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It is through wonder that men now begin and originally
began science; wondering in the first place at obvious
perplexities, and then by gradual progression raising
questions about the greater matters too, e.g. about

the changes of the Moon and of the Sun, about the stars
and about the origin of the universe.

Aristotle
384 - 322 B.C.
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PREFACE

This textbook is intended as an introduction to the physics of solar and stellar
coronae, emphasizing kinetic plasma processes. It is addressed to observational
astronomers, graduate students, and advanced undergraduates without a back-
ground in plasma physics.

Coronal physics is today a vast field with many different aims and goals. Sort-
ing out the really important aspects of an observed phenomenon and using the
physics best suited for the case is a formidable problem. There are already several
excellent books, oriented toward the interests of astrophysicists, that deal with the
magnetohydrodynamics of stellar atmospheres, radiation transport, and radiation
theory.

In kinetic processes, the different particle velocities play an important role.
This is the case when particle collisions can be neglected, for example in very brief
phenomena — such as one period of a high-frequency wave — or in effects produced
by energetic particles with very long collision times. Some of the most persistent
problems of solar physics, like coronal heating, shock waves, flare energy release,
and particle acceleration, are likely to be at least partially related to such pro-
cesses. Study of the Sun is not regarded here as an end in itself, but as the source
of information for more general stellar applications. Our understanding of stellar
processes relies heavily, in turn, on our understanding of solar processes. Thus an
introduction to what is happening in hot, dilute coronae necessarily starts with
the plasma physics of our nearest star. The main-sequence stars from about F5
to M, including the Sun, appear to have comparable atmospheres (in particular
a magnetized, hot, low density corona) with similar plasma processes. Addition-
ally, A7 to F5 main sequence stars, T Tau, and other pre-main sequence objects,
giants and subgiants, close binaries, Ap and Bp stars may have ‘solar-like’ outer
atmospheres.

The theory of coherent emission and absorption processes, as peculiar to ra-
dio astronomy, has here been limited to the most useful and successful concepts.
Given the wealth of recent results from X-ray and gamma-ray observations, and
from kinetic processes correlating with optical and UV phenomena, the idea of
separating fields according to wavelength seems to be outdated. Nevertheless, I
have found solar radio astronomy particularly instructive, since it involves basic
principles of general interest.

A beginning graduate student (or advanced undergraduate) is confronted with
a confusing amount of work on kinetic plasma processes published in a widely dis-

XV
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persed literature. On the other hand, an astronomer’s education hardly includes
the basic concepts of plasma physics. Yet a student may be asked to interpret ob-
servations. In such a dilemma we learn best by example. Accordingly, the purpose
of this book is not to review observations comprehensively, nor to unfold theory
in all its details, but to introduce concisely some basic concepts and to show how
kinetic plasma physics can be applied in astronomy. Some exemplary observations
particularly relevant to the physics of coronae are presented and compared with
theory. Such a partial synthesis is urgently needed as a basis for assimilating the
flood of information expected from future space instrumentation.

The book has two main parts: a basic introduction to kinetic theory and
applications to coronae and similar plasmas. After a brief overview of the phe-
nomenology of solar and stellar coronae and the fundamental equations of plasma
physics, the next four chapters provide the physical background and a minimum
introduction suitable for every course in plasma astrophysics. Chapter 2 discusses
some elementary properties of plasmas. A statistical approach is used in Chapter 3
to introduce magnetohydrodynamics and its fundamental characteristics. Chapter
4 gives an overview of the most important high-frequency waves. Finally, in Chap-
ter 5 kinetic plasma theory is developed for the important example of a particle
beam. The second part of the book is the substantial core, presented in Chapters
6-10. They are more or less independent of each other and need not be covered in
sequence or in toto. These chapters provide the tools for a proper investigation of
kinetic phenomena, such as electron beams (Chapter 6), ion beams (Chapter 7),
and magnetically trapped particles (Chapter 8). Thus equipped, the reader can
proceed to the important, energy related topics of electric currents and fields in
Chapter 9. Chapter 10 presents the foundations for kinetic (collisionless) shock
waves with emphasis on particle acceleration. Plasma processes interfere drasti-
cally with the propagation of electromagnetic waves at low frequencies. This is
discussed in Chapter 11 from a pragmatic point of view, primarily of interest to
radio astronomers.

A complete list of the literature would fill a book. References are only given
for a few outstanding historical discoveries and — in rare cases — for results quoted
without derivation. For detailed lists of the literature, the reader is referred to the
reviews and other further reading listed at the end of each chapter.

This textbook has grown out of my experience teaching introductory courses
on plasma astrophysics at the Swiss Federal Institute of Technology (ETH) for
two decades. I wish to thank my colleagues and students for countless helpful
remarks. Special mention must be made of Dr. D.G. Wentzel, who has carefully
and critically read preliminary versions of the text and supplied thoughtful advice.
Drs. M.J. Aschwanden, B.R. Dennis, S. Krucker, M.R. Kundu, D.B. Melrose, and
E.R. Priest have read the manuscript and have contributed valuable comments.
Dr. J. Gatta, I. Priestnall, and K. Siegfried have patiently corrected my English,
and Mrs. M. Szigeti has helped with typing. Finally, I would like to thank my
son Pascal whose generous donation of a dozen erasers has considerably helped to
improve this book. I carry the full responsibility for any oversights resulting from



PREFACE Xvii

my neglecting to use them. There is no way to adequately express how much I
owe to my wife, Elisabeth, and children, Renate, Christoph, Pascal, and Simon,
for their love and patience.

Institute of Astronomy Arnold O. Benz
ETH Zurich
Easter, 1993

PREFACE TO THE SECOND EDITION

The program outlined in the first edition has been found satisfactory by beginning
graduate students, although the distant mountain tops, on which the reader should
gain a view, have grown and multiplied. Climbing them involves problems in
theory and observations that cannot be presented in detail by an introductory
text. The reader should understand the basics of the approach and how the results
could be derived.

The text of the first edition was complemented in the sections on collisional
processes and stochastic acceleration. Misprints and errors were corrected and the
literature up-dated.

Zurich, March 2002 Arnold O. Benz
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CHAPTER 1

INTRODUCTION

People who have the chance to see the solar corona during a total solar eclipse
are fascinated by its brilliant beauty. Appropriately, the word ‘corona’ is the
Latin root of the English ‘crown’. Its optical luminosity is less than a millionth
of the Sun’s total flux and is normally outshone by atmospheric stray light. In a
total solar eclipse, on average about once every 18 months, a narrow strip of the
Earth’s surface is shielded completely by the Moon from the brilliant disk of the
Sun, and the corona appears. The phenomenon has been known from antiquity,
and is described by Philostratus and Plutarch with considerable astonishment.
Almost identical prehistoric paintings in Spanish caves and on rocks in Arizona,
USA, seem to represent the Sun surrounded by coronal streamers and to testify
to human emotions of even older times. Nevertheless, solar eclipses are rare, and
the corona escaped scientific scrutiny and even interest until the middle of the
19th century, when it became clear that it is a solar phenomenon, not related to
the Moon, nor an artifact produced by the Earth’s atmosphere. It entered the
limelight in 1939 when W. Grotrian and B. Edlén identified coronal optical lines
as originating from highly ionized atoms, suggesting a thin plasma of some million
degrees. The temperature was confirmed in 1946 by the discovery of thermal radio
emission at meter waves. This unexpectedly high temperature is still an enigma
today: it is one of the reasons why the solar corona will be a primary target of
solar research in the coming years.

Stellar flares and activity observed at optical and radio wavelengths have long
been taken as hints for the existence of solar-like coronae of other stars. The
recent advent of X-ray and UV observing satellites, and the advancement of optical
spectroscopy and radio interferometers, have finally made it possible to detect and
study the quiescent emissions of stellar coronae and transition regions. They have
shown persuasively that main sequence stars with less mass than about 1.5 times
the mass of the Sun (astronomically speaking ‘later’ than about spectral type F5,
and beyond type M) probably all have coronae. The extremely hot and massive
coronae of young, rapidly rotating stars are of particular interest.



2 CHAPTER 1

1.1. The Solar Corona
1.1.1 BRIEF OVERVIEW OF THE SUN

The Sun is a gaseous body of plasma structured in several, approximately con-
centric layers. In the central core, hydrogen nuclei are fused into helium nuclei,
providing the energy for the solar luminosity and for most of the activity in the
outer layers. The size of the core is about a quarter of the radius of the visible
disk, Rg. From there, the energy is slowly transported outward by radiative diffu-
sion. Photons propagate, are absorbed and remitted. The radiation zone extends
to 0.71 Rg, as revealed by the seismology of surface oscillations. The tempera-
ture decreases from 1.55 - 107 K in the center to some 2 - 108 K. At this point,
the decrease becomes too steep for the plasma to remain in static equilibrium,
and convective motion sets in, becoming the dominant mode of energy transport.
The convection zone is the region where the magnetic field is generated by the
combination of convection and solar rotation, called a dynamo process.

The solar atmosphere is traditionally divided into five layers. The reader should
not imagine these as spherical shells, but as physical regimes with different char-
acteristics. The boundaries follow the spatial structures and are extremely ragged.
Figure 19 shows the schematic changes of density and temperature with height.
Note that in reality the product of density and temperature, i.e. the pressure,
does not decrease smoothly. In the outer layers, the local pressure of the magnetic
field and dynamic phenomena dominate and control the pressure.

The lowest atmospheric layer, called the photosphere, emits most of the energy
released in the core. It is the region where the solar plasma becomes transparent
to optical light. The thickness of the photosphere is little more than one hundred
kilometers and so forms an apparent ‘optical surface’. It is just above the convec-
tion zone. Convective overshoots are observed in the photosphere as a constant,
bubbling granulation, a coarse cell structure with a mean size of 1300 km. At larger
size, supergranules suggest convective structure of a superior order. In spite of its
thinness, the photosphere has been the major source of information on the Sun.
The analysis of global oscillations in photospheric lines has revealed the structure
of the interior. The magnetic field can be accurately measured and mapped by
observing the Zeeman effect. The photosphere comprises the footpoints of the field
lines extending into the regions above. Sunspots are observed as groups of dark
dots having a large magnetic flux.

After reaching a minimum value of about 4300 K, the temperature surprisingly
rises again as one moves up from the solar surface. The region of the slow tem-
perature rise is called chromosphere after the Greek word for ‘colour’. Its light
includes strong lines which produce colourful effects just before and after totality
of an eclipse. There are more than 3500 known lines, mostly in the optical and
ultraviolet (UV) range. Of particular relevance is the Balmer-alpha line of hydro-
gen (Ha) at 6563 A, which is sensitive, for example, to temperature, to plasma
motion, and to impacts of energetic particles from the corona. The chromospheric
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Fig. 1.1. White-light photograph of the corona taken during the eclipse of 1980, February 16
(courtesy Dr. J. Diirst). The moon blocks the bright photosphere and most of the chromosphere.
Streamers (A), coronal holes (B), coronal loops (C), and prominences (D) become visible.

plasma sometimes penetrates into the upper atmosphere in the form of arch-shaped
prominences (visible as bright dots at the limb of the Moon in Fig. 1.1).

Within a narrow transition region of only a few hundred kilometers, the tem-
perature rises dramatically from 20 000 K at the top of the chromosphere to a
few million degrees in the corona. It is the region where many emission lines in
the extreme ultraviolet (EUV) originate, as the temperature is already high, but
the density is still high. Most important are the Lyman-alpha line of hydrogen at
1215.7 A and the lines of partially ionized heavier elements (e.g. O IV and C III).
Another source of information is thermal bremsstrahlung emitted by free electrons
as a continuum in microwaves (radio waves having frequencies in the range 1-30
GHz, introduced in Section 1.1.4). The transition region is far from being a static
horizontal layer, but rather a thin envelope around relatively cool chromospheric
material protruding (such as prominences) or shooting out into the corona (as
observed in spicules and surges).
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1.1.2. OPTICAL OBSERVATIONS OF THE CORONA

The solar corona can be observed at many wavelengths including soft X-rays,
atomic lines, optical, and radio waves. Figure 1.1 shows an image in the integrated
optical range (called white light) during an eclipse. A radial filter was used to
correct for the orders of magnitude decrease in brightness with radius. The white
light is produced by Thomson scattered photospheric photons on free electrons in
the coronal plasma. (Another cause of white light, particularly at large angular
distance, is scattering by interplanetary dust particles. It will not be discussed
here.) High density structures therefore appear bright. They outline myriads of
loop structures in the inner corona up to half a photospheric radius in height
(1.5 Rg from the center of the Sun). The density enhancement is a factor of
3 to 10 and outlines the magnetic field (Section 3.1.3.C). At higher altitude the
high density structures consist of roughly radial streamers extending beyond 10
Rg. At their base, they blend into loop structures and resemble the helmets of
old Prussian soldiers. Beyond about 1.5 Rg the remaining magnetic field lines
do not return within the heliosphere. Here the plasma is not bound and flows
outwards, forming the solar wind. When followed back to the inner corona, one
notes that most of the solar wind originates from coronal holes, regions of low
density, nearly vertical magnetic fields, and conspicuous darkness in soft X-ray
pictures (see Fig. 1.2). This outermost layer extends far beyond the Earth’s orbit,
gradually changing into the interplanetary medium, until it meets the interstellar
medium at the heliopause located at some 100 to 200 astronomical units (AU).

1.1.3. SOFT X-RAYS AND EUV LINES

Most of the thermal energy directly radiated by the coronal plasma is in the
form of soft X-rays (photons having energies from 0.1 to 10 keV) and EUV line
emission. As the contribution from the lower atmosphere is negligible, the coronal
X-ray emission shown in Figure 1.2 appears on a dark background. The emission
includes both a continuum emitted by free electrons and lines from highly ionized
ions. The bright structures outline magnetic loops of high density (typically 10°
electrons cm~3) and high temperature (2~ 3-10° K). Their ends are rooted in the
photosphere and below.

Loops appear in different intensities and various sizes. The brightest species
arch above sunspot groups and constitute the third dimension of so-called active
regions. Whereas sunspots are cooler than the ambient photosphere, since the
magnetic field inhibits convection, the active regions above sunspots — or at least
some loops — are heated much more than the quiet regions of the corona. This
fact strongly suggests that the heating process involves the magnetic field.

Interconnecting loops join different active regions, sometimes more than a pho-
tospheric radius apart. Systems of interconnecting loops may exist for several ro-
tations, although individual loops often last less than one day. Quiet region loops
are not rooted in active regions, but in magnetic elements of the quiet photosphere.



INTRODUCTION 5

Fig. 1.2. Picture of the solar corona in the Fe IX line at 171 A taken with the TRACE satellite.
The horizontal size of the frame is 0.37 R (2.6- 10 em). The solar limb is visible in the middle
of the image. High density, hot loops are seen to outline the magnetic field of the corona.

Such loops are somewhat cooler (1.5 —2.1-10% K) and less dense. They are visible
in projection above the limb as a forest of overlapping structures (Fig. 1.2).

1.1.4. THERMAL RADIO EMISSIONS

The coronal plasma emits thermal radio waves by two physically different mech-
anisms. It is important to distinguish between these different processes. (Z) The
usually dominant process is the bremsstrahlung (‘breaking radiation’ or free—free
emission) of electrons experiencing collisions with other electrons or ions. (#Z) In
active regions, the enhanced magnetic field strength increases the gyration fre-
quency of electrons in the field (Section 2.1.1) and makes gyroresonance emission
the dominant thermal radiation process between roughly 3 GHz to 15 GHz. This
process opens a possibility to measure the coronal magnetic field. High-frequency
bremsstrahlung originates usually at high density in the atmosphere. Similarly,
the higher the magnetic field, the higher the observed frequency of gyroresonance
emission. Therefore, thermal high-frequency sources are generally found at low
altitude.

The large range of radio waves is conveniently divided according to wavelength
into metric, decimetric, centimetric, etc. radiation (30 — 300 MHz, 0.3 — 3 GHz, 3
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Fig. 1.8. A magnetogram of a decayed (spotless) active region in the left part and quiet pho-
tosphere at right is presented as a grayscale image. Positive polarity (where the magnetic field
vector points out of the picture) is represented as bright, and negative polarity as dark. Super-
posed are the contours of the radio intensity at 8.5 GHz observed at the VLA, The size of the
total image is 0.36 Re. Some particular locations are labelled and discussed in the text (from
Gary et ol., 1990).

— 30 GHz, etc.). Alternatively, the technical term microwaves, meaning the range
1-30 GHz, is also frequently used.

Figure 13 compares the radiation intensity at 8.5 GHz with the underlying
magnetic field strength along the line of sight. The peak brightness temperature of
4.1-10* K suggests that radiation originates from the transition region. Model cal-
culations assuming bremsstrahlung emission show that this is the case. Enhanced
radio emission correlates with patches of an enhanced photospheric magnetic field
(called network) a few 1000 km below, as first noted by M.R. Kundu et al. in
1979. The network of the quiet part (d) outlines the boundaries of supergranules,
formed by large-scale convection cells underneath. The depression in brightness
(f) coincides with a filament seen in absorption of the He line. The magnetic
field at the height of the radio source cannot be measured in general, but may
be estimated using the photosphere as a boundary surface. The peak radio inten-
sity is above the neutral line of the decayed active region (marked e in Fig. 1.3),
where the longitudinal field component vanishes and (just below the letter e) a
weak loop structure seems to bridge the two polarities. The marvellous correlation
between magnetic field and transition region suggests that the field also influences
the heating of quiet regions.
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1.2. Dynamic Processes
1.2.1. PROCESSES IN THE UPPER CORONA

The solar corona is remarkably variable on all time scales. Even the early observers
of eclipses noted the different shape of the corona, year after year. The 11-year
magnetic cycle, conspicuous in the sunspots of the photosphere, has a striking
effect on the corona. During the minimum years the corona shows few streamers,
and these have enormous ‘helmets’ and are located near the equator. In solar
maximum years the average density increases, and numerous streamers are more
regularly distributed (Fig. 1.1).

Pictures taken by coronagraphs (producing an artificial eclipse) on board space-
craft show more rapid changes. As a rule, structures do not persist long enough
to be followed during the few days it takes to traverse the limb. Bright and dark
rays appear and disappear within hours. Major events, called coronal transients,
occur daily during the solar maximum. They are connected (though not always)
to coronal mass ejections or flares, and sometimes result in disrupting or dissolving
streamers.

1.2.2. PROCESSES IN THE LOWER CORONA

Soft X-ray motion pictures show ceaseless variability in active regions. Loops
brighten up and disappear within a few hours. Also, interconnecting loops some-
times light up within hours. Loops that connect an active region to an old remnant
remain stable for several days.

Also fascinating are the incessant brightenings in quiet regions and coronal
holes, as discovered 1997 by S. Krucker et al. in soft X-rays and radio emission.
They consist of loops, typically 10 000 km long and 2000 km wide, flaring up
and fading on time scales of a few minutes. The footpoints of the loops have
been found in tiny bipolar regions in photospheric magnetograms. More than a
million such microevents can be observed on the whole Sun per hour in the very
sensitive coronal EUV lines of Fe IX and Fe XII. Interestingly, the fluctuations do
not indicate much heating of already hot plasma, but rather the addition of new
plasma presumably of chromospheric origin. The events constitute also an energy
input of a sizeable fraction of what is needed to heat the quiet corona.

Duration and size become even smaller in the sources located in the transition
region. The radio and UV sources in the quiet regions (Fig. 1.3) vary within less
than one hour, sometimes within one minute. Jets of a few thousand kilometers
in diameter have been observed in a line of C IV to accelerate upward to speeds
as high as 400 km s~ (Brueckner and Bartoe, 1983).

The plasma in active-region loops is in continual motion along the magnetic
field lines. Upflows in chromospheric spicules and the more dramatic surges move
typically at a speed of 20 to 30 km s~* and reach heights of 11 000 km and 200 000
km, respectively. Coronal rain is a relatively cool plasma observable in the Hoa
line, flowing down at nearly the free-fall speed of 50 to 100 km s~
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Fig.1.4. A flare appears bright in a picture taken in the optical Ha line at the Big Bear
Observatory. The flare partially follows the line (dashed) of zero longitudinal magnetic field
measured in the underlying photosphere. The contours outline the microwave intensity at 15
GHz observed by the Very Large Array. White contours show left circular polarization, black
contours show right circular polarization. The scale of 10" corresponds to 7260 km (from Hoyng
et al., 1983).

1.2.3. SOLAR FLARES

The flare is a process of dramatic and truly remarkable dimensions. Its energy
release spans many orders of magnitude, from the smallest microflares observable
in EUV lines and radio emission of the solar corona (less than 10%* erg) to the
most energetic events in young or rapidly rotating late-type stars in stellar clusters
(10% erg). The first solar flare was observed as a brightening in white light by
R.C. Carrington and R. Hodgson in 1859. The emission originated from a small
area in an active region and lasted only a few minutes. When, a few years later,
the Sun was studied extensively in the chromospheric Ha line, the reports of flares
became much more frequent, but also bewilderingly complex. Variations of source
size, ejections of plasma blobs into the solar wind, and blast waves were noted.
Meterwave radio emissions, detected serendipitously in 1942 by J.S. Hey during
military radar operations, revealed the presence of non-thermal electrons in flares.
During a radio burst, the total solar radio luminosity regularly increases by several
orders of magnitude.
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In the late 1950s it became possible to observe the Sun in hard X-rays by
balloons and rockets. L.E. Peterson and J.R. Winckler discovered the first emis-
sion during a flare in 1958. Later, the enhancements observed in microwave and
hard X-ray emissions have led to the surprising conclusion that these energetic
particles contain a sizeable fraction (up to 50% ) of the initial flare energy release.
The broadband microwave emission results from the gyration of mildly relativistic
electrons in the magnetic field (gyrosynchrotron emission, Section 8.1.2). Hard
X-rays (> 10 keV) are caused by electrons of similar energies having collisions
(Section 6.4). In 1972 the ~-ray emission of heavy nuclei excited by MeV protons
was discovered. This emission indicates accelerated ions (Section 7.1.1). Finally,
EUV and soft X-ray (< 10 keV) emissions have shown that the flare energy heats
the plasma of coronal loops to temperatures from 1 to 3-107 K. Within minutes,
some active-region loops become brilliant soft X-ray emitters, outshining the rest
of the corona. Obviously, such temperatures suggest that the flare is basically a
coronal phenomenon.

One may thus define the flare observationally as a brightening within minutes
of any emission across the electromagnetic spectrum. The different manifestations
seem to be secondary responses to the same original process, converting magnetic
energy into particle energy, heat, and motion.

The timing of the different emissions of the same flare is presented schematically
in Fig. 1.5. In the preflare phase the coronal plasma in the flare region slowly heats
up and is visible in soft X-rays and EUV. The large number of energetic particles
is accelerated in the impulsive phase, when most of the energy is released. Some
particles are trapped and produce the extended emissions in the three radio bands.
The thermal soft X-ray emission usually reaches its maximum after the impulsive
phase. The heat is further distributed during the flash phase. In the decay phase,
the coronal plasma returns nearly to its original state, except in the high corona
( ® 1.2 Rg), where plasma ejections or shock waves continue to accelerate particles
causing meter wave radio bursts and interplanetary particle events (Section 10.2).

1.2.4. OTHER DYNAMIC PROCESSES

Somehow related to flares in their physics, but even more powerful, are coronal
mass ejections (CME) which will be discussed in Section 10.2.3. The first observers
of CME:s in optical lines (using ground-based coronameters) describe the events
as ‘coronal depletions’ (e.g. Hansen et al, 1971), The full scope of CMEs was
not realized until 1973, when white-light observations were possible from space by
the Skylab mission. CMEs occur when a coronal structure — a system of loops or
a prominence — loses its equilibrium and starts to rise. Such events carry away
remarkable amounts of coronal mass (up to 106 g) and magnetic flux; most of their
energy does not show up in the brightening of some radiation or flare. CMEs reach
velocities of several hundred km s~! and can be followed on their path throughout
the heliosphere.

Radio noise storms are also relatives of flares (Section 9.5.2). They were iden-
tified soon after the discovery of the solar radio emission. Noise storms consist
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Fig. 1.5. A schematic profile of the flare intensity at several wavelengths. The various phases
indicated at the top vary greatly in duration, In a large event, the preflare phase typically lasts
ten minutes, the impulsive phase one minute, the flash phase five minutes, and the decay one
hour,

of myriads of tiny meter wave bursts of duration about a second or less, and a
broadband, slowly varying continuum ranging from 60 to 400 MHz. The storms
last for days and are not directly associated to flares, although the start of noise
storms may be initiated by a large flare or a CME. More frequently, storms appear
in the upper corona (> 1.2 R ) when a new active region forms or rapidly grows.
This suggests that they represent the adjustment of the previous coronal plasma
and magnetic field to the newly emerged magnetic flux.

The various dynamic processes discussed in this section represent energy inputs
in different forms. Are they enough to heat the solar corona? The answer seems to
become more difficult the more we know about the corona. Regular flares in active
regions release most energy by the largest events. They are not frequent enough
to account for the quasi-steady heating of the entire corona. Microflares similar to
noise storm sources but at low height having energies below 1026 erg may provide
the energy in active regions. It has been proposed that microevents and network
sources heat the quiet corona and coronal holes. Note that additional forms of
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energy input, in particular by waves and stationary electric currents, must also
be considered. The heating problem of the solar corona can only be solved by a
better understanding of all the various processes.

1.3. Stellar Coronae
1.3.1. SOFT X-RAY EMISSION

The Sun was the only star known to possess a high temperature corona until X-ray
telescopes became feasible. There was no great hope of detecting other coronae
with the first soft X-ray instruments. Capella, a nearby binary system of two late-
type giants, was discovered in 1975 when the X-ray detector of a rocket payload
was briefly pointed at the object (Catura et al., 1975), a detection soon confirmed
by satellite (Mewe et al, 1975). Capella’s corona was found to be a thousand
times more luminous than the Sun!

The discoveries of other coronae, and in particular of coronae of other types of
stars, followed slowly until the launch of the Einstein satellite. Its greatly superior
sensitivity revealed that particular stars of nearly all types are X-ray emitters
(Vaiana et al., 1981). Figure 1.6 gives an overview of different types of prominent
X-ray stars. Note that X-ray emissions from stars earlier than type A have a
different origin. The strong X-ray emission of O and B stars is caused by hot stellar
winds. Late-type (F to M) stars on the main sequence have coronae similar to the
Sun with a wide range of luminosities for each spectral type. The dependence on
photospheric temperature and — even more surprisingly — on photospheric radius
is small.

The post-T Tau stars indicated in Figure 1.6 are of particular interest. They
are a class of young stars that have evolved beyond the accretion phase (being so-
called weak-line T Tau stars), but have not yet arrived on the main sequence. BY
Dra and RS CVn stars are binary systems with no significant mass exchange, but
close enough so that the tidal effects of their gravitational interaction synchronize
the rotation periods of the individual stars to the orbital period of the system.
Since the orbital periods range from less than a day to a few days, the stars are
forced to rotate rapidly. In BY Dra systems both components are late-type, main-
sequence stars; in RS CVn systems at least one component is a subgiant. FK Com
stars are even more rapidly rotating objects and may be the remnants of collapsed
binary systems.

The X-ray luminosity given in Figure 1.6 indicates a minimum requirement
on the coronal heating process. The actual energy input is higher if there are
energy losses other than radiation. Since we do not yet have good stellar models,
the Sun may serve as an example. Conduction losses of the solar corona to the
underlying chromosphere have been estimated as 50% in quiet regions, but less in
active regions. In coronal holes, about 90% of the input energy ends in solar wind
expansion (Withbroe and Noyes, 1977).
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Fig. 1.8. Thermal soft X-ray emission of hot stellar plasma has been observed from nearly all
types of stars. The spectral type characterizes the temperature of the photosphere and is also
an indication of stellar mass (decreasing to the right). X-ray emitting main-sequence stars are
represented by shading, young main-sequence stars (post T Tauri type) by full contours, and
binary systems of BY Draconis and RS Canem Venaticorum types, as well as ‘post-binaries’ of
FK Draconis type, by dashed curves.

The range of solar-like coronae overlaps approximately with the stellar types
that have a convection zone below the photosphere. Another necessary condition is
stellar rotation: the faster a star rotates, the more luminous the corona (Pallavicini
et al.,, 1981).

In open field regions the hot coronal plasma expands thermally and forms a
stellar wind. The loss of angular momentum carried away by the wind is the likely
cause of the present day slow equatorial rotation of the Sun in 26 days, compared
to ten times faster rates in young main-sequence stars. Observing star clusters of
different age, O. Struve and others found in 1950 that a braking process operates
for young main-sequence stars of type F and later. The existence of coronae seems
to be important in slowing down the rotation of late-type stars.

1.3.2. STELLAR FLARES

The existence of stellar coronae could have been guessed from stellar flares, known
for half a century. As in the case of the Sun, stellar flares were first detected
in white light. In K and M main-sequence stars having low intrinsic optical lu-
minosity, the effect of a flare on the layers below is more easily observable than
in the Sun. Flares temporarily increase the total stellar luminosity. In UV light
(U-band) this may reach a factor of ten.
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Fig. 1.7, The time averaged luminosity of flare emission in the ultraviolet, L}, is compared to
the quiescent soft X-ray emission, Lz, for nearby main-sequence M stars (from Doyle and Butler,
1985).

Stellar flares have also been detected in radio, EUV, and soft X-ray emissions
(Section 8.4.4). Reliable and frequent measurements became possible around 1980
with the Very Large Array (a radio interferometer in New Mexico) and the Ein-
stein satellite, respectively. The radio flares exist as at least two types: short
( < 10 minutes), circularly polarized events not associated with optical or X-ray
emissions; and long-duration, weakly polarized events ( & 40%) coincident with
optical and X-ray flares.

Flaring has been reported in all spectral classes along the main sequence, both
on single stars and on members of multiple systems. Flare activity starts at an
early phase of stellar evolution, and flaring is particularly frequent in pre-main-
sequence stars. Most importantly, stars with considerable coronae are likely to
have frequent flares. The integrated luminosity in X-rays of one flare ranges from
the detection limit of 1027 erg in nearby M stars to 10%7 erg in star clusters.

Figure 1.7 shows an important discovery, made independently in 1985 by J.G.
Doyle and C.J. Butler, D.R. Whitehouse, and A. Skumanich. They found a tight
correlation between the time averaged luminosity of U-band flares and the quies-
cent X-ray luminosity in dMe, a subclass of main-sequence (dwarf) M stars with
chromospheric emission (e) lines. A relationship between quiescent and flaring
activity is not unexpected from the solar observations. They show that (i) the
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heating of coronal regions is connected to the magnetic field and that (i4) the flare
energy is drawn from the same magnetic field. Thus both originate from the same
dynamo process in the stellar interior that generates the magnetic field.

1.3.3. QUIESCENT RADIO EMISSION

The discovery of a low-level microwave emission ( & 1 GHz) from apparently non-
flaring, single dMe stars in 1981 by D.E. Gary and J.L. Linsky has added another
mystery to coronal physics. The radiation is 2—-3 orders of magnitude more lumi-
nous than the quiet Sun. Spectral investigations and VLBI measurements of the
source size have shown that the radio emission must originate from more energetic
electrons than the X-rays. It is probably non-thermal. In contrast, the quiet and
slowly varying solar radio emissions are caused thermally and by the same plasma
that emits soft X-rays. The different word ‘quiescent’ has been chosen for stars to
indicate the difference from the solar non-flare radio emissions and to emphasize
the possibility that the observed low-level variability (on time scales longer than
ten minutes) may, in fact be a superposition of many flare-like events. The typi-
cal quiescent stellar radiations have a brightness temperature of some 10° K and
are often weakly polarized. This is compatible with an interpretation by gyrosyn-
chrotron emission of a population of energetic ( & 100 keV) electrons spiraling
in the coronal magnetic field. The presence of such particles is ubiquitous during
solar flares (Section 1.2.3), but does not noticeably contribute to the quiet solar
radio emission. The gyrosynchrotron emission, however, permanently dominates
the microwave emission of dMe stars, surpassing the thermal solar radio luminosity
by orders of magnitude.

Figure 1,8 is the gist of a decade of painstaking measurements by many ob-
servers and instruments. The quiescent soft X-ray and microwave emissions are
compared not only for different stars and types of stars, but also with the tempo-
rary sources of solar flares. The correlation between thermal emission and radiation
of non-thermal particles is obvious and stretches over many orders of magnitude.
It tells us that the continuous presence of accelerated particles and coronal heating
have something in common. Figure 1.8 supports the conjecture that a common
process in the stellar interior drives the coronal heating and flares. Moreover,
the similarity of flares and coronae suggests a more direct relation between the
thermal constituent of coronal plasmas and powerful, possibly violent acceleration
processes in the corona. The heating of the coronae of rapidly rotating stars and
flares both accelerate electrons and may be similar processes!

Are coronal plasmas heated by flares? The answer is not simple, as it has
become clear in Section 1.2 that there are different types of flare-like, dynamic
processes even in a relatively inactive corona like the Sun’s. There is substantial
variability in the X-ray and radio emissions of most stellar coronae over a variety
of time scales. The observed variability is in the form of individual flares and slow
variations of the quiescent background. Flares show a wide range of amplitude (up
to a factor of 10), whereas the variations of the quiescent component on time scales
of hours do not exceed amplitudes of 50%. Continuous low-amplitude, short-period
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Fig. 1.8. The soft X-ray luminosity is plotted vs. the radio luminosity at a frequency of 5-10
GHz. Different types of stars are compared with the peak flux of solar flares. Key to the symbols:
m solar microflare; ¢ intermediate impulsive solar flare; h gradual solar flare with dominating
large impulsive phase; g pure gradual solar flare; + dM(e) stars; x dK(e) stars; ¢ BY Dra
binaries; O RS CVn binaries; o RS CVn binaries with two giants; A AB Dor; * Algols; 0 FK
Com stars; (pentagon) post-T Tau stars (from Benz and Giidel, 1993).

variability (microflares) has been proposed for the heating of stellar coronae, but
the observational evidence is still meager.

In conclusion, observations — both solar and stellar — strongly suggest that
it is not possible to comprehend coronae without understanding their dynamic
phenomena. Apart from the heating problem, coronal processes offer numerous
and exciting challenges for plasma astrophysics in general. Some of them will be
introduced as applications throughout the book.

1.4. Fundamental Equations

When a gas like a corona is heated beyond its atomic binding energy, collisions
strip off electrons from the atoms. Freely moving electrons and ions eventually
recombine, but may become ionized again. The two rates cancel in equilibrium.
This fourth state of matter behaves peculiarly in the presence of electric and mag-
netic fields. We shall call an ionized gas a plasma, if the free charges are abundant



16 CHAPTER 1

enough to influence the relevant properties of the medium. The equilibrium frac-
tion of neutral atoms is given by the Saha-Boltzmann ionization equation. As an
example, the ratio of neutral to ionized atoms is 5 - 10717 for a hydrogen plasma
with a density of 10% cm™3 at a temperature of 108 K. These values are typical of
the solar and some stellar coronae. We shall neglect the influence of the neutrals
in the following, and thus consider only fully ionized plasmas.

Let us consider the motion of a particle 1 with charge g;, mass m;, velocity
v;, and Lorentz-factor 7;. In electrodynamics the particle is influenced by the
Coulomb force due to the electric field E and the Lorentz force due to the magnetic
field B (sometimes also called magnetic flux density or magnetic induction). The
equation of particle motion is Newton’s second law, which equates the temporal
derivative of the momentum with the forces acting on the particle. This basic
equation provides a first connection between particles and fields,

3] 1
a(mi’nvi) =q(E+ ZVi X B) . (1.4.1)

We are using Gaussian (cgs) units. A conversion table to mks units can be found
in Appendix B. Vector variables are signified by bold face or underbars. Tensor
variables are, in the following, indicated by hats. The product of two vectors
is defined in Appendix A in three ways: scalar product (indicated by -), vector
product (indicated by X), and tensor product (indicated by ¢). We consider the
particles of a plasma to move in a vacuum, and therefore the dielectric tensor
equals the unity tensor (¢ = 1), and similarly the magnetic permeability & = i.
The electromagnetic fields are given by Maxwell’s equations, which then reduce
to:

4n 19E
1B
VxE= S5 (1.4.3)
V-B=0 (1.4.4)
V- -E =4np" . (1.4.5)

¥V is the operator (8/8z,8/8y,d/8z), which can be treated like a vector. We
shall refer to it as the nabla operator, after the Phoenician stringed instrument
having the same shape. V? is the scalar product of two such operators, 82/8%z +
0% /8%y + 8%/8%z; it is generally termed the Laplace operator. VX is the curl (or
rotation), and V- is the divergence (cf. definitions A.4 and A.5 in Appendix A).
The electric charge density p* and the current density J are defined by the sums
over all particles ¢ in an elementary volume AV,

1
P DG (1.4.6)
Ay 1, AV
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1
Ji=— qivi; (147)

providing a second link between particles and fields.

Equation (1.4.2) is Ampere’s law complemented by the displacement current. It
states that either electric currents or time-varying electric fields may produce mag-
netic fields and vice versa. Equation (1.4.3) is credited to Faraday and Equation
(1.4.5) to Poisson, implying the origin of electric fields by time-varying magnetic
fields and electric charges, respectively. Equation (1.4.4) expresses the absence of
magnetic monopoles.

Since each particle obeys Equation (1.4.1), the system of Equations 14.1) —
(1.4.7) is complete. It can, in principle, be solved if the particle masses, charges,
initial positions, and velocities are known. The charged particle motions create
the electromagnetic fields, which in turn influence the motion of the particles. A
coupled system of this kind is obviously highly non-linear.

The large number of equations of the kind of (1.4.1) inhibits the solution of the
system (1.4.1) — (1.4.7) for real cosmic plasmas, even using the fastest computer
available. One has the choice of reducing the particles to a tractable number, or of
using appropriate statistical methods. Numerical simulations generally overcome
the non-linearities. Analytical and statistical calculations render a better overview
and understanding of the physics.

1.4.1. MAGNETOHYDRODYNAMIC APPROACH

There are two major statistical approaches to plasma physics. One, generally
termed magnetohydrodynamics (MHD), assumes that the plasma can be suffi-
ciently described by a fluid, i.e. by velocity averaged parameters such as density
n, mean velocity V, temperature 7, etc.,where

n:=/f(v)d3v , (1.4.8)
1
V= ﬁ/vf(v)dav , (1.4.9)
T := E—E%/(V—V)zf(v)dsv, (1.4.10)

and f(v) is the velocity distribution given by the mean number of particles per
volume element in space and velocity. Equation (1.4.8) can be considered as the
normalization of f. In Equations (1.4.8) — (1.4.10) we have simplified to the non-
relativistic case. Conservation of particle number, total momentum and energy,
combined with Maxwell’s equations and an equation of state — after some simpli-
fying approximations — form a complete system of a more humanly manageable
number of equations (to be discussed in Chapter 3.1).

Gradual plasma processes in coronae do not require a description at the detail
of the particle level. MHD is widely used to study equilibrium conditions and
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the onset of global instabilities. Ideal MHD does not include electric fields paral-
lel to the magnetic field, and neglects populations of energetic particles cospatial
with the thermal background of rapidly colliding particles. We shall find MHD
extremely useful if the velocity distributions are close to Maxwellian. This is cer-
tainly the case in thermal equilibrium and small deviations from it. Collisions (and
other randomizing processes) tend to bring any distribution toward a Maxwellian
shape, the maximum entropy distribution.

MHD becomes questionable for processes which are faster than the collision
time. Such a period may seem too short to be relevant. However, in certain
plasma phenomena collisionless processes (occurring much faster than the time
between collisions) have turned out to control the situation. Let us illustrate by
three examples how this can happen. (i) High-frequency waves can grow within a
fraction of the collision time, absorb a considerable fraction of the total energy, and
change drastically the plasma resistivity. (i¢) Electric fields, both stationary or in
waves, can rapidly accelerate charged particles so that their velocity distribution
deviates considerably from a Maxwellian form. (#4¢) The collision time of energetic
particles increases with the third power of velocity (Section 2.6). High energy
particles thus have long collision times. They may spread over a large volume and
form a population of particles that can be considered ‘collisionless’ over time scales
of minutes to hours.

1.4.2. KINETIC APPROACH

The other statistical approach, kinetic plasma physics, starts at a much lower
level, considering particle orbits and the properties of f{v) without integration
in velocity. The basic equation, named after L. Boltzmann, will be derived from
particle conservation in Chapter 3,

of  Of g 1 of _ (9f

W e mE o= (G) e
The electromagnetic fields have been split into macroscopic components and mi-
croscopic components. The macroscopic part is denoted E and B, the spatial
averages over a volume much larger than the Debye shielding length (Chapter
2.4). The rapidly fluctuating fields of the neighboring particles are taken care of
by the collision term on the right hand side. We do not need to apply quantum
mechanics as long as the interparticle distance exceeds the de Broglie wavelength
of the particles (but note quantum effects in close collisions, Eq. 2.6.17) and
the photon energies are smaller than the rest mass of the particles. For a more
complete introduction and discussion of this fundamental equation the reader is
referred to Section 3.1.1.

The full scope of kinetic plasma physics of the universe cannot be estimated
yet. In the realm of stars, it is mainly the hot, dilute coronae where collisionless
plasma processes occur. As an example, let us look at the collision time of thermal
electrons as a function of height in the solar atmosphere (Figure 1.9). It increases
more than six orders of magnitude from the bottom of the chromosphere to the



INTRODUCTION 19

corona. In the chromosphere, collisions of a charged test particle are mostly with
neutral atoms. The collision time increases with height as the material becomes
less dense, but decreases again as the temperature (and mean velocity of the
electrons) increases. It has a narrow minimum at the bottom of the transition
region where the dominant collision partners change from neutrals to charged
particles, and it becomes orders of magnitude larger in the hot corona.
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Fig. 1.9, Schematic drawing of the collision time vs. height of an electron moving at the mean
thermal velocity in the quiet solar atmosphere. The relevant plasma parameters are from stan-
dard models and are also shown (dashed). The hydrogen density includes both neutral atoms
and ions.

Other fields for applying kinetic plasma physics include magnetospheres of
planets and neutron stars, extended atmospheres of stars in formation, accretion
discs, supernova remnants, and cosmic rays. Even some massive (early-type) stars
show signs of energetic particles and magnetic activity.

Plasma physics at the particle level may be required in very localized regions
during times of rapid change. Such processes, however, may be at the heart of some
of the classical, unsolved coronal phenomena. Let us consider ten key examples of
kinetic plasma processes in coronae:

e High energy particles are widely observed in the universe; particle acceleration
has various origins. The most basic mechanism is simply a quasi-static electric
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field. In turn, accelerated particles drive collisionless plasma waves to grow
unstably and may alter the acceleration process (Section 4.6).

¢ Interactions of plasma waves with particles in resonance cause various phenom-
ena where energy is exchanged between waves and particles (Chapter 5). The
result is either heating (more general: energization) of certain particle species
or unstable growth of some other wave modes.

e Wave-particle interactions cause anomalous (i.e. additional) resistivity in an
electric current. It can rapidly release the free energy of a strong current or, in
other words, of its associated magnetic field (Chapter 9).

e Wave-particle interactions also increase viscosity and generally change the trans-
port coefficients of a plasma. They have the effect of additional collisions.

e Collisionless shock waves can also accelerate particles and heat. They are sites
of enhanced turbulence of various wave modes (Chapter 10).

e Particle beams are frequently observed in the solar corona and in interplane-
tary space cospatial with the background plasma. Beams can be signatures of
some cosmic accelerator, or can form simply by evaporation from an impulsively
heated source (Section 2.3).

e Beams are often unstable to growing plasma waves in the background plasma.
The wave turbulence thrives on the beam energy and accompanies the beam
until exhaustion (Chapters 6 and 7).

¢ Energetic particles having long collision time can be trapped in magnetic mirror
configurations that are abundant in the form of coronal loops or dipole fields. A
large number of fast particles accumulate near the acceleration region (Chapter
8). The velocity distribution of magnetically trapped particles, having the form
of a loss-cone, gives rise to several instabilities of growing collisionless waves.
They may control the trapping time (Section 8.3).

¢ Some kinetic processes cause observable electromagnetic radiation. Plasma wave
turbulence of various origins can emit electromagnetic radiation by wave-wave
coupling (Section 6.3). Such emissions yield information on plasma processes
in cosmic sources. Another example is one of the loss-cone instabilities driv-
ing electromagnetic waves. This very efficient emission corresponds to a maser
process, whereby electrons change gyration orbits (Section 8.2).

o Large amplitude waves develop non-linear structures, such as solitons. Their en-
ergy density is a considerable fraction of the thermal background. Furthermore,
they can be powerful emitters of coherent radiation.

One sometimes notes in plasma astrophysics, and particularly in coronal physics,
a gap between observation and theory. This disparity, which hinders progress in
the field, exists for several reasons. (i) Plasma phenomena — in particular kinetic
processes - tend to have many parameters, and they are often not observable.
Therefore, theories are difficult to test by observations. (i) Scientists in the field
separate into observers and theoreticians early in their career and so lose the
capability to combine the two tools. This book intends to bridge this gap.
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CHAPTER 2

BASIC CONCEPTS

With the ever more detailed and profound observations of the universe, we have
become exposed to a vast field of coronal phenomena in the formation, activity,
and late phases of stars. However, coronal physics poses some unexpected, recon-
dite difficulties to the beginner and to the uninitiated astronomer in particular.
The fundamental principles are simple: Maxwell’s equation of electrodynamics and
Boltzmann’s equation of statistical mechanics (Chapter 1). On the other hand, the
complexity of plasma phenomena is bewildering. The pioneers of plasma physics
have had similar experiences; they have subdued some of the problems with elegant
approximations, clever tricks, and deep insights. Their ideas have been checked in
the laboratory, the solar wind and the magnetosphere, and the results have initi-
ated new developments. The beginner should try to understand the fundamental
concepts and the range of their applicability, even if they later seem to be outshone
by brilliant mathematics or covered up by cumbersome algebra.

2.1. Single Particle Orbit

It will be shown in Section 2.6 that the collision time increases with particle veloc-
ity. Therefore, the assumption of a single particle moving in a vacuum, permeated
by magnetic and electric fields, is particularly relevant for energetic particles, which
can reach large distances before being deflected by collisions with the thermal back-
ground particles. In other words, they feel primarily the large scale electric and
magnetic fields created by background particles, but have little stochastic interac-
tions with individual particles.

The orbit of just one single particle in time-varying, spatially inhomogeneous
electromagnetic fields is already a problem of considerable complexity. In this
section we only consider the more elementary principles.

2.1.1. HOMOGENEOUS MAGNETIC FIELD

Magnetic fields are ubiquitous in stellar coronae (Figure 1.2). The fields are related
to currents driven by sub-photospheric motions. Hindered by the high conductivity
of a plasma atmosphere, coronal magnetic fields can change only slowly. The
field lines guide the motion of charged particles and have an important physical
meaning.

22
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Let us start with a particle moving in a stationary, homogeneous magnetic
field. We assume that no other charges and fields interact with our particle. The
equation of motion (1.4.1) then reduces to

8(myv)
ot
As the Lorentz force is perpendicular to the velocity, the motion can be regarded
as a superposition of a circular orbit perpendicular to the magnetic field and a
straight, inertial movement parallel to the field. The circular motion is called
gyration. The gyroradius R follows immediately from Equation (2.1.1),

:%wa)‘ (2.1.1)

mryc
= — V) s 2.1.2
B 212
which we define more generally as a vector,
__ mcy

Fig. 2.1. The orbit of an electron in a homogeneous magnetic field.

The subscripts L and z denote components perpendicular and parallel to the
magnetic field, respectively. Throughout the book the local coordinates are chosen
such that the z-axis is parallel to B.

The gyration resulting from Equation (2.1.1) is counterclockwise for a positive
charge when viewed along B, and clockwise for an electron. As a consequence,
the radius vector R always points from the center of the circular motion to the
particle, independently of the sign of g. Furthermore, the gyrofrequency is defined
in vector notation as

0=-2118 . (2.1.4)
myce

In this chapter we limit ourselves to non-relativistic phenomena, and we shall put
~v = 1 in the following. We note that the gyrofrequency (Eq. 2.1.4) then becomes
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independent of velocity and equal for all particles of a species. The gyrofrequencies
of the various species are characteristics of a plasma and will play an important
role in the theory of waves (Chapter 4). In Equations (2.1.3) and (2.1.4) vectors
have been defined to simplify the mathematics later. They are drawn in Figure
2.1, which depicts the spiraling orbit of an electron, the combination of parallel
and circular motion.

No work is done by the Lorentz force, as it is perpendicular to the orbit. An
important result of the gyration is the electric ring current due to the circular
motion of the particle. It is charge per time, thus

99|

This ring current is the cause of a magnetic moment of a particle defined by

W= 2—qé(R xvy) . (2.1.6)
Its absolute value is
7 R? gmo?

u:—c———<I>= (2.1.7)

B

The magnetic moment induces a secondary magnetic field, Bi*d, which has the
form of a dipole in the far field (at distances r > R): For example, in the axis of
the particle orbit, the induced field has the value B¢ = 2ur~3. There are two
important points to note in Equation (2.1.6):
¢ The magnetic moments of positive and negative charges are pointing in the same
direction. The induced magnetic fields of all particles add constructively.

e The directions of Bi*d and B are antiparallel. The induced field counteracts the
primary field and reduces the total field in the plasma. This diamagnetism of a
plasma has far-reaching consequences (see example below).
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Fig. 2.2. Monoenergetic electrons accelerated in a magnetic field form a cylindrical shell (called
E-layer, shaded) and deform the field.
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The Astron machine in fusion research may serve as an illustration (Fig. 2.2).
Energetic electrons are injected into initially parallel magnetic field lines. These
electrons circle in a cylindrical shell, termed the E-layer. Their diamagnetism re-
duces the field inside the E-layer and adds to the field outside. Thus the magnetic
field forms a “'magnetic bottle’, shown in Section 2.2, which is suitable for confine-
ment. The Astron configuration makes use of the diamagnetism of the injected
electrons to confine ions. Heating or acceleration of particles in coronal loops may
lead to similar effects.

2.1.2. IN HOMOGENEOUS MAGNETIC FIELD

We now look at a particle in a converging magnetic field as sketched in Figure
2.3. Similar field geometries may exist near the footpoints of coronal loops or
in the polar regions of stars and planets. The magnetic field at the particle’s
instantaneous position can be decomposed into a component, B,, parallel to the
field at the center of the gyration, and a perpendicular component, B,. The
Lorentz force on the particle can also be written in two components:

Fw=%ux&), (2.1.8)

Fm:%nx&). (2.1.9)

The first, Equation (2.1.8), is the radial force component analogous to the homo-
geneous case. Equation (2.1.9) describes a force along the axis of the spiraling
particle motion. It can be evaluated from V-B =0 (Eq. 1.4.4), which in cylin-
drical coordinates becomes:

8B,

(rBr)+ 52 =0 . (2.1.10)

16
r or

Fig. 2.8. Particle motion in a converging magnetic field produces a Lorentz force Fr , in the
opposite direction.
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Let us consider the case where 7 is much smaller than the scale length of the
derivative of B, (r < |B./(6B./dr)|, where B, := 8B,/8z). In such a mildly
inhomogeneous field, Equation (2.1.10) can be integrated approximately to

1 0B,
B, =~ 2.1.11
"5 (2.1.11)
Inserting in the gyroradius (Eq. 2.1.2) for r, Equation (2.1.9) yields
0B,
Fy, = . 2.1.12
Lz 9z ( 1 )

For example, 0B,/0z > 0 (a converging field as in Fig. 2.3) produces an F; in
the negative z-direction. It slows down the parallel velocity of a particle moving
along the converging field and can reflect the particle into the opposite direction.
In Section 2.2 we shall take a first look at the possibility of trapping particles by
such ‘magnetic mirrors’.

2.1.3. CONSERVATION OF THE MAGNETIC MOMENT

We shall show in this section that in a mildly inhomogeneous, stationary magnetic
field the magnetic moment of a particle is a constant of motion. It is generally
sufficient to require that (R - V)B| < |B| and B, <« B,. We neglect collisions,
electric fields and other forces. With F, = mv, we derive from Equation (2.1.12)
the rate of change of the parallel energy component,

D, = 0Bdz  dB
W= e - Mar
The forces are evidently perpendicular to the velocity components (Eqgs. 2.1.8 and

2.1.9); thus the particle energy is conserved,

(2.1.13)

d 1
(lmv + 2mv_L) =0 . (2.1.14)
Inserting (2.1.7) and (2.1.13), one obtains
dB d
—Mgt— + E(MB) =0 . (2.1.15)
Since B # 0 by assumption, it immediately follows that
dp
pri 0 (2.1.16)

It is also instructive to consider the conservation of the magnetic moment from
a different point of view. Since the transverse motion is periodic, an action integral
J = f pidsy can be defined, where p, is the transverse momentum and ds, is
the perpendicular component of the gyration path. It is easy to show that p
and s satisfy the conditions of canonical coordinates. The integration is over a
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complete cycle of s, i.e. over one gyration. The action integral for the transverse
part of the motion is

4mme
q

Theoretical mechanics proves that, if a system changes slowly compared to the
period of motion (and is not in phase with the period), an action integral remains
constant. Such a variation of a system is termed adiabatic, and action integrals
become adiabatic invariants.

In our case the system consists of the magnetic field and the particle. If the
particle moves through a region where the magnetic field varies slowly, Equation
(2.1.17) confirms that the magnetic moment is conserved. In addition to spa-
tial variations, the magnetic moment is also conserved during temporal changes
of magnetic field strength. This property can accelerate particles: Consider an
increase of B, say by compression, at a rate well below the gyrofrequency. The
perpendicular part of the particle energy must then increase in proportion to B
according to the definition of i (Eq. 2.1.6). Such an energy increase is generally
referred to as betatron acceleration and will be applied in Section 10.3.3 .

The magnetic moment g is the ‘most invariant’ action integral of charged parti-
cles. The obvious analogue to Equation (2.1.17) for periodic motion in a magnetic
mirror is the longitudinal invariant,

J = (2.1.17)

L :=pL , (2.1.18)

where L is the mirror length. It may be used in connection with Fermi acceleration
(Section 10.3.1).

2.1.4. PARTICLE DRIFTS

Our next step in understanding single particle orbits is to include some other
stationary force, F, in addition to the Lorentz force of the magnetic field. As
its parallel component to the magnetic field, F,, accelerates the particles into a
direction where they are freely moving, which is trivial, we concentrate on the effect
of F,;. In the non-relativistic limit, the perpendicular component of Equation
(2.1.1) is

dv 1

Tdt
This is a linear, inhomogeneous, first-order differential equation in ) . The theory
of such equations prescribes that its general solution is simply the superposition
of one particular solution, say w¢, of the full equation and of the general solution,
u, of its homogeneous part (Eq. 2.1.19 without the F, /m term). Thus

= %(vl xB)+F./m . (2.1.19)

vi=wltu . (2.1.20)
Using the general vector identity (A.9),
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(FxB)xB _(F, -B)B-—(B-B)F, _
B2 = B? -
it can be shown that the form

—F.L 3 (21.21)

wd—_SF-LXB
___q 52

is a solution of Equation (2.1.19). The homogeneous equation

(2.1.22)

du

dt
describes the action of the Lorentz force on the particle, but in the frame of
reference moving with velocity w?. Equation (2.1.23) represents a motion without
the additional force. Its solution, u, is the circular velocity around what is called
the guiding center. The velocity of the guiding center is simply

= %(u x B) (2.1.23)

vit=wlivy, . (2.1.24)

— W

large v, — large R

Il F,

small v — small R

® B

Fig. 2.4. A perpendicular force F| on a gyrating particle causes a drift perpendicular to F
and B.

This tells us that the perpendicular force results in a drift w? perpendicular to
the magnetic field, in addition to the previously introduced gyration and parallel
motions. The reason for this drift can be visualized in Figure 2.4. The force F
accelerates the particle in the upward direction in Figure 2.4. It is therefore faster
in the upper part of its orbit. The gyroradius increases with velocity (Eq. 2.1.2).
The opposite occurs in the lower part of the figure. The effect of the variation of
the gyroradius is a drift to the right (assuming a positive charge). An analogous
effect, called gradient drift, occurs when the magnetic field strength increases in
the downward direction of Figure 2.4 and reduces the gyroradius in the lower part
of the orbit. In homogeneous magnetic fields and in the absence of other forces,
collisionless particles are bound to a particular field line like pearls on a string.
Drifts, however, can move the particles across field lines and spread them out
from their original line to a larger volume. In the following, we discuss some key
examples of particle drifts.
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A. Electric Field

Let there be a stationary electric force

Fg=qE . (2.1.25)
The drift velocity resulting from Equation (2.1.22) is
ExB
Wg = C'——éz— (2126)

This is generally known as E x B drift. We note that wg is independent of
charge, mass, and velocity. As it is identical for all particles, the electric field
can be ‘transformed away’ by a Lorentz transformation into a suitable frame of
reference. This coordinate system moves with velocity wg, it is the rest frame of
the E x B drifting plasma. Since B is perpendicular to wg, the magnetic field in
the moving frame of reference is the same. The E x B drift can be viewed as the
moving plasma carrying along its embedded magnetic field.

B. Gravitational Field
Let gravity be given by a gravitational acceleration g and

F,=mg . (2.1.27)
According to Equation (2.1.22) it causes a drift
mc gxB

Wy = -;1— ‘—B—2— (2.1.28)

Note that ions and electrons drift in opposite directions. Gravitational drift pro-
duces a current! As the drift velocity, Wy, is proportional to mass, the current
consists mainly of perpendicularly moving ions. A well-known example is the ring
current in the terrestrial ionosphere, where the observed ion drift velocity is of the
order of 1 cm s~!, in agreement with Equation (2.1.28).

C. Curved Field Lines

In a curved magnetic field a ‘centrifugal force’ may be defined, simulating the
effect of particle inertia. The centrifugal drift becomes

2
me v

(Exercise 2.1, below) and depends on the ratio of particle energy to charge. It has
different signs for electrons and ions. The resulting current is perpendicular to the
magnetic field and is directly related to the field curvature by Ampere’s equation

(1.4.2).
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2.2. Particle Trapping in Magnetic Fields

A considerable fraction of the energy released in solar flares (estimates range from
0.1 to 50%) resides temporarily in electrons with energies far above thermal. Such
particles could easily escape from the corona without collisions if they were not
hindered by the magnetic field. In fact, only 0.1 to 1% of these electrons are
later found in interplanetary space. This evidently reflects the predominance of
loop-shaped magnetic field lines in the corona and, particularly, in active regions
where flares generally occur. ‘Open’ field lines, which connect the active region
to interplanetary space, seem to be rare or extremely well shielded from the site
of acceleration. (Note that the widely used term ‘open field line’ is a misnomer,
since in the absence of magnetic monopoles and in a finite universe all magnetic
field lines must eventually close and return from space to the Sun. Nevertheless,
such field lines can easily have a length exceeding the diameter of the Galaxy, and
they are quantitatively different in this respect from ‘closed’ field lines, returning
within the corona, or within about one solar radius: see Fig. 2.5)

photosphere
AN NN N

Fig. 2.5. Schematic drawing of ‘closed’ magnetic field lines forming loops between photospheric
spots of opposite polarity.

Most energetic particles are apparently guided back to the Sun by ‘closed’ field
lines. Some of them immediately penetrate denser plasma or even the chromo-
sphere, where they rapidly lose their energy by collisions, emitting bremsstrahlung
in hard X-rays. Others, however, remain in the corona up to several minutes, as
some microwave emissions (around 3 GHz) and decimetric continuum bursts (0.3
- 3 GHz) indicate. The flare microwaves originate primarily from relativistic elec-
trons (Section 1.2.3), and trapped electrons seem to play a role in long duration
events. Decimetric continuum radiation is generally interpreted as coherent radi-
ation of trapped electrons (Chapter 8).

Magnetic trapping can be understood as the result of conservation of the mag-
netic moment. The condition of smooth and only slowly varying magnetic field
lines is easily satisfied in practically all we know about solar and stellar atmo-
spheres. According to Equation (2.1.16), the magnetic moment
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1 2

muv
p=2 BL = const . (2.2.1)

Assuming a stationary magnetic field, no work is done by the Lorentz force. Thus
the particle energy is also conserved,

v? = v} +v? = const . (2.2.2)

Let us consider a system of looped magnetic field lines, typical of solar and
stellar spots (or magnetic poles of opposite polarity), sketched in Figure 2.5. The
field strength has a minimum near the top of the loop and is assumed to increase
toward the photospheric footpoints. If a charged particle spirals in the direction
of increasing field strength, it experiences an opposing component of the Lorentz
force (given by Eq. 2.1.9), reducing v,. This may continue until v, = 0, when
the particle changes the sign of its parallel velocity and is reflected. The magnetic
field strength at the mirror point, Bmp, can readily be calculated from Equation
(2.2.1),

2

By = By (-‘3-) . (2.2.3)
vl

The subscript 0 refers to a given point in the orbit, for instance to the top of

the loop, where the particle has a perpendicular velocity component v = vtfp.

Equation (2.2.2) requires the perpendicular velocity at the mirror point to equal

the initial total velocity v.

Let Bgep be the magnetic field strength at the critical height below which parti-
cles are not mirrored but lost by collisions. The altitude of the separation between
collisional and collisionless behavior is somewhere in the upper chromosphere or
transition region. If Bp,, < B,ep, the particle is reflected before entering the re-
gion of rapid collisions. Provided that this is also the case at the other footpoint
(where the field strength may be different), the particle remains trapped in the
corona. The coronal collision times are about five orders of magnitude longer
than in the chromosphere (Figure 1.9, but note that super-thermal particles have
a much longer collision time, as will be shown in Section 2.6). Then the particle
bounces between the mirror points. The full bounce period 7 in a parabolic field
(like the far field of a dipole, B = Biop(1 + s?/HE), where s is the path length
measured from the top of the magnetic loop), is independent of the initial parallel
velocity, since the larger vi°P is, the farther away is the mirror point. One derives

2rH B
T = 'Tp . (224)
vy
The proof of Equation (2.2.4) is left to an exercise (2.2). The geometric parameter
Hp is related to the loop length L (say from chromosphere to chromosphere) by

L)2

Bep 4
Btcp
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Bgep/ Btop is called the mirror ratio. It has been estimated from soft X-ray obser-
vations to be in the range of 2 — 10 for solar coronal flare loops.

If By > Bsep, the particle penetrates the chromosphere and is lost from the
trap. Equation (2.2.3) then states that trapping or precipitation depends only on
the ratio v/vtfp, or the particle’s pitch angle, axop. The pitch angle is defined by
the angle of the orbit to the magnetic field,

0
ag = arcsin(—vi) . (2.2.6)

The particle is trapped if the initial pitch angle is larger than the critical value
given by arcsin(Biqp /Bsep)t/?. A critical pitch angle o, can be determined from
Equation (2.2.6). It is given at every point in the loop by the local magnetic field
strength By and amounts to

a.(Bg) = arcsin (2.2.7)

By
Bsep
If the pitch angle is below this value, the particle will get lost with high probability
before reflection.

The velocity distribution of magnetically trapped particles has characteristic
cones with half-angle a. and axes in the positive and negative v,-directions, where
the number of particles is strongly reduced. They are known as loss-cones. Figure
2.6 shows a typical observation of protons trapped in the Earth’s dipole field with
a clearly developed loss-cone. The thermal, collisional background plasma forms a
nearly isotropic distribution in the center. Velocity distributions with a loss-cone
can be expected whenever particles are mirrored in a converging magnetic field
within less than a collision time. Particles outside of the loss-cone are trapped
if their mean free path exceeds the size of the magnetic configuration. This is
well-known to occur in the tenuous plasmas of planetary magnetospheres and the
solar and stellar coronae, but can also be expected in the atmospheres of white
dwarfs and neutron stars, in galactic magnetic fields, etc.

Loss-cone features are more than identification tags of trapped particle popu-
lations. They are an important deviation from thermal equilibrium. Even if the
rest of the velocity distribution is Maxwellian, loss-cones constitute free energy.
In Chapter 8 it will become clear that this free energy can be tapped by plasma
instabilities causing various types of observable emission.

2.3. Generation of Beams

The previous section introduced the imprint of the magnetic field’s spatial struc-
ture on the velocity distribution. Here we consider temporal changes of the distri-
bution and study how they propagate in space. In the absence of collisions and any
other forces, the particle distribution at a place x+Ax and time ¢ is determined
by the distribution at x and t — At, where v = Ax/At is the particle velocity.
Thus
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Fig. 2.8. Contour plot of proton velocity distribution observed by the VIKING satellite in the
Earth’s magnetosphere. The theoretical loss-cone angle given by Equation (2.2.7) is indicated
(dashed). Contours are separated by a factor of 3.2 (5 dB) (after Bostrom, Koskinnen, and
Holback, 1987).

fx+Ax,vi) = f(x,v,t—At) . (2.3.1)

Let us use this simple model to outline the evolution of a local disturbance in
velocity space. Example: Consider the rapid heating of a fraction of the particles
to a temperature T}, > T, the temperature of the ambient medium. We take only
one hot particle species for simplicity, which we assume to have a Maxwellian dis-
tribution. Since charged particles propagate along field lines (neglecting gyration
and drifts), the problem can be reduced to one dimension (the z-direction). Let
the number of hot particles at zp now increase exponentially with a time constant
7. Their distribution f at the heating site is a Maxwellian function multiplied by
an exponential function,

np 2 /0 2 t )
20,V,t) = ————exp(—v°/2v;},) exp | — . 2.3.2
f( 0 ) \/‘z_ﬂvth p ( / th) P (7_ ( )
With this expression, the mean thermal velocity in one velocity component and
the temperature T} are related by v, =: (kBTh/m)l/ 2 (kg is the Boltzmann

constant). The subscript ¢ stands for thermal, A stands for the hot population.
Using Equations (2.3.1) and (2.3.2) it is straightforward to derive the hot particle
distribution at a site zg + Az outside the heating region from the distribution at
zo shifted by —At =-Az/v,
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npet/ 2,42 Az
A t) = - - — . 3.
flan+Bzot) = SE T exp (<o - 32 (283)

The velocity dependent part of Equation (2.3.3) — the exponential function — is
plotted in Figure 2.7 for various normalized distances §, where

Az
£ = o (2.3.4)
The curve £ = 0 represents the initial distribution in the heating region given in
Equation (2.3.2). At £ > 0 a hump appears in velocity space. It has a maximum
at

= v . (2.3.5)

The evolving particle beam is simply an effect of spatial dispersion or, plainly, of
fast particles arriving first. The average velocity increases with distance at the
expense of beam density. The beam amplitude decreases, since the larger &, the
earlier in the heating event the particles have originated. The gap at v = 0 for
&€ > 0 expresses that the slowest particles have not yet arrived.

Vmax

normalized distribution

velocity [v/v,]

Fig. 2.7. Particle velocity distributions due to a local heating at £ = 0 for various distances ¢
from the heating region at any given time ¢ > 0.

The simple model lacks many problems encountered in reality. Equation (2.3.1)
obviously cannot describe a situation where forces act on the particles. Particle
conservation in the presence of electromagnetic forces is expressed by the Boltz-
mann equation (1.4.11). It can be shown (Exercise 2.3) that Equation (2.3.1)
follows from the Boltzmann equation under simplifying conditions. There are two
major shortcomings of the simple model, which are briefly mentioned here and
which will later be discussed in greater detail:
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e Most importantly, an electric field builds up if the evaporating particles carry a
charge. The electric field decelerates the particles of the beam and accelerates
background electrons to form a return current. In the absence of friction (colli-
sions) between background electrons and ions, the electric field is minute, and
return current and beam current cancel each other. For large beam currents the
frictional loss of the return current becomes an important energy drain of the
beam.

e If the peak velocity, vUmax, of the beam exceeds about three times the thermal
velocity of the ambient population, interactions of beam particles with Langmuir
waves come into play (Section 5.2). Kinetic particle energy is transferred to
oscillating electric fields and substantial energy is lost. Beam-wave interactions
have received great interest since electromagnetic emission of the enhanced waves
has been observed in solar radio bursts (Section 5.1).

We note that particle beams, as developed in this section, constitute an energy
loss of the hot region not included in first-order heat transfer. First-order thermal
conductivity is calculated from small deviations of a Maxwellian distribution in
the presence of a temperature gradient. Collisionless particles can shorten the
cooling time far below first-order calculations.

2.4. Debye Shielding

Up to now we have singled out a particle and calculated its orbit, neglecting
interactions with other particles. In this and the following section we consider two
fundamental collective properties of a plasma. They are both consequences of the
presence of free charges of opposite sign.

How do the other particles react to the presence of a charge? Let us calcu-
late the disturbance using classical statistics (see Fig. 2.8). In thermodynamic
equilibrium the kinetic particle energy ¢ is distributed according to Maxwell (Eq.
2.3.2),

fole) = ki%exp(—s/kBT) . (2.4.1)
B
Now we introduce into the plasma a particle (referred to as the ‘test particle’)
with charge Q creating a potential ®(r). If another particle (‘field particle’) with
mass m and charge q approaches the first particle, its total energy is conserved.
It remains at the value €, it had at large distances,

€+ q®(r) = eo = const . (2.4.2)

The energy distribution of the field particles also remains constant, but now kinetic
and potential energy have to be summed. The energy distribution for field particles
with charge ¢ becomes

fle,r) = k—T;-O—Texp[—(e +q®)/ksT] . (2.4.3)
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The density is given by the normalization

o0
n(r) = / fle,r)de = ng exp(—q®(r)/ksT) . (2.4.4)
0
Equation (2.4.4) describes how the density of the undisturbed field particles, no,

is modified by the potential of the test particle. Elementary electrostatics relates
® to the electric charge density p* by Poisson’s equation,

-V20 =V .E =4np* . (2.4.5)

qP

Fig. 2.8. A field particle with charge g experiences the potential ® of the test particle and
(assuming the same sign of the twa charges) loses kinetic energy. The total energy of the field
particle (dashed line) is conserved.

The charge density p* has been defined in Equation (1.4.6) and is given by the
sum over all species «,

P = anna . (2.4.6)
[23

As an example we now look at a hydrogen plasma with equal electron and
proton temperatures. The undisturbed electron density equals the proton density.
Now we disturb this equilibrium with the test charge. Using Equation (2.4.4) and

p* = —e ne + e ny, the charge density becomes

p* = englexp(—e®/kpT) — exp(+e®/kgT)| . (2.4.7)

A Taylor expansion of the exponential for e®/kgT < 1 in the region of interest
immediately yields for Equation (2.4.5)

4rnge®

28 —
Ve =2 oo T

o . (2.4.8)
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It is easy to generalize Equation (2.4.8) for a plasma of composition different from
hydrogen. 3} Z2n, then takes the place of 2ng, where the sum is over all particle
species a. Equation (2.4.8) is a second-order differential equation in ®. It can be
solved in spherical coordinates by trying the form ®(r) = g(r)/r, and yields

@(r) = ; exp(—V2r/Ap) , (2.4.9)

where a ~ @ follows from the boundary condition on the test charge (assuming
this charge to reside on a sphere with radius rg and rg < )\%). In Equation (2.4.9)
we have defined the ‘Debye-Hiickel shielding distance’, Ap, usually termed the
Debye length for short. It is one of the characteristic lengths in a plasma and

amounts to
kT T
=B g5,/ : 2.4.1
Ap prp— 6.65 ne [cm] ( 0)

where 7T is in K, and the electron density n. isin cm~3. A fully ionized multicom-
ponent plasma with solar abundances (27% helium by mass) has been assumed for
the numerical expression in Equation (2.4.10).

potential ¢

VaCIlIm

plasma
.

To Ap

distance r

Fig. 2.9. The electric potential of a test charge @ is reduced by the ambient plasma. Here the
positive test particle is shielded by field particles of negative charge and by a reduced number of
ions in its vicinity.

r

Equation (2.4.9) means that the electric force of a charge is limited in a plasma
to about the Debye length. Particles with opposite charge slightly predominate in
its environment, and neutralize its effect (see Fig. 2.9). Only particles separated
by less than about Ap feel the test charge. Of course, the test charge can be any
arbitrary particle, and the conclusion is more general: only particles within Ap
are directly influenced by each others’ electric fields. The limitation of the direct
influence of a charge has far reaching consequences and makes the behavior of a
plasma entirely different, for example, from a cluster of gravitationally interact-
ing stars. Since gravitational attraction is not shielded by repulsive forces, it is
unlimited in its reach.
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With ) = e andrg € Ap our approximation of Equation (2.4.7) atr > Ap is
satisfied with

4
?no)\% > 1 . (2.4.11)

The left-hand side is the number of particles in a sphere of radius Ap (termed the
Debye sphere) in the undisturbed plasma. It is intuitively clear that this number
must exceed unity, as required in Equation (2.4.11), to make Debye shielding work.
Assumption (2.4.11) is called the plasma approximation.

Debye shielding is usually very efficient in a plasma. For example, in a corona
with 7o = 108%¢m~3 at a temperature T = 10% K, Ap ~ 0.7 cm; and the number of
particles in the Debye sphere is about 108, amply justifying our condition (2.4.11).

This process also provides an effective mechanism to prevent local charge ac-
cumulation. A concentration of charges of one sign (say electrons) in a region of
a plasma would create local electric fields, acting toward the restoration of homo-
geneity. For e® <« kpT the effect of the electric field on the velocity of the field
particles is small. The Debye shield builds up mostly by thermal motion: some
particles (with opposite charge) remain near the test charge slightly longer, while
others (with the same sign of charge) pass by a bit faster. Charge inhomogene-
ity, as introducing an additional charge, is eroded in this way within a thermal
propagation time.

2.5. Charge Oscillations and the Plasma Frequency

In addition to spatial shielding, the plasma species of opposite signs can also lead to
charge oscillations around the homogeneous equilibrium discussed in the previous
section.

++++ +
1

Fig. 2.10. In a ‘thought experiment’ the electrons are shifted to the right (dashed boundary)
and released to oscillate at the plasma frequency.

We perform the following ‘thought experiment’ drawn in Figure 2.10: The
electrons of a plasma are moved slightly to the right by a distance z. Ions are
assumed to be fixed (or infinitely inert). This produces a volume ¥V = Fgz to
the right where only electrons exist, and an equal volume to the left where only
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ions remain. Let the number density of electrons in V be n.. The electric field
produced by this artificial charge separation is given by a simple integration of
Poisson’s equation (2.4.5). Neglecting edge effects, the problem is one-dimensional
and yields, as for an infinitely extended capacitor,

E = 4rmen.x . (2.5.1)

Now we release the electrons and they are accelerated in the negative z-direction
by the electric force. Using Equation (2.5.1) and neglecting thermal motions and
collisions,

E 47e?
——e— = —Mm = —(we)zm s (2.52)

Me Me
where m, is the electron mass. A characteristic frequency is defined in Equation
(2.5.2):

4ren,
Wy =

1/2
— ) =27-8.977-10°/n, [Hz. (2.5.3)
The solution of Equation (2.5.2),

T =a cos{wyt +b) , (2.5.3)

describes the restoring motion of the electrons, their overshooting of the equilib-
rium position {z = 0), and oscillation. It is the eigenmode of charge oscillations
of electrons around infinitely inert ions. Its frequency, wy, is called the electron
plasma frequency. Here we have derived it under very artificial conditions (which
however contain and show the essence). We shall later encounter it again in various,
more general circumstances (Sections 4.2 and 5.2). We shall find more eigenmodes
due to the gyration of charged particles in a magnetic field or due to a particle
beam. They are fundamental plasma properties.

In Section 2.4 we mentioned the elimination of charge inhomogeneities by ther-
mal motion and Debye shielding. To avoid this problem in the above experiment,
we have to require that the separation of inhomogeneities is larger than the thermal
diffusion per oscillation period. This condition amounts to

A > orte = 9map (2.5.5)

Wp

Equation (2.5.5) suggests that the wave vector k := 27/X of a space-charge wave
has to satisty k < 1/Ap, a result that will be derived in a different way in
Section 5.2. The identity relation between the fundamental plasma parameters
Vte, wp, and Ap in Equation (2.5.5) simply follows from the definitions (2.4.10)
and (2.5.3). It reveals that Debye shielding is an equilibrium between thermal
motion (expressed by v ) and electric acceleration (e?n/m, implied by wy). The
time to establish plasma shielding, 2wAp/vse, is the electron plasma period.
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2.6. Collisions

So far we have neglected interactions between single particles. What is the range
of applicability of this approximation? In addition to particle orbits, collisional
interactions are also of interest in the broader context of a gas being not in ther-
modynamical equilibrium. Collisions are likewise important for the thermalization
of a super-thermal population or a high energy tail of some particle species, as well
as the transport coefficients, such as resistivity, conductivity, or viscosity in some
steady non-equilibrium state.

The concept of particle collisions in a plasma is by far the most complex in-
troduced in this chapter and deserves careful study. The word ‘collision’ generally
evokes an image like that of two billiard balls bumping against each other. While
not in touch, there is no interaction to speak of. During the extremely short
time they are pushed against each other, they feel a strong repulsive force, which
practically ceases at the moment the two balls are separated from each other. A
collision between two charged particles, however, is a very different process since
they interact through the long-range Coulomb force. Thus the collision between
two charged particles takes place as a motion of the two charges on hyperbolic
paths in each other’s electric field.

2.6.1. PARTICLE ENCOUNTERS IN A PLASMA

Let us follow a particle, again to be called a ‘test particle’, moving simultaneously
in the fields created by many other particles (the ‘field particles’) in a plasma.
These fields add up to a stochastically changing force on the test particle; and its
orbit is rarely a hyperbola, characteristic of a two particle encounter, but a jittery
motion. Two test particles with similar, but not identical starting points and
initial velocities will, after some time, diverge into completely different directions
with different velocities (Figure 2.11).

slarge-angle
interaction

Fig, 2.11. Particles with nearly identical starting conditions diverge in space and velocity due
to stochastic collisional interactions.

Collisions in a plasma are therefore of a statistical nature. By a ‘collision’ we
mean the combined effect of a multitude (millions or billions!) of simultaneous
interactions with field particles. The collision time in plasma physics is defined
as the average time needed for a change of direction, energy, or momentum by an
amount to be specified.
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It is important for the understanding of collisions in plasmas to distinguish
clearly three ranges for field particles at different distances from the test particle.
A first dividing line has already been encountered in Section 2.4. The Debye
effect shields the test particle from the electric force of charges beyond the Debye
length Ap. We note here that a test particle moving faster than the mean thermal
speed of the field particles cannot build up appreciable shielding, being an effect
of thermal motion. However, moving in the Debye spheres of field particles, the
test particle experiences reduced electric fields.

In fact, particles beyond the Debye length are not without any influence. They
may cause a magnetic field or even an electric field that is not completely canceled
by shielding (such a situation occurs in electric currents). For such long-range fields
the same procedure is adopted as in classical electrodynamics. The local fields of
individual charges is neglected in so-called macroscopic electric and magnetic fields.
The deviations from the smoothed field are microscopic fluctuations due to single
particles.

The Debye length is about the range of microscopic fields in plasmas, and is a
relatively well defined boundary separating two populations of field particles. ()
The more distant charges influencing a test particle by macroscopic fields yield
smooth test particle orbits, drifts, and oscillations as discussed in Sections 2.1 —
2.3, and 2.5. (4¢) The charges within the Debye sphere causing microscopic fields
lead to stochastic motion, termed collision.

A second distinction of field particle distances at the microscopic level is useful
to evaluate the process of collision. The criterion is the deflection angle of the
path of the test particle in the potential of a given field particle. The deflection is
obviously small if the energy of the test particle, %mqﬂﬁ (where the subscript T
refers to the test particle and u is the velocity relative to the field particle), is large
compared to the electric potential, grqg/r1 (Where qr := Zre and qr := Zpe are
the charges of the test particle and the field particle, respectively). The distance of
closest approach, ry, refers to the original orbit of the test particle in the absence
of forces. It is generally called the impact parameter. The particle is deflected by
a small angle only if r, < r; < Ap, where

qraqr
Te = —) (2.6.1)

is the impact parameter for a 90° deflection. For » < r. one obtains a large-angle
deflection, changing the direction of the orbit by 90° or more by one single en-
counter. The ratio of small-angle to large-angle interactions varies as the respective
impact areas,

X, —r2 2} 9 \?dr 3., 2
2 _c = x| =— —TeA = A* . 2.6.2
a o S \zz) B (2:62)
For the second equation in (2.6.2) we have used Equations (2.6.1) and (2.4.10),
and replaced mu? by 3kz7. The second expression in parentheses is the number
of particles in a Debye sphere (derived in Section 2.4) and is assumed to be a large
number. Equation (2.6.2) states that small-angle scattering generally outnumbers
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large-angle deflections by an enormous factor. It will become clear below (Eq.
2.6.18) that this multitude of distant encounters is about two orders of magnitude
more efficient in deflecting the test particle than close binary collisions.

The computational simplification of neglecting large-angle deflections follows
immediately. Small, simultaneous interactions become additive, and the scattering
of a particle by small-angle deflection is a random walk in angle and velocity.

2.6.2. FOKKER-PLANCK METHOD

The statistical method to describe small-angle deflections has been developed by
A.D. Fokker and M. Planck. Let P(v, Av) be the probability that a test particle
changes its velocity v to v+ Aw in the time interval At. Provided that the particle
number is conserved, the velocity distribution at time ¢ can be written as

Fv,t) = / F(v — Av,t — A)P(v — Av, Av)d®Av . (2.6.3)

Noting that for small-angle deflections |Av] < [v], the product fP in Equation
(2.6.3) can be expanded into a Taylor series,

Hoyt) = (1P - MMl AP~ AVIV, P
5 8 (2.6.4)
+ = Av,AvJ[a 507 —fP]+...}dAv

The Einstein convention has been introduced that the sums over the indices ¢ and
j have to be used if they appear together in the numerator and denominator, or
as subscripts and superscripts. Since the probability that some transition takes
place is unity, P is normalized to

/ Pd*Av=1 . (2.6.5)

We define the average velocity change per time interval At:
/Ade3Av =<AV >, (2.6.6)
/AviAijd:’Av =< AvAv; > . (2.6.7)

Exchanging integration and differentiation, the integral in Equation (2.6.4) is read-
ily evaluated. The first term in the integrand cancels with the left hand side of
the equation. The remaining terms form the important Fokker-Planck equation,

8f(v,t) & <AviAvj>)__3_( <Avi>>
( ot >con_ duidu; \' 24t m\—ar ) - (268
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The possibility of neglecting the higher-order terms in the expansion (2.6.4) is a
property of inverse-square law particles having multiple collisions. Equation (2.6.8)
shows that the motion of particles in velocity space then can be visualized as a dif-
fusion process. Its right hand side describes the temporal change of a distribution
of test particles by multiple, small-angle collision processes. It corresponds to the
right hand side of the Boltzmann equation (1.4.11). The first term in Equation
(2.6.8) represents the three-dimensional diffusion of the test particle in velocity
space; the second term is a friction, slowing down the test particle and moving it
radially toward the origin of velocity space.

2.6.3. COLLISION TIMES

The collision time in a plasma is not uniquely defined as in the case of neutral
atoms. A charged particle in the Coulomb potential of another particle experiences
two effects: (i) It is deflected from its initial direction, and (i%) it accelerates the
field particle. The latter constitutes an energy loss and a drag force (friction) on
the motion of the test particle. The relative importance of the two effects depends
on the mass ratio of the two particles. If the field particle is much heavier, its
acceleration is small, and the direction of motion of the test particle is changed
before it loses its energy. The velocity distribution of a set of test particles with
the same initial velocity approaches isotropy before the energy is lost. If, on the
contrary, the field particle is very mobile, the drag on the test particle slows it
down before deflection. The time when a test particle changes its direction is
generally different from the time it loses its energy or momentum. Depending on
the particular problem, the collision time has to be defined accordingly. Several
relaxation times have been introduced by L. Spitzer, some of which we evaluate
in the following.

A. Angular Deflection

The scattering of a particle from its initial direction by distant encounters is a
diffusion process expressed by the first term of the Fokker-Planck equation (2.6.8).
It is natural to define the mean deflection time

v?

—_ (2.6.9)
< Avi.., /At >

tqg =

where < Av2. /At > is the average diffusion in velocity perpendicular to the
initial velocity v of the test particle in the time interval At. We denote by vperp
and vy, (needed later) the velocity components perpendicular and parallel, re-
spectively, to the initial velocity. They are generally different from v, and v_, the
velocity components relative to the magnetic field. The collision time, as defined in
Equation (2.6.9), is the average time in which the test particle is deflected through
an angle of order 90°.
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The calculation of < AvoAv > is lengthy but straightforward, and is omitted
here. The interested reader is referred to the classical textbooks of plasma physics
listed at the end of the chapter. It is based on the simple physical idea that the test
particle’s velocity changes gradually under the influence of many field particles,
whose motions are approximated by straight lines. The electric force on the test
particle is given by adding the combined effects of the field particles. To average
the effect, the sum is replaced by integration over the distribution in space and
velocity. For field particles with an isotropic, Maxwellian distribution, the integral
in velocity space reduces to the part |vp| < |vp| and yields the error function ¥
and the combination G with its derivative, where

o 2
U(z) = \/%/0 exp(~%—)dy , (2.6.10)

U(z) — 2V (z)

G(z) := 2 (2.6.11)
The limiting values are
lim ¥(z)=1 |, (2.6.12)
T—O0
and
lim Glz) = — (2.6.13)
wLIIOIO )= ;5 . 0.
The general result of the integration in velocity space is
v3 (
tg= 2.6.14
4 A (v/ver) — Glv]ver)] )
where the diffusion constant A4 has been defined by
8 2qiIn A
Ay = Edrdpm A (2.6.15)

(mr)?
A is the ratio of the boundaries on the integral over space around the test particle
where interactions take place. A finite lower limit of the impact parameter has
to be introduced to guarantee approximate rectilinear motions. Since small angle
deflections dominate, we put rmin = 7c, and A is therefore given by Equation
(2.6.2). As it enters only as a natural logarithm, the rough approximations of the
boundaries are greatly alleviated. For solar abundances and electrons or protons
as test particles,

A 4 12410573207, for T 42-10° K (2.6.16)
8.0+ 108(T/nd’?), for TR242-105K . (2.6.17)

Equation (2.6.17) includes quantum-mechanical effects on electrons at large veloc-
ities where r, falls below the de Broglie wavelength of the particles. For collisions
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between ions, the classical expression, Equation (2.6.16), should be used. In the
solar and stellar coronae and outer envelopes, InA is about 20 and decreases to
around 10 in the chromosphere. The theory breaks down for extremely high den-
sities and low temperatures, where A approaches unity.

It is instructive to consider the deflection of a fast particle having v > v;p
(the thermal velocity of the field particles). According to Equations (2.6.12) and
(2.6.13), G can then be neglected and ¥ =~ 1. The deflection time becomes

11,
T8 InA

where t,. = (mnwvr?)~! is the collision time of close encounters. In the plasmas of
interest here, Equation (2.6.18) is consistent with the assumption of the Fokker-
Planck method that close encounters can be neglected. Since a test particle feels
both electrons and ions, the total deflection time combines the effect of all field
particles, and

td"‘

¥ Tnor?8 Ink (2.6.18)

2,3
MyVr

~ 8met(ne + 3, Z2ni)Z2InA
A useful approximation for a non-relativistic, super-thermal particle with kinetic
energy €xev (in keV) in a fully ionized plasma with solar abundances is

3/2 2 20
7 €kev m1 1
=905. _Kev _ —— s 2.6.

where collisions with both electrons and ions have been taken into account. The
deflection time (2.6.20) has been numerically evaluated in Table 2.1 for electrons
and protons moving with v > vp. We note that this deflection time, increasing
with velocity in proportion to v3, is different from neutral atoms and billiard
balls (where collision time decreases as 1/v). The faster a charged particle moves
through a plasma, the smaller its frictional drag. It is this property of longevity
which makes super-thermal particles a distinct population in some cosmic plasmas.
The magnetic field has been omitted in this discussion. It does not change
the basic process of deflection nor the derived collision times. Collisions, however,
allow charged particles to diffuse across magnetic field lines. The diffusion is simply
caused by random steps of about one gyroradius within a collision time, tg.

td (2.6.19)

B. Energy Exchange

Another collision time, t.,, is related to the energy change between the test particle
and the field particles. In analogy to the deflection time we define the energy-
exchange time by

52

beo 2= 2 Ae?/At >

This definition is meaningful if the test particle has a velocity of the order of
the thermal velocity of the field particles. The energy change then fluctuates in

(2.6.21)
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its sign, and Equation (2.6.21) describes the net effect. Writing the exchange of
energy in terms of parallel and perpendicular velocity relative to the initial velocity
v of the test particle,

Ao = T {0+ Aupur)? + o] 07} (2.6.22)

After averaging over the statistical ensemble we find in the lowest order of A-terms

<A > =mh? <AV, > (2.6.23)
and, again using the Fokker-Planck method,

v? v3

K e RV Wel oy

The energy-exchange time is for instance used to determine the time to equalize
the temperatures of two plasma species (Exercise 2.5). For infinitely heavy field
particles, te,, approaches infinity as the field particles become stationary, the test
particle would move in their fixed potential, and collisions are elastic. Equation
(2.6.24) becomes unreliable for large v/v;r Where secondary terms contribute.

(2.6.24)

C. Momentum Loss

The effects of collisions on macroscopic motions such as friction, viscosity, electric
resistance, and wave damping frequently require an evaluation of the average loss
of forward momentum. The slowing down of the initial velocity of a test particle is
a combination of the frictional forces and deflections by multi-particle interactions.
Which effect dominates depends on the mass of the field particles. It is measured
by the slowing-down time ,

B v _ 2v(vep)?
< Avpar /At > [L+mz/mp|A4G(v/vir)

For v >> v it is proportional to v®. Contrary to t.s, the slowing-down time
is finite for infinitely heavy field particles and is twice the deflection time, since
forward momentum loss is dominated by deflection. Nevertheless, the slowing-
down time for electron motions close to (or below) the thermal speed of the field
particles is different and needs careful evaluation.

ty 1= (2.6.25)

D. Energy Loss

A very important collision time is the energy loss of a fast particle. At vy > wr,
the test particle only loses energy by interactions. The energy loss time is defined

by
&
T < Ae/AL>

Using Equation (2.6.22), we rewrite it as

te 1= (2.6.26)
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1 20 <Aupy/At>  <AUR/At> <A, /At>
te v? v? v?

(2.6.27)

This equation can be expressed in the previously derived terms according to the
definitions (2.6.25), (2.6.24), and (2.6.9).

P e ikl (L %)(E";)w(v/w) ~U(v/ur)| . (2.6.28)

For v > v it simplifies to

- v3mp

7 Agmr

(2.6.29)

Let an electron be the test particle for illustration. Equation (2.6.29) then yields a
very long energy loss time for protons as the field particles. The physical reason is
again the large inertia of protons, making interactions with them nearly loss-free.
Thus the relevant collision partners and field particles are the thermal electrons.
For fast electrons, the energy loss time becomes equal to the electron-electron
deflection time (Eq. 2.6.14). Also for proton test particle, the much more mobile
field electrons absorb most of the collision energy.
Relativistic electrons lose energy within a time of

gl ~ 1.59.10'2 SMV (2.6.30)

€

where epsev is the particle energy in MeV (Benz and Gold, 1971).

Uperp

N
€3 -
\/

Fig. 2.12. Evolution of the probability distribution of a super-thermal electron due to small-
angle scattering starting at to with a velocity vg. Since energy exchange and friction are slow,
changes in direction dominate. After t 2 ts 2 tq4 the ring distribution contracts toward zero
velocity.
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E. Discussion

How are the different collision times related to each other? As an example, let us
follow in time a fast electron (test particle) interacting with field particles. The
small-angle deflections by microscopic fields in a plasma scatter the test particle
in a stochastic way described by a probability distribution fr(x,v,t) in space and
velocity. The distribution is initially a delta function in six dimensions, Hf=1 &(xi—
20i)6(v; — vp;), centered at the initial position and velocity. The four collision
times derived above indicate how this probability function spreads out, and they
suffice for a statistical description of the behavior of a test particle (Figure 2.12).
If the electron initially is super-thermal (i.e. vy > v:r), pitch-angle scattering
predominates. The probability distribution grows only slowly in width parallel
to v, since energy-exchange is extremely slow (Eq. 2.6.24). After a time 4 the
distribution forms a ring in the (vpe,p-vpa,) plane (about at t3 in Fig. 2.12), when
the forward momentum is also lost. The radius of the ring decreases by energy
loss. Energy exchange widens the ring (see Eq. 2.6.23), which finally shrinks
toward the compact distribution of the field particles near the origin of velocity
space after about ..

Table 2.1. Collision times in seconds for non-relativistic test particles with vy > v,p in a fully
ionized hydrogen plasma with solar helium abundance and using cgs units. The values in the
table have to be corrected by the factor 20/lnA, being usually of order unity.

test —  electron electron proton proton
field — electrons ions electrons ions

- 3 F 3 and 3
ta 3.1‘10—201}1—? 2.7‘10—2”‘;? 1.0-10-“;—; 9.0-10—14%3?
£ 34-10—20% 5.4-10° ?U;; 1,1-10—16;—% 1.0-10—13‘;-?
te 31:-107%x  62.10717Z  57.107173t 1.1-10~132z

It is evident from Table 2.1 that a super-thermal particle (electron or proton)
is deflected by ions equally well as by electrons (except for a small difference due
to field particle densities converted into ne). This is not true for energy loss.
An electron is slowed down twice as much by thermal electrons as by ions, and
an ion is retarded almost exclusively by the friction of electrons. This difference
between electron and ion slow-down has a simple explanation. A beam of super-
thermal electrons is decelerated also by loss of directed momentum, not only by
energy loss of individual particles. Thus super-thermal electrons are decelerated
in forward momentum and deflected at similar rates. Ions are slowed down faster
than deflected.

In conclusion, we note that the collision times of a charged particle in a plasma
increase with velocity to a power of 3 or 5. It is opposite to billiard balls (or neu-
tral atoms), in which collision time decreases with velocity. This unusual property
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is specific to the inverse-square law of particle interaction and has far-reaching
consequences in astrophysics: Once charged particles are accelerated, they keep
their energy much longer than the collision time of the thermal background par-
ticles. Energetic particles may exist long after their acceleration and can serve as
indicators of violent processes in the past, like the smoke of a gun. As an example,
we just mention cosmic rays in interstellar space, which — once accelerated in a
supernova or a stellar flare — have ¢, easily exceeding 10° years. Nuclear collisions,
following a different law, effectively reduce this time.

F. Thermal Collision Times

The different collision times become practically identical for a test particle moving
at the thermal velocity and interacting with its own species. Deflection and energy
exchange occur at similar rates. This thermal collision time - also called self-
collision time — is a characteristic time of a plasma species rather than of a single
particle. Its value generally is taken as f4 evaluated at the root mean square
thermal velocity in three dimensions, (3kBT/m)1/ 2 and amounts to

t

3 3/2 1/2
v L 0267T ( m ) o, (2.6.31)

T 07144, A Z%m \'m,

where Z is the charge of the particles in units of e, the elementary electron charge,
Tisin K, n incm™3, and A has to be evaluated from Equation (2.6.16) or (2.6.17).
The thermal collision time sets the time scale in which the bulk of a plasma regains
thermal equilibrium after a disturbance. We note that (i) this takes (m,/m.)'/?
longer for protons than for electrons, and (ii) that for 20 keV electrons, to give
an example, . is more than three orders of magnitude larger than ¢; for thermal
electrons at 108 K.

Waves that include oscillating electrons (an example was given in Section 2.5)
are damped by the collisional randomization of electron momentum on ions. The
process occurs within the thermal electron-ion collision time, t.;, calculated from
the forward momentum loss (Eq. 2.6.25),

T3/2 (20
P . _2—— —_— . Q.
te; = 1.907- 10 S 7P (lnA) El (2.6.32)
The ions are the field particles. For a fully ionized plasma with solar abundances
> Zin; ~ 1.16 ne.

Exercises

2.1: Particles moving along a curved magnetic field experience a drift due to their
inertia. Calculate the centrifugal drift (Eq. 2.1.29) by defining a ‘centrifugal
force’,

2
muv;

Fc = R—ch 5 (2.6.33)
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2.2

2.3:

24

2.5:

CHAPTER 2

where R, is the curvature radius of the magnetic field.

Calculate the bounce period (Eq. 2.2.4) of a particle orbiting in a symmetric
magnetic loop having a parabolicform: B = By(1 + s?/H3%), where s is the
distance from the top.

Prove that Equation (2.3.1) is consistent with the Boltzmann equation
(1.4.11) in the absence of collisions and other forces.

Calculate the distance after which a beam evolving out of a hot Maxwellian
distribution exceeds three times the mean thermal velocity, v, of the cold
population, the approximate threshold for instability. Assume vip /v =
10, T, = 2- 10K, and 7 = 1s, values typical for solar type III radio bursts.

Prove that the equilibration time to equalize the temperatures of two plasma
species T and F defined by
teqi=|Tr —Tr | (dTT/dt)_1 (2.6.34)
amounts to
k ksTr\*?
tog = MTME ( sTr | ks F) . (2.6.35)
8v2rgiginrlnA \ mr mg

[Hint: Calculate < Aer >p and average over velocity of species 7.] As
an example evaluate t.4 for the solar wind, where the electron temperature
usually exceeds the ion temperature. How long would it take to relax the
observed difference near Earth between electrons (say 7. = 10° K) and pro-
tons (T, = 3-10* K) in the solar wind if the density (n. =5 em ™) did not
change?
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CHAPTER 3

MAGNETOHYDRODYNAMICS

In this chapter we use statistical approaches to coronal plasmas, ‘smearing out’
individual particles to a fluid. Although their individuality is lost, the particles’
collective physical properties are retained. Magnetohydrodynamics (MHD) is a
fluid theory. It is appropriate for coronal phenomena that take place on a relatively
large scale and are slow. The main branches of MHD are: equilibria, waves,
instabilities, and reconnection, on each of which there are already excellent books.
These basic processes have been applied to dynamo theory, magneto-convection,
flows in the photosphere and chromosphere, coronal loops, prominences, flares,
coronal heating, and stellar winds, again on each of which whole books have been
written.

This chapter introduces MHD from basic principles and at an elementary level.
Its aim is to prepare the ground for the kinetic plasma theory which deals with
much smaller-scale and faster processes, and which is the subject of Chapters 5 —
10.

3.1. Basic Statistics
3.1.1. BOLTZMANN EQUATION

The results of Section 2.6 on collisions in plasmas now allow a deeper understanding
of the Boltzmann equation introduced in Chapter 1. If the number of particles of
species « is conserved, their distribution function in space and velocity must obey
an equation of continuity
0fa Ofa , . 0fa
'y +v- x +X- v
This states mathematically that a decrease of the number of particles in an ele-
mentary volume of phase space, fo(x,V,t)d3z d®v, is equal to the loss of particles
from the volume by particle motion in space and velocity.
We now deal specifically with electromagnetic forces and put

=0 . (3.1.1)

=3 g4lvxB) . (3.1.2)
Mg c

The electric and magnetic fields can be produced collectively or externally, or orig-

inate from neighboring particles. The former two are the fields an observer would
measure at low spatial or temporal resolution, and they form the macroscopic

51
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parts E,, and B,,. The latter are caused by particles within a Debye radius that
generate microscopic fields AE and AB fluctuating rapidly in space and time.
Thus

E=E, +AE |, (3.1.3)

B=B,+AB . (3.1.4)
We rewrite Equation (3.1.2), dropping the subscripts m and & wherever no con-
fusion is possible,

A
= L@E+ivxm+2E (3.1.5)
m [# m

summarizing the microscopic forces in AF. Equation (3.1.1) becomes the Boltz-
mann equation (1.4.11),

of of

af _ AF of _ (of
6t 3 _(E + "V % B) av - ( )co]l

proallw 5 (3.1.6)

It contains a subtlety: As the left side contains only variables averaged over the
ensemble, the right side must also be evaluated to express the average effect of
collisional encounters (as was done in Section 2.6).

Equation (3.1.6) is the basis for the physics of fluids as well as kinetic plasma
physics. In the fluid approach, the Boltzmann equation is integrated in velocity
space. This is the topic of the following two sections. In Chapter 4 we shall come
back to Equation (3.1.6), but neglect the collision term. The reduced, collisionless
equation is generally referred to as the Vlasov equation. The choice of approach
is mainly a question of the time scale or wave frequency.

3.1.2. VELOCITY MOMENTS OF THE BOLTZMANN EQUATION

In the fluid description of a gas the information on the particle velocity distri-
bution is relinquished and replaced by values averaged over velocity space. This
is obviously reasonable if the velocity distribution contains little information; in
particular, if it is close to Maxwellian and remains so during the course of the
process. Let us define such an average for a general variable A(v) with

< A(v) > ijfd{:d:*‘ (3.1.7)
Using this notation, we define for one species (with mass m):
particle density n:= [ fd%v (3.1.8)
average velocity Vi=<v> (3.1.9)
stress tensor P:=nm<vov> (3.1.10)

pressure tensor Pi=nm<(Vv-V)o(v-V)> (3.1.11)
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mean thermal velocity vii= /< (vi— V;)2 > (3.1.12)
in ¢-direction
mean thermal energy density E=4mn< (v-V)?>= 3nkgT  (3.1.13)

The definitions of stress and pressure make use of the fact that a coronal plasma
is very close to an ideal gas. Equation (3.1.13) also defines a temperature T
corresponding to Equation (1.4.10).

A. Conservation of Particles

Now integrate the Boltzmann equation (3.1.6) in velocity space:

Of s Of 3 g/ 1 ,3f3_/ of 3
5t—dv+/v _Bxd v+m (E+cva) -——8vdv— Bt co“dv
3.1.14)

The third term on the left side is a scalar product, thus a sum of three terms.
Each can be integrated by parts and then vanishes. The collision term represents
the change of the density by collisions, and is zero due to particle conservation,

of 3, _ [On _
/(_6—t>co]]d v (6t)coll =0 (3115)

Thus the remaining terms are

on 0

— — = . -1-1

En + % (nV)=0 (3.1.16)
The integration of the Boltzmann equation (3.1.16) has yielded the equation of

continuity of particle density — a result of particle conservation.

B. Conservation of Momentum

Let us multiply the Boltzmann equation by mug, where k denotes here one of the
three velocity coordinates, and integrate over all velocity space. The first term
then becomes

0 3 __6_
ma/vk-fd V= T (mnVi) (38.1.17)

and corresponds to the temporal change of momentum density. The second term
is the force per unit volume due to a pressure gradient,

0f s 0 _x— OP
m/vkv- B_xd U= o (nm < vgv >) —-; ol (3.1.18)

The subscripts k and 4 refer to tensor and vector elements. Replacing the electro-
magnetic force, ¢(E + (v x B)/c), and the other forces by the general symbol F,
we find for the third term
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af Z]
/ka- Ed"‘v = —~/fa—v (Fog)dv = —n < Fi, > (3.1.19)

and for the collision term

of 8
m/”k (b—t)con By = (&ank)con =: Sk s (3.1.20)

representing the change of momentum by collisions. Combining Equations (3.1.17)
— (3.1.20), the first moment of the Boltzmann equation becomes

z%(ank) + ; %% =n< Fy>+8 . (3.1.21)
Equation (3.1.21) expresses the conservation of momentum and is usually referred
to as the equation of motion. These equations hold for each particle species. The
different species are coupled by the collision term, S, of each species.

As an immediate application of the above derivations, Exercise 3.1 considers
the electric field that arises from the smaller gravitational force on the electrons
compared to ions. In a stationary equilibrium this electric field reduces the weight
of the protons by half, and instead the electrons are pressed into the star. The
extent of electron and proton atmospheres and their scale heights become equal.
Compared to the Lorentz force of coronal magnetic fields, the effect of the electric
field on individual particle orbits is usually small.

C. Conservation of Energy

Analogously, the second moment yields energy conservation,

8 1,
_§+_é;.(n<§mvv>)—n<F-v>+H. (3.1.22)

The right side of Equation (3.1.22) consists of two terms. The first represents the
work done by the force F. It may include, for example, acceleration by an electric
field, emission of radiation, or a heat input. II is the change in energy density due
to collisions.

The second term on the left side of Equation (3.1.22), the energy flux, enters as
a new variable, just as particle and momentum flux have appeared in the equations
of particle and momentum conservation, respectively. The term includes changes
in flow velocity, as well as changes in thermal conduction, —V - (& * VT'). Classical
thermal conduction is controlled by particle collision. The thermal conductivity
tensor, &, is diagonal. Parallel to the magnetic field, thermal conduction is pri-
marily by the more mobile electrons. Across the magnetic field, ions — having a
larger gyroradius — are primarily responsible.

The thermal conductivity parallel to the magnetic field is proportional to the
density multiplied by the thermal velocity and the mean free path (lpng = vsets).
In equilibrium the diffusion of electrons builds up an electric field such that the
current is cancelled. This electric field reduces the heat flow by a factor a = 0.5.
For solar abundances one finds from Spitzer (1962)



MAGNETOHYDRODYNAMICS 55

5/2
€

InA

Kz & a nevitékp ~ 1.72-107° ergs™' K™ em™!]. (3.1.23)

For thermal conduction perpendicular to the magnetic field, we replace the
thermal velocity in Equation (3.1.23) by the ion gyroradius R; divided by the
thermal collision time ofions, t;, namely

2 2 2
K~ ﬂl_llzfi A~ 8.9 10‘13%@ ergs™' K™'em™!] .  (3.1.24)
Equation (3.1.24) assumes Qitﬁ > 1. Solar abundances have been assumed, T
is in degrees kelvin, B in gauss, and A has been given by Equations (2.6.16)
and (2.6.17). Note that Equations (3.1.23) and (3.1.24) assume plasmas having
nearly Maxwellian velocity distributions and particles having a mean free path
much shorter than the temperature scale length. These approximations become
questionable in the transition layer, in flares, and in solar and stellar winds.

3.1.3. ELEMENTARY MAGNETOHYDRODYNAMICS (MHD)

Some processes in coronal physics are slow, and if a plasma process is slow enough,
the physics becomes much simpler. Let us introduce a characteristic time of the
process, tchar, Which may be a travel time, a wave period or the inverse of a growth
rate. We shall assume that the process is slow enough for particle collisions to
smear out deviations from a Maxwellian velocity distribution, and for differences
between particle species in temperature and average velocity to become unim-
portant. Furthermore, we assume that spatial limitations and boundary effects
are unimportant. It may then be advantageous to sum particle number, momen-
tum and energy density over all species «, and use the equations of conservation.
An important consequence is that the sum over the collision terms of all species
vanishes, since the total momentum is conserved,

dosr=0 . (3.1.25)
a

We shall use the following definitions:
total mass density pi=, MaNa (3.1.26)
total stress tensor P.=y P, (3.1.27)
mass flow velocity V= (3, manaVa)/p (3.1.28)
barycentric pressure Ppi=> ,MaNa < (v-V)o(v-V)>, (3.1.29)
=P-VoVp (3.1.30)
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The tensor P is defined in relation to the motion of mass, being dominated by the
ions (baryons). Furthermore, one finds from the definitions (1.4.6) and (1.4.7)

charge density P=3 00N (3.1.31)
current density J=3,49"nVa . (3.1.32)

A. MHD Equations and Approximations

We now multiply Equation (3.1.16) by mq and sum over « to get the equation of
mass conservation,

e}
5§ FV-(pV)=0 . (3.1.33)
Summing the equation of momentum conservation (3.1.21) over the particle species

yields, for electromagnetic forces and gravity,

0] 3] 1

ry =P = alda ~Va ) o1

57 (PVi) + 5w T Za:n [9a(B + = Va X B) + Mag] (3.1.34)
which we rewrite in vector form using Equations (3.1.30) and (3.1.33),

pa—Y+p(V-V)V+V*ﬁ=p*E+%J><B+pg . (3.1.35)
The equation states that the change in momentum density (first term on the left
side) is caused by the flow of momentum (second term), pressure gradient (third
term) and external forces (right side). The equations for mass and momentum
conservation, (3.1.33) and (3.1.35), contain the variables p, V, p, p*, E, J, B. The
combined system of equations including Maxwell’s (Egs. 1.4.1 — 1.4.5) comprises
a smaller number of equations and initial conditions than variables. The following
approximations are generally used in MHD to close the system:

(1) Chargeneutrality, p* = 0, is suggested by the Debye shielding effect for large-
scale and slow processes. Ampere’s equation (1.4.2) then requires V - J = 0.

(2) 3 = oF’ in the frame of reference of the system moving with V.

= o(E + (V x B)/c) in the laboratory system.

The electric conductivity o has to be determined from electron—ion collisions
(Section 9.2). Often ¢ = oo is assumed; then E = —(V xB)/c. This is called
ideal MHD.

(3) We assume that the characteristic time of the process exceeds the rate of
collisions (Eq. 2.6.31) and the gyroperiods,
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2w 27

tchar > tcoll, Ea h—
i e

(3.1.36)

Then the distributions of particle velocity, and consequently the pressure,
are isotropic. The relation

Pri = 0kip® = nokpTo (3.1.37)

then follows from Equations (3.1.11) and (3.1.13) where an ideal gas has
been assumed. Equation (3.1.37) is called the equation of state. The total
pressure is the sum of the partial pressures,

p= Zpa . (3.1.38)

This is a consequence of Equation (3.1.36), requiring that the collisions have
time to equalize the temperatures of all species. Thus,

p=) nekpT = %kBT : (3.1.39)

For a fully ionized plasma with solar abundances, ), o = 1.92n,, and the
mean mass is m = 0.60m,,.

In place of the energy equation (3.1.22), a process may be approximated by
one of the following special equations of state adapted to the problem:

incompressible <= p(t) = const.(implying V-V = 0,cf. Eq. 3.1.33)
isothermal <= p x p

adiabatic <= pp~5/% = const .

Furthermore, several implicit assumptions are generally made: () In the evalua-
tions of ¢ and p the plasma is assumed to be close to thermodynamic equilibrium;
and (#¢) the internal structure of the plasma is neglected. This means that the size
of the plasma and the phenomena of interest (e.g. the wavelength) are assumed
to exceed the ion gyroradius, the Debye length, and the mean free path. If we
also neglect relativistic effects and the displacement current, the basic equations

of MHD are

% Lg.(ov)=0 (3.1.40)
at
A" 1
pﬁ—f—p(V-V)V-{—Vp: -C-J x B + pg (3.1.41)

VxB= 4?7’.1 (3.1.42)
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1B

V.B=0 (3.1.44)
J=o(E+ %v « B) (3.1.45)

Energy Equation or Specialized Equation of State .

Instead of the energy equation supplemented by a heat conduction equation,
the system of equations may be closed by an appropriately specialized equation of
state. MHD in these various forms finds many applications in astrophysics from
the liquid metallic core of planets to the flows of stellar winds.

B. Electric Fields

The displacement current 1/4w OE/8t (Eq. 1.4.2) has been neglected in Equation
(3.1.42) for the following reason. Assume a scale length of the fields, H, and a
characteristic time for the process, tg. Faraday’s equation (3.1.43) implies E ~
—vB/c,where v = H/ty. Therefore, the displacement current is about v2B/(He),
and is much smaller than ¢V x B ~ ¢B/H for v* < ¢

The electric field, E, can be calculated readily from Ohm’s law (3.1.45), and J
follows from Ampere’s law (3.1.42). Putting them into Faraday’s equation (3.1.43)
yields the induction equation

oB  _,
—67+V><(B><V)-EEVB , (3.1.46)
where we have used the vector identity (A.10) and V - B = 0.

It is important to note that in ideal MHD B and V are the fundamental
variables. J and E are secondary and can be calculated if required. B and V are
determined by the induction equation and the equation of motion. Once they are
found, J and E follow. Note in particular that J is not driven by E in ideal MHD,
and so standard circuit theories are inappropriate.

C. MHD Properties

Equations (3.1.40) — (3.1.45) are only the starting point of MHD. They can describe
an enormous number of phenomena. Over the years, much practical knowledge on
MHD plasma behavior has accumulated, some key elements of which we present
here.

e The strong coupling between a magnetic field and matter, a very important
property of plasmas, follows immediately from the induction equation (3.1.46).
This consequence of Equation (3.1.46) can best be appreciated by integrating it
over a plane surface A. The left side then expresses the total change in magnetic
flux through the surface, ® := [, B-ds. Let the boundary A’ of A be defined
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by some floating corks in the fluid. The boundary thus moves with the mass flow
velocity defined in Equation (3.1.41). The first term of Equation (3.1.46) is the
change of flux due to a variation in B, the second term corresponds to the change
caused by the motion of the boundary of A. Thus we write the left side of the
integrated Equation (3.1.46) as a total derivative,

dd 0B c*®
— = —-d BxV)-dl ~ sig(V’B - d 1.
= o s + A’( xV).d sig(V 5)47er?a (3.1.47)
The scale length H3 = B/V?2B has been introduced. The time
4rH%0
T= C2B (3.1.48)

is needed for diffusion of the magnetic field through the plasma. It is an upper limit
of the decay time for magnetic flux concentration. For photospheric conditions
(Hp ~ 10%cm, o ~ 1012 Hz) the diffusion timeis 7 ~ 4 years. Obviously, sunspots
with typical lifetimes of weeks cannot build up or decay by diffusion of field lines.
It will be shown in Section 9.2.1 that the conductivity ¢ is inversely proportional
to the collision rate. Equation (3.1.48) states that the magnetic diffusion involves a
drag on the particle motion due to collisions. The same drag and finite conductivity
also dissipate energy (Ohmic heating). Therefore, the decay of the magnetic field
by diffusion is due to dissipation of energy through Ohmic heating and vice versa.

If one studies processes shorter than the diffusion time, ¢ may be considered
infinite. Equation (3.1.47) then states that the magnetic flux is conserved in a
surface moving with the plasma. The magnetic field is frozen into the matter,
meaning that a fluid element is attached to its field line like a pearl on a string.
Density differences can be smoothed out easily along field lines, but not across
them, which is why it has become common to think of a field line as a real object,
though it is only a mathematical construct. The magnetic field line and the plasma
stay together whether the matter is moving and pulling the field along or vice versa.

e The induction equation (3.1.46) relates the temporal change of the magnetic
field to convection (second term) and diffusion (right side). An MHD process is
conveniently characterized by the ratio of these terms, a dimensionless parameter
known as the magnetic Reynolds number

4
Ry = z:- V.o Hg , (3.1.49)

where V is the velocity component perpendicular to B, and Hp is the scale length
of the magnetic field. R,, is infinite for ideal MHD and much larger than unity
for most coronal processes.

e It is convenient to eliminate J in the equation of momentum conservation
(3.1.41) to give

oV B’ _(B-V)B
p—-—+p(V~V)V+V(p+§)—T+

- g . (3.1.50)
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The right side differs from zero if the field curves or converges and so exerts an
anisotropic tension. Equation (3.1.50) contains an important relation between
magnetic field and plasma pressure. Let us consider a stationary plasma (i.e.
V = 0,8/8t = 0). The first two terms of Equation (3.1.50) then vanish. The
rest of the equation states that p and B%/8m, the magnetic energy density, are in
equilibrium with tensions produced by magnetic field inhomogeneity. For straight
magnetic field lines the right side of Equation (3.1.50) vanishes, and the combined
pressures of the plasma and the magnetic field become constant in space. Localized
strong field regions then must have lower plasma pressure to balance the outside
pressure. As the magnetic pressure in coronae is usually higher than the plasma
pressure, large variations of the latter can be accommodated by small variations
of the magnetic field. This is the reason for extreme inhomogeneity of coronae.
Consider as an example an idealized ‘flux tube’, a plasma structure outlined
by magnetic field lines. Let its density be one tenth of the outside density; assume
the same temperature and no magnetic field outside. The magnetic field of the
flux tube must then balance 9/10 of the outside pressure. At the bottom of the
solar photosphere, where Pout & 2 - 10° dyne cm™2, the magnetic field would be of
order 2100 G, comparable to the maximum field strength measured in sunspots.

e The ratio of the thermal pressure to the magnetic pressure,

e 2
5= 3P, (ﬁ 2”“’) , (3.1.51)

B2 Q. ¢
is an important dimensionless parameter known as the plasma beta. The second
equation uses definitions of Chapter 2 and is accurate for a hydrogen plasma with
T. = T;. Coronae are usually low-beta plasmas (8 <« 1), the solar wind has a beta
of order unity or higher.

e In a stationary atmosphere with uniform or negligible magnetic field, Equa-
tion (3.1.50) yields

%% — —pg(h) . (3.1.52)

The right side is the gravitational force per unit volume. For constant g and in
isothermal conditions, Equation (3.1.52) becomes the barometric equation having
an exponential solution

n(h) = n(h =0) exp(—h/H,) (3.1.53)
with a density scale height
g = 2 —500-10°L em | (3.1.54)
rg 96

where gg is in units of the gravity in the solar photosphere (cf. Appendix C), T
is in degrees kelvin, and solar abundances have been used.
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3.2. MHD Waves

Waves are an important example of collective particle motion. Some or all particles
in a volume element are slightly displaced by a local disturbance, but a restoring
force — due to a pressure gradient, an electric or magnetic field, gravity, etc. — drives
them back to the initial position. They overshoot and oscillate collectively around
the equilibrium position. It is not the individual particle that is of primary interest,
but rather the collective phenomenon, the average properties of the oscillation, and
its propagation as a wave.

Spacecraft in the solar wind plasma have observed a bewildering variety of
oscillations. In general, the wiggling particle motions, electric and magnetic field
oscillations, and the combination of all three may be exceedingly complex. We
shall restrict ourselves to (¢) small disturbances of (i¢) homogeneous, unlimited
background plasmas. Under these conditions the plasma oscillations occur in only
a few basic wave modes. These types of waves have characteristic polarization
(relations between the wave vector, the vectors of particle motion, and wave fields)
and dispersion relations (which relate the wave frequency w to the wave vector k).

There are two often neglected consequences of the fact that the equations of a
plasma are not linear: () The superposition of two solutions does not necessarily
solve the equations any longer; and (%) the possibilities for waves are not exhausted
by finding all the periodic and small-amplitude (linear) solutions. Nevertheless,
we shall examine small-amplitude waves, as they exhibit the basic physics and
form the basis of our understanding of oscillatory plasma phenomena. They are
frequently sufficient for the description of waves.

Here we only derive the basic theory of MHD waves. More complete treatments
can be found in many specialized textbooks. The derivation of the wave modes in
the MHD approximation is valid at the low-frequency end of the spectrum. The
method, however, follows a standard pattern for waves in all regimes and will be
used similarly at higher frequencies. One first considers a plasma in equilibrium
and perturbs it slightly such that the deviations are much smaller than the initial
values. The main idea is to approximate the system of equations by a system that
is linear in the variables of the deviation. The resulting ‘linear’ disturbance is
analyzed to see whether it propagates as a wave having the form exp[i(k - x — wt)].
The goal of the mathematical discussion is to find the dispersion relation and the
polarization.

3.2.1. LINEARIZATION

The MHD equations (3.1.40) — (3.1.45) with the choice of the adiabatic equation
of state appropriate for most waves,

pp~%% = const (3.2.1)

can be linearized by

B = By + Bi1(x,t), p=po+p(x1t), V=Vi(xt) , (3.2.2)
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p=po+pxt) , (3.2.3)

if the variables with subscript 1 (disturbance) are much smaller than the stationary,
homogeneous variables (subscript 0). These zero-order variables cancel out when
Equations (3.2.2) and (3.2.3) are inserted into the MHD equations. Let us assume
ideal MHD (¢ = oo} and combine the equations of Faraday and Ohm, (3.1.42)
and (3.1.45), to eliminate E1. Upon neglecting the products of first-order terms,
we get a homogeneous system of linear equations,

9PL | v Vy =0 (3.2.4)
Bt
oV, 2By B;, (Bo-V)B; _
oy + V(o1 + =) =0 (3.2.5)
V x (V1 x Bg) = 251 (3.2.6)
Bt

P 5p
pL_2p 3.2.7
Po 3 po ( )

Counting equations and first-order variables, we find the same number. We now
show, as one would expect for linearized waves, that the equations do not determine
the amplitude of the disturbance. The temporal derivative of Equation (3.2.5) is

9*V, 8y Bo- &B:

(BO'V)%Bl _
g t Vi T - =0

dr ) 47 ’
in which we eliminate all first-order variables except Vi using Equations (3.2.4),
(3.2.6), and (3.2.7),

(3.2.8)

v 5 1
PO___...._Bt21 —pOgV(V Vi) + 4—-V[B0 (V x (V1 x By))]
B (3.2.9)

~ (32 V)V x (V1 x Bo)] =0

This equation describes the evolution of an arbitrary initial disturbance of the mass
flow velocity, Vi, in space and time. The amplitude of V7 is a constant factor in
space and time, and cancels. The other first-order variables can be evaluated in a
similar way. For instance, B; can be found from Equation (3.2.6).

3.2.2. DISPERSION RELATION AND POLARIZATION (PARALLEL PROPAGATION)

Most wave equations like (3.2.9) look very complicated. Usually they can be in-
terpreted by evaluating them for simple cases, like parallel or perpendicular wave
propagation to the magnetic field. These simplifications should not be misun-
derstood as helpless attempts in the face of sheer complexity, nor as likely cases
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(other propagation angles to the magnetic field may be equally frequent). The
extreme cases and approximations identify important physics. Even the names
of waves refer to physical properties in simple limits rather than to a particular
mode. For this reason a mathematically identical wave (a particular branch of the
solution) may have different names at parallel and perpendicular propagation, at
low and high frequency. This may be surprising or confusing in the beginning, but
it indicates important differences in the physics of the wave.

We shall first solve Equation (3.2.9) for waves propagating parallel to the exter-
nal magnetic field, Bg, assumed to be in the 2-direction. For simplicity we take the
disturbance as an infinitely extended plane wave with an amplitude independent
of space and time. Thus we write

V) = Vi + VE = (V; + V)eilkz—wt) (3.2.10)

The bar indicates that the quantity is an amplitude. It will later be omitted when
no ambiguities are possible. The z coordinate in the exponent marks the only
spatial variation. It causes the phase of the wave to propagate in the positive
z-direction if ¥ > 0, and in the negative z-direction if ¥ < 0. We use here the
convention that the wave frequency is always positive. (Note that the inverse
convention, w < 0 and k > 0 for negative wave direction, is also widely used in
the literature).

Since Equation (3.2.9) is linear and the zero-order terms are constant, the
use of Equation (3.2.10) corresponds to a Fourier transformation. In fact, more
complicated cases can only be solved by the proper Fourier method. Plugging in
Equation (3.2.10) (or Fourier transformation) turns the derivatives into factors,

e - —iw, V> ik
Equation (3.2.9) becomes
5 k*p?
(§p0k2 — pow?)VE +( 41r0 —pow?)VE =0 . (3.2.11)

This relation must hold for any wave amplitude VT and Vf, which are independent
of each other and arbitrary. For a non-trivial solution, either of the two expressions
in parentheses and the other amplitude must be equal to zero. The two possibilities
correspond to two wave modes studied below in detail.

From the first parentheses in Equation (3.2.11) we get

w?  Bpg 9

— = = . 3.2.12
T3, O ( )
A connection between w and k as in Equation (3.2.12) is generally called a dis-
persion relation. The wave is named sound wave and the phase velocity of this
wave, w/k = ¢,,is the sound velocity. The restoring force, as indicated by the
numerator, is a gradient in pressure. The factor 5/3 is the ratio of specific heats
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corresponding to the 3 degrees of freedom of each particle in a plasma. In a com-
pletely ionized plasma with solar abundances ¢, = 1.51-10*/T [cm s™1], where T
is in degrees kelvin. The group velocity of the wave, being the speed at which the
wave energy is carried, equals dw /8% and in this case is also cs.

The second expression in parentheses in Equation (3.2.11) describes a com-
pletely different wave,

w? B? 9
k_2 = m =: C4 - (3.2.13)

The wave exists only if Bg # 0. It is the Alfvén wave, named after its discoverer
who received the Nobel Prize in 1969 for this and other contributions. (It is also
called the shear Alfvén wave to distinguish it from the compressional Alfvén wave
introduced later.) The phase velocity of the waves, ¢4, is called the Alfvén velocity.
We shall use the relation ¢4 & e(m,/m,)'/ %, /ws, for a hydrogen plasma, and, for
solar abundances, its numerical value 2.03 - 101130 /vn, [cm sl

What is the difference between the two wave modes? Let us investigate their
polarization (meaning the directions in which the sinusoidal disturbances oscillate).
The sound wave has an amplitude V§{ and the particles oscillate only in the z-
direction,

V) = Vieeilka—wt) (3.2.14)

where e, is the unit vector in the z-direction. Such a wave in which the particles
oscillate in the direction of propagation is called longitudinal. Since V7 is parallel
to By, it follows from Equation (3.2.6) that

—iwB, = ike, X (Vl X Bo) =0 . (3215)

Faraday’s equation and Equation (3.2.15) also require that E; = 0. Equations
(3.2.4) and (3.2.7) give

k
p1r = pO'u')'Vlz (3216)

5 k
= gpo= Vi . (3.2.17)

Thus a sound wave parallel to By does not cause any electric or magnetic distur-
bances in a plasma, but oscillates in density and pressure like in a neutral gas.
These waves are purely hydrodynamic.

On the other hand, the particles in Alfvén waves oscillate in transverse motion
to the magnetic field and the direction of propagation, since

b

V) = V; eilkz—wt) (3.2.18)

The magnetic disturbance is perpendicular to By and 180° out of phase with V7,
as it follows from Equation (3.2.6) that
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__sign(k)kBo

1
Bl =——kx (V1 XBO) =
w w

Vi, (3.2.19)

c .
J1 = 4—7;7,1081 X B] . (3.220)
However, from Equations (3.2.4) and (3.2.7), we find

p1=0 and p; =0 . (3.2.21)

Alfvénwaves are therefore purely magnetodynamic, and the perturbations do not
compress the plasma. They cause an oscillating ripple on the magnetic field line
and may be compared to oscillations of a violin string. As suggested by the
expression (3.2.13) of the phase velocity, the restoring force is magnetic tension,
B2/4m, indeed analogous to strings. It is the result of the magnetic gradient
term in the equation of motion (3.2.5). Alfvén waves are most unusual in that
they are also solutions of the full, non-linear equations, as can easily be shown
by substitution. For this reason, the dispersion relation of Alfvén waves does not
change for large amplitudes, and the wave does not dissipate energy by non-linear
effects. As an important consequence, Alfvén waves can transport energy over
long distances, even if the plasma changes gradually, as in a corona.

3.2.3. PERPENDICULAR PROPAGATION

Let us now look at the case where the waves propagate in the z-direction with Bg
still in the z-direction,

Vi = (V] + V) 4+ V)eitka=wt) (3.2.22)
This is representative of all perpendicular waves without loss of generality. Anal-
ogous to the parallel case, Equation (3.2.9) gives

2

BZ
TOVEF (Caow)VE + (o) VE=0 . (3223

Again the zeros of the expressions in parentheses are solutions for wave modes. For
the second and third expression we find w = 0; there is no MHD wave perpendicular
to By with transverse (L B) particle oscillation. We have a mode from the first
parenthesis with

5 k
(—p0w2 + gpokz +

w? 5py B/am
28, T T
k*  3po Po

The wave is longitudinal and possesses a combination of acoustic and electromag-
netic properties. It is named a fast magnetoacoustic wave since it is faster than
both sound and Alfvén waves. It is a longitudinal wave. For ¢; — 0, the fast
magnetoacoustic wave does not behave like the Alfvén wave derived in Equation
(3.2.13), although w/k = c4. It is then called the compressional Alfvén wave.

=24 . (3.2.24)



66 CHAPTER 3

3.2.4. GENERAL CASE

Having explored the physics of the waves in the simple cases of parallel and per-
pendicular propagation, we now look at the intermediate angles to outline briefly
how the modes change with angle. The three modes found for parallel and perpen-
dicular directions keep their identity in the general case of skew propagation. This
may have been expected from the fact that the disturbances of the three waves
are mutually perpendicular in parameter space. However, the physics of the waves
changes considerably.

cafes =1/v2

Alfvén
3

slow”,

- O_S —

=10

Fig. 3.1. Polar diagram of vector phase velocities. The length of the radius vector at an inclina-
tion angle 6 to the equilibrium magnetic field equals the phase speed (w/k) for waves propagating
in that direction. Speeds have been normalized with respect to (ch + cf)l/z.

In non-parallel directions, sound waves are not purely longitudinal, and the
Lorentz force takes part in the oscillation through magnetic tension and magnetic
pressure. The pure sound wave is a singularity of the parallel and B = O cases.
At a general angle, the mode has a magnetoacoustic nature. However, it does not
necessarily coincide with the fast magnetoacoustic mode!

In the parallel direction and for c4 > ¢, the fast magnetoacoustic wave prop-
agates at the Alfvén velocity and becomes a purely transverse wave driven by
magnetic tension. It produces no compression and is physically identical to the
Alfvénwave (right part of Figure 3.1). However, for ¢4 < ¢, (left part of Figure
3.1) the fast magnetoacoustic wave in the parallel direction is identical to the sound
wave. Except for the singularities at parallel and perpendicular propagation, there
is always a fast and a slow magnetoacoustic mode.

The phase velocity of the Alfvén wave approaches zero at perpendicular phase
velocity, since the relevant field component of the magnetic tension decreases with
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the sine of the inclination angle. Its speed is infermediate and always faster than
the slow magnetoacoustic mode. The name ‘intermediate mode’ is not commonly
used for linear Alfvén waves, but for non-linear waves (Chapter 9). The slow
mode at parallel propagation can be a sound wave or an Alfvén wave, depending
on the ratio of ¢4/c,. Note that the expressions ‘slow’, ‘intermediate’ and ‘fast’
are mostly name tags of mathematical solutions and do not express the physics of
the waves.

Figure 3.1 summarizes the phase velocities of the three MHD modes for differ-
ent inclinations to the magnetic field and two values of the ratio of Alfvén speed
to sound speed. In general, the group velocity, dw/8k, has different values and
directions from the phase velocity. A remarkable example is formed by the Alfvén
(intermediate) waves whose group velocity is always field aligned and thus carries
energy only along B regardless of the inclination of k .

Some physical properties persist over all angles and ca4/¢, ratios. For fast and
slow waves both V; and B; remain in the plane defined by B and k. On the other
hand, V; and B; of the Alfvén waves are perpendicular to this plane. For the
fast mode, the magnetic pressure and the density always oscillate in phase, but
magnetic pressure and density oscillations are 180° out of phase in the slow mode.

Exercises
3.1: Assume a highly ionized hydrogen corona in equilibrium at rest (V¢ = V? =

0) with p, = pp. Prove that the gravity of the star creates an electric field

1
(mp —Me)g = =Mypg (3.2.25)

FE =
€ 2

(SR

in the upward direction. It prohibits the sedimentation of the heavier protons
at the bottom of the corona, as one would expect for an atmosphere of neutral
particles. Compare the force (3.2.25) to the Lorentzforce F, = eBuv/c, where
v/e 2 1/100 for a thermal electron in the corona and B ~ 1 G.

3.2: Calculate 8 (plasma beta) at the site of a flare before the energy is released,
assuming thermal equilibrium and pressure equilibrium, an electron density
of 10!® cm~3, a magnetic field of 100 G, and a temperature of 5- 10 K. Let
us first assume for simplicity that the flare locally increases only the elec-
tron temperature by a factor of 100 and leaves the other plasma parameters
unchanged (neglect non-thermal particles). What is now 8 and what is the
consequence? Assume solar abundances, thus n; = 0.92 n,. What would
happen if only the local magnetic field were annihilated?

3.3: Describe the properties of the slow mode MHD waves traveling parallel to B
for both ¢4 > ¢s and ¢4 < ¢,.

3.4: Prove that in an ideal and non-relativistic MHD plasma the ratio of electric

energy density to magnetic energy density is always (V. /¢)?, and show that
the kinetic and magnetic wave energy are equal for an Alfvén wave.
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CHAPTER4

WAVES IN A COLD, COLLISIONLESS

PLASMA

In the tenuous plasmas of coronae where fluid turbulence and vortex motions are
frequently inhibited by the magnetic field, waves take their place to carry away the
energy and momentum of local disturbances. Many kinds of waves are possible in
a plasma depending on frequency, species of oscillating particles, restoring force,
boundary conditions, inhomogeneity, propagation angle to the magnetic field, etc.
In this chapter we shall give an overview of the basic wave modes in homogeneous
plasmas ranging from the MHD waves, at periods of the order of minutes under
solar conditions, to the high-frequency electromagnetic waves escaping from the
corona as radio to X-ray emissions. The common physics of waves as collective
phenomena has already been emphasized in Section 3.2 on MHD waves.

What happens in a wave whose frequency exceeds the collision rate? In princi-
ple, each particle or group of particles could oscillate in its own way. The velocity
distribution may oscillate and not remain Maxwellian. In a first approach that
is not kinetic, we simply ignore thermal motions in this chapter and replace the
velocity distributions by é-functions. This is what we mean by the adjective ‘cold’.
The oscillations of the distributions therefore do not play a role here and will be
the topic of the next chapter. As in MHD, the cold plasma is considered as a
fluid, and the individuality of particles is neglected. The equations of particle
and momentum conservation (the moments of Boltzmann’s equation) are similar
to MHD, except that there are no temperature effects and the different plasma
species are not locked to each other by collisions.

4.1. Approximations and Assumptions

Can a plasma be both free of collisions (hot) and have negligible thermal mo-
tions (cold)? The adjectives cold, collisionless, non-relativistic, infinite, etc. mean
different simplifications in the fundamental equations. Such simplifications are
important for understanding the physics in plasma phenomena. The approxima-
tions hold as long as the neglected effects are smaller than the phenomenon under
scrutiny. Note that there are simplifications that exclude certain effects altogether.
The sound wave, for example, does not appear under the cold plasma assumptions,
and can only be recovered by allowing for thermal motions. The danger of plasma
physics is to exceed the limits of validity set by these simplifying assumptions. In
practice, one often does not know these limits. To give an example, interplanetary

69
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0 We.i Q; w? Q. wy “

Fig. 4.1. Characteristic frequencies in the order typical for the solar corona. The numbers refer
to frequency ranges discussed in the text. we ; is the electron-ion collision frequency (Eq. 2.6.32).

density variations make it questionable to consider the interplanetary medium as
an infinite, homogeneous background plasma even for localized processes.

Characteristic frequencies divide a plasma into ranges where different assump-
tions apply. The parameters of cosmic plasmas vary over many orders of magnitude
(see Table 4.1), and this division is not fixed. Depending on the frequency of a
wave, the plasma species behave differently. The frequency ranges given as an
example in Figure 4.1 for the solar corona have the following properties:

(1) Collisions dominate — MHD waves.

(2) Collisionless plasma, but p* ~ 0 — Chew—Goldberger-Low waves (similar
to MHD, but the pressure can be different in directions parallel and perpen-
dicular to Bg).

(3) Ions are unmagnetized, meaning that the wave oscillates faster than the ion
gyration time. The orbit of an ion within a wave period can be approximated
by a straight line and is independent of the magnetic field. — Ions and
electrons behave differently and have to be described by two fluids.

(4) Tons are practically immobile. — Only electrons are important (one fluid).
(5) Electrons are unmagnetized.

(6) Electrons are also immobile. — The plasma increasingly comes to resemble
a vacuum.

In every range there is, in principle, a different system of equations suitably de-
scribing linear waves. The waves keep their identity, but gradually change their
character from one range to the next.
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Table 4.1. Typical parameters of various plasmas and their characteristic frequencies.

Plasma n T B Ve i Q. /27 v

e
[em—3] [°K] [G] [Hz| [Hz] [Hz]
intergalactic 10-6 10° 108 1012 3.1072 10
interstellar 1072 102 1073 1073 30 108
interplanetary 10 10° 1074 1075 3-10? 3.10%
solar corona 108 108 10 10 3107 108
ionosphere 106 10° 0.1 3-10°% 3-10° 107
center of star 1024 108 1097 1014 3-1027 1016
white dwarf 1030 10% 10° * 3 .10 1012
tokamak 1016 108 10° 108 3. 101 102

4.2. Cold Plasma Modes
4.2.1. LINEARIZATION

A plasma is said to be cold if processes are investigated that do not depend on
thermal motion or pressure. The behavior of waves in a cold plasma is derived
from the moments of Boltzmann’s equation (Egs. 3.1.16 and 3.1.21) without the
MHD approximation and summation over species. These multi-fluid equations —
upon neglecting the pressure term (p = 0) and collisions (S* = 0) — contain the
physics of a cold, collisionless plasma in the frequency ranges 2 — 6 of Figure 4.1.
For each species « there is an equation for particle and momentum conservation,

on® avyroy —

W-FV'(TL Ve =0 (4.2.1)
ave o o 4o _1_ o a
ot +{(Ve - V)V = ——ma (E + CV x B%) . (4.2.2)

In addition we are using the full set of Maxwell’s equations in their classical form,

16B .
V:B=0 VxE=--— p:=;qana (4.2.3)

. 16E _ N
V-E=dnp VxB———J o J.—za:qanav L (4.24)
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The method to extract the linear modes (periodic solutions to small distur-
bances of an equilibrium) is analogous to the MHD waves (Section 3.2). We
study the temporal evolution of the variables of the system having the form
A = Aq + A1(x,t), where Ag = const is the value of the homogeneous, station-
ary plasma. Aj is a small deviation compared to the stationary value, satisfying
|[A1] < |Ao]. We shall furthermore assume that Eg = 0, Jo = 0, and p}§ = 0.
The zero-order terms satisfy Equations (4.2.1) — (4.2.4). When the variables of the
disturbed plasma are put in, the zero-order terms cancel. Products of first-order
variables can be considered of higher order and are neglected. The remaining
system of equations is linear,

ong§ o o
5 T V§-Vnf+nfV.- V¢ = (4.2.5)
% (VG V)VE = T %V‘f‘ x Bo + %vg x By) (4.2.6)
Vx By = —%Qg—‘ (4.2.7)
V- E; =4np] (4.2.8)
P =3 gand (4.2.9)

-

VxB;= ilcff.ll + %6% (4.2.10)
V-B; =0 (4.2.11)
31 =) qa(nfVE +ngVE) . (4.2.12)

This system of equations is very general and includes a large variety of waves. It
also contains the displacement current in Equation (4.2.10) which will be important
for high-frequency waves. We shall restrict the discussion to two special cases
revealing the most important wave modes and their properties:

(1) By # 0,V =0 for all particle species .

(2) Bg =0, V§ # 0 with at least two species moving in relation to each other.
This case will be studied in Section 4.6.

For a homogeneous stationary background, the Fourier transformation can be
carried out by the simple form for plane waves, assuming that all first-order terms
have the form

Ai(x,t) = Ajexpli(k-x —wt)] . (4.2.13)
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All derivatives then become factors,

2]
e — —iw, V =1k

The dispersion relation can be calculated from Faraday’s law (Eq. 4.2.7) if
the magnetic field, By, is expressed by the electric field. For this purpose we first
have to calculate the electric conductivity and the dielectric tensor, and then use
Ampere’s equation (4.2.10).

4.2.2. OHM’S LAW

Electric conductivity is the relation between electric field and current density.
Thus we search for an equation of the form of Ohm’s law. It follows from the
linearized momentum equation (4.2.6) and the assumptions Bg # 0 and V§ =0
that

- 1
—iwVe = ::L_(E1 +-V§ xBo) . (4.2.14)

Using the gyrofrequency in vector form, 2% := ¢,Bo/(mac) (Eq. 2.1.4), this
transforms into

Ve + Qe x Ve =g (4.2.15)

(4
This linear, homogeneous system of three equations can easily be inverted. Let us
use a frame of reference in which the z-axis coincides with the direction of Bg. The
gyrofrequencyvector, 2%, has a non-vanishing component in the z-direction only.
We shall use the z-component of the gyrofrequency defined by Q2 := ¢/|q| Q4.
The value of Q¢ is positive or negative depending on the sign of the charge. Then

—Ne

o | Tl wde O

_ o Q ,

? = m—a MW ;E"z%“;)-{ 0 * E1 s (4.2.16)
0 0o i
¢=M.+E; . (4.2.17)

Equations (4.2.16) and (4.2.17) define a mobility tensor, ﬁa, describing the effect
of the wave electric field on the mean velocity of particle species c. We immediately
get Ohm’s law and the conductivity tensor &,

I1=Yana Ve = (Y tanaMa) s By = 6+ By . (4.2.18)
« o

It is remarkable that there is a finite conductivity, even without collisions.

Inspecting Equation (4.2.16) we find, however, that the conductivity relates to
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the wave character of the disturbance, and it becomes infinite in the z2-direction
for w = 0in agreement with our assumption of ideal MHD. The conductivity
appearing in waves is the result of particle inertia hindering free mobility in the
wave fields.

4.2.3. DIELECTRIC TENSOR

As a next step we calculate a formal dielectric tensor. So far we have considered
the plasma as a set of particles in empty space, and the dielectric properties of
the background medium were those of a vacuum. The physical reason for the
appearance of dielectric properties is simply that the electromagnetic field and the
current of a wave depend on each other. The mobility of the free charges tends to
weaken the electric field and thereby induces a magnetic field. One defines a D
vector in Ampere’s equation (4.2.10) through

. . .
ik x By = —}Jl - %El = —%Dl . (4.2.19)

Using Ohm’s law (Eq. 4.2.18) we eliminate J1; and put Dy := é* E;, where we
have defined the dielectric tensor

. -~ 4dr,. . AT qaNg =~
=1——6=1- E —_— 4
é : Fod 2 o M, (4.2.20)
(wp)? , 05 (wp)?
1= Za w’—iﬂgi’ -t Za wWZ=(02)%) 0
a\2

oz (us)?

— . w?)
= | iSaouihem 1 o wrotur o (4.221)
0 0o -t

€ i€1 0
= | ~tey € O . (4.2.22)
0 0 ¢

We have defined the plasma frequencies for each species as well as for the whole
plasma by

4dmgin

a2, __ a'la

(We)? = e (4.2.23)

whi=Y (wg)? . (4.2.24)
23

The reason for the appearance of the plasma frequency is obvious; w, is pro-
portional to the ratio of the electric force to inertia (mass), which also controls
the oscillation investigated in Section 2.5. The dielectric properties are therefore
usually dominated by the lightest particles — the electrons. The dielectric tensor
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reduces to unity for very high frequencies or effectively infinite inertia and becomes
equal to the value in a vacuum.

4.2.4. DISPERSION RELATION

Let us now Fourier transform the linearized Faraday equation (4.2.7)

ik x Ep = %Bl . (4.2.25)

B; can be eliminated using Equation (4.2.19). The result is a system of three
linear, homogeneous equations,

2
(k1 -kok— b—;’-2-6) +E =0 . (4.2.26)

The tensor product o is defined in Appendix A. Equation (4.2.26) only has a
non-trivial solution if the determinant of the system equals zero. We thus require

ck. oa c .
det[(;)21—(b—u)2kok—e]=0 ) (4.2.27)

It is a general dispersion relation for waves in a cold, stationary plasma. The
combination ck/w =: N is called the refractive index. It controls the refraction
(bending) of propagation in inhomogeneous media.

There are four basic roots for linear plasma modes: two electromagnetic and
two electrostatic modes. The electromagnetic waves are related to the two po-
larization modes of radiation in a vacuum. The charged particles in a plasma
participate in the wave oscillations and modify the character of the waves. The
electrostatic modes are related to the different oscillation properties of ions and
electrons. We have encountered an electrostatic mode in Section 2.5 as the eigen-
mode of electron oscillations around essentially inert ions. The mode is named
electron plasma wave. The other electrostatic mode, called ion wave, will appear
as lower hybrid wave (Section 4.4.1) and as ion acoustic wave (Section 5.2.6). The
name °‘electrostatic’ expresses the fact that there is no magnetic force involved. In
the more realistic case, however, when an external magnetic field is present and
the wave is not parallel to this field, these waves in general also have magnetic
components.

The four basic wave modes do not exist at all frequencies and at all angles to
the magnetic field. Furthermore, they behave differently at different frequencies
and angles. For this reason, the same mode may carry different names relating
to essential physical properties under different approximations. The name of the
wave generally characterizes the basic physical principle, not the mode. As for the
MHD waves, the physics is best studied in the limiting cases. For an overview we
shall ultimately connect the waves at different angles in Section 4.5 to recover the
four basic modes.
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4.3. Parallel Waves

For a first orientation we have a look at waves that propagate parallel to the
magnetic field. We write k = (0,0,k), and the determinant (4.2.27) is easily
calculated,

c2k?
el{(—z —e)’ —ei] =0 . (4.3.1)

Equation (4.3.1) has three solutions: one electrostatic and two electromagnetic.
The parallel electrostatic ion wave does not appear in cold plasma and will be
discussed in Section 5.2.6.

4.3.1. ELECTROSTATIC WAVES

A first solution to Equation (4.3.1) is readily extracted by putting

€ = 0 . (4.3.2)
According to the definition of ¢ in Equation (4.2.22),

w=wp . (4.3.3)

We shall show that we have recovered the plasma eigenmode of Section 2.5, except
that now all plasma species are allowed to oscillate freely. Thus, the plasma
frequency in (4.3.3) is the root mean square over the plasma frequencies of all
species. Nevertheless, we shall refer to these waves as electron plasma waves, since
the oscillation energy of the electrons exceeds that of the ions by the mass ratio
m;/(meZ?) (Exercise 4.1). Equation (4.2.26) can only be satisfied (for E; # 0) if
E; is parallel to By. The mobility equation (4.2.16) then requires that V; is also
parallel. In other words, the particles oscillate in the same direction as the wave
vector. Such a wave is called longitudinal.
Furthermore, Ampere’s equation (4.2.19) becomes

ik x By = —fé“ie* E; =0 . (4.3.4)
On the other hand, Equation (4.2.11) requires

ik-By=0 . (4.3.5)

Both can only be satisfied if By = 0. A wave with this property is generally called
electrostatic. 'This special case of a parallel propagating electron plasma wave,
where no magnetic effects appear — neither from the background plasma nor in
the wave — is named the Langmuir wave after one of the pioneers of plasma physics
in the 1920s.

The dispersion relation (4.3.3) already indicates how different electron plasma
waves are from MHD waves derived in Section 3.2. Only one frequency is possible,
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but the wavelength is arbitrary. The phase velocity, w/k, varies with wavelength;
a wave with this property is called dispersive. The group velocity vanishes as
Ow/8k = 0. A wave packet thus does not propagate, nor does the wave transport
energy. It corresponds to the plasma eigenmode introduced in Section 2.5. We note
that these extreme properties of electron plasma waves are considerably moderated
when we shall allow temperatures T # 0 in the following chapter.

Electron plasma waves are excellent density diagnostics in astrophysics. Even
allowing for thermal effects, their frequency is closely related to the electron density
in the source region (Egs. 4.2.23 and 4.3.3). But how can these non-propagating
waves be observed? The conversion of plasma waves into observable electromag-
netic waves is discussed in Section 6.3. Such plasma wave emission is the generally
accepted process for solar type III radio bursts. An alternative way to make elec-
tron plasma waves observable is their investigation by radar, which is practicable
in the Earth’s magnetosphere.

4.3.2. ELECTROMAGNETIC WAVES

Two more solutions of Equation (4.3.1) can be found by putting the term in
brackets equal to zero. First, let

27,2

%’:— —ete =6 . (4.3.6)

The left side of Equation (4.3.6) is the square of the refractive index, and the

equation, combined with the definitions (4.2.22) of € and €, is the dispersion

relation of a further mode supported by a cold, collisionless plasma. To determine

the polarization of this wave, we put the dispersion relation (4.3.6) into Equation
(4.2.26) and get

€1 —ieg 0
'L'Gl €1 0 * E1 =0 . (437)
0 0 —€)|
This requires
Eiz —iEBy, =0 {4.3.8)
Ey, =0 . (4.3.9)

Equation (4.3.9) states that the wave is transverse, meaning thatE; is perpendicu-
lar to k. To comprehend Equation (4.3.8) one has to remember that the first-order
variables contain a complex exponential, exp[i(k,z —wt)], but only the real part is
observable. It is straightforward to show that the wave is left circularly polarized.
(Left here means that the E; vector for an observer at a given location rotates
counterclockwise when looking along the vector Bg.) Note that neither the sense
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of rotation (defined by Bg) nor any other property changes for a wave with neg-
ative k propagating in the negative z-direction. We may in general call the wave
defined by Equation (4.3.6) an L-wave.

It follows immediately from the Faraday equation (4.2.7) that B; is perpen-
dicular to both k and E;. The L-mode thus is electromagnetic. It differs from
the well-known electromagnetic wave in a vacuum by its inclusion of a current
(J1 L k). This has important consequences if a wave is near resonance to one of
the characteristic frequencies of the plasma.

The third solution is found in the analogous way,

21,2
%}kT =€ —€ :=€r , (4.3.10)
being the dispersion relation of the R-wave. Again one gets the polarization from
Equation (4.2.26). The E;, component vanishes and

B +iBy, =0 . (4.3.11)

The wave is transverse and right circularly polarized. 1t is not just the mirror
image of the L-wave, but differs from it by having other resonances. This we are
now going to investigate.

4.3.3. DISPERSION RELATIONS OF THE L AND R WAVES

L-waves and R-waves are the realizations of the two electromagnetic modes for cold
plasma and parallel propagation. They are circularly polarized and can resonate
with gyrating particles. In this section we study the effects of resonances on the
waves from their dispersion relations. For simplicity, we assume only one species
of ions. One derives easily

(wp/w)? 4312)

€L =¢fteg=1—— "0 |
R 0T (17 &)(1 + =)

using the modulus of the gyrofrequencies (£; := |€;]| and Q. := |€,]). The upper
sign stands for the L-mode, the lower sign for the R-mode. In the following we
study this dispersion relation for waves at different frequencies.

¢ For w < wp, £, Q, both L and R waves have

k2c? w2 c?
— =1 P_—14— . 3.
3 + 00, + ) (4.3.13)
This is the dispersion relation for Alfvén waves (Eq. 3.2.13),
k202
2 A
= —F 4.3.14
Y T (eafo? (4.3.14)

with an additional term stemming from the displacement current, being neglected
in MHD. In Section 3.2 we have assumed the form of a linearly polarized Alfvén



COLD PLASMA WAVES 79

wave, which can be done in two independent perpendicular directions. Since L and
R waves have the same dispersion relations, they can be superposed to a linearly
polarized Alfvén wave. At low frequencies, L and R waves are thus identical to
Alfvén waves.

e For w > wy, 4, Q., one finds from the definitions (4.2.22) and (4.3.12)

€, —€ER = 1 . (4315)

The dispersion relation then follows immediately as

w? = k%c? . (4.3.16)

The equation is identical to the dispersion relation of electromagnetic waves in a
vacuum; so the waves are the same as ordinary radiation.

4.3.4. RESONANCES AT THE GYROFREQUENCIES

It is not surprising that the dispersion relation of the L-wave (Eq. 4.3.12) has a
singularity at £2;, the gyrofrequency of the left circling ions. At this frequency the
ions rotate in phase with the wave, feel a constant electric field E4q, and quickly
exchange energy with the wave. L-waves below §; are called ion cyclotron waves.
If propagating into a region where it is in resonance, a wave can be reflected or ab-
sorbed, depending on the damping processes. We note that an L-wave propagating
into the negative z-direction is also in resonance with the ions.

The analogous process occurs for R-waves at Q.. R-waves between the electron
and ion gyrofrequencies have peculiar properties deserving special attention. In
the range

QCw< e Cwp (4.3.17)
Equations (4.3.10) and (4.3.12) can be approximated by

k3c? w3
i (4.3.18)

In the form of phase velocity, the dispersion relation (4.3.18) becomes

w Q. [w W, /_rrﬁ/i W
’Uph == E ~ wp Q—e(l —KZ) =C4 e Qe (1 Qe) . (4.3.19)

These R-waves are called whistlers, since their group velocity depends on fre-
quency,

3/2 w
) = 2up(l— =) . (4.3.20)

“ )
Q. Q.
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When pulses of whistler waves are excited, the high-frequency waves will arrive
first. This property gives the waves their peculiar name. With ordinary long-
wave radio receivers one occasionally hears a whistling sound at a decreasing pitch
originating from whistler waves excited by terrestrial lightning and propagated
through the magnetosphere.

4.3.5. CUTOFFS NEAR wp

It is important to discuss carefully the behavior of observable waves near the
plasma frequency. For w > §; one can approximate Equation (4.3.12) by

2 W Jw)?
(Ng) e - 1(_;?'2%5 . (4.3.21)
The right side — being equal to the square of the refractive index A/ — must be
positive for the modes to exist. This condition creates a cufoff in frequency below
which the waves are evanescent (they do not propagate since their refractive index
is purely imaginary). The refractive index equals zero at the cutoff. A propagating
wave that meets a cutoff is usually reflected. For R-waves (minus sign in Eq.

~ + —Q "I‘ —Q 4 2
We wp e e . ( .3.2 )

For w,% > QE, the cutoff frequency is about w, + %Qe. In the other extreme,
for w? <« Q2, the cutoff frequency wsy &~ Qe(l 4+ w?/Q2). It is easily shown that
for R-waves the cutoff is always above max(wp,2.), above the two elementary
frequencies. The cutoff determines the lowest frequency of waves that can escape
from a stellar atmosphere and that can be observed (see Fig. 4.2).

According to Equation (4.3.21) L-waves have a cutoff at w, = (w2 + 1QH1/2 -
%Qe- However, this is a singularity of strictly parallel propagation and is of no
practical importance. For all other propagation angles there is a resonance as well
as a cutoff at a higher frequency (as will become clear in Section 4.4), namely the
plasma frequency. Thus in realistic circumstances, L-waves escape for

w > wp . (4.3.23)

The local plasma frequency is therefore the lowest frequency of electromagnetic
radiation that can leave a corona from a given height.

The L and R waves are evanescent between the resonance at £2; and €., and
their cutoffs at wy, and wy, respectively. This part of the spectrum is called the
stop region.

Cutoffs and resonances are important for the understanding of electromagnetic
radiation from stars. Broadband emission processes cannot excite waves in the
stop region between resonance and cutoff in the source. Secondly, a propagat-
ing wave may be absorbed. While propagating in an inhomogeneous region, its
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Fig. 4.2. Schematic drawing of whistler wave propagation in a corona. Plasma frequency and
electron gyrofrequency vs. radial distance r from the center of the star. No electromagnetic
waves can propagate in the ‘stop’ region.

frequency remains constant. It may reach a stop region if the local characteris-
tic frequencies decrease along the path. Whistler waves, as an example, cannot
leave a corona, since their frequency at some higher altitude will exceed the local
electron gyrofrequency. In Figure 4.2 a whistler of frequency w, originates at rg.
It propagates only until w, is about the local gyrofrequency €., where it is ab-
sorbed and/or reflected. Waves observable at w, from the outside must originate
at r > r1. In extreme cases, tunneling through the stop region is possible. It has
been observed in regions with a steep density gradient in the Earth’s ionosphere.

4.4. Perpendicular Propagation

4.4.1. ELECTROSTATIC WAVES
The electrostatic modes can easily be extracted from Equation (4.2.26) by scalar
multiplication by k from the left, and the result is

w? oo,

Zz'k‘(e*El) =0 . (44.1)

Electrostatic waves are longitudinal, i.e. Ej | k, as required by the Faraday
equation (4.2.25) and B; = 0. Equation (4.4.1) leads immediately to the general
dispersion relation for longitudinal, electrostatic waves,

k-(6xk)=0 . (4.4.2)

It includes the parallel case (Eq. 4.3.2). In the perpendicular case, k = (k,0,0),
Equation (4.4.2) gives

=0 . (4.4.3)
The definition of g, Equation (4.2.22), then yields for w & wp > Qe
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Wrwl+0 . (4.4.4)

This mode is called an upper hybrid wave, since it is a combination of space
charge oscillations with the gyration of electrons. Its frequency, given by Equation
(4.4.4), is the upper hybrid frequency. The wave is the analog of the parallel
electron plasma waves and may be a cause of radio emission, as will be discussed
in Chapters 8 — 10. In the general case with angle 8 between k and By, Equation
(4.4.4) is replaced by

w? & w? + Q2sin’f (4.4.5)

(Exercise 4.2). It also includes the parallel case (¢ = 0), the electron plasma wave
of the previous section.

The conditions £2; €« w < €, lead to a completely different perpendicular
wave. We find

=0 , (4.4.6)
and by simple manipulation

2 o (w;)z
1+ (wg/Se)?

This electrostatic wave is known as the lower hybrid wave. Its frequency is called
lower hybrid frequency, amounting to w? & Q€ for w, > .

For w, « Q. Equation (4.4.7) yields a wave frequency of about w;;. Why does
the plasma frequency of the ions appear? This is an interesting piece of wave
physics. The wave frequency is small compared to the gyrofrequency of electrons;
thus they circle many times per wave period. Electrons therefore remain closely
attached to their magnetic field line. The ions, however, need much longer to
gyrate than a wave period and move a practically linear orbit during this time. As
a result, they appear to be not bound to the magnetic field and can freely move
within a wave period. The lower hybrid wave is an oscillation of space charge of
the ions. This is in contrast to electron plasma waves, where electrons oscillate
around the inert ions (Section 4.3.1). Electrons and ions have changed their roles!
For example, lower hybrid waves can be excited by perpendicular ion currents
(Chapter 9) and can accelerate electrons parallel to the magnetic field. They are
a manifestation of the second electrostatic mode, the ion plasma waves.

w (4.4.7)

4.4.2. ELECTROMAGNETIC WAVES

One may expect that the general dispersion relation, Equation (4.2.27), of waves
in a cold, collisionless plasma has the same number of solutions in the cases of
parallel and perpendicular propagation. Thus we search for the electromagnetic
modes putting k = (k, 0,0) into Equation (4.2.27) and find two more modes:
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(1) Ordinary mode

w? = k%% + wﬁ (4.4.8)

The frequency of these waves always exceeds wp, where they have a cutoff. They
are linearly polarized with E; || Bg and By L Bg. As E; L k, they are elec-
tromagnetic. Since the oscillation of the particles in transverse waves is always
parallel to Eq, and in this case also to Bg, the magnetic field does not influence the
wave. Therefore By does not appear in Equation (4.4.8). The wave and particles
behave as in a non-magnetic plasma. This characteristic property has led to the
name ordinary wave or o-mode. For large k-vectors it is mathematically the same
branch of solution as the L-mode for k || Byo. A complication arises at small Kk,
which will be discussed in Section 4.5.

(2) Extraordinary mode

There is another mode called extraordinary or x-mode. The dispersion relation
forw > Q; is

k2c? B wh(l — wl/w?)
w? w? — (w2 +0Q2)

The wave is again electromagnetic and linearly polarized, but has E; 1 Bg. As
V1 | E4, the particle oscillations (mostly electrons are involved) are perpendicular
to the magnetic field. The higher the electron gyrofrequency, the greater the
influence of the magnetic field. The wave differs from the non-magnetic mode,
thus it is named extraordinary. As one may expect, this oscillation corresponds
to the R-mode at parallel direction. The refractive index vanishes and causes a

cutoff at
— 2 1 2 1
Wy = wp + ZQe -+ EQE . (4.4.10)

The resonance (singularity of Eq. 4.4.9) is at the upper hybrid frequency being,
however, always below the cutoff frequency.

We note that for both electromagnetic modes the frequencies of wave-particle
resonance change with propagation angle between k and Bg. The cutoff frequencies
are the same for parallel and perpendicular propagation, since the lowest frequency
is at k — 0 in both modes. In the next section we shall connect the two regimes
through intermediate angles.

(4.4.9)

4.5. Oblique Propagation and Overview

The dispersion relations of the high-frequency waves are shown without derivation
in Figure 4.3 as surfaces in (w, k., k1 )-space. These waves, also known as mag-
netoionic modes, are the modes supported by the electron gas (Appleton—Hartree
approximation). Waves due to the motion of ions (such as the lower hybrid mode)
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have lower frequency and have been omitted. Four surfaces are clearly visible in
Figure 4.3. They are called branches. The modes we have previously discussed
correspond to cuts along the parallel or perpendicular k-axis.

For later use, thermal effects (assuming 7=25 000 K) are included. They limit
the k-vector to values smaller than the inverse Debye length (or kR, < wp/Qe,
Chapter 5). Figure 4.3 presents the case of w, = 3.22 ..

In the front edge of Figure 4.3 (k, = kL = 0), the three high frequency
modes have their cutoffs at about wp =+ %Qe, and wy, respectively, as expected
from wf, > Q2. At large k, the correspondence between parallel and perpendicu-
lar modes is simple: The parallel R and L modes connect to the x and o modes,
respectively, at perpendicular propagation angle. The modes remain transverse,
changing gradually from circular polarization into elliptic and finally linear polar-
ization. For intermediate k) (1072 < k R, < 1) the Langmuir mode changes into
the perpendicular, electrostatic upper hybrid wave. It has cyclotron harmonics at
even larger &k, called Bernstein waves, a kinetic plasma mode to be discussed in
Chapter 8 (for further information see Melrose, 1980). For clarity, the Bernstein
modes in the second and fourth bands above 2. are indicated in Figure 4.3 only
for perpendicular propagation.

At small Kk, only the R-mode and the whistler branch transform simply. Note
the remarkable property of the parallel electron plasma oscillations (Langmuir
waves) connecting to the perpendicular o-mode at small & through a region of
predominantly electrostatic plasma waves! The L-mode at small k, on the other
hand, connects to a predominantly electromagnetic wave (called z-mode ), becom-
ing gradually electrostatic as k, increases. The transverse character of the z-mode
is a thermal effect. For this reason the wave has not appeared in our analysis of
cold plasma modes. It exists in the range w, < w < wyp near perpendicular
direction.

Only o(L) and x(R) mode waves can escape from an atmosphere. The general
dispersion relation of these waves is

2 k22 X

(N:) =y =l-1 V20— X) VA1 -X) 2+ VAP (4.5.1)
where

X = (wp/w)? (4.5.2)

Y = Q/w, Yp:=Ysind, Y. :=Ycosh . (4.5.3)

The modes discussed so far in this chapter are referred to as normal. If a plasma
does not comply with our assumptions (being, for example, inhomogeneous or
moving), new modes can appear. One such case will be discussed in the following
section.



COLD PLASMA WAVES 85

| .| Vil | I II 111 -".I'|"-"I'Tmrlll
4 — 1|1 II II | | |I (1 I;.l' Ij‘II 1I|I,'|III|III|I|III|I|IIIII
i T VI [ S T
w/ Qe Tlﬁﬁﬁlﬁﬂéﬁ I,I}péﬂl -‘Hhﬁf" o :
5 IIIII|||. | r||| .“'I|"|'|'|I ]
e L EVAAT ]
i I_El ||'||15'|\,/\{' 'n'|'||'lll||I .
4 r{ L J'I_ y-3 h-‘ 'IJI ¢ T 1] \
Frre LY
L : \'l.“ A, : 4;_ -
& S “-ggfﬁ% Bernstein
g N
£ "Lgir_lgnmi'r'
‘-‘1,,\ :
! P, \hr”"r\ |
N X
0 %-
1 "‘l" 3
1= i }I‘.--— \D
whistler s s

o -
107 SRS
kR, om0 g Re
1 g

e e S
07 R,

Fig. 4.8. Dispersion surfaces (branches) of high-frequency, collisionless modes in a homogeneous,
dense plasma. Regions of strong damping are omitted (after André, 1985).

4.6. Beam Mode

Let us now consider a moving particle species in a plasma that is again cold and
collisionless. Moving particle species or beams are ubiquitous in the universe. It
is the second case of Section 4.2 with By = 0 and V§ # 0. We simplify to motions
only in the z-direction and consider longitudinal waves. Thus E; | k || V§.
Substituting into Equations (4.2.5) — (4.2.9) yields

—iwn$ + V§¥ikn{ + ngikVy* =0 (4.6.1)
o 1
—iwVE + VeikVe = 22 (B + V8 x By) (4.6.2)
Mo, c
kEy =41 Y _gonf . (4.6.3)
[+3

We restrict ourselves to electrostatic waves assuming By = 0. The equation of mo-
mentum conservation, (4.6.2), yields V¢ in relation to E;, and from the continuity
Equation (4.6.1) one extracts n{. Equation (4.6.3) can be rewritten as

) ikging E;
ikBy =4m) — 0 CoREE (4.6.4)

1-?%:0 . (4.6.5)
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The dispersion relation (4.6.5) corresponds to the electron plasma wave (Eq. 4.3.3)
if one puts V5* = 0. The Doppler shift, kVi*, however produces an oscillation at
a frequency lower than w,. The waves are referred to as the beam mode. They
have an important property that we shall illustrate in the following example.

Let us assume that the electrons are in motion, and the ions at rest (Vé =
0, V§ # 0). Equation (4.6.5) becomes

R ()

1 =: H(w, k) . 4.6.6
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Fig. 4.4. The function H(w, k) defined in Equation (4.6.6) vs. w for two different values of k.

The function H{(w, &) is shown in Figure 4.4 for two particular waves with different
wave vectors. The solution of Equation (4.6.6) are the points of intersection of
H({(w, k) with the horizontal line at H= 1. A critical wave vector, k., exists below
which there are only two real solutions. The two others are complex conjugated,

Wy = w,.—i'yk y (4.6.7)

Wy = Wp+ive - (4.6.8)

The solution (4.6.7) is a damped oscillation and is irrelevant. Equation (4.6.8) is
of great interest, since it describes a wave with exponentially growing amplitude.
Since there is always some small disturbance at the thermal level, this means that
the plasma is not stable. The kinetic energy of the moving particles is trans-
formed into wave energy at an increasing rate. Wave amplitude and growth form
a feedback cycle; it is an exponential instability. Plasma physics is rich in such
phenomena. This particular example is called the two-stream instability. The
growth of the waves may be extremely fast (Exercise 4.3).
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If the growth rate, 7, of Equation (4.6.8) exceeds the damping rate due to
collisions in the background plasma, the neglect of collisions is justified. If not,
the waves do not grow. The relevant rate is the thermal collision time between
the oscillating electrons (test particles) and ions (field particles). It has been
evaluated in Equation (2.6.32). The collisional interactions exert a frictional force
on the particle motion. The details depend on the excited wave mode and the
corresponding fraction of wave energy residing in kinetic motion. As an example,
this ratio can be calculated (starting at the equation of motion 4.6.2) to be one
half for electron plasma waves at w = wp. From the work of Comisar (1963), we
quote the collisional damping rate of electron plasma waves,

87n. [ 1nA
Yeoll = }Zﬁg (%) ) (4.6.9)

close to the thermal electron-ion collision rate found in Equation (2.6.32). Solar
abundances and fully ionized ions have been used to transform 7; into 7.

The two-stream instability is in fact an extreme case that rarely (if ever) oc-
curs in astrophysical plasmas, since it assumes monoenergetic particles. In the
following chapter we shall study the instability in the presence of a finite spread
of the velocity distribution. This will take into account that only a fraction of the
particles with particular velocities may participate. Such an approach is termed
kinetic as opposed to the hydrodynamic (or ‘reactive’) instability considered here.
As arule, the instability threshold and growth rate of collisionless waves must be
evaluated from a kinetic investigation. Nevertheless, a hydromagnetic treatment,
as in this section, may quickly indicate the type of waves to be expected.

Exercises

4.1: Prove that in electron plasma waves the oscillation energy of electrons exceeds
that of the ions by the mass ratio m;/(Z2m.) (assuming one ion species only).

4.2: Derive the dispersion relation of electron plasma waves at arbitrary angle o
between k and the magnetic field for w > £, (generalization of Eq. 4.4.4).

4.3: Evaluate the dispersion relation of electrostatic waves in cold plasma con-
sisting of two electron beams at velocities +v and —v in opposite directions
(neglect ions). At which wave number does the instability grow fastest? Show
that the highest growth rate is wp/2%/2.
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CHAPTER 5

KINETIC PLASMA AND PARTICLE BEAMS

In the previous chapter, the collisionless waves have been reviewed using the cold
plasma approximation. The two-stream instability of cold beams demonstrates
that the situation changes drastically when particles have motion. Now let us
study the conditions for the appearance of waves in kinetic plasma processes in-
cluding thermal and non-thermal particle motions. The goal of this chapter is
to understand instability, saturation, and (collisionless!) damping of waves in ki-
netic plasma theory. For this purpose we start with electron beams and study the
sources of a particular kind of solar radio emission (so called type III or fast-drift
bursts). They are the best known major kinetic plasma process in astrophysics
and the showpiece of solar radio astronomy. Yet they are still not fully understood
nor exhaustively observed (in particular near the Sun). Other cases of waves and
instabilities in kinetic plasma are presented in the following chapters.

Beam-plasma processes and instabilities are important examples of kinetic
plasma phenomena. Instabilities are not just by-products of beams, but gener-
ally control the beam’s evolution. The basic principles are derived in this chapter
and will be applied to interpret cosmic beams in Chapters 6 and 7. Other aspects
of the phenomenon, such as particle acceleration or wave propagation, are more
generally treated later (Chapters 9—-11). The mathematical part in Section 5.2
may be considered as a prototype for treating singularities in the kinetic response
of a plasma to oscillations, and is presented comprehensively. The final section
presents some simple applications. Fundamental type III observations and ba-
sic interpretations are summarized as typical examples of the extremely difficult
but necessary interplay of observations and theory in plasma astrophysics. The
reader should be warned that the observations are often minimal, in view of the
large number of free parameters, and that the selection of the relevant physics
is already a major step in the interpretation. It is all the more remarkable that
some aspects of the phenomena — occurring far away under exotic conditions — are
reliably understood today.

5.1. Radio Observations of Solar Electron Beams

Soon after the serendipitous discovery of solar radio emission by its jamming Sec-
ond World War radar, multi-frequency observations led to the important insight
that coronal radio emissions have various and physically different origins. In addi-
tion to the steady quiet radiation (thermal bremsstrahlung) and the slowly vary-
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Fig.5.1. Radio emission of a solar flare as observed by a Zurich spectrometer. The digitally
recorded data are presented as a spectrogram, showing consecutive spectra in the vertical di-
rection. The spectra were taken every 0.1 seconds. Frequency/time pixels of enhanced radio
flux are bright. Frequencies disturbed by terrestrial interference are omitted. The time scale is
in seconds, the frequency scale is in MHz. Parts of the spectrogram showing different types of
emission are enlarged (squares) and discussed in the text. a: Metric type 111 bursts, b: U-burst,
c: narrowband spikes, d: decimetric pulsations. The simultaneous hard X-ray emission (¢ > 25
keV) and broadband centimetric emission at 5.2 GHz (lower curve, peak flux 265 10~19 erg s—1
cm~2 Hz~1), are shown for comparison in timing.
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ing component (thermal bremsstrahlung and, partially, gyroresonance emission),
highly variable bursts have been classified into five morphological types designated
in the 1950s by the roman numerals I — V. This classification has since been the
basis for interpretations and models in the range of meter wavelengths. Observa-
tions at frequencies 2 300 MHz (A < 1 m) meet the difficulties of an increasing
contribution of the quiet Sun and decreasing burst brightness. This range has
only recently been surveyed with sufficient sensitivity. The metric classification
has generally not been found useful in the decimeter (0.3 — 3 GHz) and centimeter
(3 — 30 GHz) regions, except for type III bursts (the focus of this chapter) and
type IV events (Chapter 8).

An example of radio and hard X-ray observations of kinetic plasma processes
during a solar flare is shown in Figure 5.1. Neither the ground-based radio tele-
scopes, nor the satellite-borne hard X-ray detector have spatial resolution. What
matters are time coincidences. Several different structures in the radio spectrogram
(or ‘dynamic spectrum’) have been enlarged. They are typical of the decimeter
range: fast drifting type III bursts, pulsations of quasi-periodic, broadband con-
tinua, narrowband spikes of a few tens of a millisecond duration (not resolved in
time) and U-bursts (a variety of type III bursts). Note the different scales in time
and frequency of the enlargements and use the middle panel for orientation. All
the radio bursts in Figure 5.1 except the centimetric emission are produced by
coherent mechanisms in which groups of particles (organized by waves) emit in
phase. Spikes and pulsations will be discussed in Chapter 8.

Hard X-rays result primarily from collisional interactions of individual, en-
ergetic electrons with background electrons and ions. The process is called
bremsstrahlung and will be introduced in Section 6.4. As the emission process
is incoherent, it is less efficient, but linear to the number of energetic electrons.
The hard X-ray count rate therefore indicates the evolution of the number of fast
particles in time. The broadband centimetric radiation is emitted by mildly rela-
tivistic electrons spiraling in the magnetic field. Their gyrosynchrotron emission
is also incoherent and will be discussed in Section 8.1.2.

The example of Figure 5.1 indicates that the information content of coronal
observations is rarely sufficient to clearly interpret plasma processes. Spatial res-
olution would certainly help, but would not solve the problem, since important
parameters like the magnetic field are hardly measurable. What can we do with-
out in situ observations by spacecraft? Historically, the first step was always the
proper classification of the observed phenomena. Careful judgement is needed to
select the most relevant characteristics of observations and the matching physics.
Comprehensive models or simulations usually involve more parameters than can
be derived from any set of observations. Useful interpretations emphasize the most
basic properties of the plasma process and test them against the observations.
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5.1.1. RADIO INSTRUMENTS

Solar radio astronomy has two major means of observations: single telescope spec-
trometers, usually viewing the full solar disk, and interferometers making use of
interference between several antennas to spatially resolve and locate the sources
at one or a few frequencies:

Spectrometers measure the flux density, F, of the electromagnetic radiation
in [erg s~ Hz~! cm~?] in many frequency channels. Spectral observations on
hundreds of frequencies are essential for the identification of the type of the bursts.
Since radio bursts easily outshine the rest of the Sun at a given frequency, a
full-disk spectrometer easily recognizes the bursts. The appearance of a burst
changes from frequency to frequency, so spectrometers are widely used to survey
the Sun in the frequency and time dimensions. A reason for this effectiveness is
the cutoff and resonance of the o and x modes at w, and wy, + %Qe, respectively
(Section 4.5). As the density, and therefore the plasma frequency, decreases with
altitude, radiation at frequency w can only originate from heights where wp < w.
The spectrum combined with a density model gives a lower limit of source height
and an indication of vertical motion. For this reason, the spectrum is usually
shown with the highest frequency at the bottom of a spectrogram (as in Fig.
5.1). The abscissa (inverted frequency) represents altitude (but not linearly).
Frequently, a perturbation caused by a solar flare travels through the corona,
producing radiation at decreasing frequency.

Interferometers observing the Sun with many antennas are called radioheli-
ographs. Of course, they are essential in relating radio sources to spatial features
such as flares, sunspots or filaments, observed also at other wavelengths. Fur-
thermore, they can observe source dimensions and thus determine the intensity or
equivalently the brightness temperature, T, which is often a decisive parameter
in identifying the emission process.

The brightness temperature, Tj, is defined by the equivalent temperature of a
black body in thermal equilibrium, emitting the same intensity I or flux density
F.

I = 4FD2 - 2hl/3 ~ QVZkBTb

O -1
w2 2(ehv/ksTo — 1)~ ¢2 lerg s™" Hz™" cm™ sterad™ ] ,

(5.1.1)
where D is the source distance, and £ the source diameter (assumed spherical and
homogeneous). The second equationdefines T3. For a black body it corresponds
to Planck’s equation. The factor 2 stands for the two modes of polarization. The
third equation, an approximation for hv/kgT, <« 1, due to Rayleigh and Jeans,
applies throughout the radio domain. Note that T, may depend on frequency
as well as on viewing angle! We shall distinguish between T}, as measured by a
remote observer and the photon temperature, T, in the source also defined by the
Rayleigh — Jeans approximation (Eq. 6.3.3). They may differ due to propagation
effects (as will be discussed in Chapter 11). Since / and T3 are proportional,
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the brightness temperature is frequently used in radio astronomy as a measure of
intensity also for non-thermal sources. We distinguish three types of emission:

(1) For thermal radiation Ty(v) =~ Ty(v) < T, the electron temperature of the
source.

(2) The emission is said to be non-thermal if Ty(v) > T.. kgT; may then reach
the mean energy, < € >, of the radiating population of super-thermal parti-
cles.

(3) Processes organizing particles to radiate in phase are called coherent. They
can yield a brightness temperature with kg7, far exceeding any single par-
ticle energy.

5.1.2. TYPE III RADIO BURSTS

As an example of beams interacting with kinetic plasma, we have a first look at
solar type III radio bursts. They have been recognized very early as a uniform
phenomenon in spectrograms. The decisive work was by J.P. Wild and collabo-
rators in 1950. In the meantime they have been observed in the frequency range
from 10 kHz to 9 GHz. Their eye-catching characteristic is that the emission drifts
rapidly in frequency: in meter waves predominantly from high to low (Figure 5.2),
and in microwaves (v > 1 GHz) more often from low to high frequency.

The drift rate, dv/dt, is defined as the displacement of the peak in frequency
per unit time. The absolute value of the rate decreases with decreasing frequency.
Drift rates reported by various authors for the frequency range from 74 kHz to
550 MHz have been fitted by the relation

dv

dt
where v is in MHz (Alvarez and Haddock, 1973a). The negative sign indicates
that only bursts drifting from high to low frequency have been selected. In the
microwaves too, the drift rate has been found to continue to increase (in absolute
value) with frequency, but with a smaller exponent. Individual values may differ
by a factor of two or more from this average, and the drift rate of the leading edge
(defined by some flux threshold) is usually higher.

Wild already made the suggestion that the fast drifting bursts are caused by
beams of collisionless, energetic electrons. These streams move out through the
corona along field lines and excite electron plasma oscillations at the local plasma
frequency, w & wp. The plasma waves emit electromagnetic (radio) waves at ap-
proximately the plasma frequency. Because the electron density (and consequently
the plasma frequency) decreases outward from the Sun, the emission drifts to lower
frequency.

Directional observations have confirmed this plasma emission scenario. Simul-
taneous interferometer measurements at a number of frequencies show that type

~ —0.01 "% [MHzs™!] (5.1.2)
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Fig. 5.2. A solar radio burst caused by an electron beam in the corona (type III), observed by a
Zurich spectrometer. Flux density in logarithmic scale is presented versus time in many channels
of metric frequencies (courtesy Dr. M.R. Perrenoud).

III burst sources appear at higher altitude (i.e. lower source density), the lower the
frequency. They travel through the corona with velocities between about 0.1¢ and
0.6c. This is consistent with the combination of Equation (5.1.2) and a coronal
density model.

However, the two-stream instability of cold plasma theory (Section 4.6) would
predict that the frequency of the unstable beam mode, w < kVg, covers a wide
range of frequencies. Why is it restricted to the narrow band around w,? This
is an essential kinetic plasma property; it makes type III sources useful probes of
the corona. We study it in the following section.

5.2. Waves and Instability in Kinetic Plasmas

Two-stream instability and cold plasma modes may provide a general scenario for
the emission of electromagnetic waves by electron beams, but they are inadequate
to explain even qualitatively solar type III radio bursts. Furthermore, the large
growth rates derived in Section 4.6 have the awkward property that the beam
would lose all its energy to the waves after a distance of a few hundred meters.
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Sturrock’s dilemma, as this problem has become known, will be studied in the
remainder of this chapter and in Section 6.2.

The basic difference in kinetic plasma theory is that individual particles are
allowed to have different velocities. A velocity distribution can be considered as the
sum of cold, monoenergetic particle beams. Every beam then has two solutions
of the longitudinal, electrostatic dispersion relation (4.6.6) of cold plasma. We
must expect that some of them even are complex and unstable. A large number
of w and k seem possible, and the plasma can support many frequencies and
wavelengths. Just take the collisionless particles with velocity v, group them at
regular intervals of 27 /k, and you get a wave with w = v - k. In fact, this ‘thought
experiment’ is not entirely unrealistic, and these waves are found in the thermal
field fluctuations caused by particle charges and motions. However, most of the
oscillations are transitory, and only appear as waves for artificial initial conditions.
We shall assume ‘natural’ initial conditions and clearly specify what we mean by
them.

equation of motion conservation of

for single particle particle number

distribution

Boltzmann equation

+

Vlasov equations

collision-
Maxwell equations less
morments
mass, momentum, and equations for
energy conservati :
) Igy conservation p =0 cold plasma
for each particle species a
-
Py
equations for MHD equations
9,V, and T MHD |
J

assumptions

Fig. 5.8. Overview of different approaches to plasma physics.

To include individual particle velocities we have to go back to the Boltzmann
equation (1.4.11). We neglect collisions (Figure 5.3), thus
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‘;{ +v 3f 15+ v < B). gf 0 . (5.2.1)
The closed system of equations, including (5 .2.1) and Maxwell’s equations (1.4.2) —
(1.4.7), referred to as the Viasov or Maxwell-Viasov equations, contain the changes
in the distribution of one particle species in space and velocity due to classical,
macroscopic or external electric and magnetic fields. Figure 5.3 continues to MHD
for completeness, but we stop now at the Vlasov equations. We shall assume
that the undisturbed distribution is homogeneous and stationary, and linearize
the Vlasov equations by introducing a small disturbance

F(x,v,t) = folv) + fi(x,v,1) (5.2.2)
with

| fil < | fo|forall x,vandt. (5.2.3)

We restrict the discussion to longitudinal, electrostatic oscillations in the direction
of the background magnetic field (Langmuir waves). Without loss of generality we
choose the field direction to be parallel to the z-axis. Therefore, k || B¢ and

f1 = le(V, t)eikz, E1 = E]_(t)eikz, E1 ” e, , B1 =0 . (524)

The exponential of the disturbance acts like a Fourier transformation in space
when plugged into Equation (5.2.1). The result is an equation for the oscillation
amplitudes only,

3f1 dfo
ot v,

The notation ‘ =’ for amplitudes (or Fourier transformed quantities) will be omitted
where no confusion should be possible. Since we have already noted that the
initial conditions may be important, we have not yet Fourier transformed in time
(or assumed temporal oscillations in the form of 5.2.4). Instead, we transform
according to Laplace, following the standard method originally developed by L.D.
Landau in 1946. This is a beautiful example of complex analysis leading to an
important physical result. The Laplace transform is defined by

+ kv, fi + — E1

=0 . (5.2.5)

o0
fi(v,p) = / fi(v,t)e Pdi (5.2.6)
0
with the usual inverse transform
1 +iéco+po
fi(vit) = 5= fl(V,P)Cptdp . (5.2.7)
21t J —ico+po

The integration path of (5.2.7) (see Fig. 5.4) is defined parallel to and to the
right of the imaginary p-axis and to the right of all singularities of the integrand.
It is usually closed at infinity and evaluated using the techniques for complex
integration developed by A.L. Cauchy. The singularities, therefore, are the critical
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Fig. 5.4. Contour integration to carry out the inverse Laplace transformation (5.2.7). Its closure
at infinity is dashed. Singularities are indicated by an asterisk.

and essential points in the complex p-plane. We shall show in the following that
each represents a wave mode.
The derivative in time is Laplace transformed in the following way:

6f1 /6f1 —ptdt_fle—pt °°+p/f1€_ptdt
0

==filv,t=0)+pfi(v,p) . (5.2.8)

The initial disturbance, fi{v,¢t = 0), thus enters the equation explicitly. The
transformed Vlasov equation becomes

(b +ikv) fi(v,0) + L By 6f°

= fi(v,0) . (5.2.9)

We also transform the Poisson equation — V - E1 = 4mp; - in the same way,
according to Fourier in space and to Laplace in time,

ikEy (p) = dmg / hv,pd . (5.2.10)

The Vlasov equation (5.2.9) is used to derive

i) = 20 [ gl (ot [ 30t o

-1
d 2.
oo P Hiku, tkm J_o p+iky, U’) » (5:2.11)

where we have integrated in v and vy, used (5.2.10) to eliminate fi({v,p) in favor
of Ey, and introduced the following definitions,

o(v.) = / f1(v,0)dvzdy, (5.2.12)

fo(vs) = / fo(v)dvydvy . (5.2.13)
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Equation (5.2.11) gives the wave spectrum, E;{p). Individual oscillations can be
evaluated with the inverse transformation (5.2.7),

1 100+po
Bi(t) = — / Ei(p)ePldp . (5.2.14)
21 J —ioo+po
Since lim e = 0 for e p — —oo, we can close the integration path through
infinity (Figure 5.4). Using the Cauchy theorem, the integral can be expressed by
the residues of the poles p;,

N
Ei(t) = " Res[Ei(p;)] . (5.2.15)

Jj=1

The poles are singularities of the integrand; they are the points in the p-plane
where F(p)is infinite. With w := ip Equation (5.2.15) has the form of a sum of
oscillations with amplitudes Res[F; (p;)]. Each oscillation represents a linear wave
mode. As usual, the wave electric field is defined as the real part of Fj(t).

Complex analysis has reduced the problem to that of finding the poles. There
are two kinds of poles: (¢) either the numerator of E(p) becomes infinite (Eq.
5.2.11), or (i3} one of the denominators in (5.2.11) vanishes.

5.2.1. SINGULARITIES

The numerator can only be infinite for particular initial conditions. It is, for
example, the case when particles with equal velocity, v, are grouped in spacings
of A, creating a wave with arbitrary frequency (w = v927/A). The distribution,
1(vz), would be proportional to (v, — v%). We shall exclude such artificially
prepared initial conditions in the following.

The denominator of the first integral in Equation (5.2.11), p+ikv,, also appears
in the second integral and for this reason does not produce a pole in (5.2.14). Only

zeros of the main denominator in parentheses are of interest,

4nq?
H(k,w/k) = m§2 /

-0

+oo 6fO/a'Uz -
o= (5.2.16)

where we have replaced p by —iw. The solutions of Equation (5.2.16) only depend
on foand not on the initial conditions. They are therefore inherent to every plasma
and independent of the initial disturbance. This is what we mean by ‘natural’ or
normal modes, to be studied now in detail.

H = 1 relates w and k, and can be considered a dispersion relation. H and the
dispersion relation are equivalent to the corresponding parameters of cold plasma
(Eq. 4.6.6), as can be proved by putting fg = né(v, — Vo) and, if necessary, a term
for ions (see below).

There is a subtle mathematical problem of great importance. The Cauchy
theorem used in Equation (5.2.15) is valid only for analytic integrands. Analytic
at a point p is defined by the property that the function can be differentiated
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in every point within a circle with center p. It means that the function can be
expanded into power series. However, H(k,w/k) is discontinuous at the Re w/k-
axis, since for small v

AH = Hwfk-+in/k) — Hlofk — /i) ~ ( Bt 20) (5.217)

nk? P v,

w/k

Thus H(k,w/k) cannot be analytic, and so is Ey(p) that contains H in the denom-
inator (Eq. 5.2.11). To carry out the inverse Laplace transformation (5.2.14) by
closing the integration path, E;(p) must be continued analytically from Re p > pqg
into the Re p < po half-plane (Fig. 5.4, note that Re p = Sm w =: ). This is
achieved with the definition

(5.2.18)

i H for Rep=QOmw >0
T\ H+AH forRep=Smw<0

At the imaginary axis (Sm w = 0) H becomes analytic by the Plemelj formula,

N , 4mq? T 8fo/8v, L 8fo
lim H{w/k k)= —
Jim, (w/k+iv/k) — (P/_oo Uz_w/kdvz-i-m sign(k) 30s o)
(5.2.19)
where the principal part is defined by
w/k—~/k o]
P = lim +/ ) . (5.2.20)
120/ w/k+/k

With these definitions H is analytic in the whole p plane. The supplementary
definitions (5.2.17) — (5.2.19) can be interpreted as a change of the integration
path in Equation (5.2.16) from integration along the real v,-axis into a contour
integral (see Fig. 5.5). The integration must be carried through below the singular
point v, —w/k. This is called the Landau prescription after the theorist who first
solved this problem.

Smw>0 Smw<0

o T
A Re v, L, Rew,
. . - 5
integration path Uogeh

k1
S
integration path

Fig. 5.5. Integration path for the integral in H(k,w/k) defined in Equation (5.2.18): the ‘Landau
prescription’.
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5.2.2. DISPERSION RELATION

To solve the dispersion relation H = 1for w(k), the function H has to be evaluated.
Its integral consists of the principal part (integration along the Re v,-axis, Figure
5.5) and, possibly, a contribution of the pole at w/k.

A. Principal Part
Integrating by parts, we get

P/+°° af()/avz fO

oo oo fodu,

oo (U —w/k)?

dv, k?
- P/ (1- (I]cv ) w? (5.2.21)

Let us assume that the majority of the particles are much slower than the phase
velocity of the wave, and the denominator can be expanded for Re (kv,/w) <« 1.
The validity of this approximation has to be checked in actual cases. As a rule, the
deviations from the above result are small, if fo{w/k) is small and if the imaginary
part of w is small compared to the real part. Then the right side of Equation
(5.2.21) becomes

k? kv, kv, 4
- F/fo[l —2 ey, (5.2.22)
The terms of the series can easily be evaluated.
(1) The first term yields k%ng/w?, the same as for cold plasma.
(2) The second term vanishes, since we have assumed the average velocity V=0.

(3) The third term becomes 3k*kpTno/(w*m), where kgT := m < v2 > has
been used (Eq. 3.1.13). It is a new correction term for kinetic plasma

(T #0).

B. Singular Point

For Sm w = 0 the contribution of the pole is given by Equation (5.2.19). Since
H is analytic, this is also a good approximation for | §m w | €« Re w, which we
shall use in the following. Summing over the terms of the principal part and of
the singular point, we arrive at

L w? 3k2kpT . mw? 8f,
e B ____0
H= w? (1 + wim Zk2'n,0 v,

=1 (5.2.23)
w/k
for the dispersion relation. As usual we define w := w, 4147, and again assume that

(w/k)? > (u:)?, the mean thermal velocity of the particles. Then the solutions,
w, for the real part of Equation (5.2.23) and 4 (imaginary part), are
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2
wl wz(l +3kBT ]:
m wl
_ T W wy 8fo(vs)
2k2 ng Ov, wn/k

) =wi(1+3k%03) (5.2.24)

(5.2.25)

We have used Ap = vge/ wp. So far we have included the dynamics of one particle
species only. It is straightforward to extend the work to any number of species
of charged particles. The plasma frequency in Equation (5.2.24) then is replaced
by the sum over all species (Eq. 4.2.24). Equation (5.2.25) must be summed
over all derivatives, each weighted by the plasma frequency of its species. In both
the real and imaginary part, electrons are strongly favored over ions by the mass
ratio; the more mobile electrons lose and gain energy to and from the waves much
faster. The first term in the parentheses of Equation (5.2.24) is the solution for
cold plasma (Eq. 4.3.3). The second term is the correction for T # 0, making the
wave frequency slightly dependent on k. The phase velocity vpp = w/k >> w4, as
assumed in (5.2.22). The wave has a finite group velocity,

o = 3v2,
a ak Uph

a value generally much lower than the mean thermal electron speed. Furthermore,
the frequency (5.2.24) is shifted to w > w, and into a region where o-mode waves
with equal frequency can propagate. This will obviously be important for the
emission of observable radiation of beams.

In the cold plasma approximation we have found plasma oscillations to be
unattenuated. Depending on the sign of 8fs/8v,, Equation (5.2.25) for kinetic
plasma predicts growth or damping.

(5.2.26)

5.2.3. LANDAU DAMPING

As an important example we calculate the case where electrons are distributed
according to a Maxwellian distribution

o2
Jolv:) = ,— exp (———’ ) : 5.2.27
: TVte th2e ( )
For wy & wp, implying k& < (Ap)™*, the imaginary part of the frequency, Equation
(5.2.25), becomes
VE®or TP\ 200/ &

The negative sign indicates wave damping, named after L.D. Landau to honor
the discoverer. Where is the energy going? The damping is not by randomizing
collisions (the entropy does not increase), but by a transfer of wave field energy
into oscillations of resonant particles.
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Note that for kAp & 1 the damping rate would exceed the wave frequency.
Our approximations (Eq. 5.2.22) are not valid in this regime. Nevertheless, the
oscillations are strongly damped when the wavelength is smaller than the Debye
length, Ap, since the thermal motions within a plasma period wash out the spatial
order of the wave (Sections 2.4 and 2.5).

For kAp £ 1/5, Landau damping on background electrons is very inefficient
and is usually below collisional damping.

5.2.4. BUMP-ON-TAIL INSTABILITY

The second example to be evaluated is directly relevant to beams. Let us assume an
additional population of particles moving in relation to the background plasma.
The velocity derivative can then be positive for w > 0, & > 0, and w/k > v,
(Fig. 5.6). In the increasing part of the distribution we find <, > 0 according
to Equation (5.2.25). The Langmuir waves are unstable and grow exponentially
in amplitude. The instability is called bump-on-tail or double hump instability.
It corresponds directly to the two-stream instability in the cold plasma, but in-
cludes only a limited number of particles in resonance (having v, =~ w/k) that
actually drive the wave. Of course, all other charged particles also feel the wave’s
electric field and participate in the oscillation; therefore they determine the (real)
frequency of the wave (Eq. 5.2.24). The bump-on-tail instability is an example of
a class of instabilities called kinetic since it involves a characteristic of the velocity
distribution and kinetic theory. The two-stream instability belongs to the class of
hydrodynamic (or reactive) instabilities that can be derived from fluid equations
integrated in velocity space.

,fﬂ { Vs ‘:'

=

ta

f}_uru >0
du.

Fig. 5.8. Velocity distribution of a particle beam leading to bump-on-tail instability of growing
plasma waves.

The growth rate can be approximated for kAp « 1, equivalent to w ~ wy, with

~ T (Uen)? Do e
"~ g (Av) it (5.2.29)

where vpp = w/kis smaller but comparable to the beam velocity, Awis the half-
width of the beam distribution, and 7 is the beam density. We have assumed
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an electron beam. If the beam particles are of species @, an analogous derivation
adds the factor (m./m;) to Equation (5.2.29).

The approximation (5.2.29) does not hold for slow beams. Accurate evalua-
tions yield growing waves for w,/k 2 3vs.. Therefore, the spectrum of significant
Langmuir waves is practically limited to the range from about 1.1 wy to wp (infinite
phase velocity). The limited range of Langmuir waves is the reason for the limited
instantaneous spectrum of type III radio bursts. This will be important in Section
6.3.4 for the polarization and escape of fundamental plasma wave emission.

5.2.5. CERENKOV RESONANCE

A particle moving with a velocity v in the oscillating field of a longitudinal, elec-
trostatic wave, satisfying

k-v=uw, (5.2.30)

/ w/k N V=
wlk—4Av  wfk+Av

Fig. 5.7. Resonance between particles in the region w/k+ Av and a wave having a phase velocity

w/k.

feels a constant electric field, since the wave has zero frequency in the rest frame
of the particle. This is called Cerenkov resonance. Depending on the phase, the
wave field transfers energy to the particle (like the ocean wave to a surfer), or
the particle can lose energy. In both cases it starts to oscillate in a potential
well of the wave. It is said to be trapped. Particles are trapped if they have
an initial velocity between w/k + Av, where Av is determined by the depth of
the potential well produced by the wave electric field. If a particle is initially
somewhat faster than the wave but gets trapped, it effectively feeds energy to the
wave. Both initially faster or slower trapped particles end up having a mean energy
corresponding to the wave phase velocity, w/k, plus oscillation energy. Instability
means that the majority of the trapped particles lose energy, so the wave energy
grows by the difference of particle energy before and during trapping. Figure 5.7
shows how the wave-particle interaction affects the velocity distribution. In the
resonance region the particles oscillate in velocity around w/k. Therefore, the
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average distribution develops a plateau, which eventually erodes the beam so that
it becomes an extended tail. This evolution will be discussed in Section 6.2.1 on
quasi-linear diffusion.

5.2.6. ION ACOUSTIC WAVES

Electron plasma oscillations are important waves in plasmas carrying particle
beams, but not the only possible mode. Also of great interest and directly ob-
served in interplanetary space are collisionless acoustic waves. Acoustic waves
are an interplay between pressure as the restoring force and inertia (Section 3.2).
At frequencies too high for MHD, pressure disturbances are not propagated by
collisions, but by electric fields. In the cold plasma, which has zero pressure by
definition, we obviously have not encountered acoustic waves. In fact, the hot
plasma correction term of the frequency of Langmuir waves (Eq. 5.2.24) has an
acoustic nature. This can easily be seen if the cold plasma term (first term) is ne-
glected (being, of course, unrealistic). The rest then reads much like the dispersion
relation of sound waves (Eq. 3.2.12).

Ton acoustic waves are another electrostatic mode, based on collisionless ion
oscillations. They are strongly damped in equilibrium plasma, but are of special
interest for plasmas with T, > T;, far away from equilibrium. Important examples
are the solar wind and processes preferentially heating electrons. The derivation
is similar to that of the electron plasma waves. We assume electrons and ions to
have Maxwellian distributions in velocity. It is instructive to allow the electrons
to have, in addition, a drift velocity, Vy, relative to the ions. Let

2

filvs) = \/;_;vt.exp[—%v;)z] : (5.2.31)
v, — Vy)?
fé(vz)=7§n—7—:;t—exp[—(—5(;g)%)—] . (5.2.32)

The dispersion relation is H =1, similar to Eq. (5.2.16), but H now includes
an ion term. It can be evaluated in analogy to the kinetic electron plasma (Eq.
5.2.23). It will become clear that the approximation v; < w/k can be used. For
the electrons one gets

of§ /v, .
,P/vzf—o—/w—jﬁ + imRes{w/k)

o e =1 Uy 'Ug . Of§
- V2T vt /—\-oo Vz ( ('Ute)2 exp[ 2(”te)2] d’Uz +an a,uz
where Vy,w/k < vie have been assumed in the principle part. The effect of the

electron drift is hidden in the second term, causing a positive derivative for k& > 0.
Upon combining electron and ion contributions, the dispersion relation becomes

., (5.2.33)

vy=w/k
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—kz(vte)z k2n, Ov, 4 k%n; Ov, S w? wim;
(5.2.34)
For (kAp)? <« 1, and w? >> 42 the real part of Equation (5.2.34) has the solution
1/2
we  (kT.\Y* {1 1 12T,
o ( = ) 545 . (5.2.35)

The wave is called ion acoustic (or ion sound). Its phase velocity is equal to the
group velocity and, for 7, > T;, amounts to about

% N = % . (5.2.36)
The velocity, ¢4, is known as the ion sound speed reflecting the characteristic prop-
erties of the ion acoustic wave where the mobile electrons propagate the pressure
disturbance (thus 7T.) and the inert ions counteract (hence m;). When T, > T;,
the mean thermal speed of the electrons is so high that they immediately shield
the ion density fluctuation and maintain approximate neutrality as in the Debye-
Hiickel theory (Section 2.4). The electric field required to hold the electrons in
place — against their own pressure — also acts back on the ions. This provides the
necessary restoring force and explains the speed of propagation. Density distur-
bances are propagated like a sound wave, except that electric effects take the role
of collisions. As longas (kAp)? < 12, the frequency of ion acoustic waves w, < w}
is well below the ion plasma frequency, w?
The growth rate is given by the imaginary part of Equation (5.2.34); for T, >
T; we get

e & (5.2.37)

T Vg wr (Bfo Me (_9_&)

2 n, dv, m; Ov,

v,=wy/k

Let us look at cases with 8f§/0v, |o,./x> 0. For ¢is, Va <K vte, v, = wy/k is near
the peak of the electron distribution, and

o koY),
31}; wr/k \/Q;'Ute €

(5.2.38)

Therefore,

1/2
7 (Va—wr/k  we/k (T3m; 1, wy 2]
z — —_ - = il . 02'
Yk \/g ( Vte Vte nsme exp 2 kvti ) w (5 39)

For small V; or in the absence of a current, Equation (5.2.39) yields v < 0. The
wave is Landau damped by both electrons and ions. The second term, due to the
ions, dominates for T, < 15 T; and causes rapid damping at equal temperatures.
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Ion acoustic waves appear only in plasmas with T, > T;, explaining the definition
(5.2.36). The threshold for growing waves and instability becomes approximately

w T3m; \ /* 1, w

Var + (1 + (T‘gm) exp [—5(,%;)2]) - (5.2.40)
The second term is small when T, 2 15 T;. Then the waves grow if V 2 ¢;,, i.€.
as soon as the maximum of the electron distribution at Vg exceeds ¢;;. This is
important for strong electric currents (Chapter 9). Instability feeds energy of the
current into growing waves and increases the resistivity far above its collisional
value. The proof of these derivations is left as an exercise (cf. also Exercise 5.2 for
the case T, = T;). The ion acoustic current instability will be discussed further in
Section 9.3.3.

For kAp 2 1 the frequency derived from Equation (5.2.34) is w, = w;, and the
waves are called ion plasma waves. Why does the ion plasma frequency appear?
The electrons cannot shield charge fluctuations smaller than the Debye length.
They simply act as a smooth background. The ions oscillate like ordinary plasma
oscillations (Section 2.5), but with the role of ions and electrons reversed — hence
the waves oscillate at the ion plasma frequency. They are in general even more
strongly damped than ion acoustic waves and are of little significance.

5.2.7. THERMAL LEVEL OF WAVES

Instabilities grow from small fluctuations. Even in a stable plasma there is always
a finite level of waves. Waves are emitted by particles as they move about in
the plasma and are absorbed by the other particles of the plasma. The balance
between emission and absorption yields a thermal level of field fluctuations. In
thermodynamic equilibrium, the situation is analogous to the problem of the black-
body radiation in a cavity. Normal modes are excited with an energy density
of kpT, per degree of freedom (assuming T. = T; and the Rayleigh-Jeans limit
hw < kgT). This is a result of the fact that both electromagnetic and longitudinal
waves obey the Bose-Einstein statistics. Each normal mode of plasma oscillation
(eigenmode) represents a degree of freedom. The thermal wave energy density per
mode k in equilibrium is

Wy = kgT . (5.2.41)
The total wave energy density becomes
a3k
Wiot = /Wkw . (5.2.42)

The denominator comes from the number of waves in d®k, being d*kV/(27)3, where
V is the volume of the plasma. Strongly damped waves (such as kAp >> 1) are only
weakly excited, far below the level of Equation (5.2.41). This is where a plasma
deviates from a vacuum. For example, Langmuir waves in a Maxwellian plasma



KINETIC PLASMA 107

are effectively excited only for & < 1/Ap. Therefore, the total energy density of
the waves, averaged in time and space, is

(5.2.43)

or about the thermal kinetic energy density divided by the number of particles in
the Debye sphere.

5.3. Plasma Waves in the Solar Corona

In this section we make a first step in the interpretation of the type III radio
bursts by unstable electron beams. When a beam propagates through a corona,
the plasma resonates at w = wp according to the dispersion relation (5.2.24) of
kinetic plasma. The electrostatic waves are a source of electromagnetic emission
near the plasma frequency and produce the characteristic signature in the radio
spectrum. Electron beams and Langmuir waves have been detected directly by
spacecraft in interplanetary space during low-frequency type III bursts. Here we
discuss only the observed frequency and source location of the radio emission.
These two observable parameters are useful information on the solar corona and
interplanetary space. The second step, the conversion of the electrostatic waves
into observable radio emission, its intensity and polarization, will be approached
in the next chapter.

5.3.1. PLASMA DENSITY

Historically, the radio emission of beams has been used to derive the first den-
sity models of the upper corona and the near-Sun interplanetary medium. Since
the observed frequency depends primarily on density (Eq. 5.2.24), the emission
frequency is an excellent diagnostic of the source electron density. The major un-
certainty is frequently whether the radiation is emitted at w = w, (fundamental) or
w = 2wp (harmonic), making a factor of 4 difference in the derived density. If this
question can be decided by the spectrum or the polarization (Section 6.3), there
remain two small deviations from the simple relation between observed frequency
and density:

(1) The kinetic plasma correction moves the frequency of electron plasma waves
slightly above w,. The effect is enhanced for fundamental emission where
lower frequencies are strongly absorbed (Section 11.2) and the density is
overestimated by about 10% .

(2) Electron plasma waves at an angle § to Bg have a higher frequency than wy,
by about 1w, sin?8/(Qe/wp)? (Eq. 4.4.5, assuming w? 3> Q2). The effect is
small in the upper corona of the Sun. The unmagnetized version of electron
plasma waves, the Langmuir waves, are often used for simplicity.
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Problems arise when positional measurements are used to relate directly frequency
(or density) to height. Where the methods can be compared, the radio measure-
ments yield densities which are higher by an order of magnitude than the values
derived from optical Thomson scattering. The discrepancy is caused by prop-
agation effects and inhomogeneity: (¢) The observed radio emission originates
predominantly from dense regions, whereas the optical measurement is an average
along the line of sight. Moreover, it appears that type III sources tend to fol-
low high density streamers (e.g. Gopalswamy et al., 1987). (i4) The radio waves
are strongly refracted near the plasma frequency and do not travel along straight
paths. The effect of ducting (Section 11.5.1) initially guides the radiation in the
radial direction. An Earth-bound observer sees the radiation from an apparent
position at higher altitude than the actual source.

Type III observations yield density profiles along field lines. This may be useful
in coronal active regions where inhomogeneity makes average densities meaning-
less. The positional errors are smallest for harmonic emission near the center of
the disk. Also useful is a method not relying on apparent position, following from
the next subsection.

5.3.2. DRIFT

Type III bursts can sometimes be followed through the upper corona in the meter
range (300 — 30 MHz) down to the lower frequency limit of ground-based obser-
vations (10 — 20 MHz) and into the range of spacecraft (1 MHz — 10 kHz) in
interplanetary space at a distance of several astronomical units.

The well accepted plasma emission scenario relates observed frequency, v, to
density and, for a given density model, n.(h), to altitude, h. The drift rate can
be written in partial differentials

dv ov On. ds
Ef— = %ECOS¢ 5{ y (531)
where ¢ is the angle between the beam direction and the vertical (Bh = s cos ¢).
Using a constant ratio between emission frequency and plasma frequency (Eq.
5.2.24), 8v/dn. = v/2n.. For the electron density we adopt an exponential model
as a first approximation, thus dn./8h = n./H,. H, may be derived from white-
light coronal observations or from the barometric equation (3.1.52). Finally, Equa-
tion (5.3.1) has to be corrected for the finite speed of light. The differential in
observing time, 8¢, is shortened by the relativistic motion of the source along its
path 3s,

o = 98 _dscosh (5.3.2)

Vg Ugr

6 is the angle between the beam direction and the radiation path to the observer,
v, 1S the source velocity, and v, is the group velocity of the radiation. Note
that the electron oscillations of the Langmuir waves relate to the frame of the
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background plasma, and are not Doppler shifted by the beam motion. Putting
Vgr & ¢, Equation (5.3.1) can be written as

Qv M0 (5.3.3)
dt 2H,(1 — Bcos)

The obvious discrepancy of this linear dependence on frequency with the empir-
ical relation (5.1.2) can have two reasons: (i) The beam velocity may decrease
with altitude. In addition, the source velocity introduced in Equation (5.3.2) is
not identical to the average beam particle velocity, but is the speed of the re-
gion of fastest growth of the instability. Evidence for deceleration exists only for
kilometer wavelengths, and it cannot account for the major part of the observed
deviation from Equation (5.3.3). (i¢) The scale height may increase with altitude.
(If the change is slow, i.e. 8H,/8h <« H,/h, approximation 5.3.3 is still valid.)
The prevailing view is that the coronal density decrease in the direction of beam
propagation (i.e. along an open magnetic field line) is not barometric, since the
temperature increases at the base of the corona and since the solar wind accelerates
at high altitude. Making use of the simple relation between density and frequency,
a density model along the beam path can be derived from spectral observations
without spatial resolution. The geometry of the path may be estimated from the
flare location (Hex position), and the beam velocity must be known independently
and be constant. Equation (5.3.3) then gives the density scale height in relation
to the observed drift rate and frequency (Exercise 5.4).

5.3.3. FIELD GEOMETRY

Electron beams propagate along magnetic field lines. Their sources trace out the
field geometry. Beam paths have been inferred directly from radio-heliographic
observations of type III burst positions. Some deviate considerably from the radial
direction.

A. U-Bursts

In some cases radio bursts start with decreasing frequency, but the drift rate
changes gradually from negative (as in ordinary metric type III bursts) to positive,
indicating a motion changing from upward to downward. Such bursts are called U-
bursts, because of their shape in the frequency-time plane of spectrometer records.
Examples are shown in Figure 5.1b (spectrum) and Figure 5.8 (map). The latter
shows the case of an electron beam travelling on a large magnetic loop. The beam
first appears as a small source at the height where v, &~ 160 MHz, it expands while
it rises to the height of 43 MHz, and then returns to the solar surface.

U-bursts are interpreted as the signature of electron beams following closed
magnetic field lines. On the ascending leg, the electron stream travels into regions
of lower density, hence decreasing frequency, and vice versa on the descending leg.
The total duration (separation between the two legs) ranges from 5-40 s in the
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Fig. B.8. Left: Half-brightness contours at three frequencies and at peak times outlining the path
of an electron beam in the solar corona. It followed a large magnetic loop and has been observed
with the Culgoora radioheliograph by Suzuki (1978). The first source at a given frequency
(upgoing) is labelled F, the second source is R (downgoing). Right: The observed centroids of
each frequency (x) are connected to outline the propagation path of the exciter. The photospheric
disk is indicated for reference, and the site of the flare in Ha is shown by an open circle.

meter waves. Therefore, U-bursts outline gigantic magnetic loops. Historically,
they were the first indication of magnetic connections between different active
regions (sometimes even in different hemispheres) through the corona. Similar
loops can now also be observed in soft X-rays (Fig. 1.2). As expected, the total
duration is correlated with turning frequency; the bigger the loop, the lower the
density at the top (and the turning frequency). At frequencies between 300 MHz
and 1000 MHz the typical duration is only a few seconds, indicating that loops
with higher density (presumably at lower altitude) are smaller.

It has long been a riddle why metric type I1I sources travel primarily along open
magnetic field lines (less than one percent are U-bursts or fragments thereof).
Why should electrons — presumably accelerated by flares in active regions with
primarily low lying, small magnetic loops (Fig. 1.2) — escape on one of the few
lines leading from the active region to interplanetary space? Only recently, many
weak U-bursts have been found shifted into the 1-3 GHz range due to the higher
density in active-region loops. They tend to have a small total bandwidth (often
below 10% of the center frequency) and are extremely short (< 0.2 s), probably
reflecting the limited size of the field lines. Others may be absorbed or do not
live long enough to become unstable (Section 2.3). Metric type III bursts, on the
other hand, may be the result of many injections into different flux tubes, but
the radio emission is observable only under favorable conditions, such as a rapidly
decreasing background density in open field lines.
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B. Magnetic Field Configuration Near Acceleration

A surprising result derived both from radio source diameters as well as interplan-
etary particles is the extremely wide spread of field lines from the acceleration
region. Some diverge into a large fraction of interplanetary space, others turn
back to the chromosphere. Flare generated electrons have been observed in the
near-Earth solar wind from flares occurring at solar longitudes from about 30° E
to 90° W. It is consistent with the rotation of the Sun and the Archimedean spiral
of the interplanetary field to find its footpoint in the Western hemisphere, but the
observed range of longitudes is surprising.

Similarly, the source size increases with decreasing frequency roughly confined
to the interior of a cone of opening angle 40° — 80°, having its apex in the active
region. These and other data are best interpreted by strongly diverging mag-
netic field lines with similar opening angles. The acceleration region may thus be
characterized by a complex geometry of sheared field lines and high diversity.

C. Interplanetary Space

If one observes the apparent position of type III bursts from high to low frequen-
cies, the trajectory of the electron stream from the Sun into the interplanetary
medium can be estimated. Figure 5.9 shows the apparent traces of about twenty
interplanetary type III bursts. It is surprising that almost all trajectories end up
in a direction parallel to the ecliptic, regardless of their origin and initial direction.
They do not represent a random choice of interplanetary field lines, but selected
lines originating from active regions. A word of caution: the apparent source di-
ameter at 60 kHz exceeds the frame of Figure 5.9, and the position of the source
centroid may be a poor approximation of the trajectory of the beam.
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Fig. 5.9. Trajectories of apparent type III sources as measured by the radio experiment on ISEE-
3 (from Dulk, 1990). The position of the burst centroids are plotted at frequencies decreasing
from 1.95 MHz to 60 kHz. The coordinate system is ecliptic and centered at the Sun.
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Figure 5.10 displays the source positions of an interplanetary type III burst in
the ecliptic plane. The radio emission makes it possible to track the electron beam
and to conjecture the geometry of the interplanetary magnetic field. Furthermore,
the observation allows to measure the exciter velocity. It was found to decrease
from 0.4 £ 0.2 c near the Sun to about one half of this value at 1 AU.

737,,c Frequency (khz)

Fig. 5.10. Interplanetary electron beams follow the solar wind magnetic field shaped as an
Archimedean spiral by the rotation of the Sun. The direction of a type III radio source relative
to the Sun is shown as observed from an interplanetary spacecraft (IMP-6) for various frequencies
given in kHz. The distance of the source is estimated in two ways. Full circles: from a density
model of the solar wind. Open circles: at closest distance to the Sun along the ray (from Fainberg
et al., 1972).

5.3.4. DECAY TIME

Observing a type III burst at different frequencies yields information on the evo-
lution of the beam in space and time. Also, the beam traverses a changing back-
ground plasma. The two effects need to be disentangled.

Type III bursts change considerably over their five decades of occurrence in
frequency. Most notable is the increase in duration from a few tenth of seconds
around 4 GHz to hours at 10 kHz. The average e-folding decay time in the meter
and kilometer range can be fitted by

g &~ 1077098 g (5.3.4)

where v is in Hz (Alvarez and Haddock, 1973b). The empiric relation has been
found to extend into the microwave region up to 8 GHz. The rise time tends to
be shorter than the decay time.

The scaling law (5.3.4) of the decay is not compatible with the frequency de-
pendence, v;2, of the thermal electron-ion collision time at constant temperature
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(Eq. 2.6.32). Thus it is no surprise that early interpretations of the decay by
collisional damping of the plasma waves have failed. The time profile of type III
bursts appears to be a convolution of plasma wave excitation and damping. Its
change with frequency is therefore the result of both beam evolution (expansion)
and altering background (damping).

5.3.5. OTHER RADIO WAVE EMITTING BEAMS

In the decameter range (3 — 30 MHz) a relatively slowly drifting variant of type
III bursts also occurs outside flares in type IIl storms, a phenomenon associated
with noise storms at meter waves (to be discussed in Chapter 9). The free en-
ergy appears to originate from the gradual rearrangement of new magnetic flux
emerging from the photosphere. Type IIl-like processes are also observed in the
herringbone feature of Shockwaves (Chapter 10). These beams however exist in
low density background plasma and seem to involve an insufficient number of par-
ticles to yield observable hard X-ray emission. We conclude that a great variety of
beams exist in the solar atmosphere. The number of electrons per beam reported
for solar flares varies by 15 orders of magnitude (!) from the hard X-ray producing
downward flows to escaping metric microbursts sources.

The flux density of an intense solar type III burst seen at the distance of
the nearest star would be a few pJy and is well below the sensitivity of current
telescopes. Nevertheless, some more powerful variants cannot be excluded. In fact,
drifting radio bursts have been observed by Jackson et al. (1986) and Bastian and
Bookbinder (1987) from main-sequence M-stars (dMe) and interpreted as possible
signatures of beams.

Radio emission is generally produced when ionized material is ejected into a
stationary plasma of sufficient density to emit at an observable frequency, w ~ wy.
If Coulomb collisions are not frequent enough to couple the two plasmas, they act
like penetrating beams. An example thereof may be the prompt radio emission
of Supernova 1987A. It has tentatively been interpreted as originating from the
interaction of the ejecta with a pre-existing stellar wind.

Exercises

51: Prove that ¢ :=1— H is the dielectric function defined in Equation (4.2.20).
H is given by Equation (5.2.16)

52: Derive the growth rate of the ion acoustic instability for hot ions with T; =
T.. Show that in this case the threshold for instability, Equation (5.2.40),
becomes

Vi 2 2vu . (5.3.5)

(If v, is driven by an electric field, the velocity distributions deviate from
Maxwellian, and the threshold is slightly higher).
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5.3: Prove that the electric wave energy is half of the total wave energy for (a)

5.4:

Langmuir waves and (b) transverse waves having w > w, (neglect By).
Electron beams propagating through a corona excite electron plasma oscilla-
tions near wp. These waves are a source of radio emission (type III burst) at
the same frequency. Derive the density scale height of the corona from the
observed drift rate and frequency of the emission. Let dv/dt ~ 50 MHz s71,
v =~ 50 MHz, and assume a beam velocity of 10'%m s~!. Take a vertically
propagating beam in the center of the disk.
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CHAPTER 6

ASTROPHYSICAL ELECTRON BEAMS

The first astronomical elementary particles discovered were cosmic rays and their
collision products penetrating to ground level on Earth. All cosmic rays are beams
at some time, but only the ones of solar origin still have some directivity when
arriving at Earth. We shall call a population of particles a beam if their mean
velocity in the rest frame of the background plasma is different from zero. This
includes both an enhanced tail of the velocity distribution and bumps on the
tail. Other, less energetic, but clearly developed beams propagating through the
magnetospheric and solar wind background plasmas have since been detected by
spacecraft. Many more beams exist in the universe that cannot be studied in situ.
In Chapter 5 we have already met solar type III bursts caused by coronal electron
beams. Beams have been proposed, for example, in connection with hard X-ray
flares, quasar jets, supernovae, and pulsar ejections. Signatures of beams include
many kinds of radiation: bremsstrahlung of collisional interactions of beam parti-
cles with the background, atomic and nuclear excitation and subsequent emission
of deexcitation line radiation, synchrotron radiation, and various coherent emis-
sions. This chapter is limited to electron beams. The problem of return currents
of intensive beams, a topic of general interest in cosmic plasmas, is outlined in
Section 6.1. The non-linear evolution of the electrostatic beam instability and its
saturation are presented in brief in Section 6.2. The plasma radiation emissivity
is calculated in Section 6.3 and used to interpret radio observations. Hard X-ray
observations are introduced in Section 6.4 and combined with radio observations
to use electron beams for diagnostic purposes.

6.1. The Beam-Plasma System

Up to now it has been assumed that the particle beams are homogeneous, current-
free, and of infinite length. We shall see in this section that coronal and inter-
planetary beams in reality are an initial value problem. They do not persist long
enough to reach an equilibrium with the ambient plasma. The problem has become
evident from the analysis of hard X-ray emission during solar flares. Typically,
1038 fast electrons ( 2 10 keV) accelerated by the primary energy release in the
corona propagate along closed magnetic field lines and lose their energy primarily
by Coulomb collisions in the denser layers of the atmosphere below. If all accel-
erated electrons were moving in one direction, the charges would constitute an
electron flux of about 1036 electrons s~! and an electric current of the order of
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1026 statamps (107 amperes). The magnetic field implied by Ampere’s equation
(3.1.42) would be overwhelming; for a beam radius of 10° cm onefinds Bjng & 107
G. This does not make sense when compared to the pre-flare value of some 100
G, thought to be the cause of the flare and thus of the electron beam. Apart
from the energy problem, the beam with a flux of about 10%¢ electrons s=! would
imply that an enormous charge difference was built up between the corona and the
chromosphere. It would evacuate all electrons of a coronal condensation above an
active region in the course of one flare. What is wrong with this simple scenario?

The two dilemmas mentioned above do not occur, since the beam propagates in
a background plasma. The plasma responds in driving a return current of roughly
the strength of the beam current and in the opposite direction. It can react to the
injection by two rather independent effects — both, however, originating from the
full set of Maxwell’s equations and closely related — loosely referred to as ‘magnetic’
and ‘electrostatic’. The net total current densities are many orders of magnitude
below the above value, and the beam current is practically neutralized. In this
section we concentrate on such current-neutralized electron beams, isolate some
essential physics, and ignore many complicated details. Current-carrying beams
will be discussed in Chapter 9.

6.1.1. MAGNETICALLY DRIVEN RETURN CURRENT

The reason why the magnetic field remains relatively small in reality is that the
magnetic diffusion time in the beam-carrying plasma is much longer than the
impulsive phase of flares (Eq. 3.1.48). The ring-shaped field cannot expand fast
enough into the region outside the current. The magnetic field there cannot change
significantly. If V x B vanishes initially, the full Ampere law (Eq. 1.4.2) requires
that an induced electric field, Einqg, builds up with

O0E ind
ot

where J, = —enyVy is the original beam current density. Ejnq drives a current of
background electrons in the opposite direction to prevent magnetic field growth on
a timescale shorter than the magnetic diffusion time. The resulting return current,
J., can be calculated from the (fluid) equation of motion for the ambient electrons
(Eq. 3.1.21),

~ —4ndy (6.1.1)

ov e e
E + (V . V)V = *EEind - %(V X B) — Ve,iV s (612)

where V is the mean velocity, and v, ; is the electron-ion collision frequency (Eq.
2.6.32). Equation (6.1.2) is related to Ohm’s law, the simplest form of which one
can derive from the first and the third term on the right side (J = oF). In this
section it is assumed that no charge density builds up. Then Ampere’s law implies
V -J =0. Putting J, = —enV, we find
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s (wg)? e
(5+7%0) 3 = S Bat Sl x (Bo+Bal] - (619)

Subscript r denotes parameters associated with the return current. As a first
approximation we also neglect the Hall term (in brackets on the right side of
Eq. 6.1.3). We shall discuss its effects later. Operating on Equation (6.1.3) with
[V x (Vx] and using Ampere’s and Faraday’s laws and a vector identity (A.10),
we find

)
by (& +ve,i) V23, = —%(J, +3) (6.1.4)

where we have introduced the electrodynamic skin depth Asq := c/wg. Let the
scale length of the return current be some beam radius R, i.e. V2J, = J./R2, and
(Msa/R)? < 1. Integrating Equation (6.1.4) in time demonstrates that J, ~ —J,
for times smaller than 1/v, ;. The return current flows cospatially within the beam
channel and neutralizes the beam current, as one may have expected from Lenz’s
law.

For times much beyond 1/ve, the first term of Equation (6.1.4) can be ne-
glected and the equation can be written in the form

8 ., N, 8
(E—%WWV)L—~Eh. (6.1.5)

It becomes a diffusion equation after the beam front has passed and 8J;/8t = 0.
The diffusion time is the decay time of the current and amounts to

1 / R\?
= - '(Ad) : (6.1.6)

equivalent to the magnetic diffusion time (Eq. 3.1.48 using the conductivity ¢ =
w2/ (4mve ), Eq. 9.2.5).

Hence, the current remains neutralized for roughly the time 7, after which the
self-field of the beam will start to grow. The classical collision rate (as calculated
for particle collisions in Eq. 2.6.32) yields diffusion times of millions of years.
However, as will be discussed in Chapter 9, wave-particle interactions can also
exert a drag on electrons. In fact, the ion acoustic waves growing in strong return
currents (Eq. 5.2.39) or electron plasma waves driven to instability by a bump-on-
tail distribution of the beam (Section 5.2.4) may provide anomalous collisions and
enhance v, ; many orders of magnitude. Even if v, ; = 0.2 w; (a maximum value
generally ascribed to Sagdeev) and currents were highly fragmented (R = 108 cm,
ne = 1019 cm), the diffusion time is of the order of 1300 s. This is still longer than
the likely duration of the initial beam in the corona.

In Figure 6.1 the basic evolution of the return current responding to a given
model of the beam is plotted for times much larger than 1/v.;. The beam total
duration at a given location was assumed 20 s, the magnetic diffusion time 7 = 200
s. The return current first evolves nearly anti-symmetrically according to Equation
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Fig. 8.1. The evolution of a normalized model beam and its return current is shown in time.
Iy < I (Eq. 6.1.7) is assumed (after Spicer and Sudan, 1984).

(6.1.5). It becomes positive (as suggested by Lenz’s law) when I vanishes and
decays with an e-folding time 7.

As the beam produced magnetic field begins to rise, beam propagation becomes
more and more difficult. The beam particles acquire transverse momentum. Once
their gyroradii become comparable to the beam radius, the particles may be re-
flected by their own magnetic self-field. This is an effect of the Hall term neglected
in Equation (6.1.4). For an electron beam propagating in a weak ambient field, re-

flection occurs at the so-called Alfvén- Lawson limit (e.g. Hammer and Rostoker,
1970),

mc3 3y
[62(1~fm)_(1_fe)] ’

where 8 = Vo/c, v = (1~ B2)~Y/2 e is the elementary charge, and I, is the total
current of the beam. The initial fractional current neutralization, f,, :=| I./I; |,
is assumed to be unity (fm = 1, Fig. 6.1), and f. denotes the fractional charge
neutralization (on the average f. = 1, cf. next section). Since f,, decreases as
e~"7, I4 diminishes and Iy may eventually exceed the limiting value. At this
point, the lifetime of the beam is drastically reduced.

Below the Alfvén - Lawson limit, instability of the return current may extract
considerable energy from the primary beam by anomalous Ohmic heating. This
accelerates the diffusion of the magnetic field (Eq. 6.1.5) and reduces the life time
typically by four orders of magnitude compared to the Coulomb collisions.

LR I4:= /JAd2m = - (6.1.7)
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6.1.2. ELECTROSTATIC RETURN CURRENT

When a beam enters a charge-neutral plasma, it creates a situation similar to the
displacement experiment of Section 2.5. The charge separation sets up an electric
field, E.s, which slows down the beam particles and drives a return current of
background electrons in the opposite direction. The situation is controlled by the
electron fluid equation (6.1.2). The left side and the first term on the right yield
the electron plasma waves (Section 4.1). The ve; term introduces a damping with
an e-folding time of about 1/v. ;. In Figure 6.2 a beam is injected at time zero.
Damped oscillations develop at wp.
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Fig.6.2. An electron beam with a density of half the background ions is injected at ¢ = 0 into
a plasma with vy /ve ; = 5. The background electron density oscillates at the plasma frequency
and reaches an average of 0.5n; within the first period. The average charge density including the
beam remains zero (after van den Oort, 1991).

Using the previous values characteristic for solar coronal condensations (n, =
109 cm, T = 3108 K), the collision time 1/v,; is about 0.3 s (Eq. 2.6.32). This
value suggests that the front of a beam moving at 10'® em s oscillates across a
thickness of the order of 10!® cm. However, in the case of anomalous collisions,
the thickness is reduced by many orders of magnitude. If the beam front is not as
sharp as is assumed in Figure 6.2, the oscillations develop less vigorously. These
may be the reasons why the oscillations have not yet been observed by their radio
emission.

The lifetime of the magnetically driven return current (Section 6.1.1) is gener-
ally much longer than 1/v. ;. Therefore, the electrostatic field is relevant only at
the front of the beam. Its main effect is to produce strong electrostatic oscillations
in the background plasma and a deceleration of the beam electrons. Its role in the
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evolution of the beam is not yet clear, and depends in part on the details of beam
formation in the energy release region.

To summarize this section, it has become clear that flare generated beams
cannot exist in steady state for several reasons.

e They would spend most of their kinetic energy to induce a strong magnetic
field after a magnetic diffusion time.

o The beam produced magnetic field would deflect most of the beam and destroy
it even before that time.

e Magnetic induction drives a return current, which, if unstable, rapidly converts
the beam energy into background heat.

¢ An oscillating return current builds up at the beam front from charge separa-
tion.

6.2. Non-Linear Evolution and Saturation

The electron beam in the previous section was treated in the fluid description.
Now we use kinetic theory and apply the results of Chapter 5 to real beams.
Interplanetary electron streams and low-frequency (kilometric) type III bursts have
been observed with sufficient detail to test and further develop theoretical ideas on
kinetic beam-plasma processes. Spacecraft observations have established beyond
doubt the connection between type III radio bursts and electrons streaming at
super-thermal velocities from the Sun. In particular, the distribution function of
the electrons has been measured, and a positive slope, 8f/dv,, at v, > 0 of the one-
dimensional distribution has frequently been observed — a necessary requirement
for the bump-on-tail instability (Eq. 5.2.25). The positive slope builds up by
impulsively accelerated electrons escaping from the Sun with little or no collisions,
the faster ones running ahead of the slower ones (Section 2.3). Figure 6.3 shows
how small the region of positive slope is in reality (best visible at 0705 UT). It is
sufficient to drive strong electron plasma waves (Figure 6.6).

It is also established that electron plasma waves with phase velocities corre-
sponding to the positive-slope portion of the bump grow at the expense of the
free energy in the electron stream. The back-reaction of the waves on the elec-
tron distribution is the first topic of this section. If the wave energy level is low
enough, the flattening of the bump can be described by a diffusion process in ve-
locity space. This assumption does not hold universally, but seems to apply for
most of the interplanetary electron streams.

A most remarkable observation, however, that does not agree with linear theory
is the level of electron plasma waves. The slope of the distribution and the travel
time of the interplanetary electron stream should, according to Section 5.2, yield
a substantially higher wave energy density than observed. Long before these ob-
servations, P. Sturrock noted in 1964 that even in kinetic plasma theory, the beam
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Fig. 6.3. Observation of an interplanetary electron beam by the ISEE-3 spacecraft. The velocity
distribution is integrated over velocities perpendicular to the magnetic field and is shown for
consecutive time intervals. The first (0536 - 0600 UT) is the distribution before the event. Each
succeeding distribution is offset to the right by 5-10% cm s~! (from Lin et al., 1986).

would rapidly lose all its energy to the waves for any parameters he thought to be
plausible. Sturrock’s dilemma has found three basically different approaches for
resolution: (¢) An observer at a given location sees a beam of diminishing velocity
as the fastest electrons arrive first and the slower ones later (Fig. 6.3). The early
plasma waves with high phase velocity are Landau damped by the slower beam
electrons at a later time. This part of the wave energy is not lost, but fed back
into the stream where it accelerates slow beam electrons. (i4) Various non-linear
processes have been suggested for removing the plasma waves from the resonance
region and explaining the low wave level. (44i) Alternatively, density irregularities
may shift continuously the plasma frequency of the background plasma and stop
the linear growth of a wave having constant w,. Fluctuations may already be
present in the solar wind due to ion acoustic waves. Which of the three processes
limits the growth depends on the particular circumstances.
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6.2.1. QUASI-LINEAR DIFFUSION

The linear theory of the previous section assumes a constant background distribu-
tion, fo. Therefore it cannot be used to study the changes of fy or other average
plasma properties caused by the growth of unstable waves. In the quasi-linear
theory these changes are studied to second order in the fields, thus to first order in
wave energy (weak-turbulence approximation). We write the velocity distribution
f =< f > +fi,where < f > is the spatial average of the actual distribution f.
It contains no fast local fluctuations, but the global, gradual evolution in time.
The spatial changes are represented in f; having < f; >= 0. The fluctuations in
fi are assumed to be caused by many waves varying rapidly in time and having
|fi] «< f >. The average distribution, < f >, now is allowed to change slowly
under the influence of the waves. We shall prove that this change can be described
by diffusion in velocity space in the form

a< f>
ot

and calculate the diffusion tensor D. We shall prove this general law for the special
case of Langmuir waves (assuming <E>=<B>=B; = 0) and in one dimension
(k|leg). For collisionless plasma the Vlasov equations can be used, thus

of g _
Bt + oV, f+ EElvvf =0 . (6.2.2)

We now average Equation (6.2.2) in space. The second term obviously cancels.
Since < By < f» =0, we get

=V, - DxVy<f>) , (6.2.1)

a<f> _

ot

The evolution of the average particle distribution is the result of a non-vanishing
spatial average of Ey fi. This term is a second-order quantity.

The fast fluctuations causing f; are assumed to be linear waves. Thus, the
linear theory developed in Section 5.2 can be applied. In particular, we shall make
use of the normal modes given by the dispersion relation (5.2.24) as a function
w(k). As all waves act together on the particle distribution, we shall have to
sum over the waves. For this purpose, it is natural to assume a continuous wave
spectrum in k. Thus we write

iy, <Efi> . (6.2.3)
m

+o0
Ei(z,t) = [_ Ey(k,t)expli(kz — wt)]% . (6.2.4)
oo . dk
fl(z’ Uz, t) = 3 fl (k1 Vzs t) eXp[l(kz - wt)]é; . (625)

The wave amplitudes are allowed to change slowly. A relation between f; and F,
is obtained from the Vlasov equation (6.2.2) assuming a dependence exp[i(kz—wt)]
and linearizing to first order,



ELECTRON BEAMS 123

Tt 4
fi(k, v, t) = P —Ei(k,t) Vo < f> . (6.2.6)

This relation between the fluctuations of the distribution and the wave electric
fields will be used to evaluate < E; f; >, which becomes

dk

1 +L/2
<Eifi>= —/ dz/El(k, t)expli(kz — wit)] —
L —L/2 271'

></fl(k',vz,t)exp[i(k’z—wklt)](;—ﬂ, ) (6.2.7)

where L is the length of the region of enhanced wave level. Equation (6.2.7) can
be simplified by using the standard formula

L/2 ) ,
lim et BTEDZ gy — omS(k 4+ k') . (6.2.8)
L-y00 —L/2

On taking the limit L — oo in Equation (6.2.7) and inserting (6.2.8), one obtains

<Eih>= ‘lifEl(kat)fl(—kav’t) exp[—i(wy +w-g)ldk . (6.2.9)

For —k the wave phase velocity is in the negative z-direction. It is the same wave
as the one with +k and negative frequency. Putting w = w, + i, this means that
Re(w_g) := w’;, = —w}, and y_g = 7. Therefore,

W +wep =2y, . {6.2.10)
Using Equations (6.2.6) and (6.2.10), we arrive at

1 —iexp[2vt] ¢ dk
< E1f1 >= L/El(k;t)El( k,t) PR V. < f > o (6211)

Together with Equation (6.2.3) it proves that the quasi-linear evolution is a diffu-
sion process (Eq. 6.2.1). The singularity at w_j = —kv, shows that this diffusion
is a resonance phenomenon. The mathematics is similar to the linear case (Sec-
tion 5.2): The solution of the Vlasov equation is an initial value problem requiring
a Laplace transformation in time. We have cut this short by assuming normal
modes (Eqgs. 6.2.4 and 6.2.5). The initial value can be implemented into Equation
(6.2.11) by the Landau prescription (see Fig. 5.5), changing the integration path
below the singularity in the complex k-space. The integral can then be evaluated
by the Plemelj formula (5.2.19), using 8(w + kv.) = 6(w/v; + k)/v..

The imaginary part of Equation (6.2.11) vanishes, and the real part yields the
diffusion coefficient



124 CHAPTER 6

UJ2

D= —LW(k,¢) . (6.2.12)

mnv k=wg /‘U

We have introduced the spectral wave energy density

W. — By (wie /v, 8) By (—wie/v,t) 1
k 87 I

and have used W(k,t) = Wjexp[2yt]. The diffusion tensor (6.2.12) is of first
order in the energy density of waves, but, being the product of Ey fi, it is not linear,
hence quasi-linear. It suggests that quasi-linear diffusion is the result of energies,
ie. quadratic quantities. We shall introduce the concept of plasma phonons
in Section 6.3 analogous to photons of light. The spectral wave energy density
is proportional to the density of phonons of the energy Aiw. Equation (6.2.12)
can be interpreted that diffusion is proportional to the number of wave quanta
(phonons) and the rate of their interaction with particles. The appearance of the
wave energy density is a most remarkable aspect showing that particle diffusion
and waves are coupled: The presence of waves causes resonant particles to diffuse.
Equation (6.2.12) can be generalized to a three dimensional distribution of waves
by replacing W(k,t) with an integral in k-space over the waves in resonance with
particles of a given velocity v.

(6.2.13)

6.2.2. STRONG TURBULENCE

If the wave energy density is able to grow beyond the levels considered so far, the
oscillating wave fields exert an average pressure, or ponderomotive force, altering
the initial plasma parameters. This is the regime of strong turbulence. The theory
of strong Langmuir turbulence presented here briefly is still under development,
and its importance is unclear under astronomical circumstances. It is here not
a matter of deriving accurate formulas, but of identifying some major physical
processes.

Assuming pressure equilibrium, a local enhancement of electrostatic waves of
total energy density Wi, given in Equation (5.2.42), produces a slow adjustment
of the average density of both ions and electrons

Wtot

An = —kBT

(6.2.14)

The decreasing density reduces the local plasma frequency, and the dispersion
relation of Langmuir waves (5.2.24) changes accordingly,

Wtot

— 2,15

T

wp = (w9)(1+3k*2% —

where subscript O refers to the undisturbed values. A first characteristic of strong
turbulence is immediately clear — the wave vector £ of a wave at constant w,
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The above shift of the dispersion relation from smaller to larger k is strongly
enhanced by what is called modulational instability. The wave distribution can
collapse into cavitons. The collapse is simply an effect of refraction. Imagine that,
in a part of the space occupied by the wave, the density is slightly smaller, and
therefore & is larger than in the rest, to match the dispersion relation. The phase
velocity there is smaller, thus the wave is focused into the region of low density,
where Wi, increases and enhances the ponderomotive force (see also Fig. 6.4). It
has to push out even more plasma to remain in pressure equilibrium, closing the
feedback loop of the instability. Unlike the resonant decay process of the previous
section, the modulational instability produces an essentially zero-frequency plasma
modulation which does not satisfy a dispersion relation of normal modes of the
linearized plasma equations. Accordingly, it is important only if W exceeds some
threshold value. Cavitons are often loosely referred to as solitons. For Langmuir
waves due to an electron beam with a small range of Ak, the best known instability
of this type is the so-called oscillating two-stream instability having a threshold of

Wtot 2

oksT > 3(AkAp) (6.2.16)
(Sagdeev, 1979). We do not want to give the mathematical details, but point out
that this result can be expected from Equation (6.2.14), as it is the requirement
for Wiey to substantially influence k. The threshold for Wie/(ngksT') can be
estimated from measured quantities in the example of Figure 6.3. It is in the
range 2 — 151077, about two orders of magnitude above the observed maximum
density of wave energy. Energy densities near threshold have been found in other
cases.

The half-width Ak of the resonant Langmuir wave spectrum at half-maximum
is difficult to measure. It can be inferred indirectly from its relation to the range
of initially unstable phase velocities Av. Assuming that the growth rate y(w/k) of
Langmuir waves, as derived from Equation (5.2.25), has a triangular shape with
height vy and a base Av < V4, one finds

Ak ~ Av In2 (6.2.17)
km Vb 270t

where kn, & wp/V, is the minimum wave number of the growing Langmuir waves,
and V}, is the electron beam velocity. Note the time in the denominator! The
wave energy increases, and the spectrum becomes narrower at half-maximum the
longer the linear instability has time to grow. This is a property of exponential
growth producing an ever sharpening peak, assuming that Av remains unchanged.
The longer W grows and Ak decreases, the more probable is that W exceeds
the threshold. Once the modulational instability starts, the growing wavenumber
decelerates the waves until they are Landau damped by thermal electrons. This
finally quenches the instability. Numerical computations yield, as an order of
magnitude estimate for the saturation level of Langmuir waves,
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Wiat ~ 3ﬁ
nkBT Wp !

(6.2.18)

and typical values are of the order 107%. The saturation level according to Equa-
tion (6.2.18) is very high. For the parameters observed in interplanetary beams
(using Eq. 5.2.29 for an estimate of 7), it is sometimes found comparable or
exceeding the free energy density of the beam, approximately %meVbznb. In such
cases the beam energy may be exhausted before saturation, and it is advisable to
use the beam energy as an upper limit of wave energy.

Fig. 6.4. Wave fronts (represented by parallel lines) of a wave with frequency w are bent toward
the region of low phase velocity, v,4 = w/k. Since the phase velocity of Langmuir waves depends
strongly on density through k in the dispersion equation, the waves are concentrated into low
density regions (dark area).

6.2.3. DEFLECTION OF ELECTROSTATIC WAVES

Langmuir waves have a peculiar dispersion relation (5.2.24), in which the frequency
depends only slightly on wave number (assuming kve < wg). If a wave propa-
gates in a weakly inhomogeneous medium, the wave frequency remains constant,
but the wave number must change by a large fraction to satisfy the dispersion
relation. This, in turn, affects the phase velocity, and the wave loses resonance
with the beam particles. Lateral inhomogeneity deflects the wave (see Fig. 6.4)
and is usually even more efficient in removing the wave from resonance. Density
inhomogeneities thus tend to isotropize beam produced Langmuir waves. Given a
spectrum of density fluctuations, a diffusion coefficient of wave quanta in velocity
space can be calculated. It reduces exponentially the phonons in the beam direc-
tion and is an effective damping. In fact, its rate can exceed the growth rate and
inhibit further growth of the instability.
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6.2.4. SUMMARY

Recent developments in both observations and theory of interplanetary electron
beams have drastically changed our view of particle streams in the universe. Mea-
surements like Figure 6.3 are detailed enough to test the beam evolution and study
the saturation of the bump-on-tail instability.

o Particle beams are stable toward the bump-on-tail instability in a large fraction
of space where density variations in the source limit growth or where scattering
of electron plasma waves off ion sound waves constitutes an effective damping
rate larger than the growth rate (see next paragaph).

e Where the local conditions allow the waves to grow, the wave energy reaches
very high levels close to the mean free energy of the beam.

e Localized regions of enhanced wave energy density (cavitons) result.

e Quasi-linear particle diffusion in velocity space is therefore not a continuous
process, but occurs in steps when the beam passes a region of enhanced growth
rate.

Finally, we may add that the absence of the electrostatic bump-on-tail instability
in an electron stream does not imply the stream to be stable. Depending on
beam and plasma parameters other instabilities may appear, but usually grow
more slowly. They include the resonant electron instability of left hand polarized,
low-frequency electromagnetic waves (L-mode) for high # plasmas and intense
beams. It is analogous to the electromagnetic ion beam instability of Section 7.2.
Furthermore, there may be an instability of lower hybrid waves, the inverse process
to electron acceleration by these waves (Chapter 9).

6.3. Plasma Emission

Having studied the initial (/inear) phase of the growth of electrostatic waves due
to a beam in Chapter 4 and the non-linear evolution of the instability in Section
6.2, we now turn to the conversion of electron plasma waves into electromagnetic
emission. As arule, the production of radio waves does not substantially influence
the evolution of the beam, but is a diagnostic. An exception may be the decay
process to be discussed in Section 6.3.3.C.

6.3.1. HARMONICS

Dynamic spectra of type III bursts sometimes show two similar features displaced
in frequency by about a factor of two (Fig. 6.5). This important characteristic was
already noted by Wild, Murray, and Rowe in 1954, who immediately interpreted
it as radiations at the plasma frequency (fundamental, v & v,) and its harmonic
(v = 2vp). It will find a natural interpretation in terms of the conversion of
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electron plasma waves into electromagnetic radiation, and has historically been
taken as major evidence supporting the plasma emission hypothesis. Events with
harmonic structure have been studied extensively. The frequency ratio is usually
found to be smaller than 2 with an average of 1 : 18. The ratio being less
than 2.0 is interpreted as collisional absorption of the radio waves; the closer the
frequency of the electromagnetic wave is to the local plasma frequency, the slower
its group velocity and the more time collisions have to randomize the wave energy.
Therefore, the low-frequency part of the fundamental is invisible, and the harmonic
ratio is below 2. A general discussion of absorption will follow in Section 11.2.

frequency in Gllz

2.0

10:25:00 T 10:26:00
time in UT

Fig. 6.5. Dynamic spectrogram of solar microwave emission of beams at fundamental and har-
monic (narrowband type III bursts), The brightest sources on 1.2 GHz show up at the harmonic
frequency around 2 GHz (observed at ETH Zurich).

The emission of the fundamental component at meter wavelengths is more
directive than the harmonic. Simultaneous measurements from Earth and from a
Sun orbiting spacecraft have allowed direct determination of the cone of emission.
The harmonic was found to be practically isotropic, but the fundamental was
restricted to about 60° from the vertical. This has been confirmed by spectral
observations noting a sharp decline of the number of fundamental-harmonic pairs
when the angular distance of the coronal source from the disk center exceeds
50°. The higher directivity of the fundamental will be explained in Chapter 11
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by absorption, by beaming toward the vertical direction due to the decreasing
refractive index and by ducting.

The recognition of fundamental-harmonic pairs again becomes difficult above
about 100 MHz due to the increasing number of bursts per group. In the mi-
crowaves ( 2 1 GHz), the diminishing bandwidth greatly facilitates their identi-
fication, but the fundamental is often heavily absorbed. Figure 6.5 demonstrates
a case of narrowband type III bursts. The fundamental emission is considerably
brighter than the harmonics, which are visible only for the brightest bursts.

6.3.2. PHONONS AND THEIR SCATTERING (WAVE CONVERSION)

The conversion of unstably growing waves into other waves is interesting for two
reasons: it can limit the growth of the waves, and it can transform them into
observable electromagnetic radiation (transverse waves). Since energy and mo-
mentum are conserved, the changes in wave energy and momentum between the
incident wave and the scattered wave have to be taken up by a third partner. This
may be a particle, a group of particles or a third wave (three-wave interaction).
The conversion of one wave into another is generally called scattering even if the
product has a different frequency or wave mode.

The exchange of energy and momentum can be illustrated and simplified by a
quantum mechanical approach. Waves in a plasma contained by a conducting box
are eigenmodes, like light waves in a vacuum cavity. Quantum mechanics can be
applied analogously to a plasma with the result that all the waves also appear as
photons (transverse waves) or phonons (longitudinal modes) with energy hw and
momentum Ak (B is the Planck constant divided by 27). An MHD photon, for
example, has an energy of the order of 1073% erg &~ 10718 eV (!). Wave-wave and
wave-particle interactions appear as exchanges of quanta governed by conservation
laws. The quantum approach is physically correct, but Planck’s constant will drop
out at the end, demonstrating that it is not necessary. It is sometimes called a
semi-quantum mechanical approach. The processes are intrinsically classical.

The elegance and usefulness of the quantum mechanical approach is limited to
low wave energy levels, called weak turbulence, where the quanta can be consid-
ered as individual entities. Strong turbulence conversion will be outlined in the
following section.

We start with the scattering of a wave on a particle. In the quantum mechanical
picture an incident wave quantum (1) scatters into a quantum (2) of the secondary
wave, changing the particle’s energy and momentum by

Ae = hlws —wy) (6.3.1)

Ap = h(kz—kl) . (632)

The scattered wave may also differ in wave mode. Since only Vlasov’s and
Maxwell’s equations are involved, it is evident that such a process is reversible
in time, and wave (2) can therefore also be scattered into wave (1). The process
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is called spontaneous, since one single quantum of type (1) can do it, independent
of other quanta of type (1) or (2).

The advantage of the quantum mechanical language is that it allows us to
treat scattering as the conversion of a single wave quantum into another. In each
such scattering event the number of quanta (phonons or photons) of one wave
decreases by unity, and increases for the other. We define a spectral quantum
density of bosons, N(k), and an effective photon temperature, T(K), using the
Rayleigh - Jeans approximation,

Nk)hwy := ksT(k) :=W(k) . (6.3.3)
For propagating transverse waves, 7(K) at the observer’s site is the observed
brightness temperature defined in Section 5.1.

A. Spontaneous Scattering off lons

Historically, the first scattering partner envisaged by V.L. Ginzburg and V.V.
Zheleznyakov in 1958 to convert electron plasma waves into radiation were thermal
ions. Why consider an object as inert as an ion as a scattering partner? Single
electrons are indeed well-known to be responsible for Thomson scattering at very
high (e.g. optical) frequencies. However, as the wavelength approaches a few times
the Debye length, i.e. w & wpc/vee, single electrons are effectively shielded and do
not scatter. Nevertheless, scattering off a thermal ion is actually accomplished by
the Debye shielding cloud of electrons around the ion. The ion is said to be dressed
by these electrons. Therefore, scattering differs little from Thomson scattering of
high-frequency radiation on single electrons. It acts like scattering off a particle
with charge Z;e, mass Z;m., density ane, and velocity v;. Let w(v, kg, ky) be
the differential rate at which a dressedion scatters a Langmuir wave having ky, into
a transverse wave having k¢ with the normalization [ w(v, kg, k¢)d%k,/(2m)~% =
w. An extensive theory (e.g. presented in Melrose, 1980) and some simplifying
assumptions yield for solar abundances

wx wT/4 y (634)
where the Thomson scattering rate per ion,
8
sz?N. (6.3.5)

N is the refractive index, and 7y denotes the classical electron radius, rg = e? /mc2.
The quantum density of the scattered transverse waves changes according to

mm /f/QWWmmmmmm. (6.3.6)

Equation (6.3.6) includes only the spontaneous processes (comparable to random
collisions between phonons and particles). Often one assumes the spectral quan-
tum density to be constant in k-space from zero to a maximum k. So the dif-
ferential scattering rate is not needed, and the total scattering rate, w, given by
Equation (6.3.4) can be used.
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Frequency and wave number of the transverse wave generated by scattering
Langmuir waves off ions can be calculated from the dispersion relations and the
conservation equations. We consider the simple case of no magnetic field. The
dispersion relations have been given by equations (5.2.24) and (4.3.12). Assuming
w > N,

3k2 2

wp & wy(l + e/ (6.3.7)
Wp

wy & (wf,+kt202)1/2 . (6.3.8)

We claim that the scattered transverse wave has a frequency wy =~ wy. Thus
Equations (6.3.7) and (6.3.8) give

ke A \/EkL“% (6.3.9)
Under usual coronal conditions Equation (6.3.9) implies k; < k. The conserva-

tion equations (6.3.1) and (6.3.2) require

wr—kpv=w; — kv (6.3.10)

where v is the ion velocity assumed to be practically unaltered (since kgT' > hw).
The bandwidth of the scattered electromagnetic radiation can be calculated,

Aw =~ |kt—kL| Vi ~ kZL’Uti . (6.3.11)

Since kpve = wpvy/Ve < wp, where Vj is the beam velocity, Equation (6.3.11)
proves the claimed approximate equality of incident and scattered wave frequency.
The scattering process and in particular the bandwidth of the scattered radiation
(Eq. 6.3.11) have been demonstrated in a convincing way by radar backscatter-
ing from the terrestrial ionosphere. The process will be applied to astrophysical
plasmas in Section 6.3.3.

B. Induced Scattering

The above spontaneous process was found to be inadequate not only in preventing
growth of the bump-on-tail instability, but also in accounting for the observed
radio emission. V.N. Tsytovich suggested in 1966 that induced scattering by ions
could at least explain the latter. Induced scattering occurs in addition to the
spontaneous processes analogous to transitions between electron states of an atom
(where this process is called stimulated emission). The transition probabilities
between atomic states is described by Einstein’s coefficients A and B. They allow
for spontaneous transition, absorption, and transition induced by the presence
of radiation. Induced emission causes an avalanche effect, which is utilized for
example in lasers.

Langmuir waves and dressed ions form together a system similar to excited
atoms. Induced emission occurs if also a secondary photon (or wave) enters the
system and stimulates it to emit more secondary waves. Induced scattering re-
quires the presence of both primary and secondary waves. As the induced process
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is proportional to both the primary and the secondary wave density, the feedback
drives the latter to exponential growth. Needless to say, induced scattering of
cosmic plasma waves into observable electromagnetic waves is an attractive possi-
bility.

The scattering process transfers some energy of the primary waves to the ions.
The energy absorbed by the scattering particle is always positive for induced pro-
cesses. Ifit were negative, one could cool a plasma by irradiation inducing emission
from the thermal level of Langmuir waves. This would contradict the second law of
thermodynamics. Therefore the scattered wave must be at a lower frequency than
the primary wave. For observable radiation this has the important consequence
that the primary waves must have a higher frequency than the secondary elec-
tromagnetic waves. Electron plasma waves are the only electrostatic mode above
the cutoff frequencies of observable radiation. They are the only waves for which
induced scattering on ions may be directly observable in coronal plasmas.

Instead of the isolated states of atomic transitions, we have a continuous spec-
trum of waves. It may be considered as the discrete spectrum of a box whose
size we let go to infinity. Einstein’s argument for detailed balance of stimulated
emission, based on the second law of thermodynamics, implies a rate of induced
scattering of w(v, kg, k¢)Ni(k;). Equation (6.3.6) has to be completed to

aNt(kt w(v,kp, ko) [{N5 (kL) — Np(ke)} fi(v)—
h(kL - kt) . %]
m; ov

The term which is linear in Nz (kz) accounts for spontaneous scattering of Lang-
muir waves into transverse waves weighted by the differential scattering rate
w(v, kg, ks) and the ion velocity distribution f; (Eq. 6.3.6). The term which
is linear in N;(k;) is negative, since it represents the inverse process: absorp-
tion. The term which is proportional to Ny N; describes the net effect of induced
scattering in both directions differing by the ion distribution at the high and low
energy levels. The difference can easily be evaluated using the approximation
f(V - h(kL - kt)/mz) ~ f(V) - h(kL - kt)/mi . 8f,/6v

Induced scattering means that radiated photons force the dressed ions to ra-
diate even more. This becomes important when the spectral wave energy density,
Wi(k), exceeds the mean thermal energy of ions by a factor of w/{wr, —w;) (Exer-
cise 6.3). For the scattering of Langmuir waves into transverse waves, the threshold
is a brightness temperature T3 2 10°(T;/10%)K. The observed values are frequently
much higher and suggest that scattering is generally induced rather than sponta-
neous, or the emission is of a different nature (see below). Equation (6.3.12) will
be applied to plasma emission in Section 6.3.3.

(6.3.12)
NL(kL)Nt(kt)

C. Scattering off Other Waves

For scattering off a second wave (subscript 2), the conservation equations become
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w) +wg =wz (6313)
ki +ks =ks . (6314)

These equations are sometimes referred to as parametric conditions. Equation
(6.3.13) is the resonance condition for maximum energy transfer of three coupled
harmonic oscillators. In fact, the waves are coupled through particles (usually
electrons) oscillating in the fields of the waves. If the energy flows from waves (1)
and (2) into (3), the scattering is called coalescence. It is denoted as (1}+(2) —
(3), or a +b — ¢, where the letters are symbols for waves (L := Langmuir wave, s
:= ion acoustic wave, t := transverse (electromagnetic) wave, etc.). An important
coalescence is the scattering of a Langmuir wave off another Langmuir wave into a
transverse wave; L + L’ — . It is observable as harmonic emission at about 2wp.

The inverse process, ¢ — a + b, is termed decay. Important examples for
beams include the decay of a Langmuir wave (L) into an ion acoustic wave and a
transverse wave (t), observable as fundamental radiation: L — ¢ + s. Decay into
an ion acoustic wave and a secondary Langmuir wave (L — L' +s) is a competing
process.

The conservation conditions (6.3.13) and (6.3.14) greatly reduce the number
of possible scattering processes, since the third wave (ws,ks) must satisfy the
dispersion relation of a normal mode. Furthermore, if the outcome should be an
observable transverse wave having w; > wp, one of the initial waves must be a high-
frequency mode, such as a Langmuir wave, z-mode or upper hybrid wave (Section
4.4). The condition on kg further reduces the choice of wave modes; Langmuir
waves produced by beams have large k7, and propagating transverse waves have
small k;. They need to be balanced by a wave that is nearly anti-parallel to the
incident Langmuir wave and also has a large k. In fact, a major difficulty in wave
conversion is to identify suitable waves and plausible physical parameters before
calculating their emission. We outline the latter in the following paragraph.

The scattering efficiency off a second wave is evaluated in a way similar to ions.
The rate of transitions (1)+(2) — (3) per unit k; and k; is the sum of spontaneous
and induced scattering, u'?3[1 + N3]N1N;. It has to be diminished by the rate of
the inverse process (3) ~— (1)-+(2), namely u*?3N3[1 + N;][1 + N,]. One finds

3 3
6N25k3) =/ (2:)13/ éﬁiu”a(khkz,ks)[M(kl)Nz(kz)

_ Ns(k3){N1 (k1) + N2(k2)]

(6.3.15)

The transition probabilities u!?® result from the non-linear coupling of two normal

modes of linear theory. The density perturbation, n}, of one wave interacts with
the velocity perturbation, V32, of the other wave to give a non-linear current, Jy;,
driving the electric field of the third wave. From the linearized Maxwell’s equations
(4.2.7) and (4.2.10) one derives the general wave equation for the fields of wave

3,
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8m 8n

The first term is the wave field energy density, and the second is the gradient of
the Poynting vector. The right side is only different from zero for the non-linear
part of the current, Jp. In our case this is the source term for emission. We
do not here derive the transition probabilities for particular cases; they are based
on the detailed properties of the linear wave modes. Some relevant examples will
be given in the following section. A number of them have been tabulated in the
literature (e.g. Kaplan and Tsytovich, 1973) for various combinations of waves.
The equations for the rate of change of N; and N are analogous; for example,

o [IEs|*  [Bsl? c -
5 [——— +—|+V- [EEs X Bs] =-JnE3 . (6.3.16)

ONy (k1) _ dks [ dky

ot (2m)* J (2m)3 u Ky, kg, kg ) [V (k) Vo (kez) -

~ N3(ks){Ni(k1) + Na(ka)}]

The three-wave process obviously saturates when the bracket in Equations (6.3.15)
and (6.3.17) vanish, requiring

(6.3.17)

Nl(kl)Ng(kg) = Ng(kg){Nl (kl) —+ N2(k2)} . (6318)

Saturation means that the decay and the inverse coalescence process are in equilib-
rium. From the point of view of a radiation mechanism, it corresponds to optically
thick emission; the intensity cannot be further increased by more scattering in a
larger source.

We note that the decay L — t+s does not satisfy Equation (6.3.18) for satura-
tion unless both Ny and N, > Ny, an unlikely condition. Even without saturation
the process has been found to be efficient enough to limit the growth of Langmuir
waves and to be compatible with some observed radio emissions (radiation from
an optically thin source). It will be applied below to beam radiation.

The coalescence L + s — ¢ does not work efficiently if ion acoustic waves are
strongly damped (Eq. 5.2.39), since, for N, <« N at saturation (equivalent to
maximum emission), T; = T, < Tr. On the other hand, if the ion acoustic waves
are excited to Ny > Ny, they can make weak Langmuir waves observable at a
brightness temperature of 73 < 7. This will be important in Chapter 9, when we
consider currents.

For the process L + L' — ¢ saturation occurs at a brightness temperature

Ty (ko )Ty (kg)
Ty (kL) + Tr (ky,)

The factor 2 arises from wy = wyr, + wrs = 2wp. For a distribution Ty, (ky) of in-
tense waves collimated along the beam direction and a weaker isotropic population
Ty (kg,) — produced e.g. from the intense waves by induced scattering off ions — the
brightness temperature is the temperature of the weaker waves; Ty = Tr(ky,). In
the following section we concentrate further on the processes leading to emission
and derive practical formulas.

Tmax (kt) ~ 2

(6.3.19)
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6.3.3. PLASMA RADIATION EMISSIVITIES

The energy emitted per unit of time, volume, frequency and solid angle 2 is called
emissivity. It is the rate of change of the photon density per solid angle multiplied
by the energy of a photon, thus the emissivity is

ONy(ky) k.
Bt (27)%dw df?

The second quotient converts Kk into w and 2. In Equation (5.1.1) we have in-
troduced the intensity, I, as the energy of radiation (transverse waves) passing
through a unit area per unit time, frequency and solid angle. In the absence of
absorption and refraction,

Nw) = hw (6.3.20)

IH{w,0) = n(w,0) L{w,0) . (6.3.21)

L(w, 8} is the length of the ray path in the source. Ifthe source is inhomogeneous,
L is the length over which change becomes essential. For example, if the density
changes, the frequency range of the beam excited Langmuir waves moves away
form the initial frequency after a small fraction of the scale length. The general
transfer of radiation will be discussed in Chapter 11, where the special case of
Equation (6.3.21) will be referred to as optically thin. In the opposite case, the
emission of an optically thick source is saturated by its own inverse process. The
intensity does not further increase along the ray path, and an outside observer
only receives radiation from the surface layer of the source. The intensity at the
source then is given by the photon temperature Ty (Eq. 6.3.3),

I(w,8) ~

2%kgTy(w,8)
2v k5 Ti(w,6) (6.3.22)

C

The Rayleigh-Jeans approximation for fuv/kgT; < 1 has been applied in Equation
(6.3.22). The factor 2 is usually introduced to account for both electromagnetic
modes, assuming equal photon temperatures.

It is accepted that the radio emission associated with coronal and interplane-
tary electron beams originates from the conversion of beam-excited electron plasma
waves into radiation. Yet we have encountered several possibilities in the previous
section. A basic classification of the processes distinguishes between: (i) weak and
strong turbulence (depending on the level of electron plasma waves); and (%) fun-
damental and harmonic emission. The following subsections summarize the most
plausible results for these four cases and outlines their relevance to observations.

A. Emission at the Harmonic

We start with the harmonic emission for which there are just two possibilities:
weak and strong turbulence.

At alow level of plasma waves (weak turbulence), the coalescence of two waves
(L + L’ — t) is a generally accepted emission mechanism. With some simplifying
assumptions, the emissivity can be calculated from Equation (6.3.15),
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5 (Wigh)?
nekBT

The distribution of Langmuir waves in k-space is usually unobservable and has to
be estimated from the total wave energy, W,. If kr, is the maximum wavenumber
of a broadband, isotropic distribution of Langmuir waves with Wky,) = constant
for k < ky,, the total wave energy density is given by

n= %(km/\n)“5 (ﬂ—) (6.3.23)

C

4rk3,
= —m 3.2
Wiot = W (k) 302 (6.3.24)
For an optically thin source, the intensity can be evaluated from Equation (6.3.21).
It has to be corrected for absorption and refraction in the source and by propaga-
tion (Chapter 11). If the source is optically thick, equivalent to saturation of the
scattering process (Eq. 6.3.19), the photon temperature in the source becomes

T, = Ty (6.3.25)

for isotropic Langmuir waves. The Langmuir waves produced by beams are col-
limated in the forward direction. A fraction thereof is scattered on ions into the
reversed direction and can combine with the former to transverse waves. Since
the phonon temperature in the backward direction is lower, the resulting photon
temperature is reduced correspondingly.

The photon temperature can be converted into intensity using Equations (6.3.3)
and (6.3.22). From Equation (6.3.25) one derives

" 12Ap Ute 2 L

In gt (%) wk, . (6.3.26)
Intensities of 2+ 10-13 erg s7'Hz~ cm~2sterad~! and brightness temperatures up
to 10'® K have been reported, bringing W%, into the range of strong turbulence.
Strong turbulence packets of Langmuir waves (Section 6.2.2) act as antennas
and radiate more efficiently than the coalescence process of weak turbulence. The
emissivity of collapsed solitons has been calculated numerically and found between

one and two orders of magnitude higher than given in Equation (6.3.23).
The observation of two bands of emissions of type III radio bursts separated in
frequency by a ratio of about 1 : 2 confirms the general idea of harmonic emission.

B. Emission at the Fundamental: Scattering off lons

The relevant emission process for the fundamental is less clear. One radiation
process is the scattering off the electron shielding cloud of thermal ions presented
in Section 6.3.2. If a broad spectrum of Langmuir waves is assumed with Nz, > N;
and a largest wavenumber k,, (Eq. 6.3.24), the emissivity of Langmuir waves
scattering off ions results from Equations (6.3.5) and (6.3.12),
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wiwk ke \ v Wilks)
—~ p " tot _t i1 t\vt
% Sontctnkn, (km> 1+ L, ksTi | (6.3.27)

where vth = wy/kr = wi/ky is the phase velocity of the Langmuir waves. The
two terms in the brackets refer to spontaneous and induced scattering, respectively.
Induced scattering is negligible at the far end of the source where Wy (k;) =~ 0, but
dominates after the ray has passed a critical distance, s., where the total energy
density of transverse waves has grown to the threshold value k:BTiv{;h Jugi. At this
point induced emission equals spontaneous emission and dominates thereafter. For
typical parameters of the solar corona and W&, ~ 6 -10~%nkgT (measured in the
case of Fig. 6.3), the threshold distance becomes s. ~ 2 - 10° cm (Exercise 6.4).
A necessary condition for induced emission to dominate is source homogeneity on
such distances.

C. Emission at the Fundamental: Decay

Two more processes have also received attention. One of them proposes that
Langmuir waves are directly converted into radio waves on steep density gradients
(e.g. Melrose, 1980). Here we consider the second process proposing that the beam
produced Langmuir waves decay directly into a transverse wave and an ion acoustic
wave (L — t + s). This process may have been observed in the laboratory and
in interplanetary electron beams by its strong radio emission at the fundamental.
The parametric equations (6.3.13) and (6.3.14) require that wr = w; + w,. Under
plausible conditions kr =~ ks > k,. The ion acoustic waves must have similar
wave numbers as the Langmuir waves, but in the opposite direction. Waves with
ws & cgky, have indeed been observed in interplanetary beams, as will be shown
in the following paragraph.

The simultaneous observations of waves and particles shown in Figure 6.6 can
be interpreted in the following way: The electron waves are driven into instability
during the time of positive gradient in the electron distribution. The fastest elec-
trons arrive first. We note, however, that the electrons with highest energies are
apparently too sparse to excite waves. The waves are converted into radio waves
at 31 — 100 kHz. The radio waves at higher frequency originate closer to the Sun
(see for example Figure 5.8). In addition, ion acoustic waves can be found obser-
vationally; the solar wind sweeps them by the spacecraft and Doppler shifts their
frequency to @, = Viwks, where Vg, is the solar wind mean flow velocity. Using
ks ~ k1 =~ wp/Vp and the observed solar wind density and velocity, one expects
U5 = 130 Hz, the center of the band of low-frequency ion acoustic waves in Figure
6.6, correlating with the electron plasma waves.

The decay L — t + s is an efficient process, converting electron plasma waves
into transverse emission. However, it is limited by a severe condition requiring the
growth rates of both transverse waves and ion acoustic waves to exceed the damp-
ing rates. The latter are strongly Landau damped unless T, > T; (Section 5.2.6).
In the case presented in Figure 6.6 the observed ratio was T./T; = 2.8, permit-
ting growth. Therefore a decay process is likely. It is tempting to speculate that it
may also have produced the radio emission at 31 — 100 kHz as the second daughter
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Fig. 6.6. Solar wind particles and waves observed by the ISEE-3 satellite at the Lagrangian
point L1 between Sun and Earth. The top panel shows non-thermal electrons in different energy
channels given at the right. Their velocity distribution has been shown in Figure 6.3. The slower
electrons arrive later. The horizontal bar under the top panel indicates the time interval of
positive slope in the v,-distribution of the electrons. The lower panel presents the electric field
of waves measured in 16 channels. Their frequency is given at the right side. The solid curves
give peak intensities, and the black areas are 32 s averages (from Lin et al., 1986).

waves. The observed number of radio photons, however, is an order of magnitude
larger than predicted. A quantitative theory of the radio emission of beams is
apparently still absent. Nevertheless, decay seems to be an attractive emission
mechanism in the interplanetary medium and other non-equilibrium plasmas.
The brightness distribution of fundamental type III radio emission from the
solar corona can reach 102 K. If optically thick, weak-turbulence theory requires
an equilibrium between photons and Langmuir photons, thus Ti(ks) =~ T (kr).
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The observed maximum value is compatible with the Langmuir wave energy den-
sity at saturation (Eq. 6.2.18). Strong-turbulence effects are likely to occur in the
most intense events. The average brightness temperature observed in interplane-
tary space is consistent with optically thick emission by weak-turbulence processes.
This greatly simplifies the interpretation, as the details of the conversion process
do not need to be known.

There is a general qualitative — and often quantitative — agreement between
the observed intensity of plasma emission and the value derived from source pa-
rameters. This must be viewed as a remarkable success of more than three decades
of painstaking theoretical efforts. The field remains open for new work, and new
observations will undoubtedly stimulate progress.

6.3.4. SENSE OF POLARIZATION

The observed radiation is said to be polarized if one of the two propagating elec-
tromagnetic modes predominates. According to Section 4.5 the two modes differ
in their physics due to the presence of a magnetic field in the background plasma.
Their dispersion relation becomes identical for Q¢/wp, = 0 (Eq. 4.5.1). In the pres-
ence of a finite magnetic field most emission mechanisms favor one of the modes
and yield polarization of characteristic degrees and sign. Propagation, in turn, can
also change polarization by preferential absorption or scattering (Chapter 11).

Despite early claims, extensive attempts have not found linear polarization in
any type of solar radio emission. This is very likely the result of a propagation
effect in the corona: Faraday rotation (Section 11.2.3) changes the orientation of
the wave electric field by thousands of radians already during propagation within
the source. It obliterates any linear polarization intrinsic to the emission process.

An important diagnostic for the emission mechanism is the question of the
preferred wave mode. The observational answer is found by measuring the sense
of circular polarization and the prevailing direction (up or down) of the magnetic
field in the source. Since the field in the source is not directly observable, one
uses the Zeeman effect of optical lines from the underlying photosphere. Several
comparisons of magnetic polarity and circular polarization have given a consistent
trend. For type III bursts, observed to be left-hand polarized, one finds photo-
spheric fields with the longitudinal components preferentially directed toward the
observer, and vice versa. According to Section 4.3 such a wave must be ordinary
mode.

In complex active regions, where the magnetic polarity is not unique, the lead-
ing spot (most western part of a spot group and leading in rotation) usually
dominates in activity and is often taken as reference. Type III radiation is pref-
erentially polarized in o-mode when referred to the leading spot. The fact that
burst polarization is related to the surface magnetic field of the active region is
called the leading spot rule. It has also been used to infer the radiation mode of
other solar radio emissions.

The o-mode emission at the fundamental may be the result of different cutoffs
of o(L)-mode (Egs. 4.3.23 and 4.4.8) and x(R)-mode (Eqgs. 4.3.22 and 4.4.10).
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Let us assume that the emission mechanism produces a finite spectrum of both
modes near the plasma frequency. It will be limited on the low-frequency side by
the cutoffs, and on the high side by some common upper limit of Langmuir wave
frequencies (to be determined in the following section). Since the o-mode cutoff
is lower, its emission is favored. The observed sense of polarization thus follows
naturally from the derivations in Chapter 4.

6.3.5. MAGNETIC FIELD STRENGTH IN THE CORONA

Polarization of plasma emission is always a consequence of a magnetic field, and
it can in principle be used to measure the field strength in the corona. The
factors influencing polarization, such as source parameters (viewing angle 6 to
the magnetic field, angular and spectral distribution of Langmuir waves, etc.), the
conversion process and propagation have to be carefully studied before the coronal
field strength can be derived from observed circular polarizations.

The polarization of fundamental/harmonic pairs has been studied extensively.
In general, the fundamental component is more polarized than the harmonic com-
ponent, but both are polarized in the same sense. If the degree of polarization
depended linearly on the field strength, we would expect the polarizations of the
two components to be proportional. In Figure 6.7 this is only the case for small de-
grees of polarization, where the two polarizations are equal. The harmonic appears
saturated at 20% , whereas the fundamental may reach 60% .

Figure 6.7 indicates that the high polarization of the fundamental is determined
by an additional factor (causing the scatter) and is non-linear in B. In fact, there
are observations supporting both propositions:

o The average ratio of the polarization of fundamental/harmonic pairs has been
found to decrease from the center to the limb of the solar disk. Since the
path through the corona is longer at the limb, propagation effects are more
severe. The observations thus suggest that propagation preferentially reduces
the polarization of the fundamental.

e Polarization of the fundamental component has been found to correlate with
drift rate and thus with beam velocity. It can be interpreted by the dispersion
relation of Langmuir waves (Eq. 5.2.24). For higher beam velocities, the phase
velocity, w/k, of the excited waves is larger. Since the frequency of Langmuir
waves varies only slightly, & must be smaller. The dispersion relation then
yields a smaller difference, w — wp, and more waves are produced between
the cutoffs of the two modes, where only the o-mode can originate. This
effect introduces an additional variable, the beam velocity Vj, that influences
polarization. Moreover, this mechanism for polarization at the fundamental
is non-linear in magnetic field strength.

The polarization of harmonic radiation seems to be consistent with a simpler rela-
tionship to the field strength of the source making it better suited as a diagnostic
tool. Furthermore, the conversion processes are well known (Section 6.3.3). If the
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Fig. 8.7. Degree of circular polarization of fundamental component vs. harmonic component of
714 pairs at 80 and 43 MHz (from Dulk and Suzuki, 1980).

combining Langmuir waves are highly collimated in forward and backward direc-
tion to the magnetic field, if Q. < wy, and for weak turbulence, the polarization
of harmonic radiation is in the sense of o-mode with a degree

, 6.3.28
48 wy, o8 ( )
where @ is the viewing angle to the magnetic field. In the other extreme of isotropic
Langmuir waves, the polarization would be in the x-mode with

Py~ ———|cosb| . (6.3.29)
48 w

Harmonic type III bursts of a pair are invariably polarized in the same sense as the
fundamental component, thus in o-mode. It is a strong argument for the Langmuir
waves in type III sources to be highly collimated. The observations and a detailed
theoretical investigation limit them to a cone with an opening angle of about 10° or
less in the magnetic field direction. The polarization of the harmonic was observed
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to vary from the disk center to the limb as 0.14] cos ¢| by Dulk and Suzuki (1980),
where ¢ is the aspect angle from the center of the disk. The average field is radial,
thus < ¢ >~ 6. Equation (6.3.28) represents both the observed angular behavior
and the sense of polarization.

Using the above measurement, Equation (6.3.28) requires an average magnetic
field with Q./w, ~ 0.61 at a plasma frequency level of 80 MHz (v, & vgbs/2),
corresponding to an electron density of 8 - 107 em™2 and typically about half a
solar radius above the photosphere. The definition (2.1.4) of the gyrofrequency
yields a magnetic field strength of

Vp Q.

and, for the above observations, B = 17 G. The Alfvén velocity is given by
8
cqa = 6.52.10°— (6.3.31)
Wy

(Eq. 3.2.13, using solar abundances), becoming 1.1-10® cm s™* in our case. The

ratio of thermal pressure to magnetic pressure was given in Equation (3.1.51),

2
=P _ (wp 20
im g = ( — ) . (6.3.32)

For a temperature of 2 - 108 K, one calculates 8 ~ 3.6 - 1073,

We conclude that the theory of polarization of plasma radiation is well devel-
oped for the case of weak harmonic radiation. The reader is reminded that the
derived values refer to the sources of type Il bursts. In fact, the Alfvén velocity
is higher than expected for the average corona. The interpretation of these results
is a topic of active current discussion.

6.4. Hard X-Ray Emission of Beams

Hard X-rays are important evidence of energetic particles and have played a major
role for the appreciation of flares as high energy phenomena. We define hard X-
rays as photons having energies in the range from 10 keV to 1 MeV. Since they do
not necessarily indicate directed particle motions, their information on beams has
to be carefully assessed (cf. also Chapter 8 on trapped particles). Hard X-rays
from the solar corona are well observed, but little is known about stellar hard
X-ray emission, which will not be considered here.

6.4.1. EMISSION PROCESS

Collisions of energetic electrons with background particles are a well known mech-
anism to produce hard X-rays. In these collisions the electrons are deflected, hence
they emit electromagnetic radiation. As the energetic particle loses energy in the
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process, the radiation is called bremsstrahlung (‘braking radiation’). For particles
moving at velocities v <« ¢ the loss of energy by radiation is very small com-
pared with the energy transfer to the collision partner. It can be the dominant
energy loss for highly relativistic electrons. Bremsstrahlung emission depends on
the velocity distribution of the collision partners.

The incoherent emission during a collisional interaction follows from proce-
dures similar to those applied in Section 2.6. and from Larmor’s equation for the
radiation of accelerated charged particles. Quantum mechanical corrections are
important. For details, the interested reader is referred to the references at the
end of this chapter. The essential properties of the emission process are:

(1) The emitted photons have energies in the range from zero up to the energy
of the energetic particle.

(2) In the small angle deflections characteristic for a ‘collision’ in a plasma (Sec-
tion 2.6.), the probability of the emission of a photon is roughly constant in
the above energy range.

The flux density of photons of energy hv is the number of photons per unit time,
photon energy, and area. For a stationary source at a distance D it is

Fhe (hv) = ZJW /ni(x)dV /Fe(e, x) Q(e, hv)de [photons s~' cm™2 keV™!].

(6.4.1)
The first integral is over the source volume V, the second integral is over particle
energy €, where F, is the flux of energetic electrons at x and t per unit time,
area, and energy. Q is the differential cross-section for electrons with energy ¢ to
produce photons with energy Av. The Bethe-Heitler approximation is usually used
(e.g. Jackson, 1999). It must be corrected for heavy ions and electron-electron
interactions.
The spectrum of the observed hard X-ray flux decreases with energy. It is often
possible to approximate it by a power law,

Foe () = A- (hv)™7 . (6.4.2)

The spectral index, %, and the constant A are determined by the best fit to the
data. The number and energy of the bremsstrahlung producing electrons can then
be inferred using appropriate approximations on the source. In the context of
beams, there are the following two.

(1) In the thick-target approximation a beam encounters a dense layer and stops
completely. The kinetic energy of the particles is randomized and lost within the
spatial resolution of the observation. The energy distribution in the target, Fg, is
different from the injected distribution. Equation (6.4.1) can still be applied to
the target-averaged distribution. The impinging flux, F, is changed to F, by the
collision process producing Fe o< Fye?, and is related to the observed X-ray flux

by
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D2
Fy(e) =~ 3.28 - 10% b(y) ?7% A e7¢ lelectrons s™! cm™? keV ™). (6.4.3)
(e.g. Hudson et al, 1978) with

E=v+1 . (6.4.4)

The denominator 772 represents the beam area (in cm?) hitting the target. Dg
is the source distance in astronomical units, and b(y) = v2(y — 1)* B(y — 3 3)is
of the order ofunity, B(z,y) being the beta function. Note that the electron flux
has the form of a power law in energy.

(2) The thin-target approximation assumes that the beam propagates without
essential changes through a dilute region. An example is a beam accelerated by a
flare and escaping into interplanetary space. Since every volume element radiates,
the relevant parameter is the energy distribution fp of the beam electrons per
unit volume and energy. The exponents of f, and F; are related by 6 = £ + 1/2.
Equation (6.4.1) can be inverted to

D2
fo(e) =~ 1.05-10*2 ¢(v) —9@ Ae™® [electrons cm™3 keV Y. (6.4.5)

with
=vy-1/2 , (6.4.6)
and e(v) = (y — 1)/B(y — 1,1/2). y is the volume of the target. The electron

energy distribution again is a power law, but with a different slope, namely iy, =
Stnick — 2, forthe same observed ¥ and in the same units.

6.4.2. OBSERVATIONS

Hard X-ray detectors, brought above the Earth’s troposphere by balloons or rock-
ets, count photons in specified energy bands. In the absence of spatial resolution,
the count rate is proportional to the integral of the flux density over the channel
width, [ F(hv)d(hv), where hv is the photon energy.

Figures 6.8 left and right present the hard X-ray emissions of two solar flares.
They show two typical cases called impulsive (duration less than 10 minutes, often
less than 1 minute) and gradual (or extended). A third type — named thermal
since its spectrum is comparable with a Maxwellian velocity distribution of 3 to
5.107 K — is rare. Impulsive bursts are most frequent and are sometimes followed
by a gradual burst. Thermal bursts are observed at low energies (around 20 keV).
Of course, the three hard X-ray burst types are extreme situations, and in reality
we may observe a mixture of two, or other complications.

The spectral index is observed to decrease in the rise phase of both impulsive
and gradual bursts. For impulsive events, the spectral index, 4, decreases again in
the decay phase and has a characteristic minimum at peak flux (Fig. 6.8 left). On
the other hand, the spectral index of the gradual bursts (Fig. 6.8 right) continues
to decrease throughout the event. The evolution of the spectral index is often
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Fig. 6.8. Hard X-ray count rates and spectral index vs. time for, left, an impulsive flare (Dennis,
1985), and, right, a gradual flare (Kosugi, Dennis, and Kai, 1988). Note the different time scales!

described as ‘soft-hard-soft’ in impulsive flares and ‘soft-hard-harder’ in gradual
flares. More complicated variations have been reported (Lin and Schwartz, 1986).

6.4.3. X-RAYS FROM BEAMS

Spectral observations alone do not allow us to determine the directivity of the
hard X-ray producing electrons. Spatial information from imaging hard X-ray
telescopes suggests that some impulsive hard X-ray events originate from beams.
The evidence comes mainly from impulsive flares where two or more hard X-ray
sources have been observed to brighten up simultaneously within the instrumen-
tal resolution of a few seconds. The sources are apparently related by exciters
travelling much faster than an Alfvénic disturbance. A likely interpretation are
beams of mildly relativistic electrons, as discussed for an example in the following
paragraph.

Figure 6.9 gives a hint of the geometry. The soft X-ray structures in Figure 6.9
coincide with two loops suggested by He images and magnetograms. Impulsive
hard X-rays observed at A, B, and C seem to originate largely from low altitudes
and to be produced by precipitating electrons at the footpoints of magnetic loops.
Figure 6.10 interprets the observations in terms of precipitating electron beams.



146 CHAPTER 6

Fig. 6.9. The cross-hatched areas labelled A, B, and C are sources of impulsive hard X-ray
emission (16 — 30 keV) observed by HXIS/SMM on the Sun. The contours plot the soft X-ray
intensity at 3.8 — 8 keV (from Dennis, 1985).
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Fig. 6.10. Flares accelerate large numbers of energetic electrons into closed field lines. Some may
get trapped, others precipitate into the chromosphere. In an approximately symmetric loop, the
directed flux of particles produces two sources of hard X-rays. A second loop was involved in
Figure 6.9, producing three sources, labelled A, B, and C.

Note that weak hard X-ray sources have been recently found also on the top of
soft X-ray loops (Masuda et al., 1994).

Since the magnetic fields converge, precipitating electrons gain in transverse
velocity, conserving the magnetic moment (Section 2.1). If they originate from a
nearly isotropic population, the anisotropy of precipitating particles may primarily
be transverse to the magnetic field and only minimally in the forward (downward)
direction.
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6.4.4. RADIO — HARD X-RAY ASSOCIATION

The most reliable radio emission associated with hard X-ray flares is gyrosyn-
chrotron radiation in microwaves. A close correlation in time was discovered al-
ready in 1961 by M.R. Kundu. The two radiations may be produced within the
same loop and by the same population of electrons. However, the hard X-rays are
preferentially emitted by electrons at the end of their lifetime and near the foot-
points, whereas synchrotron radiation is emitted by the spiraling motion anywhere
in the loop and also by trapped particles. The microwave — hard X-ray association
will be discussed in connection with trapping in Section 8.1.

Hard X-rays during flares suggest electron beams that are many orders of mag-
nitude more intense than the beams necessary to generate the observed coherent
radio emission. Because only a small fraction (~ 1073) of the beam energy appears
as bremsstrahlung X-rays in thick-target interactions, the number of electrons in
the beam must be very high to produce the observed intense emission. Most of the
beam energy is lost in Coulomb collisions with ambient electrons and is converted
to heat in the lower corona, transition region, and chromosphere. On the order
of 103 electrons s™* above 25 keV (= 10?7 erg s!) are necessary to make the
beam observable to current hard X-ray telescopes. The energy in these particles is
a major fraction of the total flare energy. This thick-target model is the preferred
scenario for impulsive X-ray events.

Type III bursts occur usually in groups. The number of elements per group in-
creases with frequency, and above 300 MHz it can reach several hundreds. Groups
of type III bursts are only well associated with flares (seen in X-rays or Ha) at
high frequencies ( & 300 MHz). Since the number of type III bursts is usually
much larger than the number of hard X-ray peaks, one cannot expect a one-to-
one correlation. Most metric type Ills originate from beams travelling upwards,
whereas the X-rays are more probably from beams travelling downwards.

The fraction of reverse drifting type III radio bursts (from low to high frequen-
cies, indicating downward motion) increases with frequency and becomes dominant
in microwaves { 2 1 GHz). Figure 6.11 shows a coincidence of the radio emission
of downgoing beams with peaks in hard X-ray emission. The relation between
reversed type III radio sources and hard X-ray peaks is rarely one-to-one. The
downgoing electrons presumably do not always develop a double hump according
to Section 2.3 and thus are not unstable toward growing electron plasma waves.

6.4.5. DIAGNOSTICS OF THE ACCELERATOR

The energy stored in the magnetic field of active regions largely exceeds the re-
quirement of a flare. The build-up of this energy can be observed when new
magnetic flux emerges through the photosphere and in the footpoint motion of
coronal loops. The evidence is good that the free energy released in coronal flares
is magnetic in origin. The conversion of magnetic energy into heat, motion, and
energetic particles is most likely initiated by reconnecting magnetic field lines.
Through reconnection and subsequent relaxation, the complexity of the magnetic
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Fig. 8.11. Top: Radio flux density of solar type III emission observed by a Zurich spectrometer.
Two reversed slope bursts mark two downgoing beams. The second one is accompanied by a
simultaneous upgoing beam (v < 550 MHz). Bottom: Hard X-ray counting rate measured by
BATSE on the GRO satellite (from Aschwanden, Benz, and Schwartz, 1993).

field configuration is reduced. Anti-parallel field lines are annihilated, or sheared
field lines are untwisted. In physical terms, the free energy stored in the non-
potential component of the magnetic field — being equivalent to the presence of
a coronal current — is released (Section 9.1). Reconnection (discussed further in
Chapter 9) is only fast enough if it takes place on extremely small scales ( < 1
km). The accelerator must be much larger to provide enough electrons. It is
presently observable only indirectly through fast particles emitting signatures in
hard X-rays, radio, and other emissions.

A. Energy of Flare Electrons

The energy of a beam hitting a target can be determined in two ways: from the
bremsstrahlung emission or from the heating of the target. For an intense beam
accelerated in a flare and hitting the chromosphere, the radiation from the beam
is visible as bremsstrahlung emission in hard X-rays ( & 10 keV), and from the
heated target in soft X-rays ( < 10 keV). The energy deposited by the beam
heats the plasma. Another source of heat is the accelerator itself, which may
not be 100% efficient. If the cooling time of the soft X-ray emitting plasma is
significantly longer than the impulsive peaks of electron acceleration and impact,
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we should have the following relations valid at any given time ¢ during the flare:

t
/ Fodt / nksT d3z & Fu.(t) . (6.4.7)
4]

Fhxr and Fexr are the hard and soft X-ray count rates, respectively. The first
relation assumes a spectrum constant in time. In practice, it is applied to the
flux of an energy range or the full hard X-ray band. The left side (first term)
then is proportional to the energy input by the beam. Neglecting heat losses, it is
proportional to the increase in thermal energy of the target, or, approximately, to
the plasma pressure. The middle (second) term is the thermal energy of the soft
X-ray emitting region, heated either by the impacting particles or the waste heat
of the accelerator. The second relation (¢) assumes thermal soft X-ray emission of
an optically thin source. This relation is not linear. Nevertheless, one expects that
the derivative of the soft X-ray time profile correlates roughly with the hard X-rays
in the thick target scenario. Some correlation should exist even if the plasma of

the heated region is allowed to expand (Fig. 6.9) and the two source volumes are
not identical.
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Fig. 8.12. Top: Soft X-ray (1-8 A) flux in units of 10~3 erg s~ cm~2 observed from an impulsive
solar flare by the GOES satellite. Middle: Time derivative of top plot. Bottom: Hard X-ray

counts per second ( R 30 keV) from HXRBS on the Solar Maximum Mission (from Dennis and
Zarro, 1993).

Figure 6.12 clearly shows the expected relationship. It was first pointed out by
W.M. Neupert in 1968. The peak times agree to within about 20 s, and the rise and
decay times are similar. Nevertheless, the relation between soft and hard X-rays
is controversial for gradual flares. Unfortunately, neither the thermal energy nor
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the non-thermal energy can be determined to better than an order of magnitude,
and it is not yet possible to compare the observations in a quantitative way.

B. Fragmentation of Flares

Type III radio bursts usually occur in groups related to flares. The electrons of
one flare seem to be fragmented into many beams at low altitude, each producing
a separate type III burst. The upgoing fraction thereof later combines to one
interplanetary type III burst observed also as a particle stream containing up to
1033 electrons at 1 AU. This is a small fraction ( 5 10~3) of the typical numbers of
energetic electrons deduced from the hard X-ray bremsstrahlung emission of flares.
Apparently, only few of the accelerated electrons escape into interplanetary space.
Nevertheless, even upward moving type III bursts and hard X-rays sometimes
correlate surprisingly well, although the two emissions do not involve the same
electrons.
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Fig. 6.13. Comparison of the number of beams visible as type III radio bursts with the flux of
hard X-ray bremsstrahlung originating from electrons that have precipitated to high densities
(from Aschwanden et al., 1991).

As coherent radio emission is not proportional to particle number, its com-
parison with incoherent hard X-rays, which is proportional to particle number,
requires special care. Often, one does not observe a one-to-one correspondence
between individual hard X-ray peaks and type III bursts. Figure 6.13 shows the
number of type 11 bursts per unit time at different peak flux thresholds in a flare
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well observed in hard X-rays. The vertical dotted lines mark peaks in hard X-ray
flux. They coincide with peaks in type III burst rate. The correlation of the rates
of type III bursts and hard X-ray flux suggests that both upward and downward
directed beams are generated. Much more importantly, the linear correlation sug-
gests that the total number of electrons is roughly constant per type III producing
beam. A flare seems to consist of hundreds of elementary processes of about equal
size, each characterized by a type III burst, and each accelerating a similar number
of hard X-ray producing electrons. In the case of Figure 6.13, the number is about
1032 electrons (>25 keV) per elementary event. It seems to be the result of frag-
mentation in the primary energy release of flares, consistent with the theoretical
notion of small conversion sites.

We may add here that a similar phenomenon is observed in the so-called nar-
rowband spikes occurring in groups of more than 10* recognizable peaks. They
are an extremely short duration (few tens of milliseconds) and narrow bandwidth
(Av/v = 0.02) type of radio burst in the 0.3 — 8 GHz range (to be discussed in
Chapter 8). They may represent an even higher fragmentation in the energy release
region. However, since their nature is still not clear, this remains a hypothesis.

Why is the time profile of hard X-ray events much less structured (by an order
of magnitude) than the type III radio emission? The time structure of the hard X-
ray producing beams may initially be spiky, but may be smoothed out by velocity
dispersion as the electrons precipitate down the legs of magnetic loops to the higher
density regions near the footpoints where the bulk of the X-rays are produced.
The collision time it takes to emit bremsstrahlung is many orders of magnitude
longer than the growth time of the bump-on-tail plasma instability. Nevertheless,
evidence for occasional time structures down to tens of milliseconds have been
reported by Kiplinger et al. (1983) for hard X-rays (30 keV) and by Kaufmann et
al. (1984) for microwaves at 22 and 44 GHz. This represents a powerful constraint
on beam models since it represents an upper limit of the collisional stopping time.
Using Equation (2.6.29), one derives a lower limit of the hard X-ray source density
of n 2 3-10! cm™3.

Independently, laboratory experiments and numerical simulations have shown
that the release of magnetic energy by reconnection must be considered as a highly
time-dependent and spatially fragmented process. Particle acceleration takes place
in localized regions. The process is limited in time, must be impulsive and some-
times explosive. Many such events occurring almost simultaneously may constitute
what is observed in hard X-rays as one flare.

Exercises

6.1: Electron beams in a corona are practically neutralized by a return current
in the background plasma. Calculate the beam density at which the re-
turn current exceeds the instability threshold of ion acoustic waves. Take
a background plasma having 7. = T;, and a stable beam distribution
(8f(v.)/8v, < 0) with a mean velocity of V, = 20 ..
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6.2:

6.3:

6.4:

CHAPTER 6

The velocity distribution of electron beams can be measured by spacecraft
in the interplanetary medium. Lin e al.(1986) have observed an unstable
distribution in a range Av = 10° ¢cm s~! and a background electron temper-
ature of 2-10% K. What is the ratio of the saturation level of Langmuir waves
to the free energy of the beam?

Calculate the spectral wave energy density W; (k) at which induced scattering
of Langmuir waves off ions is equally efficient as the spontaneous process,
assuming Np,(kp) > Ni(ky).

Calculate the threshold distance s. after which induced scattering of Lang-
muir waves dominates. Use

8c1s = We(w)Ne (6.4.8)

and transform to observable parameters using Equation (6.3.9), wr, ~ wp,
and kp, & wp(3vge) 7L
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CHAPTER 7

ION BEAMS AND ELECTROMAGNETIC

INSTABILITIES

Energetic electrons and electron beams have so far received primary attention,
since their high emissivity — usually favored by the charge to mass ratio — produces
most continuum emissions observed in the high energy and radio range. However,
this does not mean that ion beams should be neglected. In circumstances where
both energetic electrons and ions can be observed, such as in cosmic rays and in
the magnetosphere, ions are energetically more important. Energetic ions may
propagate over large distances and deposit their energy far from the acceleration
site. Furthermore, they can excite low-frequency waves, practically invisible to
direct observations but with drastic effects. There is no doubt that a great variety
of ion beam phenomena, similar to those in planetary magnetospheres, must be
expected also in coronae and other tenuous plasmas.

7.1. Observations of Energetic Ions
7.1.1. SOLAR ION BEAMS

There exist indications that ion beams play a role in various solar processes. The
most conspicuous of them is the emission of v-ray lines during flares. Chupp (1990)
has reviewed the current state of observations of y-ray lines since their discovery
in 1972. The widely accepted scenario is sketched in Figure 7.1. High energy
protons ( & 30 MeV) are accelerated simultaneously with electrons in the tenuous
corona. They both travel from the acceleration site to the lower, denser layers of
the atmosphere where they interact collisionally with the plasma. Ions can excite
the nucleons of heavy ions to higher energy levels similar to electron energy levels
in atoms. The most dramatic difference between atomic and nuclear excitations is
the scale of the energies involved. The binding energy between electron and proton
in the simplest atom is only 13.6 eV whereas 2.2 MeV binds a proton and neutron
to form deuterium. When the nucleus relaxes to a lower energy state, it may emit
a photon with energy equal to that of the transition. At higher excitation energies
(2 8 MeV) the nuclei may also emit protons, neutrons, or alpha particles. The
majority of nuclear v-ray line emissions have energies of 1 to 8 MeV. Figure 7.2
displays an observed spectrum exhibiting an excess of y-rays over the continuum,
defined by the expected continuation of electron bremsstrahlung to higher energies.
The spectrum is composed of nuclear de-excitation lines (like at 4.4 MeV from *2C
and at 6.1 MeV from *0) which occur simultaneously with hard X-rays within the
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instrumental time resolution of one second. The most notable delayed feature is the
2.223 MeV deuterium formation line caused by neutron capture of hydrogen. The
neutrons result from a collision of an energetic proton with a heavy nucleus. The
line is not produced until the neutron has slowed sufficiently for the cross-section
of the reaction to become appreciable. The ratios of observed line intensities are
used to calculate important physical parameters such as background elemental
abundances, proton beam energy distribution, etc.

electrons .

acceleration

ions

X-ray

L =S
continuum

y-ray lines

Ul

.-'ff///.-"'/ L

Fig. 7.1. Schematic view of electron and ion acceleration, beam propagation (arrows), and emis-
sions in the solar corona.

Below 2 MeV, the most prominent line is usually at 0511 MeV, caused
by electron-positron annihilation. Positrons result from the decay of positively
charged pions, nt, and the beta decay of unstable nuclei. Both pions and unsta-
ble nuclei are interaction products of energetic ions that reach dense layers of the
solar atmosphere.

There are other, not yet conclusive, ideas to search for solar ion beams, partic-
ularly for those with energies lower than needed to produce nuclear excitation (<
few MeV). Such lower energy ions may be of particular significance since a large
fraction of the energy released in a flare may go into accelerating these particles.

¢ High energy protons streaming down may pick up an electron by charge ex-
change with a background hydrogen atom. The streaming particle becomes a
hydrogen atom in an excited state capable of atomic line emissions. Highly
Doppler-shifted hydrogen lines (notably Ly «) from such neutralized atoms
moving with the beam have been predicted.
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Fig. 7.2, Solar flare v-ray spectrum taken by the Gamma Ray Spectrometer on board the SMM
satellite. The curve is a theoretical fit to the data based on detector response, assumed elemental
abundances, ion beam energies, and available nuclear cross sections. Some of the identified
radiating nuclei are indicated (from Ramaty and Murphy, 1990).

o Impacting protons excite linearly polarized atomic lines. Chromospheric lines,
such as He, are a possible diagnostic of proton beams descending from coronal
flares. Maximum polarization is predicted in the plane perpendicular to the
direction of beam propagation. In fact, linear polarization as high as 2.5% has
been reported for bright He patches of solar flares.

e Proton beams excite electrostatic waves at low frequencies. It may combine
with preexisting Langmuir waves to observable radio emission (Section 7.4).

7.1.2. COSMIC RAYS

High energy particles of extraterrestrial origin arrive near the Earth in great num-
bers. They produce copious secondary particles in the atmosphere, some of which
reach the surface. These have been studied since the 1930s by ground-based parti-
cle counters. Protons, helium nuclei, and electrons are by far the most numerous
particles. The relative abundances of the various nuclei are similar to those in
the atmosphere of normal stars. Li, Be, and B are overabundant — mainly the
products of collisions between the primary cosmic rays and the interstellar gas, as
they travel from the source to the Earth.

There are at least three different sources of cosmic ray particles observed at
Earth. (¢) Supernovae, pulsars, and supernova remnants are probably the major
sources of galactic cosmic rays. (#¢) Stellar activity, in particular the Sun, is known
to produce nuclei up to some 100 eV in flares. Since interplanetary energetic pro-
tons do not correlate in number with the flare y-ray line intensities, they appear
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to be a secondary product of the flare initiated shock wave. (iii) Active galactic
nuclei are prominent by their powerful X-ray and radio emission of highly rela-
tivistic electrons. They may also accelerate ions to high energies. The magnetic
field would probably not be strong enough to locally trap the energetic nuclei (see
Eq. 7.1.2 below). Once accelerated, they may diffuse into intergalactic space and
reach the Earth.

The energy distributions of energetic particles are frequently fitted by a power
law of the form

fle) = foe™® . (7.1.1)

For solar cosmic ray electrons, one finds — after corrections for propagation — that
the energy spectra at the source may be fitted by a power law up to energies
around 100 — 200 keV and a second power law with steeper slope beyond and
up to the highest energies (= 300 MeV). The solar cosmic ray proton and alpha
source spectra are also steeper at higher energies. An exponential approximation
for the source spectrum is convenient and useful, fitting both power-law ranges
by a single spectrum. Often these ion source spectra are even better fit by the
difference of two Bessel functions (i.e. a Macdonald function). Such a distribution
is predicted by stochastic acceleration (Sections 9.4 and 10.3).

The highest measurable nucleon energies of galactic (i.e. extra-solar) cosmic
ray ions reach 10%° eV. The gyroradius of such particles merits consideration.
From Equation (2.1.2) one derives for highly relativistic particles, both electrons
and ions,

R = 3.34.107%.y/B [cm] . (7.1.2)

For the highest energies the gyroradius is a few kiloparsecs, exceeding the disk
thickness of the Galaxy. Since the galactic magnetic field is curved and inhomo-
geneous on this scale, the particle orbit is not a spiral, and the extremely high
energy particles escape rapidly from the Galaxy. Beams, if formed, would soon
randomize, since orbits depend on energy and phase angle.

Galactic cosmic rays have a power-law distribution with an exponent § =
2.5 over most of their range. The spectrum may steepen slightly above 10'%eV.
Synchrotron radio emission of galactic cosmic ray electrons suggests that the same
power law applies throughout the Galaxy and beyond. The remarkable uniformity
of the spectrum over such a wide energy range and the universality of the spectral
index place stringent limits on theories of galactic cosmic ray acceleration (to be
discussed in Section 10.3.2).

The average energy density of galactic cosmic ray particles is of order 1012
erg cm™3, This is comparable to the energy density of typical magnetic fields in
interstellar space. Therefore, cosmic ray ions may energetically dominate, partic-
ularly near the acceleration sites, and may carry along the magnetic field. Cosmic
rays then form an isotropic plasma component capable of MHD-like phenomena.
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7.1.3. ION BEAMS NEAR EARTH

Most of our knowledge on ion beams comes from planetary magnetospheres, inter-
planetary observations near Earth, and comets. A variety of beams with different
properties and origins are being studied in the neighborhood of the Earth. A con-
tinuous ion stream forms at the bow shock (Chapter 10) and escapes upstream
(Sunward) along the magnetic field. The character of the beam depends on the
angle between the interplanetary magnetic field and the normal to the shock. This
angle varies along the curved bow shock. In the quasi-parallel region (where B
is nearly parallel to the shock-normal and thus perpendicular to the shock front)
the ion speed is low, and the beam has a diffuse velocity distribution. In the
quasi-perpendicular region (where B is nearly perpendicular to the shock-normal
and parallel to the shock front), ions form perpendicular beams. Such beams gy-
rate in the magnetic field, forming a transverse ring distribution in velocity space.
They do not propagate far into the solar wind, except for a small number which
eventually move parallel to the field. Nearly monochromatic, high-speed streams
are found between the perpendicular and parallel regions. Beams and wave gen-
eration have been studied intensively for more than a decade, and are understood
in considerable detail.

Other important ion beams have been observed in the Earth’s magnetotail,
mostly travelling away from the Earth. They are bursty and located on magnetic
field lines connecting to magnetic X-points (where oppositely directed field lines
interact and presumably annihilate). Beam-particle energies can reach 10° eV, a
high value among all particles for magnetospheric conditions.

In auroras, the well-known precipitating electron beams are frequently accom-
panied by various kinds of ion beams. They propagate upward in most cases and
seem to be the result of electric fields parallel to the magnetic field. Usually such
beams interact with waves and other particles in a complex way. Furthermore,
a proton ring current develops after a plasma is injected into the inner magneto-
sphere, similar to the electrons of an E-layer (Fig. 2.2).

Artificial beams generated by spacecraft and injected into the magnetospheric
plasma are particularly well suited to investigate the role of the accelerator — the
usually unknown initial condition — in beam evolution.

7.2. Electromagnetic Instabilities of Velocity

Space Anisotropy

The interaction of ions with waves is similar to the interaction of electrons with
waves, but the higher mass and usually lower velocity make ions more sensitive
to instabilities of low-frequency waves. Several instabilities are possible. If the
conditions were such that both an electrostatic and an electromagnetic wave can
grow, the growth rates (diminished by possible damping) have to be compared.
More relevant for the dominating waves is often the threshold for instability, i.e.
the conditions where instability equalizes damping. If the unstable situation builds
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up slowly, the wave with lower threshold drains the free energy, and the threshold
of the second wave may never be exceeded.

There are two different types of electromagnetic beam instabilities. We shall
first discuss fluid-like (also called non-resonant, ‘reactive’ or ‘hydrodynamic’) insta-
bilities. They do not depend on the details of the velocity distribution. The plasma
thus can be treated as a fluid; and there is no resonance condition for wave-plasma
interaction. All particles are involved in wave growth. Second, the resonant elec-
tromagnetic interaction will be derived from the basic kinetic equations of Chapter
5. Resonant (or kinetic) instabilities generally have a lower threshold than fluid
instabilities since only a fraction of the particles have to fulfill a certain condition.
On the other hand, only a small number lose energy to the waves, and hence their
growth rate is generally smaller.

7.2.1. FIRE-HOSE INSTABILITY

Consider alow-frequency (w? < 92) transverse electromagnetic wave in a homo-
geneous, electrically neutral plasma. The wave is assumed to be L or R mode, or a
combination thereof. Such waves are called Alfvén waves, as Alfvén waves extend
to frequencies higher than are valid for MHD and can also be represented by L
and R modes (Section 4.3). Let a proton beam travel in such waves. Approximate
the particle distribution by

_ _ (v + %)
W) =G |

TR N [_m—vb)z % ] !

(2m)% v, vfy | 20}, 203,
where n;, is the beam proton density (satisfying ny < n,), v, and vy are the
mean thermal velocities of the beam population parallel and perpendicular to the
magnetic field, respectively. The electron distribution is assumed to balance the
flow of charges so that the total current vanishes.

In many interesting regions of parameter space, the maximum linear growth
rate occurs for wave propagation parallel to the magnetic field. An analysis of lin-
ear disturbances similar to the Sections 3.2.1 and 3.2.2 on MHD waves introduces
an additional term into the dispersion relation of the Alfvén wave (Eq. 3.2.13)
yielding

(7.2.1)

w? ng
yohe 4 — n"'[Vb2 + (vh, —vh) (7.2.2)
P

The additional term (in brackets) is the sum of two non-MHD pressure contribu-
tions of the beam. The first - proportional to V2 — is caused by the bulk motion
of the beam. The second is due to temperature anisotropy of the beam. The
dispersion relation predicts instability of Alfvén waves for

%[Vf + (Vi — B ) > G - (7.2.3)
P
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This instability is called the fire-hose (or garden-hose) instability, since the driving
force is the beam pressure parallel to the magnetic field. It increases the amplitude
of the wave in an analogous way to that of water flowing through a loose hose. We
note that the instability also occurs for electron beams; in the threshold condition
(7.2.3) Vis simply replaced by me/m; V2. In an anisotropic plasma without
a beam, condition (7.2.3) with n, = n, reduces to p, > p, + B%/4n, where p,
and py are the parallel and perpendicular particle pressures, respectively. This
demonstrates that the fire-hose instability is a general result of pressure anisotropy
and not limited to beams. It will be applied to cosmic beams in Section 7.3.

7.2.2. KINETIC INSTABILITY

A. Dispersion Relation of Transverse Waves in Kinetic Plasma

In Chapter 5, on kinetic plasma, we studied only electrostatic waves. Ion beams
give us an excellent opportunity to investigate electromagnetic instabilities caused
by some anisotropy in velocity space, of which ion beams are just a special case.
We shall apply the same physics to a different situation in Chapter 8, on trapped
particles, where particles (mostly electrons) with velocity transverse to the mag-
netic field predominate.

Here we derive a general dispersion relation for linear waves in kinetic plasma.
We linearize the Vlasov-Maxwell equations by introducing a small disturbance and
by keeping only first-order terms. In particular, the velocity distribution of the
relevant particle population is assumed to have the form

Ffx,v,t) = fo(v) + fa(x,v,1) (7.2.4)
with

[fil <] fo| forall x,v,t. (7.2.5)

Then the Vlasov (collisionless Boltzmann) equation (5.2.1) can be approximated
by

ot

The operator in brackets on the left side acts as a total derivative on f; along the
undisturbed orbit of a particle having a velocity v and being located in x at the
given time t. We integrate Equation (7.2.6) along this path and derive a formal
solution for the perturbation fj,

8 1
——+v'Vx+—n%(vao)-Vv]f1=—%(E1+vaB1)-vag . (7.2.6)

vt =1L /_ d(By+ v X By) - Vuholv) . (127)

The primed variables describe the undisturbed particle orbit of the particle that
is found at the (unprimed) time ¢ at the coordinate x. This approach corresponds
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to the well-known method of characteristics for linear differential equations of first
order. Having assumed a homogeneous background plasma (Eq. 7.2.1) with the
magnetic field in the z-direction, the Fourier transform can be carried out by
putting in the wave form

fi(x,v,t) = fi(v)exp [i(k.2 + kzz — wi)] . (7.2.8)

Without loss of generality we have put &, = 0. Later in this section we shall
restrict ourselves to waves propagating in the z-direction (k, = 0). Most impor-
tant, the form of (7.2.8) implies Fourier transformation in time as well as space.
Chapter 5 has shown that this would exclude the resonance process between cer-
tain particles and the wave. We shall later make good this neglect by the Landau
prescription for the integration over v, and so recover the correct result of the
Laplace transformation. That this procedure is legitimate can be seen from the
general nature of the derivation in Section 5.2. Now take the analogous wave forms
(but in x’ and #) for E; and B; and put them together with Equation (7.2.8) into
(7.2.7). After moving all exponentials to the right side, we get

fitv) = %1 dt' expli{k.(z' — 2) + ky(z' — z) —w(t’' ~ )} (E; + %v’ x By)

-V fo(v')
(7.2.9)
Now let us calculate the differences 2z’ — z etc. from the basic particle motion
(Section 2.1). It is useful to decompose it into the motion of the guiding center,
given by X and V, and the gyration of the particle Ax and Av in the plane
perpendicular to the magnetic field (z and y directions), where

x=X+Ax , (7.2.10)

v=V+Av . (7.2.11)
Using Equations (2.1.1) - (2.1.3), we express the gyration by

Ax = R(sin[yp + Q,¢], cos[¢ + Q.1]) (7.2.12)

Av = RQcos[yp + Q,¢], —sinfyp + Q.8]) (7.2.13)

where 2, denotes the gyrofrequency times the sign of the charge, €2, := q/|g|
(Eq. 4.2.16). We neglect relativistic effects here. The gyration phase, %, of the
particle is relative to the wave at ¢ = 0. Since we assume that the acceleration in
the z-direction vanishes,

vl = v, = const . (7.2.14)
Neglecting particle drifts perpendicular to the magnetic field, we have
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vl =wvy cos(¥' +Q,7) (7.2.15)
v, = —vy sin(y’ + Q7). (7.2.16)
' is the phase angle at t: 1’ = 1 + Q,t. The integration over ' suggests the

definition 7 := ¢ — t. Integrating Equations (7.2.14) and (7.2.15) from ¢ to ¢/, one
gets immediately

?—z=vr (7.2.17)

o -z = %[sin(tp’ +Q,7) ~sing] . (7.2.18)

The sine functions of Equation (7.2.18) enter the exponential in the integral of
Equation (7.2.9). For finite k, this will require a development into a series of
Bessel functions in the next chapter. Here we drastically simplify the mathematics
by assuming parallel wave propagation (k, = 0). It is the direction of fastest wave
growth in the present case.

The evaluation of the other terms of the integral in Equation (7.2.9) involves
many, but mostly straightforward steps, which we only outline.

o The wave field B; must be expressed in terms of E; by Faraday’s equation
(4.2.25),

ik x E, = E;Bl . (7.2.19)

e The operation V- fy can be written

’ af(l 1 6f0 18f0>

R e R T

Ve fo=2 (v (7.2.20)

We have introduced v2 because it is proportional to the magnetic moment (Eq.

2.1.7). Therefore, vﬁ_ and v, are constants of motion; the terms gﬁ’- and gv" can
L z

be moved out of the integral.
e The velocities v, and vj, are given by Equations (7.2.15) and (7.2.16), and their

sine and cosine functions are replaced by exponentials. The phase angle ¢’ cancels
out as expected.

e Finally, the time dependence can be compressed into one exponential, exp[(k,v,—
w = §2,)t], and the integral of Equation (7.2.9) yields

7 _ 9 2'UZE1 _ kv, | 8 foa kzvz 0foa
Alv) = mi(kv, —w £ Q) [(1 w ) ov? w Ov?

. (1.2.21)

The rest of the derivation is similar to cold plasma. The perturbed current density
J; is calculated from f, yielding Ohm’s law,

J, = Znaqa/[:vflad:’v =06E; . (7222)
o
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The index a has been introduced in Equation (7.2.22) for the particle species. The
sum goes over all species that contribute to the current. £ denotes the Landau
contour. The conductivity & can be evaluated using Equation (7.2.21). The di-
electric tensor, € := 1 — 476/ (iw), contains all the interesting physics. It is used
in Ampere’s equation to derive the dispersion relation as for Equation (4.2.27).
Since we have assumed transverse waves, we find only two solutions (one for each
circular polarization),

— 2,2 pa kv, 6.fOzm k,v, 8foa UidUJ_d'Uz
ot = ke +27MZ /[ w 6vL+ w Ol ]| kv, -wtQ2

(7.2.23)

The =+ signs refer to the L(+) and R(—) modes, respectively. In the cold plasma

limit (foo o Mad(v)) they correspond to the left and right circularly polarized

electromagnetic waves at high frequency derived in Chapter 4. We again refer to

them as ion or electron cyclotron waves near the respective gyrofrequency, whistler

waves at intermediate frequency (R-mode, ; < w < ), and Alfvén waves at

low frequency.

B. Resonance Condition

For a kinetic plasma, Landau damping or kinetic instability can be important
if waves and particles satisfy the resonance condition expressed by setting the
denominator of (7.2.23) to zero,

w— kv, = £Q% . (7.2.24)

The k,v, term may again be interpreted as a Doppler shift of the wave frequency in
the frame of reference of the guiding center of the resonant particle. The resonance
condition requires that in this frame (£} the electric field vector of the wave rotates
in the same sense as the particle (e.g. counterclockwise for an ion having €, > 0),
and () with the frequency of particle gyration. Obviously, energy can easily be
transferred if particle gyration and Doppler shifted wave frequency are equal; the
particle feels a wave electric field having a constant component relative to the
instantaneous particle velocity. A resonance between wave and particle gyration
is called gyromagnetic. Equation (7.2.24) will be generalized to higher harmonics
of the gyrofrequency when waves with finite &, will be studied in the next chapter
(Eq. 8.2.14). We may note already here that Q2 refers to the gyrofrequency of
the resonating particle. For relativistic particles, the relativistic gyrofrequency (cf.
Eq. 2.1.4) has to be used.

Which wave resonates with which particle? Equation (7.2.24) warrants a care-
ful discussion. Remember that we use here the convention of positive wave fre-
quency. The signs of k, and v, indicate whether the wave and the particle, respec-
tively, propagate in the positive or negative Bg-direction. Let us now consider as
an example a proton moving with v, < 0. A resonant L-wave has a plus sign on the
right side of Equation (7.2.24) and satisfies w = Qp + k,v.. Since low-frequency,
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Fig. 7.8. Left: The tip of the electric field vector of an L-wave travelling in direction Bg describes
a clockwise (right-handed) spiral if seen along Bg. In the plane moving with (negative) velocity
vz, the Ej vector rotates counterclockwise. Right: R-wave propagating in direction Bg in
anomalous Doppler resonance with a faster moving ion. In the ion frame, the wave propagates
in the negative Bg direction and rotates counterclockwise.

left circularly polarized waves have w < {2, (Section 4.1), this requires k, > Q .
Therefore, ions moving in the negative direction interact resonantly with L-waves
propagating in the positive direction (Fig. 7.3 left) and vice versa.

R-waves in resonance with protons mustfulfill w = —Q, 4+ k,v, > 0. This
implies that particle and wave travel in the same direction. However, in the frame
moving with the particle velocity v,, the wave propagates in the inverse direction,
since |w/k;| < |v,|. Figure 7.3 (right) depicts this situation and makes clear that
the electric wave vector in the moving frame of reference rotates counterclockwise.
Therefore, an R-wave can be Doppler shifted to resonate with ions. This is called
anomalous Doppler resonance.

The gyroresonant interaction of an electron is similar, except that L and R
modes are interchanged. Normal resonance with R-waves requires w = ¢ + k,v,;
anomalous resonance with L-waves occurs at w = —Q + k,v,.

C. Wave-Particle Interaction

The interaction of particles and waves can be considered as an exchange of photons
or phonons. This is a semi-quantum mechanical approach; it does not depend on
the value of the Planck constant. For example, let us look at the emission of one
quantum. The particle energy, €, and the particle momentum, p, change by

Ae = —hw (7.2.25)
Ap = -Fk . (7.2.26)
We write Ae = Aeg, + Ae,, with

Ae, = mv,Av, = Ap,v, = —hkv, (7.2.27)
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Ae, kv, .

As - w ] ( -2-28)
Ae;,  Ae—-Ae, k,v,
Ae As =1- » (7.2.29)

The resonance condition (7.2.24) yields the sign of v,k,. It is negative for normal
resonance and positive for anomalous resonance. A proton interacting with an R-

mode wave, for example, requires w — v, k; = —,, (anomalous resonance). Thus
kv w+
22 2 TPsgo . (7.2.30)
w w

Since Ae < 0 (Eq. 7.2.25), Equation (7.2.28) implies

Ag, <0 . (7.2.31)
From Equations (7.2.29) and (7.2.30) it follows that Ae; /Ae < 0 and

Aey >0 . (7.2.32)

In our example (see also Figure 7.4) the proton loses (total) energy, but it gains
some perpendicular energy. This is a characteristic of anomalous resonance emis-
sion.

0g v v,

Fig.7.4. A proton with velocity v emits an R-mode quantum (anomalous resonance) and is
displaced in velocity space toward transverse velocity.

The displacement in velocity space is exactly inverse when an R quantum is
absorbed by the proton. If absorption and emission occur at random, the particle
motion could be described by diffusion. Since the free energy of a beam resides
in the parallel direction and can be extracted at the cost of isotropization, it is
intuitively clear that emission and absorption are not equally probable. Thus
anomalous resonance may drive unstable growth of R-waves. This will be shown
in the next subsection.

In a situation of predominant R-mode emission of an ion beam, the general
trend is diffusion in the v, -direction, decreasing the anisotropy with little energy
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loss (Exercise 7.1). The result is a randomization of the directions of particle
momentum. This property plays an important role in cosmic ray propagation
(Section 7.3) and particle acceleration (Section 10.4).

The interaction between proton and L-wave (normal resonance) is similar, ex-
cept that Ae; < 0 and Ae, > 0 for emission. The particle gains forward mo-
mentum by the emission of a backward photon. Electrons behave similarly with
opposite modes: emission of an L quantum (anomalous resonance) increases v,
emission of an R quantum decreases it. Note that the emission of quanta brings a
particle toward the v,-axis for normal resonance, but increases the perpendicular
velocity for anomalous resonance.

Depending on the gyration phase with respect to the wave, resonant particles
experience a force of one sign that either accelerates or decelerates them. Net wave
growth or damping thus depends on whether more resonant particles lose or gain
energy. Like in the bump-on-tail instability (Section 5.2.4), the appropriate veloc-
ity gradient in velocity space determines growth or damping. For electromagnetic
waves, particle diffusion is not restricted to the direction of the waves, and the
relevant gradients are in pitch angle. A quantitative approach to the phenomenon
is quasi-linear diffusion outlined in Section 6.2.1.

D. Growth Rate

The previous subsection has given a qualitative picture of electromagnetic wave-
particle interaction. The rate at which photons are emitted or absorbed is now
calculated from the growth rate, the imaginary part <, of the frequency given by
the dispersion relation (7.2.23). We shall only treat the case v <« w,, where w,
is the real part of the frequency. This assumption limits us to waves resonant
with particles in the high-energy tail, where the number of resonant particles and,
therefore, v is small. It is appropriate for most applications since the free energy
resides in relatively few fast particles with long collision time. Then the velocity
integral in Equation (7.2.23) can be evaluated using the Plemelj formula (5.2.19),

. 1 _ 1 .. _WF Q,
TRk { v — WF L)k, } +mi sign(ks) 8(v. — ——=)
(7.2.33)

where 8(vg) is the delta-function selecting the residue at the resonance velocity,
vr = (w F Q;)/k,, given by the resonance condition. The principal part integra-
tion, denoted by P, can be solved by expansion into powers of the temperature
neglecting the fast particles. We do not need to go into the details, which are
similar to the derivation of Equation (5.2.22). Equating the real parts of Equa-
tion (7.2.23) one finds that the temperature corrections can be neglected for low-
frequency waves (k%c? >> w?) and that w, is given by the cold-plasma solutions
(4.3.12). The waves (L and R modes) remain identical to Alfvén waves, cyclotron
waves, and whistlers in the respective frequency ranges.
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The imaginary part of Equation (7.2.23) yields the growth rate

y(wr) = 7 sign(k,) wrQZ(wS)zn(v?z){Aa(v%)—ma%)—:—I} L (1.234)

having defined for all species «

vg [
n(vg) = n—ﬁ /0 2mvydv) f§(vi,ve = vR) (7.2.35)
(41
= vy [ Of¢ af¢ / « -
A & = — . — — e (s3
(V%) /0 vidug o (v 3o, vy B0, 2 A vy dvy f§ . ,
(7.2.36)

1 Wy 2
6 = Z(m) . (7237)

The function 7 has been defined to be proportional to the ratio of particles in
resonance to the total particle density. The more particles in resonance, the faster
the wave grows. The derivatives in the parentheses of Equation (7.2.36) can be
transformed into the derivative in pitch angle, 8f/9a. Therefore, A depends only
on the gradient of the velocity distribution with respect to pitch angle « and is
a measure of pitch angle anisotropy. For an isotropic plasma, Equation (7.2.36)
yields A = 0, and the growth rate is negative. We have found the analogue
of Landau damping for electromagnetic waves. If the velocity distribution is a
product of Gaussians with different temperatures for perpendicular and parallel
velocities, A is independent of vg and becomes (T — T3)/T>.

Note that in Equation (7.2.34) the gyrofrequency €1, has been taken out of the
integral as if it were independent of velocity. Of course, this holds only for non-
relativistic particles (Eq. 2.1.4). It is relatively uncritical for the low-frequency
waves parallel to the magnetic field we are studying in connection with beams. In
the non-relativistic approach a particle must have a specific parallel velocity, v, to
be resonant with a wave of frequency w,. It can have any perpendicular velocity,
and the growth rate only involves the properties of the distribution integrated
over all perpendicular velocities. The main change for relativistic beams is the
appearance of the relativistic gyrofrequency in place of €2,. We shall find in the
next chapter that for high-frequency waves, however, the smallest deviation from
non-relativistic behavior may be essential.



168 CHAPTER 7
7.3. Applications to Ion Beams

7.3.1. INSTABILITY THRESHOLD

The derivations of wave growth in Section 7.2 are general, and the number of
free parameters is large. In many situations only the conditions for growth are of
interest, but not its rate. Here we study the threshold for instability of weak ion
beam distributions that can adequately be described by Gaussians (Eq. 7.2.1).
The anisotropy factor (7.2.36) for the beam component becomes

TbJ_ - sz _ E Tb.L

A = Ty, vg Tb.

(7.3.1)

Neglect electrons, since electrons in resonance are rare: they must have energies
of the order of m,(v%)? &~ m.(Q)?/k?, exceeding the ion resonance energy by
M/ Me.

The sign of 4 determines growth or damping. The sign of kn in Equation
(7.2.34) is sign(kvg): positive for normal resonance and negative for anomalous
resonance (Section 7.2.2). A proton beam is unstable for R-waves (anomalous
resonance) if

-1

A4, < . 7.3.2
b .%B+1 ( )

At w <, the right side is approximately —w/€p. The combination of Equations
(7.3.1) and (7.3.2) demonstrates that a distribution must have a beam-like exten-
sion in parallel direction to be unstable. The threshold for instability of a beam
with (Tp1 = Tp,) toward electromagnetic waves can easily be evaluated to be

Vo > a}:i , (7.3.3)
where a is unity for a shifted Maxwellian. For a power-law distribution (f o< v~¢)
a = %45. Since at low frequencies (w < ;) w/k approaches the Alfvén velocity, ¢4
(Eq. 3.2.13), a rough estimate and a necessary condition for instability is V, & ca.

Figure 7.5 shows the observed beam velocity versus beam density. The average
value decreases from about 2c4 at low beam density to 1.1ca at ny = n,. The
figure also displays theoretical thresholds for the kinetic and fire-hose instabilities
assuming equal thermal and magnetic pressure in the background plasma (8 & 1)
and a shifted Maxwellian proton beam having the same temperature as the bulk
protons. If np < my, the threshold for the kinetic (resonant) instability is much
lower than for the fluid instability. Only for dense beams reaching the order of
the background plasma density, does the fire-hose instability threshold become
comparable.

It is surprising that, on average, the observed interplanetary beams shown in
Figure 7.5 have velocities close to the threshold for kinetic instability. The Alfvén
velocity varies from event to event over more than an order of magnitude. Does
the accelerator in the Sun know about instability conditions in the solar wind?
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Fig. 7.5, Curve a shows the average beam velocity vs. beam density of several thousand colli-
sionless proton streams observed in the interplanetary medium. The calculated threshold beam
velocity (curve b) for electromagnetic instabilities of proton beams having a shifted Maxwellian
distribution (T}, = Ty, ) is also plotted. R-waves at low frequency in anomalous gyroresonance
grow above curve b. The non-resonant fire-hose instability sets in above curve ¢ (after Marsch
and Livi, 1987).

The resonant electromagnetic instability apparently slows down the beam to the
threshold velocity. Quasi-linear diffusion reduces the anisotropy (Section 7.2.2
c) until the velocity distribution is marginally stable. The beam relaxes to the
instability threshold within a few growth times. The beam distribution, on the
average, remains near marginal stability. Beam propagation in the presence of
low-frequency instabilities is further studied in the following sections.

7.3.2. WAVE GROWTH

Ion beams are frequent in the solar wind, and our analysis suggests that right
circularly polarized electromagnetic waves should be abundant. Large amplitude
field fluctuations are indeed ubiquitous, in particular upstream of the Earth’s
bow shock where a super-thermal beam of reflected ions exists most of the time
(Chapter 10).

The growth rate is given by Equation (7.2.34), from which one derives for
Maxwellian ion components « and for w < ,,

™ P Qa [‘ba — C4 (v?i - a)2
~y E : Q b A R/
v \/; pall 4 * wr P ( 2u} ’ (7.3.4)
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where wy/k & c4 has been used, and p is the total mass density (Eq. 3.1.26). The
wave frequency enters twice in the growth rate (7.3.4): in the denominator and in
v%. The resonance condition (7.2.24) yields for R-waves

o __ Wr _%
Vp = kz (1 + w0, ) . (73.5)
In the simplest case of one fast, cold beam, the exponential dominates and vg & V4.
For v§ > V* R ca, the denominator in Equation (7.3.4) implies maximum growth
for w < q. Then v§ > w/k = ¢4 (Eq. 7.3.5), indicating that the most rapidly
growing waves resonate with particles moving faster than the mean beam velocity.
As a rough approximation, ¥ & ny{};/n. may be used for the growth rate.

The growth rate of observed quiet-time interplanetary proton beams can reach
several percent of the proton cyclotron frequency. Under normal interplanetary
conditions this corresponds to growth times of several tens or hundreds of seconds.
The instability is fast compared to the solar wind expansion time.

The more energetic proton beams originating in flares (solar cosmic rays) are
different. Their speed is high and the density low enough so that the weaker beams
reach the orbit of the Earth within less than a growth time. The distribution is
still beam-like and highly anisotropic.

The evolution of large proton events on a field line connecting the observer
to the flare is most remarkable. They are anisotropic only initially, but become
increasingly isotropic near maximum intensity as the beam density increases. The
linear growth rate — being proportional to the beam density — is then high enough
to drive appreciable quasi-linear diffusion. The observed angular distribution is a
measure of beam instability during propagation! Isotropy at 1 AU is the result of
well developed instability.

In conclusion, we note that for parameters typical of the interplanetary medium
and weak beams the dominant electromagnetic mode is the right-hand resonant ion
beam instability. Detailed studies have revealed that extremely hot beams (with
beam velocity spread exceeding V4), as well as anisotropic beams having T3 > T},
can also drive L-mode waves unstable at a competitive rate. For extremely dense
and fast beams, the fluid fire-hose instability occurs and then grows fastest. A
comparative study of all relevant electromagnetic ion-beam instabilities has been
published by Gary et al. (1984).

7.3.3. ION BEAM PROPAGATION

Most galactic cosmic rays in the energy range 0.1 — 1000 GeV may originate from
within our Galaxy and escape from it after a few million years. What keeps
them around for so long? In fact, the interaction of ion beams and electromag-
netic waves was first proposed for galactic cosmic rays as a means to isotropize
streaming particles and to contain them for durations exceeding the free stream-
ing time. The motion of protons may be compared to a situation of enhanced
collisions. Scattering by waves deflects the particles by small angles and Fokker-
Planck methods (Section 2.6) can therefore be applied. The usual derivation uses
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the quasi-linear approximation (Section 6.2.1). Here we obtain the same results
from a more heuristic approach.

A. Deflection Time

The pitch angle of a particle increases or decreases depending on the phase differ-
ence between particle gyration and resonant wave. Suppose the phase difference
remains nearly constant for a time At, called the coherence time. Also assume
that the change in pitch angle during this time is small, Ac « 1. The particle
then experiences a series of small angular deflections. We expect the pitch angle
to execute a random walk described by the diffusion equation (Eq. 6.2.1)

o8 _ 1 0 (a0
5% = 5noda (Da sin g Ba) , (7.3.6)

neglecting diffusion in energy as would be the case for constant magnetic fields.
(Justify this in Exercise 7.1!) The diffusion coefficient in pitch angle is the inverse
deflection time, thus D, = 1/t4. In analogy to Equation (2.6.9) we have defined
the deflection time

At
< Ao? >
We now estimate ¢4 from basic physical principles. Particles change their phase ¥
in relation to waves by

tg = (7.3.7)

dv o
= = kv, £ Q% —w, . (7.3.8)

Consider waves in a range Ak and a particle resonant with waves at the center k
of this range. The time At for the particle to get one radian out of phase with the
waves at the end of the range, at k, + Ak/2, is

2
At = AR (7.3.9)
A finite wave range Ak is not the only possible limiting effect on the coherence
length. In the interplanetary medium, phase coherence is lost by changes of the
wave vector.
During the coherence time, the particle feels the approximately constant
Lorentz force, Fy, of the wave magnetic field (B1 L Bg). Therefore, the parti-

cle velocity changes by

Fy At B
A'uz=~—y—L—AvL=—1£: 1 = %L 1A
Uz Vy Mg Cc Mg

t . (7.3.10)

The first equation assumes energy conservation. From Equation (7.3.10) we derive
for the angular deflection

Aa

_ Avl _ Bl
R US (7.3.11)
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and with Equations (7.3.7) and (7.3.9),

o~ 1 27 B Ak
¢¥ 0, B

where a factor 4/7 has been introduced, making the result agree with the formal
derivation. The second factor is the wave period, and the third factor is the ratio
of background magnetic field energy to approximate wave magnetic energy.

The deflection time (7.3.12) is exceedingly short on cosmic scales, even for weak
waves. For example, cosmic rays at 1 GeV propagating in the interstellar medium
(Bo =~ 10~° G) having a wave energy ratio of say 107% are scattered within less
than a year. Their mean free path, v,t4, is of the order of 0.06 pc.

A complication may be mentioned: a particle loses coherence with the wave
more rapidly if the resonance ceases by its own action on the particle (Exercise
7.2). Resonance is lost for Av, 2 v, Ak/k, and the effect could increase the
deflection time for exact resonance.

We note that no assumption on the origin of the waves has been made; they
may exist independently of the beam or be a result of a beam instability. For
waves propagating at an oblique angle to the magnetic field, there is the additional
possibility of resonant interaction at the harmonics of the gyrofrequency (Chapter
8). Highly relativistic ions then can scatter on waves driven by lower energy
particles of the same beam.

(7.3.12)

B. Diffusive Propagation

Depending on beam density and velocity, we may distinguish two stages of prop-
agation:

(1) The deflection time may be much longer than the propagation time, and the
particles arrive unscattered.

(2) The deflection time is short for strongly unstable beams, and their velocity
distribution becomes nearly, but not exactly isotropic. Such a beam is called
scattered.

If instability and velocity-space diffusion control the beam, the particles propagate
by some residual mean velocity, V3, from the corona into interplanetary space, or
from a supernova to intergalactic space. This propagation is not a free flight, but
a diffusion in space given by

of 06 ,~ O

o~ Pt el
The diffusion tensor is diagonal, and its elements are the square of the mean free
path (bmep = vta) divided by the deflection time (Section 3.1.2.C). Thus,

(7.3.13)

Dzz = Uztd 3 (7314)
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Dye = D, = -2 (7.3.15)

In the perpendicular direction (Eq. 7.3.15) the mean free path, £y, has been
replaced by the gyroradius (assuming £mg, > ERe), since one collision also produces
a step across the magnetic field of the order of R,. Therefore, the ratio of the
coefficients for diffusion perpendicular and parallel to B is

2 2 2
Des _ (1)2 (”i) (—fl—k) . (7.3.16)
D,, 2 U, B Ak
Except for the uninteresting singular case v, & 0, this ratio is much smaller than
unity and tells us that, as expected, diffusion along the field lines is much faster
than across as long as the wave field is smaller compared to the background field.

The problem of diffusive propagation is mathematically described by the two
coupled equations of wave growth (7.2.34) and diffusion in pitch angle and space,
Equations (7.3.6) and (7.3.13). Wave growth depends on the particle distributions
f§'; particle diffusion is proportional to the wave level B;. We outline the basic
results below.

If the beam velocity exceeds aw/k, or about c4, we have an unscattered beam.
As it is unstable, Alfvén waves grow at a rate estimated in Equation (7.3.4).
For solar proton beams, it may be roughly approximated by v/Qp = ny/ne. A
beam density of 1073n, causes waves to grow at a rate ¥ of the order of 100 Hz
(assuming B = 10 G ). Within about 10 growth times, or less than one second,
the deflection time t4 (Eq. 7.3.12) diminishes to a fraction of a second. The
anisotropy in velocity space is reduced by quasi-linear diffusion, and the beam
velocity decreases. The beam instability develops into a marginally stable, quasi-
stationary state, in which the proton beam anisotropy is just large enough to excite
Alfvén waves to a level that would eliminate any greater anisotropy. The growth
rate falls to the order of the inverse deflection time. The mean velocity decreases
to about aw/k within a few instability growth times. Now the beam appears to
be scattered, and propagation is called diffusive.

Quiet-time interplanetary proton beams display nicely the characteristic beam
velocity of diffusive propagation (Fig. 7.5). The long dwelling time of cosmic rays
in the Galaxy can also be explained by diffusive propagation. Similarly, downward
moving proton beams accelerated in flares drive growing low-frequency electromag-
netic waves during their passage through the corona into the chromosphere, if their
density exceeds about 10~% of the background. Quasi-linear diffusion may shorten
their penetration depth by orders of magnitude. On a more speculative level, ac-
creting plasma flowing along field lines onto a protostar or compact object may
generate a high level of electromagnetic waves sufficient to heat the plasma.
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7.4. Electrostatic Ion Beam Instabilities

74.1. LOW-FREQUENCY WAVES

Spacecraft investigations of ion beams near Earth have revealed — in addition to
electromagnetic waves — a rich variety of electrostatic waves. An intense broad-
band spectrum of waves is seen in the magnetotail (where T, > T;) ranging from
extremely low frequencies to beyond the local electron plasma frequency. They co-
incide with fast ion beams (Section 7.1). Most prominent are ion acoustic waves at
ws w;, as one would expect from Section 5.2.6, where the growth rate has been
evaluated for ions moving against electrons (current). An ion-beam component
can be incorporated into Equation (5.2.34) in a similar way. The result is again
unstable toward ion acoustic waves. Since ion acoustic waves are Landau damped
on the slope of the thermal electron distribution, the threshold is considerably
lower for T, > T;. Low-frequency electrostatic waves are of particular interest, if
the beam velocity, taken parallel to the magnetic field, is lower than the Alfvén
velocity and below threshold for electromagnetic waves.

The lower hybrid branch, w = +/Q.8; (Eq. 4.4.7), has frequently been found
at an excited level in the solar wind. The waves are also prominent in the front
region of the Earth’s bow shock where the arriving solar wind field lines are nearly
parallel to the front, and ions are reflected into gyrating perpendicular ion beams
(Chapter 10). In contrast to ion acoustic waves, lower hybrid waves exist at all
ratios of T, /T;,and their role in coronae may be important.

There is a number of possible instabilities of a perpendicular or gyrating ion
beam (azimuthal anisotropy). Their importance depends strongly on the ratio of
electron to ion temperature, a parameter usually not well known. The modified
two-stream instability has received particular attention. It is a fluid-like instability
between the gyrating beam and the background ions and electrons, much like
the two-stream instability in cold plasma (Section 4.6). The instability requires
T./T; 2 1 and a beam velocity V; > ¢;s, the ion sound velocity (Eq. 5.2.36), and
drives lower hybrid waves.

We have encountered lower hybrid waves in Section 4.4 as space charge waves
of ions propagating nearly perpendicular to the magnetic field. Electrons gyrating
at a higher frequency do not actively participate if wy./|k;| > vge. In the opposite
case, the waves are strongly Landau damped on thermal electrons. If lower hybrid
waves are driven by ions and have w,/|k; | = vy,

k. Ui

A S Ve X1l . (7.4.1)
Thus, lower hybrid waves propagate nearly perpendicular to the magnetic field.
They enhance the scattering of high-frequency plasma waves (such as Langmuir
waves or upper hybrid waves) into observable radio emission. Suitable models
have been proposed for coronal currents and shock waves (metric type I and type
II radio bursts).
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7.4.2. HIGH-FREQUENCY WAVES

Can ion beams radiate plasma emission like the type III bursts of electron beams?
In the derivations of Section 5.2 the particle species was not specified. The growth
rate (Eq. 5.2.29) is reduced for ion beams by the mass ratio m./m,. For k <« kp,
implying V5 > v,

T ({V 2 n, m
o~ 2] 2 4.
7 2 (’Utb) Ne miwp (7.42)

How does it compare with the growth of electromagnetic waves? Approximating
Equation (7.3.4) with v = npQ;/n. and Vj = v, the ratio of the growth rates of
Langmuir waves to Alfvén waves is about wy/§2e and may exceed unity. However,
the threshold beam velocity is usually more important. It is about 3v;. for Lang-
muir waves and ¢4 for Alfvén waves. In coronal plasmas ¢4 < 3vge. If a beam
develops from a super-thermal tail, its mean velocity increases gradually and first
meets cq. Alfvénwaves thus diffuse the beam in velocity space and hinder the
growth of Langmuir waves. The higher growth rate of Langmuir waves is only
effective if the beam moves already initially at high velocity. The interpretation
of radio emission by the bump-on-tail instability of ion beams therefore requires a
special acceleration process. It has raised little interest for ion beams in coronae.

Exercises

7.1. Derive the ratio Av,/Av, of the velocity changes of an ion emitting an R-
mode quantum. Show that for w « ; the ion moves approximately on a
circle. This means that it is deflected primarily in pitch angle with only little
change in energy.

7.2: The Lorentz force of the wave magnetic field acts on a gyrating particle and
changes its phase . This reduces the interaction time between particles and
waves. Use k,v, ~ €;, and calculate the time the Lorentz force of a wave
needs to deflect a particle initially in resonance until the phase difference
between particle and wave shifts by one radian.

7.3: Intense beams of ions are accelerated in flares. They are guided along loop-
shaped field line into the dense chromosphere (Fig. 7.1). Calculate the growth
rate v/}, of waves due to a beam of protons with the following properties:
beam velocity V, = 2¢4, beam thermal velocity vy = 100 ¢4, beam density
np/np = 1072, Assume that Q,/w =20 and B = 102 G.

7.4: Calculate the mean free path of a proton at resonance velocity (v = 21 ¢4) in
the above example (Exercise 7.3) using the approximation tq = 1/v. What
is the diffusive propagation time if L = 10° cm and ¢4 = 108 cm s™1?
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CHAPTER 8

ELECTRONS TRAPPED IN MAGNETIC FIELDS

Until now we have been concerned mainly with beams, the deviations in veloc-
ity space from isotropy to distributions enhanced in the direction parallel to the
magnetic field. In this chapter we study the opposite: particle distributions with
predominantly perpendicular velocities, characteristic of magnetically reflected or
trapped particles. The solar and stellar coronae are permeated by loop-shaped
magnetic fields forming ‘magnetic bottles’ for collisionless (fast) particles. After
one bounce, particles of pitch angle a < a, are lost, so they are missing in the re-
flected population (Section 2.2). If this population is again reflected, it is trapped
and has a double loss-cone distribution in velocity space.

The transverse motion of electrons — their gyration in the magnetic field —
causes synchrotron emission at high harmonics of the gyrofrequency (to be dis-
cussed in Section 8.1). Although not exclusive to trapped electrons, such parti-
cles have a long lifetime to emit synchrotron (microwave) radiation before losing
their energy by collisions and have a characteristic, high ratio of synchrotron to
bremsstrahlung (hard X-ray) flux.

Trapped electrons are important sources for intense coherent radio emission.
Loss-cone produced emissions include radiation from planets, the most powerful
solar decimetric radiations, and probably some stellar radio flares. The driving
free energy — the anisotropic velocity distribution of the loss-cone — causes various
waves to grow, some of them are observable in radio emission. Section 8.2 shows
how trapped particles can be more efficient emitters of coherent radiation than
particles in beams, where only the leading front is active. In the best studied case,
the Earth’s magnetosphere, it is estimated that 10~3 of the initial electron energy
is converted into radiation. This value greatly exceeds the efficiency of beams, and
of incoherent synchrotron and bremsstrahlung emissions from coronae.

Loss-cone instabilities may not only cause intense radio sources visible across
the Galaxy, but often control the loss of energetic particles. We assume that the
collision rate in a coronal magnetic loop is low. If the particles are deflected by
interactions with unstable waves (Section 8.3), the loss-cone instabilities have an
important consequence: the particles diffuse into the loss-cone, leave the trap and
precipitate into the dense layers at either end of the magnetic loop, where they
immediately lose their energy by collisions, emitting hard X-rays (Fig. 6.10). In
a low density trap, the particle’s lifetime (energy loss) may not be controlled by
the local collision time in the trap but by untrapping through waves. Observable
effects of trapping will be discussed in Section 8.4.

177
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8.1. Observational Motivation

Trap models are attractive to explain prolonged emissions of non-thermal particles.
Since the diffusion in velocity space of particles confined by a magnetic bottle is
inevitable, the trapping time is finite, and the particles eventually precipitate into
lower layers having a high collision rate. The associated emissions are bound to
change in time. The models are usually referred to as trap-plus-precipitation.

8.1.1. INCOHERENT SOLAR EMISSIONS

In solar flares, the flux densities of broadband microwave emission (1 < v < 30
GHz) and hard X-rays ( & 10 keV) are usually well correlated. The flare related
events in both emissions are classified into impulsive (< 10 minutes) and gradual
(> 10 minutes) events (Section 6.4.2), reflecting different injection and trapping
conditions. The correlation suggests a common origin (if not identity) of the
radiating particles. Yet Figure 8.1 presents the image of a gradual flare where
the positions of the hard X-ray source and broadband microwave source are well
separated. The centroid of the hard X-ray emission is of the order of 10¢ km above
the limb, the radio source is about 4 times higher.

Fig.8.1. A gradual flare near the limb (solid line) was imaged in hard X-rays (solid isophotes,
logarithmic steps) and broadband microwaves (dotted isophotes, linear steps). The grid is 10”
or 7000 km on the Sun. The hard X-rays were observed by the Hinotori satellite in the 20-30
keV range. The Very Large Array measured the microwave emission at 5 GHz (after Takakura
et al., 1985).

As pointed out in Section 6.4.3, the hard X-ray emission of impulsive flares
seems to originate primarily from the footpoints of loops. The radio source is
usually located above the line of zero longitudinal photospheric magnetic field (cf.
Fig. 1.4), it is in magnetic loops or an arcade. Figure 8.2 presents an example of 4.9
GHz emission (source B) originating between two He flare kernels. The picture is
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Fig. 8.2, Location of a broadband microwave source observed at 15 GHz (A) and at 4.9 GHz
(B) by the Very Large Array near the solar limb during an impulsive flare. The contours shown
are at the 0.2 and 0.5 levels of the peak brightness. Superposed is an Ha picture from Big Bear
Observatory (from Dulk, Bastian, and Kane, 1986).

seen against the solar limb and suggests that the radio source is at a height similar
to the He features, i.e. probably around 3000 km or below. The curve of zero
longitudinal magnetic field passes between the two bright Ho features. Source
B appears to be located in a magnetic loop between them. The high-frequency
source, A at 15 GHz, is confined to a small core near an Ha bright feature.

In summary, we conclude that hard X-ray and broadband microwave observa-
tions are compatible with an interpretation by bremsstrahlung and synchrotron
emissions of partially trapped and precipitating energetic electrons. The observa-
tions are consistent with emissions from a common loop or interacting loops. Such
loops span the neutral line of the photospheric magnetic field and often have their
footpoints in Ha-enhanced regions. The microwave radiation comes from a large
part of the loop with maxima either near the top or near the feet of the loop; the
latter is more likely at short wavelengths (Bastian et al., 1998).

8.1.2. SYNCHROTRON EMISSION

The magnetic field confines charged particles to a spiraling motion around field
lines. The continuous change in the direction of the particle’s momentum causes
electromagnetic radiation — called gyromagnetic emission — according to Larmor’s
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formula. As each particle orbits and emits independently, the emission is incoher-
ent.

Relativistic particle motion strongly enhances the emission, then called syn-
chrotron radiation after the man-made accelerators where it was first detected. Its
theory has been presented in many textbooks (e.g. Pacholczyk, 1970).

Synchrotron emission depends on the magnetic field and hence provides com-
plementary information not available from X-ray bremsstrahlung. Synchrotron
emission occurs at a wide range of harmonics of the (relativistic) gyrofrequency of
the emitting particle and has a broad peak at about

we &Y (8.1.1)

where €, is the non-relativistic gyrofrequency of species &, and 7 is the Lorentz
factor of the emitting particle. The emission of ions occurs below the electron
gyrofrequency by the mass ratio m./m;. More important, the energy loss due to
gyration is (Z;me/m;)* times smaller for ions and therefore negligible in compar-
ison with that of electrons at the same energy.

The more confined source at high frequency in Figure 8.2 finds an explanation
in Equation (8.1.1). The presence of a higher magnetic field strength (and higher
Q) near the footpoints shifts the location of the high-frequency source A in relation
to the low-frequency source B.

In solar flares, the highly relativistic approximation for synchrotron radiation
usually does not apply. More complicated derivations for mildly relativistic elec-
trons yield the so-called gyrosynchrotron emission. For a power-law distribution
(Eq. 6.4.5) of mildly relativistic electrons with an isotropic pitch angle distribution,
Dulk and Marsh (1982) have presented simplified expressions for the emissivity 7.
For x-mode (where most of the radiation originates), a power-law exponent in the
range2 S8 K7, 02 20° andw/Qe 2 10, they derive

1.22-0.908
n(w,8) ~ 3.3 x 1072 By, (> 10keV)10~0-5% (sin §) ~0-43+0.654 (Ql)
€
[erg s™! em™*Hz ! sterad™!]
(8.1.2)

where 8 is the emission angle to the magnetic field B [G], and nj is the density
fem~=3] of non-thermal electrons. A power-law cutoff at g = 10 keV has been
assumed in the numerical constant in Equation (8.1.2). If it is at a different
but non-relativistic energy, the virtual number density np(> 10keV) := ni(>
€0)(€0/10)°™* can be used. Gyrosynchrotron emission becomes optically thick at
low frequencies (i.e. it is in equilibrium with its inverse (absorption) process, cf.
Section 11.1). For a source depth L [cm] and the above conditions, this occurs at
a frequency

Venax = 2.79% 103 100.276 (sin 9)0.41+0.036(nh(> IOkev)L)0.32—0.036B0.68+0.03¢5 [HZ],
(8.1.3)
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Note that both 7 and Vmax depend on B. In regions of high magnetic field strength,
synchrotron emission is stronger and shifted to higher frequency.

In the optically thin part of the spectrum (¥ > Ymax), Equation (8.1.2) suggests
a power-law spectrum for the intensity,

I{w) = Iwp)(w/wg)™® [erg cm™%s~! Hz 'sterad™?] (8.1.4)

where a = 0.908 — 1.22. Using the approximation for highly relativistic electrons,
the spectral index & = 0.56 — 0.5.

Equations (6.4.4), (8.1.2), and (8.1.4) can be combined to give a relation be-
tween the spectral indices of hard X-rays (thick target model) and synchrotron
emission,

, (8.1.5)

_ JLla—0.14 gyro — synchrotron approximation
7712 highly relativistic approximation

assuming that both emissions are produced by electrons with the same power-law
energy spectrum. This relation can be tested by observations. In view of the
frequency dependent positions (Fig. 8.1), it is surprising that the correlation of
2a and v in time is generally quite good during a flare. In addition to differ-
ent positions, the observations in microwaves and X-rays often refer to different
electron energies. A change in § with energy may cause a deviation from Equa-
tion (8.1.5). Nevertheless, observing approximately the relation (8.1.5) strongly
suggests a common origin of the radiating particles.

Impulsive microwave bursts have a higher vpax (factor of 3 on average) than
gradual bursts. This agrees with Figures 8.1 and 8.2, suggesting a lower altitude
(afew 10% km vs. afew 10* km) compatible with higher magnetic field strength
for sources of impulsive bursts.

At low frequencies (v < Vmax), the emission is optically thick and — for a
power-law distribution of the particle density with exponent d — also has a power-
law form. Its exponent becomes independent of § at highly relativistic velocities,

I(w) = Iwo)(w/wy)?® . (8.1.6)

In reality, the spectral index is rarely 2.5, but in the range from O to 10. Low values
are generally interpreted by the superposition of multiple sources with different
peak frequencies. At the low-frequency end of the spectrum — where emission ap-
proaches the plasma frequency in the source — absorption may reduce the observed
radiation. In addition, the reduced refractive index near the plasma frequency
suppresses the synchrotron emissivity for frequencies w S wg /$2e, a phenomenon
discovered in 1960 by V.A. Razin and V.N. Tsytovich (for a description see e.g.
Melrose, 1980). Both collisional absorption and Razin suppression can produce
high spectral indices on the low-frequency slope.

Solar flare gyrosynchrotron sources are usually large compared to magnetic
scale lengths. Source modelling therefore requires spatial information. Full Sun
spectral observations have to be interpreted by complex models. This is of par-
ticular importance for unresolved stellar sources (discussed e.g. by Klein and
Chiuderi-Drago, 1987).
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There remains a fundamental uncertainty in the above observations of incoher-
ent emissions. It is difficult to distinguish particles accelerated or injected into a
magnetic loop in one step and then remaining trapped for an extended time, from
particles being accelerated continuously, injected, and lost. The two possibilities
imply different velocity distributions: (Z) trapped particles can be identified from
their typical loss-cone distribution (cf. Figure 2.6) with a depletion at small pitch
angles. (#1) Continuously injected particles may have an isotropic or beam-shaped
distribution. An equilibrium between particle supply (injection) and depletion
(precipitation) may be attractive to simplify theory. Nevertheless, disentangling
acceleration and trapping is a formidable observational problem.

8.1.3. NARROWBAND SPIKES

Coherent radio emission associated with a loss-cone distribution is direct obser-
vational evidence for trapping. Well-known examples are the radio emission of
planets, including the auroral kilometric radiation of the Earth and Jupiter’s de-
cametric emission. They show that a preferable stay of energetic particles is in
magnetic traps. Depletion of the loss-cones by an instability is a necessary process
to perceive the trap in coherent emission.

As an example of coherent emission probably caused by a transverse velocity
anisotropy, we present narrowband spikes emitted during solar flares. They have
first been discovered around 0.3 GHz independently by F. Droge and P. Riemann,
. Elgargy, and T. de Groot in 1961. However, spikes did not receive much atten-
tion until 1978, when C. Slottje also observed them at 2.8 GHz with a much shorter
duration and coincident with gyrosynchrotron emission. Narrowband spikes have
since been identified by spectrometers in the 0.3 — 8 GHz range and seem to be
physically identical (for a review see Benz, 1986). Note that the term ‘spike’ is also
used for short duration hard X-ray and millimeter radio bursts, emissions that are
not directly related to the phenomenon under consideration.

Narrowband spikes are a topic of current research, and it is not clear whether
their origin is a trap, singly reflected particles, or an acceleration transverse to the
field. Figure 8.3 shows a group of hundreds of peaks spread irregularly in time and
frequency during the impulsive phase of flares. The number of spikes per second
and their frequency-averaged flux correlates well with the flux of impulsive hard
X-rays (Fig. 5.1c). This demonstrates that spikes are related intimately to the
energetic electrons of flares.

The duration of single spikes is a few tens of milliseconds, and the phenomenon
is also known as ‘millisecond spikes’. The decay of single spikes can be fitted by an
exponential in time. The decay time is surprisingly close to the thermal collision
time assuming T = 3 - 10% K and decreases linearly with frequency, as if the
emission originated from a source with v, ~ v.

The narrow bandwidth of 0.2 —2% of the center frequency is the most re-
markable feature. It suggests that the source emits at one of its characteristic
frequencies, such as the electron gyrofrequency, the plasma frequency, or the up-
per hybrid frequency. However, since the source is located in an inhomogeneous



TRAPPED ELECTRONS 183

1000 - -y R I

i qlﬂﬂp ‘:.n'f[. -lali l,]'ETJH.zP"?Iﬁ?"
! 5 rrr - k I': I : ”‘ :!II ; :;I‘I.,.. ‘
LR : ¥ ol :-' .: ' I
i "rlgh SIE g I el

'ft' "ﬁsh A Ak mrrl ﬂﬁi.,;"}:.:'.--i

1800 - [

]
+
-

1400

frequency in MHz

T
. B e i S R A

2000 -1

[ o]

1 1 1 L L L | i 1 | 1
09:03:25 08:03:30 09:03:35

o 60 100
flux density in sfu

Lime in UT

Fig. 8.8. Left: The radio spectrogram of narrowband spikes showing two major frequency bands
(observed at ETH Zurich). Right: Spectrum of the same event at 09:03:32.2 UT (after Krucker
and Benz, 1994).

corona, the characteristic frequencies are spread in a finite interval, and the spikes
occur all over this band. The bandwidth of a spike, Av, at an observing frequency
v limits the source dimension, L, along the direction of the gradient,

< Av { x Hp magnetic scale length

T v | x2H, density scale length (8.1.7)

The magnetic scale length, Hpg, applies to emission at a harmonic of the gy-
rofrequency. For emission at the plasma frequency, 2H, has to be used. With
H = 10° cm, a value to be expected for active regions, some source dimensions
become smaller than 40 km. The observed flux densities (typically 100 sfu =
10~erg s~'Hz 'em~2) and Equation (5.1.1) require a brightness temperature in
excess of 103 K. Its large value indicates coherent emission.

Sometimes, when the spikes are confined to a small range of frequencies, several
harmonics are observed. Figure 8.3 shows a case with 3 horizontal bands of spikes
equally spaced in frequency. They correspond to the harmonic numbers 3, 4, and 5.
The modulation of the harmonics correlates in time, indicating a common source.

The observational characteristics of spikes are substantially different from type
III bursts caused by beams.

e The instantaneous bandwidth of spikes (spectral width at a given time) is more
than an order of magnitude smaller.

e The average duration is a factor of 10 shorter.

e The polarization of spikes follows the leading spot rule and suggests x-mode.
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The observational evidence is compatible with a large number of small, transient
sources in a stationary volume. This is very different from beams and has led
to interpretations by instabilities of transverse velocity space anisotropy in quasi-
stationary sources. The observed multitude of sources poses interesting theoretical
possibilities and implications on flare fragmentation.

8.2. Loss-Cone Instabilities

Anisotropy in velocity space emerges wherever the magnetic field acts as a particle
mirror, an abundant situation in the universe from planets to interstellar space. It
involves primarily energetic particles whose mean free path exceeds the length of
the magnetic configuration. We study first the linear instabilities driven by a loss-
cone distribution of electrons. In the second section the effect of these instabilities
on trapping is considered, as well as other non-linear phenomena. Finally, solar
and stellar observations are presented exemplifying the theory and demonstrating
the practical importance of the subject.

We shall discuss low and high frequency, electrostatic and electromagnetic in-
stabilities. Which of these instabilities dominates depends on the sign of the
charge, the velocity distribution of the particles, and the plasma parameters. An
introduction such as this cannot exhaust all the possibilities, nor give a complete
classification. A first ordering of the possible loss-cone instabilities may separate
those which excite waves having ki vs/Q, much smaller than unity from those
where this ratio is much larger than unity (where « refers to the relevant particle
species).

e In the former case — studied in Section 8.2.1 — A > R,, where A\| :=2x/k_.
The wave fields are homogeneous on the scale of the gyroradius, R,, of the
interacting particle. All particles at a given location feel the wave fields the
same way, independent of their energy. The wave then interacts best if its
frequency equals the Doppler-shifted fundamental gyrofrequency.

o In the opposite situation (A} & Rg) the particles interact with the wave
fields in a more complex way, depending strongly on the gyroradius (i.e. the
perpendicular velocity) of the resonating particle. It leads to interactions with
harmonics of the gyrofrequency (Section 8.2.2).

Since the basic equations are the same as for the beam instabilities, we can start
at an advanced level.

8.2.1. LOW-FREQUENCY ELECTROMAGNETIC INSTABILITY

The interaction of particles with low-frequency electromagnetic waves has been de-
rived in Section 7.2.2 from the Maxwell-Vlasov equations. The dispersion relation
(Eq. 7.2.23) relates frequency to wavenumber for small disturbances satisfying
the plane wave assumption (7.2.8). Equation (7.2.23) applies to low-frequency,
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electromagnetic waves propagating parallel to the background magnetic field. The
imaginary part of the frequency, the growth rate, has been evaluated in Equation
(7.2.34). It can be shown that waves propagating at a finite angle to the magnetic
field grow generally at a lower pace. They will be neglected here.

In our case the free energy resides in perpendicular motion. It can be tapped
by a process bringing particles toward the v,-axis. Normal gyroresonance interac-
tion is such a process, transferring particle energy into wave amplification (inverse
of Figure 7.4). Therefore, the relevant low-frequency branch for trapped, preferen-
tially transverse moving electrons is the R-mode, in particular the whistler mode
(Section 4.3). These right circularly polarized waves have a frequency range of
Q; < w < Q. Using the dispersion relation of whistlers (Eq. 4.3.19), the growth
rate can be derived from Equation (7.2.34) with the result,

Y{wy) . w 2 1
— L = k)1 — =— - . 2.
for) — wsign(l)(1 - 1o n(om) { Alom) - 5 (821)
The resonant velocity, vg, the fraction of particles in resonance, 7, and the mea-
sure of pitch angle anisotropy, A, have been defined previously (Egs. 7.2.24, 7.2.35,
7.2.36, respectively). The resonance velocity — given by the gyroresonance condi-
tion (7.2.24) — can be evaluated using the dispersion relation of whistlers (4.3.19)

and becomes
3
oyl (W
VR = cA\/me - (l Qe) . (8.2.2)

For w — §1. the resonance velocity approaches zero, and the waves resonate with
the thermal particles. In addition, the curly bracket in Equation (8.2.1) becomes
infinitely negative for finite A, and the waves are damped. Therefore, only waves
with frequencies considerably below {2, being in resonance with sufficiently fast
particles, are growing. Typically, they need vr R cav/(mp/me) = ¢Qe/wp. In
other words, only the fastest trapped electrons are unstable toward whistler wave
growth.

The calculation of the growth rate is only a matter of evaluating the derivatives
of the velocity distribution (Exercise 8.1). The growth depends on the sharpness of
the loss-cone and the magnetic field. Its maximum is at a real frequency between
1072 2, and 107! Q, and its dependence on wp/Sde is shown in Figure 8.4 (curve
w). It is small for wp S 0.5 €, and increases to about 1073 Q. for large wp/Qe.

Before going on to the next instability, we point out that Figure 8.4 only
compares the linear growth rate of infinite plane waves. Which of these modes
dominates in reality depends on the global situation: (%) If the loss-cone slowly
develops out of isotropy, the instability with lowest threshold controls the evolu-
tion. (i2) The fastest growing instability may develop into a non-linear regime or
saturate. (444) The waves escape before growing if the source dimension is smaller
than the growth length, vg, /v{wr).
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Fig. 8.4. Maximum linear growth rates as a function of wy /Q. for various loss-cone instabilities
discussed in Sections 8.2.1 and 8.2.2. The maximum value in frequency and angle is shown for
a background temperature of 2 - 106 K and a Dory-Guest-Harris loss-cone distribution (defined
in Exercise 8.1) having a = 1, a temperature of 3.5 - 107 K, and a density of 10~2 times the
background. The letters refer to wave modes, and the numbers refer to harmonics (after Sharma
and Vlahos, 1984).

8.2.2. HIGH-FREQUENCY WAVES AND CYCLOTRON MASERS

A. Linear Growth Rates

The velocity distribution of magnetically trapped particles has positive derivatives
Of/Ov, near the loss-cone boundaries. One may expect that perpendicular waves
can be driven by this anisotropy equivalent to double beams in the v,-direction.
Since vy is involved, the gyrofrequency must enter the physics. It is not surprising
that the resonant wave frequency is at the gyrofrequency or higher. The gyrores-
onance (Eq. 7.2.24 and its generalization to harmonics), in fact, makes it possible
for particles to interact with super-luminal waves (w/k > ¢). In addition to elec-
trostatic waves dominating the instability of electron beams (Chapter 6), we must
include all three high-frequency modes.

We have derived the linear response of a collisionless plasma to a plane wave
in Section 7.2.2. The wave amplitude fi of the velocity distribution is the integral
in time over the previous history of the acceleration (forces) on the particles and
the velocity derivative of the distribution. The integral is along the undisturbed
particle orbit (Eq. 7.2.9),
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Ay =4 / ' explifks (' — ) + kala’ — ) ~wlt’ ~ O)](Br + v/ x By)

: Vv’ f 0 (vl)
(8.2.3)
The primed variables describe the orbit at time ¢ of a particle located at the
(unprimed) coordinates x at time ¢. The motion of the particles of species & can
be expressed in guiding center coordinates. We obtained in Equations (7.2.10) —
(7218) for r: =¢t' —¢:

v}, = v, cos(yy’ — %T) (8.2.4)
2 ~z=u,rT (8.2.5)
g —z= Ul’y —= [sin(y’ — —oi'r) —siny'] . (8.2.6)

The gyrofrequency  must now be corrected for special relativity by the Lorentz
factor # to the gyrofrequency of the relevant particle, /. §2, carries the sign
of the charge, Q, := (g/]g|)2. Equation (8.2.6) brings two sine functions into the
exponential of Equation (8.2.3). They are replaced by the identity

exp(i Asing) = z Jn(A)exp(in ¢) (8.2.7)

n=—oo

where J,is the ordinary Bessel function of the nth order, and A and ¢are general
variables. At this point, the cyclotron harmonics enter through n¢. They are
characteristic for waves propagating at finite angles to Bg. The amplitude of the
disturbance becomes

- q 0 , 0
) = £ S kLRI kuR) [ drespli{(beon + =~ (1= n)p)]
ln —o

_ 1
(El + EVI X Bl)Vv:fo y (8.2.8)

where R is the gyroradius (Eq. 2.1.2).

The time integral in Equation (8.2.8) can now be carried out. It allows us
to calculate the relation between the wave electric field and the wave current (an
Ohm’s law, Eq. 7.2.22). The I # n terms cancel in the ¢¥'-integration over velocity
space. Ampere’s equation gives finally the dispersion relation. We refer to Melrose
(1980) for the details of the algebra and discuss only the results. For x-mode and
electrons,

Ak? 2(wp)? s (1% Ofo 8fo 2 J/(kLR)?
1- — - }l:/ﬁd”(TavZ’Lk”aZ)kv,HQ/v —=0

(8.2.9)
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The derivative of the Bessel function has been introduced to compress the equation,
using J{(z) = —é.]l(x) + Ji—1(z). Each harmonic ! produces a singularity of the
integrand and thus a solution w;(k) analogous to Equation (5.2.16) for Langmuir
waves.

For wf, < Q2, the solutions of Equation (8.2.9) have their real parts near
the harmonics of the electron gyrofrequency: w] = If}e where | = 1,2,.... The
corresponding growth rates are of the form

me-w)[li 66 +k, Vg ]fo(v) . (8.2.10)

i = / oAy (v, k)3 (kyvs +

The same holds for the o-mode and z-mode. The coefficients A; can be found in

the literature (Wu and Lee, 1979; Winglee and Dulk, 1986). We give as examples

some of the more important ones for k2 > kZ:

w(w;)zv L
8news

A = (I =1, x — mode) (8.2.11)

w(w;)zm_ vy 2

A = S o ) (I1=2, o—mode) (8.2.12)
RTINS B
Al ~ m—(m) (l >1, 2 mode) (8.213)

B. Particles in Resonance

Let us now study electrons interacting with the x-mode, an important case in
astrophysics. The resonance condition,

w—kv, = !—2— ) (8.2.14)

requires the particle gyroperiod, 7e, to be an integer multiple of the wave period,
Tw, in the coordinate system moving along the z-axis with velocity v,. The con-
dition T, = I, is equivalent to w = I{e/7. In this frame, the particle moves in a
circular orbit (Fig. 8.5) and experiences the same force at the same location for
every gyration.

An electron initially located at a when the E;-field is opposite to v, is accel-
erated. In the time the particle moves from a to ¢, the wave electric field changes
direction. The particle gains energy until its gyrofrequency decreases due to the
increasing Lorentz factor 7. Then its phase in relation to the wave starts to shift.
On the other hand, a resonant particle starting at ¢ experiences an E1-field oppo-
site to Figure 8.5. It loses energy until its phase changes. Figure 8.6 shows the
phase 3 between a particle and the wave. The resonant particles oscillate in phase
around d.



TRAPPED ELECTRONS 189

Bo

E;

Fig. 8.5. Electron in resonance (I = 1) with an x-mode wave (E1.LBg).

electric field

phase I

Fig. 8.8. Particles between b, ¢, and d (defined in Figure 8.5) increase in phase 9 relative to the
wave. Particles between d, a, and b decrease in 2.

The situation is somewhat reminiscent of particles in Cerenkov resonance with
Langmuir waves (Section 5.2.5). However, in this case the relativistic effect in
the resonance condition plays an important role and changes qualitatively the
character of the interaction. Without the variable v the wave could not trap
particles.

If the resulting average particle energy is lower than before the interaction
with the wave, the v, -component diminishes, and the particle moves in velocity
space toward the v,-axis. If more particles lose energy, the wave amplitude grows,
and vice versa. The energy gain and loss may be compared to the excitation
states of atoms. If there are more electrons in excited states than in equilibrium
(inverted population), the states can be depopulated by stimulated emission (like
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laser or maser action). In analogy, the high-frequency cyclotron instabilities are
usually called masers, short for microwave amplification by stimulated emission of
radiation.

C. Resonance Curve

The resonance condition (8.2.14) defines the surface in velocity space on which
the integral for the growth rate is carried out. As may be expected from the
discussion of Figure 8.5, the relativistic term plays an important role even for
particle velocities v < ¢. In the strictly non-relativistic case, the resonance curve
in the {vy,v,)-plane is a vertical line (see Fig. 8.7). For small but finite v the
resonance depends slightly on v through % in the semi-relativistic approximation,
1/y=1-— %112 /c%. The resonance condition (8.2.14) then becomes

ik Q. w
——— e — — — (0 . 2.
T3k kK ks (8.2.15)
The relativistic correction (second term in Eq. 8.2.15) may drastically change the
resonance for k, < k even for sub-relativistic particle velocities. Equation (8.2.15)

can be written as a circle (Exercise 8.2),

af
gy =0

R > Uz
semi-relativistic
resonance

non-relativistic
resonance

Fig. 8.7. Loss-cone (a.) and ramp (shaded) velocity distribution of trapped particles with curves
of gyroresonance. The resonance circle (semi-relativistic) for a given v. and maximum wave
growth is drawn.

(v, = v)* + 02 =02 (8.2.16)

with center at v, and radius v,, where
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2
ve: = ’;;; (8.2.17)
2w — 10,)c?\
G (8.2.18)
e

The resonance curve outlines the integration path for the growth rate. The sign
of 8f/dv,) along the resonance curve determines whether the wave grows or is
damped.

In early work on electron cyclotron masers, the term k,v, was omitted from
the resonance condition. The resonance curve then becomes a circle centered at
the origin (Eq. 8.2.17). Others have used the non-relativistic approach (straight
vertical line at v,). Figure 8.7 shows the precarious value of such approximations:
Both the k, = 0 and the non-relativistic approach produce lines crossing regions
of 8f/0v, < 0, and most growth rates of the various modes would be negative for
the usual loss-cone distributions.

It was only in 1979, when the semi-relativistic approximation was introduced
by C.S. Wu and L.C. Lee, that the full potential of loss-cone instabilities was
appreciated. The most unstable waves are the ones with a resonant circle touching
the loss-cone boundary (Fig. 8.7). They have the largest number of resonant
particles in the region where 8f/0vy > 0. Waves with circles penetrating the
regime of thermal particles (not shown in Fig. 8.7) are damped. Using the fully
relativistic approach, appropriate for truly relativistic velocities, the circles become
ellipses.

D. Loss-Cone Instabilities

To compare the instabilities and to find the fastest growing mode and harmonic,
one has to integrate Equation (8.2.10) along all possible resonant curves, i.e. for
all w(k,, k). Figure 8.8 shows the growth rate in (k,, k1 )-space for one mode
and one harmonic. Each wave frequency and wave propagation angle defines a
resonance ellipse (Eq. 8.2.15). If we now take a smaller angle or a slightly higher
frequency, the resonant circle moves to larger v, (and a smaller number of particles
is in resonance). The fastest growing wave is given by the resonance ellipse along
which the integral over the value of 8f/8v; weighted by v, (Eqgs. 8.2.11 -8.2.13)
has a maximum. In Figure 8.8 it is the wave having ¥ = 999 MHz and 6 = 78°.
It will be marked by the subscript max.

For w/k = ¢ and w = I}, the propagation angle Omsx of the fastest growing
wave to the magnetic field can be approximated by

Omax = arccos 2’2—“ (8.2.19)

(Exercise 8.3), where vp,ay is the center of the resonance circle of the fastest growing
wave. Effective wave growth is confined to a narrow range of propagation angles
Ab,

Af ~ ﬂ“c_“i sina. , (8.2.20)
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Fig. 8.8. Contours of growth rate in k-space for ! = 1 (fundamental), x-mode, and wp/Qe = 0.1.
Positive growth is drawn by solid curves, negative growth (damping) by dashed curves. A sin’c
distribution (o = pitch angle) of hot particles and a cold population with density np, /ne = 10~2
was assumed. ¢ = 27 0.98 GHz. Curves of constant wave frequency and emission angle form
a grid of reference (after Aschwanden and Benz, 1988).

and & is the loss-cone angle (Exercise 8.3, using Av, = v,.). The frequency range
at a particular harmonic [ is of the order of

Aw 1 Umax

0.2 ¢
where Aa (in radians) is the range of pitch angles over which f falls off inside
the loss-cone (Exercise 8.3). As a general rule, maximum growth is a few percent
above the relevant harmonic of the gyrofrequency and at high pitch angles.

The maximum growth rate of several harmonics and modes is plotted in Figure
8.4 as a function of wp/8e. The fundamental x-mode, marked as z(I = 1), grows
fastest in plasmas with wp S 0.3 Q. The instabilities of higher harmonics, z and
o mode become important at higher ratios of wp/Qe.

In a source of finite length, the number of e-folding growth lengths, vy, /7,
determines how large a wave can grow before it escapes. Waves with only a few
growth lengths (say < 10) have little effect on the particle distribution, and their
energy is negligible. In particular, we note that the z-mode having a group velocity
of only the order of vt may be more important than Figure 8.4 suggests, since the
e-folding growth length is relatively small.

The z-mode is important for wp/e & 0.3. Figure 8.9 shows the maximum
growth rate at large wp/S in the case where the background component is cold
and the energetic electrons have a Dory-Guest-Harris distribution with § = 1 (Egs.
84.11 — 84.13 and v, = 0.1¢). With increasing temperature of the background,
the harmonic peaks broaden and move to lower w,/€,. The growth rate at a
harmonic ! >> 1 tends to be a maximum when

)2Aasin(2ac) , (8.2.21)
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Fig. 8.9. Maximum growth rate of z-mode vs. wy/Q.. The background population is assumed
to be cold (from Winglee and Dulk, 1986).

ol ~ w =~ Q. (8.2.22)

where vT* is the perpendicular velocity for which 8f/8v; has a maximum. The
first approximation is reminiscent of the bump-on-tail instability (Section 5.2.4),
particularly in view of the second approximation indicating that the gyration pe-
riod is much longer than the wave period. Within one wave period the electrons
move approximately in linear orbits and thus can be considered unmagnetized.

At a given w, /€. growth is possible for harmonics above the resonance of the
x-mode at the upper hybrid frequency (Section 4.4),

l>1y:= wuh/Qe . (8223)

The upper hybrid frequency, w2, = w?, + 02, has been introduced in Equation
(4.4.4). Winglee and Dulk (1986) find that for a hot loss-cone distribution — coex-
isting with a background having a thermal velocity vse With (Vg /Vse)? > woun /e
— growth at the harmonic closest to [ is favored. This seems to be the case for
solar continuum bursts (Section 8.4), where the trapped particles have a tempera-
ture exceeding the background by 102 at w,p,/Qe & 20. For (v /'vtc)2 < Wun/Qe,
growth at more than one harmonic is possible. Electrostatic waves at electron
cyclotron harmonics are also called Bernstein modes (cf. Fig. 4.3). They are
restricted to nearly perpendicular propagation.

The whistler and z-mode waves seem to be of primary importance for interac-
tion with trapped electrons in the solar corona and for the coronae of stars with
similar or weaker magnetic fields. The observed non-integer harmonics of solar
flare related spikes (Figure 8.3) are consistent with scattering of z-mode (Bern-
stein) waves into radio emission by z; + z3 — t coalescence (Section 6.3.2). The
ratio of adjacent modes at frequencies of maximum growth peaks at the observed
value for a plasmahaving 1 < w,/Q, < 6 (Willes and Robinson, 1996).



194 CHAPTER 8

8.3. Precipitation of Trapped Electrons

The lifetime of a fast particle in a magnetic trap can be limited by many competing
processes. In the Earth’s radiation belts, the trapped electrons are eventually lost
by pitch angle diffusion in velocity space. J.M. Cornwall, C.F. Kennel, and H.E.
Petschek in the mid-1960s were able to show that a sufficiently populated loss-cone
distribution of trapped particles generates whistler waves that drive the particles
into the loss-cone. Diffusion in velocity space reduces the anisotropy in velocity
space and fills the loss-cone. As the pitch angle is reduced, the altitude of the
mirror point decreases, where the particle is reflected. When the pitch angle
reaches the loss-cone angle, the particle orbit penetrates into the dense region
where collisions thermalize the velocity.

Diffusion into the loss-cone may have several causes:
— Coulomb collisions
— Quasi-linear diffusion due to a loss-cone instability
— Turbulence of other origin

Assume that this diffusion takes a time 74. Once in the loss-cone, the particles
reach either end of the magnetic trap within about a quarter bounce time and are
lost. The maximum escape time for a particle in the loss-cone, 7e, is at the top of
the loop and for the largest pitch angle within the loss-cone, .. From Equations
(2.2.4) and (2.2.5) one derives

_WL\/M

Te = Z ’Uzop y (831)

where L is the length of the loop, M is the mirror ratio, Byep /Bmp, and v§°P =
v cosq. is the velocity parallel to the magnetic field. In coronal and planetary
magnetic loops, particle loss from a magnetic trap is called precipitation. The
result is a flux of precipitating energetic particles at the footpoints, and this particle
beam is what the thick target X-ray model assumes (Section 6.4).

8.3.1. WEAK AND STRONG DIFFUSION

The lifetime of a particle is a combination of its diffusion time, 74, into the loss-cone
plus the escape time, 7, along the field line. If the diffusion in velocity space is slow
and controls the lifetime, diffusion is said to be weak. The particle distribution
within the loss-cone is strongly reduced (an example can be seen in Figure 2.6).
The lifetime, 73, can be defined as the total number of trapped particles on a field
line divided by the rate they diffuse into the loss-cone. Kennel and Petschek (1966)
have approximated it by

n{v) & 74 1n[§\/ﬁl : (8.3.2)

It is primarily controlled by the diffusion time, 74.



TRAPPED ELECTRONS 195

If diffusion is much faster than particles can escape out of the loss-cone (strong
diffusion), the loss-cone is almost filled up, and the velocity distribution is close
to isotropic. The lifetime of a particle in a trap then is given practically by the
escape time (8.3.1), multiplied by the portion of the volume of the loss-cone in
velocity space. Kennel and Petschek (1966) find

& TM . (8.3.3)

The condition for strong diffusion is 14 < 7. M.

If diffusion is even stronger, such that 74 < %L/ vioP, the particles in the loss-
cone do not escape freely but are scattered before they reach the end of the loop.
The anisotropy of the trapped particles then is completely lost. In fact, no loss-
cone can develop, and precipitation is a diffusion process in space. Such a situation
occurs if the particles excite a high level of turbulence and are rapidly deflected
by quasi-linear diffusion. The trap then is a ‘leaky pail’, and the mean lifetime
is a statistical value given by spatial diffusion. We have encountered a similar
case in the diffusive propagation of intense ion beams (Section 7.3). Stochastic
acceleration (Sect. 10.4) may produce a situation of trapping by strong diffusion.

8.3.2. DIFFUSION TIME

A. Collisions

Non-thermal particles have a deflection time that is similar to their energy loss
time (Eq. 2.6.14 vs. 2.6.29). Energetic particles are deflected at the same rate as
they lose energy.

In coronae, the trap is inhomogeneous in density and temperature. Collisions
are most frequent near the mirror points — the lowest points of the trapped par-
ticle’s orbit, where the density is highest and the temperature generally lowest.
Deflections at the mirror point, however, have a unique property: they always
lower the mirror point in whatever direction they occur. (Since the particle is
temporarily in an orbit perpendicular to the magnetic field, any disturbance away
from this plane decreases the pitch angle.) Therefore, deflections at the mirror
points are not a random walk in velocity space as usual, but add linearly. For
mirror points near the transition region, this directed mirror point motion can
dominate the usual collisional diffusion and reduce the lifetime.

As particles of low velocity have smaller collision times, they are lost first.
Collisional diffusion thus predicts that the average particle energy of the trapped
population increases with time. This is not generally confirmed by hard X-ray
observations. On the contrary, the spectral index of impulsive flares increases
after the peak (Fig. 6.8), indicating a declining average particle energy.

B. Quasi-Linear Diffusion

As the loss-cone distribution of trapped particles can drive various instabilities
(Section 8.1), wave-particle interactions are an important possibility for deflection.
Similarly, wave turbulence produced by other sources — for example by shock
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waves — may also reduce the effective diffusion time. The coupling between wae
growth and particle diffusion has already been studied in Section 6.2.1 on quasi-
linear diffusion. The diffusion tensor, D, is proportional to the energy density
W (k) of resonant waves (Eq. 6.2.12) and tends to reduce the slope in the particle
distribution causing the waves. This derivative, in turn, controls the wave growth
rate 4. The mutual coupling can be seen in the equations

of(v) _9f(k) (s af(v)
) (D(W(k))* —(9—:—) , (8.3.4)
ivggzzy(k)w(k) , (8.3.5)

valid for an infinite homogeneous source. Typical solutions to Equations (8.3.4)
and (8.3.5) are (3) the linear phase, when the wave energy is low and growing
exponentially, (i4) the stationary phase (marginal stability or equilibrium), and
(¢4¢) periodic deviations from equilibrium called relaxational oscillations, when
diffusion and wave growth oscillate out of phase around the equilibrium values.
They will be discussed in the following section.

8.3.3. EQUILIBRIUM OF QUASI-LINEAR DIFFUSION

Assume that the distribution of energetic particles is initially isotropic. If diffusion
is weak, the loss-cone is depleted within the escape time, T.. This time is the
formation time of the loss-cone. It is at least a few tens of microseconds and
may reach several seconds in coronal traps. The growth times calculated from
Figure 8.4, however, are less than a microsecond (B & 100 G). After a few growth
times, the wave energy becomes large enough to cause quasi-linear diffusion in
velocity space. The diffusion time is usually of the same order as the linear growth
time. Therefore, the build-up of the loss-cone only proceeds until an instability
sets in, and a balance between build-up and velocity diffusion is established. The
distribution remains near the threshold for instability in a so called marginally
stable state.

If an equilibrium exists, it also must include the waves. The growth of wave
energy (Eq. 8.3.5) must be balanced by the energy of escaping waves (assuming a
finite source) or by damping. Thus the equilibrium growth rate, 7., must satisfy

w W (k)
gk 6x

The damping rate, <4, includes all wave energy losses within the source as well

as non-linear saturation effects. Using the the group velocity, vg, = Ow/0k, and
OW/0x ~ 2W/L,

=2[7e(k) — 7a(K)W(k) . (8.3.6)

Ye(k) — ya(k) “g(g;) . (8.3.7)
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The integration length, L(Kk), over which a particular wave with a given k-vector
can grow, is simply the diameter for a homogeneous source. It may be much
smaller for an inhomogeneous source where the most unstable frequency changes
with distance, or where the inclination angle to the magnetic field varies. The
interaction length then is the distance over which the source parameters change.

The equilibrium growth rate given by Equation (8.3.7) determines the distri-
bution function (e.g. Eq. 8.2.10). The distribution function, in turn, is shaped by
diffusion (Eq. 8.3.4). Finally, the diffusion coefficient, ’5, is connected to the wave
energy density (Eq. 6.2.12).

We must note here that the waves cannot grow if the left side of Equation (8.3.6)
is smaller than the right side. If it becomes larger, the wave energy accumulates,
enhances particle precipitation and thereby reduces the growth rate to the steady
value (or oscillates, Section 8.4.3).

If acceleration (or injection) provides continuously new particles, the equilib-
rium is permanent. It is not sensitive to temporary changes in acceleration, since
the particle distribution is a universal function. If acceleration increases, precip-
itation balances it so that the growth rate, satisfying Equation (8.3.6), remains
constant. The precipitation rate and the escaping wave energy will, however, be
strongly correlated with acceleration.

8.3.4. DOMINANT WAVES

The question of the dominant mode for instability is related to the lowest threshold.
For collisionless waves to grow, the growth rate must exceed the thermal collision
rate. The wave first satisfying Equation (8.3.6) will establish an equilibrium and
stop further evolution. The relevant factor is (y — vq)L/vgr. The bigger it is, the
more important the instability.

The dominant wave mode depends on various parameters and can only be de-
termined by detailed calculations. As general rules, we may identify the following
regimes:

¢ The x-mode (maser) may play a role at extremely low wp/Qe ratios (Fig. 8.4).

¢ The z-mode tends to dominate at low wy/S2e values, since its group velocity is
much smaller than the x and o modes.

e The whistler mode is important at large w,/€%. However, it is overemphasized
by the chosen velocity distribution in Figure 8.4 and may involve only the high
energy tail of the distribution.
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8.4. Observations of Trapped Electrons

Particle trapping must be regarded in view of the relative durations of particle
injection (or resupply), trapping, and escape or precipitation. The interpretation
of the observations in this scheme, of course, is tentative.

8.4.1. INJECTION DOMINATED

If injection is much longer than trapping and precipitation, the signature of trap-
ping may be difficult to observe. This seems to be the case for electrons observed
in hard X-rays during impulsive solar flares. The spectrum already changes sig-
nificantly during the rise phase (Fig. 6.8, left) and continues to change after the
maximum with about the same time scale.

Another example of an injection-dominated phenomenon may be narrowband
spikes (Section 8.1.3). The build-up time of a loss-cone distribution in conven-
tional coronal loops is comparable or longer than the observed spike duration.
Nevertheless, the observation of high harmonics suggests that the emission is a
velocity-space anisotropy with a predominantly perpendicular population of elec-
trons leading to a gyroresonance instability.

8.4.2. TRAPPING AND RESUPPLY

Gradual hard X-ray and microwave events appear different from the impulsive
bursts; often only one source is visible and located at high altitude (limb obser-
vations suggest about 40 000 km). The location and spectrum are suggestive of
trapped electrons emitting hard X-rays in a thin target with possibly weak diffu-
sion.

Let us look at the evolution of a set of electrons after their acceleration has
stopped. First assume that collisions control the diffusion in velocity space. In
the case of weak diffusion, the slow particles are deflected and lost first. Thus, the
trapped population contains an increasing fraction of high energy particles, and
so does the flux of precipitating particles. Therefore, the hard X-ray spectrum
would become flatter in time (the technical term harder is generally used). This is
usually observed (Fig. 6.8, right). A spectrum that softens could still be explained
under the assumption of weak diffusion, but requires a different diffusion process,
preferentially scattering high velocity electrons, such as by whistler waves.

For strong diffusion, the precipitation rate is proportional to the escape velocity,
and is independent of the diffusion process. We then expect the X-ray spectrum to
soften with time, as the fastest particles are lost first. The time scale is dominated
by precipitation and is relatively short.

Hard X-ray observations of gradual flares are compatible with Coulomb colli-
sions and weak diffusion. However, acceleration seems to operate throughout the
event, and it is not certain that the observed spectral hardening is the result of
the longer trapping time with increasing electron energy or of a time dependence
of the acceleration process.
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Assuming only Coulomb interactions, one finds (Exercise 8.4) that no loss-cone
can form at low energies, since the electrons are lost before reaching the end of the
loop. At intermediate energies collisional diffusion is strong, and at high energies
it is weak. For low solar loops (having for example a length of some 10*km and
a density of 101%m™2), the three ranges are typically separated at 10 keV and
100 keV, respectively. High coronal loops, 10 times longer and less dense, have
the separating energies an order of magnitude smaller. Loss-cone instabilities (in
particular whistler waves) can, however, move these ranges to higher energies.

The gradual hard X-ray and microwave emissions of trapped and precipitating
electrons are often associated with broadband continua at radio frequencies <
3 GHz, indicating that other interactions than Coulomb ones are also at work.
They form the class of type IV bursts, first identified in 1957 by A. Boischot and
J.F. Denisse. The broad bandwidth and long duration makes them spectacular in
terms of total energy radiated. It is not surprising that these emission processes
have also been proposed for stellar radio flares (Section 8.4.4). They have even
found applications in radio outbursts of binary stars hundreds of parsecs away.

The solar observations show a large variety of bursts reflecting the many possi-
bilities in altitude, diffusion, instability, and acceleration process. This has led to
a confusing number of subclasses. The reader is referred to the end of the chapter
for published reviews of the observations. The three major groups are:

A. Moving metric type IV bursts
B. Stationary metric type IV bursts
C. Decimetric type IV bursts

Early interpretations in terms of gyrosynchrotron emission meet the difficulty of
the observed bandwidth, which is broad for a coherent emission, but often not
enough for the synchrotron process. All type IV emissions are consistent, however,
with coherent radiation of loss-cone instabilities. Wherever this can be proved, it
is evidence for particle trapping.

A. Moving Type 1V Bursts

Gradual hard X-ray and microwave bursts are usually accompanied by a meter
wave continuum ( < 300 MHz). It lasts between 10 min and >2 h, and is observed
to drift slowly to higher altitude and lower frequency. The ratio of maximum to
minimum frequency is typically 2 to 4, narrower than for gyrosynchrotron emis-
sion. The spectral index at frequencies ¥ > ¥pax can reach up to 10, and the
observed brightness temperature sometimes exceeds 10'°K. There is no doubt that
the emission is caused by a coherent process, presumably by electrons trapped in
far extending coronal loops. These particles will emit gyrosynchrotron radiation
as well, but it seems to be outshone by coherent emission.

The metric source is observed by interferometers to move away from the Sun
at roughly constant speed between 200 and 1600 km s~*. The source speed is
much smaller than even the thermal electron velocity, implying many bounces and
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trapping of the non-thermal electrons. The source has been followed out to more
than five times the photospheric radius in some cases. Figure 8.10 shows such a
moving type IV burst observed with the Culgoora radioheliograph at a constant
frequency of 80 MHz. It consists of three sources, typical of many moving type IV
bursts. Two — apparently located near the footpoints of the expanding structure
— are polarized in the ordinary mode. A third source at the top of the loop is
usually weakly polarized. The size of the sources is a large fraction of a solar
(photospheric) radius.

Fig. 8.10. A moving metric type IV burst is represented by the centroid positions of its three
components {labelled A, B, and C) at different times separated by a few minutes. D and E
mark the source sites of a stationary metric type IV burst appearing at a later time. The letters
w and  refer to He flares, y and z to a dark filament and an active prominence, respectively,
which erupted and reformed during the outburst. The plus and minus signs indicate magnetic
polarity. The curves connecting the radio sources are drawn to illustrate the evolution of the
expanding magnetic loop, which appears to contain the three moving sources (from Wild, 1969).

Moving type IV bursts are frequently preceded by a faint expanding arch struc-
ture seen by white light coronagraphs to move out many solar radii. Below the type
IV source, the ejection of filament material may be observed in He. Loops with
a typical height of 3 -10* km fill up by hot material evaporating at the footpoints
and radiate thermal soft X-rays.

Figure 8.11 attempts to organize the various phenomena in a scenario, which —
if not realistic — has now survived for several years. Note that many elements are
only tentative. Energy release and acceleration is proposed to occur at an altitude
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Fig. 8.11. Suggested scenario in which electrons accelerated by reconnection are trapped, and
emit gradual hard X-ray and microwave bursts at lower altitude. The geometry also indicates
how a concomitant moving type IV event might occur. The drawing is not to scale (after Cliver
et al., 1986).

of some 10*km between the metric type IV and hard X-ray sources. Gradual
bursts are associated with eruptive prominences and moving type IV bursts. For
this reason, acceleration by reconnection is suggested. In the reconnection process
(Section 9.1.2), magnetic field lines are re-ordered and shortened. The changes
release magnetic energy and cause acceleration.

The motion of type IV sources strongly suggests radiation by particles trapped
in an expanding magnetic arch (Fig. 8.10). Periods of reduced emission have
been observed in moving type IV bursts near the onset of secondary peaks of the
gradual hard X-ray bursts. One expects an anti-correlation of type IV and X-ray
emission from an injection of new particles, temporarily filling up the loss-cone, if
the type IV radiation is caused by a loss-cone instability.

At the altitude of moving type IV bursts, the solar corona generally satisfies
wp > .. The numerical results presented in Section 8.2 then predict whistlers
and z-mode waves as most likely waves for loss-cone instability. The z-mode waves
are emitted in a cone with opening angle given by Equation (8.2.20). Two z-waves
can scatter to emit radiation (z + z’ — t) at the harmonic frequency,
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w20, (8.4.1)

where Iy is the lowest harmonic number above wyp/Qe (Eq. 8.2.23). The photon
temperature at saturation - Ty = T, derived in Equation (6.3.19) — could easily
explain the observed high brightness temperature.

The z-mode emission is relatively narrow in bandwidth as the wave frequency is
in the range wp — %Qe S w S wp. Inhomogeneity in the source, however, broadens
the bandwidth of the observed burst in realistic sources. In general, the total
bandwidth of emissions by trapped particles is therefore wide. It is not surprising
that the location of moving type IV at a given time depends on frequency; the
lower the frequency, the higher the sources.

Note that the lifetime of trapped electrons is generally shorter than the duration
of a moving type IV burst. At 80 MHz (suggesting a plasma frequency of 40 MHz,
Eq. 8.4.1), a 30 keV electron is deflected by collisions within 800 s (Eq. 2.6.20),
and its lifetime, according to Equation (8.3.2) for weak diffusion, would be about
twice as much. Assuming the loss-cone distribution to be unstable (as required for
coherent radio emission), the effective lifetime will be even shorter. The trap needs
a continuous supply of energetic electrons to produce emissions over the observed
burst durations.

B. Stationary Metric Type 1V Bursts

Late in large outbursts and usually after the moving type IV burst, a stationary,
broadband continuum is sometimes observed for several hours in solar metric radio
waves. In Figure 8.10 it was straight above the He flare site and labelled D. A
weak, oppositely polarized and apparently related source was at E. These sources
are stationary and not directly connected to the moving type IV sources. The
degree of circular polarization is usually high.

The observational evidence again points to emission by a loss-cone distribution
of electrons. The origin of these particles, however, is not clear and seems to
require continuous energy release for hours after the flare. Stationary type IV
bursts have been observed to turn gradually into noise storms (to be discussed in
Section 9.5). Noise storms are interpreted as signatures of substantial magnetic
evolution in the corona. If the two phenomena are related, stationary type IV
bursts may be considered as the manifestation of magnetic readjustment after the
expansion of a coronal arch.

C. Decimetric Bursts

For historical reasons related to instrumental developments, solar radio bursts in
the decimeter range are the least investigated and least understood of all. This is
very unfortunate since the plasma frequencies and electron gyrofrequencies at the
site of primary flare energy release are expected to be larger than 300 MHz and
possibly in the decimeter range. In addition, the radiated energy of decimetric
type IV bursts frequently exceeds their metric counterparts.
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Decimetric type IV bursts are continuum events of usually opposite polarization
to the gyrosynchrotron emission at higher microwave frequencies. For this reason,
they are likely to be o-mode emissions. The total duration sometimes exceeds one
hour, but the events are usually modulated with a time constant of typically 20-60
s. Assuming only Coulomb interactions, the deflection time of 30 keV electrons in
a plasma with v, = 400 MHz (presumably emitting harmonic radiation at about
800 MHz) is only 8 s. For the expected trap parameters, the particle’s lifetime is
of the same order. Therefore, long duration decimetric type IV bursts require a
continuous acceleration process to resupply the trap.

Decimetric type IV bursts occur after the impulsive phase, but are much more
irregular than the gradual emissions at meter waves, in hard X-rays and microwave
synchrotron radiation. A wide variety of fine structures can be superimposed on
the continuum, like broadband absorptions, fast modulations over the whole band,
parallel drifting bands of emission, intermediate drift bursts, etc. (catalogued by
Bernold, 1980). The tentative interpretation of these structures is generally based
on loss-cone emission processes.

8.4.3. DEPLETION DOMINATED

Much more frequent than decimetric type IV bursts are quasi-periodic pulsations,
series of intense, broadband pulses with high drift rate (Fig. 5.1d). They are so
abundant that one can also find the name ‘decimeter-type’ in the old literature.
The labels ‘type IV pulsations’ and ‘fast-drift bursts’ have been abandoned to
avoid confusion. A similar emission for a dMe star is presented in Figure 8.14.
Very regular solar pulsations tend to occur after the impulsive flare phase, and the
associated hard X-ray flux is often weak. The high ratio of radio to X-ray emissions
and the high degree of order of the whole event are suggestive of trapped particles.
For this reason they are most likely signatures of trapped electrons that have been
impulsively injected. Pulsations seem to occur in the depletion phase, when the
distribution of trapped electrons has settled down to a stationary state.

Pulsations are usually polarized in x-mode according to the leading spot rule
(Section 6.3.4). They have been interpreted as originating from an unstable loss-
cone distribution in a source with high magnetic field (wp & Q). Then, x-mode
maser emission at the second harmonic or z-mode emission may be dominant
(Fig. 8.5). The case for the emission process of pulsations is not yet settled.
Nevertheless, they are likely candidates for weak diffusion in self-generated waves.
It gives the opportunity to discuss the self-consistent equilibrium between particles
and waves, assuming the trapping time to be much longer than the wave growth
time.

There are two competing explanations for modulation in pulsations: MHD
oscillations in the trap and oscillations in the quasi-equilibrium of the loss-cone
instability. The former process is unrelated to the emission mechanism. Consider
particles trapped in a high density loop. Fast (magnetoacoustic) waves are also
trapped in the loop due to the lower Alfvén velocity than the ambient medium.
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The two modes of standing oscillations of fast-mode waves are depicted in Figure
8.12. In the fast kink, the loop oscillates up and down with a period

2L
J Ck
where L is the loop length, j the number of nodes, and ¢; a mean Alfvén velocity
given by

Ty = (8.4.2)

o0 i (pi it Pe cie>l/2 _ (8.4.3)
Pi + Pe

The indices ¢ and e refer to internal and external to the loop, respectively, p is the

mass density. Since only the modes with low j numbers are easy to excite, the

periods given by Equation (8.4.2) are too long to explain the observations.

kink mode sausage mode

Fig. 8.12. Fast mode oscillations of a dense flux tube.

Another possibility is the fast sausage mode (Fig. 8.12 right), where the loop
oscillates in thickness. Its period is fastest as it involves the shortest scale and
highest signal speed. It amounts to

Ty = 2mt (8.4.4)
Ck
for a loop diameter £. This period is of order 1 s and compatible with the regular
pulsations observed at low decimetric and metric frequencies. The modulation of
density and magnetic field may change essential source parameters, modifying in
turn the emission process. The details of the theory and more references can be
found in Roberts et al. (1984).
The alternative interpretation is based on oscillating disturbances of the equi-
librium between loss-cone instability (wave growth) and diffusion. Let the pertur-
bation of the velocity distribution and wave energy be given in the form

Fvit) = fo(v) + i(V)A(E) (8.4.5)
W(k,t) = Wo(k) + Wi(k)g(t) . (8.4.6)
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Equations (8.3.4) and (8.3.5) can then be approximated by equations for the equi-
librium (subscript 0) and the temporal parts of the perturbations,

dh

E =ang + a12h s (847)
i)

6—'(: = a9+ azh (8.4.8)

on neglecting quadratic terms. The coefficients have been evaluated by Aschwan-
den and Benz (1988). The terms ay; and aj2 are proportional to the quasi-linear
diffusion rate, 1/74, a21 = 0, and apg is proportional to the growth rate, «y, of
the loss-cone driven waves. Equations (8.4.7) and (8.4.8) are linear and form a
system of coupled equations of the well-known type first studied by A.Lotka and
V.Volterra in the 1920s. If a;2 ~ 0, it has oscillating solutions with a frequency

/2
Wro N (/11022 R T—Z . (8.4.9)

The periodic perturbations of the equilibrium are called relaxational oscillations.
Elaborate numerical work by Aschwanden (1990) has shown that 74 ~ 10—-40-1/+.
Since y must exceed the thermal collision frequency for the waves to grow, the re-
laxational periods must be 7, S 20 te,;, Where t.; is the electron-ion collision time
(Eq. 2.6.32). Relaxational oscillations have short periods and could explain the
rapid, irregular pulsations at decimetric frequency. They are a natural element of
any self-consistent equilibrium between unstable particle distributions and waves.

8.4.4. STELLAR EMISSIONS BY TRAPPED ELECTRONS

Emissions from stellar coronae have also received attention. Yet, how can we iden-
tify the stellar processes if we do not fully understand the solar counterparts? Some
hope comes from more extreme conditions in the relevant stellar coronae, such as
higher magnetic fields or highly relativistic particles. Most of the non-thermal ra-
dio emission of stars probably originates from trapped electrons. Gyrosynchrotron
radiation is the generally accepted explanation for the quiescent radio emission of
early-type ‘magnetic’ stars (Ap, Herbig Ae, Bp, etc.), binary systems (RS CVn,
cataclysmic variables); it is also suggested for active late-type F through M-dwarfs
and gradual flares of low polarization in these objects. Coherent emission is gen-
erally proposed for highly polarized, impulsive flares.

Here we concentrate on M-dwarfs (dM), an abundant population of small stars
(0.1 — 0.5Mg). About 80% of the stars of our galaxy and many nearby stars are
of this type. Many of them have optical flares and are called flare stars. The
majority (85%) shows chromospheric emission lines indicating magnetic activity.
They are called dMe stars and are practically identical with the population of flare
stars.

A. Quiescent Radio Emission

The more active flare stars have a quiescent radio emission (Section 1.3.3). By
quiescent we mean a component that is always present and varies over time scales
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longer than one hour. It has a relatively flat spectrum in microwaves and usually
has a low degree of polarization. Measurements with very long baseline interferom-
etry give source sizes less than two stellar diameters and brightness temperatures in
excess of 10% K. The radiation is clearly not a thermal emission of the X-ray emit-
ting coronal plasma. It is generally interpreted as optically thin gyrosynchrotron
or synchrotron emission of supra-thermal electrons. The radiation is over a thou-
sand times more intense than the quiet solar radio emission. It has no obvious
counterpart on the Sun.

The flares seen on these stars are hardly frequent enough to supply sufficient
energetic electrons. It would be puzzling if these particles could be trapped much
longer than on the Sun. The scale height (Eq. 3.1.54) is larger than in the so-
lar corona suggesting a homogeneous density in the source region of quiescent
emission. Using the observed densities, the lifetime of weak or strong collisional
diffusion (Eqgs. 8.3.2 and 8.3.3) is much shorter than the interval between flares.
The observations suggest either traps at high altitudes with particle densities many
orders of magnitude below the X-ray emitting plasma, or quasi-continuous accel-
eration in flare-like processes.

These small M stars with radii, R, between 0.15 to 0.5 Rg have strikingly
vigorous coronae, as described in Section 1.3.1. Their soft X-ray luminosity exceeds
the quiet solar value of about 1027 erg s~! by factors up to 1000. As an optically
thin bremsstrahlung, it is proportional to the emission measure, f[n2 dV. The
observations therefore indicate a much denser corona than on the Sun (average
values of several 10° em™3 have been suggested). The soft X-ray spectrum is best
described by a range of temperatures between 3 and 30 - 106 K. The upper limit,
Tmax; suggests that the ratio of kinetic energy to gravitational energy,

€kin __ kpTmax s
= TN T
€pot GM*'mp

(8.4.10)

frequently exceeds unity. Therefore, a flare star corona is not gravitationally bound
to the star. The Zeeman effect in photospheric lines suggests surface fields of sev-
eral kilogauss covering a large fraction of the star. The occasional observation of a
millimetric component (v & 10 GHz) may be interpreted as thermal gyroresonance
emission of the X-ray emitting plasma and suggests a ratio of ,/w, between 1
and 10, compatible with powerful maser emission in flares at low harmonics or
the fundamental of the electron gyrofrequency (next subsection). The magnetic
pressure thus dominates the plasma by the factor 1/8 between about 10% to 102,
where B was given by Equation (Eq. 3.1.51). As in solar active regions, the coronal
plasma seems to be confined by magnetic forces.

The remarkable coexistence of a corona with a quiescent population of rela-
tivistic electrons has already been noted in Section 1.3.3. The radio luminosity
of dMe stars can exceed 10%3erg s~! outside of flares. The efficiency of gyrosyn-
chrotron emission by solar flare electrons is about 10~7 in terms of radiated energy
per kinetic particle energy. Applying this value, the input by the non-thermal elec-
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trons would exceed the stellar coronal output in thermal soft X-rays. It suggests
a better trapping or higher magnetic fields in the stellar case (increasing the gy-

rosynchrotron efficiency) and a significant role of non-thermal electrons and their
acceleration process in coronal heating.

B. Stellar Flares

Discovered optically in 1924 by E. Hertzsprung, flares on dMe stars today cover a
vast literature. The observers agree that they appear to be qualitatively similar to
the Sun, but release 2 —3 orders of magnitude more energy than the largest solar
flares. In addition, they occur so frequently on some stars (such as AD Leonis)
that observers can afford to wait for a flare even with large telescopes or satellites
with limited access time. As one might expect, the variety of stellar flares is at

least as wide as for the Sun. We limit ourselves to the phenomena of trapped
particles.
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Fig.8.18. A flare of AD Leo observed at many wavelengths (after M. Rodond et al., 1989).

Figure 8.13 presents a stellar flare observed at many wavelengths. The top
part shows optical continuum emission. It dominates the stellar spectrum, con-
trary to solar flares, where spectral lines are more important and white light flares
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are feeble. An impulsive initial peak and a gradual phase are clearly distinguish-
able. The high-frequency microwave emission (2 cm or 15 GHz) correlates well.
A likely interpretation is gyrosynchrotron emission. Its spectral peak occurs at
high frequency due to the high magnetic field in the source (Eq. 8.1.3, Exercise
8.5). The 6 cm (5 GHz) emission does not correlate well and may originate from
a coherent process. Its peak is delayed by many minutes compatible with a source
of trapped particles and similar to solar type IV bursts. The emission and ab-
sorption processes of the ultraviolet and infrared flare radiations (0.35 and 2.2 p,
respectively) are not well understood, but seem to be related to incoherent and
probably thermal emissions.

The impulsive radio emissions are often, but not always, characterized by com-
plete circular polarization, short time scale and little correlation with optical or
soft X-ray emissions. An example is shown in Figure 8.14, presenting a case of
quasi-periodic pulsations with a pulse separation of about 0.7 s. The highest in-
tensity of this kind of bursts was measured on the same star with 500 mJy. It
is a remarkable factor of 10* higher than the strongest solar events at the same
frequency and distance.

Fig. 8.14. Dynamic spectrum of decimetric radio bursts on AD Leo observed at Arecibo. Both
vertical axes represent frequency increasing from 1395 to 1435 MHz. Top: 7 minutes of data,
bottom: enlargement of 50 s. The bright vertical bar in the top panel represents a calibration
signal (from Bastian, 1990).

The analogy of the pulsations in Figures 8.14 and 5.1d is striking and calls
for an interpretation with the same physics, but other parameters. If the emission
process is cyclotron masering of trapped electrons, evoked for the solar counterpart,
the radiation frequency is the electron gyrofrequency. The observed frequencies
then allow us to derive the coronal magnetic field, about 500 G or 250 G for the
case presented in Figure 8.14, assuming fundamental or second harmonic emission,
respectively.
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More difficult to explain is the 10° times higher flux density of the stellar burst.
The flux of a maser source is given by the number of e-folding lengths over which
the radiation can grow. Since the stellar source is probably not much bigger,
the growth rate must exceed the solar value. This may be expected from a high
density of trapped particles. Since relaxational oscillations are proportional to
1/7, but the observed modulations have similar periods, the alternative process,
MHD oscillations, seems to be the more likely explanation.

Exercises

8.1: The velocity distribution of magnetically trapped particles can for example
be approximated by the Dory-Guest-Harris distribution

f(Uz,’UJ_) = nfz(vz)fl(vl-) ’ (8'4'11)
where
1 :
fz(Uz) = m eXp(-—%?‘) s (8412)
o 1wy v
fr(vi) = W( ” ) exp( 2Ut2) . (8.4.13)

The number j represents the steepness of the distribution function. Calculate
the growth rate of whistler waves for this distribution.

8.2: The resonance condition for gyromagnetic interaction imposes a relation be-
tween particle velocity and wave vector. Prove that the resonance curve
(Eq. 8.2.15) in the semi-relativistic approximation is a circle and derive its
elements (Eqgs. 8.2.17 and 8.2.18).

8.3: High-frequency electromagnetic waves grow in populations of trapped par-
ticles with loss-cone velocity distributions. The growth rate is given by an
integral in velocity space along the curve of resonance, approximately a circle.
The resonance conditions relate the center of this circle to the propagation
angle #. Show that the angle fyax of the fastest growing wave is given by
Equation (8.2.19). Use Av, & v, to estimate the cone of emission A8, prov-
ing Equation (8.2.20) for vmax < c¢. Approximate the frequency range of
unstable waves and prove Equation (8.2.21).

8.4: Consider particles injected at the top of a loop and calculate the lifetime of
trapped electrons vs. energy. Let the trap be homogeneous with n, = 109
em™3, T, = 107 K, a loop length L = 2109 cm, a mirror ratio M = 10, and
assume that only Coulomb collisions cause diffusion in velocity space.

8.5: At what frequency would the gyrosynchrotron emission peak if a flare oc-
curred on the flare star AD Leonis (distance: 4.9 pc) with a source diameter
of 10° cm, a fast electron energy index § = 3.5, a density n = 10° em~2 and
a source field strength of 103 G? Put sind = 1/2. What would the approx-
imate flux density of this gyrosynchrotron emission be at this frequency for
an observer on Earth?
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CHAPTER 9

ELECTRIC CURRENTS

No smoke without a fire, and no magnetic field without a current somewhere in the
plasma permeated by the magnetic field. Ampere’s equation intimately ties the
magnetic field to the current density. In astronomy, the observable parameter is the
magnetic field, and currents can be inferred only indirectly. Yet, in everyday life
we generally ignore magnetic fields and are more used to the concept of currents
describing, for instance, how energy is transported and released in an electric
circuit. Currents in coronae do not flow exclusively in well-defined channels, and
the circuit analogy is of limited value. In ideal MHD (infinite conductivity, Chapter
3), currents are considered a secondary product of the magnetic field having a non-
vanishing curl. Nevertheless, currents in coronae represent large amounts of free
energy and are of great interest.

There are many causes of electric currents. Two of them will be given as
examples. In the following we study quasi-static currents and their effects (heating
and particle acceleration) independent of the origin of the currents and electric
fields. The principles of a current in a plasma and its consequences are presented
in a straightforward treatment, with little in the way of elegant formalism. Effects
that are possibly observable will be discussed in the final section with emphasis
on strong, unstable currents.

9.1. Origin of Currents in Coronae

To understand why currents exist in coronae, we have to return to the basic equa-
tion of Ampere (Eq. 1.4.2),

18E
v B—— . 1.
X J+ vy (9.1.1)

According to this equation, there are two causes for currents: a non-vanishing curl
in B and a variable E in time. The latter is important for example in waves, but
will be neglected here (MHD limit). It is interesting to note that in a plasma a
constant electric field is not a primary cause of currents. E only appears through
Ohm’s law (Eq. 3.1.45) as a consequence of a current and if the resistivity is finite
(cf. Section 3.1.3.B).

If V x B = 0, the magnetic field is current free. Since V- B = 0, the vector
identity (A.10) then yields V2B = 0. Thus the magnetic field is potential; it
means that there exists a scalar magnetic potential ¥(x,?) such that V¥ = B.

212
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Fig. 9.1. A plasma motion perpendicular to the magnetic field generates a current.

B

Potential fields have the property that their energy content, f B2?dY/(8m), is the
minimum for given boundary conditions (minimum energy theorem). In other
words, magnetic fields with the same boundary conditions, but carrying a current,
always contain more energy. The result is also true for semi-infinite fields. The
photosphere is a boundary of a corona, since the photospheric magnetic field is tied
to the plasma. The other boundary may be at infinity, where the field is usually
assumed to fall off faster than the inverse distance. More realistically, the boundary
is interplanetary space where V xB # 0 and the field forms an Archimedean spiral.
A potential field is fully determined by the perpendicular field component at the
boundaries. Since the line-of-sight component can be measured by the Zeeman
effect in photospheric lines, the perpendicular field component in the center of the
disk is well known on the Sun. The potential field is frequently used as a rough
estimate of the coronal magnetic field.

If the currents do not vanish, the total magnetic energy is higher than the
potential field energy. The difference, called free magnetic energy, is due to the
presence of currents. It can be released (for example by Ohmic heating) without
changing the vertical field components at the boundaries.

9.1.1. MHD GENERATOR
The induction equation (3.1.46),

oB .,
E+VX(BXV)_4WUV B , (9.1.2)
relates the magnetic field to plasma motion. The functioning of an MHD generator
may be imagined as a flow across the magnetic field (Fig. 9.1). The field lines are
‘frozen into the matter’ (Section 3.1.3) due to the high conductivity of the plasma.
They are swept along with the flow like bodily objects.

A current results from the non-vanishing V x B. The way the current closes
depends on the global magnetic field geometry. A rotation (vortex motion) in the
photosphere can generate a vertical current into the corona that can be visualized
as a twisting of coronal field lines. Independently, an electric field arises from
Ohm’s law (3.1.45) with E ~ —(V x B)/e. Note that the current is not driven by
the electric field, as in a laboratory wire!
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9.1.2. CURRENT SHEET

Currents are generated wherever magnetic fields of opposite polarity are brought
together. In a popular scenario, new magnetic flux emerges from the photosphere
into the corona and pushes against the pre-existing magnetic field. The field then
must change in strength and direction on a small scale where the two plasmas
meet. Figure 9.2 shows a schematic drawing in two dimensions of an idealized
case with opposite magnetic fields of the same strength approaching each other.
At the contact surface of the two symmetric flows, a current sheet forms due to
the finite curl of B.

U

central current sheet

\

ow—mode shock

plasma flow

Fig.9.2. A current sheet forms at the contact surface of two plasmas with opposite magnetic
field. For simplicity, a symmetrical, stationary reconnection geometry is shown. Regions of
currents parallel and perpendicular to the magnetic field are stippled and hatched, respectively.

Figure 9.2 represents a steady state geometry first proposed in 1964 by H.E.
Petschek for solar flares. The counter-streaming inflows meet at a central current
sheet where their magnetic fields create a current. The plasma leaves the region
at right angles to the incident direction. The outflows carry magnetic field lines
that now connect the previously independent fields of the two inflows. The global
magnetic field is said to be reconnected. Its energy is reduced, and the difference is
released into the plasma. Slow-mode shocks (to be discussed in the next chapter)
may form at the boundaries between inflowing and outflowing material, linked by
the magnetic field. Reconnection does not need to be driven from outside, but
may occur spontaneously by a resistive MHD instability such as the tearing mode
in a current sheet or in a magnetically sheared structure. The two concepts can be
unified (Priest and Forbes, 2000). Furthermore, reconnection is possible without
resistivity and collisions as recently evidenced by magnetospheric observations
(Gieroset et al., 2001).
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The current density in a current sheet is given by Ampere’s law,

¢B
4nd
The half-thickness, d, of the current sheet can be estimated from the electric field
in and out of the current sheet
E— {~(V x B)/c outside
1/0J inside

C
J=_-VxBx (9.1.3)

(9.1.4)

Faraday’s law requires that the electric fields outside and inside the current sheet
are the same. Let V| be the perpendicular inflow velocity well outside the current
sheet. Equations (9.1.3) and (9.1.4) combine to

2

~ 47V o

The conductivity o, related to the resistivity 9 by ¢ = 1/, will be calculated in
the following sections.

Much theoretical work has been devoted to studying the stationary solutions
of reconnection. The dynamics of reconnection, variable in time and space, are
being explored by laboratory experiments and numerical simulations.

In three dimensions, the inflowing magnetic fields will in general not be in
a plane (that is, not anti-parallel), but will approach each other at an oblique
angle. In the region of contact the field lines change direction like the steps of a
spiral staircase. The current flows parallel to these field lines. At the step where
the current is largest, the magnetic field is decoupled from the plasma and can
reconnect.

(9.1.5)

9.2. Classical Conductivity and Particle

Acceleration in Stable Currents

What happens if there is a weak electric field parallel to the magnetic field? Of
course, the charged particles are accelerated. This may continue until the colli-
sional friction between the species equals the electric force. Positive and negative
charges move in opposite directions.

Let us study the force equilibrium for the case of an ion. We neglect the effect of
the magnetic field (assume parallel motion) and use the frame of reference moving
along the 2z-axis (and B) with the mean electron velocity. For an ion with velocity
v, we have

B m S Av, >be _. miv

qi i At : ti’e

The friction is described by the slowing-down time, %€, due to interactions with

electrons. Using Equation (2.6.25) for the ion as the test particle and the back-
ground electrons as the field particles,

(9.2.1)
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GE = mi(l + %)ﬁ‘;a(v/m . (9.2.2)

A similar equation, (9.2.9), will be derived for electrons. Note that t&¢ # ¢&¢,

9.2.1. CONDUCTIVITY

The test particle approach of the previous paragraph is now generalized for particle
distributions. The goal is to derive the mean equilibrium velocity (to be called
drift velocity, V4) between the ion and electron populations. The conductivity is
then defined by the ratio of current density, en.Vy, to electric field.

It would be natural to use the frame of reference moving with the ions and
calculate the friction of the electrons. The G-function in Equation (9.2.2), however,
is difficult to integrate since the electron distribution includes velocities with v <«
vy as well as v > vy, Instead we use the electron rest frame as a mathematical
trick. The thermal ion velocity distribution is much narrower and usually satisfies
an approximation like, for example, v < v¢.. The G-function for ions can then
easily be approximated and integrated since ions appear as a nearly monoenergetic
beam.

For v <« w4, G(z) given by Equation (2.6.11) can be approximated by
zv/2/(3+/7). Then Equation (9.2.2) predicts a linear relation between electric field
and velocity. Such a relation is equivalent to Ohm’s law. Putting the ion velocity
v in Equation (9.2.1) equal to the drift velocity, Vg, we derive the conductivity for
weak currents from Equation (9.2.2)

i\2 sie
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It is interesting to note that the conductivity rises as T%/2; a hotter plasma is a
better conductor. On the other hand, it does not change if the plasma density is
increased, in spite of the more particles and the larger friction. The reason is the
reduced Vy — also a result of the larger number of free charges at constant current
density.

It is customary to introduce formally an electron-ion collision frequency,

3/2
) ~ 3.22-108 T3/2 20

Y 571 . (9.2.3)

i 1 2 ne InA
mi i =42 De B2 e (9.2.4)

Ve i = —_— =
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where we have put n;Z; = n. It is often written in the conventional form,

(W)’

A7y, ;

(9.2.5)

A useful relation is derived from Equation (9.2.3), viz.
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Vy T E
Ee- =3 55’5 , (9.2.6)
where nA
;In
Ep = q’Az (9.2.7)
D

is called the Dreicer field. Its physical meaning will become clear in the following.

The linear relation (9.2.3) between electric field and current density breaks
down as the drift velocity between ions and electrons approaches v;.. After a
maximum of 0214 at Vy = /2 v, G decreases, and so does the friction. For
Vg > /2 v there is no equilibrium between electric acceleration and collisions!
At a constant E, the drift increases since Equation (9.2.1) cannot be satisfied, the
current grows in time, and the conductivity increases. The critical electric field E,,
for which V; = /2 v, is the maximum field for equilibrium. It can be evaluated
from Equations (2.6.15) and (9.2.2), and amounts to

E.=0214 2 InA = 0214 Ep

Ab

InA Z;n

~ L1 2 = e
~4.32-1070 = 2o

This hypothetical threshold has a simple physical meaning. It is roughly the
field for which an average electron increases its velocity by v, within a thermal
collision time (2.6.32). Note the 1/T dependence! If initially E < E., Ohmic
heating increases the temperature and reduces E,. so that £ > E; may occur. The
Dreicer field, Ep = 4.67 E,, is roughly the electric field above which electrons are
practically freely accelerated as in the vacuum.

In reality, ions and electrons do not separate completely in velocity for E > E,
running away into opposite directions. The next section will show that unstable
waves inhibit such a ‘plasma superconductor’. The waves are driven by instabilities
of currents above some threshold density. The waves scatter the directed motion
of the current carrying particles and introduce additional friction. Such anomalous
resistivity can drastically exceed the collisional effects.

(9.2.8)

9.2.2. RUNAWAY ELECTRONS

The runaway phenomenon nevertheless does exist for certain particles, in partic-
ular electrons in one of the wings of the velocity distribution. If their relative
velocity to the ions is high (v 3> V), the friction may be smaller than the accel-
erating force, g&. These electrons are accelerated electrically until they leave the
system. High energy electrons have been found in laboratory plasmas with paral-
lel currents as predicted by this argument. Runaway is an attractive acceleration
process for the electrons in coronal currents manifest in flares and other dynamic
phenomena.

Consider now a single electron in the frame moving with the ions (Fig. 9.3).
Let E « Ep and E||B. Since collisional friction between the electron and ions



218 CHAPTER 9

f(v:)

ions

electrons

T T

Va Ur Vs

]

Fig. 9.8. Electron and ion velocity distributions separate by the drift velocity Vg due to a parallel
electric field. Electrons beyond v, run away. The figure is drawn in the rest frame of the ions.

diminishes with increasing electron velocity, there exists a velocity v, (the runaway
velocity) at which friction equalizes the electric force,

MeUp
ts" (vr)

The relevant parameter is now the slowing-down time of a test electron by field
ions. We have neglected the interactions with other electrons. Putting in the
slowing-down time (Eq. 2.6.25) for v? > Ufi, one derives (Exercise 9.1)

meAd 1/2 Ep 1/2
Vp = ( ZeE ) = Ute (-—E— . (9.2.10)

Since ions and electrons have the same v, but different thermal velocities, ion
runaway can usually be neglected.

At a constant electric field, the critical velocity for runaway acceleration does
not change through heating. The physical reason is that the collision time in
the velocity tail is independent of the background temperature (Table 2.1). More
appropriate than constant £ may be a constant current density and constant Vg;
a temperature increase then reduces E and enhances vy /vte.

The initial fraction of runaway electrons is given by the condition v > v,. The
initial density n, of runaway electrons is the integral in velocity over the tail of
the distribution. For UE > vtze and using Equations (9.2.6) and (9.2.10),

(9.2.9)

Top 1, v, .2 Ep —1.88 - 4
r (= = = = _— . 2.1
- exp[ Z(vt ) } exp[ 2E} exp[ 7 ] (9.2.11)

e €

The ratio in the exponent is large by assumption, thus the initial fraction of
runaway electrons is small. More accurate calculations do not change this result,
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unless the drift velocity is close to the thermal electron velocity and the electric
field approaches the Dreicer field.

There is also a continuous acceleration of electrons brought beyond v, by colli-
sions. The particle supply into the runaway regime has about the rate of collisions
of electrons with velocity v,. In a more detailed calculation of the runaway accel-
eration rate including the effect of the electric field on the distribution at v < v,,
Knoepfel and Spong (1979) find for v2 > vZ

Ne 0 35 e lv 2 -1

e ® ( 21) (—) ] 57, (9.2.12)
where ¢ is the thermal collision time of electrons (Eq. 2.6.31). Again, acceleration
is only appreciable if v, is close to vi.. Note that a temperature increase may
drastically enhance the runaway rate! The mechanism has been used to interpret
energetic electrons in solar flares (Exercise 9.3).

The flux of runaway electrons constitutes a current in addition to the drifting
electrons of the background. If the electric field increases so that v, /v isreduced,
the current of runaway particles increases. The total current may not necessarily
change, since it is tied to the curl of B through Ampere’s law (Section 6.1.2).
Let us assume that the total current in the sheet is not changed by the runaway
process. The runaway electrons carry more and more of the current, but the
number of electrons traversing a cross-section of the current sheet per second
remains constant. The total current therefore sets an upper limit of the runaway
rate, N , that can leave the current sheet,

N =ay < 2de cwB
e 2me
where the volume V of the current sheet is 2dLw, wis the width of the sheet
parallel to B and perpendicular to the thickness 2d, and the L is the length.
Ampere’s law has been applied in the approximation J & ¢B/(4wd).

Even for large values, say w = 10° cm and B = 100 G, Equation (9.2.13)
limits the total acceleration rate to about 1030 electrons per second. This upper
limit is not sufficient for the number of flare electrons derived from solar hard
X-ray observations (Section 6.4). Furthermore, the acceleration is limited in time
to N/N, after which a sizable fraction of the electron population in the current
sheet has gone into runaway. This time is short, if acceleration is significant. The
number problem may, for example, be solved by bringing new electrons into the
current sheet.

In addition to electron acceleration, runaway may produce consequences on a
global scale. The particles take up energy from the current, decrease resistivity by
their smaller friction and possibly change the properties of current instabilities (to
be discussed in the next section). The role of the runaway process in the dynamics
of reconnection is not yet well understood.

Electron runaway occurs in every current parallel to the magnetic field if v, <
¢. It is an attractive acceleration process for a number of cosmic phenomena,
including solar and stellar flares.

[electrons s , (9.2.13)
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9.3. Instabilities of Electric Currents

The picture of coronal currents would be incomplete without a study of the in-
stabilities of strong currents associated with an appreciable acceleration rate. As
we have seen in Sections 5.2.4 and 7.2, moving particle species — such as ions,
electrons and runaway electrons — can be in Cerenkov resonance or gyromagnetic
resonance with a variety of wave modes.

9.3.1. PARALLEL CURRENTS

Quasi-parallel currents are discussed first. They are important, for instance, in
the central current sheet of a reconnection region (Fig. 9.2). The ratio T,/T;
determines which instability dominates. We treat the likely sequence of phenomena
in a cosmic plasma where the electric field and the drift velocity, Vg, rise slowly.
Initially let T; = Te.

A. Ion Cyclotron Instability

The ion cyclotron instability has the lowest threshold for T; = T.. It is driven
by moving electrons in anomalous Doppler resonance with the L-mode (Section
7.2.2.B). The resonance condition (Eq. 7.2.24) requires

w—ku, =~ . (9.3.1)

Since the low-frequency L-mode has a cutoff at §;, w < €; < . (Section 4.3).
Electrons with resonance velocity v, ~ Q./k, = v;hﬂe /w provide energy for grow-
ing waves. For v, & V3, the wave phase velocity along B, Ugy, must be small. This
is the case for resonant L-waves in nearly perpendicular direction with frequencies
close to §2;, called electrostatic ion cyclotron waves. The threshold for Maxwellian
distributions is

Va =& 15 E V. (9.3.2)
[
In reality, the electron distribution is skewed by the electric field, and the threshold
is somewhat higher. The threshold plotted in Figure 9.4, based on calculations by
Morrison and Ionson (1982), takes this into account. It is not well established how
the instability saturates, but it is generally agreed and confirmed by experiment
that the wave energy level at saturation is low. The waves feed energy primarily to
the ions. Therefore, the main effect of the ion-cyclotron instability is ion heating.

B. Buneman Instability

If the drift velocity increases and the ion and electron distributions are displaced
from each other by more than the thermal velocities (Vg > ¥t), they can be
considered as two cold streams of particles. This produces one of the oldest known
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instabilities. In the frame moving with the ions, the dispersion relation of a two-
component plasma (Eq. 4.6.5) becomes

o (wp)? (wp)®
GRS

This equation of fourth order in w(k) has first been investigated analytically by
O. Buneman. The most unstable wave has a frequency w = w, + ¢y with

o\ /3
wr-—*(—i) wy (9.3.4)

m;

(9.3.3)

v3 ( Me )1/3w€ (9.3.5)

e = 7 2771,, P

The waves are of the beam mode (Section 4.6) and purely electrostatic. The
frequency given by Equation (9.3.4) is far below the plasma frequency. A kinetic
plasma calculation is more realistic and yields a threshold of

Va2 1.7 (vte + ’Ut,;) . (936)

Growth is slow near the threshold. In Figure 9.4 the drift velocity for v = w; is
shown for a fair comparison with the other instabilities.

The non-linear evolution of the Buneman instability saturates by quasi-linear
diffusion (Section 6.2.1) of the electrons. This forms a plateau between the original
peak of the electron distribution and the ions, bringing the system of the two
streams into marginal stability. The electrons are thereby heated to the point
where the thermal electron velocity equals the drift velocity (vie a2 Vy). Only a
small fraction of the energy, (m, /mi)l/ 8 is transferred to the ions. After some
time, the electron temperature greatly exceeds the ion temperature. This is the
starting point of a different instability, the ion acoustic type. It controls the rest
of the evolution.

C. Ion Acoustic Instability

ITon acoustic (or ion sound) waves are ubiquitous in currents near Earth. They are
ion oscillations modified by Debye shielding and have been discussed in Section
5.2.6. The growth rate of ion acoustic waves driven by an electric current has been
calculated in Equation (5.2.39). The instability threshold was given by Equation
(5.2.40). A more appropriate calculation including the effect of the electric field on
the electron distribution is shown in Figure 9.4. Details and references are given
in a review by Papadopoulos (1977).

Numerical simulations have followed the non-linear evolution of the instability.
They show that both ions and electrons are heated preferentially in parallel direc-
tion. For Vy 2 2¢;, and T, > T;, electrons receive a larger fraction of the energy,
and T./T; rises. Saturation occurs when unstable waves are scattered on ions into
different waves not driven by the current and are damped (a process known as
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non-linear Landau damping). It stabilizes wave growth at a level that has been
evaluated using weak turbulence theory. At saturation T & 10 T;. The ion acous-
tic instability can produce an equilibrium between the electric current driving the
waves and the wave turbulence causing anomalous resistivity and limiting the drift
velocity.

Figure 9.4 compares three instabilities of parallel currents. The following se-
quence of events may happen in a current sheet in which Vy increases slowly with
time. The sheet may start at point A with low current drift velocity and Te = T3,
crosses into the ion cyclotron regime at about V4 & 0.4 vte and moves to the left
(region of small T, /T;) because of the increasing ion temperature. Then it evolves
into the region of Buneman instability where T, increases and Va/vee decreases. It
settles finally at marginal stability of ion acoustic waves (point B). Note that this
scenario is only one of many possibilities, since the number of free parameters is
considerable.

T == T
unstable

* - Buneman (v = ..';,)

ion cyclotron

stable

ion acoustic

L 1

10 T./T,

=]
=]

—
[
an

Fig. 9.4. The threshold drift velocity V; of a parallel current is presented for the three instabilities
discussed in the text. It depends strongly on the temperature ratio of electrons and ions. A likely
evolutionary scenario for a current system with increasing Vy is indicated by the dashed curve
from A to B (see text).

9.3.2. PERPENDICULAR CURRENTS

In a collisionless plasma perpendicular currents are provided by drifting particles.
Guiding center motions across the magnetic field lines have been studied in Section
2.1.4. They can produce currents when different species move at different speeds or
in different directions. Perpendicular currents are often formed by ions streaming
in relation to electrons and the magnetic field.
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Perpendicular currents include gravitational currents and field curvature cur-
rents (Egs. 2.1.28 and 2.1.29). In both cases the ions move faster than the elec-
trons by the mass ratio m;/m.. An important example is the curvature of the
magnetic field in the slow shocks propagating out of the central current sheet in
the Petschek reconnection geometry (Fig. 9.2). This causes a strong perpendicular
current. Plasma motions compressing the ambient magnetic field are another and
very prolific source of cross-field currents (cf. Fig. 9.1). Such motions also result
from the outflows of most reconnection models considered for flares. The per-
pendicular component of the magnetic field gradient drives the so-called gradient
current required by Ampere’slaw, J = V x Bce/(4m).

Note that a perpendicular electric field produces an E x B drift (Eq. 2.1.26),
which does not produce currents, but moves the whole plasma transverse to both
E, and B.

Which of the instabilities is most important for cross-field ion streams and cur-
rents depends on the ratio Te/T;. The modified two-stream instability is possible
for T, & T; above a threshold Vy > ¢;. It is like a two-stream instability, but
with a modified role of the particles; the electrons are bound to the field and the
streaming ions drive the instability. The instability excites waves having a maxi-
mum energy density at k, = kj (m./ mi)l/ 2. For further information the reader is
referred to the review by Huba (1985).

The Lorentz force prohibits runaway particles accelerated in perpendicular cur-
rents. Nevertheless, the wave turbulence of these instabilities can heat both ions
and electrons to high temperatures. This will be discussed in Section 9.4.3.B.

9.4. Anomalous Conductivity, Heating,

and Acceleration
9.4.1. ANOMALOUS CONDUCTIVITY

Fluctuating wave fields can severly increase the frictional effect on drifting parti-
cles. We describe it by an effective collision time, teg. Electrostatic waves modu-
late the ion density. The colliding electron sees bunches of ions with an effective
charge-to-mass ratio much larger than qf /m;. Therefore, the diffusion constant,
Ag, defined in Equation (2.6.15) as proportional to this ratio, is enhanced and the
slowing-down time (Eq. 2.6.25) is reduced correspondingly.

Current instabilities tend to heat electrons and develop ion acoustic turbulence
(Section 9.3.1). The ion acoustic wave energy density at saturation depends only
on T, /T; and ¢;5/Vy. The effective collision time at saturation has been calculated
analytically by R.Z. Sagdeev using weak-turbulence theory;

et = Wp Te Vaoo (9.4.1)

Upon equating anomalous friction with electric acceleration, Equations (9.2.5) and
(9.4.1) yield an anomalous conductivity
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Teff = 8 — — we (9.4.2)

for parallel currents strong enough to saturate the ion acoustic instability. It
is generally called Sagdeev conductivity. Weak-turbulence theory is often used
in estimating conductivity, but it is not beyond doubt. Nevertheless, laboratory
experiments and numerical simulations confirm that the drift velocity of currents
at saturation is in the range 1 — 3¢;,, and the minimum anomalous conductivity
is typically

ot & 20wy . (9.4.3)

€

It agrees with Equation (9.4.2) and T, ~ 10 T;. The effective electron-ion colli-
sion rate becomes v & 0.2 w}. The minimum anomalous conductivity given in
Equation (9.4.3) is about a million times smaller than the classical value (9.2.3).

The collision rates of different origins - or the resistivities,  := 1/¢ — have
to be added. The ion cyclotron instability, for instance, causes an anomalous
conductivity of about 0.2 ; at saturation.

Even in a stable current it is possible that the ions are correlated. A well
known example is the turbulence created by runaway electrons. They may produce
a positive slope in velocity space in case of inhomogeneity and drive Langmuir
waves. If the wave energy exceeds the threshold given in Equation (6.2.16), the
waves collapse non-linearly and produce ion density fluctuations. The generation
of such anomalous resistivity by streaming electrons appears to operate in auroral
substorms and has been proposed for cosmic ray electrons in clusters of galaxies.
It may play the role of a trigger in flare physics.

9.4.2. OHMIC HEATING

A finite conductivity — whether classical or anomalous - dissipates energy of the
current at a rate J - E. This is called Ohmic (or Joule) heating. The energy heats
the current-carrying region on a time scale

_mekpT. _ 2 (_E_P_>2 1
VETFTE T \E) v
assuming a parallel current with J = oE and applying Equations (9.2.5) and
(9.2.6). The effective collision rate has to be used for v, ; in cases of anomalous
conductivity. The time scale for Ohmic heating is surprisingly short even for small
currents. When the temperature has risen sufficiently, an equilibrium may be
reached by radiative or conductive losses.

What happens when the conductivity suddenly drops from its collisional value
to an anomalous value? Let us first envisage a typical situation where this may
happen. Assume that the anomalous conductivity is produced by a current’s drift
velocity exceeding the threshold of the relevant instability, Va > ac;s, where a is
a constant of order 10 (e.g. Eq. 9.3.2). Ampere’s law requires that such a strong

, (9.4.4)
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current can only exist in narrow sheets or threads. A current sheet, for example,
would have a thickness of d = Be/(4wJ). For coronal values —say B = 100 G, n
=10° cm™3, T, = T; = 2 - 108 K - the thickness is only d ~ 4 - 10% cm.

If instabilities of currents occur, they generally grow faster than the inductive
time scales given by the diffusion time of magnetic fields (Eq. 3.1.48). Ampere’s
law then requires that the total current of a current sheet also changes at the slow,
inductive time scale. The total current is Jdw, where w is the width of the current
sheet and is assumed to be constant. The current density, J, therefore remains
approximately constant during the initial decrease of the conductivity, E rises by
o /e, and Ohmic heating increases accordingly. Later, the current sheet expands,
as Equation (9.1.5) requires the thickness, d, to increase by a factor o /oeg. Since
Jd = constant, the current density, J, decreases, while the electric field regains
the initial value. The heating rate per volume decreases, and the total power
released by Ohmic heating in the expanded current sheet finally reaches the initial
value. The sudden decrease in conductivity thus causes a pulse of enhanced Ohmic
heating.

9.4.3. PARTICLE ACCELERATION

A. Runaway Particles

Since low-frequency turbulence increases the collision frequency, runaway acceler-
ation is also affected by anomalous conductivity. For the important case of ion
acoustic waves it can be shown that the effective electron-ion collision frequency
scales with electron velocity in the same way as Coulomb collisions, that is, v (v)
is proportional to (v/vte)s. Therefore, the results on classical runaway simply
scale with conductivity. FEp increases with o/oesq (Egs. 9.2.3 and 9.2.7). The
runaway velocity initially does not change, since E rises by the same factor. As
E comes back to the initial value, v, increases with +/Ep, that is by the factor
V(o/oex) (Eq. 9.2.10). Figure 9.5 schematically displays the changes due to a rise
in effective collision frequency at Zg.

Anomalous conductivity reduces the region of runaway in velocity space. How-
ever, the rate of diffusion beyond v, (and therefore the runaway rate) increases
with vfjg (Eq. 9.2.12). Moreover, the runaway electrons feel a higher electric
field after a sudden conductivity decrease and may reach higher energy. A sudden
decrease of conductivity may thus cause a surge of high energy runaway electrons.

How significant is the energy released by acceleration? The energy fed into a
runaway particle is eE times the length of acceleration, L/2 on the average. The
flux of runaway particles is n,wd < v >. Therefore, the total energy released in
the form of runaway particles is

1 1
Ex —éeEL ‘npwd < v >= EITMEL , (9.4.5)

where I, is the total electric current due to runaways leaving the current sheet,
and EL is the potential difference. Note that the total Ohmic heating is IEL.
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Fig. 9.5. When the conductivity of a current sheet drops to an anomalous value near the time
to, all the sheet plasma parameters change. The evolution in time is indicated (not to scale).

Therefore, the energy going into runaway acceleration is always smaller than the
energy released by Ohmic heating as Fpyun < 1.

B. Resonance Acceleration

Instabilities of perpendicular currents have been discussed in Section 9.3.2. Their
wave turbulence, primarily lower hybrid waves, can transfer energy to the particles
in resonance. Physically, it is equivalent to emissions and absorptions of phonons.
The process is of the type of resonance acceleration and can be described by a
diffusion equation

Ofe  0fe 0 (= Ofe Ofe
5 T V% = v (D* 3v> + (6t )co]]. (9.4.6)

Lower hybrid waves propagate at almost perpendicular direction to the magnetic
field with cos 8 < (me/m;)™/2. Their phase velocity is about vy, and its component
in the z-direction,

» w w k mp
Uph = E; = -Ek—z z Vi E X UVte , (9.47)
can be sufficiently low to be in Cerenkov resonance (v, = 2x) with thermal

electrons. Lower hybrid waves — driven for instance by the modified two-stream
instability of a perpendicular current — are Landau damped on electrons. Since the
electrons are bound to the magnetic field, they are accelerated in the z-direction
and diffuse primarily into the v, tail of the velocity distribution. Equation (9.4.6)
can be reduced to one dimension (z-direction) and solved analytically in the limit
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of quasi-linear diffusion. The result is a Macdonald (modified Bessel) function dis-
tribution in v,, having enhanced tails parallel and anti-parallel to the background
magnetic field.

Electron resonance acceleration by lower hybrid waves is in competition with
ion heating. Numerical simulations show that for weak currents having Vy < 4wvy;
electron acceleration is efficient. The process can produce a large number of 1 —40
keV electrons and has been proposed for flares and in shocks (Section 10.3.3). At
relativistic velocities, the resonant wave energy is small, and acceleration is slow.
Lower hybrid waves are therefore inefficient in accelerating relativistic electrons.

9.5. Observing Currents

The observation of currents is an important goal of astrophysics. The drift between
electrons and ions can be measured directly only in planetary magnetospheres and
in interplanetary space. In more distant plasmas, one has to rely on indirect
methods. Most important are measurements of V x B. Since global currents
presumably behave close to MHD (Section 9.1.1), they are generally driven by
the curl of the magnetic field. A non-vanishing V x B indicates the existence of
free magnetic energy. We shall also discuss possible detections of current-driven
waves by radio observations. Furthermore, electric field measurements using the
Stark effect of optical and infrared lines from the Sun suggest occasional large
values, reaching up to 700 V em™? in flares and post-flare loops. They have been
attributed to oscillating electric fields of low-frequency (MHD) waves or beam
induced electric fields (Section 6.1.2).

9.5.1. CURRENTS IN THE PHOTOSPHERE

The longitudinal and transverse magnetic field components can be measured in
strong optical lines from the solar photosphere. This completely defines the local
magnetic field, and the current density in the photosphere can be determined from
Ampere’s law (neglecting the displacement current in the MHD limit). Figure 9.6
displays the line-of-sight electric currents, J; = V x B¢/ (4), flowing at the height
where the transverse magnetic field, B;, was measured. Since the observed region
was near disk center, the line-of-sight is close to vertical on the surface. Figure 9.6
(right) represents the sources and sinks of currents flowing above the photosphere.
The vertical component of the total current is 5.1-10% statamp (1.7-10'2 amperes).
Note that in a stationary corona (V =0, dB/dt = 0) obeying ideal MHD, these
currents are not associated with any electric field. They are driven entirely by the
curl of the magnetic field, from which they have been evaluated.

A and B mark the sites in Figure 9.6 (right) where repeated Ha flares started
only minutes before the observations. The sites of flare onset were above the
maxima of current density within the 2” instrumental resolution. Photospheric
currents appear to be closely related to the coronal flare sites.
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Fig. 9.8. Left: The line-of-sight magnetic field of an active region (4x4 arc minutes field of view)
on the solar disk. Solid (dashed) contours represent positive (negative) magnetic polarities. The
two thick, closed contours mark the boundaries (umbra) of the leader and follower spot. The
thick, open contour separates positive and negative magnetic fields in a small bipolar region.
Right: Distribution of the line-of-sight electric current density over an enlargement (1.6x1.6
arc minutes). Solid (dashed) contours show currents flowing out of (into) the photosphere, The
lowest contour represents a current density of 1.5.10% statamp em~2 (5-10~% A m~2); successive
levels are in increments of the same value. The same magnetic inversion line is shown to aid
orientation, A and B refer to sites of repeated flaring (from Hagyard, 1988),

9.5.2. NOISE STORMS

In 1946, shortly after his detection of the radio emission of solar activity, J.S. Hey
noted a radiation connected with the appearance of large sunspots on the solar
disk. Such long duration radio emission in meter waves (v < 300 MHz), composed
of narrowband, spiky bursts and a broadband continuum, has become known by
the name of noise storm (or type I bursts and continuum). The radiation is not
related to flares, but occurs for days after the appearance and growth of complex
active regions in the photosphere. This association suggests that noise storms are
signatures of coronal adjustments to field changes at the photospheric boundary
and of coronal evolution. Occasionally, noise storms have been observed to be
triggered by a white light transient. In Figure 9.7, the source of a noise storm
(observed at a constant frequency of 169 MHz) remains at a roughly constant
altitude, but moves with the computed intersection of the white light loop with
pre-existing magnetic fields. Noise storms also have been observed to coincide with
emerging magnetic flux visible in coronal EUV lines.

The bandwidth of type I bursts is a few percents of the centerfrequency, and
the duration is less than one second. A typical observation is shown in Figure 9.8.
The bursts occur at rates as high as one per second. Figure 9.7 suggests that their
sources are at the contact surface of emerging magnetic flux with the pre-existing
magnetic field. In general, type I bursts are interpreted as the signature of many
small steps whose cumulative effect is a gradual evolution of the corona.

There are two observational constraints which need consideration. First, noise
storms are generally accompanied by non-thermal electrons. Their most obvious
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Fig. 9.7. Noise storm source (bullets, observation of Nancay radicheliograph) and white light
transient (thin curves, extrapolated from observations of HAQ coronagraph on SMM at given
times). The origin of the plot is in the center of the associated active region (horizontal) and in
the photosphere (vertical). The noise storm follows the thick curve starting at A and becomes
stationary in the rectangle marked B (after Lantos, P. and Kerdraon, A., unpublished).

signatures are occasional storms of type III bursts at frequencies below the type
I bursts. Also, the noise storm continuum may be caused by electrons trapped
in high coronal loops. The number of storm accelerated electrons is insufficient
to produce observable hard X-rays. Second, and different from type III bursts,
type I bursts have high circular polarization, strong center-to-limb effects, and no
harmonic structure. An interpretation of the bursts by electron beams, as well as
by trapped particles alone, is therefore inappropriate.

Type 1 bursts have been proposed to be emissions of low-frequency turbu-
lence caused by unstable currents. The waves may coalesce with high-frequency,
electrostatic waves (Langmuir, z-mode or upper hybrid waves) into propagating
transverse waves at radio frequencies. Such processes have been studied in Section
6.3.2. We abbreviate them by the notation [ + A — t where [ stands for the low-
frequency waves, h for the high-frequency wave and £ for the observable transverse
(radio) wave.

The origin of the high-frequency waves are most likely non-thermal electrons.
They could have been accelerated at a type I burst site, later to be trapped (Chap-
ter 8) and to produce high-frequency waves at other burst sites. The storm contin-
uum may originate from the same high-frequency waves. The temporary presence
of low-frequency waves in localized regions may enhance the emission and produce
the bursts.
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Fig. 9.8. A so-called ‘chain’ of hundreds of type I bursts traverses a spectral band of a Zurich
spectrometer during a noise storm. White is enhanced emission.

The scenario is not yet proved, nor are the details clear. The kind of low-
frequency waves depends on the global situation. Proposed are:

e Jon acoustic waves driven by parallel currents. The model appeals to recon-
nection between the emerging and pre-existing fields.

¢ Lower hybrid waves in a model suggesting perpendicular currents in the piled-
up pre-existing fields, compressed by the weak shocks of emerging flux. The
threshold drift for growing lower hybrid waves is considerably lower than for
ion acoustic waves at T, ~ T;.

The essential feature of both instabilities and models are intense low-frequency
waves near or at saturation. This has two vital consequences, more general than
the theory of type 1 bursts: (¢) The emission process becomes optically thick for
very thin sources, as is necessary for fast drifting, unstable currents. (éZ) A high
level of low-frequency waves permits the intensity of the high-frequency waves to
be relatively weak, consistent with the lack of harmonic emission (h + h — ?).
The high-frequency waves then have the role of tracers making the low-frequency
turbulence visible.

9.5.3. RADIO EMISSION OF LOW-FREQUENCY TURBULENCE

How can current-driven turbulence emit observable radiation? Conversion of one
wave mode into another mode has been discussed in Section 6.3.2. The require-
ments for coupling between low-frequency (I) waves and high-frequency (h) waves
and efficient energy transfer [ + h — t are the parametric conditions,

wp L wp = wy {9.5.1)
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k +k, =k, (9.5.2)

(Egs. 6.3.13 and 6.3.14). Since w; < wy, the emission is at w; & wp, and is referred
to as fundamental emission. The dispersion equation of each wave mode relates
frequency and wave vector. Considerations similar to those of Equations (6.3.7)
- (6.3.9) for the conversion of Langmuir waves into transverse waves suggest that
in general |ks| < [k;| and |kp|. Therefore, k; &~ —kp, thus observable radiation
is generated by the coalescence of oppositely directed waves with similar wave
numbers.

The rate of photon generation is given by Equation (6.3.15). It also contains
absorption losses. The transition probability, w'™, is derived from the second-order
terms in the wave equations. The emissivity, 7, and the absorptioncoefficient, ,
for transverse waves are then given. They are similar for ion-acoustic waves and
for lower hybrid waves interacting with Langmuir waves (the calculations have
been done for unmagnetized high-frequency waves for simplicity). The absorption
coefficient of this process has been evaluated by Benz and Wentzel (1981) to be

Krb Wp Wiew

¢ nkgT

where W[, is the total energy density of the low-frequency wave integrated in

k-space. With the low-frequency wave energy density at saturation (Section 9.4),
optical thickness unity is achieved over a distance of a few meters!

For an optically thick source, the photon temperature, 73, can be derived
similar to Equation (6.3.19) with the result

[em™?], (9.5.3)

hwt N[Nh
Tp= — ———— 9.5.4
t kg N;+ Np ( )
N being the spectral quantum density defined in Equation (6.3.3),
N(k)hwyx = kpT(k) = W(k) . (9.5.5)

Equation (9.5.4) has a surprising consequence. The photon temperature of the
emitted radiation (and therefore the source intensity) is determined by the wave
mode with the lower quantum density, although the absorption occurs via the
waves with the higher density! In particular for Ny < N;, Equations (9.5.4) and
(9.5.5) give

huwp (2m)® wh,
. =T, =~ —_tot
Pt R k2 Ak,

Wave anisotropy (solid angle {2) and a narrow spectral range (Akp) have been
assumed on the right side of Equation (9.5.6). Of course, the total wave energy
density, W, only includes high-frequency waves that satisfy the parametric con-
ditions (9.5.1) and (9.5.2) and have low-frequency interaction partners.

Equation (9.5.6) provides a simple way to estimate the brightness temperature
of a source. Inversely, it says that the observed brightness temperature of type I

T

(9.5.6)

14
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bursts — typically 10'* K — is caused by a high-frequency wave density about 10*
times the thermal value (given in Eq. 5.2.43 for Langmuir waves). These waves
indeed cause no detectable harmonic emission (Exercise 9.5).

9.1

9.2:

9.3:

94

9.5:

Exercises

The frictional drag of the ions on a fast electron decreases with increasing
electron velocity. Calculate the stagnation velocity, v, where friction equals
the electric force of a field E parallel to B. Prove Equation (9.2.10) and show
that ions and electrons have the same .

Currents have been proposed to heat the corona. Calculate the electric field
driving a parallel current that balances thermal conduction loss by Ohmic
heating. Approximate thermal conduction by

4
0& . MeMeVe

9 -1, -3
35 Vte E lerg sT'em ™7, (9.5.7)

where L is the length of the loop (take 10%°cm); v, is the classical, thermal
electron-ion collision frequency, and £ is the thermal energy density. Let
T = 10%°K. Note that this scenario is too simplistic for a realistic model of
coronal heating!

Runaway electrons have been suggested for the non-relativistic energetic
electrons observed in solar and stellar flares. Let us assume a reconnection
model (Fig. 9.2) with an electric field parallel to B in the central current
sheet. Calculate self-consistently the initial runaway ratio and steady-state
acceleration rate of two plasma flows with opposite magnetic fields of 100
G approaching each other with a speed of 10* cm s~1. Assume an electron
density of 101 cm~2 outside the current sheet; 10'3 cm~2 inside, a length and
width of 10° cm each, a temperature of 108 K and use Coulomb conductivity
(Eq. 9.2.3). Compare the derived acceleration rate to the observed rate
(Chapter 6)!

An electric field parallel to B accelerates runaway electrons. If the electric
field is too strong, the current is unstable and drives waves changing the
friction between runaways and background. At T, = Tj, the condition for
stability is Vg < 0.4 Vie. Consider first 100 keV electrons to be accelerated
over a length of 10° ¢cm in a current channel with density 108 em™3, What
is the upper limit on the temperature compatible with stability? Secondly,
calculate the energy achieved by runaway acceleration in a current sheet with
Vi = 10~ %ve, T, = 2 - 108 K and over the same length.

Type I radio bursts of solar active regions have been interpreted as emissions
of intense low-frequency waves coupling to alow level of high-frequency waves.
Use the observed absence of harmonic emission to derive an upper limit on
the phonon temperature of the high-frequency waves. Observations show a
ratio of harmonic to fundamental flux densities, Fy/Ff < 10~%. Harmonic
emission is expected to be optically thin, fundamental emission is optically
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thick. Use the Langmuir wave approximations of Section 6.1 for the high-
frequency waves and assume an isotropic distribution with k,, = kp and
Ak = k. Neglect absorption and refraction effects and take for example
T, =2-10% K, n. = 108 cm~3 and a source thicknessof 10* cm.
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CHAPTER 10

COLLISIONLESS SHOCK WAVES

A shock may be defined as a layer of rapid change propagating through the plasma.
In its rest frame, the shock is approximately invariable in time and is marked by
a rapid transition of parameters from the medium ahead (also called upstream)
to the medium behind the shock (downstream). A simple example of a shock
occurs when a plane piston moves at high velocity into a homogeneous plasma
at rest. A shock develops ahead of the piston between the piled-up plasma and
the undisturbed plasma. The shock propagates at a velocity similar to or higher
velocity than that of the piston. Another example is a wave (or a pulse) with an
amplitude so high that the wave velocity of the crest is faster than the velocity of
the dip. Small disturbances thus travel faster on the wave crest, overtake it and
add in front of it. The wave profile steepens in the front of the wave crest and
develops into a shock (like an ocean wave approaching a sloping beach steepens
and finally breaks).

A characteristic property of shocks is the dissipation of energy and increasing
entropy as it moves through the plasma. The region of energy dissipation, called
the shock front, is generally extremely thin compared to the lateral extension. It
is often approximated by a surface.

The shock structures emphasized in this chapter are those that occur in low-
density, fully ionized plasmas — such as coronae — where the collisional mean free
path is much longer than the width of the structure. Momentum and energy of a
disturbance are transferred across the shock by electric and magnetic fields, and
waves. Such collisionless shock waves are produced by numerous violent processes
in coronae, and in interplanetary and interstellar space. The eruptions of a coronal
prominence or, on a smaller scale, of a surge or a spicule, are likely to generate a
disturbance that propagates ahead and into the corona. Shocks are predicted in
the outflows expelled by the reconnection process. Solar flares can produce shocks
reverberating throughout the heliosphere. Strong collisionless shocks are conspicu-
ous by associated particles, some of them — as in supernova remnants — accelerated
to highly relativistic energies. Most of our knowledge on the physics of collisionless
shocks, however, comes from much closer to home: spacecraft have gathered a rich
collection of data at the Earth’s bow shock and in the interplanetary medium over
the past three decades.

In the logical sequence from simple to complex plasma phenomena, non-linear
waves and shocks claim the final position. The field of collisionless shocks is too
vast to be covered adequately in this limited space. We give here some fundamen-
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tals and concentrate on the astrophysically most interesting aspects of particle
acceleration and heating.

10.1. Elementary Concepts

The basic equations for shocks are the same as for any plasma phenomenon: the
Boltzmann equation (1.4.11) — or the Vlasov equation (5.2.1) for the collisionless
case — and Maxwell’s equations (1.4.2) — (1.4.5). As in Chapter 3 on linear waves,
conservation of mass, momentum, and energy densities can greatly facilitate the
treatment of shocks if the velocity distribution of the particles is such that the
conserved moments can be analytically computed. Here, the theme is not the con-
servation of an equilibrium state being slightly disturbed by a wave, but the focus

is on conservation laws in the large-amplitude transition of plasma parameters at
the shock.

10.1.1. TYPES OF SHOCKS

There is an impressive variety of shocks in nature. In the classical hydrodynamic
shock, the disturbance is propagated by collisions. A conducting gas with a mag-
netic field and (collision-dominated) Maxwellian particle distributions — described
by the magnetohydrodynamic (MHD) equations — has three types of shock solu-
tions in analogy with the fast, intermediate (Alfvénic), and slow MHD modes of
linear waves. Correspondingly, the MHD shock description classifies fast-mode,
intermediate-mode, and slow-mode shocks. They are usually abbreviated to fast,
intermediate, and slow shock. Figure 10.1 depicts the three possibilities of the
magnetic field orientation behind a shock moving at an oblique angle to the mag-
netic field of the plasma ahead.

downstream upstream  downstream upstream  downstream upstream
o 0 " ;
— % i ¥
y \E
e
I \ ] / \\ \ i~
~ \ \
2\ ; 1-‘
~\\ —
N\ i g
slow-mode intermediate-imnode fast-mode

Fig. 10.1. The changes in magnetic field direction (arrow) from ahead {upstream) to behind
(downstream) an MHD shock are characteristic for its type.
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In all shocks, the component of the magnetic field normal to the shock front is
continuous across the shock. This assures continuity of field lines. The component
of the magnetic field tangential to the shock front increases across fast shocks,
decreases across slow shocks, and remains equal for intermediate shocks.

MHD shocks travel faster than the linear MHD modes. In the limit where
the compression ratio of downstream to upstream density approaches unity, the
fast, intermediate, and slow shocks reduce to the corresponding linear waves and
propagate at their phase velocities (Fig. 3.1). Similar to the linear wave modes,
only one type of MHD shock can propagate perpendicular to the magnetic field,
namely the fast shock.

The thickness of an MHD shock is limited by the distance to dissipate the
energy. We estimate it in two thought experiments. (%) In a non-magnetic situation
(such as an acoustic (slow) shock moving parallel to the magnetic field ahead), the
scale of energy dissipation is roughly the mean free path of thermal particles.
Physically, this is the approximate distance the plasma behind the shock can
influence the plasma ahead and vice versa. For an interplanetary density of n. =~ 10
em~3 and a temperature of T’ ~ 10°% K, the non-magnetic shock thickness would
be more than an astronomical unit. It is reduced by a factor of cos#, if there is
an angle @ between shock propagation and upstream magnetic field. Even that is
many orders of magnitude longer than is actually observed.

(#4) Another form of energy dissipation is Ohmic heating due to finite con-
ductivity. It may be relevant for shock propagation nearly perpendicular to the
magnetic field (to be called quasi-perpendicular shocks). If it dominates, the shock
thickness Az can be estimated in the following way. The heating rate is

o _r
8t o

The current density may be approximated from Ampere’s law and the magnetic
fields ahead and behind the shock. Typical coronal values suggest an incredible
shock thickness of some 10~ c¢m (Exercise 10.1). This is smaller than important
plasma length-scales, such as the ion gyroradius or the Debye length, and cannot
be realistic either.

The thought experiments demonstrate that a description using Coulomb colli-
sions is generally inadequate for the physics within the coronal shock layer. Kinetic
plasma processes, and in particular collisionless waves, cause faster interactions be-
tween the upstream and downstream plasmas. This reduces effectively the mean
free path and increases the heating rate (10.1.1). If the dominant dissipation
mechanism is known, an order-of-magnitude estimate of the shock thickness may
be obtained by equating energy input and dissipation rate in the rest frame of the
shock.

The major variety of collisionless shock fronts may be called turbulent. They
correspond to non-linear structures for which no single wave mode solution (col-
lisional or collisionless) exists. Collisionless waves are driven by small-scale pro-
cesses, such as unstable electric currents and beams. The interaction of the wave
turbulence with particles simulates collisions. In effect, this causes an MHD-like

(10.1.1)
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shock phenomenon, where the width of the turbulent layer takes the role of the
mean free path. It is therefore not surprising that MHD considerations often lead
to quantitatively correct results by using some anomalous conductivity. In many
coronal shocks, the electron and ion temperatures do not equilibrate within the
shock, or the stresses between the media ahead and behind the shock may be
transmitted entirely by non-thermal, energetic particles. Such cases can obviously
not be approximated by MHD.

The different mobility of electrons and ions being compressed creates charge
separations and electric fields. The electric potential of collisionless shocks can
reflect ions approaching the front from ahead. Quasi-perpendicular shocks reflect
ions at an appreciable number if the Alfvénic Mach number, M4 := Vi/c4, ex-
ceeds a threshold (between about 1.1 and 2.2, depending on the upstream plasma
parameters). Vi is the shock velocity relative to the upstream medium. Such
strong shocks are called supercritical Their observational characteristic are ion
streams in the region ahead of the shock causing intense low-frequency electromag-
netic turbulence in a region called the foot of the shock (Fig. 10.3). The global
shock structure changes at the threshold to supercritical behavior. In subcriti-
cal shocks, the energy is mainly dissipated by resistivity and most of the heating
goes into electrons. Heating of both ions and electrons takes place in supercritical
shocks as the wave profile breaks (i.e. ion reflection sets in) and other dissipation
mechanisms, such as viscosity appear.

A further distinction of shocks is frequently made according to their driving
agent. The extreme models are called blast wave and piston-driven shocks. The
blast wave limit considers an impulsive deposition of mass, energy and momentum
that is short compared to the propagation time. The input is an explosion, whose
effects then propagate through the corona or interplanetary medium as a shock
front. After the explosion, the flow at the site of explosion is soon exhausted
and does not propagate to the point of observation. The observer only sees a
disturbance passing by. In the driven shock, the hot material continues to be
ejected from the source and follows the shock front. This case resembles the flows
in a classic laboratory device called shock-tube, where a piston is driven into a gas.
Astrophysical examples of pistons include destabilized magnetic loops or eruptive
filaments, flare material, and supernova ejecta. Observations of the kinetic energy
flux following immediately the passage of a shock front can distinguish the two
types. At a given point of observation, the energy flux decreases with time behind
blast waves; for driven shocks it rises. In interplanetary space, where shocks and
energy flux can be observed, intermediate cases have also been reported.

In summary, shocks can be classified according to:
(1) particle velocity distribution: MHD or collisionless;

(2) angle between shock-normal and upstream magnetic field: quasi-perpendicu-
lar or quasi-transverse;

(3) ion acceleration: subcritical or supercritical;

(4) driving agent: blast wave or piston driven.
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10.1.2. CONSERVATION EQUATIONS (MHD SHOCKS)

Consider a shock in its rest frame (Fig. 10.2). The plasma moving into the shock
from upstream (right) leaves the shock layer downstream (left) at a different,
smaller velocity. In equilibrium and in absence of sources and sinks, the inflowing
mass, momentum, and energy must equal the outflowing values. It is instructive to
further simplify the mathematics by assuming the MHD approximations (Section
3.1.3), implying that the velocity distributions ahead and behind the shock are
Maxwellian and T, = ;. We shall show in this section how the three conservation
equations then determine the downstream state entirely in terms of the shock
velocity and the conditions ahead.

o

Fig. 10.2. A normal incidence frame of reference can be defined, in which the shock is at rest, the
upstream velocity is normal (Vz1 = V1), and the magnetic field is in the (z, z)-plane (implying
By1 = 0 ahead of the shock).

Let the shock be stationary and homogeneous in the % and z directions of the
coordinate system depicted by Figure 10.2. The normal incidence frame is one of
the rest frames of the shock, moving along the front such that the inflow is normal
to the front. It will furthermore be assumed that the mean velocities of the species
are equal and that there is only one ion species, having a density n; = ne.

The MHD equation of continuity (3.1.40) is integrated in the z-direction from
an arbitrary point 1 sufficiently far in the upstream medium through the shock to
a point 2 downstream. The result, by partial integration, is

P1 i = P2 Va2 s (10.1.2)

where Vi3 = V3 is the shock speed. The equation expresses that the inflowing
mass per unit area equals the outflow. An equation like (10.1.2) is called a jump
condition. Since the regions ahead and behind the shock are assumed to be homo-
geneous, the subscripts 1 and 2 refer to the general conditions before and after the



SHOCK WAVES 239

shock. In a compression shock p2 > py, thus V3 > Vig, and the incoming plasma
is decelerated at the shock. The opposite would not be invariable: an expansion
shock flattens as it propagates and finally disappears. It is not of interest here.

The conservation of momentum is described by the vector equation (3.1.50).
Integrating the z-component over the z-direction, one derives again by partial
integration

B2 2
AV +p+ 52 = pVo+pat+ 35
The equation expresses pressure balance between the upstream and downstream
plasmas. Note how the incoming energy is converted into heat and magnetic
energy.
It has been used in Equation (10.1.3) that Ampére’s equation requires Bys = 0,
and that the conservation of the y-component of momentum density results in
V2 = 0. The conservation of the z-component of momentum yields

(10.1.3)

Bmlel BmZBz2
= - Ve . 14
y y p2Ve2Vaa (10.1.4)
Energy conservation requires that the energy flow through the shock is constant.
The flow is composed of kinetic energy, ¥, % [ mav®vfa(v)d®v, and electromag-

netic energy, E x Be/{4m). The conservation of the z-component requires

2

B? B?
[5p1 + p1 V4 + 27: Vi = [Bp2+p2(VL +V5) + -2—;3]‘@2 -

From the absence of magnetic monopoles (V - B = 0) follows

Ba:ZBz2

> Va2 . (10.15)

By = By = B, ) (1016)

and from Faraday’s law (using V x E = 0) combined with E = —(V x B)/c one
derives

“le = Vz2Bz2“Vz2Bm . (10.1.7)

Equations (10.1.2) — (10.1.7) relate the downstream parameters to the upstream
state. They are generally called Rankine-Hugoniot relations. There is a general
solution for each downstream MHD parameter in terms of upstream values. Since
it is rather intricate and not instructive, we shall consider here three special cases.

If the shock speed is extremely high, the upstream energy density is dominated
by the kinetic energy. Neglecting upstream magnetic and thermal energy density
in Equation (10.1.3), the Rankine-Hugoniot relations reduce to

Vo P1

= o~
= ~

10.1.8
Vi p ( )

=] -

and
D2 = 3P2Vz22 (10.1.9)
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(Exercise 10.2). Surprisingly, Equation (10.1.8) states a maximum compression
ratio for strong shocks. Equation (10.1.9) expresses that the fraction of initial
energy converted into thermal energy is 9/16 and is independent of the shock
velocity. This heating is independent of the processes taking place in the shock
layer as long as they yield Maxwellians and 7, = T;. Heating is one of the prime
reasons for interest in shock waves, both in the laboratory and in the universe, as
it provides a controlled means of producing high-temperature plasmas.

For perpendicular fast-mode shocks (Byy = Bgg = 0), the Rankine-Hugoniot
relations simplify to

V1 N2 Bzz - g

. 2 232 1/2
(1+ 5p . 5B% ) + ,1} . (10.1.10)

Voo _m _Ba 11 5m 582,
p1V12 87T/01Vl2
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pVE o 8rp Vi) O wpVE

Equation (10.1.4) requires that V,; = 0. A compression shock only exists if
Ve2/Vi < 1, thus from Equation (10.1.10)

/S
V Cs1 + Ca1
M is called the magnetoacoustic Mach number. The sound velocity, ¢, and the
Alfvén velocity, ca, have been defined previously (Eqgs. 3.2.12 and 3.2.13). Their
combination in the denominator is the magnetoacoustic speed (Eq. 3.2.24). Equa-
tion (10.1.11) expresses that the shock must move faster than the magnetoacous-
tic speed in the upstream plasma. Condition (10.1.11) can be inverted to give
Vaez < /(% +¢%,). The physics of these conditions is that fast-mode distur-
bances in the downstream region reach the front and pile up; the front, however,
cannot discharge into the region ahead. The strong shock jump relations (10.1.8
and 10.1.9) are valid for M > 1.

The ratio, B, of thermal to magnetic pressure (Eq. 3.1.51) controls the influence
of the terms in Equation (10.1.10). For f# <« 1 — as in the solar corona — the
magnetic pressure dominates, and the relevant Mach number is approximately the
Alfvénic Mach number, M &~ M4 := Vi /ca1.

Shocks propagating parallel to the magnetic field are particularly simple as the
magnetic field terms drop out of the Rankine-Hugoniot relation (10.1.10). The
jump conditions are purely hydrodynamic and identical to compression shocks of
the sound mode. The shock condition (10.1.11) becomes M = Vi /¢, > 1.

M= >1 . (10.1.11)
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10.2. Collisionless Shocks in the Solar System

Cosmic shock theories were historically derived for hydrodynamic shocks in neutral
gases. When the first evidence of shocks in the solar corona was identified in
coronal radio type II bursts by R. Payne-Scott and coworkers in 1947, it was not
clear that collisionless plasma waves were the source of the radio emission, nor
was it known that they constitute an important part of the shock phenomenon.
Soon after, T. Gold postulated shock waves propagating into interplanetary space
and causing aurorae at Earth. Ten years later the IMP-1 satellite detected the
bow shock of the Earth in the solar wind and opened a nearby testing ground for
theories of collisionless shocks. Since then the fields of solar, interplanetary and
planetary shocks have interacted fruitfully and are now growing together. Here we
focus on fast-mode shocks, associated turbulent waves, and particle acceleration.

For all known shocks in the interplanetary medium, the population of acceler-
ated particles carries relatively little mass, momentum, and energy, and therefore
has a negligible impact on the large-scale dynamics. The macrostructure can be
described approximately by single-fluid MHD equations (Section 10.1.2). Never-
theless, the single particle physics and collisionless processes — although of second
order in the solar system — are important in astrophysics (in particular for cosmic
ray acceleration). The kinetic microphysics has received great observational and
theoretical attention for this reason. This overview of observations of shocks aims
at a basic understanding of the most important kinetic processes.

10.2.1. PLANETARY AND COMETARY BOW SHOCKS

A collisionless shock forms as the super-Alfvénic solar wind hits a planet’s magne-
tosphere. It is called bow shock in analogy to the non-linear waves forming at the
bow of a boat moving faster than the surface gravity waves of water. The analogy
should not be taken too literally since the wind flowing from the Sun carries the
interplanetary magnetic field. This super-Alfvénic flow hitting an obstacle yields
an illustrative example of a magnetic piston-driven shock. The kinetic shock phe-
nomena are controlled by the magnetic field and strongly depend on the direction
of the upstream field.

Figure 10.3 outlines the geometry of a bow shock for a planet with its own mag-
netic field. As qualitatively expected from MHD considerations (Section 10.1.1),
the shock is much thinner where it is quasi-perpendicular (near A) than where it
is quasi-parallel. Intense magnetic field fluctuations (indicated by wavy lines) are
ubiquitous in the region ahead of the quasi-parallel shock. The various regions
in the Earth’s bow shock have been investigated extensively by orbiting satellites.
Other spacecraft have flown through the bow shocks of nearly all other planets
with similar results. Marked differences have only been found in bodies without
magnetospheres (such as Venus, the Moon, and comets).
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Fig. 10.8. A collisionless shock (dashed curve) forms as the solar wind impinges on the magneto-
sphere of a planet such as the Earth. The two plasmas and magnetic fields are separated by the
magnetopause (thick curve). The points A and B mark the locations where the magnetic field
relative to the shock normal is perpendicular and parallel, respectively. The magnetic field is
compressed and variable in the shock. Energetic electrons and electron driven waves are observed

in the electron foreshock C. Accelerated ions are unstable to magnetoacoustic waves forming the
foot of the shock (or ‘ion foreshock’) D.

A. Non-Thermal Particles

Typically, 1% of the solar wind energy impinging on the Earth’s magnetosphere is
transferred to super-thermal particles in the upstream region. Most of the energy
is taken up by ions. There are several particle populations distinct by energy and
angular distributions.

e The population of reflected ions is most important: they form a steady field-
aligned beam in the sunward direction with a velocity of about —V; in the
frame of the shock (or a few keV). The ions are found on interplanetary field
lines that are nearly tangent to the shock surface and connected to the bow
shock at point A in Figure 10.3. (In other words, they are a result of the
quasi-perpendicular shock.)

e An ion population having a broad energy distribution (with energies beyond
100 keV) is also observed. It is nearly isotropic and highly variable in density.
These diffuse ions may (at least partially) originate from the above ion beam
by quasi-linear diffusion (Section 7.3.3). Their energy density is comparable
to that of the reflected ions. As an alternative, the theory of acceleration by
quasi-parallel shock processes has also received wide support. The diffuse ions
are observed downstream (anti-Sunward) of the reflected ions (in the upper
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right corner of Fig. 10.3), almost filling the entire ion foreshock region. In
terms of total energy, they are the dominant non-thermal particle population.

e Electron beams of 1 — 2 keV per particle are observed mainly on interplane-
tary magnetic field lines that are newly connected to the bow shock (electron
foreshock, region C in Fig. 10.3). These field lines are nearly tangential to the
shock front (point A in Fig. 10.3). Presumably, the electrons are accelerated
where the field lines meet the shock in the quasi-perpendicular region. Be-
cause the particle velocities for these energies are much higher than the solar
wind speed, energetic electrons can be found far upstream.

e The background electron distribution has a super-thermal tail in the sunward
direction between the shock and the tangential field line.

¢ Electrons and protons with energies > 100 keV have been reported. They may
also be a part of the electron beam and the diffusive ion populations, respec-
tively. Compared to the other non-thermal particles, they are energetically
unimportant.

B. Upstream Waves

The various non-thermal particle populations in the upstream region represent
sources of free energy. They can drive many types of waves. The relation between
observed waves and driving particles is not always clear.

Figure 104 displays the waves measured by a spacecraft traversing the Earth’s
bow shock from the solar wind (upstream) into the magnetosheath (region between
shock front and magnetopause, cf. Fig. 10.3). The ordinate axis is observing time.
The satellite moves at 83 km per minute. The amplitude of the oscillating electric
and magnetic fields are shown in many channels at a large range of frequencies
(top and middle). The magnetic field (given in Fig. 10.4, bottom) jumps by a
factor of 3 from upstream to downstream. In the shock region, the overshoot even
reaches 4.8 times the upstream value.

Most energetic in the absolute scale are large amplitude, low-frequency waves of
the fast magnetoacoustic type (i.e. combining magnetic and density compressions
like the MHD mode derived in Section 3.2.3). They are most prominent in the
shock and downstream regions of Figure 10.4. Nevertheless, they also dominate
energetically in the upstream plasma. As the waves are strongly correlated in
time and space with the diffusive ions, the ions seem to be the source of the waves.
An attractive possibility is the electromagnetic instability of ion beams (Section
7.3.1). As the solar wind moves faster than these waves, the waves are convected
into the shock front and influence its nature. Also prominent (see Figure 10.4)
but much weaker, are whistler waves, which may have several sources, including
streaming ions and transverse electrons (Section 8.2.1).

Electron plasma waves near the plasma frequency are detected throughout the
foreshock region. Their source is at the boundary of the electron foreshock. The
waves correlate with the electron beams and have phase velocities of 1 — 2 - 10°
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Fig. 10.4. The Earth’s bow shock excites many wave modes. The wave electric (top) and mag-
netic (middle) flelds are shown versus time as the ISEE-1 satellite traverses from the upstream
into the downstream regions. The distance R from Earth center is also given in units of Earth
radii. The spacing between frequencies is logarithmic. The plasma frequency and gyrofrequency
are indicated by dashed curves. The amplitude scale is also logarithmic in each channel, ranging
from the background to a factor of 1019 (100 dB). The background (DC) magnetic field strength
is presented in the bottom panel in units of nanotesla (= 10-5G). (After D.A. Gurnett, published
in Tsurutani and Stone (eds.), 1985.)

cm s~! corresponding to the observed electron energies of a few keV. A likely

mechanism is the bump-on-tail instability (Section 5.2.4). In addition, ion acoustic
waves, caused apparently by the diffusive ions, are frequently observed in the range
0.1-10 kHz (Fig. 10.4, labelled ‘electrostatic noise’), upstream of the quasi-parallel
shock region. At even lower frequencies ( < 50 Hz), Figure 10.4 shows unidentified
broadband and impulsive electrostatic emissions. In observations near the quasi-
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perpendicular shock region, lower hybrid waves have been identified. They may
be driven by reflected ions.

Distant spacecraft in the upstream solar wind have observed propagating elec-
tromagnetic radiation originating from the bow shock. Both the fundamental
(at about the plasma frequency) and the harmonic emission have been detected.
The bandwidth of the harmonic is very narrow, sometimes less than 3% of the
center frequency. Two emission mechanisms have been proposed: (i) Langmuir
waves may be driven unstable by the electron beams accelerated by the quasi-
perpendicular shock. They could generate radio emission much like a solar type
III burst (Section 6.3). (%) Alternatively, a likely electron acceleration mechanism
(to be discussed in Section 10.3.1) produces a loss-cone distribution. As in the
solar wind wp/Q. ~ 40, the theory presented in Section 8.2 predicts instability for
z-mode and upper hybrid waves (Eq. 8.2.23). The coupling of such waves, or an
upper hybrid wave with a low-frequency wave then could produce radio emissions
as in solar type IV bursts (Section 8.4.2), but from a small, narrowband source.

Finally, Alfvén waves have been discovered far upstream of bow shocks. They
play a particularly prominent role in the shocks forming ahead of comets. As
cometary nuclei are small and have a negligible magnetic field, comets generate
shocks in a different way than planets. Sunlight evaporates atoms and molecules
from the comet’s surface, and solar UV radiation ionizes them. A plasma forms
(called ionosphere), that cannot be penetrated by the solar wind (property of
frozen in flux, Section 3.1.3). A few neutral atoms escape beyond the shock front
between the cometary ionosphere and the solar wind. Ultimately ionized, they
form a counter-streaming ion beam in the solar wind. Such a beam is prone to
the classic electromagnetic ion beam instability of Alfvén waves (Section 7.3).

10.2.2. INTERPLANETARY SHOCKS

Interplanetary space is furrowed by shocks, in particular at distances beyond 1
AU from the Sun. Here we concentrate on the most abundant shocks, the fast-
mode shocks produced by coronal mass ejections (CME). CMEs are observed by
white-light coronagraphs and will be discussed in the next section.

The phenomena found in interplanetary travelling shocks are similar to the
bow shocks ahead of planets. Not every interplanetary shock has all the bow
shock features, however. The bow shocks comprise quasi-perpendicular as well as
quasi-parallel sections; interplanetary shocks may have smaller curvature with less
variation in shock angle. Generally, the density of non-thermal particles accel-
erated by interplanetary shocks is smaller, but the particles reach higher energy.
Interplanetary shocks generally have a lower Mach number and a much greater
spatial extent.

Interplanetary shocks are usually supercritical. They reflect and accelerate
ions. The number of accelerated ions increases with Mach number; for quasi-
parallel shocks, it was found to increase also with the upstream wave level. These
relations are suggestive of first-order Fermi acceleration to be discussed in Sec-
tion 10.3.2 (scattering between converging waves or shocks). Quasi-parallel shocks
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cause non-thermal ions and ion acoustic turbulence millions of kilometers up-
stream.

Radio emissions are of particular interest as they yield information by remote
sensing. Interplanetary shocks with detectable radio emission belong to the most
energetic shocks produced by the Sun. They are associated with powerful flares
and with the most massive and energetic CMEs. The radio emission decreases
with distance from the Sun and usually disappears before about 0.7 AU in the
background noise. Some shock-associated radio emission is produced by electron
beams escaping far into the upstream region. Other emissions seem to originate
near the shock. All radio sources, however, are located ahead of the interplanetary
shock.

10.2.3. CORONAL SHOCKS

In the corona we can study much more powerful shocks, in which certain features
are more pronounced. The radio emission alone (energetically a very minor phe-
nomenon) emitted by a strong coronal shock sometimes exceeds the energy flux of
all non-thermal particles upstream of the Earth’s bow shock. Coronal shocks are
also optically observable in Thomson scattered white light and by their footprints
in the chromosphere (Moreton wave). Optical images give a global view of the
phenomenon (Fig. 10.5), complementary to spacecraft observations probing the
details along their trajectory.

A. Coronal Mass Ejections

Thomson scattering of electromagnetic radiation on free electrons is proportional
to electron density. Density enhancements in the corona can be observed by coro-
nagraphs (optical telescopes with an occulting device blocking the direct sunlight
from the photosphere). Figure 10.5 shows material ejected by a coronal process. It
produces a density enhancement that is observable on its way through the upper
corona into interplanetary space. Such an event is called coronal mass ejection
(CME).

In periods of high solar activity, more than one CME per day on average is
observable with current techniques. They are related to eruptive prominences (also
visible in Fig. 10.5) or flares. The speed of the leading edge ranges from less than
100 km s~ to well beyond 1000 km s~! at an estimated Alfvén velocity of 400 km
s~1. Apparently, not all CMEs are fast enough to be shocks. The flare-associated
CMEs have generally a higher speed, and the fastest ones often propagate as far
as 1 AU to be registered by spacecraft.

Curiously, detailed investigations have revealed that the relation between flare
associated CMEs and flares are not as straightforward as one may think. CMEs
can start up to 30 minutes before the flare. Thus the flare cannot be directly
responsible for driving the CME. The CME seems to have its own driver that,
under certain conditions, triggers a flare. CMEs are far more numerous than
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Fig. 10.5. The white light image of a coronal mass ejection (observed by the LASCO C2 corona-
graph on the SoHO satellite) shows a bright arc moving out. The images are running differences
to the preceding image. The white circle is the size of the photospheric disk (from Dere et al,
1999).

interplanetary shocks. For further details and references, the reader is referred to
the reviews by Kahler (1987) and Hundhausen (1988).

B. Type Il Radio Bursts

Extremely intense, narrow bands of radio emission caught the attention of the
earliest observers. The bands are at harmonic frequencies having a ratio of slightly
less than 1 : 2 and usually drift to lower frequency. The drift rate is typically two
orders of magnitude smaller than for type III bursts produced by electron beams.
The phenomenon has been named type II burst.

As an example, Figure 10.6 shows the start of a type I burst. After an interrup-
tion at 14:24:40, the event continues for more than 15 minutes. The observational
characteristics are summarized in the following paragraphs. The references are
listed in the reviews given at the end of the chapter.

The emission in two harmonic frequency bands is similar to the Earth’s bow
shock and to interplanetary shocks. It is suggestive of plasma emission near the
plasma frequency and twice its value. The solar rate of frequency drift, combined
with a density model, suggests radial velocities between 200 and 2000 km s~?,
about 2 orders of magnitude lower than type III bursts. Such outward source mo-
tions have been confirmed by multi-frequency radioheliographs. The enlargements



248 CHAPTER 10

PHOENIX Spectrometer ETH Zurich

Frequency in MHz

360

_—

1 ser 1 sec

Fig. 10.8. Spectrogram of a section of a solar type II radio burst. The bright features indicate
enhanced radio flux in logarithmic scale. Bottom: Two enlargements of the above overview
showing horizontal ‘backbone’ and skew ‘herringbone’ emissions (from Benz and Thejappa, 1988).

in Figure 10.6 demonstrate that the radio emission has two components. A vari-
able, narrow band drifts slowly to lower frequency at the same rate as the whole
phenomenon. It is metaphorically termed the backbone. In addition, rapidly drift-
ing, broadband structures shoot out of the backbone to higher and (not visible in
Fig. 10.6) lower frequency. They are called herringbones. The two components
are obviously different in their intrinsic time scale and bandwidth. Note that the
backbone has a bandwidth of only 2 — 3% at some time. If interpreted in terms of
plasma emission (w = wp), the bandwidth requires a source density homogeneity
better than 5%, suggesting a small, stationary source moving with the shock. The
herringbones resemble type III bursts and are generally interpreted as signatures
of a beam of energetic electrons accelerated near the source of the backbone and
escaping upstream from the shock. It is very likely that the herringbone emission
is due to electron plasma waves excited by the bump-on-tail instability (Section
5.2.4) and scattered into radio waves by means similar to type III bursts.
Herringbone emission, and thus appreciable electron acceleration, occurs only
in about 20% of all type II bursts. The stronger the backbone emission, the more

likely are herringbones. The backbone flux density correlates with shock velocity
(e.g. Cane and White, 1989).
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Only 65% of the shocks observed as a fast (v > 500 km s™!) coronal mass
ejection radiate type II emission. On the other hand, CMEs slower than 200
km s~} are occasionally accompanied by type II bursts (e.g. Kahler et al., 1985).
Furthermore, type II bursts often end around 20 MHz (about 2 Rg from the center
of the Sun) while the shocks apparently continue. There seem to be additional
conditions on electron acceleration and radio emission.

Type II associated shocks are generally productive in particle acceleration,
manifest in significant associations with interplanetary proton streams and coronal
type IV radio emission. The causal relation to flares is clear for type II bursts.
They start about one minute after the peak of the flare hard X-rays and are more
delayed the lower the starting frequency.

A tentative and popular scenario proposes CME to be flare independent shocks,
piston-driven by rising magnetic loops. If a large flare is associated, the flare blast
wave — starting later and catching up from behind — causes a type II-emitting, high
Mach number shock. A blast wave interpretation is attractive due to the property
of all waves (including shocks) to refract toward regions of low phase velocity (see
for example Fig. 6.4). As the energy of a shock is approximately conserved, the
magnetoacoustic Mach number increases in such a region. For the same reason,
the shock would develop into a more quasi-perpendicular type, prone to electron
acceleration (Section 10.3.1). This scenario is awaiting observational confirmation.

10.3. Particle Acceleration and Heating by Shocks

Particle acceleration is a characteristic property of collisionless shocks. There are
two types of acceleration processes. (¢) Most important are mechanisms reflecting
upstream particles by the moving front. There are several derivatives of this idea,
two will be presented in Sections 10.3.1 (for electrons) and 10.3.2 (for ions). (%)
In addition, the upstream wave turbulence can heat or — more generally — energize
background particles (primarily electrons). It will be discussed in Section 10.3.3.
These types of acceleration should not be considered a complete list of all possible
acceleration processes at shocks.

10.3.1. ELECTRON ACCELERATION AT QUASI-PERPENDICULAR SHOCKS

In 1949 E. Fermi proposed that ‘magnetic clouds’ moving in the Galaxy could
accelerate charged particles to cosmic ray energies. He did not use the word
‘shock’, but considered magnetic mirrors (Section 2.1.2) embedded in the clouds
that elastically reflect particles. In the observer’s frame of reference, the particle
gains energy in a head-on collision (opposite initial velocities of particle and mir-
ror), and it loses energy in a catch-up collision, when the particle approaches the
mirror from behind.

Fermi later developed the idea into two types of acceleration mechanisms. In
the first-order Fermi process, two mirrors approach each other and the particles
in between collide many times, gaining energy at each reflection. The second
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type assumes clouds moving in random directions. Since head-on collisions are
statistically more likely than catch-up ones, the colliding particles gain energy on
the average. Both historic concepts are still in use, although modified in details.
The first-order Fermi process, being simpler to realize and more efficient, will be
studied first.

In this section we concentrate on a single reflection with high shock velocity.
The process is referred to as shock drift acceleration or fast-Fermi acceleration.
Assume that the gyroradius of a charged particle is much smaller than the shock
thickness. Then a shock can act like a magnetic mirror, as there is an increase
in magnetic field strength across the front for fast-mode shocks (Egs. 10.12 —
10.1.7). The magnetic moment of the particle is conserved in the shock-particle
interaction. According to Equation (2.2.3) and if there were no electric field, a
particle with velocity v is reflected under the condition

2
B, > Bl(il> : (10.3.1)

v
where the superscript 1 refers to the values before the encounter, and By, is the
mirroring magnetic field in the shock front. However, Equation (10.3.1) is not
generally valid, since E is usually not zero — neither in the observer’s frame nor
the normal incidence frame defined in Section 10.1 —as E = —~(V xB)/c. For this
reason, we have to study a special frame of reference in the following subsection,
where Equation (10.3.1) can be used.

A. De Hoffmann-Teller Frame

Equation (10.3.1) only holds in the particular reference frame where the elec-
tric field due to the upstream plasma motion vanishes. This is known as the de
Hoffmann-Teller (HT) frame, in reference to early workers in collisionless shock
theory. In this frame the shock front is at rest and the upstream flow is along the
magnetic field, thus V¥T x By = 0. The HT frame moves along the shock front
relative to the normal incidence frame with a velocity Var so that in the HT frame
one would see the upstream plasma flowing in along the magnetic field lines. This
is the geometry of somebody watching rain from a moving car. The speed, Vyr,
is chosen to see the flow coming at the given angle 8; from zenith, where 6, is the
magnetic field angle to the shock normal, n (Fig. 10.7), namely

n x (Vl X Bl)

B1 ‘n

As observed in the normal incidence frame, Vyr is simply the velocity at which
the intersection point of a given field line and the shock surface moves along the
shock front. Faraday’s law requires the flow behind the shock to be also aligned
with the magnetic field in the HT frame.

The upstream inflow velocity in the HT frame, VT (not to be confused with
Var, see Fig. 10.7), is along the magnetic field by definition. It amounts to

VHT = = 1/1 tan 01 . (1032)
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shock upstream

Fig. 10.7. Upstream flow velocities in the normal incidence frame of reference, Vy, and in the de
Hoffmann-Teller frame, VT, The transformation velocity, Vyr, is parallel to the shock front.

ar _ M
1 cos 6

(10.3.3)

from simple geometry. In the HT frame, the upstream flow of a quasi-perpendicular
shock hits the front at a high velocity as cosf; < 1. In the observer’s frame, where
the intersection with the shock moves along a given field line at a high velocity,
one anticipates that the reflected particles gain considerable energy. We shall
investigate this in the following section.

B. Electron Acceleration

Since there is no electric field, the magnetic moment of a charged particle is con-
served in the HT frame of reference. According to Equation (10.3.1), particles
with a pitch angle o > @, := arcsin(B, /Bz)l/ %2 _je. those with high transverse
velocities — are reflected. Figure 10.8, drawn in the HT frame, displays the velocity
distribution. Incoming particles are found at an average parallel velocity of —V{HT,
and reflected particles are shifted to +V#T. Reflection is limited to particles with
large pitch angle in the HT frame. As the condition for reflection (Eq. 10.3.1) is
independent of charge and mass, and as electrons have a much faster transverse
motion, there are more electrons reflected than ions. Shocks with high inflow
speed accelerate electrons to the highest energies and will be of primary interest.
If VAT is large — that is, in nearly perpendicular shocks — reflection is limited to
the electrons with the largest pitch angle (i.e. to a fraction of the halo population
in Fig. 10.8).

We have neglected any electric fields in the shock layer building up by pref-
erential electron acceleration or by local field fluctuations. They can be included
easily into the orbit calculation through a potential. Its effect is to further reduce
the population of reflected electrons particularly at low parallel velocity.



252 CHAPTER 10

~

~
N core \
A

\
‘.}C

\
\
A i
! :
I
/ |
4 ]
I

———

wind motion
e

)

Fig. 10.8. Schematic velocity distribution of upstream electrons in the de Hoffmann-Teller frame
of reference. The reflected electrons are shaded. The coordinates are chosen parallel (sunward
is positive) and perpendicular to the magnetic field. The initial distribution is assumed to have
two Maxwellian populations forming a core and a halo. The halo corresponds to a tail in the
upstream velocity distribution providing the seed particles for acceleration.

In the HT frame, the particles are reflected at the same energy, but negative
velocity. The Lorentz transformation by VT into the normal incidence frame,
reveals that the reflected particles gain energy. A particle with a velocity vf'T
parallel to the magnetic field in the HT frame has a larger velocity in the normal
incidence frame (ni) by the transformation velocity. The y-component (Fig. 10.2)
is of primary interest and is given by

ni _ 'vﬁ{T sinf; + Var
vy vﬁlT sin 6, Vg /c?

v (10.3.4)

The denominator in Equation (10.3.4) is required by the theorem of velocity ad-
dition in special relativity. For nearly perpendicular shocks (Vyr > vﬁIT), the
particles are reflected with about Vur, which was given by Equation (10.3.2) and
is limited by the speed of light.

The distribution of reflected particles (Fig. 10.8) may be called a displaced loss-
cone. It resembles the distributions of trapped particles in its inverted distribution
of transverse energy. Additionally, it has the properties of a stream. The two
positive gradients in velocity space — in perpendicular as well as parallel directions
— drive instabilities similar to trapped particles and beams. In an initial phase,
still close to the shock, the distribution will relax to a plateau-like distribution,
releasing its transverse free energy and a part of its parallel free energy. This
process may be the source of the radiation seen in the backbone of solar type II
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radio bursts (Section 10.2.3). The plateau-distribution propagates subsequently
away from the shock, producing electrostatic plasma waves at its front. It is very
likely the source of the herringbones in type II bursts.

Drift (or fast-Fermi) acceleration can explain the observed energetic electrons
at the Earth’s bow shock. It is likely to take place in the solar corona and possibly
in supernova remnants. Furthermore, the process is also proposed to accelerate
intermittent ion beams observed from the quasi-perpendicular region of the Earth’s
bow shock.

10.3.2. ION ACCELERATION AT QUASI-PARALLEL SHOCKS

Shock drift acceleration discussed in the previous section is primarily effective for
a halo electron population. Now we study an acceleration process that is well
suited for ions. If some ions are reflected on a shock front, they carry much
free energy into the upstream region and can drive low-frequency, electromagnetic
beam instabilities according to Section 7.3. Strong magnetoacoustic and Alfvén
waves have been observed and interpreted this way. As the ions excite waves,
they diffuse in velocity space into a more isotropic distribution (Section 6.2.1).
The average ion velocity is drastically reduced. Since the shock speed exceeds the
magnetoacoustic velocity, the inflow drives eventually the ions — trapped in their
self-excited waves — back to the shock front. The particles experience repeated
reflections between the waves and the front. The process is known as diffusive
shock acceleration. It is important to note that the particles are not accelerated
in a single step, but by multiple scatterings off a single shock. The upstream
waves are overtaken by the shock, both together provide for a set of converging
mirrors, characteristic for first-order Fermi acceleration. If electrons and ions get
accelerated to similar velocities, the ions gain more energy due to their larger mass.

Diffusive acceleration can be modelled in a simple way, following the approach
of Bell (1978). Let x be the ratio of particle energy increase per reflection in
the observer’s frame. In a one-dimensional geometry (head-on collisions only), a
particle with an initial velocity v; reflected by a shock having a velocity in the
observer’s frame of V™ < v; gains kinetic energy by a factor of

(10.3.5)

Equation (10.3.5) is non-relativistic. The relativistic energy gain is calculated from
energy and momentum conservation in the HT frame. Without loss of generality,
we assume one spatial dimension and Lorentz transform to the observer’s frame.
One finds that the particle energy changes in the observer’s frame by

9 Vlobs ('Ui + Vlobs)

Ae = 2e7f , (10.3.6)

2

where ¢;is the total initial energy, my;c?, and 7, is the Lorentz factor of the shock
velocity, both in the observer’s frame (Exercise 10.5). The energy gain is reduced
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by a factor of 2 when averaged over angles in three dimensions. For v; ~ ¢, and
VPebs « e (thus 41 = 1),

obs

x o~ T+ (10.3.7)

Furthermore, let P be the probability that the particle remains in the upstream
region and will have another reflection (P < 1). Let us start with a density ng of
particles with an initial energy €q. After j reflections there is a density of n = ng P’
particles with energies € = gox?. After taking the logarithm and eliminating 4,
the two relations combine to

c InP/Iny
n(ze) = no(——) , (10.3.8)
€o

a power-law distribution. As n refers to the particles that have reached the energy
¢ and are further accelerated, it is related to the spectral energy density by n(>
g) = f€°° f(e)de. The energy distribution, f(g), is the derivative of Equation
(10.3.8). It is also a power law of the form f(¢) oc €=, where § is the power-law
index of the energy distribution, amounting to

§ =1 mx (10.3.9)
There are several approaches to estimate P, the fraction of particles of an isotropic
distribution that is reflected. In the simplest version, often used for cosmic rays,
it is assumed that the shock front is completely permeable to energetic ions from
both sides. The ions (v = ¢ and trapped in magnetic field fluctuations) have the
same density n on both sides and move through the front at a rate of nc/4. Let us
assume that particles are only lost by convecting away in the downstream region.
The loss rate then is nV, or about nV;/4 in the strong shock limit (Eq. 10.1.8).
The probability of escape is Vi/e, thus P = 1 — Vj/c and § &~ 2. This value
becomes larger if the average compression factor (Eq. 10.1.8) is below 4, as often
observed at the bow shock. The predicted power-law exponent thus is close to the
one observed in the cosmic ray spectrum (Section 7.1.2).

10.3.3. RESONANT ACCELERATION AND HEATING

The entropy jumps in the plasma flowing through the shock front. Thus the
temperature increases non-reversibly. In collisionless shocks, microscopic electric
and magnetic fields are the source of the entropy increase. The interaction of
particles with these field fluctuations drains energy from the shock and heats the
plasma.

An example is heating of electrons by magnetic compression. It is an intrin-
sically adiabatic process, but can be made irreversible by wave turbulence. If
the shock thickness is larger than the gyroradius, particles penetrating the shock
conserve their magnetic moment. Equation (2.1.7) in relativistic form reads as
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®L) _ 1) (10.3.10)

where p; = ymuv, is the perpendicular particle momentum, and the superscripts
1 and 2 refer to the upstream and downstream plasma, respectively. The process is
also known as betatron acceleration in analogy to the laboratory application. The
maximum increase of the magnetic field predicted by MHD theory (Eq. 10.1.10) for
strong perpendicular shocks is By/B; = 4. The magnetic field in the Earth’s bow
shock is often observed to overshoot four times the upstream value (Fig. 10.4).
Nevertheless, very high energies cannot be achieved through this simple version of
the betatron process. Even worse, in a subsequent expansion of the magnetic field
the particle loses all the energy gain since the process is reversible.

A betatron-accelerated population is anisotropic in velocity space because the
particles gain only transverse energy. If pitch angles are isotropized in a random
way before expansion, some heating is irreversible. The cycle may repeat many
times. In each cycle, the particles experience a net energy gain. This process has
been called magnetic pumping.

Magnetic pumping could be particularly effective in the strong low-frequency
turbulence ahead of quasi-parallel shocks (ion foreshock) where the waves take the
role of magnetic pumps. It has been proposed that electrons could be accelerated
this way and be subsequently scattered in pitch angle by whistler waves.

Another form of heating is resonance acceleration An example has already
been given in Section 9.4.3 on particle acceleration by currents. The essence of the
mechanism is wave turbulence created by one particle population that stochasti-
cally accelerates another population. The process is a diffusion in velocity space.
As pointed out in Section 9.4.3, lower hybrid waves are an attractive medium
to transfer energy from ions to electrons. Perpendicular currents in the form of
moving ions exist in oblique shock fronts. Perpendicular ion flows are unstable
toward growing lower hybrid waves. The scenario is supported by observations at
the Earth's bow shock, where lower hybrid waves have been discovered that may
occasionally accelerate electrons in parallel velocity.

10.4. Stochastic Particle Acceleration

Concerning Fermi acceleration on magnetic mirros we have so far considered only
first-order models. These processes, however, are not consistent with observations
of the prompt acceleration of electrons and ions in flares, where acceleration of
large numbers of particles is required preceding the observed shocks in the high
corona and interplanetary space. Second-order Fermi acceleration is most attrac-
tive where shocks or large amplitude waves propagate in a limited volume such
as the reconnection outflows and energize some or most of its particles. Charged
particles move along magnetic field lines and thus get accelerated in the direction
parallel to the magnetic field in head-on collisions. The particles lose energy in the



256 CHAPTER 10

slightly less frequent catch-up encounters. Thus their energy varies stochastically
in both directions, but has a trend to increase.

If waves act as the mirrors, only a small fraction of the particles is affected.
The interaction requires a resonance condition of the type

w—kyv, =104 . (104.1)

Contrary to (non-resonant) Fermi acceleration, a spectrum of waves is now neces-
sary for substantial acceleration. A particle having gained energy then can interact
with another wave meeting its new resonance condition for further energy gain.
Attractive for particle acceleration are waves that resonate with particles in the
bulk part of the thermal velocity distribution. Such waves can act as primary
accelerators without needing already fast seed particles. In addition, waves are
required that are naturally formed in a situation of magnetic reconnection.

Of particular interest for flare electron acceleration are oblique fast magneto-
acoustic waves (also called compressional Alfvén waves, see Section 3.2.4). These
waves have a dispersion relation w = kca (assuming ¢4 > ¢;) from the MHD range
up to about the proton gyrofrequency. Above about 10£},, the branch enters the
whistler regime having enhanced phase velocity. As c4 < Ve, the waves arein ! =0
(Cerenkov) resonance with the bulk part of the thermal electrons, but generally
not with the ions.

Fast magnetoacoustic waves have an oscillating wave magnetic field component
parallel to the undisturbed field. It produces a series of compressive and rarefactive
perturbations moving in parallel direction with a velocity of about v4/ cos#, where
8 is the angle between k and By. If the distribution of waves is isotropic, the range
of phase velocity projections in z-direction is continuous from w4 to infinity.

This characteristic property makes it easy to envisage the interaction with elec-
trons. The oscillations act as magnetic mirrors for charged particles like converging
fields (Section 2.2). If the gyroradius is much smaller than the scale of contraction,
the particles experience a mirror force —u8B./08z (Eq. 2.1.12), and those with
pitch angles above a critical value are reflected. The critical value depends on the
wave amplitude. In small amplitude waves, only particles moving nearly in phase
with the wave are reflected. Then the resonance condition (10.4.1) must be closely
satisfied. In the frame moving with the wave, reflected particles have large pitch
angles as the loss-cone is nearly 90°. For larger amplitudes, the velocity range
of interaction becomes larger and more particles interact. In reality, the waves
should not be envisaged as infinite sinusoidals, but distributions in frequency, an-
gle, and amplitude of finite wave packets. Then it becomes easy to conceptualize
a transition to (non-resonant) shocks.

If more interacting particles are slightly slower than the parallel wave phase
velocity, the particles gain on the average and the wave is damped by the inter-
action. It is thus the magnetic analog to Landau damping of a wave with parallel
electric field (Section 5.2.3). The resonance condition (Eq. 104.1, with [ = 0)
can be rewritten as A,/v, &~ 7, where 7 is the wave period and A, = 27 /kcos 9
is the parallel wavelength. A small amplitude wave and a particle interact if the
particle transit time across the wavelength is approximately equal to the period.
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This property is the origin of the name transit-time damping for this acceleration
process. It is basically resonant second-order Fermi acceleration.

Electron acceleration by transit-time damping has a major drawback. The
acceleration is in parallel direction only. As v, increases, the pitch angle a =
arctan(v, /v, ) therefore decreases. The requirement on the wave amplitude for re-
flection increases until it cannot be satisfied anymore and acceleration stops. Sev-
eral processes have been proposed that may scatter the accelerated electrons into
more transverse orbits, such as collisions or a pre-existing population of whistler
waves. Most likely, however, is that the velocity distribution stretches out into par-
allel direction until it becomes unstable to L-mode waves by anomalous Doppler
resonance. This is named the electron firehose instability.

Fast magnetoacoustic waves may originate in the rearrangement of the large-
scale magnetic field by reconnection jets or their shear flow instabilities. Long
wavelength modes cascade to smaller wavelengths to reach eventually waves with
a sufficiently high &, to interact with thermal electrons, when they are transit-
time damped. The electron acceleration process can then be described by quasi-
linear diffusion (Section 6.2.1). If the pitch angle distribution remains more or less
isotropic, electron acceleration by transit-time damping can proceed to ultrarela-
tivistic velocities within a fraction of a second.

Large amplitude, fast magnetoacoustic waves preferentially accelerate electrons
by the I = 0 resonance. The ! # 0 resonances in Eq. (10.4.1)are negligible as long
as the conditions for transit-time acceleration are satisfied. A similar scenario has
also been proposed for flare proton acceleration, assuming Alfvén waves and I # 0
resonances. Stochastic acceleration is a simple and most promising process for
flares if the required input wave turbulence is given.

Exercises

10.1: The thickness Az of a shock front is given by the scale over which the in-
flowing energy can be dissipated. Do a thought experiment to study whether
this may occur by Ohmic dissipation. An MHD shock is assumed to move
in z-direction. By, and By, are the transverse field components ahead and
behind the shock in the rest frame of the shock, respectively. For a strong
shock, the magnetic field compression is By, = 4By,. The kinetic energy
density deposited by the inflowing plasma in the shock layer is AE = % pVE.
This must occur within a time At ~ Az/V;. Use Coulomb conductivity
and, as an alternative, the minimum anomalous conductivity (Eq. 9.4.3); let
T=10°K, cs =108 cm s™, M4 := Vi/cq = 3, and n, = 10° cm~3. Apply
Equation (10.1.1) and
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Jr 2 By — By

i . (10.4.2)

to calculate the shock thickness Az.

10.2: For high Mach number shocks, the kinetic energy inflow largely exceeds the
thermal energy and magnetic energy. The inflowing energy then is partitioned
between kinetic, thermal, and magnetic energy density in the downstream
medium. The division is independent of Mach number as stated by Equations
(10.1.8) and (10.1.9). Prove these equations!

10.3: A gradient in magnetic field strength perpendicular to the field causes a
gradient current. Calculate the scale length of the field in perpendicular
direction required to cause a current drift velocity, V4, equal to the ion sound
velocity, ¢;s. Take for example 7Ty = T; = 107 K, n, = 101 cm~3, B = 100
G.

104: A bow shock forms where the solar wind hits the magnetosphere of the
Earth. Calculate the distance = of the plasma pause (the surface separating
the two plasmas) from the center of the Earth in the direction toward the
Sun. Use momentum conservation at the shock front and assume constant
pressure between front and pause. Let the solar wind have a proton density
of 5 ecm™3, magnetic field of 2- 10™* G, temperature 10° K, and a velocity of
400 km s™1, and assume a terrestrial magnetic field in the equatorial plane
of B(r) = 0.3(r/Rg)® G. Why does MHD give the correct answer?

10.5: A particle with initial velocity »; and initial energy €; gains energy when
reflected by a shock moving at Vib* in the observers frame of reference.
Assume a head-on collision and a one-dimensional geometry. Energy e and
three-momentum p are Lorentz transformed into the frame moving with the
shock, where

e =me+p™™) (10.4.3)
VObsE
P =mp+—5) (10.4.4)

where 11 = (1 — (V%/¢)2)~Y/2 is the Lorentz factor of the shock. What is
the energy gain per reflection? Prove Equations (10.3.5) and (10.3.6).
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CHAPTER 11

PROPAGATION OF RADIATION

In the preceding chapters we have studied a number of ways high-frequency, trans-
verse electromagnetic waves — generally called radiation for short — are produced
in coronal plasmas. How the wave energy builds up in the source and propagates
to the observer also requires scrutiny. Most of the necessary elements have al-
ready been developed in previous chapters. In particular, the dispersion relation
of electromagnetic waves has been discussed in Chapter 4. The concepts of wave
intensity and photon temperature have been introduced in Sections 5.1.1 and 6.3.2,
respectively.

Since each emission process operates in reverse as an absorption, a good emitter
is also a good absorber. The book-keeping within the source is accomplished by
the transfer equation (Section 11.1).

Radiation is modified as it propagates from the source to Earth in a number of
ways. We limit ourselves to the effects of the plasma component of the propagation
medium. Its free electric charges react to the electric and magnetic wave fields,
and partake in the oscillation. The wave energy is partitioned between oscillating
fields and particles. Moreover, the wave energy in the particles can be randomized
by particle collisions, causing wave absorption (Section 11.2). The oscillating free
electrons also alter the dispersion — the function w(k) — and modify the wave’s
phase and group velocities. The basic effects of dispersion are discussed in Section
113. They include refraction caused by spatial variations of wp or .. If these
variations are of small scale and can be analysed statistically, the effect is termed
scattering (Section 11.4). Inhomogeneities in coronae are usually not random, but
structures aligned along the magnetic field, requiring specialized concepts to be
discussed in Section 11.5.

We have seen in Section 4.3 that the more the wave frequency exceeds the
plasma frequency and the gyrofrequencies, the smaller the influence of the plasma
on the wave and the more the propagation medium resembles a vacuum (e.g.
Eq. 4.3.16). Therefore, plasma propagation effects in coronae are most severe
for radiation at radio frequencies. Although they are often a nuisance for the
investigation of a source, propagation effects yield also rewarding information on
the intervening medium.

260
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11.1. Transfer Equation

The observable parameter of main interest is the intensity, /, in units of energy of
electromagnetic radiation per collector area, time, frequency, and solid angle [erg
s~! Hz~! ¢m~2 sterad™!]. This is related to the brightness temperature T, (Eq.
5.1.1), and its measurement requires spatial resolution of the source. Note that
the intensity, and thus the brightness temperature, do not change in a vacuum
as the radiation travels. Hence they are independent of the distance between the
source and the observer. This is simply a consequence of energy conservation. In
a semi-classical way, it can also be viewed as a result of photon conservation. In
contrast, the flux density F in [erg s~} Hz~! cm~2] is proportional to the angular
source size and, in vacuum, falls off inversely as the square of the distance.

In a plasma without radiation sources and sinks, the photon number is con-
served. However, the photon propagation paths may not be straight lines, and
the photon density can be modified. In the wave approach generally followed in
this book we describe the flow of photons by a wave intensity. Its complex behav-
ior in an anisotropic medium whose properties are variable in space forces us to
make approximations. In this section we use geometric optics originally developed
for the practical needs in constructing optical instruments. Its main assumption
is that the medium varies slowly with position or, more precisely, that the scale
length of the variation is much longer than the wavelength in the medium. In
particular, we exclude diffraction effects at structures or scale lengths of the size
of a wavelength or smaller.

If geometric optic applies, radiation propagates according to the extremal prin-
ciple of Fermat, and the radiation energy can be considered being transported
along curves or rays. Different rays do not interact with one another. Propagation
along rays is reversible. In an isotropic medium — neglecting the magnetic field —
the propagation path of the radiation in geometric optics is simply determined by
Snell’s law,

N sin o = constant (11.1.1)

where a0 is the angle of propagation relative to the gradient in the refraction index
N. Equation (11.1.1) defines the rays that represent the propagation paths of
waves in a medium.

If AV increases, Equation (11.1.1) requires a decrease in .. In a non-magnetized
plasma, N = (1 — w?/w?)!/2. The radiation is refracted toward the direction of
the gradient. The net effect — sketched in Figure 11.1 — collimates radiation into
regions of low phase velocity. In a horizontally stratified corona, it is refracted
toward the radially outward direction. Observations from two spacecraft viewing
a radio source in the solar corona from different angles have confirmed the beaming
of the radiation in vertical.

Since intensity is per solid angle, energy conservation and Snell’s law of refrac-
tion require I'sin® @ ox I/N? = constant along the line of sight. The intensity can
therefore change, even in the absence of absorption and emission.
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> Farth
N=1

/!
plasma level
v =1, N=0

Fig.11.1. Radiation escaping from near the plasma level is beamed toward regions of larger
refractive index, A, thus lower phase velocity.

If the radiation is emitted in a plasma, the refractive index A at the source
is smaller than unity (Eq. 4.3.21, resp. 4.5.1), and increases on the way to Earth
(where N = 1). Therefore, the intensity is higher at Earth than in the source by
the square of the refractive index in the source. This is a result of the reduced
range in the angle of propagation (and presumes that the source is visible from
Earth). The effect is particularly strong for emission near the cutoff frequency
{(w = wp for o-mode, w = w, for x-mode, given by Eq. 4.4.10).

A general expression for A in a magnetized plasma has been given in Equation
(4.5.1). It can be approximated for frequencies well above the cutoff frequency (for
o-mode w? > w?; for x-mode w? >> w2 and propagation away from perpendicular

(Icos 6|/ sin® 6 > Q. /2w) by

-1

(N;)Qm— (%)2<1:t%|cost9|) , (11.1.2)

where 6 is the angle between wave propagation and magnetic field (Exercise 11.1).
This approximation is termed quasi-longitudinal. The word ‘longitudinal’, mean-
ing here propagation parallel to the magnetic field, is a legacy of early magnetoionic
terminology. The quasi-longitudinal approximation is valid in a large part of the
solar corona, where generally wp > €2, (Exercise 11.1).

The angle # makes the refraction index anisotropic. Particularly at frequencies
close to the plasma frequency, the refractive index depends strongly on propagation
angle to the magnetic field (Eq. 4.5.1). As a consequence, the group velocity of
the radiation is not parallel to the phase velocity, and Snell’s law is not valid or
must be generalized. We shall not consider this case, and the interested reader is
adverted to the references at the end of this chapter. Nevertheless, Figure 11.1 is
still a good representation of propagation for weakly magnetized plasmas.

We have introduced the emissivity, n(w), in Section 6.3.3 and defined by the
energy radiated per unit of time, volume, frequency, and solid angle. Furthermore,
absorption attenuates I proportionally to path length. We denote it by the ab-
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sorption coefficient, &, referred to unit length. The transfer equation describes the
evolution of I as the difference between a source term (emission) and a loss term

(absorption),
d (1 n I
Zs* (ﬁ) = .AW - K (m) 3 (11.1.3)

where s is distance along the ray path from the star to the observer. With the
following definitions for the source function 7 and optical depth 7:

J = 7;7\/17_2_ lerg s™! cm™? sterad '], (11.1.4)
o0
T(8) := / kds (11.1.5)
the transfer equation becomes
d (I I
I (m) = (m) -J (11.1.6)

a first-order differential equation. When the plasma in the source is in thermody-
namic equilibrium, the source function (11.1.4) equals the Planck function (5.1.1)
evaluated at the source temperature T, (Kirchhoff’slaw). Optical depth is a mea-
sure of the transparency of a medium. Note that it is defined as zero at infinity
(that is at the observer) and that it increases into the source (see Fig. 11.2). It is
an obvious misnomer since it can refer to any kind of radiation, not just optical.

Let the boundary values for the integration of Equation (11.1.6) be 7; (far end
of the source), 72 = 0 (observer), and let A/ (r2) = 1. The general solution of
Equation (11.1.6) is the observed intensity,

_ I{r) - /ﬂ N

= /\/2(7'1)6 + | J{e Tdr . (11.1.7)
The first term on the right (mathematically speaking the general solution of the
homogeneous part of Eq. 11.1.6) is the radiation entering the source from behind,
and being attenuated by the source and the propagation thereafter (Fig. 11.2).
The second term is the actual source term (a particular solution of the inhomoge-
neous equation) and is here of main interest. J and 7 depend strongly on w. As-
suming no radiation from beyond the source (i.e. I(r1) = 0) and J(7’} = constant
in space within the source,

I(r=0)

ray path

= == pbserver
= E

optical dept

source

Fig.11.2, The intensity of the radiation observed at Earth is propagated along the path s
through a source region.
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Iw) = Jw)(1—-e ") | (11.1.8)

where 71 = kL and L is the source depth. For an optically thick source, by
definition 71 (w) > 1, and

W) ~ Jw) . (11.1.9)

In the optically thin case (11 (w) < 1),

Iw) » J(w)n(w) ~ -72(]\-;# . (11.1.10)

Imagine the source surrounded by a cavity and in thermodynamic equilibrium
with it. A source that only emitted would cool at the expense of the cavity. The
second law of thermodynamics requires that the source also absorbs radiation. The
inverse of an emission process is called self-absorption. Moreover, as the Maxwell-
Vlasov equations are time reversible, the process absorbing energy from a wave
field must also be able to emit in the presence of a wave field. This is called
stimulated emission. In thermal equilibrium, it limits the intensity to that of the
Planck function.

During propagation from the source to Earth, the radiation is far from ther-
modynamic equilibrium with the background plasma. At this stage, absorption is
usually a thermal process, in which background particles extract energy from the
wave and lose it either by collisional interactions (Section 11.2) or gyromagnetic
resonance.

11.2. Collisional Absorption

Electromagnetic waves are absorbed in a plasma, since electrons oscillating in the
wave fields have collisions and lose a part of the wave’s energy. The absorption is
sometimes also called free-free absorption following the notation of atomic physics.
It is the inverse process of bremsstrahlung (or free-free) emission. Radiation near
the plasma frequency is strongly affected by absorption for two reasons. (i) The
fraction of wave energy in oscillatory electron motion is (wp Jw)? (Exercise 5.3).
This is the fraction of the wave energy that can be damped by collisions. Once
it starts to be damped, the wave converts electromagnetic to kinetic energy, so
that the energy ratio is conserved. Therefore, particle collisions can effectively
thermalize the entire wave energy. (¢i) The group velocity — about N¢ in the non-
magnetic approximation — is small, and the waves stay in the region for a long
time.
The absorption coefficient of transverse waves is given by

K= te,ilNc (fwﬁ)z , (11.2.1)
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where t¢; is the thermal electron-ion collision time (Eq. 2.6.32). The product
te,iNc is the propagation length after which collisions randomize the momentum
of particle oscillations. Having travelled this distance, the wave energy residing in
particle energy is lost and must be replenished. The slower the wave, the shorter
this absorption length. Putting in the numbers, we get

_9.88-107%n, ¥, Z}n,; InA,

e VINT3/2 fe
where the observing frequency v ( 2 vp) is in Hz, T in K, n, in cm™3, and A/
is given by Equation (11.1.2). For a fully ionized plasma with solar abundances
> Z2?n; ~ 1.16n.. The factor InA; - often referred to as the Gaunt factor —
is slightly different from the case of a test particle studied in Section 2.6. For
waves with ¢ > v, the time to build up Debye shielding of a charge is limited
to half a wave period. Therefore, the maximum distance for binary interactions
iS /v < Ap. For v 2 vy, Bekefi (1966), in an extensive and more accurate
approach, has found

m~!, (11.2.2)

3 — 105/ 72
InA, = {17.6+ $SInT — v for T 5 8.2-10%(Z?) [K] (11.23)

246 +InT —lnv  for T 2 8.2-105(22) [K]

The frequency v in Equation (11.2.3) is in Hz, and {Z?) is the abundance weighted
average ion charge. (For solar abundances and complete ionization (Z2) = 1.16.)
Collisional damping reduces the intensity of transverse waves particularly if
radiated near the plasma frequency. Let Iy be the intensity just when the radiation
leaves the source (at 8o in Fig. 11.2). The intensity observed at /' = 1 is then
Iy _,
I= (NO)26 . (11.2.4)
The optical depth 7 here refers to collisional damping during propagation to Earth.
It has been defined in general form by Equation (11.1.5) and can be evaluated easily
for any given coronal model. For example, assume an exponentially decreasing
density with scale height H, (implying constant temperature and gravity), T >
10% K, solar abundances, and neglect the magnetic field. The optical depth of
collisional absorption then amounts to

464 12 Ty */*(Hyo/ cos ¢)(In A,/20) for v =19
T =1 12.0 v} Ty **(Huo/ cos ¢)(In A,/20) for v = 219 (11.2.5)

141 nyq (ug/u)ZTﬁ_a/z(Hm/cos ¢)InA;/20 for v > Ve

for radiation emitted at the fundamental, at the harmonic, or far above the plasma
frequency of the source, respectively. The plasma frequency in the source is 1/2, and
vg is the emitted frequency in units of 10° Hz (= 1 GHz). Hyq is the density scale
height in units of 10*® c¢m, Ty the temperature in 106 K, nyq the electron density
in 10'° em~3, and ¢ (assumed constant and evaluated for A/ = 1) is the angle

between propagation and the density gradient. The third line shows the original
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dependence on n and v in Equation (11.2.2). The specified relation between v and
vg reduces it to the forms of the first and second line.

Equation (11.2.5) shows that collisionsl absorption depends strongly on emis-

sion frequency relative to z/g. Little radiation emerges from 7 & 3. Harmonic
emission is much less affected than fundamental radiation. If the density scale
height is linearly proportional to temperature — as would be the case in an un-
magnetized, isothermal atmosphere (Eq. 3.1.54) — absorption depends only on the
inverse square-root of the temperature.
Plasma emission at v = Vg is more attenuated at high frequency than at low
frequency (because of the higher density at the source). For interplanetary type
IIT bursts (v, a few tens of kHz), attenuation even at the fundamental can be
neglected. In fundamental metric bursts (¢, a few tens of MHz), the effects of
collisional attenuation and of refractive focussing are about equal, but of opposite
sign. They are usually neglected. For v & 0.5 GHz and solar coronal conditions
(H, ~ 10'° ¢m, T ~ 10° K) no fundamental emission was expected. Observations
such as Figure 6.5 indicating fundamental radiation, however, suggest that the so-
lar corona is transparent even for microwave emission propagating near the plasma
frequency. The density scale height in Equation (11.2.5) seems to be reduced to
an effective value about a factor 20 smaller than estimated from an isothermal,
horizontally stratified atmosphere. It will be interpreted in Section 11.5 by inho-
mogeneity due to density filamentation along the magnetic field, allowing harmonic
plasma emission to escape up to about 7 GHz.

113. Dispersion Effects
11.3.1. GEOMETRIC OPTICS

Geometric optics assumes a medium of propagation in which the waves propagate
independently of each other, following the laws of refraction and reflection. The
waves can be represented by rays. The conditions for geometric optics have been
discussed in Section 11.1. If these assumptions apply, propagation in a plasma is
fully determined by the refractive indices of the two transverse modes.

Equation (11.1.1) can be integrated numerically for a given coronal model.
Figure 113 illustrates the result in the form of rays having their end points at
Earth. We note in particular:

e Refraction always shifts the apparent source of the rays foward the star. If a
source is visible for an observer, refraction makes it appear at lower altitude
than in reality.

e The minimum height of all rays through Earth forms an envelope below which
a source is invisible from Earth at the given frequency. This surface may be
called the horizon of refraction. It is always at or above the plasma layer.

e From each source above the horizon, there are two rays to Earth — a direct
ray and a refracted ray — and therefore two images. In practice, the refracted
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Fig.11.8. Ray paths in a spherically symmetric corona for radio waves at a given frequency
w. Magnetic fields have been neglected. Only rays propagating into the direction of Earth are
plotted. The full circle indicates the photosphere; the dashed circle is the plasma level, where
wp = w. Note that this figure is highly idealized as in reality coronae are extremely structured
(cf. Fig. 1.1).

image is strongly absorbed, as it propagates close to the plasma level, and has
not yet been observed.

o At the subearth point (A) a ray penetrates to the cutoff level, where N = 0.
Detailed investigation shows that waves approaching the cutoff level couple to
waves propagating away so that the radiation is reflected. Figure 11.3 suggests
that this case is of minor importance, as most rays are prevented by refraction
from reaching the cutoff level.

There are important exceptions to geometric optics in coronae, in particular if
the wave frequency is close to the plasma frequency (see above) or if it is nearly
perpendicular to the background magnetic field (Section 11.34).

We note finally that the presence of coronal structure on all scales greatly com-
plicates the actual picture. In reality, the apparent position of solar radio sources
is higher than their actual position, and sources well below the theoretical horizon
of refraction — even behind the Sun — are sometimes visible. These discrepant
findings will be discussed and interpreted in Sections 114 and 11.5.
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11.3.2. PLASMA DISPERSION

The group velocity of radiation depends on the electron density and on the mag-
netic field in the medium of propagation. A radiation pulse that has travelled
through a plasma arrives later than a pulse that has passed the same distance in
vacuum. The delay, 7, is called group delay and amounts to

. :/ (% _ %) ds (11.3.1)

integrated from the source to the observer. The group velocity, vg, is calculated
from the dispersion relation (Eq. 11.1.2). We simplify for w > €, to obtain the
non-magnetic case,

Vgr = %‘}‘ci re(l-wiw) P <e (11.3.2)

Inserting this into Equation (11.3.1), one gets, in first order of (wp/w)2:

1 2me? 1
T W/wg ds = ctneﬁ ne ds . (11.3.3)
The integral over electron density along the ray path is termed the dispersion
measure or electron column density. The delay is an observable quantity when
a broadband pulse, emitted over a wide frequency range at the same time, is
observed at two frequencies separated by Aw. The dispersion measure can be
evaluated from the observed difference in arrival time, A7,

3
/ne ds ry — 0 AT . (11.3.4)

dre? Aw

The negative sign indicates that a pulse arrives first at the higher frequency. The
effect is observable if the pulse is short and emitted simultaneously over a wide
bandwidth. The pulse is then observed to drift from high to low frequency and
can be used to measure the electron column depth. The method is practicable for
pulsars, where it is called interstellar dispersion and has been applied successfully
to measure the average interstellar electron density or, in some cases, the distance
of the pulsar.

Dispersion also causes a polarization effect. Neglecting terms of order w/f2, in
Equation (11.3.2) has eliminated the effects of the magnetic field in the plasma of
propagation and of the gyromotion of the oscillating electrons. Under the influence
of the background magnetic field, the electrons are constrained to move in spiral
orbits. Therefore, they interact differently with left and right-hand polarized waves
(o and x mode, respectively).

The unpolarized or linearly polarized radiation contains waves of both modes
propagating independently. The two modes are circularly polarized in opposite
senses if they propagate parallel to the magnetic field (Section 4.3). They are
elliptically polarized in the general case. If the magnetic field is included in A,
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the two modes propagate at different speeds. Two fully polarized pulses of oppo-
site polarity emitted simultaneously arrive at different times (Exercise 11.2), the
o-mode travelling faster at a given frequency. The effect is observable in solar
narrowband spikes (Section 8.1.3).

11.3.3. FARADAY ROTATION

Let us consider the radiation of a linearly polarized, stationary source. Emis-
sion processes producing linear polarization include, for example, the synchrotron
mechanism and the coupling of perpendicular electrostatic waves. We shall show
in this section that dispersion rotates the position angle of the electric field of the
wave.

The oscillatory motion of a wave is generally described by a phase

=ks—wt+y . (11.3.5)

Linearly polarized waves propagating through a magnetized plasma must be
viewed as a combination of equal components of oppositely handed elliptically
polarized waves. Their electric field vectors add to the electric field of the wave.
In the quasi-longitudinal limit (Eq. 11.1,2) and for identical frequencies, the two
modes differ in refractive index by

2

wylle

w3

AN =N, — Ny = |cosf| . (11.3.6)
Since vpn = ¢/N, the phase velocities of the two modes are different. The phase
velocity of the o-mode is slower than the x-mode. On propagating a distance ds
the phases of the two modes are shifted in relation to each other by

dip = (ko — kz)ds = —(l)-——i— w ds
AN wds

- (11.3.7)

In the frame moving with the o-mode, the phase of the x-mode moves ahead.
The direction of the electric field vector of the combined waves is the bisector of
the angle between the electric field vectors of the two elliptically polarized waves.
Therefore, it rotates by an angle d¢ = di/2, or

20, cos
ot bk M (11.3.8)

d¢ =
The disappearance of the absolute marks for cosé subtly takes care of all angles
between the direction of propagation and the magnetic field. As a wave propagates,
the component of the magnetic field parallel to the direction of propagation may
reverse sign. Remember that the sense of rotation of the x-mode is the same as the

2wlc
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sense of the electron gyration in the magnetic field; it is right-hand (relative to k)
for < 7/2 and left-hand for § > /2. A normal wave mode with sufficiently high
frequency (defined in Eq. 11.3.16) keeps its sense of rotation when propagating
from a region with 8 < 7/2 to a region with 8 > /2. The wave changes its mode,
and what was a faster x-mode before, becomes a slower o-mode. The electric field
vector of a linear wave therefore changes its sense of rotation. If the magnetic field
is directed toward the observer, d¢ is positive; if the field is directed away from
the observer, d¢ < 0.

The total Faraday rotation is the integral along the ray from the source to the
observer,

2med

(75:

The integral in Equation (11.3.9) is called the rotation measure. It can readily be
determined by two measurements of the direction of linear polarization at adjacent
frequencies (Exercise 11.3, see also Fig. 114), similar to the dispersion measure
(Eq. 11.34). Thus, A¢/Aw gives the integral of n.B cosf along the ray path. It
yields an average magnetic field — more precisely, its longitudinal component to the
line of sight - weighted by the electron density. The sign of ¢ indicates whether
the magnetic field is directed predominantly toward the observer (if ¢ > 0) or
away from it.

The combination of rotation measure and dispersion measure is a successfully
applied method for estimating the magnetic field strength of an intervening plasma.
If the rotation measure is dominated by a roughly uniform region, the weighted
() magnetic field strength along the ray path is

/neBcosﬁ ds . (11.3.9)

m2c2uw?

_ [neBcosb ds

(B COSG) = _T7_1:—(is_— . (11310)
The Faraday rotation of pulsar radio emission has been used to measure the mag-
netic field of the interstellar medium. The method has also been applied suc-
cessfully to the solar wind using extragalactic background sources. Figure 114
shows the effect of Faraday rotation in the interplanetary medium. It rotates
the polarization angle of radiation proportional to the square of the wavelength
as predicted by Equation (11.3.9). Two linearly polarized quasars are observed
at different angles from the Sun. The quasar 3C353 has a larger rotation mea-
sure since its radiation passes through interplanetary plasma of higher density and
magnetic field.

Faraday rotation is rapid for radiation frequencies within, say, an order of
magnitude of the plasma frequency, and a meaningful rotation measure would
have to be determined at extremely close frequencies (Exercise 11.3). This is the
case of radio waves emitted in coronae. The electric vector rotates many times
within a source, destroying any initial linear polarization. No linear radio emission
has ever been observed conclusively from the Sun and the stars, because any initial
linear polarization is washed out by different rotation angles from different parts
of a source.
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Fig. 11.4. The position angle of the electric field of the linearly polarized radiation is plotted
against A2, The estimated rms error for each point is +6°. The observations of two quasars,
3C353 and 3C161, are shown, located at 32.6 and 83.1 degrees from the Sun, respectively (from
Gauss and Goldstein, 1973).

11.3.4. QUASI-TRANSVERSE REGIONS

Electromagnetic waves in a homogeneous medium can be considered as eigen-
modes. What happens if they travel along a ray where the magnetic field changes
direction, as in Figure 115 (top)? In an inhomogeneous medium there are no eigen-
modes. In first approximation, a real wave can be described as being composed of
the two eigenmodes of the homogeneous case. However, this is a deliberate choice,
and the ratio between the amplitudes varies along the path. The two modes are
no longer independent; in other words, the amplitude of one cannot be chosen
without specifying the other. This is called mode coupling.

The freely moving charged particles in a plasma — in particular the electrons
- oscillate simultaneously with both modes of radiation. The oscillating particles
couple the two modes to each other. In contrast to wave scattering (Section 6.3.2)
mode coupling is a linear process. The amplitude of one mode is proportional
to the amplitude of the other, and is not multiplied by the amplitude of density
fluctuations or of a third wave. Remember that the two coupled modes are in
reality only the components of one wave.

The coupling is particularly notable

(1) near the plasma frequency (w = wp), where a large fraction of the wave
energy resides in particle motion,

(2) in quasi-transverse regions, where propagation is nearly perpendicular to the
magnetic field and the wave modes are substantially elliptically or linearly
polarized (Section 4.4).
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There is no coupling in vacuum and in a homogeneous medium. Furthermore,
there is no mode coupling for waves travelling parallel (6 = 0) to the magnetic
field and as long as the quasi-longitudinal approximation (11.1.2) holds.

A. Mode Coupling in Quasi-Transverse Regions

The quasi-longitudinal approximation breaks down in the range of quasi-transverse
behavior. This range is limited by 7/2 — A8 < 6 £ n/2 + A6, with

~ Qe
T 2w(l - w2/w?)

as can be derived from the dispersion relation (4.5.1) assuming (€ /w)? < (1 —
wf, Jw?)? .(E{(ercise 11.1?. In Figure 11.5 a ray propagates along a path s. The path
length within the quasi-transverse region becomes

AszA&Elgz 2 Hp 7

dé  2w(1 - w2 /w?)

We have defined Hp := dx/d6, the scale length in transverse direction over which
the angle of B changes. The z-axis is assumed parallel to the ray at the point
of transverse propagation (Fig. 11.5, top). The ray path is affected by refraction,

introducing a further factor (1 — w;";/(.uz)_l/2 by Snell’s law: ds/dz = sinf ~ 1/N.

AB (11.3.11)

(11.3.12)
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Fig.11.5. Top: A ray traverses a region of quasi-transverse magnetic field. Bottom: Each
horizontal row of five polarization ellipses corresponds to a different physical situation. The
first row corresponds to the behavior of a low-frequency wave, wf‘ < w;‘, the second row to
the intermediate case, wy = w;, and the bottom row to a high-frequency wave, w$ > wi. The
coupling of these waves is weak, intermediate, and strong, respectively.
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Two oppositely polarized modes interact efficiently as long as their phases
remain approximately equal. Therefore, the condition for severe coupling is that
the change in phasedifference, A+, is small during the interaction over a length
As;
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h = (ko — ko)As <1 . (11.3.13)

We use the dispersion relation (Eq. 4.5.1) in the quasi-transverse limit to derive

2,2
Qw;

Ro = ka & 2wie(l — wi/w?)

(11.3.14)

The smaller the phase difference, A, through the quasi-transverse region, the
better the coupling. The degree of coupling is described by the coupling constant,

. 1 4 cw? 5/2
@=3 T 03uZHg uiiy L~ W/

A ” (11.3.15)

. 2, 2

= (;) (1 ~w,/w”)

The transition frequency, w;, has been defined with
1/4
Qw2H

wy = <——4’ic—5> . (11.3.16)

Q vanishes in the absence of a gradient (Hg = o0). Small Q means slow change
of mode ratio. Except for w & wp, the ratio w/w; determines the strength of the
coupling. We may estimate Hg in a corona to be of the order of 10° ¢cm and
Qe/wp = 0.1. The transition frequency is then typically w; =~ 10 w,. We shall
compare these expectations with observation in the following subsection.

The effect of a quasi-transverse region depends on the region in which it is tra-
versed: this is sketched in Figure 11.5 (bottom). The polarization ellipse indicates
the sense and orientation of elliptical polarization. For w* < w{ and thus Q < 1,
the phase difference changes too much to transfer energy efficiently; mode coupling
is said to be weak. If a wave is in o-mode before a quasi-transverse region with
weak coupling, it remains in o-mode throughout it. This means that, if initially
8 < 7/2 and the E-vector rotates counterclockwise, the wave becomes elliptically
polarized in the quasi-transverse region and linearly polarized at @ = w/2. It leaves
the quasi-transverse region in o-mode, but the E-vector rotates clockwise because
now 8 > w/2 (Figure 11.5, wj). The emerging mode is the same as the emitted
mode, but the sense of the observed circular polarization is opposite to that in the
source. Weak coupling changes the sense of circular polarization.

Intermediate coupling requires ) =~ 1. About half of the energy is transferred
to the other mode, so that the final radiation is elliptically or — in the ideal
case - linearly polarized. Faraday rotation (Section 11.2.4) quickly reduces the
polarization to the circular part, diminishing the degree of polarization.

Mode coupling is strong if w* > w} and Q > 1. Energy is exchanged effectively
between modes so that a wave arriving in pure o-mode is decomposed into o-
mode and x-mode. The circular polarization remains as if the magnetic field did
not change. The rotation is counterclockwise before the quasi-transverse region
(assuming o-mode and 6§ < w/2), in the region and thereafter. The handedness
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(screw sense) of the rotation does not change when viewed in forward direction
of propagation, but the name of the mode changes. Since § > 7/2 behind the
quasi-transverse region, the o-mode wave turns into x-mode. The observed sense
of circular polarization then is identical to the sense of polarization in the source.
Strong coupling preserves the sense of polarization.

The deduction of the original mode and of the field direction in the source
requires information on the mode coupling. Then, if we know the mode of emission,
we can deduce the orientation of the magnetic field in the source, and vice versa.

B. Confrontation with Observations

If a coronal source emits radiation at w between one and two times wj, the radiation
first passes through a region with w < w; for seemingly plausible values of the
relevant parameters. Thus mode coupling in a quasi-transverse region near the
source is expected to be weak for plasma emission.

The observational evidence is controversial. The strength of mode coupling
can be tested by two sources located in the legs of a loop and emitting the same
mode. Taking o-mode, for example, the right ray in Figure 11.6 (left) is emitted
with counterclockwise polarization and the left ray clockwise. The left ray passes
through a quasi-transverse region. If mode coupling is weak, the sense of rotation
flips to clockwise, becoming identical to the right ray. Solar type III radio bursts
travelling in loops (called U-bursts, Fig. 5.8) have been studied for this effect.
At frequencies above 200 MHz the sources in the rising and descending phase
have usually the same polarization confirming the expectation. However, at lower
frequencies the two sources show different polarization indicating strong coupling
throughout the high corona (beyond about 10°km).

QT QT

Fig. 11.8. Illustrations of two tests of the strength of mode coupling in quasi-transverse regions
(QT). Left: Two sources with opposite longitudinal magnetic field relative to the observer. Right:
One source seen from two directions.

In another test, a radio source is observed from two directions (Fig. 11.6, right).
In practice, one uses stationary sources and observes in two phases of rotation. For
example, noise storms (Section 9.5.2) are highly polarized, stationary sources in
the high corona at w = wp. When the solar rotation moves them to different
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aspect angles, their sense of polarization is not observed to change, suggesting
strong coupling.

Strong coupling in high coronal plasma emission is generally interpreted by
a small transition frequency, reduced by small-scale fluctuations in the magnetic
field in the quasi-transverse region. They may be caused, for example, by the
continuous passage of Alfvén waves through the corona. The ripples effectively
reduce Hp in Equation (11.3.16). The angle between the ray and the magnetic
field may change significantly on scales as small as 105 ¢m, making w; = w,. All
emissions then are strongly coupled in any quasi-transverse region they encounter
in propagating, and the observed sense of circular polarization is the same as the
sense emitted.

C. Depolarization

Several emission mechanisms proposed for solar radio bursts produce predomi-
nantly one mode of radiation. Yet the observed bursts are only weakly polarized.
This is the case for type II and type III bursts in general, and noise storms, narrow-
band spikes and decimetric pulsations near the limb. On the other hand, coherent
radio bursts of dMe stars are highly circularly polarized (Section 8.4.4).

The observational discrepancies may be interpreted by depolarization in quasi-
transverse regions. In a quasi-transverse region where w & w; within about a factor
of two, highly elliptical or linear polarization results from incident circularly polar-
ized radiation (Fig. 115, wp). Faraday rotation eliminates this linear polarization
and the emerging radiation is partially circularly polarized. If the magnetic field
is rippled in the quasi-transverse region, the ray passes effectively through many
quasi-transverse regions and loses most of its initial polarization.

The coupling constant increases rapidly for frequencies between w, and 2w,
(Eq. 11.3.15). Therefore, plasma emission at the fundamental has a high proba-
bility to encounter a quasi-transverse region with @ & 1. It is most likely to be
affected by depolarization.

In the coronae of dwarf M-stars the ratio §2./wp is probably close to unity,
thus w, is larger and coupling near the source is weak throughout the corona. The
radiations from sources with different signs of the longitudinal magnetic field com-
bine to radiation with the same sense of rotation after passing a quasi-transverse
region near the star (w < w¢). The domain where @ = 1 is far from the star, and
the probability to cross a quasi-transverse region there is small. This may be the
reason why the observed radiation is not depolarized.

11.4. Scattering at Plasma Inhomogeneities

In an irregular propagation medium, a wave cannot be represented by a single ray.
Small fluctuations in density or magnetic field distort an incident plane wave as
the wave phase propagates at different speeds. The wave breaks up into parts that
are deflected, focussed, and defocussed in a random way. A wave then resembles
a bundle of interfering rays traversing slightly different paths.
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Fig.11.7. A wave front (ray A) is distorted by an inhomogeneity (say a density fluctuation) in
the medium of propagation and is deflected by an angle A¢,. Ray B propagates to the observer
in a straight line.

Consider a single scattering process as illustrated in Figure 11.7. Ray A passes
through an inhomogeneity of size £ assumed to be surrounded by a homogeneous
background. In the limit of very small deflection angle Agg, we can neglect the
difference in the path length of rays A and B for the following discussion. The
wave phase (Eq. 11.3.5) is shifted relative to ray B in the undisturbed medium by

Ay = Ak £ = (é - %) wl . (11.4.1)
Uph Uph

The superscripts O and 1 refer to the ambient medium and the irregularity, respec-

tively. Scattering is called strong, if |A] > 7. Let us neglect magnetic effects and

assume that the irregularity is a density fluctuation of An. The phase velocity,

derived from Equation (11.1.2) for w > ., is

Uph = 3 A e (11.4.2)
1 - wi/w?
For w? >> wf,, one derives
An fwy\? fw
Mpm-E () 5 (11.43)

The negative sign in Equation (11.4.3) indicates that the phase moves faster for
An > 0. When the ray leaves the density fluctuation, its phase is ahead by As
compared to the ray in the homogeneous medium. It continues to propagate as
a plane wave, but arrives at the observer from a different angle. The deflection
angle, Agy (see Fig. 11.7), is

As Ay 1 An fwp\?
T o me 3 n (2) (11.4.4)

We have used ”;1;1; ~ ¢, ¢ = £, and Equation (11.4.3). Let us now study the effect
of many scattering processes. The total deflection angle of multiple scatterings is
the sum of a random walk in two dimensions, on average

A¢d ~
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1/2
(#a) ~ VN (| Agal) ~ 1\@ B _ () (11.45)

2 n w

where N is the number of scatterings approximated by L/, and L is the size of
the scattering medium. The observer sees a multitude of rays from the scattering
region. If the scattering occurs in a thin region midway between the source and the
observer, a point source appears smeared out by half of the rms deflection angle,
thus {@obs) & {¢a)/2. In practice, the diameters £ and £ can be defined by the

autocorrelation lengths of the density distribution, and (Anz)l/ 2 by its standard
deviation.

Scattering broadens the image of a source. Assuming Gaussian statistics with
{¢obs) being the angular radius at half power of the scattered (apparent) image
of a point source, a flux density F is smeared out to an extended image with an
intensity distribution

F ¢?
H¢)= ———5exp|——— . 11.4.6
@ 2 (farn)” { 2<¢obs>2] (11.48)
In addition to angular broadening, the scattering process washes out the time
profile of an impulsive signal. A scattered ray is delayed relative to the direct ray
for the simple reason of its longer path. For a Gaussian distribution of irregularities
and hence a Gaussian distribution of scattering angles, a pulse is convolved with
a truncated exponential,

g(t)={gXp(_2t/T”) 238 : (11.4.7)

The time constant,

2
ryn 22 D (fona)” (11.4.8)
D1 2c

can be derived as an exercise (11.4) from a geometrical argument. D is the distance
to the source, D; denotes the distance from the source to the scattering region
assumed to have a thickness much smaller than D (thin screen model), and D, =
D—D;. In the derivation of Equation (11.4.8), the approximations (D3)?{¢eps)? <
(D1)?,(D7)? have been used. A group velocity of ¢ have been assumed, and ¢ is

in units of radians.

Strong and multiple scattering are the two conditions for a phenomenon called
scintillation. 1Tt is caused by interference between the direct ray and scattered rays.
It can be constructive — then the signal is enhanced — or destructive, and the signal
weakens. If the source or the scattering medium move in relation to the observer,
the observed flux varies, since the phase relations of the two rays — and thus
their interference — change rapidly. Another characteristic of scintillations is that
interference remains constructive only over a limited bandwidth. The variations of
scintillation therefore are not correlated if observed at two frequencies separated
more than Aw, usually a very small value (e.g. about 1033 - 2* in the interstellar
medium, Av andv in units of Hz).



278 CHAPTER 11

In conclusion, we summarize the key effects of scattering by random fluctua-
tions on radiation from sources in coronae:

(1) The apparent size of a point source is bigger the closer the frequency to the
plasma frequency and the thicker the scattering region (Eq. 11.4.5).

(2) The apparent source height near the limb increases with scattering, since
rays passing through the corona at low altitude are strongly absorbed.

(3) Large-scale refraction makes radiation more directive (Section 11.2.2), scat-
tering makes it less directive.

(4) Angular broadening by scattering implies temporal smoothing (Eq. 11.4.8).
For short pulses both effects of scattering are observable and related.

The scattering hypothesis has been successful for pulsars and irregularities of the
interstellar medium. The evidence of scattering of solar radio bursts is ambiguous.
In agreement with the scattering hypotheses, the diameter of the observed im-
ages increases from the center of the disk to the limb, compatible with the longer
propagation path in the corona. Solar radio emissions from near the plasma level
have apparent diameters of several arcminutes, apparently broadened by scatter-
ing. However, the observed shift of the apparent sources near the limb to higher
altitude is too large to be interpreted by scattering on random fluctuations, as
they would introduce a range of time delays in excess of the observed decay time
of the short bursts (e.g. solar type I bursts). Furthermore, the observed source
size of fundamental emission would be larger than for harmonic emission at a given
frequency, contrary to observations. And finally, the observed directivity of some
radiation (particularly type I bursts) excludes the scattering predicted from the
apparent source size. It is the focus of the next section to interpret the propaga-
tion effects of solar radio bursts by irregularities that are not isotropic and have
not a random shape.

11.5. Propagation in a Fibrous Medium

In the previous section we have found discrepancies between observed solar radio
emission and the prediction of both refraction models in a spherically symmet-
ric atmosphere and models involving scattering on random irregularities. The
discrepancies disappear if the corona is modelled as a fibrous medium. The ra-
tio B between thermal plasma pressure and magnetic field pressure is generally
much smaller than unity in the corona of the Sun and other late-type stars. The
magnetic field dominates (Section 3.1.3) and arranges itself into a smooth config-
uration. The density can then vary perpendicular to the magnetic field with little
effect on the pressure equilibrium (Eq. 3.1.50). On the other hand, the density
fluctuations are smoothed in the third dimension along the field lines. The coronal
density may thus be highly structured in flux tubes of high and low density.

This is confirmed at the arcsecond scale by solar UV and soft X-ray images and
in interplanetary space by in sifu observations. Figure 11.8 shows that surfaces



PROPAGATION OF RADIATION 279

of constant density in interplanetary space are highly corrugated. The curves
were derived from solar wind density measurement near Earth, and using the
assumptions n, « r~2 and that the solar wind motion with V,,, = 400 km s~!
forms an Archimedean spiral magnetic field. The figure illustrates the concept of
a plasma structured as fibers of high and low density.

Fig. 11.8. Curves of constant density in the ecliptic plane, the inner one corresponding to ne =
7.1-10% cm~3 and the outer one to n, = 44 cm™3, The curves were constructed from 27 days
of ion density measurements made once per hour near Earth (from Lecacheux et al., 1989).

White-light and soft X-ray observations suggest coronal density variations
across the magnetic field of an order of magnitude at a given height over dis-
tances of 10*km or less (Fig. 1.2). The electron density in the interplanetary
medium is known to vary over small scales transverse to the magnetic field with a
root-mean-square factor of about 2.

There are two models of the effect of a fibrous medium on propagation. (i)
Ducting by low density, elongated structures collimates and guides the radiation.
(#4) Deflection by high density fibers causes anisotropic scattering. The two con-
cepts are limiting cases. In reality, they may occur simultaneously.

11.5.1. DUCTING

Figure 119 depicts radiation originating near the plasma level (w ~ wp) in a
fibrous source at left. Radiation propagating along the magnetic field lines (i.e.
perpendicular to the density gradient and horizontal in the figure) is absorbed
by electron collisions, regardless of whether it has originated in the high density
region or in the low density region (Section 11.2.1, Eq. 11.2.5a).

Since refraction bends radiation toward regions with lower phase velocity
(higher W), implying lower density, radiation from the high density part may
be refracted to the low density regions, where its frequency is now well above the



280 CHAPTER 11

density
gradients

> low density

Fig. 11.9, Propagation of radiation emitted near the local plasma frequency in a dense, fibrous
corona. Rays perpendicular to the density gradient are absorbed. Only radiation refracted and
scattered from a high density source into a low density trough can escape and is ducted.

local plasma frequency. The collisional absorption is then reduced according to
Equation (11.2.5.C). A part of the radiation is scattered into a direction nearly
parallel to the density structures. Refraction will then guide the radiation along
the low density troughs (called ducts) as light waves are in an optical fiber. When
the radiation reaches the higher corona, the plasma frequency of even the high-
density regions falls below the frequency of the radiation and the radiation escapes
freely.

In a conical duct expanding in outward direction, guiding becomes even more
efficient. Each refraction at the wall decreases the angle between the ray and the
axis of the duct by 2¢, where ¢ is the half-angle of the cone. The ducted rays are
collimated into the direction of the cone axis.

Ducting has been proposed (by Duncan, 1977) to account for the apparent
positions of the fundamental (w & wp) and harmonic (w ~ 2wp) components of
radiation caused by beams and shock waves (solar type III and type II radio
bursts, respectively). Fundamental and harmonic radiation can be identified from
spectral observations. The positions of fundamental-harmonic pairs — observed at
the same frequency — nearly coincide, although the source of the harmonic emission
should be at lower density by a factor of four. Correspondingly, the height of a
fundamental source observed at frequency v is always greater than the height of
its harmonic emission observed at 2v, despite the fact that the source is the same.

A likely situation is sketched in Figure 11.10. The fundamental emission —
and probably the harmonic emission as well — first propagates in field aligned
ducts at a low density, until the high density filaments become transparent for the
observing frequency. Thus, fundamental and harmonic emission may appear at
the same location for a given observing frequency. The condition for this to occur
is simply that a duct is surrounded by plasma having at least twice the plasma
frequency (i.e. the surrounding density exceeds four times the value in the duct).
The harmonic emission is ducted along with the fundamental of the same radiation
frequency originating farther down. The two emissions escape from the duct at
the same position.
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Fig. 11.10. Schematic drawing of plasma radiation originating at a source with a plasma fre-
quency vp. The radiation is observed at the apparent sources (shaded) in fundamental (v = vp)
and in harmonic (v & 2vp) emissions.

The ducting model helps to reconcile the reported discrepancy between coronal
densities derived from the observed radio frequency (Section 5.3) and the white-
light intensity. The radio measurements systematically show densities that are
higher by a factor of 10 to 20. Ducted radio emission refers to the peak density
at the apparent source position. On the other hand, white-light measurements
yield average values along the line of sight. This can explain at least a factor of 4.
The preferential escape of emission from high density structures (Fig. 11.9) may
contribute a similar factor.

Ducting explains how a radio source appears at greater heights without exces-
sively increasing its apparent size. It gives a natural interpretation of the observed
similarity of source sizes of fundamental and harmonic emissions.

In conclusion, ducting may interpret many propagation phenomena of waves
having frequencies near the local plasma frequency. However, it highly collimates
the escaping radiation in the radially outward direction, contradicting the obser-
vation of limb events. Obviously, at higher altitude — where w >>w, —some form
of scattering will take over. This is the topic of the next section.

11.5.2. ANISOTROPIC SCATTERING

Ducting is important as long as the radiation frequency is close to the average
plasma frequency in the plasma of propagation. When the radiation frequency
exceeds the plasma frequency of most flux tubes, the radiation is refracted away
from the direction of the duct. Nevertheless, the radiation may still be reflected
by the most dense fibers (Fig. 11.11). A refracted ray conserves the angle to the
fibers at each reflection. The alignment of the flux tubes imposes an anisotropy
into the scattering process.

In the two-dimensional geometry of Figure 11.11, the radiation of a highly
directive source is reflected into the two directions with angle § to B. The apparent
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Fig.11.11. Overdense flux tubes (shaded) scatter the radiation to a larger apparent source size
without reducing its directivity. The rays cannot penetrate the overdense flux tubes. They are
either reflected, pass in front or behind the tubes.

size of the source increases, and its average position is apparently at higher altitude.
The directivity of the source remains high.

Anisotropic scattering has been proposed to explain the observed directivity
in solar type I radio bursts associated with noise storms. They appear to have a
larger source size L than their short rise time At allows (L > At vg, where the
group velocity for fundamental emission (w = wp) is about 0.2¢). This seems to
be the result of scattering. Anisotropic scattering increases the source size with
a smaller loss of directivity than isotropic scattering. Since anisotropic scattering
occurs at propagation speeds of nearly ¢, the extra path for reflections does not
efficiently delay the radiation.

All propagation effects intensify the closer the wave frequency is to the plasma
frequency of the medium traversed. The densest region in the propagation path
is therefore most influential. For emissions from a corona it is usually the coronal
plasma overlaying the source that modifies the radiation.

The fibrous structure of coronae becomes the dominant effect at w ~ w,,. It not
only distorts the emission, but allows radiation to escape even from the densest
part of a corona where a horizontally stratified atmosphere would be opaque. Prop-
agation effects thus contain interesting information about density inhomogeneity
in magnetically structured coronae.

Exercises

11.1: The quasi-longitudinal approximation (11.1.2) is often used for estimating
propagation effects. What is the limiting angle 8 where the longitudinal



and transverse terms of Equation (4.5.1) are equal? Evaluate the angle for
Q/w = 0.1 in the two cases w?/w? = 0.01 and 0.8.

11.2: The two modes of radiation usually propagate independently. Consider a
radiation pulse that is initially linearly polarized and that propagates quasi-
longitudinally through a cloud of plasma having wp/w = 0.5, Q./w = 0.1,
and a length L = 3-10'° cm. What is the difference in arrival time of the
o-mode and x-mode parts of the radiation?

11.3: The direction of the electric field vector of a linearly polarized wave rotates
around k as the wave propagates through a magnetized plasma. This Fara-
day rotation angle depends on frequency. Calculate the frequency difference
at which the rotation differs by 2«. How much is it for linear polarization
emitted in a corona? Use ¥ = 10'° Hz, n, = 10° cm~3, Bcosf = 100 G,
and L = 10'° cm (about one scale height in the solar corona). How many
times does the electric vector rotate in this distance?

11.4: Scattering smears out the time profile of an impulsive signal. Calculate the
delay (Eq. 11.4.8) of a ray scattered in a thin screen between the source and
the observer. Assume that the group velocity outside the screen is ¢ and
that the observer sees the ray arriving at an angle {(¢obs) from the direct ray.
What is the time constant due to scattering of solar type I bursts having
an apparent diameter of 2’ and D; = 10'° cm?
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MATHEMATICAL EXPRESSIONS

Definitions of Vector and Tensor Operations

Scalar product:
A -B:=A.B,+A,B, + A.B,
Vector product:

A xB:=(AyB, — A,B,, A,B;— A,B., A,B, — A,B,)

Tensor product:

A.B, A,By, A;B,
AoB:=| AB, AyB, A,B.
A.B, A.By A,B,
Divergence:
04, O0A, O0A,
VoA oz T By | 0z
Rotation (curl):
_ 0A, 0A, 8A, O0A, DA, 0OA,
VxA: (35"37’"52‘79?’"5?“«9?)

Laplace operator:
8? 62 0?2
2/ Al = _ _
VeA| = 6w2|A' + By [A] + £ |A]

Vector-tensor products:

ZA Bis ZA Biy ZA B;.)
Bx A _(}:Bm& : ZBy,Az , ZBHA)

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A7)

(A.8)
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Vector Relations

(AxB)xC=-Cx(AxB)=(A-C)B~(B-C)A (A.9)
Vx(VxA)=V(V-A)~-V3A (A.10)
Ax(VxA)= V('AI ) — (AV)A (A.11)
V(VxA)=0 (A12)

Frequently Used Integrals

For @ > 0 and n a natural number (n = 1,2,3,...),

o0}
/ the"sdr = a"n! . (A.13)
a
For n =0,1,2, ...
= ong1 22 ! onio
z e adr = 50 ) (A.14)
0
o0 1 3.(2n-1)
/ 2n ——7d (:4.1 \/— 2n+1 . (A15)
o 2
In particular,
oo 12
/ e—de:%—;r_a . (A.16)
0

We write the Fourier transformation in space and the Laplace transformation in
time as

xQ o0
Ak, w) = / dt / LrA(x,t) e-ilo—wt (A17)
0 —o0
yielding a back transformation
dw [ d°k o
A(x,t) = / / G )3A(k ,w) elkx—wt (A.18)

L indicates the Landau prescription on the contour integral in the complex w-plane
(see Fig. 5.5).



UNITS

We are using Gaussian (cgs) units throughout this book, since it is the most widely
spread system in the field. The equations in the Gaussian system can easily be
transformed into the mks system by replacing each symbol in the equation with the
mks symbol given in Table B.1. Symbols for length and time, and their derivatives
remain unchanged. When an equation is transformed to mks symbols, mks units
(cf. Table B.2) have to be used.

Table B.1. Transformation of symbols in equations from Gaussian (cgs) units to mks units.

Quantity Gaussian Rationalised mks
speed of light ¢ (€ Dﬂ'ﬁ)_lﬂ
charge e e(4meg) ™ /2
current J J(4meg)™ 1/2
electric field E E(4meg)*/?
magnetic field B B(4m/po) Yo
dielectric constant € e/eq

magnetic permeability n 1/ o

electrical conductivity o 0'(47r£g)“1

Table B.2. Units of symbols in Gaussian (cgs) and mks systems.

Quantity Gaussian Rationalized mks
length 1cm = 1072 m

mass lg= 1073 kg

time l1s= 1s

force 1 dyne = 1075 N

energy 1erg = 1077 joule (J)

power lergs™ = 1077 watt (W)
charge 1 statcoul = 3 - 1079 coulomb (C)
electric field 1 statvolt cm™! = 3:10* Vm™!
current 1 statamp = 1.107° ampere (A)
current density 1 statamp cm ™2 = % +107° Am~2
electrical conductivity 1s™! = § - 107° siemens m™!
magnetic field 1 gauss (G) = 10~* tesla (T)
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FREQUENTLY USED EXPRESSIONS

We assume a fully ionized plasma with solar abundances (27% helium by mass)
and use cgs units (B in gauss, T inkelvin, InA = 20). The subscript ® refers
to parameters in units of the solar values, and the subscript a denotes a general
particle species.

Physical Constants

Speed of light c = 2.99792458 - 1010 cm 571
Electron charge e = 4.803206- 10710 esu
Electron mass me = 9.1093898-10~28 g
Proton mass m, = 1.6726231.107% o
Mass ratio m,,/me = 1836.152735
Electron volt 1eV = 1.602177-10"12 erg
Boltzmann constant kg = 1.38065-10~1¢ erg deg™!
Gravitational constant G = 6.6726-1078 cm?® g=1s~2
Planck constant h = 6.62607 1027 ergs
Plasma Properties
Gyroradius R, = 5.69-107%v; B~'(mys/me) cm
Debye length Ap = 6.65 TV/2p; /2 cm
Gyrofrequency Qq/2m = 2.80-105By~1(m./m,) Hz
Plasma frequency vy = 8.98- 103\/_ Hz
Self-collision time te = 1.34-1072 T2 Z-4n  (mg /me)V/?
Thermal electron-ion ]
collision time te; = 1.65-1072 T3/2p-1 8
Coulomb mean free path £e, = vt by, = 5.21-10% T2n3'Z %cm
Coulomb conductivity o = 3.22.106 T2/? g1
Dreicer field Ep = 2.02- 1()'10 Zing/T statvolts cm™!
Deflection time of non-  t§* = 1.44-10"2%3/n, 8
thermal electron
Mean thermal velocity — vq = 3.89 - 103T%/2(m,/mg)'/? cm s~1
Sound velocity cs = 1.51-10*VT cm s~!
Alfvén velocity ca = 2.03-10"'B/\/n, cm s™!
Pressure ratio B = 347107 n (T, + Tp)/B?
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Solar Properties

Age 4.65 - 10° y

Mass 1.99 - 103 o
Radius 6.96 - 10%° cm
Luminosity 3.83.10% erg s!
Surface gravity 2.74- 104 cm 572
Escape velocity 6.18 - 107 cm s~}
Density scale height 5.00-10° T cm

Stellar Characteristics

Brightness temperature Ty = 1.77-10%" v=2F 56,2, K
(unpolarized) = 2.04-10%y2F,, Jny,c£52 K
Surface gravity g =2.74-10* MgR3? cm 572
Escape velocity Vege = 6.18 - 107 Mé/zR;l/2 cm s7!
Density scale height H, =5.00-10%T g3' cm
Propagation
Free-free absorption ko~ 0202 To32)-2 cm™!
Group velocity delay 7=1.345-10"2 v~2 [ n.ds S
Faraday rotation ¢ = 2.365 - 10* v=2 [ n,Bcosfds rad
Transition frequency v, = 1.745 - 10¢ B3/4p}/ 4H}13/ 4 Hz

Astronomical Constants and Units

Year y = 3.156.107 s

Parsec pc = 3.086- 108 cm

Astronomical unit AU = 1.496.10%% cm

Angstrom A= 108 cm

Jansky Jy = 10~ ergs~! cm~2 Hz !

Solar flux unit sfu= 10719 erg s~! em~2 Hz !



NOTATION

LATIN ALPHABET

O ®e

A SHCNY
o]

@ o
N

&)
~

(

3
€

™~
=

)

FEEQT ST mDe QY

X
O W

~enD
E

general parameter or variable

amplitude of a general oscillating parameter A
constant

magnetic field

speed of light

Alfvén velocity (Eq. 3.2.13)

sound velocity (Eq. 3.2.12)

source distance

diffusion tensor

thickness of current sheet

electric field

Dreicer electric field (Eq. 9.2.7)

charge of an electron (modulus), or subscript for electron
unity vector in z-direction

Lorentz force

general force

flux density of radiation, or subscript for field particle
distribution function of particles (Eq. 1.4.8)

various functions

gravitational acceleration

scale height or scale length

part of dielectric function

height, or Planck’s constant

intensity of radiation (Eq. 5.1.1), or total current
subscript for ion, or summation index

source function of radiation (Eq. 11.1.4), or action integral
current density

wave vector (|k| = 27/X)

Boltzmann’s constant

inverse Debye length (=1/Ap)

source size or source depth, or subscript for Langmuir wave
interaction length

longitudinal invariant

length or diameter

harmonic number

289



290 APPENDIX D

M mirror ratio, or magnetoacoustic Mach number (Eq. 10.1.11)
m particle mass

N total particle number, or quantum density (Eq. 6.3.3)
N refractive index

n unit vector normal to surface

Ny particle density of species «

N beam density

P polarization, or probability

P stress tensor (Eq. 3.1.10)

P pressure tensor (Eq. 3.1.11)

p isotropic pressure, or subscript for proton, or iw

p momentum

q particle charge (:= Ze)

R gyroradius (Eq. 2.1.2)

R, magnetic Reynolds number (Eq. 3.1.49)

r radial coordinate, or impact parameter

e impact parameter for 90° deflection (Eq. 2.6.1)

s path length, or subscript for ion acoustic wave

T temperature (Eq. 1.4.10), or subscript for test particle
Ty brightness temperature (Eq. 5.1.1)

t time, or subscript for transverse wave, or for thermal population
tq collisional deflection time (Eq. 2.6.19)

ts collisional slowing-down time (Eq. 2.6.25)

t thermal collision time (Eq. 2.6.31)

te collisional energy-loss time (Eq. 2.6.29)

U relative velocity

\Y mean velocity (Eq. 1.4.9)

1% volume

Vi drift velocity of bulk electrons vs. ions in a current
v particle velocity

Uy runaway velocity (Eq. 9.2.10)

Vgyr group velocity of wave

Upar velocity component parallel to initial velocity

Vperp velocity component perpendicular to initial velocity
Uph phase velocity of wave

Uta mean thermal velocity of species «

v velocity of test particle

U, velocity component parallel to B

vl velocity component perpendicular to B

Weot total wave energy density

W (k) spectral wave energy density

w total scattering rate

W Thomson scattering rate

w(v, ky, k) differential scattering rate
wd particle drift velocity



N Ne 8

NOTATION

coordinate

coordinate

electric charge in units of e
coordinate in the direction of B

GREEK ALPHABET

[+}

ko

DEES BN IAIYDI MR > 223 DI SO X2 2 BL R

(e i)
QR

geg

particle species, or pitch angle

loss-cone half-angle

v/e, or plasma beta (Eq. 3.1.51)

Lorentz factor, (1 — (v/c)z)—l/2
imaginary part of frequency (growth rate)

d-function, or small number, or exponent of energy distribution

mean thermal energy density
particle energy

dielectric tensor

resistivity (= 1/¢), or emissivity
angle between B and k
absorption coefficient

Ap/re and approximate number of particles in a Debye sphere

wavelength

Debye length (Eq. 2.4.10)
magnetic moment (Eq. 2.1.6)
frequency

exponent of particle-flux distribution in energy

mass density

charge density

conductivity

period, or optical depth (Eq. 11.1.5)
escape time from trap (Eq. 8.3.1)
electric potential

angle

error function, scalar magnetic potential
phase angle

solid angle

gyrofrequency of species a (Eq. 2.1.4)
scalar gyrofrequency with sign of charge
angular frequency (= 2nv)

plasma frequency (= 2mvp) (Eq. 4.2.24)
real part of frequency

transition frequency for mode coupling (Eq. 11.3.16)
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SUBJECT INDEX

absorption
coefficient (see also emissivity) 231, 263f
Landau damping 101, 105, 167
non-linear Landau damping 222
of electron plasma waves 87
of radiation by collisions (or free-free or in-
verse bremsstrahlung) 128, 262f, 288
self-absorption 264
abundance of helium 37
acceleration of particle, general
density in region 148
fragmentation 150f
magnetic field in region 111
stochastic 255
acceleration of particle, specific mechanisms
betatron 27, 255
diffusive shock acceleration 253ff
Fermi 249f
magnetic pumping 255
resonance 226, 255
runaway 217, 225f, 232
shock drift (or fast Fermi) 250
transit-time damping 256f
active region 4, 6, 108, 206, 227
adiabatic invariant 27
adiabatic process 57, 61
Alfvén limit of beam 118
Alfvén velocity 64, 142, 287
Ampere equation 17
angular deflection 43, 171, 287
anomalous
collisions 117, 223f, 236
conductivity 223
Ohmic (or Joule) heating 59, 118, 224, 226
Astron machine 25
atmosphere, see stationary atmosphere

backbone emission of radio type II burst 248,
252

barometric equation 60

beam generation 32, 49

beam mode 85ff, 221

beam velocity 112

Bessel function 187

beta, see plasma beta

betatron acceleration 27, 255
bremsstrahlung 142ff, 179, 264
brightness temperature 92, 134, 261, 288
Boltzmann constant 287

Boltzmann equation 18, 43, 51f
Bose-Einstein statistics 106

bounce period 31, 49

caviton 125, 127
Cerenkov resonance 103, 226
characteristics of linear differential equation
161, 187
charge oscillation 38ff, 119
chromosphere 2
closed magnetic field (see also loop) 109
CME, see coronal mass ejection
collision in plasma
anomalous 117, 223
Coulomb collision 40ff, 287
general 40ff
collision time
anomalous, see anomalous collision
damping of wave 87, 264f, 288
effective, see anomalous collision
electron-ion 48, 87, 216, 224, 287
energy-exchange 45, 47
energy loss 46f
equilibration 49
deflection 45, 47, 171, 287
self-collision, see thermal
slowing-down 46f
thermal 19, 48, 287
collisionless process 18, 69
conductivity, see electric or thermal conduction
conductivity drop 224
corona
general parameters 19, 71
heating 10ff, 14f
hole 3
of different star types 11, 21
coronagraph 7, 200, 229, 246f
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coronal mass ejection (CME) 9, 246
correlation
centimetic — Ha 178f
hard X-ray — centimetic 10, 90f, 178, 181
hard X-ray — type III 148, 150
quiescent stellar soft X-ray — radiol4f, 206
stellar flare X-ray, optical, radio 207
cosmic rays 156ff
Coulomb force 16
coupling constant of wave modes 273
coupling of waves and particles (see also reso-
nance) 173, 196
current
current-free plasma 212
displacement 72
generation 223
instability 220ff, 230
observations 227ff
perpendicular to magnetic field 223
sheet 214
cutoff of wave mode 80, 92, 267

damping, see absorption
de Hoffmann-Teller frame of reference 250f
Debye length 37, 287
Debye shielding 35ff, 41
Debye sphere 38, 41, 107
decay instability of Langmuir wave 137f
decay time of type III radiobursts 112
deflection of waves (see also refraction) 126f
deflection time of particles 43ff, 171, 287
density of coronal plasma 19, 107
depolarization 271, 275
diamagnetism of plasma 24
dielectric constant or tensor 16, 74, 113, 163,
286
diffusion constant 44, 172f
diffusion equation 172, 226
diffusion of magnetic field 59, 117
diffusion of particles
due to collisions 43, 45, 195
due to wave interaction 166, 226
in space 172, 195
into loss-cone (see also precipitation) 194ff
quasi-linear 122ff, 169f, 195
strong 195
weak 194
diffusive ions at bow shock 242, 253
diffusive propagation of ions 172, 253
diffusive shock acceleration 253
dispersion of radiation by propagation 268
dispersion relation, see waves
Dory-Guest-Harris particle distribution 192,
209

Dreicer electric field 217, 287
dressed ion in scattering 130
drift of particles due to
curved field line (or centrifugal) 29, 49
E x B 29
gradient 28
gravitational 28
drift acceleration (or shock drift acceleration)
250
drift in spectrogram 93, 108f
ducting 108, 279
dynamo process 2, 13

electric conductivity 73, 215ff, 287
electric field 58, 67, 116, 119ff, 213ff, 227, 250
electrodynamic skin depth 117
electron beam
at bow shock 243
see hard X-rays
see type III bursts
electrostatic oscillation, see charge oscillation or
wave modes
emission (see also radiation or specific pro-
cesses)
induced 131ff, 152
non-thermal 5, 206
spontaneous 129ff
stimulated (see also induced) 131, 264
thermal 5, 206
emissivity 135f, 231, 262
energy conservation 54, 58, 239, 261
energy density of waves 67, 87, 113
thermal 106f
energy loss of particles 45
equation of
continuity 53, 71, 238
energy conservation 54, 57
Lotka-Volterra 205
Maxwell 16
motion 16, 23, 54 , 71
state 57f
Vlasov 52, 96
error function 44
eruptive prominence 9, 201, 246
escape time from trap 194
escape velocity 288
EUYV observation 3, 7, 10, 12

Faraday equation 17
Faraday rotation 269, 275, 283, 288
Fermi acceleration processes 249f
flare: general

energy release 9, 148

kernel 178



SUBJECT INDEX 297

stellar 12f, 207
flare: phase and types
decay 9
gradual 144, 178, 199f
impulsive 9, 144, 178, 198
preflare 9
thermal 144
flare star (see also M star) 205
flux density 92
flux tube (or fiber) 204, 281
Fokker-Planck equation 42
Fourier transformation 63, 285
fragmentation of flares 150f
free-free absorption, see absorption
free magnetic energy 213, 227
friction 43, 46, 223, 232
frozen-in magnetic field 59, 213
fundamental emission, see plasma emission etc.

gamma (v) - ray emission 9, 154
Gaunt factor 265
geometric optics 261, 266
gradient drift 28, 223
gravitational constant 287
gravitational drift 29, 223
gravity 288
group delay of radiation 268, 282, 288
guiding center 28, 161, 187
gyrofrequency 23, 73, 287
gyromagnetic resonance (or gyroresonance) 79,
83, 163, 185, 189ff
gyroradius 23, 157, 287
gyrosynchrotron emission 91, 180ff
emissivity 180
peak in spectrum 181, 209
self-absorption 181
stellar 14f, 206

Ha 2, 6, 10, 178f, 200
Hall effect 117f
hard X-ray emission 10, 90, 742ff, 149,
harmonic emission

absorption 265

cyclotron maser 188

narrowband spikes 183

plasma emission 135, 232

type II burst 247, 280

type III burst 127, 280
heat (or thermal) conduction 54
heating, see coronal heating etc.
helmet structure 4, 6
heringbone emission of radio type II burst 248,

253

Hoffmann-Teller, see de Hoffmann-Teller frame
of reference
horizon of refraction 266

ideal gas 53, 57
incompressible process 57
infrared radiation 208
index of refraction, see refractive index
induction equation 58, 213
inhomogeneity 5, 108, 275f, 278
instability, general properties
dominant mode 185, 197
growth rate 86f, 101
hydrodynamic (or fluid or reactive) 87, 102,
159
kinetic 102, 160f
marginal stability 173, 196
non-linear evolution 124ff
threshold 158, 168
instability, specific driver
electron beam 102f, 127
ion beam 160ff, 169f, 174ff, 253
loss-cone, 177, 184, 191ff
parallel current 220ff, 230
perpendicular current 222ff, 230
shock wave 252
temperature anisotropy 160
instability, specific types
bump-on-tail (or double hump) 102, 120, 175,
248
Buneman 220f
electromagnetic 127, 158, 185
electron cyclotron, see maser
electrostatic 158
fire-hose (or garden-hose) 159f, 168, 257
ion acoustic 103ff, 174ff, 221, 230
ion cyclotron 220
low-frequency (ion beam) 160ff, 169f, 253
low-frequency (loss-cone) 184
lower hybrid 127
maser 188ff, 208
modified two-stream 174, 223
modulational 125
oscillating two-stream 125
resonant electron 127
tearing mode 214
two-stream 86
impact parameter 41
intensity of radiation 92, 261
interaction length 197
interplanetary space (see also solar wind) 71,
111f, 245f, 270, 278f
interstellar space 71, 268
ion beams
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cosmic rays 156ff
instability 158ff, 253
instability threshold 168f
near Earth 158, 242, 253
solar 154
ion sound speed 105
isothermal process 57

Joule heating, see Ohmic heating 59, 118, 224,
232,236

kinetic approach 18, 94ff, 249ff
kinetic effects 19f, 101

Landau damping 101, 105, 167
Landau prescription 99, 161
Laplace transformation 96f, 285
leading spot rule 139, 184, 203
leaky pail model of trapping 195
lifetime in trap 194ff
linearization 61f, 71

longitudinal invariant 27

loop structures of magnetic field 4, 110, 200
Lorentz force 16

loss-cone 32ff,177

M star coronae 11ff, 206, 275
Macdonald function 157, 227
Mach number 240, 245
magnetic bottle 30, 177
magnetic diffusion time 59, 117
magnetic field
energy (free) 213
interplanetary 111
geometry 109ff
M star 208
measurement 2, 140f, 208, 270
self-field of beam 117
magnetic mirror (or magnetic bottle) 26, 177
magnetic moment 24, 26, 31, 254
magnetohydrodynamics (or MHD) 17, 51ff
approximations 56
equations 56f
generator 213
ideal 17, 56, 62
properties S8ff
marginal stability 173, 196
maser instability
frequency range 191f, 209
growth rate 188, 192f
propagation angle 191f, 209
mass conservation 56
Maxwell’s equations 16, 71
Maxwell-Vlasov equations, see Vlasov equation
Maxwellian distribution 33, 35, 52, 101

mean free path 172f, 287

minimum energy theorem 212

mirror point 31, 195

mirror ratio 32, 194

mobility tensor 73

mode coupling 271ff

momentum conservation 53f, 56, 59, 71, 239

momentum loss (or slowing down) by collisions
46, 215t

Morton wave 246

Neupert effect 149
noise storm (see radio bursts of the Sun, types)
non-linear equations 17

Ohm’s law 56, 73, 162, 216
Ohmic (or Joule) heating 59, 118, 224, 232, 236
open field line 30
optical depth 135, 180f, 263
orbit of a particle 27f, 161, 187
oscillation
fast mode 203f, 209
relaxational 204
parametric conditions 133, 231
particle conservation, see equation of continuity
Petschek reconnection 214
photon temperature 92, 130, 231
photosphere 2, 6
Planck’s constant 287
plasma
approximation 38, 69
definition 15
frequency 39, 74, 101, 287
parameters 70
plasma beta (8) 60, 67, 142, 206, 240, 287
plasma emission 77, 93, 230f, 247
absorption 230, 265f
emissivity 135ff
directivity of fundamental 128, 281
polarization of harmonic 139ff
strong turbulence 136
plateau distribution 103, 221, 253
Plemelj formula 99, 166
Poisson’s equation 17, 36, 39
polarization
linear 271
of radiation 139ff, 184
of waves in general 61, 64
ponderomotive force 124
potential magnetic field 212
power-law distribution of particles 143,157, 180
power-law spectrum
of microwaves 180f
of hard X-ray 143ff
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Poynting vector 134
precipition 194ff
pressure 52, 60
principal part of integration (Cauchy) 99
propagation effect 108, 260ff
dispersion 268
Faraday rotation 269
in fibrous medium 278ff
refraction 261ff, 266

quantum effects 18, 44

quasi-linear diffusion 122ff, 171f, 195f
quasi-longitudinal approximation 262, 282
quasi-transverse region 271f, 282

rain (coronal) 7

radiation (see also emission)
coherent 93
non-thermal 93
thermal 93
transfer 261ff

radio bursts of the Sun, general
classification 91
correlation 10

radio bursts of the Sun, types
broadband continua 91, 199ff
centimetric (or microwave) 10, 90f, 179ff
decimetric pulsation (see quasi-periodic pul-

sations)

narrowband spike 90f, 151, 182ff, 198
noise storm 9, 202, 228ff, 274, 278, 281ff
quasi-periodic pulsations 90f, 203
type I, see noise storm
type 11 241, 247ff, 275
type III 90f, 107ff, 120ff, 150, 248, 275
type IV moving 199f, 249
type 1V stationary 202
type IV decimetric 202
type U 90f, 274

radio emission: general
decametric 113
centimetric 5, 90
decimetric 5, 90
metric 5
microwave 6
quiescent coronal 5f, 14f
solar flare, see radio bursts
stellar flare 207f

radio emission: physical processes
bremsstrahlung (or free-free) 5
gyroresonance emission 5, 206
gyrosynchrotron 14, 179ff
low-frequency turbulence 132, 229f
maser 188ff, 209

plasma emission 135ff
radio emission of stars

quasi-periodic pulsations 208

quiescent 14ff, 205f

type Ill-like 113
radioheliograph 92
Rayleigh-Jeans approximation 92
Razin suppression 181
reconnection 201, 214
reflected ions at bow shock 242
refraction 126, 261ff, 266
refractive index 75, 262
resistivity (see also electric conductivity) 215
resonance condition

anomalous Doppler 164ff

Cerenkov 103

gyromagnetic 163, /88
resonance curve 190
return current 35, 716ff, 151
Reynolds number (magnetic) 59
rotation measure 270
runaway acceleration 217ff, 232

Sagdeev conductivity 224
saturation, see also quasi-linear diffusion
brightness temperature 134
of Langmuir waves 125, 127, 152
of low-frequency waves 230
scale height
density 60, 109, 266, 288
magnetic 32, 183
scatterfree (or unscattered) propagation of par-
ticles 172
scattering of radiation on inhomogeneities 275
angular broadening 277f
anisotropic scattering 281ff
scintillation 277
temporal smoothing 277f
scattering of waves
induced 131ff, 152
off ions 130f, 136f
off other waves 132, 229
spontacous 129ff
self-absorption 180f, 264
self-field of beam 117
semi-relativistic approximation 190, 209
semi-quantum mechanical approach 129, 164
shock, equations
jump condition 238f
Rankine-Hugoniot relations 239
shock condition 240
shock, general
definitions 234
foot 237
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front 234, 255
geometry 234, 238
shock, observations
bow shock 241ff
interplanetary 245
radio observation (type II burst) 241, 247ff
upstream particles and waves 242ff
shock, types
blast wave 237, 249
collisionless 237
compressive 239
fast-mode 235, 240, 245
intermediate-mode 235
piston driven 237, 249
slow-mode 214, 223, 235,
super-critical 237
turbulent 236
singularity in integration 98f
Snell’s law 261
soft X-ray 4, 13, 145, 149f, 279
solar abundances 37
solar flux unit 288
solar wind 4, 12
soliton 125
sound velocity 63, 287
source function 263
spectrogram 90
spectrometer 92
spectrum of Langmuir waves 125
spicule 7
spike, see radio bursts of the Sun, types
Stark effect 227
stationary atmosphere 60, 67
stellar wind 11
stop region of wave propagation 81
streamer 3, 7, 108
stress tensor 52
strong diffusion 195, 198f
strong turbulence 124, 136
Sturrock’s dilemma 121
sunspots 2
surge 7
synchrotron emission (see also gyrosynchro-
tron) 179ff

temperature
anisotropy 70, 160
brightness 92
kinetic 53
photon 92, 130
wave 130
tensor product 284
thermal conduction 54
thick-target approximation 143, 147

thin-target approximation 144
Thomson scattering 130, 246
three-wave interaction 132, 229
tokamak 71

transfer equation 263f

transit-time damping 256f

transition frequency 272, 288

transition probability of waves 133, 231
transition region in atmosphere 3, 6
trap-plus-precipitation model 178
trapping of particles 30ff, 103, 177ff, 206
type III burst etc., see radio bursts

UV radiation 12, 207f, 279

velocity, mean thermal 53, 287
Vlasov equation 52, 96
wave, general properties
amplitude 63
branch 84
cutoff 80, 83
dispersion 77
dispersion relation 63, 75, 100
electric field 67
energy density 67, 87, 114
equation 133
frequency 63
group velocity 64, 101
mode 84
phase velocity 63
polarization 64
regimes 70f
resonance 79, 83, 163, 189
spectral energy density 124
temperature 92, 130
thermal energy density 106f
wave, specific MHD modes
Alfvén 64, 67, 78, 159, 245, 253
Chew-Goldberger-Low 70
compressional Alfvén (see fast magnetoacous-
tic)
fast magnetoacoustic 65f, 204, 243, 255
fast mode (see fast maguetoacoustic)
intermediate (see Alfvén)
shear Alfvén (see Alfvén)
slow magnetoacoustic 66
slow mode (see slow magnetoacoustic)
sound 63, 66
wave, specific collisionless modes
Bernstein 84, 193
electron plasma wave (see also Langmuir) 75f,
120ff, 243
extraordinary mode (or x-mode) 83ff, 188,
203



SUBJECT INDEX

ion acoustic (or ion sound) 104ff, 221, 230,
244
ion cyclotron 79, 220
ion plasma wave 106
L-wave 78, 84
Langmuir 76, 96ff, 175
lower hybrid 82, 174, 226, 230, 245, 255
magnetoionic modes 83
ordinary mode (or o-mode) 83ff, 139, 188, 202
R-wave 78, 84, 166
upper hybrid 82, 84, 193, 245
whistler 79, 84, 185, 201, 243
z-mode 84, 188, 201, 245
wave, classes of modes
beam mode 85ff, 221
cold plasma 71ff, 75
electromagnetic 75, 78
electrostatic 75f, 84
high-frequency 72, 79, 186ff
ion wave 75, 220ff
logitudinal 64, 76
MHD 6iff, 70
normal 84
super-luminal 186
transverse 64, 77
wave equation 133
weak diffusion 194, 198f
weak-turbulence approximation 122, 129
white light 3f
white light transient (see also coronal mass ejec-
tion) 228f

X-ray bright point 7
X-ray emission, see hard or soft X-rays
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