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1D-FDTD using MATLAB
Hung Loui, Student Member, IEEE

Abstract— This report presents a simple 1D implementation
of the Yee FDTD algorithm using the MATLAB programming
language. The fieldsEx and Hy are simulated along the lineX =
Y = 0, i.e. propagation along theẑ axis. Source implementation
and the effects of various boundaries such as PEC, PMC, Mur on
the incident/scattered/total fields are subsequently investigated.
The goal of this project is to exercise the basic parts of a FDTD
code in the simplest system.

Index Terms— 1D FDTD, Gaussian Pulse.

I. I NTRODUCTION

T HE finite difference time domain (FDTD) method has
been used extensively in the modelling of electromag-

netic wave scattering from complex none-canonical objects.
A comprehensive coverage, including a historical recount of
the FDTD development can be found in [1]. There are also
various books available which contain basic codes; [2] gives
many good examples in C. We choose MATLAB as our coding
language because of its comprehensive library of graphics
routines. It is relatively straight forward to produce animations
using MATLAB; this is often critical to the understanding of
a working FDTD algorithm.

Due to the large amount of book-keeping required in any
full 3D-FDTD code, it is common to reduce the dimensionality
down to 1D for pedagogical purposes. Most of the equations in
this report can be found in other texts, however, we have listed
them here for the reason of continuity. A working FDTD code
must propagate waves properly, handle various boundaries, and
calculate useful modelling results. This paper addresses all of
the above in a step by step process and has the following
outline:

• Section II describes the reduction of Maxwell’s equations
from 3D to 1D and its subsequent FDTD implementation
using Yee’s algorithm. Formulations of the source, PEC,
PMC, Mur and Scattered/Total Field (SF/TF) boundaries
are also shown.

• Section III describes and verifies results of PEC, PMC,
Mur and SF/TF boundary simulations.

• Section IV uses SF/TF and Mur boundaries to analyze
Guassian pulse reflections from dielectric slabs of various
thicknesses.

• Section V provides a conclusion to the overall experi-
ment.
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II. FORMULATION

A. Reduction of Maxwell’s equations to 1D

The 3D source free( ~J = 0) Maxwell’s curl equations of a
homogeneous medium are:

∇× ~E = −µd
~H

dt
−→


∂Ez

∂y − ∂Ey

∂z = −µ∂Hx

∂t
∂Ex

∂z − ∂Ez

∂x = −µ∂Hy

∂t
∂Ey

∂x − ∂Ex

∂y = −µ∂Hz

∂t

(1)

∇× ~H = ε
d ~E

dt
−→


∂Hz

∂y − ∂Hy

∂z = ε∂Ex

∂t
∂Hx

∂z − ∂Hz

∂x = ε
∂Ey

∂t
∂Hy

∂x − ∂Hx

∂y = ε∂Ez

∂t

(2)

For a ẑ-directed, x̂-polarized TEM wave(Hz = Ez = 0),
incident upon a modeled geometry with no variations in the
x̂ and ŷ direction, i.e. ∂

∂x = ∂
∂y = 0; equations (1) and (2)

reduce down to the 1D case:

∂Ex

∂z
= −µ∂Hy

∂t
(3)

∂Hy

∂z
= −ε∂Ex

∂t
(4)

Combining the partial space derivatives of (3) with the partial
time derivative of (4) or vice versa produces the 1D scalar
wave equation: [

∂2

∂z2
− εµ ∂

2

∂t2

]
ψ = 0, (5)

whereψ represents eitherEx or Hy. In the case of free-space
whereε = ε0 andµ = µ0, equation (5) takes on the familiar
form: [

∂2

∂z2
− 1
c2
∂2

∂t2

]
ψ = 0 (6)

wherec = 1√
ε0µ0

is the speed of light in vacuum.

B. 1D time advancement equations

Although the 1D scalar wave equation (5) can be solved
directly by centered 2nd differences [3], it is not robust for
solutions of problems that depend on both~E and ~H. In
1966, Kane Yee proposed an algorithm [4] where the first
order electric (3) and magnetic (4) equations are coupled
via interlinked time and space grids. Because the underlying
implementation of the Yee algorithm mimics the principle of a
time varying electric field producing a time vary magnetic field
and vice versa, solutions of more general class of problems
can be handled robustly. Using Fig. 1 as a guide, the discrete
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Fig. 1. 1D space-time chart of the Yee algorithm showing central differences
for the space derivatives and leapfrog over the time derivatives. k represent
electric field node numbers and n is the time step.

update equations in time are:

Hy|n+1/2
k+1/2 −Hy|n−1/2

k+1/2

∆t
= − 1

µ

Ex|nk+1 − Ex|nk
∆z

(7)

Ex|n+1
k − Ex|nk

∆t
= −1

ε

Hy|n+1/2
k+1/2 −Hy|n+1/2

k−1/2

∆z
(8)

Since a majority of the programming languages can not handle
none integer array indexes, equations (7) and (8) must be
converted to a pseudo form where only integer array indexes
are used:

Hy(1 to M)=0;
Ex(1 to M+1)=0;
For n=1 to total # of time steps,

Ex(1)=source(n);
For k=1 to M,

Hy(k)=Hy(k)-dt/mu(k) * (Ex(k+1)-Ex(k))/dz;
end
For k=2 to M,

Ex(k)=Ex(k)-dt/ep(k) * (Hy(k)-Hy(k-1))/dz;
end

end

The first few lines of code initialize theEx and Hy space
vectors to zero; notice that theEx vector has one additional
element at the end. The first For loop is the time stepping loop,
where the first Ex node is updated by the source and subse-
quent inner For loops update nodes ofEx andHy up to M. The
M+1 Ex nodes are not updated after initialization because the
M+1 Hy nodes do not exist after the first full time step. Notice
that the leap-frogging in time is implicitly build into the code,
i.e. there are no time subscripts anywhere. The line where
Hy(k)=Hy(k)-dt/mu(k) * (Ex(k+1)-Ex(k))/dz has
the following meaning: theHy(k) , Ex(k+1) and Ex(k)
on the right is from the previous half time step, whereas the
Hy(k) on the left is the current time step. Because MATLAB
is a high level language, the above pseudo code is reduced to
just a few lines:

Hy(1:M)=0;
Ex(1:M+1)=0;
For n=1:N,

Ex(1)=source(n);

Hy=Hy-dt./mu. * diff(Ex)/dz;
Ex(2:M)=Ex(2:M)-dt./ep. * diff(Hy)/dz;

end

Using the above code as the 1D-FDTD core, implementations
of sources and various other boundary conditions can be easily
appended.

C. Source

Let the grid be filled with free space. We proceed to launch a
modulated Gaussian pulse into the grid by directly drivingEx

at the boundaryz = 0, k = 1. Let us choose the modulation
frequency so that its wavelength isλ0 = 0.5µm (green light)
and select a Gaussian pulse width large enough to see about
5 cycles of this modulation. We also would like the grid to be
long enough in̂z so that the modulated Gaussian pulse fills at
most 1/5 ofz. We define the modulation signal by:

f0 =
c

λ0
=

1
τ0

(9)

m(t) = sin(2πf0 t) (10)

where τ0 is the period of the modulation signalm(t). A
Gaussian pulse centered attc is defined by

g(t) = e−(t−tc)
2/2σ2

(11)

Let tc = 5τc/2 so that the Gaussian pulse is centered at
half of the total 5 cycles of the modulation signal.σ can be
determined by requiring thattc be confined within the full
width at half maximum (FWHM) [5] of the Gaussian pulse or

σ =
tc

FWHM
=

tc

2
√

2 ln 2
. (12)

Multiplication of (10) with (11) produces the continuous
modulated Gaussian source:

Ex(t) = sin(2πf0 t)e−(t−tc)
2/2σ2

; (13)

where it’s corresponding discrete version is:

Ex(n) = sin(2πf0 n∆t)e−(n∆t−tc)
2/2σ2

. (14)

To calculate the grid length so that the modulated Gaussian

Fig. 2. Modulation of a Gaussian pulse using a 0.6PHz Sine wave.

pulse fills at most1/5 of z we simply multiply the pulse length
of 5λ0 by 5.
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D. PEC and PMC Boundary

Perfect electric conductor (PEC) and perfect magnetic con-
ductor (PMC) boundaries are specified by simply setting the
boundary electric field nodeEx = 0 or the boundary magnetic
field nodeHy = 0, respectively.

E. 1st order Mur Boundary

Equations describing the 1st order Mur boundary is given
in the notes [3]. We will update those equations so that they
are consistent with the notation used here. To place a Mur
radiation boundary at nodeM or the last electric field node
on the right:

Ex|n+1
M = Ex|nM−1 +

c∆t−∆z
c∆t+ ∆z

(Ex|n+1
M−1 − Ex|nM ). (15)

To place a Mur radiation boundary at node 1 or the first electric
field node on the left:

Ex|n+1
1 = Ex|n2 +

c∆t−∆z
c∆t+ ∆z

(Ex|n+1
2 − Ex|n1 ). (16)

F. Scattered/Total Field Boundary

Formulation of the 1D Scattered/Total field boundary can be
found in [1]. However, because we are dealing with different
set of field components than one does [1], the field correction
factors differ in sign. It is therefore necessary for us to re-
derive the correct update equations.

Fig. 3. Scattered/Total field boundary diagram. Color nodes are involved
in the formulation of the boundary update equations; red nodes require
correction.

Let the Scattered/Total field boundary be on the immediate
left of the electric nodeL; if field types were the same on
both sides of the boundary (both scattered or both total) then
equations (7)-(8) can be used to update the corresponding field
in time. However, because we had intended for the field on
the left of the boundary to be the scattered field and on the
right the total field, if equation (7) for theHy|L−1/2 node is
updated on then+ 1/2 time step, then in actuality it did the
following:

Hsca
y |n+1/2

L−1/2 = Hsca
y |n−1/2

L−1/2 −
∆t
µ

Etot
x |nL − Esca

x |nL−1

∆z
. (17)

Notice that theEx|nL node is a total field node. For consistency
we must use the same field types when performing the
Hy|L−1/2 node update and since theHy|L−1/2 node lies on
the scattered side of the boundaryL, all field used in its update
equation must be of the scattered type. Therefore, (17) should
in fact be

Hsca
y |n+1/2

L−1/2 = Hsca
y |n−1/2

L−1/2 −
∆t
µ

Esca
x |nL − Esca

x |nL−1

∆z
. (18)

We can make use of

−Esca
x |nL = −Etot

x |nL + Einc
x |nL (19)

to correct (17) so that it is equivalent to (18), and the resulting
equation is

Hsca
y |n+1/2

L−1/2︸ ︷︷ ︸
(18)

= Hsca
y |n+1/2

L−1/2︸ ︷︷ ︸
(17)

+
∆t
µ∆z

Einc
x |nL. (20)

A similar argument can be made for theEx|L node, if equation
(8) is updated on then+ 1 time step, then in actuality it did
the following:

Etot
x |n+1

L = Etot
x |nL −

∆t
ε

Htot
y |n+1/2

L+1/2 −H
sca
y |n+1/2

L−1/2

∆z
. (21)

Notice that theHy|n+1/2
L−1/2 node is a scattered field node. For

consistency we must use the same field types when performing
theEx|L node update and since theEx|L node lies on the total
side of the boundaryL, all field used in its update equation
must be of the total type. Therefore, (21) should in fact be

Etot
x |n+1

L = Etot
x |nL −

∆t
ε

Htot
y |n+1/2

L+1/2 −H
tot
y |n+1/2

L−1/2

∆z
. (22)

We can make use of

−Htot
y |n+1/2

L−1/2 = −Hsca
y |n+1/2

L−1/2 −H
inc
y |n+1/2

L−1/2 (23)

to correct (21) so that it is equivalent to (22), and the resulting
equation is

Etot
x |n+1

L︸ ︷︷ ︸
(22)

= Etot
x |n+1

L︸ ︷︷ ︸
(21)

+
∆t
ε∆z

Hinc
y |n+1/2

L−1/2. (24)

The above formulations illustrate that only nodes immediately
to the left and right of the boundaryL need modification; this
means that the original computer algorithm used to update
equations (7)-(8) which are equivalent to (17) and (21) can
execute as before, with modifications (18) and (22) performed
afterwards. However, there is one catch, the correction equa-
tions (18) and (22) now require incident field components
Einc

x |nL andHinc
y |n+1/2

L−1/2 be defined. There are two ways to
accomplish this task, one way is to defineEinc

x |nL and compute
Hinc

y |n+1/2
L−1/2 based on Maxwell’s equations (which involves an

impedance factor and a phase shift); the other way is to simply
propagate the incident field in its own FDTD grid having the
same∆z and ∆t relationship as that for the scattered and
total field. This latter approach ensures that all field types, i.e.
incident, scattered and total suffer the same grid dispersion
(see Section III), therefore it is implemented in the actual code.
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III. R ESULTS

Having described formulations and basic pseudo code im-
plementations of various parts of the one-dimensional FDTD
algorithm, we now turn to results and verification.

A. Initialization

Initialization should be performed at the beginning of a
simulation. Fig. 4 shows the initialized 1D space grid ofEx(k)
andHy(k) at timet = 0fs orn = 0, wheren is the time index.
The grid spacing is choosing to be∆z = λ0/20 = c∆t; this
is equivalent to sampling the input signalEx in time atτ/20,
whereτ = λ0/c = 1/f0 is the period of the modulation signal.
A probe is placed at the center of the grid for samplingEx

Fig. 4. Space grid initialization at timet = 0(fs). Ex|k andHy |k nodes are
set to initial values of 0(V/m) and 0(A/m), respectively. A sampling probe
is placed at the center of the grid. No boundary conditions are explicitly
specified anywhere.

andHy pulses in time as they pass by. We will first operate
at the magic time step∆z = c∆t then shift off and adjust the
spatial sampling to observe numerical dispersion.

B. PEC verification

In this section, we will enforce a PEC boundary condition at
z = zmax = 12.5µm and let the code run sufficiently long for
the modulated Gaussian pulse to pass the probe point, bounce
off the PEC atzmax or k = M and pass the probe point again.
For clarity, we will first follow the pulse closely in space, take
snap shots of it at different times and then display the probe
data later. Figures (5-7) show these snap shots ofEx(k) and
Hy(k) at different times. The first thing to notice is the red
PEC boundary atz = zmax in all of the figures; it is also
important to note that the amplitude ofHy(k) is at all times
a factor of η0 =

√
µ0/ε0 smaller than that ofEx(k). The

pulse initiates from the left most electric field node in Fig. 5,
propagates pass the probe point in Fig. 6 and finally collides
with the PEC in Fig. 7.

From basic electromagnetic theory, we expect the tangential
electric field to be zero on the PEC; therefore the reflected
electric field must be 180 degrees out of phase compared to
that of the incident field. This result is shown in Fig. 7 by

(a) Pulse entering from the left at t=2.08fs and n=25.

(b) Pulse propagating to the right at t=4.17fs and n=50.

(c) Entire pulse entered space grid at t=8.33fs and n=100.

Fig. 5. Ex(k) andHy(k) at (a) t=2.08fs (b) 4.17fs and (c) 8.33fs. Notice
that by (c) the entire pulse fit approximately 1/5th of the total distancez of
12.5µm; and there are exactlyk = 500 electric nodes or499∆z in z. The
red vertical line at the boundaryz = zmax = 12.5µm, k = M = 500 is
the PEC.

comparing the incidentEx(k) before colliding with the PEC
(a) to the reflectedEx(k) after colliding with the PEC (c);
remember that the leading edge of the incident pulse is to
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the right whereas the leading edge of the reflected pulse is to
the left. The 180 degree phase shift is more obvious if one
comparesEx(k) to Hy(k) before and after colliding with the
PEC in fig. 7(a) and (c), respectively.

(a) Pulse approaching probe at t=20.8fs and n=250.

(b) Pulse passing the probe at t=25fs and n=300.

(c) Pulse approaching the PEC at t=29.2fs and n=350.

Fig. 6. Ex(k) andHy(k) (a) right before the probe at t=20.8fs (b) passing
the probe at t=25fs and (c) approaching the PEC at t=29.2fs. This demonstrates
that the probe is merely a measuring device and does not alter the waveform
in anyway.

(a) Pulse approaching the PEC at t=37.5fs and n=450.

(b) Pulse colliding with the PEC at t=45.8fs and n=550.

(c) Pulse reflected from the PEC at t=54.2fs and n=600.

Fig. 7. Ex(k) andHy(k) (a) before the PEC at t=37.5fs (b) colliding with
the PEC at t=45.8fs and (c) reflected from the PEC at t=54.2fs. Notice the
constructive interference between the incidentEx and the reflectedEx at (b);
becauseHy andEx differ in phase after reflection, whileEx is constructive
interfering with maximum amplitude greater than unity,Hy is destructive
interfering, this is whyHy shows decrease in overall amplitude compared to
Ex in (b).

During the collision, part of the incident pulse reflects off
the PEC and interferes with its own trailing tail; at the time
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of Fig. 7(b), this interference happens to be constructive in
Ex but destructive inHy due to the phase difference ofπ
between them. The sampling probe at the center of the grid
simply savesEx andHy at k =probe_pos for each time
step n; i.e. probe data vectors are of lengthn and do not
interact with the field vectors in any other way.

Fig. 8. Probe data ofEx andHy at grid positionk = 250 andk = 250.5
respectively, as a function of time stepn. The total simulated duration was
83.3fs orn = 1000.

Fig. 8 displaysEx and Hy fields at the probe location of
k = 250 and k = 250.5 respectively, for a total simulation
duration of 83.3fs; it clearly shows that the PEC atz = zmax

or n = 500 causedEx to invert while leavingHy un-altered.

C. PMC

We now replace the PEC (red) atz = zmax by a PMC
(green) and repeat the steps from the previous section. For
brevity, we will only show the pulse before and after the PMC
as snaps shots in space, and let the probe keep a record of its
journey in time.

Fig. 9. PMC probe data ofEx and Hy at grid positionk = 250 and
k = 250.5 as a function of time stepn. The total simulated duration was
83.3fs orn = 1000.

Fig. 9 displaysEx and Hy fields at the probe location of
k = 250 and k = 250.5 respectively, for a total simulation

(a) Pulse approaching the PMC at t=37.5fs and n=450.

(b) Pulse colliding with the PMC at t=45.8fs and n=550.

(c) Pulse reflected from the PMC at t=54.2fs and n=650.

Fig. 10. Ex(k) andHy(k) (a) before the PMC at t=37.5fs (b) colliding with
the PMC at t=45.8fs and (c) reflected from the PMC at t=54.2fs. Notice the
constructive interference between the incidentHy and the reflectedHy at (b);
becauseHy andEx differ in phase after reflection, whileHy is constructive
interfering with its tail,Ex is destructive interfering with his. This is why
Ex shows less than unity amplitude compared toHy in (b).

duration of 83.3fs; it clearly shows that the PMC atz = zmax

or n = 500 causedHy to invert while leavingEx un-altered.
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D. Grid dispersion

The previous PEC and PMC results were obtained at the
magic time step where∆t = ∆z/c. In this section, we will
examine what happens to the pulse shape on both passes
through the probe for the PEC case when∆t 6= ∆z/c but
≤ ∆z/c.

(a) First pass through the probe.

(b) Second pass after reflection from PEC.

Fig. 11. Comparison of probe dataEx(t) andHy(t) during the first pass
(a) and the second pass (b) after reflecting from the PEC for (∆t = ∆z/c,
∆z = λ0/20), (∆t = 0.5∆z/c, ∆z = λ0/20), and (∆t = 0.5∆z/c,
∆z = λ0/5).

Using the numerical dispersion diagram of Fig. 12, dupli-
cated from [3] as a guide: first, we let∆t = 0.5∆z/c but
keep ∆z = λ0/20 the same to see the shift of the pulse
phase with respect to the pulse envelope; this corresponds
to the red operating point of Fig. 12; second, in addition to
operating at∆t = 0.5∆z/c we adjust the spatial sampling
from ∆z = λ0/20 to ∆z = λ0/5 and observe changes in the
pulse velocity (this corresponds to the green operating point of
Fig. 12). We are essentially performing simulations at different
points on the red (c∆t = ∆x/2) curve, keeping in mind that
∆x is our ∆z.

From Fig. 11, we see that for the case∆z = λ0/20,
comparison between the ideal pulse propagating at the magic
time step (blue) to the case where∆t = 0.5∆z/c (red) shows

Fig. 12. Phase velocity relative toc as a function of space and time griding
[3]. The red and green dots corresponds to the operating point of red and
green curves in Fig. 11.

(a) First pass through the probe.

(b) Second pass after reflection from PEC.

Fig. 13. Comparison of probe dataEx(t) andHy(t) during the first pass
(a) and the second pass (b) after reflecting from the PEC for (∆t = ∆z/c,
∆z = λ0/20), and (∆t = 0.5∆z/c, ∆z = λ0/10).

that grid dispersion increases with increasing propagation
distance and induces phase shift and distortion to the pulse.
During the first pass Fig. 11(a), the off-magic-time pulse
(red) shows slight phase delay when compared to the magic-
time pulse (blue); however by the second pass after the pulse
reflected from the PEC in Fig. 11(b), not only was the pulse
phase delayed further when compared to the original envelope
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but its shape was distorted; what appears to be an odd pulse
before, now appears even. The result is even more dramatic in
(green) of Fig. 11, where the increase in∆z by a factor of 4
to λ0/5 not only widened the pulse but also reduced its phase
velocity, i.e., the green pulse arrived late at the probe compared
to both the blue and red pulses. This is to be expected from
the dispersion diagram of Fig. 12, where the phase velocity
degradation due to grid dispersion at the green operating point
is predicted to be about 5%. To save computational resources,
it is common practice to use∆z = λ0/10 and∆t = 0.5∆z/c
to limit the amount dispersion (phase error); this case is shown
in Fig. 13.

E. First-order Mur radiation boundary

In this section, we will enforce a first-order Mur radia-
tion/absorbing boundary condition (ABC) atz = zmax =
12.5µm and test its operation first at the magic time step.

Fig. 14. Mur probe data ofEx and Hy at grid positionk = 250 and
k = 250.5 as a function of time stepn. ∆z = λ0/20 and∆t = ∆z/c. The
total simulated duration was 83.3fs orn = 1000.

Letting the simulation run for the same durationt = 83.3fs
as was previously done for the PEC and PMC cases, we find
from the probe data of Fig. 14 that the pulse only pass the
probe once, indicating that it has indeed radiated or absorbed
by the Mur atz = zmax. Fig. 15 shows snap shots of the
Mur boundary in action. Although the Mur boundary worked
perfectly for the magic time step, due to the use of centered
differences and the order of approximation, this boundary will
be imperfect when operating off the magic time step. An
estimate of the reflectivity of the first-order Mur boundary
at ∆z = λ0/10 and ∆t = 0.5∆z/c can be found using the
following equation [3]:

|rmur1| =
a− b
a+ b

≈ 0.0131; (25)

where

a = ∆z sin(ω0∆t/2) cos(kz∆z/2), (26)

b = c∆t cos(ω0∆t/2) sin(kz∆z/2). (27)

Simulation validation of the 0.0131 reflectance from equa-
tion (25) can be estimated from peak field values of the

(a) Pulse approaching the ABC at t=37.5fs and n=450.

(b) Pulse entering the ABC at t=45.8fs and n=550.

(c) Pulse absorbed by the ABC at t=54.2fs and n=650.

Fig. 15. Ex(k) andHy(k) (a) before the ABC at t=37.5fs (b) entering the
ABC at t=45.8fs and (c) absorbed by the ABC at t=54.2fs.∆z = λ0/20 and
∆t = ∆z/c.

incident and reflected pulse using the time domain probe data
of Fig. 16 or more accurately determined by the ratio of their
Fourier transforms, see Fig. 17.

The maximum peak value of the incident electric field from
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(a) Total probe data.

(b) Scattered half of the probe data with better scaling.

Fig. 16. Mur probe data (a) ofEx and Hy at grid positionk = 125 and
k = 125.5 as a function of time stepn. (b) is the second half of (a) (scattered
only) shown with better scaling.∆z = λ0/10 and∆t = 0.5∆z/c. The total
simulated duration was 83.3fs orn = 1000.

Fig. 16 is -0.9915(V/m) and the maximum peak value of the
reflected electric field is -0.0191(V/m); their ratio is≈ 0.0193
which is higher than (25)’s estimate of 0.0131. Repeating the
exercise using the magnitude of the Fourier transforms of the
incident and reflected pulse Fig. 17 produced a reflectance of
0.0199 atf0 of 0.6PHz.

F. Scattered/Total Boundary

At a distance of approximately 1/3 of the way into the mesh
from z = 0, we added a scattered/total field boundary. Fig. 18
demonstrates that bothEx(k) and Hy(k) only propagate
towards the positivez direction. Notice the reason it took the
pulse about 16.7fs to emerge from the SF/TF boundary has to
do with the fact that we have propagated anEinc andHinc on
its own 1D-FDTD grid starting at nodez = 0 and they need
to first travel 1/3 of the totalz to reach the SF/TF boundary.

IV. D IELECTRIC SLAB

In this section, we implement the same first-order Mur
condition on boundariesz = 0, z = zmax = 12.5µm;

Fig. 17. Discrete Fourier transform of the incident and reflectedEx(t) in
the case of Mur boundary operating at∆z = λ0/10 and∆t = 0.5∆z/c.

(a) Pulse emerging from SF/TF boundary at t=16.7fs and n=200.

(b) Pulse entered space grid at t=23.3fs and n=280.

Fig. 18. Ex(k) and Hy(k) (a) emerging from the SF/TF boundary (b)
entered completely into the space grid. This is essentially an unidirectional
pulse.

additionally we add a dielectric array (slab) of refractive index
n = 1.5 on the same sampling grid as the electric field array
at about 2/3 of the way and filled the rest with airn = 1.
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(a) Pulse emerging from SF/TF boundary.

(b) Pulse reflected and transmitted after hitting the dielectric slab.

(c) Transmitted pulse gets absorbed by the Mur while the reflected
pulse approaches the probe.

Fig. 19. Ex(k) and Hy(k) at various instances in time impinging on a
dielectric slab of indexn = 1.5, thicknessλg/2 = 0.204µm.

For accuracy, we choose to operate at the magic time step
dt = dz/c with dz = λ0/20. The scattered electric field is
measured by a probe placed in the scattered field region about
1/6 of the the total distance atz = 2.08µm.

(a) Scattered field probe data ofEx and Hy for the λg/2 thick slab
case shown in Fig. 19.

(b) Discrete Fourier transform of the incident and scatteredEx(t) in
(a).

(c) Magnitude of the reflection coefficient obtained by the ratio of the
scattered to incident Fourier transforms of (b).

Fig. 20. (a)Scattered field probe data ofEx andHy of theλg/2 = 0.204µm
thick slab. (b) Discrete Fourier transform of the incident and scatteredEx(t)
in (a). (c) Magnitude of the reflection coefficient fromf = 0.3 to f = 1PHz
corresponding toλ0 = 1µm to λ0 = 300nm.

Figures (20-21) show the initial simulation using standard
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(a) Scattered field probe data ofEx and Hy for the λg/4 thick slab
case.

(b) Discrete Fourier transform of the incident and scatteredEx(t) in
(a).

(c) Magnitude of the reflection coefficient obtained by the ratio of the
scattered to incident Fourier transforms of (b).

Fig. 21. (a)Scattered field probe data ofEx andHy of theλg/4 = 0.102µm
thick slab. (b) Discrete Fourier transform of the incident and scatteredEx(t)
in (a). (c) Magnitude of the reflection coefficient fromf = 0.3 to f = 1PHz
corresponding toλ0 = 1µm to λ0 = 300nm.

λg/2 and λg/4 thick dielectric slabs; they clearly indicate
that at these slab thicknesses, the incident pulse experiences

(a) Pulse reflected from the front face of the slab.

(b) Pulse reflected from the back face of the slab.

(c) Pulse absorbed by the Mur ABC on the left of the space grid.

Fig. 22. Ex(k) and Hy(k) at various instances in time impinging on a
dielectric slab of indexn = 1.5, thickness10.5λg = 4.284µm.

minimum and maximum reflection, respectively.
Because sub-wavelength optical components are difficult to

manufacture, it is common to add a multipleλg to the basic
λg/4 or λg/2 plate thicknesses; however, from Figures (23-
24) we find that increasing the plate thickness reduces the
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(a) Scattered field probe data ofEx and Hy for the 10.5λg =
4.284µm thick slab case shown in Fig. 22.

(b) Discrete Fourier transform of the incident and scatteredEx(t) in
(a).

(c) Magnitude of the reflection coefficient obtained by the ratio of the
scattered to incident Fourier transforms of (b).

Fig. 23. (a) Scattered field probe data ofEx and Hy of the 10.5λg =
4.284µm thick slab. (b) Discrete Fourier transform of the incident and
scatteredEx(t) in (a). (c) Magnitude of the reflection coefficient from
f = 0.3 to f = 1PHz corresponding toλ0 = 1µm to λ0 = 300nm.

low-reflectivity bandwidth drastically.

(a) Scattered field probe data ofEx and Hy for the 10.25λg =
4.182µm thick slab case.

(b) Discrete Fourier transform of the incident and scatteredEx(t) in
(a).

(c) Magnitude of the reflection coefficient obtained by the ratio of the
scattered to incident Fourier transforms of (b).

Fig. 24. (a) Scattered field probe data ofEx and Hy of the 10.25λg =
4.182µm thick slab. (b) Discrete Fourier transform of the incident and
scatteredEx(t) in (a). (c) Magnitude of the reflection coefficient from
f = 0.3 to f = 1PHz corresponding toλ0 = 1µm to λ0 = 300nm.

V. CONCLUSION

This paper successfully demonstrates a working 1D-FDTD
code that correctly implements PEC, PMC, Mur and SS/TF
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boundaries. The code is applied to investigate pulse reflections
from dielectric slabs of various thickness; it is found through
simulation thatλg/2 andλg/4 thick dielectric slabs produce
the minimum and maximum reflection, respectively. Increas-
ing the thickness of the slabs drastically reduces the low-
reflectivity bandwidth. We have also shown that grid dispersion
occurs when one operates off the magic-time-step; it delays
the pulse phase and distorts the pulse shape.
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