes in u. However, as w./w becomes much
larger than unity, the changes in the adiabatic invariant become exponentially
small. Since exp(—w./w) cannot be expressed in a Taylor series of w/w,, we
say that the adiabatic invariant is conserved ‘to all orders’. (Speaking precisely,
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for this to be true it has been shown that the actual adiabatic invariant is u to
lowest order but has corrections of higher order in the ratio of the Larmor radius
to the scale-length of field variation.)

Note that when we say that the scale-length or time of variation must be

long, this is not only that

1 dX 1

- KL - 4.2

X dt < T (4.26)
where X is any field quantity, and 7 is the period of oscillation. If we impose a
small-amplitude high-frequency oscillation on B or E, with a frequency greater
than 1/7, equation (4.26) may be satisfied, but the appropriate adiabatic invariant
will not be well-conserved compared with the amplitude of that high-frequency
component. Thus, if we require exponentially good conservation of u, for
example, the high-frequency components in the range @ ~ w, or greater must
be exponentially small.

4.5 SECOND ADIABATIC INVARIANT: J CONSERVATION

Let us now go on to consider an adiabatic invariant of the guiding-center motion,
rather than of the particle motion, which arises when the guiding-center paraliel
motion is of a periodic nature: for example, a trapped particle bouncing in a
magnetic mirror. This is usually called the ‘second adiabatic invariant’ and is

given by
J = fvu - ds (4.27)

i.e. the loop integral of the paralle! velocity along a particle trajectory. The
endpoints of the integral are taken at the two turning points, a and b, where
vy = 0, but the total value of J is typically defined as the integral from
a to b, and then back again to a. A simple proof of J invariance can be
constructed by invoking the correspondence principle, the Hamiltonian nature
of the drift equations, and a basic understanding of quantum mechanics. In
the action integral, equation (4.27), the momentum p corresponds to k, the
quantum-mechanical wave number, so J is proportional to the phase integral,
[ kdl, along the trajectory. A quantized solution to the orbit would require the
phase integral to equal some integer, n. (In any macroscopic case, n is very
large.) The conservation of J then corresponds to the quantum mechanical
requirement that a perturbation with frequency of order the bounce frequency
is required to cause a state transition to a different n. (This is because the beat
frequency between the nth and (n — 1)th states is just the bounce frequency.)
Thus J conservation corresponds to the quantum mechanical result that if a
potential well is transformed adiabatically (slowly compared to a bounce time),
the quantum number of a particle trapped in the well is not altered.
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Figure 4.2. Particles trapped in the Earth’s dipole magnetic field, precessing around the
Earth. The Earth’s field is shown schematically, distorted by pressure of the solar wind.

For a specific example of J invariance, we might consider the motion of a
high-energy particle trapped in the Earth’s magnetic field, which is dominantly
a dipole field modified by the pressure of the solar wind, as illustrated in
Figure 4.2. Protons with MeV energies arise, for example, from the decay
of neutrons created by cosmic ray collisions. If we assume that the Earth’s
magnetic field is essentially static, and the electric fields are modest, ‘we may
use in equation (4.27) simply

vy = [2(W — uB)/m]'/?. (4.28)

High-energy particles ‘bounce’ between higher-field points near the North
and South poles, and slowly precess around the Earth due to the VB and
curvature drifts. It is the ‘bounce’ motion from North to South and back again
that defines the trajectory for determining the invariant J. The Earth’s field is
distorted away from axisymmetry, however, by the action of the solar wind.
Because of this asymmetry, there is no a priori reason to believe that a particle
should return to its earlier trajectory as it makes a full turn around the globe.
It might—as far as we know so far—return to its initial longitude (East-West
location) but be at a new altitude. However, at a given longitude, each field
line as a function of altitude above the equator has a different effective length
(f ds) between turning points for a particle with given magnetic moment x and
energy W, and different values of the field strength, B, along the field line.
Each line thus represents a different J for that particle, and so if J is conserved,
as well as i and W, then the particle must return to the same altitude after
precessing around the Earth. Thus it cannot spiral in or out of the Van Allen
belts (for example) without the presence of some fast-time-scale or short-space-
scale perturbation. This explains the persistence of these radiation belts.

The proper first-principles proof of J conservation, without simply taking
over a result from Hamiltonian mechanics (or quantum mechanics), is very
lengthy. It was first published by T G Northrop and E Teller (1960 Phys. Rev.
117 215). Unfortunately, elementary textbooks abound with poor (but quick)
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pseudo-proofs. While it is beyond our scope here to give the complete proof of
J invariance for all cases, it is worth our while here to outline the classic proof
for the case of time-independent fields.

Northrop and Teller start by noting that J is a function of field line (as
discussed above), and as such is a function of only two spatial dimensions.
They introduce spatial coordinates, « and S, which do not vary along field lines,
but rather distinguish between field lines. They show that « and B can be chosen
such that

B=Vax V8§ (4.29)

Note that by construction V- B = VB :(V x Va) — Vo - (V x V8) = 0.
The fact that @ and B are constant along field lines can be seen from noting that
B:Va =B:.VB = 0. Now we are in a position to assert that J = J(a, 8),
because J characterizes a field line, for fixed 4 and W. (J(«, 8) might also
depend explicitly on time, in the presence of time-varying fields, but we will
not discuss that case here.)

If J = J(«, B), then to evaluate dJ /dt, averaged around a zeroth-order orbit
(i.e. one with no motion other than vy), is a well-defined operation. We average
first-order guiding-center drifts around the zeroth-order orbit, symbolized by the
{ ) operator, to obtain the first-order change in J:

(dJ/dt) = (da/dt)(dJ /da) + (dB/dt)(3J] /dB). (4.30)

The proof then proceeds by noting that

da\  [vg-Vadt  [[(vg - Va)/vlds @31)
e/ [fde T [(1/v)ds ‘
together with an equivalent expression for (d8/dt), and
il
§1=_fv~_ud£=/mds=_ 3B ds 432)
oo da da m 0o vy

together with an equivalent expression for 9J/d8. The second step in
equation (4.32) follows because vy = 0 at the endpoints, so 9/d« of the endpoint
positions gives no contribution. The third step follows because

duy _ A[2(W — uB)/m]'?  —udB/da

4.
da o muy (433)

Thus we see that 3J/da depends on the bounce-integral of (1/v))3B/dc.
Equation (4.31) shows that (3a/3t) depends on a similar integral of vy « Va.
The guiding-center drift in the Va direction is, however, closely related to
0B/0p. Northrop and Teller indeed find that the bounce average of vy » Vo
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can be expressed in terms of a bounce-integral over dB/38 only. The result
is that the first term on the right-hand side of equation (4.30) is a product of
identical bounce-integrals over 3 B/d«x and 6 B/38. The second term, of course,
is structurally identical, and its sign turns out to be reversed, with the result that
it cancels the first term, proving conservation of J to first order.

Problem 4.5: Now we examine a case with time-dependent B fields,
but ignoring spatial drifts. Assume B = ZBy(1 + yz?), where y = y(?).
For a particle bouncing back and forth in the magnetic well defined by
this field (cf Problem 3.5), show that the second adiabatic invariant, J,
is conserved if y varies slowly compared to a bounce time. To do this,
first evaluate J as a function of y, W, and u. Next evaluate (W) as a
function of y, y, W and p where { ) indicates the time average around
a zeroth-order orbit, i.e. an orbit over which y is taken to be constant
for calculating the trajectory, but y is finite for evaluating W = ndB/ét.
For any quantity x, (x) = [ xdt/ [dt = [(x/v})ds/ [(1/v))ds. Finally show
that J = (3J/8y)y + (8J/aW)W = 0.

The conservation of J is a very powerful tool for calculating particle
trajectories in complex geometries. For numerical evaluation of the properties
of different magnetic geometries, it is often superior to integrating the guiding-
center equations of motion. For developing a qualitative understanding of
particle orbits in moderately complex geometries, it is unsurpassed. One must
be cautious, however, about assuming its validity in all cases. A particle can
drift ‘over’ its trapping barrier, in cases where B has a local maximum which
decreases in the direction that the ‘bounce’ orbit is drifting. The particle then
undergoes a ‘jump’ in J. Up to the jump, J is nicely conserved; after the jump
quite a different value of J is also nicely conserved. However these jumps can
often be the most important ingredient in determining particle transport in the
given situation. The key requirement for J conservation is that the variation
of the B field geometry (e.g. VB, (b - V)b) along a bounce trajectory must in
some sense accurately ‘predict’ the B field which will be experienced along the
next bounce, for J to be conserved.

4.6 PROOF OF J CONSERVATION IN TIME-INDEPENDENT
FIELDS*

In the previous Section, we only outlined Northrop and Teller’s proof of J

conservation in time-independent fields. In this Section, we will construct the
proof itself.
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Figure 4.3. Geometry for establishing an a, 8, s
coordinate system.

First we must prove that we can generally express B in the form B =
Vo x V. It is only necessary to prove this locally in the close vicinity of
a given field line of interest, where we are planning to perform the bounce-
integrals required for the proof of J conservation. We have already shown that
o and B are constant along field lines if B = Vo x V8. Thus let us choose
to develop a coordinate system in the vicinity of a specific field line, to which
we assign the values (@ = 0, 8 = 0). Let us arbitrarily choose a starting plane,
perpendicular to this field line, where we will define s = 0. Now we have an
origin for our coordinate system, &« = 8 = s = 0 (see Figure 4.3). Next we
assign to a differentially nearby field line the values (o = éa, 8 = 0) in order
to define a direction for the o axis in the s = O plane. Let us then take a
third field line piercing the s = O plane to define the B axis on that plane and
assign it the values (@ = 0, 8 = §8). For simplicity, we choose the location of
this third field line such that the B axis it defines is perpendicular to the « axis
in the s = 0 plane. Furthermore, if we choose the location of the field line
(i.e. the distance in the s = O plane away from the origin in the 8 direction)
such that |V 8| = B/|V| at the origin, then B = Vo x V§ at the origin, by
construction. Obtaining the right answer at a single point may seem a meager
result, but we will see that this sets the cornerstone for our coordinate system.

To complete the coordinate system, we denote the length along any field
line from the s = O plane by s. Now we have a fully defined three-dimensional
coordinate system, (e, B, s), in the vicinity of the field line (¢ = 0, 8 = 0).
This coordinate system is curvilinear and non-orthogonal, except at the origin
where we have made the coordinate system orthogonal by construction. To prove
that B = Vo x V8 will first require some basic results about such coordinate
systems.

The vector 9x/da is defined as the variation of the usual cartesian position
vector, X, with respect to «, at fixed 8 and 5. The quantity dx in this case is
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just the differential vector that connects the field line (¢ = 0, 8 = 0) to the field
line (¢ = 0, B = 0) at a given fixed value of s. The vector 9x/d8 is defined
similarly. The vector 9x/ds is the variation of x with s at fixed « and B, i.e.
along-a given field line. Thus 9x/ds is just the unit vector along B, the familiar
b. By analogy we define & = (9x/d«a)/|dx/0«| and ,3 (9x/08)/]9x/aB|.
For completeness we also define § = (8x/9s)/|9x/9s| = (8x/3s) = b. Ina
non- orthogonal coordinate system, the dot products of the unit vectors along the
axes (e.g. & - b) are not necessarily zero, as they are in an orthogonal system.
Another important set of vectors Vo, V8, and Vs can be constructed from the
equations

Vo = %(0a/3x) + §(8a/8y) + 2(3cx/82)
VB =R(3p/0x) + §(3B/0y) + 2(3B/98z) (4.34)
Vs = %(3s/9x) + §(ds/0y) + 2(3s/3z2)

where the partial derivative 3/0x, for example, means the derivative with respect

to x at fixed y and z. It will be useful to note that, while Vo, V8 and Vs are
not orthogonal, it is nonetheless the case that

ox 0x

—.VB=0 —-Vs=0

o p du g

X ax

— . Va=0 —_— Vs =0 4.3
Y o % K} 4.35)
a

X Va=0 %.Vﬂ:O

os a5

because in each case the partial derivative explicitly points in a direction along
which the other coordinates do not vary. Furthermore, we will find it helpful to

use
0x 0x dax A
Vo <6a>=Vﬁ (aﬁ) Vs . <3S>=Vs-b=1. (4.36)

To prove this, consider, for example, the vector V. It points in the direction
normal to a surface of @ = constant, and its magnitude is da /3!, where 3/ is the
length element along the normal to that surface. The component of 6x/da in
that same direction normal to the surface is just the reciprocal value, (8ct/81)~!

(see Figure 4.4).

A final set of relations we will find helpful is

Va = (g%) X (Va x VB)

VB =-— (S—D x (Va x V).

(4.37)
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Surfaces of
constant a

Figure 4.4. Geometry for seeing that Vo « (3x/9a) = 1.

Expanding the double cross-product in the expression for Vo we have

Z—ﬂx(chxVﬂ) (Va ;)Vﬂ-i—( B ﬁ)Voz (4.38)

Using equations (4.35) and (4.36) we see that this reduces to Va, as required.
A similar analysis leads to the expression for V8.

‘We have now described some of the important properties of the curvilinear
non-orthogonal coordinate system that we will use. (The use of such coordinates
is often convenient in plasma physics, due to the special importance of b, which
is generally curvilinear.) This puts us in a position to prove in general that
B = Va x V8 in the vicinity of @ = 8 = 0 for the a(x), B(X) and s(x) we
have constructed. First we show that the direction of Va x V 8 is correct. Our
coordinate system satisfies § . Voo = §- V8 = 0 (see equation (4.35)) and § = b
by construction. The direction b is uniquely defined by being perpendicular to
both Va and V8. Thus Va x VB certainly points in the same direction as b
everywhere in the vicinity of @ = 8 = 0. This leaves open only the question of
the magnitude of Va x V. From V - B = 0, we can write

BV-b)+®b-V)B=0 (b.-V)In(B) = —(V -b). (4.39)
Since we showed just after equation (4.29) that V - (Va x V§) = 0, the same
as equation (4.39) asserts about B and b can be asserted about the magnitude

of Va x V8, and the unit vector pointing in its direction. Furthermore, since
we have just seen that the unit vector pointing in the direction of Vo x V8 is
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identical to b, we may conclude that
(b V)In(|Va x VB|) = (b- V)In(B). (4.40)

In the vicinity of the origin, by construction, |Va x V| = B, so |[Va x V|
gives the proper magnitude of B all along s. Thus we have proven that
B = Va x V8 in the vicinity of @« = 8 = 0 in our coordinate system, It
is not the case, however, that the functions o and 8 are unique, as can be seen,
for example, from how they were constructed.

Now we proceed to give the heart of the Northrop and Teller proof of
J invariance, specialized to the case of time-independent magnetic fields, and
no electric fields. Let us start by focusing on vy - Ve, the key ingredient in
equation (4.31):

W, BxVB 2W,Bx(b.-V)b
vgc-Va= <TT—+T—B2—- . Vo (441)
The vector VB can be expressed, in our coordinate system, by
aB aB dB
VB=|—|Va+|—|VB+|—]Vs. (4.42)
du aB as

This can be seen to be true, even though Vo, V8 and Vs are not orthogonal, by
dotting both sides of this equation with X, § or Z. The & components of V B, for
example, is clearly given by dB/dx = (0 B/da)(dax/dx) + (3B/3B)(38/3x) +
(8B/0ds)(ds/dx). The first term in equation (4.42) does not contribute to
(B x VB) - Vu in equation (4.41). The contribution from the second term
can be simplified by noting that

(BxVB) -Va=B:(VB x Va) = —B?, (4.43)
Finally we note that b - V is the same as d/ds. Equation (4.41) then becomes

W, 8B W, (BxVs) - VadB 2W, ab
Vo=-—o— = 2 T TP B — | Va. (444
Ve Ve = g T g B> 55 Tgm \B X5 ) Ve 49

We will now work on the second and third terms on the right-hand side, and
show that they cancel when they are integrated around a bounce orbit, as required
for the evaluation of (der/dt) in equation (4.31).

Using the expression for Ve in equation (4.37), we can simplify the second
term on the right-hand side by writing

BxVs):Va=(VaxB):Vs
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=|:(g—;xB>xB]-Vs

—(B.Z\@B.vs - B2vs. X
= (B 8/5) (B:-Vs)— B°Vs Y
_%. 2% (4.45)

98’
In the last step, we used b-Vs =1 from equation (4.36) and Vs . (dx/88) =
0 from equation (4.35).

Now we turn our attention to the third term on the right-hand side of
equation (4.44). This can be put into a more useful form by writing

ab ab
Bx —]-Va=(VaxB)- —
as as

=-B:— . (4.46)

In the last step, we have used of b - (3b/8s) = (1/2)(3|b|?/8s) = 0. We can
simplify this result further by using

ox ob _ 3 (. ox\ (p %
B 8s o Y] 3Bas
=2 (p.%) 5.2
as 3B a8
=2 (5. 2 4.47)
D B ‘
where, in the second step, we have used b = 3x/ds, and in the third step we
have again used the fact that |b)? is constant everywhere.

It is now time to collect our results, equations (4.45), (4.46) and (4.47) in
order to rewrite equation (4.44) in a new form

WdB u (. Ox\ 9B 2W, 3 (A Bx)
Va=-EZ B (5. ZV22 20 (50X (448
Ve Ve qaﬂ+q( aﬂ)as 7 s\ 3 (4.48)

The trick now is to note that the last two terms on the right can be combined
into a single term, which will vanish when we average equation (4.48) over a
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complete ‘bounce’ orbit. To do this, we observe that Wy = W — uB, where
both W and p are constants of the particle’s motion, and we note that

12
W __p# 9B (4.49)
s 2WI‘/2 3s
Equation (4.48) can then be written
38 _2W,” 3 .3
Ve r Vo= —B22 2T 2 (ylrg, ZX) (4.50)
q Bﬁ qg s ap

Recalling that averaging over the bounce orbit requires that we divide by v

(which is proportional to W"” 2) and then integrate over all s, around a closed
loop, we see that the second term in equation (4.50) will integrate to zero, and
we obtain our final result, namely

0B ds mBJ
/(vgc Vd)— =——/¥v—" = p aﬂ 4.51)

where, in the last step, we have used equation (4.32). A similar result, but with
a reversed sign, can be derived for the other cross-field component of vy, i.e.

madJ

[ow-vps=-222 452)
v g da’

Substituting equation (4.51) into equation (4.31) (and equation (4.52) into

the equivalent expression for (df/dt)), and then substituting these into

equation (4.30), we obtain our final result

dJ aJdJ aJaJ ds\ !
<d,) (éﬁﬁ‘£¥>(/ v—”) =0 @53

Thus we have shown that, in the case of time-independent magnetic fields, the
quantity J is an invariant of the particle’s drift motion to first order in the
guiding-center drifts. Perhaps not surprisingly, the quantities o and 8 used here
are closely related to the canonical variables used in the explicitly Hamiltonian
formulation of drift equations.

If a static electric field is added, the generalization is straightforward. The
constant of motion is no longer the particle’s kinetic energy, but rather the sum
of its kinetic and potential energy, W = mv?/2 + g¢. In calculating for this
case, one must use

vy = [2(W — uB — q¢)/m]'/? 4.54)

in the integral. The adiabatic invariance of J holds even in the case of slowly
time-dependent fields, as Northrop and Teller showed in their more general proof,
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but it should be noted that the electric field is then not derivable from a scalar
potential, and so there is no simple energy-quantity W that is a constant of the
particle’s bounce motion.

Those interested in pursuing further the topic of single-particle motion in
slowly varying electric and magnetic fields are referred to a monograph by
T G Northrop (1963 The Adiabatic Motion of Charged Particles New York:
Interscience).
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Chapter 5

Mappings

This Chapter uses non-J-conserving particle orbits to introduce the theory of
Hamiltonian maps and chaos in dynamical systems. These powerful and elegant
concepts are fundamental to many areas of modern plasma physics research, and
indeed are now also used in such widely disparate fields as nonlinear mechanics
and population ecology. The Chapter includes homework problems and two
longer computational physics exercises based on the program ERGO provided
with the text. The computational exercises can be used as independent work
projects.

5.1 NON-CONSERVATION OF J: A SIMPLE MAPPING

It is fun now to consider situations where J is not conserved. Imagine that the
dipole magnetic field of the Earth (or other suitable source) has superimposed
upon it some cos(nf) electric or magnetic perturbation—rather powerful aliens
trying to meddle with the Van Allen belts, for example. Now we can imagine
that if there is a component of the perturbation such that 27 /n is comparable to
or less than the circumferential angular motion (or ‘precession’) per bounce of
fast particles, we will obtain substantial perturbations to the particle trajectories,
which will not conserve J.

A powerful modern technique to study problems of this sort is to consider
the particle trajectories as ‘mappings’. Any possible trajectory (equator — over
Northern hemisphere — over equator — over Southern hemisphere — over
equator) is viewed as ‘mapping’ a particle from one location to another around
in the circumferential direction, 8, and possibly up or down in altitude, r, but
at fixed latitude—the equator. Iteration of this map can be used to create a
‘puncture plot’ (or ‘Poincaré plot’) in the (r, 8) plane, where we mark a dot
every time a particle crosses the equator passing, for example, from South to
North. In a pure dipole case without any ‘alien’ (or natural) perturbations, we

6
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70 Mappings
have a fairly simple map

9j+1 = 9]' + 9P|ro + 9;,()‘]' - ro) (5 1)

Fi+1=17;

where 6|, is the angular precession per bounce at the initial radius, g, and the
successive j’s represent successive full particle cycles, or ‘bounces’. In general,
6, will depend on r, for a given W and u, since the gradient and curvature
angular drift speeds depend on altitude. The quantity 6, is df,/dr, to represent
a linear approximation to the variation of precession speed with altitude. This
map, as presented, is rather uninteresting. Particles do not move in r (we ignore
the effect of the solar wind on B here) and they just precess around azimuthally
at different rates, depending on r.

The map becomes more interesting if we assume that the ‘alien’ perturbation
modifies r each bounce with a cos(n8)-dependent ‘kick’ and that these kicks are
not J-conserving, so the orbits do not necessarily return to the same altitude, ry,
when they return to latitude 6. This would occur, for example, if n Oplro ~ 1.
Then we have

6; 1=9'+9 +6'(r-—r0)
J+ J p|r0 pNJ (52)
Tig1 = 1 + 6cos(n9j+1)

where € represents the ‘alien’ perturbation. By starting particles at various r and
0, and following the mapping for many iterations, we can get a good sense for
the nonlinear dynamics of this system, and for the types of effects ¢ will have.
The map is very much more complex than when € = 0.

52 EXPERIMENTING WITH MAPPINGS

This text includes a graphic program, ERGO, for the purpose of letting you
experiment with mappings for yourself, so that you can develop a feel for
their properties. It is provided in both Macintosh! and IBM PC-compatible
versions. Instructions on how to use this program are included in text files
labeled README-ERGO on the Macintosh disk and ERGO.WRI on the IBM PC
disk. (Computer source code is included as well.) The program allows you to
vary the precession per bounce at r = 0, the radial gradient of the precession
per bounce, the amplitude of the perturbation, and the mode number of the
perturbation. (It assumes non-J conservation for any n.) The display can be
modified by varying the minimum and maximum radii shown on the screen. The
computer beeps if the particle goes beyond these values. To see the process more

! Macintosh is a registered trademark of Apple Computer, Inc.
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clearly, you can vary the maximum rate at which the computer plots points. You
can also toggle between the map we have been discussing here, the Chirikov-
Taylor map, and a more complex two-step map treated in Problems 5.2 and 5.4.
The Chirikov-Taylor map is named after its discoverers, B V Chirikov (1969
Research Concerning the Theory of Nonlinear Resonances and Stochasticity,
translated by A T Sanders, CERN Translation 71-40, Geneva; USSR Academy
of Sciences Report 267, Novosibirsk) and I B Taylor (1969 Investigation of
Charged Particle Invariants in UKAEA Culham Laboratory Progress Report
CLM-PR 12). In the wider world of nonlinear mechanics, this has come to be
known as the ‘standard’ map.

PF

r=-1.00E-01 th=1 .552E+00J

Figure 5.1. Sample ERGO output. r and th indicate location of pointer: r = —0.100;
th = 1.552.

Figure 5.1 shows a sample ERGO output. Twenty-five mappings (each with
lots of iterations) were used to make Figure 5.1.

Problem 5.1: Experiment with ERGO and find out what you can,
qualitatively, about what goes on. Determine the effect of each parameter
on the resulting map. For example, measure the variation of island width
versus €, at n = 6; = 1. (From looking at the picture, you can guess
that the ‘islands’ are the large elliptical regions containing fairly orderly
trajectories.) How does the topology change as ¢ increases? Study the
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variation of island width and topology with N and 6;. Are there parameters
you can vary together which expand or contract the map, without changing
the overail topology? (Note: This probiem should be attempted before
proceeding to the next Section.)

5.3 SCALING IN MAPS

In the last Section, we discussed an iterative map of the form

841 = 0 + Bplr, + 8,(r; — ro)
(5.3)

riq1 =1r; + €cos(nbjiy)

and Problem 5.1 asked you, among other things, to find a combination of
parameters which just sets the scale of the plots without changing the topology.
This kind of activity, where we pare down a set of physical equations to their
essentials, is sometimes called a ‘scaling analysis’. When we successfully
complete a scaling analysis, even if we do not know the complete solution of the
equations for any particular case, we do know what combination of parameters is
important, so that we can reduce—in effect—the dimensionality of the problem.
At first glance, it looks in our present case as though we have to understand a map
that can be described in terms of five control parameters: 6|y, 0"), ro, € and n.
If we can reduce this to a simpler problem, with fewer control parameters, then
a solution in terms of these fewer control parameters can be simply transformed
into a solution for any values of 6,1, 0‘;, ro, € and n.

Generally we make progress in this direction by recasting the equations in
terms of those dimensionless variables that give the simplest possible equations.
The coordinate 6 is already dimensionless, but since we suspect that we will see
periodicity in 6 of 27 /n, let us see if the equation simplifies when we define a
new angular coordinate ¢ = n6, which will have periodicity 2z, independent of
n. If we do this, and then examine the first line of the transformed equation (5.3),
we see that it will become very much simpler with a linear transformation from
r; to a dimensionless x;:

Xj = nyls, + n6,(rj — ro). (5.4
Now we have a much simpler set of equations:

Pi+1 =@ +X;
(5.5)
Xjt+1 = Xj + ACOS(pj+1

where A = enfj,. By transforming the variables to dimensionless forms that
make the equations as simple as possible, we have managed to lump all the
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control parameters into the single parameter A. As a result, any answer we
find in terms of the variables x and ¢ can be transformed algebraically into the
answer for any member of the class of problems that have the same value of
enf,. Alternatively, for any values of 6y, 96, ro, € and n, we simply evaluate
A, look up a solution of equation (5.5) for that value of A, and scale the
coordinates to the problem that interested us. Thus the quantity A must set
all the topology of the map—for example, what fraction of space is filled by
islands, and how chaotic the mapping looks. Note, also, that if we add 27 to
x, and iterate the map, the 2z will simply function as a one-time additive term
in x and a sequentially additive 2z term in ¢, but it will have no effect on the
map, since ¢ is a periodic variable with period 27. This is to say that the map
repeats in the ¢ direction with period 27 (implying that it does indeed repeat
with period 27 /n in the € coordinate), but it also repeats in the x direction, with
period 27 as well! This implies that it repeats in the r direction, with period
2/ nOl;.

54 HAMILTONIAN MAPS AND AREA PRESERVATION

The reason that g, comes into the cosine term of equation (5.5), rather than g;,
is interesting: it is because the map is constructed to maintain one of the basic
features of a Hamiltonian system—it obeys Liouville’s theorem. Liouville’s
theorem states that a Hamiltonian system (which is essentially a system with no
energy input and no dissipation) preserves phase-space density. If we follow a
group of particle’s trajectories in the phase space defined by their positions and
momenta we find that, when they group together in position, they spread out
in momentum, and vice versa, so as to preserve their total phase-space density.
This is a result from classical mechanics, which we will actually re-derive in
the course of developing the Vlasov equation in . The equivalent
statement for a position mapping (where we are not anticipating changes in
momentum) is that it should be area-preserving. Consider the differential square
defined by (x;, ¢;), (x; +8x, ), (x;, ¢; + 8¢), (x; +8x, ¢; +¢) in .
We would like the map to carry this square over to a new quadrilateral with the
same area, to assure that our ‘particles’ will not bunch together. The area of our
original square was (in appropriate units) §¢éx. The first three corners of our
new quadrilateral will be located at

[xj+1, @j41]
[xj41 4 (Oxj41/0x5)8x, @jq1+ (39j+1/0x;)dx]
[xj41 + (Bx;41/09;)d¢, @i + (39j41/0¢;)dp].
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X + 8, ¢

X, + X, ¢, + 80
X

A Xj,¢j+8¢
LV‘P

Xju1 + X(0X;,4/0X) + 30(9X;,1/00),
Ojv1 + OX(30;,1/0X)) + SO(3D;.+/00;)

X;» &

Xju1 + OX(9X;,4/0X)),
B4 + OX(90;,4/0X;)
Xjs1 + 30(9x;,4/08)),
Oe1 + 30(90,,+/00)

xj+1v ¢j+1

Many iterations
later, inan
ergodic region

Figure 5.2. Area preservation in a Hamiltonian map.

These corners are enough to define two vectors, the magnitude of whose cross-
product gives us the area of our new quadrilateral (a parallelogram). The result
is

|[(@x;41/8x;) 8x& + (89j41/0x;)6xP)

X [(3x+1/09;)89% + (39;4+1/89;)89@] |
= |[(3x11/8x;)(Bgj+1/89;) — (39j+1/0x;)(3xj11/3¢;)1808x|. (5.6)

Those familiar with coordinate transformations will recognize the term in
square brackets as the Jacobian of the transformation, and it is a general result
that its determinant must equal unity to assure that a transformation is area-
preserving. However, it may not be completely obvious how to take the indicated
partial derivatives through one full mapping step. Referring to equation (5.5),

Copyright © 1995 IOP Publishing Ltd.



Hamiltonian maps and area preservation 75

we see that 3 5
/LIS P L 5.7
3¢; dx;
To find the partial derivatives of x;,; with respect to x; and ¢; (at fixed ¢; and
x;, respectively), however, requires substituting for ¢;,; in terms of ¢; and x;
(just because we have used ¢;1 here, as mentioned before). We obtain

Xjp1 = xj + Acos(g; + x;) (5.8)

so that 3
x.
2 = 1 — Asingjy (5.9)
axj
where the second term would not have been present if we had used ¢;, rather
than ¢; ., in the second step of the mapping. We also obtain

0Xj+1

3 = —Asin(g;+1). (5.10)
7

The argument of the sine function would be ¢; in this equation if we had used
@; in the second step of the mapping, but this term itself would still have been
present. Now evaluating the determinant of the Jacobian, we obtain

1 — Asin(gjt1) + Asin(gj) =1 (5.11)

as desired. The choice of ¢, in the second term was crucial for this result:
otherwise the determinant would not have reduced to unity and the map would
not have been area-preserving. Without this term, for example, in the Chirikov—
Taylor map particle orbits flow rapidly out of the island structures and accumulate
in the region between islands, violating the known underlying physics of the
full system of equations of the drift orbits. Finding an area-preserving map
is sometimes one of the main challenges in defining a mapping to correctly
represent a Hamiltonian process.

As we saw by experimenting with ERGO, this apparently very deterministic
map gives what appears to be random or chaotic behavior, for large enough
values of A = en%. What does area-preservation mean in this case? It means
that an original compact area spreads out like a drop of ink in a glass of water
into a more and more spidery shape, but with the same original area.

It is important to recognize that there are also maps that are not area-
preserving—and should not be, in order to represent non-Hamiltonian systems.
In ‘dissipative maps’, which represent systems with energy input and dissipation,
one finds that particle trajectories tend to collapse to ‘attractors’—patterns in
phase space that ‘attract’ trajectories from a ‘basin’ of initial positions. In some
ways, these maps seem to represent the creation of order out of chaos, which is
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made possible by the flow of energy through the systems they represent. These
dissipative maps are proving to be useful representations of fluid turbulence, as
well as useful models for other turbulent nonlinear systems, just as Hamiltonian
maps have proven useful for understanding nonlinear energy-conserving systems.

Problem 5.2: Consider a case where our dipole Earth has a line
current driven through its center! Then the particle bounce orbits are not
trajectories at fixed longitude, but they curve across the Earth at an angle
(which itself depends on altitude), due to the 6 directed magnetic field.
Let us assume we still have the ‘alien’ period-n perturbation, but now we
have to consider the fact that the bounce angle of the orbits may arrange
things so that the ‘kicks’ on each half-orbit add or cancel, or something in
between. The new map becomes

0j+1 = 6] + eplfo + 9{,"_] + eblro + eérl
riy1 =rj + €cos(nf;yy)
Bj12 = 0jy1 +6plr, + Gl;rj-f-l ~ bblr — oérj+1

Tiy2 = TFj41 + GCOS(n9j+2)

where the two-step feature comes from separately considering the kick on
the top half and on the bottom half of the bounce. The 6, term represents
the particle’s bounce motion, which takes it forward (+) on one half of
the bounce, and backwards (—) on the other. Show that this map is area
preserving.

5.5 PARTICLE TRAJECTORIES

Next, of course, it is interesting to try to determine how far the particles in
our map depart from their original unperturbed trajectories. (Remember that
we began this Chapter by being concerned about aliens bombarding us by
perturbing the Van Allen belts. We might also be considering the perturbed
orbits of energetic particles we want to contain in a fusion plasma.) As a first
approximation, we assume that the particles do not move far enough in x that
their precession speed changes significantly, so we can estimate

@ =~ @0+ jxo 512
Xj4+1 ™ x; + Acos(p41) ¢.12)
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where xo is the initial x coordinate. In the transformed equation (5.5), it
also represents the initial precession rate in ¢. Recognizing that we are only
considering the real part of x we can write

Xj+1 & xj + Aexp(igj+1) (5.13)
and substituting for ¢;;; we obtain

Xj+1 & x; + Aexp(igo)expli(j + 1)xo]

or
xj ~ xj_1 + Aexp(igo)exp(ijixo). (5.14)
This is a simple recursion relation, which can be solved explicitly:
Xm ~ Xo + Aexp(igo) ) _ exp(ijxo) (5.15)
j=1

and the summation is a well-known result, i.e.

Y explijxo) = (exp(ixo) > CXP(ino)> + exp(ixo) — expli(m + 1)xo]

SO
2 . exp(ixg) — exp[i(m + 1)xo]
Y explijuo) = S P 2 (5.16)
o — exp(ixp)
so that . im 4 1
o — %o A Aexp(igpy) SiRUX0) = eXpUi(m + Dxo] (5.17)

1 —exp(ixg)

Thus, we would seem to have obtained our required answer, apparently in
general. The right-hand side of equation (5.17) is of order A multiplied by a set
of terms each of order unity. If A is small enough, we would expect x,, — xq to
be small, as assumed. The terms multiplying A represent the fact that sequential
radial kicks tend to cancel each other, rather than steadily accumulate. However,
because the denominator can go to zero, we should carefully check our initial
assumption that the particles do not drift far in the x direction from their original
locations, no matter where they begin. A little analysis will show that there is
trouble in small regions where the precession ‘resonates’ with the perturbation,
i.e. xo is close to 2wk where k is any integer. In these regions, on each bounce
the particle gets the same radial kick that it got the last time, so there is no
sequential cancellation. Assume that xo = 27k + 8, where § is a small enough
number that even md < 1. Then equation (5.17) becomes, approximately

§—i(m+1)8

.o .
Xp — Xo & Aexp(igy) 3 = Amexp(igg). (5.18)
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This result implies that, if we start on a resonance, the particle position will go
to infinity as m — oo. However, this violates the assumption made in deriving
equation (5.17), that the precession speed will stay approximately constant ~ xj.
Thus equation (5.17) is suspect for starting points in a narrow region £48(< 1/m)
away from resonance, for large enough m. It is, of course, always suspect for
large A.

5.6 RESONANCES AND ISLANDS

As a result of the breakdown of equation (5.17), we must try another
approximation close to resonances. Specifically, we will assume that we are
close enough to the resonance that ¢ changes very little (modulo 27) on each
bounce, but we will allow the precession speed to be a function of x, as x changes
due to the accumulation of radial kicks. The physical effect we will find is that
the particle will be ‘kicked’ radially away from the resonance by the perturbation,
but then the subsequent kicks will no longer sequentially accumulate, so the
particle will not drift off to infinity. Indeed it will eventually move in ¢ to the
location where the radial kicks have the reverse sign, so it will drift back to the
resonant radius, and continue to oscillate around the resonance in this manner.

For a small enough change in d¢ (modulo 27) per iteration, our mapping
equations can be ‘reconstructed’ into differential equations, where the ‘unit of
time’ is an iteration of the map:

dp/dt = x — x; dx/dt = Acosg (5.19)

where x; is the resonant surface location, i.e. the location where the ¢ precession
angle per bounce is exactly 2wk. Differentiating the first equation with respect

to ‘time’, we obtain

o _a 520
Py i cosg (5.20)
which is the equation for a ball rolling in a sinusoidal well. We can find some
of its important properties from the conservation equations

do d%¢ = (pAcos
arar " ar a1
dld‘pz—d(Asin) e
ala\ar) | T &

or )
1 /de .
3 (a?) — Asing = constant (5.22)

where d/dt indicates the total derivative along the particle’s trajectory.

Copyright © 1995 IOP Publishing Ltd.



Onset of stochasticity 79

If the constant in equation (5.22) is chosen to be greater than A, then any
value of ¢ corresponds to a positive value of (dg/dt)?, and so ¢ will increase
or decrease indefinitely. If de/dt starts positive, there is no place where it goes
to zero, so it will stay positive for its whole trajectory; by the same argument, if
de/dt starts negative, it will stay negative. For values of the constant less than
A, the value of ¢ is trapped and oscillates between the zeros of (dg/dt)?. The
combination of the oscillation in ¢ and the associated oscillation in x creates
a closed trajectory referred to as an ‘island’—by now you have seen plenty of
these in ERGO. It is interesting to calculate the width of this island. From
equation (5.19), we see that a particle reaches its maximum (x — x;) at the
same time that it reaches its maximum d¢/ds. In the case where the constant
in equation (5.22) is just equal to A (the barely trapped orbit, corresponding
to the ‘separatrix’ between trapped and passing orbits in the ERGO plots), the
maximum value obtained by d¢/dt is

(de/dDmax = (X = X5)max = VA (5.23)

$0, by the definition of A = en9", and of x; = nby|,, + n(r; — ro)eé, we have
(r = ro)max = 2,/€/n6;. (5.24)

The island width is proportional to the square root of the perturbation
strength, and inversely proportional to the square root of the gradient in the
_precession speed as a function of altitude, sometimes called the ‘shear’, in the
precession.

5.7 ONSET OF STOCHASTICITY

So far, we have been talking as if all of the trajectories were nicely
bounded. In fact, as A grows we have seen from ERGO that some of
the trajectories eventually become ‘stochastic’ or apparently random in their
behavior. Trajectories that randomly fill a region of space are called ‘ergodic’—
hence the name ERGO. The transition to stochastic behavior is fascinating. The
separatrix trajectories become stochastic first, long before the regions inside the
islands. The stochasticity is sometimes characterized as being due to overlap of
the islands which occur at radii with different resonances. The thought is that
as A grows, trajectories cannot tell which island they are on.

But what has really gone wrong with the derivation above, from which
we obtained a simple non-stochastic island structure? Basically, the island we
have been calculating has reached out so far from the resonant surface that the
precession is significantly different from 27, so the jumps in the ¢ direction
(modulo 2m), namely ¢, are no longer small, and we cannot legitimately
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model the mapping as a differential equation—thus, just like equation (5.17), our
solution near the resonances is not valid in a situation with large A. A simple
estimate of when the stochasticity enters would follow from noting that when
8¢ approaches unity the steps are no longer small relative to the scale length
of variation of the potential well described by equation (5.22). Thus when the
island width is equal to unity, in the scaled map, we should expect to begin to
see breakdown of our differential-equation model near the separatrices. Using
equation (5.23) for the island width, this condition can be written

WA~

or
A=~ 1/4. (5.25)

There are further nonlinear features that enter as A grows to ~ 1, and these are
not modeled by our differential equation, also because the jump in x (as well
as in @) is now no longer small. An order unity jump in x means an order
unity change in the precession speed per jump, in which case the differential-
equation model fails totally—on both variables! As A grows, secondary islands
with periodicity p can be seen at x = 2nk + 27nn/p, because at these radii
trajectories repeat themselves after p iterations rather than average smoothly
over all ¢, so finite ‘kicks’ due to the nonlinearity of the map accumulate, and
the resulting islands contribute to the island-overlap process (see Problem 5.5).
Furthermore, the trajectories circulating around in the volume within the islands
have ‘shear’—the bounce time in a sinusoidal well depends on the depth into the
well. Thus there are trajectories inside the primary islands which are resonant
(for example, it takes six or seven circuits to go completely around the island at
some distance from its center). Again orbits repeat over themselves and kicks
accumulate.

The primary islands therefore have island ‘daisy-chains’ within them! If
you blow up the scale in ERGO you can see these chains. These island chains
even have their own island daisy-chains inside, ad infinitum. Furthermore, if
more than one ‘alien’ perturbation is present (e.g. there are various perturbations
with different values of n), then the islands from the different perturbations can
overlap. In the pure Chirikov-Taylor map, trajectories become free to jump
across periods of 2m in the x direction (a crucial moment) when A = em% =
0.989. . ., where this numerical value is taken from Chirikov’s classic monograph
(1979 Phys. Rep. 52 265). In this critical vicinity, however, it takes of order
107 mappings for a typical orbit to ‘jump’ periods, so for your level of patience
(and your computer’s speed), you may find the practical limit is around 1.05. In
the range of A >> 1, the orbits end up with individual steps in radius which are
effectively uncorrelated from one to the next. Using a ‘random walk’ model,
we can estimate a radial diffusion coefficient of ~ A2/4 in this regime.
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Problem 5.3: From the definition of the random-walk diffusion coefficient,
D = (Ax?)/2z, derive the radial diffusion coefficient for the standard map
in the limit of large A.

Problem 5.4: Toggle ERGO to the two-step map introduced in
Problem 5.2 and study the onset of stochasticity in this map—investigate
if it is roughly consistent with the following criterion for stochastic onset:

1 1
> — + —— (5.26)
In6y| ~ In6}]

which was initially derived by R J Goldston, R B White and A H Boozer
(1981 Phys. Rev. Lett. 47 647), both when 6, > 6, and when 6, < 6.
Explain the basis for this criterion. Hint: it is not exactly island overlap.
(Note: this problem requires extensive independent work and has typically
been set as a semester project.)

Problem 5.5: There is an island chain that grows at r = &, when the
parameters in the Chirikov—Taylor map are set at their defaults. You can
see it in as a chain of two islands located vertically about
halfway between the largest islands. Empirically determine the scaling of
its width at constant 8, as a function of . Then explain why this scaling
is observed. Hint: use the differential-equation approach developed in
this Chapter, but consider a unit of ‘time’ to be two iterations of the map.
Consider that A and (x — x,) are similarly small quantities, so terms of
order A(x —x,) and (x — x;)* can be neglected compared to terms of order
A or (x — x,). Finally, note that you want to know the island’s full width at
fixed 8, not its total extent in the x direction, which is different, since the
line it is ‘riding’ oscillates in x. (Note: like Problem 5.4, this problem has
also typically been set as a semester project, as an alternative to Problem
5.4.)
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Chapter 6

Fluid equations for a plasma

We have been looking at plasmas as collections of individual charged particles.
It is time now to consider the behavior of an ensemble of charged particles which
we will find acts as a special kind of fluid. In this Chapter, we will derive fluid
equations for each species of particles (i.e. ions and electrons) separately, and
later we will see how to treat the whole plasma as a single fluid.

6.1 CONTINUITY EQUATION

Consider a differential element of volume in the shape of a cube whose sides
are parallel to the coordinate surfaces, as shown in In order to
display the similarity of each of the three coordinate directions, and especially
because we will later want to sum various expressions over all three coordinate
directions, we have labelled the coordinates x;, x; and x3, rather than the more
familiar x, y and z.

The number of particles flowing out of this volume element across the
surface shown in the figure per second will be n{v;}dx,dx; evaluated at x; +dx;,
where (v;) is the average velocity of our species of particles in the x;-direction.
(In the more conventional notation, the component v; would be written v,, and
similarly v; and v; would be written v, and v,.) The number of particles flowing
into the volume element per second will be the same expression evaluated at
x1. Assuming that no particles are gained or lost from the volume element other
than by flow across its boundaries, we can express the rate of change of the
number of particles in the cube shown in Figure 6.1 in terms of the flow of
particles across each of the six sides, i.e.

an
gd% = —[n{v1)dxodx3)z, +ax, + [n(v1)dx2dx3]y, - - (6.1)
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Figure 6.1. Differential element of volume with sides
parallel to the coordinate surfaces.

where d*x = dx;dx,dx;. Dividing by d®x and taking the limit as the size of the
cube shrinks, we obtain the ‘continuity equation’

3 9
o _ -3 =) (6.2)
7 9%

For clarity, we display the summation sign explicitly in equation (6.2) and
elsewhere in this Chapter although, even without it, index notation under
the Einstein convention would imply summation over the repeated suffix i.
Changing to vector notation and writing u for the average velocity, (v), the
continuity equation may be written

on +V- (=S5 (6.3)

ot
where we have added a volume source rate of particles S. For the charged
particles of a plasma, a volume source term would arise from the ionization
of neutral atoms; recombination- would give rise to a corresponding volume
sink term. For the present, however, we will generally neglect ionization and
recombination, but we should be aware that sources and sinks of particles do
arise in plasmas and give additional terms in all of the fluid equations.

6.2 MOMENTUM BALANCE EQUATION
We consider next the rate of change of momentum density in a differential

element of volume. First, we will ignore the fact that particles move in and out
of this volume, and consider just the macroscopic forces on the element. The
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familiar Lorentz force, extended to all the particles of a given species per unit
volume, is just
F = ng(E +u x B) (6.4)

where again u is the average velocity, (v}, of our species of particles (for example
the electrons) and ¢ is their charge per particle. The force density F represents
a local source rate of momentum density; the change in momentum density due
to this force density is just

d(nmu)
at

Next we have to consider the momentum density changes arising from
particle motion carrying momentum with it. We have so far included momentum
changes due to external forces acting on the particles that are ‘members’
of the element, but as particles move into or out of the element carrying
momentum with them, this gives another contribution to the time derivative
of the momentum in the element. Let us begin by considering the flux in the
x; direction of x,-directed momentum. This flux is just the number of particles
per unit area per second passing through a surface of constant x;, times the
momentum in the x, direction, mv,, carried by each particle.

In we introduced the distribution function, f(x,v). We recall
that f(x, v) is the relative probability of finding a particle with a given velocity
vector v, normalized such that the integral of f(x, v) over all v gives the density
n(x). Thus the differential number of particles in a phase space element d*vd®x
located at (x, v) is simply f(x, v)d*vd3x. This element of phase space ‘empties
out’ in the x; direction in a time interval d¢ = dx;/v;. The differential number
of particles carried per second across the surface of constant x; by this element
of phase space is fd3vd®x/dt = v; fd>vdx,dxs. These specific particles each
carry xp-directed momentum muv,, so the differential amount of momentum in
this direction carried per second across a surface of constant x; by this element
of phase space is mvov; fd*vdx,dxs. To obtain the total momentum flux, i.e.
the total quantity of x;-directed momentum crossing a surface of constant x; per
unit area per second, we divide out the differential area dx,dxs and integrate
over velocity space. The total flux of x,-directed momentum in the x; direction
becomes [ mv,v; fd®v, which, by the definition of £, can be written simply
mn{vyv;). The rate of change of x,-directed momentum, averaged over all of
the particles, can now be expressed in terms of the divergence of fluxes of
momentum across the various surfaces:

=F =nq(E +u xB). (6.5)

8 3 3 4
(n;’;u2) - _a_x](mn<v2vl>) — 5;2_(’11n<v2v2>) — E(mn(UZUS))- (66)

Since we have not used any special properties of x,, we can replace it with
an arbitrary suffix i. Furthermore, it now becomes clear that this momentum
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flux is closely related to a generalized definition of pressure, in the case where
pressure is viewed as a tensor quantity, the ‘pressure tensor’. This pressure
tensor P (we use boldface italics for tensors) is defined in index form by

Pij=mn((v; —u;)(v; — u;))

= mn({v;v;) — u;u;) (6.7)

where we have used the definition of mean velocity u, namely u; = (v;).
Thus, the flux in the i direction of j-directed momentum is just P;; + mnu,u;.
Incidentally, this derivation makes clear that the familiar concept of pressure
is, in a more fundamental sense, a momentum flux. Note that it is only the
divergence of this flux that results in acceleration.

For the special case of a Maxwellian distribution, drifting at a given velocity
u (ie. f(v—u) = Maxwellian), then P;; = 0 for i # j, and P;; = nT for
i = j, where T is the temperature (measured in energy units, i.e. joules, so
that the Boltzmann constant may be omitted). For a case where the plasma is
characterized by different perpendicular and parallel temperatures, relative to the
direction of the local magnetic field, then P;; still is zero for i # j, but now, if
i = j and is perpendicular to B, then P;; = nT,, while if i = j and is parallel
to B, then P;; = nT). If we take the direction of B to be the x3 direction, we
obtain

nT, 0 0
P,'j = 0 nT_L 0 . (68)
0 0 nT”

It is interesting to note that, in all cases, P;; = P;;. Furthermore, the off-diagonal
elements (i # j) constitute the flow in one direction of momentum in another
direction. This is the mechanism of viscosity, whereby if a fluid has flow, for
example in the x; direction, but that flow has a gradient in the x, direction, then
x; momentum is transferred in the x; direction to the slower moving fluid, acting
so as to speed it up. However, in a plasma, if velocity-gradient scale-lengths,
L, are much greater than a gyro-radius, ry, these off-diagonal elements of the
pressure tensor are smaller than the diagonal elements, being -higher-order by at
least one power of r_ /L.

Problem 6.1: Show that
P=nT I+ (nT)— nT_L)Bf)
is an equivalent way of writing equation (6.8). Evaluate all of the nine

elements P;; for the case where the magnetic field is oriented at 45° to
the x, direction, in the (x;, x;) plane.
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Returning to our derivation of the momentum balance equation for a plasma,
we now know that the flux in the x; direction of x, momentum is given by
P12 +mnuqu,. If we want to know the time derivative of x; momentum density
due to this flux, we need only use equation (6.6), which involves the divergence
of this flux of momentum. Thus, the contribution to the rate of change of
x> momentum density from the motion of particles is

3(mnu2) _ _aPn _ 3P22 3P32 —m 8(nu1u2) 4 B(nuzuz) + a(nu3u2)
at - dxi d9xy 0x3 0x; dx; 0x3
(6.9)
with similar equations for the change of momentum in the x; and x3 directions.

In index notation, this becomes

a(mnuj) _ BP,J ]
a7 = X,: o, mZ: ox, (nu;u;). (6.10)

Reverting to vector notation (where we do not need to specify a coordinate
system) and denoting the pressure tensor by P, we can combine the two
contributions to the rate of change of momentum density that we have evaluated,
to obtain the ‘momentum balance equation’:

3(';:"1) =ng(E+uxB)—V.P -V . (mnuu). (6.11)

There are various alternative forms in which we can put the momentum
balance equation. We can substitute for dn/dt from the continuity equation,
equation (6.3), and we can expand the last term on the right-hand side in
equation (6.11), by using

mV . (nuu) = mu(V - nu) + mn(u - V)u, (6.12)
In index notation and cartesian coordinates, this is equivalent to

P a du;
mzi:a—xi(nuiuj)=muj‘25;(nui)+mnlzui5x—j- (6.13)

In this way, the complete momentum balance equation can be reduced to its
most standard form:

mn (aa_l:+(u-V)u) =ngq(E+uxB)—V.P—-mSu. (6.14)

(Often, the term in § associated with particle sources and sinks is neglected.
Furthermore, another term must be added if the ionization or recombination
processes involve a net loss or gain of momentum.)
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Problem 6.2: Provide a simple physical picture of the appearance of
the last term on the right-hand side of equation (6.14). For example,
consider a boy standing on a bridge dropping bricks onto trucks passing
undermneath. What happens to the velocities of the bricks, and also of the
trucks?

Equation (6.14) is the ‘momentum balance equation’, but it is also
sometimes referred to as the ‘fluid equation of motion’, since it equates an
acceleration to the sum of a number of forces. Very often, we express it in
terms of the total derivative, which gives the time rate of change in an element
of fluid moving with the local flow

—=—+u-V (6.15)

in which case equation (6.14), neglecting the term due to a source S, can be
written in the transparent form

mnflj—ltl =ng(E+uxB)-V: P (6.16)

In the case where a plasma is nearly Maxwellian (or at least nearly
isotropic), V- P can be replaced by the gradient of a scalar pressure, V p. If this
is not the case, the more complete form for the pressure tensor must be retained.
The fluid form of the plasma equations of motion can handle fairly complex
situations, but it is too much to expect that any simple closed form for the
pressure tensor can represent all the effects associated with the full distribution
function of particles. In fact, we could now proceed to generate a higher-rank
tensor (the ‘heat-flux tensor’), involving the divergence of averages of quantities
like v;v;v, and we could generate fluid-like equations for the evolution of the
pressure tensor in terms of this heat-flux tensor. Frequently people have the
fortitude to maintain some of the off-diagonal elements of the pressure tensor
and even some elements of the heat-flux tensor in their calculations, but much of
the heat-flux tensor generally falls by the wayside. This amounts to assuming that
the pressure tensor, and the velocity dependences in its underlying distribution
function, f(x,v), have fairly simple symmetrical forms. However the fluid
equations cannot handle very complex features of f(x,v), such as subgroups
of suprathermal particles, or complex anisotropies. Under these circumstances,
the more complete kinetic theory (which will be introduced in is
required.

It is somewhat surprising, however, that even in a fairly collisionless plasma
the distribution function can be close to Maxwellian, and fluid concepts can
apply. This is because the magnetic field prevents particles from free-streaming

Copyright © 1995 IOP Publishing Ltd.



Equations of state 91

and accelerating across B, and so they are forced to remain close to their original
neighbors in the same fluid element. Along the B field, it is easier for particles
to stream and mix (and run in and out of the fluid elements rapidly), but for just
this reason gradients along B tend to be very gentle, and situations usually do not
arise, except transiently, where a very hot region is feeding extremely energetic
particles into a cold region on the same field line and creating an anisotropic
suprathermal tail on the distribution of particles. This does happen sometimes,
however, and then kinetic theory is required to calculate even simple things like
momentum balance. Waves that have a finite wavelength along the direction of
B are especially likely to be subject to such an effect. Later we will learn about
Landau damping, which is essentially a phenomenon of energy and momentum
transfer between particles and waves, due to kinetic effects.

6.3 EQUATIONS OF STATE

Even in the very simplest cases where the pressure tensor is isotropic, some
additional relationship must be introduced to describe how the scalar pressure
p varies in time. To avoid dealing with the heat-flux tensor explicitly, we will
approximate the heat flow by introducing a thermodynamic equation of state for
a plasma. This is an equation of the form p = Cn?”, which relates the scalar
pressure p to the density n. The quantity ¥ expresses how much the temperature
of a plasma increases as it is compressed, since pV? = constant, where V is
the plasma volume. As such, the equation of state constitutes a simple (and
therefore only approximate) statement about the heat flow.

For the case of compression that is slow compared to thermal conduction,
we have y = 1, i.e. ‘isothermal’ compression. The pressure goes up only
because the density goes up. In many cases, because particles can freely stream
along a magnetic field B, conduction parallel to B provides an avenue for the
plasma to remain isothermal, if the compression is, for example, periodic or
wave-like along B.

On the other hand, if the compression is fast enough to be ‘adiabatic’ (faster

_ than heat conduction), but slow enough that energy is collisionally exchanged
between the three degrees of freedom, then y = 5/3, the usual result for a
three-dimensional ideal gas. This is a special case of the more general result
for an ideal gas, y = (2 + N)/N, where N denotes the number of degrees of
freedom. Later, we will see that a plasma can support a number of different
types of waves, some of which compress the plasma isothermally, while others
compress it adiabatically, and this has a significant effect on the wave dynamics.

An important third case can arise in a plasma if adiabatic compression is
both fast compared to collisions and also anisotropic. In this case, the parallel
and perpendicular degrees of freedom are separated, so that T} can be heated
very effectively (N = 1, y = 3), as can, to a lesser degree, T, (N =2,y = 2).
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The adiabatic invariants of particle motion in a strong magnetic field can be
used to derive generalizations of these relationships for the case of compression
that involves components both parallel and perpendicular to the magnetic field,
as we will now see.

The perpendicular pressure can be expressed in terms of an average of the
particles’ invariant magnetic moments 4 by means of the relation

2

pL=mnC%>=nuwR 6.17)

If the compression is fast compared to collisions but slow compared to the
Larmor gyration of the particles, then the w value of each particle will be
conserved, which leads to the adiabatic relation

d /pL

For the case of pure perpendicular compression, which would typically be
accomplished by increasing the strength of the magnetic field, conservation of
particles and of magnetic flux as the area A of the plasma cross section is changed
implies that nA = constant and BA = constant, so that n is proportional to B.
We then see that equation (6.18) reduces to the simplest adiabatic relationship
p/n? = constant, with y = 2, as is appropriate for two-dimensional adiabatic
compression. (The conservation of magnetic flux BA was demonstrated in
Chapter 4|for the simple case of a straight cylinder of Larmor gyrating particles:
an increase in B results in a decrease in the area A of each of the Larmor orbits,
such that BA = constant. The more general result is demonstrated in [Chapter 8})

Similarly, the parallel pressure can be expressed in terms of the particles’
J invariants by means of the relations

py=mn{vl) Tyl (6.19)

where L is some measure of the length of the plasma along the field lines. If
the compression is slow compared to the motion of particles to-and-fro along
field lines, then the J value of each particle will be conserved. Again using
the conservation of particles and of magnetic flux, in this case as the length
L, the cross sectional area A and the volume V all change, we obtain the
relationships V = AL, nV = constant and BA = constant. Using these
relationships to express L in terms of the physical quantities n and B, we obtain
L = V/A « B/n; substituting this into equation (6.19), we obtain the adiabatic

relationship
d (pB?
—|——)=0. .
dr ( n? (6.20)
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For the case of pure parallel compression, in which B is unchanged, this reduces
to the simpler adiabatic relationship p/n?¥ = constant, with y = 3, again as
appropriate for one-dimensional compression.

The two adiabatic relationships that we have derived here, equations (6.18)
and (6.20), are called the ‘double adiabatic’ equations of state.

64 TWO-FLUID EQUATIONS

So far, we have derived fluid equations by considering only one species of
particle at a time. In a plasma, there can be many different species of particle,
and there will always be at least two species (ions and electrons) in any neutral
plasma. The continuity equation (6.3) will, of course, apply separately to
each of the different species. However, in applying the momentum balance
equation (6.14) to the separate species, allowance must be made for the fact that
particles of one species can collide with particles of another species, thereby
transferring momentum between the different species.

In the fluid approximation, the effect of collisions between particles of
different species is often simply modeled by means of a set of ‘collision
frequencies’, v,g, that express the rate at which the momentum of species o
is transferred by collisions to species 8. Since it is reasonable to estimate that
the transfer of momentum will be proportional to the difference in the mean
velocities of the two species, the rate at which momentum per unit volume is
gained by species « due to collisions with species 8 is given by

Rop = —mangvag (U — ug). (6.21)

This gain (or loss) in momentum must be included in the momentum balance
equation for species o, which now becomes

:
Mana (—é“tﬁ + (U - V)ua> =nequ(E+ Uy xB) = V- Po+ Y R (6.22)
B

where the summation is over all species 8, not equal to ¢, with which particles
of species a can collide. The quantity v,g is called the ‘collision frequency’ of
species a on species 8. For the case where ug = 0, the quantity v,g is simply
the rate at which the momentum of species « is lost due to the presence of
another species 8 of particles that are at rest.

Since the momentum density transferred to species o from species B,
namely Rgg, and the momentum density transferred to species 8 from species
a, namely Rg,, must obey momentum conservation, we can deduce that

R;, = —Ryp. (6.23)
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From this it follows that v,g and vg, must obey a symmetry relation:

MaNgVag = MgRgVga.

6.5 PLASMA RESISTIVITY

Collisions between electrons and ions in a plasma will impede the acceleration
of electrons in response to an electric field applied along (or in the absence
of) a magnetic field. Without such collisions, electrons would be accelerated
indefinitely by an applied electric field, so that an infinitesimal voltage would
be sufficient to drive a large current through a plasma, at least in the direction
along a magnetic field. In practice, the acceleration of electrons is impeded by
collisions with non-accelerated particles, in particular the ions, which, because
of their much larger mass, are relatively unresponsive to the applied electric
field. Collisions between electrons and ions, acting in this way to limit the
current that can be driven by an electric field, give rise to an important plasma
quantity, namely its electrical resistivity, usually denoted 7.

We will conclude this Chapter by deriving a simple expression for the
resistivity in the case of a hydrogen plasma, in which the electrons have charge
—e and the ions are protons, with charge e. The resistivity may be expressed in
terms of the electron—ion collision frequency, v, by applying equations (6.21)
and (6.22) to the case of electrons that have reached a steady-state equilibrium
in the presence of an electric field E|, applied either parallel to a magnetic field
B or in the absence of any magnetic field. Because of the very small mass, and
therefore negligible inertia, of the electrons, such an equilibrium will be reached
relatively rapidly. Assuming that the electrons are homogeneous and therefore
neglecting also in equation (6.22) the electron pressure and velocity gradients
along B, we obtain

Rei = —menevei (U, — u;) 0= —neeE) + Rejy- (6.24)

Introducing the current density

Jy = —nee(ue) — uiy) (6.25)
we obtain _— _— '
Ey=- (e — uy)) = P Ji =1 (6.26)
e

By analogy with electrical properties of normal matter, we call the constant of
proportionality between the applied electric field E and the current density j the
resistivity 7, which we see to be given by mve;/nce?.

Since the actual frequency with which electrons collide with ions will
depend on the electron velocities, the collision frequency v, appearing in
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the resistivity and in all of the above expressions should be an average over
an appropriate distribution of electron velocities, in which case the collision
frequency should more correctly be written (vei). Accordingly, the resistivity 7
becomes
_ me(”ei)
T nee?

(6.27)

The momentum gained by electrons due to collisions with ions, R,;, may
now be expressed in terms of the resistivity n and the current density j. We
obtain

Rei = —mehe(Vei) (U — W)
= —nnle*(u. — u;)
= 1 neej. (6.28)

For the case of an electron—proton plasma, we may substitute
equation (6.28) into equation (6.22), to obtain two momentum balance equations,
one for the electron mean velocity u., and the other for the proton mean velocity
u;. Alternatively, the two equations can be added together, making use of
the fact that R,; + R;e = 0, with the result that the collisional terms vanish
from this summed momentum balance equation, which determines the total
momentum density of the plasma. However, since it is generally necessary to
distinguish between the mean velocities u; and u, in order to evaluate the plasma
current density, we will still need to work with two separate momentum balance
equations, in some form. Equation (6.26) is an example of a momentum balance
equation taking the form of a simplified ‘Ohm’s Law’ parallel to the magnetic
field, involving the difference of the two mean velocities, which determines the
current density j. We will return to this topic in more detail in

Although the resistivity was derived for the case of an electric field applied
parallel to a magnetic field (or in the case where there is no magnetic field),
the collisional transfer of momentum between electrons and ions due to the
presence of an electrical current depends only moderately on the direction of
the current. Specifically, we see from equation (6.27) that the resistivity is
a quantity that is proportional to the mean electron—ion collision frequency
(vei). The expression for Re given in equation (6.28) can be used in the
momentum balance equation, for example equation (6.22), not only for the case
where the electric field E and current density j are parallel to B, but also for
arbitrary orientation of E, j and B. This requires, however, that the resistivity
be expressed as a tensor quantity, specifically a diagonal tensor with diagonal
elements (., ny, ny), where we have taken B to be in the z direction. As we
will see in and [1 1}, this is because the magnitude of the resistivity
is not the same parallel and perpendicular to a magnetic field. Indeed, these two
resistivities differ by about a factor two. This is because the electron distribution
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becomes significantly distorted from Maxwellian in the case of an electric field
parallel to the magnetic field, which can accelerate the electrons relatively freely,
thereby reducing the resistivity significantly. Although an accurate knowledge
of the resistivity is often important, for example when verifying the consistency
of current and voltage measurements in experimental plasmas, there are other
resistive plasma phenomena, such as large-scale instabilities, for which factors
of two are unimportant, in which case it is sufficient to treat the resistivity as a
scalar quantity, as is implied by equation (6.28).

To obtain the magnitude of the resistivity of a plasma, it is clearly necessary
to know something about the magnitude of the electron-ion collision frequency
Vei, and the distribution function f over which the collision frequency must
be averaged. These topics are taken up in and E' For present
purposes, it is sufficient to note that the resistivity of a plasma can be very small.
Indeed, plasmas in fusion experiments can have resistivities lower than that of
pure copper, implying that very large currents will be produced by quite small
voltage differences. Resistivities of naturally occurring plasmas are generaily
somewhat higher, but this is more than compensated by the large size of these
plasmas so that, again, small electric fields produce large total currents.

Problem 6.3: An applied electric field does work against the ions and
electrons of a plasma at the rate nqu - E per unit volume per second.
By adding over both species, show that an electric field, E, (parallel to
the magnetic field), driving a current, j;, produces resistive heating of a
plasma. Do you expect this resistive heating to heat mainly the electrons
or the ions?
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Chapter 7

Relation between fluid equations and
guiding-center drifts

For the purpose of establishing the relationship between the guiding-center drifts
discussed in and the fluid equations derived in , it is
sufficient to consider a single species of particles and to ignore both collisions

with other species and sources and sinks of particles. In this case, we may begin
with the standard form of the momentum balance equation:

mn(z_l:+(u.V)u)=nq(E+uXB)—V'P. (7.1)

7.1 DIAMAGNETIC DRIFT

If we imagine that the bulk velocities which would be obtained from solving
equation (7.1) are of the same order as the guiding-center drift velocities that
we obtained in Chapters 2-4 (implying that the flows are far subsonic), then
we can say that the order of magnitude of u is roughly v,(kr_). Here, v, is a
thermal velocity, r, is the Larmor radius and & is an inverse distance (or wave-
number) that characterizes the spatial scale-length of variation of the plasma.
Time derivatives of any quantity can be estimated as having a size determined
from 3/3t ~ ku ~ vk?r_. As a result, the two terms on the left-hand side in
equation (7.1) can be estimated to be of size mnv2kr2. If we assume E to be of
order u B, the first two terms on the right-hand side of equation (7.1) are of order
mnw vikr, = mnkvtz, which is the same order as the last term on the right-hand
side, and larger by (krL)~2 than the terms on the left-hand side. Thus, in the
spirit of expanding in kri, we can simplify the equation even further:

ng(E+uxB)~V.P. (1.2)

Copyright © 1995 IOP Publishing Ltd. 97



98 Fluid equations and guiding-center drifts

This approximate equation is valid provided that u is of order v(kr_) and
krp « 1. Thus, this equation is not valid for near-sonic flows, and we should
make the cautionary remark that the flows arising from some of the more violent
instabilities in a plasma can, at least in principle, approach sonic speeds; in
addition, some laboratory-made and naturally occurring plasmas can have near-
sonic equilibrium flows.

For the more usual situation where our approximations (equivalent to those
made in our treatment of single-particle motion in A) are valid,
however, we can now solve for the lowest-order perpendicular fluid velocity by
taking the cross product of this equation with B:

ngl[ExB+ (uxB)xB]l=(V.P)xB, (7.3)

Using the vector identity for the triple vector product (see - ppendix D), we
obtain

ng(E x B—uB?+B(u-B)] = (V. P)xB. (7.4)

If we only consider the components of equation (7.4) perpendicular to B, we
obtain

ExB Bx(V.P)
T B2 ngB*
The first term on the right-hand side of this equation is clearly the familiar E x B
drift. The second term is something new, which is generally referred to as the
‘diamagnetic drift’. If we imagine a cylindrical plasma in an essentially uniform
magnetic field, with the high pressure in the center of the plasma, it is easy to
see that both the electron (g = —e) and the ion (¢ = ¢) diamagnetic drifts as
derived here give rise to currents in the plasma that serve to reduce the magnetic
field inside the plasma. Hence the name ‘diamagnetic’ drift. (Note, however,
that in a non-uniform magnetic field the diamagnetic drift includes a component
of guiding-center motion. We will examine this case later in this Chapter.)

Curiously, we did not find a ‘diamagnetic’ guiding-center drift in
Chapters 2—4. We did note, however, that the ion and electron Larmor orbits
themselves were intrinsically diamagnetic. The diamagnetic drift in a uniform
magnetic field is the result of adding together these Larmor orbits in the presence
of a density or temperature gradient. The effect of the density gradient is
especially easy to see by examining Figure 7.1|, which shows the Larmor orbits
of positively charged particles (ions) about a magnetic field directed into the
paper.

It is clear that, in the shaded area of Figure 7.1, there is a greater current
going to the left than to the right, despite the fact that the guiding centers are
stationary. This can be made quantitative, starting with the particle picture,
by introducing the ‘distribution function for guiding centers’, in addition to the
distribution function for particles, with which we are now familiar.

uy (1.5)
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Figure 7.1. Larmor orbits of ions in the presence of a density gradient. In the shaded
region there is a net current to the left, even though the guiding centers have no net
motion.

To do this, we consider the various contributions to the mean drift in the
y direction of particles located in a small element dx of the shaded area in
Figure 7.1. If f(x,v) is the distribution function of particles with velocity
vectors v located at x, then the mean y-directed drift, u,, at location x due to
particles in a differential length dx is obtained from

nuydx = / vy f(x, v)d*vdx (7.6)

where the integral is over the velocity variables only. Now the particles that are
to be found at location x with velocity v, are those that have guiding centers at
a location xg that is related to x by the equation
x = xge — 2 )
(2
where w; is the cyclotron (Larmor) frequency of the particles. The quantity
vy /we is, in magnitude, closely related to the Larmor radius (see equation (2.9)),
but it takes into account also the gyration phase of the particle. It is easy to verify
by examination of Figure 7.1 that the signs in equation (7.7) work out correctly
(but note carefully the direction of the coordinate axes in Figure 7.1). When a
positively charged particle (as illustrated in Figure 7.1) has a positive value of
vy, it is displaced in the negative-x direction (i.e. upward in Figure 7.1) relative
to its guiding center. The cyclotron frequency w. appearing in equation (7.7) is
to be evaluated at the guiding-center location but, for the present discussion, we
assume that the magnetic field is uniform, so that it does not matter where w,
is evaluated (see later in this Chapter for the case of a non-uniform field).
We can also define a distribution function of guiding centers, fyc(xgc, V),
where v remains the particle velocity, notr the guiding-center velocity. Then,
the distribution function of particles located within an element dx at x can be
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expressed in terms of the distribution function of guiding centers located within
a differential element dxg. at xg.. Specifically

fx,v)dx = foelxge, V)dxge

d
= fie (x + -:lv) g;cdx. (7.8)
Cc

For our case of a uniform magnetic field, there will be no tendency for particles
to be ‘crowded’ in the x direction any more or less than are their guiding centers.
Expressed formally, we can differentiate equation (7.7) with respect to xg, taking
o, to be a constant, and we find simply

dx = dxg. (19)

(Again, see later in this Chapter for the case of a non-uniform field, where this
is no longer true.)

Substituting equations (7.8) and (7.9) into equation (7.6), we now have an
expression for the mean drift uy, namely

1
L¢y=;/vyfgc <x+l—yc,v)d3v

~ %fvy (fgc(x,v)—+— % M) &, (7.10)

W dx

Taking a Maxwellian distribution of velocities for fy.(x, v), the first term in the
integral will vanish, because contributions from positive and negative v, values
will cancel each other. The second term in the integral will give a non-zero
contribution. Allowing for both density and temperature gradients, this may
easily be evaluated, and it leads to the diamagnetic drift

1 dp
Uy = ngB ox (7.11)
which is, of course, the same as equation (7.5) for an isotropic pressure and a
geometry as shown in Figure 7.1. The pressure could be anisotropic, in which
case p would be replaced by p, in equation (7.11).
The diamagnetic drifts of ions and electrons given in equation (7.5) can be
summed to form a ‘diamagnetic current’:

ja=) nqu =B x [V (P;+ P.))/B% (7.12)

In Figure 7.1, the diamagnetic current will be to the left, and it will tend to
reduce the magnetic field in the higher-density part of the plasma, i.e. below
the shaded region. It should not really be surprising that a diamagnetic current
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exists in a plasma even in the absence of guiding-center motion. Atoms in a
piece of iron are essentially tiny ‘paramagnets’ (as opposed to Larmor orbit
‘diamagnets’ in a plasma) and, when they are aligned by an external field,
they give rise to a net magnetization current. This current exists, of course,
without any steady net motion of the iron atoms. (Note again, however, that the
diamagnetic current derived in equation (7.12) is identical to that coming from
this ‘fixed diamagnets’ picture only in a uniform magnetic field. As we will see
later, for magnetic fields with gradients and curvature, the diamagnetic current
includes other contributions—and is not always even divergence-free.)

7.2 FLUID DRIFTS AND GUIDING-CENTER DRIFTS

What might seem strange at this point is the fact that we have not yet found in
the fluid picture the familiar V B and curvature drifts. At first sight, it appears
that the fluid theory is ignoring certain essential physical effects, but this is not
so. It is legitimate to think of a plasma as a collection of particles moving
according to their guiding-center velocities, and it is also correct to think in the
fluid terms that we are now developing. The crucial point is that, while the two
approaches are very different, if they are each carried through consistently to the
same order, they give the same answer for any observable quantity at that order.
In particular, if it is desired to calculate a fluid quantity such as a local current
density using the guiding-center picture, it is not sufficient just to use the spatial
density of guiding centers. It is also necessary to take the correct average of
contributions from particles whose guiding centers are separated by a distance
of order the Larmor radius, as we did in the previous Section. In all cases, it
is necessary to be very careful not to mix the two approaches—guiding-center
picture and fluid picture—in one calculation. For example, if the guiding-center
V B drift is added to the fluid diamagnetic drift, the answer will not be physical.

In order to focus on this concept of two independent but correct ways to
view a plasma (and in order to find the equivalent of the VB and curvature
drifts in the fluid picture), it is interesting to consider a specific situation that
can be fully analyzed with the tools that we have developed. Consider a plasma
confined by a purely @-directed magnetic field, and which is also finite in the
r and z directions, as shown in|Figure 7.21 This field By is produced by an
external current-carrying conductor, as shown in Figure 7.2, and its strength must
decrease with radius like r~!. For simplicity, we suppose that the plasma density
and pressure are uniform throughout the main body of the toroidal (‘doughnut’-
shaped) plasma, falling to zero in a narrow edge layer at the boundary of the
plasma.

In this configuration, there are both V B and curvature guiding-center drifts.
Since these guiding-center drifts are both in the z direction, charge builds up
on the ‘top’ and ‘bottom’ surfaces of the plasma, giving rise to a z-directed
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Figure 7.2. Illustration of guiding-center and fluid drifts for the case of a toroidal
(‘doughnut-shaped’) plasma in a purely toroidal 8-directed magnetic field B. The plasma
pressure is assumed to be uniform in the ‘hot dense region’, falling to zero in a ‘gradient
region’ at the boundary.

(downward in Figure 7.2) time-dependent E field. This E field is largely, but not
completely, shielded out by the plasma dielectric constant, or—equivalently—
the polarization drift. The residual vertical electric field causes the plasma to
E x B drift radially outward.

Let us start by performing the guiding-center drift calculation in detail,
considering first the case where p, = p; = p, for simplicity. Then the two
guiding-center drifts can be added together and, averaging over a Maxwellian
distribution of velocities, the sum is given by

m{vf +v]/2)Bx VB T;+T.BxVB 2T
Vee = 9B B® q BY qBr

i (7.13)

where, as usual, Z is the unit vector in the z direction. The rate of accumulation
of surface charge density o; (i.e. charge per unit area) at the top and bottom
surfaces of the plasma is just equal to the vertical current density and so, further
assuming ne = n; & n, we have
doy 2T+ T) _ , 2p
dt rB roBo

where the X+ apply to the top and bottom, respectively, of the plasma in the

(7.14)
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geometry shown in Figure 7.2. Note that rB is a constant (take r B = r¢By),
since the magnetic field in this geometry must fall off as 1/r. The accumulation
of surface charge due to the guiding-center drifts is thus straightforward.

The question to be answered now is: what, in the fluid picture, gives rise
to this charge accumulation? Figure 7.2 shows that the fluid ion drift (and
by analogy the electron drift) is predominantly circulatory in character, and
is confined to the region where the ion and electron pressures drop from their
constant values in the main body of the plasma to zero at the boundary. However,
charge accumulation will arise in the fluid picture if the diamagnetic current is
not divergence-free. For simplicity, let us take the fall-off rate in pressure to be a
constant, |V p|, throughout an edge layer of uniform width all around the plasma
boundary. (Since Ty = T, we are dealing with a scalar pressure, and we do not
need to consider the full pressure tensor.) The diamagnetic current flowing along
the vertical sides of the plasma is constant, and thus divergence-free. However,
in the gradient region at the top and bottom of the plasma, while we have taken
|V p| to be constant, B is falling off like 1/, and a non-zero divergence of the
horizontally flowing diamagnetic current, j, = F|Vp|/B = Fr|Vpl|/(roBo)
arises. We evaluate this divergence of the diamagnetic current to find the rate
of accumulation of volume charge density o:

do _ o144 (,2i|vm) _ £2Vpl

dr - 1= rdr roBy roBy

(7.15)

where the =% signs again indicate the top and bottom of the plasma. In order to
obtain an equivalent surface charge density, in the limit that the fall-off scale-
length of the plasma pressure becomes very short, we integrate the volume
charge density o in the vertical direction to obtain the surface charge density oy:

dog 2p

—_— =t 7.16

dt roBg ( )
which is exactly the same result as was obtained from the guiding-center drifts
(cf equation (7.14)). Thus, the guiding-center and the fluid picture give the same
answers for a physically measurable quantity—in this case the surface charge
density.

7.3 ANISOTROPIC-PRESSURE CASE

Now suppose that T # T, and let us see if the correspondence between the
guiding-center and the fluid pictures still holds up. In this case, the guiding-
center drifts indicate that the rate of charge accumulation is given by

doy neq+Ty+Tr+T) (Pt pL)
dr rB roBy

(7.17)
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where the £ indicates top and bottom of the plasma again.

In the fluid picture, if p; # p., we must consider pressure as a tensor,
To leading order, the tensor is diagonal (off-diagonal terms, i.e. viscosity,
enter at higher order in kr ). For this geometry, in tensor notation, we have
P = p it + p 88 + p,22, where ,8 and 2 are the three unit vectors in
the coordinate directions. From our knowledge of the form of the divergence
operator it is clear that, in cylindrical coordinates, the meaning of V- P is

2
V.P= (———-rf'+ gy S —Zz) (p.tf + p)B8 + p.20)
=1 o+ - L (i) + 2 (o) (7.18
_rarrpl raé)p|| aszz. -18)

Notice that this formalism takes into account explicitly the fact that 6is a
function of 8. Now, using

A

F = Xcosd + §sind 8 = 9cosh — &sind (7.19)
we easily see that 89/86 = —f, giving finally

0 d a —
PL,+ Pn‘9+ PLA+(PL P||)f_‘

V.P=
ar raf dz r

(7.20)

(The complete cylindrical-coordinates form for the divergence of a general
tensor, including off-diagonal elements, is given in .)

The first three terms on the right-hand side are as expected. The last term
arises, physically, from proper application of geometry to the basic idea of
momentum flux, which was behind the derivation of the pressure tensor. Since
in our problem dp/36 is zero, this means that particles are streaming into
a differential volume carrying the same parallel momentum with which other
particles are streaming out. However, since 30 /98 1s not zero, this is equivalent
to a group of particles ‘turning’ within the differential volume, thereby leaving
behind some radial momentum. It is easy to see that the p; contribution to the
last term on the right in equation (7.20) reflects this. The p, contribution to
this term is even more basic. If we only consider the perpendicular contribution
to the momentum flux into the differential volume, we must take account of the
fact that the box has a larger side at large r than at small r, so there is a net flux
of radial momentum out of the differential volume across the large-r surface,
even for uniform p,. For p, = p, these two effects cancel, as they must, since
there can be no net divergence of momentum flux for an everywhere-Maxwellian
uniform-pressure plasma.

We are still not exactly where we want to be. Our previous calculation of
the divergence of the diamagnetic current depended only on the z component of
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V p, with p taken as a scalar. From equation (7.20), it is clear that this part of
the derivation will go through unchanged when V . P replaces V p, and it will
produce a surface charge-density build-up as given by equation (7.16), except
that p will be replaced by p,. Now, however, we have a new force density (a
divergence of momentum flux), (py — po)/r in the r direction, which we must
include. Substituting this part of equation (7.20) into equation (7.5), we obtain
a new part of the perpendicular fluid drift

- fxB
u, = LT POTXE (7.21)
nqrB
which gives rise to a vertical current, and a rate of charge accumulation
d —
s AP (7.22)

dr roByp

with the &£ sign for top and bottom, respectively. As stated above, our derivation
of the divergence of the diamagnetic current, which led to equation (7.16),
is simply modified in the case of a tensor pressure by using p, rather than
p. Adding this contribution to the charge accumulation to that given in
equation (7.22), we obtain altogether

do, 2 -
dos _  2PL  PIT Py =iPL+Pn (1.23)
dr roBo roBy roBo

which is consistent with equation (7.17), again demonstrating the equivalence
of the guiding-center and fluid pictures.

Problem 7.1: Applied to the isotropic and uniform-pressure core of the
plasma shown in Figure 7.2, our results from the fluid picture mean that,
despite the V B and curvature drifts, there is no net current in this region.
What happens in the case of an anisotropic-pressure plasma, with uniform
but unequal p, and p;? Is there a net current in this case? Using the
fluid picture, calculate its magnitude.

7.4 DIAMAGNETIC DRIFT IN NON-UNIFORM B FIELDS*

Our discussion of guiding-center versus fluid drifts has not fully explained why
there are no net currents in the isotropic and uniform-pressure core of the plasma
shown in Figure 7.2 due to the VB and curvature drifts. The fluid picture
clearly predicts that the current vanishes, because the diamagnetic drift given
in equation (7.5) is zero for an isotropic, uniform-pressure plasma. On the
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other hand, the particle picture has non-vanishing V B and curvature drifts. For
an isotropic pressure, we will see that the net current properly derived from
the guiding-center picture is also zero, because the volume currents due to the
VB and curvature drifts are exactly cancelled by additional order-kr; terms
introduced by going from the guiding-center density to the actual particle density
in the averaging procedure illustrated in Figure 7.1. The net volume current is
a physically measurable quantity, and must be the same in the two pictures.

Figure 7.3. Larmor orbits of ions in the presence of a field gradient. For guiding centers
with equal spacing dx,, there are more particles with v, < 0 falling in the shaded region,
and fewer particles with v, > 0, leading to a net current to the right.

To see this, we generalize Figure 7.1 to the case where B has a gradient,
which we take to be in the x direction. (For the time being, however, we
will assume that the field has no curvature.) The new case is illustrated in
Figure 7.3, which shows that the Larmor radii of particles with guiding centers
above the shaded region are larger than those of particles with guiding centers
below the shaded region. A particle’s instantaneous position x is still related
to its guiding center xg by equation (7.7), but it now becomes important that
w. is to be evaluated at the particle’s average position, i.e. at its guiding center.
Differentiating equation (7.7), we obtain

vy, 1 dB
dx = (1 w—yia) dxge. (7.24)
C

If B increases with x, as in Figure 7.3, the particles with v, > 0 in
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the shaded region (guiding centers below the shaded region) are less densely
packed than are the guiding centers themselves, i.e. dx > dxg.. Correspondingly,
particles with v, < O are more densely packed than are their guiding centers.
The result will be a preponderance of negative-v, particles, leading to an average
drift in the negative-y direction, even in the case of a completely uniform plasma
in which the guiding centers themselves are uniformly spaced. Figure 7.3 shows
a case where, for guiding centers that are uniformly spaced in the x direction,
there are two particles with v, < 0 falling in the shaded region (guiding centers
above the shaded region) for every one particle with v, > 0 (guiding center
below the shaded region). This average drift is in addition to any drift of the
guiding centers themselves.

Equation (7.24) replaces equation (7.9) and may be substituted into
equation (7.8) to give

-1
fx,v) = fi (x-{-g,v) (1 +ﬂ_1_d_B>

N vy dfe vy 1dB
(fgc + w, dx ) (1 w; B dx
vydfee vy, 1dB

~ ) ot i 2
frot 2B = e (7.25)

The average velocity uy is given by

Uy = % / vy f(x, v)d*v. (7.26)

Substituting for f(x,v) from equation (7.25) and noting that only the terms
quadratic in v, will survive in the integration, we obtain

= ngBdx gB?dx (7.27)
where we have assumed a Maxwellian distribution, so that we can write
(vf) = T/m. Equation (7.27), by construction, gives the average velocity
ignoring any guiding-center velocity, i.e. in the frame in which the guiding
centers have no motion.

For this geometry, the V B drift is also in the y direction and is given by

_(v3/2)dB T dB
"~ wB dx ¢B?dx

Upy (7.28)

where we have again averaged over Maxwellian particles, writing (v2/2) =
T/m.
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Thus, if we add the average guiding-center velocity, equation (7.28), to
the average velocity in the frame in which the guiding centers are at rest,
equation (7.27), we recover, for the total fluid velocity, the diamagnetic drift; in

this case
1 dp

= ngBdx’
Equation (7.29) applies to both ions and electrons. Thus, the current
perpendicular to a magnetic field in a plasma arises only from the diamagnetic
drift, i.e. it requires a gradient in the plasma pressure. There is no current in
the uniform-pressure core of the plasma shown in Figure 7.2, despite the VB
guiding-center drifts that carry ions upward and electrons downward. The VB
drifts are cancelled by additional terms that arise from the field gradient in the
averaging process used to obtain the fluid velocity.

(7.29)

Y.
Figure 7.4. Larmor orbits of ions in the presence of field curvature. For guiding centers
with equal spacing dzg, the particles with v, < O are more crowded than those with
vy > 0, leading to a net current in the negative-y direction.

The calculation that we have just given treats the case of a field gradient,
but not the case of field curvature. If the B field is curved, Figures 7.1 and 7.3 are
not very useful, since they do not show the essential effect, which is that, if the
guiding centers are equally spaced in the z direction, the particles themselves
are unequally spaced in z in the shaded region. Figure 7.4 is an end view
of Figure 7.1, looking from the right, for the case of a field that is concave
downward. For this case, we see that the particles with vy < 0 in the shaded
region are more densely spaced than those with v, > 0. Thus, the average drift
will be in the negative-y direction.

To analyze this case quantitatively, we start by observing that the spacing
in the z direction of particles in the shaded region, relative to the spacing of the
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particles” guiding centers, is given by

R

dz=———
R, —vy/w,

dzge (7.30)

where R is the radius of curvature. Generalizing equation (7.8), the distribution
function for particles will be related to the distribution function of guiding centers
by

flx,v)dxdz = foc(xgc, V)dxgedzge

Uy ngc ngc
= — dz. 31
Jac (x + 0 v) i 4z dxdz (7.31)
The new effect will arise from
dzge vy
=] - . 7.32
dz R.w, ( )

The calculation now proceeds as before, and the average velocity in the
guiding-center rest-frame is again obtained by substituting for f(x,v) from
equation (7.31) into equation (7.26). The additional term in the fluid velocity is
now found to precisely cancel the average curvature drift in an isotropic plasma,
which for this geometry is given by

(vf)
wc R, '

Upy = (7.33)
The details are left as an exercise (see Problem 7.2). In an anisotropic plasma
(p| # pL). this cancellation does not occur, but the net drift calculated in this
way from the particle picture exactly equals the fluid drift for the anisotropic
case, i.e. equation (7.21) (see again Problem 7.2).

It should be noted that these currents associated with finite gyro-radius, but
stationary guiding centers, are of necessity divergence-free, so they do not affect
the previous guiding-center calculation of charge accumulation. For the plasma
shown in Figure 7.2, these currents are uniform and vertically directed in the
core plasma.

Problem 7.2: Complete the calculation of the diamagnetic drift in an
isotropic plasma for a curved magnetic field, showing that the average
velocity in the guiding-center frame, obtained from equations (7.26), (7.31)
and (7.32), contains an additional term from field curvature that exactly
cancels the average guiding-center curvature drift. For an anisotropic
plasma, in which both p, and p, are uniform, show from this guiding-
center picture that there is a net drift similar to that given in equation (7.21).
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7.5 POLARIZATION CURRENT IN THE FLUID MODEL

The next question to be addressed is how to obtain the plasma dielectric effect
in the fluid model. We derived this from guiding-center motion, and it is crucial
for evaluating the rate of change of the electric field due to the charge build-up
at the top and bottom of the torus in the problem illustrated in Figure 7.2 and
discussed in the previous three Sections. Can we obtain the dielectric effect—or
equivalently the polarization drift—from the fluid equations?

Once again, we must apply our ideas about ordering procedures. In the
presence of an electric field, in lowest order, we obtain a simple E x B drift by
balancing the dominant terms in equation (7.1):

_ExB

ug =~ (7.34)

(For simplicity, we will ignore V . P and any other spatial non-uniformity
in this derivation of the polarization drifts.) Using the method of successive
approximation, we simply substitute this drift velocity, assumed first-order in
kry, into the small term on the left-hand side of equation (7.1). We then obtain
an equation for the second-order correction to the velocity, which we will for
now call up:

mndg = nqu, X B (7.35)
or .
mnE x B
T =nqu, X B. (7.36)

This equation says nothing about the parallel component of wu,, but the
perpendicular component has a unique solution

mEJ___iEi

U
where + now stands for the sign of g. Thus we can identify u, as the low-
frequency ‘polarization drift’ that was calculated in , and so the
previous arguments constructing a plasma dielectric constant go through exactly
as before. Once again, the fluid calculation, carried out to the appropriate
order, gives the same result as the guiding-center calculation for any physically
measurable quantity.

Problem 7.3: Working in the guiding-center drift formulation, caiculate
the outward acceleration of the plasma shown in Figure 7.2 due to the
E x B drift that is created by the combination of VB, curvature and
polarization drifts. Consider both isotropic and anisotropic pressure cases.
In the anisotropic-pressure case, can you come up with a physical reason
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why parallel energy density is twice as effective as perpendicular energy
density in driving outward acceleration? (Hint; think of conservation of
angular momentum and of magnetic moment o as constraints, which
determine the energy available to the system as it moves outwards.)

7.6 PARALLEL PRESSURE BALANCE

We have now demonstrated a correspondence between each of the terms in the
perpendicular components of equation (7.1) and one or more of the guiding-
center drifts. Before leaving the fluid equation of motion for an individual
species of particles, it is useful to consider the physical content of the parailel
component of equation (7.1).

In the scalar pressure situation, if we assume zero flow velocity and slow
time derivatives, we have in dominant order

an” = Vnp (738)

or
ngVi¢ + Vyp =0 (7.39)

where ¢ is the electrostatic potential. If we assume that the parallel thermal
conductivity is very rapid, so that the temperature T is constant along a field
line, we can write

ngVyp +TVin=0 (7.40)

or equivalently
Inn + q¢/ T = constant. (741

Taking the exponential of both sides of equation (7.41), we obtain a relation for
the variation of the density along a field line in equilibrium:

nxexp(—q¢/T). (7.42)

This is just the Boltzmann relation for a system in contact with a heat bath, which
we derived from fundamental principles of statistical mechanics in
We see here how the same result follows from our fluid equations.

Obviously, both electrons and ions cannot simultaneously be in Boltzmann
equilibrium in the presence of an electric potential that varies along the field
lines, or else charge neutrality would be violated in the absence of some
externally introduced charge. The only charge-neutral equilibrium under normal
circumstances is one in which the electric potential and ion and electron densities
are constant along the field lines. However, if a density variation, say a density
‘hump’, is created dynamically along a field line in a charge-neutral plasma,
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112 Fluid equations and guiding-center drifts

electron and ion flow velocities parallel to the magnetic field will arise. The
larger mass of the ions results in them responding relatively slowly to the
presence of the ‘hump’ in n (and therefore a non-zero V;p;) along a field
line, with the characteristic time-scale being set by some v ~ L/(T/m;)!/2.
Meanwhile the lighter electrons respond much more quickly, T ~ L/(T/me)'/?,
and rapidly set up a Boltzmann distribution in the presence of the density hump.
This means that the electron force balance dictates that

V” DPe = €Ne V||¢ (743)

since the electrons come to equilibrium on a time-scale much faster than the ions.
In a plasma with strong parallel thermal conductivity (and therefore uniform T),
this implies that

ne  exp(e¢/Te) (7.44)

which determines the variation in electric potential ¢ that will arise:
¢ « (T./e)inn.. (7.45)

When this electric field has been created, the electrons are in force balance.
Provided the scale-length of the density ‘hump’ is much larger than the Debye
length, charge-neutrality will be maintained by n. remaining almost equal to n;.

Problem 7.4: Suppose a small varying electric potential ¢ (x) = ¢;sinkx
is created in an initially uniform, neutral plasma (e¢;, « T.). Show that
the electrons will come to equilibrium with n.(x) = ng + n¢ sinkx where
ne1/no = edy/ T.. Using Poisson’s equation, show that the ion density will
be given by n;(x) = ng + n;;sinkx, where (n; — ner)/ne; = k?A3.

Now, examining the ion equation of motion parallel to the field, we see
that the electric field pulls the ions in the same direction as their own pressure
gradient pushes them, tending to cause the ions to smooth out the original ‘hump’
more rapidly. In effect, the electrons contribute their pressure gradient to the
force on the ions, via the Boltzmann electric field. The parallel force-balance
equation for the ions, on the time-scale required for them to respond, becomes

miniii = —nieVig — Vypi = —=TVine - Vipi & —(Te + T)Vyn  (7.46)

the last step being valid if the ion temperature is also smoothed out along the
field.

An important feature of this result is that the electric field is derived from
the electron Boltzmann relation, given the density perturbation. We assumed,
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for time-scales where the electrons had plenty of time to come into equilibrium,
that they would immediately set up force balance along the field line, thereby
satisfying the Boltzmann relation without delay. An alternative way to work
this problem would have been to solve for the electron dynamics as well as
for the ion dynamics, and then to calculate the very small charge separation,
e(n; — n.), and use Poisson’s equation to find E}. This would have been much
more cumbersome, and insignificantly more accurate if we are only interested
in the time-scale at which the overall density hump reiaxes via ion motion and
so long as the spatial scale-length greatly exceeds the Debye length. In this
situation, we say that ‘the electron inertia is negligible’. We will find that this
trick of circumventing Poisson’s equation via the Boltzmann relation for the
electrons is of great use in many problems of ‘low-frequency’ plasma dynamics.

Copyright © 1995 IOP Publishing Ltd.



Chapter 8

Single-fluid magnetohydrodynamics

We are now in a position to formulate a ‘single-fluid” model of a fully ionized
plasma, in which the plasma is treated as a single hydrodynamic fluid acted
upon by electric and magnetic forces. This is called the ‘magnetohydrodynamic’
(MHD) model. The attraction of this model, relative to the more complex ‘two-
fluid’ models, is that it provides a somewhat more tractable set of equations
while retaining much of the important physics. Historically, this was one of the
earliest plasma models to be developed and used, because it allowed application
of many of the techniques of ordinary hydrodynamics to the plasma case, even
though a plasma is much more complicated because of the variety of electric
and magnetic forces that are possible.

8.1 THE MAGNETOHYDRODYNAMIC EQUATIONS

We will limit our derivation of the equations of magnetohydrodynamics to the
case of a hydrogen plasma, in which the ions and electrons have charges +e,
respectively. We will also assume that charge neutrality is at least approximately
satisfied, so that n; ~ n, = n, but we will allow the possibility of a small non-
vanishing charge density. The final equations, however, apply just as well to the
case of a plasma in which the ions are multiply charged, i.e. have charges Ze, in
which case the charge-neutrality condition will be n, & Zn;. The assumption of
approximate charge neutrality will be valid whenever the spatial scale-lengths
of the phenomena of interest greatly exceed the Debye length. We will here
denote the electron and ion masses by m and M respectively.
The magnetohydrodynamic model treats the plasma as a single fluid with
mass density
o =nM+nm=nM+m)~nM 8.

charge density
o = (n; — ne)e (8.2)
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116 Single-fluid magnetohydrodynamics
mass velocity
u = (nMu; +n.mu.)/p ~ (Mu; +mu.)/ (M +m) = u; + (m/M)u, (8.3)
and current density
Jj = e(nju; — neu) = ne(u; — u,). (8.4)
These may be solved to obtain expressions for u; and u, in terms of u and j:
m j J

| R — ru-— — 8.5
u; u+Mne U ~u e (8.5)

where we have dropped terms that are unambiguously small in m/M.
The single-fluid magnetohydrodynamic equations can be obtained by taking

various linear combinations of the individual ion and electron equations. In
particular, the two individual continuity equations

Bni,e
at

+V. (nielie) =0 (8.6)

may be multiplied by the ion and electron masses M and m, respectively, and
added together to produce a ‘mass continuity equation’:

ap

5 + V. (pu) =0. 8.7)

The individual continuity equations may be subtracted from one another, to
produce the ‘charge continuity equation’:

— +V-i=o. (8.8)

In a similar way, the two individual momentum balance equations, which we
will tend to refer to here as the individual fluid ‘equations of motion’

du;
Mni—u— =eni(E+u xB) - Vp +R
de
d 8.9)
,nne?tE = —ene(E + ue X B) - Vpe + Rei

(where Rie and R;; describe collisional transfer of momentum between the two
species) may be added together, to produce the combined ‘single-fluid equation
of motion’:

d )
p%:p(£+u-Vu)=aE+ij—Vp (8.10)
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where p = pe + pi is the total pressure. Additional non-electromagnetic forces,
e.g. gravitational forces pg, may be included on the right-hand side of the
single-fluid equation of motion, if necessary. In adding the two individual fluid
equations of motion, the collision terms cancel each other, since Rg; = —Re.
Although equations (8.9) and (8.10) have assumed that the electron and ion
pressures are isotropic, this is not essential to the magnetohydrodynamic model;
indeed, there are important cases where the electron pressure is isotropic,
whereas the ion pressure, because of the larger ion Larmor orbits, must be
taken as a tensor.

Strictly, the convected derivative terms u + Vu in the individual fluid
equations of motion, being nonlinear in u, do not add together as simply as
we have suggested. Moreover, the individual-species pressures were defined in
terms of the random motion of particles of each species relative to the species’
own mean velocity. Thus, again, the two individual pressure gradients do not
add together so simply, because there is an ambiguity about which mean velocity
the random motions are measured against. This difficulty can be removed by
redefining the pressure of each species in terms of random motion about the
mass velocity, Equation (8.10), where u is this mass velocity and V p involves
the pressure defined in this way, then becomes exactly correct, including the
convective derivative. In practice, however, the mass velocity of a plasma is
generally dominated by the ions, being much heavier than the electrons, so there
is no distinction between u and the ion mean velocity u;. Moreover, the electron
random motions are so rapid compared with any mean velocity that it does not
matter which mean velocity is used in the definition of electron pressure. It is
evident that equation (8.10) is valid in this approximate sense also, where u in
both terms on the left-hand side is interpreted as the ion velocity.

To obtain a second single-fluid equation from the two individual fluid
equations of motion, we must invoke two approximations. First, we must express
the momentum transfer from ions to electrons in terms of the velocity difference
and average collision frequency (or, equivalently, the resistivity n), as we already

did in namely
Rei = mn{ve;) (U; — ue) = nn’e’(u; — ue) = nnej. (8.11)

Second, we must neglect electron inertia entirely. This will be valid for
phenomena that are sufficiently slow that electrons have time to reach dynamical
equilibrium in regard to their motion along the magnetic field. With these two
approximations, the single-fluid electron equation of motion may be rewritten

v
E-+u. xB=nj— ¢ (8.12)
ne
or . B V
E+u><B=nj+’—x—nE—ﬂ (8.13)
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where, in obtaining the second form, we have substituted from equation (8.5)
for u, in terms of j and u. Equation (8.13) is usually called the ‘generalized
Ohm’s law’ for a plasma. If it is important to retain the distinction between
resistivity perpendicular and parallel to a magnetic field, then the scalar n can
be replaced by a diagonal tensor, with diagonal elements n ., n, and nj, for the
case where the magnetic field is in the z direction.

To provide a complete set of equations, some kind of ‘equation of state’
must be added to describe how the plasma pressure p changes in time. As we
have seen in , the adiabatic law is often assumed, i.e.

d(p\ _
a(p—},)_O (8.14)

but the isothermal law, p = n(T. + T;) with T.,7; = constant,
provides an alternative model that is sometimes more appropriate. For
magnetohydrodynamic phenomena that are rapid compared to collisions, the
plasma pressure may become significantly anisotropic, in which case the double
adiabatic laws introduced in Chapter 6 are employed.

The system of equations is closed by including the four Maxwell equations:

1 dE
V xXB=j+—=— 8.15
X ol + 55 (8.15)
V><E=—-E (8.16)
at
V:B=0 (8.17)
V : (¢gE) = 0. (8.18)

In these equations, we consider the plasma polarization current as external, so we
use the vacuum form for the permittivity €. Equations (8.7), (8.8), (8.10), and
(8.13)—(8.18) constitute a full set of single-fluid equations for a plasma treated
as an electrically conducting fluid. We will now examine various limiting forms
of these equations.

8.2 THE QUASI-NEUTRALITY APPROXIMATION

So far, we have retained in our equations certain terms describing the effects of
a non-zero charge density o. In particular, we have retained the electric force
oE in the equation of motion and the charge separation do /3¢ in the charge
continuity equation. Often, neither of these terms is very important.

To see this, we adopt an estimation procedure that compares the size of the
term in question with the size of another term (anticipated to be more important)
in the same equation. For example, we compare the size of the electric force
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oE to the size of the inertial term pu - Vu in the equation of motion using the
Maxwell equation V - (¢oE) = o to estimate o: we find

oFE 60E2/L €0E2 6032
ou-Vu  pu?/L ou? 0

(8.19)

where we have introduced a characteristic length scale L and have assumed that
the plasma velocity u is of order ExB/B? ~ E/B. The dimensionless parameter
€0B?/p is a small quantity in almost all plasmas of interest. (Equivalently, the
plasma ‘dielectric constant’ 1 + p/eoB? is large—usually 102-103.) Thus, the
electric force is negligible.

The charge separation do /3¢ in the charge continuity equation may be
estimated in a similar way, by comparing its size to the size of the term V . j.
We find

d0/3t eE/LT  €uB/T €gB?

V- J/L pu/Bt P
where we have introduced a characteristic time-scale T and have estimated j by
equating the magnetic force j x B to the inertial term pdu/a¢. Since this is again
a small quantity and yet the terms in the numerator and denominator must, by
equation (8.8), be equal and opposite to each other, it follows that j must be
almost divergence-free, in which case the denominator is greatly overestimated
in equation (8.20).

In the limit p/€oB? > 1, the terms o E and d0/3¢ may both be omitted from
their respective equations. This is known as the ‘quasi-neutrality approximation’.
It is important to note that the quasi-neutrality approximation does not mean that
the charge density o can be omitted from the Maxwell equation V - (¢E) = 0.
What it means is that this Maxwell equation serves to define the magnitude of
o, which turns out to be too small to be of importance elsewhere. This particular
Maxwell equation can then be dropped from the system, since o does not appear
anywhere else. We only use it when we want to evaluate . However, it is not
correct to write V « (¢gE) = 0. In particular, there will often be electric fields
in the plasma, with finite divergence, such as those perpendicular to a magnetic
field that define the perpendicular plasma motion.

(8.20)

Problem 8.1: A similar estimation procedure leads to the conclusion that
the displacement current can aiso be omitted from the Maxwell equations
as part of the same gquasi-neutrality approximation. Show this.

Usually the term ‘magnetohydrodynamics’ refers to the case where the
quasi-neutrality approximation is invoked. In this limit, the term 30/d¢ may
be omitted from equation (8.8), the electric force cE may be omitted from
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equation (8.10), and the displacement current d(¢égE)/0t may be omitted from
equation (8.15).

8.3 THE ‘SMALL LARMOR RADIUS’ APPROXIMATION

We will now show that the second and third terms on the right-hand side in the
generalized Ohm’s law, equation (8.13), are negligible in a special example of the
‘small Larmor radius approximation’. We adopt the same estimation procedure
used above, i.e. we compare the size of the term anticipated to be unimportant
with the size of another term in the same equation thought to be more important.
In a typical plasma-dynamical situation, the fluid motion u will be driven by
pressure gradients and by magnetic forces and, in the limit where the motion
is fully developed, for example as a result of a strong magnetohydrodynamic
instability, the fluid velocity will reach an order-of-magnitude given by

pu-Vu~Vp~jxB. (8.21)

The E x B drift, which will provide the dominant contribution to the fluid velocity
u, is now taken to be much larger than the other drifts (such as the diamagnetic
drift) unlike many of the cases considered in previous Chapters; these large fluid
velocities are the result of large unbalanced forces or strong instabilities.

Writing p = nT and p = nM, we obtain for this case u ~ vy; ~ (T/M)!/?,
the ion thermal velocity. Of course, not all plasma-dynamical phenomena
produce fluid velocities as large as the ion thermal speed. However, in fully
developed magnetohydrodynamic flows, where unbalanced V p and j x B forces
are reacted only by the inertia of the plasma, the plasma fluid velocity can,
and does, attain such large values. It is in such situations that the ‘small
Larmor radius’ approximation can be appropriate; it is usually not valid for
weaker magnetohydrodynamic phenomena, for example phenomena where the
fluid velocity, i.e. the E x B drift, is not larger than the diamagnetic drift or
the guiding-center V B or curvature drifts. We will use the relation u ~ v;; to
estimate the magnitude of the second and third terms on the right-hand side in
the generalized Ohm’s law, equation (8.13), compared to one of the terms on
the left-hand side, in particular the term u x B. Starting with the last term on
the right-hand side in equation (8.13), the generalized Ohm’s law, we find

Vpe/ne T M UMug v
uxB euBL euBL eBL weL L

(8.22)

where ry; is the ion Larmor radius. Since jx B ~ V p (for the most general case
where both pressure gradients and magnetic forces are about equally important
in driving the fluid motion), a similar estimation of the second term on the right-
hand side of equation (8.13) will give exactly the same result. We conclude that
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the second and third terms on the right in equation (8.13) can be neglected if the
ion Larmor radius is very small compared to the scale-length of the fluid motion,
i.e. r;;/L « 1 and we are considering fluid velocities of order v ;. Treatments
that take these additional terms into account are often called ‘finite Larmor
radius’ treatments.

In the ‘small Larmor radius’ approximation, the Ohm’s law is simply

E+ux B = 7j. (8.23)

Magnetohydrodynamics (often abbreviated to ‘MHD’) usually refers to the set of
equations with this ‘simple’ Ohm’s law replacing the ‘generalized’ Ohm’s law.
Summarizing the other ‘MHD equations’, they are:

ap

—+V. =0

5 + V. (pu)

V.j=0 (8.24)
du

— =-Vp+jxB

P pFix

together with the required versions of the Maxwell equations:

V x B = uoj
B
VXxE=—— 8.25
X o (8.23)
V-:B=0.

Henceforth in this book, the term ‘magnetohydrodynamics’ (MHD) will mean the
plasma model described by equations (8.23)—(8.25).

The physical significance of each of these equations is evident by analogy
with the usual equations of fluid mechanics and electrodynamics. The most novel
feature is the replacement of E by E4uxB in Ohm’s law. The quantity E+uxB
is the effective electric field seen by a fluid element moving with velocity u
across a magnetic field B, taking into account the Lorentz transformation for
uKLe.

The MHD equations are standard tools for treating problems of large-scale
plasma motion. Before giving some examples of their use, we must first discuss
one final approximation, namely the one in which the resistivity is unimportant
in regard to its effect on large-scale plasma motion.

8.4 THE APPROXIMATION OF ‘INFINITE CONDUCTIVITY’

Since the magnitude of resistivity in a high-temperature plasma is very small,
dynamical phenomena in a plasma can often be described in the approximation
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of ‘infinite conductivity’, in which the plasma Ohm’s law is simply
E+uxB=0. (8.26)

The approximation in which this infinite-conductivity form of the Ohm’s law is
employed is usually called ‘ideal magnetohydrodynamics’. Later in this Chapter
we will derive a dimensionless quantity, the ‘magnetic Reynolds number’, the
magnitude of which will tell us whether or not this is a good approximation.

The consequence of ‘infinite conductivity’ is that the plasma is tied to the
magnetic field lines, in a sense that we will now describe.

AL+ d(AR)
(u+ Au)dt

B(t)

Figure 8.1. Motion of two elements of plasma that lie initially on the same field line
B(t) separated by a distance A£. We prove that the final position of the elements lie also
on the same field line B(s + dt).

We will show that all fluid elements initially located on any given field
line will still be located on the same field line after an arbitrary motion of
an infinitely conducting plasma. Consider two neighboring fluid elements on
some particular field line at time ¢; the two elements are separated by a vector
differential length A£, which must, by assumption, lie in the direction parallel
to B(#). In a time interval dt, the two elements move udt and (u + Au)dz,
respectively, as shown in Figure 8.1. To prove our assertion, we must show that
A€+ d(A¥) is parallel to B(z +dr). (In this analysis, note that both d and A are
used to denote differentials. The differential d is associated with the differential
time-step dz, which carries the plasma from its initial location on a given field
line to a subsequent displaced location. The differential A is associated with the
differential length A£ between two plasma elements initially on the same field
line.)

First, let us calculate the quantity d(A€), meaning the differential change
of A# following the motion of the plasma for the differential time interval dt.
The Taylor expansion for u gives

Au = (A€ V)u (8.27)
and, by reference to Figure 8.1, we see that

AL+ d(AL) = AL+ (u+ Au)dr — uds (8.28)
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since the combination of the three vectors on the right-hand side traces out the
same path as the vector on the left-hand side, so that
d(A®)
da

= (AL V)u. (8.29)

Next, let us consider how B itself changes. By combining Faraday’s law with
Ohm’s law, we have

B

— =-V xE
ot
=V x (u x B)
=B:-Viu-u-V)B-B(V-u (8.30)

where, in the final form, we have used a familiar expansion for the curl of a
vector product (see |Appendix D)) and have also made use of V-B = 0 to
eliminate one of the four terms. The total derivative of B, following the motion
of the plasma, may now be written

dB 4B
Pl + (u-V)B
=(B-V)u-B(V - u). (8.31)

Let us now evaluate

TN CL IO

=[(AL-V)u] x B+ A€ x [(B-V)u—B(V-u)] (832)

where we have substituted from equations (8.29) and (8.31). The third term on
the right-hand side in equation (8.32) must vanish for, initially, A€ is parallel
to B, so that

AL xB=0. (8.33)

Moreover, when we examine the first two terms on the right-hand side in the
second form of equation (8.32), we see that they cancel each other if A€ and
B are parallel. For, if A£ and B are parallel, they may be interchanged in
the first term on the right-hand side in equation (8.32), which then becomes
[(B - V)u] x AZ, which is equal and opposite to the second term on the right-
hand side. Thus, altogether,

%(AZ xB)=0 (8.34)

which shows that A£ moves so as to remain parallel to B.

Copyright © 1995 IOP Publishing Ltd.



124 Single-fluid magnetohydrodynamics

Thus, our assertion is proved: any two elements of an ideal plasma that
lie initially on a given field line will still lie on the same field line after an
arbitrary motion of the plasma. The field configuration itself will, of course,
have changed, and the plasma elements and their field line may have moved to
a completely different location in physical space. But, in any such motion,
however complicated, each field line retains its identity, since the plasma
elements themselves must retain their identity. If one could ‘paint’ with a color
those plasma elements that lie initially on some field line, this line of ‘colored’
plasma would move around in some complicated way in physical space, but it
would always remain on a field line: i.e. the ‘colored’ elements of plasma would
always find themselves aligned along the same field line.

Of course, this otherwise very general result applies only to the extent that
the simple Ohm’s law is valid. This means not only that the plasma resistivity
must be negligible, but also that the fluid velocities arise from E x B drifts that
are much larger than diamagnetic or guiding-center drifts.

8.5 CONSERVATION OF MAGNETIC FLUX

The tying of plasma to magnetic field lines has another important consequence:
the magnetic flux through any closed contour that moves with the plasma is
constant. By magnetic flux, we mean the integral of B over the area enclosed
by some closed contour, i.e.

® = / B.dS (8.35)

where dS is a (vector) element of area. For the closed contour, we choose any
closed line ‘painted’ on the plasma, not lying along a field line, and we imagine
this line to move as the plasma moves. The change in ® is made up of two parts:
the change due to time variation of B integrated over the area within the original
closed contour, and the change due to the movement of the contour that bounds
the area of integration. Using, from equation (8.30), 3B/3t = V x (u x B), we
obtain 40 4(aS)
dt...fo(uxB)-dS-f-/B- et (8.36)
We may use Stokes’ theorem to transform the first term on the right-hand side
into a line integral around the contour bounding the area of integration; we
denote the element of length along this contour by A£. (As in the previous
Sections, both d and A are used to denote differentials, the former with respect
to the time step d¢ and the latter with respect to the length element along the
contour. Since A/ is a legitimate vector differential length element, we can have

a line integral over A£.) Referring to , we also see that the increment
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udt das

daS Al

=udtx Al
Area S

Figure 8.2. Area S bounded by some closed contour in the plasma. After a time increment
dt, the plasma elements on the contour have moved to encompass an additional area dS,
made up of pieces such as dAS, as shown. We prove that the new contour encloses the
same amount of magnetic flux [ B . dS.

in the (vector) element of area produced by the plasma motion is given by
d(AS)/dt =u x AL 8.37)

Thus, altogether, we obtain
do
E:f(uxB)-A£+fB-(uxA£)=0 (8.38)

the two terms cancelling by the well-known property of the triple scalar product.
Thus, our assertion is proved: the magnetic flux through an area bounded by any
closed contour ‘painted’ on the plasma is unchanged in any motion of the plasma.
The conditions for the validity of this result are the same as those for the result
of the preceding Section—negligible resistivity and dominantly E x B drifts.

8.6 CONSERVATION OF ENERGY

Using the equation of motion (8.10), and the equation for the convection of
magnetic field B in a perfectly conducting plasma, equation (8.30), together with
Maxwell equations as needed, we can derive the equation of energy conservation
for a perfectly conducting plasma that obeys an adiabatic equation of state. The
equation to be derived is

w_ (8.39)
dt '
where the total energy W is given by
pluf? p €lE? | |B]*\ ,
W= — ) d’x. 8.40
/( 2 + o + 5 + Tito X (8.40)
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We start by taking the dot product of equation (8.10) with u and then integrating
over all space. The contribution from the terms on the left-hand side in
equation (8.10) is relatively straightforward to obtain. We have

d 1 3u)?
/Pu-<£+u-Vu>d3x=§/<p Iaul + pu- Vlulz)d3
1 duf? 2 3
I v
: / (p o (pu))d x
1 3Jul? 200 3
—2/<p oL+ P ) d

plal? ,

4
=153 Ladhal N ¥ (8.41)

where we have used Gauss’s theorem and assumed that the surface integral at
infinity vanishes in going from the first line to the second line. This gives the
first term in the expression for W, which is the energy of directed motion.

The treatment of the third term on the right-hand side of equation (8.10)
from the pressure gradient is a little tricky and goes as follows. First we rewrite
the adiabatic equation of state as

_d(py__1 ¢ £ _r=Dpdp
dr \ pv or~ldt prtt  dt
__1 d (y—l)p
o7 1 dt ( )+ —_,0)7_ +u, (842)

Using Gauss’s theorem and assuming that the surface integral at infinity vanishes,
because either p or u vanish there, and then using the above relation to substitute
for V - u, the term from the pressure gradient can be transformed as follows:

/u-Vpd3x=—/pV-ud3x

w

SNa—

d
y —1 dt \ p x
1 3
= — Fp-— 4 +pu-V 2 dx
y—1 at \p p
1 [ a (p\ »p
=y=1) [P (p> P (pu)]
1 [0 (p\, pPdp] s
= — —(Z)+=—|d
y =1 _"ar<p>+par] g
a P 3
=— | —+——d 8.4
anl y—1° 7" (843)
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This provides the essentials of the derivation of the second term in the expression
for W, which is the energy of random motion.

Problem 8.2: Complete the derivation of the other two terms in W.The
plasma should be assumed to be an isolated system, so that fiuxes of
electromagnetic energy into or out of the system at its boundary may
be taken to be zero. (Hint: in considering the magnetic force term
in the equation of motion, you might find it helpful to use the identity
(V xB) xB = (B- V)B — V(B?/2).) Although the derivation of this part of
the energy conservation equation requires some lengthy analysis, which
will take several pages of calculations, the final answer is revealing: in
particular, it shows that the total energy is made up of the kinetic energy
of directed motion, plus the energy associated with random motion, plus
the usual electric and magnetic field ‘energy densities’ of ¢|E|?/2 and
|B|2/2u0, respectively.

8.7 MAGNETIC REYNOLDS NUMBER

The tying of plasma to magnetic field lines is a property peculiar to the limit
of infinite conductivity. The question naturally arises: how good must the
conductivity be for this approximation to be valid?

Including resistivity, the time variation of the magnetic field is given by

?E =-VxE
ot
=Vx@uxB)—V x@#j
=V x (u x B) + (7/10) V’B (8.44)

where we have used Ampere’s law for j, assumed 7 to be constant, and made

use of the familiar identity (see
V xV xB=V(V.B)- VB (8.45)

remembering also that V-B = 0. Note that the meaning of V2B in index notation
is 32B;/3x;8x;. The first term on the right-hand side in equation (8.44) describes
convection of the field with the plasma (and its amplification or reduction due
to compressive motion perpendicular to the magnetic field), while the second
(resistive) term describes diffusion of the field across the plasma.

For some general magnetohydrodynamic motion with a characteristic scale-
length L and a characteristic plasma velocity u, the ratio of the convection term
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128 Single-fluid magnetohydrodynamics
to the (resistive) diffusion term is a dimensionless quantity
Rm = poulL/n (8.46)

which is sometimes called the ‘magnetic Reynolds number’. (It is also referred
to as the ‘Lundquist number’, after its discoverer.) If the magnetic Reynolds
number is sufficiently large, the infinite-conductivity assumption is valid. It is
evident that the magnetic Reynolds number depends on the velocity of the plasma
motion, and therefore its magnitude depends on the nature of the dynamical
phenomenon under investigation. For fully developed magnetohydrodynamic
motion, the characteristic velocities are very large, and magnetic Reynolds
numbers in low-resistivity plasmas can range up to 10%, or higher.

Problem 8.3: Estimate the magnetic Reynolds numbers for two of the
typical plasmas with magnetic fields discussed in Chapter 1], namely the
solar corona, in which the magnetic field may be taken to be about 10-8 T,
and an experimental fusion plasma, in which the magnetic field is about
5T. The physical dimensions can be taken to be about 10¥m and 1m,
respectively. In both cases, you may assume that the plasma resistivity
is about the same as that of copper, namely 2 x 10-8 Q@ m. In each case,
an estimate will be needed of the velocity u of magnetohydrodynamic
motion. This can be provided by balancing the inertia in the equation of
motion against either the pressure gradient, V p, or the magnetic force,
j x B. In the former case, the velocity of magnetohydrodynamic motion
is approximately the sound speed, v;. In the latter case, which is the
one that you should assume here, the magnetic force should first be
expressed in terms of the graw.ent of the magnetic pressure, V(B?/2uo),
which results in the velocity of magnetohydrodynamic motion being of
order B/(uop)'/?, which is called the ‘Alfvén speed’. (When the plasma
pressure equals the magnetic pressure, the Alfvén speed and the sound
speed are essentially equal.) You should use this Alfvén speed in your
estimation of the magnetic Reynolds numbers.
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Chapter 9

Magnetohydrodynamic equilibrium

In , we discussed the orbits of individual charged particles in various
types of electric and magnetic fields. In particular, in a strong static magnetic
field, we found that charged particles gyrate in tight spirals about the magnetic
field lines. If the magnetic field is non-uniform or curved—as it necessarily is
in any real situation—charged particles also drift across the magnetic field lines.
In our discussion of particle orbits, however, we analyzed this situation as if the
magnetic field was externally generated, i.e. unaffected by the presence of the
plasma particles.

However, as more and more charged particles are added to a plasma, the
currents that flow along the magnetic field, as well as the diamagnetic current
perpendicular to the magnetic field arising from pressure non-uniformity, can
become large enough to modify the externally created magnetic field. The
plasma equilibrium must then be determined self-consistently: the presence of
the plasma itself modifies the magnetic field configuration.

The fluid equations that we have derived in the previous three Chapters
are well-suited for addressing this problem. Even in the simplest ‘ideal
magnetohydrodynamic’ approximation, these equations contain the essential
ingredient, which is the requirement that the plasma currents needed for
force balance be consistent with those required to form the magnetic field
configuration.

9.1 MAGNETOHYDRODYNAMIC EQUILIBRIUM EQUATIONS

For a steady-state solution of the magnetohydrodynamic (MHD) equations for the
special case with u = 0 and isotropic pressure, the plasma and magnetic field
must satisfy the three equations

Vp=jxB V.B=0 V xB=_uj 9.1)
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130 Magnetohydrodynamic equilibrium

The charge continuity equation, in the quasi-neutral approximation, V « j = 0,
is redundant with the third of these; Ohm’s law provides no useful information,
since both u and E are zero in this static equilibrium and resistivity is neglected.

The first of these relations states that the plasma pressure gradient and the
Lorentz force must be in balance. Consider, for example, a cylindrical plasma
with the maximum pressure on the axis of the cylinder, so that the vector V p is
directed inwards. In the case where the magnetic field is directed along the axis
of the cylinder, i.e. in the z direction, in the fluid picture the outward force of
expansion must be counteracted by the Lorentz force arising from an azimuthal
current flowing in the negative-@ direction in the plasma, as shown in Figure 9.1.

AN,
. ls — BZ
fvp

Figure 9.1. Cylindrical plasma equilibrium in which the inward j x B force from the
azimuthal current balances the outward force from the pressure gradient. Note that the
azimuthal current flows in the negative-9 direction.

From the point of view of a differential volume element, the net momentum
flow associated with V p arises from the fact that more radial momentum flows
into the box from the small-r side than flows out of the box on the large-r
side; (v.v,)|, > (vrvr)l,1q,- On the other hand, the pressure gradient gives
rise to a net diamagnetic current, and the j x B force that arises provides the
needed force balance. In the particle picture, fluid force-balance does not play
a role. The orbits spiral along B, and for the case of scalar pressure there is
no net current due to gradient or curvature of the magnetic field. However the
diamagnetic current arises as an observable current via the orbit overlaps and, in
a self-consistent particle-picture of the plasma, would affect the magnetic field.

In the general case, the fluid plasma current required for equilibrium can
be found by taking the cross-product of the force-balance equation with B and
using the well-known identity for the triple cross-product; this determines the
component of the current density perpendicular to the magnetic field, i.e.

BxVp
TR

We of course encountered exactly this current in [Chapter 7|and called it the

‘diamagnetic current’.
The component of current density along the magnetic field, jy, is not
determined by the force-balance equation. However, in the general case where

jL 9.2)
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Ju is not divergence-free, a non-zero jj is needed to satisfy the quasi-neutrality
requirement

V.j=0. (9.3)
Specifically, writing .
i=ir+ab 94)
and using V - B = 0, we obtain
B:-V(/B)y+V:j.=0 (9.5)

from which jj can, in principle, be obtained, except for an arbitrary j
proportional everywhere to B. Often, however, the ji vector turns out to be
divergence-free by itself, in which case j, can be zero. This is certainly the
case, for example, in the equilibrium shown in Figure 9.1.

9.2 MAGNETIC PRESSURE: THE CONCEPT OF BETA

If we substitute for j from Ampere’s law into the force-balance equation, we
obtain

Vp = (V xB) xB/ug

=[(B- V)B — V(B%/2)]/10 (9.6)
using the vector identity for (V x A) x B (see ). This may be
rewritten

V(p + B*/2p0) = B+ V)B/ o ©.7)

which is known as the ‘pressure-balance condition’. The terms on the left
in equation (9.7) indicate that the magnetic field may be considered to have
a ‘magnetic pressure’ given by B?/2uo. The term on the right-hand side
of equation (9.7) comes from bending and parallel compression of the field,
producing perpendicular and parallel forces, respectively. This may be seen by
writing

(B-V)B = B(b. V)(Bb)
= B%(b- V)b +b(b- V)B?/2.

Here, the first term on the second line is perpendicular to the magnetic field
(taking the dot product with b gives (b - V)|b|?/2 = 0), and represents the
‘bending’ force. The second term on the second line is parallel to the magnetic
field and represents a force due to parallel ‘compression’ of the field lines.

In some interesting cases, the field lines may be taken as approximately
straight and parallel, in which case the term on the right-hand side of
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equation (9.7) vanishes identically. In these cases, the pressure balance condition
becomes simply
p + B?/2u0 = constant 9.8)

i.e. the sum of the plasma pressure and the magnetic-field pressure is constant.
One example of an equilibrium of this type is the cylindrical plasma with a
magnetic field directed along the axis of the cylinder as shown in Figure 9.1.
From the pressure-balance condition, we see that the magnetic field is lowered
at the center of the plasma, where the plasma pressure is highest—a partlcular
example of plasma diamagnetism.

The ratio of the plasma pressure to the magnetic-field pressure (normally
taken outside the plasma) is usually denoted by 8, i.e.

B =2uop/B>. 9.9)

The quantity B8 is a measure of the degree to which the magnetic field is holding
a non-uniform plasma in equilibrium. In a low-8 plasma, the force balance is
mainly a matter of different magnetic forces in balance with each other. At
B ~ 1, the magnetic and pressure forces are largely balancing, whereas for
B > 1 the magnetic field plays a minor role in the dynamics of the plasma.
Astrophysical plasmas can have 8 approaching unity, sometimes even 8 > 1.
Laboratory plasmas tend to have 8 values in the range of a few per cent at most,
although it is possible in special configurations to create laboratory plasmas with
B values near unity.

9.3 THE CYLINDRICAL PINCH

Another interesting configuration is the ‘cylindrical pinch’ in which the magnetic
field is azimuthal (i.e. By only), while the plasma current is axial (i.e. j, only),
as shown in In this case, the magnetic field is curved, and the
pressure-balance condition must include the term on the right-hand side of
equation (9.7), which in this case describes tension of the field lines holding
the plasma in. Noting that the §-derivative of the unit azimuthal vector 0 is the
inwardly directed unit radial vector, —f, we obtain

3 B} B}
i p+—9 - ©9.10)
ar 210 Hor
which may be integrated from O to r to give
B; 1 (" B}
p(r)=po———"(r) ——f —Ldr 9.11)
200 podo 1

where pg is the (peak) pressure, assumed in this case to occur at r = 0.
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Be
A 4

Figure 9.2. Cylindrical pinch equilibrium in which the azimuthal magnetic field is created
by the axial plasma current j,.

There are infinitely many possible equilibria of this sort. For an illustration,
we might consider the case of a plasma carrying a uniformly distributed current
surrounded by a vacuum:

J(r) = jo r<a
9.12)
J.(nN=20 r>a

giving a total plasma current I = ma?j,. Since the current density within the
plasma is uniform, then by Ampere’s law the magnetic field strength By must be
proportional to the radius . Thus, we may write By = Bg,r/a. Carrying out the
integral over r in equation (9.11), we find that the third term on the right-hand
side makes a contribution equal to that of the second term on the right. Thus,
within r < g, the pressure is given by

2,2

B r
p(r) = po — M‘:‘a2 (9.13)

where By, is the azimuthal field at the edge of the plasma, related to the total
current by By, = pol/2ma. We see that the pressure profile has a parabolic
dependence on radius r. Since the pressure must vanish at the edge of the
plasma, i.e. p(a) = 0, we have

B}, _ tol?
po  4m2a?’

po= 9.14)
This is known as the ‘pinch condition’, describing a magnetically self-constricted
current-carrying plasma.

For this equilibrium, the plasma current comes entirely from the plasma
diamagnetic current, and this current provides the entire magnetic field. The
pressure gradient is proportional to r, as is the only field-component By,
consistent with a constant diamagnetic current j,. The pinch can be established
dynamically, by applying a very large voltage difference across a pair of

electrodes to drive a large plasma current j,. However, we will see in|Chapter 19

that this plasma is strongly unstable.
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VACUUM /{:;E;f;

Figure 9.3. A plasma equilibrium in which a uniform plasma fills all space except for an
evacuated cylindrical hole produced by a current-carrying conductor (see Problem 9.1).

Problem 9.1: A plasma of uniform pressure p fills all of space except
for an evacuated infinitely long cylindrical ‘hole’ of radius a, which is
produced by a conductor carrying a current I placed on the axis of the
cylindrical hole. The conductor produces an azimuthal field By, as shown
in Figure 9.3. Show that the maximum radius of the vacuum hole that can
be created in equilibrium in this way is given by a? = ug/?/8n2p. Is there
a z-directed current in the plasma? What is its magnitude and where is it
located?

9.4 FORCE-FREE EQUILIBRIA: THE ‘CYLINDRICAL’ TOKAMAK

Equilibria with small or negligible plasma pressure are of interest, since they
describe magnetic configurations containing ‘low-8’ plasmas. If the pressure
gradient is negligible, the Lorentz force must vanish, i.e.

0=jxB. (9.15)

Such equilibria are called ‘force-free’.

Non-trivial force-free cylindrical equilibria are possible if both axial (B,)
and azimuthal (By) field-components are present. In this case, the pressure-
balance condition becomes

3 (B} B? B?
— 2+ )=--2L 9.16
ar ( 2 + 2 r ©-16)

There are again infinitely many solutions of this equation, one of which is
illustrated in [Figure 9.4, which applies to a current-carrying plasma cylinder of
radius a.

For an example of a configuration of this type, we might assume again
that the current density j, is uniformly distributed within the plasma, so that
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By(r) = Bg,r/a. This allows us to integrate equation (9.16) to obtain

r p2
B,(r)? = By — Bo(r)* — 2/ %dr = BJ, — 2B,(r)*. (9.17)
0

Here, B, is the longitudinal field at the center of the plasma cylinder. Equation
(9.17) applies in the region r < a. Outside the plasma cylinder, i.e. for r > g,
there can be no current j,. The azimuthal field By must then decrease with r
like r~!. Equation (9.16) then shows that B, must be constant in this region.
The radial profiles of the B, and B, fields are shown in Figure 9.4.

A

Bz
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@

>
r
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Figure 9.4. Cylindrical force-free equilibrium. The radius r = a is the edge of the
plasma, outside of which no currents flow, so that B, = constant and B, & r~',

This is a cylindrical approximation to the ‘tokamak’ configuration at very
low values of 8 (imagining the torus of the tokamak to be straightened out into
an infinitely long cylinder). The strong field B, is produced by external coils; the
weaker field By is produced by currents in the plasma. At low B, the tokamak is
seen to be paramagnetic, in the sense that the B, field is actually stronger at the
center than at the edge. When a moderate amount of plasma pressure is added
(specifically, sufficient that p > B2/2u0), the usual diamagnetic effect appears,
and the B, field is lowered at the center of the plasma.

Problem 9.2: Add a small amount of plasma pressure p(r) to the
cylindrical tokamak equilibrium, assuming that this pressure falls to zero
at the plasma edge. Show that the generalization of equation (9.17), still
allowing an arbitrary current distribution within the plasma, is

B,(r)? I B_Zzo By(r)* 1 f’ I—gizdr
0

o AL
210 20 2p0 Mo r

p(r) +

where p, is the pressure at the center of the plasma cylinder. For the case
of uniform current distribution, i.e. By(r) = By,r/a, show that the plasma is
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diamagnetic, i.e. B,(a) > By, if po > Bs(a)?/umo. Is this result dependent,
or not, on the current and pressure distributions in the plasma?

9.5 ANISOTROPIC PRESSURE: MIRROR EQUILIBRIA*

Consider the component of the force-balance equation along the direction of the
magnetic-field vector b

b-Vp=b.(jxB)=0 (9.18)
or, if [ denotes a length coordinate along field lines,
ap
5= (9.19)

This relation shows that plasma pressure must be constant along field lines in
any plasma equilibrium. This implies that a magnetic configuration that has
‘open’ field lines (i.e. lines that go out of the plasma), such as the ‘magnetic
mirror’ configuration introduced in and shown again in Figure 9.5, is
incapable of confining a plasma with isotropic pressure. Nonetheless, we know
that this type of magnetic field can contain individual ions and electrons.

Plasma

& g

Coil Coil

Figure 9.5. Plasma equilibrium in a ‘magnetic mirror’ configuration.

This paradox is resolved, however, by recognizing that the plasma pressure
in this case is by necessity anisotropic. Although our magnetohydrodynamic
model has, thus far, assumed the pressure p to be a scalar, we have seen in
that the plasma pressure along the magnetic field, p;, can be different
from the plasma pressure across the field, p,. For a field in the z direction, the
pressure would then be a diagonal tensor, with diagonal elements p,, p, and
py. We can write such a tensor as

P=p. I+ (py—pL)bb (9.20)
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where, as usual, b is the unit vector along B and I is the unit tensor (the tensor
which, expressed in matrix form, would have diagonal elements all unity, and
off-diagonal elements all zero). The force-balance relation b-(V-P)=0is
most easily manipulated using index notation, as follows:

9 A
0=b— 7%, [ 18+ (py — PL)bibj]

N .2 — pL)b;
= pl_+biB--f ((Pn p1) )

ax; 7 ax; B
A0 d -
—p% 50 (u)
axj a.Xj B
;.00 ;0 —py)  (p—pu)g
=bj—=+b; - bj
ox; ox; B ij
i apy (P.L—pll)* 0B
B jﬁ 5 U
J J
=6 vp + ZFb.vs 9.21)

where in going from the first line to the second line we have used V - B =
0B;/0x; =0, and in going from the second line to the third line we have used

bi(3b;/3x;) = 3|b|?>/ax; = 0. Equation (9.21) can be written

3y PL—pi 3B _
al B al

Here, [ is again a coordinate measuring the distance along a field line.

Many solutions of equation (9.22) are possible, corresponding to mirror-
confined equilibria. These solutions have p; > p), with both p, and p
decreasing with ! as one moves from the center of the mirror-confined plasma to
the ends. (The field strength B obviously increases with [.) Thus, both p; and
p) can have their peak values at the center of the mirror-confinement region.
A particularly simple class of solutions of the above relation is obtained by
assuming that both p, and p, depend on the magnitude of the field strength
only, i.e. py = p,(B) and p; = p|(B). Using dp,/d8] = (dp,/dB)(3B/dl) in
this case, we see that these functions must be related by

(9.22)

dpy | pL—p|
4B -+ B = 0. (9.23)

This special class of solutions is of particular interest because it also
provides for a simple solution of the perpendicular force balance equation

V.P=jxB (9.24)
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in the case of an anisotropic plasma in a mirror magnetic field. If we
limit ourselves to the case of a low-$ plasma, in which the plasma currents
make a negligible perturbation of an essentially vacuum magnetic field, the
only requirement for MHD equilibrium is that the plasma currents derived
from equation (9.24) be divergence-free. Although equation (9.24) provides
information only on the perpendicular component of the plasma current, allowing
parallel currents to arise to help satisfy the quasi-neutrality condition, V - j = 0,
an important special case is where the perpendicular currents are themselves
everywhere divergence-free, i.e. V - j; = 0, so that parallel currents are not
required for equilibrium. Such equilibria are of particular relevance to mirror
configurations, where plasma currents cannot normally flow out of the ends of
the mirror. For such cases, the condition for equilibrium is

[(bx Vpi+(py~pubx - V)B]>

=V. [—11; bxVp, + Bplf)xVB):I
0 (9.25)

In the next-to-last step here, we have made use of a property of vacuum magnetic
fields that was derived during our discussion of VB and curvature drifts in

hx (b V)b=(hxVB)/B. (9.26)

In the last step of equation (9.25), we have taken the particular case where
pL = pi(B) and p; = p;(B). For this special case, examination of the final
expression on the right-hand side of equation (9.25) shows that all terms are of
the form V - [ f(B)B x V B] for various functions f(B). All such terms must
be zero, because the contribution from the gradient of f(B) will vanish when
dotted with B x V B, and the contribution from the divergence of B x VB will
expand into terms involving the curls of B and V B, both of which vanish. Thus,
all solutions of form p, = p,(B) and p; = py(B) that satisfy equation (9.23)
describe low-8 plasma equilibria with V - j; = 0 in a mirror magnetic field.
Such solutions would not, however, describe useful equilibria in the simple
axisymmetric mirror configuration, because the field strength B decreases as
one moves radially away from the central confinement region. To make use
of these solutions, assuming that they can be realized in a practical situation,
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special non-axisymmetric mirror configurations must be designed that have the
field strength B increasing outward in every direction.

9.6 RESISTIVE DISSIPATION IN PLASMA EQUILIBRIA

In this Chapter, we have discussed equilibria in which magnetic fields are
embedded in the plasma. However, since a perfectly conducting plasma will
act to exclude magnetic flux that it does not already contain, the question arises
as to how these magnetic fields succeed in penetrating into a plasma if they are
not present at the time of formation of the plasma. To address this question,
we must restore plasma resistivity into the magnetohydrodynamic equations. A
more general question is how dissipation allows our plasma to return to full
thermodynamic equilibrium with uniform pressure; this also requires plasma
resistivity.

Plasma

Figure 9.6. The tokamak equilibrium in the cylindrical approximation. The
approximately uniform field B, is dominantly produced by external coils; the much
weaker field B, is produced by currents flowing in the plasma.

The tokamak configuration in the cylindrical approximation, which has
already been introduced and is illustrated again in Figure 9.6, provides a good
example to consider. The actual tokamak geometry is toroidal, and the main
magnetic field is toroidally directed, with a smaller field directed the short way
around the torus. In the ‘cylindrical tokamak’, the main field B, (corresponding
to the toroidal field in the actual tokamak geometry) is produced like that in the
actual geometry largely by external coils surrounding the plasma. It is present
before the initial formation of the plasma, which is normally accomplished by
ionizing a rarefied neutral gas that is fed into the containment vessel, using
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an induced toroidal voltage to produce a cascade of breakdown and ionization.
When the plasma becomes well-conducting, the magnetic flux associated with
the B, field is already embedded in it.

However, the By field within the plasma requires currents that flow in the
z direction in the plasma itself. Since such currents can be increased to significant
values only after the plasma becomes reasonably well-conducting, there will be
a tendency for the plasma to exclude the magnetic flux of the By field produced
by the current j,, as this current rises. By considering a closed loop drawn
in some constant-6 surface within the plasma, it is clear that no By flux could
ever penetrate into a fixed plasma in the perfectly conducting case. For present
purposes we can consider the plasma to be fixed in place by the strong toroidal
magnetic field while we examine the penetration of the poloidal field into this
fixed plasma.

When plasma resistivity is included in the analysis, the magnetic flux of
the By field is allowed to diffuse slowly into the plasma. To see this, we restore
resistivity to the plasma Ohm’s law, i.e.

E+ u x B = pj. 9.27)

Combining Ampere’s law and Faraday’s law, and assuming for simplicity that
n = constant, we obtain
3B
E:Vx(uxB)—Vx(nj)
=V x@uxB)—-n/u)V xV xB

=V x (u x B) + (n/po)V’B (9.28)

where in the final step we have used the familiar vector identity for V x V x B
(see|Appendix g) together with V.B = 0. Physically, equation (9.28) describes
a magnetic field that changes partly by convection (the first term on the right-
hand side) and partly by diffusion (the second term on the right-hand side).

In our present cylindrical tokamak example, we have a situation where
the plasma is held in approximate equilibrium by the pressure of a very strong
constant and near-uniform field B,, as shown in Figure 9.6. The z component of
equation (9.28), coupled with the pressure-balance condition, will tell us exactly
how long-lasting this equilibrium will be, i.e. at what rate the plasma can still
leak across the confining B, field. Specifically, since the externally produced
B, field is held constant, the z component of equation (9.28) gives

1o 10 oB
0= ———(ru, By) + = — [ r =t 9.29)
r dr Qor or or
or
n 4B, n dp
- 9B, ,_1n2p 93
. woB, or B2 or ©30)
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the latter arising from pressure balance, p 4+ BZZ/Z;LO A2 constant, where the
approximation reflects the neglect of small contributions from the By field. The
expression for the plasma velocity u, given in equation (9.30) describes a process
of slow ‘leakage’ of plasma across a magnetic field due to resistivity—a topic
to be taken up at length in For now, we note simply that the plasma
will leak only very slowly across the B, field, with a radial velocity that is of
order u, ~ r)p/BzzL where L is a radial scale length. For present purposes,
it is sufficient to note that this leakage rate can be made arbitrarily small by
increasing the magnitude of B,.

The 6 component of equation (9.28) tells us how the azimuthal field can
leak into the plasma. Using the appropriate expressions for curl and V2 of a

vector in cylindrical coordinates (see [Appendix E), we obtain

dBy 0 n d [10(rBy)
— =——W,B))+ —— -—— 31
dt Br(u 2 Uo Or (r ar ) ©3D)

but, for u, of a magnitude given by equation (9.30), the first term on the right-
hand side is too small to be of significance in a low-8 tokamak (it is of order
B~ 2;1,01)/Bz2 relative to the second term on the right-hand side), and the

equation reduces to
9By ~ 13(rBy)
ot o 3r rar ’

(9.32)

(The expression used in equation (9.31) for V2 of a vector in cylindrical
coordinates, which is given in general in Appendix E, can be obtained for our
present case, where it acts only on a §-directed field By(r), as follows. The
operator V2 means the successive application of, first, the gradient operator

ad d
Vil 402 130
r + rae'”az

and, second, the divergence operator

19, 13, 8
Ves(-Zre+ 2o+ 23).
(rar' +r396+32z)

When these are applied to the vector By, remembering that 3¢/36 = & and
80/39 = —F, we obtain

10 3B By | 4 32B 19B Bg\ 4
-— = Plo=(222 42220 _Z0)p
ror 8r iz ar? r ar r2

1 3(rBp)
= ar ( ar )0

which is the expression used in equation (9.31).)
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The general nature of the solutions of equation (9.32) may be inferred from
its mathematical form, which is very similar to that of a diffusion equation. The
azimuthal magnetic field penetrates into the plasma by a diffusive process in
a characteristic time © ~ uoL?/n, where L is the scale size of the plasma—
in this case, its radius. Thus the plasma behaves almost as if it were a solid
conductor of resistivity n. Although the characteristic time for penetration of
the azimuthal field, i.e. uoL?/n, may be quite long, it is short compared to the
time for which the equilibrium holds together against ‘leakage’ of plasma across
the B, field, which is a time of order L2BZ/pn, i.e. longer by a factor B!
(In practice, especially when the leakage of plasma is ‘anomalously’ rapid, it
is usually necessary to maintain the plasma density and pressure by means of
particle and heat sources.)

This principle is employed in the tokamak to induce a current to flow around
a toroidal plasma, which may be approximated by the cylindrical configuration
shown in Figure 9.6, where the toroidal direction is represented by the z axis.
The plasma is held in place by a strong externally generated axial field B,.
The axial current j, (and its associated azimuthal field By) is then established
by induction (i.e. using the plasma as the secondary of a transformer). After
the initial breakdown cascade in the induced electric field, as the current is
inductively increased, at first the increased plasma current j, flows entirely on
the outermost surface of the plasma in the form of a ‘skin current’. Subsequently,
the axial current j, and the azimuthal field By distribute themselves within
the plasma in a characteristic time t ~ uga®/n, where a is the radius of the
plasma. Sometimes, in order to defeat this ‘skin effect’ and encourage more
rapid penetration of current to the plasma interior, the radius of the plasma is
‘grown’ along with the rise of current so that a distributed current may be created
layer by layer. For quasi-steady operation, the transformer can continue to apply
magnetic flux to the surface of the plasma. This flux diffuses inward, continually
replenishing the flux that is ‘disappearing’ at r = 0, due to the non-zero value
of E, = nj, at r = 0. For completely steady operation, the current in a tokamak
must be sustained by other means, since the transformer primary will not be
able to maintain a voltage indefinitely.

Problem 9.3: A cylindrical plasma with radius a in a strong longitudinal
field B, (such that p « B?/2uo) has a finite and uniform resistivity 7.
A current in the z direction is induced in the plasma. The total induced
current I, is then held constant in time, but initially it flows entirely in a thin
skin at the surface of the plasma r = a. Sketch the radial profiles for j,(r)
and By(r) in the plasma at three different times: (i) just after r = 0; (ii)
some intermediate time (i.e. ¢ ~ uoa?/n); and (iii) after a very long time (i.e.
t > uoa®/n). At very long times, the difference between the asymptotic
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steady-state field B, and the actual B, field will be a term that decays
like exp(—t/z), where t is a time constant. If you are familiar with Bessel
functions, try to solve equation (9.32) for the asymptotic time dependence
and show that the decay time constant 7 is given by v = uoa?/nA? where
A is the first zero of the Bessel function J;(1).
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Chapter 10

Fully and partially ionized plasmas

Collisions of charged particles in a plasma are of two types: collisions with
other charged particles and collisions with neutral atoms and molecules. To
most plasma physicists, the collisions with other charged particles are by far
the more interesting, because they are dominant in high-temperature plasmas
where the degree of ionization is high. Indeed, we will see in this Chapter
that collistons with other charged particles tend to dominate over collisions with
neutral particles even if the degree of ionization is only a few per cent. The
opposite case—where the degree of ionization is so low that collisions with
neutral particles are dominant—is usually called a ‘partially ionized plasma’ (or,
better, a ‘weakly ionized gas’). Of course, weakly ionized gases are also of
practical interest: high-pressure arcs, ionospheric plasmas, process plasmas and
most low-current gas discharges fall into this category.

Before we can estimate the relative importance of collisions of charged
particles with other charged particles versus collisions with neutral particles, we
must first estimate the density of neutral particles in a plasma—i.e. the degree
of ionization.

10.1 DEGREE OF IONIZATION OF A PLASMA

Atomic processes determine the degree of ionization of a partially ionized gas.
Depending on the average energy of the free electrons, the range of possibilities
extends from cases where only a very small fraction of the particles are ionized
to cases where the ionization is essentially complete (often with the remaining
neutrals constituting only one part in about 10°).

Recalling elementary quantum mechanics, we obtain a measure of both the
‘size’ of the atom, and the energy needed to ionize it. The Bohr radius of the
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hydrogen atom is given by
=2 x5 % 107! 1
0 = 7~ X m ( Ol)
me

where i = h/2m is Planck’s constant. The energy needed to ionize the hydrogen
atom (the Rydberg) is the work needed to remove the electron from its negative-
potential-energy bound state minus the kinetic energy of the bound electron,
namely

= 13.6eV (10.2)

where we have determined the velocity of an orbiting bound electron by
balancing the outward centrifugal force, mv?/ay, against the inward electrostatic
force, e?/4meoal, which gives the well-known result that the kinetic energy of
the orbiting electron is exactly half its negative potential energy.

There are two basic processes of ionization, satisfying the conditions for
conservation of momentum and energy: (a) impact ionization, where an electron
strikes an atom, so that an ion and two electrons come off; and (b) radiative
ionization, where a photon with sufficient energy (often in the ultraviolet range)
is absorbed by an atom, dissociating it into an ion and an electron. Ions
can recombine into atoms by the reverse of these processes: (a) three-body
recombination, where two electrons and an ion join to make a neutral atom plus
a free electron; and (b) radiative recombination, where an electron and an ion
combine into an atom, and a photon is emitted. These processes are illustrated
in Figure 10.1.

(@) (b)

@\ /@ @\ é Photon

0—-»69\@ & = @

Figure 10.1. Ionization and recombination processes in a plasma: (a) electron-impact
ionization, and (b) radiative recombination. The processes of three-body recombination
and radiative ionization are the inverse of these processes and are obtained by reversing
the direction of the arrows in (a) and (b), respectively. Neutral atoms are represented by
black dots, while electrons and protons are represented by open circles labeled (—) and
(+), respectively.

In strict thermodynamic equilibrium, the competing processes of ionization
and recombination produce a certain ratio nj/n, of ions relative to neutrals,
which can be calculated by statistical mechanics using the ratio of free to bound
electron states. The ratio n;/n, is found to depend on both electron temperature
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and density. However this equilibrium applies only to large dense plasmas, such
as stellar plasmas, where both the particles and the radiation are sufficiently well
trapped that thermodynamic equilibrium is achieved between the particles and
the radiation field. Most plasmas, certainly including all laboratory plasmas,
are much too small to trap ultraviolet radiation. In this case, one can still have
‘local thermodynamic equilibrium’ in plasmas with very high density, where
impact ionization and three-body recombination are more important then either
of the radiative ionization or recombination processes, provided of course that
the plasma particles are themselves in thermodynamic equilibrium. However, for
three-body recombination to exceed radiative recombination, the plasma density
must exceed a critical density that is about 1022 m~2 in the few-eV temperature
range, and is even larger at higher temperatures.

At lower densities, radiative recombination is larger than three-body
recombination, and a different steady-state arises, known as ‘coronal equilibrium’
because of its occurrence in the solar corona, in which impact ionization and
radiative recombination are in balance. Here, the degree of ionization is a
function only of the electron temperature, not of the density. We will give a
semi-quantitative treatment of this case later in this Chapter: we find that the
degree of ionization becomes very high at electron temperatures above a few
eVv.

In still other cases, the charged particles and neutral atoms do not reach a
state of local coronal equilibrium, often because of a continuous influx of new
neutrals into the plasma from the outside. In these cases, the neutral density is
set by balancing ionization against the external source of neutrals, rather than
against recombination. We will also give a semi-quantitative treatment of this
case later in this Chapter. The neutral density is, of course, much higher in this
case than if recombination were the only source of neutrals. Nonetheless, it is
still generally true that at temperatures of more than a few eV, the degree of
ionization is very high.

10.2 COLLISION CROSS SECTIONS, MEAN-FREE PATHS AND
COLLISION FREQUENCIES

Before proceeding with quantitative treatments of these effects, we must
introduce the idea of a collision ‘cross section’. A cross section can be defined
for any kind of collision, but for present purposes it is sufficient to consider
the case of an electron colliding with a neutral atom. Even in this restricted
case there can be two types of collisions: (i) ‘elastic collisions’ in which the
electron essentially ‘bounces’ off the atom, with the two particles retaining their
identities as electron and atom, and the atom remaining in the same energy state;
and (ii) ‘inelastic collisions’, such as ionization or excitation, in which one or
more of the particles changes its identity or internal energy state. In the first
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case, the electron may lose any fraction of its initial momentum, depending
on the angle at which it rebounds. The probability of momentum loss can be
expressed in terms of the equivalent cross section o that the atoms would have
if they were perfect absorbers of momentum. In the second case, the probability
of ionization, for example, can be expressed in terms of the equivalent cross
section o that an atom would have if it were ionized by all electrons striking
within this cross sectional area.

Figure 10.2. Electrons incident on a thin slab of
dx thickness dx containing neutral atoms of density n,.

In Figure 10.2, electrons are incident upon a thin slab of thickness dx
containing n, neutral atoms per unit volume. The atoms are imagined to be
opaque spheres of cross sectional area o: i.e. every time an electron strikes the
area blocked by the atom, either it loses all of its momentum (elastic collision)
or it ionizes the atom (inelastic collision). The number of atoms per unit area
of the slab is n,dx, and the fraction of the slab blocked by atoms is n,odx. If a
flux T of electrons is incident on the slab, the flux emerging on the other side is
I' +dI' =T'(1 — nyodx), so that the change of flux I with distance x is given
by

dr
— = —nao (10.3)
dx
which has the solution
[ = Cpexp(—nq,0x) = Toexp(—x/Amsp) (10.4)
where
Amtp = (na0) . (10.5)

The quantity Angp is called the mean-free path for collisions. In a distance A,
the flux would be decreased to 1/e of its initial value. In other words, an electron
travels a distance Amg, before it has a reasonable probability of colliding with an
atom. For electrons of velocity v, the mean time between collisions is given by

T = Amfp/V. (10.6)

The ‘collision frequency’, namely the inverse of 7, is usually defined in terms of
an average over all velocities in the Maxwellian distribution (which may have
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different individual collision frequencies), namely

v=(t"" =nylov) = (nn/ne)/fe(v)o(v)vdzv. (10.7)

As is implied by this formula, for more complex collisional processes than that
illustrated in [Figure 10.2) the cross section o is often itself a function of the

velocity v of the incident particle.

10.3 DEGREE OF IONIZATION: CORONAL EQUILIBRIUM

In the case where the collision of the electron with the atom results in ionization
of the atom, we may calculate the rate of production of new electrons per unit
volume simply by multiplying the ionization collision frequency of the electrons,
equation (10.7), by the electron density, ne. This ‘source rate’ S, of electrons is
given by

Se = nenn(Tionve) (10.8)

where ojo, is the cross section for electron-impact ionization and where we
assume that the electron velocities v, greatly exceed the neutral velocities vy,
so that the velocity of impact comes mainly from the electron’s motion. This
cross section is definitely a strong function of electron velocity, at least below
energies of about 30eV, so the averaging over the Maxwellian distribution of
electrons is necessary. There is, of course, an equal and opposite ‘sink rate’ for
neutral atoms, i.e. neutral atoms are lost by ionization at the same rate per unit
volume, S..

The dependence of the ionization cross section oj,, for hydrogen atoms
on the energy of the bombarding electron is shown in , and the
ionization rate (ojonv.) averaged over a Maxwellian distribution of electrons is
shown in The maximum cross section ojsq is reached for electrons
with energies somewhat above E; (the Rydberg ionization energy, which is about
13.6eV for hydrogen) and is in the neighborhood of 1072 m?, the ‘size’ of the
hydrogen atom. However, the ionization rate is significant even for electron
temperatures well below E;, because a Maxwellian distribution still contains a
few energetic electrons that are efficient ionizers. A good approximation to the
data is given by the simple formula

2.0 x 10712 T.(eV)\'? 13.6 _
(Gione) = e Toev)/13.6 ( 136 ) exp (— Te(eV)) m’s™. (109

The source rate for neutrals (corresponding to a sink term for electrons) in a
plasma in coronal equilibrium is given by

Sy = NeNi{OrecVe) (10.10)

Copyright © 1995 IOP Publishing Ltd.



152 Fully and partially ionized plasmas

10% T T T
10?1 .
E
S 1022 =
Hydrogen
108 ] 1 !
10 102 10° 104 105
1
MY, (eV)

Figure 10.3. Ionization cross section ¢ for hydrogen atoms as a function of the energy
of the bombarding electron.
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Figure 10.4. Ionization rate (oinve) for electron-impact ionization of hydrogen atoms
averaged over a Maxwellian distribution of electrons, temperature Tz,

where o is the cross section for radiative recombination. For a neutral
hydrogen plasma, n; = n.. A good approximation to the data on radiative
recombination in the relevant temperature regime is given by the simple formula

13.6 \'?
(Orecte) = 0.7 x 10717 (m) m3s~!. (10.11)
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Figure 10.5. Ionization equilibrium for hydrogen in the coronal equilibrium model, and
at higher electron densities with three-body recombination included.

(The formulae given in equations (10.9) and (10.11) are taken from
R W P McWhirter (1965 Spectral Intensities in Plasma Diagnostic Techniques
edited by R H Huddlestone and S L Leonard, New York: Academic).)

The degree of ionization of a homogeneous hydrogen plasma in coronal
equilibrium is given by balancing the source of electrons by collisional ionization
against the sink of electrons by radiative recombination. We find that, at an
electron temperature of approximately the ionization potential, i.e. 13.6eV, the
plasma is almost fully ionized so that the neutrals constitute only about one
part in 105, Only at electron temperatures below about 1.5eV is the plasma
less than 50% ionized. Figure 10.5 shows the degree of ionization, i.e. n./n,,
against electron temperature for the coronal equilibrium model, and also for
higher-density plasmas where three-body recombination has been included.

The concept of coronal equilibrium can be generalized to the case of a
plasma composed of, or containing an admixture of, high-Z ions. In such
cases, depending mainly on the electron temperature, the ions will be stripped
of their outer-shell electrons but will retain some bound inner-shell electrons. An
equilibrium distribution among the various ionization states arises which, in the
solar corona for example, is determined by balancing the processes of impact
ionization and radiative recombination for each ionization state. A particular

case is illustrated in which shows the fractional abundances in the
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Figure 10.6. Fractional abundances in the various ionization levels for oxygen ions as
a function of electron temperature in coronal equilibrium. Fully ionized oxygen has
Z = 8. (Dielectronic recombination has been neglected in calculating these fractional
abundances.)

various ionization levels of oxygen as a function of electron temperature in
coronal equilibrium. We see that oxygen ions are stripped of all six outer-shell
electrons (giving an ion with charge-number Z = 6) at electron temperatures of
about 30eV, but to remove the final two inner-shell electrons to produce fully
stripped oxygen with Z = 8 requires temperatures in excess of about 200eV. The
validity of any coronal equilibrium model depends on the time-scale for reaching
ionization/recombination balance (for the slowest such process, generally at the
highest relevant ionization state, in the case of high-Z ions) being much shorter
than the timescale on which particles are introduced into, or lost from, the
plasma. If this ‘confinement’ time begins to be comparable to the slowest atomic
processes, the ionization balance shifts towards lower charge states. If hydrogen
neutrals are present, there is also the possibility of a ‘charge-exchange’ event,
in which the electron of a neutral hydrogen atom is captured by a high-Z ion;
this process also lowers the charge-state balance of the high-Z ions.

For high-Z ions, another process known as ‘dielectric recombination’ can
play a significant role in the charge-state balance. In this recombination process,
a free electron is captured into an excited state and the excess energy that is
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available is invested in excitation of a different bound electron to a higher state.
Both electrons then decay to the ground state, emitting photons. Dielectronic
recombination has not been included in calculating the charge-state distribution

shown in|Figure 10.6.

10.4 PENETRATION OF NEUTRALS INTO PLASMAS

To complete our discussion of neutrals in plasmas, we should consider what
happens at the edge of a hot dense plasma that is enveloped by neutral gas.
This situation arises in many laboratory plasmas—magnetically confined fusion
plasmas or low-pressure arc discharges, for example. In such cases, the plasma
is often hot and dense enough to be fully ionized, but the electrons and ions
that diffuse out of the plasma recombine into neutral atoms when they strike the
containing vessel. The neutral atoms thus formed are often reflected back into
the plasma (or other neutrals are desorbed from ‘saturated’ vessel walls), where
they are ionized again. Depending on the surface material of the containing
vessel (and whether its surface is already saturated with a layer of hydrogen
molecules), this process of recycling can be almost ‘perfect’, i.e. the plasma
density is maintained almost indefinitely despite diffusive losses of charged
particles, because the lost particles reappear one-for-one as neutrals which are
readily ionized again by the plasma. For hot dense laboratory plasmas, this
recycling process occurs entirely at the plasma edge, because the main body of
the plasma is ‘opaque’ to neutrals, i.e. a neutral atom has almost no chance of
reaching the center of the plasma before being ionized.

Recombination in the plasma (as distinct from at the vessel surface itseif)
is usually unimportant in this situation: the neutral density in the edge region of
the plasma is set by a balance between the influx from outside and the ionization
within the plasma.

Neutral atoms entering the plasma with velocity v, will penetrate a distance
given by the neutral ‘mean-free path’ for ionization, i.e.

Un

Ap = ——— . (10.12)
Ne{GionVe)

This can be derived by noting that the volumetric ionization rate is given by
neNp{(TignVe) for ve > vy, implying that the effective ‘collision frequency’ of
the neutrals must be n{0joVe). The thermal velocity of neutral hydrogen atoms
at ‘room temperature’ is about 2 x 10*ms~!. If the electron temperature in
the edge-region of the plasma reaches 10-20eV, the ionization rate {gjonve) is
about 10~ m3s™". Thus, we have Ay(m) = 2 x 10'7/n(m~3). For example,
if the density of the edge-region plasma is about 10" m=3, typical of many
magnetically confined fusion plasmas, the neutrals will only penetrate about
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Figure 10.7. Charge-exchange process in which an energetic ion takes an electron
from a cold neutral, thereby becoming an energetic neutral. A time just before the
charge-exchange collision is shown to the left of the thick black arrow; a time just after
the collision is shown to the right.

2cm into the plasma. In many practical cases, such as neutrals re-emerging
from a saturated surface, the hydrogen appears initially in molecular, rather than
atomic, form. In such cases, the first effect of electron impact is molecular
dissociation, which produces two atoms with equal and opposite momenta and
each with energy of about 3 eV; the atom with momentum directed toward the
plasma can penetrate somewhat further into the plasma.

A second atomic process—known as ‘charge exchange’—allows much
deeper penetration of hot dense plasmas by neutrals. In hydrogen charge-
exchange, an energetic plasma proton captures the electron from a lower-energy
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Figure 10.8. Cross section for charge exchange in hydrogen against the energy of the
bombarding ion.
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Figure 10.9. Trajectories of two neutrals incident (thick arrows on the left) upon a plasma
of increasing density. Neutral (a) is ionized. Neutral (b) undergoes charge exchange,
producing a more energetic neutral that penetrates (thick arrows on the left) further into
the plasma before being ionized.

neutral. As a result, it can escape from the plasma, or mqgve further into the
plasma, as an energetic neutral, as illustrated in|Figure 10.7} Not much energy
is exchanged by the charge-exchange collision itself: the emerging neutral has
about the same energy as the incident plasma ion.

The cross section for charge-exchange of hydrogen atoms bombarded by
Eigure 10.8

protons of various energies is shown in In the energy range of
most interest for laboratory plasmas and the edge-region of fusion plasmas (10~
100eV), the cross section is seen to be quite large (~ 4 x 107! m?), almost
a hundred times larger than the ionization cross section. (The cross section is
large because charge exchange is a resonant process, where the initial and final
quantum mechanical states have no difference in energy.) For a plasma with
Ti = T, the charge-exchange rate (o.v;) is usually two-to-three times larger
than the ionization rate (ojonve).

The process of charge exchange essentially prevents a hot-ion plasma from
ever being formed with an appreciable neutral-gas density in the hot region. The
cross section for charge exchange is so large that, if this were to occur, each
energetic ion would readily turn into an energetic neutral, which would escape,
so that the hot plasma would quickly be converted into cold plasma.

A low-energy neutral atom injected into the edge-region of a plasma has
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a somewhat higher probability of undergoing a charge-exchange event than
of being ionized. Thus, it might appear that charge exchange would reduce
the penetration of neutrals into hot dense plasmas. In fact the opposite is
true, because charge exchange produces a second generation of more energetic
neutrals, with energies comparable to the ion energies in the region of the
plasma where charge exchange occurs. While some of these more energetic
second-generation charge-exchange neutrals will escape from the plasma, others
will penetrate much more deeply into the plasma interior than did the first-
generation neutrals, until these neutrals themselves are ionized or produce a
third generation of charge-exchange neutrals with even higher energies. Two
jectories—one ionized and one charge-exchanged—are illustrated in
igure 10.9
The production of multiple generations of increasingly penetrating neutral
atoms by charge exchange is primarily responsible for the presence of any
neutrals at all in the center of a hot dense plasma. In the core of the plasma,
these neutrals have ‘thermalized’ with the plasma ions—i.e. they have about
the same average energy. However, charge-exchange transport still provides an
avenue for ion energy loss from the plasma.

10.5 PENETRATION OF NEUTRALS INTO PLASMAS:
QUANTITATIVE TREATMENT*

An approximate analytic treatment of the penetration of hydrogen neutrals into
hot dense plasmas, including the combined effects of ionization and charge
exchange, can be given. We consider the case where the neutral mean-free
path for charge-exchange collisions, namely A ~ vy/ni{ox Vi), is quite short
compared to the plasma size. Viewing charge exchange as simply a ‘direction-
randomizing’ collision, in the sense that one incident neutral produces one
charge-exchanged neutral with little correlation between the two velocities, the
migration of neutrals due to successive charge-exchanges can be treated as a
diffusive process, i.e. a random walk with step size A« and frequency of steps
Vex ~ ni{ovi). (The reader who is unfamiliar with the concept of a random
walk and its description by means of a diffusion coefficient is referred to the

discussion at the beginning of [Chapter 12{) Thus, the diffusion coefficient for
neutrals is essentially

Dy ® ek R U8/ Mi0exvi) (10.13)

where we have replaced v, by v;;, the thermal velocity of ions since, after
successive charge exchanges, the neutral energies will have reached approximate
thermal equilibrium with ion energies. To consider the penetration distance in
a particular case, we will take account of the fact that D, o n;” U but we will
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otherwise neglect the spatial dependence of the various quantities. In particular,
we will treat the ion temperature and the quantity {o.v;) as essentially constant
throughout the edge-region of the plasma under consideration.

We consider a simple one-dimensional case, in which a plasma occupies the
entire region x > 0. The plasma is in contact with a material surface at x = 0, at
which charged particles recombine into neutrals, which are then re-injected back
into the plasma. When an equilibrium has been reached between the flow of
plasma to the material surface at x = 0 and the flux of neutrals into the plasma,
the density of charged particles, say the ion density n;(x), will be an increasing
function of x, with 7;(0) = 0, while the density of neutrals n,(x) will be a
decreasing function of x, with a finite value at x = 0, as shown in
In order to obtain a specific form for the profiles n;(x) and n,(x), it is necessary
to make some assumption about what governs the rate of leftward plasma flow.
For our calculation here, we assume that the plasma flow is diffusive, i.e. the
particle flux is proportional (and opposite) to the density gradient, with a constant
of proportionality which is called the ‘plasma diffusion coefficient’. Moreover,
for present purposes we will simply take the diffusion coefficient D in the edge-
region of the plasma to be a constant independent of the plasma parameters
such as density and temperature. This contradicts the predictions of the theory
of collisional plasma diffusion to be presented in . However, for
practical cases where diffusion is dominated by turbulent processes, the choice of
a constant D may be a reasonable approximation to the actual physical situation.

The diffusion equations for ion density (equal to the electron density, by
assumption) and neutral density, with appropriate source and sink terms from
ionization, are

ani 32ni

o = DW ~+ ninn(TionVe) (10.14)
on 0 on

Eﬂ = a < n—a;n> — Nify{Tionve) (10.15)

where D is the assumed plasma diffusion coefficient. Assuming steady state
(8/8t = 0), adding the two equations and integrating once, we obtain

on; an,
D—+D
ox + O ax

(The constant of integration is chosen to be zero to express the fact that there
is no net flux of particles to the wall, i.e. ‘perfect’ recycling.) Integrating once
more, taking account of the inverse dependence of D, on n;, we obtain

=0. (10.16)

1D(nk, — n?) = Dncoticohn (10.17)

where the suffix ‘co’ refers to values in the plasma, in the region sufficiently
deep into the plasma that it is not penetrated by neutrals and that corresponds to
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x — o< in our present analysis, where the following boundary conditions apply:
ny — Riso n,— 0 D, > Dyu. (10.18)

Substituting for n, into the equation for n;, we obtain

?E (Oionve)
3x2  2DneoMice

i [ 8\ 1 [om)’
3x2 ~ \an; J 2 \ ax

and neglecting any spatial variation of (gonve}, We can integrate this equation
once more to produce

ni(nky —n?) = 0. (10.19)

Writing

on; _ {OionVe) 12 2 2
i <4Dnooni°o> (nie — 17) (10.20)

which has the following solutions:

ni{x) = njtanh(x /xg)
Na(x) = nposech?(x/xo)
%0 = [4Droo/ ((GionVe)Mico] > (10.21)

= 2w/ [nioo(<0ionve>(chvi))l/z]
Nno = Dhioo /2 Do

These solutions for the ion density profile n;i(x) and the neutral density profile
na(x) have the shapes shown in [Figure 10.10, The effective penetration distance

of neutrals xq, is the geometric mean of the mean-free paths for ionization and
charge-exchange for a neutral with a velocity of the order the thermal velocity of
ions in the edge region of the plasma—much larger, of course, than the velocity
of neutrals in the ‘room-temperature’ gas that is assumed to surround the plasma.
Nonetheless, for many high-temperature dense plasmas, the penetration distance
is still small, with the result that the core of the plasma is almost fully ionized.

Problem 10.1: Estimate the penetration distance of neutral atoms
(including charge-exchange processes) into a thermonuclear plasma with
a central density of 102 m~3, assuming that the ion temperature in the
edge region is about 100eV. In our quantitative treatment of neutral
penetration, we assumed that (oj,ve) and (o.v;) are roughly constant.
In the temperature range of interest, examine the data in
and to assess how good an approximation this is.
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Figure 10.10. Profiles of ion (or electron) density and neutral density in the edge region
of a plasma of sufficient density to be opaque to neutrals. Both charge exchange and
ionization are included.

Problem 10.2: Consider neutral penetration into plasmas as discussed in
the preceding section, but ignore diffusion of the ions, simply assuming a
uniform charged-particle density, i.e. rn; = constant. Show that the neutral
density profile shape in this case is proportional to exp(—2x/xp), with xo as
given in equation (10.21). Why is the typical neutral penetration distance,
i.e. xo/2 versus xo, shorter in this case?

10.6 RADIATION

Certain inelastic scattering processes involving radiation can be important in
plasmas, especially those composed of ions other than hydrogen, as well as
hydrogen plasmas containing small admixtures of higher-Z ions. As we have
already seen, in these cases there are collisional and radiative processes of
ionization and recombination among the various partially stripped states (i.e.
high-Z ions still with some bound electrons), and there are also collisional
processes of excitation of ions to higher energy levels and the associated
process of ‘line radiation’. For such processes, the total power radiated per
unit volume is proportional to the product of the electron density and the high-Z
ion density and is also a strong function of electron temperature. Typically,
line radiation is somewhat larger than recombination radiation, although both
processes contribute importantly. Line radiation is relatively intense when there
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is a high fractional abundance in those ionization levels corresponding to partially
filled shells. Thus, the dependence of the total radiated power on electron
temperature is non-monotonic, reflecting the temperature dependence of the
fractional abundances in these ionization levels (see, for example, .
The total radiated power for oxygen ions in coronal equilibrium (including both
recombination and line radiation) as a function of electron temperature is shown
in Figure 10.11. Figure 10.11 should be compared with Figure 10.6, which
shows the fractional abundances among the various ionization levels for the
same case.

1031
T
= 1032
°
c
=
-
Q:E 10-33
10-34 | i
1 10 100 1000
Te (eV)

Figure 10.11. Power radiated per unit volume in line and recombination radiation,
P.s(Wm™3), in coronal equilibrium for oxygen. All densities are in m™>; ng refers to
the total density of oxygen in all ionization states.

Even Coulomb collisions in a fully ionized plasma give rise to radiation,
called ‘bremsstrahlung’ or sometimes ‘free~free bremsstrahlung’, which comes
from electromagnetic waves emitted by the accelerating/decelerating electrons
as they are deflected by the Coulomb attraction of the ions. A derivation
of bremsstrahlung is given in the next Chapter after the specific properties
of Coulomb collisions have been analyzed. Bremsstrahlung from Coulomb
collisions of electrons with high-Z ions is generally important relative to
recombination and line radiation only when the electron temperature is high
enough for the ion to be fully stripped. For example, the power radiated by
bremsstrahlung from electron collisions with oxygen ions is insignificant across
the range of electron temperatures depicted in Figure 10.11,
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Another type of radiation arises in magnetized plasmas even without
collisional effects, because the electrons are continuously accelerating (i.e. they
have a v because of the changing direction of the velocity vector) as they execute
their Larmor orbits. This is called ‘cyclotron radiation’ and occurs primarily at
the electron cyclotron frequency and its low harmonics. At sufficiently high
electron temperatures that relativistic effects become important, this radiation
shifts to higher harmonics and, eventually, these harmonics overlap so much that
the spectrum forms a continuum. In this case, the radiation is called ‘synchrotron
radiation’.

Except for this brief introduction to the topic, atomic processes involving
high-Z ions and plasma radiation processes are outside the scope of this book.
The reader interested in these topics is referred to the excellent texts by G Bekefi
(1966 Radiation Processes in Plasmas New York: Wiley) and by H R Griem
(1964 Plasma Spectroscopy New York: McGraw-Hill). Computations of the
power radiated in coronal equilibrium by recombination and line radiation for a
variety of high-Z ions have been given by D E Post and R V Jensen (1977 As.
Data Nucl. Data Tables 20 5).

10.7 COLLISIONS WITH NEUTRALS AND WITH CHARGED
PARTICLES: RELATIVE IMPORTANCE

Finally, we return to the question raised of the beginning of this Chapter: what
is the relative importance of collisions of charged particles in a plasma with
other charged particles versus collisions with neutral particles?

The cross section for elastic scattering of an electron by a neutral atom may
be estimated very roughly as

on ~ mad ~ 107 m?, (10.22)

At the distance ag, an incoming electron has a substantial chance of undergoing
a large-angle collision. On the other hand, when an electron comes within a
distance r of a singly charged (e.g. hydrogen) ion, it experiences an attractive
Coulomb force:

F, = —e*/4meyr? (10.23)

which tends to deflect the electron orbit toward the ion. When the angle of
deflection is as much as 90°, the electron’s initial momentum is mostly lost.
Thus, from the viewpoint of momentum exchange, a ‘close encounter’ with the
Coulomb force of another charged particle is essentially the same as a ‘collision’.
The angle of deflection will be large when the potential energy of the Coulomb
interaction equals the kinetic energy of the colliding electron, i.e.

et/Ameph ~ mvi/2 ~ T, (10.24)
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where m and v are the mass and velocity of the electron, and where b is the
distance of closest approach of the electron to the ion. This serves to define an
effective ‘Coulomb cross section’ of the ion, namely

4
2 me

~—  ~ 10"/ T, (eV)* m? 10.
TEPRE /Te(eV)"m (10.25)

Oi'VJTb

where T.(eV) denotes the electron temperature measured in eV. (In fact, we
will see in the next Chapter that the effective Coulomb cross section is actually
almost two orders of magnitude larger than this because of the cumulative effect
of multiple small-angle deflections.)

Comparing o, with ¢;, simply using equation (10.25) for the latter, and
consulting to relate the degree of ionization to 7, we see that
Coulomb collisions will dominate over collisions with neutrals in any plasma
that is even just a few per cent ionized. Only if the ionization level is very
low (< 1073) can neutral collisions dominate. Moreover, a plasma becomes
almost fully ionized at electron temperatures above about 1eV. Thus, the case
of collisions with neutrals is not of much concern to the physicist interested in
high-temperature plasmas. Not only are high-temperature plasmas almost fully
ionized, but the dynamical behavior of charged particles even in partially ionized
plasmas with more than very small ionization levels tends to be dominated by
Coulomb collisions with other charged particles, rather than by collisions with
neutrals. Of course, the various inelastic scattering processes involving high-
Z ions discussed in the previous Section, i.e. ionization, recombination and
excitation, are still more important than Coulomb collisions in determining the
radiation from high-temperature plasmas, provided only that there remains a
sufficient fraction of these ions in partially stripped ionization levels.
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Chapter 11

Collisions in fully ionized plasmas

When an electron collides with an ion, the electron is gradually deflected by the
long-range Coulomb field of the ion. It is still possible to think in terms of a
cross section for this kind of collision. At the end of Chapter 10, we derived an
estimate for the effective cross section of a hydrogen ion, namely

met

P~ —_— 11.1
G (4meg)m?v? (1.1

which was obtained by calculating how close the electron must come to the
ion for the potential energy of the Coulomb interaction to be comparable to
the electron’s kinetic energy. In fact, the effective cross section for Coulomb
scattering is considerably larger than this, as we shall see from the following
more detailed analysis that takes into account the effects of multiple small-angle
deflections of the electron.

11.1 COULOMB COLLISIONS

We again consider an electron of mass m, charge —e and velocity v approaching
a fixed ion of charge Ze. To obtain the most general result possible, we will
allow Z # 1, thereby including multiply charged ions as well as hydrogen. In
the absence of Coulomb forces, the electron would have a distance of closest
approach b, called the impact parameter, as illustrated in In the
presence of the Coulomb attraction, the electron will be deflected through an
angle 6, which will of course be related to the impact parameter b.

It is well known that a particle acted upon by an inverse-square-law force
will execute a hyperbolic orbit. It is shown in standard textbooks on classical
mechanics (see also Problem 11.1) that the angle of deflection for a light particle
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Figure 11.1. The orbit of an electron undergoing a Coulomb collision with a fixed ion
of charge Ze.

colliding with a much heavier (infinitely massive) stationary particle is given by

Ze?
tan—

= — 11.2
2 4megmv?b (11.2)

Problem 11.1: Prove relationship (11.2) for the deflection of an electron
of mass m in a Coulomb collision with a much heavier ion, charge Ze.
(Hint: use polar coordinates centered on the scattering ion and remember
that energy and angular momentum are conserved.)

For scattering through 90°(6/2 = 45°, tan(8/2) = 1), the impact parameter
b must have the value
Ze?

by = —————
4meomuv?

(11.3)
and equation (11.2) for the angle of deflection for a general impact parameter
becomes tan(6/2) = bo/b. Thus the cross section of the ion for 90°-scattering
is

nZ%*
=g —
%G =72 (4meg)2mvt

which agrees with the rough estimate given previously. However, as we stated
before, the effective cross section for Coulomb scattering is considerably larger
than this. The reason is that the cross section given above is based on large-angle
collisions alone. In practice, because of the long-range nature of the Coulomb
force, small-angle collisions are much more frequent than large-angle collisions,

(11.4)
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and the cumulative effect of many small-angle deflections turns out to be larger
than the effect of the relatively fewer large-angle deflections.

db

Y0 Po® 8
® @ © &

Figure 11.2. Electron Coulomb scattering by
ions in an annular element of volume with impact
parameters between b and b + db as the electron
vdt moves a distance vdt.

To see this, we must consider the cumulative effect of many scatterings by
many different ions with different values of the impact parameter . Consider an
electron with initial velocity v in the z direction, and suppose that it undergoes
a large number of small-angle scattering events. In each event, the electron will
be given small incremental velocity components Av, and Av,, but since there
is no preferred direction for scattering (i.e. the electron is just as likely to be
given a negative Av, as a positive one), the averages must vanish, i.e.

(Avg) = (Avy) = 0. (11.5)
However, the mean square deflections do not vanish, so that
((Av)?) = ((Avy)?) = 1((AvL)?) #0 (11.6)

where L (and later |]) are relative to the particle’s initial direction of motion,
here taken to be in the z direction. For Coulomb collisions, we have seen that

6 b
tan—- = — .
an2 b (11.7)

so that, using the trigonometric identities
sin@ = 2sin(/2)cos(/2) = 2tan(6/2)cos*(8/2) = 2tan(8/2)/[1 + tan(6/2)]

we see that 2(b/bo)
sin = /bo

=TT (/b s
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For a single scattering event, i.e. a single electron passing a single ion, we have

402 (b /bo)?
[1+ (b/bo)*1*

Consider the average behavior of an electron passing many ions, as shown in
Figure 11.2. In a time d¢, the electron will move a distance vdt, and the number
of ions in a scattering element defined by having impact parameter between b
and b + db is obtained by multiplying the ion density n; by the volume of the
scattering element, 2w bdbvdt, giving a number of ions 2w n;bvdbdr. Integrating
over impact parameters and differentiating with respect to time, we find that, on
the average, the electron is deflected so that its perpendicular velocity changes
at the rate

d((Avp)?) (b/bo)*bdb
dt [1+ (b/bo)* 1>
In principle, the integral should be taken over all values of b, from b = 0 to
b = oo. However, although the integral is well defined at the lower limit of
integration, it diverges logarithmically at large values of b. For the moment, we

will avoid this problem by simply introducing an ‘ad hoc’ cut-off at b = byy,,.
Evaluating the integral explicitly by substituting y = 1 + (b/by)?, we obtain

dAv)d) 5, <b_ﬂﬂ)2 v
e C LR Ll Rl G T Grabo?

m; Z%e*InA
2me2m?y

(Av))? = v%sin%6 = (11.9)

=2 /(AvL)zbdb = 8nniv3/ (11.10)

= 8wnv’bilnA = (11.11)

where the final two forms are for the case where
A = byax/bo > 1. (11.12)

Since the electron energy is nearly conserved in the collision (a light particle
scattering off a heavy particle loses its momentum but not much of its energy),
there is a reduction Avy in the velocity parallel to the original direction of
motion. Noting that the initial velocity v is, by definition, entirely in the parallel
direction and that perpendicular velocities arise only from the collisions, the
energy conservation equation (v 4 Avy)? + (Avy)* = v tells us that

v(Avy) + $(Av)? =0 (11.13)

showing that Avy is second order in Av, and thus justifying the neglect of the
fourth-order term from (Av;)2. We then obtain
d(Ay)

e = —4nniv2b(2,1nA = —

niZ%e*InA

— 11.14
4 elm2v? ( )
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This relation allows us to define a collision rate ve; (dimensions of a frequency,
i.e. inverse time) for loss of electron momentum, i.e.
d(AU”)

————dt = — VeV (1115)

Vei = 47rnvb(2]lnA
_ n;Z%e*InA

= . 11.16
4ne§m2v3 ( )

Note that the ‘collision frequency’ v, varies inversely with the cube of the
electron velocity v.

An estimate for the quantity A may be obtained by noting that a charged
particle will interact weakly with particles further removed from it than the
Debye length, Ap. As was discussed in [Chapter 1| the charged particle produces
an electrostatic potential ¢ = e/4meyr, which perturbs the density of neighboring
particles. The effect of this local charge separation is to shield out the electric
potential at distances r greater than a Debye length, Ap & (9T /ne?)!/2. Indeed,
in Problem 1.3, it was shown that Debye shielding results in an exponential
decrease in the electric potential for r > Ap. Thus, the maximum impact
parameter should be taken to be Ap, because Debye shielding suppresses the
Coulomb field at larger distances. Accordingly

A~ bmax/bO ~ Ap/bo
(11.17)
bo ~ Ze*/12meqT ~ (Z/127m)(nrd)™!

where, in evaluating by as an average over a Maxwellian distribution of electrons,
we have taken mv? ~ 3T. We see that A ~ (127/Z)nA3,, which shows that
our definition of a plasma, i.e. nA} > 1 (see Chapter 1) implies that A must
also be a large number.

Problem 11.2: Defining an electron mean-free path for Couiomb collisions
with ions by Ang = v/ve, show that the ratio of this length to the Debye
length Ap is given by Anep/Ap ~ A/InA > 1.

Although A depends on n and T, its logarithm is fairly insensitive to the
exact values of these parameters. Typical values of InA are given in
It is evident that InA varies by not more than a factor of two as the plasma
parameters range over many orders of magnitude. For rough estimates of
collision rates, it is usually sufficient to consult a table such as this, rather
than evaluate InA directly.

Copyright © 1995 IOP Publishing Ltd.



170 Collisions in fully ionized plasmas

Table 11.1. Values of InA for naturally occurring and laboratory plasmas.

n(m™3)  TEV) InA

Solar wind 107 10 26
Van Allen belts 10° 102 26
Earth’s ionosphere  10'! 10-1 14
Solar corona 10" 10? 21
Gas discharge 1016 10" 12
Process plasma 10'8 10? 15
Fusion experiment 10" 103 17
Fusion reactor 10% 104 18

Problem 11.3: At high electron temperatures, the minimum impact
parameter by appearing in the Coulomb logarithm becomes so small that
quantum mechanical effects must be included. Show that for this case, by
should be taken to be the de Broglie wavelength z/mv. For Maxwellian
electrons, we take v ~ (3T/m)Y/2. For electron collisions, at what
temperature will these quantum mechanical effects become important in
determining bo? Which of the values of InA given for typical laboratory
and naturally occurring plasmas in Table 11.1 have involved this quantum
mechanical correction?

We are now in a position to compare the total multiple-small-angle-collision
Coulomb cross section with the 90°-scattering Coulomb cross section. The
total cross section for scattering of electrons by massive stationary ions can
be obtained from the usual relation between collision frequency ve; and cross
section 0., namely

Vei = NiOejV (11.18)
giving
Z%e*InA
= — " 11.19
T 4edm?vt ( )

We see that the actual cross section exceeds the 90°-scattering cross section by
a factor 4InA ~ 70. The large size of the Coulomb cross section arises from
the cumulative effect of very many small-angle scatterings. It is peculiar to the
r=2 force law: it does not happen for force laws with a sharper drop-off with
increasing r. As we have stated previously, this effect increases even further
the ratio of the Coulomb cross section of an ion to the cross section of a neutral
atom.
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112 ELECTRON AND ION COLLISION FREQUENCIES

We have obtained an expression for the collision frequency for (light) electrons
striking (heavy) ions. The collision frequency varies with electron velocity as
v~3, i.e. the more fast-moving the electron the less frequently it collides with jons
(in contrast, of course, to a ‘hard-sphere’ collisional model). In order to define
an average electron collision frequency, it is useful to evaluate the frictional
force on a distribution of electrons drifting through essentially stationary ions,
namely

F = —nem(vgv) (11.20)

where the average is over the distribution of electron velocities. For present
purposes, we suppose that the drifting electrons have a ‘shifted Maxwellian’
distribution, i.e. a Maxwellian distribution relative to a non-zero mean velocity
u, which we take to be in the z direction, i.e. u = u,Z. We assume also that
u; < Ve, where vy is the electron thermal velocity, (T./m)!/?, and we expand
the distribution function retaining terms up to first order in u,/v;.. We then
obtain

ne |v—u|2>
V)= ——¢X -
fe(v) @, P( 20,
Sp— (1+u'v>ex ( ”2)
@i T ) TP\
Uu,v
~ (1+ 2‘)feo(v>
Ve

where foq is the ‘unshifted” Maxwellian distribution. Using this distribution in
equation (11.20), we obtain

2
v
F,= —m/veivzfed3v = —muz/szveifeod3v
te
mu, [ v? 3
=—-— [ S Veifeod'v
3 Ui,
where in the final step we have noted that f, is spherically symmetric in
velocity space, so the integral over v? must be one third of the integral over v?.
Substituting equation (11.16) for v,; as a function of v, we see that there arises

an integral which may be evaluated as follows:

/ —-—ﬂov(v)d% = 4n foo feo(w)vdv =27 /00 fo()d(v?)
A 0

2\2 p
=(—> —=. (11.21)

T Ute
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Our final expression for the frictional force becomes
F, = —nem(vei)u,

where
2V/2p,Z%e*InA

T 123 2em AT

As we will see later in this Chapter, and again in and [14,
different collisional processes introduce different averagings over the Maxwellian
distribution of colliding particles, each of which introduces a different numerical
factor in the applicable collision frequency. However, it is useful to have a
standardized definition of average electron collision frequency, and this is what
is given in equation (11.22). Note that the ion mass does not appear in the
expression for (vg); for practical purposes, it can be taken to be infinite.

In addition to their collisions with ions, electrons also collide with other
electrons. In this case, the Coulomb force is repulsive, and the impinging
electron is deflected away from the scattering electron. Electron—electron
collisions are more complicated to analyze, since the scattering particle may
no longer be taken to be fixed. However, since the Coulomb force has the same
magnitude, an electron is deflected about the same amount in a collision with
another electron as in a collision with a hydrogenic ion (at the same impact
parameter). Thus, to within factors of order unity, we have

(vei) (11.22)

nee’lnA _ (va)
&m2T.* mZne

(Vee) = (11.23)

In a hydrogenic plasma (Z = 1), electrons collide with other electrons as
frequently as they collide with ions. However, in a plasma containing many
different ions with differing Z values, the effective electron—ion collision
frequency is higher than the electron—electron collision frequency by a factor
of about Z = Iimy Zi2 /n., where the sum is over the ion species present.

Ions make Coulomb collisions with other ions and with electrons. From the
viewpoint of the relatively massive ion, momentum exchange through collisions
with electrons is generally not very important, since the momentum gained or lost
by the ion in such a collision is relatively small. Indeed, ion collisional processes
are generally dominated by collisions of ions with other ions. Although the
calculation presented above (for electrons) is not strictly applicable to this case
(since we can no longer treat the scattering particle as infinitely heavy relative
to the scattered particle), nonetheless it gives the correct result to within factors
of order unity.

In order to define an average ion-ion collision frequency, as we have just
done for the electron—ion collision frequency, we consider the frictional force
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on a population of ions drifting through another population of ions of the same
species. Relative to the case of electrons colliding with massive ions, we might
expect a somewhat smaller frictional force in this case (at the same relative
drifting speed and the same collision frequency), because the scattering ion
can take up some finite fraction of the momentum of the scattered ion. For
both populations of ions added together, the total momentum must of course be
conserved in ion—ion collisions. The formal method for treating the dynamics of
a collision between two ions would be to go to the center-of-mass frame, in which
an ion pair is ‘replaced’ by a particle with the combined mass moving at the
mass velocity, together with a particle with the reduced mass, M; M, /(M;+ M),
moving at the relative velocity, vij = v — v,. For the case of two populations
of ions of the same species, the reduced mass in M /2. The calculation of the
frictional force between the two populations of ions due to ion—ion collisions
will go through just as for the case of electron—ion friction, except that the
momentum transfer will be proportional to v; — v, and the relevant collision
frequency will vary as |v; — v5]=>. However, since the frictional force was
found to be proportional to the square-root of the mass and the relevant mass
here is the reduced mass, M/2, an additional numerical factor of 2~!/2 arises
in the ion—ion case, as well as the change m — M, relative to the electron—ion
case given in equation (11.22). Thus, we may define an average frequency for
ions colliding with other similar ions, namely

n; Z%*InA

) = e AT

(11.24)

Equation (11.24) gives the standard expression for the average ion collision
frequency. Although individual ions scatter with frequency vj, it is important
to remember that the total momentum and total energy of the ion population
cannot be changed by ion—ion collisions alone, since momentum and energy are
conserved in Coulomb collisions when both scattering and scattered particles are
summed together.

Comparing electron and ion collision frequencies in a plasma with T, ~ T;,
we see that

vei /vii ~ (M/m)'/2, (11.25)

Thus, electrons scatter about 40 times faster than ions in a hydrogen plasma.
For a hydrogen plasma with an electron and ion density n (in particles per

m?) and electron and ion temperatures T, ; (here the temperatures are in eV), the

collision frequencies given by equations (11.22), (11.23) and (11.24) are

(Vei) ~ {Vee) ~ 5 x 10—-”’1/7-;3/2 (S_l)
<vii) ~ 10_12”/7}3/2 (S—]).
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Numerical values for collision frequencies vary enormously, depending on the
plasma density and temperature.

Consistent with the collision frequency varying as nT /4, the cross section
o for Coulomb scattering varies as T~2 and is independent of density. This
allows us, for example, to compare CoulcT? ffff fctions with the deuterium—
tritium fusion cross section, as is done in|Figure 11.3[ We see that the Coulomb
cross section is always much larger than the fusion cross section. Thus, ions in a
fusion reactor must be confined for many collision times for them to have a good
chance of fusing. To maximize fusion reactivity at a fixed value of the plasma
pressure p (since the beta value, B = 2uop/B?, is limited by plasma physical
constraints, and the field strength B is limited by technological constraints), the
optimum plasma temperature in a fusion reactor is in the range 10-30keV. In
this range, Figure 11.3 shows that there will be of order ten thousand or more
scattering events per fusion reaction. Although only a fraction of the ‘fuel’ (i.e.
the deuterium—tritium ions) in a fusion reactor need actually fuse before being
lost, since the energy produced per reaction is a thousand times larger than
the average energy of the ions, it is clear nonetheless that concepts for fusion
reactors must involve confinement of ions for many collision times, so that the
ion velocity distribution must necessarily be essentially Maxwellian,

3/2

11.3 PLASMA RESISTIVITY

When an electric field is applied to a fully ionized plasma, the electrons are
accelerated in one direction (opposite to E since their charge is negative) and
the ions are accelerated in the other direction (along E). The increasing relative
motion between electrons and ions produces an increasing electrical current in
the direction of E. However, Coulomb collisions between electrons and ions
impede this relative motion, and a steady state is reached after a few electron—
ion collision times. In equilibrium, the electric field E and the plasma current
density j are proportional to one another, i.e.

E = 5j. (11.26)

The constant of proportionality n is the resistivity. So far, we have paid some
attention to the effects arising from resistivity, but we have investigated neither
the magnitude nor dependences of the resistivity itself.

The resistivity was obtained in by considering the equation of
motion for electrons in a uniform plasma (no pressure gradients) either along a
magnetic field B or with no magnetic field:

mnedu./dt = —en.E + R,;. (11.27
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The term R.;, representing the momentum gain or loss of the electrons caused
by collisions with ions, was written

Rei = —mne(vei) (U, — W) (11.28)

where we assumed that the momentum exchange between the two species was
proportional to the relative velocity u. — w;. Neglecting the inertia of the
relatively light electrons, and expressing the current density j as —nee(u. — u;),
the resistivity was found to be
m{Ve;
n= {ei), (11.29)

nee?

Substituting our previous expression, equation (11.22), for the average electron—
ion collision frequency (vei) and using n. = Zn;, we obtain an approximate

value for the plasma resistivity, namely
212m 2 ZenA
12732621,
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This simple calculation overestimates the true resistivity of a hydrogen
plasma by a factor of about two. The weakness in the present calculation lies
in using a ‘standardized’ average electron—ion collision frequency (ve;) that was
obtained by using a ‘shifted Maxwellian’ electron distribution, without taking
into account the specific distortion of the electron velocity distribution that arises
due to the presence of the electric field.

In the real situation, electrons with different velocities respond differently
to the combined effects of a driving electric field and collisions with ions.
Specifically, electrons with higher velocities are accelerated more readily by
the electric field, since their collision frequencies are smaller than those of
lower-velocity electrons. This tends to distort the electron distribution function,
allowing more current to be carried by the faster electrons. Electron-electron
collisions tend to pull these high-velocity electrons back into the Maxwelilian
distribution, however, thereby reducing this distortion. When all these effects
are included, the net result for a hydrogen plasma is a resistivity that is about
two times smaller than that given above. We will return to this topic in more
detail in [Chapter 13

Our expression for n shows that the resistivity of a fully ionized plasma is
independent of its density. This is a rather surprising result since, with a given
E field, we might have expected the current density to increase if the number
of charge carriers per unit volume, n., increases. The reason this does not
happen is that the collisional friction force on the electrons also increases with
the number of scatterers n;. At fixed E, the current j is proportional to n, but
inversely proportional to n;. Since n, = Zn;, the two dependences cancel each
other. Note that a fully ionized plasma behaves quite differently from a weakly
ionized gas in this regard. In a weakly ionized gas, we still have j = —n.eu,
where n. is the density of charge carriers, i.e. electrons, but u. will now be
inversely proportional to the neutral density, n,, if the principal contribution to
resisting the electron flow comes from collisions with neutrals. In this case the
current is proportional to ne/ny.

Our expression for n also shows that the resistivity of a fully ionized
plasma varies inversely with Te3/ 2. As the temperature of a plasma is raised,
its resistivity drops rapidly. Plasmas at very high temperatures are most likely
to be ‘perfectly conducting’ or ‘collisionless’, meaning that their resistivity is

" negligible. We have seen in[Chapter 8 Jthe consequences of ‘perfect conductivity’
for the ‘freezing’ of plasma to magnetic field lines, which is now seen to be a
concept that is particularly appropriate for high-temperature plasmas. However,
the decrease in resistivity with increasing temperature has a severe disadvantage
for one simple method of heating a plasma—namely, passing a current through it
to dissipate some energy in heat (‘ohmic’ heating). The rate by which a plasma
is heated by this method is 172 per unit volume (equivalent to I2R heating in
electrical wires), which is simply due to the fact that the rate of energy transfer
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to electrons from the electric field is —nceu, - E = j - E = ;2. For fixed j, the
heating rate drops as the temperature rises—so much so that ohmic heating is
usually considered impractical, for example, at fusion temperatures.

The numerical value for the resistivity of a hydrogen plasma, after
correcting equation (11.30) by the factor two, in SI units is

n=5x10"InA/T>*Qm (11.31)

where T, is in eV. A plasma with 7, = 100eV has about the same resistivity
as stainless steel (7 x 10~7 2 m), whereas a plasma at T, = 1keV has as low a
resistivity as copper (2 x 1078 Qm).

11.4 ENERGY TRANSFER

Another collisional process that can be considered at this point is that of
collisional energy transfer between a hotter electron component and a colder
ion component. Specifically, we consider the temperature equilibration of a
plasma in which T, 3> 7;. This situation is possible (and common), as we will
see, because the electron—ion energy transfer time, or ‘equilibration time’ Teq, is
much longer than the characteristic times for the electrons and ions separately
to come to thermodynamic equilibrium among themselves, which are vg! and
vy ! respectively.

When a light particle of mass m and initial velocity vy collides with a heavy
particle of mass M initially at rest, the maximum energy and momentum transfer
to the heavy particle occur for 180°-scattering (i.e. a ‘head-on’ collision). For
this case of exactly 180°-scattering, the conservation of momentum and energy

gives

mug +mvy = MV (11.32)
Imvg — Imvl = IMV? (11.33)

where v; (backward) and V (forward) are the final velocities of the light and
heavy particle, respectively. Combining these two equations yields v; & vy and

dm\ muv?
IMvia | — ) —2. 11.34
3 i > (11.34)

Thus, only a fraction ~ 4m /M of the energy of the light particle is transferred
to the heavy particle. This simple result carries over to the physically more
appropriate case of multiple small-angle collisions, as we will now see.

In the same spirit, we can calculate the rate at which energy is transferred
from ‘hot’ electrons of mass m to ‘cold’ ions of mass M in a plasma. The
change Av in the velocity of an electron as a result of a Coulomb collision with
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an ion initially at rest can be related by momentum conservation to the velocity
AV acquired by the ion:
mAv = —MAV, (11.35)

Referring to Figure 11.1, it is apparent that the scattering ion gains some amount
of momentum, M AV, at the expense of a corresponding loss of the impinging
electron’s momentum, mAv, resulting from the deflection of the electron away
from its initial trajectory. However, averaged over many such colliding electrons,
each of them deflected in a different direction, there can be no net gain in
ion momentum, provided of course that the electrons have an isotropic, e.g.
Maxwellian, distribution with zero mean velocity. If the scattering ions are
all initially at rest, however, each collision also results in a small gain in the
ion energy. These increases in ion energy will accumulate, i.e. each colliding
electron will contribute something, and the contributions from different electrons
will not cancel out, as they do in the case of the (vector) momentum. From
equation (11.35), the increase in ion energy occurring in a single collision is
given by

2 m? 2
IM|AV] = W’M . (11.36)

We have seen that the change Av in the velocity of the electron shown
in Figure 11.1 is mainly in a direction perpendicular to its initial velocity
vector, and the magnitude of this velocity change has been denoted Av,. The
contribution from Avj is smaller, since vAv; ~ (Av)?, as we saw from lowest-
order energy conservation for the colliding electron. Accordingly, we can write

2
m
IM|AV|? = m—(AUJ_)Z (11.37)

where the quantity (Av_)? for a single electron colliding with a single ion has
been given in equation (11.9). Equation (11.37) indicates that the electron energy
transferred to the ion in this particular collision is (m?/2M)(Av,)?.

Now consider the case where there are many electrons colliding with many
ions, as in a plasma. We allow the electron and ion densities, n. and n,
respectively, to be unequal, as they must be for example in a plasma with
Z # 1. An average electron with velocity v is deflected by its many encounters
with ions according to equation (11.11), i.e.

d{(Avy)?)  nZ2e*InA
dr T 2medmiu

(11.38)

Integrating over a Maxwellian distribution of electrons
fe(v) m \* ex m? (11.39)
=n - .
e e 2T, p 27,
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we obtain a total rate of energy loss from the electrons by collisional transfer to

ions, namely
dWe _ m? [d{(Av)?) 3
= —mf——a'——fe(v)d v (1140)

dt

where W, = %neTe is the energy density in the electrons. In each collision, the
energy is transferred to a single ion, but this energy must then be shared among
the entire population of ions, which are also assumed to be Maxwellian. The
increase of the energy density in the ions, W; = %niTi, must balance the energy

loss from the electrons, i.e. ; g
Wi We
= . 11.41
dr dr ( )

Since only the average energies, and therefore the temperatures 7; and T, but not
the densities are changed by elastic Coulomb collisions of this sort, we obtain
an expression for the rate of increase of ion temperature:

dr;, m? ((AU_L) ) 3

= g [ S A (11.42)
Z2 “nA / fe(v) 3 (11.43)
T 6ne2M '

For a Maxwellian f;, the integral in equation (11.43) is straightforward to
evaluate (see equation (11.21)):

2\ 1/2 172
/ ——fe(v)d3v = (") 'nen:/z (11.44)
v i T.
giving our final result
d; T,
7 = r—e (11.45)
eq

where
i neZ%e*m'/?InA

T = .
O 3r@m) e MT?

Comparing this ‘temperature equilibration rate’ to the average electron—ion
collision frequency defined earlier in this Chapter, we see that

(11.46)

-‘ ~ 2(m/M){(ve). (11.47)

Since we assumed that the ion scatterers were all initially at rest, these
results are only valid for the initial increase of ion temperature, starting from
T; = 0. If the ions have a finite temperature, individual collisions will sometimes
transfer energy from electrons to ions, and sometimes from ions to electrons.

Copyright © 1995 IOP Publishing Ltd.



180 Collisions in fully ionized plasmas

From thermodynamic arguments, we know that, averaging over many collisions,
the net transfer of energy must be from electrons to ions if T, < T, and from ions
to electrons if T, < T;. Thus, our analysis, which neglected the ion temperature
entirely, must only be valid in the case T; « T.. However, if the ion scatterers
are given some initial temperature Tj, our results could be generalized to show
that the values of T, and T; approach each other at a rate given by

di T.-T
dt 1y
iT, n T —T (11.48)

dt  ne Teq

the latter following from energy conservation. Although equation (11.48) is a
thermodynamically plausible generalization of equation (11.45) for the case of
finite T;, its rigorous derivation requires a more complete treatment of electron—
ion Coulomb collisions than can be given here. A more complete treatment of
Coulomb collisions, including a derivation of equation (11.48), may be found,
for example, in the classic monograph by L Spitzer (1962 Physics of Fully
Ionized Gases 2nd edn, New York: Interscience).

Equation (11.48) implies that temperature equilibration (i.e. between
electron and ion temperature) is a relatively slow process in a plasma. The rate
at which electrons and ions exchange energy by collisions is not as rapid as the
electron—ion or electron—electron collision frequencies, ve; and v, respectively,
but is smaller by a factor of order m/M. The rate of energy exchange is also
smaller that the ion—ion collision frequency, v;;, by a factor of order (m/M)!/2,

Problem 11.4: Consider a hydrogen plasma in which the initial velocity
distributions of electrons and protons are entirely arbitrary, i.e. non-
Maxwellian. (We may assume, however, that the mean kinetic energies
of electrons and protons are of the same order of magnitude.) Eventually,
the plasma must come to thermodynamic equilibrium in which the electron
and ion velocity distributions are both Maxwellian with T, = 7;. Describe
qualitatively the various stages of the approach to thermodynamic
equilibrium. What happens first, what happens next, and so on?

11.5 BREMSSTRAHLUNG*

The Coulomb interaction of an electron with an ion results in acceleration of
the electron as it is attracted towards the ion and executes the orbit shown
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in Figure 11.1. We know from electromagnetic theory that an accelerating
charge produces electromagnetic radiation. The radiation of this sort produced
by the electrons in a plasma making Coulomb collisions with the ions is called
‘bremsstrahlung’, or sometimes ‘free—free bremsstrahlung’. (‘Bremsstrahlung’
is a German word for ‘stopping radiation’.) It should be noted that collisions
of electrons with other electrons produce no radiation of this sort in lowest
order, because the accelerations of the two electrons are equal and opposite:
since no net electron current is produced, there can be no radiation in the dipole
approximation. Accordingly, we consider only electron—ion collisions.

Although an accurate treatment of bremsstrahlung for plasma parameters
of interest generally requires a quantum mechanical calculation, we can obtain a
reasonable approximation to the exact result by a classical calculation into which
an appropriate quantum mechanical correction is introduced. From classical
electromagnetic theory, we know that the power W radiated by a non-relativistic
electron with acceleration a is given by Larmor’s formula:

e%q?

=—_ 11.49

6mepc? ( )
The acceleration can be expressed in terms of the Coulomb force of attraction
by means of the equation of motion:

ma = Ze*/4meor? (11.50)

where r is the distance of the electron from the ion at this particular point of its
orbit. Substituting equation (11.50) into equation (11.49), we obtain

2728

= lree)imicnt (11.31)

The total energy radiated as a result of this single collision is obtained by
integrating equation (11.51) with respect to time along the electron’s orbit.
Denoting the distance along the orbit by s, the differential time element may be
written dt = ds/v, where v is the instantaneous velocity of the electron. We

obtain
Wi = 27260 / ds (1152)
= 3Gneg)’mic | rv’ ’

Since energy conservation provides a relation between the electron’s kinetic
energy, mv?/2, and its potential energy in the Coulomb field of the ion, —Ze?/r,
we can express the instantaneous velocity v in terms of r, for a given value of
the electron’s initial velocity, i.e. its velocity far from the ion. Since we also
know the geometry (a hyperbola) of the electron’s orbit, we could in principle
attempt to calculate the integral in equation (11.52) exactly. This would lead to
an exact expression for the bremsstrahlung in the strictly classical case.
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For present purposes, recognizing that our calculation must necessarily be
approximate in its treatment of quantum mechanical effects, it is sufficient to
evaluate the integral in equation (11.52) approximately, by integrating along the
unperturbed electron orbit. This approximation treats all collisions as if they
result in only small-angle deflections of the electron from a straight-line orbit.
In this approximation, v = constant and, measuring s from the mid-point of
the orbit (i.e. the point at which the electron is closest to the ion), we have
r? = s% + b?, where b is the usual impact parameter. The integral then reduces

to d o d
\) S 14
— =] = 11.53
/ r /_w (sT+ b2 2b3 (11.33)

where the last step has been accomplished with the substitution s = & tan c.
Our final expression for the energy radiated in this single collision becomes

wZ%eb

Weg % —— =&
™ 3dre)3m2civb?

(11.54)
where the approximate equality sign is in recognition of the approximate
treatment of the integral along the orbit.

In a differential time element dz, the number of ions with which the electron
collides at impact parameters in a differential range db is given by multiplying
the ion density, n;, by the volume element 2w bdbvds. The power (i.e. energy
per second) radiated per unit volume of a plasma is obtained by multiplying
equation (11.54) by 2w n;vbdb, integrating over all b, and finally multiplying by
the number of electrons in a unit volume, i.e. the electron density n.. We obtain

P~ 27%nin. Z%eb /‘°° db
7 3@dme)’m2c [, b2
2m2nin. Z2eb

~ . 11.55
3(4meg)3m2c3bmin ( )

We note that it has not been necessary, in this calculation, to introduce an upper
cut-off to the permitted values of the impact parameter, for example at the
Debye length Ap. This is because the integral over impact parameters does not
diverge at large b: physically, large-angle collisions contribute about as much
to bremsstrahlung as do multiple small-angle collisions. However, it has been
necessary to introduce a lower cut-off to the permitted values of the impact
parameter, which we have denoted bn,. For the strictly classical case, we could
estimate by, ~ bg, where by is the impact parameter for 90°-scattering, defined
in equation (11.3) or equation (11.17). However, a more satisfactory procedure
would be to calculate the integral along the electron orbit exactly, in which case
the lower cut-off at approximately by appears naturally.
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We have found (see Problem 11.2) that quantum mechanical effects
determine the minimum impact parameter in plasmas with T, > 10eV.
Moreover, bremsstrahlung is of interest mainly in this higher-temperature regime,
since it is generally exceeded by other forms of radiation, for example line
radiation, at lower electron temperatures. Even for a pure hydrogen plasma,
recombination radiation, together with line radiation arising from transitions
among excited recombined states, generally exceeds free—free bremsstrahlung
at T, < 10eV (see Figure 10.11). Thus bremsstrahlung is of interest mainly
in the quantum mechanical case where the minimum impact parameter is the

de Broglie wavelength, i.e.

h
bmin N — (1 1.56)
mv

with v = (3T./m)!/2. Substituting equation (11.56) into equation (11.55), we
obtain the power radiated by bremsstrahlung per unit volume in the quantum
mechanical case, namely

21%nin, 72T,/
Pbr =~

R~ . 11.57
312(4meg)3m3/2c3h ( )

Equation (11.57) is only approximate, since an exact calculation must be
explicitly quantum mechanical, rather than classical with an ad hoc quantum
mechanical cut-off. In addition, a proper averaging over a Maxwellian
distribution of electrons is needed. Nonetheless, equation (11.57) is high relative
to the exact quantum mechanical result (in which a so-called ‘Gaunt factor’
appropriate to electron temperatures in the keV range is used) by only about
34%. (The Gaunt factor is used to correct the original classical calculation
for relativistic, as well as quantum mechanical, effects.) Including an additional
factor of 0.75 on the right-hand side of equation (11.57) to correct this deficiency
and substituting numerical values for the various physical constants which appear
in equation (11.57), we obtain a final expression for the power radiated by
bremsstrahlung:

Py = 1.7 x 10738220, T} 2 (Wm™) (11.58)

where ne and n; are in m~ and T, is in eV. If the plasma contains several
different ions with different charge numbers Z;, then n;Z? in equation (11.58)
must be replaced by EiniZf, where the summation is over the types of ions
present. The reader interested in the exact quantum mechanical derivation of
equation (11.58) is referred to W Heitler (1954 Quantum Theory of Radiation
3rd edn, Oxford: Oxford University Press).

Problem 11.5: Fusion reactions between deuterons and tritons produce
charged helium ions (‘alpha particles’) with energy E, = 3.5MeV. If these
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ions remain confined, they will provide an internally generated plasma
heating power of
npnt{ov)pr Eq

per unit volume. In the temperature range 3—10keV, the fusion reactivity,
(ov)pr, averaged over Maxwellian deuterons and tritons at the same
temperature T;, can be written (ov)pr(m*s™!) ~ 10773 where T; is in
eV. (Beware that this formula is not good at temperatures above 10keV.)
Show that the alpha-particle heating power exceeds the power radiated by
bremsstrahlung in a pure deuterium—tritium plasma with np = nr = n./2
and T, =T, =T only if T > 4.3keV.
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Chapter 12

Diffusion in plasmas

When a charged particle in a plasma collides with another particle, its velocity
vector undergoes a small but abrupt change, causing the particle to move from
one collisionless orbit to another. After a sufficient number of such collisions,
the particle will have wandered a significant distance away from its original
trajectory. In a non-uniform plasma, the result of this will be a net migration
of particles from the highest-density region of the plasma to the lowest-density
region, thereby tending to flatten-out the density gradient. This net migration is
called ‘diffusion’.

We will consider diffusion in weakly ionized gases, where collisions of
charged particles with the much-more-abundant neutral atoms are more frequent
than collisions with other charged particles, in addition to the case of diffusion
in fully ionized plasmas. The case of the weakly ionized gas is of conceptual
interest in the context of diffusion, not only because it serves to illustrate some
of the physical ideas without too much algebraic complexity, but also because it
differs importantly from the case of the fully ionized plasma in the mechanisms
by which the charge neutrality of the ionized gas is maintained during the
diffusion process. The weakly ionized gas is, of course, of practical interest
in its own right, for example in high-pressure arcs and process plasmas.

We will limit ourselves in this Chapter to singly charged (e.g. hydrogen)
ions. The generalization to ions with a multiple charge Ze is straightforward.

12.1 DIFFUSION AS A RANDOM WALK

It will be useful, first, to develop a heuristic understanding of the coefficient of
diffusion (or ‘diffusivity’) of charged particles in a plasma. To do this, we need
to introduce the concept of a ‘random walk’.

Consider a group of particles moving along a straight line (the x axis)
beginning at x = 0. The particles take one step at a time, each step of magnitude
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Ax, and these steps are random in the sense that a step to the left is just as likely
as a step to the right. Steps are taken at equal intervals of time Az. On average,
i.e. if very many similar particles are followed, all of them beginning at x = 0,
an average particle will not move at all, since steps to the right are compensated
by an approximately equal number of steps to the left. Thus, the ‘average’
position of the particles, denoted (x), is at all times given by

(x) =0. (12.1)

However, after a sufficient length of time, the particles will have ‘spread out’
relative to their initial position, and a few of them will have succeeded in
migrating quite far to the left or to the right. The root-mean-square spread
in the particles’ positions can be denoted (x?)!/2, and we will show that the
quantity (x?) increases in time according to the relation

dix3) _ (Ax)
d At

which can be integrated to give (x?) = (Ax)?t/At. Thus, the ‘spread’ (x2)!/2
increases as the square root of the time.

In Section 12.3, we will derive the equivaient of equation (12.2) by solving a
diffusion equation for the density n(x, t) of particles on the line. The diffusion
equation is applicable in the limit where Ax and At are both infinitesimally
small.

(12.2)

12.2 PROBABILITY THEORY FOR THE RANDOM WALK*

Before introducing the diffusion equation, it may be of interest to some readers
to derive equation (12.2) by analyzing the random walk using the methods of
probability theory. This derivation is valid even in the case where Ax and At
are not small. (Readers who are uninterested in such a derivation may omit this
entire Section.)

The derivation of equation (12.2) from probability theory goes as follows.
Let us consider a total of n steps and define P,(r) to be the probability that r
of these steps are to the right, so that n — r of the steps must be to the left.
The probability of one particular prescribed ordered sequence of such steps is
27" x 27®=" = 277 just as the probability of a prescribed sequence of heads
and tails in n throws of a dice will be 27", To obtain P,(r), where it does not
matter in which of the n steps the r rightward ones occur, we must multiply
by the number of ways of choosing r indistinguishable items from a total of »n

items, which is n!/[r!(n — r)!]. Thus
n! 1
P(r=——+—.
riin—nr)t2r
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After these n steps, which occur in a time ¢t = nAt, the particle has progressed a
net distance to the right of r Ax — (n —r)Ax = (2r —n)Ax, and its mean-square
position is given by

(x?) = 4(Ax)? ; (r - %)2 P,(r).

To make progress at this point we will employ a subtle trick that at first
seems off the track. We write down the binomial expansion of a function F,(y)
defined as follows:

_ A+ 1 n! (r=n/2)
RO =5 =5 ; T

so that

d (dF,(0NY 1 n! 2
yZE(y dy _Z"Zr!(n—r)!<r—2) y

r=0
" 2
= Z (r - %) P, (r)y""/?,
r=0

Substituting this into our expression for (x2), we obtain

(x?) = 4(Ax)? [y-d— (den(y))]
y=1

dy dy

and now it is a simple matter to carry out these differentiations of the function
F,(y) and then to substitute y = 1, which gives a value n/4 for the expression
in square brackets. Thus

(x%) = n(Ax)* = t(Ax)?/ At

thereby proving equation (12.2). We want now to go to the limit in which the
number of steps becomes extremely large, while the length of each step, Ax,
and the time interval between steps, At, become infinitesimally small. To do
this in a way that keeps the mean-square distance (x2) finite for finite time ¢
requires that Ax and At approach zero with a particular relationship between
each other: specifically, it is necessary that Ax and At approach zero in such a
manner that (Ax)? x At.

12.3 THE DIFFUSION EQUATION

Returning now to the promised derivation of equation (12.2) by formulating and
then solving a diffusion equation, which correctly models the random walk in
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the limit of infinitesimal Ax and At, we begin by defining a ‘number density’
of particles n(x, t), such that the number of particles in an element of length dx
at location x at time ¢ is given by n(x, r)dx. We will show that this ‘number
density’ (like a probability density) satisfies a ‘diffusion equation’ of the form

§£=_?£=i(pa"). (12.3)

This equation, which is in the form of a continuity equation for our random
walkers, is correct as long as the assumption that the flux T of particles
in the x direction is proportional to the density gradient (with constant of
proportionality —D) is valid. In the limit of small individual steps Ax, we
can obtain this flux directly from the random walk picture of particles moving
along the x axis. Evaluating the flux across x = xg, we note that the positively
directed flux arises from the particles in a line segment of length Ax, located
immediately to the left of x = xp, ‘emptying out’ in the x direction as a result of
positive steps Ax in a time interval Az. Noting that only half of these particles
make rightward steps, the other half making leftward steps, we see that the
positively directed flux is

1o

- dx
+=5A; xoumn(x)

R — d
201 Sy dx xO) *
1 (Ax)? dn
~ — {nAx — —].
2At 2 dx

Similarly, the negatively directed flux from particles in a similar line segment
to the right of x = x¢ making leftward steps is

1 *o dn
~ (n(xo) + (x —x0) —

1 xo+Ax
N=—-—x d
21 )., n(x)dx
- 1 nix + (Ax)? dn
2AY 2 dx)’
The net flux is )
(Ax)* dn
Fr=T 4+ =~ — 12.4
i 2A1 dx (124
which corresponds to a diffusion coefficient in equation (12.3) given by
(Ax)?
D= . .
TAr (12.5)
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Thus the diffusion equation, equation (12.3), gives a correct fluid description
of the flows that arise when many particles, with non-uniform density, execute
random walks in the limit of a large number of steps with infinitesimal Ax and
At.

We can find an exact solution of the diffusion equation for the case where
all of the particles begin at t = 0 at x = 0, namely

N 2
nix,t)= WCXP (—5)7) (12.6)

where N is the total number of particles, i.e. N = f n(x, t)dx. While this is an
exact solution of equation (12.3), we should note that the diffusion equation is
valid only in the limit of Ar <« ¢t and Ax < x.

Problem 12.1: Show by direct substitution that equation (12.6) is indeed
a solution of equation (12.3). By finding a counter-example where
equation (12.6) (with equation (12.5) for D) cannot be valid, show that
this solution is not correct for all x and ¢ in the case where Ax and At are
finite.

At time ¢t = 0, the particles are distributed in a é-function at x = 0. This
formulation allows us to derive the result for the root-mean-square spread in
particle positions that was implied by equation (12.2), namely

(x*) =N"! /xzn(x, 1)dx = 2Dt = (Ax)%t/At.

The three-dimensional generalization of the diffusion equation, equa-
tion (12.3), is clearly given by

on =V .-(DVn). 12.7)
at
In a diffusion process, there is on balance a net migration of particles in the
direction opposite to Vn. Since more particles are located in higher-density
regions than in lower-density regions, when both spread out, there is a net flux
in the —Vn direction.

For a first example of diffusion in plasmas, we consider the case of a
plasma not containing any significant electric or magnetic fields. In this case,
a charged particle will move on a straight-line trajectory until it encounters,
i.e. collides with, another particle—either another charged particle or a neutral
atom. The diffusion coefficient D may be estimated based on our heuristic
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model as follows. The step size in the random walk is the mean-free path
Amtp. The interval between steps is the inverse of the collision frequency, i.e.
t ~ v~!, Thus, according to the simple random-walk analysis discussed above,
the diffusion coefficient is given by

D~ vl (12.8)

Equation (12.8) and subsequent estimates like it can be regarded as valid only in
an order-of-magnitude sense; accordingly, we omit the factor 1/2 that appeared
in our expression for D given in equation (12.5). Recalling that the mean-free
path is obtained by dividing the particle velocity, which we take to be the thermal
velocity of the diffusing species vy, by the collision frequency v, we can express
the diffusion coefficient
v T
D~ =2~ — (12.9)
v omy

Consider next the case of a plasma containing a strong magnetic field B. As
illustrated in Figure 12.1, charged particles will move freely along the B field,
unimpeded except by collisions with other particles. If the density of particles is
non-uniform along the field, these non-uniformities will smooth themselves out
by diffusion, in accordance with the relationship derived above for the case with
no magnetic field, since B itself does not affect motion in the direction parallel
to B. Accordingly, we can define a ‘parallel’ diffusion coefficient, D, which
takes the form given in equation (12.9).
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Figure 12.1. Diffusion of a charged particle (open circle) in a magnetic field due to
collisions with other particles, either neutral or charged (full circles). Two collisions are
shown, each of which contributes to diffusion along the field and, by changing the phase
angle of the Larmor gyration, to diffusion across the field.

Note that in both of these cases, i.e. an unmagnetized plasma and diffusion
parallel to a magnetic field, collisions actually reduce transport. In the case of
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diffusion perpendicular to a magnetic field, collisions enhance transport. Indeed,
if there are no collisions, particles will not migrate at all in the perpendicular
direction—they will continue to gyrate indefinitely about the same field line.
There are, of course, particle drifts across B, due to field gradients, curvature
or electric fields perpendicular to B, but these are often arranged to form closed
drift orbits within a bounded plasma. A particular example is the cylindrical
plasma column, where the electric field and the gradients are all in the radial
direction, so that the drifts are azimuthal. In such cases, the particle drifts do
not carry particles out of the plasma.

However, when there are collisions, particles migrate across B by a random
walk process. When a charged particle coilides with another particle, the
direction of its velocity vector is turned through some finite angle. The particle
continues to gyrate about the magnetic field in the same sense, but the phase
of its gyration is changed discontinuously, thereby changing the location of the
gyro-center. The radius of gyration (Larmor radius) may also change, but this
is not essential to the process, and for now we can suppose for simplicity that
the charged particle does not gain or lose perpendicular energy in the collision,
so that the gyration radius is unchanged.

Because of the change of phase, the center of gyration (‘guiding center’)
shifts position as a result of the collision and, if there is a succession of
such collisions, the center of gyration undergoes a random walk, as shown in
Figure 12.1. We assume here that the collision frequency is much less than the
gyration frequency, so that most Larmor orbits are completed. The step size in
the random walk is no longer the mean-free path Angp, as in the magnetic-field-
free case, but has instead the magnitude of the Larmor radius ri.. The interval
between steps is again the inverse of the collision frequency, i.e. T = v~!, giving
a ‘perpendicular’ diffusion coefficient

Dy ~vrl. (12.10)

Although the estimate given in equation (12.10) is based on the pictorial
representation of perpendicular diffusion shown in Figure 12.1, it is important to
remember that Coulomb collisions act mainly through the cumulative effect of
many small-angle scatterings, rather than the relatively infrequent 90° scatterings
depicted in Figure 12.1. A typical particle experiences collisional scattering of
its perpendicular velocity vector through an angle of order A8 ~ 2w v/w:)/? in
one gyro-period (At ~ 2m/w.). (Remember that collisional scattering is itself
a diffusive process in velocity space, so the angle of scattering A¢ is given by
(A6)? ~ vAt.) If the perpendicular velocity vector is turned through an angle
AB, the particle’s gyro-center moves by a distance Ax ~ ri A8, which gives rise
to a spatial diffusion coefficient D ~ (Ax)Z/At ~ vrﬁ. Thus, a more correct
approach based on multiple small-angle scattering events gives the same result
as the heuristic derivation based on large-angle scatters, i.e. equation (12.10).
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12.4 DIFFUSION IN WEAKLY IONIZED GASES

In a weakly ionized gas with a small enough ionization fraction, charged
particles will interact primarily (by means of elastic collisions) with neutral
atoms rather than with other charged particles. In this case, the applicable
diffusion coefficients may be obtained from equations (12.9) and (12.10) by
simply using the appropriate electron-neutral or ion—neutral collision frequency.
Recalling that v = n,{o,v) and noting that a neutral atom displays approximately
the same cross section oy, to a colliding electron as to a colliding ion, we see
that the electron—neutral and ion—neutral collision frequencies are related to each
other according to

Ven/ Vin ~ vt,e/vl,i ~ (l‘l/m)l/2 > 1. (12.11)

Here, v, and v, ; are the thermal velocities of electrons and ions and, in relating
them to the electron and ion masses, we have assumed that the electron and ion
temperatures are roughly equal.

It follows that the electron and ion diffusion coefficients in the absence of
a magnetic field (or along the field, if one is present) are related according to

Dye/Dy ~ (M/m)!* > 1. (12.12)

The diffusion coefficients perpendicular to a strong magnetic field are related
according to
Dye/Dyi ~ (m/M)'* < 1 (12.13)

because of the square-root dependence of the Larmor radius on the mass.

In a plasma, which must remain charge neutral to a very high degree of
approximation, net motion of electrons and ions at separate rates will not occur.
If the plasma is to remain neutral, the fluxes of electrons and ions will somehow
adjust themselves so that the two species leave the plasma at the same rate.
Not surprisingly, the process of adjustment of the two loss rates involves the
electric field that arises as soon as a slight charge imbalance occurs. In the
case without a magnetic field (or diffusion along the field, if one is present), the
electrons have the larger diffusivity and tend to leave the ions behind. A very
small positive charge is left in the region of highest plasma density, sufficient
to create an outwardly directed electric field of such a size that the preferential
loss of electrons is eliminated, although the loss of ions will tend to be increased
somewhat in the process. In the case of diffusion across a magnetic field, the
electric field will be inwardly directed, i.e. toward the region of highest plasma
density, to eliminate the preferential loss of ions.

The results given in equations (12.9) and (12.10), which we have obtained
from a heuristic single-particle picture, can be derived formally (but actually at
the same level of approximation) using the fluid equations for a weakly ionized
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gas. This approach will also lead to a quantitative determination of the electric
field. The fluid equation of motion, including collisions with neutral atoms, for
either species of a hydrogenic plasma, is

d
mngl:- =gnE — Vp —mnvu (12.14)

where, as usual, g is the signed charge (i.e. =e for ions/electrons). We will
assume that the collision frequency v has been averaged appropriately over the
distribution of particle velocities and is a constant, i.e. independent of the fluid
velocity. If we consider a steady state in which du/dr = 0, and in which the
fluid element does not move very far in a collision time (i.e. u/v <« L, where
L is the characteristic dimension of the plasma), so that (u - V)u is negligible,
then inertia and acceleration may be neglected, and we obtain

= - — (12.15)

Here, we have also assumed an isothermal plasma, so that Vp = TVa. The
constant of proportionality between the flux nu and Vr is the same as was
obtained heuristically from the single-particle picture, see equation (12.9).

Let us now consider equation (12.15) for ions (m — M,q — e) and
electrons (m — m,q — —e) separately. Equation (12.15) shows that electrons
not only diffuse more rapidly than ions in the presence of a density gradient,
but they also respond more readily to an electric field. (The coefficient of the
electric field term in equation (12.15) is called the ‘mobility’.) For the diffusion
of ions and electrons to be at the same rate—sometimes called ‘ambipolar
diffusion’—the electric field must adjust itself so that the electron flow is reduced
by a large factor of order (M/m)!/2. More precisely, we can determine the
electric field from equation—(12.15) by setting u, = u;, to obtain

T.Mviy — Timve, Vin
Mvy, +mve, ne

E =

T,
~ —-—=Vn. (12.16)
ne

This is called the ‘ambipolar electric field’. Substituting it back into
equation (12.15), we find electron and ion fluxes

nu, =nu; = —D,Vn (12.17)
where D, is the ambipolar diffusion coefficient, given by

JLtT

D, ~ . 12.
a Mon, (12.18)
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For the case where T, & T;, the effect of the ambipolar electric field is to
approximately double the diffusion coefficient of the ions; the electron pressure
acts through the electric field effectively to push on the ions. The diffusion
rate for the two species together is thus controlled primarily by the species that
diffuses more slowly—in this case, the ions. Even if electron transport were
infinitely faster, it would still only double the net particle transport.

It is interesting to note that in the opposite limit of Awg, ~ u/v > L,
inertia and acceleration become dominant, collisions become unimportant, and
the discussion in of pressure balance parallel to a magnetic field
in a collisionless plasma may be invoked. There too, the electron pressure is
effectively added to the ion pressure through the action of the electric field,
in that case driving ion acceleration rather than diffusion. Acceleration and
diffusion are handled simultaneously by the fluid equations of motion when the
collisional friction term is included. Thus, in the fluid picture, diffusive flow
is a consequence of collisional friction between particles of different species
becoming more important than acceleration in determining the fluid velocity
that is produced as a response to pressure gradients. Diffusion appears naturally
from the fluid equations including collisional friction and is absolutely not to be
introduced separately, for example as an extra V - (DVn) term in the continuity
equation.

Consider next the case of a weakly ionized gas in a magnetic field. As
before, we start with the fluid equation of motion for either species including
collisions with neutral atoms. Since in the paralle! direction the equation of
motion is the same as for an unmagnetized plasma, we focus on the perpendicular
components:

d
mn%’ti = gn(E+u, x B) — TVn — mnou. (12.19)

We suppose that the magnetic field is in the z direction and that the density
non-uniformity is in the x direction. The ambipolar electric field will also be
in the x direction. Again assuming a steady state and neglecting inertia, we
can solve the two perpendicular components of equation (12.19) for the two
perpendicular components of the fluid velocity u. Because of the u; x B term,
the two components of equation (12.19) are coupled, but it is a matter of simple
algebra to solve the two equations simultaneously, to obtain

1 qE; T 1dn
_ (98 _T 1dn 122
e 1+ w?t? (mv mvndx) (12:20)
" = wit* (E, T ldn (1221)
7 1+4w:?\ B gBndx '

where 7 is the mean collision time, v™!, and w, is the cyclotron frequency,
eB/m.
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Equation (12.20) compared with equation (12.15) shows that the effect of
the magnetic field (w, # 0) is to reduce the mobility and diffusivity relative
to an unmagnetized plasma by a factor 1 + w?t2. Equation (12.21) shows that
the effect of collisions (t # ©0) is to reduce the E x B and diamagnetic drifts
relative to a collisionless plasma by a factor w?r?/(1+ w??). Since the density
gradient is in the x direction, the flow-velocity component u, does not contribute
to diffusion, although this component is the larger in a collisionless plasma. The
diffusive flows that carry particles from high-density to low-density regions of
the plasma are contained in the component u,.

When a);f.’r2 <« 1, the magnetic field has little effect on diffusion. On the
other hand, in the case where wczrz > 1, the magnetic field significantly retards
the rate of diffusion across B. In the limit w?z2 > 1, we have

uy = (qu - Zgﬁ) . (12.22)

Again the constant of proportionality between the flux nu and Vn, ie. the
diffusion coefficient D,, is the same as was obtained heuristically from the
single-particle picture, equation (12.10).

Compared with diffusion along a magnetic field (or in the magnetic-field-
free case), we see that the role of the collision frequency has been reversed, as we
found in the heuristic derivation. In diffusion along B, the diffusion rate varies
inversely with v, since collisions impede the motion. In diffusion perpendicular
to B, the diffusion rate is proportional to v, since collisions are needed for cross-
field migration. The dependence on the particle’s mass m has also been reversed.
Keeping in mind that the collision frequency for charged particles colliding with
neutral atoms is proportioned to m~'/? and that w, varies inversely with m, we
see that the diffusion rate along B varies as m~1/2, whereas the diffusion rate
perpendicular to B varies as m'/2. In diffusion along B, electrons move faster
than ions because of their higher thermal velocities; in perpendicular diffusion,
ions migrate more rapidly than electrons because of their larger Larmor radii.

Let us now consider equation (12.22) for ions (im — M,q — ¢) and
electrons (m — m,q — —e) separately. Because the diffusion coefficients
are anisotropic in the presence of a magnetic field, the problem of ambipolar
diffusion is not as straightforward as in the magnetic-field-free case. As we have
just seen, in diffusion perpendicular to a magnetic field, the ion flux tends to
exceed the electron flux. Ordinarily, a transverse electric field will then be set
up so as to aid electron diffusion and retard ion diffusion. The electric field
will be that needed to reduce the ion flow by a large factor of order (M/m)!/?
which, from equation (12.22) for ions, can be seen to be given by

T;

n
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The ambipolar electron and ion fluxes are then obtained from equation (12.22)
for electrons:

nue; =nuip = —D,Vn (12.24)
where
D, ~ Ven(Te ‘:‘ 1)
mw?,
2 Ti
~ Ven("u) 1+ — (12.25)
T.

where (rZ,) = T./(mwl) = mT./(¢?B?) is the mean-square Larmor radius of
the electrons. The diffusion coefficient D, is seen to be inversely proportional to
B2. Clearly, our result agrees—at least in some sense—with the heuristic result
given in equation (12.10), except that ambipolar diffusion is at the slower rate
similar in order-of-magnitude to that given by equation (12.10) for electrons.

However, the electric field required for ambipolar diffusion perpendicular to
a magnetic field can sometimes be short-circuited by an imbalance in fluxes along
B. Specifically, the negative charge resulting from the net perpendicular outflux
of ions can be dissipated by electrons escaping along field lines. Although the
total diffusion must be ambipolar, the perpendicular part of the losses need not
be ambipolar; the ions can diffuse across the field, while the electrons are lost
primarily along the field.

Whether or not this occurs depends on the geometry of the particular
magnetic configuration and on experimental conditions. In a mirror-trapped
plasma on open field lines, the losses of electrons along the field generally
far exceed the ion cross-field losses, so the plasma tends to become positively
charged, in accordance with the requirement for ambipolar diffusion along (or
without) a magnetic field. In the opposite case of a ‘closed’ plasma configuration,
in which the field lines close back on themselves so that there is no possibility
of escape along the field, the cross-field losses of ions are dominant, and the
plasma tends to become negatively charged, in accordance with the requirement
for ambipolar diffusion across a magnetic field. In a cylindrical plasma column
with the field lines terminating on conducting end-plates, the ambipolar electric
field is short-circuited out; each species is then able to diffuse radially at a
different rate, provided there is sufficiently rapid compensating diffusion of net
charge in the parallel direction to the end-plates.

12,5 DIFFUSION IN FULLY IONIZED PLASMAS
We will consider next the diffusion perpendicular to a magnetic field in a

fully ionized plasma, where Coulomb collisions dominate over collisions with
neutral atoms.
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As in the case of the weakly ionized gas, the formal treatment of diffusion
proceeds from the fluid equations of motion for the two species, including
collisions. For a fully ionized plasma, these are effectively the single-fluid
equation of motion and the plasma Ohm’s law:

d
pd—': =-Vp+jxB (12.26)
Vp. jxB
E+uxB+ e 1X2_ (12.27)
ne ne

Since we have seen that diffusion flow-velocities tend to be less than or of
order of the diamagnetic speed, we use here the so-called ‘generalized Ohm’s
law’. This is equivalent to a two-fluid picture with electron inertia neglected.
Collisions between the two species, electrons and ions, appear through the
resistivity term in the Ohm’s law. As in the case of the weakly ionized gas,
we may assume that diffusion is a sufficiently slow process that the plasma is
always in a state of equilibrium. We also assume that the diffusion velocity is
much less than sonic, so that p(u - V)u can be neglected compared with V p.
These assumptions allow us to neglect the inertia of the ions, as well as that
of the electrons, and to replace the equation of motion by the force balance
equation:

jxB=Vp. (12.28)

We again suppose that the magnetic field is in the z direction, and that the
pressure non-uniformity is in the x direction. The ambipolar electric field will
also be in the x direction, since there is no variation of any of the quantities in
the y direction. (The generalization to the case of a cylinder of plasma in which
the non-uniformity and electric field are both in the radial direction and there is
no azimuthal variation is straightforward.) The force balance equation tells us

that 1 d
, . 14
Jx=0 Jy = B i (12.29)
Since there is no variation in the y direction, these currents automatically satisfy
the quasi-neutrality condition V + j = 0.
The generalized Ohm’s law may be solved for the perpendicular

components of the plasma fluid velocity:

E, 1 dp; n dp
B TneBax T T Bax (12.30)

Uy = ——
where we have substituted for j; and j, from equation (12.29). It is evident
that the perpendicular velocity of the plasma is composed of two parts. First,
there are the usual electric and diamagnetic drifts, perpendicular to the electric
field and pressure gradient, respectively, and therefore not leading directly to
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any loss of plasma from high-density to low-density regions. (These drifts are
in the y direction in our case of a plasma slab that is non-uniform in x, and
they would be in the 8 direction in the case of a cylinder of plasma that is
non-uniform in r). Second, there is a resistively driven flow that is anti-paraliel
to the pressure gradient and that does, therefore, lead to particle loss. More
generally, the resistive flow can be written

uJ_=—%VLp. (12.31)
Substituting this into the mass continuity equation gives
%y (&)
= V.- (FV.r) (1232)
where, in the second form, we have made the further assumption for simplicity
that the plasma can be assumed to be isothermal, i.e. p/p =nT/nM =T/M =

constant. Equation (12.32) is a diffusion equation for the mass density. The
diffusion coefficient is

np
D, = VP (12.33)
which is usually called the ‘classical diffusion coefficient’ for a fully ionized

plasma.

The classical diffusion coefficient is seen to be inversely proportional to
B2, just as in the case of weakly ionized gases. This dependence can be traced
back to the nature of diffusion as a random-walk process: for a random walk
across a magnetic field, the step size must be the Larmor radius r.. Indeed,
writing n & mve;/ne? and p = n(T, + T;) we obtain

vem(Te + T7) -~

Do~ e?B?

Vei (re) (1 + 5) . (12.34)
I.

Thus cross-field diffusion in a fully ionized plasma can be described by a random

walk of electrons, step size r . and frequency of steps v;.

The classical diffusion coefficient is also seen to vary inversely with T2
This is because the temperature variation of v, namely 77 2 outweighs the
temperature dependence of the Larmor radius ri., namely Tel/ 2, Thus, the
diffusion coefficient decreases as the electron temperature is raised. The reason
is, of course, the velocity dependence of the Coulomb cross section. The implied
improvement in magnetic confinement as a plasma is heated would lead to very
optimistic projections of confinement in controlled fusion devices—were it not
for the effect of turbulent processes arising from plasma collective effects, which,
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in practice, give rise to diffusion substantially exceeding the ‘classical’ processes
described here.

Nonetheless, let us discuss some properties of classical diffusion that are
different in a fully ionized plasma from those in a weakly ionized gas and
that were not evident in the heuristic derivation. Classical diffusion in fully
ionized plasmas is intrinsically ambipolar. Since we have satisfied the quasi-
neutrality condition V - j = 0 from the outset, it follows that both electrons and
ions diffuse out of the plasma at the same rate. Moreover, it is not necessary
to have some particular electric field E to equalize the electron and ion loss
rates. These features can be illustrated by the case of a cylindrical plasma
equilibrium with a B field entirely in the z direction. In this case, the current
density is entirely azimuthal, given by Bj, = dp/dr and j, = O; thus there
is no tendency for preferential ion or electron radial loss. Moreover, a radial
electric field E, merely produces a plasma rotation uy = —E,/B, changing
neither the electron nor the ion diffusion. The surprising property of intrinsic
ambipolarity turns out to be a consequence of conservation of total momentum
in electron—ion collisions: as we will see in the next Section, if two particles
of equal and opposite charge gyrating in a magnetic field are given equal and
opposite increments of momentum, their gyration centers are moved an exactly
equal distance in the same direction across the magnetic field. Thus, electrons
and ions tend to diffuse rogether across a magnetic field.

Since the classical diffusion coefficient D is due to plasma resistivity, it
arises from electron—ion collisions, and not from electron—electron nor ion-ion
collisions. This, again, is somewhat surprising. Naively, we might have expected
to obtain a diffusion coefficient due to ion—ion collisions of order vﬁrﬁi——a factor
(M/m)'/? times larger than the actual diffusion coefficient, which is of order
veirZ,. The reason this is absent is again related to the conservation of total
momentum in collisions: if two ions gyrating in a magnetic field are given equal
and opposite increments of momentum, their gyration centers are moved exactly
equal and opposite distances across the magnetic field. As we will see in more
detail in the next Section, this simple consequence of momentum conservation
implies that, to the order at which a diffusive flux usually appears, there can be
no net diffusion of particles due to like-particle (e.g. ion—ion) collisions.

In the two-fluid version of the equations of motion (see for example
Chapter 6), the resistivity appears in the frictional force between particles of the
two species. It is important to emphasize again, as was noted in our discussion
of diffusion in weakly ionized gases, that it is by solving the fluid equations in
the presence of this frictional force that the diffusive flows appear. Diffusion
appears naturally from solving the fluid equations and is not to be introduced
separately in the continuity equation.

It is worth noting that there are other collisional forces in the full fluid
equations that are not being considered here; typically, these tend to be relatively
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small because they are higher order in kr;. For example, gradients in flow
velocities give rise to viscous forces, and gradients in temperature give rise to
‘thermal forces’. These appear in the fluid equation of motion as extra terms in
the pressure tensor, whose divergence represents a force density giving rise to
additional effects which must be considered in a more complete treatment.

12.6 DIFFUSION DUE TO LIKE AND UNLIKE CHARGED-PARTICLE
COLLISIONS

Here, we will use the single-particle picture to understand more deeply the simple
fluid results of the preceding Section, that like-particle collisions (e.g. ion—ion
collisions) do not lead to any cross-field diffusion, and that transport from unlike-
particle collisions (e.g. electron—ion collisions) is intrinsically ambipolar.

Consider a magnetic field in the z direction and a density gradient in the
x direction. We will focus on like-particle collisions involving ions, although
our analysis is equally applicable to electron—electron collisions. Ions gyrate
about the field, making circles in the (x, y) plane. For such circular orbits, the
x coordinate of the guiding center’s position, xg, is related to the actual particle
position x by the formula

Xge =X +Vy/w. =x + Mvy/eB. (12.35)

When two ions collide by arriving momentarily at the same location x, their
velocity vectors are suddenly changed, as are the positions of their guiding
centers. However, conservation of momentum in the y direction, i.e.

(EMUY)iniu’al = (EMUY)ﬁnal (12.36)

where the summation is over the two ions, implies by equation (12.35) that

GO 4+ xPiniga = G + xDtna (12.37)

where (1) and (2) denote the two ions. Thus, conservation of momentum in
the y direction assures that the center of mass of the two guiding centers along
the direction of the density gradient, x, is unchanged. shows the
special case of a 90° collision, with ions approaching each other on ‘initial’
Larmor orbits with velocity vectors in the £y direction, where the upper sign
corresponds to orbit (1) and the lower sign to orbit (2). After such a collision,
the momentum in the y direction is completely destroyed, and the two ions move
off in the +x direction, thereafter executing the ‘final’ Larmor orbits shown in
the figure. Since these like-particle collisions cannot produce any net movement

of the ions in any one direction, even in a non-uniform plasma, it could be
argued that there is no continuous net diffusion, although there is certainly some
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-~ -

Figure 12.2. Initial (full lines) and final (broken lines) Larmor orbits of two ions making

a 90° collision. The initial positions of the two guiding centers are xé:), and xé?,; the
i m @

final positions are x,. , and x,; (.

small-scale rearrangement of the guiding centers on a scale-size of order the
Larmor radius.

When we view diffusion as a ‘spreading’ of the particles’ guiding centers
or, in the case of a non-uniform plasma, as a net flux of guiding centers opposite
to Vn, this result of vanishing diffusion may still however seem paradoxical.
Indeed, if we consider a different collision event, which is the exact reverse of
the collision event illustrated in Figure 12.2, i.e. it corresponds to f — i (rather
than i — f), we see that the two guiding centers at x = xg r, which start with
zero spread in the x direction, have moved to the two locations x = x, ;, which
have a spread of approximately two Larmor radii. Thus, at least from this one
collision, there is a non-zero spreading of the guiding centers. Moreover, if we
evaluate the flux of guiding centers across some surface x = xo drawn to the
right of the location of the collision in Figure 12.2, we see that one guiding
center has moved rightward across this line in the reversed collision, i.e. a flux
has arisen from this one collision.

The resolution of this paradox comes from noting (i) that the frequency
of collisions is proportional to the product of the densities at the locations of
the two guiding centers, which are slightly different, and (ii) that the net flux
involves an averaging over all collision events that cause a guiding center to
cross the flux-evaluation surface, including that pair of collisions formed from
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any one collision event plus the reversed version of this event. We then find that
the net flux of guiding centers due to like-particle collisions to lowest significant
order, i.e. the flux that is proportional to Vn, vanishes.

We can see this rather easily by examining the net flux of guiding centers
from the pair of collisions illustrated in Figure 12.2, i.e. considering both
‘forward’ (i — f) and ‘reverse’ (f — i) collision events. If we again place an
observation surface at x = xg just to the right of the location of the collision, we
see that the forward collision event (i — f) results in the leftward movement
of one guiding center across this surface, whereas the reverse collision event
(f — i) results in the rightward movement of one guiding center across this
same surface. The expected result of zero net flux can now be established
by noting that, for this particular case, the frequencies of these two collision
events are equal because, to first order in the size of the Larmor radius, the

product of the guiding-center densities at x(l?i and xg)i is equal to the product
m

of the guiding-center densities at x,. and x(? 7+ even allowing for the presence
of a non-zero density gradient in the x dzrectzon Specifically, relative to a

guiding-center density ng at x = = x2 | the guiding-center densities at
(e))

ge.f = Xge
gc.i

the two locations x,.’; and x(z) are ng. % ri(dng/dx), whose product is just

20’ to first order in r. The constancy, i.e. before and after the collision, of
the position of the center-of-mass of the two guiding centers, which we found
to be a consequence of momentum conservation, enters this argument via the

geometrical constraint embodied in Figure 12.2 that xéi), and xé?, are equidistant
to the left and right of x = xél) of = xé? ¢ However, it is immediately apparent
from this argument that the net flux vanishes only to lowest significant order in
rL: we can expect there to be non-zero fluxes which are higher order in r,
and which involve higher-order derivatives of the guiding-center density, i.e.

d%ng /dx?, etc

This same argument applies equally well to the more general case in
which the colliding particles have unequal Larmor radii and undergo collisional
scattering of their velocity vectors through some general angle, not necessarily

90°. To see this, consider , which shows the guiding centers, x{ and

xé?, of two general particles that undergo a collision at x = x., which causes the
guiding centers to be displaced from their ‘initial’ locations, xg ;, to their ‘final’
locations, x,c s. We suppose that the collision results in a rightward displacement
Ax of x(, together with an equal and opposite (by equation (12.37)) leftward
displacement Ax of x{). We place a flux-evaluation surface at a location x = xo

that is crossed by xél), as shown in Figure 12.3.

If we consider all crossings of this flux evaluation surface by guiding
centers, we must include both the ‘forward’ (i — f) collision, in which the

uiding center of particle (1) moves from x( ) to xP , thereby crossing the flux
g g p gc. f y g
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X=Xg X=Xg

Figure 12.3. Illustration of two guiding centers at locations x,.; which are displaced to
locations x,c ¢ as a result of a collision occurring at x = x.. The initial and final Larmor
orbits are shown by full and broken lines, respectively. The flux is evaluated at x = x;.

evaluation surface in the rightward direction, as shown in Figure 12.3, and the
‘reverse’ (f — i) collision, in which the guiding center of particle (1) crosses
the flux evaluation surface in the leftward direction. The frequency of each type
of collision is proportional to the product of the distribution functions of guiding
centers for the relevant velocities and at the respective, i.e. ‘initial’ or ‘final’,
locations. The collision frequency is also proportional to o (vr, 6)v, Where
the cross section o for this particular collision depends on the magnitude of
the relative velocity of the colliding particles, v, and on the scattering angle
in the center-of-mass frame, 8. We assume that the guiding-center distribution
function of particles with velocity v is given by f(xgc, ¥) = n(xgc) fm(v), where
fm(v) is a Maxwellian distribution of velocities and where we allow a spatial
gradient only in the density and not in the temperature.

For the particular collision under consideration, the probability of the
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‘forward’ collision is proportional to

(1) @ 1 2
ovan(xl In(xie;) fu(vi?) ()

dn
= 0 Upel (n(xo) + (xél), ~ Xo) ax

)

d
x (n(xo) + (g~ x0) - )fM<v,-‘”>fM(v§”>
N O Uy ( 2(x0) + (xly; + 22, — 2x0)n(x0) d— ) @) fua(v®).

(12.38)

The total frequency of these ‘forward’ collisions is obtained by multiplying
equation (12.38) by the product of the volume elements in velocity space of
the two colliding particles, i.e. d*v (1)d3 (2) , and then integrating over the two
velocity spaces. For like particles, for Wthh the collision is essentially the same
if particles (1) and (2) are interchanged, we should then divide by 2 to avoid
counting the same collision twice.

In the same way, the probability of the ‘reverse’ collision is proportional
to

2 1 2
T Vn (g Inxe ) () fu (o)

) M) @)

(12.39)

~ 1) 2
~ O Vel <n (x0) + ()Céc f éc)f -

where to obtain the total frequency of these ‘reverse’ collisions, we must again
multiply equation (12.39) by d3v}])d3v}2) and integrate over the two velocity
spaces. Again we should then divide by 2 to avoid counting the same collision
twice.

However, since each collision produces equal and opposite displacements
Ax of the two guiding centers, we can again invoke equation (12.37), which
shows that the terms in the large brackets of equations (12.38) and (12.39) are
equal. Moreover, for Maxwellian distributions with the same temperature, the
conservation of energy in a collision implies that the products of the two fu
in equations (12.38) and (12.39) are equal to each other. Also, the relative
velocities, v, for the forward and reverse collisions are the same, as are the
scattering angles, 8, in the center-of-mass frame; thus the quantities o vy in
equations (12.38) and (12.39) are the same. Finally, we note that the products
of the two infinitesimal velocity-space volumes for the forward and reverse
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collisions are equal, i.e. d*v"d*v® = d*v’d*v®, where these infinitesimals
are defined by the scatterm% dynamlcs of particles with initial velocities in the
neighborhood of v“) and v;”. This result can be proved formally by showing
that both of these vc]ocny space -volume products are equal to d?Vd® v, where
V is the mass velocity and v is the relative velocity.

Problem 12.2: Prove this last statement, where the mass velocity V and
relative velocity v, are defined by

(O] @

(my +my)V =m v’ + myv

Viey = v — v,

(Hint: consider these relations as defining a transformation of coordinates,
component by component. The transformation from (v{", v®) to (Vy, vre1.x)
defines a Jacobian J. Show that the determinant of the Jacobian,
J, equals —1, which means that dv("dv® = dV,dve,. The other
components can be handled similarly.)

Thus when we integrate over the velocity spaces for every possible
‘forward’ collision, we find that the integral necessarily includes an exactly
compensating ‘reverse’ collision, because the forward and reverse collisions
are equi-probable. Thus, the flux of particles in one direction across the flux
evaluation surface due to forward collisions is exactly compensated by a flux in
the opposite direction due to reverse collisions.

Although on the basis of the simple random-walk picture presented at the
beginning of this Chapter we might have expected a net second-order flux
I, ~ —v(Ax)*(dn/dx), in fact we have found that the net flux vanishes at
this order; the rightward flux of guiding centers across x = xp in Figure 12.3
is exactly cancelled by a leftward flux of guiding centers, even in the presence
of a finite density gradient, dn/dx. To take a particular example, in the case
of a negative density gradient, dn/dx < 0, in Figure 12.3, the rightward flux
of particles (i — f) across x = xp, which is pro;aortlonal to the product of
the ‘intermediate’ densities at the two locations x,; and xgC ;» is cancelled by
the leftward flux (f — i), which is proportional to the product of the ‘lowest’
density at xéi) ¢ and the ‘highest’ density at xéz) - It is apparent, however, that
the exact flux to all orders in small quantities of order of the Larmor radius,
need not vanish. Indeed, more detailed calculations show that there is a small
non-vanishing higher-order flux, but this is not simply diffusion, since it is
proportional to second and higher-order derivatives of n(x).

Let us now apply the present type of analysis to the case of unlike-
particle collisions. For unlike-particle collisions (e.g. electron—ion collisions),
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conservation of momentum implies that

= xPinitia = (X — X2 final (12.40)
or equivalently

(2) ) &)} eY)

X e, final xgc,imual = Xgc.final — xgc.initial‘ (12.41)

Both guiding centers make a step in the same direction. For some collisions, the
steps will both be in one direction, and for other collisions the steps will both be
in the other direction. For a non-uniform plasma, there will be a preponderance
of steps in the direction opposite to the density gradient. If we consider a
surface at fixed x = xp, if dn/dx > O there will be more guiding centers at
X > xp to provide a source of negative flux across x = x; than guiding centers
at x < xg to provide positive flux. Hence, diffusion does occur. Moreover,
since the displacements of the two guiding centers are equal for each collision,
the diffusion is intrinsically ambipolar, i.e. the same for electrons and ions.

Problem 12.3: A fully ionized plasma contains two different types of ions,
with different masses M and different charge numbers Z. Consider the
diffusion across a magnetic field that arises from collisions of ions of one
type with ions of the other type. By generalizing the discussion of diffusion
due to like and unlike charged-particle collisions given here, show that,
whereas the two types of ions may diffuse relative to each other, there
can be no net movement of ion charge in any one direction across the
magnetic field. Describe qualitatively how diffusion of the two individual
ion types can occur while satisfying this constraint. Do the electrons
diffuse? Is diffusion still intrinsically ambipolar?

12.7 DIFFUSION AS STOCHASTIC MOTION*

The vanishing of the lowest-order diffusive flux from like-particle collisions was
first shown by C L Longmire and M N Rosenbluth (1956 Phys. Rev. 103 507),
who also give a calculation of the non-zero flux proportional to the second and
third derivatives of n(x). The Longmire and Rosenbluth analysis is based on
solving the Fokker~Planck equation to obtain the particle flux due to Coulomb
collisions for small spatial non-uniformities in a Maxweilian plasma. The
underlying concept of a more general type of ‘stochastic motion’ is introduced
in this Section and used to provide a simplified version of the Longmire and
Rosenbluth proof of the vanishing of the second-order flux due to like-particle
collisions in one special case.
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The simplified version of the Longmire and Rosenbluth approach described
in this Section, applied to the case of unlike-particle collisions, also demonstrates
in a more formal way the intrinsic ambipolarity of the second-order particle
fluxes.

In order to provide this alternative demonstration both of the vanishing of
the second-order diffusive flux due to like-particle collisions and of the intrinsic
ambipolarity of diffusion due to unlike-particle collisions, we must first extend
our concept of a random walk to include more general types of motion involving
random steps, usually called ‘stochastic motion’. In the simple random walk of
particles on a straight line (the x axis), as discussed earlier in this Chapter, all of
the particles take steps of exactly equal magnitude, Ax, and steps to the left are
of exactly equal probability as steps to the right. We can generalize this concept
in two ways. First, we can suppose that there is small difference in the average
magnitudes of leftward and rightward steps. Redefining Ax now as the (signed)
step in the positive-x direction, this means that there is a non-zero average net
displacement (Ax) of the particles in the time interval At. The spreading of the
particles’ positions is now described by the mean square displacement ((Ax)?) in
the same time interval Ar. The second generalization of the simple random walk
is to allow the typical magnitude and degree of leftward/rightward imbalance of
the steps to vary with location along the x axis, so that the quantities (Ax) and
((Ax)?) become functions of x.

To evaluate the net x-directed flux I across a surface located at x = xg, we
consider again the ‘emptying out’ of a line segment located immediately to the
left of x = x as a result of positive steps Ax in a time interval Az. Allowing
for x-dependent steps Ax, the length of the line-segment that empties out in the
positive-x direction in the time interval At is

dAx
(Ax)- = Ax|yonr & Ax |y — Ax —| . (12.42)
dx |,
The x-directed flux from the emptying out of this line-segment is
1 [*
=— n(x)dx
At Jxo—(ax)_
1 [x dn
R — n(xo) + (x — x9) —| )dx
At x0—(Ax)_ ( dx XO)
dAx  (Ax)?dn
~ — (nAx — nAx—= — bl
Ar("" AT 2 dx>
1 1d 2
o (nAx 3% [n(Ax) ]). (12.43)

Although we have derived this expression by considering a line-segment located
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to the left of x = xo emptying out by means of positive steps Ax, the analysis
applies equally well to the leftward emptying out of a line-segment located to
the right of x = xg, provided Ax is taken to be a negative quantity. Thus we
may average equation (12.43) over both rightward and leftward steps, to obtain
our final expression for the average net flux:

1 1d 2
== (n(Ax) e [n{(Ax) )]). (12.44)
Equation (12.44) is the generalization of equation (12.4) that applies to the
present situation where there are x-dependent steps Ax and a mean step that
is not necessarily zero. It is clear from our derivation that equation (12.44) is
valid only up to second order in the step size Ax. Moreover, equation (12.44)
is of interest mainly in situations where the rightward and leftward steps are
almost in balance, so that the term (Ax), while apparently of first order in
Ax, is in fact as small as the second-order term. Clearly, however, even
a small leftward/rightward imbalance is sufficient to produce a contribution
to the flux that is as important as the contribution from diffusive spreading.
Equation (12.44) describes just this situation.

Problem 12.4: This simple derivation of equation (12.44) has assumed
fixed (but slightly unequal) rightward and leftward steps, Ax, at each
location x. It has ailso implicitly assumed that particles do not jump
over each other in making these steps. Generalize this derivation by
considering the (more physical) case where there is a distribution of
possible steps with varying magnitude, so that the quantities (Ax) and
((Ax)?) now refer to the mean step and mean spreading averaged over
this distribution. (Hint: begin by defining a probability, P(x, Ax), for each
step Ax (positive or negative) at location x. Write down an expression for
the flux of particles across a reference point x,, and expand n(x) around
x = xo keeping only the terms in n(xo) and dn/dx|, . The quantities (Ax)
and ((Ax)?) are defined by

(Ax) = fw AxP(x, Ax)d(Ax)

(o]

(Ax)?) = / (Ax)*P(x, Ax)d(Ax).

o

Your final result should be exactly the same as equation (12.44).)

Let us return now to the topic of the flux due to like-particle collisions. For
the collision illustrated in Figure 12.3, assuming a negative density gradient,
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dn/dx < 0, we have seen that the ‘forward’ collision (i — f) produces a
rightward flux of particles across x = xg, which has the character of diffusion in
the sense that it is in the opposite direction to the density gradient. However, we
have seen that the ‘reverse’ collision (f — i) produces a compensating leftward
flux, which is in the same direction as the density gradient.

Expressed in the notation that we have introduced for describing general
stochastic motion, the contribution to the flux that is in the same direction as
the density gradient arises from a non-vanishing mean displacement (Ax) per
time interval At, whereas the contribution to the flux that is opposite to the
density gradient arises from the diffusive spreading ((Ax)?) in the same time
interval. In this example of stochastic motion, the non-vanishing (Ax) arises
from the non-uniformity in the density of the scattering particles, as distinct
from that of the scattered particles. Indeed the flux from the term in (Ax), i.e.
the first term in the expression on the right-hand side of equation (12.44), is
found to be proportional to the density gradient for scattering particles. The
diffusive flux from the term in ((Ax)2), i.e. the second term in the expression
on the right-hand side of equation (12.44), has a term proportional to the density
gradient for scattered particles, which appears explicitly in equation (12.44),
and a term proportional to the density gradient for scattering particles, which
appears implicitly through the dependence of ((Ax)?) on the density of scattering
particles. When both scattered and scattering particles are the same, e.g. ions,
there is the possibility of exact cancellation of these two contributions to the net
flux, and this is what actually occurs.

We can see this most easily by considering a very simple case, somewhat
like the case illustrated in Figures 12.2 and 12.3, in which the particles have
velocities only perpendicular to the magnetic field, i.e. velocity components
(vx, vy). We suppose that the collisions are such as to preserve this situation,
i.e. no parallel velocities v, are acquired as a result of collisions, so our analysis
can be strictly two-dimensional in velocity space. We suppose that the velocity
distribution function is Maxwellian in vy = /(v}+v?2), and that the temperature
T is spatially uniform. Since we want to demonstrate both the vanishing of the
particle fluxes in the case of like-particle collisions and the intrinsic ambipolarity
of these fluxes in the case of unlike-particle collisions, we consider the general
case of collisions between particles of two different types, i.e. types (1) and
(2), with charges ¢q; and g, masses m; and m,, and densities 7 (x) and n,(x),
respectively. The two temperatures are assumed to be the same.

In treating a collision between a particle of type (1) and a particle of type
(2), it is convenient to work in the ‘center-of-mass’ frame, in which the total
momentum of the two colliding particles is zero. In this moving frame, as
shown in the ‘initial’ velocity vectors satisfy mzvfz) = —mlvf]),
and since momentum is conserved in the collision, the ‘final’ velocity vectors

likewise must satisfy mzv}z) = —mlv}'). When center-of-mass velocity variables
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are used, the sum of the kinetic energies of the two particles in the rest frame,
W, + W,, can be written as the sum of the kinetic energy of the combined mass,
M = m+m>, moving at the mass velocity V, defined by MV = m; v\ +-myv®,
and the kinetic energy of the ‘reduced mass’, m = mmy/(m; + m5), moving at
the relative velocity v, = v(/) — v®_ In the center-of-mass frame, moving with
velocity V, the total kinetic energy is simply mvrze]/2. Since energy is conserved,
we see that v, must be the same before and after the collision.

my

mp

Figure 12.4. A collision between a particle of type (1), mass m,, and a particle of type
(2), mass mj, shown in the center-of-mass frame in which the total momentum of the two
colliding particles is zero. The relative speed of the colliding particles vy = [v!? — v
is the same before and after the collision. The scattering angle is 6.

A particle of type (1) collides with particles of type (2) with frequency
via = n2{012(vrel, ) Urel), Where the cross section oy, is generally a function
both of v and of the scattering angle in the center-of-mass frame, 6 (as shown
in Figure 12.4). For the simple case considered here, we assume that the cross
section is independent of the scattering angle 6, i.e. in the center-of-mass frame
all scattering angles are equi-probable. We also assume that the quantity g15vp
may be treated as a constant, i.e. not dependent upon the relative velocity vg.
(The more correct case for Coulomb collisions, where oj3ur depends on both
Vre1 and 8, is treated in the previously cited paper by Longmire and Rosenbluth;
no fundamentally different effects are introduced, but the various velocity-space
averages become more complicated.)

Let us focus our attention on a particle of type (1) and the average step
(Ax) that its guiding center takes as a result of collisions with particles of type
(2). The frequency of such collisions is proportional to the density of particles
(2) at the location of the collision, x., which is the same as the density of guiding
centers at

2

xgc.i

2 1 1 2
= xe + V0 = xi; — v Jwar + v fwer. (12.45)
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Here we have used equation (12.35) twice—once to relate xgc,
(¢}

to relate Xgc,i 1O Xe. We have also introduced the gyro-frequencies, w,; and w;,
of the two types of particles.

It is convenient at this point to transform from the initial individual particle
velocities to the mass velocity, V, which is the same before and after the
collision, and the initial relative velocity, Ve ; = v(” (2) In terms of these
velocities, the individual particle velocities can be wntten

to x. and once

1 ma
VE ) =V+ Vrel,i
my +ms

hty
sz) =V — ———Vpel i
m; +m

Substituting the y components of these relations into equation (12.45), we obtain

1 1 m
x =0, — (— + —-) N (1 + g—‘) Vel (12.46)

We] We2

where we have again introduced the reduced mass, m = mmy/(m; + my).
In the collision being considered, the guiding center of particle (1) takes a
step

M0

Bx =Xy p = Xy

1
=X+ U) f/wcl - x((vc)[

I

=0\ Jwer — v jwe. (12.47)
We again transform from the individual particle velocities to the mass velocity
and the relative velocity, now also defining a final relative velocity, Ve f =

vj(,” (2) . Equation (12.47) then becomes

1 ms

—— = \Urel.y.f — Urel,y.i
Wel My + My ( )

ht
7 B (Urel yof — Vrely 1) (12.48)

Ax

II

with the terms in Vy cancelling each other.

Because of our assumption that the cross section is independent of
scattering angle, the angle through which the perpendicular velocity vector of
particle (1) is scattered in the center-of-mass frame depicted in Figure 12.4 is
entirely random—all angles 6 in the range 027 are equi-probable. Thus the
y component of the relative velocity just after the collision, vel,y,r, takes on
positive and negative values with equal probability and averages to zero. Thus
in a first averaging process, which averages over all possible ‘final’ relative
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velocity vectors while keeping the ‘initial’ relative velocity vector fixed, we can
write
m
(AX)./' = ———F Urely.i- (12.49)
1B
Next, we must carry out a second averaging process, which averages over all
possible initial relative velocity vectors. This averaging process must take into
account the proportionality of the collision frequency to the density of guiding
centers (2) at the location x @ ; given in equation (12.46), which varies with the
initial velocity vectors. Denotmg the collision frequency by viy = n2012Vl,
this second averaging involves a weighted average of the right-hand side of
equation (12. 49) with weights proportional to the guiding-center density for
particles (2) at x @ This gives an expression for the average displacement per

ge
unit time, namely

(Ax) 2 mvl
—012Urel (2)(X()) L

At gcit
dn(z) mv .
(2) Q)] (2) (1) haid % rel,y.i
= —0oV Xoo ) — (X0 — Lt
12 rel< ( ac,) ( gc.i nc,) dx " qlB
Kge.i
2 dn®
m 2 ge
= 012Ul (1 + )quz {vi i) T (12.50)

In the last step in equation (12.50), we have substituted equation (12.46) for
the quantity xéﬁ?i é]c)l, and we have then noted that only the term that is second
order in vr,y,; survives in the averaging process. This is because positive and
negative values of v, ; occur with equal weight in the averaging. In particular,
the term in V,, from equation (12.46), which in the averaging in equation (12.50)
is multiplied by a first-order term vy y ;, vanishes in the averaging process. Thus
the mass velocity, V, disappears at this point from our calculation.

The final averaging indicated in equation (12.50) is to be carried out over all
values of vy, ; that occur in the velocity distributions of the colliding particles.
We have assumed that the type-(1) and type-(2) particles both have Maxwellian
distributions with the same temperature, 7. We have also noted that the sum
of the kinetic energies of two particles, one of each type, W; + W5, can be
written as the sum of the kinetic energy of the combined mass, M = m; + m,,
moving at the mass velocity, V, and the kinetic energy of the reduced mass,
m = mymy/(m; + my), moving at the relative velocity, v, i.e.

Wi+ Wy = m 0")?2/2 + maw®)?/2
= MV?/2 +mvl,/2

which means that the distribution of mass velocities and the distribution of
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relative velocities are also both Maxwellian, with the same temperature, T, and
with masses M and m, respectively.

Problem 12.5: Verify this last statement formally by carrying out a
transformation from the velocities v and v to V and v

i

It then follows that
(2,0 =T/m. (12.51)

Substituting this into equation (12.50), we obtain our final result for the average
displacement per unit time:

(Ax) ( q1> mT dn,

1+4 ey
92/ q*B? dx

(12.52)

In equation (12.52), there are two terms in (Ax)/At proportional to the
density gradient of scattering particles, dn,/dx, arising respectively from the
‘unity’ and the ‘q,/q>’ terms inside the parenthesis. The first of these terms
gives the effect of the higher frequency of collisions on that side of the Larmor
orbit of particle (1) where the density of particles (2) (i.e. scattering particles)
is higher. In all cases, this produces a flux of scattered particles in the direction
of the density gradient of scattering particles which, in the case of like particles,
is up the density gradient. The second of these terms, i.e. the term in q/qs,
gives the effect of the non-zero y-directed diamagnetic drift of particles (2),
which exerts a y-directed frictional force on particle (1) thereby producing an
x-directed drift. Specifically, the y-directed diamagnetic drift of particles (2) is
(T /q2Bna)dn,/dx, which is to be multiplied by the reduced mass, m, and by
the collision frequency, ny0720;, to give the rate of momentum transfer, i.e. the
frictional force on particle (1), Fy, = o12vr(mT /g, B)dna/dx. This produces
a drift, (F x B)/(g)B?), of particle (1), which in this case is an x-directed
drift of magnitude o120l (mT /q1g2 B¥)dny /dx, i.e. exactly the term in g;/q; in
equation (12.52). For like particles, this term produces another flux of scattered
particles up the density gradient. However for unlike particles, in particular
those with charges of opposite sign, the flux from this term is in the opposite
direction. This is because the direction of the F x B drift depends on the sign of
the charge of the drifting particle. For collisions between electrons and protons,
it is apparent from equation (12.52) that these two terms cancel each other, so
there is no net average displacement per unit time, (Ax)/At, in this case.

Next consider the diffusive spreading of the guiding centers of particles (1)
as a result of collisions with particles (2). In the collision being considered, the
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guiding center of particle (1) takes a step Ax, which is given in equation (12.47)
and has been expressed in terms of the initial and final relative velocities in
equation (12.48). Thus the average spreading of the guiding center positions
per collision is given by

2

2 m 2
((Ax)") = (11232 ((Urel,y, f = Vrel,y,i)")
2
_m 2 2
= qlsz [(vrel,y,f> + <Ure1,y‘,')]
=2mT/q?B*. (12.53)

Here we have carried out two averagings essentially simultaneously, i.e. the
averaging over the relative velocities just after the collision, vy s, and the
averaging over the relative velocities just before the collision, vy, ;. Because
of our assumption that the cross section is independent of scattering angle in
the center-of-mass frame, these averagings are independent, so the cross term,
{Urel.y, f Urel,y,i) vanishes. In the last step, in equation (12.53), we have made use
of the fact that the relative velocities, both before and after the collision, have
Maxwellian distributions in terms of the relative mass m and with temperature T,
i.e. we have used both equation (12.51) and the similar relation for the relative
velocities just after the collision. For collision frequency vjs = ny0130, the
average spreading per unit time is now given by

((Ax)?) . 2mTn,
At = 0U12Vrel qlsz .

(12.54)

We can now substitute equations (12.52) and (12.54) into our general expression
for the particle flux in stochastic motion, i.e. equation (12.44), to obtain

mT g1 dny  d(niny)
Cyy = —— {1+ 4 2 _ )
12 Ul2vrelq1232 [( + 42) n ax ]

Equation (12.55) gives the flux of particles of type (1) due to collisions with
particles of type (2). For the case of like-particle collisions, where g; = ¢
and n;(x) = ny(x), the flux vanishes. Specifically, for this case of like-particle
collisions, the flux arising from the non-zero average displacement (Ax) exactly
cancels the flux from the ‘spreading’ term, ((Ax)?).

The calculation presented here has made use of the simplifying assumptions
that the collision cross section is independent of the scattering angle in the
center-of-mass frame and that the quantity o),y is independent of the relative
velocity, vre1. As a result, this quantity appears as just a multiplicative constant
in equation (12.55). In more general (and more physical) cases, the quantity

(12.55)
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012Ve; must be included in the various averagings that are carried out over
velocity space.

The paper by Longmire and Rosenbluth cited at the beginning of this
Section derives a result of the same general form as equation (12.55) for the more
physical case of three velocity dimensions and the correct Coulomb scattering
cross section. To obtain a non-zero net flux from like-particle collisions, it is
necessary to retain terms of order (Ax)® and (Ax)* in the analysis.

Now consider equation (12.55) for the case of unlike-particle collisions.
Noting a cancellation between the first part of the first term in the square bracket
in equation (12.55) and that part of the second term containing dn;/dx, we can
write the flux of electrical charge of particles (1) due to collisions with particles

(2) as
mT (ﬂdnz n, dn1>

@i1T12 = 012Ve1 —5 (12.56)

B2
Clearly, this is exactly equal and opposite to the flux of charge of particles (2)
due to collisions with particles (1). Thus

giTn+ g2l =0 (12.57)

and we have demonstrated the intrinsic ambipolarity of the fluxes at this order
due to unlike-particle collisions. In particular, in a hydrogen plasma, the fluxes
of electrons and ions are exactly equal, which is what is generally meant by the
statement that ‘diffusion is ambipolar’.

12.8 DIFFUSION OF ENERGY (HEAT CONDUCTION)

A systematic treatment of heat conduction in plasmas is beyond our scope
here. Indeed, in applications of the plasma fluid equations, we have so far
considered only two limiting situations: first, the adiabatic equation of state,
d(p/p¥)/dt = 0, corresponding to the case where heat conduction is negligible
on the time-scales of interest; second, the isothermal equation of state, T =
constant, corresponding to the case where heat conduction is very rapid. In
practice, heat conduction in a fully ionized plasma is very anisotropic, i.e. it is
extremely rapid along the magnetic field, but quite slow across the field.

In our systematic development of the fluid equations for a plasma, we have
chosen to stop at the equation for momentum transfer, which led to the fluid
equation of motion, and not to proceed further to the energy transfer equation,
which would describe heat transport by convection and conduction as well as
various heat sources and sinks. To proceed to the energy transfer equation would
require consideration of the energy flows into and out of a differential volume
element, as well as the deposition of energy into this volume, for example
by ohmic heating (j - E). Just as the pressure tensor arises in describing the
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momentum flow into a volume element, a ‘heat-flux vector’ enters into the
energy transfer equation; in index notation, the heat-flux vector for an individual
species is Q; = (m/2)((vi —u;)(v; — u;)(v; — u;)). (Note that a vector quantity
is sufficient to describe the flux of heat, which is itself a scalar quantity, i.e.
(m/2){(vj — u;)(v; — u;)), whereas a tensor pressure is required to describe the
flux of vector momentum.)

Often, the dominant effect needed to evaluate the heat flux vector is the
heat conduction, which is a heat flux driven by a temperature gradient, although
other terms are generally present also, e.g. convection of heat. When conduction
dominates, the energy transfer equation, allowing different processes of heat
conduction perpendicular and parallel to a magnetic field, can be written

3 8T

T =V.Q=V_-,V.T)+ V(¢ VT). (12.58)
The quantities x and « are the ‘thermal conductivities’ perpendicular and
parallel to the magnetic field, respectively. For each «, the quantity «/n, which
has the dimensions of a diffusion coefficient, is sometimes called the ‘thermal
diffusivity’. It must be emphasized, however, that there are many processes
of heat transport and heat generation or loss that have been omitted from
equation (12.58). For example, in a plasma heat is convected at the fluid velocity
u, and heat is generated by ohmic heating and lost by radiation. However, since
heat transport is often dominated by thermal conduction, it is useful to examine
the orders of magnitude of «, and .

Thermal conduction along the magnetic field arises mainly from electrons
rather than ions. From our now-familiar random-walk argument, the two parallel
diffusivities will take the form v?/v, which is larger for electrons than for ions
by a factor (M/m)'/2. Thus

€I e
A te (12.59)
n Ve
where v, represents some combination of electron—electron and electron—~ion
collision frequencies, both of which will contribute.

Thermal conduction across the magnetic field arises mainly from ions rather
than electrons. Ions have relatively large Larmor orbits and, when these are
perturbed by the collision of two ions, a quantity of energy is exchanged between
the two ions. In addition, the two guiding centers are displaced from their
original positions by an amount of order an ion Larmor radius. (Note that,
unlike the case of particle diffusion, there is no conservation law that constrains
the combined energy from taking a ‘step’ in one direction or the other.) Thus,
the ‘energy’ has made a random walk with a step size of about a Larmor radius
rui in a characteristic time v;'. Thus, the cross-field thermal diffusivity is
approximately

K'L/n ~ viirﬁi. (1260)
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Comparing this result with the similar one for particle diffusion D, we
see that the cross-field thermal diffusivity arises mainly from ion-ion collisions,
whereas cross-field particle diffusion arises only from electron—ion collisions.
Moreover, cross-field thermal diffusivity is larger than particle diffusivity by
a factor (M/m)'/? ~ 40. The conservation of total momentum in collisions
prevents a lowest-order contribution from ion—ion collisions to particle diffusion,
but it does not prevent a contribution to thermal diffusion. The theory of
plasma transport across a magnetic field, including both density and temperature
gradients, was developed first by M N Rosenbluth and A N Kaufman (1958
Phys. Rev. 109 1), who give expressions for the cross-field electron and ion
thermal diffusivities.

Problem 12.6: Our hydrogenic plasma is replaced by a plasma with
multiply charged ions, each with charge Ze. The plasma is fully ionized
and charge neutral, so that ne = Zn;. Give the dependence on Z of
(i) the particle diffusivity perpendicular to a magnetic field, D, (ii) the
electron thermal diffusivity parallel to a magnetic field, «y./n., and (iii) the
ion thermal diffusivity perpendicular to a magnetic field, «1;/n; . Where
density appears in your formulae, be careful to distinguish between n.
and n;.
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Chapter 13

The Fokker-Planck equation for Coulomb
collisions*

As we have seen already, collisional effects in fully ionized plasmas are
predominantly due to the cumulative effect of many small-angle deflections,
rather than to the effect of a few close collisions. In Chapter T1, we obtained
estimates for the effective collision frequencies and for the plasma resistivity,
but we have not yet provided a rigorous formalism for describing the effects of
multiple small-angle Coulomb collisions on the distribution function, f(v).

For the case of large-angle close collisions, a rigorous formalism is provided
by the Boltzmann equation, which is discussed in standard textbooks on non-
equilibrium statistical mechanics (see, for example, F Reif (1965 Fundamentals
of Statistical and Thermal Physics New York: McGraw-Hill)) and which applies
whenever the interparticle forces are of short range. The Fokker—Planck
equation is the version of the Boltzmann equation applicable to the case of
long-range interparticle forces. It can be derived from the Boltzmann equation
by going to the limit of very-long-range interparticle forces (see, for example,
D C Montgomery and D A Tidman (1964 Plasma Kinetic Theory New York:
McGraw-Hill)), but our approach here is to derive the Fokker—Planck equation
directly, by considering the effect of multiple small-angle Coulomb collisions
on the distribution of velocities in a plasma.

Viewed in this way, the Fokker—Planck equation provides a general
formulation for treating changes in a distribution function that result from a
succession of collision ‘events’, each of which produces only a small change
in the velocity of a particle. The equation was formulated in the period 1914-
17 by A D Fokker and M Planck to treat Brownian motion (see, for example,
S Chandrasekhar (1943 Rev. Mod. Phys. 15 1).
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220 The Fokker—Planck equation for Coulomb collisions*
13.1 THE FOKKER-PLANCK EQUATION: GENERAL FORM

Since collisional processes change the distribution of particle velocities, it
is necessary to use the ‘velocity distribution function’ f(v), introduced in
Chapter 1, which is the number-density of particles in phase space, i.e. the
number of particles per unit volume of physical space and per unit volume of
velocity space. The density in physical space is given in terms of f(v) by

n=ff(v)d3u. (13.1)

The Fokker-Planck equation describes the evolution in time due to collisions of
the function f(v). Since collisional effects depend only on the local properties
of f, the spatial variation of f can be ignored for present purposes.

We also define a function ¢ (v, Av), which is the probability that a particle
with velocity v acquires an increment of velocity Av in a time interval Az, We
will assume that collisions occur randomly enough that ¢ is independent of the
history of the particle. From the definition of ¢, it follows that the velocity
distribution function at time ¢ can be expressed in terms of the distribution
function at a slightly earlier time, i.e.

fv,1) = f f(v—Av,t — ANV — Av, AV)d*Av (13.2)

where the integral is over all possible velocity increments Av. Since the sum
of the probabilities of all possible velocity increments must be unity, we have

f¢(v, AV AV =1, (13.3)

Since the effects of Coulomb interactions can be described in terms of a
sequence of small-angle deflections, i.e. a sequence of small velocity increments
Av, we may expand the integrand f¢ of equation (13.2) in powers of Av. In the
case of the factor ¢(v — Av, Av) appearing in this integrand, we can however
only expand the first argument, in which Av can be treated as small compared
with v, and we must leave ¢ unexpanded in regard to the second argument, which
describes a strong variation of ¢ with respect to Av. Specifically, keeping terms
up to second order in the expansions, we have

f(v—Av,t — At) = f(v,t — A1)

0 1 2
—Av.-— f(v,t = At) + = AVAvV: -
v P f(v )+ 2 VAV 3vav f(v At)
OV — AV, Av) = ¢(v, Av)
a 1 2
— Av. — s — : , .
v avqb(v Av) + 2AvAv avav¢S(v Av)
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The meaning of the somewhat unusual notation AvAv: and (32/3vav): should
be reasonably obvious—each of these quantities is a dyadic from which a scalar
is to be formed by taking the double-dot product (:) of it and a similar dyadic.
For example, in index notation the quantity AvAV : 92 f/avav is defined to
mean Av; Av; (3%f/d v;dv;), where repeated suffices are to be summed.

We substitute these into equation (13.2) and retain only terms up to second
order in Av in the product f¢. Using equation (13.3) and assuming At is small,
we obtain

fv, 8) — f(v,t — At)

- (¥ 9\ g
= /Av (8v¢+8vf)dAv

1 3 f 2 3¢ ¢ 3
- Av | —— -
+ 2 / AvAv (8v3v¢+ av v avavf) @A

—_—— A +_._._._ 4

where, to this order of approximation, f and ¢ appearing on the right-hand side
are to be understood to mean f (v, t) and ¢ (v, Av).The rate of change of f due
to collisions can now be written

(g_) _f(v,t)—f(v,t-—At)
coll

ar At
_ 8 (d(av) 1 92 [d(AvAv)
T v ( dt f)+§avav'( dr f) (13.5)

since f = f(v,t) is independent of Av, where

d(A 1
(Av) = —/¢Avd3Av
dt At (13.6)
d(AVAY) 1 3 '
_ = —f¢AvAvd Av.
dt At S

Equation (13.5) for (3f/81)con is called the ‘Fokker-Planck equation’.

The quantity d(Av)/dt is the average rate of change of the particle’s mean
directed velocity due to Coulomb collisions. In an isotropic plasma, there can
be no preferred direction for momentum acquired in collisions, nor is there any
preferred direction toward which the particle’s velocity vector can be deflected as
it loses momentum. Thus the quantity d{Av)/d¢ will generally be in a direction
exactly opposite to v. Its magnitude is called the ‘dynamical friction’. It gives
rise to a slowing-down of the directed motion of the particle.

The quantities d{AvAv)/dt are ‘velocity diffusion coefficients’, since they
have the effect of spreading the particle velocities over a wider region of velocity
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222 The Fokker—Planck equation for Coulomb collisions*

space. Often, velocity diffusion results in particular groups of particles gaining
energy on average, e.g. a group of sub-thermal particles in a plasma with a
Maxwellian distribution of velocities. Indeed it is the competition between, and
eventual balance of, dynamical friction and velocity diffusion that gives rise to
the Maxwellian distribution in steady state.

132 THE FOKKER-PLANCK EQUATION FOR ELECTRON-ION
COLLISIONS

In, we analyzed the kinematics of a sequence of smail-angle Coulomb
collisions and produced quantities that are closely related to the dynamical
friction and velocity diffusion coefficients. We did this for the case of electrons
of mass m colliding with much heavier ions of charge Ze.

We obtained an expression for d(Avy)/dt, given in equation (11.14), which
is identical to the dynamical friction, i.e.

d(Av) niZZe“lnAv
dt  4mem?v3

(13.7)

To obtain the velocity diffusion coefficients, we start by supposing that the
particle is travelling in the z direction. The tensor d{AvAv)/dt will have xx
and yy components given by

d{(Av)?) _ d((Avy)?) _ 1d((Aavy)?)

13.8
dt dr 2 dt (13.8)

and no other components. The vanishing of the other components of the
velocity diffusion tensor can be explained as follows. All components such
as d{Av, Av,)/dt must vanish because of the absence of any preferred direction
for Av,. A similar argument shows that d{Av;Av,)/dt must vanish. The
component d((Av,)?)/dt is, strictly speaking, non-vanishing, but it is of higher
order than the components that have been retained, since conservation of energy
in collisions with infinitely massive ions gives Av, ~ (Avy)?/2v, implying that
(Av,)? ~ (Avy)*, i.e. fourth-order in Av,.

Using our expression for d{(Av,)?)/dt from Chapter 11, i.e. equa-
tion (11.11), we can write

d(AvAv)  nZ%¢*InA
d  4medm?d

(Iv? — wv) (13.9)

where I denotes the unit tensor, and the final expression is independent of the
original choice of v in the z direction.
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Substituting these expressions for the dynamical friction and velocity
diffusion coefficients into the Fokker-Planck equation, we obtain

VA 1 02 (Iv?—
<a—fe) Jnzend [i : (%) TR < i vvﬁ)] (13.10)
ot Joon  Amegm? |Ov \ v 2 9vav v

To cast equation (13.10) in a simpler form, it is convenient to use the identity

2 Iv? — 2
<U_ﬁ> _ (13.11)

v V3 v3

which is most easily proved using index notation with the summation convention.
The expression on the left-hand side of equation (13.11) represents a vector
whose ith component is

d (3,»]-1)2 — U,-Uj> _ __1__(?3 _ ijv; + 3y " 3w a_v
dv; v’ v? Jy; v3 vd By,
o 4v; 3y
Ty w3 3
_ 2U[
V3
where we have used dv;/d8v; = &;;,8v;/0v; = 3 and v? = vv; so that
dv/ov; = v;/v.
Using equation (13.11), we obtain our final result for the Fokker—Planck
equation:
(%) =niZze4lnAi'<Iv2—vv.%). (13.12)
8t Joon  8melm? 8v v av

This form of the Fokker-Planck equation describes the evolution of the
electron velocity distribution function f.(v,t) due to collisions with fixed
infinitely massive ions. Although the Fokker-Planck equation in this simple
form applies only to electrons colliding with ions, a more general form of the
Fokker—Planck equation can be derived that applies to electron—electron and ion—
ion collisions as well. In all cases, the structure of the equation is preserved,
i.e. there are dynamical friction and velocity diffusion coefficients, which appear
exactly as in equation (13.5) and are derived by calculating the collisional effects
on the velocities of individual particles of the species which the Fokker—Planck
equation is to describe. The Fokker—Planck equation for a plasma was first
derived in its complete form by M N Rosenbluth, W MacDonald and D Judd
(1957 Phys. Rev. 107 1).
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13.3 THE ‘LORENTZ-GAS’ APPROXIMATION

The relatively simple form of the Fokker-Planck equation derived above
describes electrons in the ‘Lorentz-gas’ approximation. A Lorentz gas is a
plasma in which the electrons are supposed to collide only with (fixed) ions
and not with other electrons. In practice, of course, in a Z = 1 plasma
electron—electron collisions are about as frequent as electron—ion collisions.
Nonetheless, the Lorentz-gas approximation is useful for many applications,
especially since the resulting simple form of the Fokker-Planck equation is
reasonably analytically tractable. The Lorentz-gas approximation will be quite
accurate for a plasma composed of multiply charged ions of charge Ze, since
for this case electron—ion collisions will be more frequent than electron—electron
collisions by a factor of order nZ2 /ne=Z.

If we were to substitute a Maxwellian distribution f, o exp(—mv?/2T)
into the preceding Fokker-Planck equation, the right-hand side of the equation
would vanish. This must be true, of course, for any expression describing the
effects of collisions, since the Maxwellian distribution implies thermodynamic
equilibrium among the particles. However, the right-hand side of the Lorentz-
gas form of the Fokker—Planck equation vanishes for any f, that is isotropic in
velocity space, i.e. any f. that depends on v alone, because in this case

(Ivz—vv)-%=(1v2—vv)-v—a£=0. (13.13)
av vov
This property of the Lorentz-gas approximation arises from the fact that electron—
ion collisions do not (to lowest order in m/M calculated here) change the
magnitude of the electron velocity vectors; they only produce a scattering of
the directions of the electron velocity vectors.

A somewhat simpler form of the Lorentz-gas Fokker-Planck equation is
obtained by transforming to spherical coordinates in velocity space. Choosing
some convenient direction for z, and writing v, = vcosf, v, = vsinfcos¢g
and v, = vsindsing, we can use the standard expressions for the gradient and

divergence operators in spherical coordinates (see [Appendix H, applied here to
velocity space) to transform the Fokker—Planck equation to the form

af. mZ%*nA[ 1 8 /. af. 1 8%f,
pid = | — — | sinf— 13.14
( at )coll 8meZm2v3 | sind 30 Y. + sin%0 d¢? ( )
The absence of terms in 3/dv is a further manifestation of the constancy of the
velocity magnitude in electron—ion collisions.

Problem 13.1: Derive equation (13.14), beginning with equation (13.12)
and using the formulae in Appendix E as appropriate.
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13.4 PLASMA RESISTIVITY IN THE LORENTZ-GAS
APPROXIMATION

As an application of the use of the Fokker-Planck equation, we will derive
an exact expression for the plasma electrical resistivity in the Lorentz-gas
approximation.

Suppose that the electron distribution is approximately Maxwellian:

32 2
Me Mev
=ne () exp(- (13.15)
feo e(z;m) p( 2Te>

but that this equilibrium is slightly perturbed by the application of a small electric
field in the z direction. The electric field will cause electrons to accelerate at a
rate —¢E/m, and so the velocity distribution function at time ¢ can be expressed
in terms of the distribution function at a slightly earlier time, ¢t — At, by

fe(v, 1) = fo(v+eEAt/m,t — At). (13.16)
For small At, we may expand as follows:

eE 3df.

fo(v, 1) = fov,t — At) = — -
moo (13.17)

(L) -2 %
E

ot m oV’

Here, the subscript E indicates a rate of change of f; due to the effect of the
E field alone. We have also assumed that the electric field E gives rise to
only a small perturbation of the velocity distribution, so that f. &~ f, may be
substituted in the term containing E. Equation (13.17) constitutes a step towards
the full ‘Viasov equation’, which treats the evolution of f(x, v, ) in a general
force field. The Vlasov equation will be introduced in [Chapter 22

When the electrons reach a steady-state in which the accelerating force of
the electric field is balanced by the collisional drag from the ions, we must have

dfe 3fe> (afe)
o= e _ (e e 13.1
ot (at E+ 3/ col (319
ie. E o, o5,
€ €0 3
-=. e (E)w", (13.19)

This equation must be solved for the non-Maxwellian part of f., which we
will denote f.;. The Fokker-Planck expression given in equation (13.14) will
be used for the collision term on the right in equation (13.19). This expression

Copyright © 1995 IOP Publishing Ltd.



226 The Fokker-Planck equation for Coulomb collisions*

contains only the non-Maxwellian part of the distribution function, i.e. f;;, since
we know that collisions can have no effect on a Maxwellian f.. For our present
calculation, which uses the Lorentz-gas form of the Fokker—Planck equation, the
isotropic property of the Maxwellian distribution is all that is needed to establish
that only f;;, and not f.g, enters into the Fokker-Planck expression.

The distribution fe; will be symmetric with respect to the azimuthal velocity
angle about the z direction, i.e. there can be no dependence on ¢, since E is
in the z direction and the equation itself is symmetric in ¢. Substituting the
Maxwellian for feo, the equation to be solved is

eEvfe nZ%* A 1 3 ( 3y
f = —5—>————{sinfd 13.20
. 8meZm2v3 sinf 360 RFT) ( )
which has the solution
4re*m2Ev? f.p cosd
fu = = Zem BV feo cOS 13.21)

niZ2e3T.InA

The total electron distribution function obtained by adding the #-independent
Maxwellian distribution feo to the 6-dependent perturbation f,; is a slightly
asymmetric (in 6) distribution in which there are more electrons with 7 > 8 >
7 /2 than with w/2 > 6 > 0. In terms of cartesian coordinates, there are slightly
more electrons with v, < 0 than with v, > 0. This is what would be expected for
an electric field in the z direction, which accelerates negatively charged electrons
in the negative-z direction.
We next calculate the current density in the z direction:

Jo = —e/ felvcos9d3v

8m2e¢imE [ ™

= n.z2e2T lnAf U7feOdU/ cos26singde
1 e 0 0

_ 3212 E(2T.)*?

m!/2Ze2InA

(13.22)

where we have substituted d*v = 2mwv?sindfdv and have also made use
of charge neutrality, i.e. ne = Zn;. The integrals in equation (13.22) are
straightforward to carry out: the integral over 6 is done by writing sinfdf =
—d(cosh); the integral over v is done by first writing v’dv = v®d(v?/2), then
noting that feo ~ exp(—v?/2v?2) so that the integral over v?/2 can be done by
repeated integrations by parts. Thus, we obtain the plasma resistivity

m'2Ze?nA

=— 13.2
1 32r12€3 (2T, )3/ (13.23)
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in the Lorentz-gas approximation.
Comparing this with the simple estimate for resistivity obtained in
hapter 11, i.e. equation (11.30), we see that the Lorentz-gas resistivity is
smaller by a factor 3.4 than the simple estimate. The lower resistivity arises
from the dominant role of higher-velocity electrons in carrying current in the
Lorentz-gas approximation.

To obtain the true resistivity, we must include electron—electron collisions,
and this calculation can only be done numerically. The resulting resistivity for
a hydrogen plasma, first obtained by L Spitzer and R Harm (1953 Phys. Rev.
89 977), is about 1.7 times larger than the Lorentz-gas resistivity and about 2.0
times smaller than the simple estimate obtained in Chapter 11, as already noted
there. The role of electron—electron collisions is not to contribute directly to
resistivity—which they do not, since they cannot affect the total momentum of
the electron population—but rather to modify the electron distribution in such
a way as to increase the total drag on electrons due to collisions with ions.
The reason why the resistivity is increased by electron—electron collisions is
obvious: in the Lorentz-gas approximation it is the suprathermal electrons that
tend to carry most of the current, since the electron—ion collision frequency
(~ v73) decreases with increasing electron velocity. When electron—electron
collisions are included, these suprathermal electrons are more strongly coupled
to, and slowed down by, the thermal electrons, thereby indirectly increasing their
collisional coupling to the ions.

Problem 13.2: Consider a neutral plasma composed of electrons and a
single type of multiply charged ions, each with charge Ze. By considering
the relative magnitude of electron—ion and electron—electron collisions
in this case, give a formula for the plasma resistivity with a numerical
coefficient that should be accurate in the limit of large Z, even when
electron—electron collisions are inciuded.

Problem 13.3: Describing electron—ion collisions by the Fokker—Planck
equation, evaluate the plasma resistivity n in the case where electron-
electron collisions are imagined to be infinitely frequent compared with
electron—ion collisions. Obviously, this is the opposite limit from the
Lorentz gas model. (Hint: remember that electron—electron collisions
cannot cause resistivity on their own, but they can affect the resistivity
by modifying the electron distribution function. In particular, they tend
to lead to a Maxwellian distribution that is shifted about some non-zero
mean electron velocity. This will arise from an electron—electron collision
term in the Fokker—Planck equation that is dominant in determining the
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electron distribution function, but which is of a form that conserves the total
momentum of the electron population. The momentum transfer between
electrons and ions is still determined by a Lorentz-gas Fokker-Planck
expression, but one in which the shape of the electron velocity-space
distribution is effectively known, i.e. a shifted Maxwellian. Since the
electric field can be assumed to be small, the shift in the Maxwellian
distribution can be taken to be small compared with a thermal velocity.)
Express your result for  in terms of the average electron—-ion collision
frequency, (v.;), given in equation (11.22).
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Chapter 14

Collisions of fast ions in a plasma*

A situation that arises in many naturally occurring plasmas, as well as fusion
plasmas, is that of a ‘beam’ of fast ions moving through a plasma. The energy
of the beam ions is typically much larger than the temperature of the background
plasma, i.e. the beam-ion velocities are considerably ‘suprathermal’ relative to
the background ions. The beam-ion velocities may be greater than, or less
than, the thermal velocity of the background electrons. However, for the former
case to apply, assuming a proton beam in a hydrogen plasma with T} ~ T,
the beam-ion velocity must exceed (M/m)!/? ~ 43 times the background-ion
thermal velocity (and the beam-ion energy must exceed 1800 times the plasma
temperature); this does not often occur, at least in laboratory plasmas. More
usually, the beam-ion velocity is much less than the background electron thermal
velocity. The beam ions may be of the same type (i.e. same mass M and charge-
number Z) as the background plasma ions, or they may be of some different
type. Before its interaction with the plasma, the ion beam may be almost mono-
energetic and unidirectional, or it may already have a substantial ‘spread’ in
velocity magnitudes and directions.

14.1 FAST IONS IN FUSION PLASMAS

A case of particular interest in fusion research is that of a plasma self-heated by
the energetic ions produced by the fusion reactions themselves. In particular, the
deuterium—tritium reaction produces an energetic helium ion, or ‘alpha particle’
(Z = 2, atomic mass = 4), with energy approximately 3.5 MeV, which is about
200 times the temperature of the background plasma that will be typically needed
in a fusion reactor. These alpha particles are born with an isotropic distribution
of velocities, i.e. there is no preferred direction for their initial velocity vectors.

Experimental fusion plasmas are also often heated by energetic beams of
ions, injected initially as neutral atoms, becoming ionized as they penetrate into
the high-temperature plasma. Beam-ion energies of about 100keV are presently
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used for this purpose, which is typically about 10-20 times the temperature of
the background experimental plasma. For reactor-scale plasmas, beam energies
of about 1 MeV will be needed. Such beams are usually highly directional,
because their velocity vectors continue to point in the direction in which the
beam was initially injected. Another commonly used heating technique is to
accelerate a minority species of ions in the plasma to very high energies by
radio-frequency waves, using a frequency equal to the cyclotron frequency of
the minority ions. This produces a ‘beam’ of energetic ions with velocity vectors
mainly perpendicular to the direction of the magnetic field.

Energetic beam ions will thermalize with the background plasma particles
as a result of multiple Coulomb collisions. In this Chapter, we will describe
this thermalization process, using the various results on Coulomb collisions that
were derived in [Chapter 11. We will also construct a Fokker-Planck equation
for beam ions, which is somewhat more complex than the Lorentz-gas Fokker—
Planck equation for electrons derived in [Chapter 13]

The background plasma is assumed to be composed of Maxwellian ions and
electrons. We will suppose that the density np of the beam ions is much less
than the density n; of the background plasma ions. Accordingly, the background
plasma will itself be approximately charge-neutral, i.e. n. & Zn;, without any
significant contribution from the beam ions to the charge density. The beam
ions are supposed to have velocities Vj, (in this Chapter, we will consistently
use upper case for beam-ion velocities and lower-case for background plasma
particle velocities) that are very much greater than the thermal velocity of the
background plasma ions, vy;, but much less than the thermal velocity of the
background electrons, v, i.e.

Vi K Wb K vee- (14.1)

For maximum generality, we will allow the beam ions to be of a different
type than the background plasma ions. As usual, the background-ion mass and
charge-number will be denoted M and Z, respectively. For the beam ions, we
will denote these quantities My and Z,,.

The beam ions will undergo Coulomb collisions with background ions and
electrons. The result of these collisions will be frictional drag on the background
ions and electrons, which will cause the beam ions to slow down, and angular
scattering on the background ions, which will cause the beam ions to be deflected
from their original direction.

14.2 SLOWING-DOWN OF BEAM IONS DUE TO COLLISIONS WITH
ELECTRONS

First let us consider the collisions of beam ions with Maxwellian background
plasma electrons. If we transform to the frame co-moving with the beam ions, we
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find a collisional situation similar to that considered in[ Chapter 11, i.e. electrons
colliding with relatively massive and essentially stationary ions, and we see that
the plasma electrons can transfer momentum to the beam ions, but not much
energy. On average, the beam ions will gain directed momentum since in this
frame the plasma electrons have non-zero average directed momentum because
of the transformation of the Maxwellian distribution to the moving frame. In
this frame, the momentum gained by the beam will be in the direction of the
average electron momentum; that is, it will be exactly opposite to the velocity
of the beam ions, i.e. the velocity of the moving frame in relation to the original
background-plasma frame. The beam ions will thus lose directed momentum and
slow down due to collisions with the electrons, but they will not be deflected
significantly from their original direction of motion.

Indeed, the change in the beam-ion’s energy is almost entirely due to its
loss of energy of directed motion, rather than to any gain of energy associated
with random motion, either along the original direction of motion of the ion, or
perpendicular to it. This can be seen by considering, in the original background-
plasma frame, a typical momentum-transfer collision between a beam ion and
an electron. If the beam-ion’s velocity changes by an amount AV, then
conservation of momentum tells us that the electron must acquire a velocity
—(Mp/m)AV. By conservation of energy, the change in the beam-ion energy,
ie. AW, = (My/2)(|V+ AV|?2 = V2) ~ M,V - AV, must be equal and opposite
to the change in electron energy, which is

AW, = (m/2)(My/m)*AV|? = (MZ/2m)| AV, (14.2)

Writing AV; for the component of AV in the direction of V (the quantity AV
will be negative), the energy conservation equation, i.e. AW, = —AW,, can be
written

M2 2
~MyVAVy = AV = —"[(Am +(AVL))] (14.3)

where AV, is the increment of the beam-ion’s velocity perpendicular to its
original velocity vector V. Two conclusions follow from this energy conservation
equation. First, since M,(AV,)?/2 < mV|AV)| € MyV|AV)|, we see that
the energy in the beam-ion perpendicular velocity components arising from the
deflection of the beam-ion’s velocity vector away from its original direction is
much less than the energy decrement arising from slowing down without change
of direction. Second, since equation (14.3) requires that |AV| < 2m/M,)V,
we see that the collision results in the beam ion losing a fraction of order m /M,
of its momentum, corresponding to the loss of a fraction of order m/My of its
energy, i.e. an energy loss of order mV;2. Combining these two inequalities, we
also see that AV, < 2m/My)V.
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Essentially, the collision causes the beam-ion’s velocity vector to be
deflected through an angle at most of order m/M,; the energy associated with
this perpendicular motion is a fraction of order (m/My)? of the beam-ion’s
initial energy, to be compared with a fraction of order m/My that is lost
by slowing down without change of direction. If the electron were also to
transfer to the beam ion the maximum possible fraction of its thermal energy,
which we saw in to be of order (m/My)T,, the gain in energy
of random motion from this effect would also be only a small fraction, i.e.
(m/Mb)Te/(mez) = Te/(Mbez) ~ vf'i/Vb2 & 1, of the loss of energy of
directed motion. (We have assumed here that T, and T; are of similar order.)
Thus, the force of the background electrons on the beam ions is mostly in the
nature of a frictional drag, i.e. it directly opposes the motion of the beam, but
does not cause any significant scattering of the beam.

The magnitude of this frictional drag can be calculated as follows. The
increase Av in the velocity of an electron as a result of a Coulomb collision
with a beam ion can be related by momentum conservation to the velocity AV
lost by the beam ion:

mAv = —M,AV. (14.4)

Now suppose that the beam ions have density n, and mean velocity (V), and
that the electrons have a Maxwellian distribution

3/2 2
Fo¥) = ne (2;"7, ) exp (- 'Z; ) (14.5)

with number density n.. As a result of many collisions between beam ions
and electrons, the beam-ion momentum decreases, and the electron momentum
increases correspondingly:

(V) d(v) 3
My——=- . 14,
noMo— m/ ” fe()d v (14.6)
The rate of change of the electron’s directed velocity due to collisions with
beam ions can be obtained by applying the formula obtained in Chapter 11, i.e.
equation (11.15), appropriately adjusted to the laboratory frame, in which the
ions have velocity V:

d{v) _ B
&5 = Vep(v — V) 14.7)

where
nyZie*inA

T dnem?v = V3

Substituting this into the above expression for beam-ion slowing down, we obtain
d(V)  Ze*lnA f v—-V

dt  dnelmM, ) lv-VP

Veb (14.8)

fed®v. (14.9)
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The evaluation of this integral over electron velocities requires first some
vector calculus and then transformation to spherical coordinates in velocity space.
The first step is to write

v-V 3 3 1

YoV 9 vz O
vovp = ey VD aVIv_V|

which amounts to noting that the velocity-space ‘force-field’ (v — V)/|v — V|3
is derivable from a scalar potential field |v — V|~!.

v>V

b o st

0 \%

Figure 14.1. Spherical coordinate system for calculating the integral in equation (14.11),
which is analogous to the ‘gravitational potential’ at a point V on the axis due to ‘mass’
distributed uniformly over spherical shells with density f.(v). The integral includes shells
with v > V and shells with v < V. Shells of both types are shown in the figure: P and
P’ are typical points on shells with v > V and v < V, respectively. The magnitudes of
the vectors v — V are indicated in both cases.

We can then write

d(v Ze*InA I
v __ b T2 20 (14.10)
dr dresmMy, 0V
where [ is the integral given by
fud?v
I(V)y=— . 14.11
V) E—— (14.11)

Although we are assuming a Maxwellian distribution for f.(v), it is instructive
to evaluate the integral 7(V) for a slightly more general class of distributions,
namely those which are isotropic in velocity space, i.e. f. = f.(v). Examining
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equations (14.10) and (14.11), an analogy with inverse-square-law force fields,
e.g. gravitation, is immediately apparent. Specifically, thinking of our velocity
space as physical space, the vector —9/9V is the gravitational force, described
by a potential (V) and acting at a point whose position is given by the vector
V, due to the gravitational attraction of matter distributed in spherical shells with
mass density fe(v).

The integral (V) can be evaluated for all values of the ratio of the beam-
ion’s speed V to the electron thermal velocity, v, as follows. First, we
transform to a spherical coordinate system (v, 8, ¢) in velocity space, with the
6 = 0 axis of the coordinate system lying in the direction of the vector V. As
indicated in Figure 14.1, we must distinguish between those shells in velocity
space that lie outside the point V, i.e. v > V, and those that lie inside this point,
i.e. v < V. In both cases, the distance between the point given by the vector V
and a general point P or P’ (see Figure 14.1) on one of the shells is

v —V| = @+ V?=2vVcosd)!/?

independent of the azimuthal coordinate ¢. Thus we may integrate over ¢ from
0 to 27 immediately, and then proceed as follows:

2 .
[ = —271/ fe(v)v? sinddédv
(v2 4+ V2 —2uVcosd)!/2

[od] cosf=1 d Is)
= 2n / v? fu(v)dv f (cost)
0 cosoe—1 (V2 + V2 —2uVcosh)!/2

cosf=1

g 1
= —2n / vzfe(v)dv ':———(v2 +Vvi- 2vaos€)'/2:|
0 vV

= —2—2 /oo vfe(Wdv(—jv—-V|+v+V).
0

cosf=~1

1%

At this point, we must distinguish between the shells that lie outside V, on
which |v — V| = v — V, and those that lie inside V, on which [v—V|=V —v.
Evaluating the two contributions to the integral separately and then adding these
together, we obtain

o] \'4
= —47r[ vfe(v)dv — fﬁf v2 fo(v)dv.
v Vv Jo

As is obvious from symmetry considerations, the quantity / depends only on
the magnitude of V, and not on its direction. Differentiating this ‘potential’ to
obtain the ‘force field’, we obtain

oI 4nv v

—_— = v? f.(v)dv
v Vi Jo ¢
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noting that the contributions from differentiating the limits of integration of the
two integrals cancel each other. Thus, in terms of the gravitational analogy, the
gravitational force is the same as would arise if all of the spherical shells of
matter lying outside V were absent, and all of the matter in the spherical shells
lying inside V were concentrated at v = 0.

For a Maxwellian f.(v) and for V « v, the remaining integral can be
calculated explicitly, i.e.

fv 2f (v)dv e fv v2ex ( v )d
v = — - v
0 ¢ Qr)323, Jo P 202,

N ne V3
32yl

Putting all this together, we obtain our final result:

d(V) 22n,Z2e*m!?InA

= 12713/26§MbTe3/2

(14.12)

We note that the characteristic time for slowing down of the beam ions due
to collisions with electrons, sometimes called the ‘slowing down time’, does
not depend on the beam velocity, but it does depend inversely on the electron
density and as the 3/2 power of the electron temperature. The higher the electron
temperature, the lower the electron frictional drag on the beam ions. Taking the
scalar product of equation (14.12) with MV, we obtain an expression for the
rate by which the beam-ion kinetic energy W is reduced:

dw, 2Y2n.Z2e*m! 2InA

b 6r32e2M, T

We. (14.13)

Again, the characteristic time for beam-ion energy loss does not depend on beam
energy, but it is strongly dependent on electron density and temperature.

14.3 SLOWING-DOWN OF BEAM IONS DUE TO COLLISIONS WITH
BACKGROUND IONS

Next let us consider the collisions of beam ions with background plasma ions.
We recall that the beam ions are assumed to have directed velocities greatly
exceeding the background-ion thermal velocity. In such cases, there will be two
processes that will reduce the directed velocity of the beam ions on roughly
comparable time scales—namely, deflection of the beam-ion velocity vectors by
background ions, and energy transfer from beam ions to background ions.

We will consider in turn the two limiting cases for the ratio of the beam-ion
mass to the background-ion mass, i.e. the cases M,/M > 1 and My,/M < 1.
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If the beam ions have larger mass than the background ions, then transfer
of parallel energy to the background ions will be the dominant process by which
directed momentum is lost, just as it was in the case of collisions of beam ions
with electrons. This is because a heavier beam ion is only able to transfer a
fraction of its energy to a stationary, lighter background ion, consistent with
conservation of momentum. As we saw in our discussion of beam-ion collisions
with background electrons (simply making the substitution m — M to treat
collisions with background ions, mass M <« My), the increment AV, of the
beam-ion’s velocity perpendicular to its original velocity vector V is limited by
My(AVL1)?/2 < MV|AV)| € MpV|AV)|, whereas the velocity decrement AV
in the direction of V arising from a typical collision is |AVy| < 2QM/My)V.
Combining these two inequalities, we see that AV, < (2M/Mp)V. As in the
case of beam ions colliding with electrons, the fraction of directed beam-ion
momentum that is lost due to scattering at constant energy is of order (M/M,)?,
versus a larger loss fraction of order M /My due to the frictional drag opposing
the beam-ion’s directed motion. For My > M, this results in energy and
momentum loss without scattering. Thus, transfer of energy to background
ions, without much scattering, will be the dominant process by which heavier
beam ions lose momentum to lighter background ions.

In this case of a heavier beam ion, we can proceed as before to relate the
change Av in the velocity of a background ion to the change AV in the velocity
of a beam ion:

MAvV = ~M,AV. (14.14)

Equation (14.14) expresses momentum conservation in a single collision. We
now proceed exactly as we did in the case of slowing down due to collisions
with electrons. Suppose that the background ions have a Maxwellian distribution

M \**? Mv?
fiv) =n; (ﬁ) exp <_7T_) (14.15)

with spatial density n;. As a result of many collisions between beam and
background ions, the average velocity of the beam ions decreases according
to the relation
d(v) / d(v)
t

mMy—= = =M | —— fi(v)d’v. (14.16)

The rate of change of the background-ion’s velocity due to collisions with beam

ions can again be obtained by applying the formula obtained in [Chapter 11, i.e.
equation (11.15), adjusted to the laboratory frame:

dv)
T - Ulb(v V) (1417)
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where
_ annge"'lnA
T 4meM2v — V]

It should be remembered that this formula applies only to the case of heavier
beam ions colliding with relatively light background ions. For the beam ions
compared with thermal ions, as indicated by equation (14.1), we can still use
the approximation V > v. Combining equations (14.16), (14.17) and (14.18) in
this way, we obtain

Vib (14.18)

d(V)  nZ?Zle‘lnA
dt ~ AmeMM,V3

In the approximation used to obtain equation (14.19), the right-hand side
of equation (14.17) becomes simply vV, and the factor |[v — V|*> in the
denominator of equation (14.18) becomes simply |V|3. The quantity d(v)/d¢ is
then independent of the background-ion velocity v, so that the integral d(v)/d¢
over the background-ion distribution in equation (14.16) becomes trivial, simply
introducing a factor n;.

We note that the characteristic time for slowing down of the beam ions,
the ‘slowing down time’, does not depend on the background-ion temperature,
but it does depend, as V3, on the beam-ion velocity. Less energetic beams slow
down more rapidly. The rate at which the beam-ion kinetic energy W;, decreases
is obtained by taking the scalar product of equation (14.19) with MV, giving

(14.19)

dW,  22mZ2Z2¢*M}*InA
AP . (14.20)
dr 8relMW,'

For this case of a heavier beam ion, the dominant effect of collisions with
background ions is ‘pure’ slowing down, i.e. loss of directed momentum, as
described by equation (14.19), without significant deflection of the beam-ion’s
velocity vector from its initial direction.

If the beam ions have smaller mass than the background ions, deflection
of their velocity vectors will be the dominant process by which beam ions
lose directed momentum. This is because the lighter beam ions can relatively
easily transfer their momentum to the heavier background ions, without the latter
gaining much of the beam-ions’ energy. Even if a lighter beam ion loses all of
its directed momentum MV in a collision with a heavier background plasma
ion, so that the background-ion’s velocity jumps to My V /M, there would result
an energy transfer of only M|M,V/M|*/2 = (My/M)M,V?/2, i.e. a fraction
M, /M of the beam-ion’s initial energy. The deflection of the beam-ion’s velocity
vector, a process usually termed ‘pitch-angle scattering’, in its pure form will not
result in any change in the beam-ion’s energy. In this case of a lighter beam ion,
equation (14.19) will not describe the dominant process—but it is still relevant
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to ask at what rate the beam ion loses its energy to background ions, even if
this occurs relatively slowly compared with pitch-angle scattering. In fact, it
will turn out that equation (14.20) remains true for the case of a lighter beam
ion, and this result applies equally well for all relative magnitudes of beam- and
background-ion masses.

The case of a lighter beam ion can be analyzed as follows. Begin again
with the relationship between the changes Av and AV in the background- and
beam-ion velocities, respectively:

MAvV = —M,AV. (14.21)

The energy acquired by the background ion in a collision is

M M?
—2-1Av|2 = ﬁmwz (14.22)

which must be the same as the energy lost by the beam ion, so that AW, =
—(M}/2M)| AV |2, For small-angle collisions of interest to us here, as discussed

in [Chapter T1}, the deflections AV in the beam-ion’s velocity are mainly
perpendicular to its initial velocity vector, i.e. |AV|?> & (AV,)?, and can be

obtained from the analysis in Chapter 11 (for the corresponding case of electrons
colliding with ions). The result of this analysis was expressed in equation (11.11)
which, when applied to the present case, gives
d(AV):  niZ?Z%e*InA
dt T 2meMivy

Thus, the beam-ion’s energy decreases according to

(14.23)

dWo,  MZA(AVL?  mZZlefnA  2'PnZ2Z2e* My InA

d¢ — 2M &t 4mEMV, el MW,

(14.24)
i.e. the same as equation (14.20).

Although we have derived the result for dWy/dt given in equations (14.20)
and (14.24) only for the two limiting cases M « My and My, « M, we will
assume (as is indeed the case) that this result applies for all ratios of beam-ion
mass to background-ion mass.

144 ‘CRITICAL’ BEAM-ION ENERGY

If we combine our two expressions for the rates of beam-ion slowing down due
to electron collisions and due to ion collisions, i.e. equations (14.13) and (14.20),
we have

AW, 221, Z2e*m'2InA ( Wy C ) (1425)

dt 63/2€2 My HEN A
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where ”
172
3t/ M)

the latter numerical value being for a case where both beam and background
ions are protons. We see that above some ‘critical’ beam-ion energy Wy crit, the
collisions with electrons dominate the slowing down process. On the other hand,
for W, < W, cit. the slowing down is mainly due to collisions with background
ions. The critical beam energy (at which the slowing down rates on electrons
and ions are exactly equal) is given by

—Z =CP =15 (14.27)

the latter for the case where the beam and background ions are both protons.

As beam ions slow down in a plasma, they give up their energy increasingly
to background ions, rather than to background electrons. Although the two
contributions to the instantaneous slowing down rate are exactly equal at
Wy, = Wp i, the slowing down on background ions begins to dominate as
soon as the beam-ion energy drops below W crit.

Problem 14.1: Suppose that it is desired that the beam ions contribute
exactly equal amounts of energy to background ions and electrons over
the entire slowing down process. For a mono-energetic injected beam,
obtain an estimate of the required injection energy in terms of Wy .
(Note: to do this, you may choose to carry out a simple integration
numerically. A high degree of accuracy is not required; any simple
numerical integration technique will suffice.)

145 THE FOKKER-PLANCK EQUATION FOR ENERGETIC IONS

Equations (14.12) and (14.19) give the two contributions to the dynamical
friction for beam ions slowing down in a background plasma, and these may now
be used to obtain a Fokker-Planck equation for the beam ions. As we have seen,
the main effect of collisions with background plasma electrons is to slow down
the motion of the beam ions, rather than to deflect the beam from its original
direction. We have seen that collisions with background plasma ions also slow
down the motion of the beam ions, although in this case, especially if the beam
ions are lighter than the background plasma ions, there is also a significant
pitch-angle scattering effect. However, if we choose for the present to ignore
pitch angle scattering, as would be appropriate if our ‘beam’ originates from an
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isotropic source, such as fusion reactions, we can examine the effects on the
distribution of beam-ion energies of ‘pure’ slowing down due to collisions with
background electrons and ions, as described by equations (14.12) and (14.19),
respectively. Thus, returning to the general form of the Fokker—Planck equation
given in equation (13.5), we can neglect the velocity diffusion coefficients
relative to the dynamical friction, writing simply

of\ __ 3 [(daV)
<5)cou_ v ( ar f)- (14.28)

Substituting our expressions for the two contributions to the dynamical friction,
i.e. equations (14.12) and (14.19), into equation (14.28), we obtain a Fokker—
Planck equation for the beam-ion distribution function f;,(V):

afs neZZe*InA 9 v V3
e e s — 14.29
at drelMuM av I:V3< V3 Jo ( )

crit

where
Ve = QWo e/ Myp)'/? = 313213 (/) VO[T, / (m /> M*/?)] 12

i.e. the beam-ion velocity at the ‘critical’ energy Wy crit.

If we are not interested in the direction of the beam velocities, but only
in the magnitudes of the velocities, or if we have an energetic-ion population
that is isotropic in velocity space, then it is more convenient to transform to
spherical coordinates in velocity space. This will give an equation for f,(V),
where V = |V|. Using the divergence operator in spherical coordinates (see

, we can transform equation (14.29) to

3fs neZZle*lnA 1 9 V3
_ A 19 14.30
ot = amamm viav (\'TvE ) l] (14.39)

crit

Since our result for the rate of decrease of beam-ion energy applied equally well
to lighter and heavier beam ions, similarly equation (14.30) applies for all ratios
of beam-ion to background-ion mass.

We can apply equation (14.30) to a variety of situations involving a
population of energetic or ‘fast’ ions in a plasma. Although we will continue
to refer to these particles as a ‘beam’ and denote their distribution function f,,
this nomenclature and notation can refer also to the important practical case
where the energetic ions are approximately isotropic in velocity space, either
because they are injected isotropically or because they are born in the plasma
itself with an isotropic distribution, For such cases, equation (14.28) gives an
essentially complete description of the energetic ion distribution which results
from collisions with background plasma particles.
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Suppose, for example, that the energetic ions are injected into the plasma
all at the same initial velocity Vy. Then a source term must be added to the
right-hand side of equation (14.30), and in this case the source term will be in
the form of a §-function in velocity space, centered at V = V. Specifically, if
S is the rate of injection of particles per second and if the particles are injected
isotropically in velocity space, then the source term will be given by

V-V
<a_fb) = E(_Q' (14.31)
at source 4” V2

(Integrating this equation over all velocity space with a velocity volume element
in spherical coordinates of 47 V2dV gives dn/dt equal to the source rate S.)
Adding such a term to the right-hand side of equation (14.28) allows a steady-
state solution to be found, in which the injected ions slow down until they are lost
in a ‘sink’ at V = 0. In practice, this ‘sink’ does not require that the energetic
ions be actually lost, only that there is a denser Maxwellian background-ion
distribution into which they may be absorbed. (The inclusion of additional
terms in the Fokker-Planck equation that become important when V, ~ v
will of course result in the complete ‘Maxwellianization’ of the slowed-down
beam-ion distribution.)

The steady-state distribution function may be obtained from equa-
tion (14.30), with the source-term added, taking care to apply a ‘boundary
condition’ at V = V, obtained by integrating across the §-function. The first
step is to note that, away from the source at V = V), the right-hand side of
equation (14.30) must in steady state be set to zero, giving

V3
<1 + —3> f=C (14.32)
Vcrit
for V < V,, where C is a constant, as yet undetermined. For V > V,, we
must have the trivial solution f; = 0, since the source at V = V{, cannot supply
particles to larger velocities. In our model, the beam particles are only slowed
down by their interactions with the background plasma, not accelerated. The
constant C in equation (14.32) is then obtained by including the source term
in equation (14.30), assuming steady state, substituting our solution for f}, i.e.
equation (14.32), multiplying by V2, and integrating just across V = Vj, giving

neZZie'lnA S
dmelM\M  4Am

0 (14.33)

thereby determining the constant C in terms of the source S. Finally, then, the
beam distribution function is given by

SetM M, 1
V)= —2 V<V, 14.34
”) neZZ§e4lnA(l+V3/VC3m) = (1439
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Figure 14.2. Steady-state velocity distribution f(V) of energetic alpha particles in a
deuterium-tritium plasma with 7, = 20keV. The vertical scale is arbitrary.

with f,(V) =0 for V > V;. Thus, we have obtained an explicit solution for an
isotropic distribution function of slowing down beam ions, usually termed the
‘slowing down distribution’.

Equation (14.34) has an immediate application to the slowing down of alpha
particles in a deuterium—tritium (D-T) fusion plasma, viewing the alpha particles
as a ‘beam’ of energetic ions. Alpha particles, which are energetic helium ions
(charge Z = 2, atomic mass = 4), are created continuously by the D-T fusion
reaction at a ‘source rate’ S given by

S = nphTt (O’ U)DT (1435)

where np and n are the deuterium and tritium ion densities (usually about equal
to each other, and about half the electron density), and (o v)pr is the product of
the D-T fusion cross section ¢ and the ion velocity averaged over a Maxwellian
distribution of reacting ions. This quantity has a strong dependence on plasma
temperature, but is given by (cv)pr ~ 4.2 x 1072 m?s™! at T, = 20keV.
The alpha particles are born with energy approximately 3.5 MeV, i.e. velocity
1.3 x 10" ms™!, and their birth distribution is isotropic in velocity direction.
Thus, equation (14.34) describes the velocity distribution of energetic alpha
particles in a D-T fusion plasma. The ‘critical energy’ W, . in this case
(i.e. helium ions slowing down in a D-T plasma) is about 307, i.e. about
600keV assuming 7. = 20keV. Accordingly, slowing down due to collisions
with electrons is the dominant process by which alpha particles give up their
energy to the background plasma, until they have slowed down to energies of
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about 600keV. Figure 14.2 shows the alpha particle distribution in this case.
For purposes of these calculations, we have treated the background D-T plasma
ag if it were composed of a single species of Z = 1 ions with mass number 2.5.

Problem 14.2: By integrating the appropriate slowing down distribution
function -ver all velocities (note: this can be done analytically), find the
total density of energetic alpha particles and the average alpha particle
energy in a deuterium—tritium fusion plasma. The background plasma
should have an electron density n, = 1022 m=3, equal deuteron and triton
densities, np = nt = n./2, and temperatures 7; = T. = 20keV; it can be
treated as if it had a single species of ions, mass-number 2.5. At these
temperatures, we may take (ov)pr ~ 4.2 x 1072m3s~!, Express the
alpha particle density and pressure as fractions of the background-plasma
density and pressure. Are these fractions dependent on the background
plasma density?

14.6 PITCH-ANGLE SCATTERING OF BEAM IONS

As we have seen, in the case of relatively light beam ions the dominant effect
of collisions with heavier background ions will be deflection of the beam-ion’s
velocity vector from its initial direction. The equivalent problem of scattering of
electrons by ions was considered in Ehapter 11:, and the corresponding Fokker—
Planck equation was derived in [Chapter 13. Applied to the present case, the beam
ion acquires velocity increments AV, perpendicular to its initial direction, at a
rate given by equation (14.23). This occurs at approximately constant beam-
ion energy, so that (AV,)? + 2VAV, = 0, with the result that the directed
momentum of the beam ion is reduced according to

dVj  mZ?Zle'InA
dt — dnedMEV?

(14.36)

(see equation (11.14) for the equivalent case of electrons colliding with ions).

Consider next the case of a distribution of beam ions, produced for example
by injection of a directed beam into a plasma. If the energetic ions are not
injected isotropically, and it is necessary to follow their distribution in velocity
directions as well as velocity magnitudes, then a velocity-angle scattering term
of the type given in equation (13.14) must be added to the beam-ion Fokker—
Planck equation. This will describe the angle-scattering of energetic beam ions
by collisions with background ions.

Strictly, equation (13.14) was derived only for the case where the colliding
particles have much smaller mass than the scattering particles, e.g. electrons
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colliding with ions. Applied here, a velocity-angle scattering term of this type
will be strictly valid only in the case where the scattered beam-ion is lighter
than the scattering ion. For this case—or assuming that the same expression is
at least a reasonable approximation even in the case where the two ion masses
are comparable, which turns out in fact to be true—we can write

9 (Z2Z2*nA 1 @ 3
(ﬁ) - f"_z_bez_“,—_—- (sineﬁ) . (14.37)
0t Jsan  SmegMEV3 sing 36 a6

Here, we have assumed that there is some direction, taken to be the z direction,
about which the beam-ion distribution is symmetric in azimuthal velocity angle.
Specifically, in spherical velocity coordinates, we have assumed that f,(V) is
a function only of V and 6, but not of ¢. In this case, the second term on
the right-hand side in equation (13.14), which describes scattering in ¢, can be
dropped. Frequently, the presence of a strong magnetic field, taken to be in the
z direction, ensures this kind of symmetry, because of the rapid Larmor gyration
of the beam ions about the magnetic field. When the gyration frequency is much
larger than any collision frequency, this Larmor gyration will rapidly average-out
the azimuthal velocity phase-angles ¢, so that f;, becomes effectively a function
only of V and 6. The polar coordinate 8, which is given by

sindg =V, /V (14.38)

is often called the ‘pitch angle’ of the particle.

Adding the ‘pitch-angle scattering’ term given in cquation (14.37) to the
‘slowing down’ term given in equation (14.30), we obtain a final combined
Fokker-Planck equation for the beam ions:

af _ neZZ,fe“lnA{ M 1 1 23 <sin9?—f—")

a  4ne2MyM |2M, V?sin 36 36

1 9 V3
+o337 [(1 + v_3> fb]} . (1439)

crit
Physically, this equation describes a combination of slowing down in velocity-
magnitude V and spreading in pitch-angle 8. For example, if beam ions are
injected at V = Vj, and all in a single direction, say 8 = 0, they will progressively
spread over a wider range of 8 values as they slow down to speeds below Vj.

Problem 14.3: A unidirectional beam of energetic ions, density n;,, mass
M,, charge-number Z,, is continuously injected into a charge-neutral
background plasma composed of electrons and ions with charge-number
Z. The density of the beam can be considered to be very small compared
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with the density of the background plasma. The momentum injected
via the beam is balanced by ‘friction’ on the beam ions arising from
collisions with background-plasma electrons and ions. The electrons
thereby acquire a finite mean velocity in the direction of the beam.
Collisional ‘friction’ between the electrons and the background-plasma
ions must then arise. For simplicity, the background plasma ions should
be taken to be infinitely massive, so that they acquire no directed velocity,
but can ultimately absorb the injected momentum, allowing an equilibrium
to arise. By writing down simple expressions for the various collisional
‘frictional’ forces that arise in the direction of the beam, calculate the
magnitude and direction of the net electrical current in this equilibrium,
by adding together the current carried in the beam ions themselves and
the current carried by the electrons. Show that the electrons tend to
‘cancel out’ the beam-ion current, but that this cancellation is inexact if
Z # Zy,. (Hint: you do not need to use the Fokker—Planck equation
to solve this problem, but you do need implicitly to include pitch-angle
scattering, where it contributes importantly to momentum loss, as part of
the collisional ‘friction’.)

14.7 ‘TWO-COMPONENT’ FUSION REACTIONS

Our analysis of fast-ion slowing down in plasmas has another immediate and
interesting application to fusion—namely, the idea of injecting a beam of
reacting ions into a fusion plasma.

For example, suppose a beam of deuterium ions is injected into a pure-
tritium background plasma in order to generate fusion reactions. Since the peak
of the D-T fusion cross section opr(v) occurs at an energy of about 120keV, the
injected beam should be somewhat more energetic than this, so that it will pass
through the region of peak reactivity as it slows down. The frictional drag on
the beam from collisions with background ions will be irreducible: for a given
beam energy, it will depend linearly on the background-ion density, as will the
reaction rate also, with the result that the density dependence effectively cancels
out. However, the frictional drag from collisions with background electrons can
be reduced by raising the electron temperature; for a 140keV deuterium beam,
the electron temperature must be raised to 10keV to reduce the electron drag to
equal the tritium ion drag at the injection speed.

Eigure T4.3]shows the slowing down of a 180keV beam deuteron injected
into a pure tritium plasma with an electron temperature of 5keV. The time-
scale is normalized by plasma density, so that the figure applies for all plasma
densities. As the deuteron’s energy Wp (full line) decreases, cumulative energy
increments AW (also full lines) are transferred to background electrons and
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Figure 14.3, Slowing down of a 180keV deuteron injected into a tritium plasma with
T. = SkeV. The energy of the deuteron is Wp, and energy increments AW are given to
plasma tritons and electrons. An amount of fusion energy is produced, expressed as a
fraction Q of the deuteron’s initial energy.

tritons, as shown. Att — oo, the sum of the two AW will equal the initial
deuteron energy Wp(0). As the deuteron moves through the plasma, it undergoes
fusion reactions with instantaneous probability proportional to opr(v)v, where
v is the deuteron’s velocity. An amount of thermonuclear energy is released,
which is expressed in Figure 14.3 as a fraction Q (broken line) of the initial 180
keV energy of the deuteron. When the deuteron has completely slowed down,
the Q value has reached about 1.15—indicating that about 200keV of fusion
energy has been produced. For higher electron temperatures, the Q value can
be somewhat higher, since slowing down by collisions with electrons is reduced
further. Because of the inefficiencies of converting fusion energy to electricity,
the Q value in a practical reactor must be very much larger than this (~ 20)—
implying that reactions among the Maxwellian background ions themselves must
play the major role, rather than beam—plasma reactions.

The use of ‘two-component’ fusion reactions of this type to produce
Q values of about unity and significant levels of fusion power density in an
experimental fusion reactor was first proposed by J M Dawson, H P Furth and
F H Tenney (1971 Phys. Rev. Lett. 26 1156). Reactions of this sort typically
contribute about a half of the fusion power produced in present-day beam-heated
deuterium—tritium tokamaks.
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Chapter 15

Basic concepts of small-amplitude waves in
anisotropic dispersive media

Systems of linear differential equations can often be studied conveniently using
Fourier analysis. If any one quantity oscillates sinusoidally at a particular
frequency, w, then all the others must oscillate at the same frequency (or not
at all), and the problem becomes one of finding the relative amplitudes and
phases of the various oscillating quantities. The fluid plasma equations do
not constitute a set of linear differential equations, so we cannot in general
assume that nonlinear coupling between frequencies will be absent. However,
if we consider only situations where the oscillations are small enough, then the
equations can be ‘linearized’. This means that the fluid equations are solved
to zeroth order with no waves present. In the simplest case, considered here,
that solution is the trivial one—a uniform isotropic plasma immersed in a steady
(or even zero) magnetic field. Next we consider a first-order expansion of the
equations in terms of small wave-like perturbations, neglecting second- and
higher-order terms. This means that whenever we see two oscillating quantities
multiplied together, since they are both small, we consider this to be a higher-
order term and we neglect it. For any real situation, we then have to go back and
verify that this neglect is justified: are the amplitudes we calculate in our real
situation small enough that the nonlinear terms are actually negligible compared
to the linear ones? For now, however, we will consider just the idealized small-
amplitude limit.

15.1 EXPONENTIAL NOTATION

In the linear regime, all oscillating quantities can be represented with
‘exponential notation’. For example, the density perturbation could be

ny = nexplitk - x — wt + 8,)] (15.1)
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where the overbar on the 7; indicates that it is serving as a real wave amplitude,
rather than an oscillating quantity (note that the overbar does not indicate a time
average.) The quantity k is the vector wave-number, or ‘wave-vector’, and A,
the wavelength, is 27 /k. The vector k can have components in all directions.
In an anisotropic medium like a magnetized plasma, the direction as well as the
magnitude of k plays a crucial role in the wave dynamics. Along directions in
which the component of k is large, the wavelength is short, so quantities vary
rapidly in space; along directions in which the component of k is small, the
wavelength is long, and so quantities vary slowly in space. Of course, the fact
that we have small-amplitude perturbations does not imply that this plane-wave
spatial variation necessarily gives the best description of the oscillations. Indeed,
planar geometry is too simple to treat a cylindrical or otherwise specially shaped
real situation, if the size of the plasma is not much greater than a wavelength.
Then only the exp(—iwt + 18,) time dependence applies, and a different spatial
dependence is appropriate.

For now, we will deal with idealized plane waves only. In the particularly
simple case where the plane wave-fronts align with surfaces of constant x, we
can write

ny = niexplitk,x — wt + 8,)]. (15.2)

For definiteness, we can take 8, to be O (i.e. no phase shift, an assumption that
does not sacrifice generality since we can choose to measure the phase shift of
everything else relative to ny). If we choose the standard convention that the
measurable part of n; is its real part, we have

ny = ncos[(k.x — wt)]. (15.3)

This represents a wave traveling with a phase velocity v, = w/k;.
In the case of a vector wave-number, we define a vector phase velocity

v, = wk/k? = (wky/ kDR + (wky /KD)§ + (0k,/kH)i.

An observer traveling at speed w/k in the direction of propagation of the wave,
(k/k), stays at a constant wave phase. We can see this by supposing that x
varies as vy, in which case the argument of the exponential, i(k - X — wt + §,),
is independent of time. In this Unit we will always consider Re(w) to be
positive, since a negative Re(w) corresponds to a wave propagating in the
opposite direction from k; we will handle such a case with k - —k. The
quantity Im(w) represents damping (Im(w) < 0) or growth (Im(w) > 0) of the
wave in time. Similarly, Im(k) represents growth or damping in space.

Other quantities such as flow velocities and electric and magnetic fields will
have the same character of spatial and temporal variation, i.e. exp[i(k - x — wt)],
but will have different phases and amplitudes. Indeed, each vector component
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of each quantity has its own phase and amplitude. For example, we can write
the electric field as

E, = Ekcos{(k - x — wt + 8£,)] + Ey §cos{(k - x — wt + 8gy)]

+ E,zcos[(k - X — ot + 8g,)]

= Re{Ekexpli(k - x — wt + 8g,)] + Ey1§expli(k - x — wt + 8gy)]
+ Ejizexplik - X — wt + 8g,)]}

= Re{E,; exp(idg,)Xexpli(k - x — wt)] + E, exp(id,)§
x expli(k - x — wt)] + E,j exp(idg;)Z expli(k - X — wt)]}

= Re{[Ey; exp(i8px)R + Ey1 exp(idgy)§ + E.1 exp(idg,)2)
x explik - x — wt)]} (15.4)

where 8y, 8gy and 8¢, are real phase delays between E,y, E,;, E;| and n;, and
all the amplitude factors (the quantities with the overbars) are again taken to be
real. This is a painfully non-compact form for E;. The same information can
be written as

E, = Re{E explitk - x — wt)]} (15.5)

where the underlined italic E, is now a complex vector (i.e. it has six scalars
associated with it), but it is independent of time and space. To translate between
these two notations recognize that, for example,

tandg, = Im(E, - %)/Re(E, - %) (15.6)

and
E,=|E, -%l =[(E, - R(E, %] (15.7)

where the asterisk indicates a complex conjugate. In equations (15.6) and (15.7),
the terms on the far left-hand side are the real phase delay and the real amplitude,
while the other terms are built from the complex wave amplitudes.

As we proceed to use this notation, we will take even more advantage of
its compactness. All of the first-order terms in our equations (and therefore one
multiplier in every additive term in the first-order equations) will contain the
same exponential factor. Therefore we can simply drop the exponential factor
without difficulty, so long as we are always clear about which are the first-order
multiplicative terms. (For example, we will often find terms like E; x By,
and it is important to remember which one is the perturbed quantity.) Finally,
in the interest of further conciseness of notation, we will drop the underlined
italics which indicates a complex wave amplitude: all the first-order terms will
be complex wave amplitudes, so that we may return to using a simple bold-faced
vector such as E;, with the understanding that the exponential factor is implicit
and that the physical vector quantity is the real part. We will, however, retain
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the subscripts indicating order everywhere in this Unit, as well as the distinction
of boldface versus plain to show vector versus scalar quantities.

There is one pitfall in this more-or-less standard approach. Sometimes we
find ourselves multiplying together two first-order quantities to evaluate some
second-order quantity, and often then time-averaging this second-order quantity.
For example, suppose we want the time average of A, - B;; the proper answer
is 1Re[A, - B}].

Problem 15.1: Show that the time average of the dot product of two
physical vector fields, A; and By, is (A; - B;) = iRe[A; - B{]. The left-
hand side of this equation represents the time-average of the physical
fields, while the right-hand side evaluates this time-average in terms of
the complex wave amplitudes. Allow arbitrary phase differences between
A; and B;.

15.2 GROUP VELOCITIES

We have already discussed the phase velocity of a wave—the speed at which
a point of constant phase propagates forward along k/k. If we make up a
wave-packet of fast oscillations grouped together in time and space, as shown
in , this is the speed at which individual crests within the packet
travel. However, these crests need not travel at the speed that the overall packet
moves; the crests within the packet can slide forward or backward relative to
the bundle of energy and information that constitutes the wave-packet. Indeed
this frequently must be the case, since we will find that phase velocities in a
plasma often exceed the speed of light, but the velocity of the group of waves
(the ‘group velocity’) must be less than this, from fundamental considerations
of special relativity.

Figure 15.1 shows a packet of oscillations with a Gaussian envelope. The
amplitude A(x) is given by

A(x) = Re[exp(—x2/20})exp(ikox)] (15.8)

where we have chosen koo 3> 1, so that there are many oscillations within the
packet. The question we would like to investigate is: how does this wave-packet
propagate in a dispersive medium where @ depends on k? Without deriving the
principles of Fourier analysis, let us assert and later prove that the same A(x)
given in equation (15.8) can also be written

g

vV

A(x) = Re ( / ” exp(ikx)exp[—o2(k — kg)? /2]dk) . (15.9)
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Figure 15.1. Wave-packet with a Gaussian envelope, constructed such that kyo < 1.

Equation (15.9) says that a wave-packet localized in space, x, can be considered
to have been constructed of an integral over plane waves localized in wave-
number, k.

Problem 15.2: Prove that the two forms of A(x) given in equations (15.8)
and (15.9) are equivalent. (A few tricks: transform k' = k — ko, use
the technique of completing the square in the exponent to transform the
integral into an integral over a simple Gaussian; finally, use the facts that
there are no poles in the complex plane for the resulting integrand, and
that it goes to zero exponentially as Re ¥ — oo, so that any integral
along a contour parallel to the real axis will give the same result.)

Equation (15.9) (and Figure 15.1) can be viewed as ¢t = O freeze-frames of
a set of propagating waves. The time evolution of this system is then just

A(x,t) =Re ( g / ~ exp{ifkx — w(k)t]}exp[—a2(k — ko)?/2]dk

NoT
(15.10)

where we have explicitly denoted the k dependence of w by using w(k). For
a narrow enough wave-packet in k& space (which means a large o, i.e. wide
in physical space), we can approximate w(k) = w(ky) + (dw/0k)y,(k — ko).
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We further assume that the medium is dispersive, but not too dispersive, by
neglecting quadratic terms in the expansion of w in (k — kp). So, proceeding for
our moderately dispersive medium, we obtain

A(x,t) = Re<exp{i[ko(3w/8k)k0 — w(ko)t}

X —;2=ﬂ /_ Z explilkx — k(dw/dk)y,t1}exp[—o2(k — ko)? /z]dk).
(15.11)

Now the factor beginning with o'/+/27 is exactly A(x —(8w/dk);,t, 0)—in other
words, the original ¢ = 0 freeze-frame, but translating at velocity (dw/a3k)y,.
This is just what we were looking for: the velocity of our wave-packet. So
what is the factor on the first line? It is an overall space-independent time
oscillation corresponding to the fact that the wave fronts are propagating at the
phase velocity, w/k, while the wave-packet moves at the group velocity, dw/dk,
not equal to w/k.

15.3 RAY-TRACING EQUATIONS

In an inhomogeneous plasma the trajectory of a wave-packet will be curved,
responding to gradients in the plasma properties. We can derive the ray-tracing
equations for the propagation of localized wave energy in a plasma simply
from the considerations above. Consider a wave-packet localized not only in
the longitudinal direction (parallel to ko), but also in the transverse direction
(perpendicular to ky). For simplicity (but without loss of generality) let us
assume Ko || X, giving ko = koX. Then the wave amplitude we desire can be
expressed as

A(x) = Re[exp(—x?/207 — y*/207 — 2% /20 )exp(ikox)]. (15.12)

By analogy with equation (15.9), we can re-express A(x) in terms of its Fourier
transform:

0,0,0 e

A(X) =Re< aR A / exp(ik - x)
@2 ), OF

x expl—a](ky —ko)*/2 — a2k} /2 — a}kf/2]d3k>. (15.13)

As before, we now consider this as a ‘freeze-frame’ picture at t = 0, and include
a factor exp(—iwt), acknowledging that w = w(k), where k is a vector quantity
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in our anisotropic medium. Carrying through a Taylor expansion as before, we
approximate
w = w(ke) + (k — ko) - Viwl,, (15.14)

where the meaning of Vyw|, is given by

(15.15)

evaluated at k = ky. If we carry through the same analysis as equations (15.9)-
(15.11), but in three dimensions, we will find our ‘freeze-frame’ A(x) translating
at a vector group velocity given by

dw

= (15.16)

Ve
with an overall time-dependent oscillation superimposed, as before. Note that v,
may not only have a different magnitude from v, but even a different direction.

Problem 15.3: Prove Equation (15.16), following the derivation given in
one dimension in equations (15.9)—(15.11).

We are assuming that the plasma medium is inhomogeneous so, based on
our experience with light rays and lenses, there is no reason to expect the location
of the peak of the k spectrum, ko, to be preserved. On the other hand, since
the background medium is by hypothesis linear and time-independent, w(Kg)
should be constant. This means that the total derivative of w, moving with the
wave-packet, must vanish. Assuming we know w = w(x, k) for our medium,
the total derivative of w can be expressed in terms of its partial derivatives by

dw dw

d a
4 Jko 0w
« dr 93k

—_— . —_ = 0. .
= Ve 5o (15.17)

X

The partial derivative with respect to x is at fixed k, and vice versa. Thus
we have, in general, ‘equations of motion’ or ‘ray-tracing equations’ for our
wave-packet:

dko  dw dxo _ dw

dr o ax, dr — 8k

As the wave-packet propagates it maintains the peak of its frequency
spectrum, but its wave-number spectrum transforms. To trace out a ‘ray’ one
must integrate forward in time the packet’s position in both x- and k-space,
since the future propagation depends on both x; and Kg.

(15.18)

X
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The analogy to Hamiltonian mechanics is evident, as is the parallel with
quantum mechanics, where fiw is identified as the energy of a photon and %k as
its momentum. The ray-tracing equations are only valid in the limit of so-called
‘geometrical optics’, where the wave-packet is also well localized in physical
space such that 8x - dw/8x <« w, where éx = o,% 4 0,¥ + 0,2, and is well
localized in k-space such that 6k- dw/0k « w, where 8k = &/0,+¥/0,+i/0,.

In this same limit of geometrical optics, we can use the Wentzel-Kramers—
Brillouin (WKB) approximation to determine the wave phase at any location along
the ray trajectory. In this approach we note that ko(t) is implicitly a function
of x¢(z) along the ray, since both are explicitly functions of ¢. If we imagine
sending out a steady beam of radiation, rather than a wave-packet, the energy
will still propagate along the group velocity vector. Along this ray-trajectory,
now, the continuous spatial derivative of the wave phase will be k;, while the
time-derivative of the phase will continue to be —wo (which does not vary in
time or space). Thus the phase difference at fixed time between two points xg
and x; along the ray path, 1, is given by

A¢=/nk0-dl.
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Chapter 16

Waves in an unmagnetized plasma

For simplicity we will begin by considering waves in an unmagnetized plasma—
a simple homogeneous isotropic system. Such systems are somewhat unusual,
since plasmas tend to be confined by magnetic fields, and they also tend to
generate magnetic fields due to their own internal currents. Nonetheless this
is an interesting situation to analyze. Furthermore, some plasma oscillations
behave as if there were no magnetic field, even if one is present. For example at
high enough frequencies, far above the electron cyclotron frequency, the particle
trajectories cannot trace out any fraction of a cyclotron orbit before the wave
fields reverse sign. (In the fluid equations this means the inertial, pressure, and/or
electric-field terms dominate the jx B term.) There are also waves whose electric
fields are polarized along the equilibrium magnetic field, By, with the result that
the driven particle motion never interacts with the magnetic field.

16.1 LANGMUIR WAVES AND OSCILLATIONS

If electrons in an unmagnetized plasma are displaced from their equilibrium
positions as an initial condition, leaving the ions unmoved, the electric field
that is created will act as a restoring force, pulling the electrons back towards
exactly neutralizing the ion charge. The energy initially stored in the electric
field will be converted into electron kinetic energy, however, and when the
electrons arrive at their ‘home’ positions they will have kinetic energy, and as a
result will overshoot, and build up a new out-of-equilibrium density distribution
on the other side. This process, called a Langmuir oscillation, is illustrated in
[Figure 16.1.

As we will see, the period of this oscillation is very short and in this
short time the ions have too much inertia to respond. Thus we can consider
the ions to be a stationary background to the calculation. On the other hand,
the whole process depends on the electron inertia (which is what gives rise to
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Figure 16.1. Schematic diagram of a Langmuir oscillation. The dots represent electron
density; time flows to the right.

the overshoot), so we have to include mn.u. in the electron-fluid equation of
motion: the Boltzmann distribution will not describe the electron dynamics on
this rapid time scale. Notice that we are finding a hierarchy of approaches to
the equation of motion:

(1) Very fast time scale—assume the species does not move at all.
(1) Medium time scale—include inertial effects.
(iii) Very slow time scale—Boltzmann distribution.

Having dispensed with the ion force balance equation by legislating that
the ions remain at rest, let us consider the electrons. We will consider the case
with no B field, but finite scalar electron pressure, so that the equation of motion
of the electron fluid is

mne[de + (W + V)u.] = ~enE —~ Vp,. (16.1)
We will also make use of the electron continuity equation:
ne + V - (neue) = 0. (16.2)

With our assumptions, the ion continuity equation is uninteresting. Furthermore,
since we are not going to circumvent Poisson’s equation via the Boltzmann
relation, we need it also: assuming ions with Z = 1, it is

¢V -E =e(n; —ne). (16.3)

In this analysis, we will only consider the case where the electrons move
in the direction of propagation of a plane wave, and the electric field points
in this direction as well. This is not the only possible physical situation, by
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any means, but we will start with this case—the so-called ‘Langmuir wave’, or
‘plasma wave’. Because of this restricted choice of motion, we will find that the
displacement current (oK) is equal and opposite to the current carried by the
electrons, so there is no first-order B field, and these are totally electrostatic (as
opposed to electromagnetic) waves. For notational simplicity, we will assume
that the wave is propagating in the x direction (we do not have a special direction
such as a magnetic field in this case). The V operator simply becomes %3/dx.
If we take all of our first-order quantities to vary as exp[i(kx —wt)], then 3/dx is
further simplified to ik, and 9/3¢ becomes simply —iw. Dropping the subscript
‘e’, since we are only considering the electrons here, linearizing equation (16.1),
and dotting with X we obtain

—ia)mnou1 = —enoE1 - ikpl (164)

where we had to recognize that ug = 0 and Ey = 0. We have dropped terms
quadratic in u;, consistent with our linearization scheme.

The pressure perturbation, p, needs to be related to n; from the equation
of state. If we assume that the compression of the electrons happens one-
dimensionally, and adiabatically (faster than thermal conduction), we have
p «xn?,y =3, so that p; can be derived as follows:

p=Cn?

dp/dn=yCn’~' =yp/n=yT
dp =yTdn

p1=yTn.

(16.5)

Thus we have, for the equation of motion of the electron fluid,
iwmnou; = engE) + 3ikTn,. (16.6)
The continuity equation linearizes to
—iwn; + iknou; = 0. (16.7)

(We can see here that interesting physics is probably contained in terms like nu,
which must become important as the waves grow in amplitude, and something
new could arise from uon; in a moving plasma, i.e. non-zero ug, but we leave
these nonlinear physics aspects aside for now.) Poisson’s equation is just

ikegE| = —en, (16.8)

where the ion contribution to the charge density has served only to neutralize the
equilibrium electron contribution, and has no perturbed component. Since there
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is no zeroth-order electron flow, the first-order current carried by the electrons
is given by

j] = —€éngu| = —e(w/k)m = ia)éoE] = —EoE; (169)
which may be substituted into the Maxwell equation
V x Bi = poji + to€oE (16.10)

to show that there is no perturbed magnetic field: this ‘longitudinal’ wave
(‘longitudinal’ means E; || k) is indeed electrostatic, as we claimed earlier.
Another way to see that longitudinal waves in general must be electrostatic is to
recognize that V x X, for any perturbed quantity X; varying as exp[i(k-x—wt)],
is the same as ik x Xj. If E; is parallel to k, then V x E; = 0, which tells us
that lel =0.

Problem 16.1: Prove that V x X; = ik x X, for quantities X, that vary as
explitk - x — wt)].

Now let us solve equation (16.7) for nou;
nou; = (w/kym (16.11)
and equation (16.8) for E;
E| = —en, [ikeg (16.12)

and then substitute into equation (16.6) to arrive at an equation with n; as the
only first-order quantity. We obtain

iwtmn;  —e*ngn;

Kk ike

+ 3iTn;. (16.13)

Multiplying through by —ik/mn;, assuming we are not allowing the trivial
solution n; = 0, we obtain the ‘Bohm—-Gross dispersion relation’, first derived
by D Bohm and E P Gross (1949 Phys. Rev. 75 1851):

0* = ol + 3T /m = o, + 3k*0E, (16.14)

where wpe, the ‘electron plasma frequency’, is given by

wl, = nee’/eom, (16.15)
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and v, = (T/m)'/? is the usual electron thermal velocity. There is also an ion
plasma frequency, with all ion quantities in its definition, but it is less commonly
encountered, so wp Without a species subscript generally refers to wpe.

Equation (16.14) can be cast in the form w = w (k)—this is referred to as a
‘dispersion relation’, in this case for the electrostatic plasma wave, or Langmuir
wave. It is useful to plot this Bohm—Gross dispersion relation on dimensionless
axes, by dividing both sides by w,, as shown in Figure 16.2.
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Figure 16.2. Bohm-Gross dispersion relation for the high-frequency electrostatic
Langmuir wave in an unmagnetized plasma.

First of all, we note that there are no Langmuir waves at all with & < w,.
Furthermore, waves with w > @, only occur as a result of the finite-temperature
effect. At long wavelength (low k), or low temperature, the wave phase velocity
w/k (which is proportional to the slope of a line from the origin to the dispersion
curve) can become arbitrarily large, much greater than the electron thermal
velocity, and even greater than c¢. This certainly justifies our approximation
of adiabaticity, that thermal conduction cannot keep up with the moving wave
front. By contrast, the group velocity dw/9k (which is proportional to the slope
of a line tangent to the dispersion curve) goes to zero in this vicinity, so no
information or energy propagates. This non-propagating wiggle at low k is
sometimes referred to as a ‘plasma oscillation’, since it was the first oscillation
observed in this new state of matter.

At large k (short wavelength), or high temperature, the Bohm-Gross
dispersion relation begins to look rather like an electron sound wave. The group

" and phase velocities both converge to +/3v, ., and the wave propagates forward in
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the manner of a sound wave. In contrast to a sound wave in a gas, the dynamics
are mediated both by the electric field and by V p.. The greatest differences
come, however, when we include collisionless kinetic effects associated with

the class of particles that move at velocities close to the wave phase velocity.
These effects, called Landau damping, will be discussed in [Chapter 24.

16.2 ION SOUND WAVES

Let us now look at another longitudinal (k || E;), and therefore electrostatic,
wave in an unmagnetized plasma. In this case we will assume (and later verify)
that the frequency is low enough that the ions can participate in the motion, but
the electrons are able to establish nearly exact force balance (i.e. a Boltzmann
distribution) on the oscillation time scale. We will continue to take By = 0, and
since we will take k || E;, we have B; = 0 as well. The ion fluid equation, for
scalar pressure, is then

Mni[g; + (u; - V)u;] = en;E — Vp; (16.16)

where the upper-case M indicates an ion mass, and we have again assumed
Z = 1. We now (as usual) linearize this equation, taking advantage of the
electrostatic nature of the oscillation to write E, as the gradient of a potential
(V x E| = 0), and using the equation of state to relate p;; to n;;. We make our
usual plane wave and sinusoidal assumptions and note that, in this unmagnetized
longitudinal wave, the fluid motion has no reason to be in any direction other
than k, so we treat u;; as a scalar, i.e. the component of w;; in the k direction.
Equation (16.16) becomes

—iwMnjou;; = —enjoikd, — yTiikny;. (16.17)
For the electrons, we assume a Boltzmann distribution:

ne = neoexpled; /Te) = neo(l + e/ Te)
Nep = neO(e¢l/Te)-

(16.18)

Next we use Poisson’s equation. (If we were treating only the limit of
small k, i.e. kAp < 1, our knowledge of Debye shielding would tell us that we
could instead use quasi-neutrality: nj; = n,;). We obtain

&V - E| = ek’¢1 = e(niy — ner) = elniy — neoledr/Te)] (16.19)
allowing us to solve for n;; as a function of ¢, i.e.

niy = [nio(e/ Te) + €ok* /el (16.20)
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where we have assumed njy = n., required for our case of Z = 1. We also
need the linearized ion continuity equation:

iwn“ = nioiku“. (1621)

We can now cast all the first-order terms in equation (16.17) in terms of n;;,
using equations (16.20) and (16.21). We obtain (multiplying throughout by i)

wn;) enipkn;
Mn; = Tikn;,. 16.22
wiio knio  nige/ T, + €ok?/e ik ( )

Dividing throughout by Mkn;, (again assuming we are not looking for the trivial
solution n;; = 0), we obtain

T./M

ky? = L
@R =1

+nThi/M (16.23)

where we define A3 = €oTe/nee? = v, /w?, as is common in the literature.

In the long-wavelength (k — 0) limit, this is very similar to a normal sound
wave, where we note that the electrons and the ions both contribute pressure,
but the ions contribute essentially all of the mass. The appearance, effectively,
of y. = 1 is consistent with our assumption of a Boltzmann distribution, and
so isothermal electrons. The phase velocity of this wave is of the order of the
ion sound speed, so the electrons generally have plenty of time to free-stream
and equilibrate their temperature ahead of the wave propagation. This is not
the case for the ions. In the limit of sufficient collisions to prevent ion thermal
diffusion at speeds close to the sound speed, we should take ¥ to be the usual
adiabatic isotropic 5/3. In the absence of collisions, but with 7; « T, so ion
thermal motion cannot keep up with the wave, we can assume a one-dimensional
adiabatic compression for the ions, equivalent to 3; = 3. Note that since many
laboratory plasmas designed for wave studies have T; « T, the ‘ion sound
speed’, Ci, is usually defined as (T,/M)'"/2.

For large wavelengths (small k), the ion sound wave is a constant phase
velocity and constant group velocity wave. At short wavelengths (large k), i.e.
less than a Debye length (where this Ap is defined without the 7; term shown
in equation (1.36)), the ion sound wave turns into a constant-frequency wave,
at the ion plasma frequency Q, = (m/M)'/?w, (where the upper-case Q2 here
indicates ions).

There is an interesting complementarity between the ion and electron
longitudinal (k || E{) electrostatic waves in an unmagnetized plasma. The
electron waves have constant frequency wj at kv /w, = kAp < 1, but travel at
a constant phase velocity of +/3v,. at shorter wavelengths (larger k). The ion
waves, by contrast, travel at constant phase velocity C, for kAp < 1, but become
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constant frequency €, for kAp > 1. The electron waves look like electron sound
waves at short wavelengths, and the ion waves look like ion plasma oscillations
at short wavelengths. In Figure 16.3 we plot the ion sound dispersion relation,
for 7; = 0, on appropriate dimensionless axes. In collisionless plasmas, unless
T. > T, ion sound waves are subject to ion Landau damping, analogous to the
electron effects for Langmuir waves, as will be discussed in .

1.0 ' : J
wk = C,

lon Sound Wave
0.5

o/,

kv, o/, = KAy
Figure 16.3. Dispersion relation for the ion sound wave in an unmagnetized plasma.

Both the Langmuir wave and the ion sound wave dispersion relations also
apply in a magnetized plasma, for the special case of k|[E||By, since the Lorentz
force will not come into play in such geometry.

16.3 HIGH-FREQUENCY ELECTROMAGNETIC WAVES IN AN
UNMAGNETIZED PLASMA

So far we have found two electrostatic waves in an unmagnetized plasma, the

‘plasma wave’ with @ > wp, and the ion sound wave with w < . There is

also a high-frequency electromagnetic wave in an unmagnetized plasma, which

we will now study. To do this, we will need more of Maxwell’s equations.
Given our assumption of sinusoidal plane waves, we can write

ik x B; = pqji — iwE; /¢? (16.24)
ik x E; = iwB,. (16.25)

Copyright © 1995 IOP Publishing Ltd.



High-frequency electromagnetic waves in an unmagnetized plasma 265
Taking the cross-product of equation (16.25) with k, we obtain
ik x k x E; = o(uoji — iwE;/c?) = (@?/cH)j1/(€ow) — iEq] (16.26)

or using a vector identity to simplify the left-hand side (see [Appendix D)) and
multiplying throughout by i, we find

K*E; —k(k - E|) = (0*/cD[E| + iji /(€ow)]. (16.27)

The first terms on each side give rise to the usual result for electromagnetic
waves propagating in vacuum. This equation was not needed in the electrostatic
case. For k | E, the left-hand side is zero, and we see that the displacement
current and the real current cancel each other, an effect we noted before. All
the interesting physics came from the continuity equation and the electric fields
associated with o, the charge density—as would be expected in an electrostatic
wave. Now, however, we will take E; to be ‘transverse’, the opposite of
longitudinal, i.e. k- E; = 0. As we will show in Problem 16.2, there is no wave
in an unmagnetized plasma with E at an oblique angle to k; the components of E
longitudinal and transverse to k simply propagate separately as an electrostatic
and an electromagnetic wave, respectively, in an unmagnetized plasma. (Notice
that we are not using the words ‘parallel’ and ‘perpendicular’ relative to k;
we reserve those terms for use relative to By, when we introduce a zero-order
magnetic field in the next Chapter.) Since k- E; =0 (i.e. V- E = 0), we have
o = 0 at all times for the waves we are looking at here. Thus we do not need
to consider the continuity equation in this calculation.

We are working in the high-frequency regime where we can consider the
ions to be stationary, so we write

J1 = —ngeu (16.28)

where we have dropped the subscript ‘e’ since the ions are not of interest in this
calculation. The relevant linearized fluid equation of motion for the electrons,
for this case, is simply

—iwmu; = —eE, (16.29)

so that
j1 = —noe*E, Jiwm. (16.30)

One might ask about the absence of V p, from the fluid equation of motion.
This is because if 0 = 0 due to k- E = 0, and the ions are not moving, then
there is no ne;, and so no pe;, no matter what equation of state we use. We say
‘the fluid motion is incompressible’, meaning that this particular wave does not
compress the fluid. Equation (16.27) becomes

(c*k? — wHE,| = iwj; /€0 = (—noe®/meg)E, (16.31)
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or
o =+ o] (16.32)

SO
® = (K + w))'? = ck(1 + 0} /kH)'2. (16.33)

This is the dispersion relation for an electromagnetic wave propagating in an
unmagnetized plasma. (This dispersion relation also holds for high-frequency
electromagnetic waves in a weakly magnetized plasma, where w > w..
Furthermore, it is also correct for high-frequency electromagnetic waves with
E,||By, since the Lorentz force will not affect such a wave.) This is the classic
example of a wave in a dispersive medium. Figure 16.4 shows this dispersion
relation on appropriate dimensionless axes.
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Figure 16.4. Dispersion relation for the high-frequency electromagnetic wave in an
unmagnetized plasma.

Problem 16.2: Start with the electromagnetic wave equation, equa-
tion (16.31), and substitute for j; in terms of E; by using the electron fluid
equation of motion ((equation (16.1), including the electron pressure) and
then Poisson’s equation. By separately dotting and crossing the resuiting
equation with k, show how to generate the dispersion relations for longi-
tudinal plasma waves and for high-frequency electromagnetic waves, and
show also that one dispersion relation w(k) must hold if k - E; # 0, and
the other must hold if k x E; # 0. This implies that there is no class of
waves that propagates with k at an intermediate angle to E.
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From the last step in equation (16.33), we see that
vp = w/k =c(l+w)/*k*)"? > c. (16.34)

The phase velocity is greater than the speed of light, and varies with k (or,
equivalently, with w). Of course the group velocity cannot be greater than c.
From the first step of equation (16.33), we have

vg = dw/8k = I’k /(7K* + w))'/?
=c/(1+ w3 /) < c. (16.35)

At low k (long wavelength, ck « wp), these are constant-frequency waves
at w = wp, while as the frequency increases and the wavelength decreases (k
increases), they turn into vacuum electromagnetic waves propagating at the speed
of light. Eventually the frequency becomes so high that the electrons’ inertia
keeps them from responding significantly.

An interesting feature of this wave is that it cannot propagate in a plasma
with w, > w. There is a ‘cutoff density’ given by

e = meeoa)z/e2 (16.36)

above which a wave impinging on a plasma is reflected back. This is the
means by which low-frequency electromagnetic waves are reflected from the
ionosphere and propagate around the Earth, allowing short-wave buffs in the
Northern hemisphere to talk with their friends in Australia. Fortunately for
the Australians, high-frequency waves such as those used for high-bandwidth
broadcasting, like television, are not reflected by the ionosphere, and so the
Australians are not directly afflicted with American television (and vice versa).

Problem 16.3: Based on the above observations estimate a lower and
an upper bound for the electron density in the ionosphere.

It is interesting to calculate how deeply an electromagnetic wave penetrates
into an overdense plasma (one where w < w,, or equivalently n > n,.so the .
wave cannot propagate). The dispersion relation can be solved for real w but
imaginary k in this case:

k= (0 — 0))'?/c = %i(w] — &) ?/c. (16.37)
For our ‘plane wave’ geometry, which admits of evanescent solutions, we have

exp(ikx) = exp[—x(wg - wz)]/z/c] (16.38)

Copyright © 1995 IOP Publishing Ltd.



268 Waves in an unmagnetized plasma

where the sign of k is chosen to match the physical situation. The penetration
depth is then ¢/ (wg —?)!/2. The solution at @ = 0, namely c/wy, is sometimes
referred to as the ‘collisionless skin depth’. Note that this evanescence is not
caused by dissipation of the wave energy—the wave and its energy are simply
reflected. In the presence of some dissipation, such as collisions, the penetration
depth is finite (i.e. k has an imaginary part) even for w > w;.

Problem 16.4: A plasma with n < n. can bend electromagnetic radiation
considerably. Consider a cylindrical plasma with a hollow n(r) profile,
n(ry = n.r*/a*. Show that the ray-tracing equations for a wave-packet
of electromagnetic radiation can form a circle of radius r = a/+/2. (You
can think of the wave-fronts as ‘steering’ around the circle because A is
greater in the higher-density plasma on the outside than in the lower-
density plasma further inside.) Hint: the mathematics is simplified if you
work in terms of n/n. = w}/w?.

Having referred to the electromagnetic waves we have just studied as ‘high-
frequency’ waves, we might appropriately ask whether there are any ‘low-
frequency’ electromagnetic waves in an unmagnetized plasma. In fact, there
are none. The electron motion ‘shorts’ them out, and no waves propagate with
@ < wp. When we include a magnetic field (in the next two Chapters), the
electrons are prevented from shorting out certain waves, and as a result whole
classes of new waves becomes possible at lower frequencies. The high-frequency
waves also become more interesting—in particular, the electromagnetic waves
are no longer purely transverse and incompressible.
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Chapter 17

High-frequency waves in a magnetized
plasma

In this Chapter, we will introduce a magnetic field, By, into the background
plasma equilibrium, and begin to investigate propagation in the resulting
anisotropic medium. The direction of propagation of the wave, k/k, now affects
the dynamics, as well as the polarization of the wave electric field relative to
the equilibrium magnetic field. In this Chapter, we will assume that the wave
frequency is high enough that the ions can be considered as stationary. The new
dynamical effect (i.e. Larmor gyration) that is introduced by the magnetic field
creates the possibilities of wave ‘resonances’ as well as ‘cutoffs’ such as we just
derived for the unmagnetized electromagnetic wave at w = w,. We will take this
opportunity to ‘compare and contrast’ cutoffs and resonances. In this Chapter
we will only examine waves propagating perfectly perpendicular and perfectly

parallel to By. In Chapter 18|we will develop the formalism for arbitrary angles
of propagation.

17.1 HIGH-FREQUENCY ELECTROMAGNETIC WAVES
PROPAGATING PERPENDICULAR TO THE MAGNETIC
FIELD

We now treat the case of high-frequency electromagnetic waves in the presence
of a zeroth-order magnetic field, B,. We will start with waves propagating
perpendicular to By (i.e. k L Bo—‘perpendicular propagation’ as opposed to
‘parallel propagation’, k || Bp, which we will study in the next Section. Note that
we use the nomenclature ‘perpendicular’ and ‘parallel’ to describe the orientation
of k or E relative to By.) For perpendicular waves we find another division of
wave types, the ‘ordinary’ and ‘extraordinary’ waves. The ‘ordinary’ waves
(sometimes abbreviated to ‘O-waves’) are just that—ordinary. They arise where

269
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we have a wave propagating perpendicular to Bo, but the wave’s electric field
is oriented along Bo. This means that the magnetic field plays no role in
the wave dynamics, so we can apply the previous results for high-frequency
electromagnetic waves in an unmagnetized plasma with u; || E;. The Lorentz
force u; x By is null, i.e. the ordinary mode never notices By. Thus the previous
calculation and its resulting dispersion relation go through as before for the
ordinary mode. Remember that the high-frequency electromagnetic wave in an
unmagnetized plasma is purely transverse (E; L K); for the ordinary wave in
a magnetized plasma with k L By (‘perpendicular waves’), this is just E; L k
and E] ” B().

Problem 17.1: An O-wave of angular frequency wy propagating through
a plasma with n < n. has a longer wavelength than a wave at the
same frequency propagating in vacuum. For a wave propagating in the
x direction, with a slowly varying spatially non-uniform wave-number, k(x),
the formula for the phase factor of the wave at location x; and time ¢, is
given by the WKB approximation

exp (i /Xl k(x)dx — iwo(t — to)>

if we take the phase to be zero at 1 = 1, and x = x,. Find the difference in
phase at location x; and time ¢, between an O-wave propagating between
xo and x; in a plasma, and a wave propagating the same distance through
vacuum, given n.(x) along the path of propagation in the plasma. Assume
n./n. to be small, but do the calculation to second order in n./n..

The other possible orientation of E;, i.e. E; L By, has some extraordinary
properties, and it is referred to, appropriately, as the ‘extraordinary’ wave
(sometimes abbreviated to ‘X-wave’). It has both transverse and longitudinal
components, depending on the frequency w. When o is very close to the
‘upper-hybrid’ resonance (which we will define shortly), it is purely longitudinal
(E, || k), but elsewhere it has a transverse component (E; L k). In general,
the electric field of this wave has a component along k (L to By) and also
a component perpendicular to both k and By. If we choose By to lie in the
z direction, and k to lie in the x direction, then E; may have components in
both the x and y directions.

We will take the ions to be stationary, since their inertia is too large for
them to respond to a high-frequency wave, and we will neglect the electron
pressure—which actually can matter here since this wave is not incompressible.
This approximation is sometimes called ‘cold plasma’ theory; it is equivalent to
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assuming 7. = T; = 0.
With these assumptions, the linearized fluid equation of motion for the
electrons is

—%wmuxl = —e(Ex) + uy1 Bp) a7.1)
—iwmuy; = —e(Ey; — uy By)

which can be straightforwardly solved for u,; and u,;. We may use the method
of determinants to solve this system of linear equations, expressed in the form

eExi/m = iwux _C.Ucuyl (172)
eEy1/m = welyy + lwuy,.

The determinant is w? — w?, and the solutions are

_ (e/m)(wEy + chyl)
B (2 — w?)
- (e/m)(wEy| — w Eyy)
. (@ — w?)

x1

(17.3)

We proceed to substitute these electron fluid velocities into the wave equation,
i.e. equation (16.27):

K’E) —k(k - E)) = (0 /cA)E) +ij1/(€w))] (17.4)

with j; = —ngeu;. First we break this vector equation into its two components in
the x and y directions. The vector E; has no component in the z direction, since
this would correspond to the ordinary mode we have already treated. Remember
that we have chosen k to point in the x direction, so the left-hand side of
equation (17.4) has no x component. From the x component of the right-hand
side of equation (17.4), we obtain

i(noe*/eom)(iwEx1 + w.Ey1)

E.. = 17.5
and from the y component, multiplying through by ¢2/w?, we get
. 2 . _
(- czkz/wz)Ey] - i(noe /€0m)(1wa1 chxl). (17.6)

w(w? — w?)

Noting the presence of wf, in these equations, and observing also that we have
here two linear equations in two unknowns, we multiply through by (w? — w?)
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and rewrite the equations as

(a)f -t + a)f,)Ex; - i(wgwc/w)Eﬂ =0
, (17.7)
i(@)we /@) Ext + [(1 — Pk J0?) (@} — %) + w}]Ey = 0.

Once again we can solve these equations by the method of determinants, but we
do not obtain the amplitude of E; from these equations: when the right-hand-
side of this matrix equation vanishes then the solution is degenerate, and instead
we obtain a criterion on the coefficients, that their determinant should vanish.
This gives us

(@} — &* + &)1 = K j?) (@7 - &) + 0] — (wiwe/w)* = 0 (17.8)

which is effectively the dispersion relation [w = w(k)] that we are seeking.
We define the ‘upper-hybrid’ frequency as

oy = o} + o], (17.9)
The dispersion relation may now be written
(1 = k2 0*) (@} — 0*) + @ = (Wlwe/0)?/ (@} — o). (17.10)

Looking at this equation, we see clearly that something interesting will happen
at w = wy, the upper-hybrid ‘resonance’. It looks as if something may happen
as well at w = w., but this is an illusion. If we substitute w = w. into
equation (17.10), we obtain the null result that wg = wg, and the k value is then
not defined by this equation. For w arbitrarily close to w., however, the k value
is perfectly well defined, and the same on either side. Thus it is helpful to remove
this spurious apparent sign of activity, since it is not a physical result, and a more
transparent form of the dispersion relation may exist. (We should, however, note
that in the full kinetic treatment—the so-called ‘hot plasma’ theory—some new
physics arises at = w,, and indeed at @ = nw, for all n; new modes, called
‘electron Bernstein modes’ appear, named for their discoverer; see I B Bernstein
(1958 Phys. Rev. 109 10).) In any event, to simplify the cold-plasma dispersion
relation, we proceed as follows;

-0 (W + ] — ®?) + (W /w)>

(1 =k /0P (@? — 0?) =

(@f — w?)
——wg(a)g -+ (wg/wz)(wg —w?)
= i (17.11)
(wf — w*)
Then dividing through by (w? — w?) and rearranging terms we obtain

%2 2 (@ — w?)
___C2=_2=1_—‘2’ — (17.12)
) Vg w(w* — wy)
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Here we see the result that at the upper-hybrid resonance, & — oo, i.e. the
wavelength goes to zero. This is what is meant by a resonance. When k — o0,
the phase velocity goes to zero, and the wave-fronts ‘pile up’. We can see from
the first part of equation (17.7), that when @ = wn, then Ey/E,; — 0. Since
k is in the x direction, this means that the resonance has k || E;, implying that
the upper-hybrid resonance is purely electrostatic.
The dispersion relation also has two cutoffs, defined as where k — 0, i.e.
the wavelength goes to infinity. These can be found by setting
w*(w? — wf - wg) = co;(a)2 - wg). (17.13)
This is a quadratic equation for »? dividing both sides by w*(w? — w?), we
obtain
1 - w}/(0* - o}) = 0}/’ (17.14)

and, continuing the algebraic manipulation, we have
(1 - 0} /e?) = (@} /o) /(1 - 0 (17.15)
from which we take the square root, to obtain
(1 — w3 /0?) = £(w/w) (17.16)

which gives us two quadratic equations, with (presumably) a total of four
solutions. The quadratic equations can be rewritten

®’ + oo — 0} =0 (17.17)
and the (four) solutions contain two independent £ symbols:
® = Jto £ (@] +40)'/]. (17.18)

However, a negative w is meaningless—by convention & > 0, and Kk is a signed
vector to give us the direction of propagation—so two of the solutions are not
useful, and we obtain only two physically distinct cutoff frequencies:

WR
wy,

o = [ + (@) +40))'?)/2 = [ (17.19)

The + sign gives the ‘right-hand’ cutoff frequency, and the — sign the ‘left-
hand’ cutoff frequency, denoted wr and w_ respectively. The reason for this
nomenclature is that these same frequencies will appear as cutoffs for left-hand
and right-hand circularly polarized waves propagating parallel to By, which we
will discuss in the next Section. Cutoff frequencies do not vary with angle of
propagation. By contrast, the upper-hybrid resonance falls in frequency as the
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wave moves away from perpendicular. It is also worthwhile noting here that
the upper-hybrid resonance and the right-hand cutoff are clearly in the high-
frequency domain. However, if wp <« . then the left-hand cutoff can appear at
low frequencies, where ion dynamics can be important in the calculation of w
and in the wave dynamics in its vicinity. This is something we will investigate
in the next Chapter.

The cutoffs and resonances are important in part because they define the
pass and stop bands where waves can propagate in a plasma. This is clearly
illustrated in the dispersion relation for the extraordinary, or ‘X-wave’, where
in Figure 17.1 we have chosen plasma parameters such that w? = 2. This
shows that waves can propagate in the pass band regions of w < w < wy, and
w > wg, but a stop band exists in the range wn, < w < wgr. The cutoffs are
at the frequencies where the dispersion relation disappears into k = 0, and the
resonances are where £ — ©co. Note the curiosity that, for the lower pass band
of the X-wave, v, > ¢ for w < wp, while v, < ¢ for w > w,.

5 ] | 1 L ) I L | It

X-Wave

ckiwp

Figure 17.1. Dispersion relation for the extraordinary wave propagating perpendicular
to B in a magnetized plasma, with w? chosen to be equal to 2w§.

In an experimental situation, generally we find a fixed-frequency wave being
driven by a radio-frequency (rf) generator, and we are interested in studying the
propagation of this wave in a specified plasma. Thus for a wave to reach the
upper-hybrid resonance it must propagate down a density gradient or magnetic-
field gradient, so that w < wyn = (@} + w?)'/? in the propagation region, but
then w = wy at the resonance. Propagating a wave down a density gradient
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is usually difficult to arrange, since the rf source is usually located outside of
the plasma, so one has to rely instead on propagating down a magnetic-field
gradient. To reach the wg cutoff, by contrast, requires propagating up a density
or magnetic-field gradient, which is easier to arrange.

If we nonetheless imagine an X-wave propagating perpendicular to By, and
directly down a density or magnetic-field gradient until it reaches the upper
hybrid ‘layer’, something interesting is clearly going to happen as the phase
velocity goes to zero. In this situation, it is also interesting to look at the
group velocity, dw/dk. In the vicinity of the upper hybrid resonance we can see
graphically from Figure 17.1 that the group velocity is going to zero. Multiplying
equation (17.12) by w? and differentiating, we have, as @ — wy:

200dw  20lwiwdw
2ckdk ~ 2wdw + —~ P =
(W —w?) (0 — w?)?
and the third term dominates near w, = w. Using an approximation for v,
obtained by solving equation (17.12) near w = wy, i.e.

(17.20)

vp = w/k & cop(wf — 0)"* /oy, (17.21)
we have 2 272 .2 2 243/2
do _  n oo (f =0 (17.22)
dk wIwlvp WpWeWh

If we consider a wave-packet as a bundle of energy and v, the velocity at which
the bundle travels, then when v, goes to zero, the bundle stops moving. Since
the rf generator keeps ‘sending in bundles’, it is interesting to ask whether the
energy stops at the resonance and builds up wave energy-density until some
process outside of linear cold-plasma theory absorbs or otherwise converts the
energy, or whether the wave energy is reflected back out of the plasma.

The concept of a discrete wave-packet begins to break down under these
circumstances, but we can obtain a feel for the answer by examining the spatial
dependence of the group velocity, vg. From the equation of motion of a ball
rolling in a well, it is clear that for wave energy to be reflected we need the
spatial derivative of vg to be non-zero, in order for there to be finite acceleration
at the top of the roll of the ball (or equivalently at the resonance, where vy
is zero). Just as ordinary kinematics tells us that acceleration can be written
(d/dx)(v?/2) = vdv/dx = dv/dt, the acceleration of a wave-packet is also
given by (d/dx)(vg /2). If the spatial derivative of vy is zero, the ball has found
a shelf at the top of its roll, and stays there, as illustrated in and by
analogy the wave energy in this case just steadily builds up at the resonance as
more packets are sent in.

Near the resonance, vé varies as

Vi & (0 — @)’ /(wpwean)?. (17.23)
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. Ball will be
Ball will return. stacked at the top.
Kinetic +
potential >
energy

= /

Cutoff Resonance

Figure 17.2. Mechanical analog to wave cutoffs and resonances.

Assuming that the spatial profiles of all the plasma parameters are smooth, it is
clear that the spatial derivative of vé will be zero at just the place where v, is
zero, since a factor that vanishes at least as rapidly as (a)ﬁ —w)? will remain after
the right-hand side of equation (17.23) is differentiated with respect to a spatial
coordinate. Thus, within the confines of linear cold-plasma theory and assuming
purely perpendicular wave propagation, the wave amplitude must grow steadily
at the upper-hybrid layer when we pump energy in from the outside—which is
why this is called a resonance!

To see how cutoffs work—which is very different from resonances—it is
simplest to consider the cutoff of the electromagnetic wave at @ = wp in an
unmagnetized plasma. (This has the same dispersion relation as the ordinary-
mode (E; || By) perpendicular (k L By) waves in a magnetized plasma.) There
we had

o’ =} + k¢ (17.24)
and
vg = c/(1 + w}/k*c?)'? (17.25)

SO
v; =c*/(1 + w}/k*c?)
= /1 + 0}/(@* — )]
= c?/[0?/(@* - &])]

= (1 - v} /o) (17.26)

which clearly has a non-zero spatial derivative (assuming, of course, that the
density has a non-zero gradient) at the place where n = n, i.e. at w = wp.

Copyright © 1995 IOP Publishing Ltd.



High-frequency EM waves parallel to the magnetic field 2717

Thus there is a ‘restoring force’ at the cutoff, accelerating the wave energy back
out of the plasma, so that it does not accumulate at the cutoff. Generally wave
energy is essentially fully reflected at a cutoff, although refraction effects need
to be taken into account for the specific geometry under consideration. In some
geometries refraction will bend the ray trajectory such that it never even reaches
the cutoff.

Problem 17.2: Show that wave energy does not in general accumulate
at the wr and w. cutoffs of the X-wave. Hint: first re-express
equation (17.12) in the elegant form:

k(@ = o))’ - o))

@ oXw!—wd)

When you obtain the formula for the group velocity, note that it does not
contain (w? — w}) or (w? — w?) to any power greater than unity, so the
spatial gradient of the square of the group velocity at the cutoff need not
be zero. (For some perverse choice of plasma parameters and gradients,
the vanishing of this spatial gradient could be arranged, but it is not a
fundamental feature of the equations, as at the upper-hybrid resonance.)

17.2 HIGH-FREQUENCY ELECTROMAGNETIC WAVES
PROPAGATING PARALLEL TO THE MAGNETIC FIELD

In the previous Section, we treated high-frequency waves propagating
perpendicular to By (i.e. k L Bg). Now we treat the case of parallel propagation,
k || Bo, again in the high-frequency limit where the ions can be considered
stationary compared to the electrons.

As usual we will have By in the z direction, and so Kk is now also in the
z direction. Once again, we use the wave equation

K’E| —k(k - E)) = (& /c?)[E; +iji/(€w)]. - (17.27)

There is a longitudinal mode (E; || k) propagating paraliel to By, i.e. with
k || By, but it is just the electrostatic Langmuir wave which we have already
studied for By = 0. In fact, in the cold-plasma limit we are using here, it
is just the Langmuir oscillation at w = w,, independent of k. To find a new
electromagnetic mode, we will take k- E; = 0. Remembering that we have
taken k to be in the z direction, we have

E = EnX+E,¥. (17.28)
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In our calculation of the extraordinary wave, we calculated u, and uy; in terms
of E;| and E,;; see equation (17.3). Since By was in the z direction in that
calculation also, the results apply in our present case as well, i.e.

— (e/m)(wE, + chy])

x1

(0} — w?)
) 17.29
L (e/m)Ey ~ oEn) (17.29)
! (@ — w?)
Next we will substitute for j; into equation (17.27) using j; = —n.eu;. The

y component of the equation goes through just as for the extraordinary wave

i(noe? /eom)(iwEy) — weExy)

(1 — *k*/w?)Ey; = (17.30)

w(w? — w?)

and because k is now in the z direction, the x component this time looks very
much like the y component, i.e.

i(nge?/eom)((wEy; + wcEy1)
(1~ /) Eyy = == (lu(wf—a)]z) e (17.31)

Casting these in the appropriate form for solution by matrix methods, we have

i(Whwe/w)Ex + [(1 — ¢k*/0*) (0] - ) + 0}]Ey =0

[(1 — /D) (@} — ) + @R Ex — (0w /@)Ey =0 (1732
and again we require the determinant to be zero, i.e.
(@}wc/w) = [(1 — kP ) (@] — o) + &2 =0 (17.33)
so we have two solutions:
(@lwe/w) = £[(1 — k*/0?)(@? — ) + ). (17.34)

To solve for 7% = ¢?k*/w? = ¢?/v} (where i is the index of refraction) we
multiply through by +1 and divide through by (w? — @?) to obtain

i(wgwc/w) — a)g

(1 - k2 )w*) = (17.35)

(w? — w?)
or \ ,
., C*k? wp (@ F w) wy
= e = L -
w? w(w? — w?) w(w £ w)
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For the upper and lower signs, we call these the ‘L-wave’ and ‘R-wave’,
respectively. Both of these solutions correspond to circularly polarized waves.
This means that E,; and E,; oscillate 7/2 out of phase with each other, but
have the same amplitude. This can be seen from the first part of equation (17.32)
coupled with equation (17.34). The solution corresponding to the upper sign has
E,) = —iE;), and the solution corresponding to the lower sign has E,; = iE;;.
As it turns out, this implies that the upper sign corresponds to a wave rotating
according to a left-hand rule: left thumb along By, fingers showing the direction
of rotation of the electric field vector. The lower sign follows the corresponding
right-hand rule. To illustrate this let us take x = 0 and an overall phase delay
of zero for E,;. Then the time dependences of E,; and E,; for the upper sign
(L-wave) are given by

E.1(t) = Re{Eyi[cos(—wt) + isin(—wr)]} = Exjcos(wt)

.= - - (17.36)

E,1(t) = Re{—iE[cos(—wt) + isin(—wt)]} = —E,sin(wt)
where the overbarred quantities are real wave amplitudes, and the quantities on
the left-hand side are the physical fields. Figure 17.3 shows what happens as
time progresses from 0 to w/2w. The E-field vector rotates according to the
left-hand rule, since By is in the z direction.

Figure 17.3. Time progression of the E-field vector
t=1/20 * for a left-hand circularly polarized wave with B,
along the z direction, out of the page.

Physically, the direction of rotation of the wave has impact on the dispersion
relation w(k), because it is connected with the direction of rotation of the
particles which carry j;. Both the L- and R-waves can propagate in either
direction along By; the dispersion relation only includes k>. The L-wave by
definition always has its electric field vector rotating with the left-hand rule,
in relation to the direction of By. Similarly, the R-wave will always rotate
according to the right-hand rule along By, which is of course the sense in which
the electrons gyrate about By. Thus it is not surprising that the R-wave has a
resonance at w.. (Note that in plasma physics the ‘handedness’ of a circularly
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polarized wave is defined relative to By, but in other research fields it is usually
defined relative to k.)

In the case of the ordinary (O) wave (propagating perpendicular to Byg),
the electric field vector is always parallel to By, so it is a plane-polarized
wave. The electric-field vector in the extraordinary (X) wave (also propagating
perpendicular to Bg) has both longitudinal and transverse components (but
always perpendicular to Bo) which are phased 90° apart, as can be seen from
equation (17.7). However the amplitudes of the two components are not the
same, so the wave is elliptically polarized. It becomes linearly polarized, with
E; | k (longitudinal, electrostatic) at the wy, resonance. Above and below the
resonance, the direction of rotation of the electric field vector in the X-wave
changes sign.

L-Wave

g | I
3 Vp=¢

24 L
14 L
® /0, — ]

O T T T T T T T T T
0 1 2 3 4 5

ck/m,

Figure 17.4. Left-hand circularly polarized electromagnetic wave propagating parallel to
B, in a magnetized plasma, with a)f chosen to equal 2w§.

It is interesting now to look at the w versus k diagrams for the R-
and L-waves. Let us begin with the simpler L-wave, shown in Figure 17.4,
which corresponds to the solution of equation (17.36) with the + sign in the
denominator. For the case plotted, we chose w?/w? = 2, although this ratio can
take on any value, depending on plasma parameters. This wave evidently has a
simple dispersion curve. It propagates with v, > ¢ and vy < c (necessarily)
for any frequency above the cutoff frequency, w.. This is rather like the
electromagnetic wave in the absence of a By field, which is, however, cut off
at w = wp. As in the case of the O-mode, wave energy is reflected from the
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cutoff. Setting k = 0 in the dispersion relation with the upper sign gives us a
quadratic equation for the cutoff frequency wy:

o} + oLw; — w) =0 (17.37)

which has the solution
oL = [ + (@ + 402)'?1/2 (17.38)

which we found before as a cutoff of the extraordinary wave. (A % sign is
obtained before the square-root term from solving the quadratic equation, but
since @ > 0 by convention, we must take the + sign.) Note that o plays no
special role in the L-wave. This is to be expected, since the electrons rotate
around the magnetic field in the right-hand sense (in the nomenclature we are
using here), so there is no resonance for the L-wave. However, for wp, < w., the
cutoff wi. ~ w,(wp/w.) can be at a low enough frequency that the ion dynamics,
which we have ignored so far, can become important.

5 L | ! | i | 1 |
R-Wave

ck/o

Figure 17.5. Right-hand circularly polarized electromagnetic wave propagating parallel
to By in a magnetized plasma, with @? chosen to equal 2w§.

The w versus k plot for the R-wave is more complicated, as a result of the
w. resonance, as shown in Figure 17.5. We have again chosen to plot the case
a)g/wf, = 2. We find a cutoff at wg, given by setting k¥ = O in the dispersion
relation with the lower sign, i.e.

wg = [0 + (@] + 40))'?]/2 (17.39)
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which we have also found before as a cutoff of the extraordinary wave. Again
the + sign before the square root term is forced by the requirement to have
o > 0. We note that wgp > . (unlike the case for wy) so ion dynamics cannot
be important for this cutoff.

Note that now we obtain a resonance at w = w,, a result that should
not be too surprising. A resonance, as we can see here, has w/k — 0, or
n = ck/w — o0, because k — 0o, A — 0, as we discussed with respect to the
upper-hybrid resonance of the extraordinary wave propagating perpendicular to
Bo. In that case, the resonant frequency was w? = wf, + Z, and the plasma-
frequency term entered because the wave compresses electrons, and so generates
an electrostatic restoring force. The cyclotron-frequency term came from the
Lorentz force, which causes this perpendicular resonance to be affected by the
magnetic field, unlike the Langmuir oscillation. In the present case, since the
transverse wave propagating parallel to By has k- E = 0, there is no electron
compression or charge-density buildup, and so no wg in the resonance frequency.
However, for k || By, and right-circularly polarized waves, the electron cyclotron
frequency enters strongly.

Problem 17.3: We showed that the resonance of the X-wave at the upper-
hybrid frequency was purely electrostatic. Is the R-wave resonance at the
electron-cyclotron frequency electrostatic or electromagnetic?

An especially interesting feature of the w versus k plot for the R-wave is
the presence of a new wave in the region of w < w.. The low frequency part
of the R-wave is called the ‘whistler’ wave. In the frequency region below w,
the group velocity increases with frequency. This means that white radio noise
generated in a burst in the ionosphere due to lightning flashes, and propagating
as a whistler, will travel faster at high frequencies than at low. A ground-
based receiver in the northern hemisphere will then hear a ‘whistle’ going from
high frequencies to low due to lightning flashes in the southern hemisphere
located along the same magnetic field lines. The ray trajectories of the whistler
focus along By, so one can use the properties of the received signal to deduce
plasma conditions along individual field lines. When we include ion dynamics

in we will see that a low-frequency pass band also appears for the
L-wave.

Another interesting feature of the L- and R-wave dispersion curves is that,
if we choose a frequency in the upper band of the R-wave, it always has a higher
phase velocity than the corresponding L-wave. This may be seen by examining
Figures 17.4 and 17.5, in particular comparing the k values corresponding to the
same  value (choosing the upper frequency band of Figure 17.5). Because of
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this, when linearly polarized rf energy propagates parallel to Bg, the angle of
polarization of the wave rotates as it travels. This is called ‘Faraday rotation’.
A linearly polarized wave can be viewed as the superposition of two
counter-rotating (right and left) circularly polarized waves—and this is just how
the plasma treats parallel-propagating high-frequency electromagnetic waves.
Let us assume that at z = 0, we have a linearly polarized electromagnetic wave
at frequency w, with E; in the x direction and both k and By in the z direction.
We can decompose the electric field vector at this location into the sum of two

circularly polarized field vectors as follows:

E(z = 0) = REgRe[exp(—iwt)] = Re(Er + EL)

where
E E
Er(z =0) = ('?Oﬁ + 1-2—05’) exp(—ia)t)
Ey, .Eo, .
EL(z=0)= S &-i=y exp(—iwt).

At a distance | away from z = 0, along By, Er and E_ evolve to

E Eg . .
Er(z =D = (——Oi‘: + 1—0y> exp(igr — iwt)

2 2
Ey, .Eo, . .
ELz=0D)= (—2-)( - 1—2—y) exp(igL — iwt)

where

! !
R =/0 kr(w)dz ¢ =/ kL(w)dz.
0

(17.40)

(17.41)

(17.42)

(17.43)

At a fixed w, k., > kg, so ¢ will be greater than ¢r. The result is that a plane
wave reconstructed at z = I will have rotated from the incoming plane wave at

z=0
E(z =1) =Re[Er(z =) + EL(z = )]
E,
= ﬁ;"Re {exp(—iwt)[exp(igr) + exp(ipp)]}

E
+ = Re liexp(~iwon)[exp(i¢r) — exp(igL)])

= E, [i‘{cos <¢L ; ¢R) =+ ¥sin (¢L ; ¢R)]
x Re {expli(¢L + 9r)/2 — iwt]}

(the last step will be proved in Problem 17.4).
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For ¢ > ¢r this corresponds to a linearly polarized field at z = [, rotated
at an angle (¢ — ¢r)/2 in the R direction relative to the polarization at z = 0.
Measuring this Faraday rotation is a convenient way to determine the magnetic
field in a plasma, if we can first determine the plasma density, and thereby
the plasma frequency, wy, by other means (such as measuring the phase shift,
using the same beam!). In astrophysical situations it is not possible to control the
radiation source (perhaps a rapidly rotating neutron star), or provide a ‘reference’
beam, but much information can be gleaned about magnetic fields by studying
Faraday rotation as a function of frequency. It is also possible to use pulse delay
as a function of frequency to measure plasma densities.

Problem 17.4: Prove the last step in equation (17.44). This can be done
in a number of different ways using trigonometric identities. Then in the
spirit of Problem 17.1, calculate the Faraday rotation of a plane-polarized
transverse wave propagating parallte! to By, given n.(z) and B(z). In this
case, assume w < wp, @ and go only to first order in w} /w?, w?/w?, w3 /w?.

Problem 17.5: How would you use pulse delay, as a function of
frequency, to measure the average plasma density between the Earth
and a radio pulsar?
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Chapter 18

Low-frequency waves in a magnetized
plasma

In this Chapter, we investigate classes of waves that become available at lower
frequencies due to ion motion. These waves have considerable practical and
theoretical interest. The equations, however, become considerably more complex
with both ion and electron dynamics included, so it helps to introduce an overall
formalism in which we consider the plasma to have either a complex tensor
dispersive electrical conductivity or, more conventionally, a complex tensor
dispersive dielectric response. This permits us to unify all the waves we have
investigated: X- and O-waves in the perpendicular direction, electrostatic waves,
and R- and L-waves in the parallel direction, using a single formalism valid for
all angles of propagation.

18.1 A BROADER PERSPECTIVE—THE DIELECTRIC TENSOR

Before we begin the algebraically formidable task of analyzing wave propagation
at low frequencies where ion motion has to be taken into account, it is useful
to take an overview of what we have been doing in the process of calculating
dispersion relations. In doing so, we can generalize our results to include ion
motion, finite pressure and arbitrary angle of propagation. First let us write
down the linearized fluid equation of motion, where we will not be specific yet
as to ions or electrons:

a
mno—al% = gno(E) +uy x Bo) — yTVn,. (18.1)

Without losing any generality in our plane-wave solutions, we have been taking
B in the z direction, and the k-vector to have components only in the x and
z directions. Insofar as k forms an angle with By, this shows up as k,. Fourier
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analyzing the three components of this equation in the usual way, and dividing
through by ng, we obtain

—iwmuxl =q(Ex1 +uleo)—ikxyTn1/n0 (182)
—iwmuy = q(Ey| — ux1 Bo) (18.3)
—ilwmu,, = qE;| — ik,yTny/ny. (18.4)
The continuity equation is V « (ngu;) = —adn;/d¢, which becomes
ikxu“ + ikzuz1 = iwnl/no‘ (185)

Let us define 8 to be the angle between k and By, so that k, = ksinf and
k, = kcos6. Then we have

ny/ng = (k/w)(uysing + u, cosh). (18.6)

This can be used to substitute for n;/ng in equations (18.2) and (18.4) above, so
that we then have three equations for the unknown components of u; in terms
of the components of E;. Equations (18.2) and (18.4) become

—iwmuy; = q(Ey; + uy By) — (k% /w)y T (uysin6 + uz1sinfcosd) (18.7)
—iwmu,; = qE, — i(k®/w)y T (us;sinfcosh + u,1cos6). (18.8)

Equations (18.3), (18.7) and (18.8) form a set of linear equations for the
components of u;. They can be solved to give each of these components as a
linear combination of the components of E;. Indeed, we have done this in the
two previous Chapters, but assuming either § = 0 or § = 7/2, and T = 0.
Combining the fluid velocities to form an electrical current, this result can be
expressed as a complex frequency-dependent tensor electrical conductivity:

Ji=) noqu =g-E (18.9)

where the summation is over species and g is a tensor quantity. (As before, we
indicate a tensor by bold italics but, where Greek characters are used, as in this
case, we add underlining for additional clarity.) This tensor conductivity can be
substituted into the wave equation to construct a dispersion relation. Reiterating
the wave equation:

K’E; — k(k - E;) = (0*/cH)[E; + iji/(eow)] (18.10)

we obtain
K’E; —kk - E)) = (0*/A)UT + ig/eow)-E; (18.11)

where I is just the identity tensor or, in index notation, the matrix with ones
along the main diagonal and zeros elsewhere, &;;. It is more conventional to work
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in terms of a dielectric tensor, replacing the usual scalar dielectric constant in the
equation for wave propagation in a non-dispersive, isotropic dielectric medium:

K’E, —kk - E;|) = 0’uoe - E;. (18.12)
Thus in the plasma case we have a dielectric tensor, denoted by €, given by
€=¢e(I +ig/ew (18.13)

where we have used euoc? = 1. In the low-frequency limit for a cold
plasma, we will see later that the diagonal components of this dielectric tensor
corresponding to the directions perpendicular to By are just the perpendicular
plasma dielectric constant €, = €y + p/B? that we have encountered before.

Since we are using tensor notation, we re-express the left-hand side of the
wave equation in tensor notation:

k*X -E; = [k’E, — kk - E))]

where X is the tensor defined by this equation, so X = I — kk/k°
Remembering that we have chosen k, = 0, so k = ksinfX 4 kcos6Z, we can see
that

kk/k? = (sinfR + cos6Z)(sinfR + coshz)

SO .
kkcos’0 + 0 — %2sinfcosd
0 + 95 + 0 (18.14)
ZXsinfcosd + 0 + 23sin’6

P+

where equation (18.14) is written in a manner so as to clearly display the
corresponding matrix elements. Our wave equation is just

(wpoe — k*°X)-E, = 0. (18.15)

The dispersion relation is then derived from the requirement that the determinant
of the tensor quantity in parentheses in equation (18.15) be zero.

For the equations of motion we have considered, including finite plasma
pressure, this is sometimes called the ‘warm’ plasma dispersion relation. If
we had taken T = O in these equations, we would have obtained the ‘cold’
plasma dispersion relation, which is a generalization of the dispersion relations
we have been considering in the two previous Chapters, including ion motion
and arbitrary angle of propagation. The nomenclature ‘hot’ is usually reserved
for fully kinetic calculations, including the effects of classes of particles that
move at velocities close to the wave phase velocity. Note, incidentally, by
looking back at equations (18.3), (18.7) and (18.8), that o (and therefore ¢)
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does not contain the wave-vector k anywhere except in the T # 0 terms. In the
cold plasma dispersion relation, then, we see that the wave-vector k enters only
through the k? term in equation (18.15), with its direction entering only through
X. The additional k terms that enter for a warm plasma permit new solutions
of the dispersion relation, such as the ion acoustic wave, which do not exist at
all in a cold plasma, as well as modifications of waves by compressional motion
and by finite Larmor radius effects, when kry_ is not small. The full ‘hot” plasma
dispersion relation effectively brings in terms to all higher orders in k.

18.2 THE COLD-PLASMA DISPERSION RELATION

One can straightforwardly calculate the matrix components of equation (18.15)
for the case of a cold plasma. It is easier if we make the following conventional
definitions:

r=ck/w=c/y
ck/w = nsinfR + ficosfz

wp, 2p = electron and ion plasma frequencies

@, 2. = electron and ion cyclotron frequencies
R=1-(0}/w)/(@— o) — (RF/w)/(®+ Q)
L=1-(0}/0)/(@+w) — (Q/0)/(@— Q)
S=(R+1L)2
D=(R-L)2
P=1- a)g/a)2 - Qg/w2.

Equation (18.15), multiplied through by ¢?/w?, becomes

[RR(S — A%cos?0) — R§iD + %in’sinfcosh
+9%iD + WS- + 0
+3%A%sinfcosd  + O + 2%(P —%in%*9)] -E; =0

(18.16)
where again we have arranged the terms to display the matrix elements.

Problem 18.1: Derive equation (18.16) from equation (18.15), in the limit
T = 0. (This involves a fair bit of algebra, but it is useful to do it once in
order to be comfortable with the resulting cold-plasma dispersion relation.)
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Setting the determinant to zero we obtain

(S—7icos?8)(S—ii%) (P —ii*sin’0) —ii*sin*cos?6 (S—i%)— D*(P—ii’sin’g) = 0.

(18.17)
At first glance this looks like a sixth-order equation for k, at any given 6 and
w. Fortunately the 7i® terms cancel, and only 7°, #% and 7* terms remain. This
means that we have a quadratic in 7%, which we can solve relatively easily.
Gathering together terms by their powers of 7, we find

(§2P — D*P) — #*(SPcos®6 + SP + §%sin’6 — D%sin’6)
+ #*(Pcos®6 + Ssin?6) = 0. (18.18)

This is a quadratic equation for 2. Thus for any value of w, 6 and plasma

parameters, there are at most two real positive solutions for k, corresponding
to the two ‘branches’ of the dispersion relation we have been studying for
parallel propagation (R and L) and for perpendicular propagation (X and O).
Interestingly, all the sind and cosf terms can be simplified, for the cold-plasma
dispersion relation. Replacing cos26 with 1 — sin®6, and using $2 — D? = RL,
we obtain

RLP — #*[2SP + (RL — SP)sin®0] + A*[P + (S — P)sin?8] =0 (18.19)
or
RLP —2i*SP +7*P = #i*(RL — SP)sin*9 — #*(S — P)sin®

or

—P(7* —25#% + RL)
A*(S — P)+A*(SP — RL)’
To proceed further toward a useful form of the dispersion relation, we put
sin%6 = 1 — cos?@ in equation (18.19) and obtain

sin%6 =

(18.20)

RLP —#*[SP+ RL + (SP — RL)cos?0] + A*[S + (P — S)cos?8] = 0 (18.21)

or
Sa* — (PS+ RL)i* + PRL
2
6= . 18.22
MY = RS = P) + a2(PS — RL) (18:22)
We can now divide equation (18.22) into equation (18.20) to obtain
—P(R* - 287 + RL
tan%g = (n” - 25n" + RL) (18.23)

SA* — (PS+ RL)n2+ PRL’
Using the fact that 2§ = (R + L) in the numerator, both the numerator and the
denominator can now be factored to give
—~P(? — 72—
tan? = Ii(n R)(~n L).
(SA% — RL)(#2 - P)

(18.24)
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Equation (18.24) is a very useful form for the cold-plasma dispersion relation
and it provides good physical insight. First, for parallel propagation (6 = 0),
we have two solutions, 72 = R and A2 = L, which are the familiar right- and
left-circularly polarized waves. For perpendicular propagation, we also have
two roots, 2 = P (the ordinary wave) and /i = RL/S (the extraordinary wave),
now with the ion dynamics included automatically through the definitions of
R,L,S and P. The resonances can be found from this equation by setting
i > oo (k = o0, A — 0); we then have tan?9 = —P/S. Thus the resonance
frequencies vary with the angle of propagation. For 6 = 0, they occur where
P =0, 0or § — oo. The case with P = 0 is the plasma resonance at w,.
(Remember that the Langmuir oscillation has w = wj, independent of &, for a
cold plasma.) The case § — oo can be arranged via either R or L — o0, which
occur at the electron and ion cyclotron resonances respectively. At 8 = 7 /2, we
need P — oo, which cannot occur for finite w and wp, or we need § — 0. This
latter gives the upper- and lower-hybrid resonances, including ion dynamics.
(We will learn about the lower-hybrid resonance later in this Chapter.)

To obtain the cutoffs from this equation is not as straightforward, since
setting A — 00,7 — O gives the curious result that —PRL/PRL = tan’f.
Such a thing cannot occur for any real 6, unless PRL = 0, a result that can
be obtained more explicitly by going back to equation (18.18), where we can
see that %2 = 0 implies P(S? — D?) = PRL = 0. Note then that the cutoffs
do not vary with 9, as we have observed before. Specifically, P = 0 is just
the wp cutoff of the ordinary wave and the cutoff/resonance of the Langmuir
oscillation. The cases R = 0 and L = 0 correspond to the wg and wp cutoffs,
with the ion dynamics included.

18.3 COLDWAVE

In order to let you study the properties of the cold-plasma dispersion relation,
we have provided a simple graphical program, COLDWAVE, which solves
equation (18.18) for /2. It works by stepping through a prescribed range in
w, for given plasma parameters and given 6, and finding the 7 and therefore k
which corresponds to each w. The instructions for how to use this program are
included in files called COLDWAVE.WRI on the IBM PC disk and README-
COLDWAVE on the Mac! disk. (Computer source code is included as well.)
Note that in this program frequencies are normalized to the electron plasma
frequency, and all wave-numbers to wp/c.

The plot shown inhas parameters w./wp = 1.414, Zi = 1, A; =
1,0 = 7°, wmin = 0, Wmax = Swp, linear w scale, kmin = 0, kmax = 5, and linear &
scale. Each vertical pixel (w axis) corresponds to five evaluations of k(w). You

! Macintosh is a registered trademark of Apple Computer, Inc.
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Figure 18.1. Dispersion relation plot from COLDWAVE. 6 = 7°, RE = 5, o} = 2a].
kc/w, and w/w, indicate location of pointer. kc/w, = 4.357; w/w, = 0.9899.

can see that various sections of three different curves are about to vanish into
the Langmuir oscillation at w = wp when 8 reaches 0. One of the four curves
vanishes in a different way as 6 goes to 90°, as you will see in Problem 18.2.

Problem 18.2: Use COLDWAVE to study the angular range 0-90° for
high-frequency waves, in the cases where o. = w,/2 and where w, = 2w,.
Describe qualitatively how the different waves transform.

Problem 18.3: Use COLDWAVE to explore the low-frequency range,
w K Q. for 6 = 0°. Find the relation between the phase velocity as
w — 0 and the low-frequency perpendicular dielectric constant calculated

in Chapter 4

18.4 THE SHEAR ALFVEN WAVE

Now we proceed to consider the low-frequency range of the R- and L-waves.
As before, let us consider propagation purely parallel to By, i.e. k || By. We will
further take E; L By, and thus E; L k. This is because the choice E; | By | k
at low frequency, with a warm plasma, just gives the ion acoustic wave we
studied previously—the Lorentz force plays no role in that mode. Just as we
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saw that the electrostatic Langmuir wave is uncoupled from the high-frequency
purely electromagnetic waves, so is the ion-acoustic wave decoupled from the
low-frequency R- and L-waves, propagating parallel to By in the modes we
are considering, and since By || £, E,; = u,;; = 0. Examining our equations of
motion (equations (18.3), (18.7) and (18.8)), we see that T plays no role in these
modes. As aresult, our u,; and u,; for the electrons—even for finite pressure—
are the same as those given in equation (17.3), when we first considered the
case of uy; # 0,u, # 0. For the ions, we simply use equation (17.3) with
e > —e,w, > —K%, and m — M. (Remember that w. = —q.B/m., while
Q. = +4q;B/m;). We then have for the ions

_(e/M)(inxl - QcEyl)

Uyi] =
(Q2 — ?
- ) (18.25)
Uiy = "(e/M)(leyl + Q:Ex1)
yil (2 - w?) '

For the electrons we will assume @ < £, « w, in which case the electron fluid
exhibits pure E; x B drift:

(¢/m)Eyi _ eE,

Uxel = =

MQ
e ¢ (18.26)

u _ —(e/m)Exl _ —eEy

T e T M,

The last step in the above equations was motivated by the desire to express
frequencies in terms of ion quantities, and it conveniently brings a common
factor of ¢/M in front of both the ion and the electron equations.

Our conductivity tensor is then given by

nge? —iw Q.

, " 1
W= [(Qg —aon T ((Qg — o) Q)xy

Q. 1 % iw ol . E
@ - )7 @]
—g-E. (18.27)

Note that the conductivity tensor is reduced to a 2 x 2 tensor for the shear
Alfvén wave propagating parallel to By, because we have taken j,; = E;; = 0.
If we take @ — O, the off-diagonal elements go to zero as w?, while the
diagonal elements go to zero as w, so we obtain a purely scalar (but imaginary)
conductivity tensor. Using Qg = nge?/Mey, so the first factor on the right-hand

side in equation (18.27) is just eon,, this scalar conductivity becomes

0 = —iwnge?/MQ? = —iwegS2}/ Q2. (18.28)
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We can also view this as giving rise to a low-frequency dielectric response.
Remember from equation (18.13) that € = ¢o(I + ig/€ow), s0 we obtain

€1 = eo(1+ Q2/ Q%) = € + noM/B? (18.29)

which is just the dielectric constant that we derived from the polarization drift

in Crapier 4.

Returning to finite w, in the general case the dispersion relation is given by
lo?uoe = k*X || =0 (18.30)

where the double vertical bars indicate the determinant of the equivalent matrix.
In terms of o, and multiplying through by ¢?/w?, this is

I -#2X +ig/ewl|| = 0. (18.31)

For & = 0, we have X = XX + §¥. Our calculations here did not find the
22 component of g, but this does not matter since the matrix we have now
constructed for the case of k || By has non-zero elements in the upper left 2 x 2
area plus a single potentially non-zero component in the lower right corner. The
other elements of & (Z currents driven by non- fields, and non-2 currents driven
by Z fields) are zero. Thus the upper left 2 x 2 matrix must have determinant
zero (the dispersion relation we are looking for) or the element in the lower
right hand corner, corresponding to purely E || B dynamics, must be zero (the
Langmuir wave at high frequencies and the ion-acoustic wave at low, for warm
plasmas) for the whole matrix to have determinant zero.
Thus for the case of interest here, which has E; L By, we obtain

1- 4+ Q22— w?)  iQw/[Q(02 — 0?)]
=0. (1832
~iQ0/[Q(Q} — )] -7+ Q/(Q} ~ )

The symmetry of this matrix is reminiscent of the high-frequency parallel-
propagating R- and L-waves. We obtain

|- 72 % L e 18.33
Tt ) T T o) (1833)

and, once again, we have circularly polarized R- and L-waves. We can see
this because E;; and E,; are equal in magnitude and 7/2 out-of-phase, by
the same arguments as before. To see this, we simply have to reconstruct the
linear equations that come from dotting the matrix shown in equation (18.32)
with E;, and setting the result equal to zero. Given equation (18.33), the terms
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multiplying E;; and E,; differ by a factor of +i. Proceeding to find a more
compact dispersion relation, we obtain

2 2
ﬁ2 _ 02k2/w2 =1 n QPQC + pr
Q.(Q2 — w?)
QZ
=14 —>2
(82 £ w)
QL+t
=— (18.34)
Q. (2 £ w)

The upper signs go with right-hand polarization (R-wave), in the sense we

defined in |[Chapter 17} while the lower signs go with left-hand polarization
p

(L-wave).
Thus for the R-wave, dividing top and bottom by €., we have
Qe+ /U +w
~2 212, 2 ¢ pr =
n° =ck’jo = ———— 18.35
/ .t o) ( )

The shear-Alfvén R-wave has no cutoffs and no resonances in this low-frequency
range, since neither the numerator nor the denominator can go to zero. This is
not surprising, since ion motion is left-handed. As we go up in frequency,
the shear-Alfvén R-wave smoothly goes over into the whistler, which has its
resonance at @ = .. At the low-frequency end, we have a ‘simple’ light wave
propagating in a medium with a large scalar dielectric constant. As w — O,
equation (18.35) gives an index of refraction

i=(1+Q/ehH" (18.36)
and so a phase velocity
v =w/k=c/i=c(l+Q/QH"2 (18.37)
If we define an ‘Alfvén speed’, v4, by

va = ¢/ = c(eB/M)/(ne*/egM)* = cB/\/nM /e
= B//uonM (18.38)

then the phase velocity can be written
vp = /(1 + 2/})"2.

Multiplying top and bottom by va/c, and then taking va/c = Qc/Qp « 1
(which is correct for w, ~ w;), we have

vp =va/(1 + 02/~ (18.39)
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Figure 18.2. Dispersion relation for the shear Alfvén R-wave, with w? chosen to equal

2
2wp .

Figure 18.2 shows an w versus k diagram for the shear-Alfvén R-wave. As
usual, we (arbitrarily) choose w? = 2wg, and we will also choose M /m = 1837.
This fixes the relevant quantities in equation (18.35). For example

va/c = Qc/ Qp = (Q/we) (e /wp)(wp/ S2p) = (1/1837)(+/2)4/1837
= +/2/+/1837 = 0.033.

In order to allow comparison with our previous plots at high frequency, we use
the same dimensionless axes, but in order to see these new results we must
rescale the axes—and the two axes must be scaled differently from one another,
since w/k is now ~ ¢/30.

The left-handed shear Alfvén wave (L-wave) has the dispersion relation

3 QC+Q§/QC—0)

~2 212,12
n“=ck/w
/ (2; —w)

(18.40)
which is shown in Figure 18.3] This has the same low-frequency behavior as
the R-wave. At low frequencies, plane-polarized shear Alfvén waves exist, and
do not undergo Faraday rotation. The L-wave, however, clearly has a resonance
at w = ., associated with the left-handed ion cyclotron motion. In addition,

Copyright © 1995 IOP Publishing Ltd.



296 Low-frequency waves in a magnetized plasma

|
V,=¢C V=V,
__/ 7 _<— Qc/(Dp
A
g 05 Shear N
3 Alfvén L-Wave
0 |
0 0.05 0.10

ck/o,

Figure 18.3. Dispersion relation for the shear Alfvén L-wave, with w? chosen to equal

2
2wp .

it has a cutoff at w = wy = Q. + Qg/ 2. (Figure 18.3 does not go this high in
frequency). This does not appear to be the ‘same’ w;, as we encountered in our
high-frequency calculation: in fact, however, it actually is the same L cutoff,
just calculated with the assumption that w is low, and so different terms can be
ignored.

The full definitions of wy, and wg, including both ion and electron effects—
and not assuming anything in advance about their magnitude—can be derived
from setting L = 0 or R = 0 respectively, using the general definitions for R
and L given earlier in this Chapter. If we take Q. < w, and Q, <« w,, which
are always justified for an ion—electron plasma, we obtain

0} — Wrwe ~ W — ) =0 (18.41)
and
o} + oL, — 0 — 0 = 0. (18.42)

In the high-frequency range, the third term is negligible (and we did not include
it in equation (17.38)), and in the low-frequency range (the present calculation)
the first term has been neglected. There is no positive low-frequency solution
for wr, and so no low-frequency right-hand cutoff. For some combinations
of plasma parameters, however, w;. may fall in the low-frequency range, and
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then our shear Alfvén dispersion relation will give the cutoff in approximately
the correct place. However this cutoff usually falls (for w, of order w.) in a
frequency range where electron motion must be taken into account beyond just
the E; x By drift, so the present calculation will be inaccurate. For example,
for the parameters we have chosen in our plots, @, = 0.37w, = 0.52w,, which
violates our initial assumption of w « w., so the high-frequency calculation of
is closer to the correct cutoff given in equation (18.42). The neglected
ion terms in the previous calculation are much smaller and its approximations
were therefore satisfactory. It is important to be clear that, for a given density
and magnetic field, there is only one wp and one wg cutoff frequency, which
can be calculated from the full equations for w;, and wg above.

So, finally, what are shear Alfvén waves? In the lowest-frequency range
(w K €2¢), both the ions and the electrons are E; x By drifting, and the ions
have a simple low-frequency polarization drift, which is small compared to their
E, x By drift. The magnetic field lines themselves also ‘move’ with the same
vi = E; x Bo/B?%. As we learned in[Chapter §, this is described as the plasma
being ‘frozen’ to the field lines, and we have encountered it before for low-
frequency phenomena. In the present case, the field lines are twisting—moving
circularly in the (x, y) plane—with different phases of rotation along z rather
like the lines on a barber pole. Thus the name ‘shear’ (or sometimes ‘torsional’)
Alfvén waves. The twisting of the field lines pulls the magnetic configuration
away from its lowest energy state, and magnetic energy is stored in the ‘twist’.
The ions provide the inertia for this wave, causing the field-lines to continue
to move circularly, rather than come to rest. The twisting motion of the shear
Alfvén mode has V «u; = 0, so there is no compression, no perturbed pressure,
pi1, and hence no pressure effects on the waves.

Problem 18.4: For finite w, the shear Alivén wave exhibits Faraday
rotation. In the spirit of Problem 17.4 calculate the Faraday rotation given
B(z) and n(z) along the trajectory of the wave.

Problem 18.5: Derive wr and w for an electron—positron plasma. You
may start from R and L as defined for use in the cold-plasma dispersion
relation (18.24).

Now we have completed our study of waves propagating parallel to By, i.e.
with k || Bo. In Chapter 17, we had a curious asymmetry between the L-wave
and the R-wave. The R-wave had two pass bands, with the whistler as the
lower-frequency band, but the L-wave had only one pass band. Now that we
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have included ion motion, we find another pass band for the L-wave, below the
ion cyclotron frequency. Remember that left-hand circular polarization resonates
with ion Larmor motion. So the total picture for k || Bg, & = 0 in a cold plasma
is as follows:

R-Wave (E; L By, k| Bp) (2 pass bands)

w > wr high-frequency pass band
Up—=>C a8 w— 0

® < w, ‘whistler’ wave, becoming shear Alfvén R-wave at low frequency
vp—=>va a w-—0

L-Wave (E; L By, k| Bp) (2 pass bands)
o > w;,  high-frequency pass band
vjp—>c a8 w—> 0
w < Q. shear Alfvén L-wave
vp—->va a w—0

Langmuir oscillation (E; || By, k || By)
w=wp zero group velocity Langmuir oscillation
Up undefined

For finite temperature (E; || By, k || Bg)
w > wp, Langmuir wave

Up = V3 a w—
w <, ion sound wave

p—>C a w—>0

The high-frequency pass bands of the R- and L-waves become simple
vacuum light waves at very high frequency. In the high-frequency range,
they have a difference in phase velocity that causes Faraday rotation of plane-
polarized waves.

At all frequencies, the parallel (k || By) R- and L-waves are fully transverse,
(k L E;), and so have neither flows nor electric fields along By. They are
completely compressionless, and do not give rise to any perturbed particle
density nor charge density, and so they are not affected by finite pressure effects.

By contrast, the Langmuir oscillation is fully electrostatic—B,; is
exactly zero—so the physical effects come from differential ion and electron
compression effects, giving rise to a perturbed charge directly, o;. In the cold-
plasma limit, there is just one oscillation at wp. Warm-plasma effects give rise
to the propagating Langmuir wave and the ion acoustic wave. If we take the
warm-plasma calculation in the limit of T, 7; — 0, the Langmuir wave collapses
into the Langmuir oscillation at @ = w,, and the ion acoustic wave disappears
into the horizontal axis at w = 0.
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18.5 THE MAGNETOSONIC WAVE

The final class of waves we need to discuss are low-frequency waves propagating
perpendicular to By. These can be broken up into the two categories of
extraordinary (X) and ordinary (O) waves. The X-wave has its electric
field oriented everywhere perpendicular to By, giving rise to ‘extraordinary’
phenomena due to the Lorentz force, while the O-wave is ‘ordinary’, with
E, || Byp. This categorization is academic, however, because the O-wave does
not exist in this frequency range. It was cut off at @ = w,, and without the
Lorentz force, the ion dynamics cannot bring it back at low frequency. Thus we
have only the X-wave to analyze.

The X-wave is tricky when ion dynamics are included, however. There
are interesting phenomena in the X-wave at a frequency of order \/w.£2; so we
have to be careful in our ordering of w relative to the two cyclotron frequencies
if we want to recover all the important behavior. In particular, for this wave we
must include the electron current in the direction of E; (the polarization current)
in the approximation w « w.. For the shear Alfvén wave, we neglected the
electron current along the diagonal of o altogether relative to the ion current.
At low frequencies this is valid (the ratio is M/m), but at higher frequencies we
have to be careful. Looking ahead at equation (18.43) (where we have put in
the electron polarization current), we can see that the ion polarization current’s
contribution along the diagonal for w > € is approximately —Qg/wz, while
the electron polarization drift contribution for w « @ is wg Jw?. Setting these
to be comparable in magnitude gives w? ~ wf(Qg/a)g), or w ~ /w82 Thus,
in this ‘lower hybrid’ frequency range (i.e. frequencies of order /w.Q.), we
cannot neglect the electron polarization current as we did for the shear Alfvén
wave. Other than adding this extra term, the determinant we need to solve is
only changed from equations (18.31) and (18.32) by the fact that the X tensor,
given in equation (18.14), now needs to be evaluated for 8 = /2, giving X
= §¥-+2Z2Z. We again need to evaluate only the upper left 2 x 2 part of & because,
for this geometry of wave propagation and electric field polarization, in the third
row and column only the lower corner is potentially non-zero. The determinant
is

1+ Q/(QF - ) + 0}/ w? iQ20/[Q:(QF — 0?)]
=0
—iQw/[Q2:(Q2 — ?)] 1 -2 4+ Q2/(Q2 — ?) + o} /w?

(18.43)
Equation (18.43) is very like equation (18.32). However, since 7% does not
appear twice here we will not obtain two waves, but only the one X-wave. We
have retained enough electron dynamics to retrieve the wr and wi cutoffs of the
X-wave in this determinant, but that is not the topic of interest here. Here we
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are interested in the low-frequency dynamics, and the lower-hybrid resonance
which forms the bottom of the stop band between the extraordinary ion wave
and the high-frequency X-wave. The dispersion relation can be written

ﬁz<gg_w2+gg+f’_§)=(Q§—w2+§2§+w_§>2_< Qw )2.
Q2 - w? w? Q2 — ? w? Q.(922 — w?)
(18.44)
Since a resonance is where k — o0, and /2 = ck/w, the term in brackets on the
left-hand side must go to zero at the resonance. (Nothing special happens in the
cold-plasma limit at w = ., but hot-plasma theory introduces ion-Bernstein
waves at all harmonics of €2,.) The first term in brackets on the right-hand

side will also be zero, but the second term should be well behaved. So, cross-
multiplying, we obtain resonances where

(@) -0 + (R -+ Q) =0 (18.45)
or 202 202 202
Wi+ wi QL+ w2
0= 2= w20+;2 =2, (18.46)
p c

The first and third terms in the numerator differ only due to their mass
dependences. Specifically, the first term in the numerator is m/M times the
third term, and thus is negligible compared to it. To conform to conventional
notation, we multiply top and bottom by m/M, and obtain

W Q(Q2 + QD)
Qg + Qcwe

2_ 2
W =W =

(18.47)

or even more conventionally (taking Qg > Q2, which is the case if wg ~ w?):

ot = Q%+ (Qewe) ™ (18.48)

Here, wy, is called the ‘lower hybrid’ frequency. We plot the dispersion relation

for the low-frequency X-wave in (for our usual case of wf = 2w§).
Note that in the limit of @ — 0, we recover the Alfvén wave dispersion relation:

A2 =1+ Q/Q + v} o] ~ 1+ QL) QL (18.49)

which we can obtain from equation (18.44).

This low-frequency X-wave is generally referred to as the ‘magnetosonic
wave’. It is clear from our derivation why this is so. Unlike the shear or torsional
Alfvén wave, this wave—sometimes also referred to as the ‘compressional
Alfvén wave’—does have a finite k-u;, and so ‘compresses’ the plasma. Again,
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Figure 18.4. Dispersion relation for the magnetosonic wave in the cold plasma limit,
with ? chosen to equal 2.

since plasma is ‘stuck’ to the field lines at the lowest frequencies considered here
(w K S2.), the magnetic field is also compressed. The wave propagates across
the magnetic field, alternately compressing and expanding it like the pressure in
a sound wave, thus the name ‘magnetosonic’. If the plasma has finite pressure,
this wave is affected by ‘warm’ plasma terms, and its phase velocity increases.
To understand this better, we will next calculate the dispersion relation for Alfvén
waves in the very low-frequency limit, using the ‘warm plasma’ dielectric tensor.
This will permit us to derive results for arbitrary angle of propagation, 8, so we
will also get a look at the low-frequency limit of the shear Alfvén wave.

18.6 LOW-FREQUENCY ALFVEN WAVES, FINITE T, ARBITRARY
ANGLE OF PROPAGATION*

To study Alfvén waves in the low-frequency limit, (@ <« ), including
warm-plasma effects, we will follow the general prescription developed at the
beginning of this Chapter, specialized for low frequencies. First we need to find
the conductivity tensor . To do this we recast equations (18.3), (18.7) and
(18.8) as a set of linear equations for the fluid velocities, in a uniform format
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for solution by matrix methods:

fom  K*yT ., ikr

Eg=—-i|— - sin“@ ) uy; — Bouy1 + { — y Tsinfcosb ) u,)
q wq wq
iwm

Ey] = Bouy; — T,uyl (18.50)

ik? k*yT
E; = <l—yTsinecos(9) Uy — 1 (fﬂ - Lcosze) Uzl

wg q wq

where we have not yet specified species. To solve for & we will need the
determinant of the coefficients in equations (18.50), which we will denote A.
We obtain

k*yT k*yT
A =1 (% iy sin20> (% v c0529) (9—@)
q wq q wq q

K2 ? KyT
-1 <—yTsin00056) on iB? (921_ -2 cos20)
wq q

k*yT
~ —iB? (ﬁ - w" c0529> (18.51)

where the final simplification comes from assuming w « €2 and krp < 1
(the corresponding inequalities for electrons being even better satisfied). These
approximations eliminate any differences between the ion and electron E; x By
drifts, with the result that the associated currents precisely cancel. This makes the
dispersion relation for the R and L waves identical, so that in the low-frequency
limit Alfvén waves can be viewed as either linearly or circularly polarized at
8 = 0. As we will see, in the case where 8 can take on any value, it will be
advantageous to consider linear polarization.
Solving for u, we obtain

—om\ fom k*yT . k*yT
U A = E; (—) (— _ Y c0329> —1Ey1 By (@_ _Xy cos29>
q q wq

wm k? .
—E,|— —y T'sinfcosf
q wq

q wq
m  k*yT k2yT

- Ey [(w—— - —y—sin29> (ﬁ - cos29>
q wq q wgq

KyT . . ko
- sinfcosf +1E, 1By | — y T'sinfcosf
wqg wq
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wm k? . ) K? .
unA =—Ey | — } | —yTsinfcosd ) — iEy; By | — y T'sinfcosf
q wq wq
k*yT
- E, [(ﬂ) (ﬁ - Lsinze) - Bg] . (18.52)
q q wq

Next we will use j = Tngqu = g - E and € = €I + ig/w to obtain the
dielectric tensor. However, at this point we will explicitly form the sum over
species. From our previous work, we will assume that w/k ~ va. If we assume
Bi(= miT;/(B?/2u0)) <K 1, and Be(= n.T./(B?/2u0)) > m/M, then we can
deduce v;; K va and v > va. We will also assume S, < 1, resulting in
Cs K va, Bi>m/Mand €] = ¢+ noM/Bg > €p. These assumptions will
simplify the mathematics.

Problem 18.6: Prove that if 8; < 1 and 8. >> m/M, then v;; « vy and
Ure > Va.

We find the following components for the low-frequency warm-plasma
dielectric tensor:

nioM ~ nioM
B} ~ B}

o —e =ZM k%y Tsinfcosd

¢T TP T & B2 (wPm — k2yTcos?8)
_ nioM k%y;T;sinfcosd neom (sind\ _ noM k*yivZ;sinfcosd
- B? ( oM >— B} (cos&) B? w?

nom
exx=€0+§ F’:Eo-l- exy=eyx=0
3 0

s

e +Znom o’m—k*yT noM . k2y,v?;sin’9
w0 — B2 w?m —k?yTcos?0 ~ B} w?

X nog  k*yTsinfcosd
€y = —€py = — —
e 2 IZ @By (w*m — k%y Tcos?0)

8§

Nege [ sind _nie [ k*y;v2sinfcosd Nege w?’sind
~ — )i ] -i _
wBy \ cosh wBy w? wBy \ k2y,v2.cos8

2 2 2
ng nee nie
€,, ™ € — = €g + -
¢ Z w?m — k?yTcos?8 k2y.T.cos20  w?M

ne.e?/m
T k2yeul.cos29’

(18.53)

To derive €,,, we used M >> m. For ¢,, = €,,, the currents associated with
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the ion and electron E; x B drifts canceled. For €,, = €,,, we used §; > m/M.
For €y, we used M > m. For €,,, we used B > m/M. In all cases, we have
gone to first order in (vy;/v4)? and in (Va/Vie)?.

If we now put the wave equation, equation (18.30), into a dimensionless
form

| W uoe/k> — X =0 (18.54)

we can easily evaluate the order of each term in the matrix, assuming w/k ~ va,
as follows:

xx term:
O(w*tho€xs / k2 — cos?6) = 1.

Xz, ZX terms:

O(w? to€x; / k? + sinfcosh) = O(w? o€,/ k? + sinfcosh) = 1 (with the plasma
term of order (vm/vA)z).

yy term:
O(w? o€,y /k* — 1) = 1 (with a correction term of order (vy;/va)?).

yz, zy terms:

O(a)z,uoeyz/kz) = O(wzuoezy/kz) = ./w (with correction terms of order
(Qc/w)(Wi/va)? and (Qc/w)(Va/vee)?).

2z ferm:
O(w? o€,z k2 — sin?0) = (Q/w)*(va/Cs)? (with a correction term of order
unity).

Now we can evaluate the order of each of the terms that make up the
determinant:
O[(xx)(¥y)(z2)] = (S/w)*(va/Cs)? (with a correction term of order (Q/w)?).
O[—(xz)(¥y)(zx)] = 1 (with correction terms of order (v,;/va)?).

O[—(xx)(zy)(¥2)] = (S /w)? (With correction terms of order (2./w)?(v.;i/va)?
and (Q/®)2(Va/vie)?).

Clearly the second term in the determinant can be neglected compared with
the others. Thus the dispersion relation we are seeking can be written

(@ o€xx /K = cOS*0) (@ oy /K — 1) (@ proe;/ K — sin’0)
— (@ 1o/ k*) €y €] = 0. (18.55)
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Setting the first term in parentheses to zero gives us the linearly polarized shear
Alfvén wave in the low-frequency limit:

@ = kvacosh = kyva. (18.56)

This also implies that the only non-zero electric field is in the x direction, giving
rise to a divergence-free y-directed E; x By drift, since k points only in the x and
z directions. Equation (18.56) is the generalization of the low-frequency shear
Alfvén wave to arbitrary angle of propagation. At low frequency, the non-
compressional nature of the wave is preserved in this linear polarization. With
our approximation of kr;, << 1, no warm-plasma effects are observed.

Setting the term in square brackets in equation (18.55) to zero will allow
finite E, and E,. The E, field gives rise to compression through the x-directed
E, x By drift. If there is any finite &,, there will be a density gradient along By.
The nonzero E, arises because v 3> vp 3> v, so the ions cannot flow down
the density gradient, and the electrons establish a Boltzmann distribution along
By, with a resulting E,. Due to the large size of ¢,,, this electric field is much
smaller than E,. The dispersion relation for this compressional mode to lowest
order is

w? g nigM |- k? Vit 2;sin’0 —1 W’y nege?/m — sin28
k? B2 P k2 k2y.v2.cos?0

w ;LO eoe 2 sin%
k* B2 cos?0’

(18.57)

If we neglect the final sin%0 on the left-hand side, since it is small by a factor
of (Cs/va)*(w/ )2, we can greatly simplify this expression:

w?po nigM . k*yivl; 2 sin%@ . [oneomyevi,sin’6
k> B2 w2 - B?

w? L k*y;vl;sin’0 B? + myevd,sin’d
w2 "~ ponioM M

2
w
7= vi + (1vd + 7CZ) sin0
Here C? = T./M. When 6 = O there is no plasma compression, and finite
temperature plays no role in this mode, as we observed previously when we
examined the Alfvén waves propagating parallel to By. Note that the phase

velocity is independent of angle in a cold plasma, but increases as the wave
points away from the magnetic field in a warm plasma. This is because
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bending the magnetic field lines does not also store energy in the plasma
pressure the way compressing them does. It is even clearer now why this
mode, the compressional Alfvén wave, is also called a ‘magnetic + sound’
= ‘magnetosonic’ wave. The proper values to use for y. and ¥ depend on
subtleties like the precise angle of propagation of the wave relative to By (the
slightest angle away from perpendicular allows the electrons to be isothermal,
¥. = 1, since the phase velocity is assumed to be small compared to the electron
thermal speed). The wave frequency relative to the ion—ion and electron—electron
collision frequencies also plays a role in determining 3 and ..

18.7 SLOW WAVES AND FAST WAVES

It is interesting to see how the shear Alfvén L- and R-waves transform into the
magnetosonic wave as 8 goes from 0 to /2. The R-wave, with its resonance
at w, transforms into the magnetosonic wave, with its resonance at the lower
hybrid frequency wy, (remember that resonances, unlike cutoffs, vary with 6);
this branch is sometimes called the ‘fast wave’, except near resonance where
k — oo and its propagation slows. The L-wave, with its 8 = O resonance
at ., maintains the non-compressional character of a shear Alfvén wave, and
disappears into the w = 0 axis as 8 goes from 0 to 7/2, and so it is sometimes
referred to as the ‘slow wave’. In the lowest frequency range, w « €, these
waves are best classified as two linearly polarized modes, compressional and
shear. In the cold-plasma limit, the compressional wave obeys w = kv, and the
shear wave obeys w = kjv4.

Problem 18.7: Show that in the limit v « ., and T = 0, there are
two linearly polarized Alfvén modes, one with @ = kv, and the other with
w = kjva. Show that the fluid flows give rise to plasma compression in the
first case, while in the second case they do not. Work directly from the
cold-plasma dielectric tensor, equation (18.16). Can you come up with
a physical explanation for why the shear Alfvén wave propagates more
slowly as k, decreases?

In general, for a given wave frequency, w, and a given set of plasma
parameters, (w;, wp, m/M), and angle of propagation, 6, there are at most two
cold-plasma waves with distinct values of k. As 6 varies, the values of k never
coalesce, so a distinct branch with a smaller k can be identified as the ‘fast’
wave, while the branch with the larger k is always the ‘slow’ wave. At 8 = 0,
these branches are the R- and L-waves, and at & = /2 they are the O- and
X-waves, which we have been studying. The identification of the R-, L-, O-
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and X-waves as ‘fast’ and ‘slow’, and the continuous interconnection of the O-
and X-waves at 8 = m/2 with the R- and L-waves at 8 = 0, as 6 varies, depend
both on w and on the plasma parameters.

Finally, it is appropriate to remark on the practical importance of the
low-frequency resonances we have just examined. We found earlier that the
shear Alfvén L-wave has a resonance at w = ., and we have now seen
that the compressional Alfvén wave has a resonance at w,. These resonances
are especially important for fusion applications, because plasma heating is a
necessary element in almost any fusion experiment. High-power microwave
sources in the frequency range of tens to hundreds of gigahertz are difficult to
produce, because the components of such sources generally need to be small but
high-powered. On the other hand, high-power systems in the tens to hundreds of
megahertz frequency range are readily available, and have been commercialized
for communications applications. Thus heating at the €, or wy, resonances is
attractive for very practical reasons, even though the physics is more complex
than resonance heating at w or the upper hybrid frequency, wy. The propagation
of the waves to the resonance region is a complex issue in real geometry, and
the heating mechanism at the resonance can be delicately dependent on plasma
parameters. This is an active area of theoretical and experimental plasma physics
research.

Summarizing what we know about waves propagating in a cold plasma
with k L Bg:

O-Mode (E; L By, k || By)(1 pass band)
w > w, high-frequency pass band
Vp—>C a8 w—> X0

X-Mode (E; L By, k | Bo)(3 pass bands)
w > wr high-pass region of X-mode
Vp—>C a8 w—> X0

w < wy, mid-pass region of X-mode
w>w, vp=Cc at w=w,

w < wy compressional Alfvén wave, or magnetosonic wave
vp—>vs a w0

In the frequency range w < 2, the Alfvén wave divides conveniently into
two linear polarizations which are preserved as the angle of propagation varies.
The shear Alfvén wave propagates with w = kjva, and the compressional Alfvén
wave propagates with @ = kva, independent of angle. Warm-plasma effects
accelerate the compressional wave when 8 # 0.
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The cutoffs for k || Bo and k L By, in order from low frequency to high,
are wy, wy, wr. Cutoffs do not vary with 6. The resonances at 6 = 0 or /2
are 2, wn, W, wn (and for the Langmuir oscillation, w; is both a cutoff and a
resonance), but the resonances do vary with 6.

Problem 18.8: Show that the lower hybrid resonance of the X-wave is
purely electrostatic.

Problem 18.9: Use COLDWAVE to explore the variations of the all the
resonances with 6. Do both the case w, = 2w, and also the case
w. = wp/2. Plot each resonance frequency versus 6. (Be sure to explore
the region near 6 = 90° that connects to the ion-cyclotron resonance at
# = 0°. This region is sometimes called the Alfvén resonance, since it is
decoupled from the cyclotron motion.)

There are many interesting and practical aspects of waves in plasmas that
are impossible to treat in an introductory text. For a more complete overview
of this field, we recommend T H Stix (1992 Waves in Plasmas New York:
American Institute of Physics).
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Chapter 19

The Rayleigh-Taylor and flute instabilities

In , we learned that magnetohydrodynamic plasma equilibria must
be determined self-consistently, i.e. the presence of currents flowing in the
plasma modifies the magnetic configuration in which the plasma rests. A static
magnetohydrodynamic equilibrium (plasma fluid velocity u = 0, hence electric
field E = 0) occurs when the plasma pressure gradients are balanced by magnetic
(j x B) forces.

However, even if a magnetohydrodynamic equilibrium exists in some
particular case, the lack of plasma stability can lead to the spontaneous generation
of E fields and associated plasma velocities u. For if the plasma is disturbed
slightly, its motion can deform the magnetic field in such a way as to produce
magnetic forces that tend to amplify the original disturbance. This type of
phenomenon is called a ‘magnetochydrodynamic (MHD) instability’.

Because of the complexity of the magnetohydrodynamic equations, we are
generally only able to treat analytically the case of linear stability, i.e. stability
against infinitesimally small disturbances, in relatively simple geometries. For
spatially uniform plasmas, infinitesimal perturbations will generally have a wave-
like spatial structure. In such cases, as was discussed in a plane
wave with a single wave-vector k will generally have a single frequency w.
Thus, for a uniform plasma, this plane wave will be a ‘normal mode’. For
non-uniform plasmas, such as those considered in the present Chapter, it will
be necessary to find the ‘eigenfunctions’, describing the spatial structure in the
direction of non-uniformity, of the normal modes of perturbations, i.e. the modes
which oscillate (or grow) with a single (possibly complex) frequency w.

The theory of magnetohydrodynamic stability has been developed
rigorously and applied analytically and numerically for a variety of plasmas
using a variational principle, known as the ‘MHD energy principle’. The MHD
energy principle was formulated by I B Bernstein, E A Frieman, M D Kruskal
and R M Kulsrud (1958 Proc. R. Soc. (London) A 744 17). The energy principle
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lies outside the scope of this book, however. Rather, we will limit ourselves to
a simple configuration for which the normal modes can be obtained explicitly,
and we will then use general arguments to extend our results qualitatively to
other configurations.

19.1 THE GRAVITATIONAL RAYLEIGH-TAYLOR INSTABILITY

Perhaps the most important MHD instability is the Rayleigh-Taylor (or
‘gravitational’) instability. In ordinary hydrodynamics, a Rayleigh-Taylor
instability arises when one attempts to support a heavy fluid on top of a light
fluid: the interface becomes ‘rippled’, allowing the heavy fluid to fall through
the light fluid. In plasmas, a Rayleigh—Taylor instability can occur when a dense
plasma is supported against gravity by the pressure of a magnetic field.

The situation would not be of much interest or relevance in its own right,
since actual gravitational forces are rarely of much importance in plasmas.
However, in curved magnetic fields, the centrifugal force on the plasma due
to particle motion along the curved field-lines acts like a ‘gravitational’ force.
(Expressed differently, as we saw in andlzl, the electron and ion
drifts due to magnetic-field gradient and curvature (VB and curvature drifts)
are similar to the particle drifts that arise from a gravitational field (gravitational
drift).) For this reason, the analysis of the Rayleigh-Taylor instability provides
useful insight as to the stability properties of plasmas in curved magnetic fields.
Rayleigh—Taylor-like instabilities driven by actual field curvature are the most
virulent type of MHD instability in non-uniform plasmas.

y ?prvp

S0 Plasma o

> X

# ¢ Vacuum QB
g vB

Figure 19.1. An equilibrium in which a plasma is supported against gravity by a magnetic
field.

To treat the simplest case, we consider a plasma that is non-uniform in
the y direction only and is immersed in a magnetic field in the z direction. To
be specific, we suppose that the density gradient Vp is in the y direction and
that the gravitational field g is opposite to it, i.e. in the negative y direction.
This corresponds to the case of a dense plasma supported against gravity by a
magnetic field, as shown in Figure 19.1. Although Figure 19.1 suggests that
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there is a sharp boundary between the plasma and the vacuum, this is only
one possible case and is used here primarily for illustration; the density ‘profile’
0o(y) may, in practice, be a smoothly increasing function of y. For the purposes
of our present analysis, we will assume that the density has an exponential shape
in y, ie.

Po(y) o exp(y/s) (19.1)

where s denotes the density-gradient ‘scale length’. The plasma is bounded by
conducting walls at y = 0 and y = h. This is illustrated in Figure 19.2.

' Conducting Wall
h

PolY)

Figure 19.2. The profile of plasma
0 > mass density po(y) between conduct-

Conducting Wall Poly) ing walls at y = 0, A.

The equilibrium situation has uy = 0, and pg, By and py functions of
y alone. (Here, the subscript ‘0O’ denotes an equilibrium quantity.) The
pressure-balance condition (Chapter 9), including an additional gravitational
force, requires that '

f + By + =0 (19.2)
3y Po 20 Pog = .
where g is the magnitude of the gravitational acceleration, i.e. g = —g¥. From

equation (19.2) and by referring to Figures 19.1 and 19.2, we see that the field
strength By must be larger in the ‘vacuum’ region than in the ‘plasma’ region,
both to support the pressure gradient and to balance the gravitational force,
implying that 3By/dy < O.

We now embark on a linearized small-amplitude stability analysis of this
equilibrium. We suppose that the plasma equilibrium is perturbed in some way,
so that all quantities (densities, fields, etc.) differ from their equilibrium values
by infinitesimal but non-zero amounts. However, we neglect all products of two
or more infinitesimal quantities (linearized analysis). Unlike the equilibrium, the
perturbations will vary in time. For linearized equations, the three types of time
dependence that can arise for a perturbation quantity y can all be expressed in the
form ¥ o exp(—iwt), where a real value of the ‘frequency’ @ will correspond
to an oscillating perturbation, an @ value with a positive imaginary part will

Copyright © 1995 IOP Publishing Ltd.



314 The Rayleigh-Taylor and flute instabilities

correspond to an exponentially growing perturbation (instability), and an w value
with a negative imaginary part will correspond to a damped perturbation.
For an equilibrium that is spatially uniform in some direction, say the
x direction, the spatial eigenfunctions of the linearized system of equations will
be sinusoidal in x, i.e. they can be expressed in the form ¥ « exp(ikx), where k
is the wave-number. If the equilibrium is not only uniform but also infinitely long
in the x direction, then all real k values are allowed. Thus, stability problems of
this kind are generally analyzed by assuming that perturbation quantities vary,
for example, like
¥ o Y (y)exp(ikx — iwt) (19.3)

for some complex @ to be determined. If w turns out to be imaginary (with a
positive imaginary part), the system can be said to be ‘unstable’.

Since the particular equilibrium under investigation here is uniform and
infinitely long in the x direction, we adopt precisely the above form for
all perturbation quantities. Moreover, the dynamics of the Rayleigh-Taylor
instability is purely two-dimensional: there is no variation at all (equilibrium or
perturbations) along the magnetic field (z direction). Thus, while a more general
perturbation would have the form

¥ & ¥ (y)expliksx + ik,z — iwt) (19.4)

we may take k, = O in this particular problem. In all cases, the eigenfunctions
¥ (y) are to be determined by finding solutions that correspond to normal modes,
i.e. perturbations that have a single (complex) frequency w.

Accordingly, we are to investigate perturbations of the equilibrium shown
in Figures 19.1 and 19.2, in which all quantities (densities, pressures, fields and
so on) are of the form

f = fo(y) + (yexplikx — iwt) (19.5)

where the subscript ‘1’ denotes small perturbations, and where we have
suppressed the suffix in k,, writing simply k for the x component of the k-
vector. Such solutions represent wave-like perturbations of the plasma—vacuum
interface, as illustrated in [Figure 19.3, If the frequency w is real, the wave-like
perturbation travels in the x direction. The wave-like perturbation is created by
the periodic upward and downward (i.e. in the y direction) motion of plasma
elements: the plasma elements themselves do not need to move significantly in
the x direction. (The situation is exactly analogous to propagating water waves,
which are caused mainly by the upward and downward motion of the water,
rather than by any lateral motion of the water, so long as the wavelength is
short compared with the water depth.) If the w value is purely imaginary, the
wave-like perturbation grows in amplitude, but the wave pattern does not move
in the x direction.
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Motion of. ’

plasma Motion of wave

pattern if Re >0

Figure 19.3. A wave-like perturbation of the plasma-vacuum interface shown in
Figure 19.1.

An important simplification results from noting that, for this type of
perturbation, the field lines remain straight even in the perturbed state. This
is intuitively obvious from our general result that plasma elements initially on
some given field line remain on the same field line in any ‘ideal’ (i.e. infinite-
conductivity) magnetohydrodynamic motion. For, if plasma elements simply
move up or down in a wave-like pattern that extends uniformly to infinity in
the z direction, then there is no way in which the field lines can become bent.
The same result may be obtained formally by examining each component of the
linearized version of the usual combination of Faraday’s law and the idea] MHD
Ohm’s law, namely

dB,

o = V x (u; X Bo) = (Bo: V)u; — (uy - V)By — Bo(V - u;)  (19.6)
where we have dropped a term in V - By from the right-hand side. (Note that,
in this case, the plasma velocity ug is zero in the equilibrium and has only a
perturbed value, denoted by u;.) If we examine the x and y components of
equation (19.6) we see that, in each case, all three terms on the right-hand side
vanish identically. The first term on the right-hand side always vanishes since
By -V = By(38/3z) = 0. The x and y components of the second and third terms
vanish because Bg has only a z component. Thus, no components B, or B, can
arise, and the field lines remain straight.

For straight field lines, the linearized perturbed fluid equation of motion is
simply

du ByB
Po-a—1=Plg—V(P1+ - “>. (19.7)
t Ho

Here we have linearized the magnetic-pressure perturbation, i.e. (B2), = 2B, B,;.
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Both x and y components of this linearized equation of motion provide useful
information. However, since we do not at present have much additional
information about either p; or B,j, it is convenient to eliminate these two
quantities by taking the z component of the curl of the equation of motion,
i.e. operating on both sides of equation (19.7) with the operator Z -+ Vx. This
corresponds to taking d/9x of the y component and subtracting 8/9y of the
x component, eliminating the entire gradient term on the right-hand side, since
the curl of a gradient vanishes. What remains is

.. d .
—iw (1kpouy - 5(/)0%)) = —ikpig (19.8)

where we have dropped the subscript ‘1’ from the velocity components.
Let us, for the moment, suppose that the plasma motion is incompressible,
ie.

9
0=V -u =iku;+——auy
, Y (199)
i du,
Uy = ——.
Tk ay

(This assumption replaces the adoption of an adiabatic or isothermal equation
of state. Its validity is only approximate, but will be verified later after we have
completed our calculation.) With this assumption, the density perturbation can
be obtained from the continuity equation, as follows:

a
Ef’tiﬂ,] Voo =0 (19.10)
giving
: 3P0 Poly
—iwp = —u, 5 ==
_ potty (19.11)
! iws

the latter for our particular form of pg(y). Substituting from the continuity
equation (19.11) for p;, and the incompressibility relation (19.9) for u, into the
equation of motion (19.8), we obtain

1 3 du, 2 g
—_— — |-k {1+ — =0. 19.12
Po By (po dy ) ( * swz) “ 112

This is a second-order differential equation for a single spatial variable,
uy(y), as a function of an unknown scalar quantity w, which can be solved
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once the appropriate boundary conditions are specified. Since the differential
equation is homogeneous, it will be possible to satisfy two boundary conditions
only for some discrete set of ‘eigenvalues’, which will determine the allowed
set of values for w. As we have already indicated in Figure 19.2, we suppose
that the plasma is bounded above and below by conducting walls, taken to be
at y = 0 and y = A. (A conducting wall cannot have any E field parallel to its
surface, and thus the perpendicular component of the plasma velocity must also
vanish. In this sense, the wall is a ‘rigid’ boundary in regard to fluid motion.)
Thus, the boundary conditions are

uy =0 at y=20,h. (19.13)

By design, we chose a form for py(y) for which the differential equation can
be solved analytically. By using an integrating factor exp(—y/2s), discrete
solutions (‘eigenfunctions’) of equation (19.12) may be found of the form

uy(y) = sin (_m;_y) exp (——) (19.14)

for all integer values of n. The ‘eigenvalues’, which for equation (19.12) will
give the allowed values for the quantity g/(sw?), are given by the relation

1 nm?

2 gyN__* _nmrr
k (1+Sw2)_ TP (19.15)

Problem 19.1: Verify equation (19.15) by direct substitution of
equation (19.14) into equation (19.12).

For the case where g and s are both positive, as they are for the configuration
illustrated by Figures 19.1 and 19.2, we see immediately that there are no
solutions unless w? is negative, corresponding to w being pure imaginary.
Solving for w, we obtain

1/2
(8 h2k?
0=+ <En2n2+h2k2+h2/4s2 ' (1916

The solution for w with a positive imaginary part represents an exponentially
growing perturbation, i.e. an instability. The solution with a negative imaginary
part represents a decaying perturbation that is of no interest.

The lowest mode that satisfies our boundary conditions has n = 1. This is
the ‘longest wavelength’ mode in the y direction and is more rapidly growing
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than modes with n > 1. The fastest growing modes tend to be those with the
shortest wavelengths in the x direction, however, i.e. large k values. Indeed,
for all modes with wavelengths in the x direction that are shorter than both the
density scale-length s and the geometric height of the plasma 4, i.e. those with
hk > 7 and ks >> 1, the growth rate y (the imaginary part of w for the growing
n = 1 mode) is given by
y = (g/s)2. (19.17)

The ‘growth time’ y~! = (s/g)!/? is just the time for ‘free fall’ over a distance
s due to the gravitational acceleration g.

If the sign of either g or s is reversed, corresponding to the case of
the plasma density increasing in the direction of the gravitational force g,
the solutions for w are all real. This case is stable, and the eigenmodes are
propagating wave-like disturbances.

1

19.2 ROLE OF INCOMPRESSIBILITY IN THE RAYLEIGH-TAYLOR
INSTABILITY

In the discussion of the Rayleigh-Taylor instability given in the previous Section,
we assumed the plasma flow to be incompressible, i.e.

V.u=0. (19.18)

We will now verify the validity of this approximation.

Physically, incompressibility is a good approximation because the potential
energy of the plasma in the gravitational field is usually insufficient to provide
either the increase in thermal energy that occurs in compression of the plasma,
or the increase in magnetic-field energy that occurs as the magnetic field is
(necessarily) compressed along with the plasma. Let us consider this latter effect,
since it is the more important in a plasma with a low 8 value (p < B%/2u0).

The geometrical configuration is the same as in the previous Section, as
shown in Figure 19.1. As we saw before, the magnetic field lines remain straight,
and no B, or B, components arise. The perturbation in the B, component may
be obtained by combining Faraday’s and Ohm’s laws in the usual manner:

aB
—# =V x (u; x Bg) = (Bo - V)u; — (u; - V)Bg — Bo(V - uy).  (19.19)
Taking the z component gives
aB dB
—a% + (u; - V)By = ~iwB;; + uy—a;" = —By(V - uy). (19.20)

This simply tells us that the magnetic field is convected and compressed along
with the plasma. Henceforth, we again drop the subscript ‘1’ from the velocity
components.
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To relate the energy needed to produce this amount of compression to the
potential energy that is available, we consider one of the individual components
of the equation of motion, say the x component:

3 3 BoB
po=t = —— [ py + =) (19.21)
at ox Ho

This equation balances the forces arising from compression of the plasma
and magnetic field with the accelerating or decelerating flow that drives this
compression. Recall that, in the previous Section, we conveniently eliminated
both p; and B;; by taking 3/8y of this x component of the equation of motion
and subtracting 3/3x of the y component. The assumption of incompressibility
allowed us to use this trick to avoid treating the effects of p; and B,; directly.
Here, we must retain these two quantities and use equation (19.21) in the form

—iwpoux ~ —ik(p1 + BoBy1/ 1o). (19.22)

We now use the adiabatic gas law to find the perturbation in the pressure,
p1. From dp/dt = (yp/p)dp/dt, we obtain
3 . 3
Lt V)po = —ip: + uyaiy“ = —ypo(V -uy). (19.23)
We may now substitute equation (19.20) for B,; and equation (19.23) for p;
into equation (19.22). After considerable rearranging of terms, equation (19.22)
then becomes:

2 2 2 2
i, = (Zﬂ + i) Vot (po+ ﬁ"—) L (1924)
w*\ Po  Polo w*po Ay 2uo

We may simplify the second term on the right-hand side of equation (19.24) by

using the equilibrium relation (19.2). For the eigenfunctions and eigenvalues

described by equations (19.14) and (19.16), respectively, it will then be seen

that the second term on the right-hand side of equation (19.24) has the same

order-of-magnitude as the term on the left-hand side. However, the coefficient

of the first term on the right-hand side of equation (19.24) (for po < Bg /1ko)

is approximately k?B2/w?popo = k?v%/w?. Thus, from equation (19.24), we
obtain the order-of-magnitude relationship:

V~l.l] w2

PN e 19-2
tku, k2v2 (19.25)

where va = By/(popo)/? is the Alfvén speed. Noting that

a
V.u =ikux+—u—y-
dy
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we see that equation (19.25) expresses the neglected quantity (V - u;) as a
fraction of a retained quantity, in this case iku,. This fraction clearly measures
how good the incompressibility approximation is. If the fraction is very small,
the two terms in V - u; must almost cancel, i.e. to a good approximation we
may assume that V -u; = 0. Thus, the incompressibility approximation is valid
whenever

lw?| < k3. (19.26)

Conversely, a flow with finite compression, i.e. in which V . u; is as large as
either of its constituent parts, e.g. iku,, would result in a higher-frequency wave,
whose phase velocity perpendicular to the magnetic field would be comparable
to the Alfvén speed. In the terminology of [Chapter 18, this would be the
‘compressional’ Alfvén wave, or the ‘magnetosonic’ wave.

In the case of an instability, the magnitude of the growth rate will
be a measure of the amount of potential energy available to drive the
compression. For the Rayleigh-Taylor instability, which has a growth rate (see
equation (19.16)) given by

0?| = |y = £ s
s n?? + h2%k2 + h2/4s2

the incompressibility condition, equation (19.26), is valid whenever

2,22
p (NTS 202 1
gs K vA( e + k*s +Z)' (19.27)
Equation (19.27) is least easily satisfied for the longest wavelengths, i.e. the
smallest values of n and ks. Even then, it is satisfied whenever

pgs < pvx ~ B /uo (19.28)

i.e. whenever the gravitational potential energy is much less than the magnetic
field energy. For shorter wavelengths, the approximation is even better.

This agrees with our initial intuitive observation: incompressibility should
be a very good approximation whenever the potential energy that is available
from the gravitational field is inadequate to provide the energy needed for
compression of the magnetic field.

It must be emphasized that the approximate incompressibility of the plasma
is the consequence, for the particularly simple geometry under consideration
here, of the plasma’s inability to compress the magnetic field due to the smallness
of the available gravitational potential energy. Equivalently, the compressional
Alfvén wave, or magnetosonic wave, cannot be excited: the instability arises,
in effect, in the ‘shear’ Alfvén wave in the special case where ky = 0. For
this wave, to minimize the effect of the magnetosonic branch, the perturbation
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quantities B,; and p; are relatively small (although non-zero) and are related
to each other through the equation of motion, e.g. equation (19.21). They
are also both described in terms of a combination of convection and a small
amount of compression, as given in equations (19.20) and (19.23), respectively.
Equation (19.20) expresses the conservation of magnetic flux in our assumed
perfectly conducting plasma which is exact, in contrast to incompressibility,
which is only approximate. We will see below that there are other geometries in
which the Rayleigh-Taylor instability can be driven by expansion (i.e. negative
compression) of the plasma. In these cases, the expansion is just that necessary
to conserve magnetic flux in a plasma that is convecting into a region of reduced
magnetic field. There is still little expansion/compression of the magnetic field,
i.e. still little coupling to the magnetosonic wave.

19.3 PHYSICAL MECHANISMS OF THE RAYLEIGH-TAYLOR
INSTABILITY

As a complement to the fluid picture developed above, the physical mechanism
at work in the Rayleigh~Taylor instability can also be understood in terms of

the gravitational drifts of ions and electrons.
From , we recall that an external force F (such as a gravitational

force F = Mg) perpendicular to a magnetic field B causes a charged particle (in
particular, an ion with charge +e) to drift with a velocity

FxB MgxB
" eB? B
In our case (see Figure 19.1), this gravitational drift is in the negative-x direction,
and has the magnitude vy = Mg/eB. There is also an electron drift in the
opposite direction, but this is much smaller because of the smaller electron
mass.

Suppose a small wave-like ripple should develop on a ‘plasma—vacuum
interface’, as shown in Figure 19.3. The gravitational drift of ions on the plasma
side of the interface will cause positive charge to build up on one side of the
ripple, as illustrated in the depletion of ions causes a negative charge
to build up on the other side of the ripple. Due to this separation of charges, a
small electric field E; develops, and this electric field changes sign going from
crest to trough of the perturbation, again as shown in Figure 19.4. It is apparent
that the resulting E; x Bg drift is always upward in those regions where the
interface has already moved upward, and downward in those regions where the
interface has already moved downward. Thus the initial ripple grows larger, as
a result of E x B drifts that are phased so as to amplify the initial perturbation.

The Rayleigh-Taylor instability can also be understood from an energy
viewpoint, i.e. in terms of the lowering of the plasma’s potential energy in the

vy (19.29)
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Figure 19.4. The mechanism of the Rayleigh~Taylor instability. The ion gravitational
drift leads to charge separation on the plasma-vacuum interface, producing electric fields
and E x B drifts that increase the amplitude of the perturbation.

gravitational field due to the growth of the instability. However, the change in
potential energy is second order in the amplitude of the perturbations. For
the simple case illustrated in Figure 19.3, this second-order change in the
gravitational potential energy can be calculated explicitly. Suppose the plasma
shown in Figure 19.3 has uniform density p and extends from the plasma-
vacuum interface at y = O to some fixed upper boundary at y = 4. Before
the onset of the wave-like perturbation of the plasma’s lower surface, the
gravitational potential energy is simply

/ pgydxdy = pgLh*/2

where the integral over y has been taken from y = 0 to y = h and the
integral over x has been taken over some length L. Now add a sinusoidal
perturbation of the plasma’s lower surface, which may be assumed to take the
shape y = &sinkx, as shown in Figure 19.3. This perturbation satisfies the
incompressibility constraint since the area of the plasma in the (x, y) plane is
unchanged (see Figure 19.3). The plasma fills the region above this deformed
lower boundary, still with uniform mass density, p. The gravitational potential
energy is still [ pgydxdy, but the integral over y must now be taken from
y = Esinkx to y = A and the integral over x may most conveniently be taken
over the length of a full period, L = 2x/k; the gravitational potential energy
becomes

o8 f (#? — E2sinkx)dx /2 = pgL (% — £2/2)/2.

Thus the gravitational potential energy is lowered by an amount pgL£?/4
(second order in the perturbation amplitude £) by the onset of the perturbation.
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When potential energy can be lowered by such a perturbation, so that the energy
released can go into Kinetic energy of plasma motion, this can provide the energy
necessary to drive an instability.

19.4 FLUTE INSTABILITY DUE TO FIELD CURVATURE

Real gravitational forces are generally totally negligible in laboratory plasma
physics: plasmas are much too rarefied for gravity to compete with the strong
pressure gradients and magnetic forces. The importance of the Rayleigh—Taylor
instability lies in the close analogy between gravitational drifts and the V B and
curvature drifts that arise in non-uniform magnetic fields.

In |Chapter 3, we obtained the following expression for the combined V B
and curvature drifts of an ion with charge e in a vacuum magnetic field (which

should provide an adequate approximation to the actual magnetic field in a low-8
plasma without strong field-aligned currents):

M (v  L,\RxB
vi=M (_2_ + v") T (19.30)

where R, is the vector radius-of-curvature (a vector drawn from the local center-
of-curvature to the field line, intersecting the field line normally and pointing
away from the center-of-curvature). By comparing equation (19.30) with the
expression for the gravitational drift given in equation (19.29), we see that the
gravitational drift provides a good model for the drifts in a curved magnetic field,
provided the vectors g and R, are in the same direction, and the magnitude of
g is defined by

= (ﬁ—ﬂz)—l— (19.31)

&= 2 i Rc' :

If we average over a thermal distribution of particle velocities v, and v,
we can write (v}) = (v]/2) = T/M = p/p, which shows that the magnitude
of g should be related to the ion pressure p of a plasma in a curved magnetic
field by )

P
g R (19.32)
Since the thermal velocities of electrons are much larger than those of ions,
both particle species have comparable curvature and VB drifts, whereas the
gravitational drift is important only for ions. The effect of this is that the total
pressure, ions and electrons, should be used for p in equation (19.32).

Thus a plasma in a curved magnetic field can be viewed as having analogous
particle drifts to a plasma in a gravitational field—and therefore a potential
for charge build-up and unstable growth of perturbations. Since the Rayleigh—
Taylor instability arises whenever the gravitational force is directed away from
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the region of maximum plasma density, the corresponding instability of a plasma
in a curved field arises whenever the radius-of-curvature vector is directed away
from the region of maximum plasma pressure, i.e. whenever the plasma is confined
by a magnetic field that is concave towards the plasma.

The growth rate y of the instability can be estimated by replacing g by
2p/pR. in the expression for y given in equation (19.17) and by equating the
scale-length s to the pressure-gradient scale-length, i.e. s™' = |Vp|/p. We
obtain

y & IV pl/pR:)". (19.33)

We reiterate that this instability occurs only if the radius-of-curvature vector is
directed away from the region of maximum plasma pressure, i.e. only if R, and
V p are oppositely directed.

This pressure-driven version of the Rayleigh-Taylor instability, which in
the next Section we will learn to call the ‘flute instability’, is rapidly growing.
The growth time (i.e. y~!) can be estimated by noting that p/p =~ Csz, where
C; is the sound speed in the plasma, giving

y ~ Cs/(sR)'?. (19.34)

Thus, the characteristic growth time is the time it takes a sound wave to traverse
a distance that is the geometric mean of the pressure-gradient scale-length and
the radius-of-curvature.

Problem 19.2: An annular cylindrical plasma, as shown in
is infinitely long in the z direction. It has a purely azimuthal magnetic field

Bg(r), produced mainly by the current I in a central conductor at r = 0.
The plasma pressure p(r) falls to zero on both the inside of the annular
cylinder, r = ry, and on the outside, r = r,, peaking somewhere between
r; and r,. Describe carefully by means of an illustration why you would
expect this plasma to be subject to the Rayleigh—Taylor flute instability.
For simplicity, you may suppose that p « BZ/uo, so that the field is
approximately the vacuum field, B, o r~'. Indicate in your iliustration the
particle drifts that give rise to this instability, and show the form that the
unstable perturbations will take.

19.5 FLUTE INSTABILITY IN MAGNETIC MIRRORS
One configuration that is obviously susceptible to the pressure-driven version

of the Rayleigh—-Taylor instability is the magnetic mirror, in which a cylindrical
plasma with an approximately axial magnetic field is constricted at both ends
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Figure 19.5. Annular cylindrical plasma, infinitely long in the z direction, has a purely
azimuthal field B, (r) produced by the current / in a central conductor at » = 0. See
Problem 19.2.

by regions of higher field strength, as shown in Figure 19.6. In this case, the
curvature of the magnetic field is clearly concave toward the plasma in the central
region. Approximating the plasma as a long cylinder, in which the pressure is
considered to be a function of the radius r, the growth rate of the instability will

be given by
’ 172
v~ (_Zp (r)) (19.35)
PR

where the prime denotes differentiation with respect to r.

Plasma

Coil Coll

Figure 19.6. Plasma equilibrium in a ‘magnetic mirror’ configuration. Note that the
magnetic field curvature is concave toward the plasma in the central region where the
plasma pressure is largest.
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Figure 19.7. Flute-like perturbation of a magnetic-mirror plasma produced by the
Rayleigh-Taylor instability.

This Rayleigh-Taylor instability will produce a rippling of the plasma
surface in the azimuthal direction, and the ripples will extend uniformly along the
length of the cylinder. The form of the perturbation is illustrated in Figure 19.7.
The pressure-driven version of the Rayleigh-Taylor instability is called the ‘flute
instability’ because of the resemblance of the perturbed surface of a quasi-
cylindrical plasma such as this to a fluted Greek column.

Problem 19.3: Consider a cylindrical plasma with an axial field B, that
is made flute-unstable by constricting the ends to form a magnetic-
mirror configuration. Consider a flute instability with azimuthal mode
number m, i.e. a mode in which the perturbations vary as exp(imé).
Use the appropriate expression for the growth rate y to show that the
incompressibility approximation is valid whenever r/R, « m2.

The basic energy reason for the flute instability in a curved magnetic field is
very similar to the energy reason for the gravitational instability. Just as a fluid
supported against gravity can lower its potential energy by perturbations that
push downward in the direction of g, so the thermal energy of a flute-unstable
plasma can be lowered by perturbations that push outward in the direction of R..
That such perturbations produce a net expansion of the plasma, and thus release
thermal energy, can be shown explicitly in the case of a low-8 mirror-confined
plasma, as follows.

We have already seen that there is not enough energy to compress the
magnetic field, but in a low-8 plasma an even stronger condition applies, namely
that the magnetic field is essentially a vacuum field and remains approximately
unchanged even when the plasma pushes outward across this field. However,
the total magnetic flux contained within the plasma, i.e. the quantity [ BdS
integrated over the plasma cross section, must remain exactly constant, and so the
only type of perturbation permitted is that illustrated in Figure 19.7, in which the
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surface of the plasma becomes rippled by ‘filaments’ of plasma moving outward,
while compensating ‘filaments of vacuum’ move inward so as to conserve the
total magnetic flux. The perturbations must be ‘flutes’, i.e. uniform along the
entire length of the plasma, so as to avoid ‘bending’ the magnetic field, which
would require additional energy. To the extent that special effects occur at the
ends of the magnetic mirror which limit the allowed perturbations in this area
(e.g. conducting plates could be placed at the ends of the mirror), then these
effects will have a stabilizing influence; this topic is beyond the scope of the
present discussion. Such effects are required, however, to explain the stability
of the Earth’s magnetosphere.

If the strength of the magnetic field decreases in the radially outward
direction (as it does in the central region of the magnetic mirror, where the field
gradient arises because the field is concave towards the plasma), the rippling
perturbation of the plasma surface that conserves magnetic flux must result in
a small (second-order) increase in the area of the plasma cross section. This is
because the filaments of plasma which move outward are moving into a region
of lower field, and so these cross section areas must increase, relative to the cross
sectional areas of the ‘vacuum filaments’ of equal magnetic flux which move
inward into a region of higher field. This increase in net cross sectional area
results in a corresponding increase in plasma volume. The concave (towards
the plasma) curvature of the magnetic field results in another (second-order)
increase in the plasma volume, because the plasma filaments moving outward
are lengthened slightly, relative to the vacuum filaments moving inward, which
are shortened. For vacuum magnetic fields the gradient and curvature effects
are always additive (corresponding to the V B and curvature drifts always being
in the same direction). The increase in volume, due both to increased cross
sectional area and increased field-line length, corresponds to expansion of the
plasma and a lowering of its thermal energy, thereby making energy available
for the unstable perturbation.

From a single-particle perspective, the drop in perpendicular and parallel
particle kinetic energy associated with moving to lower B and higher R; is
invested in j + E work, as discussed in Section 3.5. This j - E work drives the
instability to higher amplitudes.

Closer examination of the mirror field configuration, however, shows that
there are regions of favorable curvature (convex toward the plasma) near
the ends, in addition to the main region of unfavorable (concave) curvature
at the center. In general, however, in axisymmetric mirror configurations
the unfavorable curvature is dominant. However, non-axisymmetric mirror
configurations have been designed for fusion applications in which current-
carrying rods, first used by M C Ioffe (see Y B Gott et al 1962 Nuclear Fusion
Suppl. p 1042), are placed outside the plasma, parallel to its axis, so as to create
a By field with favorable curvature, i.e. convex toward the plasma. In such
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cases, the combined curvature can be favorable everywhere; indeed the plasma
is located in the region of an absolute minimum in the strength of the vacuum
magnetic field.

The correct weighting of the favorable and unfavorable regions in a ‘simple
mirror’ can be derived as follows. Take cylindrical coordinates (r, 8, z), with
z along the axis of the mirror field. Overall stability will be determined by
the average net angular drift of particles over their complete orbits along the
mirror field from one end to the other. If the sign of this average net angular
drift corresponds to field curvature that is concave toward the plasma, there
will be a build-up of charges on the edges of the flutes which will give rise to
azimuthal E fields that produce unstable growth in the amplitude of the flute-like
perturbations. In the simple mirror geometry, the VB and curvature drifts are
entirely azimuthal in direction, so that the angular drift speed of an individual

particle is given by
do m , v
— = ——— —= . 19.36
"& T eR.B (”" 3 (19.36)

In one complete orbit along the mirror field, the net angular drift of this particle
is given by

vy + v4/2)de

f (v + 1/ (19.37)

chBv”

where we have written dr = d£ /vy, where £ is a length coordinate along the field
line. The particle’s velocity components, v and v, change as the particle moves
along the field line, i.e. are functions of £ in the integral in equation (19.37),
and these changes will be such as to conserve the particle energy W = muv?/2
and the magnetic moment u = mv? /2B.

To obtain the net angular drift averaged over all particles in a filamentary
‘flux tube’, i.e. a thin tube which follows the magnetic field and contains a
given number of magnetic field lines, it is simplest to return to equation (19.36)
and average d8/d: over the velocity-space distribution function, f, and over
a flux tube containing a smali amount of magnetic flux, AJ$. At any point
along this flux tube, its cross sectional area is given by AA = A®/B. The
total number of particles contained in the flux tube is AN = [ ndAd¢. Dividing
equation (19.36) by r, multiplying by the distribution function, f, and integrating
both over velocity space and over the volume of the flux tube, we obtain

de m vﬁ+ vi/2 3
—)=— ———=— fd vdt 19.
AN<dt> Ad>/ TR.B fd'v (19.38)

Equation (19.38) gives the average rate at which the entire population of particles
of a given species in a given flux tube drifts azimuthally in 8 to a neighboring
flux tube. The direction of the drift is opposite for electrons and ions, as expected
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for gradient and curvature drifts, so the contributions from both species to the
drift of charge are additive. Carrying out the local velocity-space integrals in
equation (19.38) and omitting various positive multiplicative factors, we find
that the average angular drift of charge is given by

dé p|+pL
— —ds. 19.
<dt>°(/ rR.B? (19:39)

Adopting the convention that field lines that are concave toward the plasma
have positive radii-of-curvature, while convex field lines have negative radii-of-
curvature, the condition for flute instability is that the integral in equation (19.39)
be positive, i.e. that the regions of positive R. outweigh the regions of negative
R.. The point of inflection, which separates these two regions, has an infinite
R, and contributes negligibly to the integral in equation (19.39).

Unfortunately, the weighting due to 1/rB? in the integrand of
equation (19.39) is unfavorable, in that B is smallest where R is positive.
In general, therefore, the simple mirror is unstable to flutes.

The flute instability in magnetic mirrors was analyzed first by
M N Rosenbluth and C L Longmire (1957 Ann. Phys. 1 120).

19.6 FLUTE INSTABILITY IN CLOSED FIELD LINE
CONFIGURATIONS*

An even simpler stability criterion can be obtained for the case where the plasma
pressure is isotropic, i.e. py = py = p. In this case, the condition for equilibrium
demands that the pressure be uniform along the field, i.e. B- Vp = 0. For a
mirror-confined plasma, this condition can never be satisfied, or else the plasma
would extend infinitely far along the field lines. However, it is possible to create
certain ‘closed field line’ configurations in which each field line closes on itself,
so that the plasma pressure can be exactly constant along field lines. An example
of such a configuration is the ‘toroidal quadrupole’ shown in Eigure 19.8L Here
the plasma entirely surrounds the two coils that produce the magnetic field. (In a
practical situation, the coils must either by supported and electrically fed by leads
that pass through the plasma, or they must be superconducting and supported
magnetically for the duration of the plasma pulse.) From Figure 19.8, it may
be seen that some of the plasma lies on field lines that encircle only one coil,
whereas the rest of the plasma lies on field lines that pass around both coils.
On the inner sides of the plasma which face each single coil, the curvature of
the magnetic field is convex toward the plasma, and this interface is stable to
flutes. On the outer side of the plasma there are regions of both concave and
convex curvature, and so the stability of this interface depends on the appropriate
averaging of the favorable and unfavorable contributions, expressed in the form
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of a criterion that we will now derive. We will do this for isotropic pressure, and
we will assume that the plasma (as in the simple mirror) is axisymmetric, i.e. that
the configuration is symmetric to rotation in 6 about the z axis in Figure 19.8. In
such cases, the pressure can be brought outside the integral in equation (19.39),

which then becomes
d9 x ff dé (19.40)
dr rR.B? )

with instability corresponding to the case where this integral is positive. (The
integral is to be taken along the entire closed field line.)

Current-carrying
conductors :

Field
Lines

Plasma

Figure 19.8. The toroidal quadrupole configuration. The plasma entirely surrounds the
two current-carrying conductors that produce the magnetic field shown. The configuration
is axisymmetric, i.e. symmetric to rotation in 8 about the z axis.

In order to derive an even simpler stability criterion, consider two
neighboring field lines in the same azimuthal plane (i.e. same 6 value) of
an axisymmetric configuration. Examine two infinitesimal elements of these
neighboring field lines bounded by the same two radius-of-curvature vectors, as
shown in[Figure 19.9] The field strengths on these two elements are denoted B
and B + 6B and the (infinitesimal) lengths of the elements are denoted d¢ and
d¢ + 8(d£). For a vacuum magnetic field, we can use Stokes’ theorem to show
that

ffB-d[:f(VxB)-dS=0 (19.41)
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di+8(dR)

Figure 19.9. Two neighboring field lines in a mirror-like configuration with local
radii-of-curvature R, and R. + 8 R.. The configuration is axisymmetric, i.e. symmetric to
rotation in 6 about the z axis.

which, when applied to the infinitesimal closed contour shown in Figure 19.9,
tells us that

Bd¢ = (B + §B)[d¢ + §(d0)] (19.42)

that is,

8B _ _dWH _ SR (19.43)

Here, in the final step, we have used simple geometry to relate §(d¢) to the
perpendicular distance between the two field lines, § R.. Since we want to apply
equation (19.43) at all points along the two magnetic field lines, it is more
convenient to define their separation not by the geometrical distance between
them, § R, which varies along the field line, but by the magnetic flux between
them, which is the same at all points along the field line. A convenient measure
of this is the magnetic flux passing through an annular band obtained by rotating
the element § R, shown in Figure 19.9 by one revolution in 8 about the axis.
Specifically, this magnetic flux is

8® =2nrBSR, (19.44)
so that
8B 5
o5 _ _ ) 194
B 2nrR.B (19.43)
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We can now write equation (19.40) as

do 1 (4B
Yo —— p2 e 19.46
<dt>0( 30 ygBZ (1946)

(omitting the factor 27). Let us now consider the quantity $d¢/B and its
variation between neighboring field lines, such as those shown in Figure 19.9.

We have 5(de
f——de ¢A( ) (1947

End-point variations do not need to be considered in this closed-loop integral.
Using equation (19.43) to relate §(d¢) to § B, we obtain

de 3B
§@— =-2¢—dL. 19.4
3 f 7 (19.48)
Thus, in the limit of vanishing differentials, equation (19.46) reduces to
do d de
— 19.4
<dt> do (19:49)

Thus, the condition for instability, which corresponds to a positive value of
(d6/dt), is that the quantity § d€/B be increasing outward.

This is the simplest form of the stability condition for flute modes in closed
field line configurations: in such configurations an isotropic-pressure plasma
is stable or unstable depending on whether the quantity § d¢/B decreases or
increases away from the center of the plasma; the integral is to be taken
completely around a closed field line. Quadrupole configurations, such as that
shown in Figure 19.8, can be made flute-stable according to this criterion.

The criterion for instability derived here, namely that ¢ d¢/B must be
increasing outward (i.e. in the direction opposite to that of the pressure-gradient
vector), has applicability to a broader class of closed field line configurations than
the axisymmetric (i.e. rotationally symmetric about the z axis) configurations
discussed so far. Indeed, from the fluid viewpoint, this criterion could be
obtained intuitively by considering whether a net expansion of the plasma occurs
(thereby releasing kinetic energy) when flux tubes containing equal amounts of
magnetic flux are interchanged. Consider a thin flux tube containing an amount
3® of magnetic flux. At different points along this flux tube, its area §A is given
by 6® = B§A, and so the volume of the entire flux tube is given by

8V = f&A +dl =6P %dZ/B.

Now consider a ‘rippling’ perturbation of the plasma surface in which a plasma
flux tube moves outward, while a ‘vacuum flux tube’ containing exactly the same
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amount of magnetic flux moves inward; we could call this the ‘interchange’ of
these two flux tubes. If the quantity ¢ d¢/B is increasing outward, the plasma
flux tube will expand as it moves outward, while the vacuum flux tube will
contract as it moves inward. The overall effect will be a net expansion of the
plasma and a reduction in its thermal energy, which then provides the energy
needed to drive the instability.

It is clear from this discussion that these unstable flute perturbations do not
occur only at a plasma—-vacuum interface, but can occur interior to the plasma,
in which case a flux-tube containing high-pressure plasma is interchanged with
a flux-tube containing lower-pressure plasma. In this case, instability will occur
if the quantity §d¢/B is increasing in the direction of lower plasma pressure
(the equivalent of ‘outward’ in the case of a plasma—vacuum interface). As in
the case of the gravitational Rayleigh~Taylor instability, we note that the release
of energy is again second order in a displacement vector £, since it scales as

—(&-Vp)§- V($de/B)).

One possible method for stabilizing the flute instability would be to add
some ‘shear’ to the magnetic field. A magnetic field is said to be ‘sheared’ if
the direction of the field vector rotates as one moves from one constant-pressure
surface to the next. For example, in the quadrupole configuration shown in
Figure 19.8, the addition of a By component (e.g. by placing a current-carrying
conductor along the z axis) would provide magnetic shear. In a sheared magnetic
field, the interchange of two flux tubes cannot occur without ‘twisting’ the field
lines, thereby increasing the magnetic energy. In this case, the energy made
available by plasma expansion must compete with the increase required in the
magnetic energy; this will generally impose a lower limit on the plasma B value
for the instability to be possible.

Even in configurations that are flute-stable according to the ¢d¢/B
criterion, e.g. the quadrupole configuration shown in Figure 19.8, there are
generally regions along each field line where the magnetic curvature is
unfavorable, i.e. concave towards the plasma. Although the flute instabilities
discussed in this Chapter all extend uniformly along the entire length of the
field lines (hence their name ‘flutes’), it is clearly possible, in principle, for
instabilities with the same driving mechanism to arise that are localized to finite
regions of unfavorable curvature. Such instabilities will cause the plasma to
‘balloon’ outward along these finite portions of field lines. Conservation of
magnetic flux then requires that the field lines ‘bend’, and this bending will
generally increase the magnetic energy. As in the case of a sheared field, the
energy made available by plasma expansion must compete with this increase
in magnetic energy, and the instabilities—called ‘ballooning instabilities’—also
arise only above some threshold g value.
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19.7 FLUTE INSTABILITY OF THE PINCH

Another configuration that is obviously susceptible to flute instabilities is the
cylindrical ‘self-pinched plasma’ (see ). Here, the magnetic field is
produced by an axial current flowing in the plasma. The magnetic field is
azimuthal (Bp) and its radius-of-curvature is simply the radial coordinate r.
Clearly, the field-curvature is always unfavorable (concave towards the plasma).
In this case, the flute perturbations are azimuthal, as shown in Figure 19.10.
From the shape of the perturbed plasma, this instability is sometimes called the
‘sausage instability’.

By

Plasma
= Current

Figure 19.10. The flute, or ‘sausage’, instability of a self-pinched plasma.

The growth of the sausage instability is very rapid, since the radius-of-
curvature of the field lines is effectively just the radius of the pinch column.
From our previous formula, we estimate the growth rate to be

N\ 1/2
= (-gﬂ) (19.50)

where a prime denotes again a derivative with respect to the radial coordinate .

19.8 MHD STABILITY OF THE TOKAMAK*

Before ending this Chapter, it may be useful to discuss very briefly the stability
of the tokamak in the ‘ideal MHD’ model which has been used here to derive
the Rayleigh-Taylor and flute instabilities. The tokamak configuration in the
‘cylindrical approximation’ was introduced in Chapter 9 and is illustrated in
Figure 9.6. The actual tokamak geometry is toroidal, and the main magnetic
field (corresponding to B, in the cylindrical approximation) is toroidally directed,
with the smaller magnetic field (By in the cylindrical approximation) directed
azimuthally the short way around the torus. The ‘cylindrical tokamak’ would
clearly be vulnerable to flute instabilities, because the helical magnetic field
produced by the combination of the B, and By fields has its curvature concave
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toward the plasma. On the other hand, the field also has considerable magnetic
shear, which we have seen to be a stabilizing effect. In the actual toroidal
geometry, however, it turns out that the effect of the additional curvature
introduced by ‘bending’ the cylinder into a torus generally dominates over the
effect of the helical curvature in regard to the stability of flute modes. For a
torus with major radius R, the toroidal curvature is favorable (convex toward
the plasma) on the small- R side of the plasma and unfavorable (concave toward
the plasma) on the large-R side. When a calculation is carried out for the actual
toroidal geometry, the ‘weighting’ of the small-R side turns out to be slightly
greater than the weighting of the large-R side, so the net effect of the toroidal
curvature is stabilizing. For the net favorable toroidal curvature to exceed the
unfavorable helical curvature (in the case of a tokamak of approximately circular
plasma cross section), it is necessary only that g = rB,/RB, > 1. In practice,
the g value in a tokamak typically rises from about unity at the center of the
plasma (r = 0) to three or higher at the plasma edge (r = a). Thus, this
condition is usually satisfied in the tokamak, so that pure flutes are stable.

Following any helical field line around the torus, it is clear that the field line
will alternately lie on the small-R and large-R sides of the plasma. Thus, as in
the case of the closed field line quadrupole configuration shown in Figure 19.8,
there are regions of favorable curvature and regions of unfavorable curvature
on each field line; as we saw, this gives rise to the possibility of ‘ballooning’
instabilities. Since the field line makes exactly g transits the long way around
the torus for each transit the short way around, these regions of favorable
and unfavorable curvature are a distance of order gR apart along a field line.
For a displacement &, the energy released per unit volume by a flute-like
instability is of order p'&é2/R, whereas the energy per unit volume needed to
bend the magnetic field over a distance of order gR (field-line bending being
unavoidable for a ballooning instability, as distinct from a pure flute) is of order
(B?/2140)(§?/g*R?). Thus, ballooning instabilities will arise in tokamaks only
when p'/R > B2?/2uoq*R?, i.e. only for B > Buit ~ a/q*R, where we have
estimated p’ ~ p/a. This result should be taken only as a rough order-of-
magnitude estimate: in practical cases, tokamaks tend to be stable to ballooning
instabilities up to 8 values in the range 3—6%.

The tokamak can, however, exhibit an entirely different type of MHD
instability, which is driven by the magnetic energy that is available in the
tokamak magnetic field, rather than by the thermal energy that is available
from plasma expansion. This instability, which can arise also in the cylindrical
tokamak approximation, is called the ‘kink’, and it takes the form of a helical
displacement of the plasma cylinder. The instability arises whenever such a
perturbation lowers the magnetic energy of the B, field—the field component
that is produced by currents in the plasma itself. In practice, kink instabilities
tend to arise only at relatively low g values. We will not pursue them further
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here, except to note that kinks are closely related (in regard to their source of
energy) to a more slowly growing, but also more pervasive, instability that arises
when resistivity is added to the MHD model. This instability, which occurs in
many types of laboratory and naturally occurring plasmas in magnetic fields,
is discussed in the next Chapter. For simplicity, we choose there to consider a
simpler magnetic configuration (a plane current slab), which we find to be stable
in the ideal MHD model.

The reader who is interested in pursuing further the topic of MHD
instabilities in tokamaks is referred to J Wesson (1987 Tokamaks Oxford:
Clarendon Press), or to R B White (1989 Theory of Tokamak Plasmas
Amsterdam: North-Holland).
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Chapter 20

The resistive tearing instability*

In the previous Chapter, we analyzed an important instability, the Rayleigh—
Taylor (or flute) instability, which can arise in an ideal magnetohydrodynamic
(MHD) plasma, i.e. a plasma in which the electrical resistivity is assumed to be
zero and where the additional terms that enter in the ‘generalized’ Ohm’s law are
also negligible. For such cases, as we have seen, the plasma and the magnetic
field are ‘frozen’ together. We found the flute instability to be very rapidly
growing, with a growth time comparable to the time it takes a sound wave to
travel a distance that is the geometric mean of the size of the plasma and the
radius-of-curvature of the magnetic field. Since sound waves travel rapidly in
high-temperature plasmas, such times are very short.

Even if a plasma is not subject to MHD instabilities, to be certain that it
is completely stable we must also examine non-MHD perturbations that have
the potential to grow at much slower rates. We have seen that the ideal MHD
approximation breaks down for very long time-scales: eventually, the plasma
will ‘leak’ across the magnetic field or, equivalently, the magnetic field will
‘diffuse’ into the plasma. Thus for slow plasma phenomena, non-zero resistivity
must be included in the stability analysis, specifically in the plasma Ohm’s law.
Although resistivity often acts to damp out perturbations, there are important
cases where resistivity is actually destabilizing. Indeed, there is an entirely
new class of plasma instabilities, of which the most important is the ‘resistive
tearing instability’ to be discussed here, that arise only in the presence of
resistivity. The reason why resistivity can be destabilizing is that it frees the
plasma from the constraint that it remain ‘frozen’ to the magnetic field, thereby
allowing qualitatively different types of plasma perturbations. In particular,
these ‘resistive’ perturbations can more effectively draw upon the magnetic
energy generated by currents in the plasma itself, which is available to drive
instabilities.

Intuitively, one might expect that ‘resistive instabilities’ would grow
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exceedingly slowly, specifically on time-scales comparable to the characteristic
times for resistive diffusion of plasma across a magnetic field. If so, they would
be of little interest, since most plasma equilibria are changing on such time-
scales anyway, and the occurrence of a comparably slowly growing mode of
instability might not make much difference in practice. However, some resistive
instabilities, certainly including the tearing instabilities to be considered here,
grow much faster than this. The reason is that the instability is able to take
whatever form most efficiently releases the magnetic energy on which it feeds.
Just as the flute instability was found to be driven by the non-uniformity of
the plasma pressure (i.e. by the plasma thermal energy), the resistive tearing
instability in its simplest form is driven by various types of non-uniformity of
the magnetic field (i.e. by the ability of the magnetic energy to find a path to a
lower energy state). It is this ‘pent up’ energy in the magnetic field, trying to
find a way to relax to a lower energy state, that drives the tearing instability. The
growth rate can be larger than one might intuitively expect because the resistive
diffusion of plasma across the magnetic field occurs on a much shorter spatial
scale-length than the plasma size and yet still can release significant amounts
of magnetic energy; because of the shorter scale-length, the resistive diffusion
can proceed quite quickly. The theory of resistive tearing instabilities, including
their surprisingly large growth rates, was developed first in a paper by H P Furth,
I Killeen and M N Rosenbluth (1963 Phys. Fluids 6 459).

20.1 THE PLASMA CURRENT SLAB

We will analyze the resistive tearing instability for the simplest configuration
in which it occurs, namely a ‘plasma current slab’. Specifically, we consider
an infinite plasma that contains a finite slab (or thick sheet) of current, directed
parallel to the surface of the slab, namely

. _ | Jwo —a<x<a
Jz = [ 0 x| > a. (20.1)

The plasma is uniform in the y and z directions. Solving Ampere’s law,
V x B = wugj, i.e. dBy/dx = poj,(x), we obtain

Bjyx —a<x<a
By(x) = —B;Oa X < -—a (20.2)
Blya x>a

where B’ 0 = MoJz0- The functions j,(x) and By (x) are sketched in Flgure 20. II
The magnetic field lines in the (x, y) plane are illustrated in [Fig 0.2

Here, we have indicated the strength of the B, field at different locations x by
the density of field lines at x: the field is stronger where the field lines are
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Figure 20.1. The ‘plasma current sheet’ equilibrium.
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Figure 20.2. Magnetic field lines for the ‘plasma current sheet’ equilibrium. There is
also a strong approximately uniform field B,.

more crowded together. This plasma could possibly be subject to ideal MHD
perturbations (although we will in fact find it to be ideal-MHD stable), but these
would not change the basic configuration, since the magnetic flux through any
plasma surface element in the (x, z) plane (i.e. the number of magnetic field lines
of the B, field crossing such a surface element) must remain fixed. However,
the inclusion of plasma resistivity will allow the negative B, field on the left
of x = 0 to diffuse into the region of positive B, field on the right of x = 0,
thereby annihilating it. This ‘annihilation’ (or ‘cancelling out’) of the magnetic
field will clearly occur most effectively in the vicinity of x = 0, which is where
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we will find the largest plasma flows in the resistive tearing instability.

It is easy to see that this annihilation of magnetic field is energetically
favored. For example, if we consider the modification of By(x) that would
result from cancellation of the positive and negative B, components in some
small region |x| < 4, it is clear that the magnetic energy, [ (By2/2)dV, would
be reduced. The actual resistive tearing instability cannot annihilate magnetic
field in such a neat and simple way: rather it involves wave-like perturbations
of the entire plasma, well to the left and right of x = 0, which cause a wave-like
‘break-up’ of the magnetic topology near x = (0. Overall, however, the magnetic
energy is lowered by this type of perturbation.

The current-slab configuration illustrated in may have an
additional magnetic field in the z direction. If such a field is not present, the
plasma can be in equilibrium only if it has a pressure p(x) that varies in x
in such a way as to balance the variation in magnetic pressure, i.e. to satisfy
p+ B§/2;,L0 = constant. On the other hand, if a large B, field is introduced,
small variations of it will easily be sufficient to balance the pressure variations
(assuming p < BZ2 /2140), and the functions p(x) and By(x) become essentially
independent of each other. A strong B, field will also play another role: as in
the case of the Rayleigh—Taylor instability, it will constrain the plasma flow in
the (x, y) plane to be incompressible, satisfying V - uw, = 0. In the particular
example analyzed in this Chapter, we will assume that a strong B, field is in fact
present. It should be emphasized that these assumptions are made largely for
analytic simplicity. Resistive tearing instabilities can occur at a surface where
B, (x) = 0, if energetically favored, even with finite pressure in the equilibrium
and a weak (or zero) B, field, so that the flow becomes compressible.

Once the B, field is introduced, it becomes clear that the configuration we
are considering is simply one particular example of more general ‘plane slab’
configurations with field components B, (x) and B,(x). Due to the variation of
B, and/or B, with x, the direction of the magnetic-field vector rotates as we
move in the x direction. Such fields are said to be ‘sheared’. For sheared fields,
the directions of the y and z axes can be chosen so that the field points exactly
in the z direction at some selected point, say x = 0. The configuration then
looks exactly like the one illustrated in and 20.2 (with a B, field
added). Thus, in regard to tearing instabilities, our particular example is, in fact,
representative of a wider class of sheared-field configurations.

Since these plane slab equilibria are stationary in time and uniform in the
y and z directions, linearized perturbations of the equilibria may be Fourier
analyzed into normal modes of the form

Yi(X, 1) = ¥ (x)exp(ikyy + ik, z — iot)

where V¥)(x,t) is any first-order perturbation quantity. For the particular
equilibrium defined by equations (20.1) and (20.2), which has B,(x) = 0 on
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the surface x = 0, the resistive tearing instabilities have k;, = 0, i.e. the k-vector
is exactly perpendicular to B at x = 0, i.e. k-B = 0 at the location of the
tearing instability. When a B, field is introduced, so that we have a sheared-
field configuration with both By(x) and B,(x), it is clear that all surfaces x =
constant are potential locations for tearing instabilities, for we can orient the
y and z axes so that the magnetic field lies in the z direction on any particular
surface, and we can then choose a k-vector in the y direction, subject of course
to this being allowed by the boundary conditions. For a plane slab that extends
infinitely far in the y and z directions, all k, and k, values are allowed: for a slab
of finite extent, the allowed values are determined by the boundary conditions,
which will then generally limit the surfaces on which tearing instabilities may
be located. For the present analysis, we will limit ourselves to the equilibrium
of equations (20.1) and (20.2) and perturbations with k, only, i.e. k, = 0. This
simply puts the ‘resonant surface’ where k+B = O at the location x = 0. At this
resonant surface, a zeroth-order magnetic field line lies along a line of constant
phase in the wave-like perturbation, making it very susceptible to the first-order
magnetic perturbation. We will further simplify the notation by dropping the
suffix ‘y’ from k,, since this is the only non-zero component of the k-vector.
Thus, for the remainder of this Chapter, the perturbations are assumed to vary
as exp(iky).

20.2 IDEAL MHD STABILITY OF THE CURRENT SLAB

As we saw in our treatment of the Rayleigh-Taylor instability in Chapter 19,
some general properties of the magnetic field perturbations can be obtained from
the linearized version of the combination of Faraday’s law and Ohm’s law. First,
we consider a perfectly conducting plasma, in which case we obtain

ﬂa-1—=—VxE.=Vx(u1><Bo)

at
= Bo -« Viuy — (u; - V)Bg — Bo(V - uy) (20.3)

noting that the plasma velocity u is zero in the equilibrium and has only a
perturbed value, denoted by u;. Unlike the geometry for the Rayleigh-Taylor
instability, in the case considered here the field lines become bent, i.e. both
a first-order B, component and a first-order perturbed B, component arise.
Accordingly, the x and y components of equation (20.3) provide some non-
trivial information, namely

anl
at

= ikByoux] (204)
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and
dB 1 . B 0
T = Bt~ = Bt
aBy() 3ux1
= - - B
Ul dox 0 0x
d
= ==~ (Byotx)- (20.5)

(Equation (20.5) could also have been derived by combining equation (20.4)
with the requirement that V - B; = 0.) For a normal mode with frequency o,
i.e. with perturbation quantities varying as exp(—iwt) such as we are seeking,
equation (20.4) can be written simply

wBy = —kByou, (20.6)

in which, here and henceforth, we drop the suffix ‘1’ from the velocity and field
components u, and B,, respectively, since these components are zero in the
equilibrium. We note, in passing, that equation (20.6) requires that B, vanish at
any point where Byg = 0, in particular at x = 0 in our example: otherwise, the
velocity component u, would be infinite.

Let us now turn to the linearized first-order perturbed equation of motion,
namely

Ju .
po— = -V pi + (j x B,

at
By - By

1
=-V (p1 + ) + %[(Bo - V)B; + (B1 - V)Be]. (20.7)
We have used j = (V x B)/ug and the vector identity for (V x B) x B (see
. We have also linearized the magnetic pressure perturbation, writing
(B?); = 2By-B;. Both x and y components of this linearized equation of motion
provide useful information, namely

d BB By B 1
—lwpouy = 3 (P) + iﬁ%y_o_yl) + M—ikByOBx (20.8)
0 0
. . B,yB;; + By B 1 dB dB
—iwpouy = —ik (p, + _ZO_“MO_YO_.L1> - (Byo_a_xx ~ B, axyo) .
(20.9)

In the second-to-last term on the right-hand side in equation (20.9), we have
used V - By = 0 to express By in terms of B,. Just as in our treatment of the
Rayleigh-Taylor instability we take note of the fact that, beyond equations (20.8)
and (20.9) themselves, we do not have any additional information on either
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p1 or B, In principle, we could obtain p;, for example from an adiabatic
equation of state. Normally, we would obtain B;; from the z component of
equation (20.3), but this will involve the compressible, i.e. non-divergence-free,
part of the plasma fluid velocity, which we expect to be very smail. In the
approximately incompressible case, B, is determined from either equation (20.8)
or equation (20.9); when the value so determined is substituted into the
z component of equation (20.3), this will yield a value for the compressible part
of the fluid velocity, i.e. for V -u, but this is a small quantity that does not enter
anywhere else. Physically, the very small B,; produces whatever modification
of the almost-uniform magnetic pressure Bz2 is needed to maintain force balance
against small changes in pressure, in approximately incompressible flow. Both
the Rayleigh-Taylor (gravitational) instability and the tearing instability are thus
essentially independent of plasma pressure. The Rayleigh—Taylor instability is
driven by the energy available from the inverted density gradient (relative to
the gravitational force), and the tearing instability can be driven purely by the
energy available from the sheared magnetic field. We will see, however, that
this magnetic energy will become available to the plasma motion only through
resistivity.

Just as we did in the case of the Rayleigh-Taylor instability, we can
eliminate the two quantities p; and B, by forming the z component of the
curl of the equation of motion. Specifically, we take d/dx of the y component,
equation (20.9), and subtract ik times the x component, equation (20.8). This
produces

/0 , 1[3 [, 8By _ 0B
—iw (a(pouy) - lkpoux) = ” [a (Bx# — Byo 8;) + szYOBx:I

1 (9d 3 (B
=—— 1 — B, — | =)|-k*B,yB, }.
2 Lo (B ()] -om)

(20.10)

At this point, our analysis is still valid for a general equilibrium Byo(x) and is
not limited to the equilibrium defined by equation (20.2).

Let us, for the moment, suppose that the plasma motion is exactly
incompressible, i.e.

0=V.u =2 L, (20.11)
ax

As in the case of the Rayleigh-Taylor instability, this assumption is only
approximately valid. Its validity could be verified after we have completed our
calculation, in exactly the same way as was done in . Specifically,
we could relate V . u, to the perturbation B;; produced by compressing the
strong magnetic field B,y (see equation (19.20)). We could then relate the force
arising from the gradient of the perturbed magnetic pressure B,oB,; to either u,
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or uy (see, for example, equation (19.22)). Comparing the magnitude of V - u,
with either of its constituent terms (in this case, du,/dx or iku,), we would
find that V - u; is smaller by a factor w?/k?v3, where v, is the Alfvén speed,
Bo/(pouo)/?. As in the case of the Rayleigh-Taylor instability, the frequencies
(or growth rates) of even the fastest modes that will be found here are much
less than kva. Hence, again, the compressibility is negligible, and we may to a
very good approximation write V - u; = 0.

Using equation (20.11) to substitute for u, in terms of u,, the left-hand
side of equation (20.10) can be expressed entirely in terms of u,, so that this
equation becomes

wuo [ 0 du, ) 0 [., 08 (B 2
_ @[ — Rpous | = — | B4, L (22} | - #2B,oB,. (20.12
k [8x (po 3x> pou] dx | %8x \ Byo wBx ( )

For perfect conductivity, equation (20.6) is valid and can now be used in the
form

B/By = —kuy/w (20.13)

to express the right-hand side of equation (20.12) also in terms of u,. Multiplying
through by —wk and rearranging terms slightly, equation (20.12) can now be
written

d Uy
P ((pouow2 - k2830)5> — K*(popow® — K*BYu, = 0. (20.14)

Equation (20.14) is a homogeneous second-order differential equation for
uy. It describes ideal MHD waves in the configuration being considered.
With proper boundary conditions, eigenmode solutions to the equation could
be found. However, certain general properties of such waves can be
determined by examining the quadratic (in u,) expression formed by multiplying
equation (20.14) by the complex conjugate u} and integrating over all x, i.e. from
—~00 to +00. The result, after integrating by parts and noting that 1, must vanish
as x — +00, is
i 2 2p2 Qux
[ oo ~ 83 ( ax

2
+k? Iu,,12> dx = 0. (20.15)

By examining equation (20.15), it is evident first that w® must be real, so that w
must be either real or pure imaginary. It is further evident that our plasma must
be completely stable (under this assumption of perfect conductivity), since an
instability must correspond to a pure imaginary value of w, i.e. w =iy fory > 0,
which would render the left-hand side of equation (20.15) negative-definite, so
that it certainly could not be equal to zero.

Copyright © 1995 IOP Publishing Ltd.



Inclusion of resistivity: the tearing instability 345

The stable oscillatory waves that are described by equation (20.14) are the
‘shear Alfvén waves’ in the low-frequency limit introduced in We
note that their frequencies are typically w ~ kjva, where ky = kb = k, Byo/B,
is the component of the wave vector in the direction of the equilibrium magnetic
field. The particular configuration under discussion here, however, has a special
property, namely that B, depends on x. If the value of @ (popo)'/? falls into the
range of values assumed by kByo(x), then equation (20.14) becomes singular,
in that the coefficient of the second derivative can vanish. Since our main
interest here is in instabilities, not stable oscillations, we need not explore this
matter further. It is sufficient to note that the spectrum of possible solutions of
equation (20.14) contains discrete modes with @ > k|Byolmax/(Poio)'/? and a
continuum of modes with smaller @ values that are generally subject to strong
damping at the location of the singularity due to effects not included in the ideal
MHD analysis.

20.3 INCLUSION OF RESISTIVITY: THE TEARING INSTABILITY
Let us now introduce resistivity into the plasma Ohm’s law, i.e.
E +u x B = pj. (20.16)

Combining this with Faraday’s law and linearizing, the magnetic field
perturbation is now given by

% =-V XxE =V x @ xBy) —nV xji (20.17)

where we have taken the resistivity to be uniform. Invoking Ampere’s law for
J1, i.e. uoji = (V x By), and making use of the identity V x (V x By) =
V(V -B;) — V2B| = —V?B, (see[Appendix D), we obtain

B

311 =V x (u; x Bg) + —V2B1 (20.18)

Using the expansion of the first term on the right-hand side of equation (20.3),

the x component of equation (20.18) becomes

in 8%B,
o ax?’

wB, = —kByuy + (20.19)

Here we have approximated V2 ~ 92/9x? in anticipation of finding that
resistivity is important only in a narrow region of x, within which B, is relatively
sharply varying. Equation (20.19) replaces equation (20.6) in the resistive case.
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Several important conclusions follow from examination of equation (20.19).
First, it is clear that our previous ideal MHD treatment corresponds to the case

n 9B,

B.>» ———.
wB: > o5

(20.20)

For the shear Alfvén waves we have been studying, which generaily have
quite high frequencies @ compared to resistive diffusion rates, this relation is
valid in all but the most resistive plasmas. However, we might legitimately
inquire whether other modes of perturbation are possible, which have much
lower frequencies or much shorter scale-lengths, such that the two terms in
equation (20.20) are comparable.

For such modes, the resistive term in equation (20.19) must be retained.
A second important conclusion now follows from equation (20.19): namely,
it is no longer necessary for the first-order perturbation B, to vanish at points
where B,y = 0, i.e. at x = 0 in the particular example shown in
and Physically, relaxing the constraint that B, = O wherever Byg = 0
allows the plasma much more freedom in finding ways to lower its magnetic
energy, corresponding to more possibilities for unstable perturbations. A third
conclusion that follows from examination of equation (20.19) is that the resistive
term is likely to be most important in a narrow region around the point where
Byo =0, i.e. around x = 0 in our particular example. We call this the ‘resistive
layer’. Since k- B = 0 at x = 0, the perturbation can be considered to be
‘resonant’ at x = 0, such that the unperturbed magnetic field lies parallel to
wave-fronts on this surface. The non-zero 7 in the resistive layer then allows
the magnetic field lines to connect across the resonance, via a finite value of B,.

Well away from the resistive layer, both to the left and to the right
of x = 0 in the particular case illustrated in Figure 20.1, we expect the
ideal MHD approximation to remain valid. Since the frequencies  (or, more
appropriately, the growth rates y) are much less than Alfvén-wave frequencies,
the perturbations in these ideal MHD regions will be given by equation (20.14)
(or, equivalently, equation (20.12)) but with the inertia terms omitted. Since it is
more convenient to describe the perturbations in the ideal MHD regions in terms
of B, rather than u,, we prefer to work from equation (20.12), obtaining

3 3 (B
— B2, — = )| —-%*B,yB, = 0. 20.21
Bx[ Wax (Byo)] Y05 ( )

This equation describes the perturbations in the ‘outer-regions’ well to the left
and well to the right of the resistive layer around x = 0. As x — O (either
from the left or from the right), taking B, (x) ~ B;Ox, the possible forms for the
solution B, as x — O are twofold: either B, o x or B, &~ constant.
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Problem 20.1: Prove the last statement by searching for solutions of
equation (20.21) with B, « x# as x — 0. You will find that the first term
on the left-hand side of equation (20.21) tends to dominate as x — 0,
allowing only solutions with 8 = 0 or 8§ = 1. Why is it safe to assume that
there are only these two solutions as x — 07

It is possible to see, however, that the case B, o x as x — 0, is excluded for
solutions that are well behaved as x — to¢ for, if B, /B, were finite as x — 0,
it would be permissible to multiply equation (20.21) by B}/Byo and integrate
from x = —oco to x = 0. If we then integrate the first term by parts, noting that

Byg =0 at x = 0, we obtain
3 (B \|° 0 3 (B 0
B'B,— | —= —/ B%, | — == dx—/ k% B,|%dx = 0.
xEW0%% (Byo) oo oo °|3x \ By - |B|
(20.22)

Since we want a localized solution in which B, — 0 as x — o¢ (otherwise there
would be infinite magnetic energy |B,|?, which is not a physically interesting
case), the first term on the left-hand side vanishes in the x - —oo0 limit, We
then cannot allow B, « x as x — 0, for this would make the first term on
the left-hand side vanish in the x — 0 limit also, and we would then have a
negative-definite expression on the left, which is required to be zero.

Thus, we conclude that the only allowed solutions of equation (20.21) are
such that B, approaches some non-zero constant as x — 0, either from the
left or from the right. Such solutions would not be allowed by the ideal MHD
constraint, i.e. equation (20.6), applied exactly at the point x = O, for this
constraint requires B, to be zero. Such solutions are allowed in the resistive
case, in which equation (20.19) replaces equation (20.6) in the vicinity of x = 0.
It is just this non-vanishing of B, at the point where By, = 0 that characterizes
the ‘resistive tearing’ instability.

It is useful to think of the region around x == 0 as forming a ‘boundary
layer’ between the two ideal MHD regions to the left and right of it. Moreover,
it is possible to obtain some useful and revealing ‘boundary conditions’ by
integrating various plasma equations over a thin box placed in this boundary
layer, as illustrated in The box is supposed to have an infinitesimal
width in x (but wider than the resistive layer) and a height in y that is finite
but much less than the characteristic wavelength of the perturbation; its extent
in z is arbitrary, since there are no variations in the z direction. Integrating the
equation V - B; = 0 over the volume of the box and applying Gauss’ theorem,
we find that B, must be continuous across the boundary, i.e.

2

By(x = 0+) = By(x = 0-). (20.23)
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AY
B (0-) T ﬁsy(m)

B, (0-)}>t B, (0+)

Figure 20.3. Thin box used for obtaining boundary conditions across the resistive layer.

From this we deduce that the value of B, at each y-value may be taken ro
be constant throughout the resistive layer around x = 0. Similarly, integrating
V xB = ugj over the surface of the box in the (x, y)-plane and applying Stokes’s
theorem for the surface integral of a curl, we find that any discontinuity in By;
must be associated with a first-order ‘surface current’ J,; flowing in the boundary
layer, i.e.

Byl(x b d 0+) — Byl(x e d O—) = [Lonl. (2024)

(By a ‘surface current’, we mean here a very large current density jj;
concentrated in a very narrow layer of thickness Ax, such that J,; = j;Ax
= finite. A highly conducting plasma has the capability to carry such currents;
in the limit of resistivity decreasing toward zero, the thickness of the current
layer approaches zero, and a true surface current arises.) Equation (20.24) thus
indicates that the y component of the field perturbation can be discontinuous
across the boundary layer. From the divergence-free property of By, i.e.

B,
0x

+1kBy; =0 (20.25)

we note that a discontinuity in B, implies a discontinuity in dB,/dx. Thus,
although B, itself is continuous across the boundary layer, its gradient in x is
not. Indeed, the quantity

A= 1 ['9B, _ 1 (0B,

By | Ox J,g By \ 0x

where the notation [ ];—o is seen to denote the discontinuous jump across the

boundary layer at x = O; this is an important quantity, which will turn out to
determine the stability of resistive tearing modes.

It is clear that the ‘outer-region’ solutions will completely determine the
quantity A’. We could imagine integrating equation (20.21) for B, in the region

3B,

x=0+ dx

) (20.26)
x=0—
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well to the left of x = 0, applying the appropriate boundary condition (usually
B, — 0) at x — —oc (or at some intervening boundary, e.g. a conducting
wall). Indeed, we could carry out a numerical integration of equation (20.21),
beginning at a conducting wall far to the left, where we would set B, = 0 and
would choose some arbitrary non-zero value for 9B, /dx, which simply measures
the amplitude of our solution for B, in this region. This solution will give some
finite value of B, at x = 0, approaching from the left, and this value provides
an alternative measure of the amplitude of our solution. Thus, choosing some
arbitrary value for the amplitude B, at x = 0 (noting that the amplitude of a
linear perturbation will always be arbitrary, within the confines of the linearized
theory), the outer-region solution for B, is then completely determined for x < 0,
as is the value of 8B,/0x at x = 0—. Similarly, the outer-region solution for
x > 0, including the value of dB,/dx at x = 0+, is completely determined
from the boundary condition at x — oo (or at an intervening conducting wall)
and the requirement that it have the same amplitude, B,, at x = O as has the
solution for the left outer-region. It follows that the quantity A’ is completely
determined by the outer-region solutions. Indeed, later in this Chapter, we will
calculate A’ explicitly for our ‘plasma current slab’ configuration, but first we
will analyze the resistive layer in more detail, to determine how it can provide
the localized, concentrated currents j, needed to produce the sharp ‘jump’ in
By, and in 3B, /dx.

Problem 20.2: Show that the first-order ‘surface current density’ J,;,
i.e. the perturbed volume current density integrated in x across the
resistive layer at any point y, is related to the value of B, at this point
y by uoJ;1 = iA’B,/k. For the particular choice of phase in which
By = B,sin(ky), show that pJ,; = (A’By/k)cos(ky).

204 THE RESISTIVE LAYER

It is not sufficient merely to obtain ‘boundary conditions’ that apply across the
resistive layer: it is necessary to resolve the fine-scale structure of this layer in
order to determine the growth rate of the resistive tearing mode. Within the layer,
we may certainly take By = B;Ox, and we may also make use of our finding
that the perturbed field component B, is approximately constant throughout the
layer; this constant part of B, will be denoted B..
Equation (20.19) then becomes
in 8B,

B kB’ = —
wB, + yoXUx o 97

(20.27)
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where the term on the right-hand side evidently involves the non-constant part
of B,. Plasma inertia must also be included in the resistive layer, since we will
see that the plasma flow velocities tend to peak in this region, implying that
the full form of equation (20.12) must be used. However equation (20.12) may
be simplified by noting that the x derivatives will tend to dominate over the
y derivatives (i.e. the k-factors) in the thin resistive layer. Thus, an approximate
form of equation (20.12) will suffice, namely

3%u, kB’ 9| 298 (B
whoko T TR | e \ X

3°B
= kBjox——. (20.28)
Substituting for 3B,/ dx? from equation (20.27), this becomes
32ux / . n 7
Yooy = kBjox (iyBx + kByoxux) (20.29)

where we have also written w = iy in anticipation of finding the result that the
tearing instability is purely growing.

Figure 20.4. Typical form of the function u,(x) in the resistive layer.

Since B, is constant, equation (20.29) can be solved to find an explicit
solution for the x dependence of u,. Unfortunately, the solution cannot be
given in terms of analytic functions but must be evaluated partially numerically.
However, it is apparent from equation (20.29) that u, will decrease steadily
away from the resistive layer. Specifically, u, ~ —iyEx/kB;ox ~ 1/x as
x — oo and the term on the left-hand side of equation (20.29) becomes
negligible. It is also apparent that the solution u, will be odd in x; its actual
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form is sketched in . This implicitly assumes that the solution of the
inhomogeneous equation (20.29) is unique, i.e. that the homogeneous equation
obtained by omitting the term including x B, has no permitted solutions. This
latter result can be established easily, by multiplying the homogeneous equation
by u% and integrating from —oco to +00, thereby obtaining a negative-definite
expression that must equal zero for any solution with ¥, — 0 as x — oo. The
characteristic width of the resistive layer can be determined simply by inspection
of equation (20.29). Balancing the term on the left-hand side against the second
term on the right-hand side gives a characteristic width

x ~ 8= (ynpo)'/*/(kBjp)'%. (20.30)

As we might have expected, the resistive layer becomes thinner as the resistivity
n decreases.

To complete the solution and find the growth rate y, it is necessary to
obtain an explicit solution of equation (20.29) in some form. For this purpose,
it is convenient to transform to scaled variables X and U, which are defined by

X=x/5

_ (20.31)
U = (ynpo)'/*(kB}o)"*uy /iy By.
In terms of these variables, equation (20.29) becomes
3*U
a3 = X1+ XU). (20.32)

The solution U(X) will be an odd function of X and, as long as 82U/3X? is
well-behaved as X — Zoo, U - —X~! as X — £o00. An explicit solution is
obtainable in an integral form, namely

X ("2 X2
UX) === / exp (—7cos9) sin!/29d6. (20.33)
0

That this is the desired solution can be verified by direct substitution into
equation (20.32), after first differentiating equation (20.33) twice to obtain

U X (T X2
o) / exp (—-z—cose) sin'/20(3cosd — X2cos?6)dg.  (20.34)
0
Using equations (20.33) and (20.34), we then obtain
U

2 X [ X 172 )
— - XU= ——] exp (——cos@) sin'/“6(3cosf + X“sin“6)do
X2 2 Jo 2

n/2 d X2
=X 2 | sin32 _2
/; 9 [sm fexp ( 5 cosG)jI dé

=X (20.35)
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which establishes that equation (20.33) is indeed a solution of equation (20.32).
Examination of the asymptotic form of equation (20.33) for large X, where the
dominant contribution to the integral arises from values of 6 near /2, shows
that equation (20.33) also has the correct asymptotic form, namely U — —X 1.
This may be seen by changing the integration variable in equation (20.33) from
6 to ¢ = m/2 — 6, so that the asymptotic form for large X is obtained by
approximating the integrand as exp(—X? sing/2) ~ exp(—X2¢p/2).

The purpose of analyzing the resistive layer in such detail is to obtain the
correct boundary conditions to be applied to the solutions to the left and right of
the resistive layer. We have seen in the previous Section that these outer-region
solutions are completely defined when the surface current J,; or, equivalently,
the jump in By, or in 8B, /dx, is specified. From our equations for the resistive
layer, the jump in dB,/3x can easily be obtained, for example by integrating
equation (20.27) across the layer:

3B, o
[8x L_ =T (iv Bx + kBjoxuy) dx. (20.36)

Reverting to our scaled variables X and U, and noting that the limits of
integration in equation (20.36) may be taken as +00 on the scale of the resistive-
layer width, i.e. the scale of X, we obtain

1 [4B 54 0o
- [a_;} - W/ (1+ XU)dX. (20.37)

The integral on the right-hand side of equation (20.37) can be evaluated
numerically, using equation (20.33) for U(X). It is also possible to reduce
the integral to a particularly simple form using both equation (20.32) and its
solution, equation (20.33). To do this, we proceed as follows:

00 © 1 aZU
(1+XU)dX=/ ——dX
/_m e X 0X2

1 /2

=~ dx exp(—lecose)sin‘/ 29(3cosh — X%cos?6)da
2 —-00 0 2
1 /2 -]

== sin'/%6de exp(—lecose)(Scosa — X%cos?0)dX
2 0 -0 2

172 7/2
= (%) / sin'/29 (3cos'/26 — cos!/26)de
0

n/2
= (2m)!? / sin'/2gcos'/?0d8 ~ 2.12 (20.38)
0

where the final integral in equation (20.38) has been evaluated numerically.
The left-hand side of equation (20.37) is equated to the quantity A’ which was
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introduced in the previous Section and was defined in terms of the outer-region
solutions. Equation (20.37) then gives an expression for the growth rate y,
namely

y = 055053 (kB0)*> /0y g (20.39)

Once the quantity A’ has been calculated from the properties of the outer
solutions, equation (20.39) gives the growth rate of the resistive tearing
instability.

Examination of equation (20.39) reveals some important information about
the magnitude of the growth rate y. In many cases of interest, it is appropriate
to think of the resistivity n as a small quantity, i.e. the plasma obeys ‘ideal
magnetohydrodynamics’ to a good approximation. The introduction of non-zero
resistivity into the equilibrium will produce diffusion of plasma relative to the
magnetic field, but only at a very slow rate, proportional to . The introduction of
non-zero resistivity into the stability calculation has, however, produced unstable
modes that grow at a much faster rate, proportional to /3.

This argument can be made more quantitative by defining various
characteristic times. Let us first introduce a characteristic macroscopic length
scale a, e.g. the half-width of the current slab shown in One
characteristic time is the inverse of the frequency ws of a shear Alfvén wave
with wave-number k propagating in the y direction, i.e. almost perpendicular
to the assumed very strong magnetic field B,. This shear Alfvén wave has
w = kjva = (kyByo/B;)va; evaluating B, at the edge of the current slab, this
time 14 is defined by

rA_l = s X (kyB;oa/Bzo)vA

~ kyBjoa/(pono)'/>. (20.40)

A second characteristic time describes the diffusion of the field B,y into the
plasma due to non-zero resistivity; since the ‘diffusion coefficient’ for this
process is n/pg (see, for example, equation (20.18)), this time 7R is defined
by

R & a’o/n. (20.41)

Equation (20.39) may be rewritten in terms of 74 and 7R, giving

_ 0.55(A’a)*3

= 2/5_3/5 °
TA IR

(20.42)

Equation (20.42) shows that resistive tearing instabilities grow on time-scales
that are intermediate between the very short MHD time-scale, 7, and the very
long resistive time-scale, tg. Indeed the relevant time-scale is close to the
geometric mean of Ta and tr. Thus, resistive tearing instabilities grow much
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more slowly than ideal MHD instabilities (e.g. the flute instability, which has
characteristic growth time a/C; ~ B~'/2t,, i.e. approaching 7, for finite 8
values), but much more rapidly than resistive diffusion of the equilibrium
configuration. In this discussion, we have implicitly assumed that A'a is a
quantity of order unity, which is generally valid, since A’ is a characteristic of
the macroscopic configuration. We will find that this assumption is confirmed,
for example, in the case of the current slab analyzed in detail in the next Section.

20.5 THE OUTER MHD REGIONS

Until this point, we have not made use of any specific form for B,o(x) in the
outer MHD regions, only that Byo(x) ~ B;Ox in the narrow resistive layer around
x = 0. Let us now find an explicit solution for the form of the perturbation in
the outer-regions for the particular case of the plasma current slab illustrated in
and specified in equations (20.1) and (20.2). To do this, we must
solve equation (20.21) for the particular Byo(x) given in equation (20.2).

First consider the region x > a, where B, = B;aa = constant. Here,
equation (20.21) becomes simply

32B,

7 ~K'Bx=0 (20.43)

whose only solution, vanishing as x — oo, is

B, = Cexp(—kx) (20.44)
where C is an arbitrary constant that measures the amplitude of the perturbation.
Next, consider the region 0 < x < a, where Byy = Bjx. Here,
equation (20.21) takes the form
a 8 (B
8 [xz_ (_X)] KB, =0 (20.45)
dx dx \ x

but the derivative term can be expanded, i.e.

) 5 @ ( By 0 dB,
—x = — =—|x — B,
ox ox \ x 0x ax

3%B,
= 20.46
X0 ( )
so that equation (20.45) also becomes simply
’B
9B B, =0 (2047)
dx?
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whose general solution is
B, = Aexp(kx) + Bexp(—kx) (20.48)

where A and B are arbitrary constants.

The solutions in the two regions must be matched at x = a. The
correct matching conditions are obtained from equation (20.21), which applies
throughout the outer region, including both x < a and x > 4, and they are

By|y=y— = By |x=a+

9 ( B, _ 8 (B
ax \ Byo/|,_,_  9x \ By
the latter following from integrating equation (20.21) across an infinitesimal

boundary layer at x = a. For the solutions given in equations (20.44)
and (20.48), the two conditions expressed in equation (20.49) give

(20.49)

x=a+

Aexp(ka) + Bexp(—ka) = Cexp(—ka)

(20.50)
A(ka — 1)exp(ka) — B(ka + 1) exp(—ka) = —Cka exp(—ka).
From these relations, the constants A and B can easily be obtained in terms of
C:

C C
A= —exp(-2%a)  B=—(2ka-1). (20.51)

This completes the solution for x > 0. One arbitrary constant, in this case
C, must remain, since the amplitude of a perturbation in linear theory is
indeterminate.

Since the form of the equilibrium to the left of x = 0 is exactly the same
as that to the right of x = 0, the solution for x < O can be obtained by simply
substituting —x for x in the solution which we have already found. Specifically,
for —a < x < 0, the solution is

B, = Aexp(—kx) + Bexp(kx) (20.52)

and, for x < —a, it is
B, = Cexp(kx) (20.53)

with the same values of the constants A, B and C.
It is now possible to calculate the quantity A’ defined in equation (20.26).
Specifically,

! [33‘] _*A-B) (20.54)
x=0

A=— |2
B, | ox A+ B
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Substituting for A and B in terms of C using equation (20.51), we obtain

Aa = 2kalexp(—2ka) — 2ka + 1]
" exp(—2ka) + 2ka — 1

(20.55)

In Figure 20.5, we plot the function A’a versus ka. We see that A’ is positive
for small & (long wavelengths in the y direction) and negative for large k (short
wavelengths in the y direction).

Aa
8 —

4L

Figure 20.5. The function A’a describing tearing-mode stability plotted against ka.

Since A’ > 0 is the condition for the resistive tearing mode to be unstable,
we have now shown that the ‘plasma current slab’ equilibrium is, in fact, unstable
to all perturbations that are wave-like in the y direction and have sufficiently
long wavelength.

As we saw at the beginning of this Chapter, the annihilation of magnetic
field, by means of the cancellation of positive and negative By components in a
small region |x| < §, is energetically favored, i.e. it lowers the magnetic energy.
However, as we have now seen, a magnetic perturbation that is wave-like in
the y direction is required to produce the B, component at x = O needed for
the negative B, field to connect to, and thereby annihilate, the positive B, field.
This wave-like perturbation necessarily involves bending of the field lines, which
requires energy in an amount that increases as the wavelength decreases. Thus
it should not be surprising that the resistive tearing mode is unstable only for
sufficiently long wavelengths, i.e. wavelengths for which the energy released by
field annihilation exceeds that needed for field bending.

We also saw earlier in this Chapter that a general sheared-field plasma slab
configuration with both By (x) and B,(x) could be susceptible to resistive tearing
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instabilities at many locations x, depending on which modes of perturbation
are allowed by the boundary conditions. This has an important application
to the ‘cylindrical tokamak’, which is a model configuration with a strong,
approximately uniform axial field B, and a weaker azimuthal field By(r). The
normal modes of perturbation of an infinitely long cylindrical plasma are of
the form exp(imf + ik,z), where m must be an integer but k, can have any
value. However, in the tokamak case, the cylinder is an approximation to a
‘straightened out’ torus and should therefore be considered to have finite length
27 R, where R is the major (larger) radius of the torus. Moreover, ‘periodic
boundary conditions’ should be applied at the ends of the now-finite-length
cylinder, so that we must take kK, = —n/R where n is an integer (the choice
of a negative sign being simply for convenience, as we will soon see, since
both positive and negative integers are allowed). Such a perturbation can be
‘resonant’, in the sense that K+ B = mBy/r — nB,/R will vanish at a radius
r where q(r) = rB;/[RBy(r)] = m/n. This is the equivalent of the resonant
surface in our ‘slab’ calculation at x = 0, where kB = kyByg = 0. For a
tokamak with a current distribution j,(r) that peaks at r = 0 and decreases to
zero at the plasma edge, r = a, the function ¢g(r) will increase monotonically
from a minimum value at r = O to a maximum value at r = a. Clearly, infinitely
many rational numbers m/n can be ‘fitted in’ between ¢(0) and g(a). However,
since we have seen that only large wavelengths tend to be unstable to resistive
tearing modes, only ‘low-order’ rationals, i.e. those for which m and n are small
integers, are of interest. By far the most unstable mode in a tokamak is that with
m = n = 1, and the nonlinear evolution of this mode tends to strongly flatten
the plasma profiles inside of the resonant surface; however, this mode can arise
only when g(0) < 1. The mode with m = 2,n = 1 is also dangerous, since
it can occur whenever g(0) = 1 and g(a) > 2. However, the stability of any
particular mode is determined not just by the presence of the associated resonant
surface, but also by the form of the plasma current distribution; in many cases,
all modes can be stable.

Problem 20.3 Suppose that rigid conducting walls are introduced into our
plasma current slab at x = +b (with b > a). Find the generalization of
equation (20.55) for A’a in this case. Do you expect the plasma to be
more, or less, stable? Is this expectation confirmed by your expression
for A'a?

20.6 MAGNETIC ISLANDS

The resistive tearing instability produces a change in the topology of the magnetic
field. The magnetic configuration of the plasma current slab before onset of the
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instability is illustrated in[Figure 20.2. | The field lines are straight and, assuming
that a strong approximately uniform B, component is added to the B, component
shown in Figure 20.2, lie in flat surfaces parallel to the (y, z) plane. The direction
of the B, component reverses across x = 0. After onset of the instability, the
magnetic configuration is deformed, and the field lines now lie on modified
surfaces, which are still uniform in the z direction (since there is no variation of
the perturbation in the z direction) but which intersect the (x, y) plane in curved
lines determined by the relations dx/dl = B,/B and dy/dl = B,/B. In effect,
all of the deformed field lines project in the z direction onto the (x, y) plane to

curved lines given by

dx B,

—_=— 20.56

%F (20.56)
In essence, the configuration illustrated in Figure 20.2 is modified to that given
by the solution of equation (20.56).

For small-amplitude perturbations, the B, component can be approximated
by its equilibrium value, B, ~ B;Ox. For a particular choice of phase (in order
to deal with real quantities, rather than complex ones such as exp(iky)), the
B, component at some particular time ¢ can be written

B, = B,e"’sin(ky) (20.57)

where, as we have seen, the quantity B, can be taken as approximately
independent of x within the resistive layer around x = 0. Equation (20.56)
can then be integrated to give

%B;Oxz + %e“cos(ky) = constant (20.58)
where different values of the constant give the projections of different field lines
onto the (x, y) plane.

The solutions of equation (20.58) can easily be plotted in the (x, y) plane,
and a typical example is illustrated in At relatively large values
of |x|, corresponding to large values of the constant in equation (20.58),
the field lines are only slightly distorted from the unperturbed configuration
shown in Figure 20.2. However, the distortion increases for smaller values
of |x|, corresponding to smaller values of the constant in equation (20.58),
and eventually the field lines become ‘closed on themselves’. Inspection of
equation (20.58) shows that these ‘closed’ field lines arise from values of the
constant less than (B, /k)exp(y?), for which only a limited range of y values
are possible, since for these values of the constant equation (20.58) does not
allow cos(ky) to reach unity for any real value of x.

The closed field line regions shown in Figure 20.6 are called ‘magnetic
islands’. When the strong approximately uniform B, field is taken into account,
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Figure 20.6. Perturbed field line configuration of magnetic islands of half-width w
produced by a resistive tearing instability. The pattern is repeated with period 27/k in
the y direction.

the individual field lines will not actually close on themselves, but will traverse
surfaces whose shapes will approximate elliptical cylinders, which are infinitely
long in the z direction. In this case, Figure 20.6 depicts the intersections of
these surfaces with the (x, y) plane at z = 0 or, equivalently, the projection
of the field lines onto this plane. A given field line will always remain on the
same surface, and its projection onto the (x, y) plane at z = 0 will traverse the
closed curves shown in Figure 20.6 over and over again as it proceeds further
and further in the z direction.

The surface that separates the closed field line surfaces from the open
field line surfaces is usually called the ‘magnetic separatrix’. The separatrix
corresponds to a value of the constant in equation (20.58) exactly equal to
(B:/k)exp(yt). The half-width w of the magnetic island formed by the
separatrix, which is of course the largest magnetic island (see Figure 20.6),
is simply the value of x given by equation (20.58) for this value of the constant
and at ky = 7, namely

w = 2(B,/kB,g)'exp(y1/2). (20.59)

The half-width of the magnetic island is proportional to the square-root of
the field perturbation By, so it increases exponentially in time, as indicated in
equation (20.59). In practice, nonlinear effects will limit the growth of magnetic
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islands when significant modifications are produced in the underlying magnetic
configuration on which our stability analysis was based. Such effects begin to
appear as soon as the island width becomes comparable to the width of the
resistive layer given by equation (20.30), as was shown in a paper by one of the
authors of this present book (P H Rutherford 1973 Phys. Fluids 16 1903). When
the island grows to a significant fraction of the size of the overall configuration,
it can affect the gross current profile, usually acting to reduce the value of A'a
and thereby tending to stabilize the tearing mode.

There is clearly a close connection between the magnetic islands and
magnetic separatrix obtained here and the islands and separatrices found in the
numerical analysis of area-preserving maps presented in connection with particle
orbits in [Chapter 5] Indeed, the field line equation of motion, equation (20.56),
can be represented as a map, where a point is laid down each time a distance
2n R is traversed in the z direction. The shear in the magnetic field is then
equivalent to the sheared particle flow for the problem in Chapter 5, and many
of the previous results carry through. The island width at the rational surface, for
example, scales in both cases with the square-root of the perturbation strength.
Were we to attempt a numerical treatment of the effects of resistive tearing
instabilities, we would expect to find, at least in some cases, not only a primary
island chain, but also secondary chains of smaller islands, as in
When the mode amplitude grows so large that secondary islands begin to overlap
with the primary island or, in cases where several different modes are unstable,
primary island chains begin to overlap with each other, then the magnetic field
structure becomes ‘stochastic’. When this occurs, an individual field line can find
its way completely across the plasma (i.e. in the x direction for the plasma slab
configuration considered in this Chapter), if followed a sufficient distance. As a
practical consequence, this will generally mean that electron thermal conduction
parallel to the magnetic field will rapidly flatten the electron temperature across
the stochastic region.

The origin of the name ‘tearing mode’ is now apparent. The magnetic
configuration illustrated in[Figure 20.2 J'tears’ at its weakest points, i.e. along
the plane x = 0. Provided the conditions for instability are satisfied (i.e. positive
A"), the plasma current slab will then have a tendency to break up into discrete
current ‘filaments’.

Problem 20.4 The result of Problem 20.2 implies that the first-order
perturbed current density in the z direction is_negative at the 0O-point of
the magnetic island, i.e. the point (0, 7/k) in|Figure 20.6, [for an unstable
mode (A’ > 0), and positive at the X-point of the island, i.e. the point (0,0)
in Figure 20.6. (It should be noted that this is a special property of our
choice of geometry; the signs are reversed, for example, in a cylindrical
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tokamak configuration with dg/dr > 0.} Verify this for the slab geometry
by a different method, as follows. Consider the magnetic flux ‘trapped’
within the magnetic island. Referring to we may view this
flux as that of the B, field crossing the y axis between the X-point and
the 0-point; per unit length in the z direction, this flux is

n/k
V= / B, (0, y)dy.
0

By employing the usual combination of Faraday’s law and Ohm’s law,
show that

dw , )

Frie nj:(0, 0) = jz(0, m/k)]
(Hint: Note that the magnetic field is exactly in the z direction at both
the O-point and the X-point, which precludes convection of flux across
the boundaries of the surface under consideration.) The trapped flux ¥
must increase as the instability and island-width grow. What does this tell
us about the magnitude of the perturbed current density j, at the island
0-point, versus that at the X-point?
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Chapter 21

Drift waves and instabilities*

We have now considered two types of instabilities that can arise in the fluid
plasma model: the first, the ideal MHD flute instability (the pressure-driven
version of the Rayleigh—Taylor instability), which draws upon the thermal energy
of the plasma as it expands unstably across a curved (concave toward the plasma)
magnetic field, and the second, the resistive tearing instability, which draws upon
the energy of the magnetic field in the plasma as it rearranges itself toward a
configuration of lower magnetic energy. There is yet a third important class
of instability of a fluid plasma, the so-called ‘drift-wave instability’, which
requires neither a curved magnetic field nor a magnetic configuration for which
lower magnetic-energy states exist. Indeed, drift-wave instabilities occur in the
simplest and most ‘universal’ of configurations, namely a plasma of non-uniform
density maintained in equilibrium by a strong and essentially straight magnetic
field. Because of the pervasiveness of this situation, instabilities of this type have
sometimes been called ‘universal instabilities’. Like flute instabilities, drift-wave
instabilities draw upon the thermal energy of the plasma as it expands across a
magnetic field. Unlike flute instabilities, however, they have finite wavelengths
along the field, and the plasma motion is decoupled, to a significant extent, from
that of the magnetic field, so as to avoid energetically unfavorable bending of
the field lines. Because of the difficulty of drawing upon the thermal energy of
expansion in this way, drift-wave instabilities tend to have rather small growth
rates—certainly smaller than those characteristic of flute instabilities.

Unlike Rayleigh-Taylor, flute and resistive-tearing instabilities, drift-wave
instabilities are not purely growing, but have complex frequencies w, with the
imaginary part, denoted by y (the growth rate), usually much smaller than the
real part. Of course, any such mode of perturbation can be made purely growing
by transforming to a moving frame in which the wave is at rest, but in such a
frame the plasma itself will acquire a non-zero velocity. Normally, we choose
to work in the ‘laboratory frame’ in which the plasma is assumed to be at rest
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(more precisely, the mass velocity u is taken to be zero) in the unperturbed
equilibrium state. In such a frame, the drift-wave instabilities have complex
frequencies w, i.e. they are partly travelling waves and partly growing waves.

Drift waves require non-zero plasma resistivity, or (as we will see in
other forms of dissipation, to be unstable. However, the waves
themselves (i.e. without instability) can exist and propagate in any non-uniform
plasma. Moreover, as we will see, except at relatively high values of the plasma
B (but still B « 1), drift waves do not produce a significant perturbation of
the magnetic field. Rather they involve a self-consistent wave-like pattern of
density perturbations and flow velocities that propagates partly along and partly
across a fixed, approximately uniform, straight magnetic field.

21.1 THE PLANE PLASMA SLAB

We will analyze drift waves in the simpiest possible configuration involving a
non-uniform plasma, the so-called ‘plane plasma slab’. In this configuration,
there is a plasma with non-uniform density n(x) and pressure p(x), maintained
in equilibrium by a strong magnetic field, B,. There is no variation of the
equilibrium in the y or z directions. The plasma is at rest in the equilibrium
configuration, i.e. u = 0, but there is, of course, a non-zero current density j,(x)
needed to provide equilibrium, i.e. to provide a j x B force that balances the
pressure gradient V p. The magnetic field B, will be modified (and will acquire
a variation with x) as a result of the plasma currents, so that the pressure-balance
condition, p + BZZ/Z;LO = constant, is satisfied. However, for low values of 8,
the non-uniformity of B, is very small and will be neglected in our analysis.
The suffix ‘0’ will be used to denote equilibrium quantities, e.g. ng(x), po(x)
and Bjg.

The new element in our description of a plasma that is needed to
produce drift waves is the full so-called ‘generalized’ Ohm’s law, introduced
in equation (8.13), namely

jxB—-Vp,

E+uxB=nj+
ne

(21.1)
Before embarking upon our stability analysis, we must address the question of
whether the use of this generalized Ohm’s law, rather than the simple version
which omits the last two terms on the right-hand side of equation (21.1), has any
effect on our description of the equilibrium configuration. Clearly, such an effect
does arise, since satisfying the independent force-balance condition, jxB = V p,
where p = p. + p;, will leave an uncanceled term in V p; on the right-hand
side of equation (21.1). Thus, it will not be possible to have both u = 0 and
E = 0 in the equilibrium configuration. Physically, we are encountering here
the contribution to the fluid velocity from the ion diamagnetic drift which we
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discussed previously in [Chapter 7. Specifically, substituting j x B = V(pe + pi)
on the right-hand side of equafion (21.1) and neglecting, for now, the resistivity
term, we can solve equation (21.1) for u,, obtaining

_ExB B x Vp;

7 B 21.2)

u
Equation (21.2) tells us that the fluid (mass) velocity across the magnetic field is
the sum of the E x B drift and the ion diamagnetic velocity, as we would have
expected, since the ions make the dominant contribution to the plasma mass.
Clearly, in a non-uniform plasma, u and E cannot both be zero in equilibrium.
If we have an equilibrium in which the plasma is at rest, i.e. u = 0, there will
necessarily be a non-zero electric field E, and, conversely, if the equilibrium has
E = 0, we will need to take into account a non-zero mass-velocity u.

For present purposes, however, we can simplify the analysis by restricting
ourselves to the case where the ion pressure vanishes, while the electron pressure
does not vanish. Physically, this corresponds to a situation where T; « T, which
is a legitimate (and not uncommon) case to consider. Since the equilibrium ion
diamagnetic drift is essentially zero, this allows us to assume that E; = up = 0.
There would be no fundamental difficulty in pursuing the more general case
with non-zero ion pressure, for example by keeping a non-zero equilibrium
E field in the stability analysis of a static (i.e. u = 0) equilibrium, but the
algebraic complexity would be greater, without adding much more insight into
the underlying drift-wave physics.

The plasma is uniform and of infinite extent in the y and z directions. Thus
we can assume that perturbations take the form of plane waves in these two
directions, so that any perturbation quantity ¥(x, t) can be written

Vi(x, 1) = Y1 (x)exp(—iwt + ikyy + ik,z) (21.3)

where 1Zr1(x) is the amplitude of the wave-like perturbation. Once again, since
the equilibrivm varies in the x direction, we cannot Fourier decompose into
sinusoidal modes in the x direction, but rather must search for eigenfunctions
1/}1 (x). Our method of analysis will be generally similar to that employed
in the derivation_of the Rayleigh-Taylor and resistive-tearing instabilities in
and respectively, except that here we have k, # 0, implying
that the perturbations have a variation along the main equilibrium magnetic field.
However, we will look for waves satisfying

k, <& ky (21.4)

and the outcome of our analysis will show that this inequality is valid for a
typical drift-wave instability.
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For our initial derivation of the drift waves, we will keep the magnetic
perturbations as well as the electric-field perturbations, but we will then show
that, for low-8 plasmas, the magnetic perturbations are unimportant relative to
the perturbed electric fields E and the associated E x B flow velocities. If
the magnetic perturbations are neglected from the outset, so that the perturbed
electric field can be assumed to be derivable from a scalar electric potential,
i.e. E = —V¢, the analysis of drift waves is simplified considerably. We will
indeed discuss this ‘electrostatic’ limit after we have developed the analysis for
the more general case. The value of first analyzing the more general ‘finite-8’
case in some detail is that it demonstrates the connection to the slow shear Alfvén
waves discussed in the previous two Chapters (and in ), and it shows
explicitly how the new drift-wave branch of the spectrum arises at frequencies
much lower than all Alfvén wave frequencies, i.e. @ < k,va < kyva.

21.2 THE PERTURBED EQUATION OF MOTION IN THE
INCOMPRESSIBLE CASE

We begin with the perturbed equation of motion

Ju .
»Ooa—t1 =-Vp +({xB)

By - B

=-V (m + ) + L [(B- V)B], (21.5)
Ho

where, as usual, we use the suffix ‘1’ to denote perturbed quantities. Noting that
the equilibrium magnetic field is entirely in the z direction, the two components
of equation (21.5) perpendicular to this equilibrium field are

. 3 BB ik
—iwpguy = —— (pl + —‘ZO—") + M—;Bzon (21.6)
B,oB ik
—iwpou, = —ik, (p1 + %) + L—szoBy. 21.7)
0 0

Here, and henceforth in this Chapter, we omit the suffix ‘1’ from perturbed
quantities whose equilibrium values are zero, e.g. u,, 4y, B, and B,. In deriving
equations (21.6) and (21.7), we have noted that By has only a component in the
z direction, so (B,-V)Bg does not contribute anything to the x and y components
of equation (21.5).

We now argue that the term in B,; in equations (21.6) and (21.7) contributes
significantly to the right-hand side of these equations, i.e. to the force arising
from the gradient of the magnetic pressure, even for B,; values that are so small
that they do not make a significant contribution to the divergence of the magnetic
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field. Using equation (21.7) for our estimates, we see that the contribution from
B, to the perturbed magnetic-pressure gradient is comparable to the contribution
from B, if

By~ (kz/ky)By (21.8)
The condition that the perturbed magnetic field be divergence-free is
3B | . .
—— +ikyBy +1k;B;; =0 (21.9)

ax

and we see immediately that the contribution from B,; is negligible compared
with that from B, if k, < k,, as we have assumed. Thus, the divergence-free
magnetic field condition becomes essentially
3B,
X

+ikyB, =0 (21.10)

the same as for the Rayleigh-Taylor (flute) and resistive-tearing instabilities,
both of which had k, = 0.

We will also see below that B,; values which contribute significantly to the
magnetic-pressure gradients in equations (21.6) and (21.7) are much smaller than
those which would arise if we allowed the main magnetic field to be compressed
significantly. Thus, as in the case of the Rayleigh-Taylor (flute) and resistive-
tearing instabilities, we want to look for solutions with the property that the
flow u is such that the B, field is not compressed. The consequence of these
approximations is that the perturbed magnetic-field component B;; will play no
role in determining the plasma flows and density perturbation, and it will not,
finally, appear anywhere else in our analysis, except in equations (21.6) and
21.7).

Accordingly, it is convenient to use our now-familiar technique for
eliminating B,; from equations (21.6) and (21.7), namely taking the x derivative
of equation (21.7) and subtracting ik, times equation (21.6). We obtain

. 0 . ik, B dB .
—iw (—-—(pouy) - 1kyp0ux) = 20 (—y - 1kyBx)

ox o ox
kB (3°B,
= s <8x2 — kB, (21.11D)

where we have used 3/3x of equation (21.10) to obtain the second form of the
right-hand side.

Any flow u that arises will be associated with an electric field E; ® ux B
and will result in compression of the magnetic field B;, described by

3B,
at

~ [V x (u x B)], (21.12)
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the approximate equality indicating that some smaller terms in Ohm’s law are
being neglected. Equation (21.12), to first order, gives

3
_iwB, ~ —By (% + ikyuy> . 21.13)

Unless the right-hand side of equation (21.13) effectively vanishes, there would
arise from compression of the B, field a perturbation of magnitude given roughly
by B;1 ~ Byokyuy/w. If we were to substitute this into equation (21.7), we would
find the ratio of the inertia term on the left to the term in B;; on the right to
be w?/k2v}, where v, is the Alfvén speed, B/(poio)'/2. Similarly, if we used
the term u, in equation (21.13) to eliminate B,;, then we would substitute this
into equation (21.6) and would find the ratio of the inertia term on the left to
the term in B, on the right to be w?/k2v3, where k, ~ 3/3x. Since we will
find that drift waves are generally characterized by k; ~ k,, these two estimates
are similar. However, we want to look for frequencies much smaller than kyva
(at most of order k,vs, where k;, < k, ~ k;), so we cannot allow the large
B,; values that would arise if this degree of compression of the B, field were
to occur. Thus, we can write

Oy .

pp + ikyuy, =0. (21.14)
We note that this is not, in this case, the condition for exactly incompressible
fluid flow, which would involve an additional term ik, u, on the left-hand side of
equation (21.14). Indeed, it is only the flow perpendicular to the magnetic field
that is required to be incompressible; an arbitrary flow along the field can be
added without contributing anything to the compression of the magnetic field.
Nonetheless, for most cases of interest, including drift waves, both &k, and u,
are relatively small, so that a term ik,u,, even if added to the left-hand side of
equation (21.14), would make little difference.

Our argument for incompressibility, which has been invoked for the
Rayleigh-Taylor (or flute) instability, the resistive-tearing instability and now
for the drift wave, can be expressed in terms of the various types of Alfvén
waves discussed in Essentially, these three instabilities all arise in
the linearly polarized shear Alfvén wave branch of the low-frequency ‘spectrum’,
rather than in the magnetosonic wave branch. The physical reason for this is
that these shear Alfvén waves do not require the large amount of energy that
would be needed to compress the magnetic field, with the result that they are
most easily driven unstable by relatively weak sources of free energy. Since
perpendicular compression is not involved, the shear Alfvén waves can also
have much smaller frequencies, in the case k, « k,. For the case of drift
waves, for which we will derive a dispersion relation that displays explicitly
the coupling to the shear Alfvén waves, we will find frequencies in the range

Copyright © 1995 IOP Publishing Ltd.



The perturbed equation of motion in the incompressible case 369

w < k;va (often w < k;va), to be compared with the much larger frequencies,
w ~ kyva, characteristic of the magnetosonic waves.

Using the incompressibility condition, equation (21.14), to substitute for u,
in terms of u; on the left-hand side, equation (21.11) becomes

wpo [uy , k.By (3°B, ,
— | — -k = -2 —k*B 21.15
k, ( ax? y“") nok, \ 8x2 (21.13)

where, on the left-hand side, we have made the simplifying assumption that pq is
not strongly varying with x on the scale of distances over which the perturbations
vary significantly. Basically, we are assuming here that the effective wavelength
of the perturbation in the x direction is much shorter than the scale-length of
the equilibrium density variation.

In cases such as this, where the wavelength of a perturbation is much
shorter than the scale-length over which an equilibrium varies, we can use the
‘WKB approximation’, introduced in The perturbation will adopt an
approximately wave-like form, although the local wave-number k, will adjust
itself gradually to local conditions. For any general perturbed quantity ¥, (x),
the WKB approximation is adopted by writing

Y1 (x) = Yriexp (i fx kxdx> (21.16)

where the amplitude 12/‘1 and the effective wave-number k, are both slowly
varying functions of x, i.e. they vary on the scale of the equilibrium variation.
A full application of the WKB approximation allows actual eigenfunctions to be
obtained, i.e. forms for 1/}1 (x) as well as for ky(x), but for present purposes it is
sufficient simply to introduce a wave-number k,, as in equation (21.16), implying
that the perturbation is wave-like in x. (Effectively, the WKB approximation
generates eigenfunctions by approximating to successive orders in an expansion
in (kyL,)~", where L, is the typical scale-length of the density non-uniformity;
equation (21.16) represents the lowest-order eigenfunction.) When x derivatives
are taken, we may simply use the rule 3/3x — ik,, just as if the perturbation
were exactly of plane-wave form.
Applying this technique to equation (21.15), we obtain

p k2 B, (21.17)

where k3 = k2 + k2. Equation (21.17) may be rewritten
wuy = —k,vi B,/B,. (21.18)

Equation (21.18) is as much information as we can obtain from the perpendicular
components of the perturbed equation of motion, because we have now reduced
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the independent variables to two, namely u, and B,, which will be related to
each other also through Ohm’s law.

21.3 THE PERTURBED GENERALIZED OHM’S LAW

We turn next to the generalized Ohm’s law for the first-order perturbed quantities,
namely

1
E| +u XBo=77j1+n—e(j><B—VPe)1 (21.19)
which, when coupled with Faraday’s law, i.e.
3B
—é-tl = -V xE, (21.20)

must yield another relation between B, and u, to combine with equation (21.18).
Substituting equation (21.19) into equation (21.20) and employing our usual
expansion of V x (u; x Bg) (see, for example, equation (19.6)), we obtain
B, . 1,
= Bo-V)u; —(u;- V)By —Bo(V-u;) -V x (77.]1 + ;l?(.l XB=Vpe)i ).
(21.21)

Examination of the size of the various terms in the generalized Ohm’s law
shows that the additional terms on the right-hand side of equation (21.19), i.e.
the last two terms, are of much more importance in the component parallel to
the magnetic field than they are in the components perpendicular to the field.
To see this, we simply note that the equation of motion tells us that

. ou; .

GxB-Vp)h ~ o5 = ~iwpouy (21.22)
and so the ratio of the magnitude of the last two terms on the right-hand side in
the perpendicular components of equation (21.19) to the magnitude of the second
term on the left-hand side is of order woglu;|/neluy|B =~ wM/eB =~ w/wg,
where w is the Larmor frequency of the ions. For waves, with o <« g,
these additional terms on the right-hand side in the perpendicular components
of equation (21.19) are unimportant and may be neglected. However, the new
terms must be retained in the parallel component of the generalized Ohm’s law,
which becomes

1
Ey =nj - Evllpe- (21.23)

Noting that the equilibrium magnetic field is entirely in the z direction,
equation (21.23) to first order in the perturbations can be written

1. B.d
E, =nj, — — (1kzpe1 + B—‘O ;’;") (21.24)
Z
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where, in accordance with our usual convention, we have dropped the suffix
‘I’ from the perturbed quantities E, and j,, whose equilibrium values are zero.
Note the appearance of the third term on the right-hand side of equation (21.24),
which arises from observing that the operator V| means (b V), where b is the
unit vector in the direction of B, so that

(Vype)i = [(b+ V) pel; =bo+ Vper + by - Vpeo

B dpo
lkzpel + "; dxe

(21.25)

(Strictly, we should note that j, is non-zero in the equilibrium, and hence will
require a small but non-zero —u,0B;0 = njy0. As we saw in Ehapter 1ZI this
uxo is the fluid velocity due to collisional diffusion. In the perturbed form of
equation (21.23), there will be an additional term 1B, j,0/B,o on the right-hand
side. This extra term is very small, since the resistivity 7 is generally very small;
comparing it with the last term on the right-hand side of equation (21.24), we
find it to be of relative order vej/we, Where we have written 7 in term of v
and assumed B; ~ B,.)

Using equation (21.24) for the parallel component of the generalized Ohm’s
law, but assuming that E; = —u x B is a satisfactory approximation for
the perpendicular components, so that the vector inside the curl operator in
the last term in equation (21.21) retains only its component parallel to B, i.e.
[y — (Vype)/ ne]lb the x and y components of equation (21.21) can be written

. . . 1 B, d
—iwB; = ik, Byou, — ik, |:;7]z o <1k2pe1 + Jﬁ)]

By dx

. . a 1 B; dpeo
—lwBy = ik, Byouy + — ax l:’]]z T e <1kzpe] + 7 d.: )]

(21.26)

although the second of these equations is redundant once equations (21.10) and
(21.14) have been established, and so it is not used further in our analysis. We
now use Ampere’s law, V x B = ugj, together with equation (21.10) to express
B, in terms of By, to obtain an expression for j, in terms of B,:

'—1 9B, ik, B
jZ_ILO ax yDx

B, (21.27)

with k7 = k2 4 k% and where the WKB approximation has been invoked in the
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final step. From equation (21.26), we now obtain

B; dpe
d—p—") (21.28)

i ky
B, + k;Byouy = —_n‘kJZ_Bx - = <1kz Pel + ——
Ko ne By d

The electron pressure perturbation pe; still needs to be eliminated in favor of
By and u,. It will be determined by an equation of state, which relates pe; to the
density perturbation ne;, which in turn will be determined from the perturbed
continuity equation. Physically, the most appropriate assumption will be that
the electrons are isothermal, which is equivalent to assuming that the electron
thermal conductivity is sufficiently large to maintain a uniform temperature T,
along the magnetic field, i.e.

B-VT, =0. (21.29)

Allowing for the possibility of a temperature gradient across the field in the
equilibrium, i.e. Tep = To(x), the perturbed form of equation (21.29) is

B, dT.
ik, Tp) + —=—=2 =0, (21.30)
By dx
Using pey = Teonter + neoTer, it follows that the term in parenthesis on the
right-hand side of equation (21.28) is given by
B, dpeo dPeO dTy
ik ik, T — —_—
1k, Pel + —— B dx = 1k Teoner + BzO( e Neo .
B dneo
k 21.31
<l e + 5= ) (21.31)

Equation (21.31) may be substituted into equation (21.28), which has the effect
of eliminating the pressure perturbation p.; in favor of the density perturbation
Rel. '

The continuity equation to first order in the perturbations, i.e.

ane]
at

+uy - Vng + V” (neou”) =0 (21.32)
where we have used V -u; = 0, can be written
. dneo .
—iwne; + uxg + ik,nequ, = 0. (21.33)

The perturbed velocity parallel to the equilibrium magnetic field, u,, must be
obtained from the parallel component of the equation of motion. Although
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we have already made use of the perpendicular components of the equation of
motion, we have not yet used the parallel component, which is

du
po—t = =V pe. (21.34)

To first order, the perturbed form of equation (21.34) becomes

. . B, dpeo
—lwpou, = —ik;pe1 — -Ef(;d—:
R B, dn 0
= —Tw (1kzne1 + EXZ d; ) (21.35)

where we have again used equation (21.31). We can substitute equation (21.35)
into equation (21.33), to obtain
4 (w_ k?Teo) ney 41, 310 | KaToo By dneg

dne0 e o, 21.36
oM “& T oM By dx (21.36)

We have now obtained an expression for the density perturbation, and hence
also the electron pressure perturbation, in terms of u, and B,.

We now substitute equation (21.31) into equation (21.28) and then
substitute for n.; from equation (21.36). This involves a significant amount
of straightforward manipulation, which proceeds most easily by first noting that
equation (21.36) can be rewritten

B, dng o dneo wBy + k, Byoux

" By dne _
Wetel + 5 dx — B dx @2 — KIC?

(21.37)

where C; = (T./M)'/? is the plasma sound speed (i.e. the ion thermal speed
evaluated with the electron temperature). Using this in equation (21.31), which
is then substituted into equation (21.28), we obtain

kyvge in ,
(wBy + k;Bou )(1——L—>=——k B:. (21.38)
x Pz0%x w—kZZCsz/w ILO-LX
Here T d
e0 Ie0
= - 21.39
Ude neoeBro dx ( )

is very similar in form to the electron diamagnetic drift velocity (see ),
the minus sign coming from the electron’s charge, —e. (Note that vge is not
exactly the electron diamagnetic drift velocity, as defined in Chapter 7, in which
dpep/dx would appear, rather than T.(dney/dx). Thus, vg differs from the
diamagnetic drift velocity if there is a temperature gradient across the magnetic
field. In magnitude and sign, however, the two velocities are, of course, generally
similar.)
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21.4 THE DISPERSION RELATION FOR DRIFT WAVES

By combining equation (21.38) with the relation between u, and B,
obtained from the perpendicular components of the equation of motion, i.e.
equation (21.18), we obtain the dispersion relation for the waves under
investigation, namely

kvl kyVge > in ,
S/ SR L S PR 21.40
(‘” " )( o KClw) " ot (21.40)

In the limit of zero resistivity, we see that there are two distinct branches of the
dispersion relation. One branch has

w = k,ua (21.41)

and clearly corresponds to the shear Alfvén wave. The second branch has a
dispersion relation
ke _

® — kyvge — 0 (21.42)

and corresponds to the ‘drift waves’. In a uniform plasma, for which vge = 0,
this is just the ion sound wave encountered in with kAp <« 1. Since
equation (21.42) is quadratic in w, for given values of k, and k, there are two
branches of the drift wave, i.e. two possible values of w, as shown in .
The branch for which @ has the same sign as k,vq. (upper curve in Figure 21.1)
is usually called the ‘electron drift wave’; the other branch (lower curve in
Figure 21.1) is usually called the ‘ion branch’ of the drift wave, although, for
reasons that will soon be apparent, this branch is of less interest. In the limit in
which k,C, « kyvge, the electron drift wave has the frequency

® ~ kyVge. (21.43)

(The ion branch of the drift wave as shown in Figure 21.1 violates the convention
introduced in that real frequencies w are taken to be positive. If we
are interested in this branch, we can satisfy the convention by simply reversing
the sign of k,. Physically, the ion branch of the drift wave propagates in the
direction opposite to that of the electron diamagnetic drift.)

Problem 21.1: By solving the quadratic equation, equation (21.42),
for v exactly, draw a more accurate version of Figure 21.1, plotting
the dimensioniess frequency w/k,v4 versus the dimensionless quantity
k,Cs/kyvge.
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Equation (21.40) indicates that the effects of non-zero resistivity are to
couple the shear Alfvén and drift-wave branches of the spectrum together and to
add an imaginary part (either a growth rate or a damping decrement, depending
on sign) to the frequencies of each of the branches.

Ao
Electron branch

lon branch

Figure 21.1. Electron and ion branches of the drift-wave dispersion relation. Both
branches approach asymptotes w = %k,C;.

In order to proceed further, we must consider the typical magnitudes of
the various frequencies appearing in equation (21.40). First, we note that
Cs = (T./M)"/? and vs = B/(uonM)'/?, so that

Cy/va = (uonTe)'?/B ~ (B/2)'* (21.44)

indicating that the sound-wave frequency, k,C;, is very much smaller than the
shear Alfvén wave frequency in all cases where the plasma S value is very
small.

Second, we note that vge = T./¢BL,, where L, = n/(dn/dx), the scale
length of the density non-uniformity, so that

vge/Cs = (MT)'*/eBL, ~ ris/Ly (21.45)

where r, = (MT.)!/?/eB = C,/wg, the average Larmor radius of the ions
evaluated as if the ions had the electron temperature. The ion Larmor radius
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ri; in a magnetized plasma is usually very much smaller than any macroscopic
scale-length. Furthermore, although our treatment of drift waves has assumed,
for simplicity of analysis, that T; « T, the disparity in the two temperatures is
not usually sufficient to make r; more than a few times, at most, larger than ry;.
Thus, in many cases of interest, we can assume that vg << C;. It follows that
the ratio of the two frequencies appearing in the drift-wave dispersion relation,
equation (21.42), namely k,vq4./k,Cs, is very small, unless

k, < ky (21.46)

or, more specifically, k,/k, ~ r.s/L, for the two frequencies kyvq. and k,C; to
be comparable.

Since a finite number of wavelengths A, = 27 /k, and A, = 27 /k, must
‘fit’ into the plasma in the y and z directions, respectively, it follows that our
‘plane plasma slab’ must be much more extended in the z direction than in
the y direction, by roughly the ratio L,/r,, for the drift wave to be clearly
distinguishable from the ion sound wave. If the plasma slab is infinite in both
y and z directions, as it strictly is within our model, then all k, and k, values are
allowed but, as we will see, the most unstable perturbations will be much more
extended in the z direction. The infinite plasma slab will be a good representation
of a finite-size plasma, provided the wavelengths in both y and z directions are
much shorter than the y and z dimensions of the finite plasma, respectively.

To retain both branches of the drift waves shown in we
take kyvge ~ k.C,, in which case the typical ordering of the frequencies in
equation (21.40) is

kyvge ~ k,Cy K kva (21.47)

the inequality following from 8 « 1.
In this case, even with resistivity included, equation (21.40) divides into a
higher-frequency branch, the shear Alfvén wave, with

k2 2 :
w——2h o Dy (21.48)
w Ko
and a lower-frequency branch, the drift wave, with
K2C2 ik} w? — K2C?
R

w — kyvge — (21.49)

This separation into two branches of the dispersion relation (21.40) can
be derived by first looking for high-frequency solutions, w ~ k,va, for which
the inequality given in equation (21.47) implies that the second of the two
factors in parentheses on the left in equation (21.40) is approximately unity,
thereby yielding equation (21.48). Next, looking for low-frequency solutions,
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w ~ kyvge ~ k;Cs, the same inequality, i.e. equation (21.47), implies that the
first of the two factors in parentheses on the left-hand side of equation (21.40)
is simply —k?v3/w, thereby yielding equation (21.49). The fundamental
assumption that permits this division into two distinct branches of the dispersion
relation is that 8 « 1, which produces a wide separation between the lower
frequency drift waves with @ ~ kyvg. ~ k,Cs, and the higher frequency shear
Alfvén waves with w ~ k,va.

We examine the effect of resistivity first on the shear Alfvén waves.
Neglecting the imaginary term from resistivity in equation (21.48), we have
at lowest-order the familiar solution w ~ £k, v,. Treating the imaginary term
on the right-hand side of equation (21.48) as a small correction and allowing
w to acquire a correspondingly small imaginary part, @ — w + iy (where
w and y are now both assumed real, with y/w <« 1), the imaginary part of
the left-hand side of equation (21.48) is simply y + (k2v3/w?)y ~ 2y, which
yields y = —nki/2u0, indicating that the shear Alfvén waves are damped
by resistivity (negative y). The damping decrement is essentially the rate of
resistive diffusion of magnetic field over a distance of order a perpendicular
wavelength—a physically intuitive result unrelated to the present topic of drift-
wave physics.

Carrying out a similar analysis of equation (21.49), we find a lowest-order
dispersion relation for w that is the same as equation (21.42) whose solutions are
shown in Then, letting @ — w+iy and equating the imaginary part
of order y on the left-hand side of equation (21.49), which is ¥ + (k2C2/w?)y,
to the imaginary expression on the right-hand side, in which only the real part
of the frequency w need be used, we obtain

nk3 wi(w* —k2C?)

= — . 21.50
po k2vi(w? +k2C2) ( )

Equation (21.50) shows that the drift wave is unstable whenever |w| > |k,C;|.
Referring to Figure 21.1, we see that the electron drift wave (the upper curve
in Figure 21.1) is always unstable (positive y), although the growth rate will
diminish rapidly as w approaches the asymptote k,C,, whereas the ion branch
of the drift wave (the lower curve in Figure 21.1) is always damped. The
electron drift wave destabilized by resistivity is usually called the ‘resistive drift
instability’.

In the simple case where kyvg. > k,C;, the frequency and growth rate of
the resistive drift wave instability are given by

w=kyvee ¥ =nkikivi,/uoklvi ~ vek]rlkivg,/kivZ, (21.51)

where, in the second form of the expression for the growth rate y, we have
substituted 1 & vjm/ne?, where v is the electron—ion collision frequency, and
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v e = (T./m)V/? is the electron thermal velocity. The growth rates of resistive
drift instabilities tend to be quite small. Specifically, since k,v4. <K k;va, the
first expression for y in equation (21.51) shows that the growth rate must be
very small compared with the rate of resistive diffusion of magnetic field over
a distance of order a perpendicular wavelength, i.e. nk_zL /to. For perpendicular
wavelengths much longer than the ion Larmor radius (evaluated with the electron
temperature), i.e. kiris S 1, and for kyvee S k,Cs &K kyvie, the second
expression for y in equation (21.51) shows that the growth rate must also be
very much less than the electron—ion collision frequency ve;. On the other
hand, since y o k]k}/k7, the growth rate increases rapidly as the perpendicular
wavelength decreases or as the parallel wavelength increases. Thus, for very
short perpendicular wavelengths (down to some limit of order the ion Larmor
radius, below which our analysis would not be valid) and for very long parallel
wavelengths, the growth rates of resistive drift instabilities can be appreciable.
Since the parallel wavelength is limited only by the length of the plasma slab in
the z direction, drift-wave instabilities tend to be most serious for plasmas that are
very extended along a straight, unidirectional magnetic field. Not surprisingly,
drift waves are quite strongly affected by the introduction of magnetic shear, i.e.

an equilibrium component B,o(x), as was discussed in the context of resistive
tearing instabilities in Chapter 20

Problem 21.2: Using the same dimensionless quantities for the two
axes, add the shear Alfvén wave, whose dispeision relation is given by
equation (21.41), to the figure drawn in Problem 21.1. To do this, you
need to choose a specific value of 8 in order to relate C, to vs using
equation (21.44). take 8 = 0.02. Using equation (21.40), indicate which
branches of the dispersion relation in the upper (electron) half of your
figure become unstable when a small amount of resistivity n is added.
By what factor must our ‘plane plasma slab’ be more extended in the
z direction than in the y direction to allow waves with @ ~ k,vg ~ k;va:
give your answer in terms of the quantities r /L, and 8.

Problem 21.3: Examine analytically the region where the two branches
of the dispersion relation in the upper half of the figure which you have
produced in Problem 21.2 appear to cross each other, i.e. the region
w =~ kyvge =~ k,va. For the purpose of this analytic calculation, you may
assume 8 — 0, i.e. C;/ua — 0. By choosing some particular k, value
in this region, for example that given exactly by k,va = kyvg4., show from
equation (21.40) that there is an instability with a growth rate that scales
like n1/2, rather than like »n, for small values of the resistivity. (Hint: You
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will find it useful to note that the frequency is given approximately by
w ~ kyvge = k,va, SO that equation (21.40) may then be used only to
calculate the small complex correction to this frequency.) This more-
rapidly growing instability arises from a coupling between the drift wave
and the shear Alfvén wave.

21.5 ‘ELECTROSTATIC’ DRIFT WAVES

The astute reader may suspect that the limit w <« k,va, in which the
lower-frequency drift wave separates from the shear Alfvén wave in the
dispersion relation equation (21.40), corresponds to the case where the magnetic
perturbations play essentially no role in the dynamics. In this sense, the drift
wave is sometimes called ‘electrostatic’.

We can see this by noting that our analysis of the perturbed generalized
Ohm’s law, with the added assumption that the perturbed electric field is
constrained so as to produce negligible magnetic perturbations, is essentially
sufficient by itself to produce the drift-wave dispersion relation: comparing
equation (21.38) with equation (21.40), we see that the shear Alfvén wave
branch of the dispersion relation arises from retaining the term wB, in the
first factor on the left-hand side of equation (21.38). This, in turn, arises from
retaining the B term in the perturbed Ampere’s law, i.e. the term on the left-
hand side of equation (21.26). Neglecting these terms is equivalent to looking
for modes in which the perturbed E fields adjust themselves so as to avoid
producing significant magnetic perturbations. This will necessarily involve a
non-zero perturbed E; as well as E|, but the generalized Ohm’s law allows
this perturbed Ey to be balanced by the parallel perturbed electron pressure
gradient. If we neglect the term wB, in the first factor of the left-hand side
of equation (21.38), but keep all of the other terms, using equation (21.18) to
provide another relation between u, and B,, we obtain the drift-wave branch of
the dispersion relation, i.e. equation (21.49).

The derivation of the drift-wave dispersion relation is simplified
considerably if we make this ‘electrostatic’ assumption from the outset.
Specifically, the ‘electrostatic” approximation amounts to assuming that the
components of the perturbed electric field, E;, are related to each other by
the requirement that V x E; = 0, which implies that the perturbed electric field
can be written as the gradient of a scalar potential ¢, i.e.

=-Vo¢ (21.52)
where we have dropped the subscript ‘1°, since both E and ¢ are zero in the

equilibrium.
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As we have seen, the generalized Ohm’s law for the perturbed quantities,
i.e. equation (21.19), divides into components perpendicular to the magnetic
field, for which the approximation

u, ~ E x B/B? (21.53)

will suffice, and a component parallel to the magnetic field, in which all of the
terms must be retained, i.e.

B
E“ = 17]“ - EV”pe. (2154)

Noting that the equilibrium magnetic field is in the z direction and that the
perturbed magnetic field is to be neglected, equation (21.54) to first order in the
perturbations can be written

ik
E, = nj; - =22, (21.55)
ne
In the electrostatic approximation, equation (21.53) tells us that
uy = Ey/Byo = —iky¢/Byo (21.56)
so that
E, = —ik,¢ = kB, /k, (21.57)
in which case equation (21.55) becomes
. ik . ik, T
k:Byoux = ky (U]z - zpel) =ky <77]z - = eOnel) . (21.58)
ne ne

In the second form of equation (21.58), we have again made the assumption
that the electron temperature must remain uniform along the (now straight and
unperturbed) magnetic field.

To obtain the density perturbation, 7., in terms of u,, we proceed in much
the same way as before, i.e. we combine the continuity equation

d
—iwne + ux% + ik ety = 0 (21.59)

with the parallel component of the equation of motion
—iwpou, = —ik, Teohe; (21.60)

(see equations (21.33) and (21.35)). We substitute for u, from equation (21.60)
into equation (21.59), thereby obtaining n.; in terms of u,, which is then
substituted into equation (21.58). This gives

kyvge ) kyn
1-—2= Ju, = —2—j,. (21.61)
( w—k2Cw) " kBy'"
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It remains only to relate the perturbed current density j, to the mass velocity
u, by the equation of motion. Our procedure here is somewhat different from
before, in that we do not want to express the forces arising from current-density
perturbations, such as j,, in terms of the perturbed magnetic fields, as was
done in equations (21.5)—(21.11), because these perturbed magnetic fields are
neglected, and so are not being otherwise calculated. Rather, we want to deal
with the current-density perturbations directly. The x and y components of the
perturbed equation of motion, equation (21.5), can be written

) op1 | .
—lwpolx = _X + ]lezo

(21.62)
—iwpouy = ‘ikyl’l — Jx1Bzo

noting that terms such as j, B, and j, B, will be second order in the perturbations

and may therefore be omitted. Taking 3/9x of the second of these and

subtracting ik, times the first, thereby eliminating the pressure perturbation p,

(a familiar procedure), we obtain

) ] . ajxl . .
—iw (a(pguy) - 1ky,00ux> =—By ('g + 1ky1y1>
= ik, ByoJ, (21.63)

where, in the second step, we have made use of the divergence-free property
of the perturbed current density. Invoking the incompressibility of u,, i.e.
equation (21.14), and using the WKB approximation to express d/dx as —ik,,
equation (21.63) gives
. lwpg
2= kB

k2 u, (21.64)

where k3 = kZ + k2. Substituting this into equation (21.61) gives a final
dispersion relation

k2CZ  inkd w? —k2C2
ke KRR

o — kyvge — (21.65)

exactly the same as equation (21.49). In the case where kyvge < k,C;, the
frequency of the drift wave becomes simply w & ky,vq4. and its growth rate is
given in equation (21.51).

We conclude that magnetic-field perturbations play no essential role in
the dynamics of the low-g8 drift wave. Rather, the drift wave is produced
by a perturbed electric field, whose perpendicular components give rise to
perpendicular plasma flows, and whose parallel component is force-balanced
self-consistently by the perturbed electron pressure gradient along the magnetic
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field. Without resistivity, equation (21.54) tells us that the peaks in the
electron pressure (or equivalently, the electron density) along the magnetic field
coincide exactly with the peaks in the electric potential ¢. Indeed, assuming as
before that the electron temperature remains uniform along the magnetic field,
equation (21.54) (without the resistivity term) has the familiar exact nonlinear
solution n.  exp(e¢/Teo), which reflects the tendency of the electrons to adopt
a Boltzmann distribution along the magnetic field. In the drift wave, without
resistivity, the electron density perturbation will be exactly in phase with electric
potential perturbations. Introduction of non-zero resistivity produces a small
phase shift between the density and potential perturbations. It is this phase shift
that allows the drift-wave flow pattern to extract energy from the thermal energy
available in the pressure gradient of the electrons to provide for unstable growth
of the wave energy.

The analysis of drift waves presented in this Chapter has made several
simplifying assumptions, in particular that the equilibrium magnetic field is
straight and essentially uniform and that the ions are essentially ‘cold’, i.e.
T, « T.. The introduction of non-zero ion temperature, i.e. 7; ~ T, would have
the predictable effect of bringing the ion diamagnetic drift into the theory, in
addition to the electron diamagnetic drift. However, this would not introduce
any qualitative change in the stability properties of the drift wave, at least not
for the ‘electron branch’. The frequency of the ‘ion branch’ of the drift wave
would be modified and, if additional dissipative effects are included, this branch
can sometimes be destabilized, but we defer this_topic_until we are able to
treat drift waves from a ‘kinetic’ viewpoint (see . Modifications
to the equilibrium geometry of greatest impact are those that eliminate very
small values of the wave-vector parallel to the magnetic field, namely &, in
our case of a straight, uniform field. Finite-length limitations, or the periodic
boundary conditions that would be appropriate for a toroidal plasma, rather than
an infinitely long plasma slab, are examples where lower limits are imposed on
k,. If the magnetic field is slightly sheared, i.e. a component B, (x) is added to
the larger B, component (see , then the effective parallel component
of the wave-vector becomes ky = kB =~ k, + k, B, (x)/B;, which assumes a
range of values as a function of x depending on the width of the mode in the
x direction. All ‘finite-length’ and ‘shear’ effects tend to be stabilizing, but a
detailed analysis of these effects is outside the scope of this book.

Of perhaps more fundamental concern is the validity of the fluid model
itself, with its implied assumption that the electrons remain Maxwellian, with
a temperature that remains uniform along the magnetic field. We have seen
in that the electron thermal diffusivity along a magnetic field is a
quantity of order v%e/vei. For the electron temperature to remain essentially
uniform along the magnetic field in the presence of a drift wave with frequency
w and wave-number k, along the field requires that w <« k2vZ,/vei. Thus, the
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electron collision frequency cannot become arbitrarily large without violating our
assumption of isothermal electrons and requiring a more complete fluid model
including parallel temperature gradients. Moreover, inspection of the second
form of the growth rate ¥ given in equation (21.51) shows that for w ~ kyvge
the growth rate is then limited to values satisfying y /o <« k3rZ,. Again, we see
that drift-wave growth rates are appreciable only for perpendicular wavelengths
that do not exceed by much the ion Larmor radius, although it should be noted
that, because of our assumption that 7; <« T, our analysis has not implied an
expansion in k rs. The validity of the fluid model also requires that the electron
collision frequency not be too small. Specifically, for collisions to maintain a
Maxwellian distribution along the magnetic field, the mean-free path must be
shorter than the parallel wavelength, which requires k, v, << ve;. If this latter
requirement is not satisfied, a ‘kinetic’ version of the ‘electron branch’ of the
drift wave must be found, which is discussed in .

There is a vast literature on drift waves in non-uniform plasmas. An account
of the early work in the field is to be found in an article by N A Krall (1968,
in Advances in Plasma Physics 1, edited by A Simon and W B Thompson
New York: Interscience), which discusses the ‘kinetic’ versions of the drift wave,
to be introduced in Chapter 26, as well as the fluid versions which have been
described in the present Chapter.
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Chapter 22

The Vlasov equation

The fluid approximation is sufficiently accurate to describe the majority of
macroscopic (i.e. large-scale) plasma phenomena that are typically encountered,
such as the instabilities discussed in the previous Unit. We have also seen that
the fluid model is sufficient for providing a good description of important types
of wave-like behavior that are possible in a plasma. There are some phenomena,
however, for which a fluid treatment is inadequate. For these, we need to work
with the velocity distribution function f(x,v,t), introduced in for
each of the species of particles in the plasma: such a treatment is called a
‘kinetic theory’.

22.1 THE NEED FOR A KINETIC THEORY

In fluid theory the relevant dependent variables, such as density, fluid velocity
and pressure, are functions of x and ¢ only. This is possible because the velocity
distribution of each species about some mean velocity is implicitly assumed
to be Maxwellian (see everywhere—uniquely specified by only
two parameters, namely the density and temperature. In the hydrodynamics
of ordinary fluids and gases, interparticle collisions are usually sufficiently
frequent to maintain Maxwellian distributions of particles everywhere in the
fluid. In high-temperature plasmas, however, interparticle collisions are
relatively infrequent, and deviations from local thermodynamic equilibrium can
be maintained for long times. For example, velocity distributions of the type
shown in Figure 22.1(b) can often be created in a plasma, as well as, in the
three-dimensional case, anisotropic distributions in which the ‘temperatures’ are
different for different velocity-vector directions, e.g. parallel and perpendicular
to a magnetic field.

Since collisions are so infrequent in high-temperature plasmas, one might
well wonder why a kinetic theory is not needed for all plasma problems. Why
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Figure 22.1. Examples of (a) Maxwellian and (b) non-Maxwellian one-dimensional
velocity distributions. The distribution (b) has a ‘beam’ of suprathermal particles
superimposed on an approximately Maxwellian background distribution.

does a fluid theory work at all? The reason is that a strong magnetic field can
play the role of collisions in maintaining approximately Maxwellian distributions
and in providing the ‘localizing influence’ that is the essential ingredient in a
fluid theory. For plasma phenomena that are ‘slow’ and ‘large scale’ in relation
to particle gyration, in the sense that their typical time-scale is long compared
with the Larmor period and their typical spatial length-scale large compared
with the Larmor radius, all particles remain close to their initial field lines. An
initially Maxwellian distribution of such particles would remain approximately
Maxwellian. For this reason, the two-dimensional flow of a plasma perpendicular
to a strong magnetic field can often be treated by magnetohydrodynamics, even
when collisions are very infrequent. For an example of a ‘two-dimensional flow’
exactly perpendicular to the magnetic field, we could cite the Rayleigh-Taylor
(flute) instability discussed in. Often the plasma flow perpendicular to
the magnetic field can be treated by magnetohydrodynamics even for phenomena
that are not exactly two-dimensional, because commonly the length-scales are
such that L > L,: the tearing and drift instabilities discussed in
and 21 fall into this category.

For flow along the magnetic field, however, the fluid theory will be valid
only if collisions are frequent enough (specifically if the mean-free path is much
shorter than some characteristic distance along the field). In the case where there
are no collisions, the individual particles making up the plasma will freely stream
for large distances along the field. To treat such problems, we need a kinetic
theory, in which individual particle velocities are taken into account. Such a
theory will also be needed to treat problems involving flow across a magnetic
field in the case where the magnetic field is very weak, in the sense that the
gyration period and gyration radius are not small compared with characteristic
time-scales and length-scales of the flow.

In summary, therefore, kinetic theory is needed to treat (i) problems
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involving flow along a magnetic field (or in the absence of a magnetic field) in
the case of long mean-free path (Amgp 2 L, where Ly is the scale-length of the
gradients along the field), and (ii) problems of high-frequency (@ 2 .) and/or
short-wavelength (k,rp 2 1) flow across a magnetic field.

Before beginning our development of the kinetic theory of plasmas,
however, we must first establish some important properties of the particle
distribution function.

22.2 THE PARTICLE DISTRIBUTION FUNCTION

The basic element in the kinetic description of a plasma is the distribution
function f(x,v,t) that describes how particles are distributed in both physical
space and velocity space.

Consider a plasma as a collection of N charged particles, each with its own
position and velocity vectors x; and v;. If the forces F; on the various particles
are given, the position and velocity vectors will evolve according to

dX,‘/dt =YV;
(22.1)
dv;/dt = a; = F,/m

The forces F; will, in general, be composed of both a macroscopic, or slowly
varying part, together with a microscopic, or rapidly varying part, due to
short-range interparticle forces, i.e. collisions. The macroscopic part will be
approximately the same for all particles with about the same x; and v;. Our
fundamental assumption here is that the macroscopic forces are dominant over
the microscopic, i.e. collisional, forces. Accordingly, rather than treat the entire
array of 6N equations represented by equation (22.1), we simplify the problem
by a statistical treatment based on the assumption that we need not distinguish
between particles that have about the same velocity and are located at about the
same place.

Specifically, we can average over distances that are large compared with
the interparticle spacing, n~!/3, but small compared with the Debye length,
Ap, which characterizes the minimum length-scale for the so-called ‘collective’
plasma phenomena we will treat. (Remember that a key definition of a plasma
is that nAd > 1, so these two distances are very far apart.) Averaging over
distances that are only a small fraction of the Debye length can effectively
eliminate binary collisions, despite the fact that the Coulomb logarithm includes
collisions out to impact parameters of order Ap. For example, if we average
all the electric fields over a distance of order one-tenth of the Debye length,
we would be effectively reducing the Coulomb logarithm, In A (a quantity
typically in the range 16-20), by only In 10 ~ 2.3. Since the kinetic theory is
generally applied to plasma phenomena for which binary collisions are relatively

Copyright © 1995 IOP Publishing Ltd.



390 The Vlasov equation

unimportant (indeed the Vlasov equation which we are about to derive describes
the case where binary collisions are entirely neglected), a possible error of
this magnitude in estimating the Coulomb logarithm will not matter. More
important, ‘collective’ plasma phenomena, i.e. phenomena arising from electric
fields averaged in this way, do occur for characteristic length-scales as small
as a Debye length, or even somewhat smaller. It is important to note that our
averaging process preserves the capability to describe such phenomena.

As was done in [Chapter 1|, we can define a distribution function f(x,v,t)
that represents the number density of particles found ‘near’ a point in the six-
dimensional space (x,v). Specifically, the number of particles located within
a volume element d>x of physical space and having velocities lying within a
volume element d*v of velocity space is defined to be f(x,v,t)d®vd®x. The
six-dimensional space whose volume element is d3xd®v is called ‘phase space’.

The number density of particles in physical space is given simply by

nix, 1) = / fx, v, nd%v. (22.2)

The mean (fluid) velocity of the particles is given by

nu = / vf(x,v,1)d. (22.3)

A scalar pressure can be defined by

p(x, 1) = '—;’- f V2 F(x, v, 1)d (22.4)

although it must be noted that f may not be isotropic in velocity space, in
which case the concept of a scalar pressure may be inappropriate. Indeed, we
recall that, as early as Chapter 1, we introduced the idea of different pressures
parallel and perpendicular to the magnetic field, and a general pressure tensor
was defined in [Chapter 6| In equations (22.2)~22.4), the integrals go from —co
to 400 for each of the three velocity components, vy, v, and v,.

As discussed in Chapter 1, in thermal equilibrium, i.e. after many
interparticle collisions have occurred, particle distribution functions will always
relax toward the (three-dimensional) Maxwellian velocity distribution:

mv

3/2 2
fu¥) =n (%) exp (—ﬁ) (22.5)

where the density n and temperature 7 will, in general, both be functions of x
and ¢. The Maxwellian distribution is isotropic, and the mean square velocity is
the same in any direction, namely

=6 =D =7 [Whfmvndv=". @26
n m
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The pressure is then given by p = nT, as usual. We can generalize the
Maxwellian distribution to allow a non-zero mean velocity u, in which case v?
should be replaced by |v — u|? in the expression for fi(v); for present purposes,
however, it will generally be sufficient to consider Maxwellian distributions with
zero mean velocity.

Often we are interested in the one-dimensional velocity distribution,
obtained by integrating over the other two components of velocity. For example,
the distribution of velocities v, is given by

x o0
Fvy) = / f f vz, vy, v;)duydy,. 22.7)
-0 J -0
For a Maxwellian distribution
m \1/2 mv?
M) =n{— ~-—=. .
M(Uy) =n (27”,) exp( T ) (22.8)

Since the three-dimensional distribution fu(vy, vy, v;) is isotropic, it is
sometimes more convenient to work in spherical velocity coordinates. The
volume element in spherical velocity coordinates (v, 8, ¢) is given by &y =
v2sindd¢dddv, where v takes on all values from 0 to oo, 6 all values from 0
to m, and ¢ all values from O to 2. Since fy is independent of 6 and ¢, we
can integrate over these two coordinates from ¢ = 0 to 27 and from 6 = 0
to 7, respectively, to obtain [ sinfd¢dd = 4m. Having integrated over 6 and
¢ in this way, the volume element d*v becomes simply 4w vdv, which is of
course simply the volume of a thin spherical shell in velocity space. We can
now define a distribution gym(v) which represents the number of particles per
unit volume and per unit magnitude v of the three-dimensional velocity-vector
v (with v going from 0 to o©), namely

32 2
vzexp (_mv ) . (22.9)

m
gm(v) =4mn ( 5T

57)

In a similar way, a distribution g(v) could be defined for any f(v) that is
isotropic in velocity space. In such cases, the number density is given by

o0
nx,t) = / g(v)dv (22.10)
0
and the scalar pressure is given by

p(x, 1) = % /w v2g(v)dv. (22.11)
0
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22.3 THE BOLTZMANN-VLASOV EQUATION

‘We want now to obtain an equation for the evolution of the particle distribution
function, f(x, v, ). We can do this rather simply by invoking conservation of
particle number, as we follow a group of particles through phase space. Consider
a small region of phase space, representing the position and velocity coordinates
of a group of particles. For simplicity of portrayal, we might suppose that phase
space contained only one dimension of physical space, x, and one dimension of
velocity, v, in which case our group of particles might occupy the small region
A shown in Figure 22.2. After a certain time interval, the particles occupying
the region A in Figure 22.2 will have moved to the region B.

5 [/
/ B

V.

Figure 22.2. One-dimensional phase space
(x, vy) in which a group of particles
occupying the region A move, after a
X certain time interval, to the region B.

Y

Problem 22.1 Explain why the square shape of A changes to the
parallelogram shape of B.

The points on the surface of any volume in phase space move according to

the rules d d F
X v
= = — = 22.12
dr v d m ( )
where F is the external force. The number of particles N in a volume of phase
space is given by

N = / fx, v, HdPvd’x. (22.13)

Conservation of the number of particles demands that the total time derivative
of N must vanish, where the ‘total’ time derivative means that we allow the
boundary surface to move with the particles that lie on it:

_ AN [of

= — L d*vd? . dS. 2.14
0= atdvdx+/fU ds (22.14)
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Here, the second term on the far right-hand side arises from the additional
volume captured or lost by the moving surface. It is important to note that the
‘velocity vector’ U and the ‘surface area’ dS in this equation are both six-vectors
in (x, v) space: the six components of U are (x, V) = (v, F/m). By using the
divergence theorem in six-dimensional space, we can rewrite the conservation

equation
_ 4N of
“ar J \ar

Here V denotes a six-component divergence operator, whose components are
(Vx, V). Since equation (22.15) must hold for every volume element in phase
space, we must have

af

§+V-(fU)=O (22.16)

where, again, both V and U are six-vectors.
In terms of ordinary three-vectors, where we write simply V for V and
d/dv for V,, equation (22.16) may be written, for certain forms of F, as

+ V- ( fU)) d*vd’x. (22.15)

af F 3 f
- -V = 0. 22.17
ar T f oy ( )
In obtaining this form, we have assumed
F
V-U=Vx-v—+—Vv-;=0. (22.18)

In equation (22.18), the first term on the right-hand side vanishes since v is not a
function of x: indeed x and v are independent coordinates in our six-dimensional
space. The second term vanishes provided the force F is not a function of v (as
will be true, for example, for electric and gravitational forces).
Before proceeding further, we must stop and note that the Lorentz force is
a function of v, namely
F =gv xB. (22.19)

However, evaluating the velocity-space divergence of this force, component by

component, we obtain

Vy-(vxB) = B,—v,B)+...=0 (22.20)

so that our result, i.e. equation (22.17), remains valid also for the particular
v-dependence of the Lorentz force.

We may now give our final result for the case of a plasma whose particles
are acted upon by electric and magnetic forces, namely

F =4(E +v xB). (22.21)
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For this case, the equation for the evolution of the particle distribution function
f becomes
af af

q
at-i—v Vf+m(E+va)-§_

We note that this equation could be thought of as D f/Dt = 0, where D/Dt means
the total derivative following the particle along its trajectory in six-dimensional
phase space.

When collisions are important, an additional term (3f/d¢)cn must be
included on the right-hand side of equation (22.22) to describe the effect
of short-range interparticle forces, especially binary collisions whose effect
was excluded in our initial ‘averaging’ of electric fields over some distance
intermediate between the interparticle spacing and the Debye length. This
additional term describes a local evolution of the velocity-space distribution
at each point in physical space; it has no direct explicit effect on the distribution
function elsewhere in physical space. For small-angle-scattering Coulomb
collisions, an approximate form (3f/92).on is the Fokker—Planck form derived
in [Chapter 13. When collisions are fully included, equation (22.22) is usually
called the ‘Boltzmann equation’, after Boltzmann who was the first to obtain an
expression for (3f/9t).on for the case of short-range interparticle forces. The
form of Boltzmann’s collision term is unlike that of the Fokker—Planck equation
in that it is appropriate mainly for situations where large-angle scattering is
dominant. However, the Boltzmann collision term can accommodate an arbitrary
dependence of the cross section, o, on the impact parameter, b, and on the
velocities of the colliding particles. When the Coulomb cross section is used
and only the (dominant) contributions from small-angle scattering are retained,
the Boltzmann form of the collision term reduces to the Fokker—Planck form. For
more on this topic, the reader is referred to the monograph by D C Montgomery
and D A Tidman (1964 Plasma Kinetic Theory New York: McGraw-Hill).

When collisions of all kinds are neglected, the equation is usually called
the ‘Vlasov equation’, after A A Vlasov who was the first to formulate the
‘collisionless’ equation in the form of equation (22.22) (1938 Zh. Eksp. Teor.
Fiz. 8 291 (in Russian)).

(22.22)

224 THE VLASOV-MAXWELL EQUATIONS

We have now derived the Vlasov equation, (22.22), for the evolution of the
particle distribution function f(x, v, t) in a collisionless plasma. Typically, the
electric and magnetic fields E and B making up the force g(E + v x B) are
partly due to externally applied fields and partly due to internally generated
fields. In order to have a closed set of equations, we must find some way of
deriving the ‘internally generated’ parts of the electric and magnetic fields from
the distribution function that describes the plasma particles themselves.
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The internally generated force on a charged particle in a plasma can be
divided roughly into two parts; one part is the average force due to a large
number of relatively distant particles, and the other part is the force due to
the near-neighbor particles, i.e. collisions. In a collisionless plasma, the former
greatly exceeds the latter. Since ‘collisions’ in a plasma have been shown to
include all Coulomb interactions at impact parameters up to a distance that
greatly exceeds the interparticle spacing n~!/3 and approaches the Debye length,
a ‘collisionless’ plasma is one in which the forces due to more distant particles
(at distances of order the Debye length and larger) are dominant. Moreover, the
average force due to distant particles does not depend on the exact location of
these particles, but only on the density of such particles averaged over a small
region with L > n~1/3 at each distant location. In other words, it depends only
on the distribution function f(x, v,t) itself. This average force due to distant
plasma particles can be combined with any externally applied force. In this spirit,
the electric and magnetic fields that make up the average force in the Vlasov
equation are to be calculated self-consistently from the Maxwell equations:

v. (GoE) =0
(22.23)

which have been written in terms of the electric and magnetic fields E and B
that appear in the force law, eliminating D(= €gE) and H(= B/u,) by using the
free-space permittivity, €, and permeability, g, respectively. For completeness,
we repeat the other two Maxwell equations:

V:-B=0
(22.24)
B
VXE=—-——.
at
In equation (22.23), the charge density and current density are to be obtained
at each point in space from the appropriate integrals of the distribution function

itself:

(22.25)

where the summation is over the species of particles present in the plasma.
Superficially, the Vlasov-Maxwell equations, (22.22)—~(22.24), resemble the

Liouville equation for an ensemble of particles moving in externally generated

E and B fields with fixed charge and current densities. The Liouville equation,
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by itself, contains no terms that describe interactions among particles of the
ensemble. However, the Vlasov-Maxwell equations are conceptually distinct
from the Liouville equation, because a part (the main part in a collisionless
plasma) of the interaction with all the other particles is retained by including
‘smeared-out’ charge and current densities o and j derived from the distribution
function itself (see equation (22.25)) in calculating the electric and magnetic
fields. Although information is lost in treating the other particles in this
‘smeared-out’ way, the Vlasov—-Maxwell equations do contain the main part
of the interparticle interaction in low-collisionality plasmas, and they provide
the most realistic description of such a plasma that is analytically tractable.

The addition of a Fokker-Planck collision term to the right-hand side of the
Vlasov equation, i.e. to equation (22.22), provides an even superior description,
in that this equation applies also to collisional plasmas and thus includes a very
wide range of plasma-physical effects. However, analytic tractability is sacrificed
substantially if the full Fokker-Planck term is used. It is sometimes possible
to employ much simplified forms of the collision term in kinetic descriptions
of complex phenomena such as plasma waves, where collision effects are often
subdominant. For example, the expression (3f/3t)con = —V(f — fmax) is often
used, where v represents a typical collision frequency, and where fy.x is a
Maxwellian distribution with the same number density and same energy density
(i.e. temperature) as the distribution f (and sometimes in the case of like-particle
collisions which conserve momentum, the same mass velocity). This simplified
collisional mode! does not describe correctly the physical effects of collisional
velocity-space scattering, but it does describe relaxation toward an appropriate
Maxwellian distribution and it is, at least in some sense, linear in f.

For the applications of kinetic models of plasmas that take up the remainder
of this book, we will limit ourselves to low-collisionality plasmas for which
equation (22.22) provides an adequate description, without the addition of a
Fokker—Planck collision term to the right-hand side.
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Chapter 23

Kinetic effects on plasma waves: Vlasov’s
treatment

The Vlasov—-Maxwell equations can be used to determine how the various types
of plasma waves that were discussed in —@ are affected by the
presence of a distribution of particle velocities. Even in the case where the
velocity distribution in the absence of waves is Maxwellian, significant ‘kinetic
effects’ can enter due to the presence of particles streaming along at speeds
which are comparable to the wave phase velocity. The velocity distribution may,
instead, be quite strongly non-Maxwellian, in which case new kinds of plasma
waves can arise, including some that can be unstable, i.e. grow exponentially in
amplitude in time.

As our first illustration of the use of the Vlasov equation for treating plasma
waves, we will derive the dispersion relation for electron plasma (Langmuir)
waves. We have seen in Chapter 16|that electron plasma waves with k = 0 have
a frequency

w = wp = (ne*/egm)'’? (23.1)

but that ‘thermal effects’ (treated in Chapter 16 via a fluid model) modify this
dispersion relation for electron plasma waves with non-zero wave-number k.
Plasma waves are high-frequency oscillations in which electrons move back
and forth relative to fixed ions, creating an oscillating space charge that is
self-consistent with the oscillating electric field driving the electron motion.
The oscillations take place either along a magnetic field, or in the absence of
any significant magnetic field; in both cases, the magnetic field plays no role.
The only Maxwell equation that enters into the theory of these waves is the
Poisson equation, which relates the charge density to the electric field. Thus,
the equations to be used for treating plasma waves are the Vlasov equation
for the distribution function f (including an electric field E) and the Poisson
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398 Kinetic effects on plasma waves: Vlasov’s treatment

equation in which the charge density is expressed in terms of the appropriate
integral of the distribution function f over velocity space.

23.1 THE LINEARIZED VLASOV EQUATION

We will assume here, as in (Chapter 16| that the plasma waves are of very
small amplitude, i.e. they represent only a small perturbation away from an

initial equilibrium. Moreover, since the wavelength of plasma waves is very
small, sometimes only a few times the Debye length, the background plasma
equilibrium will be assumed to be spatially uniform over such short distances.
Thus, in the equilibrium that exists before the perturbation is applied, the
distribution function fj can be considered to be a function of v only, and not
of x. The electron and ion equilibrium distribution functions f; must be chosen
such that the electron and ion number densities are equal, so that they correspond
to the physical case in which the plasma is charge-neutral. There will then be
no electric field in the equilibrium state: the electric field will arise only when
the perturbation is applied.

We will further assume (see Chapter 16) that the plasma wave being
considered takes the form of a plane wave travelling in the x direction, with the
electric field having an x component only, given by

E(x,1) = Eexp(—iwt + ikx) (23.2)

where E represents the wave amplitude.

Since the vy and v, velocity components are not affected by the electric
field, we may integrate the three-dimensional electron velocity distribution f(v)
over v, and v, and work with the resulting one-dimensional distribution, which
in [Chapter 22| we denoted F(v,) but which here we will simply denote f(v,)
to retain the familiar appearance of the Vlasov equation. We may also drop
the subscript x from v,, since the problem has in effect become purely one-
dimensional. This one-dimensional electron distribution, now denoted simply
f(v), must satisfy a Vlasov equation which is the same as would apply if the
problem had been strictly one-dimensional from the outset, namely

SCATC NSy R (23.3)

where we have set ¢ = —e for the electron charge. Moreover, for small-
amplitude waves, the oscillating E field is small and leads to a small perturbation
Si(x, v, t) (in effect, the first-order term in an expansion of the exact distribution
function f in powers of E) away from the initial, spatially uniform velocity
distribution fo(v), so that, if we write

flx,v,0) = fow) + fi(x, v, 1) (23.4)
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we can assume that f; is small compared with f;. Simple estimation of the
magnitude of the third term in equation (23.3) compared with the first term
shows that the expansion is in the dimensionless parameter e E /(wmv); for this
parameter to be small for a typical particle requires that the acceleration in a
wave period produces only a small change in velocity relative to v;, the thermal
velocity. The ‘linearized Vlasov equation’ becomes

1, 3 e pify

8t dx m v =0 (23:5)

where we have neglected second-order terms that involve products of first-order
quantities f; and E.

For electron plasma waves, the only relevant Maxwell equation is the
Poisson equation

&V -E=0= —eff1d3v (23.6)
where we have taken account of the fact that only the electrons, and not the
ions, contribute significantly to the oscillating charge density. For our one-

dimensional problem, in which our f; has already been integrated with respect
to the other two velocity coordinates, we can write this Poisson equation

9E o0
05 ==¢| fidv. (23.7)

The task is now to solve simultaneously equations (23.5) and (23.7).

23.2 VLASOV’S SOLUTION

To Viasov, who was the first to attempt this problem, it seemed reasonable to
suppose that fi also has a wave-like form in both space and time, just like
equation (23.2) for E(x, t), namely

filx, v, 1) = fi(v) exp(—iwt + ikx). (23.8)
The linearized Vliasov equation, equation (23.5), can then be written

—i(w —kv) fy = %E%f;" (23.9)

which can be ‘solved’ to give

4, — ieE fo/ov

. 23.1
m w—kv (23.10)

Copyright © 1995 IOP Publishing Ltd.



400 Kinetic effects on plasma waves: Vlasov's treatment

This ‘solution’ for fl may be substituted into the Poisson equation,
equation (23.7), which now takes the form

A o -~
ikegE = —e/ hHdv
-0
ie2E [ 3fy/3v

=——— dv. (23.11)
m J_ow—kv

After dividing through by ikeoE, noting that E cannot be zero by hypothesis (or
else there would be no perturbation to study) and collecting both terms on the
left-hand side, we obtain the relation

e? /°° afy/dv

Dk, w)=1
k, @) +mkeo o @ — kv

dv =0. (23.12)

The function D(k, w) is often called the ‘plasma dispersion function’, and the
equation D(k, w) = 0 defines the dispersion relation, since this equation can, in
principle, be solved to produce a relation of the type w = w(k). The function
D(k, ), which was first obtained by A A Vlasov (1945 J. Phys. USSR 9 25),
is also sometimes called the ‘plasma dielectric function’, because the oscillating
charge density o can be viewed as infernal to the plasma and absorbed into a
frequency and wavelength-dependent kinetic ‘dielectric constant’, which would
in this case be just €9 D(k, w), so that Poisson’s equation becomes V : D = 0
where D = ¢y D(k, w)E.

It should be emphasized that the dispersion function given in
equation (23.12) applies only to the case of electron plasma waves in
an unmagnetized plasma. It corresponds to the high-frequency kinetic
generalization of the ‘electrostatic’ term in the cold-plasma dielectric tensor
introduced in ‘, i.e. the term P22 in the dielectric tensor for 6 = 0 given
in equation (18.16). A more complicated dispersion, or ‘dielectric’, function (in
the form of a tensor) must be derived to describe the full range of plasma waves
in a ‘hot’, kinetic plasma. This would correspond to the kinetic generalization of
the full dielectric tensor. This kinetic dielectric tensor gives rise to a new class of
waves in a magnetized plasma in the vicinity of harmonics of the ion and electron
cyclotron frequencies, the so-called ‘Bernstein waves’. The full range of waves
in a magnetized plasma described by kinetic theory is discussed in specialized
texts, for example T H Stix (1992 Waves in Plasmas New York: American
Institute of Physics), but is beyond the scope of the present book. In this
Chapter and the following two Chapters, we will limit ourselves to the case of
electrostatic waves in an unmagnetized plasma (or with k and E vectors directed
along the magnetic field, so that the Lorentz force plays no role). The first fully
kinetic treatment of waves in a magnetized plasma, including perpendicular
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wavelengths of order the Larmor radius and frequencies of order the cyclotron
frequency and harmonics thereof, was given in a paper by I B Bernstein (1958
Phys. Rev. 109 10).

In principle, we have now solved our problem of high-frequency
electrostatic waves in an unmagnetized plasma from a kinetic viewpoint. Given
some initial velocity distribution f; and some wave-number k, we can carry
out the integration over v in equation (23.12) to obtain an explicit form for
the dispersion function D(k, w). We can then find the frequency @ by solving
the dispersion relation D(k, w) = O for any given k value. In practice, this is
difficult to do, because the integral over v can rarely be done analytically.

23.3 THERMAL EFFECTS ON ELECTRON PLASMA WAVES

An approximate solution for electron plasma waves can be obtained by assuming
that, for almost all particle velocities v, the relation w > kv will be a good
approximation. Since this states that the phase velocity of the wave is much
larger than a typical particle velocity, we expect it to correspond to the adiabatic
approximation in a fluid treatment. We may then expand the integrand in
equation (23.12):

1 1 kv k%? k3P

w—kv=z+ﬁ+ w3 + w?

(23.13)

For a Maxwellian distribution fp, i.e. the distribution given in equation (22.8), the
integrals over the one-dimensional velocity v can then be carried out explicitly,
noting that

o0
3
f o4y — 0 Ty = on
o ~e0 B0 (23.14)
= .
f 8o vidv = / a—fgv3dv = —3nv}
—oo OV

where v, = (T/m)‘/z. Going this far but no further, the dispersion relation,

equation (23.12), becomes

w? 3k
D(k, w)—l—w—(1+ )=0 (23.15)
where @, = (ne’/mep)'/?. We may solve equation (23.15) by successive
approx1matlons, assuming w? >> k?v?. First, we neglect completely the term in
v /w? K 1, thereby obtaining the zeroth order approximation to the solution,
namcly just @? = wg Next we retain the correction term in k?y t/w but, to

obtain a solution that is correct to first order in this small parameter, it suffices
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to evaluate the correction term using the zeroth-order solution for w?, namely
w? = w]. Thus, correct to first order, the term in parenthesis in equation (23.15)

can be written 1 + 3k2vt2/w§, which makes equation (23.15) trivial to solve for
w?. Thus, for an approximate solution of equation (23.15) correct to first order
in kzv?/wg, we obtain

»® ~ o] + 3k*} (23.16)

which is exactly the dispersion relation obtained in the fluid treatment of

hapter 16(for the adiabatic case.

Problem 23.1: In the same limit, k*v?/w? < 1, find the other solution of

equation (23.15) treated as a quadratic equation for »?, and explain why
this solution is unphysical.

Thus ‘thermal effects’ lead to a modification of the simple dispersion
relation, @ = w,, for electron plasma waves. However, remembering that
v/wp = Ap, the Debye length, we see that, as in the fluid model, the thermal
corrections are small for wavelengths much longer than the Debye length.
Moreover, we must be wary of using equation (23.16) for wavelengths as short
as a Debye length (although, as we saw in , the underlying Viasov-
Maxwell equations are valid for length-scales as short as this), because the
assumption on which our expansion was based, namely kzvt2 /wf, &« 1, would be
violated. Nonetheless, even where the thermal effects represent small corrections
to the dispersion relation, as we saw in Chapter 16, these effects provide plasma
waves with features that would otherwise be absent; for example, there is now
a non-zero group velocity dw/dk, with the result that energy may be propagated
by the waves from one part of the plasma to another.

We should beware, however, that equation (23.16) does not account fully
for thermal effects on electron plasma waves, since it has resuited from an

approximate evaluation of the integral appearing in the dispersion relation,
equation (23.12). We will return to this topic in [Chapter 24
23.4 THE TWO-STREAM INSTABILITY

For initial velocity distributions fo that depart substantially from Maxwellian,
it is possible for electron plasma waves to become unstable. For example,
suppose that the electron velocity distribution consists of two identical but
oppositely directed streams with velocities 2vg. For simplicity, let us assume
that each stream is ‘cold’, i.e. the particles in each stream have negligible thermal
spread about their streaming velocity. Using é-functions as a way of expressing
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one-dimensional velocity distributions without any thermal spread (e.g. a one-
dimensional Maxwellian with zero temperature is the §-function n8(v)), the
distribution function for two such electron streams is

fo(w) = 3n[8(v — ) + 8(v + vo)] (23.17)

where n is the total density of electrons, i.e. in both streams together.

We substitute this distribution fy into the Vlasov dispersion relation,
equation (23.12). At first sight, the velocity integral might appear intractable,
since the integrand involves a derivative of a §-function. However, integrals of
this type may readily be evaluated using integration by parts, as follows:

® 8fo/8 ®© 9 1 o
/ Jo/ ”dv=—/ for dv 4| L
oo W — kv —eo OV \@ —kv w—kv|_o

_ [T
= k/_w ko

()
T2 \(w=kuw)? (@ + kug)?

the last form for the particular f; given in equation (23.17). In this way, the
dispersion relation for this case becomes

(23.18)

Dk,w)=1 ! wg wg 0 (23.19)
==\ ok T @tk ) ‘
where, as usual, w? = ne?/me.

The function lDD(k, ) plotted against w is shown in [Figure 23.1] with either
Case A or Case B possible in the region —kvy < @ < kvyp.

Since the quartic equation for @ represented by D(k, w) = 0 must always
have four roots, real or complex, Case B of Figure 23.1 must have two complex
roots for w, since there are clearly only two real roots corresponding to the two
crossings of the real axis. Since the complex roots w of a polynomial with
real coefficients must be complex conjugates of one another, one of them must
have a positive imaginary part, corresponding to exponential growth in time, i.e.
instability. The condition for instability (i.e. Case B rather than Case A) can be
expressed as D(k,0) < 0, which becomes k*v] < a)f,. Thus, the condition for
instability is satisfied for all sufficiently long wavelengths. This is known as the
‘two-stream instability’.

The two-stream instability prevents two oppositely directed uniform beams
of electrons from passing through each other, even if the electrons are neutralized
by a uniform background of ions. The instability produces strong spatial
inhomogeneities, in which the electrons become ‘bunched’ together, ultimately
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A Dk o)
Case A
\ o 0
Case B

Figure 23.1. The dispersion function D(k,w) for the two-stream instability plotted
against w for the Cases A (four real roots w of D(k, w) = 0) and B (two real roots w of
Dk, w) = 0).

allowing the energy of the electron beams to be significantly dissipated into
plasma waves. Other versions of the two-stream instability arise, some of which
are discussed in Problems 23.2 and 23.5.

Problem 23.2: A uniform plasma with fixed ions has a density n of
‘cold’” bulk electrons at rest, together with a ‘beam’ of electrons with
density n, and streaming velocity u. The density of electrons in the
beam is much less than the density of bulk electrons, i.e. n,/n = ¢ K L.
Neglecting thermal effects (i.e. assuming that the background plasma has
zero temperature and that the beam has negligible velocity ‘spread’ about
the streaming speed u), show that the dispersion relation for this version
of the two-stream instability is
_ %oy

Dk w)=1 w2  (w—ku)?
By sketching D(k,w) as a function of w show that, in the limit of
infinitesimally small but non-zero e, instability occurs for ku < w,
approximately. Considering the case where ku is exactly equal to wy,
and guessing that the (complex) frequency w will be very close to ku and
wp, i.€. w = wp+ Aw = ku + Aw where Aw is small, show that the growth
rate has a magnitude y ~ €'/w,.
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23.5 ION ACOUSTIC WAVES

When both ions and electrons are allowed to oscillate in the wave-field E, a
new type of ‘electrostatic’ wave (i.e. having its wave vector k parallel to E)
can arise, called an ‘ion acoustic wave’. This wave was discussed in the fluid
approximation in

To obtain the dispersion relation for ion acoustic waves, it is necessary
to include perturbed distribution functions f; for both ions and electrons, and
to sum the two contributions to the charge-density perturbations in the Poisson
equation. When this is done, a generalization of the dispersion relation given in
equation (23.12) is obtained, namely

Dk, ) = 1+ka€0/ 0fo/dvy, o (23.20)

wkv

Problem 23.3: If ion motions are included, derive the result quoted in
equation (23.20) for the Vlasov plasma dispersion function, where the
summation I is over species, i.e. ions and electrons.

As we have seen, electron plasma waves have phase velocities w/k that
are much larger than the electron thermal speed v, and therefore very much
larger than the ion thermal speed vy ;. In this case, inclusion of the ions would
not significantly change the dispersion relation.

To find ion acoustic waves, however, we must look for waves with phase
velocities that are intermediate between the thermal velocities of electrons and
ions, i.e.

kv € o L kvge. (23.21)

The approximation for the ions is the same as the one used for electrons in our
treatment of electron plasma waves. The new approximation for electrons is,
however, quite different from the one used previously, and a new method of
evaluating the electron contribution to the dispersion relation is needed.

For the ions, we may expand the factor in the integrand in equation (23.20):

1 1 kv

rR—4 — 2322
w—kv t w? ( )

which is similar to the expansion already given in equation (23.13), except that

here only the first two terms are retained, which is equivalent to neglecting ion

thermal motion. We obtain

/‘°° 3fo/8vd nk

e = (23.23)
-0

Copyright © 1995 IOP Publishing Ltd.



406 Kinetic effects on plasma waves: Viasov’s treatment

For the electrons, we must expand in the opposite limit, i.e.

A —— 24
w— kv kv (23.24)
to obtain © 5 /13
/ fo/90 4~ = (23.25)
—oo W — kv kvie

Equation (23.25) was obtained by evaluating 3fy/dv for a Maxwellian electron
distribution, namely
o _ _vfo

2

= (23.26)
ov Vie

and noting that the factor v cancels between the numerator and the approximate
form of the denominator. The dispersion function (23.20) becomes

P %
Dk,w)=1 - —. 23.27
(ko) =1+70 - 23 (23.27)

Here, wp and €2, denote electron and ion plasma frequencies, respectively:

2 2

2 ne 2 ne
= — Q —_— 23.28

wp mep P Meg ( )

and v, . is the electron thermal velocity, (T./m)'/2. For wavelengths much longer
than the Debye length, i.e. kAp = kv, e/wp K 1, the first term on the right-hand
side of equation (23.27), i.e. the constant unity, can be neglected compared with
the other terms, in which case the dispersion relation D(k, w) = 0, gives

w = kC; (23.29)

where Cs = ve(Sp/wp) = vie(m/M)'? = (T./M)"/>. The phase velocity of
these waves, C;, is called the ‘sound’ or ‘ion acoustic’ speed. As we have
seen before, it is the appropriate phase velocity for ion acoustic waves when ion
thermal effects are neglected; it is the thermal velocity of ions evaluated with

the electron temperature.
In Chapter 16, we obtained a slightly more general result for the dispersion

relation of ion acoustic waves in the limit kAp < 1, which was still of the form
w = kCj, but with a sound speed C; = [(T.+%T;)/M]"/2. This same result (with
1 = 3, see Problem 23.4) could have been obtained here by retaining two more
terms in the expansion, equation (23.22), used in evaluating the ion integral in
the dispersion function, as was done for the electrons in the previous Section, i.e.
equation (23.13). It follows that equation (23.29) is a good approximation only
in the case T, > 7;. However, recalling that our expansion of the ion integral
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is based on the assumption that w > kv, ;, we see that the analysis leading to
the dispersion relation, equation (23.29), is valid only if C; 3> v, which itself
requires T, > 7;. The extra contribution to C; arising from including the finite T,
terms in the ion integral can be retained as a small correction in the limit 7; <« T,
but this correction would be large only in cases where the approximations used
to derive it are not valid. The fluid model allows ion acoustic waves with some
value of y for all ratios 7;/T.. We will see in the next Chapter, however, that the
kinetic treatment introduces an important, qualitative change in the dispersion
relation for these waves in the case T; ~ Te.

Problem 23.4: Carry out the calculation referred to above, by using
the full expansion, equation (23.13), rather than just equation (23.22) in
evaluating the ion integral in the ion acoustic wave dispersion function.
You should still assume T; « T., but should retain first-order corrections in
T, in your dispersion relation for the case kAp « 1. Show that the resulting
dispersion relation is the same as equation (23.29), except that first-
order corrections in T; modify the sound speed to C, = [(T, + 3T;)/M]'/2,
By analogy with isothermal and adiabatic fluids, explain why there are
different coefficients of T, and T; in the sound speed C;.

Problem 23.5: A uniform plasma has ions that are initially at rest, but its
electrons are streaming through the ions with velocity u. Again neglecting
both ion and electron thermal effects (i.e. the ions are ‘cold’, and the
electrons have negligible velocity ‘spread’ about the streaming speed u),
show that the dispersion relation for electrostatic oscillations involving both
ions and electrons is

Show that, for any streaming speed u, the plasma is always unstable to
modes with sufficiently long wavelengths, i.e. sufficiently small values of
k. By analogy with Problem 23.2, show that the typical growth rate y has
magnitude y ~ (m/M)"w,.

23.6 INADEQUACIES IN VLASOV’S TREATMENT OF THERMAL
EFFECTS ON PLASMA WAVES

Despite the apparent success of Vlasov’s treatment in reproducing the dispersion
relation describing the effect of thermal motions on electron plasma waves,
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namely equation (23.16), as well as in yielding dispersion relations for other
types of plasma waves such as two-stream instabilities and ion acoustic waves,
there are serious inadequacies in this method of solving the Vlasov-Poisson
equations.

Using the Vlasov equation to find f), which was then substituted into the
Poisson equation, we obtained a dispersion relation for electron plasma waves
including thermal effects, namely equation (23.12), from which an approximate
description of thermal corrections to the dispersion relation for plasma waves
was obtained by expanding the integrand for w > kv, taking a Maxwellian
for fo. The problem with this solution is that the integral in equation (23.12) is
singular at v = w/k, and we have developed no prescription for how to treat this
singularity. In the case of ion acoustic waves, singular integrals of this type arise
in both electron and ion contributions (see equation (23.20)) and, in this case,
the electron integral was expanded in the opposite limit, i.e. @ &« kv, while
the ions were treated in the limit @ > kv, ;, without addressing the problem of
the singularity in either case.

For electron plasma waves, we have found the electrons to behave as an
adiabatic fluid at this level of approximation and, for ion acoustic waves with
T; « T, we have found that the electrons behave as an isothermal fluid whereas
the ions behave as an adiabatic fluid. We could proceed to carry our expansions
to higher order, thereby uncovering additional physics, but it is more fundamental
at this point to address the problem of how to treat the singularity in the integrals
at v = w/k, because behind this mathematical problem lies the new physics of
strong wave—particle interactions.

Vlasov argued that imaginary contributions to D(k, w) cannot be allowed
and concluded that the principal values of the singular integrals should be taken.
The principal value of an integral of this type is defined as

oo w/k—e 0
Pr/ = lim {/ +/ } . (23.30)
o 0 {J/_x w/k+e

The principal value of a singular integral avoids the singularity by stopping
infinitesimally short of it on the left, and starting again at an exactly equal
distance on the right. This definition eliminates any possible imaginary
contributions from integrating around the singularity in the complex plane.
A proper treatment must, however, find some way to formulate the problem
physically so as to avoid the singularity from the beginning. We cannot simply
make the ad hoc assumption that the principal value must be used because we
do not like the answer which we would otherwise obtain. The correct treatment
was first given by L Landau (1946 J. Phys. USSR 10 25), who found Vlasov’s
prescription for treating the singularity to be incorrect. Landau’s treatment is
the topic of the next Chapter.
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Chapter 24

Kinetic effects on plasma waves: Landau’s
treatment

Landau used the method of Laplace transformation to obtain the full correct
solution for the effects of a distribution of particle velocities on electron plasma
waves, thereby correcting the treatment of Vlasov. His result extends the linear
kinetic theory of small-amplitude perturbations to include the effects of particles
traveling close to the wave’s phase velocity, and so ‘resonating’ with the wave.
Before describing Landau’s treatment, we briefly review the mathematics of
Laplace transforms and their inversion.

24.1 LAPLACE TRANSFORMATION

Laplace transformation is a well-developed mathematical technique for solving
linear differential equations formulated as initial value problems. The technique
may be summarized briefly as follows. To determine the time dependence of a
function f(¢) that is determined by a linear differential equation, we first define
a ‘Laplace transform’:

f@s)= / ” f(te™dt (24.1)
0

which is defined only for complex s with Re(s) positive and sufficiently large,
i.e. Re(s) > sg, so that the integral converges at t — oc.

We then solve for f(s) instead of f(t) by performing a Laplace transform
on each term of the equation. Since the time derivative f = d f/d¢ will appear
in the differential equation for f(z), it is useful to have a rule for the Laplace
transform of a time derivative. This is given by

f=sf()- 0 (24.2)
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410 Kinetic effects on plasma waves: Landau’s treatment

where f(0) is the value of f(¢) at ¢+ = 0. In this way, the initial condition
is introduced explicitly into the solution for the Laplace transform. This rule
may be proved easily using integration by parts. If a second derivative with
respect to time should appear, the above rule may be applied twice, which will
introduce a further initial condition, namely the value of f(0). Thus, Laplace
transformation is an appropriate technique for solving differential equations
describing initial value problems. The technique transforms the problem from a
differential equation for f(¢) to an algebraic equation for f(s).

S2

#

Singularities /4.51
of f(s)

| o

A

P Re(s)
S3

A

Contour C

(92

Y

Figure 24.1. The Laplace inversion contour C for the general case where the transform
f(s) has singularities in both the right half-plane and the left half-plane.

Having obtained f (s), we must invert the transformation to find f(¢). The
appropriate inversion formula is

1 st 7
@)= Py /C e f(s)ds (24.3)

where C is a contour in the complex plane that runs from —ioo+sg to +ico+ s
sufficiently far to the right of the imaginary axis (i.e. sufficiently large positive
so) to ensure that all singularities of f (s) lie to the left of the contour, as shown
in Figure 24.1. Singularities in the right half-plane correspond to exponentially
growing terms in f(¢) which cause the integral in equation (24.1) defining )
to diverge unless Re(s) is sufficiently large (see Problem 24.1). Often such terms
are absent, in which case the choice of a contour C running just to the right of
the imaginary axis in the Laplace inversion formula is satisfactory. As a general
approach, this integral is then evaluated by ‘closing the contour to the left’, i.e.
adding the semi-circle at Re(s) = —oo (which contributes nothing for ¢ > 0)
and noting that the integral around such a closed contour must equal 27i times
the sum of the residues of all singularities within the closed contour. In some
cases, however, there may be an infinite number of singularities encountered as
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Re(s) — —oo, in which case this approach will not yield a solution in closed
form.

Problem 24.1: As an exercise in Laplace transforms, find the transform
of the function

f(@) = Ziaiexp(—sit).

Carry out the inversion of f(s) explicitly, using the Laplace inversion
formula, to obtain f(¢) again.

The reader interested in pursuing further the theory of Laplace transforms is
referred to J Matthews and R L Walker (1970 Mathematical Methods of Physics
2nd edn, Menlo Park, CA: Benjamin/Cummings).

24.2 LANDAU’S SOLUTION

The problem with our previous solution of the Vlasov equation for electron
plasma waves lies in the singularity at v = w/k that arises when we assume
normal mode solutions for E(x,t) and fi(x, v, ), i.e. solutions that vary like
exp(ikx — iwt). In particular, our assumption of Fourier normal modes in time
effectively supposes that the wave can have existed for all time and will continue
to exist to ¢t = oo with a sinusoidal time dependence, i.e. exp(—iwt). Possibly,
then, it is the assumption of normal mode solutions—especially for f;(x, v, t)—
that is invalid. In other words, there may simply not exist such a solution.
Instead of assuming that the solutions are necessarily of this form, let us try
to solve a problem that must be well-posed, namely the initial-value problem.
Specifically, we create some initial disturbance at t = 0, which we assume to
be wave-like in x space, and we follow its subsequent development without
assuming that it must behave as exp(—iwt). We will find that this new approach
provides a prescription for how to treat the singularity at v = @/k that arose in
the integrals obtained in Vlasov’s normal mode method. In some cases, we will
find that normal modes varying exactly as exp(—iwt) do exist, but in most cases
they do not, and a sinusoidal variation with ¢ represents at best an approximation
to a more complicated time dependence.

The solution must remain wave-like in physical space, since first-order
perturbations of a spatially uniform equilibrium can be Fourier analyzed into
independent Fourier components. Thus we can still assume

E(x,1) = E(t)exp(ikx)

2 - (24.4)
filx,v, 1) = fi(v, Hexp(ikx)
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but the time-dependence is, for now, not specified. (We henceforth drop the
‘hats’ from the quantities E t) and f1 (v, t) without creating any ambiguity. As
was discussed in Ehapter 15} the quantities E(¢) and fi(v, t) are complex, but
here only as associated with spatial phase differences.) We can, of course,
specify the initial perturbations E(0) and f(v,0) at will, provided that the
charge density given by fi(v,0) is self-consistent with E(0) in the Poisson

equation.
The linearized Vlasov equation for electrons, Fourier analyzed in space but
not in time, is )
£+ ik f,——E—lg=O. (24.5)
at m Jv

In principle, we could integrate f; forward in time to obtain a complete solution.
In this sense, the problem is well-posed.

Since it is a standard mathematical technique for solving initial value
problems of this kind, the method of Laplace transformation is very appropriate
here. The Laplace transform of fi(v,t) is

fiv,s) = foo fi(v, He™dr. (24.6)
0

Taking the Laplace transform of the linearized Vlasov equation, and using the
rule for the Laplace transform of a time derivative, we obtain

(s +ikv) fi(v, 5) - —E( )ﬂ = fi(v,0) (24.7)

vzhere E(s) is the Laplace transform of E(z). We solve equation (24.7) for
fi(v, s) and substitute it into the Laplace transform of the Poisson equation

ikegE(s) = —e / ” fi(v, s)dv (24.8)

to obtain, after some straightforward algebra,

0
Dk, )E(s) = ;6—0 f‘ivlkv) v (24.9)

where

2 00
Dk, s)=1— —% / 8fo/0v 4,

mkeo J_oo § + kv
In principle, given some initial perturbation fi(v,0), equations (24.9)
and (24.10) give the complete solution for the time evolution of the electric field.
Then equation (24.7) gives the solution for the perturbed velocity distribution.
Of course, an explicit expression for E(¢) can only be obtained by substituting

(24.10)
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E(s) into the formula for inverting a Laplace transform. Although this cannot,
in many cases, be done analytically, we can draw some conclusions about the
behavior of E(¢) from the general properties of D(k, s).

We note first that the expression for D(k, s) is very reminiscent of the
Vlasov ‘dispersion function’ D(k,w) given in equation (23.12), which was
obtained by Vlasov by assuming normal modes that are oscillating in time, with
frequency w. To avoid confusion, for the purposes of the present discussion we
re-label the Vlasov dispersion function as Dy (k, ). We then see that the two
functions D(k, s) and Dy(k, w) are exactly the same if we substitute s — —iw
or w — is. However, since the Laplace transform is defined only for Re(s) > 0,
and is only needed in this region to apply the inversion formula, the singularity
that appeared in the definition of Dy (k, w) (for real frequency w) is absent from
the definition of D(k, s).

To obtain E(¢), we must invert E (s) using the Laplace inversion formula.
The Laplace inversion formula is

EQ®) = %m /C E(s)eds (24.11)

where the contour C runs from —ioco + s to +ico + s, at some real distance
sop > 0 to the right of the imaginary axis, such that all singularities are located
to the left of 59. This requirement can be understood by noting that the Laplace
transform of E(¢), namely

E@s) = / E(t)e™"dt (24.12)
0

is defined only if Re(s) is sufficiently positive to overcome any exponentially
growing terms in E(¢). Thus, the integration contour C in the Laplace inversion
formula must lie sufficiently to the right in the complex s-plane and, in particular,
to the right of all singularities of E(s). If we denote the singularities of E(s)
by s1, 52, ..., where sy is the singularity furthest to the right, s, is next, etc, the
contour C must be of the type shown in [Figure 24.1, and sy > Re(s)).

In order to find the dominant behavior of E(¢) as t — o0, we would like
to move the contour C, in an appropriate fashion, as far as possible toward
the left half of the s-plane, ultimately closing it by the infinite semi-circle at
Re(s) = —oc. Since the functions in the integral will all be analytic, or if
defined only in certain regions of the s-plane can be extended into other regions
by analytic continuation, except for singularities which we specifically identify,
then the contour C can indeed by moved around in this way without changing
the result for E(t), provided no singularity is crossed. The reason for seeking to
move C as far as possible to the left can be seen by examining equation (24.11).
The first ‘obstacle’, i.e. singularity, that will be encountered as we do this will
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give the dominant contribution as ¢ — oo, with contributions from smaller values
of Re(s) being subdominant. Once we have accounted for the contributions
from all singularities, we have left only the contribution from the semicircle at
infinity in the left half-plane, i.e. at Re(s) = —oo, which vanishes for all positive
t. Accordingly, we imagine moving C to the left by analytic continuation of
E(s) Gf necessary) until we encounter the first singularity of E(s), which we
have called sy. This first singularity may lie in the right half of the s-plane (as
shown in [Figure 24.1), or it may lie in the left half-plane.

Before continuing, we must investigate the possible origins of singularities
in E(s). These may arise (i) from singularities on the right-hand side of
equation (24.9), i.e. singularities of the numerator N(k, s) in the expression
for E (s) _ £0.0)

~ 1€ 1w,

D(k,s)E(s) = N(k,s) = reo | s T ik dv
or (ii) from zeros of the denominator, D(k, s). Singularities of origin (i) cannot
arise, because the integral in equation (24.13) defines (for smooth enough initial
perturbations fi(v, 0)) an entire function (finite everywhere) for Re(s) > 0,
which may be analytically continued into the region Re(s) < 0, where it must
remain finite at least for some finite distance into the left half-plane. Hence,
all singularities of E(s), with the possible exception of those finitely into the left
half-plane, must arise from zeros of D(k,s). Singularities of E(s) that arise
from singularities of N(k, s) in the left half-plane describe the damping-out of
peculiar features of the initial velocity-distribution perturbation f;(v, 0) and are
of little interest to us here. Singularities that arise from zeros of D(k, s), on the
other hand, describe the collective oscillations of the plasma, in this case the
electron plasma waves. Let us consider three different cases, distinguished from
each other by the location of these zeros.

(24.13)

24.2.1 Case 1: First zero of D(k, s) has Re(s) > 0

As we try to move our Laplace inversion contour C toward the left, suppose
that we first encounter a singularity of E(s) (a zero of D(k,s)) at s = sy in
the right half-plane, i.e. with Re(s;) > 0. We can move our contour past s,
provided we include in E(¢) a term arising from the residue at the pole at s = 5.
Specifically, we can write

1 ~ .
E(t) = Res(s))e"™ + —/ E(s)e''ds (24.14)
2mi ol
where Res(s)) d esidue at 5|, and the contour C’ is now to the left of
sy, as shown in [Figure 24.2. As ¢t — oo, the residue term dominates, giving
E(t) = Res(s))e"™". (24.15)
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Since Re(s;) > 0, this dominant term represents an instability, i.e. an electric
field that grows exponentially in time. Of course, in many cases, certainly
including the case of a Maxwellian f;, there is no such zero sy, and no such
instability.

im(s) L Im(s)
A A

(a) (b)

PY ° 1 Contour C'
S2 ’/51 S2 ‘/

> >

o Re(s) ° Re(s)
83

53 Contour C A

Figure 24.2. The Laplace inversion contour C ois moved as far as possible
to the left, as shown in (a), and the contour is then ‘snapped’ into two pieces, one of
which is the contour C’ and the other is a contour that encircles the singularity at sy,
as shown in (b). The contributions from the two horizontal lines connecting the vertical
contour to the circle around the singularity in (a) cancel esach other in the limit that
these lines touch, and so leave no net contribution after the contour is ‘snapped’ into two
pieces.

We have seen in , however, that there are certain distributions
Jo (in particular, ‘two-stream’ distributions) that do lead to instability. For such
cases, we note that for Re(s) > 0, a zero s, of our function D(k, s) corresponds
exactly to a zero w; of the Vlasov dispersion function Dy (k, ), obtained by
setting s; = —iw;. Since Im(w;) > 0, there is no singularity in the integral over
v in the Vlasov dispersion function Dy(k, w). In this case, a problem does not
arise with Vlasov’s normal mode solution, in which the perturbation quantities
were assumed to vary as exp(—iwt): the problem is resolved because w is now
complex. Our conclusion from the Vlasov analysis for this case is as follows:
an instability arising from a zero of the Vlasov dispersion function Dy (k, @)
with Im(w) > O is a pure normal mode; i.e. it has a single (complex) frequency
w. For this case, Vlasov’s treatment turns out to have been valid.

Our conclusion from the Landau analysis of the initial-value problem for
this case is that, if such a zero of the function D(k, s) given in equation (24.10)
with Re(s) > 0 exists, say at s = sy, inversion of the Laplace transform shows
that the dominant term in the solution for E(#) as t — 0o will be an exponentially
growing term, i.e. an instability. There can be various types of ‘subdominant’
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terms, including other exponentially growing terms with smaller growth rates
(which could be found by looking for the next zero, s,, etc.) and terms that
describe oscillatory and damped terms in E(t).

Although Landau’s Laplace transform approach can, in principle, yield the
full time-dependent solution of the initial-value problem, it does not add much
to Vlasov’s solution for this particular case. If there is a zero of D(%, 5) in the
right half-plane, both approaches indicate that there will be an instability, i.e.
an exponentially growing term in E(t), which will represent the dominant time
dependence as t — oc.

24.2.2 Case 2: All zeros of D(k, s) have Re(s) < 0

If D(k,s) has no zeros in the right half-plane, we may move the contour C
leftward until it lies along the imaginary axis. Provided there are no zeros on
the imaginary axis itself, the contour C may be moved into the left half-plane,
now running from —ico — § to + ioo — §. Just as before, the dominant term in
E(t) as t — oo is still the contribution from the residue at the first pole s; that
is encountered, i.e.

1 ~ ‘
E(t) = Res(s;)e" + — E(s)e''ds (24.16)
211 Jor

where the contour C” is now even further to the left, as shown in| Figure 24.3
However, the dominant term now describes a perturbation that decays in firre,
i.e. Re(s)) < 0. This is the case that occurs for a Maxwellian fp; the damping
is called ‘Landau damping’. (There is, of course, an intermediate case where
D(k,s) has its first zero exactly on the imaginary axis. This results in an
oscillation that is neither growing nor damped.)

In moving the contour C from the right half of the s-plane to the left half,
the integrand—in particular, the function D(k, s)—must be defined by analytic
continuation, starting from the right half-plane, Re(s) > 0. To ensure the proper
analytic continuation of the function

ie? /‘” afy/0v
dv

Dk, s)=1-— -
(k. ) mkeg J_oo S + kv

(24.17)

the contour of integration in the v-plane must be deformed so that the singularity
at v = is/k always lies on the same side of the v-contour. For values of s with a
positive real part, the original contour is by definition correct, and as s is moved
toward the imaginary axis, the contour still does not need to be deformed in the
case Re(s) = Im(w) > O (instability; case (a) in . However, if s
moves to the left of the imaginary axis, the contour in v-space must be deformed
to ensure smooth analytic continuation of D(k, s) as a function of 5. Thus, the
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>

Contour 1 Im(s)

\@1

Re(s)
S2

Figure 24.3. The Laplace inversion contour for the case where there are no singularities
in the right half-plane. The contour C ofas been ‘snapped’ into two pieces,
one of which is the contour C” that is now well into the left half-plane and the other is
a contour that encircles the first singularity s, encountered in the left half-plane.

(@) A Im(v) (b) A Im(v) © A Im(v)
@ is/k
C .
> > _“’_'l:';
0 Re(v) 0 Re(v) 0 = /kRe(v)
(® s/

Figure 24.4. The contour of integration is the v-plane for the cases: (a) instability, i.e.
there is a zero of the dispersion function with Re(s) > 0, corresponding to Im(w) > 0;
(b) strong damping, i.e. all zeros of the dispersion function have Re(s) < 0; and (c) weak
damping, i.e. there is a zero of the dispersion function with Re(s) =~ 0, corresponding to
Im(w) ~ 0.

contour does need to be deformed in the case Re(s) = Im(w) < 0 (damping;
case (b) in Figure 24.4).

It follows that a damped mode (Im(w) < 0) is not a solution of the Viasov
dispersion relation, but rather of a modified relation in which the contour of
integration in the v-plane is deformed as described above. It therefore follows
that this damped solution is not a normal mode, i.e. it does not correspond
to a solution in which all perturbation quantities have only a single Fourier
component in time, i.e. vary exactly as exp(—iwt). For if this solution were
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a normal mode, it would satisfy the Vlasov dispersion relation as originally
derived, i.e. with the v-integration running simply along the real axis, rather
than along a deformed contour. True normal modes could be produced only
by choosing very special non-physical initial perturbations fi(v, 0). For most
physical cases, the Landau mode described by the first term on the right-hand
side in equation (24.16) represents the longest-lived term in a solution with a
very complicated (but always decaying) time dependence.

Our conclusion from the Landau analysis for this case is that all terms in
E(t) damp out as t — co. In general, we cannot identify any dominant ‘mode’
in this case, nor can we easily describe in detail the time-dependence of E(z),
except to say that E(t) — 0 as t — oo. However, to the extent that sy, the first
zero of D(k, s) lies just to the left of the imaginary axis, there is an identifiable
dominant term as t — oo which has only weak damping. This is a case of great
physical interest and is considered next.

24.2.3 Case 3: First zero of D(k, s) lies just to the left of the imaginary
axis

This is really a sub-category of Case 2, but it is of particular interest, since it
describes weakly damped oscillations, which occur commonly in plasmas. We
suppose that the first zero of D(k, s) lies just to the left of a point s = —iw
on the imaginary axis. In this case, the contour of integration in the v-plane
must be deformed to include a path passing below the singularity at v = w/k,
as shown in Figure 24.4(c).

Using s = —iw in order to return to more familiar notation, the dispersion
function for w exactly real becomes

2 0 :
e (Pr/ 8fo/dv ,  mi Bfo

mkeg 00 @ — KU Tk v

) (24.18)
v=w/k

where Pr denotes the principal value of the integral, defined in[Chapter 23. The
imaginary term comes from going 180° around the pole and is mi times the
residue. (Note that this expression can be regarded as providing a general
prescription for resolving the singularity originally noted by Vlasov in the
integral in Dy(k, w).)

As in our previous treatment of thermal effects on plasma waves
(Chapter 23), we can expand the principal-value integral in the limit w > kv,

to obtain )

“p
D%l—z)—2+.... (24.19)

Thermal corrections of the type discussed in the previous Chapter (and from
the fluid treatment in|Chapter 1§) would be obtained by retaining the next non-
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vanishing term in this expansion. For a Maxwellian f;, i.e.

fo= —ex v’ (24.20)
0= a2y P\ T2 '

where v, = (T/m)!/?, equation (24.18) indicates that we must also include an
imaginary term arising from the pole, giving altogether

pe1- % i (T) % o 2421
= _E-H(E) k3vt3exp(—2k2vt2>. (24.21)

Since this is explicitly an analytic function of w, it can be employed for values of
o slightly away from the real axis. Treating the last term as a small correction,
we can solve the dispersion relation, D = 0, corresponding to the Landau pole
we have been treating, by iteration, obtaining

- i /a2 wg wg
C=% "3 (5) PEN (_ w2 ) (24.22)

This is our final expression for the frequency (~ w,) and Landau-damping
decrement y of electron plasma waves. We see that plasma waves are, in fact,
always slightly damped. Remembering that v;/w, = Ap, the Debye length, we
see that the damping is exponentially small for long wavelengths (kAp <« 1), but
is large (y ~ wp) for wavelengths of order the Debye length. The small Landau
damping for kAp « 1 can be interpreted as due to the fact that there are very few
particles (i.e. very small fy and 3fo/0v) at v = w/k ~ wp/k = v/ kAp > v,

However, the physical interest in Landau damping of plasma waves does
not lie in the numerical magnitude of the damping decrement, which is usually
small. Rather, it lies in the surprising discovery of wave-damping in an entirely
collisionless system. This might seem to violate our sense that there are no
strictly dissipative terms in the Vlasov-Maxwell equations. Moreover, the
phenomenon of Landau damping appears in many other contexts in plasma
physics—indeed, whenever there are particles whose velocity is approximately
in resonance with the phase velocity w/k of some type of plasma wave.

Problem 24.2: For certain simple equilibrium distributions other than the
Maxwellian, the Landau damping can be calculated explicitly. For the

distribution n a

fo(v) = Toltal

use contour integration to evaluate the dispersion function D(k,s)
explicitly, and show that plasma oscillations damp as exp(—kar). (Hint:

Copyright © 1995 IOP Publishing Ltd.



420 Kinetic effects on plasma waves: Landau’s treatment

the explicit evaluation of D(k, s) uses contour integration in the v-plane,
summing the contributions from poles within a closed contour; you should
take care to choose the most convenient way to close the v-plane
contour.) Qualitatively, why is the Landau dampmg larger for this case
than for the Maxwellian distribution?

24.3 PHYSICAL MEANING OF LANDAU DAMPING

Physically, it is clear that Landau damping is associated with those particles in
the distribution that have a velocity nearly equal to the phase velocity of the
wave, w/k, since the contribution to the dispersion function, equation (24.18),
that gives rise to Landau damping is the term in (3f5/9v)|, k. These may be
called ‘resonant particles’. Resonant particles travel along at almost the same
speed as the wave and tend to see a relatively static electric field, rather than a
rapidly fluctuating one. They can, therefore, exchange energy very effectively
with the wave.

The electrons with v &~ w/k, which are nearly resonant with the plasma
wave in the Landau problem, are analogous to the resonant particles in the
mapping problem of [Chapter 5| They see an essentially steady electric field,
which can be positive or negative depending on their phase relative to the wave.
Thus, some nearly resonant particles are accelerated by the wave, while others
are decelerated. A resonant individual particle has an equal chance of being
accelerated or decelerated, after averaging over all possible phases. Thus the
population of particles that was originally moving slightly faster than w/k is
mixed with the population that was moving slightly slower.

However, a Maxwellian distribution has more slower electrons than faster
ones. Consequently, there are more particles being accelerated on average by
this mixing process than being decelerated. Since this results in a net transfer
of energy from the wave to the particles, the wave is damped.

As particles with velocities near the phase velocity w/k are speeded-up
or slowed down in this way by the wave, the distribution f(v) (averaged over
wave phase) tends to be ‘flattened’ in this region. Effectively, there arises a
wave-induced diffusion in velocity space, concentrated in the region around the
phase velocity w/k. The new, modified distribution function contains the same
number of particles, but it has gained a little energy at the expense of the wave.
Strictly, this flattening of the distribution function is a nonlinear effect, because it
is quadratic in the amplitude of the perturbation. For infinitesimal perturbations,
the flattening would be imperceptible, but it is sufficient to account for the loss of
wave energy, which is also quadratic in the perturbation amplitude. For larger
wave amplitudes, such as those arising from unstable modes of perturbation,

Copyright © 1995 IOP Publishing Ltd.



The Nyquist diagram* 421

wave-induced velocity diffusion can often be the dominant nonlinear effect, as
in the ‘quasi-linear theory’ discussed in the next Chapter.

If the amplitude of the perturbation is large, another specifically nonlinear
effect can arise, namely the ‘trapping’ of particles at locations of minimal
potential energy in the wave. This is analogous to the formation of islands in the
mapping problem of For the electrons, these trapping locations will
be at the maxima of the electric potential. Trapping of electrons in a plasma
wave will ‘compete’ with Landau damping, since once the electrons become
trapped they can no longer take any more energy from the wave. For small-
amplitude waves, for which the linear treatment is valid, trapping does not play
a significant role. However, the trapping phenomenon will be discussed in the
context of plasma-wave instabilities, for which larger field amplitudes can be
expected to occur, in the next Chapter.

It is important to point out that, unless collisions or some equivalent
dissipative effects (such as orbit stochasticity, see are introduced,
Landau damping is not really a dissipative or irreversible process. Indeed, the
‘information’ that was present in the initial perturbation is retained in a time-
and space-dependent ‘microstructure’ of the velocity distribution function, even
after the electric field has damped out almost to zero. Landau damping has been
demonstrated in the laboratory by J H Malmberg and C B Wharton (1966 Phys.
Rev. Lett. 17 175). Moreover, the reconstruction of a damped electric field
perturbation from information contained entirely in the perturbed distribution
function has also been demonstrated in an experiment on ‘plasma echoes’ by
J H Malmberg, C B Wharton, R W Gould and T M O’Neill (1968 Phys. Fluids
11 1147) and independently by A Y Wong and D R Baker (1969 Phys. Rev.
188 326) using ion acoustic waves.

24.4 THE NYQUIST DIAGRAM*

It is possible to give a formal proof that there are no instabilities, i.e. no zeros
of the dispersion relation D(k, s) = O with Re(s) > O, in the case of a spatially
homogeneous plasma with Maxwellian distribution f3. Physically, of course,
this result is obvious, since otherwise thermodynamics would be contradicted,
in that a tendency would exist for the Maxwellian distribution to evolve toward
some other distribution. Nonetheless, it is valuable to develop a technique for
proving this rigorously, since the same technique can often be useful in searching
for possible instabilities for non-Maxwellian distributions fy (see Problem 24.3).

The technique, which is derived from a powerful electrical engineering
technique due to Nyquist, is to consider a closed semicircular contour (with the
semicircular part at infinity) that encloses the entire right half of the s-plane,
as shown in|Figure 24.5(a]. As the complex s value traverses this contour in

the anti-clocKwise sense, so that the area Re(s) > O lies always on our left
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(a) s-plane (b) w-plane (c) D-plane
A A A

at oo at oo

-
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\/

Figure 24.5. The Nyquist diagram for a Maxwellian distribution f,. The analytic function
D(k, s) transforms the contour in the s-plane (a), or equivalently the contour in the
w-plane (b) where s = —iw, into the contour in the D-plane (c).

as we trace out the contour, the value of the function D(k,s) will trace out
a corresponding closed contour in the complex D-plane. Assuming that this
contour in the D-plane is simply connected (i.e. does not cross over itself), then
the area enclosed by tracing out the D-plane contour, specifically the area formed
to the left of the contour, corresponds to the area Re(s) > 0 in the s-plane. This
mapping of regions to the left of a contour in one complex plane onto regions to
the left of the corresponding contour in the other complex plane follows from the
analytic nature of the function which defines the mapping, in this case D(k, s)
as a function of the complex variable s in the half-plane Re(s) > 0. (See, for
example, the Chapters on conformal mappings in R V Churchill (1960 Complex
Variables and Applications 2nd edn, New York: McGraw-Hill) or in E G Phillips
(1957 Functions of a Complex Variable 8th edn, Edinburgh: Oliver and Boyd).)
If this area in the D-plane contains the point D = 0, then there must be a solution
of the dispersion relation, D(k,s) = 0, with Re(s) > 0, i.e. an instability. On
the other hand, if the area in the D-plane does not contain the point D = 0, then
there will be no instability. The case where the contour in the D-plane is not
simply connected represents a straightforward generalization. The area in the
D-plane that corresponds to the area Re(s) > O in the s-plane will always be the
area that lies on our left as we trace out the D-plane contour, when this contour
is traced out by an anticlockwise traversal of the s-plane contour. Sometimes, of
course, this area in the D-plane will extend to infinity. At other times, there will
be certain areas of the D-plane that are encircled twice by the D-plane contour
(on its left); within such areas, there will be rwo values of s with Re(s) > 0 for
every D value. The s-plane contour and its corresponding D-plane contour is
called the ‘Nyquist diagram’. The contour in the D-plane is sometimes called
the ‘Nyquist contour’.
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The Nyquist-diagram technique can be illustrated by applying it to the case
of the dispersion relation D(k,s) = O for a Maxwellian fy. It is convenient,
however, to transform again from the variable s to a variable w, defined by

5 = —iw. (24.23)

The semi-circular contour in the s-plane shown in becomes
the contour in the w-plane shown in Figure 24.5(b). Just as the straight part of the
contour in Figure 24.5(a) lies infinitesimally to the right of the imaginary-s axis,
so the corresponding part of the contour in Figure 24.5(b) lies infinitesimally
above the real-w axis. The corresponding contour in the D-plane is obtained by
allowing w to trace out this contour, obtaining D values from the expression

2 ® g 9 Cl)z
D=1+4— f fo/OV 4 nq— 20 (24.24)
mkey J_oo @ — kv w?

for w on the semicircle at infinity, and

2 o :
D14t <pr/ 3o/du _ mi By

mkeg —oo W — kv k dv

) (24.25)
v=w/k

for w on the straight part of the contour along the real axis. For a Maxwellian
fo, it follows from equation (24.25) that

TA1/2 wgw w?

The contour in the D-plane can now easily be traced out. The entire semicircle
at infinity in the w-plane transforms into the point D = 1. The contour in the D-
plane can cross the real axis again only once, namely at the point corresponding
to w = 0 . Moreover, for Re(w) < 0, we have Im(D) < 0, and for Re(w) > 0,
we have Im(D) > 0. Finally, at the point corresponding to @ = 0, we have

2 [e3]
Re(D) =1 — — / 8fo/3v 4.,

mk2ey J_oo U
e2 o0
mk2eov? J_oo fo
o
1y 24.27)
k2p?

which exceeds unity, implying that the crossing of the real D-axis corresponding
to the point @w = 0 lies to the right of the crossing corresponding to w values
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on the semicircle at infinity. It follows that the D-plane contour must have the
general shape shown in Figure 24.5(c). Tracing out this contour in the sense that
corresponds to an anticlockwise traversal of the w-plane contour, we see that the
region of the D-plane to the left of the contour is the area inside the contour,
which excludes the point D = 0. Thus, there can be no solution of D(k,s) =0
with Re(s) > 0, i.e. no instability.

fo

\

0 v

Figure 24.6. A symmetric ‘double-humped’ electron distribution function corresponding
to equal and opposite streams, each of which is given a spread in velocities (see
Problem 24.4).

To change this conclusion, for example for distributions fy other than
Maxwellian, it is generally necessary for the Nyquist contour to have multiple
crossings of the real axis in the D-plane. From equation (24.25), it is evident
that this can occur only if there are multiple velocities v where 3fy/dv = 0.
For example, ‘double-humped’ distributions of the type shown in Figure 22.1fb)
would have three velocities where dfy/8v = 0, and their Nyquist contours
would have three crossings of the real axis in the D-plane. Since an extreme
form of the double-humped distribution could be the two-stream distribution of
equation (23.17), the instabilities arising with such double humped distributions
are all essentially versions of the two-stream instability. An example of the use
of the Nyquist diagram to determine the stability properties of a symmetrical
double-humped distribution, shown in Figure 24.6, is given in Problem 24.3.

Problem 24.3: Use the Nyquist diagram technique to search for possible
instabilities of electron plasma waves in the case of a symmetric
‘double-humped’ electron distribution function f, such as that shown in
Figure 24.6. Show that the condition for instability is that

e? f°° fo) = /o0 4
v

> 1.
mk2ey J_o v2

(Hint: It is not necessary to know the exact shape of the distribution
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function fp, only that it is symmetric in v, which implies that a minimum
occurs at v = 0. This is sufficient to be able to sketch the Nyquist diagram.
However, it will be necessary to locate approximately the points where the
Nyquist contour crosses the real axis. To do this, you will need to develop
estimates for the principal-value term in equation (24.25). The symmetry
of fo(v) will help in this regard.)

By examining the instability condition that you have derived, do you
conclude that all distributions of the type shown in will be
unstable, or only those in which the ‘double-humpedness’ is sufficiently
pronounced?

24.5 ION ACOUSTIC WAVES: ION LANDAU DAMPING

Electrons are not the only particles that can be in resonance with waves in a
plasma. If the wave has a small enough phase velocity to match the thermal
velocity of ions, then strong ion Landau damping can occur. For example, ‘ion
acoustic waves’ have phase velocities of order the sound speed, defined here as
[(T. + 3T;)/M]'/2, and should be strongly affected by ion Landau damping if
T ~T..

It is trivial to generalize our derivation of the Landau form for the plasma
dispersion function to the case where both species (electrons and ions) participate
in the oscillation, just as was done in for the Vlasov treatment.
Referring to equations (23.20) and (24.18), we obtain
e? (Prfm 8fo/dv 7 Ofo

Dk,w)=1+X

mkeg 0o @ — kv Tk av

) (24.28)
v=w/k

where the summation is over species. (Our dispersion function is, of course,
still limited to the case of electrostatic oscillations propagating along, or in the
absence of, a magnetic field.)
As in the treatment of ion acoustic waves given in Chapter 23, we assume
that
@ K kv w > k. (24.29)

Approximate expressions for the two principal-value integrals in equation (24.28)
have been given in equations (23.23) and (23.25), assuming the relationships
given in equation (24.29). (The approximations employed in Chapter 23 were,
in effect, evaluating the integrals as principal values, since they did not include
any contributions from the singularity in the integrand.)

Reproducing these previous results, we have for the electrons

° 3fo/8
Pr / Jol0v 4, o 2 (24.30)
—o0 @ — kU vy
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and, for the ions, neglecting finite ion temperature effects (i.e. assuming

T K T):
o
Pr/ Mdv ~ — nk

P Pk (24.31)
—00

Keeping the imaginary (Landau damping) terms from both electrons and ions,
with 8f5/3v|,=¢/« evaluated in the appropriate limits, we obtain

2 2
w, _Qp

k2 2 ?
N2 wgw Q;‘;w w?
+i (5) [k3vie +oeee | -ga ) | (24.32)

This dispersion relation is identical with equation (23.27) except for the
imaginary (Landau damping) terms which now appear.

For wavelengths much longer than the Debye length (kAp = kv e/wp, <« 1),
the dispersion relation D(k, w) = 0 gives w ~ kC — iy, where Cy = (T./M)'/?
is the sound speed (the thermal speed of ions at the electron temperature) for
the case where T} « T, and y is a damping rate given by

1(71)1/2 w? +T w? w?

==|- —'——'CX _——

=2\2) kw. T T P\ 2@
1 /12 mA\12 (T\? T,

=-(ZY "« (— il _2 ) (2433
2(2) S[ M) +(Ti> P\ 727 (24.33)

The Landau damping from electrons is always small, of order (m/M)'/>. The
Landau damping from ions is small only if 7, > T, in which case it is
exponentially small. We conclude that undamped (or weakly damped) ion
acoustic waves occur only in the case T, > T; ; otherwise, they are subject
to strong ion Landau damping.

For T, > T;, ion Landau damping of acoustic waves is small for the usual
reason: the phase velocity w/k is much larger than the ion thermal velocity, so
there are very few particles in the resonance region and the slope dfy/dv is very
small. On the other hand, electron Landau damping of acoustic waves is small
for a quite different reason: the phase velocity w/k is much smaller than the
electron thermal velocity, so the resonance falls into the low-velocity region of

v) where the slope 3fy/dv is also very small. The situation is illustrated in
Figure 24.7I
We saw in|Chapter 16|and again in (see Problem 23.3) that,

when finite-7; corrections are retained in the dispersion function, for kAp « 1
the dispersion relation for ion acoustic waves remains w =~ kC;, but the sound

Dk,wy=1+
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Figure 24.7. Ion and electron distribution functions and the phase velocity w/k of the
ion acoustic wave in the case where T, > T;, so that C; > v,;.

speed is modified to C; = [(T + 3T;)/M]'/2, although this result was limited
still to the case T; « T, in the kinetic treatment of If, nonetheless,
we use this result to obtain an order-of-magnitude estimate for the ion Landau
damping in the case T; ~ T, by substituting w/k = C, ~ 2(T/M)"? into
the second term on the right-hand side on the first line of equation (24.33), we
obtain y/w ~ 0.2. Such a large value of the damping decrement, y, indicates
that the ion acoustic wave is essentially non-existent in such a plasma.
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Chapter 25

Velocity-space instabilities and nonlinear
theory

For initial velocity distributions that depart substantially from Maxwellian, we
have already seen that it is possible for electron plasma waves to become
unstable. The two-stream instability, discussed in provides a simple
example of this kind of ‘velocity-space instability’—an instability that can arise
in a non-Maxwellian but homogeneous plasma.

More generally, many different types of velocity-space instability are
possible in a plasma, and these can arise in various modes of oscillation, not
only in the electron plasma waves. Moreover, in some cases, a velocity-space
instability can arise in situations where the unperturbed distribution function
fo(v) departs only slightly from the Maxwellian. We will discuss two examples
of velocity-space instabilities of this type, the first of which arises in the electron
plasma waves, and the second in the ion acoustic waves.

25.1 ‘INVERSE LANDAU DAMPING’ OF ELECTRON PLASMA
WAVES

The physical picture of Landau damping presented in gives an
immediate indication as to the type of velocity-space distribution function
that will tend to destabilize the electron plasma wave. Specifically, if the
unperturbed distribution function f3(v) contains more fast particles than slow
particles in the vicinity of v = w/k, Landau damping is ‘inverse’, and the
electron plasma waves can become unstable. If we suppose that the distribution
Jo(v) is approximately Maxwellian, except in some small region of suprathermal
velocities, then we can assume a Maxwellian in calculating the principal-value
integral in equation (24.18), but not in calculating the contribution from the pole
at v = w/k. Keeping only the lowest-order contribution to the principal-value

429
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integral for w > kv,, we obtain the dispersion function

(25.1)

v=w/k

Treating the imaginary term as a small correction, the solution of the dispersion
relation D¢k, w) = 0 is given by

=0 niezwp afo
TP 2mhk2e0 Bv |y
miw} af;
P 0
= — = . 252
Pt 2k 3o v/ (232)

We see that the plasma wave becomes unstable if the distribution fo is
‘double-humped’ in some region of relatively large v, i.e. if 3fp/0v > 0 at
v = w/k. Such a distribution is shown in Figure 25.1. For obvious reasons,
this is sometimes called the ‘bump-on-the-tail’ distribution. Distributions of this
kind are found in laboratory plasmas, such as those first studied by Langmuir,
where energetic ‘primary’ electrons provide the power for plasma ionization.
Such distributions are also common in magnetospheric plasmas, when energetic
electrons precipitate to lower altitudes due to geomagnetic disturbances.

A

b

0 v

Figure 25.1. A ‘double-humped’ electron distribution function.

Waves with phase velocities @w/k in the region of the positive slope of
fo(v) will be unstable, gaining energy at the expense of the resonant particles.
Although the values of w are all close to the plasma frequency w,, there is
almost complete freedom in the choice of & value. The only restriction is
that k values with kAp 2> 1 are excluded, since these would introduce large
thermal corrections to the dispersion relation. The effect of this restriction is to
exclude phase velocities in the thermal range, i.e. @/k < v. Thus, with this one
restriction, we can always find a phase velocity @/k that lies in the region of

positive slope of fy(v), implying that there is always some mode that is unstable.
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Clearly, this type of instability is a generalization of the two-stream
instability discussed in Ehapter 2§| (see also Problem 23.2). The distribution
fo(v) shown in [Figure 25.1] is the ‘finite temperature’ generalization of the
distribution considered in Problem 23.2, in which each of the two streams is
given a finite thermal spread. We see at once how much thermal spread is needed
to stabilize the mode: the mode is stabilized only when the thermal spreads are
sufficient to remove the minimum in f3(v), so that the distribution now becomes
‘single-humped’. The ‘bump-on-the-tail’ distribution is different, in this respect,
from the symmetric double-humped distribution, shown in Figure 24.6 and
analyzed in Problem 24.3. In the latter case, a degree of ‘double humpedness’
can be tolerated before instability arises. A region with afp/dv > O (for positive
v, the opposite inequality for negative v) is necessary, but not sufficient, for
instability: there must also be a mode with phase velocity, w/k, in this region
of reversed slope.

25.2 QUASI-LINEAR THEORY OF UNSTABLE ELECTRON PLASMA
WAVES#*

Thus far, our discussion of plasma instabilities has been limited to the linear
regime, i.e. to perturbations that have very small amplitude. The theory of
linear instabilities treats the perturbations as infinitesimal, thereby giving rise
to homogeneous linear equations that are relatively amenable to mathematical
analysis. In particular, if the unperturbed equilibrium is essentially uniform in
space (at least on a scale-length much greater than that of the perturbations), then
the eigenfunctions of linear perturbations will be sinusoidal in space, i.e. they
will vary as exp(ik-x). Each such perturbation (i.e. each value of the wave-vector
k) will have a temporal behavior like exp(—iwkt), where the frequency wy is in
general complex (real for an oscillatory mode, imaginary for a purely damped
or growing mode). In linear theory, we can consider one Fourier component,
i.e. one value of the wave-vector k, at a time: there will be no ‘interference’
between different Fourier components.

For oscillatory modes (and even more so for damped modes), the linear
approximation is often quite adequate, since the amplitude of the perturbation
does not increase beyond its initial value. For unstable modes, however,
the linear approximation must eventually break down, because it predicts
that the amplitude of the mode increases exponentially in time without limit.
Clearly, there must arise some nonlinear effects that limit the amplitude of the
perturbation, or that change the ‘equilibrium’ in such a way that the mode is no
longer unstable.

Nonlinear effects in plasma physics can generally be divided into two
categories: wave-particle interactions and wave-wave interactions. For certain
types of plasma instabilities, for example the unstable electron plasma waves
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that arise with ‘bump-on-the-tail’ distributions, the wave-particle interactions
are sufficient to stabilize the waves at relatively small amplitude. In other
cases, the waves grow to such large amplitude that interactions between the
different waves are important in determining the final wave spectrum. Wave-
wave interactions are beyond the scope of this book, but the interested reader is
referred to the monographs by R Z Sagdeev and A A Galeev (1969 Nonlinear
Plasma Theory edited by T M O’Neill and D L Book, New York: Benjamin)
and by R C Davidson (1971 Methods in Nonlinear Plasma Theory New York:
Academic).

Our discussion of the physical meaning of Landau damping has shown
that even a small-amplitude wave can interact strongly with particles that are
almost resonant with it, tending to mix those particles that are travelling slightly
slower than the wave with those particles that are travelling slightly faster than
the wave. The result of this will be a flattening of the distribution function in
the region of the phase velocity w/k. A larger-amplitude wave existing for a
long enough time can also ‘trap’ a significant number of particles in its potential
troughs, analogous to the island-confined trajectories of the Chirikov-Taylor
map in[Chapter 5] These are examples of the nonlinear effects of wave-particle
interactions.

The ‘quasi-linear theory’ of unstable electron plasma waves provides a
technique for describing the effects of wave—particle interactions. Quasi-linear
theory assumes that the amplitudes of the various modes that are excited are
still small enough that the structure, frequency and instantaneous growth rates
of the modes are all adequately described by the linear theory. Thus, even
in the small-amplitude limit, quasi-iinear theory allows us to understand and
quantify how waves and particles exchange energy, and how the flattening of
the distribution function leads ultimately to the ‘saturation’ of the instability, i.e.
the cessation of growth of the amplitude of the perturbation electric field. It is
a basic assumption of the quasi-linear theory presented here that this process
of saturation of the instability arises before the waves have sufficient amplitude
that wave—-wave interactions become important; otherwise the theory must be
extended to include such effects.

As we have seen, the linear theory of electron plasma waves proceeds from
the Vlasov equation for the one-dimensional electron distribution f:

d
o O e of

=0 25.
ot dx m. dv (253)

which is linearized by writing

fx, v, ) = fo(v) + fi(v)exp(—iwt + ikx)

; . (25.4)
E(x,t) = Eexp(—iwt + ikx)
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where the perturbations f; and E are assumed small enough that second-
order terms involving products of f; and E may be neglected. With these
approximations, the linearized Vlasov equation becomes

Ciw—tvyf, = LY (25.5)
m dv

For the present treatment of an unstable mode, it is not necessary to introduce
the more cumbersome Laplace-transform analysis of Landau, since we found
that an unstable mode (complex frequency w having a positive imaginary part)
is always an exact normal mode. For a weakly unstable (i.e. almost oscillatory)
mode, we saw in that the singularity at v = w/k should be resolved
by noting that @ has a small positive imaginary part, i.c. ® = o +1iy.

For a specific example of unstable electron plasma waves, we will consider
the case of a ‘bump-on-the-tail’ electron distribution, as shown in
We have already found the frequency and growth rate of the unstable mode that
arises in this situation, and these are given in equation (25.2).

The essence of quasi-linear theory is to suppose that the distribution fp
does not merely describe some initial state, but also describes a slowly evolving
‘background’ distribution that is changing due to the effects of the unstable
waves themselves. With this in mind, we adopt a formal definition of f; as the
spatially averaged (i.e. averaged over many wavelengths) part of the complete
distribution function f(x, v, ). We also assume that a continuous spectrum of
waves with different k values is excited, as would be the case for the instability
we are considering here. (The opposite case—where there is only one wave
excited—is discussed later in this Chapter.)

Accordingly, we generalize equation (25.4) to allow perturbations
containing waves with different k¥ values:

f(xv U,t) = fo(v)+f1(x9 U,t)

fitx,v, 1) = ; Ji(v)exp(—iwgt + ikx) (25.6)

E(x,t) =Y Eexp(—ioyt + ikx).
k

We continue to limit ourselves to the ‘one-dimensional’ case which, in effect,
assumes that the k-vectors of all excited waves are in the same direction,
in this case the x direction, so that we may integrate out the other two
velocity components and work with the one-dimensional Vlasov equation,
equation (25.3), with one velocity component, in this case v,. It is also important
to remind ourselves of our convention (see [Chapter 19) for describing waves
with ‘exponential notation’ in expressions such as those in equation (25.6), which
is that the measurable physical quantity is the real part of the right-hand side;
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for example, if there is only one k value with a real E;, then equation (25.6)
is understood to mean E(x,t) = Ejcos(wi? — kx). We have also adopted the
convention (without any loss of generality) that all frequencies w; are positive
(or, if complex, that their real parts are positive), noting of course that we must
then include both positive and negative k values in order to allow both leftward
and rightward propagating waves. The summations in equation (25.6) are then
over whatever waves are present, perhaps some with positive and some with
negative k values (if there are symmetric ‘bumps-on-the-tail’ of f;(v)); each
physically distinct wave corresponds to one & value and therefore one term in
the summation over k. It is important to understand that we have chosen not
to introduce an E_; = E; for each k value just to make the summations in
equation (25.6) real, since this would require two terms in the summation over
k to describe each physically distinct wave and would also require negative
frequencies (since w.; = —w; when +k values are used to describe the same
wave). This is, however, an alternative convention that is often used.

We obtain an equation for the slow evolution in time of fy(v) by spatially
averaging equation (25.3) over many wavelengths, yielding

o _ e <Eifi> 25.7)
ot m ov

noting that the term in 8fp/dv must vanish, since all contributions to E(x, t) are
oscillating in time. Moreover, only terms in E and f; with the same k value
survive in the time averaging, since all other terms will be oscillating at some
frequency wy £ wy, which will be a finite frequency in all cases except where
the negative sign is chosen and k' = £k. (This assumes that the waves have at
least some dispersion, which is almost always the case, even for electron plasma
waves.) Recalling (from that in our convention the time average
of two first-order quantities A7 amd B; written in ‘exponential notation’ is
Re(A}B;/2), we find that the spatially averaged part of the distribution function
evolves according to the equation

o e « 01k
- = 5—Re (Zk: Ei— ) (25.8)

Since the right-hand side of equation (25.8) is second order in the perturbations,
the evolution of fy is very slow. Thus, at any given time, we may treat fy as
essentially constant for the purpose of describing the time dependence of the
waves themselves. In particular, we may substitute for fj; from the linearized
Vlasov equation, i.e. equation (25.5), for a mode with complex frequency wy,

ieE, dfy/0
Ju = ieEy 9fo/0v. (25.9)
m wy — kv

Copyright © 1995 IOP Publishing Ltd.



Quasi-linear theory of unstable electron plasma waves* 435

to obtain
3fo et B , 1 dfo
Y= — |1 Eyff— ) — 25.10
at 2m23v|:m<zk:| d wy —kv /] dv ( )

where we have written EZE; = |Ei|%. If we divide the complex w; into a real
part w; (frequency) and an imaginary part y; (growth rate), i.e. wy = wi + iy,
and take the imaginary part as indicated in equation (25.10), we obtain

9fo e 2 Y% Bfe
= —— 25.11
at  2m? v (Z[ Bl —kv)2 4+ y2 Bv ( )

Our use here of the linearized perturbation fj, is equivalent to the use of
zeroth-order trajectories in calculating the first-order effect of the waves on the
particle distribution function. It assumes implicitly that the distribution function
does not develop significant structure in phase space beyond that involved
in the linear calculation of fi;. In the nonlinear case, the trajectories are of
course strongly modified for special groups of particles, in particular those with
velocities close to the phase velocity of the unstable waves. Indeed, nonlinearly,
a ‘microstructure’ in the phase-space, i.e. (x, v), plot of the particle trajectories
can arise, similar to the ‘islands’ of the mapping problem discussed in ,
making the quasi-linear approach invalid. When a sufficiently broad spectrum of
waves is present, however, the microstructure in the particle orbits is destroyed,
just as the ‘islands’ in the mapping were destroyed by ‘stochastic overlap’.
Interparticle collisions, even if relatively infrequent overall, can also serve to
destroy the phase-space microstructure in the particle orbits. In these cases, the
use of zeroth-order trajectories in calculating fj; is valid; the opposite case,
where quasi-linear theory would be inappropriate, is considered later in this
Chapter in the context of trapping in a single wave,

Often the spectrum of waves is sufficiently dense that the summation over
discrete k values in equation (25.11) can be replaced by an integral over a
continuous variable k. The validity of this assumption must be verified in
the particular case under consideration. For the ‘bump-on-the-tail’ distribution
discussed in the previous Section, the phase velocities of unstable waves lie in
some band of width Av about a mean phase velocity w/k = vy, where vy is
in the region of the inverted slope of the equilibrium distribution fo(v), and
Av is the width of this region of inverted slope. Since the frequencies are all
approximately wp, the wave-numbers of unstable modes form a band of width
Ak ~ ko(Av/vg) about some mean value ko = @, /vy = vie/voAp. If the overall
size of the plasma in the x direction is L and periodic boundary conditions are
applied at the plasma extremities, the wave-numbers allowed by the boundary
conditions are k = 2wn/L for all integers n. The number N4 of modes (i.e.
the number of integers n) which have k values that ‘fit" within the prescribed
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(L) (e (2
Nax = (ZTTKD) ( vo ) ( vo ) ' @12

The factors v, e/vyp and Av/vp are both moderately small quantities; for the
distribution depicted in they are about 0.3 and 0.1, respectively.
However, the first factor on the right-hand side of equation (25.12) is an
exceedingly large quantity for a plasma, by definition, usually 10* or larger.
(Even if we divide our band of unstable k values, width Ak, into a large
number of narrower ‘sub-bands’, within which the modes have not only the
same frequency w; but also the same growth rate y, (because the slope of fy is
essentially the same within the corresponding sub-band of phase velocities), the
number of modes within each sub-band will still be large.) Thus, at least for this
particular case, it is legitimate to consider the wave-number k as a continuous
variable. It then becomes useful to define a measure of the amplitude of the
field perturbation in a continuous spectrum. The appropriate quantity for our
present needs is the energy density residing in the field perturbations within each
band of k values, or more precisely within each differential dk of the continuous
variable k.

The energy density of an electric field has been found (see [Chapter 8
Problem 8.2) to be €E?/2. For the fluctuating electric field given by
equation (25.6), remembering our result regarding the average of the product
of two first-order wave quantities expressed in ‘exponential notation’, we have
a spatially averaged energy density

2
Wg = —623 <<Re Xk: Erexp(—iwgt + ikx)) >

€ €
= —ZOReZE;Ek = Z" S IEP (25.13)
k k

range Ak is

We now introduce a quantity £(k), which is the density in k-space of the average
energy per unit volume of the electric-field perturbations. Specifically, we
define £(k)dk = (ep/4) Z'ﬁd" |E¢|?, where Z',;Hk means the sum over all &
values lying within the infinitesimal dk. With this definition, we may replace
summations over all £ values, e.g. the summation appearing in equation (25.11),
by an integral over the continuous variable k, provided we substitute

%Z |Ep 2 — -;%f E(k)dk. (25.14)
k —00

The quantity £(k) is usually called the ‘spectral energy density’ of the electric
field for the particular wave and k value. With our conventions that the real
part is to be understood in expressions such as equation (25.6) and that all
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w are positive, so that positive and negative k values therefore correspond
to rightward and leftward propagating waves, respectively, the spectral energy
density £(k) is not (necessarily) symmetric in k, as it is with some alternative
conventions often used. In our case, £(k) for positive k is the spectral energy
density in rightward propagating waves, which, for example, will be relatively
large for phase velocities w/k in the region of inverted slope of the ‘bump-
on-the-tail’ distribution shown in while £(k) for negative k is the
spectral energy density of leftward propagating waves, which will be negligible
in the case of the (positive-v) ‘bump-on-the-tail’ distribution of Figure 25.1. The
concept of spectral energy density can easily be generalized to three dimensions,
in which case the electric field energy per unit volume ¢{|E(x, t)j)/2 becomes
[ E&)dk. By analogy with the one-dimensional case, the spectral energy
density is defined by the relation £(k)d*k = (€p/4) I KT | Ey|2, where Y k1o
means the sum over all k values lying within an infinitesimal volume d3k, which
is the volume of a cuboid whose sides are dk,, dk, and dk,.

When we use the procedure of equation (25.14) to transform the right-
hand side of equation (25.11) to an integral over k, we may also make use of
the fact that the growth rates y, are very small, so that the resonance term in
equation (25.11) can be approximated by a §-function, i.e.

Yk

Problem 25.1: Verify equation (25.15) by the following procedure.
First sketch the left-hand side as a function of w, for fixed kv and
for successively smaller values of y;, tending toward zero. Then, by
integrating the left-hand side over w;, show that the area under each of
the curves you have sketched is #. (Hint: the integral is best evaluated
by substituting w; — kv = y,tanf.)

In this case, we can write equation (25.11) as

2 [>5]
oo _ 2me” 9 [(/ dkg(k)s(wk—kv)) af"]. (25.16)

at  eem? dv oo v

This is the ‘quasi-linear’ equation for the evolution of fo
The equation has the form of a diffusion equation in velocity space, i.e. an

equation of the form
afo 9 3fo
22 =" (Dw)=2). .

at 8v< (v)av) (25.17)
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Moreover, the diffusion coefficient

2 o0
D) = 2_”% / £k)8(wy — kv)dk
€gm -50

2 .
2T £ w/v) (25.18)

eomv

is non-zero only in regions of velocity v corresponding to phase velocities w/k
of excited waves. This corresponds nicely to our physical picture of Landau
damping (or the inverse process leading to wave growth) arising from velocity-
space diffusion in the region of wave—particle resonance. (Note that, for plasma
waves, the frequencies wy are all approximately the same, ie. wy ~ @ =~ w,.
This lack of a significant dependence on k was necessary to allow the simple
evaluation of the é-function integral in equation (25.18).) For the case of our
‘bump-on-the-tail’ electron distribution, phase velocities of unstably excited
waves occur only in regions where the slope of f; is inverted, i.e. where
afp/ov > 0. We suppose, as implied by Fig. 25.1, that this occurs for
positive values of v, and this has already been assumed in the second form of
equation (25.18). Unless there is some external ‘driver’ maintaining the inverted
slope on the distribution function (such as an energetic electron beam injected
continuously into the plasma), we can now see at once that the final state will
be a distribution function that has become ‘flattened’ in the offending region.
The original distribution shown by the full curve in [Figure 25.2(a)|is replaced
by the flattened distribution shown by the broken curve in Figure 25.2(a). We
see that the time evolution of the quasi-linear process has led to the distribution
function being modified between the velocities vy and v, i.e. a slightly broader
region than that of the original inverted slope.

When the distribution function flattens, the growth of the unstable mode
is arrested. We can, in fact, calculate the final spectral energy density of the
electric field at each k value, by noting that £(k) is proportional to |E;|? and so
will increase exponentially with an instantaneous growth rate of 2y;:

dEk)
—a - 2y E (k)
ne’w afo
= ke Ek) ™ i (25.19)

where we have used the expression for y, given in equation (25.2). Combining
this with the equation

2
3o _ 8 ( e 3f°) (25.20)

= £ -
at v \ egm2v (@/v) v

Copyright © 1995 IOP Publishing Ltd.



Quasi-linear theory of unstable electron plasma waves* 439

A
(a)
fo(v)
initial
final /

0 Vi Vs \x v
] Ex |2 (b)
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Kmax = ©p/V1 Kenin = ©p/Vp o/

Figure 25.2. Results of quasi-linear evolution of the instability: (a) initial and final
distribution functions; (b) final electric-field perturbation spectrum. During this evolution
the spectrum spreads out somewhat, so as to extend throughout the range kmin t0 Kmax,
corresponding to phase velocities from v, to v, which is seen to be somewhat broader
than the range of velocities for which the initial distribution has an inverted slope.

we obtain

(25.21)

3t ov \mv3 dt

ofo 9 (20) dS(w/v))
Integrating this equation with respect to both v and ¢, we see that the final
spectral energy density of field perturbations (for negligible initial amplitude) is
given by

mw?

£t =25

v=w/k
/ [fo(v, 00) — fo(v,0)]dv (25.22)

where fy(v, 00) and fy(v, 0) denote the final and initial distribution functions,
respectively. The lower limit of integration, vy, is the left-hand end of the
flattened region, as indicated in Figure 25.2(a). The integral in equation (25.22)
is always positive for w/k within the flattened region; at the right-hand end,
where v = v, the spectral energy density £(k) at k = w/v, has fallen to zero
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again, because of conservation of the total number of particles, i.e.

/vz Sfo(v, c0)dv = /Uz Sfo(v, O)dv. (25.23)

Our result for the final spectral energy density of field perturbations is illustrated
n

e quasi-linear theory of electron plasma waves was formulated first by
W E Drummond and D Pines (1962 Plasma Physics and Controlled Nuclear
Fusion Research, Nuclear Fusion, 1962 Supplement, Part 3 p 1049) and
independently by A A Vedenov, E P Velikhov and R Z Sagdeev (1961 Nuclear
Fusion 1 82 (in Russian)).

253 MOMENTUM AND ENERGY CONSERVATION IN QUASI-
LINEAR THEORY*

We have already used the fact that the total number of particles is conserved
in quasi-linear theory. Indeed, this follows immediately from the ‘diffusion-
equation’ form of equations (25.11) or (25.17), since these equations can be
integrated over all velocities to show that the total number of particles is
conserved, provided only that dfy/dv vanishes at v — zoo. In quasi-linear
saturation of the ‘bump-on-the-tail’ instability, particles with velocities near the
phase velocity are simply redistributed (on balance toward lower velocities) as
shown in Figure 25.2.

Since, in this particular case, there has clearly been a loss of momentum
of these ‘resonant’ particles, it is of interest to explore how overall momentum
is conserved in quasi-linear theory. We return to the more exact form of the
quasi-linear diffusion equation for f;, namely equation (25.11), multiply by mv
and integrate over all v, integrating by parts on the right-hand side, to obtain

d o] ez o Vi afo
< vfodv = —— S |E 2/ % 9%, (2524
yP —oom fo 2m & | E o (@ K0 772 B0 v ( )

where the initially complex frequency w; has here been written explicitly in
terms of a real frequency and a growth rate, w; — w; + iyx. The §-function
approximation given in equation (25.15) can be used in the resonant region
of velocities, whereas the integrand in equation (25.24) can be expanded for
wy > kv > y; in the non-resonant thermal region of velocities. Keeping terms
of order kv/wy, but not terms of order y?/w? in the non-resonant region, and
integrating by parts in v to evaluate the integral, equation (25.24) becomes

d [* e’ 2ynk ® 3fy
= dy = —— E 22 _ 2 22
de ‘/_oomvfo ' 2m Zk:| el ( W} L

=0 (25.25)
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where in the last step we have substituted for y; from equation (25.2), and have
also written w; ~ w,. Despite this last approximation, momentum conservation
is of course exact, as can be seen by noting that the integral on the right-hand
side of equation (25.24) vanishes by virtue of the vanishing of the imaginary
part of the exact Vlasov dispersion relation.

Problem 25.2: Verify this last statement by taking the imaginary part
of the Vlasov dispersion relation, i.e. equation (23.12), for an unstable
electron plasma wave with frequency w, and growth rate y,. Remember
that the Vlasov dispersion relation describes unstable waves without need
for the Landau theory.

Equation (25.25) indicates that the loss of momentum of the resonant
particles is balanced by a small gain in the momentum of all the other particles.
Purely electrostatic field perturbations themselves carry no momentum.

Next we consider conservation of energy. In the particular case shown
in the resonant particles have clearly lost energy, which must be
accounted for.  Again, beginning with equation (25.11), we now muiltiply by
mv?/2 and integrate over all v, integrating by parts on the right-hand side, to
obtain

d [® VYi dfo
— dv=—— E 2/ —_———du. 25.26
dt/_ fo v= ZI kl v (@ — ko) 4 72 30 v, ( )

As before, the §-function approximation given in equation (25.15) can be used
in the resonant region of velocities, whereas the integral can be expanded for
wk > kv > y; in the non-resonant regions. Keeping only the zeroth-order term
in the expansion in the non-resonant regions and integrating again by parts in v,
equation (25.26) becomes

d [® mv? Yen  mwy 8fo
- = fdyv= — I e
ar /_w y Jodv Z' <w,3 PZRRET) N
=S Y
2m S~ W}
__% 2
= EZMEH. (25.27)

Here, in the next-to-last step, we have substituted for y; from equation (25.2),
and in the last step we have written w; ~ w,. (Energy conservation is of
course exact; only our particular expressions for the loss of energy from resonant

Copyright © 1995 IOP Publishing Ltd.



442 Velocity-space instabilities and nonlinear theory

particles and its gain by non-resonant particles are approximate.) Energy resides
also in the electric field perturbations themselves, and the electric field energy at
each k value, namely €| Ex|*/4 per unit volume, is growing exponentially with
growth rate 2y,. Thus, the rate of change of the total energy per unit volume in
the electric field is

dw
-—E == Z yel Ex|*. (25.28)

Adding equations (25.27) and (25.28), we obtain the energy conservation relation

a‘-it- ( / mv? fodv + / ” é‘(k)dk) =0 (25.29)

where we have gone to the continuous-k case, in which Wg = ff°oo Ek)dk.

The energy lost from the resonant particles goes partly into electric field
energy and partly into kinetic energy of the non-resonant particles oscillating in
the wave. Sometimes these last two are combined and called the ‘wave energy’.
With this terminology, the growth in wave energy is exactly balanced by the
loss of energy in resonant particles.

Problem 25.3: For electron plasma waves with  ~ w,, such as those
destabilized by a bump-on-the-tail distribution, show that the wave energy
is divided equally between electric field energy and kinetic energy of the
oscillating non-resonant electrons. By examining the first form of the right-
hand side of equation (25.27), confirm that half the loss of energy from
resonant particles is balanced by a gain in kinetic energy of non-resonant
particles, the other half going into electric field energy.

254 ELECTRON TRAPPING IN A SINGLE WAVE*

Our discussion of the quasi-linear theory of plasma waves destabilized by a
bump-on-the-tail electron distribution has noted that the number of unstable k&
values is usually very large, so much so that the spectrum becomes sufficiently
dense for stochastic destruction of microstructures in the phase space of particle
orbits to occur, giving rise to a continuous region of velocity-space diffusion.
Nonetheless it is of interest to examine the opposite situation, where dominantly
only one k value is excited. Let us choose the phase so that the electric field of
this single wave may be written

E(x,t) = Esin(kx — wt). (25.30)

Copyright © 1995 IOP Publishing Ltd.



Electron trapping in a single wave* 443

The motion of an electron in this wave is given by
dv = .
ma = —eEsin(kx — wt) (25.31)

and if the (assumed real) amplitude, E, of the electric field is small, so that
we may integrate equation (25.31) along the unperturbed orbit, dx/dt = vg, we

obtain

eE cos(kx — wt)
=ypy-— 25.32
V=t m w-—ky ( )

to first order in E. If we plot v as a function of (x —wt/k) for a variety of values
of vy, as is done in we obtain a pictorial depiction of the ‘trajectories’
v(x, t) of all electrons relative to a frame moving at a velocity w/k. Ignoring
for the moment the ‘islands’ at the center of Figure 25.3 (which are not derived
from equation (25.32)), we see that electrons with vy 3> w/k move always
rightward, although their velocities have maxima at x — wt/k = 0, £2r, +4n,
etc, whereas electrons with vy < w/k move always leftward, their velocities
having minima at these same values of x — wt/k. (Figure 25.3 is drawn for the
case where E and k are both positive.) However, if vg is very close to w/k, it is
no longer permissible to integrate equation (25.31) along the unperturbed orbits.
Specifically, equation (25.32) fails (because the first-order term is as large as the

zeroth-order term) when _
w\? eE
(w-2) ~=— (25.33)

i.e. for electrons whose kinetic energy in the frame moving at the phase velocity
is of order their potential energy in the electric field perturbation.

Problem 25.4: |dentify the equivalent of equation (25.33) in the mapping
problem discussed in| Chapter 5

The exact trajectories of electrons in a single electrostatic plasma wave
can be obtained by first deriving an applicable constant of the motion, which is
essentially the sum of the kinetic energy of the electron in a frame moving at
the phase velocity and the potential energy of the electron in the electric field.
We define an electric potential

¢(x, 1) = pcos(kx — wt) (25.34)
so that

=—-08¢/3x ¢ =E/k. (25.35)
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A v—w/k

Figure 25.3. Phase-space trajectories of electrons in a frame moving at the phase velocity,
w/k, of a plasma wave with E = Esin(kx — wt).

Multiplying the electron’s equation of motion, equation (25.31), by (v —
w/ k), we obtain

_d_ [% (u - %)2] = —eg(kv — w)sin(kx — wt)

=e ( 4 + v—a—) ¢cos(kx — wt)
at dx

= e;% [@cos(kx — wt)] (25.36)
so that )
% (v - %) — edeos(kx — o) = constant. (25.37)

Equation (25.37) is equivalent to equation (5.22) in the mapping problem of
Chapter 3

The trajectories shown in Figure 25.3 are the plots of v — w/k versus x —
wt / k for various values of the constant on the right-hand side of equation (25.37).
Values of this constant greater than e¢ or less than —e¢ give the ‘open’
trajectories along which an electron’s velocity remains of one sign. Values of
the constant in the range (—e@, eg) give the ‘closed’ trajectories, or ‘islands’,
corresponding to electrons that are ‘trapped’ near locations of maximum electric
potential (minimum electron potential energy).
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can be viewed as a continuous, rather than discrete, ‘area-
preserving map’ of one-dimensional phase space (x, v) from the equilibrium
configuration to the perturbed configuration. (We know that the area of phase
space occupied by any given set of particles is preserved.) We have encountered
discrete mappings (and the associated ‘island chains’, leading eventually to
the onset of stochasticity) in our analysis of non-J-conserving particle orbits
(see and other continuous structures of this kind in our treatment
of the reconnection of magnetic flux by a resistive tearing instability (see
. These previous discussions allow us to draw some immediate
qualitative conclusions about the relationship between quasi-linear theory and
the trapping of electrons in a single nonlinear wave.

For the case of a single wave, particle trapping is the long-time consequence
of the nonlinear wave—particle interaction. At early times, when the wave is still
of very small amplitude, near-resonant particles are speeded-up and slowed-down
by their interaction with the wave and, if the distribution function fy(v) has an
inverted slope at the phase-velocity w/k, these interactions cause diffusion in
velocity space that on balance feeds energy into the wave, so that it grows
exponentially in time. The distribution function fy(v), averaged in space and
time, then tends to flatten in the vicinity of the phase velocity. In some cases,
this may be sufficient to stabilize the wave growth. However, as the wave grows,
it traps an increasing number of particles, which can no longer contribute any
more energy to increasing the wave amplitude; eventually, a saturated state
may be reached in which further growth of the wave amplitude, accompanied
by trapping of more particles, is energetically disfavored. In the case of a
stable wave, which must be excited initially by some external disturbance of
finite amplitude, particle trapping will ‘compete’ against Landau damping. If
the initial amplitude is sufficiently large that significant particle trapping occurs
before the damping has proceeded very far, then a saturated state can arise in
which Landau damping is effectively ‘turned off’, since the oscillating motion
no longer produces further flattening of the distribution function. In this case,
Landau damping will prevail only for times up to the ‘bounce’ time of a particle
trapped in the wave unless, as is very often the case, interparticle collisions
or stochastic overlaps arising from a spectrum of wave effectively destroy the
phase-space microstructure. The effect of particle trapping on Landau damping
was first analyzed in a paper by T M O’Neill (1965 Phys. Fluids 8 2255).

Now suppose that additional discrete waves with slightly different k values
and phase velocities w/k are unstable. As single waves, these will give rise
to additional island chains centered at different values of v — w/k in the
particle trajectories shown in Figure 25.3. Indeed, Figure 25.3 would begin
to look like the non-J-conserving particle-orbit maps depicted in .
When these different island chains begin to overlap, the trajectories become
stochastic. In the context of the present discussion of electron trapping in
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a nonlinear plasma wave, this means that velocity-space diffusion, leading to
flattening of the distribution function fy(v), will extend over the entire range
of v corresponding to phase velocities of unstable waves—exactly as predicted
by quasi-linear theory. Similarly, in the stable case, if a wave-packet with a
range of k values is excited initially, rather than a pure single wave, particle
trapping can be inhibited by island overlap, in which case Landau damping will
continue essentially indefinitely. As we have seen, in many cases of interest,
such as the electron plasma wave destabilized by a bump-on-the-tail distribution,
there are very many unstable modes excited, with a large number of different
k values. In such cases, quasi-linear theory generally gives a good description
of the nonlinear behavior. (By contrast, we saw in that only very
Sfew (typically not more than one, or at most two) resistive tearing modes can
be unstable at the same time in the standard tokamak configuration. Individual
chains of ‘magnetic islands’ are a fairly common occurrence in tokamaks, if
such modes arise at all. However, when these island chains do overlap, the
magnetic fields become stochastic, and severe plasma losses can occur.)

25.5 ION ACOUSTIC WAVE INSTABILITIES

The kinetic theory of ion acoustic waves was presented in |[Chapter 24, For

Maxwellian distributions, we found that these waves have phase velocity
w/k = C; = (T./M)"/? and are subject to only weak Landau damping if
I < T..

It is interesting to consider whether ion acoustic waves can be destabilized.
By analogy with the case of electron plasma waves, which are destabilized
by creating a ‘double-humped’ or ‘bump-on-the-tail’ electron distribution f5(v)
with a region of positive slope dfy/0v, we might expect acoustic waves to be
destabilized by a region of positive slope dfy/dv on either the electron or ion
distribution function in the region of the phase velocity w/k.

One important case in which this can occur is where the electrons are
carrying a non-zero current, i.e. where the electron distribution fye is ‘shifted’
relative to the ion distribution fpi. This would correspond to the case of a
plasma carrying an electrical current and could be produced, for example, by
an equilibrium electric field. Although the exact electron distribution function
in this case would be that given by solving the Fokker-Planck equation, for
a simple example we might suppose that the electron distribution function is
still Maxwellian, but about some non-zero mean velocity u. Specifically, taking
the non-zero mean velocity to be in the x direction and integrating out the
unimportant v, and v, components of the velocity, the distribution function for
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electrons becomes

m \/2 m(v, — u)?
foe=n (27TT) €Xp (_T> . (25.38)

It is clear from [Figure 25.4 that a potential for instability exists if the mean

velocity 1 exceeds the sound speed Cs = (T./M)!/2.

The analysis is very similar to that given in the Section on ion acoustic
waves in [Chapter 24. Indeed, to obtain the dispersion function D(k, w), it is
only necessary to make the substitution @ — @ —ku in the electron contribution
given in equation (24.32). In this way, we obtain

w? Q2
Dk,w)y=1+—2 — L
k2, w?

T\ 1/2 wg(w — ku) ng w?
i{— -——— . (25.39
+i(3) [ o e\ T )| B

Problem 25.5: Verify that equation (25.39) is indeed the correct
dispersion function for ion acoustic waves for the shifted Maxwellian
electron distribution given in equation (25.38), with 1 < ve.

As before, for wavelengths longer than the Debye length, the solution is
w = kCs + iy, where C; is still the sound speed, but where y is now an
instability growth rate given by

1 (n)1/2 wkuy —w) T, w? . w?
=—-(= _ ——exp | ———
y=3\2 kee T kv P\ T 2202,

@06 (&) () e )]

(25.40)

l

The first (electron) term in equation (25.40) is destabilizing if ¥ > C,. Whether
or not the wave is actually. unstable is a competition between the destabilizing
electron term, which is small of order (m/M)!/2, and the stabilizing ion term,
which is small if 7; « T.

The overall conclusion is that, if we try to drive a current in a plasma with
T, « T, (a common case), ion acoustic wave instabilities may set in when the
electron streaming speed u exceeds the ion sound speed (T./M)'/2. Clearly, this
constitutes a much lower instability threshold than for two-stream instabilities
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A folv)
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Figure 25.4. Ion and electron distribution functions and the phase velocity w/k of the

ion acoustic wave for the case where the electron distribution has a streaming speed u
(cf Figure 24.7). As in Figure 24.7, the case T, > T, so that C; > v,;, is shown.

of electron plasma waves (see, for example, Problem 24.3), which require
the electron streaming speed to exceed the electron thermal speed (T./m)'/2.
Whether or not ion acoustic wave instabilities impede current flow has to do
with the nonlinear effects of the waves. Do they create additional ‘resistivity’,
or do they merely redistribute the electron velocities to create a stable, flattened
distribution function fp. in the low-velocity region where wave resonances
occur? The quasi-linear theory, discussed earlier in this Chapter for the case
of electron plasma waves, suggests strongly that the latter possibility will occur,
and this is indeed the case: the electron distribution fp shown in Figure 25.4
becomes flattened in the region 0 < v < u, while still having a non-zero
mean velocity, i.e. a non-zero net current. To the extent that electron—electron
collisions are important, however, there will be a tendency to restore the shifted-
Maxwellian distribution. A competition will arise between these collisional
effects and the quasi-linear effects of weakly unstable ion acoustic waves, the
former tending to maintain an electron distribution with a positive slope, the
latter attempting to flatten the electron distribution in the region 0 < v < u.
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Chapter 26

The drift-kinetic equation and kinetic drift
waves®

In [Chapter 23, we introduced the Vlasov equation, which describes the evolution
in time of the particle distribution function, f(x, v, ¢), in six-dimensional phase
space (x,v). In principle, the Vlasov equation may be used to generate,
from some ‘given’ electric and magnetic fields, charge and current densities
which may then modify the electric and magnetic fields through Maxwell’s
equations. Although, in the general case, the Vlasov-Maxwell description of a
plasma would be highly intractable mathematically (and even computationally),
we succeeded in —@ in solving the relevant equations in a
few interesting cases, specifically for ‘one-dimensional’ linearized wave-like
perturbations in which the wave-vector k has a single component directed along
(or in the absence of) a magnetic field. We also limited ourselves to electrostatic
waves, in which there are no significant magnetic perturbations, so that the
Maxwell equations reduce, essentially, to the Poisson equation. The plasma
equilibria were assumed to be spatially uniform, at least on the scale of the
perturbation wavelength.

The same ‘kinetic’ approach can be extended to more realistic situations
involving spatially non-uniform plasmas, perturbations with wave-vectors k
having all three components, and magnetic perturbations. For example, in
uniform magnetized plasmas, the full ‘hot plasma’ dispersion relation can be
derived using a kinetic approach (see T H Stix (1992 Waves in Plasmas New
York: American Institute of Physics)). In at least one case, namely where
the perturbations have frequencies much smaller than the frequency of Larmor
gyration and wavelengths much larger than the Larmor radius, non-uniform
plasmas also become reasonably tractable. In this latter case, we can replace
the particle distribution function, f(x,v,t), by a guiding-center distribution
Jge(Xge, 1, vy, 1), Where X is the position of the guiding-center and v, and
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vy are velocity coordinates representing, respectively, the velocity perpendicular
to the magnetic field (i.e. the speed with which the circular Larmor orbit is
traversed) and the velocity parallel to the magnetic field (i.e. the speed at
which the guiding center moves along the magnetic field). The motion of the
guiding centers across the magnetic field can then be described in terms of
the guiding-center drifts derived in The ‘kinetic’ (i.e. Vlasov-
like) equation for fg. which can be formulated in this way is usually called the
‘drift-kinetic equation’. The drift-kinetic equation can be constructed for quite
complex magnetic configurations, in which case the V B and curvature drifts must
certainly appear in the guiding-center motion, but we will limit ourselves here to
a simple geometry, namely the ‘plane plasma slab’ introduced in in
which the magnetic field is essentially straight and uniform. We will also limit
ourselves to ‘electrostatic’ perturbations in which the equilibrium magnetic field
is undisturbed.

26.1 THE ‘LOW-3’ PLANE PLASMA SLAB

We consider an equilibrium in the form of a ‘plane plasma slab’ of the type
that was used in our analysis of drift waves in Chapter 21. Indeed, the main
application of our present analysis will be to look for kinetic modifications of
the same drift waves, as well as new types of drift wave that arise only in a
kinetic treatment. There is a strong, approximately uniform, straight magnetic
field, taken to be in the z direction. The equilibrium plasma is non-uniform in
one direction, taken to be the x direction, and it is assumed to be of infinite
extent in the other two directions, i.e. the y and z directions. In the fluid
treatment of Chapter 21, we described this non-uniformity by means of x-
dependent equilibrium densities and temperatures no(x) and Ty(x), respectively.
In the present ‘kinetic’ analysis, we must further describe the equilibrium by
means of an x-dependent guiding-center distribution fo(x, vy, v,), noting that,
for a fixed magnetic field in the z direction, the parallel velocity v, becomes
simply v,. This distribution may or may not be Maxwellian in regard to its
velocity-space dependences, but the Maxwellian case is obviously of particular
interest, and so we will assume it here, i.e.

m 32 muv?
Jo(x, v) = np(x) (m) exp (—ZTo(x)> (26.1)

where, of course, v = (v3 + v2)!/2, the magnitude of the total velocity. (It is
important to remind ourselves that all distribution functions employed in this
Chapter, including the equilibrium distribution fo(x, v1, v,), are guiding-center
distributions, not particle distributions, and so strictly the equilibrium distribution
should be written fg:(xgc, vy, v;). However, for simplicity of notation, we will
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omit the subscript ‘gc’ throughout this Chapter. Note that, in this case, the
particle distribution function is not symmetric in v,, reflecting the non-zero mean
drift (diamagnetic drift) in the y direction, while the guiding-center distribution is
symmetric in v,. Particle and guiding-center distributions with these properties
have already been encountered in our discussion of the diamagnetic drift in
Chapter 7)

We will consider wave-like perturbations of this equilibrium in which
components of the k-vector are allowed in the y and z directions, so that any
perturbation quantity ¥ can be written

Y(x, 1) = Y(x)exp(—iwt + ikyy + ik,z) (26.2)

where ¥ denotes the amplitude of the perturbed quantity .

We will limit ourselves, however, to the ‘electrostatic’ approximation, in
which perturbations of the magnetic field may be neglected. In some general
sense, this approximation will be valid for instabilities in low-8 plasmas, in
which the available plasma thermal energy is insufficient to disturb significantly
the magnetic field, which has much larger energy. More specifically, as we have
seen in , the electrostatic approximation applies to low-frequency
waves and instabilities, such as drift waves and ion acoustic waves, whose
frequencies (kyvg. and k,C;, respectively) are much less than the frequency of
the shear Alfvén wave (~ k;us). The electrostatic approximation implies that
the perturbed electric field is derivable from a scalar potential ¢, i.e.

=-V¢. (26.3)

26.2 DERIVATION OF THE DRIFT-KINETIC EQUATION

Let us begin by deriving the so-called ‘drift-kinetic equation’ for the electron
guiding-center distribution f.(X, vy, v,,t). The reason for beginning with the
electrons is that the assumptions underlying the guiding-center description,
namely that the Larmor gyration frequency is very large and the Larmor radius
very small compared with macroscopic time- and length-scales, respectively, are
better satisfied for electrons than for ions. In particular, we will find it necessary
to include some second-order corrections to the first-order guiding-center drifts,
e.g. the polarization drift, in treating the ions.

To derive the drift-kinetic equation, we follow the approach used in
to obtain the Vlasov equation. The total number of electron guiding-
centers in a volume V of six-dimensional phase space is given by

Ne = f fedPvd®x = / f.dv. (26.4)
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(In a sense, for guiding-centers, phase space has only five dimensions, since the
guiding-center velocities are completely defined by the two ‘cylindrical’ velocity
coordinates v; and v, (equivalent to r and z in standard cylindrical coordinates
in physical space), so that d>v = 2wv,dv,dv,. In the ensuing analysis, the
volume element d*v in velocity space should be understood to mean the thin
annular ring of volume 27 v, dv,dv,.) Conservation of the number of guiding
centers demands that the total time derivative of N must vanish, i.e.

dN. afe

0= & =f~dV+fo-dS (26.5)

where U is a ‘six-dimensional’ velocity, components (X, v), which describes the
motion of the phase-space surface that bounds the volume V. Applying the
divergence theorem to equation (26.5), we obtain

a
0= f ( LR (er)) av (26.6)
and since this must apply to every volume element dV, we can write simply
3
0= 1v. v
a . .
= % + Vi xf)+ Vv (Vfe)
ofe 1 :
= ETy + V. (xfe)+ ——(U.Lv_Lfe) +— a0 (vzfe)- (26.7)
Z

Here, in the second form, we have cxpresscd the six-dimensional divergence in
terms of its three-dimensional components and, in the third form, we have noted
that the velocity-space coordinates applicable to the guiding-center description
are the ‘cylindrical’ coordinates v; and v,.

In the low-8 ‘plane plasma slab’ equilibrium, equation (26.7) simplifies
dramatically. The magnetic field B, is straight and essentially uniform; the only
guiding-center drift that enters is the E x B drift. (The polarization drift is small
for electrons.) Thus the guiding-center motion is described by

X=vVg+uv,2Z (26.8)
where vg = E x B/ B2, and 2 is a unit vector in the z direction. Moreover,
since in the electrostatic limit the E field is derivable from a scalar potential, as

given by equation (26.3), and B, is essentially uniform, the E x B drift produces
incompressible flow, i.e. :

0 (E 0 (E
R =V, - = | =X X
VovE=Vicve ax(&) ay(Bz)

1 3% 1 8%
= —— =0. 26.9
B, 0x0y *5 B, 9xdy ( )
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Moreover, the constancy of the magnetic moment mv? /2B in a uniform field
B, implies that
vy =0. (26.10)

Finally, the acceleration of electron guiding-centers along the magnetic field will
be determined by the electric field, i.e.

b, = —%Ez. (26.11)

Substituting equations (26.8), (26.9), (26.10) and (26.11) into equation (26.7),
we obtain our simplified form for the drift-kinetic equation:

df. ExB afe e _ 0fe

— Y -— ——FE,— =0. 26.12

ot + B2 Lfet vz 9z m ‘dv, ¢ )
Here we have identified the local electron density with the density of guiding
centers because of the very small electron Larmor radius. Once this equation is
solved, the electron density n. can be obtained by integrating over all velocities,
ie.

e = f fod®v =27 f fevidvydu,. (26.13)

We could write down a similar drift-kinetic equation for the ions. Indeed,
the equation would be exactly the same as equation (26.12), with ¢ — —e and
m — M. However, it is usually necessary to include second-order guiding-
center drifts for the ions, i.e. the polarization drift which has been neglected in
equation (26.12), and it is sometimes necessary to include other second-order
effects, such as the corrections to the E x B drift that arise from taking the ‘finite
size’ of the ion Larmor orbit into account. For present purposes, however, it is
possible to circumvent these difficulties by supposing that the ions are ‘cold’, i.e.
by limiting ourselves to the case where 7} « T.. (We had a similar limitation
on our fluid analysis of drift waves in Chapter 21.) Physically, the assumption
T, « T, suppresses effects due to the finite size of the ion Larmor orbits, while
retaining effects due to the plasma dielectric constant, &, which arises from the
ion polarization drift but does not require finite ion temperature. Furthermore,
if the ion thermal velocities are negligible, then a kinetic description involving
the distribution function f; is unnecessary. Rather, it is sufficient to treat the
ions as a ‘cold fluid’, obeying a continuity equation

on;
a—'; +V.(u) =0 (26.14)

in which the velocity perpendicular to the magnetic field, u,, is simply the sum
of the E x B and polarization drifts

ExB ME,

37 + YR (26.15)

u =
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The first part of this velocity, i.e. the E x B drift, will be divergence-free in the
‘electrostatic’ case, as indicated in equation (26.9), but the second part, i.e. the
polarization drift, will have a non-zero divergence.

The velocity along the field, u,, is determined from the accelerating parallel
electric field

M du: _ eE (26.16)
d ~ 7 '

Equations (26.14)—(26.16) will suffice to determine the ion density n; in terms
of the electric field E. At this point, then, we have equations for obtaining the
electron and ion densities in terms of a single scalar variable, depending only on
the spatial coordinates, namely the electric potential ¢ from which E is derived,
as given by equation (26.3).

When the electron and ion densities, n. and n;, have both been obtained,
they are to be substituted into the Poisson equation

€oV2p = —e(n; — ne) (26.17)

from which the self-consistent electric potential ¢ can, in principle, be
determined. When kAp « 1 and w < wp, as is usually the case for phenomena
described by the drift-kinetic equation (given its requirements on w and k for
applicability), it is a satisfactory approximation to replace the Poisson equation
by the quasi-neutrality condition, namely

n; & ne. (26.18)

Even this approximation, however, leaves a highly nonlinear equation to be
solved for ¢. For mathematical tractability, we limit ourselves here to a
linearized treatment of small amplitude perturbations, for which the electric
field E and the perturbations that it produces in the distribution function are
both assumed to be infinitesimally smail.

26.3 ‘COLLISIONLESS’ DRIFT WAVES

As an example of the use of the electron drift-kinetic equation to treat small-
amplitude waves (and instabilities), we will consider the so-called ‘collisionless’
drift waves. These are, in a sense, the ‘kinetic versions’ of the resistive
drift waves and instabilities (in the ‘electrostatic’ approximation) discussed in
. Here, kinetic effects, rather than resistivity, provide the dissipation
needed to release the energy that is available to make drift waves unstable.

We have already described the equilibrium configuration to be considered,
namely the ‘plane plasma slab’, with an assumed Maxwellian equilibrium
electron distribution fraction fq, as given in equation (26.1). For an initial case
to consider, we will suppose that there is a density gradient, but no temperature
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gradient, i.e. dTeo/dx = 0. Thus, differentiating equation (26.1) with respect to

x, we have
O _ foodn

dx ne dx

(26.19)

There is no electric field in the equilibrium.

We now proceed to linearize the electron drift-kinetic equation,
equation (26.12), about this equilibrium, denoting the perturbation in the
distribution function f;;. (The suffix ‘1’ can be dropped from the electric field
E, which is zero in the equilibrium.) All perturbation quantities, including both
fe1 and E, can be expressed in the wave-like form given in equation (26.2). The
linearized drift-kinetic equation then becomes

E, 3 b
—i(w = ko) for + 5 foo _ ¢ p e
B, 9x m " v,

=0. (26.20)

Writing Ey = —ik,¢ and E, = —ik,¢, using equation (26.19) for df./9x, and
noting that 3feo/dv, = —(v;/v?,) feo, Where v = (Teo/m)"/? is the electron
thermal velocity, equation (26.20) can be solved for f.;. We obtain

k yUde — kyv; edfeo
fel =
w—kyv, Teo
_ e (1 _ M@.)

Ty w — kv,

(26.21)

where we have again defined an electron ‘diamagnetic drift’, vge, given by

TeO dneo
neoeB,o dx

Vge = — (26.22)
as in Chapter 21]

The electron density perturbation is obtained by integrating equation (26.21)
over all velocities, giving

3
et = "e°e¢ e"’(w k, vee) / feod'v (26.23)

— kv,

The first term on the right-hand side of equation (26.23) reflects the tendency of
the electrons to relax toward a Boltzmann distribution, n. ~ ney exp(ed/ Tep),
along the magnetic field. In the second term on the right-hand side, the
integrations over the perpendicular velocity components are trivial, i.e.

fe0d3v _ fw Fep(v,)du,

26.24
w — kv, -0 @ — kv, ( )
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where Fep(v,) is now the ‘one-dimensional’ Maxwellian distribution

172 2
m mv
F, = ——=*1. .
e0(vz) neo<2nTe0) CXp( 2Te0> (26.25)

The most interesting case to consider is where

© < k Ve (26.26)

which minimizes electron Landau damping of ion acoustic waves (sce
| and implies that the typical (i.e. thermal) electron streams along
the magnetic field with a speed much faster than the phase velocity with which
the wave itself moves along the field. Since, as we have already seen in
Chapter 21} the phase velocity of drift waves along the magnetic field tends to
be of order the ion acoustic, or ‘sound’, speed Cs ~ (T,/M)'/2, this assumption
that the electrons stream at a much faster speed will generally be valid, since
Ue/Cs ~ (M/m)!/2 > 1. In this case, assuming  ~ kyvge, a rough estimation
of the magnitude of the second term on the right-hand side of equation (26.23)
shows it to be much smaller than the first term on the right-hand side, by a
factor of about @/k;v;.. Examining equation (26.23), however, we observe that
the integral in the second term on the right-hand side is singular, the integrand
becoming infinite at v; = w/k,. Fortunately, the analysis of Landau has provided
us with a prescription of how to treat singular integrals such as this. Assuming
that we will indeed find a wave with an approximately real frequency w, we
should evaluate the singular integral as if w had a small positive imaginary part.
( If, in fact, we find an instability, i.e. an w value that actually does have a
positive imaginary part, the difficulty would not have arisen in the first place.
Indeed, we saw in Chapter 24 that Landau’s detailed analysis of time behavior

A 1m (vz)

Re (v;)

Figure 26.1. Contour of integration in the v,-plane for evaluating the integral in
equation (26.24).
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is unnecessary in the case of an unstable mode, which can be a single pure
eigenmode with complex frequency w with a positive imaginary part.)

Thus, according to Landau’s prescription, the integration over v, in
equation (26.24) should be taken along a contour in the v,-plane that lies
essentially along the real axis, but is deformed slightly so that it passes below
the pole at v, = w/k,, as shown in (This assumes positive k,; the
contour passes above the pole in the case of negative k,. Both cases correspond
to Im(w) > 0.) In the limit @ <« kv, the contribution from the small
semicircular path around the pole actually gives the dominant contribution to
the integral, i.e. larger than the contribution from the rest of the real axis. The
contribution from the pole (i.e. wi times the residue) is evaluated as follows:

Res [~ RO TTpy (2)
—e Wk, k| k,
/N2 ne w? )
=-i{=) —ex
(2) TATS p( A2,

N2 ngg
~—-il— . 26.27
i(3) alvne (26.27)

The contribution from the rest of the real axis (i.e. the principal value of the
integral) may be estimated as follows:

F ® 2wF,
o f Feo(w)dv: _ o f Z)‘;)—e—(’@dvz ~0 (”°°“’) (26.28)
0

1292 2.2
o O — kv,_ kZv? k2vi,

where, in the first step here, we have used the fact that Fi(v,) is symmetric
in v,, so that the contributions from positive and negative values of v, may be
combined. The contribution from the pole, given in equation (26.27), is seen
to be larger than the principal-value contribution, given in equation (26.28), by
a factor of about k,v;./w. Moreover, when inserted into equation (26.23), the
contribution given in equation (26.28) is seen to be much smaller, by a factor of
about w?/ k2vt .» than the first term on the right in equation (26.23). Accordingly,
we neglect the principal-value contribution given in equation (26.28).

Substituting equation (26.27) into equation (26.24), which is then used in
equation (26.23), the electron density perturbation becomes

neped 172 ) — kyvge
ney = =1 [1+ ( 2) ——Ikz!vt,e } (26.29)

Let us now calculate the ion density perturbation, using linearized versions
of equations (26.14)—-(26.16). The linearization of equation (26.14) in the
presence of a density gradient, using equation (26.15) for the perpendicular
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velocity component u,, gives

E, dn ME
—1wn|+——'9—1wnovi ( =

B d ) + ikyniou, = 0. (26.30)

zO
Here, in the term arising from the polarization drift, we have assumed that the
gradient scale-length of perturbation quantities is much shorter than the scale-
length of the equilibrium density variation, so that n;y may be taken outside of
the divergence operator. (If we were to compare the orders-of-magnitude of
the second and third terms in equation (26.30) for a drift wave with frequency
w ~ kyvge, where v, is the electron diamagnetic drift speed, we would find that
the thll‘d term is smaller by a factor of order k2 C? /wm, which is formally of
second order the ratio of the ion Larmor radius to the perpendicular wavelength,
since C,/w,; is of order the ion Larmor radius, although evaluated at the electron
temperature. Indeed a term arising from the polarization drift should be expected
to be of this order. However, we retain this term in order to treat short
perpendicular wavelengths, as will be seen below.) Equation (26.16) gives
simply

—iwMu, = eE,. (26.31)

Using E, = —ik,¢ and E; = —ik,¢ to express the components of the
electric field perturbation in terms of the first-order scalar potential ¢, we can
combine equations (26.30) and (26.31) to obtain a final result for the ion density
perturbation, namely

kyp dnig L nioek2¢ B niok3 M¢

njp =

wB,y dx Mw? eB%,
nioep (kT dmo  kTo kiMTy
Teo nigeByw dx = Mw? 2B
ni0e¢ kyvde k2C2
—k%r 26.32
oof (B B0 i 2632

Here, we have introduced the equilibrium electron temperature, Ty, in order to
express our result in terms of familiar quantities such as the electron diamagnetic
drift vge, given in equation (26.22), the sound speed C; = (To/M)!/?, and the
ion Larmor radius evaluated with the electron temperature, rpy = Cs/wg =
(MTw)'?/eB,o. We have also made use of the charge neutrality of the
equilibrium, i.e. njyp = ne. In the last term on the right-hand side of
equation (26.32), which arises from the divergence of the polarization drift,
we have written

V2=—kl =— (k2 +k%) (26.33)
invoking the ‘WKB approximation’ in which the perturbation is assumed to
vary more rapidly in the x direction than does the equilibrium, so that any
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perturbation quantity ¥ (x) can be approximated as having the wave-like form,
¥ exp(i [* kydx).

The term in k2 rZ; in equation (26.32) arises from the polarization drift and
is formally of second order in the Larmor radius, in the sense noted above.
However, the term becomes of order unity for short perpendicular wavelengths,
i.e. those of order r . Since ris is defined using the electron temperature, even
the case k r s ~ 1 does not violate our assumption that k r;; < 1, since we
have from the outset chosen to limit our analysis to the case T; « T.. Although
our restricted analysis will prove sufficient to identify most of the important
classes of drift waves, the theory becomes more complicated in the case where
kiry; is not so restricted, and in particular in the case kyr; ~ 1 (see, for
example, N A Krall and A W Trivelpiece (1986 Principles of Plasma Physics
San Francisco, CA: San Francisco Press) and T H Stix (1992 Waves in Plasmas
New York: American Institute of Physics)).

Employing the quasi-neutrality approximation, ne; = nj, and using
equations (26.29) and (26.32) for ne; and n;;, respectively, we obtain our final

F o
electron
N branch ,

Y kde e yal
re

ion

4« branch

Figure 26.2. Electron and ion branches of the collisionless drift wave. The electron
branch is unstable if @ < k,vg, i.e. in the region shown. Both branches approach
asymptotes w = £k,C;.
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dispersion relation for collisionless drift waves with 7} « T;, namely

22
(1 +K2rk) — kyvee — Zws

_ (T 112 w(w — kyvge)
= 1( ) DO = HyVde) (26.34)

2 Ik, Ve

Let us examine this dispersion relation in some detail. First, neglecting
the imaginary term on the right-hand side and solving the resulting quadratic
equation for w, we find that there are two ‘branches’ of the dispersion relation,
an ‘electron branch’ on which the frequency @ has the same sign as k,vge, and
an ‘ion branch’ on which the frequency has the opposite sign. The two branches
of the dispersion relation are shown in [Figure 26.2, where we have taken k;vg.
to be positive, so that the frequency w on the electron branch is also positive.
(As was noted in the discussion of resistive drift waves in Ehapter 21{ the ion
branch of the drift wave shown in Figure 26.2 violates the convention introduced
in that real frequencies w are taken to be positive. If we are interested
in this branch, we could satisfy the convention by simply reversing the sign of
ky.)

Problem 26.1: Return to the figure that you drew in Problem 21.2, and
add the plot of w/(kyv4) versus k,Cs/(kyve) Obtained by setting the right-
hand side of equation (26.34) to zero, for the case k ri; = 0.3.

In the limit where ks < 1 and k,Cs < ky Vg, the electron branch has
simply
w = kyVge (26.35)

and it is this mode that is usually called the ‘drift wave’, or sometimes the
‘electron drift wave’. Including the other two terms on the left-hand side of
equation (26.34) as small corrections, we obtain a more accurate dispersion
relation for the electron drift wave, namely

k2C?
o = kyvge(l — K3 rd) + 2. (26.36)

ky Ude
Because of the factor (w — kyv4.) appearing in the imaginary term on the right-
hand side of equation (26.34), these correction terms are needed to provide a
perturbative estimate for the non-zero imaginary part of the complex frequency
w. Letting @ — w + iy and equating the imaginary parts on the two sides of
equation (26.34), assuming that ki, and k,C/k,vg. are small but non-zero

quantities, we obtain

w12 kjv} k2C2
r=(3) 2= (kir,ﬁs ~5= (26.37)

2 [kzlvee yVde
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We see that the ‘collisionless’ electron drift wave is unstable only if k2 r, >
k2C2/k2v},, implying w values that are less than kyvg. (see equation (26.36)).
The region of instability is indicated on Since vge K Cs, we
see that instability tends to arise only in situations where k, « k, and for
perpendicular wavelengths that are at most a few times longer than the ion
Larmor radius evaluated at the electron temperature. In the limit k, — 0, modes
with smaller values of k; will be unstable, but at some point our assumption
that the perpendicular wavelength is much smaller than the scale-length of the
equilibrium density gradient will be violated; the limit k, — O also implies an
extremely large plasma scale-length along the magnetic field.

The physical process that gives rise to instability is clearly inverse Landau
damping by electrons, i.e. the electrons in resonance with the parallel phase
velocity w/k, become destabilizing. We have already encountered this type
of instability mechanism in , but only in cases where velocity
distributions departed significantly from the Maxwellian (e.g. the ‘bump-on-
the-tail’ distribution). Here, we have found a case of inverse Landau damping
for a Maxwellian distribution, but where there is a non-zero density gradient.
Examination of equation (26.34) shows that the essential feature that has allowed
the interaction between the wave and resonant electrons to be destabilizing is
that the wave frequency w is slightly less than the diamagnetic frequency, k,vge.

From an energy viewpoint, the resonant interaction between the wave and
the low-v, electrons allows the release of some of the energy that is available
through expansion of the spatially non-uniform plasma in the x direction.
The low-v, electrons drift outwards and inwards in the first-order fluctuating
electric drifts, E,/B,; by analogy with the cases considered in Chapter 25, the
principal nonlinear effect of this type of drift wave will be a flattening of the
density gradient in physical space, rather than velocity-space flattening. That
this flattening of the density gradient releases net energy to the wave can be
seen as follows. Suppose that w, k, and vg4. are all positive, implying that
dneo/dx < O (see equation (26.22)); if k, is also positive, the wave will be
resonant with positive-v, electrons. The motion of the resonant electrons in
the fluctuating electric fields is given by v, = E,/B and dv,/dt = —eE,/m.
Since Ey/E, = ky/k, > 0, we see that v, and dv,/dt are exactly 180° out-
of-phase, i.e. dv,/dt is negative when v, is positive and vice versa. Although
resonant electrons drift in both the positive-x and negative-x directions in the
fluctuating field, there will be a preponderance of electrons drifting in the
positive-x direction because dne/dx < 0. Thus, on balance, the resonant
electrons will lose parallel energy (i.e. the net dv,/dt is negative for positive-v,
electrons) as a result of the flattening of the density gradient. This is the energy
that becomes available to drive the unstable wave.

It is interesting to compare this collisionless drift instability with the
resistive drift instability derived in . In the electrostatic limit, the
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resistive drift instability was found to have frequency and growth rate given by
equation (21.51). We see that the frequencies of the two modes are essentially
the same, namely @ = kyvg, and the growth rates (where the first term in the
parenthesis in equation (26.37) is assumed to dominate over the second term)
are of similar form, with the growth rate of the resistive mode being larger by
a factor vei/|k;|vee. Since vge/vei is the electron collisional mean-free path, we
see that the growth rate of the resistive mode is the larger if the mean-free path
is shorter than the parallel wavelength. This is what might have been expected,
since in this case the electron motion along the magnetic field in response to the
perturbed electric field will be disrupted by collisions before the electron can
remain in resonance with the wave for a full wavelength.

The other branch of the dispersion relation, equation (26.34), i.e. the ‘ion
branch’ shown in has a frequency w opposite in sign to kyvge.
Again letting @ — w + iy and equating the imaginary parts on the two sides
of equation (26.34), we see immediately that this branch has y < 0, i.e. a
damping decrement. Within the limitations of the present analysis (especially
the assumption of cold ions), this branch is stable and is thus of less interest.

Problem 26.2 Find the correction to the drift wave dispersion relation,
i.e. equation (26.34), that arises when the Poisson equation is used
rather than the quasi-neutrality approximation. In what regimes of plasma
parameters would this correction be important?

264 EFFECT OF AN ELECTRON TEMPERATURE GRADIENT

The preceding analysis was limited to the case where there is a density gradient,
but no electron temperature gradient. It is interesting to generalize our result to
the case where the equilibrium electron distribution function is still Maxwellian,
i.e. of the form given in equation (26.1), but where both the density, neo(x), and
the temperature, T.o(x), have significant variation in the x direction.

In this case, equation (26.19) must be replaced by a more complicated
expression '

Yo _ fadra _ fodlo (3_ v
3x  ne dx Ty dx \2 202

feo dneo (3 v? )
=——j1- —_— —_—— .
nep dx [ Te\ 2 202, (26.38)
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where

1 dT (1 dneg\™' _ V(InTy)
Teo dx (neo dx ) "~ V(Inne)
(Here, V simply means d/dx.) Equation (26.38) is obtained by differentiating
equation (26.1) with respect to x, which requires that both appearances of To(x)
in equation (26.1) be included in the differentiation.

The parameter 7. is a dimensionless quantity, typically of order unity, and
it is the ratio of the scale-length of the density variation to the scale-length of
the temperature variation. When equation (26.38) is used in equation (26.20),
the resulting expression for f; given in equation (26.21) must be modified,
becoming

2
fa = e¢feo - ! {a) — kyvge [1 — 7 (E v )]} £¢_feg. (26.40)

To -k, 2 2% Tw

Ne = (26.39)

The electron density perturbation is now

3 2
ny = eoed _eé [ Jodv [w — ky Ve [1 — . (3 _ 2”2 )“ (26.41)

Te T w — kv, 2 Le

The velocity-space integral in equation (26.41) is more complicated than that
in equation (26.23), in view of the additional velocity-dependence in the term
involving n.. Nonetheless, the integrations over the perpendicular velocity
components can still be carried out, noting that v? = vi + vz2 and that the
average of v2 /2 for a Maxwellian distribution is simply v?. We obtain

© 2
Ny = Neoed _ ﬁq eo(v;)dv, [w — ky e |:1 — e (l vy ):|}

T T Joo @ —kzvz 2 2vt2,e
(26.42)
where Fg(v,) is the ‘one-dimensional’ Maxwellian distribution given in
equation (26.25).

As before, we limit ourselves to the case w <« kv, wWhere the dominant
contribution to the integral in equation (26.42) comes from the pole at v, = w/k,.
Deforming the contour in the v,-phase so that it passes just below this pole, as
shown in and evaluating the contribution from the pole as 7 times
the residue, we obtain

Rey =

Neged L (ﬂ)1/2-exp(—w2/2kzzvfe)
Teo "\2 Ik Ve

1 w?
X (l)"‘kyvde 1'—7]3 E—W
z “te

N Te0tb [ (1)‘/2 @ — kyvge(1 — 1e/2)
Teo 2 |kzlvee

(26.43)
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where, in the second form, we have used w « k,v; . Equation (26.43) replaces
equation (26.29). We see that the only effect of the electron temperature gradient
is to modify the small imaginary term.

The ion density perturbation, n;;, is unaltered by the introduction of an
electron temperature gradient, and is still given by equation (26.32). Thus, the
dispersion relation obtained by setting n.; = ny; is the same as equation (26.34),
except for the modification of the imaginary term on the right-hand side:

12 wlw — kyvge(1 — 1e/2)]
Kz |vr e

k2C? n

1+ k2P —k —-Z—S:-'(—)

w( + lrLs) yvde ® 1 2

The additional term in . on the right-hand side of equation (26.44) produces

a qualitative change in the stability properties of the electron branch of the drift

wave for, considering the simplest limit where k ri <« 1 and k,Cs < kyvge,
the real part of the frequency is, as usual,

. (26.44)

w =~ kyvge (26.45)

but the imaginary part no longer vanishes when this lowest-order frequency is
used on the right-hand side of equation (26.44), giving a ‘growth rate’

o m\2 K
v~ —( 2) T (26.46)
For most cases, where the density and temperature gradients are in the same
direction, so that
V(InT,)
= =" >
V(lnne)

the value of y will be negative, implying that the effect of a temperature gradient
is to damp, rather than destabilize, the electron drift wave. Indeed, adding
the damping decrement given in equation (26.46) to the growth rate given in
equation (26.37), we see that the temperature gradient will stabilize all drift
waves with k272 < 7, i.e. all except the shortest wavelength modes (assuming
ne ~ 1). From an energy viewpoint, it is perhaps somewhat surprising that the
effect of the temperature gradient is stabilizing in this case, since the temperature
gradient adds another source of energy available through expansion of the
plasma. However, drift waves resonate only with low-v, electrons; in this region
of velocity space, the spatial gradient of the ‘one-dimensional’ Maxwellian
distribution function (at a fixed value of v,, much less than the thermal velocity)
has opposite contributions from density and temperature gradients.

On the other hand, situations could occur where the density and temperature
gradients are oppositely directed, i.e.

V(InT.)
=—-2=<
V(Inn,)

(26.47)

Ne

(26.48)

Ne
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In such cases, equation (26.46) shows that the electron drift wave is quite strongly
destabilized. Presumably, the effect of this instability in its nonlinear regime is
to produce some kind of ‘turbulent convection’ of particles and heat that tends
to reduce, or even eliminate, the oppositely directed density and temperature
gradients.

26,5 EFFECT OF AN ELECTRON CURRENT

Let us now consider another case of interest, namely where the Maxwellian
electron distribution is given a non-zero mean velocity, or ‘streaming speed’,
Uueo, along the magnetic field. In this case, the equilibrium distribution function,
replacing equation (26.1), takes the form

mv?:  m(v; — tep)?

32
Folx, V1, v,) = no(x) (57%—0) exp (— T ) (26.49)

To simplify the analysis, we will limit ourselves to the case where there is no
temperature gradient, i.e. Ty = constant. Although the ‘shifted Maxwellian’
electron distribution function given in equation (26.49) is representative of the
case where the plasma carries a net electrical current, i.e. the electrons have a
non-zero average streaming speed relative to the ions, it must be noted that if this
current is produced by a driving electric field, the electron distribution will have
a somewhat different form, to be obtained by balancing the electric force against
the collisional friction with the ions (see . Nonetheless, the analysis
using equation (26.49) is qualitatively representative of the real situation. (see
Problem 26.3).

Going back to the linearized drift-kinetic equation for electrons,
equation (26.20), we see that we must now write

dfe0/0v; = —[(v, — ueO)/ng,e]feO
so that equation (26.21) is replaced by

ky Vge — Kk (V; — Ug0) edfe0

fel =

w — kv, Teo
_ epfeo  w — kyvae — kilteo €@ feo (26.50)
Teo w — kzvz T ’ '

Proceeding as before, we find that the electron density perturbation becomes

need e Feo(vz)
— (0 — kyvge — k,u /
Teo TeO de eO) @ — kz v,

Rep =

v, (26.51)
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where Feo(v,) is again the ‘one-dimensional’ electron distribution, which is now

1/2 _ 2
> exp (-M> : (26.52)

Fep(v) = neo (

21 T 2Ty

As before, we consider only the case w <« kv, and we further assume
that uey <« ve, i.e. that the electron streaming speed is small compared
with the electron thermal velocity (an assumption that is not very restrictive
for many realistic conditions). The dominant contribution to the integral in
equation (26.51) again comes from the pole at v, = w/k,, which may, as
before, be evaluated as mi times the residue. We obtain

12 @0 — kyvge — k — kyeo)?
Mgy = neped [1 +i (z) w yUde zueOexp (_ (w 2Ue0) )]

T.o 2 k| vg.e 2k20v2,
nepe®  fTNV2 @ — kyvge — kzlep
~—T | - 26.53
To [ +i(3) e one (2633

Equation (26.53) replaces equation (26.29). We see that the only effect of the
electron streaming speed u.g is to modify the small imaginary term.

The ion density perturbation, n;;, is still given by equation (26.32), and
so the dispersion relation obtained by setting n.; = n; is the same as
equation (26.34), except for modification of the imaginary term on the right-
hand side:

k2c2 - (7[ )]/2 w(a) - kyvde - kzueO) (2654)

2.2 zs
—k - jl
i) =hve =g 2 klvee

As in the case of a temperature gradient, the modification of the imaginary term
on the right-hand side produces a qualitative change in the stability properties of
the electron drift wave. Again considering the simplest limit where ks < 1,
the real part of the frequency of the electron branch is given by

k2 2
w & kyvge + 2= (26.55)
kyvde

where we have also assumed that k,C; <« @ & k,vg., but have kept the first-
order correction in the small quantity kZZCS2 Jw?, while neglecting the correction
of order k2 rZ,. The imaginary part of equation (26.54) then gives a growth rate

T\ 1/2 kyvdekzueo - kZZCSZ
r=(3)

(26.56)
LA

We see from equation (26.56) that there is a range of k, values for which y > 0,
i.e. for which the wave is unstable. (It might seem that we have implicitly

Copyright © 1995 IOP Publishing Ltd.



Effect of an electron current 467

assumed that uey > 0, i.c. that the electrons are streaming in the positive direction
along the magnetic field. However this is not so, since the same instability would
arise for uey < 0, but would then have a negative k, value. More generally, if
we also abandon the convention that kyv4. is positive, instability will arise in
cases where k,u.o and k,v4e have the same sign.)

Problem 26.3 Expand the distribution function given in equation (26.49)
as a power series in uy keeping two terms in the expansion, i.e. the
zeroth-order and first-order terms in ue. For what range of values of
uqo Will this be valid? Next write down the distribution function that arises
from solving the Fokker—Planck equation in the Lorentz-gas approximation
when a driving electric field is present, i.e. equations (13.15) and (13.21).
In equation (13.21) for f.;, use equation (13.22) to substitute for E,
in terms of j, and then write j, = —neuy. Now compare these two
distributions, both of which have a Maxwellian zeroth-order term and a
correction of first-order in u.,o. How are these distributions similar? How
are they different? In which case will the current-driven drift waves be
more unstable, i.e. which has the larger value of 38 F,,/dv, at some fixed
value v, K v ?

It is appropriate at this point to ask whether we have found anything
different from the ion acoustic wave instability driven by a non-zero electron
streaming speed, which was derived in . The ion acoustic wave
was found to be unstable only in cases where the electron streaming speed
exceeded the ion thermal velocity. By contrast, within the limitations of the
present analysis, there is no such ‘threshold’ value of the electron streaming
speed which must be exceeded for the drift wave to be destabilized. Indeed,
provided that we are allowed to have any k, value, then we can certainly choose
a value sufficiently small that v ~ kyvee > k,Cs 2 k,v;. Here we have
introduced the ion thermal velocity, v,; = (Tjo/M)'/?, which is less than, or
comparable to, the sound speed, Cs = (Too/M)'/?, in all cases where Ty < Tep.
For these k, values, the approximations that led to equation (26.56) are valid, as
also is the neglect of ion Landau damping, which was initially a consequence
of our assumption that Tjp « T but is now seen to be valid more generally.
For any non-zero electron steaming speed u¢), we can certainly choose &, values
that are within the range of validity of equation (26.56) and that are also small
enough for the right-hand side of equation (26.56) to be positive. Thus, within
the limitations of the present analysis, the electron drift wave is unstable for
any non-zero streaming speed, however small. Nonetheless, the inclusion of an
electron temperature gradient (with n, > 0) introduces a stabilizing effect that
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modifies this conclusion, as would the introduction of a finite parallel length, by
setting a lower limit on the &, values.

Problem 26.4 Consider the electron drift wave in the case where there is
both an electron temperature gradient, described by an 7. value, and a
non-zero electron streaming speed, u.. Assuming kirﬁS « 1, show that
the growth rate of the electron drift wave is

7\ 172 kyVgek eo — k2CE — kfvge’?e
r=(3) |

2 Ik, vee

For positive values of n., show that the plasma is completely stable, in
the sense that there are no values of k, and k, for which y > 0, if

ne > 0.25u2)/C2.

It should be noted, finally, that the dispersion relation for the ion acoustic
wave can, of course, be obtained from equation (26.54) by going to the limit
w ~ k,Cs ~ kylieg 3> kyvge. In this limit, the diamagnetic drift frequency &, vg.
disappears, and we are left with two waves with o =~ +k,C;, one of which is
destabilized if |uegl > C;. This is, of course, exactly the same result as was
obtained in For frequencies much larger than the diamagnetic drift
frequency, the non-uniformity of the plasma does not enter in any significant
way. It should not be surprising that such cases can be treated adequately with
the Viasov equation for a uniform plasma and do not require the drift-kinetic
formulation.

26.6 THE ‘ION TEMPERATURE GRADIENT’ INSTABILITY

For the electron drift waves that have been considered so far in this Chapter, it
has been sufficient to treat the ions as a ‘cold fluid’: the drift-kinetic equation
was needed only for the electrons. This was justified by limiting ourselves to the
case T} « T, which implies both that the ion diamagnetic drift speed is much
less than the electron diamagnetic drift speed and that the ion thermal velocity,
vyj, is much less than the ion-sound speed, C,. It is interesting to consider
whether there are different types of drift waves (especially unstable waves) that
arise from Landau-like resonances between the wave and thermal motion of the
ions. In such cases, we will need to use the drift-kinetic equation for ions:

3fi ExB afi e E afi

oV, fbn, g o
ar T T Vit v Ty

0. (26.57)
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The use of the drift-kinetic equation in this form for the ions effectively neglects
the ion polarization drift (of second order in the ion Larmor radius), as well as
corrections of order k2 r2; to the ion E x B drift. However, the instability that we
will find in this Section can arise even in the case k r; < 1, so it is sufﬁcient
for present purposes to carry out the analysis neglecting all effects of order k2 r? irs.

Let us consider the case where the equilibrium distribution function for
ions is Maxwellian, i.e. as given by equation (26.1), and where both density
and temperature gradients are included, so that both njy and Tj are functions
of x. We consider electrostatic perturbations of this equilibrium by introducing
a small wave-like electric field, described by an electric potential ¢, exactly as
before, and we linearize equation (26.57) to obtain the perturbed distribution
function, f;, from which the ion density perturbation, n;, is obtained by
integrating over all velocities. The analysis is exactly analogous to that carried
out already for electrons in equations (26.20)—26.24) and (with the inclusion
of a temperature gradient) in equations (26.38)—(26.42). Indeed, the result
given in equation (26.42) can be taken over in its entirety (with straightforward
modifications for changing from electrons to ions), giving

i i d 1 2
ny = — niged e¢ Fo(v)dv, w— kyvdi 1= = - vzz .
Tio T)O oo @ — kv, 2 2y

(26.58)
Here, we have defined an ion diamagnetic drift
Tio dnig

= s 26.59
Vdi niOeBzo dx ( )

and a dimensionless measure of the ion temperature gradient

1 dT (1 dnio)_l V(InTjp)

=0 = . 26.60
g To dx (nio dx V{lnnip) ( )

We have also defined the ‘one-dimensional’ Maxwellian distribution

M \'? My?
Fo(vy) = njp <__2nT~0> exp (— 2T-;> . (26.61)
1 1

Since we are interested in effects associated with strong resonant interactions
between a wave and the ions, we must consider the case where w ~ k,v;, so
that the integral in equation (26.58) cannot be evaluated by any simple expansion
of the integrand.

For the electron density perturbation, we can use the results already
obtained, as given for example in equations (26.29) or (26.43). These
expressions have been obtained under the assumption that o <« k,v.e, but

Copyright © 1995 IOP Publishing Ltd.



470 The drift-kinetic equation and kinetic drift waves*

they have retained a small imaginary term of order w/|k,|v,.. For the case
w ~ kv ;, this assumption will be well satisfied, and the small imaginary term
will be of order (m/M)'/2. In fact, we will neglect this small imaginary term
now altogether, since we will find, at least in some cases, unstable ion drift waves
with growth rates that are as large as their frequencies. For such modes, terms
of order (m/M)'/? will produce only very small corrections. Thus, neglecting
the small imaginary terms in equations (26.29) and (26.43), we have simply

(26.62)

Physically, this describes a situation in which the electrons have relaxed
completely to a Boltzmann distribution, n. &~ neexp(e¢/Te), along the
magnetic field.

The dispersion relation is obtained, as usual, by setting n.; = n;j;. Using
equations (26.58) and (26.62), we obtain the dispersion relation

T,
1+ -2 = D(w) (26.63)
TeO

where

1 [®F i 2
D(w) = —/ Folwadv: | 4|11 -2 (26.64)
nio J_eo @ — kv, 2 vy

1
)

Our task now is to solve this dispersion relation for w, without making any
a priori assumptions about the relative magnitude of w and k, v, ;.

The Nyquist diagram technique, introduced in Chapter 24, ailows us to
determine whether the dispersion relation given by equations (26.63) and (26.64)
has any solutions corresponding to unstable modes, i.e. solutions with Im(w) >
0. To apply this technique, we must let w trace out a closed contour in the
complex w-plane that is composed of the real axis, going from —oo to +o0,
together with a semicircle at infinity in the upper half-plane, traced out in an
anti-clockwise sense. A contour of this type, which encloses on its left the entire
region with Im(w) > 0, is shown in b). In evaluating a singular
integral, such as the one in equation (26.64), the w-plane contour should be
taken to lie just above the real axis, rather than exactly on it, so that @ can
be considered to have an infinitesimal positive imaginary part. As w traces out
this closed contour, the function D(w) given in equation (26.64) will trace out
some closed contour in the complex D-plane, which we have called the ‘Nyquist
contour’. If the point D = | + Tip/ T falls in a region encircled by, and lying
to the left of, this contour, then the dispersion relation must have a root with
Im(w) > 0, i.e. an instability. In the contrary case where the area enclosed on
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the left of the Nyquist contour does not contain the point D = 1+ Tiy/ Ty, there
can be no unstable modes.

To apply this technique in the present case, we first evaluate D(w) for very
large values of |w|, i.e. for w lying at either of the two extremities of the real
axis or on the semicircle at infinity in the upper half*plane. Expanding

1 zl-{-kzvz

—_— +... (26.65)
w — kv,

and keeping only these two terms (but noting that the second term makes no
contribution because it is odd in v,), we obtain

ky Vdi

D(w) ~ 1 (26.66)

Thus the entire semicircle at infinity in the w-plane maps onto the point D =1 in
the D plane. To be specific on how the Nyquist contour passes through the point
D = 1, we must make some choice for the sign of k,vg. Since the electron and
ion diamagnetic velocities are of opposite sign, for consistency with
we choose kyvg < O, noting that such a choice can be made without loss
of generality, since the dispersion relation is invariant under simultaneous sign
changes for k,vqi, k, and Re(w). (Of course, making the choice k,vg < 0 means
that we must allow both positive and negative values for the solutions Re(w) of
the dispersion relation, thereby abandoning our usual convention that Re(w) > 0.
In any case, the Nyquist diagram technique for obtaining information on the roots
of a dispersion relation requires that both positive and negative values of Re(w)
be considered. If we chose to adhere to our convention that Re(w) > 0 always,
then we would construct the Nyquist diagram in terms of the variable Re(w)/k,,
rather than w, and this variable can take on both positive and negative values
depending on the sign of k,. There would, of course, be no difference in the
physical results obtained. We have chosen here to describe the Nyquist technique
in its standard form, in which Re(w) takes on both positive and negative values.)
For real values of w that are large and positive, equation (26.66) shows that the
value of D(w) slightly exceeds unity, whereas for large and negative w values,
D(w) is slightly less than unity. Thus, as w passes anti-clockwise around the
semicircle at infinity (i.e. going from 400 to —oc), the Nyquist contour passes

leftward through the point D = 1 (i.e. going from D values just greater than,
to values just less than, unity). The cases shown in all have this
property.

Next we evaluate D(w) on (or just above) the real axis in the w-plane. The

integral in equation (26.64) must be evaluated as the principal-value integral
together with wi times the residue at the singularity v, = w/k, (for the case
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Aim®) () Aim®) (o) ImD) (0)

A o AT
Re(D) Re(D) QK.) Re(D)

Figure 26.3. The Nyquist D-plane contour for the ion branch of the drift wave, in the
cases @) AQ—m) > 1, () 0 < A2 —m) <1 and (¢) m; > 2.

k, > 0, and —mi times the residue for the case k; < (). We obtain

o d 2
D(@) = —I—Pr] Fola)v: ) gy [1- 2 (1- %
nio —o W — kU, 2 v

1

(/)12
i [“""y”ﬂi [l‘—( & H
w?
X exp (— 2k22v3i) . (26.67)

For large || (i.e. for @ values approaching either —oo or 4-00), the imaginary
part of D(w) is extremely small, and its sign is the same as the sign of the
product nik,vg (determined by the sign of the term in w? in the imaginary part
of D). We will limit our analysis to the case 7; > 0, and we recall that we chose
kyvgi < O for consistency withm Thus, Im(D) < 0 for large |w|,
whlch tells us that the Nyquist contour in the vicinity of the pomt D=1 must
lie just below the real axis, again as shown in all three cases of

The Nyquist contour in the D plane can cross the real axis only if
there are values of w for which the imaginary part of D(w) vanishes. From
equation (26.67), we see that this will occur only if there are real roots w of the
quadratic equation

—~—'+1——'=o. (26.68)

Using the usual formula for the roots of a quadratic equation, the roots of
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equation (26.68) are given by

w 1

o = 3 El-A2-m)") (26.69)
y Udi

where
A = nik2v3/ k20l (26.70)

In order to determine the shape of the Nyquist curve, it is now important to
determine the value of Re(D) where the Nyquist contour crosses the real axis
in the D plane. (Of course, if there are no real roots of equation (26.68), the
contour does not cross the real axis anywhere.) This can be done by substituting
into the principal-value integral in equation (26.67) the value of w at which
the imaginary part vanishes. The simplest approach algebraically is to rearrange
equation (26.68) as an equation for w in terms of w?, and substitute this form into
the principal-value integral in equation (26.67), noting the various cancellations
which then occur. We obtain

b4
22 2
kz vt,i U[

Re(D) = iprfoo FiO(vz)dUz mkyvdi w? 1)_2
nio Jow w—ku, 2 2

1

1 nikyvgi /°°
= — ———DP F, k.v,)d
o 2k12vfi r o io(v) (@ + kzv;)dy,
_ wniky Vg _ A w
T2k 2 kyug

z Vi

=1{1x01-AQ-m)" 26.71)

where, in the final form, we have substituted for @ from equation (26.69). By
comparing equation (26.71) with equation (26.69), we see that the values of
Re(D) at crossings of the real-D axis are closely related to the corresponding
values of w at these points.

There are three cases to be considered. The first is where A2 — ;) > 1,
in which case equation (26.69) shows that there are no real roots of the
quadratic equation, equation (26.68), and therefore no crossings of the real-
D axis by the Nyquist contour: the Nyquist contour must be of the form
itlustrated in Eigure 26.3ka). Clearly, the area to the left of the Nyquist contour
does not contain the point D = 1 + Tj/ T, which is the dispersion relation,
equation (26.63), and so there can be no unstable mode. The second case
is where 0 < A(2 — 1)) < 1, in which case there are two real roots of
the quadratic equation, equation (26.68), given in equation (26.69), both of
which have w/kyvgi > 0. However, equation (26.71) shows that the values of
Re(D) at these w values are both less than unity, with the more negative root w
corresponding to the larger value of Re(D), remembering that we have chosen
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kyvgi < 0. For this case, the Nyquist contour must cross the real axis twice to
the left of the point D = 1 and must be of the form illustrated in(b).
Again we see that the area encircled to the left of the Nyquist contour does not
contain the point D = 1+ T,/ Txo, and so again there can be no unstable mode.

The third case is where 7; > 2, in which case equation (26.69) shows that
there are two real roots with opposite signs for w/ky,vg. Equation (26.71) shows
that the root with a positive value of w/k,vg (negative w value) has Re(D) > 1,
whereas the root with a negative value of w/kyvg (positive w value) has Re(D)
< 0. For this case, the Nyquist contour (as  travels along the real axis from
—00 to +00) crosses the real axis in the D-plane first to the right of the point D
= 1 and subsequently crosses it again to the left of the origin: the contour must
be of the form illustrated in Figure 26.3(c). This contour encloses to its left an
area that includes the point D = 1 + Tjp/ Ty if the first (i.e. rightmost) crossing
of the real axis occurs to the right of this point. Using equation (26.71) for the
value of D at each crossing of the real axis, this occurs when

T;
Hi+0-AQ-m1"?) > 1+ T—° (26.72)
e0
which is therefore the condition that an unstable mode exists. By some
straightforward manipulation, inequality (26.72) can be expressed as a condition
on n;, namely

A TeO TeO

For a plane plasma slab that is infinite in both y and z directions, it is
possible to choose the wave-vector components k, and k, at will, so that the
parameter A given in equation (26.70) takes on all values. In particular, choosing
sufficiently small values of the ratio k,/k, that the parameter A greatly exceeds
unity, the condition for instability will approach a limiting case

4T, T
m>24 2 To (1 + _£>_ (26.73)

n > 2. (26.74)

However, since the diamagnetic drift speed is generally much less than the ion
thermal speed, specifically vg/ve; ~ rLi/Ly < 1, where ry; is the ion Larmor
radius and L, is the scale-length of the density gradient perpendicular to the
magnetic field, the ratio k./k, must be exceedingly small to give A > 1. In
cases where arbitrarily small k, values are not allowed, such as a torus which is
approximated as a finite-length cylinder with ‘periodic boundary conditions’, the
condition for instability could be significantly more demanding than that given
by equation (26.74). The addition of ‘magnetic shear’, i.e. where a small field
By(x) is added to the main field B, also serves effectively to impose a lower
limit on the component of the k-vector along the magnetic field. In this case also,
stability is improved. On the other had, inclusion of shorter wavelength modes,
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specifically these with kjr; ~ 1, is found to lower the instability threshold for
n; to values close to unity. The effect of V B and curvature drifts in geometries
other than the plane slab is also found to be destabilizing.

This ‘ion temperature gradient’ instability poses a significant threat
to confinement in high-temperature fusion plasmas—for which the present
‘collisionless’ approximation is applicable. As we saw in neutral
atoms will not penetrate far into a fusion-reactor plasma. There will thus be no
source of deuterium—tritium ‘fuel’, except at the very edge of the plasma. Thus,
unless turbulent flows drive net inward convection, the process of turbulent
internal diffusion will establish an equilibrium density that is approximately
uniform over almost all of the plasma, falling to zero only in a narrow edge
layer. The density gradient will therefore be very small in the main part of
the plasma (with gradient scale-length much greater than the plasma linear
dimension). Thermal conduction will carry the heat that is generated from the
charged particles produced by the fusion reactions from the central part of the
plasma (where the temperature will be highest) to the edge of the plasma (where
the temperature will be lowest). Thus the temperature gradient will be substantial
in the main part of the plasma (with gradient scale-length of order the plasma
linear dimension). It follows from these general considerations that n; values
may be quite large in the main part of a fusion-reactor plasma, implying that ion
temperature gradient instabilities might arise and cause turbulence and perhaps
a highly enhanced rate of heat conduction. Indeed this has been a longstanding
concern in fusion research. Fortunately, however, effects not considered in
the present simple analysis tend to stabilize the ion temperature gradient mode.
Moreover, even when the instability does arise, the enhanced thermal conduction
caused by it may not exceed the ‘anomalous’ transport produced by a variety
of drift-wave-like and other small-scale instabilities and turbulent processes—
all of which are predicted to still allow an acceptable overall level of plasma
confinement for fusion power production.

There is an extensive literature on low-frequency drift waves and other
related small-scale instabilities in magnetically confined plasmas. A review
article, which describes all of the basic modes and their linear growth rates and
gives simple estimates of the level of turbulent transport to be expected from
them, has been written by two of the most prolific contributors to this field,
B B Kadomtsev and O P Pogutse (1972 Review of Plasma Physics 5 edited by
M A Leontovich, pp 249400, New York: Consultants Bureau). More recently,
this field has been developed to include linear calculations in very realistic
plasma geometries, as distinct from the ‘plane plasma slab’ considered here,
and to nonlinear calculations of the plasma turbulence produced by drift-wave-
like instabilities. As might be expected, both of these developments involve
extensive numerical computation.

Over the years, many authors have attempted to explain experimental results
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on anomalous transport in tokamaks using theoretical modes of drift wave
turbulence, generally with only limited success. However, it is encouraging
to note that, as the field becomes more sophisticated in its use of realistic
geometries and advanced computational techniques, the level of agreement with
experimental data appears to be improving markedly.. The development of
computational techniques for following the kinetics of gyrating ions into regimes
of nonlinear perturbations has been responsible for some of the most notable
recent advances.
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Appendix A

Physical quantities and their SI units

ST unit Conversion formula

Quantity Symbol Name Abbrev. to Gaussian units
Length L,a,r,R meter m 1 m=10*cm
Time t second s
Velocity u,v meter per second m s Ims!'=102cms!
Mass m,M kilogram kg lkg=10°¢
Mass density p kilogram per kgm3 1kgm

cubic meter =10"3 g cm™3
Force F newton N 1 N = 10° dyne
Energy w joule J 17=10 erg
Power P watt (J s~1) W 1 W=10" erg s~!
Pressure )4 pascal Pa 1 Pa = 10 dyne cm™2
Temperature T kelvin K leV=116x10*K
Charge q, coulomb C 1C=3x10° esu
Charge density o coulomb per Cm3 1Cm>

cubic meter =3 x 10? esu cm™>
Surface charge o coulomb per Cm? 1Cm™?

density square meter =3 x 10° esu cm™2

Current 1 ampere (C s7!) A 1A=3x10°esu
Current density j ampere per Am? 1Am>?

square meter =3 x 10° esu cm™2
Electric field E volt per meter Vm™!  1Vm!=10"%/3esu
Electric potential ~ V, volt v 1V=10"%/3 esu
Magnetic field B tesla T 1T = 10* gauss
Magnetic flux ¢ weber (T m?) Wb 1 Wb = 10® maxwell
Electric resistance R ohm Q 1Q=10""/9)scm!
Resistivity n ohm-meter Qm 1Qm=(107°/9)s
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Appendix B

Equations in the SI system

Maxwell’s equations (SI units):
V:B=0
V «(¢E) =0 (Poisson’s equation)
V xE = —-9B/at (Faraday’s law)

V x B = ugj+ (1/¢H)3E/dt (Ampere’s law)

Lorentz force on charge g (SI units):

F=gE+vxB)

478
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Appendix C

Physical constants

Physical constant Symbol  Value in SI units
Elementary charge e 1.60 x 10-1°C
Electron mass m 9.11 x 1073 kg
Proton mass M 1.67 x 107?77 kg
Boltzmann constant* k 1.38 x 103 JK!
1.60 x 10719 J ev~!
Speed of light in vacuum ¢ 3.00 x 108 ms™!
Planck constant (h/27) ) 1.05 x 107375
Permittivity of free space ¢ 885x 10°2Cm!v!
Permeability of free space g 47 x 1077 =126 x 107 TmA"!

* Throughout this book, for simplicity of notation, the plasma temperature T is always
in ‘energy units’, i.e. joules, so that the Boltzmann constant k never appears. The two
values of k given here will allow a temperature in kelvin (K) or electron-volts (eV) to be
converted into joules (J). Note that the quantities 7 /e and W/e, where W is an energy,
have units of volts. Thus, for example, the value of T /e for a 10eV temperature is 10V,

479
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Appendix D

Useful vector formulae

D.1 VECTOR IDENTITIES

A-BxC)=(AxB)-C

AxBxC=(A-CB-(A-BC
V.- WA =¢(V-A)+A-Vy

V x (YA) = ¢(V xA)+ V¢ x A

V- AxB)=B-VxA—-A-VxB
Vx(AXxB)=A(V:B)—B(V-A)+B:-V)A-(A-V)B
Ax(VxB)=(VB)-A—(A:-V)B
V x(V xA)=V(V.A) - VA

D.2 MATRIX NOTATION

Note that we employ the Einstein convention, in which repeated suffices are to
be summed over the values 1, 2, 3.

D.2.1 Kronecker deltas

1 i=j
% {0. i #

D.2.2 Levi-Civita symbols

—1 i # j # k anti — cyclic permutation of 1,2, 3

1 i # j # k cyclic permutation of 1,2,3
€ijk =
O i=jorj=kori=k
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€ijk€itm = 8j16km — 8jmbul

A-B=A;B;
(A X B)i = GijkAjBk
a
V) =2
Xi
0A4;
VA= —
8x¢
0A;
(VxA)= Gijka—xj
dB;
VB),; = —L
(VB);; ox;
A-Vy= Ai%
3x,~
dB;

A-VB),=A,—
( ) ’axj
(AB);; = A;B;

Matrix notation with the Einstein convention can be used to derive all of
the vector identities given in Section D.1 of this Appendix. For example, we
derive the expression for V x (A x B) by proceeding as follows.

d
[V x(AxB);= Gijk‘a_(eklmAle)
Xj

= €ijk€kim (A‘% + Bm%)
= €4ij€kim (A'% + Bm%)
= (8u8jm — Simbj1) (Al% * B’”%%l)
_ A"%f_j - AjZ—fjf +Bj%:—; - Bfi—g

=Ai(V-B)—(A-V)Bi + (B V)A; — Bi(V - A)
=[A(V-B)—(A-V)B+(B-V)A-B(V-A)]

which, after rearranging terms on the right-hand side, is the desired expression.
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Appendix E

Differential operators in cartesian and
curvilinear coordinates

E.1 CARTESIAN COORDINATES (z, y, z)

Gradient:

b]
vy o (2L 20 W
dx dy 0z
Divergence:
8A, 0A, 0A;
V- A=— 4+ — 4+ —
dx + ay + az
Curl:
Uxan (34 2424 34 3A
ay dz 0z ax  ox dy
Laplacian:
8? 82 82
V2¢:= _J£_+__j€_+__j€

ax?2  9yr = 9z2
Laplacian of a vector:
V2A = (V24,, V2A,, V?A,)
Divergence of a tensor:

_ 3Py 3Py 3P

V.P), =
( ) ox ay 4
3Py | 0Py, 3P,

V.P), =
( )y ax dy + 0z
2 , 0P, P
v.p), =Ly Wy OF

dox ay az
482
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Appendix E

E.2 CYLINDRICAL COORDINATES (r, 6, 2)

Gradient:
oy oy 3y
Vv = (8r rae’ 32)
Divergence:
19 84y B4,
A=-——(@A) + —
VA=A T e T e
Curl:
Vx A= (34 0340 34, 04, 3Gy 94
raé 4z 9z ar ror raé
Laplacian:

13 [ 3y 18%y 8%y
Vi = - — i ST o
v r3r(8r)+r2392 az?2

Laplacian of a vector:

2 8A A 204, A
V2A = (VZA,—r———’i—r—’ V2Ag 4+ = —t ~ 22 VzAZ)

r2 6 r2’

Divergence of a tensor:

19Py, 08P, Py

10
. r—— Prr
(V-P) (r )+r a0 0z r

1 18P dP, P,
(V- P)g = ——(rP) + a4
r 00 0z r
18Py, 8P,
v. =—— rP,
(V. P), S Pr) + - 4 =

E.3 SPHERICAL COORDINATES (7, 6, ¢)

Gradient:

y 9y 1 3y
VY= (8r rd6’ rsinb 6¢)
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484 Differential operators in cartesian and curvilinear coordinates

Divergence:
1 d 1 4 1 dA
V.-A=——(rA —— —(sind A =
r2 or (A + rsing 86 (sin6Ao) + rsind 3¢
Curl:
1 23 1 840 1 0A, 13
VxA=|———(sinfAy) — —, — — ——(rAdy),
% (rsine 5g I 0A0) = 6 50 rsing 89 rar %)
190 10A,
= —(rAs) — —
r ar(' ) r 36)
Laplacian:

13 (,0y 13/ 1 8%y
V== (¥ s % (oY) — ¥
V=125 (’ ar ) t 25ing 50 (Sm 36 ) * rasinta 36
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Appendix F

Suggestions for further reading

There are many textbooks on plasma physics that go into greater detail and
cover somewhat more advanced material than has been possible in the present
text. In particular, students at the graduate level specializing in plasma
physics have found N A Krall and A W Trivelpiece (1963) Principles of
Plasma Physics (New York: McGraw-Hill, reprinted 1986 by San Francisco
Press), particularly useful. Similar material, with a stronger emphasis on
fusion applications, can be found in K Miyamoto (1989) Plasma Physics for
Nuclear Fusion (Cambridge, MA: MIT Press). A recent graduate-level text,
which provides a good introduction to astrophysical, geophysical as well as
fusion plasmas is P A Sturrock (1994) Plasma Physics (Cambridge: Cambridge
University Press). Textbooks that take a kinetic, or statistical, approach to the
formulation of basic plasma theory include S Ichimaru (1973) Basic Principles
of Plasma Physics (Reading, MA: Benjamin/Cummings), D R Nicholson (1983)
Introduction to Plasma Theory (New York: Wiley) and K Nishikawa and
M Wakatani (1990) Plasma Physics (Berlin: Springer). A recent treatment that
emphasizes the theoretical foundations of the subject from a fusion perspective
can be found in R D Hazeltine and J D Meiss (1992) Plasma Confinement
(New York: Addison-Wesley). A more advanced text that focuses on developing
and applying the magnetohydrodynamic model is J P Freidberg (1987) Ideal
Magnetohydrodynamics (New York: Plenum Press).

The topic of waves in plasmas, including also instabilities such as drift
waves etc, is treated extensively in T H Stix (1992) Waves in Plasmas (New
York: American Institute of Physics). Students interested in the experimental
techniques used for measuring plasma quantities in laboratory and fusion
plasmas are referred to I H Hutchinson (1987) Principles of Plasma Diagnostics
(Cambridge: Cambridge University Press).

Those interested primarily in astrophysical and solar plasmas should first
develop an overall understanding of modern astrophysics, for example by

485
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studying F H Shu (1991, 1992) The Physics of Astrophysics Volumes I and II
(Mill Valley, CA: University Science Books). They are then encouraged to read
D B Meirose (1980) Plasma Astrophysics Volumes 1 and 2 (New York: Gordon
and Breach) and H K Moffatt (1978) Magnetic Field Generation in Electrically
Conducting Fluids (Cambridge: Cambridge University Press). Geophysical and
space plasmas are described in G K Parks (1991) Physics of Space Plasmas
(New York: Addison-Wesley).

A series of articles outlining the fundamentals of magnetically confined
fusion plasmas and the status (circa 1980) of fusion experiments can be found
in Fusion Volume I, Parts A and B, ed E Teller (1981, New York: Academic).
Fusion reactors from a more engineering perspective are described in R A Gross
(1984) Fusion Energy (New York: Wiley) and in W M Stacey (1984) Fusion
(New York: Wiley).

Those who are interested in pursuing further the theory of plasma
confinement and stability in tokamak configurations are referred to J Wesson
(1989) Tokamaks (Oxford: Clarendon Press), to R B White (1989) Theory
of Tokamak Plasmas (Amsterdam: North-Holland), to B B Kadomtsev (1992)
Tokamak Plasma: A Complex Physical System (Bristol: Institute of Physics
Publishing) and to D Biskamp (1993) Nonlinear Magnetohydrodynamics
(Cambridge: Cambridge University Press).
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