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1D-FDTD using MATLAB

Hung Loui, Student Member, IEEE

Abstract—This report presents a simple 1D implementation Il. FORMULATION
of the Yee FDTD algorithm using the MATLAB programming
language. The fieldsE, and H, are simulated along the lineX = A. Reduction of Maxwell's equations to 1D
Y =0, i.e. propagation along theZ axis. Source implementation o )
and the effects of various boundaries such as PEC, PMC, Muron  The 3D source fre¢J = 0) Maxwell's curl equations of a
the incident/scattered/total fields are subsequently investigated. homogeneous medium are:
The goal of this project is to exercise the basic parts of a FDTD

code in the simplest system. 9E. _ 9By _ _  OH,
. dﬁ Oy 0z T
Index Terms— 1D FDTD, Gaussian Pulse. VxE=-p— — { 28 0B __ 0 1)
dt 0z rc’)z ,(%
()Ey — % — de
oz oy — Mot
oH, _ OHy _ 0B,
I. INTRODUCTION . dE oy 0z ot
_ dH, 9H, _ _OE
VXH7€E—> 52 " 0w —Gaty (2)
- . . . OH, _ 9H, _ _0E.
HE finite difference time domain (FDTD) method has 9x oy — € ot

been used extensively in the modelling of electromag-
netic wave scattering from complex none-canonical objecfeor a Z-directed, i-polarized TEM wave(H. = E. = 0),
A comprehensive coverage, including a historical recount Bicident upon a modeled geometry with no variations in the
the FDTD development can be found in [1]. There are algb@nd direction, i.e.7 = £ = 0; equations (1) and (2)

various books available which contain basic codes; [2] givégduce down to the 1D case:

many good examples in C. We choose MATLAB as our coding OF, oH,
language because of its comprehensive library of graphics 9. M ar 3)
routines. It is relatively straight forward to produce animations OH, OF,
using MATLAB; this is often critical to the understanding of % - o (4)

a working FDTD algorithm. - _ o _ _
Due to the large amount of book-keeping required in a&omblnmg t_he partial space derivatives of (3) with the partial

full 3D-FDTD code, it is common to reduce the dimensionalitMe derivative of (4) or vice versa produces the 1D scalar

down to 1D for pedagogical purposes. Most of the equations\iffVe equation:

this report can be found in other texts, however, we have listed 92 o2

them here for the reason of continuity. A working FDTD code {82 — 6”8#} P =0, (5)

must propagate waves properly, handle various boundaries, and z

calculate useful modelling results. This paper addresses allereq represents eithek,, or H,. In the case of free-space
the above in a step by step process and has the followigfierec = ¢, and . = 10, equation (5) takes on the familiar

outline: form:
« Section Il describes the reduction of Maxwell's equations 52 1 82
from 3D to 1D and its subsequent FDTD implementation {6% - 028t2:| =0 (6)

using Yee’s algorithm. Formulations of the source, PEC,
PMC, Mur and Scattered/Total Field (SF/TF) boundariggnere, — 1
are also shown. Veéoko
« Section Il describes and verifies results of PEC, PMC,
Mur and SF/TF boundary simulations. B. 1D time advancement equations
« Section IV uses SF/TF and Mur boundaries to analyze
Guassian pulse reflections from dielectric slabs of variousAlthough the 1D scalar wave equation (5) can be solved

is the speed of light in vacuum.

thicknesses. directly by centered 2nd differences [3], it is not robust for
. Section V provides a conclusion to the overall experfolutions of problems that depend on bath and H. In
ment. 1966, Kane Yee proposed an algorithm [4] where the first

order electric (3) and magnetic (4) equations are coupled
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Ex Ex Ex Ex Ex Ex Hy=Hy-dt./mu. *diff(Ex)/dz;
4 + t=At Ex(2:M)=Ex(2:M)-dt./ep. + diff(Hy)/dz;
Fr T T T T n=1 end
Hy Hy Hy Hy Hy Hy _ Using the above code as the 1D-FDTD core, implementations
SH—o——— - - —-o—— :1;01';52;“ of sources and various other boundary conditions can be easily
appended.
Ex Ex Ex Ex Ex Ex
t —— Pt o t=o0 C. Source
Z=|0 Z=‘AZ Z=|2AZ | Z=M‘AZ Z=|(M +1) A’; =0 Let the grid be filled with free space. We prpceed to _Iaunch a
k=1 k=2 k=3 K=M  Kk=M+1 modulated Gaussian pulse into the grid by directly driving

at the boundary = 0,k = 1. Let us choose the modulation
Fig. 1. 1D space-time chart of the Yee algorithm showing central differenci€0uency so that its wavelength i = 0.5.m (green light)
for the space derivatives and leapfrog over the time derivatives. k represaiitd select a Gaussian pulse width large enough to see about
electric field node numbers and n is the time step. 5 cycles of this modulation. We also would like the grid to be
long enough irg so that the modulated Gaussian pulse fills at
most 1/5 ofz. We define the modulation signal by:

update equations in time are: )
C

n+1/2 n—1/2 n n - = 9
HylyYiys = Hylgas 1 Baliyy — Ealy Ko fo X To ©)
At o Az m(t) = sin(27 fo t) (20)
E i — B, R 1 Hy\ZLl//; - HUIZE;; where 7 is the period of the modulation signah(t). A

At e Az Gaussian pulse centeredtatis defined by
Since a majority of the programming languages can not handle g(t) = o (t—tc)?/20° (11)

none integer array indexes, equations (7) and (8) must be

; . t t. = 57./2 so that the Gaussian pulse is centered at
converted to a pseudo form where only integer arra mde%g ° ¢ . :
P y 9 y alf of the total 5 cycles of the modulation signal.can be

are used: determined by requiring that. be confined within the full
Hy(1 to M)=0; width at half maximum (FWHM) [5] of the Gaussian pulse or
Ex(1 to M+1)=0; te te

For n=1 to total # of time steps, = FWHM - 2vans (12)

Ex(1)=source(n); Multiplication of (10) with (11) produces the continuous

For k=1 to M, ; :
Hy(K)=Hy(K)-dt/mu(k) « (Ex(k+1)-Ex(K))/dz: modulated Gaussian source:
end E.(t) = sin(27 fo t)e_(t_t“)z/%z; (13)
For k=2 to M, where it's corresponding discrete version is:
Ex(k)=Ex(k)-dt/ep(k) * (Hy(k)-Hy(k-1))/dz; s
end E.(n) = sin(27 fo nAt)e™ (MAt=te)™/207 (14)
end To calculate the grid length so that the modulated Gaussian
The first few lines of code initialize thés, and H, space
vectors to zero; notice that the, vector has one additional i ; , —
element at the end. The first For loop is the time stepping loop, 5. /}‘ N\ | Moduiatea Puse x.cboum 0Pz, « =1.1ts
where the first Ex node is updated by the source and subse ,,//\ 0 ‘\‘\f\ ° : °
quent inner For loops update nodesif and H,, up to M. The g ° “’\( I |
M+1 E, nodes are not updated after initialization because the ~ *¢7 ||
M+1 H, nodes do not exist after the first full time step. Notice L = S
that the leap-frogging in time is implicitly build into the code, t{fs)
i.e. there are no time subscripts anywhere. The line where o ‘ S Moduiated Pulst (Sampled)
Hy(k)=Hy(k)-dt/mu(k) * (Ex(k+1)-Ex(k))/dz has Lk At=1,/50=0.0333(fs) L
the following meaning: theHy(k) , Ex(k+1) and Ex(k)
on the right is from the previous half time step, whereas the
Hy(k) on the left is the current time step. Because MATLAB it
is a high level language, the above pseudo code is reduced t s 200 500 500 7000 1200
just a few lines: n
Hy(1:M)=0; Fig. 2. Modulation of a Gaussian pulse using a 0.6PHz Sine wave.
Ex(1:M+1)=0;
For n=1:N, pulse fills at most /5 of z we simply multiply the pulse length

Ex(1)=source(n); of 5)¢ by 5.
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D. PEC and PMC Boundary Notice that theF, |7 node is a total field node. For consistency

Perfect electric conductor (PEC) and perfect magnetic coffé must use the same field types when performing the

ductor (PMC) boundaries are specified by simply setting tHés|z—1/2 node update and since tté, |/, node lies on
boundary electric field nodg, = 0 or the boundary magneticthe scattered side of the bounddryall field used in its update

field nodeH, = 0, respectively. equation must be of the scattered type. Therefore, (17) should
in fact be
E. 1st order Mur Boundary Hsca‘eri//é _ Hscal’fll/fi//é _ gEg‘jlcam — Esealn_ 18
Yy - Yy - :

Equations describing the 1st order Mur boundary is given H Az
in the notes [3]. We will update those equations so that th&ye can make use of
are consistent with the notation used here. To place a Mur gecan _ _ptotn 4 pinejn 19
radiation boundary at nod&/ or the last electric field node B = B+ EL (19)
on the right: to correct (17) so that it is equivalent to (18), and the resulting

N " cAt — Az N . equation is
B3 = Euliro1 + o (B3t — Exlir). (15)
cAt 4+ Az Hsca‘n—&-l/Q _ Hsca|n+1/2 + At Einc|n (20)
To place a Mur radiation boundary at node 1 or the first electric y 'L=1/27 Ty L1270 AT 1L
field node on the left: (18) 17
Bt = Bl + cAt — Az (B, |3t! — B, |7). (16) A si_milar argument can be made for the |1, qode, if equa}tion
cAt+ Az (8) is updated on the + 1 time step, then in actuality it did
the following:
F. Scattered/Total Field Boundary 11/ 11/
tot | sca|m

Formulation of the 1D Scattered/Total field boundary can beEtot|n+1 = Etot|n _ HHV |L+1/2 Ty |L—1/2. 1)

found in [1]. However, because we are dealing with different * L v L € Az

set of field components than one does [1], the field CorreCti%tice that thel ‘n+1/2
Yy

tactors differ in sian. It is theref ¢ N 11/, Node is a scattered field node. For
actors difier in sign. 1 1S therefore necessary for us 1o r":i:':'onsistency we must use the same field types when performing
derive the correct update equations.

the E,.|;, node update and since tli& |;, node lies on the total
side of the boundary., all field used in its update equation

& ttered Total must be of the total type. Therefore, (21) should in fact be

Ex i Ex At Htot‘n+1/2 _ H,tot‘""!_‘l/Q
ETX (k=TL'1) 5(k?L) Ex Eiot|z+1 _ Ei(’t\i - Yy L+1/2AZ y L 1/2. (22)
i l T n+1 We can make use of
Hy | Hy ot n+1/2 scan+1/2 inc|n+1/2
|'F|¥ (k=/|.\-1i2) {(k=L+1/2) Hy 12 _H; t|L—1/2 = _Hy ‘L—1/2 o Hy |L—1/2 (23)
Z L ——® h+
- . ] £ ®© to correct (21) so that it is equivalent to (22), and the resulting
X ' Ex

Ex =1 N Ex equation is
LT SR . R
i ~— ~——— €Az
SF/TF'Boundary (@2) @1
The above formulations illustrate that only nodes immediately

Fig. 3. Scattered/Total field boundary diagram. Color nodes are involvé@ the left and right of the boundary need modification; this
in the formulation of the boundary update equations; red nodes requirkeans that the original computer algorithm used to update
correction. equations (7)-(8) which are equivalent to (17) and (21) can
a?xecute as before, with modifications (18) and (22) performed
a?terwards. However, there is one catch, the correction equa-
tions (18) and (22) now require incident field components

%%ﬂg and H;"“Vijﬁ be defined. There are two ways to

Let the Scattered/Total field boundary be on the immedi
left of the electric nodel; if field types were the same on
both sides of the boundary (both scattered or both total) th
equations (7)-(8) can be used to update the corresponding fi ) _ . e
in time. However, because we had intended for the field G}?COTEIJ/S; this task, one way is to def'ngvLL a_md compute
the left of the boundary to be the scattered field and on t#&,"“[. "1/ Pased on Maxwell's equations (which involves an
right the total field, if equation (7) for thél,|;,_,, node is impedance factor and a phase shift); the other way is to simply

updated on the: + 1/2 time step, then in actuality it did the Propagate the incident field in its own FDTD grid having the
following: sameAz and At relationship as that for the scattered and

tor in cealn total field. This latter approach ensures that all field types, i.e.
At B - B} ‘L—ll (17) incident, scattered and total suffer the same grid dispersion
2 Az (see Section Ill), therefore it is implemented in the actual code.

scan+1/2 scan—1/2
Hy |L—1/2 - Hy ‘L—1/2 -
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A_=0.5um, Az =2 /20 = 0.025um, At = 1Az/c = 0.083fs, z = 12.5um
[1l. RESULTS o oK o H H

Having described formulations and basic pseudo code im-
plementations of various parts of the one-dimensional FDTD ,, N
algorithm, we now turn to results and verification. w
PEC— 7]

A. Initialization 0 100 200 300 400 500
k

Initialization should be performed at the beginning of a x10° t=2.08fs,n=25
simulation. Fig. 4 shows the initialized 1D space gridif(k) 2 ‘ ‘ '
andH, (k) at timet = 0fs orn = 0, wheren is the time index. 10
The grid spacing is choosing to ez = X\(/20 = cAt¢; this To
is equivalent to sampling the input sign@l. in time atr/20, -
wherer = \o/c = 1/ fy is the period of the modulation signal. ‘ ‘ . .

A probe is placed at the center of the grid for samplifig 0 100 20 300 400 500

%, = 0.5pm, Az = /20 = 0.025.m, At = 1Azlc = 0.083fs, z = 12.5um (a) Pulse entering from the left at t=2.08fs and n=25.

1 : : :
Ay = 0.5um, Az =2 /20 = 0.025um, At = 1Az/c = 0.083fs, z = 12.5um
0.5- 1 1 : . : -
g o f 05
-0.5 probe | g o /
1 s ‘ . s 05
0 100 200 300 400 500
k 1 s ‘ . ‘
x10° t=0fs,n=0 0 100 200 300 400 500
‘ : : k
2r 1 x10° t=4.17fs,n =50
1 . 4 T T T
I \ 1
g >0
2t 4 Al
0 100 200 300 400 500 Py
k ‘ ‘ . .
0 100 200 300 400 500
Fig. 4. Space grid initialization at time= 0(fs). Ez |, and Hy |, nodes are
set to initial values of O(V/m) and O(A/m), respectively. A sampling probe (b) Pulse propagating to the right at t=4.17fs and n=50.
is placed at the center of the grid. No boundary conditions are explicitly
specified anywhere. Ay = 0.5um, Az = /20 = 0.025um, At = 1Az/c = 0.083fs, z = 12.5um

1
and H, pulses in time as they pass by. We will first operate o5}
at the magic time step\z = cAt then shift off and adjust the X ok S
spatial sampling to observe numerical dispersion.

B. PEC verification 0 100 200 300 400 500
' K

In this section, we will enforce a PEC boundary condition at x10° £ 6538 n = 100
2 = Zmae = 12.5um and let the code run sufficiently long for
the modulated Gaussian pulse to pass the probe point, bounc
off the PEC atz,,,4, Or K = M and pass the probe point again. £
For clarity, we will first follow the pulse closely in space, take
snap shots of it at different times and then display the probe s ‘ :
data later. Figures (5-7) show these snap shot&.dk) and 100 200 K 300 400 500
H, (k) at different times. Th.e first thing to notice' i; the red (c) Entire pulse entered space grid at t=8.33fs and n=100.
PEC boundary at = z,,,, in all of the figures; it is also
important to note that the amplitude &f, (k) is at all times Fig. 5. E.(k) and Hy (k) at (a) t=2.08fs (b) 4.17fs and (c) 8.33fs. Notice

Y ey that by (c) the entire pulse fit approximately 1/5th of the total distancé
a factor ofyg = \/uo/eo smaller than that of, (k). The 12.5um; and there are exactly = 500 electric nodes oH99Az in z. The

pulse initiates from the left most electric field node in Fig. Sed vertical line at the boundary = zimas = 12.5um,k = M = 500 is
propagates pass the probe point in Fig. 6 and finally collidés PEC.
with the PEC in Fig. 7.

From basic electromagnetic theory, we expect the tangential
electric field to be zero on the PEC; therefore the reflectedmparing the incidenE,. (k) before colliding with the PEC
electric field must be 180 degrees out of phase compared(&) to the reflectedz, (k) after colliding with the PEC (c);
that of the incident field. This result is shown in Fig. 7 byemember that the leading edge of the incident pulse is to

N = O = N
a7
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the right whereas the leading edge of the reflected pulse is tc
the left. The 180 degree phase shift is more obvious if one

comparesE, (k) to Hy (k) before and after colliding with the
PEC in fig. 7(a) and (c), respectively.

7»0 =0.5um, Az = 7»0/20 =0.025um, At = 1Az/c = 0.083fs, z = 12.5um
1 T T T

0.5~

g o——
-0.5¢

0 100 200 300 400 500
k
-3 t=20.8fs, n = 250

0 100 200 300 400 500
k

(a) Pulse approaching probe at t=20.8fs and n=250.

xo =0.5um, Az = LOIZO =0.025um, At = 1Az/c = 0.083fs, z = 12.5um

1 ; ‘ . ‘
0.5}
X o
0.5}
A ‘ ‘ . ‘
0 100 200 300 400 500
k
x10° t = 25fs, n = 300
2 . 4
1 . B
o «/\
AF |
2t g
0 100 200 300 400 500
k

(b) Pulse passing the probe at t=25fs and n=300.

)”0 =0.5um, Az = lol20 =0.025um, At = 1Az/c = 0.083fs, z = 12.5um

1 T T T T
0.5+
5 o —a/ N
-0.5¢ 1
A . . A .
0 100 200 300 400 500
k
x10° t=29.2fs, n = 350
2 . 4
1+ ]
zo N
Ak i
2 i
0 100 200 300 400 500
k

(c) Pulse approaching the PEC at t=29.2fs and n=350.

7»0 =0.5um, Az = 7»0/20 =0.025um, At = 1Az/c = 0.083fs, z = 12.5um

0.5f
5 o
0.5F
4 . . . A
0 100 200 300 400 500
k
x10° t = 37.5fs, n = 450
2 .
1 .
£o
AF
2+
0 100 200 300 400 500
k

(a) Pulse approaching the PEC at t=37.5fs and n=450.

}"0 =0.5pm, Az = hol20 =0.025um, At = 1Az/c = 0.083fs, z = 12.5um

1 . . T .
0.5+
o oo
-0.5¢
A . . L .
0 100 200 300 400 500
k
x10° t=45.8fs, n = 550
2 L 4
1 . 4
;|>:' 0 W\
At
2t 1
0 100 200 300 400 500
k

(b) Pulse colliding with the PEC at t=45.8fs and n=550.

Ay = 0.5pm, Az = /20 = 0.025um, At = 1Azlc = 0.083fs, z = 12.5pm

1 T T T
0.5-
g o [~
-0.5F
P . ‘ ‘ .
0 100 200 300 400 500
k
x10° t=54.2fs, n = 650
2 - 4
10 ]
£o A\, "
A ]
2F |
0 100 200 300 400 500
k

(c) Pulse reflected from the PEC at t=54.2fs and n=600.

Fig. 7. E.(k) and Hy (k) (a) before the PEC at t=37.5fs (b) colliding with
the PEC at t=45.8fs and (c) reflected from the PEC at t=54.2fs. Notice the
constructive interference between the incidehtand the reflected,, at (b);
becausefl, and E,. differ in phase after reflection, whil&,. is constructive
interfering with maximum amplitude greater than unify, is destructive
interfering, this is whyH, shows decrease in overall amplitude compared to
E, in (b).

Fig. 6. E.(k) and Hy (k) (a) right before the probe at t=20.8fs (b) passing

the probe at t=25fs and (c) approaching the PEC at t=29.2fs. This demonstrates | . L
that the probe is merely a measuring device and does not alter the wavefornPUring the collision, part of the incident pulse reflects off

in anyway.

the PEC and interferes with its own trailing tail; at the time
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of Fig. 7(b), this interference happens to be constructive in

E, but destructive inf{, due to the phase difference af
between them. The sampling probe at the center of the gri
simply savesE, and H, at k =probe_pos for each time
stepn; i.e. probe data vectors are of lengthand do not
interact with the field vectors in any other way.

Ay = 0.5um, Az = . /20 = 0.025um, At = 1Az/c = 0.083fs, zk 250 = 6:25um
1
0.5
2
<% o
X
-0.51
-
0 200 400 600 800 000
x1 t=83. 3fs n =1000
2 . 4
w
g 1r 1
2
& 0
=>.¥
£ - 1
2+ i
0 200 400 600 800 1000

n

Fig. 8. Probe data of, and Hy at grid positionk = 250 andk = 250.5
respectively, as a function of time step The total simulated duration was
83.3fs orn = 1000.

Fig. 8 displaysE, and H, fields at the probe location of
k = 250 and &k = 250.5 respectively, for a total simulation
duration of 83.3fs; it clearly shows that the PECzat 2,4,
or n = 500 causedE, to invert while leavingH, un-altered.

C. PMC
We now replace the PEC (red) at= z,,,, by a PMC

(green) and repeat the steps from the previous section. Fc

04

)»0 =0.5um, Az = 7»0/20 =0.025um, At = 1Az/c = 0.083fs, z = 12.5um

. 0.5F
d
5 o
-0.5f
1 : ) , A
0 100 200 300 400 500
k
x10° t = 37.5fs, n = 450
2 .
1 .
o
AF
2+
0 100 200 300 400 500
(a) Pulse approaching the PMC at t=37.5fs and n=450.
Ay = 0.5um, Az = ) /20 = 0.025um, At = 1Azlc = 0.083fs, z = 12.5um
1 - - . .
0.5f 1
& o / \
0.5+ 1
1 ‘ ‘ . ‘
0 100 200 300 400 500
k
x10° t=45.8fs, n = 550
2 L B
1+ |
£o
At |
-2+
0 100 200 300 400 500

k
(b) Pulse colliding with the PMC at t=45.8fs and n=550.

A= 0.5um, Az = 10/20 =0.025um, At = 1Az/c = 0.083fs, z = 12.5pm

brevity, we will only show the pulse before and after the PMC 1 ’ ‘ ' '
as snaps shots in space, and let the probe keep a record of i 05|
journey in time. g o0 \ T
0.5
A = 0.5pm, Az = ), /20 = 0.025pm, At = 1Azlc = 0.083fs, zk —250 = 6:25pm
4 , : . .
1 ; ' ' 0 100 200 300 400 500
0.5- k
g x10° t=54.2fs, n = 650
c .lé 0 T T T
X 2+
0.5¢ 1t
>
A : ; s o
0 200 400 600 800 1000 Ak
n
x10° t=83.3fs, n = 1000 2r . . ‘ ‘
of ‘ i 0 100 200 300 400 500
- k
g 17 i
2 o (c) Pulse reflected from the PMC at t=54.2fs and n=650.
:>f“‘ AL 4
£ -1 Fig. 10. E(k) andHy(k) (a) before the PMC at t=37.5fs (b) colliding with
20 ) ‘ ] the PMC at t=45.8fs and (c) reflected from the PMC at t=54.2fs. Notice the
0 200 400 600 800 1000 constructive interference between the incid&ft and the reflecteds, at (b);

Fig. 9. PMC probe data oF, and H, at grid positionk = 250 and
k = 250.5 as a function of time step. The total simulated duration was

83.3fs orn = 1000.

Fig. 9 displaysE, and H, fields at the probe location of
k = 250 and k = 250.5 respectively, for a total simulation

becausefl, and E,. differ in phase after reflection, whil&l, is constructive
interfering with its tail, £, is destructive interfering with his. This is why
E. shows less than unity amplitude comparedHg in (b).

duration of 83.3fs; it clearly shows that the PMCzat 2,4
or n = 500 causedH, to invert while leavingE, un-altered.
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D. Grid dispersion 1 — 1.
cAl =|Ax
The previous PEC and PMC results were obtained at the  0.95
magic time step wherédt = Az/c. In this section, we will 0.9 Ax=2,/10
examine what happens to the pulse shape on both passeY, ; gs cAr=Ax|2"
through the probe for the PEC case wham # Az/c but c o.8 v, =0.9873¢ \ | eAr=9/10 Ax
< Azfe. 0.75
cAt = Ax/2

First P. :A_=0.5um, b 6.25 0.7
irst Pass : &, =0.5um, probe @ 6.25um 0.01 0.02 0.05 0.1 0.2  0.5=Nyquist

1 bl
—— At=1Azlc, Az=) 20 Ax/A limit
[ [ At=0.5Az/c, Az=x0120
X0 At=0.5Azlc, Az= /5 Fig. 12. Phase velocity relative toas a function of space and time griding
¢ [3]. The red and green dots corresponds to the operating point of red and
green curves in Fig. 11.
R ‘ s s
0 5 10 15
First Pass : }”o = 0.5um, probe @ 6.25um
x10° 1
af —— At=1Azlc, Az=) /20
Al = || At=0.5Az/c, Az=kol10
o g0
I
A+
2+ 1 1 1 L L {
w w w 0 5 10 15 20 25 30 35 40
0 5 10 15 t (fs)
x10°
(a) First pass through the probe. 2
1 |-
Second Pass : xo = 0.5pm, probe @ 6.25um = 0
1 £
——— At=1Azlc, Az=) /20 -F
SRR — At=0.5Azlc, Az=), /20 -2r , , ‘ ‘ i ‘ ‘ ‘
% 0 At=0.5Az/c, Az=). I5 0 5 10 15 20 25 30 35 40
w . 3 0
t (fs)
1 ‘ ‘ ‘ ) (a) First pass through the probe.
45 50 55 60
Second Pass : xo = 0.5um, probe @ 6.25um
x10° 1
o : T — At=1Az/c, Az=x0120
il = || At=0.5Azlc, Az=) /10
I
1 |-
2+ -1 I I L I
L L s . 45 50 55 60
45 50 55 60 t (fs)
t (fs) < 10°
(b) Second pass after reflection from PEC. 2+
1 L
Fig. 11. Comparison of probe dafg,(t) and Hy(t) during the first pass g,
(a) and the second pass (b) after reflecting from the PECAgr=£ Az/c, £
Az = Xo/20), (At = 0.5Az/c, Az = Xg/20), and (At = 0.5Az/c, Ar
Az = Ao/5). 2 ‘ A A ‘

45 50 55 60 65 70 75 80

Using the numerical dispersion diagram of Fig. 12, dupli- t(fs)
cated from [3] as a guide: first, we l&k¢ = 0.5Az/c but (b) Second pass after reflection from PEC.
keep Az = Ao/20 the same to see the shift of the pulse, . . oo oone dafg, (t) and H,(t) during the first pass
phase with respect to the pulse envelope; this correspomiSing the second pass (b) after reflecting from the PEC/ar Az/c,
to the red operating point of Fig. 12; second, in addition tdz = Xo/20), and At = 0.5Az/c, Az = Xo/10).
operating atAt = 0.5Az/c we adjust the spatial sampling
from Az = X\y/20 to Az = \/5 and observe changes in the
pulse velocity (this corresponds to the green operating pointtbft grid dispersion increases with increasing propagation
Fig. 12). We are essentially performing simulations at differedistance and induces phase shift and distortion to the pulse.
points on the reddAt = Ax/2) curve, keeping in mind that During the first pass Fig. 11(a), the off-magic-time pulse
Ax is our Az. (red) shows slight phase delay when compared to the magic-

From Fig. 11, we see that for the case: = )\;/20, time pulse (blue); however by the second pass after the pulse
comparison between the ideal pulse propagating at the magiflected from the PEC in Fig. 11(b), not only was the pulse

time step (blue) to the case whete = 0.5Az/c (red) shows phase delayed further when compared to the original envelope
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. . A =0.5um, Az =2 /20 = 0.025um, At = 1Az/c = 0.083fs, z = 12.5
but its shape was distorted; what appears to be an odd puls R 0 um e S 27 eoum

before, now appears even. The result is even more dramatic it

(green) of Fig. 11, where the increase/Ar by a factor of 4 08 ]

to A\g/5 not only widened the pulse but also reduced its phased © %

velocity, i.e., the green pulse arrived late at the probe comparec -0.5¢ Mur—>]

to both the blue and red pulses. This is to be expected from 4 s : s ]

the dispersion diagram of Fig. 12, where the phase velocity 0 100 200 K 300 400 500

degradation due to grid dispersion at the green operating poin x10° t=37.5fs, n = 450

is predicted to be about 5%. To save computational resources 2} ‘ ‘ '

it is common practice to usAz = \y/10 and At = 0.5Az/c 1

to limit the amount dispersion (phase error); this case is shown £ © \

in Fig. 13. ;

E. First-order Mur radiation boundary ° 100 200 k 300 0o *00
In this section, we will enforce a first-order Mur radia- (a) Pulse approaching the ABC at t=37.5fs and n=450.

tion/absorbing boundary condition (ABC) at = z4: = A = 0.5um, Az = 3 /20 = 0.025um, At = 1Azle = 0.083fs, 2 = 12.5um

12.5um and test its operation first at the magic time step. 1 ' o ] ' S ]

Ay = 0.5um, Az = 1 /20 = 0.025um, At = 1Azlc = 0.083fs, 2, _,, = 6.25um 0.5

k=250

1 T T T T u’j 0 ﬂ/\ B
. 051 b -0.5F \
c ﬁ (1] -1 ! ! . !
5 0 100 200 300 400 500
-0.5- A k
‘ . ‘ ‘ x10° t = 45.8fs, n = 5650

0 200 400 600 800 1000 2l
t= 833fs n—1ooo 1r
T >0 1
2l ] I
0 At
g1 1 2}
& o , . . .
o 0 100 200 300 400 500
I “r b K
-2F Bl
. (b) Pulse entering the ABC at t=45.8fs and n=550.

0 800 1000
A= 0.5um, Az = 7»0/20 =0.025um, At = 1Az/c = 0.083fs, z = 12.5pm
1

Fig. 14.  Mur probe data ofy, and H, at grid positionk = 250 and
k = 250.5 as a function of time step. Az = X\g/20 andA¢ = Az/c. The 0.5+
total simulated duration was 83.3fs ar= 1000.

g oo

Letting the simulation run for the same duratibs- 83.3fs -05¢
as was previously done for the PEC and PMC cases, we fin 0 100 200 200 200 500
from the probe data of Fig. 14 that the pulse only pass the k
probe once, indicating that it has indeed radiated or absorber ~ x10° £ 54288, n = 650
by the Mur atz = z,,,.. Fig. 15 shows snap shots of the 2
Mur boundary in action. Although the Mur boundary worked 1
perfectly for the magic time step, due to the use of centerec £0
differences and the order of approximation, this boundary will ;
be imperfect when operating off the magic time step. An o oo o0 50 o0 500
estimate of the reflectivity of the first-order Mur boundary K
at Az = A\o/10 and At = 0.5Az/c can be found using the (c) Pulse absorbed by the ABC at t=54.2fs and n=650.

following equation [3]:
Fig. 15. E. (k) and Hy (k) (a) before the ABC at t=37.5fs (b) entering the

a—>b
— ~ . ABC at t=45.8fs and (c) absorbed by the ABC at t=54.2s. = \¢/20 and
|7t | b 0.0131; (25) At — Axje.
where
a = Azsin(woAt/2) cos(k,Az/2), (26)

) incident and reflected pulse using the time domain probe data
b= cAt cos(woAt/2) sin(k.Az/2). @7 of Fig. 16 or more accurately determined by the ratio of their

Simulation validation of the 0.0131 reflectance from equdzourier transforms, see Fig. 17.
tion (25) can be estimated from peak field values of the The maximum peak value of the incident electric field from
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A, = 0.5um, Az = 4 /10 = 0.05um, At = 0.5Az/c = 0.083fs, 2, _,,, = 6.25um : : , . :
- —Ex
1 T inc
Ex
0-5' sca
<L 0
X = ]
. -0.9915 s
LL.I:‘
A . . . . E
0 200 400 600 800 1000 = |
n [
< 10° t= 83.3fs, n = 1000 2 ]
E
2+ E S
w z 7
g1
g o - ’
ol | Ex_., @ 0.6PHz=0.0199 |
2t p
0 200 400 600 800 1000 1 2 3 4 5 6
n frequency (PHz)
a) Total probe data.
@ P Fig. 17. Discrete Fourier transform of the incident and refledizd¢) in
%, = 0.5um, Az = % /10 = 0.05um, At = 0.5Azic = 0.083fs, z,_, , = 6.25u the case of Mur boundary operating At = \g/10 and At = 0.5Az/c.
0.02 : ‘ , ,
oo | 1x° = 0.5um, Az = ) /20 = 0.025um, At = 1Az/c = 0.083fs, z = 12.5um
% A | [ —
% \ 05}
-0.01f -0.0191 9
X o
-0.02 -
500 600 700 800 900 1000 -0.5}
n
x10° . t = 83.3fs, n=1000 ' "o 100 200 300 400 500
k
x10° t=16.7fs, n = 200
i ; : .
1 .
4 ] £o /
500 600 700 800 900 1000 Ar
n 2
(b) Scattered half of the probe data with better scaling. 0 100 200 ‘ 300 400 500
Fig. 16. Mur probe data (a) of; and H, at grid positionk = 125 and (a) Pulse emerging from SF/TF boundary at t=16.7fs and n=200.
k = 125.5 as a function of time step. (b) is the second half of (a) (scattered
only) shown with better scaling\z = A\o/10 and At = 0.5Az/c. The total A_=0.5um, Az = A /20 = 0.025um, At = 1Az/c = 0.083fs, z = 12.5um
simulated duration was 83.3fs ar= 1000. 1 ° i ’ i
05}
Fig. 16 is -0.9915(V/m) and the maximum peak value of the i 07—*«/\ \
reflected electric field is -0.0191(V/m); their ratio450.0193 0.5
which is higher than (25)'s estimate of 0.0131. Repeating the , . . .
exercise using the magnitude of the Fourier transforms of the 0 100 20 300 400 500
incident and reflected pulse Fig. 17 produced a reflectance o %10 t=23.3fs, n = 280
0.0199 atf, of 0.6PHz. of ' ' ‘
o \
F. Scattered/Total Boundary £o *“\/\ A
. . . Ar
At a distance of approximately 1/3 of the way into the mesh |
from z = 0, we added a scattered/total field boundary. Fig. 18 0 100 200 300 200 500
demonstrates that botl, (k) and H,(k) only propagate k
towards the positive direction. Notice the reason it took the (b) Pulse entered space grid at t=23.3fs and n=280.

pulse about 16.7fs to emerge from the SF/TF boundary has to
do with the fact that we have propagated&s. and H;,,. on Fig- 15(31- Ex(lk) lan_d Hyf(}’ﬂ) (@) emerginTgh_fFO_m the SF/IF boundc?ry (b) |
itS own 1D-FDTD gr|d Starting at node -0 and they need Szfgée completely into the space grid. Is Is essentially an unidirectiona

to first travel 1/3 of the totat to reach the SF/TF boundary.

IV. DIELECTRIC SLAB additionally we add a dielectric array (slab) of refractive index
In this section, we implement the same first-order Mut = 1.5 on the same sampling grid as the electric field array
condition on boundaries = 0,z = zmne. = 12.5um; at about 2/3 of the way and filled the rest with aie= 1.
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Ay =0.5um, Az =} /20 = 0.025um, At = 1Az/c = 0.083fs, z = 12.5um Ay = 0.5um, Az = % /20 = 0.025um, At = 1Azlc = 0.083fs, z,_,, = 2.08um
1 ‘ ‘ 0.04 T . : :
0.5¢ 1 0.02f 1
¥ o—eo—— EE 0
0.5f 1 -0.02 1
1 1 L I -0.04 1 L L L
0 100 200 300 400 500 0 200 400 600 800 1000
k n
x10° t=20.8fs, n = 250 | 10 t=83.3fs, n = 1000
2 | 0.5
v V.or 4
NI ' H
£ 0 B oo
>
Ar 1 T .os5f 1
-2 L ] 1 1 1 1 L
0 100 200 300 400 500 o 200 400 600 800 1000
k n
(a) Pulse emerging from SF/TF boundary. (a) Scattered field probe data &f, and H,, for the A4 /2 thick slab

case shown in Fig. 19.
Ay = 0.5um, Az =) /20 = 0.025pm, At = 1Az/c = 0.083fs, z = 12.5um

1 .
1 . : B
0.5 0.9+ E
sca
g o 0.8 .
-0.5} = 07 1
¥ : : W g6t i
0 100 200 300 400 500 g
K E
T 05F 1
x10° t = 37.5fs, n = 450 8
2t g 0.4 .
1t 2 03 1
>
£o /\
A+ 0.2
-2} 01t 1
0 100 200 300 400 500 o . Y ‘
k 0.4 0.5 0.6 07 0.8 0.9 1

frequency (PHz
(b) Pulse reflected and transmitted after hitting the dielectric slab. a y (PH2)
(b) Discrete Fourier transform of the incident and scattefed¢) in

A, = 0.5um, Az = 4 /20 = 0.025um, At = 1Az/c = 0.083fs, z = 12.5um (a)-
1 , :
0.12 : :
0.5¢ 1
§ 00— ﬂ/\ ] 0.4~
-0.5¢
A ‘ . : 0.081
0 100 200 300 400 500
k
x10° t = 45.8fs, n = 550 ‘ = 0.06)
2 - 4
H | 0.04}
oo :
AF
2+ 0.02
0 100 200 300 400 500
k 0 ‘ ‘ . . . ‘
. ) 0.4 0.5 0.6 0.7 0.8 0.9 1
(c) Transmitted pulse gets absorbed by the Mur while the reflected frequency (PHz)

pulse approaches the probe. . ) o ) )
(c) Magnitude of the reflection coefficient obtained by the ratio of the

Fig. 19. E. (k) and H, (k) at various instances in time impinging on a Scattered to incident Fourier transforms of (b).

dielectric slab of indexx = 1.5, thickness\y /2 = 0.204um . .

: Fig. 20. (a)Scattered field probe datafof andH,, of the\,/2 = 0.204um
thick slab. (b) Discrete Fourier transform of the incident and scatt&rg@)
in (a). (c) Magnitude of the reflection coefficient frofn= 0.3 to f = 1PHz
corresponding to\p = 1um to A\p = 300nm.

For accuracy, we choose to operate at the magic time step

dt = dz/c with dz = X\g/20. The scattered electric field is
measured by a probe placed in the scattered field region about
1/6 of the the total distance at= 2.08um. Figures (20-21) show the initial simulation using standard
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Ay = 0.51m, Az =, /20 = 0.025um, At = 1A2/c = 0.083fs, z,_, . = 2.08um

7»0 =0.5um, Az = 7»0/20 =0.025um, At = 1Az/c = 0.083fs, z = 12.5um

11

0.1 . . . 1 : ;
0.05 1 0.5F i
$
LV 0 J W~ X o—-o——— -~~~ /
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-0.05F ] 0.5- .
-0.1 1 L 1 A1 . , 1
0 200 400 600 800 1000 0 100 200 300 400 500
n k
X 10* t = 83.3fs, n = 1000 x10° t = 37.5fs, n = 450
2 2r ]
g 4 |
go e — /
X ‘
I of i “1F E
4 1 L L L -2 [ T
0 200 400 600 800 1000 0 100 200 300 400 500
n k
(a) Scattered field probe data &f, and H, for the A, /4 thick slab (a) Pulse reflected from the front face of the slab.
case.
1 Ay = 0.5um, Az =2 /20 = 0.025um, At = 1Azlc = 0.083fs, z = 12.5um
o 9 | Exinc | 1 T T T
Ex_, 0.5
0.8} 1 u’j 0 o— i
= 0.7 1 0.5 J
VK
Y o6f 1 -1 : : :
E 0 100 200 300 400 500
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011 T ] 2F ‘ ‘ . 1
— " —— : 0 100 200 300 400 500
0.4 0.5 0.6 0.7 0.8 0.9 1 K
frequency (PHz)
. . _ . b) Pulse reflected from the back face of the slab.
(b) Discrete Fourier transform of the incident and scattefgd¢) in ®
@) Ay = 0.5pm, Az = 2, /20 = 0.025pm, At = 1Azlc = 0.083fs, z = 12.5um
0.11 . : 1 ' ' ‘
0.5- 1
0.1+ u’j 0F
0.5F -
0.09
1 . ‘ .
0 100 200 300 400 500
0.08 k
= x10° t =54.2fs, n = 650
0.07 2 1
1 | 4
0.06 - Z ok
At ]
0.05 2F 1
(1] 100 200 300 400 500
0.04 . ‘ . . ‘ ‘ k
0.4 0.5 0.6 0.7 0.8 0.9 .
frequency (PHz) (c) Pulse absorbed by the Mur ABC on the left of the space grid.

(c) Magnitude of the reflection coefficient obtained by the ratio of the

scattered to incident Fourier transforms of (b). Fig. 22. E.(k) and Hy(k) at various instances in time impinging on a

dielectric slab of index: = 1.5, thicknessl0.5\; = 4.284um

Fig. 21. (a)Scattered field probe datafof andH,, of theAy /4 = 0.102um
thick slab. (b) Discrete Fourier transform of the incident and scattered)
in (a). (c) Magnitude of the reflection coefficient frofn= 0.3 to f = 1PHz . . . .
corresponding to\g = 1um t0 Ao = 300nm. minimum and maximum reflection, respectively.

Because sub-wavelength optical components are difficult to
manufacture, it is common to add a multipl¢ to the basic
Ag/2 and A\y/4 thick dielectric slabs; they clearly indicate),/4 or A,/2 plate thicknesses; however, from Figures (23-

that at these slab thicknesses, the incident pulse experienzés we find that increasing the plate thickness reduces the
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A= 0.5um, Az = 4 /20 = 0.025um, At = 1Az/c = 0.083fs, 2, _, = 2.08um
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(a) Scattered field probe data df, and H, for the 10.5)\; =
4.284pm thick slab case shown in Fig. 22.

1

n

(a) Scattered field probe data @, and H, for the 10.25A\; =
4.182pm thick slab case.
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(c) Magnitude of the reflection coefficient obtained by the ratio of the
scattered to incident Fourier transforms of (b).

(c) Magnitude of the reflection coefficient obtained by the ratio of the
scattered to incident Fourier transforms of (b).

Fig. 23. (a) Scattered field probe data Bf. and H, of the 10.5A, = Fig. 24. (a) Scattered field probe data Bf and H, of the 10.25\, =
4.284pum thick slab. (b) Discrete Fourier transform of the incident and.182um thick slab. (b) Discrete Fourier transform of the incident and
scattered £ (¢) in (a). (c) Magnitude of the reflection coefficient from scatteredE,(t) in (a). (c) Magnitude of the reflection coefficient from
f=0.3to f = 1PHz corresponding tdy = 1um to Ao = 300nm. f=0.3to f = 1PHz corresponding tdy = 1um to A\g = 300nm.

V. CONCLUSION

This paper successfully demonstrates a working 1D-FDTD
code that correctly implements PEC, PMC, Mur and SS/TF

low-reflectivity bandwidth drastically.
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boundaries. The code is applied to investigate pulse reflections
from dielectric slabs of various thickness; it is found through
simulation that\,/2 and A, /4 thick dielectric slabs produce
the minimum and maximum reflection, respectively. Increas-
ing the thickness of the slabs drastically reduces the low-
reflectivity bandwidth. We have also shown that grid dispersion
occurs when one operates off the magic-time-step; it delays
the pulse phase and distorts the pulse shape.
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