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Preface

This book is the second volume of our introductory text on Space Plasma Physics. The
first volume is published under the titleBasic Space Plasma Physicsand covers the
more fundamental aspects, i.e., single particle dynamics, fluid equilibria, and waves in
space plasmas. This second volume extends the material to the more advanced fields of
plasma instabilities and nonlinear effects.

Actually, there are already a number of monographs, where the general nonlinear
plasma methods are described in considerable detail. But many of these books are
quite specialized. The present book selects those methods, which are applied in space
plasma physics, and, on the expense of detailedness, tries to make them accessible to
the more practically oriented student and researcher by putting the new achievements
and methods into the context of general space physics.

The first part of the book is concerned with the evolution of linear instabilities in
plasmas. Instabilities have turned out to be the most interesting and important phenom-
ena in physics. They arise when free energy has accumulated in a system which the
system wants to get rid of. In plasma physics there is a multitude of reasons for the
excitation of instabilities. Inhomogeneities may evolve both in real space and in veloc-
ity space. These inhomogeneities lead to the generation of instabilities as a first linear
and straightforward reaction of the plasma to such deviations from thermal equilibrium.
The first chapters cover a representative selection of the many possible macro- and mi-
croinstabilities in space plasmas, from the Rayleigh-Taylor and Kelvin-Helmholtz to
electrostatic and electromagnetic kinetic instabilities. Their quasilinear stabilization
and nonlinear evolution and their application to space physics problems is treated.

As a natural extension of the linear evolution, nonlinear effects do inevitably
evolve in an unstable plasma, simply because an instability cannot persist forever but
will exhaust the available free energy. Therefore all instabilities are followed by nonlin-
ear evolution. The second part of the book, the chapters on nonlinear effects, can only
give an overview about the vast field of nonlinearities. These chapters include the non-
linear evolution of single waves, weak turbulence, and strong turbulence, all presented
from the view-point of their relevance for space plasma physics. Special topics include
soliton formation, caviton collapse, anomalous transport, auroral particle acceleration,
and elements of the theory of collisionless shocks.

v
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Linear theory occupies about half of the book. The second half reviews nonlinear
theory as systematically as possible, given the restricted space. The last chapter presents
a number of applications. The reader may find our selection a bit unsystematic, but we
have chosen to select only those which, in our opinion, demonstrate the currently more
important aspects of space physics. There are many other small effects which need to be
treated using nonlinear theory, but have been neglected here, since we did not find them
fundamental enough to be included in a textbook like the present one. Nevertheless, we
hope that the reader will find the book useful as a guide to unstable and nonlinear space
plasma physics, giving him a taste of the complexity of the problems.

Since space plasma physics has in the past served as a reservoir of ideas and tools
also for astrophysics, the present volume will certainly be useful for the needs of a
course in non-relativistic plasma astrophysics and for scientists working in this field.
With a slight extension to the parameter ranges of astrophysical objects most of the
instabilities and nonlinear effects do also apply to astrophysics, as long as high-energy
effects and relativistic temperatures are not important.

It is a pleasure to thank Rosmarie Mayr-Ihbe for turning our often rough sketches
into the figures contained in this book and Thomas Bauer, Anja Czaykowska, Thomas
Leutschacher, Reiner Lottermoser, and especially Joachim Vogt for carefully reading
the manuscript. We gratefully acknowledge the continuous support of Gerhard Haeren-
del, Gregor Morfill and Heinrich Soffel.

Last not least, we would like to mention that we have profited from many books
and reviews on plasma and space physics. References to most of them have been in-
cluded into the suggestions for further reading at the end of each chapter. These sug-
gestions, however, do not include the large number of original papers, which we made
use of and are indebted to.

We have made every effort to make the text error-free in this revised edition; unfor-
tunately this is a never ending task. We hope that the readers will kindly inform us about
misprints and errors, preferentially by electronic mail tobaumjohann@oeaw.ac.at.
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1. Introduction

Space physics is to a large part plasma physics. This was realized already in the first
half of this century, when plasma physics started as an own field of research and when
one began to understand geomagnetic phenomena as effects caused by processes in the
uppermost atmosphere, the ionosphere and the interplanetary space. Magnetic storms,
bay disturbances, substorms, pulsations and so on were found to have their sources in
the ionized matter surrounding the Earth.

In our companion volume,Basic Space Plasma Physics, we have presented its
concepts, the basic processes and the basic observations. The present volume builds on
the level achieved therein and proceeds into the domain of instabilities and nonlinear
effects in collisionless space plasmas. In this introduction we review some of the very
basics from the companion volume.

1.1. Plasma Properties

Classical non-relativistic plasmas are defined as quasineutral, i.e., in a global sense non-
charged mixtures of gases of negatively charged electrons and positive ions, containing
very large numbers of particles such that it is possible to define quantities like number
densities,ns, thermal velocities,vths, bulk velocities,vs, pressures,ps, temperatures,
Ts, and so on. Viewed from kinetic theory, it must be possible to define a distribution
function,fs(x,v, t), for each speciess = e, i (electrons, ions) in the plasma such that it
gives the probability of finding a certain number of particles in the phase space interval
[x,v;x + dx,v + dv]. If this is the case, any microscopic electric fields of a test
charge in the plasma, i.e., of every point charge or every particle in the plasma, will be
screened out by the Coulomb fields of the many other charges over the distance of a
Debye lengthgiven in Eq. (I.1.3) of our companion book (equation numbers from that
volume are prefixed by the roman numeral). Here it is written for the particle speciess

λDs =
(

ε0kBTs

nee2

)1/2

(1.1)

1



2 1. INTRODUCTION

wherekB is the Boltzmann constant. The Debye length of electrons is abbreviated as
ΛD = ΛDe throughout this book. The condition for considering a group of particles to
constitute a plasma is then that the number of particles in the Debye sphere is large, or
after Eq. (I.1.5) that theplasma parameter

Λ = neλ
3
D À 1 (1.2)

In this book we deal mainly with collisionless plasmas. These are plasmas where the
Coulomb collision time,τc = 1/νc, is much longer than any other characteristic time of
variation in the plasma. The quantityνc is the collision frequency between the particles.
For Coulomb collisions between electrons and ions it has been derived in Eq. (I.4.9) of
our companion volume,Basic Space Plasma Physics. Plasmas are collisional if

ω ¿ νc (1.3)

whereω is the frequency of the variation under consideration.
Plasmas, in general, have a number of such characteristic frequencies. The most

fundamental one is theplasma frequencyof a speciess

ωps =
(

nsq
2
s

msε0

)1/2

(1.4)

It increases with charge,qs, and density,ns, but decreases with increasing mass,ms,
of the particle species. It gives the frequency of oscillation of a column of particles
of speciess against the background plasma consisting of all other plasma populations.
Thus it is the characteristic frequency by which quasineutrality in a plasma can be
violated if no external electric field is applied to the plasma. Theelectron plasma fre-
quencyis the highest plasma frequency, since the electron mass is small and, further-
more, quasi-neutrality requiresne =

∑
i ni. Between the plasma frequency and the

thermal velocity of a species there is the simple relation

vths = ωpsλDs (1.5)

Magnetized plasmas have another fundamental frequency, thecyclotron frequencygiven
in Eq. (I.2.12). For a magnetic field of strengthB this frequency is

ωgs =
qsB

ms
(1.6)

The cyclotron frequency increases with magnetic field and charge, but, as in the case
of the plasma frequency, heavier particles have a lower cyclotron frequency. Physically
the cyclotron frequency counts the rotations of the charge around a magnetic field line
in its gyromotion (see Sec. 2.2 ofBasic Space Plasma Physics). A given plasma particle
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population can be considered to be magnetized if its cyclotron frequency is larger than
the frequency of any variation applied to the plasma,ωgs À ω. In the opposite case,
when its cyclotron frequency is low, this particular species behaves as if the plasma
would not contain a magnetic field. Because of the different particle masses, different
plasma components may have a different magnetization behavior for a given variation
frequency,ω.

As with the plasma frequency, there is a relation between the thermal velocity of a
species and the cyclotron frequency of its particles

vths = ωgsrgs (1.7)

This equation defines thegyroradius, rgs, of speciess.
The gyroradius given above is actually the thermal gyroradius, because it is defined

through the thermal velocity of the species. It is the average gyroradius of the particles
of the particular species. Of course, each particle has its own gyroradius, depending on
its velocity component perpendicular to the magnetic field. The gyroradius increases
with velocity and also with mass or, better, it increases with particle energy. Energetic
particles thus have large gyroradii.

Finally, we introduce one particular important quantity used in plasma physics,
i.e., the ratio of thermal-to-magnetic energy density, the so-calledplasma beta

β =
nkBT

B2/2µ0
(1.8)

This ratio tells us whether the plasma is dominated by the thermal pressure or if the
magnetic field dominates the dynamics of the plasma. Clearly, forβ > 1 the former
case is realized, and the magnetic field plays a relatively subordinate role, while in the
opposite case, whenβ < 1, the magnetic field governs the dynamics of the plasma.

1.2. Particle Motions

Single particle motion in a plasma is naturally strongly distorted by the presence of all
the other particles, the propagation of disturbances across a plasma, and a number of
other effects. However, due to the Debye screening, the particles move approximately
freely in a dilute collisionless and hot plasma for distances larger than one Debye length.
One can assume that the small distortions of the particles caused by their participation
in theDebye screeningof the Coulomb fields of the other particles they pass along in
their motion will in the average be small and will constitute only negligible wiggles
around their collisionless orbits. This kind of wiggling in a more precise theory can be
described by thethermal fluctuationsof the particle density and velocity.
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Within these assumptions it is possible to calculate the particle orbits. The particle
orbits satisfy the single particle equation of motion in which all the collisional inter-
actions with other particles and fields are neglected. Given external magnetic,B, and
electric fields,E, this equation of motion reads

ms
dvs

dt
= qs(E + vs ×B) (1.9)

The motion of the particles along the field lines is independent of the magnetic field
and, in the absence of a parallel electric field component,E‖ = 0, the parallel particle
velocity remains constant,v‖ = const.

The transverse particle motion can be split into a number of independent veloci-
ties if it is assumed that the gyromotion is sufficiently fast with respect to a bulk speed
perpendicular to the magnetic field (see Chap. 2 ofBasic Space Plasma Physics). Av-
eraging over the circulargyromotion, the particle itself can be replaced by itsguiding
center, i.e., the center of its gyrocircle.

The velocity of the guiding center may be decomposed into a number ofparticle
drifts. In a stationary perpendicular electric field theLorentz forceterm in the above
equation of motion tells that a simple transformation of the whole plasma into a coor-
dinate system moving with theconvectionor E×B drift given in Eq. (I.2.19)

vE =
E×B

B2
(1.10)

cancels the electric field. In this co-moving system the particle motion is independent
of E⊥, the perpendicular component of the electric field. It is force-free. Obviously,
all particles independent of their mass or charge experience this drift motion, which is
a mere result of the Lorentz transformation.

For time varying electric fields another drift arises, the so-calledpolarization drift
given in Eq. (I.2.24)

vP =
1

ωgsB

dE⊥
dt

(1.11)

where the time derivative is understood as the total convective derivative. This drift
depends on the mass and charge state of the species under consideration. Heavy particle
drift faster than light particles. In addition, the directions of the drifts are opposite for
opposite charges, leading to current generation. This drift is important for all low-
frequency transverse plasma waves.

These drifts follow from a consideration of single-particle motions in electric and
magnetic fields. As pointed out, plasmas do usually not behave like single particles.
Only in rare cases, of which thering current in the inner magnetosphere is an example
(see Chap. 3 of the companion volume,Basic Space Plasma Physics), the motion of a
single energetic particle mimics the motion of the entire energetic plasma component,
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and the single particle drifts are useful tools for the description of the plasma dynamics.
In all other cases one must refer to acollective behaviorof the plasma which arises from
the internal correlations between particles and fields even in the collisionless case. The
plasma may then be considered not to consist of single particles but of particle fluids
species. Each fluid can have its own density, bulk speed, pressure and temperature.

Such fluids when immersed into a magnetic field experience adiamagnetic drift
which has been derived in Eq. (I.7.72). Obviously, this drift is acollective effectinsofar
as the collective particle pressure comes into play

vdia,s =
B×∇⊥p

qsnsB2
(1.12)

Like the polarization drift, this bulkpressure gradient driftmotion leads to currents,
drift waves, may cause instability and nonlinear effects.

1.3. Basic Kinetic Equations

Single particle effects, like the particle motion reviewed in the previous section, are
often hidden in a plasma. In general, plasma dynamics cannot be described in such a
simple way, but is determined by complicated correlations between particles and fields.
The full set of basic equations of a plasma consists of the twoMaxwell equations

∇×B = µ0j +
1
c2

∂E
∂t

(1.13)

∇×E = −∂B
∂t

(1.14)

which must be completed by the two additional conditions, the absence of magnetic
charges and Poisson’s equation for the electric charge density,ρ

∇ ·B = 0 (1.15)

∇ ·E = ρ/ε0 (1.16)

The current and charge densities are defined as the sums over the current and charge
densities of all species

j =
∑

s

qsnsvs (1.17)

ρ =
∑

s

qsns (1.18)

The bulk velocities and densities must be calculated from the basic equations determin-
ing the dynamics of the plasma. In a purely collisionless state the most fundamental
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equation describing the plasma dynamics is theVlasov equation, taken separately for
each species

[
∂

∂t
+ v · ∇+

qs

ms
(E + v ×B) · ∂

∂v

]
fs(x,v, t) = 0 (1.19)

which is a scalar equation for the particledistribution function. For its justification and
derivation see Chap. 6 of the companion volume,Basic Space Plasma Physics. The
densities and bulk velocities entering the current and charges are determined as the
momentsof the distribution function,fs, as solution of the Vlasov equation

ns =
∫

d3v fs(x,v, t) (1.20)

nsvs =
∫

d3v vfs(x,v, t) (1.21)

The Vlasov equation together with the system of field equations and definitions of den-
sities and currents turns out to be a highly nonlinear system of equations, in which the
fields determine the behavior of the distribution function and the fields themselves are
determined by the distribution function through the charges and currents.

This self-consistent system of equations forms the basis for collisionless plasma
physics. In our companion volume we present a number of solutions of this system
of equations for equilibrium and linear deviations from equilibrium. In the following
we extend this approach to a number of unstable solutions and into the domain where
nonlinearities become important.

The Vlasov equation (1.19) may be used to derivefluid equationsfor the different
particle components. The methods of constructing fluid equations is given in Chap. 7 of
the companion volume,Basic Space Plasma Physics. It is based on a moment integra-
tion technique of the Vlasov equation which is well known from general kinetic theory.
One multiplies the Vlasov equation successively by rising powers of the velocityv and
integrates the resulting equation over the entire velocity space. The system of hydro-
dynamic equations obtained consists of an infinite set for the infinitely many possible
moments of the one-particle distribution function,fs. The first two moment equations
are the continuity equation for the particle density and the momentum conservation
equation

∂ns

∂t
+∇ · (nsvs) = 0 (1.22)

∂nsvs

∂t
+∇ · (nsvsvs) = ns

qs

ms
(E + vs ×B)− 1

ms
∇ps (1.23)

where, for simplicity, the pressure has been assumed to be isotropic. These equations
have to be completed by another equation for the pressure or by an energy law.
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1.4. Plasma Waves

The system of Vlasov-Maxwell equations or its hydrodynamic simplifications allow
for the propagation of disturbances on the background of the plasma. Generally, these
disturbances are nonlinear time-varying states the plasma can assume. But as long
as their amplitudes are small when compared with the undisturbed field and particle
variables, they can be treated in a linear approximation as small disturbances. This
condition can be written as|δA(x, t)| ¿ |A0(x, t)|, whereδA is the amplitude of the
variation of some quantityA(x, t), andA0 is its equilibrium undisturbed value which
may also vary in time and space. In the linear approximation such disturbances of the
plasma state represent propagating waves of frequency,ω(k), and wavenumber,k. As
usual, the phase and group velocities of these waves are defined as

vph =
ω(k)
k2

k (1.24)

vgr =
∂ω(k)

∂k
= ∇kω(k) (1.25)

Thephase velocityis directed parallel tok and gives direction and speed of the propa-
gation of the wave front or phase

φ(x, t) = k · x− ω(k)t (1.26)

while thegroup velocitycan point into a direction different from the phase velocity. It
gives the direction of the flow of energy and information contained in the wave. Both
can be calculated from knowledge of the frequency. The latter is the solution of the
wave dispersion relation in both the linear approximation and the full nonlinear theory.

In the linear approximation the dispersion relation is particularly simple to derive.
Because of the linear approximation, the full set of Maxwell-Vlasov or Maxwell-hydro-
dynamic equations contains only linear disturbances. Thus the system can be reduced
to a set of linear algebraic equations with vanishing determinant

D(ω,k) = 0 (1.27)

thedispersion relation. The analytical form of the dispersion relation is obtained from
the linearized wave equation (I.9.45)

∇2δE−∇(∇ · δE)− ε0µ0
∂2δE
∂t2

= µ0
∂δj
∂t

(1.28)

The linear current density,δj, on the right-hand side is expressed by the linearOhm’s
law given in Eq. (I.9.46)

δj(x, t) =
∫

d3x′
t∫

−∞
dt′σ(x− x′, t− t′) · δE (1.29)
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with σ(x − x′, t − t′) the linear conductivity tensor. Fourier transformation of Eqs.
(1.28) and (1.29) with respect to time and space gives as equation for the Fourier am-
plitude of the wave field

[(
k2 − ω2

c2

)
I− kk− iωµ0σ(ω,k)

]
· δE(ω,k) = 0 (1.30)

The linear conductivity,σ(ω,k), is a function of frequency,ω, and wavenumber,k.
The fields and the conductivity satisfy the following symmetry relations

δE(−k,−ω) = δE∗(k, ω)
σ(−k,−ω) = σ∗(ω,k) (1.31)

The dispersion relation follows from the condition that Eq. (1.30) should have nontrivial
solutions

D(ω,k) = Det
[(

k2 − ω2

c2

)
I− kk− iωµ0σ(ω,k)

]
= 0 (1.32)

It is convenient to introduce thedielectric tensorof the plasma

ε(ω,k) = I +
i

ωε0
σ(ω,k) (1.33)

and to rewrite the dispersion relation into the shorter version

D(ω,k) = Det
[
k2c2

ω2

(
kk
k2

− I
)

+ ε(ω,k)
]

= 0 (1.34)

This dispersion relation is the basis of all linear plasma theory and is also used in non-
linear plasma theory. The dielectric tensor which appears in this relation must be calcu-
lated from the dynamical model of the plasma. Its most general analytical form derived
from the linearized set of the Maxwell-Vlasov equations has been given in Eq. (I.10.94)
of Chap. 10 of the companion volume,Basic Space Plasma Physics. For further refer-
ence we repeat this equation here

ε(ω,k) =

(
1−

∑
s

ω2
ps

ω2

)
I−

∑
s

l=∞∑

l=−∞

2πω2
ps

n0sω2

∞∫

0

∞∫

−∞
v⊥dv⊥dv‖

(
k‖

∂f0s

∂v‖
+

lωgs

v⊥

∂f0s

∂v⊥

)
Sls(v‖, v⊥)

k‖v‖ + lωgs − ω
(1.35)
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The tensor appearing in the integrand,Sls, is of the form

Sls(v‖, v⊥) =




l2ω2
gs

k2
⊥

J2
l

ilv⊥ωgs

k⊥
JlJ

′
l

lv‖ωgs

k⊥
J2

l

− ilv⊥ωgs

k⊥
JlJ

′
l v2

⊥J ′2l −iv‖v⊥JlJ
′
l

lv‖ωgs

k⊥
J2

l iv‖v⊥JlJ
′
l v2

‖J
2
l




(1.36)

and the Bessel functions,Jl, J
′
l = dJl/dξs, depend on the argumentξs = k⊥v⊥/ωgs.

The determinant of the dispersion relation,D(ω,k), is a function of frequency,
wavenumber and a set of plasma parameters. Its solution yields the frequency relation
ω = ω(k). Different versions of the dispersion determinant are derived in the compan-
ion volume,Basic Space Plasma Physics, and solved in several approximations. Gen-
erally spoken, in contrast to the vacuum where a continuum of electromagnetic waves
can propagate, there is no continuum of plasma waves. Even in the linear approxi-
mation, neglecting all couplings, correlations and nonlinear interactions, plasmas are
highly complicated dielectrics which possess only a few narrow windows where linear
disturbances are allowed. These disturbances are the eigenmodes of the plasma. They
appear as thediscrete spectrumof eigenvalues of the basic linear system of equations
governing the dynamics of a plasma as solutions of Eq. (1.27).

A further difference between wave propagation in vacuum and in a plasma is that
the plasma allows for two types of waves,transverse electromagnetic wavesand lon-
gitudinal electrostatic waves. The latter are nothing else but oscillations of the elec-
trostatic potential and are not accompanied by magnetic fluctuations. Somehow they
resemble sound waves in ordinary hydrodynamics, but there is a large zoo of electro-
static waves in a plasma most of which are not known in simple hydrodynamics.

The electrostatic modesare confined to the plasma, because oscillations of the
electrostatic potential can be maintained only inside the plasma boundaries. Only two
of theelectromagnetic modessmoothly connect to the free-space electromagnetic wave
and can leave the plasma, theO-modeand the high-frequency branch of theX-mode.
The other low-frequency electromagnetic waves, theZ-mode, whistlersand electro-
magnetic ion-cyclotron modes, and the three magnetohydrodynamic wave modes, the
Alfvén wave, and thefast modeand theslow mode, are all confined to the plasma. We
have discussed the properties and propagation characteristics of these modes in Chaps.
9 and 10 of the companion volume,Basic Space Plasma Physics.

Waves propagating in a plasma can experiencereflectionandresonance. Reflec-
tion occurs when the wavenumber vanishes for finite frequency,k → 0. Here the direc-
tion of the wave turns by an angleπ, indicating that the wave is reflected from the partic-
ular point where its wavenumber vanishes. Resonance occurs where the wavenumber
diverges at finite frequency,k → ∞. At such a point the wavelength becomes very
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short, and the interaction between the plasma particles becomes very strong. Here the
wave may either dissipate its energy or extract energy from the plasma in order to grow.

As long as one looks only into the real solutions of the dispersion relation, no
information can be obtained about the possible growth of a wave or its damping at the
resonant point. However, as the possibility of resonances in a plasma shows, plasmas
are active media. This is also realized when remembering that the charges and their
motions themselves are sources of the fields. In order to investigate these processes
one must include the possibility of complex solutions of the dispersion relation. The
fluctuations of the fields can be excited or amplified or, in the opposite case, they can
be absorbed in the plasma. The frequency becomes complex under these conditions

ω(k) → ω(k) + iγ(ω,k) (1.37)

Hereγ(ω,k) is the growth or damping rate of the wave, which depends on the real part
of the frequency and on the wavenumber. The wave grows forγ > 0, and it becomes
damped forγ < 0.

In the companion volume we treated the damping rate, i.e., solutions withγ < 0.
In the present volume, we will start withγ > 0 solutions. The next chapters are devoted
to the discussion of these still linear effects leading to instability, before turning to
nonlinear effects which arise when the amplitudes of the waves become so large that
the linear assumption must be abandoned.

Introductory Texts

The literature listed below is a selection of introductory texts into plasma physics and
space plasma physics which should be consulted before attempting to read this book.

[1] W. Baumjohann and R. A. Treumann,Basic Space Plasma Physics(Imperial Col-
lege Press, London, 1996).

[2] F. F. Chen,Introduction to Plasma Physics and Controlled Fusion, Vol. 1(Plenum
Press, New York, 1984).

[3] N. A. Krall and A. M. Trivelpiece,Principles of Plasma Physics(McGraw-Hill,
New York, 1973).

[4] E. M. Lifshitz and L. P. Pitaevskii,Physical Kinetics(Pergamon Press, Oxford,
1981).

[5] D. C. Montgomery and D. A. Tidman,Plama Kinetic Theory(McGraw-Hill, New
York, 1964).

[6] D. R. Nicholson,Introduction to Plasma Theory(Wiley, New York, 1983).



2. Concept of Instability

Generation of instability is the general way of redistributing energy which has accu-
mulated in anon-equilibriumstate. Figure 2.1 demonstrates in a simple mechanical
analogue how a heavy sphere situated in an external potential field can find itself in
several different situations which may be either stable or unstable. The first of these
situations is thestable equilibrium, where the sphere lies on the lowest point of an in-
finitely high potential trough. In this position the sphere can only perform oscillations
around its equilibrium position, which will damp out due to friction until the sphere
comes to rest at the bottom of the potential trough. In the contrary situation the sphere
finds itself on top of a potential hill. The slightest linear distortion of its position will
let it roll down the hill. This is an unstable case, alinear instability, which sets in spon-
taneously. In themetastable statethe sphere lies on a plateau on top of a hill and can
wander around until it reaches the crest and rolls down. In the last example of anonlin-
ear instability the sphere is stable against small-amplitude disturbances, but becomes
unstable for larger amplitudes.

In plasma physics the potential troughs and wells are replaced by sources offree
energy, and the heavy sphere corresponds to a certain wave mode, in most cases an
eigenmode of the plasma. There is a multitude of free energy sources in the Earth’s
environment. Neither the ionosphere nor the magnetosphere are closed systems in ther-
mal equilibrium, but are driven by energy, momentum and mass input from outside, e.g.,
from the solar wind. On the macroscopic scale this input produces spatial gradients and
inhomogeneities. On the microscopic scale it leads to deformation and distortions of
the local distribution functions. The former free energy sources are the causes of the
large-scale macroinstabilities, while the latter cause small-scale microinstabilities.

Fig. 2.1. Different non-equilibrium configurations leading to instability.

11
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2.1. Linear Instability

The concept of instability arises from a formal consideration of the wave function. In
linear wave theory the amplitude of the waves is much less than the stationary state
vector, so that the wave can be considered a small disturbance. For instance, if the
wave is a disturbanceδn of the densityn, thenδn(x, t) ¿ n0, wheren0 can still be
a function of space and time, but it is assumed that its variation is much slower than
that of the disturbance. If this is the case, the wave function can be represented by a
superposition of plane waves oscillating at frequencyω(k), whereω is the solution of
the linear dispersion relationD(ω,k) = 0. Any wave field componentδA(x, t) can
then be Fourier decomposed as

δA =
∑

k

Ak exp(ik · x− iωt) (2.1)

In general the dispersion relation is a complex equation and has a number of frequency
solutions which are also complexω = ωr + iγ. From Eq. (2.1) it is clear that, for
realω, the disturbances are oscillating waves. On the other hand, for complex solutions
the behaviour of the wave amplitude depends heavily on the sign of the imaginary
part of the frequencyγ(ωr,k). If γ < 0 the real part of the amplitude becomes an
exponentially decreasing function of time, and the wave is damped. On the other hand,
for γ > 0 the wave amplitude grows exponentially in time, and we encounter a linear
instability. In this case the decrementγ is called thegrowth rateof the corresponding
eigenmode. Note, however, that instability can only arise if there are free energy sources
in the plasma which feed the growing waves. If this is not the case, then a solution with
a positiveγ is a fake solution which violates energy conservation and causality.

Growth Rate

The amplitude of an unstable wave increases as

Ak(t) = Ak exp[γ(ωr,k)t] (2.2)

Thus the linear approximation breaks down when the amplitude becomes comparable
to the background value of the field, i.e.,Ak(t)/A0 ≈ 1, or at the nonlinear time

tnl ≈ γ−1 ln
(

A0

Ak

)
(2.3)

The linear approximation for unstable modes holds only for timest ¿ tnl. When the
linear approximation is violated, other processes set on which are called nonlinear be-
cause they involve interaction of the waves with each other and with the background
plasma, which cannot be treated by linear methods. The timetnl is reached the earlier
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the larger the growth rate is. When the growth rate becomes larger than the wave fre-
quency,γ > ω, the wave amplitude explodes and the wave has no time to perform even
one single oscillation during one wave period. The wave concept becomes obsolete
in this case and it is reasonable to consider in the first place only instabilities of com-
parably small growth rates which satisfy the conditions of linearity during many wave
periods

γ/ω ¿ 1 (2.4)

This remark does not preclude the existence of instabilities with growth rates larger
than the wave frequency. In fact, one of the first examples of an instability will deal
with this case below. One then speaks ofpurely growingor non-oscillatinginstabilities
with about zero real frequency. Such instabilities appear only in the lowest frequency
range of a magnetohydrodynamic plasma model.

Weak Instability

Instabilities can be either strong or weak. Strong instabilities have growth rates which
violate the condition (2.4) and thus coincide in many cases with non-oscillating insta-
bilities. For weakly growing instabilities with a growth rate satisfying Eq. (2.4), one
can design a general procedure to deduce the growth rate from the general dispersion
relation given in Eq. (I.9.55) of the companion book,Basic Space Plasma Physics. The
dispersion relation,D(ω,k)=0, is an implicit relation between the wave frequency and
the wavenumber. Given the wavenumber, it is possible to determine the wave frequency.
In general,D(ω,k) is a complex function

D(ω,k) = Dr(ω,k) + iDi(ω,k) (2.5)

It therefore provides two equations which can be used to determine either the frequency,
ω, in dependence on the wavenumber,k, or vice versa. It is convenient to assume that
k is real. Then the frequency is complex

ω(k) = ωr(k) + iγ(ωr,k) (2.6)

For growth rates satisfying Eq. (2.4) these expressions can be simplified by expanding
D(ω,k) around the real part of the frequency,ωr, up to first order. This procedure,
which is the same as used for calculating the damping rate in Sec. 10.6 of our compan-
ion book,Basic Space Physics, yields

D(ω,k) = Dr(ωr,k) + (ω − ωr)
∂Dr(ω,k)

∂ω

∣∣∣∣
γ=0

+ iDi(ωr,k) = 0 (2.7)

Sinceω − ωr = iγ, this equation enables us to obtain a dispersion relation for the real
part of the frequency and at the same time an expression for the growth rate as

Dr(ωr,k) = 0 (2.8)
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γ(ωr,k) = − Di(ωr,k)
∂Dr(ω,k)/∂ω|γ=0

(2.9)

The first of these equations is the dispersion relation for real frequencies, while the
second equation determines the linear growth rate,γ. In the following, as long as no
confusion is caused, we will drop the indexr, taking ω as the real frequency of the
wave.

Spontaneous Cherenkov Emission

An illustrative example of wave amplification is the Cherenkov emission. We already
know from Sec. 10.2 of the companion book,Basic Space Plasma Physics, that inverse
Landau damping leads to amplification of plasma waves. This process depends on
the shape of the equilibrium distribution function. It is a process in which plasma
wave emission is induced by the overpopulation of a higher level, very similar to Laser
emission, and is calledinduced emission. Before we come to consider some of the
most important plasma instabilities subject to this kind of induced emission, we point
out that there is also a different direct orspontaneous emissionmechanism, which is
independent of the overpopulation of the distribution function and also independent of
the wave amplitude.

This kind of spontaneous emission is closely related to spontaneous emission of
electromagnetic waves in a medium of large refraction index and therefore reduced light
velocity,c′, from particles moving faster than the speed of light in the medium,ve > c′,
theCherenkov effect. In a plasma the role of the light velocity is taken over by the phase
velocity of the plasma waves. There are many more than one possible wave modes in
a plasma. Hence, spontaneous emission can appear in any of the plasma modes if
some test particles exceed a certain critical velocity. For instance, if this velocity is
the reduced speed of light, the emission will be in the high-frequency electromagnetic
modes. This requires high relativistic velocities of the particles. Since in a Maxwellian
distribution of a thermal plasma there are only very few such particles, this emission is
negligible. But emission in one of the electrostatic plasma modes is still possible. Such
a spontaneous emission occurs if fast test particles are in resonance with the plasma
wave. In other words, the fast test particles, typically electrons, must have a velocity
which is close to being equal to the phase velocity of the plasma wave

ve = ω(k)/k (2.10)

If we take the Langmuir wave, we haveω ≈ ωpe. This is very accurate because emis-
sion of the waves by test particles can take place only for small

k2λ2
D < 1 (2.11)
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corresponding to long wavelengths. Shorter wavelengths only contribute to the screen-
ing of the particle in the Debye sphere. Both conditions together give the condition for
spontaneous emission of Langmuir waves

ve = ωpe/k > ωpeλD = vth,e (2.12)

from fast electrons in a plasma. Hence, electrons with velocities faster than the electron
thermal velocity contribute to spontaneous emission of Langmuir waves. This effect
can be understood from the expression for the total charge density variation

δρe(ω,k) =
δρex(ω,k)

ε(ω,k)
(2.13)

through the external charge fluctuation and the dielectric response function. Because in
each of the eigenmodes of the plasma the dielectric function vanishes,ε(ω,k) = 0, the
plasma can still excite finite amplitude density fluctuations in the absence of external
fluctuations. In this case both the numerator and denominator of the above expres-
sion vanish at the eigenmode yielding a finite charge fluctuation. This is the necessary
condition for spontaneous emission. If the plasma in addition contains particles which
satisfy Eq. (2.12), it will spontaneously emit Langmuir waves. The rate of spontaneous
emission is equal to the energy loss of the fast particles in the ‘collision’ with the long-
wavelength eigenmodes. This energy loss of one single particle is

dWe

dt
= −πmeω

4
pe

2n0

∑

k

k−2 [δ(ω − k · ve) + δ(ω + k · ve)] (2.14)

The sum is over all wavenumbers satisfyingkλD < 1 and the two (not dimensionless!)
delta functions account for the parallel and antiparallel resonant wave modes. Changing
the sign and integrating over the velocity distribution yields as a final result

(
dWl

dt

)

Ch

=
πmeω

4
pe

2n0k2

∫
d3v f0e(v)δ(ωpe − k · v) (2.15)

as spontaneous emission rate of Langmuir waves. Inserting a Maxwellian distribution
of temperatureTe and carrying out the integration, one obtains for the emission rate

(
dWl

dt

)

Ch

=
4
√

πωpekBTe

k5λ5
D

(2.16)

in a thermal plasma in equilibrium. This emission is weak. In fact, it is proportional to
(kλD)−5. Comparing this dependence with the(kλD)−3 dependence of Landau damp-
ing, one recognizes that, for short wavelengths, Landau damping dominates over spon-
taneous Cherenkov emission. This is the reason for the weakness of thermal Langmuir
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fluctuations in the short-wavelength range. But for long wavelengths spontaneous emis-
sion becomes stronger, and the Langmuir fluctuation level is relatively high. Clearly,
if one adds a nonthermal component of higher velocity, for instance a beam of fast
electrons, the spontaneous emission rate is drastically enhanced.

2.2. Electron Stream Modes

Let us construct the simplest electrostatic dispersion relation leading to instability. We
consider a cold plasma in order to dismiss any complications due to thermal effects.
And we assume sufficiently high frequencies so that ion effects can be neglected. To
provide a free-energy source we assume that a cold electron beam of densitynb and
velocityvb streams across the electron background of densityn0 and velocityv0 = 0.
It is clear that this system is not at equilibrium and that the electrostatic interaction
between the two plasmas should ultimately lead to dissipation of the extra energy stored
in the streaming motion of the beam. The beam will be decelerated and the beam
electrons will mix into the background plasma. During this process the plasma will be
heated. The ignition of this complicated process leading to thermodynamic equilibrium
will be caused by an instability.

Beam-Plasma Dispersion Relation

The dispersion relation of a beam-plasma system can be constructed by remembering
that the plasma response function,ε(ω,k), is the sum of the contributions of the plasma
components. Since both components are cold and the plasma is isotropic, we get

ε(ω,k) = 1− ω2
p0

ω2
− ω2

pb

(ω − k · vb)2
= 0 (2.17)

The first term on the right-hand side is the background plasma contribution which, in
the absence of the beam, would yield Langmuir oscillations. The second term is of
exactly the same structure, but with the background plasma frequency replaced by the
beam plasma frequency,ω2

pb = nbe
2/ε0me, and the frequency being Doppler-shifted

by the beam velocity. Settingvb = 0, it is easily seen that the above dispersion relation
reproduces Langmuir oscillations at the total plasma frequency,ω2

pe = ω2
p0 + ω2

pb. For
vb 6= 0, Eq. (2.17) is a fourth-order equation in frequency,ω, which can have conjugate
complex solutions, one of them with a positive imaginary part leading to instability, the
other having a negative imaginary part and thus being damped and fading away in the
long-time limit.

If we neglect the background plasma by settingω2
p0 = 0, the dispersion relation

can be solved for the streaming part, yielding

ω = k · vb ± ωpb (2.18)
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Fig. 2.2. Coupling of Langmuir and beam modes in the two-stream instability.

The two waves described by this relation are thebeam modes. They exist only in the
presence of the beam and have purely linear dispersion. Moreover, for the negative sign
in front of the beam plasma frequency the beam mode frequency becomesω < k · vb,
while for the positive sign the frequency is higher,ω > k · vb. The former wave carries
negative energy and is anegative energy wave. Using Eqs. (I.9.84)

Ww(ω,k) =
ε0
2

〈|δE(ω,k)|2〉 ∂[ω ε(ω,k)]
∂ω

(2.19)

and (I.9.86),WE = ε0|δE|2/2, both from the companion book, this can be verified by
calculating the wave energy in the two modes [make use of Eq. (2.17)]

Ww

WE
=

∂[ωε(ω,k)]
∂ω

= ω
∂ε(ω,k)

∂ω
=

2ω2
p0

ω2
+

2ωω2
pb

(ω − k · vb)3
(2.20)

The first part is the Langmuir wave energy, while the second part is the energy which
the beam contributes to the waves. The interesting point about this contribution is that it
depends on the third power of the Doppler-shifted frequency in the denominator. Hence,
when the Doppler-shifted frequency is negative, the energy of the beam mode becomes
negative, which is the case for the low-frequency beam mode. Extracting energy from
this mode will thus lead to instability, which in the present case means accumulation of
‘negative energy’ in the wave and growth of its amplitude.

Two-Stream Instability

The instability resulting from coupling between the negative energy beam mode and
the Langmuir plasma mode is thetwo-stream instability. The coupling of the modes is
shown in Fig. 2.2. In the(ω, k) diagram the beam modes are centered aroundk = 0
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with slopevb, while the Langmuir mode is a constant line atω = ωp0. Where the beam
modes cross the Langmuir mode the dispersion curves couple together. At the low-
frequency beam mode coupling point there is a region, where no real solution exists for
eitherk or ω. This is the domain of conjugate complexity leading to instability.

In order to calculate the growth rate of the counterstreaming two-stream instability,
the dispersion relation Eq. (2.17) must be rewritten as

1− ω2
p0

ω2
=

ω2
pb

(ω − k · vb)2
+

ω2
pb

(ω + k · vb)2
(2.21)

This equation has six roots of which the roots atω ≈ 0 andω ≈ ±k · vb are the most
interesting. Puttingω = 0 on the right-hand side, the solution is

ω = ±ωp0k · vb/(k · v2
b − 2ω2

pb)
1/2 (2.22)

At short wavelengthsk · vb > 2ωpb this yields a real-frequency oscillation nearω <
ωp0, valid for ωp0 small. At large wavelengths the dispersion relation has two purely
imaginary roots

ω = ±i
√

2n0/nb (2.23)

one of them being unstable. The solution nearω ∼ k · vb satisfies the simplified dis-
persion relation

1−
( ωp0

k · v
)2

=
ω2

pb

(ω − k · vb)2
+

ω2
pb

4k · v2 (2.24)

Solving forω yields

ω = k · vb ± ωpbk · vb[
k · v2

b − (ω2
p0 + ω2

pb/4)
]1/2

(2.25)

which for large values ofk · vb > ω2
p0 + ω2

pb/4 is a real-frequency oscillation. At long
wavelengths one, however, finds a conjugate complex solution

ωts = k · vb

{
1± iωpb(n0 + nb/4)−1/2

}
(2.26)

that yields one damped and one unstable mode. The latter has the growth rate

γts = ωpbk · vb/
√

n0 (2.27)

Because the situation is symmetric, a similar instability is obtained for negative fre-
quencyω ∼ −k · vb.
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The graphical representation of the solution is shown in Figure 2.3 plotting the
two sides of the two-stream dispersion relation Eq. (2.21) as two separate functions,εl

andεb, of frequency,ω. shows the principal shape of these functions.εl has a negative
pole atω = 0 and approaches the horizontal line at 1 for large|ω|, while εb is always
positive, has poles atω = ±k · vb, vanishes for|ω| → ∞ and has a minimum atω = 0.
The two crossing points outside the poles are the real high-frequency solutions of the
dispersion relation. These are two of the six solutions of the dispersion relation. The
remaining solutions are conjugate-complex and correspond to low-frequency imaginary
crossings at frequencyω < kvb. One of these is the above unstable solution.

The two-stream instability is the simplest instability known. It is a cold electron
fluid instability which in practice rarely occurs, because other kinetic instabilities set in
before it can develop.

For a single cold beam in cold plasma the right-hand side of Eq. (2.21) contains
only one beam term. Nearω ≈ kvb this term is much larger than 1. In this case we get

ω2
p0(ω − kvb)2 + ω2

pbω
2 = 0 (2.28)

It is easily shown that it has the solutions

ω =
kvb

2 + nb/n0

[
1± i

(
nb

n0

)1/2
]

(2.29)

which yields an oscillation in the negative energy mode with a frequency just belowkvb

ωsb =
kvb

2 + nb/n0
(2.30)

and instability of this mode with growth rate

γsb = ωts

(
nb

n0

)1/2

(2.31)

Weak Beam Instability

The two-stream instability is considerably modified when the beam density is much less
than the density of the ambient plasma,nb ¿ n0. When this happens the Langmuir
mode atω = −ωp0 decouples from the other solutions of the two-stream dispersion
relation. At this frequency the plasma behaves as if no beam exists. Decoupling of
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Fig. 2.3. Solution of the dispersion relation of the two-stream instability.

this mode implies that the remaining dispersion relation will be of third order in the
frequency only. It is convenient to introduce a new variable as

Ω = ω − ωp0 (2.32)

and to define∆ = ωp0 − k · vb. Equation (2.17) then reduces to

Ω(Ω + ∆)2 − ωp0ω
2
pb

2
= 0 (2.33)

Here we used the approximation that1 − ω2
p0/ω2 ≈ 2Ω/ωp0, for ω ≈ ωp0. With the

help of the new dimensionless variableX defined through

Ω = ωp0

(
nb

n0

)1/3

X (2.34)

and using the abbreviationδ = ∆ω−1
p0 (n0/nb)1/3, the above equation is brought into

the dimensionless form
2X(X + δ)2 − 1 = 0 (2.35)

For∆ = δ = 0 this equation has a threefold degenerate real solutionX = 2−1/3 which
can be used to approximate the frequency of the weak beam mode

ωwb = ωp0

[
1 +

(
nb

2n0

)1/3
]

(2.36)
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The growth rate of the unstable solution is found by insertingX = 2−1/3 + iγ into the
third-order equation forX. Solving for the imaginary part one finds thatγ2 = 3Ω2.
This yields the growth rate of the weak beam instability

γwb =
√

3ωp0

(
nb

2n0

)1/3

(2.37)

This growth rate is much lower than that of the two-stream instability, because the free
energy supplied by the weak beam is small. On the other hand, the instability is a high-
frequency instability close to the background plasma frequency. Weak beams excite
Langmuir waves at small growth rates.

Stabilization and Quenching

The weak beam instability is the zero temperature limit of the more general hot beam
instability. One can show that a finite temperature will stabilize the weak beam insta-
bility. The condition for instability was|ω − k · vb| ≈ ωp0(nb/2n0)1/3. If the beam is
Maxwellian and has a thermal spread of1.4kvthb, Landau damping can be neglected as
long as|ω − k · vb| À 2vthb. On the other hand, the excited waves havek ≈ ωp0/vb.
Combining these expressions, Landau damping can be neglected if

vthb

vb
¿

(
nb

n0

)1/3

¿ 1 (2.38)

Since the beam densities must be small, only relatively fast beams will cause weak
beam instabilities to grow. Otherwise the instability will make the transition to the
two-stream instability. This is the case more relevant to space plasma physics, where
most beams have sufficient time to relax and to become warm. But the initial stages of
beam injection when narrow nearly monoenergetic beams leave from an acceleration
source as for instance auroral electric potential drops or electron beam reflection from
perpendicular shocks will lead to the weak beam instability.

One can estimate when the weak beam instability quenches itself. On p. 224 of
our companion book,Basic Space Physics, it was shown that for Langmuir waves about
half the energy is contained in the wave electric fluctuation while the other half is con-
tained in the irregular thermal motion of the electrons. Hence, equatingWw/2 with the
thermal energy of the beam electrons,Wthb = menbv

2
thb/2, and using the threshold

condition in Eq. (2.38), one finds

Ww ≈ 2Wb

(
nb

n0

)2/3

(2.39)
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Fig. 2.4. Buneman-unstable velocity distribution.

Thus, when the wave energy reaches the fraction(nb/n0)2/3 of the beam kinetic energy,
Wb = menbv

2
b/2, and the weak beam instability ceases.

In the foreshock region of the Earth’s bow shock the kinetic energy of the elec-
tron beam is about 10 eV (assuming specular reflection of the electrons). Measured
Langmuir wave energies suggest a ratio of wave to solar wind thermal energy of about
10−4. The solar wind electrons have thermal energy densities of about 108 eV/m3.
The wave energy density is thusWw ≈ 10−15 J/m3. This yields a beam density of
nb/n0 ≈ 10−4. Such densities require that the thermal spread of the beam must
be less thanvthb ¿ 0.05 vb ≈ 50 km/s corresponding to a beam of temperature
kBTb ≈ 0.03 eV for weak beam instability. The beams are very cold and will read-
ily spread out in velocity space.

2.3. Buneman-Instability

Another instability which is closely related to the two-stream instability is theelectron-
ion two-streamor Buneman instability. It arises from current flow across an unmag-
netized plasma and can also be treated in the fluid picture. Currents are associated
with the relative flow of electrons and ions. Fig. 2.4 shows a typical Buneman-unstable
electron-ion distribution.

Growth Rate and Frequency

For the Buneman instability one considers the contribution of the motionless ions to the
two-stream instability. Assuming that all plasma components are cold, the dispersion
relation can be written as

ε(ω,k) = 1− ω2
pi

ω2
− ω2

pe

(ω − kv0)2
= 0 (2.40)
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Here the ions take over the position of the motionless component, while all electrons are
assumed to stream across the ion fluid at their bulk velocity,v0. Clearly this will cause
a current to flow in the plasma. Because the ion plasma frequency is much smaller than
the electron plasma frequency the dominating term is the electron term. Instability will
arise at the slow negative energy mode

ωn ≈ kv0 − ωpe (2.41)

while the positive energy waveωp = kv0 + ωpe does not couple to the instability. One
can thus rewrite the above relation as

(ω − ωn)ω2 =
ω2

pi(ω − kv0)2

ω − ωp
(2.42)

The wavenumber of interest isk ≈ ωpe/v0, because for a two-stream instability this
wavenumber couples to the negative energy wave. In contrast to the electron two-
stream instability, the frequency is small compared to the electron plasma frequency,
ω ¿ ωpe. With these approximations the dispersion relation becomes

ω3 ≈ − me

2mi
ω3

pe (2.43)

Of the three roots of this equation one is a real negative frequency wave

ω = −
(

me

2mi

)1/3

ωpe (2.44)

The other two are complex conjugate, and one of them has positive imaginary part. To
find these two solutions we putω → ω + iγ to obtain the following two equations

ω(ω2 − 3γ2) = −meω
3
pe

2mi

γ2 = 3ω2
(2.45)

The second equation givesγ = ±√3ω. Inserting into the first equation yields for the
frequency of the maximum unstable Buneman mode

ωbun =
(

me

16mi

)1/3

ωpe ≈ 0.03 ωpe (2.46)

from which the growth rate is found to be

γbun =
(

3me

16mi

)1/3

ωpe ≈ 0.05 ωpe (2.47)



24 2. CONCEPT OF INSTABILITY

kv0
ω

F(ω)

1

Real Solution

C
om

pl
ex


S

ol
ut

io
n

Real Solution

ωbun

Fig. 2.5. Graphical solution of the Buneman instability.

This growth rate is very large, of the order of the frequency itself. Hence, the Buneman
instability is a strong instability driven by the fast bulk motion of all the electrons mov-
ing across the plasma. One can expect that this instability will cause violent effects on
the current flow, retarding the current and feeding its energy into heating of the plasma.
It is interesting to note that the Buneman two-stream waves propagate parallel to the
current flow but otherwise are electrostatic waves. As we will show later, they are the
fast part of an ion-acoustic wave, which becomes unstable in weak current flow across
a plasma.

Mechanism

To obtain an idea of the mechanism of the Buneman instability, we again use a graphical
representation of the dispersion relation in the form

1 =
ω2

pi

ω2
+

ω2
pe

(ω − kv0)2
= F (ω) (2.48)

The functionF (ω) is shown in Fig. 2.5. It has two poles atω = 0 andω = kv0. In
between it has a minimum, whose position is found by calculating∂F (ω)/∂ω = 0

ωbun =
kv0

1 + (mi/me)1/3
(2.49)

Inserting this value intoF (ω) and demanding that the minimum ofF (ωbun) > 1, the
condition for instability is found to be

k2v2
0 < ω2

pe

[
1 +

(
me

mi

)1/3
]3

(2.50)
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Fig. 2.6. Growth rate and frequency of Buneman instability.

which justifies our first choice of the unstable wavenumber showing in addition that any
sufficiently long wave will become unstable against the electron flow. The threshold
value for which the instability becomes marginal with vanishing growth rate,γ→0, is
found by replacing the smaller sign with the equal sign. The marginally stable waves
have the Buneman wavelength

λbun =
2πv0

ωpe

[
1 +

(
me

mi

)1/3
]−3/2

(2.51)

The numerical solution of the Buneman dispersion relation, in dependence of the in-
stability condition in Eq. (2.50), is shown in Fig. 2.6. The instability exists only above
the threshold where its frequency is highest. The maximum growth rate in Eq. (2.47),
normalized to the Buneman frequency,ωbun, is found near the position where this value
is close to 1. For larger speeds the growth rate decreases. More interesting is the obser-
vation that the normalized Buneman-unstable frequency,ω/ωbun, decreases steeply to
values far below the Buneman frequency of Eq. (2.46), when the conditions for insta-
bility are far above the threshold. This implies that Buneman-unstable long-wavelength
modes have low frequencies and that low electron speeds excite low-frequency waves.

Quenching

We conclude this section with an outlook on the further evolution of the Buneman
instability. Remember that the plasma, electrons as well as ions, have been assumed
very cold. Hence, even small electrostatic potentials arising in the plasma will be able
to distort the electron particle motion and thus modify the electric current which is the
driving source of the Buneman instability. In the wave frame the streaming electron
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energy is

We =
me

2

(
v0 − ωbun

kbun

)2

(2.52)

so that the condition for electron orbit distortion becomes

Ww(t) > nWe = 1
2nmev

2
0 (2.53)

where we took into account that the electrons move considerably faster than the wave.
Now, the Buneman instability is a fast growing instability. The amplitude of the wave
will therefore quickly reach a sufficiently large value to trap the electrons and slowing
them down to the phase velocity of the wave which lies below threshold. The current
will be disrupted in this case and the instability quenches itself. From the above con-
dition we can estimate the time until quenching will happen, assuming that the wave
amplitude grows from thermal level

Wtf ≈ kBTe/λ3
D (2.54)

which was given in Eq. (I.9.27), as

WE(t) = Wtf exp(2γbunt) (2.55)

For the energy density we find from the Buneman dielectric response function

Ww(t) ≈
(

16mi

me

)2/3

WE(t) (2.56)

For the thermal level we can assume that it is well approximated by the thermal level
of high-frequency Langmuir waves given in Eq. (2.54). Inserting all this into Eq. (2.53)
and solving for the current disruption time,tcd, gives

ωpetcd ≈
(

2mi

3me

)1/3

ln

[(
me

16mi

)2/3
v2
0

v2
the

nλ3
D

]
(2.57)

This expression depends only weakly on the electron current speed above threshold.
The dominating number in the argument of the logarithm is the Debye number,ND =
nλ3

D. Its logarithm is typically of the order of 15–30. Hence, in terms of the electron
plasma frequency the self-disruption time of the current due to Buneman instability in
an electron-proton plasma takes about 200 electron plasma periods or about 10 Bune-
man oscillations. Thus the Buneman instability will manifest itself in spiky oscillations
of the current and in bursty emission of electrostatic waves below and up to the Bune-
man frequency,ω < ωbun ≈ 0.03 ωpe.
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2.4. Ion Beam Instability

As for a last introductory example we discuss an instability generated by two counter-
streaming plasma flows, theelectrostatic streaming instabilityor counterstreaming ion
beam instability. It is important in many kinds of plasma flows as, for instance, the solar
wind. Its electromagnetic counterpart plays a significant role in the foreshock region of
the Earth’s bow shock.

Cold Electron Background

The dispersion relation of the counterstreaming ion beam instability including hot elec-
trons consists of the two cold beam terms and a general hot electron term including the
electron plasma dispersion function

1− 1
2k2λ2

D

Z ′
(

ω

kvthe

)
− 1

2

[
ω2

pi

(ω − kvb)2
+

ω2
pi

(ω + kvb)2

]
= 0 (2.58)

If the electrons are cold the distribution functions of the three components are well
separated as shown in the left part of Fig. 2.7. The electron dispersion function reduces
to ω2

pe/ω2, and the dispersion relation simplifies and can be written in a form similar to
the cold beam instability

1− ω2
pe

ω2
=

1
2

[
ω2

pi

(ω − kvb)2
+

ω2
pi

(ω + kvb)2

]
(2.59)

Its graphical representation is given in Fig. 2.8. The dispersion relation has three poles
at ω = 0,±kvb, and the functionF (ω) has two minima at low frequencies which
both can be unstable. For sufficiently large beam velocities these minima are separated
far enough to let the instability split into two Buneman-like instabilities, with growth
rates given in the previous subsection, and one with positive, the other with negative
frequency.

v
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0−vb  vb 
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0−vb  vb 
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Fig. 2.7. Configuration of counterstreaming ion beam distributions.
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Fig. 2.8. Cold counterstreaming ion dispersion relation.

Hot Electron Background

On the other hand, when the electrons are hot (right-hand part of Fig. 2.7), we can use
the small argument expansion for the plasma dispersion function because for small fre-
quenciesω/kvthe ¿ 1. Introducing the expansion given in App. A.7 of our companion
book, we write the dispersion relation as

1 +
1

k2λ2
D

=
1
2

[
ω2

pi

(ω − kvb)2
+

ω2
pi

(ω + kvb)2

]
(2.60)

Instead of Fig. 2.8 we now have Fig. 2.9. The horizontal line at1 + (kλD)−2 is the
electron contribution. The poles of the combined ion terms are atω = ±kvb. The
solutions are the cross-overs of the ion function with the horizontal. There exist two
real solutions at frequencies well outside the two poles. But at frequencies|ω| < kvb

real solutions are possible only for low ratiosωpi/kvb. Here the possibility for insta-
bility arises. The instability is a low-frequency instability with frequencyω ≈ 0. In
a non-symmetric configuration with differing beam densities and beam velocities the
symmetry of the curves in Fig. 2.9 will be distorted, and the frequency will differ from
zero. The minimum atω = 0 has the valueω2

pi/k2v2
b . Hence, instability sets in for

ω2
pi

k2v2
b

> 1 +
1

k2λ2
D

(2.61)

It can be satisfied for small beam velocities only. Thus the hot electrons quench the
counterstreaming ion beam instability.

Resonant Thermal Electrons

The instabilities discussed so far are instabilities where the whole plasma is involved.
They are bulk ornon-resonantinstabilities. In the case of the counterstreaming ion
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Fig. 2.9. Solution of the counterstreaming ion beam dispersion relation.

beam instability the quenching of the instability by the hot electron component applies
only to the non-resonant instability. There is another range of frequencies, where the
frequency is of the order of the electron thermal velocity, implying resonant contribu-
tion of electrons withv ≈ vthe ≈ ω/k. The frequency of this wave is still of the order
of the ion plasma frequency. Hence, their wavelength is very large compared with the
Debye length. In this case the plasma dispersion function cannot be expanded and solu-
tions are found only by numerical methods. The maximum growth rate of this resonant
counterstreaming ion beam instability in hot electron plasmas is considerably smaller
than the maximum Buneman growth rate

γib,max ≈ 0.1 γbun,max (2.62)

The small value ofγib,max is easily understood, because in contrast to the Buneman
instability, where the whole plasma contributes, the counterstreaming ion beam insta-
bility is fed by the small number of hot resonant electrons only. As a consequence the
waves cannot gain much energy. They are weakly growing waves and will cause much
less violent effects on the plasma than the ordinary Buneman instability.

Concluding Remarks

The present chapter introduces the reader to the concept of instability and explains this
concept with a few illustrative examples. Although the concept of instability is math-
ematically relatively simple, it presents a number of fundamental physical difficulties.
Obtaining a positive imaginary part from a given dispersion relation does not neces-
sarily imply that one really encounters an instability. Instabilities do arise only if free
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energy is available. In other words, instabilities are physically real only when the state
from which the instability starts is thermodynamically not in equilibrium. In a ther-
modynamic equilibrium state, which offers no free energy, growing solutions of the
dispersion relation are spurious and must be abandoned.

On the other hand, under thermodynamic non-equilibrium conditions instabili-
ties are the most important effects. They cause all of the transitions a system expe-
riences when changing from one state to another. In many cases they may cause the
formation of new structure, while in other cases they lead to some kind of transitional
state between total disorder and order, which is calledturbulence. Traditionally, non-
equilibrium conditions are considered to be ordered states. This view is only partially
correct. Non-equilibrium states appear in the majority of cases only as transitional
states between two different equilibrium configurations, where the structure is formed
via the onset of instability. Therefore, though instabilities act primarily to re-distribute
the available free energy, they cause structure and order which may end up as another
long-living ordered equilibrium, which is very different from the most probable ther-
modynamic equilibrium state.

Further Reading

Only a small selection of the many books on instabilities is given here. The general the-
ory of instabilities is found in [5]. A useful introduction into a number of instabilities is
given in [2]. Reference [3] contains a more or less systematic but not complete compila-
tion of many instabilities which are to some extent relevant for space and astrophysics.
Ion beam instabilities are completely reviewed in [4], electron beam instabilities in [1].

[1] R. J. Briggs,Electron-Stream Interaction with Plasmas(MIT Press, Cambridge,
1964).

[2] A. Hasegawa,Plasma Instabilities and Nonlinear Effects(Springer Verlag, Heidel-
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3. Macroinstabilities

Because of the multitude of free energy sources, a very large number of instabilities can
develop in a plasma. It is sometimes convenient to divide them into two large groups
according to the spatial scale involved in the instability. If this scale is of macroscopic
size, comparable to the bulk scales of the plasma, the instabilities are called macroinsta-
bilities. On the other hand, if the characteristic size of the instabilities is microscopic,
of the scale size of the particle inertial lengths and gyroradii, the instabilities are called
microinstabilities. In the latter case it is natural to assume that kinetic effects will
become of greater importance than in the former case. Thus microinstabilities are typ-
ically also kinetic instabilities while macroinstabilities can be treated in the framework
of fluid plasma theory. In some cases, however, it is useful to account for kinetic ef-
fects in macroinstabilities as well. The present section will cover the most important
macroinstabilities appearing in space plasmas.

3.1. Rayleigh-Taylor Instability

On global scales plasma inhomogeneities cannot be neglected and several macroinsta-
bilities are caused by plasma gradients. The simplest such instability is theRayleigh-
Taylor instabilityor interchange instability. It is the instability of a plasma boundary
under the influence of a gravitational field. Because of this reason it is also called
gravitational instability. Since the centrifugal force acts on a particle moving along
curved magnetic field lines in a similar way as a gravitational force (see Sec. 2.4 of our
companion book,Basic Space Plasma Physics), this can lead to similar effects. This
instability is calledflute instability.

Mechanism

Consider a heavy plasma supported against the gravitational force by a magnetic field
as shown in Fig. 3.1. The boundary between plasma and magnetic field is the horizontal
(x, y) plane, and the magnetic field points in the direction ofx, so thatB0 = B0êx. The
gravitational accelerationg = −gêz acts downward, while the plasma density gradient,

31
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Fig. 3.1. Rayleigh-Taylor unstable plasma configuration.

∇n0 = [∂n0(z)/∂z]êz points upward and

g · ∇n0 < 0 (3.1)

Let us for the moment neglect any thermal effects and assume that the plasma is colli-
sionless. When the plasma boundary is distorted by a small purely electrostatic pertur-
bation in the(x, y) plane, an instability can develop.

Consider a distortion of the boundary so that the plasma density makes a sinusoidal
excursion in thez direction. The gravitational field causes an ion drift and current in
the negativey direction,viy = −mig/eB0. The electrons, because of their negligible
mass, do not participate in this motion. Hence, in the region where the density distur-
bance causes a density enhancement, below the boundary between plasma and vacuum,
the ion motion leads to a charge separation and accumulation of positive charges as
shown. As a result, a charge separation electric field,δEy, evolves. The horizontal
electric disturbance field in the+y direction,+δEy, causes an upward electric field
drift, δvEz = +δEy/B0, in the external magnetic field while in the region of−δEy,
the drift is downward,δvEz = −δEy/B0. These motions are in opposing directions;
both of them amplify the initial distortion of the equilibrium density configuration at
the plasma-vacuum magnetic field boundary.

Hence, the dilutions of the plasma caused by the initial rarefaction begin to rise
up into the plasma while the initial density increases below the boundary begin to fall
down. This mechanism causes light dilute plasma bubbles to rise up into the dense
plasma and, under the action of gravity, it causes plasma originally supported by the
magnetic field to fall down into the plasma-free magnetic field region thereby eroding
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the boundary and causing loss of plasma. This is shown in the sequence of Fig. 3.1. The
bubbles themselves develop steep plasma boundaries which become unstable against
the same Rayleigh-Taylor instability and deteriorate into smaller bubbles during the
further evolution of the instability and the rise and fall of the bubbles. In the final
nonlinear stage of the instability the boundary will become diffuse and the wavelength
spectrum of the Rayleigh-Taylor mode becomes broadband, containing a wide range of
wavelengths reaching from the long initial one to the smallest possible scales.

Dispersion Relation

In order to quantify the discussion, we linearize the cold ion equation of motion includ-
ing the gravitational force and introduce the plane wave ansatz for the ion velocity and
the electric field

δvi = δvi(ω,k) exp[i(k · x− ωt)]
δE = −ikδφ(ω,k) exp[i(k · x− ωt)]

(3.2)

to obtain (
ω +

gk⊥
ωgi

)
δvi⊥ =

e

mi
(k⊥δφ− iB0êx × δvi⊥) (3.3)

Since the frequency of the disturbance will be much smaller than the ion gyrofrequency
(ω′ ¿ ωgi) the solution for the velocity disturbance is

δvi⊥ = −δφ

[
ik⊥ × êx +

k⊥
ωgiB0

(
ω +

gk⊥
ωgi

)]
(3.4)

Using this equation to eliminate the velocity disturbance from the ion continuity equa-
tion

ωδni = n0k · δvi − iδvi · ∇n0 (3.5)

one finds for the density disturbance

δni = n0δφ

[
e

mi

(
k2
‖

ω2
− k2

⊥
ω2

gi

)
+

k⊥
B0Ln

(
ω +

gk⊥
ωgi

)−1
]

(3.6)

We have introduced here the undisturbed inverse density gradient scale length

L−1
n =

d lnn0(z)
dz

> 0 (3.7)

Because the electrons are cold and do not drift in our model, the electron continuity and
momentum equations yield

δne = −δφ
n0

B0

(
ωge

ω

k2
‖

ω
− k⊥

Lnω

)
(3.8)
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For these low-frequency variations one can safely assume that the condition of quasineu-
trality, δne = δni, is satisfied. Inserting the expressions for the two oscillating densities
leads to the dispersion relation

ωgi

ω

1
k⊥Ln

(
1− ω

ω + gk⊥/ωgi

)
−

(
1 +

mi

me

)
ω2

gik
2
‖

ω2k2
⊥

+ 1 = 0 (3.9)

This is a general dispersion relation for the Rayleigh-Taylor instability.

Growth Rate and Frequency

The highest growth rate of this instability is found for purely perpendicular propagation
of the disturbance since in this case the electric field amplitude will lead to the largest
vertical drift of the plasma for the longitudinal mode. Thus puttingk‖ = 0 and assuming
a weak gravitational effect so thatω À k⊥g/ωgi, one can expand the term in brackets
in Eq. (3.9) to first order in this small parameter and obtains

ω2 = −g/Ln (3.10)

which has purely imaginary solutions and thus one purely growing solution with

γ0rt =
(

g

Ln

)1/2

(3.11)

It is the same expression as found for fluids under the action of gravity.
The non-oscillatory character of this instability results from the assumption of

smallk⊥g/ωgiω. Expanding up to second order in Eq. (3.9) yields

ω3 +
g

Ln
ω − g2k⊥

2ωgiLn
= 0 (3.12)

This equation has one real and two conjugate complex solutions. The unstable solution
has frequency

ωrt = γ0rtcosh
[

1
3cosh−1

(
k⊥Lnγ0rt

2ωgi

)]
(3.13)

proportional to the zero-order growth rate,γ0rt. The corrected growth rate of this oscil-
lating Rayleigh-Taylor mode is

γrt =
√

3γ0rtsinh
[

1
3cosh−1

(
k⊥Lnγ0rt

2ωgi

)]
(3.14)

An approximate closed solution of Eq. (3.12) can be constructed for the complex fre-
quencyω → ωrt + iγ. Separating the real and imaginary parts of Eq. (3.12) yields
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γ2 − 3ω2 = g/Ln

ω

(
ω2 − 3γ2 +

g

Ln

)
=

g2k⊥
2ωgiLn

(3.15)

Together with Eq. (3.11) the first of these equations requires thatγrt À
√

3ω, and the
second equation gives for the frequency

ωrt = − gk⊥
4ωgi

(3.16)

Consistency with the above condition demandsk⊥Ln ¿ 4ωgi(Ln/g)1/2, or in terms
of the Rayleigh-Taylor wavelength

λrt

Ln
À π

2
γ0rt

ωgi
(3.17)

The right-hand side of this expression is small. So the condition of long wavelengths is
easily satisfied in all cases of interest.

For oblique propagation of the disturbance,k‖ 6= 0, part of the electric field is
parallel to the magnetic field and can be short-circuited by the fast electron motion along
the magnetic field thus causing a field-aligned current but at the same time partially
quenches the instability. Let us write the dispersion relation for this case including the
second term in Eq. (3.9)

ω2 = − g

Ln
+

mi

me

k2
‖

k2
⊥

ω2
gi (3.18)

When the condition

k‖
k⊥

>

(
me

mi

g

ω2
giLn

)1/2

=
(

me

mi

)1/2
γ0rt

ωgi
(3.19)

is satisfied, the right-hand side of this expression becomes positive, and the instability
ceases. Thus for a given density gradient scale,Ln, the last condition defines a marginal
angle around the perpendicular direction. Inside this angle the Rayleigh-Taylor insta-
bility can evolve. This angular range is very narrow, in the ionosphere typically less
than one degree and the Rayleigh-Taylor mode is nearly-perpendicular here.

Magnetospheric Growth Rates

To obtain an idea of the magnitude of the growth rate of the Rayleigh-Taylor instability
in the vicinity of the Earth, we introduce the gravitational accelerationg0(1RE) ≈
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Fig. 3.2. Collisionless Rayleigh-Taylor growth rate in the magnetosphere.

10 m/s2 at the surface and rewrite Eq. (3.11) as

γ0rt ≈
(

10RE

r2Ln(r)

)1/2

(3.20)

in order to account for the radial dependence ofg(r) andLn(r) in the equatorial plane.
The characteristic scale in the ionosphere is of the order ofLn ≈ 20 km. But here, as
shown below, a different kind of Rayleigh-Taylor instability is at work. Above 500 km
altitude,Ln becomes very large. Near the plasmapause, at about 4–5RE , it assumes a
value of about 1000 km, then becomes large until at the magnetopause it is of the order
of 1000 km again. Figure 3.2 shows the schematic radial dependence of the Rayleigh-
Taylor growth rate in the equatorial plane. It has two peaks at the plasmapause and at the
magnetopause with the peak at the magnetopause being very narrow, restricted only to
the magnetopause transition region. Characteristic growth times at the magnetopause
are of the order of several hours, however. This is too long for the Rayleigh-Taylor
instability to be of importance here.

Equatorial Spread-F

The Rayleigh-Taylor instability requires the presence of a non-negligible gravitational
acceleration. In the vicinity of the Earth this requirement can be satisfied only at iono-
spheric altitudes. Following our previous discussion one must, in addition, demand
that the magnetic field is perpendicular to the gravitational acceleration. Since this is
vertical, the Rayleigh-Taylor instability can evolve only in the equatorial region where
the magnetic field is nearly horizontal. The last requirement is that the plasma density
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Fig. 3.3. Radar backscattered signals from rising bubbles in equatorial spread-F.

increases with altitude above the Earth’s surface. This requirement is met in the equato-
rial electron density height profiles below the E- and F-region maxima. One may expect
that these density gradients are Rayleigh-Taylor unstable and will be gradually erased.

This kind of erosion is known from radar observations of the equatorial electron
density content in the F-region. Many of those observations exhibit multiple radar beam
reflections from rising low density bubbles calledequatorial spread-F. A schematic
example of an observation at evening is shown in Fig. 3.3. The shadowed plumes show
the backscattered radar intensity from the usual and bubble density gradients and their
evolution with time. The lowest trace near 100 km altitude is the signal of the E-layer
which is quite stable. The rather unstable traces at higher altitudes are the disrupting
F-region structures. Bubbles rise in this case up to 1000 km height until they dissolve.
Their velocity can be determined from the slope of the signal. Uprising velocities of
some 100 m/s are not unusual. The very irregular shapes of the backscattered signals
are caused by a mixture of the Rayleigh-Taylor instability and the various horizontal
and vertical winds prevalent in the equatorial upper ionosphere.

Collisional Rayleigh-Taylor Instability

The ionospheric plasma is not perfectly collision-free. It is thus obligatory to include
collisions into the Rayleigh-Taylor mode. These collisions, which are mainly collisions
with neutrals, considerably modify the instability. Let us define the quantitiesαs =
ωgs/νsn, the ratio between gyro and particle-neutral collision frequency, andDs⊥ =
kBTs/msνsn, the diffusion coefficient. Moreover, we cannot neglect the pressure force
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term in the fluid momentum equations. Solving the stationary momentum conservation
equation for the particle velocity, we obtain

vs =
Vs

1 + αs
+

αs

1 + αs
Vs × B0

B0
(3.21)

where
Vs =

e

msνsn
E +

g
νsn

−Ds⊥∇ ln n (3.22)

For electrons the second term in Eq. (3.21) dominates becauseαe À 1. We therefore
neglect the first term in the electron velocity. Multiplying by the corresponding charges
and densities and subtracting ion and electron velocities yields for the current

j = σP E +
en

ωgi
g × B0

B0
− kB(Te + Ti)

B2
0

∇n×B0 (3.23)

whereσP is the Pedersen conductivity defined in Eq. (I.4.27) of our companion book.
Due to their large mass the ions contribute most of the gravitational current permitting
to approximate the plasma velocity by the ion velocity. Taking the divergence ofvi,
assumingE0 = 0, we find

∇ · v = ∇ ·
[
g ×B0 +

kBTi

mi
B0 ×∇(ln n)

]
= 0 (3.24)

which can be used on the right-hand side of the continuity equation

∂n

∂t
+ v · ∇n = −n∇ · v = 0 (3.25)

Hence, the flow is practically incompressible. This approximation is very good for the
F-region, but breaks down in the E-region. We linearize the continuity equation and the
equation of vanishing current divergence

∇ · j = 0 (3.26)

using Eq. (3.23) forj. We further assume quasineutrality,ne = ni = n, for the low-
frequency disturbances we expect and obtain

∇ · [(n0 + δn) (g ×B0 + νinδE)] = 0 (3.27)

This equation and the continuity equation together can be Fourier transformed. Intro-
ducing the gradient scale length,Ln, and the electrostatic potential,δφ, the two trans-
formed linear equations obtained are
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δn

n0
+ i

k⊥νin

gB0
δφ = 0

(
ω

k⊥
− g

ωgi

)
δn

n0
− 1

B0Ln
δφ = 0

(3.28)

Solving this homogeneous system gives the dispersion relation of collision-dominated
Rayleigh-Taylor modes in the equatorial ionosphere

ω =
k⊥g

ωgi
+ i

g

νinLn
(3.29)

It is interesting that in this case a real part of the mode frequency appears naturally. It
simply shows that the Rayleigh-Taylor mode propagates with phase velocity

ω

k⊥
=

g

ωgi
(3.30)

into perpendicular direction. This direction is easily found to be the eastward direction,
g ×B0, in the equatorial ionosphere since the magnetic field points toward north and
the gravitational acceleration is vertically downward. The growth rate is this time given
by

γrtn =
g

νinLn
=

γ2
0rt

νin
(3.31)

It depends on the collision frequency between ions and neutrals and is positive only
when the density gradient points upward.

The Rayleigh-Taylor instability in the ionosphere is clearly collision-dominated, as
is obvious from its growth rate in Eq. (3.31). For vanishing collision frequency,νin→0,
the growth rate would diverge. This non-physical behavior results from the approxima-
tions made in the present theory. Actually, in a more elaborated theory which takes into
account the full particle dynamics and is not restricted to the fluid-drift approximation,
one finds a smooth transition from the collisional to the collisionless Rayleigh-Taylor
instability. Formally this transition can be modelled as

γ̃rt = γ0rt

[
1− exp

(
−γ0rt

νin

)]
(3.32)

a formula which describes both limits. In the limit of large collision frequency, the ex-
ponential can be expanded and yields the growth rate in Eq. (3.31), while for vanishing
collisions the exponential dependence onνin disappears.
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Rayleigh-Taylor Bubbles

The collisional Rayleigh-Taylor instability is an important instability in the ionosphere.
In the E-region the instability is quenched because of the very high collision frequen-
cies. At higher altitudes, where it becomes non-collisional, the condition that the elec-
tron density must increase with distance from the Earth is generally not satisfied. This
explains why Rayleigh-Taylor bubbles develop preferentially just below the F-region
maximum. Also, when the F-region rises during the night into a region where the col-
lision frequency becomes low, the evolution of the bubbles is favored explaining the
observation of strong evening and night-time high-altitude equatorial spread-F.

In the ionosphere there is a large number of possibilities to modify the ionospheric
Rayleigh-Taylor mode. Convection and dynamo electric fields as well as neutral winds
cause drift motions of the ionospheric plasma in both the horizontal and vertical direc-
tions. Such motions lead to deformation of bubbles and to their transport out of the
unstable region. Moreover, cascading of the bubbles down to shorter wavelength and
small scales produces a broad wavelength spectrum of the equatorial spread-F. Figure
3.4 shows the typical power spectrum of equatorial spread-F Rayleigh-Taylor bubbles
with |δn/n|2 ∝ k−2.5

⊥ . At very short wavelengths comparable to the ion gyroradius the
waves become damped due to diffusion. Experimental observation of spread-F bubbles
by sounding rocket experiments shows that these marginal diffusive wavelengths are of
the order of about 100 m.
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3.2. Farley-Buneman Instability

Another instability is closely related to the ionospheric Rayleigh-Taylor instability. It
is also driven by transverse currents in the collisional ionosphere, but the nature of the
currents is not gravitational. Rather these currents are drift currents, and the resulting
instability is amodified two-stream instabilityor Farley-Buneman instability. The in-
stability arises from a difference in the drifts of electrons and ions forνin À ωgi (see
Sec. 4.4 of our companion book).

Dispersion Relation

Let the electric field point vertically downward,E0 = −E0êz. In the crossed horizontal
northward magnetic and vertical electric fields the electrons perform an eastwardE×B
drift motion with a velocityvE = −E0/B0. The linearized and Fourier transformed
electron continuity equation yields for the disturbance of the electron velocity

δvey =
(

ω

k⊥
− vE

)
δn

n0
(3.33)

where quasineutrality has been assumed as usual for low-frequency waves. Neglecting
electron inertia and the action of gravity on the electrons but keeping electron-neutral
collisions we find after linearizing the electron equation of motion

ωgeδvey + νenδvez = 0

νenδvey − ωgeδvez = −ik⊥

(
e

me
δφ− kBTe

me

δn

n0

)
(3.34)

Due to the high ion-neutral collision frequency ions do not move in the vertical direc-
tion, viz ≈ 0, and the corresponding ion equations are

δviy − ω

k⊥

δn

n0
= 0

(ω − iνin)δviy − k⊥v2
thi

δn

n0
=

e

mi
k⊥δφ

(3.35)

This linear homogeneous system of equations is solved by setting its determinant to
zero, giving the dispersion relation

ω

(
1 + iψ0

ω − iνin

νin

)
= k⊥vE + iψ0

k2
⊥c2

ia

νin
(3.36)
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The combined effect of electron and ion collisions and electron and ion gyrofrequencies
is contained in the quantity

ψ0 =
νenνin

ωgeωgi
=

νenνin

ω2
lh

(3.37)

and the ion-acoustic speed is defined asc2
ia = kB(Te + Ti)/mi. Electron and ion

gyration effects lead to the appearance of the lower-hybrid resonance frequency,ωlh, in
theψ0-parameter.

Growth Rate and Frequency

As in the case of the Buneman instability the dispersion relation is a third-order equation
in ω and can be solved in the same way. The weakly unstable solution yields for the
frequency

ωfb =
k⊥vE

1 + ψ0
(3.38)

and the growth rate

γfb =
ψ0

νin

ω2
fb − k2

⊥c2
ia

1 + ψ0
(3.39)

Buneman-Farley instability sets in whenever the wave phase velocity exceeds the ion
acoustic speed,ωfb/k⊥ > cia or when the vertical drift velocity exceeds the threshold

vE > (1 + ψ0)cia (3.40)

Typical Altitude Range

This instability is of importance in the equatorial electrojet region, where large vertical
electric fields cause a strong horizontal drift current to flow above the equator. It lets
bubbles rise into the current region and distorts the current flow in a way similar to
the Buneman instability. The parameterψ0 depends strongly on altitude. Recalling
the definition of the neutral collision frequency in Eq. (I.4.1) of our companion book,
νsn = nnσn〈vs〉, one observes thatψ0 is proportional to the square of the neutral gas
density. The latter satisfies the barometric law of Eq. (I.4.29),nn(z) = n0 exp(−z/H).

Hence,ψ0(z) decreases exponentially withz, as does the growth rate. The Farley-
Buneman instability is thus restricted to lower altitudes. For a numerical value one
hasψ0 ≈ 0.22 at z = 105 km. Assuming a scale height of 10 km, it readily becomes
small with altitude and can be neglected in Eqs. (3.38) and (3.39) abovez = 130 −
150 km. The altitude range of the Farley-Buneman instability therefore is the equatorial
E-region.
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3.3. Kelvin-Helmholtz Instability

Another macroinstability is generated by shear flows in magnetized plasmas. In inves-
tigating this instability, we turn away from the ionosphere to the collisionless boundary
transition region between the magnetosheath and magnetosphere. The magnetosheath
plasma is flowing along the magnetopause around the magnetosphere, and it is easy to
imagine that any kind of contact between the flow and the magnetospheric field may
cause ripples on the boundary to evolve.

This so-calledKelvin-Helmholtz instabilityis best described in magnetohydrody-
namics, since it is caused by the bulk plasma flow and has wavelengths considerably
longer than any of the gyroradii. Figure 3.5 shows the geometry of the problem. The
left part of the figure has been drawn for the symmetric case, including a broad shear
flow transition layer. Here the flow changes from positive to negative direction. The
right part of the figure is an idealized model with a sharp boundary, i.e., the transition
region is narrower than the wavelength, yet still wider than the ion gyroradius. Plasma
density, magnetic field, and flow velocity all change abruptly across the boundary.

Dispersion Relation

Let us assume ideal conditions though usually the narrow transition layer may contain
some kind of viscous interaction. Then the electric field is given byE = −v × B.
From ideal one-fluid theory, assuming scalar pressure,p, eliminating the electric field,
linearizing around the zero-order magnetic field and density, and introducing instead of
the plasma velocity the displacement vector,δx, by

δv = dδx/dt (3.41)
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Fig. 3.5. Two configurations leading to Kelvin-Helmholtz instability.
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the linearized induction and momentum conservation equations can be written as

δB = ∇× (δx×B0) = B0 · ∇δx− δx · ∇B0 −B0∇ · δx
µ0min0d

2δx/dt2 = −µ0∇δp− δB× (∇×B0)−B0 × (∇× δB)
(3.42)

The induction law in the above version has been integrated with respect to timet. We
define the first order variation of the total pressure by

µ0δptot = µ0δp + B0 · δB (3.43)

EliminatingδB from the second Eq. (3.42), one obtains forδx

min0

[
(vA · ∇)2 − ∂2

∂t2

]
δx = ∇δptot + a (3.44)

We have introduced here the Alfvén velocity,vA = B0/
√

µ0min0, defined by the
background parameters. The vectora on the right-hand side of this equation, which
results from a combination of the vector operations in Eq. (3.42), is defined as

a = −δB · ∇B0 + B0 · ∇(B0∇ · δx + δx · ∇B0) (3.45)

Equation (3.44) shows the coupling of the Alfvén wave on the left-hand side to the total
pressure disturbance on the right-hand side. Because the divergences of both the zero-
order and the disturbed magnetic field components vanish,∇ · δB = ∇ ·B0 = 0, Eq.
(3.42) can also be manipulated into an equation for the total pressure variation

∇2δptot = −mi∇ ·
(

n0
d2δx
dt2

)
+

1
µ0
∇ · (δB · ∇B0 + B0 · ∇δB) (3.46)

Now we assume that the plasma and the flow are homogeneous on both sides of the dis-
continuity, so that total pressure balance is satisfied to all orders outside the boundary.
This assumption implies that the perturbation is incompressible,∇·δv = 0. With these
assumptions the right-hand side of Eq. (3.46) vanishes, and the disturbance of the total
pressure satisfies

∇2δptot = 0 (3.47)

The only change inδptot occurs right at the infinitely thin boundary, while the pressure
disturbance fades with increasing distance from the boundary. This condition identifies
any possible linear disturbance as a surface wave. Another consequence of the assump-
tion of homogeneity of the plasma outside the boundary is the vanishing of the vector
a in Eq. (3.44). Equations (3.44) and (3.47), completed with the appropriate boundary
conditions at the discontinuity, form the basic linearized system of equations describing
the surface waves propagating along the boundary between the two media.
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The homogeneity of the problem along the interface between the two media allows
one to use a plane wave ansatz in the(x, z)-plane for both variables,δx andδptot, with
horizontal wavenumber,k = kxêx + kzêz, and frequencyω. From the equation for the
displacement of the boundary one has

δx =
∇δptot

min0 [ω2 − (k · vA)2]
(3.48)

and the variation of the pressure as solution of Eq. (3.47) is given by

δptot = p0 exp(−k|y|) exp[−i(ωt− kxx− kzz)] (3.49)

with k2 = k2
x+k2

z . The exponentialy-dependence of this solution takes into account the
decay of the amplitude of the disturbance in the direction perpendicular to the interface.
The physical reason behind this decay in an otherwise homogeneous medium is that the
excitation of the disturbance is located at the boundary between the two media, where
it must be largest. Outside the boundary the wave is evanescent, because no free energy
is available there to further feed its amplitude.

The physical boundary conditions to be applied to the above solutions must also
account for this fact. Hence, we choose that at a infinitely thin boundary the normal
component of the displacement,δxy, must be continuous. In addition total pressure
balance across the boundary is demanded, as is reasonable for a tangential disconti-
nuity. Further, since the plasma parameters may change across the boundary we must
distinguish the quantities to both sides by appropriate indices 1 and 2. Finally, in region
1 the plasma streams with constant velocity,v0. This implies that the wave frequency
in region 1 will be Doppler-shifted toω1 = ω2 − k · v0, whereω2 = ω is the non-
shifted frequency in region 2. Sinceδptot is continuous, the condition of continuity of
the vertical component of the displacement yields

1
n02 [ω2 − (k · vA2)2]

+
1

n01 [(ω − k · v0)2 − (k · vA1)2]
= 0 (3.50)

In deriving this equation one must take into account that the normals to both sides of
the discontinuity are directed oppositely.

Equation (3.50) is the dispersion relation of the Kelvin-Helmholtz instability. For-
mally this relation is very similar to the dispersion relations familiar from investigation
of streaming instabilities. However, in the present case the role of the plasma modes is
taken over by the two Alfv́en waves propagating in regions 1 and 2. Actually, the first
term in Eq. (3.50) is the Alfv́en wave in the non-streaming region, while the second
term is the Alfv́en wave in the streaming region as seen from region 2. The role of the
interface is merely to couple these two Alfvén modes together. The Kelvin-Helmholtz
instability may therefore be identified as a streaming magnetohydrodynamic instability
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which acts on Alfv́en waves. Of course, we have not distinguished between the dif-
ferent species. Hence, it is no surprise that the dispersion relation obtained describes
single fluid waves. However, the above discussion shows that the Kelvin-Helmholtz
instability is one way to excite Alfv́en waves in a fluid by feeding surface waves from
extracting energy out of a shear flow along a boundary.

Frequency and Growth

Equation (3.50) is quadratic in frequency and yields an unstable solution

ωkh =
n01k · v0

n01 + n02
(3.51)

corresponding to the appearance of a conjugate complex root

(k · v0)2 >
n01 + n02

n01n02

[
n01(k · vA1)2 + n02(k · vA2)2

]
(3.52)

The Kelvin-Helmholtz instability thus occurs for a sufficiently large streaming veloc-
ity in region 1. It is the relative streaming between the two plasmas on both sides of
the thin boundary which drives the mode as a surface wave. Its frequency is that of a
weighted beam mode with the geometric average of the two densities as weighting coef-
ficient. Actually, the instability condition can be easiest satisfied for waves propagating
perpendicular to the unperturbed magnetic field. In the linear regime of the instability
the rigidity of the magnetic field provides the dominant restoring force, which sets a
threshold on the instability.

Geomagnetic Pulsations

The Kelvin-Helmholtz instability is of considerable interest for the excitation of the ge-
omagnetic pulsations discussed in Sec. 9.7 of our companion book. It is responsible for
the generation of surface wave modes at the magnetopause boundary by the fast tail-
ward magnetosheath plasma flow along the magnetopause. The instability is restricted
to the boundary, but it is not localized to a certain position at the boundary. Rather
the wave is convected tailward with the flow while its amplitude grows. Hence, large
amplitudes and consequently nonlinear behavior are expected only at the flanks of the
magnetopause, while at the dayside magnetopause the amplitude of the surface wave is
still small. The surface undulation caused by it may then trigger resonances in the mag-
netosphere which appear as pulsations. It is clear from the Kelvin-Helmholtz instability
condition that such pulsations will arise predominantly during cases of fast solar wind
or magnetosheath flows, and the faster the flow the shorter is the excited wavelength.
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Fig. 3.6. Convective growth of magnetopause Kelvin-Helmholtz waves.

For the excitation of geomagnetic pulsations it is of interest to investigate the po-
larization of the Kelvin-Helmholtz vortices inside the magnetosphere. Let us assume
that the wavenumber has only a very small component in thez direction. Then, from
the condition of incompressibility,∇ · δx ≈ 0, we find that−kδxy + ikxδxx = 0.
Hence, we obtain for the ratio

δxy

δxx
=

ikx

(k2
x + k2

z)1/2
(3.53)

which shows that the Kelvin-Helmholtz waves are elliptically polarized in just the way
as used for the explanation of geomagnetic pulsations in Sec. 9.7 of our companion
book. Figure 3.6 shows a schematic of a Kelvin-Helmholtz wave flowing downtail and
growing convectively during its propagation.

Kinetic Alfv én Waves

The dispersion relation of the Kelvin-Helmholtz instability, Eq. (3.50), contains the dis-
persion relations of the Alfv́en waves on both sides of the transition layer. If we assume
that the transition layer is narrow, but that the variations along the boundary become
comparable to the ion gyroradius, finite Larmor radius effects become important. The
Alfv én wave will then be replaced by the oblique kinetic Alfvén wave (not by the shear
Alfv én wave, sinceβ > me/mi at the magnetopause; see Fig. 10.12 of our companion
volume). The condition of instability for kinetic Kelvin-Helmholtz instability is still of
the form of Eq. (3.52), but now with the kinetic Alfvén velocity from Eq. (I.10.179)
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vka‖ = vA

[
1 + k2

⊥r2
gi

(
3
4

+
Te

Ti

)]1/2

vka⊥ =
k‖vA

k⊥

[
1 + k2

⊥r2
gi

(
3
4

+
Te

Ti

)]1/2 (3.54)

The field-aligned velocity of these waves is larger than that of the normal Alfvén waves,
but the velocity perpendicular to the field along the surface is reduced due to the small
ratiok‖/k⊥. Correspondingly the kinetic surface wave excited by the Kelvin-Helmholtz
instability at the magnetopause not only propagates in the direction perpendicular toB0,
but its speed is slow in this direction so that the instability has longer time to evolve. In
addition, because for the kinetic Alfvén wave the perpendicular wavenumber is large
the Doppler effect on the frequency in medium 1 is dominated byk⊥. Thus it is large for
perpendicular convective flow so that the instability condition can be satisfied more eas-
ily than in the ordinary Alfv́en case and the growth rate of the kinetic Kelvin-Helmholtz
instability will be larger than that of the ordinary instability.

Nonlinear Evolution

Application of the theory as given here to geomagnetic pulsations must be taken with
care. Some of the conditions set for our derivation of the Kelvin-Helmholtz instabil-
ity are barely satisfied at the magnetopause. For instance, the magnetopause plasma
is clearly not incompressible. Inclusion of compressibility complicates the problem,
but does not suppress the instability entirely. However, the transition from the magne-
tosheath to the magnetosphere has been found not to be steep. A broad boundary layer
and plasma mantle is covering the magnetopause from its inner side. Here tangen-
tial plasma flows have been frequently found, and density gradients are rather gradual.
Hence, one must include gradual transitions in a calculation of the Kelvin-Helmholtz
instability.

Moreover, the magnetic field is not ideally tangential to the magnetopause. Nor-
mal components caused by reconnection are the rule and violate the planar geometry
assumption. Finally, dissipation must be included as well as the difference between
electron and ion dynamics, because the ion scales are comparable with the width of the
transition layer. Both have been neglected so far.

All these effects can be considered only in a more elaborated theory, covering
the nonlinear evolution of the instability. Then the Kelvin-Helmholtz instability also
contributes to plasma and momentum transport across the magnetopause by mixing
of the two regions. When kinetic Alfv́en waves replace the magnetohydrodynamic
wave mode at the magnetopause, parallel electric fields and field-aligned currents are
produced by the Kelvin-Helmholtz instability at the magnetopause, too.
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Auroral Kelvin-Helmholtz Instability

The Kelvin-Helmholtz instability may also occur in the upper auroral ionosphere. Here
strong shear flows have been observed near auroral arcs or bands. These shear flows are
accompanied by large perpendicular electric fields, which necessarily lead toE × B
flows of the upper ionospheric plasma. These flows are to good approximation hori-
zontal in the nearly perpendicular auroral zone background magnetic field. Such shear
flows, when exceeding the instability condition for Kelvin-Helmholtz instability, will
contribute to folding of the auroral structures. Here the incompressible approximation
is quite reasonable because of the strong background magnetic field, but the existence
of field-aligned currents and the narrowness of the structures suggest that kinetic Alfvén
wave are involved here. In this region the waves propagate in the shear kinetic Alfvén
mode (see Sec. 10.6 of our companion book).

However, let us neglect all these effects, and just assume a negatively charged layer
of auroral electrons with a width2d in the horizontalx direction, but of infinite extent
along the horizontaly and the verticalz axis. The magnetic field is, of course, aligned
with the vertical axis. Such a layer will cause strong shear flow along they axis due to
the polarization electric field directed toward the layer, parallel and antiparallel to thex
axis. Because the flow is caused by the electron charges and thus by a charge separation
field, this problem is fully electrostatic and can, outside of the charges, be described by
Laplace’s equation

∇2δφ = 0 (3.55)

for the electric potential field disturbance,δφ. This disturbance is caused by the narrow
charge layer, which we consider as a charged surface. A wavelike disturbance of the
potential can be assumed as a surface undulation in the same way as for the conventional
Kelvin-Helmholtz instability, this time for the potential field

δφ = δφ0 exp[±kx + i(ky − ωt)] (3.56)

The layer is uniform along the field, i.e., along thez axis, the wave amplitude decays in
the±x direction, and the wave propagates along they axis. The solution of Laplace’s
equation in regions 1 and 2 and inside the layer,d, can be written as




δφ1(x, y)
δφd(x, y)
δφ2(x, y)


 =




Aekx

Bekx + Ce−kx

De−kx


 exp[i(ky − ωt)] (3.57)

The constants must be determined from the boundary conditions atx = ±d. These
conditions are the continuity of the tangential electric field,δEy = −∂(δφ)/∂y, and the
requirement that the jump in the normal electric field component,δEx, is the surface
charge. The latter must be determined from the continuity equation for the electrons
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under the condition that the flow is caused as a

δv = δE×B0/B2
0 (3.58)

motion in the undisturbed magnetic field. Clearly, the flow is incompressible and the
linearized continuity equation becomes

∂δn

∂t
+ (v0·)∇δn = −(δv·)∇n0 (3.59)

The perturbation of the electron density at the boundaries,x = ±d, is calculated from
the last two equations

δn

n0

∣∣∣∣
±d

=
δφ(±d)

B0(ω/k ∓ v0)
∂ ln n0

∂x

∣∣∣∣
±d

(3.60)

For sharp boundaries the derivative ofln n0 atx = ±d is discontinuous

∂ ln n0

∂x

∣∣∣∣
±d

= δ(x + d)− δ(x− d) (3.61)

When we use this expression and multiply by the elementary charge we obtain the
surface charge,σs, which is the source of the electric field

σs(±d) = ±en0

B0

δφ

ω/k − v0
(3.62)

The continuity ofδEy yields

A = B exp(2kd) + C

D = B + C exp(2kd)
(3.63)

The discontinuity of the normal electric field component at the two surfaces gives

A + B exp(2kd)− C = σs(+d)/ε0

−D −B + C exp(2kd) = σs(−d)/ε0
(3.64)

Combining the algebraic equations for the four coefficients and using the expressions
for the surface charge densities we arrive at the dispersion relation

ω2 =
ω4

pe

4ω2
ge

[(
1− 2ωgekv0

ω2
pe

)2

− exp(−4kd)

]
(3.65)

which describes the evolution of Kelvin-Helmholtz waves in the auroral ionosphere un-
der collisionless conditions, but in the presence of strong shear flows. The requirement
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for instability is that the exponential term in Eq. (3.65) is larger than the first term on
the right-hand side. This yields an implicit equation for the unstable wavenumbers

kd < ln
(

1− 2ωgekv0

ω2
pe

)−1/2

(3.66)

The unstable wave grows in the direction of the shear flow. It has the growth rate

γakh =
ω2

pe

2ωge

[
exp(−4kd)−

(
1− 2ωgekv0

ω2
pe

)2
]1/2

(3.67)

For a sheet of auroral electrons the rotation of the vortices in the layer produced by the
instability will be counterclockwise when looking against the magnetic field from the
northern hemisphere upward into the aurora. The direction of the vortices agrees with
the sense of gyration of the electrons.

3.4. Firehose Instability

In Chap. 9 of our companion book,Basic Space Plasma Physics, we found that a plasma
can support low-frequency large-scale Alfvén and magnetosonic waves far below the
electron- and ion-cyclotron frequencies, but did not specify which instabilities can ex-
cite these wave modes. One mechanism of generating surface Alfvén waves has been
identified in the Kelvin-Helmholtz instability. We have also demonstrated that these
waves may be further amplified by global resonances in closed magnetic configurations
as the magnetosphere to become bulk modes (cf. Sec. 9.7 of our companion book). An-
other instability which excites bulk Alfv́en waves is thefirehose instability. It can arise

F
R 

B0

F
B

Fp⊥

R

Fig. 3.7. Mechanism of the firehose instability.
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in a plasma when the plasma pressure becomes anisotropic. Then Eq. (I.7.21) from the
companion book

P = p⊥I + (p‖ − p⊥)
BB
B2

(3.68)

holds. Under certain conditions a magnetic flux tube containing an anisotropic plasma
can be stimulated to perform global transverse oscillations similar to the oscillations of
a string brushed by a bow or of a firehose.

Mechanism

The physical mechanism of the firehose instability can be understood as follows. Imag-
ine a magnetic flux tube and let the plasma flow along the magnetic field at average
parallel velocity〈v‖〉. As shown in Fig. 3.7, whenever a flux tube is slightly bent, the
plasma will exert a centrifugal force,FR = min0v

2
th‖/R, on the flux tube with curva-

ture radius,R.
The centrifugal force is directed outward and tends to increase the amplitude of the

initial bending. In the absence of any restoring forces the flux tube would immediately
kink. However, the thermal pressure force in the plane perpendicular to the flux tube,
Fp⊥, as well as the magnetic stresses of the flux tube,FB , resist the centrifugal force.
Hence, instability sets in only for sufficiently large centrifugal forces or average parallel
plasma velocities sufficiently large to overcome the restoring effects. Requiring force
equilibrium in the bending zone implies

min0v
2
th‖

R
=

p⊥
R

+
B2

0

µ0R
(3.69)

The terms on the left-hand side of this expression yield the parallel pressure forcep‖/R.
Thus the condition for firehose instability is

p‖ > p⊥ + B2
0/µ0 (3.70)

Growth Rate

To derive the growth rate, we need the ideal magnetohydrodynamic equations (I.7.41)
and (I.7.45), which forρE = 0 and together with Eq. (I.7.60) and the frozen-in condi-
tion (I.7.54), all from the companion book, can be written as

∂n

∂t
+∇ · (nv) = 0

∂(nmv)
∂t

+∇ · (nmvv) = −∇ · P− 1
µ0

B× (∇×B) (3.71)

∂B
∂t

= ∇× (v ×B)
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together with the anisotropic equations of state from Eqs. (I.7.27) and (I.7.30), again
from our companion book

d

dt

p⊥
nB

= 0

d

dt

p‖p2
⊥

n5
= 0

(3.72)

Linearizing around an equilibrium state,n0, p0⊥, p0‖,B0,v0 = 0, and Fourier trans-
forming, one obtains the dispersion relation

ω2 = 1
2k2v2

A

[
A1 ± (A2

2 + A2
3)

1/2
]

(3.73)

with

A1 = 1
2β0⊥(1 + sin2 θ) + β0‖ cos2 θ + 1

A2 = 1
2β0⊥(1 + sin2 θ)− 2β0‖ cos2 θ + 1 (3.74)

A3 = β0⊥ sin θ cos θ

whereθ is the angle betweenk andB0, andβ⊥0 = 2µ0p⊥0/B2
0 andβ0‖ = 2µ0p0‖/B2

0

are the parallel and perpendicular plasma beta parameters. When dividing both sides of
Eq. (3.73) byk2, the right-hand side becomes independent ofk. Hence, the waves are
non-dispersive. It is easy to confirm that for propagation in the perpendicular direction,
θ = 90◦, no instability can arise. For parallel propagation,θ = 0◦, we haveA3 = 0,
and there are two solutions. One is purely real

ω2 = 3k2
‖p0‖/n0mi (3.75)

and the stable parallel-propagating ion-acoustic wave. The other has a phase velocity

ω2

k2
‖

= 1
2v2

A(β0⊥ + 2− β0‖) (3.76)

yielding instability under the condition (3.70), or in terms of parallel and perpendicular
plasma beta

β0‖ > β0⊥ + 2 (3.77)

This is the condition for firehose instability which we derived above in Eq. (3.70) from
simple physical considerations. Its growth rate is

γfh =
k‖vA√

2
(β0‖ − β0⊥ − 2)1/2 (3.78)
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Fig. 3.8. Dependence of the firehose growth rate on wavenumber.

It is not difficult to demonstrate from the dispersion relation in Eq. (3.73) that firehose
instability is also possible for oblique propagation as long as a maximum angle,θfh,max,
is not exceeded. This angle is defined as the solution of

1 + sin2 θfh,max =
[
1− 3

β‖
β2
⊥

(2 + β⊥ − β‖)
]−1

(3.79)

The firehose instability is a non-oscillating, purely growing mode. When the parallel
thermal pressure in the magnetohydrodynamic fluid is sufficiently high, the magnetic
flux tubes become unstable for transverse oscillations of the magnetic field and spon-
taneously excite parallel propagating Alfvén waves. In the magnetohydrodynamic ap-
proximation, where these waves are non-dispersive, the wave has no real frequency and
is a very-low frequency wave in the lowest part of the Alfvén branch.

The firehose instability is a very strong instability, but it requires large parallel
pressure orβ‖ > 2, which implies that the instability is possible only in high-beta or
low magnetic field plasmas as, for instance, in the solar wind. In the magnetosphere
the firehose instability can arise only in the center of the tail plasma sheet, where the
magnetic field is weak. This region may therefore become spontaneously excited to
release fast growing Alfv́en waves with amplitudes which are large compared to the
neutral sheet magnetic field strength. Once excited the oscillation will propagate as an
Alfv én wave along the magnetic field lines into the near-Earth magnetosphere.

Kinetic Approach

In our derivation the firehose instability turned out to be a purely growing mode with no
real frequency. This is, of course, a consequence of the fluid approach, which neglects
all particle effects. A more precise calculation must start from the general dispersion
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relation for electromagnetic waves in the very-low frequency limit, using the magne-
tized dielectric tensor in Eq. (I.10.147). The firehose mode is a solution of the left-hand
dispersion relation given in Eq. (I.10.156), including temperature anisotropy. If this
relation is expanded up to second order ink‖vths/ωgs, i.e., in the ratio of gyroradius to
wavelength, the wave frequency retains a non-vanishing real part of the frequency

ωfh = γfhk‖/k0 (3.80)

whereγfh is the zero-order growth rate of the purely growing firehose mode obtained
above from the fluid approach, and the wavenumberk0 describes a short wavelength
cut-off of the corrected growth rate

γfhc = γfh(1− k2
‖/k2

0)
1/2 (3.81)

which becomes effective when the wavelength of the firehose mode approaches the ion
gyroradius. This cut-off wavenumber is, for largeβ‖, given by

k2
0

4
=

(
γfh

k‖

)2
(

1 +
∑

s

ω2
ps

ω2
gs

)2 {∑
s

ω2
ps

ω3
gs

[(
γfh

k‖

)2

+
(2Ts⊥ − 3Ts‖)

ms

]}−2

(3.82)

The maximum growth rate is found at a wavenumberk‖ = k0/
√

2, yielding for the
maximum firehose growth rate

γfh,max = γfh

(
k‖=k0/

√
2
)

/
√

2 (3.83)

The oscillation is caused by the kinetic finite-gyroradius effect on the instability. Figure
3.8 shows the dependence of the corrected growth rate on wavenumber. The mode
disappears atk‖ > k0, above which it becomes heavily damped.

3.5. Mirror Instability

An instability complementary to the firehose instability is the so-calledmirror instabil-
ity. It evolves at nearly perpendicular propagation of the waves. Though this instability
is a macroinstability, affecting a large plasma volume and manifesting its effects on the
low-frequency scale in the macroscopic plasma parameters, it cannot be treated easily
in a magnetohydrodynamic model. The reason for this difficulty is that in this instability
the single particle motion along and perpendicular to the magnetic field must be taken
into account, which is not contained in the fluid picture of the plasma. One therefore
uses kinetic methods in the very-low frequency limit.
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Dispersion Relation

The starting point is the kinetic dispersion relation of magnetized plasma waves in Eq.
(I.10.147), which includes the temperature anisotropy,As, from Eq. (I.10.149), both
given in the companion book. For extremely low frequency modes,ω ¿ ωgi, with
very long wavelengths,krgi ¿ 1, these equations simplify. Because there is no bulk
motion of the particles, the tensor componentεs2 vanishes, and the dispersion relation
with k = k‖ê‖ + k⊥êx splits into

N2
‖ − εs1 = 0

(N2
‖ + N2

⊥)−
(

εs1 − εs0 +
ε2s5
εs3

)
= 0

(3.84)

The first equation describes incompressible Alfvén modes, including the anisotropy
effect and is thus the kinetic equivalent to the dispersion equation of the firehose mode.
We note without proof that it can be brought into the form

ω2 = k2
‖v

2
A

[
1− 1

2

∑
s

(βs‖ − βs⊥)

]
(3.85)

which is the generalization of the firehose dispersion relation in Eq. (3.76) to two parti-
cle species. As before, instability sets in when the right-hand side is negative.

The second dispersion relation describes compressible slow magnetosonic modes.
In the low-frequency domain forεs3 À 1 it can be simplified. In this case the electrons
have sufficient time during one oscillation to extinguish the ion-acoustic parallel electric
wave field which is still coupled into the dispersion relation by the second term in the
brackets. Dropping this term we arrive at

(N2
‖ + N2

⊥)− (εs1 − εs0) = (N2
‖ + N2

⊥)− εyy = 0 (3.86)

as the dispersion relation for compressible modes. In explicit form and definingζs =
ω/k‖vths‖ it reads

εyy =
∑

s

{
ω2

ps

ω2
gs

− N2
‖

2

[
βs⊥ − βs‖ + βs⊥

k2
⊥

k2
‖

(
2 +

βs⊥
βs‖

Z ′(ζs)
)]}

(3.87)

Taking the very-low frequency limit and assuming that the phase velocities are small,
ω/k‖vthi ∼ ω/kvA ¿ 1, we can simplify this relation even more by using the asymp-
totic large argument expansion for the plasma dispersion function

i
(π

2

)1/2 β2
i⊥

βi‖

ω

k‖vthi‖
= 1 +

∑
s

(
βs⊥ − β2

s⊥
βs‖

)
+

k2
‖

k2
⊥

[
1 + 1

2

∑
s

(βs⊥ − βs‖)

]

(3.88)
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Fig. 3.9. Satellite measurements across a mirror-unstable region.

Only the ion component contributes to the imaginary part at these frequencies. The
frequency of this mode is purely imaginary. It can be negative, in which case any
mirror mode wave injected into the plasma will be quickly damped and will be unable
to propagate. But if the bracketed term is negative, damping turns into growth.

Growth Rate

The mirror mode grows if the free energy of the pressure anisotropy is sufficiently large
and must be dissipated. A change in the sign ofω can be achieved in two ways. When
we assume that the waves propagate about parallel to the magnetic field,k2

‖ À k2
⊥, the

second term in the brackets dominates, and the instability condition is
∑

s

βs‖ > 2 +
∑

s

βs⊥ (3.89)

which is the condition for firehose instability in Eq. (3.77). We have thus found that the
firehose mode can occur for compressible nearly-parallel propagating Alfvén waves,
too. This shows that any kind of Alfv́en waves will under the same condition of pressure
anisotropy become unstable against firehose instability.
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Fig. 3.10. Magnetic field and plasma density in mirror mode waves.

In the opposite case, when the wave propagates nearly perpendicular to the mag-
netic field, the first term in the brackets dominates, and the condition for instability
excludes the firehose mode and reads

∑
s

β2
s⊥

βs‖
> 1 +

∑
s

βs⊥ (3.90)

If this condition is satisfied, mirror instability sets on in an anisotropic plasma. Indeed,
the condition for mirror instability cannot be satisfied at the same time as the condition
for firehose instability. The two instabilities are mutually exclusive.

Both particle species contribute to the condition of instability, but the component
with the strongest anisotropy in the perpendicular direction contributes most. On the
other hand, the growth rate is determined by the ion anisotropy and is greater for greater
parallel ion energies. This can be seen from the expression for the growth rate of the
mirror instability

γmi =

√
2
π

βi‖

β2
i⊥

[∑
s

βs⊥

(
βs⊥
βs‖

− 1
)
− 1

]
k‖vthi‖ (3.91)

The mirror mode propagates perpendicular to the magnetic field. For growth it requires
that the perpendicular pressure is larger than the parallel pressure. The physical mech-
anism behind it is that the particles become trapped in magnetic mirror configurations
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Fig. 3.11. Plasma beta values and mirror criterion in the magnetosheath.

whenever under the action of large perpendicular pressure the magnetic field locally
inflates over one wavelength. In this bottle the particles perform a mirror motion be-
tween the knots of the wave. This is shown in Fig. 3.9. Particles stream into the mirror
during instability. The whole region consists of magnetic mirrors, which when crossed
by a spacecraft are recorded as pulsations or oscillations of the magnetic field and out-
of-phase oscillations of the plasma density. Figure 3.10 shows a magnetic field and
particle density plot of such a configuration.

Magnetosheath Observations

The mirror mode is a compressible slow mode. It is observed in the Earth’s dayside
magnetosheath, where the necessary anisotropy can develop. The shocked solar wind,
on its path from the bow shock to the magnetopause, is adiabatically heated in the
perpendicular direction, while at the same time field-aligned outflow toward the flanks
of the magnetopause cools the plasma adiabatically in the parallel direction. These
effects are shown on the left-hand side of Fig. 3.11. The main effect is parallel cooling,
leading to pressure anisotropy of the plasma which increases toward the magnetopause.

In the right-hand side panel of Fig. 3.11 measurements of the left-hand side of the
mirror instability criterion in Eq. (3.90) are plotted againstβ⊥. The dashed horizontal
line is the marginally stable case, when Eq. (3.90) holds with the equal sign. Obviously
the magnetosheath is marginally mirror-unstable for highβi⊥, while the mirror insta-
bility cannot develop for lowβi⊥. Magnetosheath mirror modes are typically excited
closer to the magnetopause. The main stabilizing effect is competition of the mirror
mode with other kinetic instabilities which arise in anisotropic plasmas. In particular,
the electromagnetic ion-cyclotron mode, which will be discussed in Sec. 5.2, consumes
the free energy available in the anisotropy before the mirror mode can grow.
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3.6. Flux Tube Instabilities

The Kelvin-Helmholtz, the firehose, and the mirror instability are instabilities which are
magnetohydrodynamic in nature. We have discussed them in a different context because
they do not push the magnetohydrodynamic viewpoint into the foreground. There is a
large number of instabilities which deserve the name magnetohydrodynamic with more
right. These modes evolve in laboratory magnetohydrodynamic devices and are related
to resistive effects and plasma confinement. Few of these modes have relevance to space
plasma physics. In the present section we are going to briefly discuss the foundations of
their treatment and in the next section some flux tube instabilities of interest for space
research will be analysed.

Magnetohydrodynamic stability depends on the inhomogeneity of the plasma, be-
cause free energy in ideal magnetohydrodynamics can only be stored in inhomogeneous
configurations. Good examples of such unstable situations aresolar flareswhich are
believed to evolve in so-called active magnetic configurations, which evolve dynami-
cally and possibly explosively. The instability of these magnetic configurations leads
to violent energy releases and causes the particle acceleration, matter ejection, optical
flashes, and the various radiation processes observed in the optical, radio, x- andγ-ray
energy ranges duringsolar flares. Another instability of magnetohydrodynamic nature
is the reconnectionprocess, first introduced in Sec. 5.1 of our companion book. To
study these instabilities, it is convenient to formulate an energy principle. Such a prin-
ciple is a global measure of the tendency of a magnetohydrodynamic configuration to
undergo instability. In short, when the total energy variation turns out to be negative,
one can expect the magnetohydrodynamic configuration to become unstable.

Energy Principle

Let us again introduce, as we have done in connection with the Kelvin-Helmholtz in-
stability, the displacement vector,δx. The general form of the non-resistive linearized
magnetohydrodynamic equations, except for the momentum equation, and integrated
once with respect to time is

δn = −∇ · (n0δx)
δp = −δx · ∇p0 − γp0∇ · δx (3.92)

δB = ∇× (δx×B0)

Inserting these forms into the linearized momentum equation in Eq. (3.71), expressed
in terms of the linear displacement gives

n0mid
2δx/dt2 = δF(δx) (3.93)
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whereδF is defined as

µ0δF = −B0 × (∇× δB)− δB× (∇×B0) + µ0∇(δx · ∇p0 + γp0∇ · δx) (3.94)

The zero-order quantities are allowed to change in space. Since the above equations are
all linear, it is convenient to eliminate the time dependence by Fourier transformation
in time, yielding

n0miω
2δx = −δF(δx) (3.95)

When we multiply this equation by the complex conjugate of the displacement vector,
δx∗, and integrate over all space, we obtain

miω
2

∫
n0 |δx|2 d3x = −

∫
δx∗ · δF(δx)d3x (3.96)

Subtract now the complex conjugate

miω
∗2

∫
n0 |δy|2 d3y = −

∫
δy∗ · δF(δy)d3y (3.97)

from this equation. Clearly, the integrals over all space over different dummy variables
are the same. Thus one finds that the frequency is either real or purely imaginary,
ω2 = ω∗2, which proves our previous finding that the Kelvin-Helmholtz, the firehose
and the mirror instability had only purely growing solutions. This is a general property
of the magnetohydrodynamic equations.

To derive the energy principle, we multiply Eq. (3.93) by the displacement veloc-
ity, δv = dδx/dt, and integrate over space

∫
dδx
dt

·
[
δF(δx)−min0(δx)

d2δx
dt2

]
d3x = 0 (3.98)

Becausen0(δx) and δF(δx) do not explicitly depend on time, this equation can be
trivially integrated over time,t. We introduce the two quantities

∆W (δx, δx) = − 1
2

∫
δx · δF(δx)

∆U(δx, δx) = 1
2mi

∫
n0(δx) |δx|2 d3x

(3.99)

and can write the integrated equation as

∆W (δx, δx) + ∆U

(
dδx
dt

,
dδx
dt

)
= const (3.100)

The constant on the right-hand side is the total displacement energy. Since this energy
is unchanged and∆U ≥ 0, one immediately recognizes that the disturbance energy,
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∆W , must be positive definite in order to guarantee the stability of the system, because
only then the mode cannot grow over the limitδU = 0. As a consequence of this
conclusion, we find in the opposite case that instability requires that

∆W (δx, δx) < 0 (3.101)

This is theenergy principlefor magnetohydrodynamic instability. The proof of its ne-
cessity is a little more involved and can be found in the literature cited in the suggestions
for further reading at the end of this chapter.

Energy Contributions

The energy variation,∆W , contains three contributions, the first is the plasma contri-
bution,∆WP , provided by the integral over the plasma volume. The second,∆WA,
comes from the surface integral over the plasma surface. The third is the vacuum con-
tribution, ∆WV , which is the integral over all the outer space. This last contribution
is

∆WV =
1

2µ0

∫

>

|δBV |2 d3x (3.102)

with the integration over the outer volume of the plasma. Here one has to prescribe
boundary conditions. These conditions are complicated. They are some form of the
boundary conditions discussed in Chap. 8 of our companion book,Basic Space Plasma
Physics, when one of the regions is assumed to be a vacuum. In space plasma physics
when the plasma is assumed to be infinitely extended, the boundary is at infinity, and
the vacuum term can be dropped. But for finite systems, as for instance solar active
regions, it must be kept and introduces severe complications.

Similar arguments apply to the plasma surface contribution. It can be written as

∆WA = 1
2

∮

A

[
∇

(
p0 +

B2
0

2µ0

)]

A

· d(δF) |n · δx|2 (3.103)

wheren is the outer normal of the plasma volume and integration is over its surface.
As in Chap. 8 of our companion book, the bracketed quantity here is the jump at the
surface. When surface currents are absent in equilibrium pressure equilibrium requires
that this jump vanishes, and the integral is zero. This is the general case of an extended
plasma volume.

The most important contribution to the energy variation comes from∆WP

∆WP = 1
2

∫

P

d3x
[
µ−1

0 |δB|2 + γp0 |∇ · δx|2

+δx⊥ · ∇p0∇ · δx∗⊥ + δx∗ · (δB× j0)] (3.104)
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where the perpendicular and parallel direction refer to the equilibrium magnetic field.
Introducing the unit vector̂e‖, the right-hand side of this formula can be written as

∆WP = 1
2

∫

P

d3x
{

µ−1
0 |δB⊥|2 + µ−1

0 |δB‖ − (δx⊥ · ∇p0)ê‖/B0|2 + γp0 |∇ · δx|2

−(j0‖ · ê‖)δB · (δx∗⊥ × ê‖)− 2(δx⊥ · ∇p0) [(ê‖ · ∇ê‖) · δx∗]} (3.105)

For instability to set in, the positive definite terms in this expression must be sufficiently
small. The last of the positive terms can be eliminated by demanding that compress-
ibility is small compared with the other terms. Then∇ · δx ≈ 0 can be neglected.
Moreover,|δB|2 ' |B0 · ∇δx|2 is small and can be dropped whenever the radial gra-
dients ofδx are much larger than the parallel variation of the displacement. This is true
when field line bending can be neglected. Hence, one observes that instability occurs
for large field-aligned current flow and for large perpendicular density gradients. The
second case is the case of interchange modes, the first is the case of kink modes.

Pinch Instability

There are three instabilities which are purely magnetohydrodynamic instabilities. All
of them are instabilities which can develop in a thin magnetic flux tube carrying a
longitudinal current. These instabilities are thus caused by thej0-term in Eq. (3.105).
These are the pinch, kink, and helical instabilities.

The physical picture of thepinch instabilityis that a field-aligned current in a flux
tube of radiusr produces its own azimuthal field,Bθ(r) ∝ 1/r, around the isolated
current carrying flux tube. A slight distortion of the homogeneity of the flux tube along
its direction, as for instance a minor decrease in its radius and cross-section, will im-
mediately cause an increase in this azimuthal field due to its1/r-dependence on the
flux tube radius. This effect is self-amplifying and thus an instability. The final state
of this instability is that the current becomes pinched-off and is ultimately disrupted.
Figure 3.12 shows the action of the pinch instability. The condition for instability of the
pinch mode can be derived for a cylindrical straight flux tube assuming conservation of
magnetic flux and current. It reads (without derivation)

B2
0θ ≈

(
µ0I0

2πr

)2

> 2|B0‖|2 (3.106)

HereI0 is the current in the flux tube. Only strong currents can cause the pinch to de-
velop. In the magnetosphere the pinch instability is probably of no importance because
of the strong background magnetic field. But in solar coronal active regions extremely
strong field-aligned currents can evolve, which may become pinch-unstable, disrupt the
current, and change the magnetic field configuration.
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Fig. 3.12. Pinch, kink and helical flux tube instability.

Kink Instability

The second instability, thekink instability (see Fig. 3.12), reacts to a bending of the
magnetic field lines. Its mechanism is very similar to that of the pinch mode, but in
this case the curvature of the field is more important, and the field contained in the flux
tube simply kinks locally under the action of the field-aligned current. This instability
is also not very important in the magnetosphere, because the curvature of the field lines
is weak and the field-aligned currents are faint and not able to cause a kink in the
field. However during reconnection events kink instabilities may work in the vicinity
of the neutral point, where the field is weak and the currents may be strong. There
strong bending of the magnetic field lines in narrow flux tubes may be caused by kink
instability.

The condition for instability of a narrow cylindrical flux tube with radius,a, and
length,L À a, can be obtained from the energy principle (again without derivation)

ln(L/a) > |B0‖|2/B2
0θ (3.107)

whereB0θ is the same as in Eq. (3.106). Since the ambient parallel magnetic field
component is very large, this condition requires very thin tubes to yield instability.
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Field-aligned currents in the inner auroral magnetosphere are unable to excite it, but
again in the solar corona or in the reconnection region of the tail kinking is not excluded.

Helical Instability

Thehelical instability(see Fig. 3.12) is very common in the solar corona. Its instability
condition is much lower than that of the other two so it will develop earlier if only a
strong enough field-aligned current is flowing. Its effect is to transform a thin stretched
magnetic flux tube into a spiral under the action of the self-magnetic effect of the field-
aligned current. Flux tubes turn into helixes if it sets on. Such helical flux tubes have
been observed in the x-ray light detected from the solar corona and emitted from huge
solar loops which have a twisted shape. The helical mode is unstable for

L/a > 2π|B0‖|/B0θ (3.108)

and is much easier to satisfy than the above two conditions. The latter condition favors
long flux tubes to become helically unstable. Remembering the definition ofB0θ this
condition can be written

µ0I0L > 4π2a2|B0‖| = 4πΦ (3.109)

whereΦ is the constant magnetic flux inside the flux tube. Since the field-aligned
current strength inside the flux tube is constant, too, it is impossible to estimate at what
position of the flux tube helical instability may set in.

As an example for this type of instabilities, let us outline the derivation of the
dispersion equation for the helical mode. Assuming the magnetic field inside the tube
to be uniform, we find from Eq. (3.46) that the Laplace equation governs the evolution
of the total pressure disturbance

∇2δptot = 0 (3.110)

whereptot is the total internal pressure. The displacement vector is given by the same
expression as for the Kelvin-Helmholtz instability

δx =
∇δptot

min0(ω2 − k2v2
A)

(3.111)

wherek is the azimuthal wave vector. In the region outside the flux tube the magnetic
disturbance is a potential field,δBex = −∇ψ, with

∇2ψ = 0 (3.112)
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because∇ × δBex = 0. These equations must be completed by boundary conditions
which are relatively complex. One must impose pressure balance

ptot,in = (B0ex + δBex)2/2µ0 (3.113)

at the boundaryx = x0 + δxnn, wheren is the outer normal to the surface of the
flux tube, andδxn is the normal displacement. One must also impose continuity of the
tangential electric field

δEt = −(δv ×B0ex)t (3.114)

Linearizing the pressure condition for small displacements, one obtains

2µ0δptot = 2B0ex · δBex + δxn

[
∂B2

0ex/∂n
]

(3.115)

where the brackets again symbolize the jump. In cylindrical geometry this becomes

2µ0ptot = 2B0ex · δBex + δxn

(
∂B2

0ex/∂n
)

(3.116)

The condition on the electric field is rewritten using Faraday’s law

δBnex = n · ∇ × (δx×B0ex) (3.117)

We can solve these equations in a cylindrical geometry, taking into account the bound-
ary conditions to determine the free constants when solving for the inner and outer
regions. This procedure is standard and similar to the case of the Kelvin-Helmholtz in-
stability, but complicated by the inhomogeneity and cylindric geometry of the problem.
The dispersion relation ultimately obtained is

µ0min0ω
2 = k2B2

0 +
(

kB0‖ex +
lB0θex

a

)2

− lB2
0θex

a2
(3.118)

For the mode withl = 1 we find the unstable helical perturbation just under the condi-
tion (3.108). This is the lowest wavenumber mode. Other modes with higher wavenum-
bers may also exist but have higher thresholds as is immediately clear because to twist
the field more requires more energy and thus stronger currents.

In the magnetosphere the helical instability does not seem to occur. Since the
condition for instability is independent of the coordinate along the flux tube, we can
discuss numbers for ionospheric altitudes. At auroral latitudes, where the strongest
field-aligned currents are located, the magnetic field strength is|B0‖| ≈ 4 · 10−5 T.
The length of a flux tube in a dipole field is about twice the equatorial distance from
the center of the Earth,L = 2 LERE , and withLE ≈ 6 for the auroral zone, we get
L ≈ 8 · 107 m. Using Eq. (3.109), we estimate that the field-aligned current density,
j0 = I0/πa2, must be larger than 5µA/m2 for the onset of the helical instability. This
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value is about the same as the density of the strongest field-aligned current of cyclindri-
cal geometry observed, i.e., the upward current connected to the head of the westward
traveling surge (see Sec. 5.6 of our companion book). Hence, that current tube is on
the edge of instability. Possibly the helical instability limits the current to this upper
value. However, there is no unambiguous observational evidence for the presence of
the helical instability in the auroral zone. The probable reason for this is that in the
magnetosphere a flux tube is surrounded by strong background field lines which, when
the tube becomes distorted, start exerting strong forces onto the flux tube which coun-
teract instability.

Flux tubes at the magnetopause have typical sizes ofa ≈ 103 km, fields of 100 nT,
andL ≈ 20 RE . This suggests that field-aligned currents ofI0 > 3 ·104 A will become
unstable against the helical instability. If such currents exist, instability should develop
at the outermost flux tube contacting the magnetosheath flow and should mix into the
Kelvin-Helmholtz instability. Since the flow stabilizes the mode, it should probably
evolve only in the vicinity of the stagnation point, where the flow velocity is low.

The helical instability also develops in the solar corona. Foot point field strengths
are of the order of 0.1 T, flux tube lengths between105 km and107 km, and foot point
diameters of the order of104 km. Hence, currents of the order of1011 A will force the
flux tube to twist. Since highly twisted flux tubes have frequently been observed, the
currents in the solar corona may be strong enough to exceed the limit of stability.

Concluding Remarks

The overview of macroinstabilities given in the present chapter is not exhaustive. It
merely provides a guide to the basic ideas. Macroinstabilities, because they deal with
inhomogeneous plasmas, are usually rather difficult to treat even in the linear approxi-
mation. They are important at large scales, when one needs to calculate the stability of
global plasma configurations. Such scales are common in astrophysical problems and
in large fusion devices, where they cause violent changes in plasma configurations dur-
ing instability like plasma disruptions. As a rule, macroinstabilities do affect the global
structure of a plasma, e.g., the overall configuration of an active magnetic region on
the sun or that of the entire magnetosphere. Because of this reason they have attracted
considerable interest in astrophysics and space physics. Macroinstabilities, because of
their global properties and the inclusion of large-scale inhomogeneity into their treat-
ment inevitably lead to the necessity of inclusion of boundary conditions. In addition to
the complication introduced by the boundary conditions, this is another property which
distinguishes them from the wide field of microinstabilities treated in the next chapters.
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Further Reading

Macroinstabilities are covered by [2] and [4]. For a general proof of the magnetohy-
drodynamic energy principle for stability and instability see [1]. Here one also finds
explicit expressions for the vacuum-plasma boundary conditions and the theory of the
cylindrical kink and helical modes. The theory of the mirror instability is given by
Hasegawa,Phys. Fluids, 12 (1969) 2642. For its nonlinear theory we have followed
Yoon,Phys. Fluids B, 4 (1992) 3627. Applications of macroinstabilities to solar physics
are given in [5] and [6]. Applications to the ionosphere can be found in [3], from where
we have also taken the spread-F backscattered data. The measurements on which the
dependences of the mirror criterion are based are found in Hill et al.,J. Geophys. Res.,
100(1995) 9575.
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4. Electrostatic Instabilities

While macroinstabilities are caused by configuration space accumulations of free en-
ergy in spatial inhomogeneities and affect the bulk or even global plasma properties,
the effects of instabilities fed by velocity space inhomogeneities, i.e.,microinstabilities,
are observed on smaller and sometimes microscopic scales. Free energy can be easily
stored in deviations of the velocity distribution from its thermal equilibrium shape. As
a rule the equilibrium distributions are Maxwellian distribution functions (see Sec. 6.3
of our companion book,Basic Space Plasma Physics). In an open system, like in space
plasmas, a slight deformation of the Maxwellian distribution can be readily produced
and there are many possibilities of such deviations from equilibrium. Correspondingly,
a very large number of microinstabilities can arise in a plasma. The present chapter
selects those which have been detected in space plasmas. We, however, restrict to elec-
trostatic instabilities only leaving electromagnetic microinstabilities to the next chapter.
Furthermore, we assume that the plasma is homogeneous which allows to neglect any
effects caused by gradients and curvatures or by boundaries. The plasma is assumed to
be infinitely extended, and the source of free energy is taken to be invariable. The first
assumption is in many cases well satisfied because the typical scale of microinstabilities
is small compared with the scales of the plasma. The second assumption, however, is
valid only over the short linear time scale of the instability, unless the source of free
energy is maintained constant by external means. Usually for growing waves the in-
stability quickly reaches the nonlinear stage and the free energy is diminished. These
processes are inevitable but will be reserved for discussion in later chapters.

The starting point of a theory of linear microinstabilities is the linearized Vlasov
equation

∂f

∂t
+ v · ∇xf +

q

m
(E + v ×B) · ∇vf = 0 (4.1)

or one of its derivatives introduced in Sec. 6.2 of our companion book, with the station-
ary non-equilibrium distribution as ingredient. The procedure to obtain the dispersion
relation is the same as in Chap. 10 of the companion book. As in the case of macroin-
stabilities, the dispersion relation must be solved for the frequency,ω, including its
imaginary part,γ. For weak instabilities the growth rate can be determined by using
the methods developed in Sec. 2.1, since in these cases the growth rate yields only a

69
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small correction to the wave frequency and no new wave modes are introduced by the
non-equilibrium distribution functions. Instead, the free energy is used to excite one of
the known kinetic plasma modes.

We will in most cases simply use the general dispersion relations from Eqs. (1.35)
and (I.10.147), which are both derived in the companion volume, rewrite them for the
particular case, and model the unstable distribution as a combination of Maxwellians.
For other non-thermal distributions analytical solutions do normally not exist.

4.1. Gentle Beam Instability

Electromagnetic waves may propagate from the outside into a plasma. In contrast,
electrostatic waves cannot leave a plasma and cannot penetrate it. They must be excited
internally. Since they are easily excited, they are the appropriate tool for the plasma
to eliminate and redistribute the electric potential differences, which may arise due
to local charge separations, and to rearrange particles in the distribution function to
achieve thermal equilibrium. These effects arise when the plasma is unmagnetized.
They arise also when particle motion is allowed only along the magnetic field. In all
such cases the kinetic electrostatic waves are excited by electrostatic instabilities.

Bump-in-Tail Distribution

The simplest kinetic instability is that of an electron beam propagating on a background
plasma. Figure 4.1 shows the phase space geometry of a beam plasma configuration
calledgentle beamor bump-in-tailconfiguration. The plasma is assumed thermal with
fixed ions as neutralizing background and a certain electron temperature,Te, leading to
the thermal spread,vthe, of the background distribution function. Superposed on this
distribution is a group of fast electrons at speedvb > vthe but much smaller density
than the background plasma,nb ¿ n0, and of narrow thermal spread,vthb.

This phase space configuration is the classical case of a non-thermal distribution
subject to beam instability, but since we permit for finite beam temperatures, corre-
sponding to deformation of the equilibrium distribution function, the instability will
affect only that part of the distribution function which contains the deviation from ther-
mal equilibrium, while the bulk distribution remains unchanged. To treat this kind of
instability we must go from the fluid to a kinetic treatment.

Inverse Landau Damping

A system consisting only of electrons will be subject to Langmuir oscillations or, when
including thermal effects, to propagating Langmuir waves with a dispersion given by
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Fig. 4.1. Gentle beam plasma configuration for the bump-in-tail instability.

Eq. (I.10.32) in the companion book

ωl = ±ωpe

(
1 + 3

2k2λ2
D

)
+ iγl(k) (4.2)

These waves are Landau damped according to Eq. (I.10.48)

γl = ωl

πω2
pe

2n0k2

∂f0e(v)
∂v

∣∣∣∣
v=ω/k

(4.3)

In this equation the undisturbed electron distribution,f0e(v), enters as velocity deriva-
tive at the position of the wave phase velocity. If the derivative is negative here, as
in thermodynamic equilibrium, the thermal particles damp the wave (see Sec. 10.2 of
our companion book). When the derivative is positive, Landau damping inverts and
changes sign because there will be a surplus of fast particles which can feed energy to
the wave and raise its amplitude. In such a case the Langmuir wave is excited by the
gentle beam instability.

A distribution as in Fig. 4.1 will be unstable. The undisturbed distribution has
a positive derivative for velocities just below the beam speed,vb. The background
distribution falls off here with a negative derivative, but for a sufficiently fast beam far
outside the bulk of the plasma this gradient is weak. Moreover, the number of particles
in the bulk distribution is very small at the position of the beam. Thus damping can be
neglected for waves with phase velocitiesω/k ≤ vb.

The waves excited by the beam are Langmuir waves of relatively high phase ve-
locity. Since the temperature of the background electron distribution is low,kBTe ¿
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Wb = mev
2
b/2, the frequency of the waves will be close to the background plasma

frequency,ω ≈ ωpe. The condition of resonance,ω ≈ kvb, then requires that the
wavenumber is small. Langmuir waves driven unstable by the beam will have long
wavelengths.

Growth Rate

To calculate the growth rate of gentle beam excited Langmuir waves we consider a
one-dimensional case, where the distribution function is the sum of two Maxwellians

f0e(v) = f0(v) + fb(v − vb) (4.4)

wheref0(v) is the Maxwellian background distribution, andfb(v − vb) is a shifted
Maxwellian. The dielectric function of the combined distribution is

ε(ω, k) = 1− ω2
p0

ω2

(
1 + 3k2λ2

D0

)− πi
ω2

p0

n0k2

∂f0(v)
∂v

∣∣∣∣
v=ω/k

− ω2
pb

ω2

(
1 + 3k2λ2

Db

)− πi
ω2

pb

nbk2

∂fb(v − vb)
∂v

∣∣∣∣
v=ω/k

(4.5)

If the beam density and temperature are low, the beam contribution to the real part of the
dispersion relation can be neglected. The real part ofε yields the bulk plasma Langmuir
wave dispersion relation,ω2

l = ω2
p0(1+3k2λ2

D0). The weak beam causes a weak beam
instability. Thus we apply Eq. (2.9) to calculate the growth rate. The derivative of the
real part ofε(ωl, k) with respect toωl gives

∂εr

∂ωl
=

2ω2
p0

ω3
l

(1 + 3k2λ2
D0) (4.6)

The general expression for the growth rate is the sum of the plasma and beam terms. It
can be brought into the following form

γ =

√
πω3

l ω2
pb

(1 + 3k2λ2
D0)ω

2
p0k

2v3
thb

{(
vb − ωl

k

)
exp

[
− (vb − ωl/k)2

v2
thb

]

− n0T
3/2
b

nbT
3/2
0

ωl

k
exp

(
− ω2

l

k2v2
th0

)}
(4.7)

The first term in the brackets on the right-hand side is the beam term, while the second
is the background plasma contribution. It is obvious that the plasma contributes to
damping while the beam causes instability. But the growth rate is positive only for phase
velocities smaller than the beam velocity,ωl/k < vb. The phase velocity must also be
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close to the beam velocity, because otherwise the argument of the first exponential
is large and the positive beam contribution is too small to overcome the background
Landau damping. Comparing the two terms one finds that the phase velocity of the
Langmuir waves must fall into the interval

nb

n0

(
T0

Tb

)3/2

<
ωl

kvb
< 1 (4.8)

For sufficiently largeωl/k ≈ vb one can neglect the Landau damping term and write

γgb =

√
πω3

l ω2
pb

(1 + 3k2λ2
D0)ω

2
p0k

2v3
thb

(
vb − ωl

k

)
exp

[
− (vb − ωl/k)2

v2
thb

]
(4.9)

Maximum growth is obtained if we put in the coefficient on the right-hand side

ωl/kmax = vb (4.10)

and find the maximum of the functionx exp(−x2) atx2 = 1/2

γgb,max =
( π

2e

)1/2 nb

n0

(
vb

vthb

)2

ωl (4.11)

for the growth rate of the Langmuir gentle beam instability. Fast, dense and cool beams
lead to large maximum growth rates.

The above calculation can be generalized to wave propagating at an oblique angle
with respect to the electron beam. In this case the productkvb is understood as a scalar
product,k · vb = kvb cos θ, between the wave and velocity vectors, andθ is the angle
between them. We then get

γgb =
( π

2e

)1/2 nb

n0

(
vb cos θ

vthb

)2

ωl (4.12)

From the general expression for the growth rate in Eq. (4.9) one can demonstrate that
the growth rate stays near maximum as long as the angle is sufficiently small so that
θ ≤ vthb/vb.

Conditions for Growth

Since maximum growth of the gentle beam instability in Eq. (4.11) is obtained for
kmax = ωl/vb, we may insert the Langmuir frequency,ωl(k), from Eq. (4.2) into this
relation to find

k2
maxλ

2
D0 = (v2

b/v2
th0 − 3)−1 (4.13)
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For resonant interaction the beam velocity must exceed a threshold given by

vb =
√

3vth0 (4.14)

in order that the gentle beam instability can develop. If the beam is slower than this
threshold value, i.e., if the beam kinetic energy is less than three times the thermal
energy of the background plasma, the beam sits on the shoulder of the background
distribution and will be unable to excite waves.

Let us find the width of the excited frequency spectrum. The argument of the
exponential function in Eq. (4.9) can be written as−(ωl − kmaxvb)2/k2

maxv
2
thb. Thus

the range of frequencies over which the growth rate is close to maximum is roughly
∆ωgb ≈ kmaxvthb. We can therefore define the bandwidth of the gentle beam instability

∆ωgb ≈ ωlvthb/vb (4.15)

This expression shows that the growth rate of the gentle beam instability is less than the
bandwidth of the excited waves as long as

nb/n0 ≤ (vthb/vb)3 (4.16)

Comparison with the corresponding condition for the weak beam instability in Eq.
(2.38) shows that these two conditions are complementary. Hence, for large beam
densities violating the last condition, the gentle beam instability will go over into the
weak beam mode. But when the beam becomes too cold, the theory breaks down, the
bandwidth of the instability vanishes, and the beam-to-plasma density ratio exceeds the
range of values allowed in Eq. (4.16). In this case the weak beam instability is excited,
too.

Upstream Solar Wind

Since weak electron beams will readily be generated in both unmagnetized and magne-
tized plasmas (in the latter case they propagate along the magnetic field) by slight low-
frequency potential differences, which may arise in travelling waves like ion-acoustic
waves or kinetic Alfv́en waves, the gentle beam instability can evolve naturally in any
space plasma. By extracting energy from the beam it will ultimately slow the beam
down and deplete the source of free energy (see Sec. 8.3).

Figure 4.2 shows an example of a measurement of beam-excited Langmuir waves
in the solar wind in front of the Earth’s bow shock. The electrons, which excite these
waves, stream back from the Earth’s bow shock along the magnetic field into the so-
lar wind at about twice the initial velocity in the solar wind frame, roughly about
1200 km/s. This velocity is about marginal for Langmuir instability. The plasma fre-
quency is close to 30 kHz. The measured bandwidth is found to be∆ω ≈ 6 kHz. From
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Fig. 4.2. Signature of gentle beam-excited Langmuir waves in the solar wind.

this value we deduce a beam velocity roughly five times the beam thermal velocity
spread orvthb ≈ 200 km/s. Since the gentle beam instability requires low beam densi-
ties, we can use the above restriction to estimate that the beam density was smaller than
nb < 8·10−3n0. With this relatively high upper limit we find that the instability growth
rate given in Eq. (4.11) isγ < 0.15ωp0, corresponding to about 0.2 ms growth time.

4.2. Ion-Acoustic Instabilities

Ion-acoustic waves, the other unmagnetized plasma eigenmode, can be excited in the
first place by electron currents or by ion beams flowing across a plasma. This instability
is also a kinetic instability. Since it requires much lower velocities than the Langmuir
gentle beam instability it can be driven unstable by weak currents. In addition, it is not
restricted to low background electron temperatures.

Current-Driven Instability

The idea behind the electron current-drivenion-acoustic instabilityis that the combined
equilibrium distribution function, consisting of the drifting hot electron background and
the cold ions, exhibits a positive slope where resonance between waves and particles can
occur.

These conditions are sketched in Fig. 4.3. The left-hand part of the figure refers
to bulk current flow with drift velocity,vd. The drifting electrons have a hot shifted
Maxwellian velocity distribution while the ions are cold and immobile. Instability can
occur in the region of positive slope of the electron distribution function. The right-
hand part of the figure shows the case of a fast ion beam crossing the plasma. The
hot electron distribution is slightly shifted to the left of the origin to compensate for
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Fig. 4.3. Ion-acoustic-unstable velocity space distributions.

the weak current,jb = enbvb, caused by the ion beam. Because of the small density,
nb ¿ n0, of the beam the conditionj = e(nbvb − n0vde) = 0 yields for this shift
vde = nbvb/n0 which is negligible as long as the ions have moderate beam velocities.
Again, instability can arise in the positive slope of the beam ion distribution function.

Growth Rate

We are looking for an electrostatic current-driven instability, neglecting the electro-
magnetic effect of the current. The assumed distribution functions are a shifted one-di-
mensional Maxwellian

fe0(v − vd) =
n0

π1/2vthe
exp

[
− (v − vd)2

v2
the

]
(4.17)

for the electrons and a Maxwellian distribution at rest for the ions

fi0(v) =
n0

π1/2vthi
exp

(
− v2

v2
thi

)
(4.18)

with unlike thermal velocities. We also assume that the thermal velocity of the electrons
is much larger than their drift velocity,vd ¿ vthe. In the opposite case the plasma is
unstable against the Buneman instability as demonstrated in Eq. (2.47). The dielectric
response function (I.9.62) for this one-dimensional case is obtained from Eq. (I.10.83)
as

ε(ω, k) = 1 +
2

k2λ2
D

[1 + ζeZ(ζe)] +
2

k2λ2
Di

[1 + ζiZ(ζi)] (4.19)
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where the arguments of the plasma dispersion function (see App. A.7 of our companion
book) are

ζe = (ω − kvd)/kvthe

ζi = ω/kvthi
(4.20)

From inspection of the left part of Fig. 4.3 it is clear that instability can arise only in a
restricted range of wave phase velocities,ω/k. The phase velocity must be larger than
the background ion thermal velocity

|ω/k| À vthi (4.21)

in order to escape ion Landau damping, but it must fall within the positive slope of the
electron distribution which implies that

|ω/k − vd| ¿ vthe (4.22)

The ionZ function can thus be expanded in the large argument limit, while for the
electronZ function the small argument limit is appropriate. Assuming weak instability,
γ/ω ¿ 1, the real part of the dielectric function reproduces the ion-acoustic relations
Eqs. (I.10.54) and (I.10.55), both given in the companion volume. The above frequency
range thus supports propagation of ion-acoustic waves, which travel on the background
of the ions at rest, but with a phase velocity close to the electron drift speed. For weak
growth we find using Eq. (2.9)
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(4.23)

Instability arises when the electron term dominates the ion term and when the electron
current drift velocity exceeds the wave phase velocity,ω/k < vd, as we concluded
qualitatively from inspection of Fig. 4.3. We can use the dispersion relation of ion-
acoustic waves given in Eq. (I.10.55) and expand the electron exponential to simplify
the growth rate

γia =
(π

8
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(1 + k2λ2
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)]
(4.24)
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The ion contribution to the growth rate corresponds to Landau damping of the waves
and thus counteracts instability. It is large whenever the ion temperature is large, be-
cause in this case the wave phase velocity resonance falls into the decaying shoulder
of the ions. In particular, forTi ≈ Te, the damping rate is comparable to the wave
frequency,γia ≈ ω, and there is no instability. But for large electron temperatures,
Te À Ti ion damping can entirely be neglected and the second term in the growth rate
disappears. The basic requirement for ion-acoustic current-driven instability is thus a
cold-ion hot-electron plasma with drift velocity exceeding the ion sound velocity

vd > cia or k2λ2
D ¿ 1 (4.25)

In the opposite case whenk2λ2
D À 1, the frequency of the wave is close to the ion

plasma frequency,ω ≈ ωpi. Here Landau damping is strong and the instability can
hardly occur. The condition of instability for this case is

vd > vthi(1− ω2/ω2
pi) or 1 < k2λ2

D ¿ Te/Ti (4.26)

The upper limit on the wavenumber results from the requirement that ion Landau damp-
ing be as weak as possible. The condition on the drift velocity is anyway satisfied by
the initial requirement in Eq. (4.21). But then Eq. (4.22) requiresvd ¿ vthe or very hot
electrons for instability.

The dominant range of ion-acoustic instability is therefore realized when the elec-
tron temperature exceeds the ion temperature,Te À Ti, the wavelength is much longer
than the Debye length,k2λ2

D ¿ 1, and the current drift velocities,vd > ω/k ≈ cia,
exceed the ion sound speed. Under these conditions Landau damping is unimportant,
and the growth rate assumes the simple form

γia =
(

πme

8mi

)1/2
ωia

(1 + k2λ2
D)3/2

(
kvd

ωia
− 1

)
(4.27)

whereω/k ≈ cia, and the drift velocity in the ion frame of reference can be expressed
through the current density,vd = −j/en0. In general this is a vector quantity. Again,
as for the gentle beam instability, the only direction given in space is the direction of
the current. Introducing the angleθ betweenk andvd, the ion-acoustic instability is
restricted to a cone around the direction of the current,0 < θ < θmax, where

cos2 θ > cos2 θmax = c2
ia/v2

d (4.28)

The ion-acoustic waves excited by the electron current are beamed in the direction of
the current but propagate at a speed which is slightly less than that of the current itself.
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Parametric Investigation

The growth rate of the ion-acoustic instability in Eq. (4.24) shows a strong dependence
on the temperature ratio,Te/Ti. Figure 4.4 shows the numerical result of a calculation
of the velocity threshold in dependence on this ratio. For very large electron tempera-
tures the threshold is just the ion sound speed. For lower ratios the threshold gets fairly
high, but there is still weak instability for low electron temperatures. However, in this
regime other instabilities like ion-cyclotron waves are more important.

The maximum growth rate can be obtained by maximizingγia(k) for fixed suffi-
ciently large drift velocities,vd À cia

γia,max ≈ 0.32ωpi

(
πme

8mi

)1/2(
vd

cia
− 1

)
(4.29)

This growth rate is attained at the small wavenumber,k2
maxλ

2
D ≈ 0.1(1− cia/vd). For

instance, assumingvd/cia = 10 and a hydrogen plasma, this growth rate is of the order
of γia,max ≈ 0.04ωpi. Figure 4.5 shows the schematic relation between the ion-acoustic
dispersion relation and the growth rate of the instability.

Auroral Ionosphere

The ion-acoustic instability occurs in the topside auroral ionosphere. Since the currents
propagate along the magnetic field, we can use the unmagnetized case. For a plasma
density of 102 cm−3 and oxygen as the dominant ion, the ion plasma frequency is about
ωpi ≈ 3.3 kHz, yielding a maximum growth rate ofγia,max ≈ 35 s−1 and maximum



80 4. ELECTROSTATIC INSTABILITIES

1.0

ω=kc ia
ω=kv d

ω ia

kλD

ω
/ω

pi


γc
ia

/ω
pi

v d

0.0

γia

2.0

1.0

1.5

0.5

0.5 1.5

0.050

0.075

0.025

Fig. 4.5. Frequency and growth rate of the ion-acoustic instability.

growing wavelengthsλia ≈ 20λD or about 30 m. Thus one expects that auroral field-
aligned currents of sufficient strength will excite ion-acoustic waves of several tenths of
meter wavelength along the magnetic field. These waves propagate into the direction of
the current carrier’s velocity, i.e., downward for currents carried by precipitating auroral
electrons and upward for bulk auroral return currents.

Since ion-acoustic waves are electrostatic waves, they are accompanied by fluc-
tuations of the plasma density. Thus the appearance of density irregularities along the
auroral field lines in the upper ionosphere during field-aligned current flow is the conse-
quence of the excitation of such long wavelength auroral ion-acoustic waves. However,
the threshold for excitation of ion-acoustic waves is relatively high and requires high
velocities of the current carriers to exceed the ion-acoustic velocity and thus strong
field-aligned currents. Other waves might be driven unstable before the ion-acoustic in-
stability sets on. Such waves are the ion-cyclotron waves which we will discuss below
in context with magnetized electrostatic instabilities.

Beam-Driven Instability

A similar setup for ion-acoustic instabilities is given on the right-hand side of Fig.
4.3, where an ion beam crosses an unmagnetized plasma or flows along the magnetic
field. Beams of this kind are found in the auroral ionosphere during active auroras and
substorm conditions. They flow out of the ionosphere upward into the magnetosphere
and have kinetic energies of a few keV. For oxygen ions this energy corresponds to
beam velocities of 100–200 km/s. Since the theory of the ion-acoustic instability is
Galilei-invariant and because for dilute beams we can neglect the electron velocity shift
caused by them, the theory of ion-acoustic waves excited by the ion beams remains
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unchanged. The beam will excite ion-acoustic waves propagating close to the beam
velocity if far enough away from the thermal electron distribution for not being Landau
damped. The condition for instability is

ω/k À vthe (4.30)

and the growth rate can be written as

γiab =
(π

8

)1/2 ω4

ω2
pi|k|3ciaλ2

D

{
nib

n0

(
Te

Tib

)1/2

(
kvb

ω
− 1

)
exp

[
− (ω − kvb)2

k2v2
thib

]
−

(
me

mi

)1/2

exp
(
− ω2

k2v2
the

)}
(4.31)

where we neglected the contribution of the background ions, and the total density is
n0 = ne0 = ni0 + nib. The condition for beam ion-acoustic instability is the same
as for current instability with replacement of the current drift speed by the ion beam
velocity,vib > cia. Compared to the electron current-driven instability this growth rate
is smaller by the ratio of beam to plasma densities. Thus the ion beam driven mode is a
weaker instability than the electron current ion-acoustic instability.

Heat Flux-Driven Instability

Ion-acoustic waves can also be destabilized by heat currents. These currents play a role
similar to real electric currents in a plasma. But they depend on the presence of heat
flows and thus on the presence of temperature gradients in a plasma. Such temperature
gradients are familiar from observations in the solar wind, at the magnetopause and in
the various boundary layers of the magnetosphere. One may therefore expect that heat
flux-driven ion-acoustic modes will exist in these regions.

In most cases the heat flux is carried by electrons, since they move faster along
the magnetic field. The mechanism of the instability is exactly the same as that for the
electron current-driven ion-acoustic instability. The only difference is that the electron
drift speed is now calculated from the parallel heat flux,q‖, under the condition that the
electric current vanishes,j‖ = 0. The two equations for the parallel heat flux and cur-
rent in a zero-order parallel electric field,E0‖, and parallel temperature gradient∇‖Te,
are

qe‖ = ηe‖E0‖ − κe‖∇‖Te

je‖ = σe‖E0‖ + ζe‖∇‖Te = 0
(4.32)

Heat fluxes can evolve only in the presence of non-vanishing transport coefficients
(see App. B.2 in our companion book). We therefore allow for non-ideal conditions
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and finite electric and thermal conductivities,σe‖, κe‖, and thermoelectric conductiv-
ities, ηe‖, ζe‖. From the definition of the transport coefficients one knows thatζe‖ ≈
0.7σe‖/e. The vanishing current equation yields for the electric field

E0‖ ≈ −0.7∇‖Te/e (4.33)

This electric field enters the heat flux equation so that

qe‖ ≈ −(κe‖ − 0.7ηe‖/e)∇‖Te (4.34)

from where it is seen that it is the temperature gradient which gives rise to the heat flux
or, vice versa, it is the heat flux which causes the parallel electric field. This electric
field accelerates the electrons until a stationary state is reached between the acceleration
and collisional retardation due to the non-zero electron-ion collision frequency,νei 6= 0.
Equating the two forces

eE0‖ = meνeivd (4.35)

the drift velocity enforced by the heat flux and being used in the growth rate of the
ion-acoustic instability in Eq. (4.27) is given by

vd ≈ 0.7∇‖Te/meνei > cia (4.36)

This is the condition for ion acoustic instability.

Solar Wind

In a nearly collisionless plasma like the solar wind the collision frequency is small
and the instability threshold is easily exceeded, even for weak temperature gradients.
There is no unambiguous experimental confirmation of a heat flux-driven instability in
the solar wind from observations of ion-acoustic waves, but heat fluxes are connected
with most deviations of the parallel electron equilibrium distribution from Maxwellian
symmetry. Such non-symmetric shapes are a general feature of solar wind electron
distributions and can be the cause of heat flux-excited ion-acoustic waves.

4.3. Electron-Acoustic Instability

To excite electron-acoustic waves a drifting hot electron component is needed in addi-
tion to the cold background electrons. The ions are assumed to neutralize the charge.
Moreover, zero current flow is assumed for the electrons,ncvdc + nhvdh = 0. For
vanishing drifts and low cold electron temperatures three weakly damped modes can
exist. These are Langmuir waves, ion-acoustic waves and electron-acoustic waves. The
frequency of the latter is close to the cold electron plasma frequency,ωea ≈ ωpc. When
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the two electron components exhibit a relative drift but no current flows according to the
above zero-current condition, the ion-acoustic and the electron-acoustic wave can both
become unstable. The former propagates into the direction of the cold electron relative
drift, as was discussed above, while the electron-acoustic wave propagates parallel to
the hot electron drift velocity.

Frequency and Growth Rate

If we assume that all three components are Maxwellians, the dielectric function of this
combination of particle distributions is

ε(ω, k) = 1+
2

k2λ2
Dc

[1 + ζecZ(ζec)]+
2

k2λ2
Dh

[1 + ζehZ(ζeh)]+
2

k2λ2
Di

[1 + ζiZ(ζi)]

(4.37)
where the arguments are defined similarly to the case of the ion-acoustic instability

ζec = (ω − k · vdc)/kvthc

ζeh = (ω − k · vdh)/kvthh (4.38)

ζi = ω/kvthi

If one assumes that the ions and cold electrons are much colder than the hot electrons,
Ti ≈ Tc ¿ Th, one can expand the hot component plasma dispersion function in the
small amplitude limit,ζeh ¿ 1, and finds the frequency of the electron-acoustic mode

ωea = k · vdc + ωpc/(1 + 1/k2λ2
Dh)1/2 (4.39)

In the weakly unstable limit the weak instability growth rate becomes

γea ≈
(π

8

)1/2 ωpc

k2λ2
Dh

(
k · vdh

kvthh
− ωea

kvthh

)
exp

[
− (k · vdh − ωea)2

k2v2
thh

]
(4.40)

This instability requires thatk · vdh > ωea, which also requires that the drift speed of
the cold component is small against the speed of the hot component. Moreover, numer-
ical calculations show that the threshold condition iskλDc ≈ 5. The above threshold
of the electron-acoustic instability is maintained as long as the relative electron drift
speed,|vdh − vdc|, is smaller than the thermal speed of the hot electrons. For higher
velocities one recovers the electron-electron beam-fluid two-stream instability, where
the negative part of the frequency is no more of kinetic origin.

Parametric Investigation

Figure 4.6 shows the domain of the kinetic electron-acoustic instability in the parameter
space of relative electron drift velocity and density ratio. This figure shows that low cold
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electron densities and relative drifts a few times the cold electron thermal velocity favor
the excitation of the instability. This threshold is much higher than the ion-acoustic
instability threshold for low cold electron densities, but lower than the latter for high
cold electron densities. Therefore, for small cold electron densities the ion-acoustic
wave excited by the drift of the electrons will be the dominant instability, while for
higher cold electron densities, yet still below the hot electron density, the electron-
acoustic instability is of greater importance.

Foreshock

Electron-acoustic instability is expected to occur in the Earth’s foreshock region, where
diffuse hot electrons are superimposed on the solar wind plasma and have a relatively
large drift against the solar wind ions and electrons. These waves will occur near the
cold electron plasma frequency, but will be beam waves according to the dispersion
relation in Eq. (4.39). They can exist also in the shock ramp, where hot electrons from
the shock mix into the cold solar wind electron beam, and may contribute to shock
dissipation.

4.4. Current-Driven Cyclotron Modes

Even in the electrostatic limit, currents do not only drive Langmuir and acoustic modes
unstable. They can also excite electrostatic ion-cyclotron and lower-hybrid modes.

Ion-Cyclotron Instability

The field-aligned current instability competing most with the ion-acoustic instability is
the electrostatic ion-cyclotron instability. For propagation purely perpendicular to the
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magnetic field its dispersion relation is that of Eq. (I.10.133) and the wave is an ion
Bernstein mode. To find an instability we must allow parallel wave propagation. In this
case the dispersion relation is a version of Eq. (I.10.104), modified due to the presence
of the field-aligned current. Assuming that this current is carried exclusively by the
electrons, its dielectric function becomes

ε(ω,k) = 1−
∑

s

∞∑

l=−∞

ω2
psΛl(ηs)
k2v2

ths

[
Z ′(ζs)− 2lωgs

k‖vths
Z(ζs)

]
= 0 (4.41)

We assume isotropic conditions for both kinds of particles, electrons and ions. The ar-
guments of the plasma dispersion functions are

ζi = (ω − lωgi)/k‖vthi

ζe = (ω + lωge − k‖vd)/k‖vthe
(4.42)

The above dispersion relation allows instability at every ion-cyclotron harmonic fre-
quency,ω = lωgi. For purely parallel propagation andTe À Ti it also contains
ion-acoustic waves, since this case corresponds to the field-free case. Hence, to cover
ion-cyclotron waves we consider the wavenumber rangek‖ ¿ k⊥, and temperature
ratiosTe ≈ Ti. We may expect that the strongest instability will occur for the low-
est harmonic,l = 1, because it requires the smallest amount of energy to increase its
amplitude. The ion-cyclotron wave solution

ω ≈ ωgi

[
1 +

Λ1(ηi)
1 + Ti/Ti −G

]
(4.43)

whereG = Λ1 + (1 − Λ0)/ηi, is obtained under the conditions thatηe ¿ 1 and, as
for the ion-acoustic instability,ζe ¿ 1, while the ion plasma dispersion function is
expanded in the large argument limit.

SinceG < 1, Λ1 < 1, the correction term on the cyclotron frequency is usually
smaller than 0.5, so that the frequency of the ion-cyclotron wave is close toωgi, but
shifts away fromωgi for decreasingTe/Ti. On the other hand, whenTe À Ti and
ηi ¿ 1, the termG → 1, and the correction increases. In the limitηi → 0 the
frequency becomes

ω ≈ ωgi(1 + k2
⊥c2

ia/2ω2
gi) = ωgi(1 + ∆) (4.44)

valid in the long wavelength limit and applicable to perpendicular propagation.
For oblique propagation the expression for the growth rate is complicated. It is

more interesting to determine the marginally unstable current drift velocity for the ion
cyclotron wave above which the instability sets in. The procedure is to put the growth
rateγ = 0 in the dielectric response, setting its real partεr(ω, k‖, k⊥) = 0, and solving
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for the drift velocity,vd, as function of the parameters, e.g., the temperature ratioTe/Ti.
The general expression for the drift velocity obtained fromγ = 0 is

k‖vd

ω
=

[
1 +

(
miTe

meTi

)1/2 ∑
s

∑
l Λl(ηs)ImZ(ζs)∑
l Λl(ηe)ImZ(ζe)

]
(4.45)

This equation is an implicit equation for the drift velocity, becausevd is still contained
in the electron plasma dispersion function on the right-hand side. For the ion-cyclotron
mode this expression reduces, with the help of the above dispersion relation, to

vd

vthi
=

ω

k‖vthi

{
1 +

(
miTe

meTi

)1/2

Λ1(ηi) exp
[
− (ω − ωgi)2

k2
‖v

2
thi

]}
(4.46)

Using thel=1 frequency in Eq. (4.44), this becomes

vd

vthi
=

(
1 +

1
∆

)
(ω − ωgi)

k‖vthi

{
1 +

(
miTe

meTi

)1/2

Λ1(ηi) exp
[
− (ω − ωgi)2

k2
‖v

2
thi

]}

(4.47)
One can minimize this equation with respect to one of the components of the wave
vector to obtain the critical current drift velocity,vdc, above which the wave undergoes
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instability. This procedure yields an expression

vdc

vthi
=

(
1 +

1
∆(η∗i )

) {
ln

[
2

(
miTe

meTi

)1/2

Λ1(η∗i )

]}1/2

(4.48)

whereη∗i is the value ofk⊥ where the drift velocity minimizes. Figure 4.7 shows this
marginally unstable current drift velocity as function of the temperature ratio obtained
from numerical solution of the above equation. Here the drift speed has been nor-
malized to the electron thermal velocity. The important result is that the critical drift
velocity is relatively low for low temperature ratios in a range where the ion-acoustic
instability has higher threshold. But for increasing harmonic number,l>1, the thresh-
old increases, too. Higher harmonic ion-cyclotron waves are less unstable than thel=1
mode, as had been expected from the very beginning. Moreover, for high temperature
ratios the ion-acoustic instability takes over, and the ion-cyclotron instability ceases.

Modified Two-Stream Instability

The instabilities considered so far are driven by either field-aligned currents or field-
aligned beams. Magnetic fields have little effect on these electrostatic instabilities. The
only exception is the electrostatic current-driven ion-cyclotron instability, which has a
frequency close to the ion-cyclotron frequency and where the wave propagates nearly
perpendicular to the magnetic field.

A similar current-driven instability exists also for currents which flow perpendicu-
lar to the magnetic field. Independent of their origin, such currents serve as free energy
sources. There are several possibilities for generating perpendicular currents. The most
important are pressure gradient drifts or polarization field drifts. An instability con-
nected with these currents is thelower-hybrid drift instability, which we will derive in
detail when discussing the effects of inhomogeneities on kinetic instabilities.

Themodified two-stream instabilitytakes advantage of the very large ion gyrora-
dius compared to the electron gyroradius. Thus for wavelengths,λ < vthi/ωgi = rgi,
the ions behave unmagnetized and can be considered to propagate along straight lines.
On the other hand, the electrons are strongly magnetized in this case. The instability
arising from the interaction of the two particle populations, when one of them is drift-
ing across the magnetic field, turns out to have a frequency close to the lower-hybrid
frequency. This instability is the modified two-stream instability. It is very important in
all regions where transverse currents can exist in a plasma, as, for instance, the various
boundaries across which the magnetic field changes its value or direction.

If we assume that the ions are drifting into thex direction with velocityvd and have
Maxwellian distribution function while the electrons are cold and strongly magnetized,
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the wave obeys the dispersion relation

ε(ω, k‖, k⊥) = 1 +
ω2

pe

ω2
ge

− k2
‖

k2

ω2
pe

ω2
+

2ω2
pi

k2
⊥v2

thi

[1 + ζiZ(ζi)] (4.49)

where the ion argument is given byζi = (ω−k⊥vd)/k⊥vthi. This argument is assumed
to be large enough,ζi À 1, for the large argument expansion of the plasma dispersion
to be applicable so that the dispersion relation becomes

1− ω2
lh

(ω − k⊥vd)2
− mik

2
‖

mek2

ω2
lh

ω2
= 0 (4.50)

an expression very similar to the Buneman dispersion relation. The frequency,ωlh =
ωpi/(1+ω2

pe/ω2
ge)

1/2, appearing in the numerators of the above equation, is the lower-
hybrid frequency. The similarity of Eq. (4.50) to the Buneman dispersion relation

1− ω2
pi

ω2
− ω2

pe

(ω − kv0)2
= 0 (4.51)

suggests the following replacements in the equations for the latter

ωpe → ωlh

ω2
pi → (mik

2
‖/mek

2)ω2
lh

(4.52)

By the same reasoning used to derive the threshold condition in Eq. (2.50) for the Bune-
man instability we find that the frequency of the modified two-stream instability is

ωmts = k⊥vb

[
1 +

(
mek

2

mik2
‖

)1/3
]−1

(4.53)

and as condition on the drift velocity for modified two-stream instability

k2
⊥v2
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ω2
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mek
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mik

2
‖
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)1/3
]3

(4.54)

As in the case of the Buneman instability, this condition sets a limit on the combination
of wavenumber and drift velocity. Since the right-hand side of this condition depends
on the lower-hybrid frequency, which is lower than the electron plasma frequency, the
modified two-stream instability is driven unstable by much lower velocities than the
Buneman instability.
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Since in the discussion of the Buneman instability the densities of the particles
were equal, the maximum growing wavenumber now is found at

max
(

k2
‖

k2
⊥

)
=

me

mi
¿ 1 (4.55)

Hence, the parallel wavelength of the modified two-stream wave is much longer than the
perpendicular wavelength and the wave propagates nearly perpendicular to the magnetic
field. Its maximum growth rate

γmts,max = ωlh/2 (4.56)

is obtained at
k⊥maxvd ≈ ωlh/2 (4.57)

if the growth rate is maximized with respect tok⊥. This growth rate is nearly the
lower-hybrid frequency and thus nearly the wave frequency itself.

The modified two-stream instability is a fairly strong instability which will eas-
ily be driven unstable by ion streams propagating perpendicular to the magnetic field.
Knowing the drift velocity of these ions or the corresponding current, the wave fre-
quency at maximum growth assumes the value

ωmts,max = k⊥maxvd/2 (4.58)

Magnetopause

The modified two-stream instability can be excited at the magnetopause, during times
when it is a tangential discontinuity. Assuming a non-zero magnetosheath field of about
30–40 nT, the jump in the magnetic field across the magnetopause is of the order of
∆B ≈ 60 nT. The width of the magnetopause is of the order of 1000 km or less. These
values suggest a current of4.8 · 10−8 A/m2. For a plasma density ofn ≈ 30 cm−3 the
drift velocity is vd ≈ 10 km/s. The lower-hybrid frequency is of the order of 65 Hz.
This corresponds to a maximum perpendicular wavenumber ofk⊥ ≈ 0.082 and a wave
growth rate of 200 s−1.

Hence, fast growth at the lower-hybrid frequency is expected at the magnetopause
with wavelengths of the order of 70 m, shorter than the ion gyroradius. These waves
account for lower-hybrid wave spectra observed during magnetopause crossing and will
be able to dissipate part of the kinetic energy of the magnetopause current. This cur-
rent is continuously restored by the interaction of solar wind and geomagnetic field.
The energy fed into the modified two-stream lower-hybrid waves originates from this
interaction and thus from the solar wind kinetic energy.
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4.5. Loss Cone Instabilities

Aside from the lower- and upper-hybrid waves, the electrostatic electron- and ion-cyclo-
tron waves are the most important electrostatic waves in homogeneous magnetized plas-
mas. They cover a wide range of cyclotron harmonics and, because of being principle
plasma resonances, they contribute to energy exchange between waves and particles. In
the following we discuss a few ways to drive these waves unstable. Since these waves,
except for the lowest harmonics, are purely of kinetic origin, the instabilities connected
with them are also kinetic requiring particular shapes of the undisturbed particle distri-
bution functions. The two types of distributions leading to the excitation of electrostatic
cyclotron waves are temperature anisotropies and loss cone distributions.

Modeling temperature anisotropies in the equilibrium distribution function is com-
parably simple. One uses an anisotropic Maxwellian distribution as the one given in Eq.
(I.6.37) of our companion book,Basic Space Plasma Physics. For loss cone distribu-
tions one takes either the Dory-Guest-Harris form of Eq. (I.6.40) or the partially-filled
loss cone distribution of Eq. (I.6.41), again given in our companion book. The former
is, however, much more difficult to treat. We will therefore exclusively use the latter

f(v‖, v⊥;∆, β) =
n

(π3〈v‖〉2〈v⊥〉4)1/2
exp

(
− v2

‖

〈v‖〉2
)

G(v⊥,∆, β) (4.59)

The first part of this function is a parallel Maxwellian. The information about the
loss cone is contained in the functionG(v⊥, ∆, β), given in Sec. 6.3, and the graphi-
cal representation of the distribution (4.59) is found in Fig. 6.7, both in our compan-
ion book. Loss cones imply that particles with small perpendicular velocities are lost
and are therefore missing in the distribution function. Hence, loss cones and tempera-
ture anisotropies are distribution functions which are not thermodynamically stable, but
carry the free energy for exciting instabilities.

Because this excess free energy is stored in the perpendicular particle motion, i.e.,
in the gyration of the particles comprising the distribution function, distributions of this
kind are particularly suited for exciting waves related to the cyclotron motion of the
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Fig. 4.9. Absolute and convective growth of wave amplitudes.

particles. These waves want to reduce the energy stored in the gyration, which can most
easily been done by resonance with the gyrating particles at their gyrofrequency,ωgs.
This is the physical reason for excitation of electrostatic and electromagnetic cyclotron
waves by loss cone and anisotropic Maxwellian distributions with

As = Ts⊥/Ts‖ − 1 > 0 (4.60)

Electron-Cyclotron Instability

We first discuss the mechanism by which electron-cyclotron harmonics can be ex-
cited by loss cone distributions. The resulting instability is theelectrostatic electron-
cyclotron loss cone instability. The theory is mathematically complicated, since there
are infinitely many electron-cyclotron harmonics,ω ≈ lωge, which can be driven un-
stable. One must ultimately turn to numerical tools.

Let us assume that the plasma in the magnetosphere is composed of a neutralizing
ion background, which at the high electron-cyclotron frequencies is immobile and needs
not be taken into account, a cold electron background, which can be assumed isotropic
and Maxwellian, and the hot and diluted anisotropic loss cone component superimposed
on the background plasma. Calculating the parallel and perpendicular temperatures by
taking the second-order moment of the partially filled loss cone distribution function
given in Eq. (4.59), yields the anisotropyAeh

Aeh =

∫
(v2
⊥ − v2

‖)feh(v‖, v⊥;∆, β)v2
⊥dv⊥dv‖∫

v2
‖feh(v‖, v⊥;∆, β)v2

⊥dv⊥dv‖
(4.61)

where a description of the loss cone parameters,∆ andβ, has been given in Sec. 6.3 of
our companion book. The ratio of the two integrals warrants to forget the normalization
factors in front of the hot electron distribution,feh(v‖, v⊥;∆, β). It is easy to solve
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Fig. 4.10. Amplification length of the loss cone electron-cyclotron instability.

the integrals because this distribution has been constructed such that it consists only of
Maxwellians, yielding

Aeh = Ae∆ + (1−∆) [Ae + (Ae + 1)β] (4.62)

whereAe = Te⊥/Te‖ − 1 is the ordinary anisotropy. Hence, for∆ = 1 one hasAeh =
Ae, while for Ae = 0 there is still some anisotropyAeh = (1−∆)β retained, which is
a pure loss cone effect. The combined hot and cold electron distribution functions are
shown in Fig. 4.8.

The magnetized electrostatic response function of the hot electron contribution is
to be calculated from Eq. (I.10.96) usingfeh(v‖, v⊥;∆, β). To this response function
one must add the cold electron isotropic response function. The cold electrons will
cyclotron-damp the electrostatic waves because they are a sink of energy. The combined
effect depends heavily on the ratio of cold to hot electron densities,nc/nh, with largest
growth rates when no cold electrons are present.

Parametric Investigation

For parametric investigations one has to distinguish between the two different ways of
wave growth sketched in Fig. 4.9. A wave can be excited in a local position so that
the energy does not flow out from the region where the wave is excited but stays there
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and accumulates. This kind of instability is anabsoluteor non-convective instability.
Under most conditions, however, the wave will transport energy out of the region of
excitation. Hence, if the region of excitation is narrow, the wave will not be strongly
amplified. It can be amplified only over that distance where the growth rate is positive.
Such instabilities areconvective instabilities.

This distance is given by the amplification length, which can be calculated from the
growth rate and the group velocity of the wave as the imaginary part of the wavenumber
k = kr + iki. For a plane wave proportional toexp[−i(ωt− k · x)] amplification will
proceed as long aski < 0 and

|ki| = γ

[(
∂ω

∂k⊥

)2

+
(

∂ω

∂k‖

)2
]−1/2

(4.63)

The instability becomes absolute at that position in parameter space, where the parallel
and the perpendicular components of the group velocity vanish simultaneously. Hence,
one calculates numerically the growth rate,γ, as function of the density and tempera-
ture ratios and possible other parameters such as∆ andβ. Then one determines the
parallel and perpendicular group velocities and finds the locations where both vanish
simultaneously. Here the amplification length turns zero andki diverges. An example
of this procedure applied to electrostatic electron-cyclotron wave excitation in the mag-
netosphere is shown in Fig. 4.10. The parameters for this particular case are∆ = 0,
Teh = 100Tec, nc = 0.2nh, andωuhc/ωge = 1.8.

The region of large imaginaryki coincides with one of the two crossing points of
the two curves, where the two components of the group velocity vanish,∂ω/∂k‖ =
∂ω/∂k⊥ = 0. In these two points, i.e., for the corresponding wavenumbers parallel
and perpendicular to the magnetic field, the wave instability becomes absolute, and the
energy accumulates in the region of instability. This calculation is performed for the
fundamental harmonic,l = 1, of the electron-cyclotron frequency. At higher harmon-
ics similar instability is found. The parametric dependence of the regions of absolute
instability for the first and fourth harmonics is shown in Fig. 4.11.

Electrostatic electron-cyclotron harmonics can become non-convectively unstable
in hot loss cone plasmas when a small amount of cold electrons is admixed. For the low-
est cyclotron harmonic the unstable region in parameter space is largest. With increas-
ing harmonic number it shifts to increasing cold upper-hybrid frequencies,ωuhc, but at
the same time there is a narrow region of high cold-to-hot density ratios where electron-
cyclotron harmonic waves can be destabilized by hot electron loss cones. The most
probable region of non-convective instability centers around ratios ofnc/nh ≈ 0.4.
Here a large number of harmonics may become destabilized. An example of many
electron cyclotron harmonics excited in the nighttime equatorial magnetosphere just
outside the plasmasphere is given in Fig. 4.12. Harmonics up to the sixth number are
visible in the electric wave field spectral density for several minutes.
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Ion-Cyclotron Instability

The cyclotron resonance symmetry between electrons and ions suggests that anelectro-
static ion-cyclotron loss cone instabilityshould complement the electrostatic electron-
cyclotron instability discussed. This is indeed the case. The technique to determine the
non-convective instability in parameter space is the same as that for the electrostatic
electron-cyclotron waves. The only difference is found in exchanging the hot electron
loss cone distribution with the hot ion loss cone distribution in Eq. (I.10.96), but in
addition one must retain the electron contribution to the dielectric response function

ε(ω,k) = 1 +
ω2

pe

ω2
ge

k2
⊥

k2
− 1

k2λ2
D

Z ′(ζe)

+
ω2

pi

k2

∑

l

∞∫

−∞
dv‖

Gli(v‖)f0i(v‖, v⊥;∆, β)
ω − k‖v‖ − lωgi

= 0 (4.64)

where the dimensionless operator function,Gli, is defined as

Gli = 2π

∫ ∞

0

v⊥dv⊥J2
l (k⊥rgi)

[
k‖

∂

∂v‖
+

lωgi

v⊥

∂

∂v⊥

]
(4.65)
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Fig. 4.12. Electron-cyclotron harmonics in the magnetosphere.

and the undisturbed non-equilibrium ion distribution function is the sum of the hot loss
cone and cold isotropic ion distributions

f0i = fic(v‖, v⊥) + fih(v‖, v⊥;∆, β) (4.66)
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Fig. 4.13. Regions of convective and absolute ion-cyclotron instability.
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Figure 4.13 shows the result of a parametric investigation of the region of non-convec-
tive growth of the electrostatic ion-cyclotron loss cone instability. The conditions for
absolute instability are satisfied at the crossing point of the parallel and perpendicular
group velocities. The particular parameters used in this calculation arenic/nih =
0.1, Tih = Teh = 1 keV, andk‖rgih = 0.6. The two boundaries for the inverse
growth length,ki⊥rgih, are 0 and 0.1, withki⊥ increasing toward the crossing point of
the vanishing group velocities. The ion-cyclotron instability is not independent of the
electron density and temperature. The curve of marginal growth rate as function ofnec

andTec is given in Fig. 4.14 forTeh = Tih = 1 keV,nih = 1 cm−3, andωge = 5.3 kHz.

Post-Rosenbluth Instability

In one particular case, when the reduced distribution function of the hot ions

Fi⊥(v⊥) = 2π

∞∫

−∞
dv‖fih(v⊥, v‖) (4.67)

can be considered to be unmagnetized, the dispersion relation can be treated analyti-
cally. The shape of the functionFi⊥ is shown in Fig. 4.15. The instability arises due to
the positive gradient in the perpendicular velocity distribution at the transition from the
loss cone to trapped particles. The dispersion relation including electrons then simpli-
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fies to

ε(ω,k) = 1 +
ω2

pe

ω2
ge

− k2
‖

k2

ω2
pe

ω2
+

1
k2λ2

Di

[
Fi⊥(0) + G

(
ω

k⊥

)]
= 0 (4.68)

whereFi⊥(0) is the value of the distribution function inside the loss cone, and

G

(
ω

k⊥

)
=

ω/k⊥∫

0

∂Fi⊥(v⊥)/∂v⊥
(1− k2

⊥v2
⊥/ω2)1/2

dv⊥ (4.69)

The resonant region of the perpendicular velocity space is defined byω = k⊥v⊥ cos φ,
which covers the entire regionv2

⊥ > ω2/k2
⊥. The non-resonant region,ω 6= k⊥v⊥ cos φ,

is restricted tov2
⊥ < ω2/k2

⊥. Separating the real and imaginary parts ofε and assuming
weak instability, the unstable wave frequency of the ion loss cone instability is

ω2
ilc =

k2
‖λ

2
Di

[k2λ2
Di(1 + ω2

pe/ω2
ge) + Fi⊥(0) + G]

ω2
pe (4.70)

The growth rate can be expressed through an integral over the entire resonant region as

γilc =
ωilc

2[k2λ2
Di(1 + ω2

pe/ω2
ge) + Fi⊥(0) + G]

∞∫

ω/k⊥

∂Fi⊥(v⊥)/∂v⊥
(k2
⊥v2

⊥/ω2 − 1)1/2
dv⊥ (4.71)

This unmagnetized ion loss cone instability is calledPost-Rosenbluth instability. It is
a lower-hybrid wave instability. In the modified two-stream instability we already met
one member of this family. There the instability was driven by streaming ions or elec-
trons. In the present case the free energy is provided by the ion loss cone only, but
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Fig. 4.16. Ring current particle precipitation due to electrostatic cyclotron waves.

the resulting wave is again a wave close to the lower-hybrid frequency. Compared to
the low harmonics of the ion-cyclotron frequency, this wave is a high-frequency insta-
bility and it grows close to the ion-electron resonance atωlh. This can be understood
from the fact that due to the high frequency the ions are unmagnetized and cannot have
ion-cyclotron resonances, but the effect of the magnetic field is introduced via the mag-
netization of the electrons.

4.6. Electrostatic Cyclotron Waves

Loss cones are a general feature of trapped particle distributions in mirror-type magnetic
configurations. These configurations are encountered in the global magnetospheric
fields of planets, the global loop magnetic fields of the solar corona and, on smaller
scales, in local field depletions in the polar cusps and magnetotail. In all these places
electrons and ions are trapped locally and bounce back and forth between the mag-
netic mirror points and electrostatic cyclotron waves are excited if the density of a cold
background distribution is not too high.

Ring Current

In the ring current, outside the plasmasphere, the conditions for excitation of electro-
static cyclotron waves by loss cone distributions are ideal, especially when plasma
injections caused by enhanced convection from the tail into the inner magnetosphere
enhance the ring current. Figure 4.12 shows electron-cyclotron waves excited during
enhanced convection at a distance of 6–8RE in the post-midnight magnetosphere. Ion-
cyclotron waves are excited in the ring current region, too. But their frequencies are
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much lower than those of the electrons and are barely resolved by current instrumenta-
tion. One can only observe their secondary effects on the ion distribution.

Cyclotron waves play an important role in the dynamics of the magnetospheric
plasma. They extract the free energy from the loss cone distribution, thereby filling
the loss cone. The interaction between the electrostatic cyclotron waves and the hot
component causes a continuous flux of particles, electrons and ions, to be scattered into
the loss cone, where they will precipitate into the ionosphere and are lost by collisions.

The region in the equatorial plane where this happens lies outside the plasmapause
and overlaps with the auroral zone. This suggests that part of the precipitating auroral
electron flux is caused by the excitation of electrostatic electron-cyclotron waves in the
nightside equatorial ring current region, and that the excitation mechanism of the diffuse
aurora is electrostatic electron-cyclotron wave excitation by ring current electron loss
cone distributions. Figure 4.16 sketches the geometry of this interaction.

Plasma Sheet

Wave measurements in the undisturbed plasma sheet exhibit the presence of a broad
band of electron-cyclotron waves reaching from the electron gyrofrequency to the elec-
tron plasma frequency (see Fig. 4.17). Due to instrumental resolution the harmonics
are not resolved, but the bump on the spectrum is a clear indication of their presence.
That electron-cyclotron harmonics are excited in the plasma sheet indicates that local
magnetic mirror configurations with electron loss cone distributions must have evolved
there. Moreover, the plasma must consist of two populations, hot plasma sheet electrons
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and a dilute cold electron component. Since the electrostatic electron-cyclotron waves
have frequencies up to the cold upper-hybrid frequency, one can use the high-frequency
cut-off of the bump on the spectrum to estimate the ratio between cold and total electron
density. In the present case we havenec/ne ≈ 0.15.

Electrostatic Hiss

Electrostatic cyclotron waves produce a continuous flux of charged particles into the
loss cone and thus a continuous flux of particles precipitating along the magnetic field
into the auroral ionosphere. Outside the equatorial wave excitation region, these particle
fluxes are excess fluxes parallel to the magnetic field and will give rise to the excitation
of beam-driven high-frequency electrostatic waves and also of low-frequency broad-
band emissions calledelectrostatic hiss.

Figure 4.18 shows a precipitating auroral electron beam distribution function. The
bump in the distribution is caused by the superposition of the primary electron beam
and the secondary electrons backscattered from the ionosphere. Clearly, a positive slope
exists on the distribution function in this three-component system consisting of dense
ionospheric cold electrons, the beam and the backscattered electrons. This positive
slope will spontaneously emit waves by the Cherenkov mechanism in every frequency
range where the Cherenkov condition in Eq. (2.12) is satisfied. This condition requires
large indices of refraction. For particles of auroral energiesN‖ = ω/k‖c ≈ 10−2. In
a dense plasma the emission will be predominantly in the R- and X-modes below the
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upper-hybrid frequency and in the whistler mode near the resonance cone angle

cos2 θres =

(
1 +

ω2
ge

ω2
pe

)
ω2

ω2
ge

− me

mi

(
1− ω2

ω2
ge

)
− ω4

ω2
geω

2
pe

(4.72)

These waves propagate between the lower-hybrid frequency,ωlh, andωge or ωpe. For
dense plasmas the upper limit of the emission isωge, for dilute plasmasωpe.

The growth rate of the low-frequency Cherenkov emission can be calculated from
the dielectric response function which for the three components in the inhomogeneous
ionospheric plasma is a complicated expression. The waves propagate on the dense
background, which entirely determines their propagation properties, while the beam is
responsible for their emission. Hence, one can assume weak instability and obtain

γ =
ω3

2k2 cos2 θ

∑
s

ns

n0

ImZ ′(ζs)
v2
ths

(4.73)

wheres counts the beam electrons, the backscattered electrons, and the ionospheric
ions. This expression breaks down near the two resonances at the electron-cyclotron
and the lower-hybrid frequency.

The field-aligned propagation of the waves in the inhomogeneous ionosphere can
be taken into account by assuming that the growth rate and frequency change in the
same way as the density and the magnetic field. Then one can calculate the emit-
ted power from Eq. (2.15) for given velocity distributions. A numerical calculation
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is shown in Fig. 4.19. The electron beams generate a broad band of electrostatic hiss
aboveωlh and additional hiss at and aboveωpe. When including more secondaries in
the electrons, the emission maximum is lowered and shifted to higher frequencies.

Concluding Remarks

The microinstabilities discussed in the present chapter are caused by deviations from
the Maxwellian distribution. However, Maxwellians describe the final state of thermo-
dynamic equilibrium of a closed system which is perfectly relaxed. This situation is
hardly realized in nature. The normal case will be equilibria between energy inflow
and dissipation in a system and the equilibrium distributions will often not resemble
ideal Maxwellian distributions. Instabilities of various kinds may arise in these equilib-
ria, compete dynamically, saturate, and deform the distribution function, causing other
instabilities to grow and so on. Most of these processes are highly nonlinear, couple
different wave modes and affect the motion of the particles.

Further Reading

A number of microinstabilities are reviewed in [1], [4], and [5], where the latter is a
standard reference for most of the linear plasma instabilities. Ionospheric instabilities
are discussed in connection with electrojet theory in [2]. The current-drift velocity
thresholds for ion-cyclotron modes were first calculated by Kindel and Kennel,J. Geo-
phys. Res. 76 (1971) 3055. The linear and nonlinear theory of electrostatic loss cone-
driven cyclotron modes is found in [3]. Cyclotron waves and instabilities are found in
[6]. Power spectra of whistler-band auroral hiss were calculated by Maggs,J. Geophys.
Res. 34 (1976) 1707, and the plasma sheet wave spectra are from Baumjohann et al.,J.
Geophys. Res.95 (1990) 3811.
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5. Electromagnetic Instabilities

We now turn to the wide field of electromagnetic instabilities caused by velocity space
inhomogeneities or a deformation of the phase space distribution function. We assume
homogeneous plasma conditions and straight field lines. The examples chosen below
are selected from the space plasma physics viewpoint.

5.1. Weibel Instability

In addition to electrostatic instabilities, electromagnetic instabilities may also develop
in an unmagnetized plasma if specific conditions are satisfied. The only electromagnetic
mode is the ordinary mode. The instability causing its growth is known as theWeibel
instability. It is driven by a particular electron velocity distribution in the presence of
immobile neutralizing ions. In the nonrelativistic case, one can model it as

fe(v⊥, v‖) =
n0δ(v‖)
2πv2

the⊥
exp

(
− v2

⊥
2v2

the⊥

)
(5.1)

where the directions are given with respect to the direction of the wave vector, since
this is the only preferred direction in an unmagnetized non-streaming plasma.

Dispersion Relation

Using the above distribution and the dielectric response function from Eq. (I.9.59) in
our companion book,Basic Space Plasma Physics

εL(ω,k) = [k · ε(ω,k) · k]/k2

εT(ω,k) = [trε(ω,k)− εL(ω,k)]/2
(5.2)

it is easy to calculate the transverse response function

εT(ω,k) = 1− ω2
pe

ω2

[
1 +

k2v2
the⊥

ω2

(
1−N−2

)]
(5.3)
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Fig. 5.1. Unstable dispersion branch of the Weibel instability.

which inserted into the dispersion relation,N2 = εT(ω,k), yields

ω4

ω4
pe

− ω2

ω2
pe

(
1 +

k2c2

ω2
pe

)
− k2v2

the⊥
ω2

pe

= 0 (5.4)

For k = 0 the solution of this equation is the Langmuir oscillation,ω = ±ωpe. For
k 6= 0 the unstable branch of the dispersion relation is schematically shown in Fig.
5.1. For negative square of the wavenumber instability may arise. This is a convective
instability, because the wave moves at light velocity and cannot be excited locally.

Growth Rate

Solving for the unstable mode at frequency nearω = ωpe/2, one finds under the condi-
tion that|kv⊥/ωpe| > 0.5

γwei ≈
√

2kvthe⊥
(
1 + k2c2/ω2

pe

)−1/2
(5.5)

This growth rate is small, since it depends only on the perpendicular thermal velocity of
the plasma. Moreover, the electron inertial length enters the growth rate, suggesting that
the instability is related to the penetration depth of the wave into the plasma. Finally,
a parallel thermal spread of the electron velocity distribution will tend to suppress the
instability, because the parallel electric wave field will cause Landau damping. For
non-zero parallel electron temperature,Te‖, we can write the dispersion relation

k2c2 = ω2
peAe − (Ae + 1)ω2

peζeZ(ζe) (5.6)
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whereζe = iγ/kvthe‖. In the small argument limit of the plasma dispersion function,
Z ≈ −2ζe, suggested by weak instability condition, this dispersion relation can be
solved for the growth rate

γ2 =
k2v2

the‖

2
k2

k2
0

(
1− k2

0

k2

)
Ae

Ae + 1
(5.7)

Herek0 = A
1/2
e ωpe/c is the short wavelength cut-off of the Weibel instability. Its

growth rate increases for long wavelengths, but has a maximum atk = k0/
√

2

γwei,max =
k0vthe‖

2
√

2

(
Ae

Ae + 1

)1/2

(5.8)

The short wavelength cut-off is given by the anisotropy and the electron inertial length

k2
0 = Aeω

2
pe/c2 (5.9)

There is an interesting similarity between the Weibel instability growth rate and the
behavior of the firehose instability growth rate at finite frequency. Both instabilities
have short wavelength cut-offs and are driven by temperature anisotropies and, although
their nature is very different, Fig. 3.8 applies also to the Weibel instability.

5.2. Anisotropy-Driven Instabilities

Electromagnetic waves at frequencies below the electron-cyclotron frequency are cy-
clotron waves. These waves can be excited by several means. The most interesting
are excitation by temperature anisotropies and loss cones. Below we will treat only
the former one. As we have shown loss cones and temperature anisotropies are closely
related.

The most famous electromagnetic velocity space instability is the instability of
parallel propagating low-frequency electromagnetic waves of right- and left-circular
polarization, the R- and L-modes, introduced in Eqs. (I.9.122) and (I.9.127) of the com-
panion volume

N2
R,L = 1− ω2

pe/[ω(ω ∓ ωge)] (5.10)

where the negative and positive sign stand for the right-hand and left-hand polarized
mode, respectively. The electric wave vector of these waves is perpendicular to the
magnetic field and rotates during propagation of the wave along the magnetic field in
the same sense as the corresponding particle component. In particular, the R-mode
electric field vector rotates in the same sense as electrons gyrate around the magnetic
field, and the L-mode has the same sense of rotation as the gyration of ions.
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Cyclotron Resonance

Hence, it is easy to imagine that particles of the right species with a particular parallel
velocity will see a constant perpendicular electric wave field in their frame of reference
and will undergo strong interaction with the wave. This is the nature ofcyclotron res-
onance. In order to provide unstable conditions one must chose a distribution function
such that it has an excess of particles with a higher momentum than the wave. These
particles will be retarded by the wave and decelerated in the wave electric field, thereby
feeding the instability. The resonance condition is simply that

k‖v‖ = ω − lωgs (5.11)

the parallel velocity of the particle in resonance equals the parallel phase velocity of the
wave, Doppler shifted by the correspondinglth harmonic of the cyclotron frequency. In
other words, in the frame of the particle moving with resonant velocity the frequency of
the wave is equal to thelth harmonic of the cyclotron frequency, and the electric field
vector rotates atl times the rate of the particle rotation around the magnetic field. Note
that forl=0 the resonance condition becomes the usual Landau resonance.

We have already used this resonance condition when introducing electrostatic cy-
clotron waves. Clearly, for e.g.,l = 1 and in perfect resonance,ω = ωgs, the particle
will be at rest in the wave frame, all the time seeing the wave at the same phase. But
if there is a finite difference in the frequencies the resonance condition requires that the
difference picks out such a phase of the wave rotation that the particle is maintained
just in phase with the electric field, thus experiencing maximum electric effect. Im-
plicit in this assumption is that the perpendicular wavelength of the wave is larger than
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Fig. 5.3. Cyclotron resonance mechanism.

the gyroradius of the particles, warranting that the particles are magnetized. But this
condition is irrelevant for strictly parallel propagation, because then the wave field is
homogeneous in the perpendicular direction with infinite perpendicular wavelength.

The resonance condition is not as easy to understand intuitively as Landau reso-
nance. This has to do with the coupling of parallel and perpendicular particle motion
in the resonance. Firstly, it cannot be satisfied for arbitrary velocities. For instance,
for electron whistlers withl = 1 and no harmonics at largerl, the whistler frequency
given in Eq. (I.9.125),ωw < ωge, is smaller than the electron-cyclotron frequency, and
ωw − ωge is negative, implying that electrons in resonance with whistlers propagate
opposite to the whistler along the magnetic field.

In a velocity space representation like that of Fig. 5.2, the resonant region is located
in the negativev‖ plane. For an isotropic Maxwellian plasma withAe = 0 andTe⊥ =
Te‖, the isodensity contours of the velocity are circles, and the width of the resonant
region can be estimated to be of the order of the isotropic electron thermal velocity,
vthe. For an anisotropic distribution the width is the parallel thermal speed,vthe‖. In
the isotropic case there is no free energy available and no instability can arise.

The physical mechanism of cyclotron damping and instability is sketched in Fig.
5.3. A right-hand circularly polarized wave is moving along the magnetic field, in the
z direction. The electric field vector rotates as shown when the wave moves from left
to right. In the electron frame, where the electron is stationary, the wave is passing to
the right if the electron is slow with respect to the wave and to the left if the electron
is faster than the wave. A slow electron will see wave vectors in the succession shown
by the arrow in the lower part of the figure. Hence, the electric field experienced by
the electron rotates in the same direction as the electron. In this case the electron in
resonance will be accelerated by the wave field in the perpendicular direction, leading



108 5. ELECTROMAGNETIC INSTABILITIES

v
ll

ω/k

vthll

∆(ω/k) v⊥

Loss Cone Loss Cone

Isodensity
Curves

α
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to wave damping. A fast electron will see the wave rotating as shown in the upper part
of the figure, which is opposite to the sense of rotation of the electron. Hence though
the electron is in resonance with the wave, the rotational sense is wrong and the electron
does not see a stationary electric field and does not interact.

Resonant cyclotron interaction is thus favored if there are many particles at low
velocities. Figures 5.2 and 5.4 show two examples of phase space isodensity plots of
electrons in interaction with whistlers. Figure 5.2 shows the cases of an isotropic and
of an anisotropic distribution. It will be shown below that a temperature anisotropy
with excess in the perpendicular velocity, like in the right-hand side distribution, leads
to cyclotron instability, with the free energy stored in the temperature anisotropy as the
source. Figure 5.4, a loss cone distribution, is another example.

Whistler Instability

Before turning to the explicit calculation of the whistler growth rate, we may ask our-
selves what the cyclotron resonance condition Eq. (5.11) implies for the resonant en-
ergies of the electrons. Squaring and multiplying it byme/2 and using the whistler
dispersion relation in Eq. (5.10) in order to eliminate the parallel wavenumber, we can
construct the parallel resonant electron energy

We‖res = WB
ωge

ω

(
1− ω

ωge

)3

(5.12)
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where we introduced the magnetic energy per particle,WB = B2/2µ0n. Thus the
particles in resonance with the whistler have a particular parallel energy.

Let us assume that the plasma contains a hot electron component with positive
temperature anisotropy,Ae > 0. This component should be of sufficiently low density,
nh ¿ n0, in order to not disturb the propagation of the whistler mode. In such a
case the dispersion of the whistler wave is still described by the dispersion relation
(I.10.164). In other words, the whistlers propagate on the background of the cold and
isotropic plasma component. Since we require this background electron plasma to be
sufficiently cold, the cyclotron damping term in Eq. (I.10.165) shows that the waves
are practically undamped forvthec → 0. Whistler instability may arise due to the free
energy stored in the temperature anisotropy of the hot electron component.

Dispersion Relation

Retaining the anisotropy forces allows to use the right-hand dispersion relation of a
anisotropic Maxwellian plasma derived in Eq. (I.10.159) of our companion volume

k2
‖c

2

ω2
= 1 +

∑

s=c,h

ω

k‖vth‖s

ω2
ps

ω2

[
Z(ζs,1)− k‖vth‖s

ω
AesZ

′(ζs,1)
]

(5.13)

We need to consider only the imaginary part of this dispersion relation when looking
for weak growth entirely provided by the hot component. Using the large argument
expansion of the hot electron plasma dispersion function, the imaginary part of the
dispersion relation can be written as

Di(ω, k‖) =
√

πω

|k‖|vthh‖

ω2
ph

ω2

[
1−Ae

(
1− ωge

ω

)]
exp

[
− (ω − ωge)2

k2
‖v

2
thh‖

]
(5.14)

The real part of the dispersion relation is taken in its simplified version, since we as-
sumed a cold dense background plasma

Dr =
k2
‖c

2

ω2
− 1 +

ω2
pc

ω(ω − ωge)
(5.15)

Growth Rate

Weak instability is determined by the relationγ = −Di/(∂Dr/∂ω)|γ=0. Performing
the simple algebraic calculations yields the whistler growth rate

γw =

√
πω2

ph

|k‖|vthh‖

[
1−Ae

(
1− ωge

ω

)]
exp

[
− (ω − ωge)2

k2
‖v

2
thh‖

][
2 +

ω2
pcωge

ω(ω − ωge)2

]−1

(5.16)
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Two interesting conclusions can be drawn from this expression. First, since the whistler
frequency depends on the cold plasma frequency, the growth rate is proportional to the
ratio of hot-to-cold electron densities,γ ∝ nh/nc. The second and more important
conclusion is that the growth rate is positive only under the condition that

Ae > Aec = ω/(ωge − ω) (5.17)

whereAec is the critical anisotropy for instability. This condition can also be written as
a condition on the unstable frequency range for a given anisotropy

ω < ωc = ωgeAe/(Ae + 1) (5.18)

whereωc is the critically unstable frequency. Using this expression in the low-frequency
whistler dispersion relation gives a lower limit on the whistler wavelength

k2
‖ < k2

‖c = ω2
pcAe/c2 (5.19)

For a given temperature anisotropy of the hot electron distribution function there will
always be an unstable range of frequencies and wavenumbers, which will be excited
and will deplete the temperature anisotropy. Clearly, this frequency range is below the
electron-cyclotron frequency and may be found at very low frequencies. The lowest
reasonable frequency, up to which the ion effects can be neglected, is the lower-hybrid
frequency,ωlh. Hence, this theory is valid up to anisotropies as small asAe ≈ 0.02.

Threshold

We are now in the position to estimate the lowest threshold for the resonant energy of
the electrons for instability. Inserting the critical frequency into Eq. (5.12) produces

We‖res >
WB

Ae(Ae + 1)2
(5.20)

For resonance and instability the electron energy must exceed the limit set by this con-
dition. Otherwise instability will be inhibited. Low anisotropies require very high
electron energies to drive whistlers unstable. In the magnetosphere the anisotropies are
relatively low, of the order ofAe ≈ 0.1 − 0.5 in the electron radiation belts and even
lower in the near-Earth plasma sheet.

Parallel energies must thus exceed the Alfvén energy several times in order to gen-
erate whistlers. But this condition is easily satisfied by the trapped radiation belt particle
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component and, under certain favorable conditions, also in the near-Earth plasma sheet.
In these regions broadband low-frequency whistler noise is generated and frequently
observed as one of the fundamental electromagnetic low-frequency emissions. These
waves have a strong effect on the trapped and quasi-trapped particle distributions of the
radiation belt and the plasma sheet electrons, leading to enhanced precipitation of hot
electrons during excitation of whistler mode noise due to enhanced anisotropies.

Since enhanced anisotropies are caused by convection of plasma from the tail into
the inner magnetosphere, as we have shown in Eq. (I.2.63) of our companion book,
increase of the cross-tail electric field during substorms will often be associated with
whistler mode noise excitation in the near-Earth plasma sheet and enhanced hot electron
precipitation into the diffuse aurora. Similarly, trapping of large amounts of very en-
ergetic electrons in the Earth’s radiation belts will also lead to enhanced whistler noise
generation at lower latitudes and cause radiation belt electrons to precipitate. Hence,
whistler mode noise is a very important resonator for anisotropic energetic electrons in
the magnetosphere.

Ion-Cyclotron Waves

An entirely equivalent theory can be developed for the left-hand polarized parallel prop-
agating mode at low frequencies, the electromagnetic ion-cyclotron wave. It is easy to
follow the same reasoning as presented for whistlers, using only the different defini-
tion of the ion-cyclotron dispersion relation (I.9.140) given in the companion volume,
to find that ion-cyclotron waves of frequencyω < ωgi also experience instability in
anisotropic hot ion plasmas superimposed on a cold isotropic ion background. The
dispersion relation in this case includes the effect of the electrons and becomes

D(ω, k‖) = 1− k2
‖c

2

ω2
+

ω2
pe

ω2
ge

− ω2
pe

ωgeω
+

+
ω2

pi

ω2

{
ω

k‖vthi
Z(ζi) + Ai [1 + ζiZ(ζi)]

}
(5.21)

whereζi = (ω − ωi)/k‖vthi and charge neutrality requires that

ω2
pe

ωge
= −ω2

pi

ωgi
(5.22)

When neglecting the effect of the electrons, the solution to this dispersion relation sim-
ply parallels that of the electron whistler case. Ion-cyclotron instability driven by tem-
perature anisotropies of hot ions is found in the frequency range

ω < ωc = ωgiAi/(Ai + 1) (5.23)
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Fig. 5.5. Frequency and growth rate of the anisotropic ion-cyclotron instability.

The particle energy condition is slightly modified, because of the differences in the
electron and ion dispersion relations

Wi‖res >
WB

A2
i (Ai + 1)

(5.24)

For very large anisotropy one can drop the parallel temperature and find the approximate
dispersion relation

k2
‖c

2 =
ω2

pi

ωgi

ω2

(ω − ωgi)
− k2

‖c
2βi⊥
2

ω2
gi

(ω − ωgi)2
(5.25)

whereβi⊥ = 2µ0nkBTi⊥/B2
0 is the perpendicular ion plasma beta. Solution of this

cubic equation yields instability at maximum growth fork2
‖ À ω2

pi/c2, or wavelengths
much shorter than the ion inertial length. This very short wavelength waves have growth
rates

γaic ≈ ωgi

√
βi⊥/2 (5.26)

Growth rates calculated for the more realistic caseTi‖ 6= 0 are schematically shown for
theanisotropic ion-cyclotron instabilityin Fig. 5.5 forβi⊥ = 1. Maximum growth is
obtained at wavelength close to the ion inertial length, with rapidly decreasing growth
rate for lower anisotropies at longer wavelengths. These lower anisotropies are more re-
alistic in space plasmas. The dependence of the maximum growth rate on the anisotropy
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Fig. 5.6. Threshold resonant magnetic energy in the equatorial magnetosphere.

under the same conditions demonstrates the steep cut-off of the instability at low ion
anisotropies. At such small anisotropies the wave becomes a very-low frequency wave.

The ion energies required for resonance turn out to be considerably higher than
for electrons because of theA−2

i dependence in Eq. (5.24). Only the very energetic
radiation belt ions generate ion-cyclotron waves due to trapped ion anisotropies and
provide a mechanism of controlling energetic ion precipitation into the mid-latitude
ionosphere.

Electromagnetic vs. Electrostatic

Figure 5.6 shows the approximate variation of the magnetic energy per particle in the
equatorial plane of the Earth’s magnetosphere (in this figure we used the average den-
sities shown in Fig. 5.7 of our companion book). In the plasmasphere the magnetic
energy is comparably low. In this region resonance of electrons and ions with whistlers
and ion-cyclotron waves is easier than outside the plasmasphere. Particles having reso-
nant energies below 100 keV can become unstable nearL = 3. During injection events
and compression of the plasmasphere the threshold energy decreases, and instability
may occur for even lower energies. The sensitivity of the threshold resonance energy
on the background density is rather impressive. Even modest cold plasma injection into
a region outside the plasmasphere will cause a drastic decrease in the resonant particle
energy and will cause both electrons and protons entering cyclotron resonance with the
electromagnetic whistler and ion-cyclotron waves.
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But the electromagnetic cyclotron instability, with its relatively high energy thresh-
old for resonance with charged particles, must compete with the electrostatic cyclotron
instability which allows for resonance at lower energies, but depends on the presence of
a denser hot plasma background. Thus the two instabilities are about complementary in
the magnetosphere. The electromagnetic instability dominates the inner plasmasphere,
where energetic radiation belt particles of very low density have sufficiently high ener-
gies to fall into resonance, while the electrostatic cyclotron instability dominates in the
ring current, outside the plasmasphere, and in the near-Earth plasmasheet, where the
cold plasma density is low and the hot plasma particles are relatively frequent. Both
instabilities try to diminish the anisotropy and to deplete the resonant particles, causing
them to precipitate into the ionosphere. Both processes thereby fill the loss cone.

5.3. Ion Beam Instabilities

In this section we consider ion beams propagating along the magnetic field as a source
of low-frequency electromagnetic waves. In the linear regime these waves are beam-
excited ion-cyclotron modes, which at low frequencies make the transition to Alfvén
waves and the two other magnetohydrodynamic modes, the fast and slow modes. These
waves and their ionic excitation mechanisms are important in all places where shock
waves appear. It is widely believed that they are responsible for shock formation and
regeneration. We briefly discuss how instability can arise in these modes. There are
three types of instabilities, the R-resonant, L-resonant, and the non-resonant beam in-
stabilities. Figure 5.7 shows schematically the ion velocities for the two resonances.
The resonances are found at

vR,L,res = (ω ± ωgi)/k‖ (5.27)

Ion-Ion R-mode Instability

Let us assume that the plasma consists of three components, a hot Maxwellian electron
distribution and two drifting Maxwellian ion distributions. These must not necessarily
be of same temperature or density. The core distribution may be denser, the beam
distribution more dilute. This impliesnic À nib. The core distribution is also assumed
to be slow,vic ¿ vib. We are interested only in the parallel wave propagation. In this
subsection we consider merely the right-hand mode which can be excited by the ion
interaction. As before, for parallel propagation of waves the only possible resonance
is the l=±1 cyclotron resonance, which implies that resonant interaction occurs for
ζs,1 ≤ 1, with s = e, c, b.

When the ion beam is cool,vb À vthb, only the beam is resonant, and both the
electrons and core ions satisfyζe,1 À ζc,1 À 1. The resonance condition for the beam
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with the R-mode is

ω = k‖vb − ωgi (5.28)

and the mode propagates along the beam withk‖ > 0. The growth rate for this insta-
bility is found numerically to be of the order of the frequency,γ ≈ ω. The real part of
the dispersion relation under these conditions is

k2c2

ω2
= 1−

∑
s

ω2
ps(ω − k‖vsb)

ω2(ω ± ωgs − k‖vsb)
(5.29)

and the weakly unstable growth rate for drifting Maxwellians is obtained by replacing
ω → ω − k‖vsb in the imaginary part of the dispersion relation. This yields

γ = ω

√
π

2

∑
s

ω2
ps

ω2

(
vsb

vths
− ω

k‖vths

)
exp

[
− (ω ± ωgs − k‖vsb)2

k2
‖v

2
ths

]
(5.30)

Under the above assumptions and forvib À vA, the maximum growth rate is

γiib,max = ωgi

(
nb

2n0

)1/3

(5.31)

This electromagneticion-ion beam R-mode instabilityresembles the electrostatic beam
instability in Eq. (2.37). Wave growth is obtained above a threshold beam speed of

vib ≥ vA (5.32)



116 5. ELECTROMAGNETIC INSTABILITIES

L−
Mode

R−Mode

C
oo

l B
ea

m


H
ot

 B
ea

m


10−4

10−3

10−2

γ m
ax

/ω
gi



10−2 10−1 100
βic

vib=2vA

Tic=0.01Tib

Fig. 5.8. Maximum growth rates for ion beam-resonant modes.

The excited wave is essentially a right-hand circularly polarized Alfvén whistler with
long wavelength dispersion

ω ≈ k‖vA (5.33)

and positive helicity. As discussed earlier, for larger angles of propagation this mode
goes smoothly over into the magnetosonic mode. For larger wavenumbers it becomes
the usual whistler.

Ion-Ion L-mode Instability

The other important ion beam instability is the resonance with the left-hand polarized
mode, which at long wavelength and small wavenumbers is the ion whistler or ion-
cyclotron mode. It has negative helicity and propagates parallel to the beam. Further-
more, the electron and the core distributions are non-resonant, such that the plasma
dispersion function is of the large-argument type. The numerical solution of the dis-
persion relation for this case shows that the threshold speed for instability is, as for the
right-hand mode, also the Alfvén velocity.

However, it is easier to excite the right-hand mode under cool beam conditions
because at the low thermal velocities of the beam there are only few ions which can
resonate with the left-hand mode. Therefore cold beams will predominantly generate
right-hand waves. An increase of the beam temperature raises the number of particles
which can resonate with the L-mode, and its growth rate becomes comparable to that of
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the R-mode. Figure 5.8 shows the maximum growth rates for both modes under ion-ion
beam excitation as function of the cold background ion plasma beta,βic.

Non-resonant Ion Beam Instability

The last example of an ion beam instability possibly important for space plasmas is a
non-resonant instability as shown in Fig. 5.9. The resonant velocity,v‖r, for a resonant
instability would lie far outside of any of the distributions, either background or beam.
Because of the condition of non-resonance, the plasma dispersion functions for all three
components are to be expanded in the large argument limit,ζ À 1.

This non-resonant mode will propagate in the direction opposite to the ion beam.
It has negative helicity and small phase velocity. The instability is basically a firehose
instability, caused by the inertia of the fast ion beam which exerts a centrifugal force on
the bent magnetic field. Its maximum growth rate is

γinr,max ≈ nib

2n0

vib

vA
ωgi (5.34)

For fast beams this growth rate is quite substantial, larger than the resonant ion beam
growth rate, and if the ions in the beam have a larger mass than the background, the
instability grows even faster due to its firehose-like mechanism. On the other hand,
the instability has a larger threshold, since it has to overcome the restoring forces of
perpendicular pressure and magnetic tension. But in regions of weak magnetic fields, as
the foreshock region of the Earth’s bow shock, the non-resonant instability is important.
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5.4. Upstream Ion Beam Modes

The ion beam instabilities discussed in the previous section are important in many space
plasmas. Instability can be caused by ion beams in the solar wind and solar corona,
in cometary atmospheres, near shock waves, and in the plasma sheet boundary layer.
In all these regions ion beams are known to exist. Depending on their speeds, thermal
spreads and external conditions, they will cause one or the other instability. All these re-
gions will exhibit low-frequency oscillations in the Alfvén, whistler, and magnetosonic
modes.

Foreshock Waves

In the Earth’s foreshock region ions are reflected from the shock front (see Sec. 8.5 of
our companion book) and propagate upstream at moderate velocity on the background
of the cold solar wind beam. This is the classical case of an electromagnetic counter-
streaming beam situation. The beam is less dense than the solar wind,nib ≈ 0.01n0,
but becomes warm due to scattering at solar wind fluctuations and at the self-generated
waves. Although the solar wind ions are cool, the plasma beta is relatively high. Hence,
the R-mode instability is the fastest growing mode. It causes large fluctuations in the
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Fig. 5.10. Unstable Ion beam effects in the foreshock region.
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Fig. 5.11. Magnetic power density of cometary electromagnetic ion beam waves.

foreshock solar wind magnetic field, which have important effects on the reflected and
backstreaming beam ions and on the shock formation process itself. Figure 5.10 shows
schematically what may happen in the foreshock region of the Earth’s bow shock.

Scattering of the ion beams by broad-spectrum electromagnetic waves will heat the
ion beams diffusely, while in monochromatic waves the beams will become partially
trapped and thus phase-bunched. Both effects have been observed. In addition, the
waves may reach such large amplitudes that nonlinear effects appear. As the large
amplitude waves are convected downstream toward the shock, they steepen, accumulate
at the shock front and modify it.

Cometary Waves

Electromagnetic ion beam instabilities are also caused by injection of cometary ions
into the solar wind. Comets evaporate neutral gases which are ionized by solar UV
radiation and by collisions in the cometary atmosphere. These fresh ions move relative
to the solar wind and form beams. The beams are cool and dense, consist of heavy ions,
and are nearly at rest in the frame of the comet. Their relative speed in the solar wind
frame is initially of the order of the solar wind velocity, much larger than the Alfvén
speed.

Such beams can excite the non-resonant ion beam instability at low frequencies.
Near comets one observes these Alfvénic and magnetosonic oscillations in the R-mode,
next to other electrostatic beam-excited waves like the lower-hybrid mode. Figure 5.11
shows the magnetic spectra measured in the vicinity of a comet. At closest approach,
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where the newly injected ion density is highest, one sees strong magnetic emissions in
the Alfvén and whistler bands.

5.5. Maser Instability

Propagating plasma waves contribute to redistribution of energy and to transport of
information. The various instabilities discussed so far generate waves which are trapped
in the plasma. But there is also radiation which can escape from the plasma. Such
radiation is observed from natural plasmas, like the solar corona, magnetized stars, the
large planets like Jupiter, and also from the magnetosphere. Radiation is emitted by
accelerated electrons moving in the curved magnetic field. This gyro or synchrotron
radiation requires highly energetic electrons, which exist only in the radiation belts.

However, there is also nonthermal radiation like theauroral kilometric radiation
observed in the magnetosphere during substorms. Auroral kilometric radiation is very
impulsive and intense and cannot be generated as gyro-emission from trapped particles.
Thus one needs a linear excitation mechanism, an instability in either the O-mode or
the X-mode. Mechanisms of this kind can exist only under extreme plasma conditions,
because the escaping branches of both modes propagate at very high speeds and there-
fore need very long amplification lengths to reach reasonable amplitudes and require
relativistic electrons to interact with.

Relativistic electrons modify the resonant orbits in the (v‖, v⊥) plane and favor
resonance with one of the escaping modes. Numerically, a strong instability can be ob-
tained if the weakly relativistic electron distribution has a loss cone. Such distributions
are common in magnetospheres, in the solar atmosphere, and in mirror-type magnetic
field configuration. That the electrons have to be relativistic is only a weak restriction.
Even 10 keV electrons are sufficiently relativistic to yield an instability. Also weakly
relativistic parallel electron beams, as observed in the aurora, are capable of direct am-
plification of the escaping modes.

In effect, the physical mechanism of the direct electromagnetic mode instability
is an inversion of the absorption coefficient of the plasma by the combination of the
relativistic effect and the presence of the loss cone. The excess energy stored in the
particles outside the loss cone and the positive gradient in the perpendicular velocity
distribution of the particles are responsible for this turn-around. Because of this reason
the plasma starts behaving not as an absorber but as a nearly coherent emitter. This is
the reason why one is speaking of acyclotron maser instability.

Cyclotron Emissions

All mechanisms of direct cyclotron radiation are based on linear instability of the
plasma in one of the free space modes. Such instabilities depend on the resonance
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condition
k‖v‖ − ω + lωge = 0 (5.35)

where only the electron-cyclotron frequency enters for the high-frequency modes. The
ions serve as a neutralizing background, as was the case for the solutions of the disper-
sion relation (I.9.115) given in the companion volume. The above resonance condition
contains resonances at all harmonics. Thel=0 resonance is the Cherenkov resonance,
which requiresN2 cos2 θ = k2

‖c
2/ω2 > 1 for emission and thus very fast particles.

Electrostatic Cherenkov emission (see Secs. 2.1 and 4.6) is of no interest here, but the
l=0 resonance for parallel or oblique propagation will always cause Landau damping.

Cyclotron emission is obtained forω ≈ lωge À |k‖v‖|. Actually, this condition is
appropriate for escaping waves, because for these wavesN2 < 1 and thus for nonrel-
ativistic particlesk‖v‖ = N(v‖/c)ω cos θ ¿ 1. For nonrelativistic resonant particles
leading to emission of waves one speaks ofcyclotron emission, mildly relativistic parti-
cles producegyro-emission, and ultra-relativistic particles lead tosynchrotron emission.
In both relativistic cases the relativistic dependence of the cyclotron frequency on the
velocity must be taken into account. This requires redefinition ofωge

ωge → ωge/γR (5.36)

The right-hand side contains the relativistic gamma factor

γR =
(
1− v2/c2

)−1/2
(5.37)

which shows that the resonance condition (5.35) becomes a complicated function of
both components of the particle velocity, which implies that it now describes a fullres-
onance curvein the velocity plane. The straight resonance strips of the low-frequency
R- and L-modes thereby deform into resonance regions for the high-frequency modes.

For mildly relativistic electronsγR can be expanded, and Eq. (5.35) states that

k‖v‖ − ω + lωge

[
1− (v2

‖ + v2
⊥)/2c2

]
= 0 (5.38)

which is a quadratic equation for the resonant frequency. One obtains two resonant
values forv‖ depending onv⊥, instead of the single nonrelativistic resonance,v‖ =
(ω− lωge)/k‖. Sincev/c < 1, the physical solutions of the resonance condition are re-
stricted to the region inside a circle of radiusv/c in the(v‖/c, v⊥/c) plane. To identify
the curve described by the above resonance condition, we rewrite it as

v2
⊥

c2
+

(v‖ − k‖c
2/lωge)2

c2
=

v2
r

c2
(5.39)

In three-dimensional velocity space this equation describes a sphere centered atvc⊥ =
0 andvc‖/c = k‖c/lωge with radius

vr

c
=

vc‖

c

[
1− 2c2(ω − lωge)

lωgev2
c‖

]1/2

(5.40)
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Fig. 5.12. Maser resonance ellipses.

The general resonance condition (5.35), including the full relativistic replacement of
the gyrofrequency, is more complicated. It describes a resonant ellipsoid which cuts
the(v‖, v⊥) plane in a resonance ellipse. The resonant ellipse parameters, eccentricity,
ε, center position,vc‖/c, on thevc⊥ axis, and major semi-axis,vr/c, are given by

ε = [k2
‖c

2/(k2
‖c

2 + l2ω2
ge)]

1/2

vc‖/c = ωk‖c/(k2
‖c

2 + l2ω2
ge) (5.41)

vr/c = [(k2
‖c

2 − ω2 + l2ω2
ge)/(k2

‖c
2 + l2ω2

ge)]
1/2

For ω2 > k2
‖c

2 this ellipse lies entirely inside the unit sphere of radiusv/c = 1, for
k2
‖c

2 = ω2 it touches it on thev‖ axis, and forω2 < k2
‖c

2 it crosses the unit sphere
somewhere outside of the axis. Figure 5.12 illustrates this situation.

Growth Rate

To calculate the maser growth rate for a given velocity space distribution of the particles,
one must integrate over these resonant parts of the resonance ellipses inside the unit
circle of radiusv/c. Any external part of an ellipse does not contribute, because it
would be unphysical to take it into account. But before performing this calculation let
us add some remarks on the nonrelativistic case. In the nonrelativistic case the resonant
curve is a straight line parallel to thev⊥ axis at

v‖/c = vnr/c = (ω − lωge)/k‖c (5.42)
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This straight line is a tangent to one of the ellipses in the resonant plane at smallv‖
and, of course, also for smallv⊥. But sincevnr must be nonrelativistic, one requires in
addition that the relativistic shift of the center of the resonant curve must be large so that
|vc‖| ≈ vr À |vnr| ≈ |vr−vc‖|. That this tangent is not a good approximation in many
cases is immediately obvious from the shapes of the resonance curves. Moreover, the
integration in the nonrelativistic case is performed along this straight line up to infinity,
where the resonance curve has long deviated from it.

In the mildly relativistic case, when one integrates along the shifted-circle reso-
nance curve, integration is performed only over a limited range of perpendicular veloc-
ities,v⊥ < vr. Let us write the variables of integration along the resonant circle as

v‖ = vc‖ − w cosψ

v⊥ = w sin ψ
(5.43)

This transformation allows to rewrite the resonant delta function as

δ(k‖v‖ − ω + lωge/γR) ≈ (c2/vrlωge)δ(w − vr) (5.44)

In calculating the resonant growth rate, we make the usual assumption of weak insta-
bility, linearize the Vlasov equation, and use the cold plasma dispersion relation for the
free space electromagnetic O- and X-modes. But one cannot use the conventional ap-
proach of the plasma dispersion function. Instead, one must explicitly integrate along
the resonant circle over the given equilibrium distribution function,fe0(v‖, v⊥). This
can be simplified by replacing the variables in the velocity integrals with the help of the
above definitions as follows

2π

∫
v⊥dv⊥dv‖ = 2π

∫
w2dw

∫ π

0

dψ (5.45)

The limits on thew integration are given by the resonant delta function. It simply
requires that the integrand has to be taken atw = vr, the radius of the resonant circle
for the mildly relativistic electrons.

In symbolic form the growth rate of the cyclotron maser instability can be ex-
pressed as the integral over the angular variableψ over the resonant half-circle

γcm = −
∞∑

l=−∞

4π2vrω
2
peR(k)

lωgeωn0

∫ π

0

|Al|2(k,v)Olfe0(v‖, v⊥)
∣∣∣
w=vr

dψ (5.46)

The operatorOl and the factorR(k) are defined as
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Ol = k‖
∂

∂v‖
− lωge

v⊥

∂

∂v⊥

R(k) =
1
2

(
1 +

K2
σ

1 + T 2
σ

)[
N

∂(ωN)
∂ω

]−1 (5.47)

with N = kc/ω the refraction index of the emitted wave mode, which can be taken
from the cold plasma wave dispersion relation in Eq. (I.9.115). The factorAl, which
contains the various contributions of the harmonics and the polarization of the emitted
wave mode, is given by

Al(k,v) = (1 + K2
σ + T 2

σ )−1/2




Kσ sin θ + Tσ cos θ

−i

Kσ cos θ − Tσ sin θ


 ·




lv2
⊥Jl(η)/η

iv⊥J ′l (η)
v‖Jl(η)


 (5.48)

Hereη = k⊥rge, the indexσ = ±1 identifies the wave mode, withσ = 1 for the
O-mode andσ = −1 for the X-mode. Explicit expressions forN, Kσ, Tσ in the cold
plasma approximation are in conventional notation as used in magneto-ionic theory
with the abbreviationsX = ω2

pe/ω2, Y = ωge/ω

N2 = 1−XT/(T − Y cos θ)

Tσ = −(Y 2 sin2 θ − 2σ∆)/[2Y (1−X) cos θ]

Kσ = XY T sin θ/[(1−X)(T − Y cos θ)]

∆2 = Y 4 sin4 θ/4 + (1−X)2Y 2 cos2 θ

(5.49)

andT is the solution of the quadratic equation

T 2 +
Y sin2 θ

(1−X) cos θ
T − 1 = 0 (5.50)

Furthermore, forX < 1 and oblique but nearly parallel propagation of the emitted wave

N2
σ = 1−X/(1 + σY |cosθ|)

Kσ = ω2
peωge sin θ/[ω(ω2 − ω2

pe)(1 + σ| cos θ|ωge/ω)]

Tσ = −σsgn(cos θ)sgn(1− ω2
pe/ω2)

(5.51)

For nearly perpendicular propagation one hasT+1 →∞, T−1 → 0 and
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Fig. 5.13. Loss cone as driver of the cyclotron maser instability.

N2
+1 = 1−X

K+1 = XY sin θ/(1−X)
N2
−1 = 1−X(1−X)/(1−X − Y 2 + XY 2 cos2 θ)

K−1 = XY sin θ/(1−X − Y 2 + XY 2 cos2 θ)

(5.52)

The above growth rate is a very complicated expression, but under favorable conditions
it becomes positive. This happens, for instance, when the distribution function of the
hot relativistic particles is a loss cone distribution and the resonant circle is entirely
inside the loss cone,α < α`. Thenfe0(v⊥) has a positive gradient inside the loss cone.
It turns out that the contribution of the term(lωge/v⊥)∂feh/∂v⊥ is destabilizing along
the entire contour of integration. This is shown in Fig. 5.13.

Emission Bounds

We can find an approximate estimate of the maximum growth rate of the maser insta-
bility by using the value of the distribution function near the point of the resonant circle
that is tangential to the loss cone ray (see Fig. 5.13) atv⊥ = vr, v‖ = vc‖. This value is

fmax ≈ nh/2πvc‖v
2
r (5.53)

The X-mode has approximately a refraction index ofN−1 ≈ 1. For l = 1, we get

γcm,max ≈ πωpe
c2

vrvc‖

nh

n0

ωpe

ωge
(5.54)
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Fig. 5.14. Switching-off boundaryvr = 0 for the cyclotron maser.

As is obvious from Fig. 5.13, the range of validity is∆vc‖ ≈ vr and∆vr ≈ vc‖δα`,
where(δα`)−1 ≈ |∂ ln f/∂α| inside the loss cone.

Growth of the instability is also restricted by the simplifying kinematic assumption
of small angles. The maximum angle of emission in the X-mode is obtained from its
dispersion relation asθmax = cos−1(vr/c), with an angular spread of the emission
cone ofδθmax ≈ δvc‖/c. This is a rather narrow angle. The bandwidth of the emission
is obtained as

∆ω ≈ ωgeδα`vrvc‖/c2 (5.55)

Since the emission frequency must be far above the X-mode cut-off, a further restriction
arises for the frequency. Using the dispersion relation for the X-mode, one can plot the
curvevr = 0 when the maser switches off (Fig. 5.14). This sets an upper limit on the
ratio of plasma to cyclotron frequency which is given by

ωpe/ωge < vr/2c < 1 (5.56)

Hence, the cyclotron maser instability will work only if the plasma frequency is con-
siderably below the electron-cyclotron frequency. In addition, the growth rates of the
higher harmonics decrease as the2(l−1)th power of the ratiovr/c, and the growth rate
of the O-mode is very small compared to that of the X-mode.
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Auroral Kilometric Radiation

For the cyclotron maser instability it is important to have very low plasma densities and
strong magnetic fields. One favorable situation is encountered in the auroral density de-
creases during active auroras when the auroral ionospheric plasma is strongly depleted.
In this density trough mirroring auroral particles have large loss cones. Moreover, with
their energy of several keV the mildly-relativistic approximation applies. This may lead
to the emission of X-mode waves at the cyclotron frequency if the cyclotron damping
due to the background is overcome by the inverse absorption of X-mode waves induced
by the loss cone distribution.

The radiation emitted by loss cone electrons in the auroral region can explain the
strong auroral kilometric radiation emitted during substorms. Figure 5.15 sketches the
pass of a satellite across the auroral density depletion indicated by the steep drop inωpe.
When crossing the density trough at a few 1000 km altitude, the spacecraft encounters
strong auroral kilometric radiation at the local cyclotron frequency. At larger distances
it observes propagated emission. At lower frequencies it measures whistler noise and
electrostatic hiss, including broadband increases below the cyclotron frequency.

Concluding Remarks

The microinstabilities discussed in the present chapter are caused by deviations from
the Maxwellian distribution, a situation nearly never realized in nature. The normal
case will be equilibria resulting from competition between energy or momentum inflow
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and dissipation in a system. A plasma is very sensitive to both of these because of
the high mobility of its free or quasi-free particles. Instabilities of various kinds may
arise in these equilibria, saturate, and deform the distribution function, causing other
instabilities to grow. Most of these processes are highly nonlinear, couple different
wave modes and affect the motion of the particles resonantly and non-resonantly.

Further Reading

The full drift kinetic electromagnetic tensor is derived in [4] and, in a particularly trans-
parent form, in [1]. Microinstabilities, including a number of electromagnetic instabili-
ties, are reviewed in [2], and [5]. Cyclotron waves and instabilities are found in [7] and
[8]. The full theory of the whistler mode is contained in [6]. Numerical calculations
of many growth rates of electromagnetic instabilities are given in [1]. The cyclotron
maser mechanism is best reviewed in [5]. The auroral zone wave spectra are modeled
after Viking observations by Pottelette et al.,J. Geophys. Res. 97 (1992) 12029. The
dispersion curves and growth rates of the ion-cyclotron instability have been taken from
[1].
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6. Drift Instabilities

The effect of spatial inhomogeneities in the plasma on the instabilities has so far been
neglected. However, for longer wavelengths, which are comparable to the natural scales
of the plasma,Ln = |∇ ln n|−1, LB = |∇ ln B|−1, andLT = |∇ ln T |−1, the change
in the plasma parameters with space must be taken into account in the calculation of the
wave properties. The result is a new type of waves calleddrift modeswhich are entirely
due to the presence of the plasma inhomogeneity..

Inclusion of inhomogeneity introduces a severe complication. In the fluid ap-
proach it implies that the coefficients of the field variables become spatially dependent,
and straight forward Fourier transformation of the basic equations is inhibited. In the
simplest case, when the inhomogeneity is only in one spatial direction, say onx, the
plane wave ansatz is still possible in the two directionsy, z transverse to the direction
of inhomogeneity. One then reduces the basic system of equations to an ordinary dif-
ferential equation inx. For weak inhomogeneity one can take advantage of the further
approximation of expanding the inhomogeneities around a particular spatial position to
first order inx. This approach is the local approximation and is used in the following
theory.

6.1. Drift Waves

The fact that all plasmas are inevitably inhomogeneous and thus affected by gradients
in the plasma parameters implies that all plasmas are subject to drift wave propagation
and drift instability. Accordingly, one calls the drift instability alsouniversal instability,
meaning all kinds of drift instabilities without further specification. Clearly, drift insta-
bilities can arise for all kinds of waves from electromagnetic Alfvén and magnetosonic
waves up to ion-acoustic and plasma waves.

How the drift frequency arises can be understood from a dimensional inspection
of the linearized one-dimensional ion continuity equation in an inhomogeneous incom-
pressible plasma

∂δni

∂t
+ δvix

∂n0

∂x
= 0 (6.1)

129
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Fig. 6.1. Drift wave geometry.

with δvix = δEy/B0 = −ikyδφ/B0 the drift speed. For low frequencies the electrons
obey the Boltzmann law

δne = − en0

kBTe
δφ (6.2)

With the help of the ansatzexp(−iωt + ikyy) and assuming quasineutrality we find
that the oscillation frequency is given by theelectron drift wave frequency

ωde/ωge = kyr2
ge/Ln (6.3)

This slow oscillation of the electrons is caused by the density gradient. It has a fre-
quency much less than the electron gyrofrequency and a wavelength much longer than
the gradient scale. Obviously, because the waves are due to the electric field drift, the
propagation of the wave is transverse to the density gradient. The system of coordinates
is sketched in Fig. 6.1. But the wave current is entirely along the magnetic field because
the electric drift does not cause any currents.

Dispersion Relation

In order to obtain the electron response and the wave conductivity,σ = δj‖/δE‖,
consider the simplified Vlasov equation of the electrons instead of the Boltzmann law

δfe = −δv‖
∂f0

∂v‖
− δx

∂f0

∂x
(6.4)
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with the following expression for the linear excursion,δx, along the density gradient

δx = iδvx/(ω − k‖v‖) (6.5)

Furthermore, for electrostatic perturbations with vanishing∇× δE = 0 one has

k‖δEy = kyδE‖ (6.6)

and, sinceδvx = δEy/B0, the variation of the parallel electron distribution function is

δfe = −δE‖
ie

me(ω − k‖v‖)

(
∂

∂v‖
+

ky

k‖ωge

∂

∂x

)
f0 (6.7)

Using Plemelj’s formula (see Eq. (I.A.78) in the appendix of our companion book,
Basic Space Plasma Physics) to replace the resonant denominator this becomes

δfe =
πeδE‖

me
δ(ω − k‖v‖)

(
∂

∂v‖
+

ky

k‖ωge

∂

∂x

)
f0 (6.8)

One can express the parallel current by the integral

δj‖ = σδE‖ = −e

∞∫

−∞
v‖dv‖δfe (6.9)

Since this is proportional to the disturbed electric field,δE‖, the wave conductivity is

σ(ω,k) = −πε0ω
2
pe

n0|k‖|
ω

k‖

(
∂

∂v‖
+

ky

k‖ωge

∂

∂x

)
f0

∣∣∣∣
v‖=ω/k‖

(6.10)

Let the plasma density be inhomogeneous and otherwise use a Maxwellian undisturbed
distribution function, then the conductivity assumes the form

σe =
π1/2ε0ω

2

k2
‖λ

2
D|k‖|vthe

(
1− ωde

ω

)
(6.11)

This expression, inserted into the dielectric function, given in Eq. (I.9.54) of the com-
panion book, and repeated here

ε(ω,k) = I +
iσ(ω,k)

ωε0
(6.12)

yields a positive imaginary part ofε(ω,k) and may thus produce a drift instability.
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Frequency and Growth Rate

An example of a drift wave instability due to a density gradient can be obtained by
taking a more precise fluid picture for the ions than used above in the dimensional
derivation of the drift frequency. If only density gradients exist,Ln is finite while all
other scales go to infinity. The ion continuity equation then reads

∂δni/∂t +∇ · (n0δvi) = 0 (6.13)

where the density varies in space, and the oscillating ion velocity is given by the lin-
earized and Fourier transformed ion drift velocity

δvi = δvE +
ie

miω

(
δE‖ê‖ − ω2

ω2
gi

δE⊥

)
(6.14)

For simplicity the ions are assumed to be cold. Combining these equations and using
for electrostatic wavesδE = −∇φ, one gets for a density gradient alongy

δni =
en0

mi

(
k2
‖

ω2
− k2

⊥
ω2

gi

− k⊥
Lnωωgi

)
δφ (6.15)

The perturbed electron density is found from the above disturbed distribution as

δne = −(ik2
‖/eω)σeδφ (6.16)

Since the plasma is quasineutral, combining the densities yields the dispersion relation

ε(ω,k) = 1 +
k2
⊥c2

ia

ω2
gi

− k2
‖c

2
ia

ω2
− ωde

ω
+ i

(π

2

)1/2 ω

|k‖|vthe

(
1− ωde

ω

)
= 0 (6.17)

From here the real and imaginary parts of the frequency are obtained under the assump-
tion thatk2

‖c
2
ia/ω2 < k2

⊥c2
ia/ω2

gi ¿ 1 as

ωkd = ωde

(
1− k2

⊥c2
ia

ω2
gi

)
(6.18)

and

γkd =
(π

2

)1/2 k2
⊥c2

ia

ω2
gi

ω2
kd

|k‖|vthe
(6.19)

This is the firstkinetic drift instabilitywe encounter. It is driven by the density gradient
and exists only under the above condition on the parallel wavenumber. We note that for
finite plasmaβ this instability is quenched due to electron Landau damping.
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6.2. Kinetic Drift Wave Theory

If the influence of the plasma inhomogeneity on wave propagation and instability is
small, it will change the frequency only slightly. The natural drift wave frequency will
thus fall into the low-frequency range so that the particle magnetic moments are con-
served. Hence, the relevant kinetic equation to start from is either the gyrokinetic equa-
tion (I.6.25) or the drift kinetic equation (I.6.27) from our companion book. Choosing
the latter

∂fd

∂t
+

∂

∂xd
· (vdfd) +

∂

∂v‖

(
F‖
m

fd

)
= 0 (6.20)

with xd the guiding center coordinate and

vd⊥ = vE +
F×B
qB2

≈ vE +
1

ωgB

dE⊥
dt

vE =
E×B

B2
+

E‖ × δB
B2

F = qE‖
B
B
− µ∇B − 2kBT‖

R2
c

Rc −m
dvE

dt

(6.21)

Hereµ is the magnetic moment of the particles which is conserved during particle mo-
tion in the low-frequency wave field, andRc = −(B/B·∇)B/B is the curvature radius
of the magnetic field. In addition we took into account the electric drift in a transverse
magnetic field componentδB caused in presence of an electromagnetic wave.

Drift Kinetic Equation

In order to obtain the dispersion relation in a linearized theory, we take the following
separation of the distribution function

fd(xd, µ, v‖, t) = f0d(xd, µ, v‖) + δfd(xd, µ, v‖, t) (6.22)

The undisturbed part does still depend on the spatial inhomogeneity of the plasma. We
need to determine the plasma wave conductivity which enters the dielectric response
function. Hence, we need to calculate the disturbed plasma current. This current is
given as the sum over all speciess in the guiding center approximation as

δj =
∑

s

∫ [
qsδvdsf0ds −∇×

(
B
B

µsδfds

)]
dµdv‖ (6.23)

Note the normalization
∫

fddµdv‖ = n0. The first term on the right-hand side accounts
for the drift current of the components, while the second term adds the diamagnetic
current due to the gradients in the distribution function. For the latter we assume that
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they are weak and that their characteristic scales are longer than the wavelength. Thus
the waves have wavelength short compared to the gradient scales.

We have the freedom to change the system of coordinates and to put the gradient
along they axis and let the wave vector,k = (k⊥, k‖), be in the(x, z) plane. Looking
for electrostatic waves with electric field

δE = −∇δφ = −i(k⊥, 0, k‖)δφ (6.24)

the drift velocity in the inhomogeneous oscillating wave electric field is

δvd = −i

(
k⊥
B

êy +
ω − k‖v‖

ωgB
k⊥êx

)
δφ (6.25)

The next step is to linearize the drift kinetic equation under the condition that the drift
is caused in the inhomogeneous and oscillating wave field in the undisturbed inhomo-
geneous plasma which yields

i(k‖v‖ − ω)δfd + δvdy
∂fd0

∂y
+ ik · δvd⊥fd0 +

q

m
δE‖

∂fd0

∂v‖
= 0 (6.26)

The undisturbed drifting distribution function,fd0, contains the inhomogeneity of the
plasma, while the wave produces the polarization andE ×B drifts.

Dispersion Relation

Since the waves are electrostatic, we are interested only in the longitudinal part of the
dielectric response function (5.2). By using the definition of the dielectric tensor in Eq.
(6.12), this part can be expressed through the current. Then one can show that

k · σ · k = ik · δj/δφ (6.27)

where we used Ohm’s law for waves and the above representation of the wave electric
field through the electrostatic potential. Inserting into Eqs. (6.12) and (5.2) yields

εL(ω,k,x) = 1− k · δj
ε0ωk2δφ

(6.28)

Using an inhomogeneous but isotropic Maxwellian distribution as the undisturbed dis-
tribution and evaluating the current, one gets the dielectric response function of drift
waves

εL(ω,k,x) = 1 +
∑

s

{
ω2

ps

ω2
gs

k2
⊥

k2
+

1
k2λ2

Ds

[
1−

(
1− ωds

ω

)
Z(ζs)

]}
(6.29)
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The argument of the dispersion function isζs = ω/k‖vths and the drift wave frequency
ωds which appears in the dispersion function is determined by

ωds = k · vds0 (6.30)

The zero-order drift velocity entering this expression is given by

vds0 = sgn(qs)vthsB× [(rrs∇) ln fds0] /B (6.31)

This drift frequencydepends on the inhomogeneity of the plasma which is contained
in the spatial dependence of the zero-order distribution function. The drift velocity is
the diamagnetic drift velocity for the speciess. It is thus interesting that it is only the
diamagnetic drift which gives rise to drift waves in a plasma. In other words, it is the
various gradients which the pressure variation contributes that give rise to drift waves.

Electromagnetic Corrections

The simplified analysis presented here is based on two assumptions, the assumption of
small particle gyroradii and the electrostatic or longitudinal assumption. A more precise
and more sophisticated approach starts from the full Vlasov equation and expands the
distribution function up to first order iny with the expansion coefficientsL−1

n , L−1
B ,

andL−1
T , yielding for the longitudinal dielectric function

εL(ω,k,x) = 1 +
∑

s

χLs(ω,k,x) (6.32)

with the susceptibilities,χLs, defined as

χLs(ω,k,x) =
1

k2λ2
Ds

{
1−

∞∑

l=−∞

[
1−Os

(
1 +

lω

ηsωgs

)]
ω

ω − lωgs
Λl(ηs)Z(ζs)

}

(6.33)
where the differential operator,Os, is defined as

Os = sgn(qs)k⊥rgs cos θ
ωgs

ω

[
(rgs∇⊥) ln ns + (rgs∇⊥Ts)

∂

∂Ts

]
(6.34)

with θ the angle betweenk⊥ and thex axis. In many cases this operator can be approx-
imated byOs ≈ ωds/ω.

The expression for the dielectric tensor becomes more complicated if one takes
into account electromagnetic interactions. In order to obtain it one follows the pro-
cedure used to derive the magnetized dielectric tensor in Sec. 10.4 of our companion
book. The resulting dispersion relation becomes a function of frequency, wavenumber,
and space coordinate

D(ω,k, x) = 0 (6.35)
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Again, as has implicitly been done in the electrostatic case, this dispersion relation is
evaluated in thelocal approximation, atx = 0, under the assumption that the gradients
are weak and the gradient length is longer than the wavelength and the gyroradius

rgs ¿ Ln, LB , LT (6.36)

a condition which is a prerequisite for the validity of the theory of adiabatic particle
motion. The most important change in the dispersion relation introduced by a density
gradient is that the resonant denominator in Eq. (1.35) is replaced according to

(k‖v‖ + lωgs − ω) → [k‖v‖ + (k⊥v2
⊥/2Lnωgs) + lωgs − ω] (6.37)

This change of the resonance leads to the appearance of drift modes.

6.3. Drift Modes

Spatial inhomogeneities and the associated drift modes interact best with low-frequency
waves. Hence, the drift instability is most important for the excitation of ion-cyclotron,
Alfv én, and lower-hybrid waves.

Drift-Cyclotron Instability

Cyclotron modes can become unstable in density gradients and excite thedrift-cyclotron
instability. From the electrostatic magnetized dispersion relation (1.35) one can derive
the following response function

ε(ω,k) = 1 +
ω2

pe

ω2
ge

+
1

k2λ2
Di

(
1− ωdi

ω

) (
1− ω√

2πk⊥rgi(ω − lωgi)

)
= 0 (6.38)

Clearly, this equation has cyclotron harmonic solutions near the harmonics of the ion
cyclotron frequencyω = lωgi. Instability is obtained under the condition that

rgi

Ln
> 2l

(
me

mi

)1/2
(

1 +
ω2

pe

ω2
ge

)1/2

(6.39)

The right-hand side of the last condition reduces to the root of the mass ratio times
2l whenever the plasma density is low. It is interesting to note that the condition for
instability sets an upper limit on the number of cyclotron harmonics. This property
differs from the current-, beam- or loss cone-driven cyclotron instabilities discussed
above, where the limit was set by the decrease of the growth rate. Here it appears as
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a cut-off of the growth rate. The number of allowed unstable modes is found from the
full expression for the growth rate as

lm ≈ (rgi/2Ln)(mi/me)1/4 ≈ 3rgi/Ln (6.40)

and the growth rate of the highest excited harmonic is obtained as

γlm ≈ (8π)1/4(mi/me)1/4(rgi/Ln)ωgi (6.41)

Sometimes gradients in the electron distribution in the magnetosphere may be respon-
sible for the observed upper harmonic cut-offs.

Drift-Alfv én Instability

In the extremely-low frequency limit we are in the domain for Alfvén or magnetosonic
modes and must take into account the electromagnetic correction mentioned above. The
approximate dispersion relation, given here without proof, is

D(ω,k) = N2εL(ω,k)− ε‖(ω,k)ε⊥(ω,k) = 0 (6.42)

where the components of the dielectric tensor are modified to include the inhomogene-
ity

εL(ω,k) = 1 +
∑

s

χsL(ω,k)

ε‖(ω,k) = 1 +
∑

s

χs‖(ω,k)

ε⊥(ω,k) = 1 +
∑

s

χs⊥(ω,k)

(6.43)

and the approximate susceptibilities are given by

χsL = (k2
⊥χs⊥ + k2

‖χs‖)/k2

χs⊥ =
1

k2
⊥λ2

Ds

(
1− ωds

ω

)
[1− Λ0(ηs)] (6.44)

χs‖ =
1

k2
‖λ

2
Ds

(
1− ωds

ω

)
[1− Z(ζs0)] Λ0(ηs)

In the limit of small electron gyroradius,krge ¿ 1, and withk‖vthi ¿ k‖vthe, the
dispersion relation assumes a tractable form

(
1− ωgi

ω

) Te

Ti

k2
‖v

2
A

ω2
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[(
1− ωde

ω

)
− k2

‖c
2
ia

ω2

(
1− ωdi

ω

)
Λ0(ηi)

]

·
[(

1− ωdi

ω

)
− ηi

1− Λ0(ηi)
k2
‖v

2
A

ω2

]
(6.45)
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Fig. 6.2. Instability due to crossing of drift and Alfvén wave branches.

For smallηi this dispersion relation yields with vanishing left-hand side Alfvén and ion
sound waves. On the other hand it simplifies considerably for an isothermal plasma
with Te = Ti to become

k2
‖v

2
A

ω2
=

1
ηi

ω∗ − 1
ω∗ + 1

[
ω∗(ω∗ + 1)− k2

‖v
2
A

ω2
de

ηi

1− Λ0(ηi)

]
(6.46)

where we definedω∗ = ω/ωde. The three real solutions of this equation for smallηi

areωde, and the conjugate pair

ω = − 1
2ωde

[
1± (

1 + 4k2
‖v

2
A/ω2

de

)1/2
]

(6.47)

Instability arises because one of the pair branches crosses theωde branch, as sketched
in Fig. 6.2. In the vicinity of the crossing point

k‖vA =
√

5ωde/4 (6.48)

instability arises due to the coupling of two wave modes. The maximum growth rate is
found forηe ¿ 1, ζ0e ¿ 1 from γ ∝ Im εL/(∂D/∂ω). It occurs at

k2
‖max ≈ 2ω2

de/v2
A (6.49)

Only the imaginary part ofεL comes into play in this approximation. One finds

γdA,max ≈ (πηi)1/2

3
vA

vthe
ωde ≈

(
me

miβ

)1/2
vthi

Ln
(6.50)
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as the maximum growth rate of thedrift-Alfvén instabilitywhere the right-hand side
applies for plasma beta in the rangeβ À me/mi.

The mechanism of the drift Alfv́en instability is the coupling of the Alfv́en mode
to the drift mode of constant frequency. The drift wave feeds the Alfvén wave with the
energy required for wave growth. This is another mechanism of excitation of Alfvén
waves which adds to the mechanism we already know as the firehose instability. There
the wave is driven by macroscopic pressure differences, while here it is driven by the
kinetic effect of the plasma inhomogeneity. As long as the inhomogeneity is maintained
the Alfvén wave can be excited. But when the inhomogeneity is depleted, this kind of
instability shuts off. In the magnetosphere one may expect excitation of Alfvén waves
by this mechanism in all places, where a large amount of plasma is freshly injected and
produces strong density gradients.

Lower-Hybrid Drift Instability

One of the most important instabilities is thelower-hybrid drift instability. The reason
for its importance is that it excites waves near the lower-hybrid frequency which is
a natural resonance. Hence, the instability can reach large growth rates. The energy
needed to excite the instability is taken from the diamagnetic drift of the plasma in a
density gradient. This is similar to the modified two stream instability insofar that the
diamagnetic drift gives rise to a transverse current in the plasma which acts in a way
corresponding to the current drift velocity of the modified two stream instability.

In general, the lower-hybrid drift instability is an electromagnetic instability caus-
ing whistler waves near the resonance cone to grow. But in a good approximation one
can treat it as an electrostatic instability, in which case we must refer only to the longitu-
dinal inhomogeneous dielectric response function,εL. Because the wavelength should
be much larger than the gyroradius of the electrons, we haveζe À 1. Moreover, in the
electrostatic limit we assume that the ions are unmagnetized, drifting withvdi. Then
the real part of the longitudinal response function yields

εr(ω,k) = 1 +
ω2

pe

ω2
ge

k2
⊥

k2
+

1
k2λ2

D

ωde

ω
+

1
k2λ2

Di

[1− Z(ζi)] = 0 (6.51)

Here we have
ζi = (ω − k · vdi)/kvthi (6.52)

It is easy to see that for nearly perpendicular propagation, in which case the wave is
actually electrostatic,k2

⊥ ≈ k2, and for wave phase velocities much larger than the ion
thermal speed,ω/k À vthi, the real part of the solution for the frequency, ignoring the
imaginary part of the response function, becomes simply the lower-hybrid frequency

ω2
lhd ≈ ω2

lh (6.53)



140 6. DRIFT INSTABILITIES

To find the more precise expressions for the wave frequency and the growth rate of
the instability, one makes use of the Galilean invariance and transforms to a system in
which the ions are at rest. In this particular system the electrons drift with velocity
−u = vdi, such that the real part of the dispersion relation takes the form

1 +
ω2

pe

ω2
ge

+
1

k2λ2
D

ωde

(ω − k · vdi)
+

1
k2λ2

Di

= 0 (6.54)

This is a dispersion relation which corresponds to a two-stream instability. We know
that it has solutions forω < k · vdi. Further assuming weak instability, the growth
rate can be calculated exactly as for the case of the modified two-stream instability,
maintaining the imaginary part of the ion plasma dispersion function in Eq. (6.51).
Thus it is the inverse ion Landau damping at the positive gradient of the ion distribution
functions which feeds the instability. Forvdi < vthi and weak growth rate the frequency
obtained from (6.51) is

ωlhd = − Λ0(ηe)kyvdi

1 + Te/Ti − Λ0(ηe)
(6.55)

and the growth rate obtained under the assumptionγ ¿ ω is

γlhd = ωlhd

(π

2

)1/2 Te

Ti

vdi

vthi

Λ0(ηe)
[1 + Te/Ti − Λ0(ηe)]2

(6.56)

A numerical example of the dependence of frequency and growth rate on the wavenum-
ber is shown in Fig. 6.3.

WhenTe ¿ Ti, the maximum of the growth rate occurs at a frequency

ωlhd,max ≈ ωlh ≈ k · vdi/2 (6.57)

The maximum growth rate is given by

γlhd,max ≈ 0.6 ωlhv2
di/v2

thi (6.58)

Since the ion drift velocity can be quite high, this growth rate can become very large.
Extensions of the theory to larger ratiosTe/Ti are possible and show that the

growth rate is still large for increasing electron temperatures. Moreover, extensions to
oblique propagation and inclusion of electromagnetic corrections show that the lower-
hybrid drift instability exists also at larger angles in the whistler band. It may thus
play an important role in many applications to space plasmas. One should, however,
mention that the conventional lower-hybrid drift instability, as presented here, heavily
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Fig. 6.3. Lower-hybrid drift instability forrgi/Ln = 0.5.

depends on plasmaβ. Whenβ increases toβ > 1, the instability is quenched. On the
other hand, temperature gradients help to destabilize the instability. These are important
facts which must be taken into account when applying the lower-hybrid drift instability
to real space plasma conditions.

The lower-hybrid drift instability has been applied to low-frequency electrostatic
waves excited in the shock front region of the Earth’s bow shock, the density gradient
region at the magnetopause and in the low latitude boundary layer, the density gradient
region in the Earth’s magnetotail plasma sheet, and the density gradients in the upper
ionosphere. Excitation of lower-hybrid drift waves at the bow shock is probably sup-
pressed by the high beta of the oncoming solar wind. More important is the excitation
of lower-hybrid drift waves in the gradients at the magnetopause, both the transition
region and the low latitude boundary layer. Relatively high wave intensities have been
reported here close to the lower-hybrid frequency. Lower-hybrid waves may add to
transport of cold plasma across the magnetopause if the wave intensities are high.

Lower-hybrid waves can be excited in the tail plasma sheet as long as one stays
outside of the neutral sheet current layer proper. The increase in the measured electric
wave spectra toward low frequencies in Fig. 4.17 is an indication of the presence of
lower-hybrid waves in the tail (for plasma sheet conditions the lower-hybrid frequency
is close to 10 Hz). In the ionosphere, in spite of the steep density gradients appearing in
the E- and F-layers, the lower-hybrid drift instability is stabilized by the presence of fre-
quent collisions. Nevertheless, it can evolve under special circumstances at occasional
very steep gradients.
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Concluding Remarks

Drift instabilities are sometimes also calleduniversal instabilitiesa term indicating that
drift instabilities are the most general linear instabilities which appear in almost every
place and at all occasions. The reason is that plasmas are always inhomogeneous at least
on the microscopic scales. One may therefore be sure that drift instabilities will be met
under all realistic conditions. Their importance cannot be overestimated. Nevertheless
we have treated them only in passing because their linear treatment is standard.

In space and astrophysical plasmas drift instabilities naturally play an important
role. However, though in space plasmas they have been detected in situ and are well
known to generate particle loss, excite waves and lead to anomalous transport, heating
and energy dissipation, their importance has not yet been recognized for astrophysical
plasmas. In particular, the lower hybrid drift instability, which we have treated in length,
is very important in providing anomalous resistivities, transport, and heat conduction.
Some of these questions will be treated in the last chapter of this volume.

Further Reading

The full drift kinetic electromagnetic tensor is derived in [2], in [3], and in a particularly
transparent form in [1]. A short but informative article on instabilities in inhomoge-
neous plasmas is found in [4].

[1] S. P. Gary,Theory of Space Plasma Microinstabilities(Cambridge University Press,
Cambridge, 1993).

[2] N. A. Krall and A. W. Trivelpiece,Principles of Plasma Physics(McGraw-Hill,
New York, 1971).

[3] A. B. Mikhailovskii, Theory of Plasma Instabilities II(Consultants Bureau, New
York, 1976).
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7. Reconnection

The magnetohydrodynamic instabilities discussed in Chap. 3 are ideal instabilities.
They lead to bending and deformation of magnetic flux tubes, but the frozen-in con-
dition remains valid. This condition breaks down when the plasma becomes non-ideal.
Whenever this happens, the magnetic field starts diffusing across the plasma, and mag-
netic flux can be exchanged between different plasmas in mutual contact. The process
of magnetic flux exchange is a diffusive process with magnetic diffusivity resulting
from either collisions or being the consequence of nonlinear interactions of the kind
reviewed in Chap. 12. Any such diffusion process implies that the magnetic field lines,
which in an ideal plasma can be considered as unbreakable strings, are re-ordered such
that the field line configuration after re-ordering looks different from the initial one.

Physically the magnetic flux is rearranged during diffusion, a process which usu-
ally is slow. However, in some model cases this kind of re-ordering can become com-
parably fast when the diffusion process is restricted to a region of small spatial extent.
This is the important case when one speaks ofmagnetic reconnection. Magnetic re-
connection or merging plays a key role in the processes at the magnetopause, in the
magnetotail, in solar active regions, and in a number of astrophysical applications like
accretion disks. It has experienced enormous attention in the space plasma community
during the last forty years. Both, remote and in situ observations of magnetic diffusion
processes in space have revealed that re-ordering of magnetic fields may proceed at
very high speeds when restricted to narrow spatial regions.

It must be emphasized that from the physical point of view there is nothing par-
ticular about reconnection insofar as any process which causes violation of the ideal
conditions in a plasma and thus leads to collisional effects, always results in diffusion
of magnetic fields and thus reconnection and rearranged magnetic field topology. The
real question is how and where such diffusivities are generated in an otherwise ideal
or collisionless plasma. But once they exist, it is quite natural that oppositely directed
field components will cancel each other and cause reconnection. In the following we
review the currently accepted and competing reconnection models for both collisional
and collisionless plasmas. Since in the collisional case the diffusivity is natural and its
origin must not be explained, we start with the collisional reconnection models before
discussing some versions of collisionless reconnection.

143
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7.1. Reconnection Rates

Consider two mutually approaching ideal magnetohydrodynamic flows containing op-
positely directed magnetic fields until they meet in a plane atx = 0, as shown in Fig.
7.1. In ideal magnetohydrodynamics the frozen-in condition requires that each flow
element is fixed to its particular field line. Hence, when the flows meet they will be
unable to mix and pressure balance will slow them down and force them to rest. But
if the magnetic fields in the two flows are oppositely directed and of the same strength,
they may annihilate each other at the plane of contact, allowing the plasmas to mix.

Magnetic Diffusion

Mixing and annihilation is permitted only when the plasma is non-ideal, because only
then the magnetic field can diffuse across the flow and annihilate. This is described by
the general induction equation (I.5.2) in our companion book

∂B
∂t

= ∇× (v ×B) +
1

µ0σ
∇2B (7.1)

whereσ is the constant electrical conductivity. The diffusion time of the magnetic field
is given in Eq. (I.5.6) of our companion book

τd = L2σµ0 (7.2)

whereL is the global length scale of the change inB, and the diffusion velocity is

vd = L/τd = 1/Lσµ0 (7.3)

z

x

−vx+vx

+Bz

−Bz

Fig. 7.1. Counterstreaming flows leading to reconnection.
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Fig. 7.2. Formation of current sheet and neutral point in reconnection.

Assume that the two approaching but oppositely directed field lines are locally bent
over the length,L, along the field. At the nose of the bended field lines they will contact
first. Diffusion and annihilation will set in here and the field lines will be broken and
reconnected in another topology. A magnetic neutral point is created spontaneously at
the former point of contact, with zero magnetic field strength in its center. There is no
need for the flow to stop, because part of it can flow along the magnetic field lines into
the other region, part of it will deviate and start transporting the newly merged field
lines away from the neutral point. This motion is driven by the magnetic tension force
stored in the highly bent reconnected field lines. Hence, the direction of the deviated
flow will be perpendicular to that of the incoming flow. Figure 7.2 visualizes this kind
of process.

During the initial approach of two magnetized flows a current layer is created,
with the current flowing in they direction. When the magnetic field is bent locally, the
current increases. Hence, the initial instability is a transverse current instability, leading
to diffusion of magnetic flux and current concentration in the neutral point, which in
three dimensions will extend into a neutral line or X-line. However, for stationary flow
this initial phase must be small. Forstationary reconnectiondiffusion becomes station-
ary and an equilibrium between the inflowing mass and magnetic flux, the magnetic
diffusion, and the outflowing mass and magnetic flux is reached soon.

Sweet-Parker Reconnection

Historically the first stationary model of reconnection is theSweet-Parker reconnection
model. It permits for steady flow and diffusion of the magnetic field across a longdiffu-
sion regionof length,2L, and narrow width,2d. The model is based on the conservation
of mass, momentum, energy, and magnetic flux in the flow, from the ideal plasma to
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both sides of the diffusion region into and out of the diffusion region. From Ampères
law the current flowing in the diffusion region is given by

jdy ≈ B0z/µ0d (7.4)

The Lorentz force entering the momentum conservation equation consists of two terms,
the magnetic pressure and the magnetic stress resulting from the bending of the mag-
netic field lines during magnetic merging and subsequent reconnection. The pressure
force term is compensated due to general pressure balance, provided the boundary is at
rest. The magnetic stresses accelerate the plasma into thez direction over the lengthL

(jdy ×Bdx) · êz ≈ jdyBdx = B0zBdx/µ0d (7.5)

In the stationary case, this force balances the nonlinear velocity term in the momentum
equation

nmi(v · ∇)vdz ≈ nmiv
2
dz/L ≈ B0zBdx/µ0d (7.6)

Since the magnetic field is divergence-free, we have

B0z/L ≈ Bdx/d (7.7)

so that the equation for the outflow velocity becomes

v2
dz ≈ B2

0z/µ0nmi = v2
A0 (7.8)

which is the Alfv́en speed in the inflowing plasma. For a plasma moving into the dif-
fusion region with inflow speedv0x we can estimate the efficiency of the reconnection
process by defining areconnection rate, R = v0x/vdz = MA0, which is equal to
the incident Mach number. Under stationary conditions the plasma leaves the neutral
point region with the Alfv́en speed of the inflowing plasma. Hence, the reconnection
proceeds via a large-amplitude Alfvén wave. Actually, it is a rotational discontinuity,
where the normal component of the magnetic field is produced by the reconnection
process.

The magnetic field is incompressible and carried into and out of the diffusion re-
gion at the speed of the flow. Hence, we have in analogy to Eq. (7.3)

v0x = 1/dσµ0 (7.9)

with 2d the width of the diffusion region. Conservation of mass requires that the rate of
mass inflow equals that of the outflow. Because of the incompressibility of the medium

v0xL ≈ vA0d (7.10)

Now we can eliminate the width of the diffusion layer,d, obtaining

v2
0x ≈ vA0/Lσµ0 (7.11)
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Fig. 7.3. Fast flow detected by spacecraft during reconnection.

or, if we divide by the Alfv́en velocity and define the Alfv́en Mach number in the usual
way as the ratio of the velocity to the Alfvén speed and the magnetic Reynolds number
defined in Sec. 5.1 of our companion book,Rm0 = Lσv0Aµ0

RSP = MA ′ = R−∞/∈
m′ (7.12)

This is theSweet-Parker reconnection rate. It shows that the speed at which the mag-
netic field can diffuse in and through the diffusion region is determined by the magnetic
Reynolds number and is low for high numbers. Thus in space plasmas as for instance
the plasma at the magnetopause which are practically collisionfree the reconnection
process must be very slow unless anomalous effects generate much lowered conductiv-
ities.
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Reconnection implies that the inflowing magnetic energy density is much larger
than the inflowing kinetic energy

µ0nmiv
2
0x/B2

0z = M2
A0 ¿ 1 (7.13)

Concerning the outflow, we recognize that magnetic flux must be conserved

v0xB0z = vdzBdx (7.14)

Forming the ratio of the outflowing kinetic power,nmiv
3
dzd/2, to the inflowing mag-

netic power,v0xB2
0zL/µ0, we get

µ0nmiv
3
dzd

2 v0xB2
0zL

=
v3

dz

2v3
A0

=
1
2

(7.15)

Half the inflowing magnetic energy is converted into flow energy and thus transformed
into acceleration. Hence, reconnection at neutral points generates high-speed flows es-
caping from the neutral point and serves as a plasma acceleration mechanism. These
high-speed flows have actually been detected by spacecraft during high magnetic shear
magnetopause crossings, thus indicating that the magnetopause can behave as a rota-
tional discontinuity undergoing magnetic merging. From the direction of the flow one
can determine the position of the neutral point relative to the spacecraft (see Fig. 7.3).

Petschek Reconnection

Sweet-Parker reconnection requires long current sheets and is a rather slow process.
When the finite conductivity is restricted to a more localized region, the reconnection
process becomes faster becauseL is shorter. This mechanism does, however, require
more complicated processes to work at the magnetopause near the reconnection site.
The outer region has no current flow and, since reconnection proceeds only in a small
diffusion region around the neutral point, not all plasma can cross the diffusion region.
Most of the plasma must turn around before reaching the interface between the two
counterstreaming flows. Because this change in flow direction and speed will be abrupt,
it must occur at a shock. Since the magnetic field lines are refracted toward the shock
normal, the shocks involved areslow mode shocks(cf. Fig. 8.11 in our companion book
and Fig. 7.4 in this volume). Here 3/5 of the inflowing magnetic energy are converted
into kinetic energy behind the shock, the remaining 2/5 are used to heat the plasma.

Although there is no reconnection at the shocks, a normal component,Bn, exists.
The slow shocks are large-amplitude slow magnetosonic waves, which in a hot plasma
travel with the Alfv́en speed based on its normal field

v2
ss = B2

n/nmiµ0 (7.16)
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Fig. 7.4. Mechanism of Petschek Reconnection.

Figure 7.4 shows the idealized geometry of the Petschek model with the narrow and
short diffusion region of length̀ along z and the four slow shocks connected to it.
These shocks extend into the current-free environment, where∇2B = 0. The shocks
change the direction of the magnetic field by 90◦, as is required for reconnection. These
fields are the reconnected fields which leave, as in the Sweet-Parker model, from the
diffusion region and are driven by magnetic stresses.

The field change at the shock is a disturbance of the initial external field,B0, in
the outer region. This disturbance can be calculated assuming that each element of the
shock causes a small magnetic disturbance,δB = b/z, which decays with distance
of the element from the diffusion region along the shock surface,z. The flux caused
by it is the product of the disturbance field and the surface element in one dimension,
πz, yieldingπzb/z = bπ. But because the element has the lengthdz along the shock,
the flux is also equal to2Bndz and thusb = (2Bn/π)dz. Integrating along the shock
length,L, over all contributions of the elements excluding the diffusion region of length,
`, where no shocks exist, gives

2Bn

π

(∫ −`/2

−L/2

dz

z
−

∫ L/2

`/2

dz

z

)
= −4Bn

π
ln

(
L

`

)
(7.17)

This field must be added to the external field at large distances. The result is

B0z = B0

[
1− 4MA0

π
ln

(
L

`

)]
(7.18)
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where Eq. (7.16) and the definition of the Mach number have been used. The external
Mach number is small. Therefore the total external field is nearly the field at large
distances in this case. If we write the ratio of the length of the diffusion region to the
lateral scale as

`/L = 1/(Rm0MA0) (7.19)

it is obvious that the dimension,`, of the diffusion region will decrease if either the
magnetic Reynolds number or the reconnection rate increase. Hence, high reconnection
rates require a narrow diffusion region and the process stops when their lateral extent
becomes too short. As Petschek suggested, the maximum reconnection rate will be
achieved forB0z = B0/2. This yields, instead of the Sweet-Parker reconnection rate
given in Eq. (7.12), in the limit of large Reynolds numbers the much faster maximum
Petschek reconnection rate

RP ≈ π/∀ lnRm′ (7.20)

It depends only logarithmically on the Reynolds number and varies much less with
conductivity. Petschek reconnection is therefore a very efficient mechanism to merge
magnetic fields and to provide magnetic diffusion through narrow diffusion regions.

Because the conductivities in space plasmas are so high, Sweet-Parker reconnec-
tion is usually a very inefficient process which will not lead to violent mixing of mag-
netic fields and the related energy releases. Processes which locally decrease the con-
ductivity will enhance reconnection. But Petschek reconnection, whenever it occurs,
will always be much faster providing fast dissipation and effective mixing as well as
violent acceleration of plasma from the reconnection region. However, it is at present
not clear that Petschek reconnection can evolve in natural systems.

7.2. Steady Collisionless Reconnection

The reconnection rates given in the previous section all refer to the collisional regime
with at least a small resistivity. In space plasmas such resistivities do not exist a priori.
Hence, the magnetohydrodynamic approach becomes invalid, and one should switch to
a steady kinetic approach where particle dynamics initiates reconnection. In the next
sections we will consider an instability, thetearing mode, which may work in both the
resistive and collisionless regimes. Here we briefly discuss the possibility of a steady
collisionless state.

Linear Regime

Consider a two-dimensional configuration with all quantities independent ofy. This
configuration is shown schematically in Fig. 7.5. Then the magnetic field can be repre-
sented asB = −êy × ∇A(x, z), whereA is the only surviving vector potential com-
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Fig. 7.5. Two-dimensional scheme of collisionless reconnection.

ponent, and because of the assumption of steadiness, the electric field isE = Eyêy.
Initially A0 = B0/(2L)(x2 − z2), so that

B0 = (B0x, B0y, B0z) = B0(z/L, 0, x/L) (7.21)

In such a configuration the particles drift adiabatically withE×B-drift velocity. The
plasma flows in along thez axis and out alongx. Only in the vicinity of the neutral
point, in the region of radius

rc ≈ L(mEy/qB2
0L)1/3 (7.22)

this flow is violated. Here conversion of magnetic energy into flow energy occurs. The
size of this region can be estimated realizing that the inertial term in the equation of
motion comes into play near the neutral point, whereB = B0r/L, when the convective
derivative of the flow velocity,vE = E×B/B2, equals the inertial term,mdv/dt, or

vEdvE/dr ≈ E2
yL2/B2

0r3 ≈ qEy/m (7.23)

which immediately leads to the above expression (7.22). Inside the dissipation region
one must solve the set of equations

mdvx/dt = qvyB0x/L
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mdvy/dt = qEy + q(vzBx − vxBz) (7.24)

mdvz/dt = −qvyB0z/L

A particle entering the X-point is accelerated by the electric field in they direction and
receives a speedvy(t) ≈ qEyt/m, while theBz component wants to eject the particle
from the X-line in thex direction, andBx leads to an oscillation alongz, so that

d2x/dt2 = tx/t3c

d2z/dt2 = −ω2
b (t)z

(7.25)

where the critical acceleration time inx and the oscillation period inz are given by

tc = (m2L/q2B0Ey)1/3

ωb(t) = (q2B0Eyt/m2L)1/2 (7.26)

Hence, the ejection from the X-line proceeds exponentially asexp(t/tc)3/2, and the
particle reachesrc at timetc when the velocity becomesvc ≈ rc/tc ≈ (qE2

yL/mB)1/3.
The gain in particle velocity is in thevy component and is of course of the order ofvc.
It is thus transformed into the transverse energy of the particle drifting away from the
X-line. The energy turns out to be proportional tom1/3 such that the main dissipation
is due to ions rather than electrons. Moreover, the net electric current is carried by
the ions, because it is basically a polarization current,I ≈ enivcr

2
c . It is therefore

sufficient to consider the ion motion. In other words, the collisionless reconnection in
this approximation is driven by ion inertia.

Outside the dissipation region ion dynamics is simple electric drift with stream-
lines

dx/vEx = dz/vEz (7.27)

which are hyperbolic withxz = const. The ion flux entering the dissipation region is
bounded by the streamline withxc ≈ zc ≈ rc and, for steady flow,

n0xLvEz(L) = nixcvEz(rc) (7.28)

wherene is the undisturbed electron background density, and the indexL as well as the
dependence onL indicate that the corresponding quantities must be taken at distanceL
(or at infinity). Taking into account the electric field drift expressions, one finds for ion
number and current densities

ni ≈ n0(rc/L)2 ≈ n0(miEy/eLB2
0)2/3

j ≈ enivc ≈ en0(Ey/B0)(miEy/eLB2
0)1/3 (7.29)
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Thus the total magnetic energy dissipation is proportional to the third power of the
electric field,QB = EyI ∝ E3

y .
When the magnetic field generated by the electric current becomes comparable to

the initial field,B0, this linear approximation will break down. This takes place at a
field strengthδB ∝ µ0jr/2. Replacing the current density and radius in this expression
and using the external Mach number,MA0 = v0/vA0, with v0 = Ey/B0 gives the
following limit for the linear regime

MA0 ≤ Mc = R̃
−1/4
m0 (7.30)

where the Reynolds number has been defined as the ratio of the total length to the
external ion inertial length,̃Rm0 = (Lωpi/c)1/2. This indicates that the reconnection
is determined by the ion inertia. The collisionless Reynolds number is very large for
largeL and small inertial lengths. But the Reynolds number enters at the fourth root of
this ratio. For larger reconnection rates one must extend the calculation to the nonlinear
regime.

We now simplify to the incompressible case outside the reconnection region far
away from the X-line. Then the external ion density is equal ton0, and

j ≈ en0v0 ≈ en0(eLE2
y/miB0)1/3 (7.31)

The linear approximation holds under the restriction on the electric field

Ey ≤ Eyc = miv
2
A0c/eL2ωpi (7.32)

which may be written asMA0 ≤ M∗ ≈ R̃−1
m0. This condition is more restrictive than

Eq. (7.30) and readily violated. Then reconnection enters the nonlinear regime.

Nonlinear Regime

We now sketch the nonlinear estimates for the assumed large reconnection rates. The
electric field isEy > Eyc. Let us use dimensionless quantities with the electric field
normalized toEyc, length toc/ωpi, magnetic field toB0c/Lωpi, and time toL/vA0.
This yields the normalized vector potentialA0 = (x2 − z2)/2. The geometry is shown
in Fig. 7.6. It is an elongated reconnection site of length2L and width2d for the nor-
malized electric fieldEy À 1, far above the critical field,Eyc. ThendBx/dz ≈ j for
the normalized magnetic field and current in the reconnection site, under the assumption
that we can take the current as constant. From the condition∇ ·B = 0 we obtain

Bz(x) ≈ jd

π

L+x∫

L−x

dξ

ξ
≈ 2jd

π

x

L
(7.33)
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Fig. 7.6. Elongated reconnection site.

which yields for the derivative of the small normal magnetic field componentdBz/dx ≈
2jd/πL ¿ 1, which is nearly zero. The main variation in the field is in thex compo-
nent, and the reconnection site is a nearly one-dimensional current sheet.

Following the same procedure as in the linear regime we find that the time scale,
tc, of deviation from thex axis and the oscillation frequency,ωb, are now given by

tc ≈
(

Ey
dBz

dx

)−1/3

ωb(t) ≈
(

tEy
dBx

dz

)1/2 (7.34)

These scales are very different from the linear scales. In particular,tc is now very long
since the derivative of the normal componentBz, is small, and the bounce-averaged
motion of the ions is decoupled from the oscillation along thez axis. This motion is
described by the following equations

dv̄x/dt = v̄yx̄

dv̄y/dt = 1− v̄xx̄
(7.35)

where we normalized the time to the newtc, length toxc = Eyt2c , and velocities to
vc = Eytc. Ions entering the dissipation region with̄vy = 0 will experience free
acceleration alongy and exponential expulsion from the neutral line for short times,
t < tc. For t > tc their motion is an electric drift. This indicates that the lengthxc

defines the edge of the dissipation region inx direction

xc ≈ Eyt2c ≈ L (7.36)

The width,d, of the dissipation region is estimated from the amplitude of the ion bounce
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motion at timetc. We do not go through this somewhat complicated scaling argument,
but present the final result which is obtained. This scaling can be reduced to a depen-
dence of all interesting quantities on the electric field (or the reconnection rate). Then
current, width and density in the dissipation region scale as powers ofEy

d ≈ E−4/3
y ≈ n−1

0 ≈ j−7/4 (7.37)

indicating that the width becomes narrow for large fields, and the density and current
increase. It can also be shown that the reconnection rate in this nonlinear case scales
approximately as

RCL ≈ R̃
−1/2
A0 (7.38)

depending on the ion inertial Reynolds number. Formally, this scaling is about the
same as the Sweet-Parker scaling, but the ion Reynolds number entering here may help
to increase the reconnection rate.

7.3. Resistive Tearing Mode

So far we have avoided to touch the problem of how reconnection sets on. The insta-
bility envisaged must work in a plasma where at least the magnetic field is inhomoge-
neous, changing its direction across the current sheet. This inhomogeneity implies that
the currents flowing across the field are also inhomogeneous. Thus the instability is by
nature a macroinstability, but it is not necessarily a magnetohydrodynamic instability.
Since, in addition, a dissipative region is required around the neutral point, the instabil-
ity must be either resistive or must give rise to some kind of collisionless dissipation in
the diffusion region to permit the magnetic field to diffuse. In the latter case the insta-
bility will be collisionless but dissipative. We will discuss this type of instability in the
next section, but here briefly review the idea of a collisional fluid plasma instability. Its
name isresistive tearing instability, because it will cause the magnetic field to form a
succession of magnetic islands and neutral points along the current layer.

Mechanism

Let us assume a long current sheet, like the neutral sheet current in the center of the
Earth’s plasma sheet. Figure 7.2 in our companion book shows the schematic change in
the magnetic field across the current layer. Small disturbances in the current flow will
cause the current to pinch off due to the self-generated magnetic field of the current.
Instability occurs when the plasma has a finite resistivity. This effect is restricted to
the region of weak magnetic field, the neutral sheet, as one realizes from inspection of
Ohm’s law

δE + δv ×B0 = δj/σ (7.39)
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Fig. 7.7. Formation of magnetic islands in a current sheet.

In the center of the neutral sheet whereB0 = 0 the electric field and current are sup-
ported by the finite conductivity only, while outside the convection term dominates and
conductivity can be neglected as long as it is large enough. We assume that the region
where the conductivity is important is−(d/2) < z < (d/2). Here the induction law
given in Eq. (7.1) becomes

∂δB
∂t

=
1

µ0σ
∇2δB (7.40)

while the exterior equation has the particularly simple form

∂δB
∂t

= ∇× (δv ×B0) (7.41)

The problem consists in solving these two equations together with the inhomogeneous
linearized equation of motion which determines the velocity distortion,δv, under the
boundary conditions across the neutral current sheet. A simple dimensional estimate for
a thin current layer with scale length,LB = |B0/∇B0|, of the background magnetic
field,B0, suggests a growth rate

γtea = 4/µ0σd2 (7.42)

under the condition that the wavelength in thex direction is longer than the thickness
of the current layer,kx < 1/LB ≈ 1/d. The growth rate still contains the undefined
width, d, of the current layer, but narrow layers will have much larger growth rates
than thick layers. Moreover, when the conductivity decreases the growth rate increases.
The result of this instability will be that long wavelength magnetic islands form in the
current layer containing a number of neutral points where the magnetic field reconnects
(see Fig. 7.7). These islands contain closed toroidal magnetic field lines converging
onto the current in their center. They bear the name magnetic O-points or, in three
dimensions,O-lines, in contrast to the neutral points or lines which separate the islands,
and the last field line belonging to the islands which goes through all the neutral points
is theseparatrix.

The resistive tearing mode may explain the mechanism of how a current layer may
become unstable and cause reconnection. The resistive tearing mode is believed to play
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a decisive role in solar physics, while it is the collisionless tearing mode discussed in
the next section, which is of importance in magnetospheric applications.

Growth Rate

The evolution of the total magnetic field is determined by Eq. (7.1)

∂(B + δB)
∂t

= ∇× [δv × (B + δB)] +
1

µ0σ
∇2(B + δB) (7.43)

Here δv is the velocity perturbation field. The unperturbed state is assumed static,
such that we are dealing with a non-driven two-dimensional case,∂/∂y = 0. Let us
introduce stream functionsψ, δψ, andδφ for B, δB, andδv, respectively. Then any of
these vectors assumes the form

B = (−∇zψ, By,∇xψ) (7.44)

and so on. The componentBy is a constant, which is non-zero only for the undisturbed
magnetic field. Moreover, one findsB · ∇ψ = 0, i.e., the stream functionψ is constant
along a field line. The same holds for the other quantities. Ampère’s law yields for the
perturbed current density in terms of the stream function

µ0∇2δψ = −δjy (7.45)

which is the only non-zero component of the current disturbance. With the help of
Ohm’s law the induction equation is transformed into

∂δψ

∂t
= Bx∇xδφ +

1
µ0σ

∇2δψ (7.46)

We now assume that the initial field is of the formBx0 = δBG(z), with δB = const,
andBz0 = 0. We also allow for a non-zeroBy. The functionG(z) determines the
change in the magnetic field across the current layer, for instance a tanh-function. It is
formally given byG(z) = k·B0/kB0, which close toz = 0 is a straight line. Moreover,
G(z) must be an odd function in order to allow for tearing to develop. Because of this
definition we have

∇zψ = −δBG(z) (7.47)

This equation is used in the following to eliminate the stream functionψ. The velocity
is determined by Eq. (3.71)

nmidδv/dt = δj×B−∇p (7.48)
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wherep is the pressure which does not play a role in the incompressible case we con-
sider. Linearizing and introducing the following ansatz for the stream functions

[
δψ

δφ

]
=

[
δψ0(z) cos(kxx)
δg(z)γ(kxδB)−1 sin(kxx)

]
exp(γt) (7.49)

the whole system of linearized equations for the stream functions, resulting from the
incompressible equation of motion, the induction law, and Ohm’s law, can be reduced
after some tedious algebra to two coupled linear equations

δψ0 −Gδg =
1

γτd

(
d2δψ0

dz2
− κ2δψ0

)

−γ2κ−2τ2
A

(
d2δg

dz2
− κ2δg

)
= G

(
d2δψ0

dz2
− κ2δψ0

)
− δψ0

d2G

dz2

(7.50)

for δψ andδg, where we definedκ = kxd, the Alfvén time

τA = d/vA (7.51)

and used the diffusion time given in Eq. (7.2). Moreover, the coordinates are made
dimensionless by definingz → z/d. In the external region these equations, neglecting
resistivity, yieldτd →∞ andδψ0 = Gδg and thus

G

(
d2δψ0

dz2
− κ2δψ0

)
= δψ0

d2G

dz2
(7.52)

We specify the external field by choosingG(z) = tanh z and find for the solutions
below and above the current sheet

δψ0+(+|z|) =
(
1 + κ−1tanh z

)
exp(−κz)

δψ0−(−|z|) =
(
1− κ−1tanh z

)
exp(κz)

(7.53)

The boundary conditions areδψ0± → 1 at the center of the current sheet,z → 0.
The derivative,dδψ0/dz = δψ′0, of δψ0 stays discontinuous here. If we use∆ =
[δψ′0+ − δψ′0−]z=0/δψ0(0), we obtain for the jump in the derivative ofδψ0

∆ = 2(1− κ2)/κ (7.54)

Now solve for the interior of the dissipation region. Since this region is very narrow,δψ
will be constant inside. Moreover,G = tanh z ≈ z here. Furthermore, the wavelength
of the tearing mode is much larger than the width of the diffusion region, such that
κ2|δψ0| ¿ |d2δψ0/dz2| and κ2|δg| ¿ |d2δg/dz2|. This requirement reduces the
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differential equations forδψ0 andδg to

d2δψ0

dz2
= γτd [δψ0(0)− zδg]

d2δψ0

dz2
=

γ2τ2
A

κ2

1
z

d2δg

dz2

(7.55)

The matching condition demands that the derivatives ofδψ0 account for the above
jump∆ at the boundary of the dissipation region,z = 1. We integrate the second of the
above equations with respect toz over the dissipation layer to obtain the jump in the
derivative expressed in terms ofg(z), divide by the constantδψ0(0) in the inner region
and compare with∆ to obtain

∆ = − γ2τ2
A

δψ(0)κ2

∞∫

−∞

dz

z

d2δg

dz2
(7.56)

This is the matching condition. In order to find its explicit form one must solve for
g(z). This is achieved in the following way. One eliminates the second derivative of
δψ from the two differential equations (7.55) and transforms the resulting differential
equation into the simple form

y′′ + q2y = q (7.57)

where the prime indicates differentiation with respect toq = z(κ2τd/γτ2
A)1/4, and

y = −δgq/δψ0(0). As q →∞ the functiony → −1/q.
The solution of the above differential equation can be expressed as a definite inte-

gral. The matching condition (7.56) requires integration overy′′. Hence, we get

∆ = γ5/4τ
3/4
d τ

1/2
A κ−1/2I (7.58)

whereI =
∫∞
−∞ y′′dq/q is a numerical value. The equation for the growth rateγ, i.e.,

the dispersion relation, is obtained by combining this formula with the expression for
∆ obtained from Eq. (7.54). Numerical solutions have shown that it is sufficient to
put q = 2 for the halfwidth of the diffusion region. Combining all the variables one
ultimately obtains for the growth rate

γtea =
1
τd

[
2(1− κ2)
Iκ1/2

]4/5(
τd

τA

)2/5

(7.59)

This is the general expression for the resistive tearing mode growth rate in a narrow
plane current sheet of the particular shape given by the functionG(z). Due to constancy
inside the layer, it diverges forκ = 0. A more precise calculation leads toκmax =
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(4τA/τd)1/4 and a maximum growth rate

γtea,max ≈ (2τAτd)−1/2 (7.60)

This growth rate depends on the inverse of the diffusive and Alfvén times in the current
layer. Large diffusive and Alfv́en times will decrease it. In the magnetosphere and
solar wind the diffusive times are very long. Hence, resistive tearing will not play
an important role. One must consider collisionless wave-particle interactions as the
relevant processes for initiating fast reconnection here.

7.4. Collisionless Tearing Mode

When the plasma is collisionless, reconnection can evolve only as kinetic instability
with ion inertia as the force which mixes the magnetic fields. The resulting instability
is thecollisionless tearing instability.

Configuration

As in the case of resistive tearing consider a planar current sheet (see Fig. 7.7), but no
resistivity. A small disturbance in the position of the distribution of the current filaments
alongx will cause the filaments to attract each other and magnetic islands will start to
form spontaneously. In a two-dimensional current sheet the magnetic field field is fully
described by the only non-vanishing component of the vector potential,Ay, as

B(x, z) =
(
−∂Ay

∂z
, 0,

∂Ay

∂x

)
(7.61)

Initially the magnetic field is a Harris-type field with noBz component (see Fig. 7.2
in our companion book). The tearing mode will produce a periodic variation alongx.
Hence, the distorted electric and vector potentials can be represented as plane waves

δAy(x, z, t) = δA(z) exp(−iωt + ikx)
δφ(x, z, t) = δΦ(z) exp(−iωt + ikx)

(7.62)

It is most convenient to use the energy principle, derived in Sec. 3.6, to the evolution of
the instability. In this simple two-dimensional case, it can be written as the energy bal-
ance between the magnetic fluctuation energy and the energy dissipated by the current
in the Harris sheet

1
2µ0

∂

∂t

∫
|δB|2 dz = −

∫
δj · δE∗dz (7.63)
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where the asterisk indicates the conjugate complex of the electric wave field. The right-
hand side is the Ohmic loss in the reconnecting current sheet. It accounts for the growth
or damping of the magnetic field.

Electron Tearing Instability

Let us use a slightly modified Harris equilibrium with the magnetic field given as

B0 = êxB0 tanh(z/d) + B0zêz (7.64)

where the zero-order normal component of the magnetic field is small such that the ions
behave unmagnetized in this component while the electrons are magnetized, implying

rge

d
<

(
B0z

B0

)2

<
rgi

d
(7.65)

Intuitively one may argue that the strong magnetization of the electrons in the fieldB0z

will introduce some stiffness of the magnetic field and thus a stabilizing effect on the
electron-driven tearing mode, theelectron tearing instability. In addition, the half width
of the current layer,∆, is assumed to be larger than the ion gyroradius

∆2 < rgid (7.66)

Electrons will thus be strongly magnetized while the ions are weakly magnetized.
With the help of the above definitions the zero-order undisturbed but inhomoge-

neous particle distribution functions are

fs0(v, z) =
n0

π3/2v3
ths

exp
[
−v2 + v2

ds

v2
ths

+
2msvds(vy + qsA0y)

kBTs
− qsφ0

kBTs

]
(7.67)

where the diamagnetic drift velocity in the density gradient of the Harris current layer
of halfwidthd = Ln has been introduced as

vds = −kBTs/qsB0Ln (7.68)

Solving the linearized Vlasov equation for the disturbanceδfs of the particle distribu-
tion functions using the representations of the electric and magnetic fields through the
potentials yields

δfs(v, z, t) =
qsf0s

kBTs

[
vdsδAy − δφ + iω

∫ t

−∞
(vyδAy − δφ)dt′

]
(7.69)

As usual, the integration overt′ must be performed along the undisturbed particle orbits.
This requires the solution of the undisturbed particle motion inside and outside the
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current layer. The term outside the integral describes the adiabatic particle response.
Hence, the integral term is the non-adiabatic correction on the first order distribution
function.

In calculating the adiabatic response we apply the energy principle. Using the
adiabatic part of the disturbed distribution function

δfads =
qsvds

kBTs
δAyf0s (7.70)

the adiabatic current can be calculated from the velocity integral overvδfads. Inserting
into the right-hand side of Eq. (7.63), one obtains

∫
dz δjyadδE∗

y = −
∑

s

e2v2
ds

2kBTs

∂

∂t

∫
dz n(z) |δA(z)|2 (7.71)

Now, expressing the magnetic field distortion in Eq. (7.63) through the vector potential,
the energy principle assumes the form

∂

∂t

{∫
dz

[∣∣∣∣
dδA

dz

∣∣∣∣
2

+
(

k2 − 2
d2cosh2(z/d)

)
|δA|2

]}
= −2µ0Re

∫
dz δjyadδE∗

y

(7.72)
For sufficiently narrow current sheets,k2d2 ¿ 1, the tearing mode energy is negative,
and any dissipation will lead to instability.

Growth Rate

One can obtain a very rough estimate of the electron tearing growth rate when restricting
to electrons and assuming that a simple Ohm’s law holds for the current inside the
current layer and that outside the layer current is zero

δjy = σδEy |z| ≤ ∆e (7.73)

Here the conductivity is modeled asσ ≈ ne2/mevthek, implying that the collision
time equals the free flight time of the electrons over one wavelength. Then to order of
magnitude the energy principle (7.72) yields as a first step the approximate growth rate
of the one-dimensional electron tearing instability

γetea ≈
(rge

d

)3/2
(

1 +
Ti

Te

)
kvthe (7.74)

which holds only for long wavelengths. Use has been made of1/k > d and of the
expression for the electron inertial length,c2/ω2

pe = r2
ge(1 + Ti/Te), which is a conse-

quence of overall pressure balance across the layer.
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Fig. 7.8. Adiabatic and non-adiabatic pseudo-potentials in the tearing mode.

The above growth rate does not yet include the non-adiabatic electron contribution
contained in Eq. (7.69). Assuming low frequency disturbances,ω/k ¿ c, the elec-
trostatic potential,δφ, can be neglected in (7.69). Moreover, inside the current layer
the particles can be assumed to be unmagnetized. They will thus move along straight
undisturbed orbits,x = vxt at |z| ≤ ∆s, and the vector potential,δAy, can be assumed
as constant in the narrow current layer. Integrating over these orbits, we find

δfs =
[
vds −Θ(|z| −∆s)

ωvy

ω − kvx

]
qsδAy

kBTs
(7.75)

HereΘ(x) is the Heaviside step function. Again, this expression is used to calculate
the oscillating current as function of the vector potential. From Maxwell’s first equation
∇× δB = µ0δj, one derives the following equation for the amplitude,A(z), of δAy

d2A(z)
dz2

−A(z)

[
k2 + δK2

0 (z) +
∑

s

δK2
s (ω,k, z)

]
= 0 (7.76)

whereδK2
0 (z) and the sum overδK2

s are the adiabatic and non-adiabatic contributions
of the particle motion and currents to the square of the wavenumber. These pseudo-
potentials are given by

δK2
0 (z) = −2d−2cosh−2(z/d)

δK2
s (ω,k, z) = −i

√
π(ω2

psω/c2|k|vths)Θ(|z| −∆s)
(7.77)

Equation (7.76) is a one-dimensional Schrödinger-like equation for a particle moving in
an external potential. The form of this pseudo-potential is schematically shown in Fig.
7.8. The adiabatic potential forms a shallow sink containing a narrow non-adiabatic
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electron contribution in its center which reflects the vector potential acting as pseudo-
particle. The most convenient way to find a solution is to solve the Eq. (7.76) in the
external,|z| > ∆s, and internal,|z| < ∆s, regions separately, and to match the so-
lutions across the narrow internal region in the same way as we did for the resistive
tearing mode in Sec. 7.3. The external solution decays with increasing distance in both
directions above and below the current sheet according to

δAex(z) = δA(0)[1 + tanh(z/d)/kd] exp(−k|z|) (7.78)

The internal solution is difficult to find for the general case. It depends heavily on the
form of the pseudo-potential well inside the current sheet. For simplicity one neglects
the adiabatic contribution as well as the ion non-adiabatic term. In this case the inter-
nal pseudo-potential is simply of rectangular form and provided by the electrons only,
yielding

δAin(z) = δA(0)cosh (zδKe) (7.79)

at |z| < ∆e. The matching condition is the same as in the resistive tearing case, requir-
ing continuity of the logarithmic derivatives of the two solutions at the boundaries of
the inner and outer parts. This condition yields

δKetanh (∆eδKe) = (1− k2d2)/(kd2 + ∆e) (7.80)

Let us consider the limitkd2 > ∆e andδK2
e∆2

e ¿ 1. Then

1− k2d2

kd2 + ∆e
=

1
2

∞∫

−∞
δK2

e dz (7.81)

and the more precise growth rate of the one-dimensional electron tearing instability is
obtained from the last matching condition, inserting the expression forδK2

e

γetea =
√

π

(
1 +

Ti

Te

) (rge

d

)5/2

(1− k2d2)ωge (7.82)

This growth rate is proportional to the electron gyrofrequency and to the ratio of elec-
tron gyroradius to the width of the current layer to the 5/2-th power. On the other hand it
is reduced at short wavelengths, becoming comparable to the width of the current layer.
One thus expects that long wavelength tearing islands will have the largest growth rates.
On the other hand, any mechanism shortening the wavelength will drive the instability
toward marginal stability with wavelength of the order of the width of the current layer.
Marginally stable island will have a nearly circular shape.
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Ion Tearing Instability

So far we have neglected the effect of the small normal magnetic field component,B0z,
on the evolution of the one-dimensional tearing instability. Realistic current sheets and
equilibria are always two-dimensional with non-vanishing normal magnetic fields and
the magnetic field across the sheet will never turn exactly zero in any place. As we
already mentioned, the bulk low-energy electron component will in such a case become
strongly magnetized in theB0z field component in the center of the magnetic neutral
sheet. It will stay frozen-in and not allow the electron tearing mode to become unstable.
In such cases the ions drive the instability due to their larger inertia and unmagnetized
nature, if their gyroradius is large enough across the current sheet. A calculation very
similar to that presented in the previous section leads to the growth rate of the one-
dimensionalion tearing instability

γitea ≈
√

π
(rgi

d

)5/2
(

1 +
Te

Ti

)
(1− k2d2)ωgi (7.83)

This growth rate scales as the ion-cyclotron frequency. It is positive as long as the
tearing wavelength is longer than the halfwidth of the current sheet,k2d2 < 1. The
corresponding mode grows much slower than the electron tearing mode and is of longer
wavelength. Similarly, the marginally stable width of the islands will be of the order
of the ion gyroradius. Since the electron tearing mode is stabilized much earlier, it
is reasonable to assume that the dominant tearing mode under collisionless conditions
is ion tearing driven by inertial effects. Whenkd increases beyond one, the mode is
damped. However, strongest damping occurs fork2d2 = 5. For current sheets of larger
width the damping goes to zero again.

Two-Dimensional Tearing

However, because of the two-dimensionality of the problem, this is not the full story.
One must take into account the energy contribution of the frozen-in magnetized elec-
trons. This case corresponds to the range of ratios given in Eq. (7.65). The magnetized
electrons perform a gyration about the normal magnetic field component,B0z, in the
current neutral sheet and a bounce motion between the two mirror points of the mag-
netic field at the boundaries. Both motions are fast oscillations, which do not contribute
to instability and can be averaged out when determining the electron motion. We are
thus left with an effective average drift motion

δvex = δEy/Boz (7.84)

of the electrons in the bounce- and gyro-averaged electric wave field of the tearing
mode. This value is inserted in the averaged electron continuity equation, and the wave
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electric field is replaced by the average vector potential to obtain

δne/n0 = ikδAy/B0z (7.85)

In this two-dimensional model the magnetic field lines in the vicinity of the neutral
sheet can be approximated by a simple parabolic shape

x(z) = x0 + B0z
2/2B0zd (7.86)

which yields for the phase of the tearing mode along the magnetic field

kx(z) = kx0 + R[Q2(z)− 1] (7.87)

where we have used the Taylor expansion of the magnetic field near the neutral plane,
B(z) ≈ B0z + (∂2B/∂z2)z2/2 and introduced the abbreviationsR = B0zkd/2B0 ¿
1 andQ(z) = B(z)/B0z. Since this is the phase of the tearing mode, one can express
the density variation as

δne ≈
〈
δA(z) exp

[
iRQ2(z)

]〉
(ikn0/B0z) exp

[−iωt + ikx− iRQ2(z)
]

(7.88)

where the angular brackets indicate averaging over the electron bounce motion in the
neutral layer. Again, this averaging can be circumvented assuming that the vector po-
tential is constant throughout the current layer. This allows to replace the term in an-
gular brackets by the value of the vector potential,δA(∆e), at the boundaries of the
internal region,±∆e. Since at the boundary the phase isπ/2, the size of this region is

∆e/d ≈ (πB0z/B0kd)1/2 (7.89)

The electron current of the tearing mode perturbation is the diamagnetic current flowing
in the neutral sheet. This current is given by

δje = ikB(Te + Ti)kδne/B0z (7.90)

whereik is the inverse oscillating gradient scale of the density variation. Thus the total
work done by this current over the width of the sheet is

1
2

∫
dz δje(z)δA∗y(z) ≈ −∆e

|δA(∆e)|2
2µ0

k2B2
0

2B2
0z

(7.91)

Since this energy tries to stabilize the instability, one must compare the free energy with
this expression. We can use Eq. (7.78) forδA(∆) and the matching condition

1− k2d2

∆e + kd2
=

1
2

∑
s

∞∫

−∞
|δA(z)|2δK2

s (z)dz (7.92)



7.4. COLLISIONLESS TEARING MODE 167

to obtain the condition for instability in the particular form

1− k2d2

k2∆ed(kd + ∆e/d)
>

1
2

B2
0

B2
0z

(7.93)

This condition implies that the compression energy of the plasma in the narrow current
layer is not large enough to exceed the free energy, if

rge/d < B0z/B0 < (rge/d)1/2 (7.94)

In this case most of the electrons drift along thex direction inside the neutral sheet of
size∆e ≈

√
rged, while exhibiting a bounce oscillation between the boundaries of the

neutral sheet and performing a gyratory motion in the normal field,B0z. The small
thickness of the electron current layer allows to neglect∆e ¿ d againstd to obtain

1
k2d2

− 1 >

(
B0

B0z

)2 (rge

d

)1/2 kd

2
(7.95)

as condition of instability. Under these favorable conditions, the ion tearing instability
will grow at the growth rate in Eq. (7.83) whenever the growth rate exceeds the value

γitea = γ′ωgi(1− k2d2) > ωgiB0z/B0 (7.96)

with γ′ =
√

π (rgi/d)5/2(1 + Te/Ti). Eqs. (7.95) and (7.96) set thresholds on the ion
tearing instability: a large normal component of the magnetic field in the center of the
neutral sheet tends to stabilize the collisionless tearing mode. To visualize the unstable
range we combine the conditions into one, definingb = (B0z/B0). Then instability
arises for

γ′(1− k2d2) > b > (kd)3/2(1− k2d2)−1/2(rge/d)1/4 (7.97)

The graphic representation of this condition is shown in Fig. 7.9. For givenb andγ′ in-
stability arises in the shaded region. Hence, there is a restricted domain of wavenumbers
and of normal magnetic field components, depending on the electron and ion gyroradii,
where the ion tearing mode can develop.

Magnetospheric Substorms

The collisionless ion tearing mode is part of the most successful substorm model (see
Sec. 5.6 of our companion book). Under quiet conditions the magnetic field in the center
of the Earth’s plasma sheet is dipolar, with a relatively large non-negligible normal
component,B0z, and the tearing mode is stabilized by the pressure of the electrons
trapped in the center of the neutral sheet. In the substorm growth phase new open
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Fig. 7.9. Region of collisionless ion tearing instability.

magnetic flux, created by dayside magnetic merging, is convected into the tail and
increases the tail magnetic pressure. The field becomes stretched and the tail current
sheet becomes narrower with increased current flow in the sheet. This process decreases
the normal magnetic field component,B0z, while it increasesB0 until the right-hand
side of Eq. (7.96) becomes small enough for the ion tearing growth rate to exceed the
threshold, leading to reconnection and substorm onset.

7.5. Percolation

Observations of the magnetic field structure and plasma flow at the magnetopause often
reveal that reconnection does not proceed in a simple way, where oppositely directed
magnetic fields merge at one single point at the magnetopause close to the stagnation
point. Intuitively, it is easy to imagine that remote points on the magnetopause surface
are not correlated. In order to be correlated they should be connected by flow of in-
formation. The speed of information flow is of the order of the Alfvén speed. Thus
two points separated by a distance such that the Alfvén travel time is longer than the
growth time of tearing instability will under similar conditions decouple and reconnect
separately. This leads to the picture that the magnetopause at a certain time may be the
site of many independent merging events going on. Different flux tubes may reconnect
and open up the magnetosphere at different positions.
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Tearing Island Overlap

Actually, the tearing instability generates magnetic islands which are separated by X-
points. For thin sheets these islands are ordered spatially into long chains. Since there
is no reason for the islands to have the same size, two different effects may arise in
such chains. The first is related to the evolution of an instability which causes the is-
land to merge into the largest possible island size, where the dimension of the island
is restricted by the width of the current layer. This instability can be interpreted as an
instability in which the largest island eats up all smaller islands. In magnetohydrody-
namic theory thiscoalescence instabilityis rather fast and has no threshold.

However, tearing instability may occur independently in several adjacent paral-
lel current layers and the tearing instability may generate islands of different scales.
Since these islands are formed by magnetic fields lines, the formation of a tearing mode
spectrum implies that islands may overlap and magnetic field lines may become inter-
mingled. In such a case one may speak of turbulent diffusion of magnetic field lines.
Regions will be generated where the magnetic flux from both sides of the current layer
is screened, while in other regions field lines or flux tubes penetrate the boundary cur-
rent layer. This process is calledpercolationand is believed to produce localized and
temporally varying reconnection which leads to the interconnection of flux tubes from
the magnetosheath and the magnetosphere. Such flux tubes are known to form the
so-calledflux transfer eventsfrequently detected in the vicinity of the magnetopause.

Field Line Dynamics

The basic equation for magnetic field line dynamics can be derived from a consideration
of the magnetic field line of a single tearing mode with wavenumber,k, in a model
where the magnetic field rotates from one side to the other of the current layer, including
a guide field magnetic component parallel to the current. At the magnetopause such
a configuration corresponds to a magnetic field model with magnetic shear as shown
in Fig. 7.10. In such a model the main magnetic field points in thez direction, but
existence of the shear implies that a continuous tangential component exists parallel to
the diamagnetic current flowing in the magnetopause iny direction

B = B0 tanh(ξ/d)êz + B0yêy (7.98)

with ξ the distance measured from the magnetopause. Since∇·B = 0, the components
of the magnetic field satisfy

dξ

δB(k) sin(kzz + kyy)
=

dy

B0y
=

dz

Bz(ξ)
=

ds

B(s)
(7.99)

whereB(k) is the perturbation amplitude of the magnetic field caused by the tearing
mode,s is the coordinate along the magnetic field line,x, y, z the coordinates in the



170 7. RECONNECTION

jy By0

Magnetic
IslandSingular

Surface

ξ

z Bmsph

M
ag

ne
to

sh
ea

th


M
ag

ne
to

sp
he

re


MP Current Layer

ξ0

Fig. 7.10. Geometry for magnetopause tearing and percolation.

undistorted magnetic field,ξ0 the position of a given magnetic surface (see Fig. 7.10).
The magnetic surface is defined as the singular surface where the wave vector compo-
nent parallel to the actual local magnetic field, including the tearing mode disturbance,
vanishes,k‖(ξ0) = 0, corresponding to the condition for tearing mode instability to
appear locally atk ·B0 = 0. Any such magnetic surface can be described by a Harris
sheet asB = B0 tanh(ξ/d), with ξ the coordinate in the frame of this surface andd
the total width of the magnetic transition. Note that the parallel index refers to the local
parallel wavenumber in the superposition of the ambient and the distorted fields.

In the vicinity of this surface the phase of the tearing mode may be expanded into
a Taylor series. We define the new coordinatex = ξ − ξ0, dx = dξ and write

kyy + kzz =
dk‖(x)

dx

∣∣∣∣
ξ=ξ0

∫
x(s)ds (7.100)

The integration is taken over the coordinate,s, along the magnetic field of the island.
The extensions of the resonant regions are defined separately for ions and electrons
as∆j = |ω/k′‖vthj | (the prime indicates the derivative ofk‖ with respect toξ or x.)
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Integrating the above equation yields the result

x = ±
{

2δB(k)
k′‖B0

[
2λ2 − 1− cos

(
k′‖

∫
x(s)ds

)]}1/2

(7.101)

The integration constantλ2 determines whether the magnetic surfaces are open,λ >
1, or closed,λ < 1. The separatrix between open and closed island field lines is
determined by the conditionλ = 1. This yields the halfwidth of the islands of a given
wavenumber,k, at the particular resonant surface position

w(ξ0,k) = 2[δB(k)/B0k
′
‖(ξ0,k)]1/2 (7.102)

This width is a function of the position,ξ0, of the singular resonant layer, the center
of the magnetic surface. In addition it depends on the wavenumber. Hence, it can be
different for different layers and wavenumbers. The widths form an entire spectrum of
different lengths and magnetic islands belonging to different layers may overlap. For
two different islands at the resonant surfaces,ξ01 andξ02, the overlap condition is

w1(ξ01,k1) + w2(ξ02,k2) > |ξ01 − ξ02| (7.103)

Migration Coefficient

Whenever this condition is satisfied, the two magnetic surfaces cease to exist separately
but belong to both islands at the same time. The magnetic field lines of these two
islands mix, the common surface and the field lines start migrating across the islands
and the layers. This process is comparable to some kind of Brownian motion with a
spatial step,∆x ≈ w, performed during a characteristic stepping time,τw = s/v,
wherev is a characteristic velocity of a magnetic perturbation. The length of the field
line corresponding to one Brownian step is estimated by

sw ≈ (k′‖w)−1 (7.104)

Using this expression for the width of the islands allows to define a geometric field line
migration coefficient. This coefficient has the dimension of a length

Dgeo ≈ w2

sw
≈

∣∣∣∣
δB(k)
|k′‖|1/3B0

∣∣∣∣
3/2

(7.105)

In this expression the magnetic fluctuation spectrum,[δB(k)]2, appears.
The geometric migration coefficient can be rewritten with the help of the total

turbulent magnetic energy,Wtea =
∑

k |δB(k)|2/B2
0 , normalized to the undisturbed

magnetic energy. The number of islands in the total layer isN ≈ d/〈w〉, where〈w〉 ≈
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w is the average width of the islands. This yields for the normalized turbulent magnetic
energy density in the shear tearing mode:

Wtea ≈ N(δB/B0)2 ≈ w3k′2‖ d (7.106)

which is approximately the normalized energy released during the shear tearing mode
instability under the condition that many modes are excited. The geometric field line
diffusion coefficient can now be expressed as

Df,geo ≈ Wtea

|k′‖|d
≈ π

∑

k

[ |δB(k)|2
B2

0

]
δ[k‖(x)] (7.107)

This version of the migration coefficient is the quasilinear resonant diffusion coefficient
of migrating field lines, valid for random phase interactions between the overlapping
modes. Hence, the overlap of the islands can be interpreted as a randomization of field
lines whenever the tearing mode islands overlap.

Some of the magnetic flux tubes will start migrating across the current layer, lead-
ing to interconnected magnetosheath-magnetosphere flux tubes which appear as flux
transfer events in magnetic recordings. Figure 7.11 illustrates such an overlap and how
a magnetic flux tube may locally penetrate across the magnetopause current layer form-
ing a flux transfer event. The number of singular surfaces and X-points along theξ axis
across the magnetopause boundary layer is always an odd number and in the overlap
regions the local magnetic field is amplified. Because of the finite shear component,
B0y 6= 0, the magnetic field in the X-points is not zero. Only thez components of the
magnetic field cancel each other. A flux tube will usually enter as aB0y-tube through
one of the X-points on one side and turn around the overlapping islands until it leaves
from an X-point on the other side of the current layer. Hence, any migrating flux tube
will constitute a three-dimensional entity.

The geometric field line diffusion coefficient does not have the dimension of a
diffusion coefficient. In order to get a real diffusion coefficient, one has to multiply
Df,geo by the characteristic velocity,v, of a magnetic perturbation. The appropriate
speed is the Alfv́en velocity. Hence, overlap of magnetic island will cause migration of
magnetic field field lines corresponding to a percolation diffusion coefficient

Dper ≈ vAWtea/|k′‖|d (7.108)

This diffusion coefficient can be applied only to magnetic flux tube diffusion and only
to those regions where islands overlap. Particle diffusion is not described by it.

As already mentioned earlier, stabilization of the tearing mode will occur when the
island width becomes comparable to the ion gyroradius,w ≈ rgi. Thus the diffusion
coefficient at stabilization is proportional to the third power of the ion gyroradius. If we



7.5. PERCOLATION 173

FTE

−B0z

B0y 

B0z

X1

X2 X3

0 ξ1 ξ2 ξ3 ξ

Fig. 7.11. Percolation in tearing island overlap.

replace the derivative of the singular wavenumber byk′‖ ≈ kB0/B0yd, the percolation
diffusion coefficient at saturation

Dper,sat ≈
vAkr3

gi

d

B0

B0y
(7.109)

assumes a particularly simple form which is valid as long as the shear component of the
magnetic field has a finite value,B0y. For vanishing shear, percolation ceases to exist
and the character of the tearing mode changes.

Concluding Remarks

Reconnection is one particular and very fruitful concept of fast and localized magnetic
field line diffusion. It is based on two assumptions. The first assumption is that the
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two interacting magnetic fields possess antiparallel components which may annihilate
when contacting each other. The second assumption is that in the region of contact
some mechanism exists which decouples the plasma from the field. In magnetohydro-
dynamics, the model where reconnection is best studied, decoupling can be achieved
by resistive interactions among the particles. From a naive point of view they are thus
not applicable to conditions at the magnetopause or in most space plasmas. But this
view is incorrect insofar as locally in many cases anomalous collisions may be gener-
ated nonlinearly. We will discuss such possibilities in Chap. 12 below. The anomalous
collisions replace the particle collisions and may cause local resistive reconnection.

Collisionless reconnection is based on more realistic plasma models which include
the different inertia of electrons and ions. The latter may decouple the particles from
the field and allow for field line rearrangements. The electrons are very sensitive to the
presence of normal magnetic fields in the reconnection site and may cause stabilization.
But ion inertia may still provide sufficient slip of the magnetic field for reconnection to
be maintained. Magnetic shear is important and may lead to island overlap and mag-
netic field migration giving rise to the formation of flux transfer events at the dayside
magnetopause and flux ropes in the magnetotail.

Further Reading

Reconnection in magnetohydrodynamics is reviewed in [1] and [3]. Magnetohydrody-
namic aspects of reconnection including simulations are described by Biskamp,Phys.
Reps., 237(1994) 179. Collisional reconnection has been reviewed by White in [4]. The
stationary collisionless reconnection theory is taken from Vekstein and Priest,Phys.
Plasmas2 (1995) 3169. In the theory of the collisionless tearing mode we followed
[2]. The section about percolation theory is based on Galeev et al.,Space Sci. Rev.44
(1986) 1.

[1] D. Biskamp, Nonlinear Magnetohydrodynamics(Cambridge University Press,
Cambridge, 1993).

[2] A. A. Galeev, inMagnetospheric Plasma Physics, edited by A. Nishida (D. Reidel
Publ. Co., Dordrecht, 1982), p. 143.

[3] E. Priest,Solar Magnetohydrodynamics(D. Reidel Publ. Co., Dordrecht, 1984).
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8. Wave-Particle Interaction

With this chapter we enter the field ofnonlinear effectsin space plasma physics. We
have chosen to split the discussion of the nonlinear effects into two parts. The first part
(Chaps. 8–9) discusses weakly turbulent effects, which are usually dealt with by using
perturbation theory, while the second part (Chaps. 10–11) concentrates on strongly
turbulent phenomena. Chapter 12 concludes this volume with a number of selected
applications of nonlinear space plasma theory.

The presentation of the nonlinear theory differs from that of linear theory in that
it is more review-like than tutorial. The reason for this difference is twofold. Plasma
physics is fundamentally nonlinear. Linear theory illuminates only a narrow window
out of the wealth of all effects which can proceed in a plasma. Mathematically, linear
theory uses a well-developed apparatus of algorithms. Naturally, for the much wider
field of nonlinear theory no such general algorithms are available.

While discussing the linear aspects of space plasma physics has filled our compan-
ion bookBasic Space Plasma Physicsand the first half of the present volume, describ-
ing the nonlinearities in comparable depth would expand this presentation to unreason-
able size. Even if we wanted, it would be impossible, because nonlinear plasma physics
is still, after 35 years of intensive research, in its infancy. Few analytical methods are
known to treat nonlinear effects, and most of these methods rely on approximations
and lowest-order perturbation theory. This methodological lack of a general nonlinear
theory and the difficulties and restrictions of nonlinear analytical methods have driven
most researchers into the partly qualitative field of numerical simulations.

The present chapter starts with describing the primary effect of large amplitude
waves on the particle orbits, leading toparticle trapping in a wave, followed by a
discussion ofexact nonlinear waves, which can be calculated in a one-dimensional
electrostatic plasma in the kinetic approximation. Then we present the theory ofweak
turbulenceor weakwave-particle interaction, and a discussion ofquasilinear theory
for different types of waves, the today still most important part in space plasma appli-
cations. We continue with an application of this theory topitch angle diffusion. The
final sections deal with a brief introduction intowave-wave interaction, in the two ap-
proximations ofcoherentandincoherentinteractions, and its application to solar radio
bursts.

175
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8.1. Trapping in Single Waves

The simplest nonlinear effect is particle trapping. When a plasma wave reaches large
amplitudes, either because it has been injected at large amplitude into the plasma by
external means or because it has grown to large amplitude due to instability, several
entirely new effects set in. The first and simplest one is particle trapping in the potential
field of the wave.

Particles Trapped in a Well

Consider, for instance, a potential well created by an ion in a plasma. In the fluid
description electrons in the vicinity of the ion will readily deplete this well outside the
Debye radius,λD. But if one takes into account the different velocities of the electrons,
say, in a Maxwellian distribution of particles, it becomes clear that only low energy
electrons will be trapped in the vicinity of the ion in the potential trough. The condition
for trapping is that the particle energy is less than the potential energy of the electric
field, We < e|φ|. The particle distribution then splits into a trapped and a non-trapped
distribution. In a shallow potential well it is reasonable to assume that the trapped
distribution is constant,ftr(We) = fe(0), wherefe(0) is the distribution at the center
of the well. The particle density is calculated from the moment of the distribution
function as

ne(φ) = 2n0

[∫ ∞

ξ

fe(We, φ)dv +
∫ ξ

0

fe(0)dv

]
(8.1)

andξ = (2eφ/me)1/2. The factor 2 takes care of the symmetry of distribution function
and potential well. It is reasonable to choose a Boltzmann distribution for the electron
distribution function

fe(W,φ) =
(me

2πmekBTe)1/2
exp

(
−We − eφ

kBTe

)
(8.2)

Calculating the integrals, one finds that the density can be represented as a sum of three
terms which depend onψ = eφ/kBTe

ne(ψ) = n0

{[
1− erf(ψ1/2)

]
eψ + 2(ψ/π)1/2

}
(8.3)

Here the functionerf(x) is Gauss’ error integral

erf(x) =
2

π1/2

∫ x

0

exp(−t2)dt (8.4)
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For very shallow potentials and potential energies much less than the electron thermal
energy, the integral can be expanded in the small-amplitude limit to obtain

ne(φ) = n0

[
1 +

eφ

kBTe
− 4

3π1/2

(
eφ

kBTe

)3/2
]

(8.5)

This expression shows that to lowest order the dependence of the density on the poten-
tial is a linear function. However, due to the trapping of particles, another nonlinear
term comes into play.

For large argument,ξ ∝ ψ À 1, the first two terms in the full expression of the
density cancel because the error function becomes unity. The density is determined
entirely by the trapped particle component

ne = 2n0

(
eφ

πkBTe

)1/2

(8.6)

The density increases only as the half power of the potential, yielding a weaker depen-
dence on the potential than in the Boltzmann case.

Particle Trapping in a Monochromatic Wave

Similarly, particles can become trapped in a wave potential if the particle kinetic energy
in the wave frame is less than the potential energy of the wave. It is immediately clear
that trapping will be largest for resonant particles moving at approximately the same
velocity as the wave and experiencing a nearly stationary electric wave potential

φ(x, t) = φ0 cos(kx− ωt) = φ0 cos(kx′) (8.7)

where the wave coordinates have been transformed into the wave frame by

x′ = x− (ω/k)t (8.8)

The particle velocity also transforms and becomes

v′ = v − ω/k (8.9)

such that the total energy of the particle in the wave frame of reference is

We = 1
2mv′2 − eφ0 cos kx′ (8.10)

When considering the motion of the electron in the two-dimensional particle phase
space(x′, v′), the particle moves along the lines of constant energyWe. Figure 8.1
shows the schematic form of these lines. There are two families of curves in this phase
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Fig. 8.1. Phase space trajectories of particles moving in the electrostatic potential of a wave.

space. One of the families for low particle velocities exhibits closed lines corresponding
to closed particle trajectories. These curves describe trajectories of the particles trapped
in the wave potential. The second family of curves at higher particle speeds consists of
open lines corresponding to untrapped electrons.

Trapped trajectories have negative total energy,We < 0. Hence, the particles on
such orbits bounce back and forth between the walls of the wave potential exhibiting
an oscillatory motion which is periodic in phase space. One can easily estimate the
frequency of this bounce motion considering small-amplitude oscillations of the parti-
cles near the bottom of the wave potential well, i.e., for particles on trajectories close to
the center of the O-type trapped orbits. For those particles the cosine-potential can be
expanded to lowest order, yielding the equation of motion

md2x′/dt2 = −eφ0k
2x′ (8.11)

which is the equation of a harmonic oscillator of frequency

ωb = |eφ0k
2/m|1/2 (8.12)

This is theparticle trapping frequency. SinceδE = −ikφ it is proportional to the root
of the electric wave field amplitude and increases with growing wave field, the larger
the wave field amplitude, the faster the trapped resonant electrons will oscillate in the
field. In addition, for larger field amplitudes more particles will become trapped by the
deepening of the potential trough and the widening of the wave resonance. Because it
is just the resonant particles, which are easiest trapped in the wave potential wells, it is
clear that Landau damping may become strongly affected by particle trapping. Indeed,
one immediately deduces that trapping can be neglected only as long as the trapping
frequency is much smaller than the Landau damping or growth rate

ωb ¿ γl (8.13)
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Fig. 8.2. Modulation of the resonant part of the distribution function by trapping.

i.e., for very small amplitudes. During instability, when the amplitude increases, the
state when trapping becomes important is readily reached. Intuitively one can argue,
however, that this violation of the usual concept of Landau damping and Landau growth
appears only for nearly monochromatic waves of narrow bandwidth. When the band-
width of the excited waves is large, as may be the case for hot gentle beam-excited
Langmuir waves, the particle trajectories for the different waves in phase space will
mix and the closed trajectories will possibly become distorted, thereby decreasing trap-
ping. Under these conditions the usual concept of Landau damping and growth remains
valid. For this to happen the phase velocity spread in phase space must be larger than
the width of the closed particle orbits,m[∆(ω/k)]2 > 2eφ0,. This requirement corre-
sponds, for constant frequency, to a bandwidth of the spectrum exceeding

∆k/k >
√

2ωb/ω (8.14)

Trapping Oscillations

In the opposite case, when trapping becomes important in a monochromatic sufficiently
large-amplitude wave, the Landau damping or growth rate in Eq. (4.3), rewritten as

γl =
πω2

pe

k2(∂ε/∂ω)
∂f(v)

∂v

∣∣∣∣
v=ω/k

(8.15)

will become modulated by the bounce frequency of the particles. This version of the
equation shows explicitly that the value ofγl depends on the few resonant particles
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Fig. 8.3. Oscillation of Landau damping rate due to particle trapping.

in the distribution function. Since these particles are being trapped in the wave, they
perform an oscillation with one half of the time being accelerated, the other half of the
time being decelerated again. Hence, the part of the distribution function centered at
the wave phase velocity will oscillate.

Due to this acceleration and deceleration of the resonant particles, the distribution
function may periodically develop positive slopes (see Fig. 8.2), and reduce the Landau
damping rate temporarily as suggested by Eq. (8.15). Hence, the Landau damping rate
will oscillate at the trapping frequency,ωb, of the particles in the large-amplitude wave
potential field. During this oscillation the damping rate turns positive, an effect leading
to further amplification of the already large wave amplitude and to further amplification
of the trapping. Since this oscillation will dissipate the wave energy in the long time
run, the oscillation will damp out (see Fig. 8.3) and tend to become zero fort → ∞.
We can calculate the temporal evolution of the wave energy from

d|φ0(t)|2
dt

= 2γl(t)|φ0(t)|2 (8.16)

which yields the result that the wave energy is exponentially modulated according to

|φ0(t)|2 = |φ0(0)|2 exp
[
2
∫ t

0

γl(τ)dτ

]
(8.17)

Due to the exponential dependence of the wave energy on the growth rate, the variation
of the growth rate by trapping of resonant particles causes large-amplitude oscillations
at the trapping frequency,ωb, in the amplitude of the large-amplitude Langmuir wave.

Similar arguments apply to instability-generated Langmuir waves. For instance, in
the presence of a gentle beam the trapping of the low energy part of the beam at speeds
just below the wave phase velocity causes an increase in the steepness of the beam
and an increase in the growth rate during half of the bounce period, but a decrease
during the other half. Hence, the amplitude of the wave starts oscillating at the trapping
frequency in a large-amplitude Langmuir wave after the first short linear growth phase
of the wave, with sharp switch-off periods of the growth rate of the order of half the
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trapping frequency. In addition, because resonance is slightly shifted, it also becomes
possible that the frequency of the Langmuir wave starts oscillating. However, these fine
structure effects are difficult to detect in space plasmas.

8.2. Exact Nonlinear Waves

The former sections have made clear that trapping plays an important role in the non-
linear evolution of plasma waves. In principle, when investigating the dynamics of such
wave from a kinetic point of view one should distinguish between two components of
the particle distribution function, the trapped and the transmitted particles. Both dis-
tributions are not independent neither mutually nor of the wave amplitude. They are
determined by the Vlasov equation and the Poisson equation. The question arises then,
under which conditions one can find exact solutions of this system of equations which
determine in a self-consistent way all three quantities.

The complex nonlinear equations describing the evolution of plasma waves can
usually not be solved exactly. There is a very small number of occasions when such
solutions can be constructed. The simplest one is in the magnetohydrodynamic ap-
proximation, where it can be demonstrated that incompressible Alfvén waves in ideal
magnetohydrodynamics also exist at large amplitudes. The more interesting question is,
however, what kind of exact nonlinear waves can exist in a Vlasov plasma. Such waves
exist only in one-dimensional plasmas and are known asBernstein-Greene-Kruskal
wavesor simply BGK modes.

BGK Modes

BGK modes are exact one-dimensional electrostatic solutions of the unmagnetized Vla-
sov-Poisson system of equations. In the wave frame they are non-oscillating entities
which move at a certain velocity,v0 = const, across the plasma laboratory frame and
can be considered as large-amplitude stationary structures. Inside these structures one
encounters an equilibrium between the particles and the waves, the stability of which
against external disturbances can be considered separately. It is of considerable interest
that the plasma allows such structures to exist for comparably long times.

If a one-dimensional system of Vlasov-Poisson equations is transformed by re-
placingx → x − v0t andv → v − v0 to a stationary moving system,∂/∂t → 0, the
now stationary distribution function,fs0(x− v0t, v − v0), and stationary electric field,
E(x− v0t), obey
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v
∂fs0(x, v)

∂x
= − qs

ms
E(x)

∂fs0(x, v)
∂v

∂E(x)
∂x

=
∑

s

qs

ε0

∫
dv fs0(x, v)

(8.18)

Introducing the new energy variable

Ws = 1
2msv

2
s + qsφ(x) (8.19)

whereE = −∂φ/∂x, andφ the electrostatic potential, it is possible to express the
solution of the Vlasov equation as a superposition of solutions for the negative and
positive energy domains,fs< andfs>, respectively

fs0[Ws, sgn(v)] = fs<(Ws)Θ(−v) + fs>(Ws)Θ(v) (8.20)

whereΘ(v) is the Heaviside step function. Substituting the distribution (8.20) into the
stationary Poisson equation and replacingdv = ±dWs[2ms(Ws − qsφ)]−1/2, we find

∂2φ

∂x2
= −

∑
s

∞∫

qsφ

fs<(Ws) + fs>(Ws)
ε0[2ms(Ws − qsφ)]1/2

dWs (8.21)

Formally this equation can be regarded as the equation of motion of a pseudo-particle
at ‘positionφ’ in ‘time x’. For such a particle one can derive a ‘first integral of motion’
via multiplying by∂φ/∂x and integrating once with respect tox

1
2

(
∂φ

∂x

)2

+ V (φ) = const (8.22)

The pseudo-potentialV (φ) is obtained from the right-hand side of Eq. (8.21), denoted
by G(φ), as

V (φ) = −
φ∫

φ0

dφG(φ) (8.23)

Depending on the geometrical form of this potential function, one obtains periodic and
aperiodic solutions forφ(x) by a simple quadrature of Eq. (8.22)

x− x0 =
±1√

2

φ∫

φ0

dφ

|V (φ)− V (φ0)|1/2
(8.24)
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If the pseudo-potentialV (φ) for given particle distributions in the trapped and un-
trapped regions has a well in the region of interest, one gets a discrete spectrum of
periodic waves. These periodic solutions forφ(x) represent spatial modulations of the
wave potential caused by the interaction of the large-amplitude wave with the trapped
particles.

Particle Distribution Functions

Equation (8.21) can be used to determine the distribution function of the trapped particle
component. The trapped electrons have energiesWe< < −eφmin. Their distribution is
defined as

fetr = fe> + fe< = 2fe> = 2fe< (8.25)

If we define their number density as

g(eφ) =

−eφmin∫

−eφ

fetr dWe

[2me(We + eφ)]1/2
(8.26)

which vanishes at the minimum potential,g(eφmin) = 0, the solution of Eq. (8.21) for
the trapped electron component can be expressed as

fetr(We) =
(2me)1/2

π

−We∫

eφmin

dg(u)
du

du

(−u−We)1/2
(8.27)

This solution holds as long asWe < −eφmin, so that the expression in the root term in
the denominator is real. The expression forg(u) entering this solution is a complicated
expression of the untrapped particle distributions

g(u)− ε0
e

∂2φ

∂x2
=

∞∫

u

(fi< + fi>)dWi

[2mi(Wi − u)]1/2
−

∞∫

−umin

(fe< + fe>)dWi

[2me(We + u)]1/2
(8.28)

The untrapped distribution can be freely chosen. For simple sinusoidal potential func-
tion,φ = φ0 cos kx, with the ion distribution function being a monoenergetic ion beam,
fi> = 0, and

fi< = ai[2mi(W+ + u)]1/2δ(Wi −W+) for W+ > u (8.29)

to make sure that no ions are trapped, withfe> = 0 for the untrapped electrons, and

fe< = ae[2me(W− − u)]1/2δ(We −W−) for W− > u (8.30)
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one obtains simple expressions for the densities of ions and untrapped electrons

ns = as

[
W± ± u0

W± ∓ u(x)

]1/2

(8.31)

where the upper sign corresponds to ions, the lower to electrons. These definitions
permit to determine the functiong

g(u) = −ε0k
2u

e2
+

∑
s

ns(u) (8.32)

and with its help to find the trapped electron distribution. This distribution is given for

ε0k
2u/e2 = ae − ai (8.33)

which serves as the relation between the so far undetermined constants,ae andai, the
amplitude of the wave,u, and the wavenumber,k. The trapped solution is given by

πfetr(We) = [2me(eφ0 −We)]1/2

(
−2ε0k

2

e2
+

ai

W+ + We
+

ae

W− −We

)
(8.34)

This distribution function must be positive, a condition which can be expressed as

ae ≥ ε0k
2

e2

(2W+ − eφ0)(W− + eφ0)
(W+ + W−)

(8.35)

where we putWe = −eφ0, since this maximizes the number of trapped particles.

8.3. Weak Particle Turbulence

The previous section has convinced us that nonlinear interactions between waves and
particles can lead under certain circumstances to stationary states consisting of large-
amplitude waves and particle distributions separated into trapped and untrapped popu-
lations. Since it is in most cases impossible to search for such exact stationary states,
a different approach for treating nonlinear problems must be looked for. The simplest
such an approach is based on a perturbation expansion. This is the approach chosen
in the treatment of weakly turbulent wave-particle interactions in a plasma. The corre-
sponding theory is also known under the name ofweak plasma turbulence.

Quasilinear Theory

Quasilinear theory is the first and zero-order step in weak particle interaction theory.
Its assumptions are that the particle distribution in a plasma is weakly affected by the
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presence of the self-excited wave spectrum in a random-phase uncorrelated way, and
this effect on the particle distribution will self-consistently quench the instability. In this
section we derive the basic equations of quasilinear theory. In spite of the restrictions
imposed, these equations are, however, of more general use when discussing particle
acceleration and diffusion later in a generalized context.

The starting point is the full Maxwell-Vlasov system of equations, of which we
write down only the Vlasov equation

∂fs

∂t
+ v · ∇fs +

qs

ms
(E + v ×B) · ∂fs

∂v
= 0 (8.36)

for the s component of the plasma. Splitting the distribution function and fields into
average slowly varying parts,fs0, E0 = 0 andB0, and oscillating partsδfs, δE and
δB, and assuming that the long-time, large-volume averages over the oscillating fields
and distribution vanish

〈δfs〉 = 〈δE〉 = 〈δB〉 = 0 (8.37)

the average of the Vlasov equation (8.36) gives

∂fs0

∂t
+ v · ∇fs0 +

qs

ms
(v ×B) · ∂fs0

∂v
= − qs

ms

〈
(δE + v × δB) · ∂δfs

∂v

〉

(8.38)
This equation describes the phase space evolution of the slowly varying ensemble av-
eraged part of the distribution function under the action of the fields and the interaction
between the fluctuations of the fields and those of the probability distribution. The latter
are contained in the non-vanishing averaged term in angular brackets on the right-hand
side of Eq. (8.38). Since we have not made any assumption about the smallness of the
fluctuations, Eq. (8.38) is generally valid for any fluctuation amplitude, as long as there
is a clear separation between the fluctuations and the average behavior of the plasma.
This assumption is usually well satisfied.

Equation (8.38) is the fundamental equation describing the nonlinear dynamics of
the plasma. Solving it is a formidable task, because it requires a priori knowledge of the
fluctuation fields in order to calculate the average term on the right-hand side. This term
has the nature of a Boltzmann collision term. Hence, even in a collisionless plasma,
where all particle correlations can be neglected, there are still some kind of collisions,
which affect the evolution of the average distribution function and presumably drive
the plasma ultimately towards thermal equilibrium. These collisions are of anomalous
nature. They are entirely due to the nonlinear coupling between the particles and the
fluctuating wave fields. Actually, they are the result of scattering the particle motion in
the short-wavelength high-frequency field fluctuations.
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Weak Gentle Beam Turbulence

Equation (8.38) is valid under the random-phase approximation. Only then when all
fluctuating phases mix in an irregular way, such that their effects cancel in the average
statistical ensemble, the contribution of the correlation between the wave and parti-
cle fluctuations can be condensed into an average pseudo-collision integral of the kind
shown on the right-hand side of Eq. (8.38). If this is the case, the structure of this cor-
relation term allows for a very efficient formulation of the average interaction between
the particles and fields in terms of aweakly turbulent wave-particle interactiontheory.

Assuming that the fluctuations are small, they can be calculated from linear theory,
and the pseudo-collisional correlation term is calculated as the random-phase averaged
correlation of the linear fluctuations. Introducing a smallness parameter,λ, chosen as
the ratio of the average fluctuation energy to the average thermal energy of the average
distribution function,

λ =
〈ε0δ|E(x, t)|2〉

2〈n〉kB〈T 〉 ¿ 1 (8.39)

the perturbation expansions for distribution function and electric field are given as

fs = fs0 + λδfs1 + λ2δfs2 + . . .

δE = λδE1 + λ2δE2 + . . .
(8.40)

where the indices,1, 2, . . . indicate the different orders.
Turbulence theory derives equations for each of these orders in ascending suc-

cession. Let us discuss here the purely electrostatic case and the first order only. We
also restrict ourselves to Langmuir waves with the ions as immobile neutralizing back-
ground, as in Sec. 10.1 of our companion book,Basic Space Plasma Physics. But this
time we do not specify the undisturbed distribution function to be a Maxwellian, since
we are interested in the modification of the zero-order distribution due to the unstable
wave spectrum. However, because such a reaction can be expected only at large wave
amplitudes, we suppose that a gentle beam of low density crosses the plasma and leads
to instability. In such a case the wave frequency and growth rate of the broadband
Langmuir waves are given by Eqs. (4.2) and (4.3)

ω(k) = ωpe

(
1 + 3

2k2λ2
D

)
(8.41)

γ(k, t) = ω(k)
πω2

pe

2k2

∂f0b(v, t)
∂v

∣∣∣∣
v=ω/k

(8.42)

The waves propagate on the cool background plasma, and the instability is driven by
the positive slope of the zero-order beam distribution,f0b(v, t), at the resonance. This
distribution function evolves with time and will thus determine the evolution of the
growth rate of the Langmuir waves. As a consequence, the electrostatic wave field,
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δE(t) = −ikδφ(k, t), will also evolve with time according to

δE(k, t) = δE(k, 0) exp
{
−

∫ t

0

[iω(k)− γ(k, τ)]dτ

}
(8.43)

Intuitively, one expects that the change in the distribution function due to the grow-
ing wave field will deplete the positive slope of the distribution function, decrease the
growth rate, and saturate the instability.

To demonstrate this behavior we need to derive the equation for the zero-order
distribution function and solve it together with the above equation for the wave am-
plitude. We start from the one-dimensional unmagnetized electrostatic version of Eq.
(8.38), assuming, for simplicity, that the zero-order state is homogeneous for all times.
This permits to drop the second term on the left-hand side, which contains the gradient
of the zero-order distribution function. This yields the simplified equation for the time
evolution of the zero-order electron beam distribution function

∂f0b(v, t)
∂t

=
e

me

〈
δE

∂δf

δv

〉
(8.44)

The correlation term on the right-hand side of this expression can be calculated intro-
ducing the linear solutions for the Fourier components of the electric wave field,δE(k),
and the disturbance of the distribution function

δf(k) = i
e

me

δE(k)
ω − kv

∂f0b(v, t)
∂v

(8.45)

and integrating over space and time. The last expression makes the distortion of the
distribution function a function of the zero-order distribution.

The integrals over the product of the two Fourier series can be performed when
observing that the single terms are orthogonal. This leads to the replacement ofk →
−k, ω → −ω in the terms of one of the series, while all cross-multiplied terms are zero.
The two sums thereby reduce to one single sum over the productδE(k, ω)δE(−k,−ω).
Since the wave field must be real,δE(−k,−ω) = δE∗(k, ω). Hence, we arrive at

∂f0b(v, t)
∂t

=
∂

∂v

[
D(v, t)

∂f0b(v, t)
∂v

]
(8.46)

This equation has the form of a diffusion equation for the zero-order beam distribution
function,f0b(v, t), in velocity space with diffusion coefficient

D(v, t) = Re

{
ie2

m2
e

∑

k

|δE(k)|2
kv − ω(k) + iγ(k, t)

exp
[
2

∫ t

0

γ(k, τ)dτ

]}
(8.47)
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It is a special case of the much more generalFokker-Planck equation. The beam distri-
bution will thus spread with time in the velocity space under the action of the unstable
Langmuir wave field. This process does not proceed in real space and can thus only be
observed in the measured wave field or in a direct measurement of the particle distri-
bution function. The diffusion coefficient is proportional to the spectral density of the
electric wave field,|δE(k)|2. For large average wave amplitudes it will be high. The
actual evolution of the wave field is described by Eq. (8.43), with the growth rate given
by Eq. (8.42).

Since the diffusion coefficient is a velocity and time dependent quantity, the full
system of nonlinear equations for the beam distribution function is not easy to solve.
However, one realizes that the interaction between the waves and the beam distribution
takes place basically in the resonant region, with particles from outside the resonant
region to a large extent being insensitive to the presence of the wave spectrum. This al-
lows to replace the resonant denominator in the diffusion coefficient by a delta function

D(v, t) =
πe2

m2
e

∫
Ww(k, t)δ(ω − kv) dk (8.48)

where we replaced the sum over the various field amplitudes by an integral
∫

Ww(k, t) dk =
∑

k

|δE(k)|2 exp
[
2

∫ t

0

γ(k, τ)dτ

]
(8.49)

over the temporally variable spectral density function of the wave continuum,Ww(k, t),
and write instead of Eq. (8.43)

∂Ww(k, t)
∂t

= 2γ(k, t)Ww(k, t) (8.50)

Equations (8.46), (8.48) and (8.50) together with the expression for the growth rate
form the basic system of equations of thequasilinear theoryof beam excited Langmuir
waves. These equations are also called thequasilinear equationsin order to express
that they are the lowest order state of the nonlinear theory, where only the reaction of
the entire resonant broadband wave spectrum on the zero-order distribution function
is considered while all other kinds of wave-wave and wave-particle interactions are
dropped. Neglecting these other interactions, which are proportional to the square of
the wave intensity,W 2

w(k), is justified as long as the wave intensity is small such that

γ/ω À Ww/n0kBTe (8.51)

Fortunately the structure of the quasilinear equations is such that it is possible to rear-
range them into a form, which allows to get insight into the physics of the quasilinear re-
laxation process. If we multiply the quasilinear diffusion coefficient given in Eq. (8.48)
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by ∂f0b/∂v, we can replacedk = (dk/dv)dv and take advantage of theδ-function to
replacek = ωpe/v. With Eqs. (8.42) and Eq. (8.50), we get

D(v, t)
∂f0b(v, t)

∂v
= − e2

m2
eωpe

1
v3

∂

∂t
Ww

(ωpe

v

)
(8.52)

After substitution into Eq. (8.46), we obtain the following conservation law

∂

∂t

[
f0b(v, t) +

e2

m2
eωpe

1
v3

∂

∂t
Ww

(ωpe

v

)]
= 0 (8.53)

Assuming that the initial energy in the turbulence is negligibly small, of the order of
the thermal fluctuation energy, integration over the region of the positive slope of the
distribution function, fromvmin to v, gives

e2

m2
eωpev3

lim
t→∞

Ww

(ωpe

v

)
= −

v∫

vmin

dv [f0b(v,∞)− f0b(v, 0)] = A (8.54)

From this expression one can estimate the quasilinear saturation level of the Langmuir
turbulence excited by the gentle beam in the resonant region. The constant,A, on the
right-hand side is approximately proportional to the area under the positive slope of the
beam distribution function. The saturation energy can be defined as

Wwsat =
ε0
2

∑

k

|δE(k,∞)|2 ≈ Ww(k,∞)∆k (8.55)

where∆k is the spectral width. Hence, the saturation level is

Wwsat

n0kBTe
≈ ∆k

2ωpe

v3
b

v2
the

A (8.56)

Because∆k ≈ ωpe/vb and for instabilityvb >
√

3vthe, the saturation level turns out to
be of the order ofWwsat/n0kBTe > 3A. We thus find that quasilinear velocity space
diffusion produces a final stationary wave spectrum, the total intensity of which is pro-
portional to the resonant area under the beam distribution function and increases with
beam velocity,vb. Of course, this is only approximately correct, because we neglected
all interactions between the waves themselves. In the long-time limit these interactions
become important and will lead to additional modulation of the wave saturation level.

The most important result obtained from quasilinear theory can be drawn from an
inspection of Eq. (8.52). In the final state the right-hand side of this equation vanishes,
since the wave spectrum saturates at a constant time-independent level

D(v,∞)
∂f0b(v,∞)

∂v
= 0 (8.57)
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Fig. 8.4. Plateau formation in quasilinear diffusion.

Because the diffusion coefficient cannot vanish unless the wave spectrum vanishes, this
implies that the resonant part of the gentle beam distribution function evolves towards
a plateau with vanishing velocity derivative,∂f0b(v,∞)/∂v = 0. In quasilinear theory
the positive slope of the distribution function tends to depleted, as shown schematically
in Fig. 8.4. As long as a positive velocity gradient exists, the particles in the positive
slope diffuse from the region of the slope down into the valley towards the thermal
distribution. This is the physical meaning of the quasilinear velocity space diffusion
process described by the quasilinear equations.

It is clear that the wave spectrum does not persist forever after quasilinear diffusion
has ceased. Interactions of higher order will destroy the spectrum. Moreover, a weak
positive slope will always remain such that in a real equilibrium this slope just compen-
sates for the loss of waves from the resonant region. In addition, propagation effects of
the particle distribution will also modify the conditions of quasilinear saturation.

Weak Lower-Hybrid Drift Turbulence

Out of the large number of waves undergoing quasilinear relaxation we pick out here
one particularly interesting electrostatic mode in a magnetized plasma, the lower-hybrid
drift mode discussed in Sec. 6.3. Since quasilinear theory describes the time evolution
of the equilibrium distribution function, it is necessary to retain the dependence on the
distribution function in the expression for the growth rate of the lower-hybrid instability,
without assuming it to be a Maxwellian. For the sake of simplicity, we restrict ourselves
to purely perpendicular propagation. Then the dispersion relation can be written as

D(k⊥, ω) = 1 + χe(k⊥, ω) + χi(k⊥, ω) = 0 (8.58)
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where we introduced the abbreviations

χe(k⊥, ω) =
ω2

pe

ω2
ge

[
1− 1

k⊥Ln

ωge

ω − k⊥vde

]

χi(k⊥, ω) =
ω2

pi

k⊥

∫
dv⊥

ω − k⊥vde

∂f0i(v⊥, t)
∂v⊥

(8.59)

This time it is the ion distribution function which carries the free energy, and therefore
the ion distribution function will evolve quasilinearly in time. The growth rate in the
low drift velocity regime,vde < vthi, is obtained from the linear instability theory and
given by

γ = − πv2
thik

2
⊥vde

2|k⊥|(1 + k2
⊥/k2

max)2
∂f0i

∂v⊥

∣∣∣∣
v⊥=ω/k⊥

(8.60)

wherevde = −vdi, andkmax is defined as

k2
maxλ

2
Di = 2/(1 + ω2

pe/ω2
ge) (8.61)

the value of the perpendicular wavenumber where the growth rate maximizes. Hence,
quasilinear saturation of lower-hybrid turbulence can proceed in two ways, either by
depleting the resonant part of the distribution function, such that the velocity gradient
tends to zero as for Langmuir turbulence, or by reduction of the drift speed,vde → 0.

The evolution of the spectral density follows Eq. (8.50), which we now write as

∂Ww(k⊥, t)/∂t = 2γ(k⊥, t)Ww(k⊥, t) (8.62)

Remembering thatWE(k⊥, t) = ε0|δE(k⊥, t)|2/2 is the electric field energy, and that
the wave energy contains a contribution from the displacement of the electrons, i.e., a
contribution from the polarization of the medium,∂(ωε)/∂ω, we can write the wave
energy as

Ww(k⊥, t) =
(
1 + ω2

pe/ω2
ge

)
WE(k⊥, t) (8.63)

The resonantly unstable region covers the range of ion velocities0 < v < vde = vE .
In this resonant range the ion velocity evolves according to the quasilinear equation

∂f0i(v, t)
∂t

=
∂

∂v
·
[
Di(v, t) · ∂f0i(v, t)

∂v

]
(8.64)

which is the three-dimensional generalization of the electrostatic quasilinear diffusion
equation (8.46). Here the diffusion coefficient is defined as

Di(v, t) =
2iω2

pi

n0mi

∫
d3k

k2

kkWE(k, t)
ω(k)− k · v (8.65)
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fi(v⊥)

v⊥vde0

fi(v⊥,∞)

fi(v⊥,0)

Fig. 8.5. Plateau formation in a lower-hybrid resonant ion distribution.

In our perpendicular case the quasilinear diffusion equation (8.64) and the diffusion
coefficient (8.65) reduce to one dimension

∂f0i(v⊥, t)
∂t

=
∂

∂v⊥

[
D⊥(v⊥, t)

∂f0i(v⊥, t)
∂v⊥

]
(8.66)

D⊥(v⊥, t) =
2πω2

pi

n0mi

∫
dk⊥WE(k⊥, t) δ(ω − k⊥v⊥) (8.67)

With the resonant wavenumber,k2
0(v⊥) = k2

maxv⊥/|vde − v⊥|, and the group velocity,
vgr = ∂ω/∂k⊥, the expression for the diffusion coefficient can be integrated to yield

D⊥(v⊥, t) =
2πω2

piWE(k0, t)
n0mi |vgr(k0)− v⊥| (8.68)

Multiplying Eq. (8.66) withf0i(v⊥, t) and integrating over the resonant region in ve-
locity space yields

∂

∂t

∫
dv⊥f2

0i(v⊥, t) = −2
∫

dv⊥D⊥(v⊥, t)
[
∂f0i(v⊥, t)

∂v⊥

]2

≤ 0 (8.69)

Hence, the lower-hybrid drift instability also saturates by forming a plateau in the res-
onant region of velocity space,0 < v⊥ < vde, leading to∂f0i(v⊥,∞)/∂v⊥ = 0 for
asymptotically vanishing lower-hybrid drift growth rate,γ(∞) = 0. This behavior is
shown schematically in Fig. 8.5.

To obtain information about the mode of energy transport during this relaxation
and plateau formation process, we multiply the quasilinear diffusion equation (8.66) by
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v2
⊥ and integrate. Inserting the diffusion coefficient from Eq. (8.67) and performing the

integration over theδ-function yields

n0mi

2
∂

∂t

∫
v2
⊥f0idv⊥ =

∫
2γ(k⊥, t)Ww(k⊥, t)dk⊥ (8.70)

Since∂Ww/∂t = 2γWw from Eq. (8.62), this equation becomes a conservation law
containing the resonant ion kinetic energy density,Wires = (n0mi/2)

∫
dv⊥v2

⊥f0i

∂(Wires −Ww)/∂t = 0 (8.71)

Thus the quasilinear saturation level can be estimated by calculating the final resonant
particle kinetic energy level in the plateau region. Fig. 8.5 shows that there is a par-
ticular velocity,v∗, inside the resonant region, for which during plateau formation the
number of particles is conserved. This implies that the value of the distribution func-
tion atv⊥ = v∗ is unchanged for all times, and in particularf0i(v∗, 0) = f0i(v∗,∞).
Assuming that the initial distribution is a Maxwellian,f0i,m, we get

vdef0i,m(v∗) =
∫ vde

0

dv⊥f0i,m(v⊥) (8.72)

Forv2
de ¿ v2

thi this equation simply yieldsv∗ = vde/
√

3. Calculating for this low drift
velocity regime the net energy change

∆Wires = Wires(∞)−Wires(0) ≈ 0.05 n0kBTi (vde/vthi)
5 (8.73)

we find that it goes as the fifth power of the drift-to-thermal velocity ratio. Since the
total energy is conserved, this is also the change in wave energy between initial and
saturated state,∆Ww. Since the initial wave energy is at the thermal fluctuation level
and can be neglected, we can integrate the wave spectral energy,Ww(k⊥), from Eq.
(8.63), over the wavenumber space and obtain the wave energy

(
1 +

ω2
pe

ω2
ge

) ∫
dk⊥

(
1 +

k2
⊥

k2
max

)
WE(k⊥,∞) = ∆Wires (8.74)

which can be used to estimate the saturated electric field fluctuation level,WE(k⊥,∞).
This becomes particularly easy when one assumes that the spectrum is peaked at the
maximum wavenumber. Then the bracket containing the ratio of wavenumber to maxi-
mum wavenumber under the integral becomes 2, and one finds that

WE(k⊥,∞) = 0.1
mi

me

(
vde

vthi

)3

Weq (8.75)
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The quantityWeq introduced here is the electric field fluctuation level, which is obtained
when the final state can be characterized by equipartition between the kinetic energy and
the wave energy. In this final state one half of the energy is in the waves

Weq =
n0mev

2
de

8(1 + ω2
pe/ω2

ge)
(8.76)

This would be the predicted saturation level if current relaxation instead of quasilinear
plateau formation would be the mechanism which saturates the lower-hybrid drift in-
stability. Equipartition of particle and wave energy is frequently assumed in situations
where the saturation mechanism is unknown. However, the equipartition saturation
level may differ strongly from the quasilinearly reached saturation level.

The quasilinear theory gives the possibility to estimate the quasilinear relaxation
time of the ion distribution function until plateau formation is nearly completed. This
asymptotic time interval, taken to be infinite in the above calculation, is a long but finite
time span, given approximately by the ratio of the square of the ion thermal velocity to
the quasilinear diffusion coefficient

τql ≈ v2
thi/2D⊥ (8.77)

To order of magnitude, we can estimate the quasilinear diffusion coefficient

D⊥ ≈ 4π

n0mi

ω2
pi

kmaxvde
WE (8.78)

where we used the maximum growing wavenumber andv = vde/2. Since we already
know the saturation level, the quasilinear relaxation time is estimated to

τql ≈ kmaxvde

4πω2
pi

n0kBTi

WE
(8.79)

Hence, knowing the spectral energy of the electric fluctuations in the lower-hybrid drift
instability, one can estimate the relaxation time. Using the above expressions and the
expression for the maximum linear growth rate,γmax = ωlh(

√
2π/8)(v2

de/v2
thi), one

finds
τqlγmax ≈ 1.4(vthi/vde)2 (8.80)

For completeness we investigate the behavior of the non-resonant ions and electrons.
Both are described by the same quasilinear equation, but with the non-resonant part of
the diffusion coefficient, i.e., the principal-value part and not theδ-function resonant
part. Formally this equation can be written for the ions as

∂F0i

∂t
=

∂

∂v⊥

[
Dnr(v⊥, t)

∂F0i

∂v⊥

]
(8.81)
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where we used a capitalF to distinguish the non-resonant from the resonant distribu-
tion functions, and the non-resonant diffusion coefficient is obtained assuming that the
frequency is low enough to allow to write

Dnr(v⊥, t) =
2ω2

pi

min0

∫
dk⊥

γ(k⊥, t)WE(k⊥, t)
k2
⊥v2

⊥
(8.82)

With the help of this equation the energy conservation assumes the form

n0mi

2
∂

∂t

∫
v2
⊥dv⊥F0i = −2ω2

pi

∫
dk⊥
k2
⊥

γWE

∫
dv⊥
v⊥

∂F0i

∂v⊥
(8.83)

Because in the non-resonant region the distribution function remains approximately
unchanged, it can be replaced by a Maxwellian on the right-hand side. After carrying
out the differentiation this removes the singularity and produces

∂

∂t

[
Wi,nr − 2

∫
dk⊥

k2
⊥λ2

Di

WE(k⊥, t)
]

= 0 (8.84)

whereWi,nr = (n0mi/2)
∫

v2
⊥dv⊥F0i is the non-resonant kinetic ion energy and the

spectral field energy is replaced by its time variation,2γWE = ∂WE/∂t. At maximum
growth rate we havek2

⊥ = k2
max, and thek⊥-integral over the spectral density gives the

total energy density of the wave field,WE = 2(1 + ω2
pe/ω2

ge)
∫

dk⊥WE(k⊥) and thus

∂(Wi,nr − 1
2Ww)/∂t = 0 (8.85)

The non-resonant ion interaction is thus non-negligible in the total energy budget. This
small distortion of the non-resonant bulk distribution is best accounted for as a non-
resonant heating effect of the bulk ion plasma by the non-resonant absorption of the
lower-hybrid wave energy. We can estimate this kind of heating from the last equation,
by defining the relative increase in the ion temperature as

∆Ti

Ti
=

∆Ww

n0kBTi
≈ 2

(
1 +

ω2
pe

ω2
ge

)
Weq

n0kBTi
(8.86)

or using the wave saturation level

∆Ti/Ti ≈ 0.05(vde/vthi)5 ¿ 1 (8.87)

which in the slow drift limit used here is small. Therefore the bulk plasma heating by
the lower-hybrid drift instability is only weak.

However, the equivalent investigation for electrons shows that electron heating can
be quite substantial. In response to the lower-hybrid drift instability the electrons gain
energy as described by

n0me

2
∂

∂t

∫
dv⊥(v⊥ − vde)2f0e(v⊥, t) =

ω2
pe

ω2
ge

∂WE

∂t
(8.88)
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Thus the heating rate of the electrons is quite substantial if the plasma-to-cyclotron
frequency ratio is large. The electrons gain heat at a very fast rate, faster than the
wave fluctuations grow. But the heating of the bulk of the electrons still remains small.
Energy is only fed to the few resonant electrons which are accelerated in the wave field.

Weak Whistler Turbulence

We now turn to electromagnetic waves below the electron-cyclotron frequency. For
simplicity we consider only parallel propagation of the R- and L-modes (see Sec. 10.6
of our companion book). The linear distortion of the distribution function caused by
these waves is given in Eq. (I.10.91) in terms of the initial non-equilibrium distribution,
f0s. For parallel propagation, performing the integration over the gyrating particle orbit,
we get for the linear disturbance

δfsR,L(k,v, t) = − iqs

2ms

δER,L(k, t)
ω(k, t)− kv‖ ± ωgs{[

1− kv‖
ω(k, t)

]
∂

∂v⊥
+

kv⊥
ω(k, t)

∂

∂v‖

}
f0s(v⊥, v‖, t) (8.89)

wherek = k‖ is the parallel wavenumber, and we have indicated explicitly the depen-
dence on wavenumber and time in the frequency,ω, and in the undisturbed background
distribution, f0s(t). The time dependence in the frequency leads to the time evolu-
tion of the growth rate,γ(k, t), which we again expect to vanish asymptotically in the
long-time limit, when the quasilinear stable state is reached. This growth rate must
be positive,γ(k, t) > 0, because otherwise the wave field dies out and there is no re-
markable distortion of the distribution function. Growing whistlers and electromagnetic
ion-cyclotron waves are obtained, for instance, for an excess temperature in the perpen-
dicular direction,As > 0. But there are also other possibilities to drive these waves
unstable, such as loss cones and beams.

The linear growth rate is determined from the linear dispersion relation, which for
an unspecified distribution function is given as

DR,L = 1− k2c2

ω2(k, t)
+

∑
s

ω2
ps

2ω2(k, t)

∫
d3v

v⊥
ω(k, t)− kv‖ ∓ ωgs

·
{[

1− kv‖
ω(k, t)

]
∂

∂v⊥
+

kv⊥
ω(k, t)

∂

∂v‖

}
f0s(v⊥, v‖, t) = 0 (8.90)

Finding the quasilinear equation of weak turbulence in even this simple case of par-
allel propagation requires quite some algebra. The steps of the calculation are as fol-
lows. Take the quasilinear equation (8.38) and write it for parallel propagation and a
gyrotropic undisturbed distribution function, which does not depend on the gyration
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angle,φ, of the particles. Then replace the wave fields on the right-hand side in the
ensemble-averaged part by the right- and left-polarized electromagnetic fields

δER,L(k, t) = δEx(k, t)∓ iδEy(k, t) (8.91)

thereby expressing the magnetic through the electric wave field using Maxwell’s second
equation. Now expand the wave field and the disturbance of the distribution on the
right-hand side into Fourier series both in space and time, using differentk andω in the
two Fourier integrals. At this point insertδf from Eq. (8.89) to express the right-hand
side in terms of the electric wave field and the background distribution function only.

The next step is to interpret the average as integrals over the fast space-time vari-
ation of the wave field, keeping the background distribution and frequency constant
and assuming that averages over linear quantities vanish in the random-phase approx-
imation. Performing this integration over all space and time reduces the two Fourier
integrals to just one, because the random-phase approximation producesδ-functions of
the typeδ(ω − ω1 − ω2)δ(k − k1 − k2). Remembering that the wave fields are real,
δE(k, ω)δE(−k,−ω) = |δE(k, ω)|2, we define

ε0
〈|δE(k, t)|2〉 = 2WE(k, t) (8.92)

where the time dependence refers to the slow variation of the averages only, since fast
time variations have been averaged out. Finally, we average over the gyration angle,ψ,
from 0 to 2π using that due to gyrotropy of the initial background distribution

1
2π

∫ 2π

0

dψ
∂f0s

∂ψ
= 0 (8.93)

which shows that the final average distribution is also gyrotropic, despite the presence
of the waves and their modifying effect. We then obtain

∂f0s

∂t
=

iω2
ps

2msns

∑
±

∫
dkWE(k, t)

{[
1 +

kv‖
ω(−k, t)

]
1
v⊥

∂

∂v⊥

− kv⊥
ω(−k, t)

∂

∂v‖

}
1

ω(k, t)− kv‖ ± ωgs

{
1− kv‖

ω(k, t)
∂

∂v⊥
+

kv⊥
ω(k, t)

∂

∂v‖

}
f0s

(8.94)

for the general parallel kinetic equation of weak electromagnetic plasma turbulence
theory. The sum in this equation is over the two resonant contributions, corresponding
to the two directions of propagation parallel and antiparallel to the magnetic field,±k.

The complicated expression on the right-hand side, in front of the slowly varying
background distribution function, is the velocity space diffusion term. Obviously, in the
magnetized plasma it depends on the two velocity derivatives parallel and perpendicular
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to the magnetic field. The important conclusion drawn from the above quasilinear weak
turbulence kinetic equation (8.94) is that the background resonant distribution function
experiences a two-dimensional velocity space diffusion inv‖ andv⊥ under the action
of the parallel propagating electromagnetic R- and L-modes, while the evolution of the
wave spectral density in this theory follows Eq. (8.50)

∂WE(k, t)/∂t = 2γ(k, t)WE(k, t) (8.95)

We will now apply the present theory to whistlers excited by a temperature anisotropy,
under the assumption that|ω(k) − ωge| À kvthe and|γ(k)/ω(k)| ¿ 1. The growth
rate of the whistler, expressed through the initial undisturbed distribution is

γ(k, t) =
π

2
ω(k)ω2

pe

∫
d3v

v⊥δ(ω − kv‖ − ωge)
ω2 + c2k2 + ω2ω2

pe/(ω − ωge)2

·
[
(ω − kv‖)

∂

∂v⊥
+ kv⊥

∂

∂v‖

]
f0e (8.96)

Taking into account only resonant interactions leads to the replacement of the denomi-
nator by theδ-function. The same replacement must be used also in the diffusion term
of Eq. (8.94), which becomes

∂f0e(t)
∂t

=
πω2

pe

2men0

∫

k≥0

dkWE(k, t)
[(

1− kv‖
ω

)
1
v⊥

∂

∂v⊥
v⊥ +

kv⊥
ω

∂

∂v‖

]

δ(kv‖ − ω + ωge)
[(

1− kv‖
ω

)
∂

∂v⊥
+

kv⊥
ω

∂

∂v‖

]
f0e(t) (8.97)

whereω(k) is the whistler frequency, given as the solution of the real part of the disper-
sion relation in Eq. (5.10). The kinetic equation (8.97) describes the nonlinear evolution
of the resonant part of the unstable electron distribution function. As for the Langmuir
and lower-hybrid waves, we multiply Eq. (8.97) by the distribution function,f0e, and
integrate over the resonant part of the phase space to find

d

dt

∫
d3vf2

0e(t) = − πω2
pe

men0

∫
dk

ω(k)
WE(k, t)

∫
d3v δ(kv‖ − ω + ωge)

·
[
(ω − kv‖)

∂f0e

∂v⊥
+ kv⊥

∂f0e

∂v‖

]2

≤ 0 (8.98)

The right-hand side is always negative. Hence, the evolution of the resonant part of the
distribution function tends towards an equilibrium, where the expression in the brackets
vanishes for all resonant velocities

vres = [ω(k)− ωge]/k (8.99)
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In the long-time asymptotic limit this bracket must vanish, simply because the trivial
possibility that the wave spectral density becomes zero makes sense only for damped
waves, in which case the quasilinear theory is of no interest. One thus requires as the
final state of the distribution function in the resonant interval of phase space

kv⊥∂f0e(∞)/∂v‖|v‖=vres
+ (ω − kv‖)∂f0e(∞)/∂v⊥|v‖=vres

= 0 (8.100)

This condition is equivalent to the requirement that in the final state of quasilinear
evolution of the whistler turbulence the linear growth rate has turned zero,γ(∞) = 0.

In order to determine what this conclusion implies for the evolution of the distri-
bution function in the resonant phase space interval, we observe that Eq. (8.100) has
the characteristic differential equation

dv‖/dv⊥ = v⊥/[(ω/k)− v‖] (8.101)

whereω(k)/k must be taken at the resonant velocity (8.99). Integration yields that

v2
⊥ + v2

‖

2
−

∫ vres

0

dv‖
ω(v‖)

k
= const (8.102)

is a constant of motion of the particles in the resonant region in the whistler wave field
in the final state. Hence, the final resonant velocity distribution is given by

f0e(v⊥, v‖,∞) = f0e

[
v2
‖ + v2

⊥
2

−
∫ vres

0

dv‖
ω(v‖)

k

]
(8.103)

We know, however, that the resonant strip in(v⊥, v‖)-space is centered at the nega-
tive wave phase velocityv‖ = −(ω/k) but otherwise parallel to thev⊥-axis (see the
unstable right-hand part of Fig. 5.2). This strip has the coordinates

[ω(k1)− ωge]/k1 < v‖ < [ω(k2)− ωge]/k2 (8.104)

and0 < v⊥ < ∞. The curves where the argument of the asymptotically stable resonant
electron distribution function is constant are the sections of the circles in(v⊥, v‖)-space
centered atv‖ = −(ω/k), v⊥ = 0. During quasilinear evolution the distribution evolves
in phase space along these stable orbits.

8.4. Resonance Broadening

In the derivation of quasilinear wave-particle interaction we have continuously assumed
that the orbits of the particles remain undisturbed by the wave field. This assumption
holds for very weak wave fields. However, when the wave grows to large amplitudes,
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the orbits of the particles may become distorted. Particle trapping in the wave is one of
the possible effects. In a broad random-phase wave spectrum this trapping is not very
important, but distortion of the particle orbits will nevertheless occur. In such a case one
cannot consider these orbits as unperturbed, but must include the average wave field in
calculating the particle orbits. This is a very involved task. It is considerably simpler
to assume that the distortion of the particle orbits produces a shift in the resonant wave
frequencies and thus causesresonance broadeningin a wide wave spectrum containing
a large number of harmonics. Resonance broadening leads to leakage of particles out
of the resonance and is thus it is another important mechanism of wave saturation and
stabilization of instabilities.

Mechanism

The equation for the linear variation of the distribution function in random phase inter-
action between particles and waves can be written

[
i(k · v − ω)− ∂

∂v
·
(

D
∂

∂v

)]
δfs(k) = − qs

ms
δE(k) · ∂f0s

∂v
(8.105)

where, for purely electrostatic variations withδE||k, the diffusion coefficient,D, is

D = −Re
iq2

s

m2
s

∑

k′

k′k′

k′2
|δE(k′)|2

(k′ + k) · v − (ω′ + ω)
(8.106)

That the equation forδf already contains a term which depends on the diffusion coef-
ficient of the plasma in the wave field, arises from the interaction of the particles with
their distorted orbits with the broadband wave field and is a deviation from linear theory.

When operating with this new expression forδf and building the modified quasi-
linear equations, one arrives at a quasilinear diffusion equation which contains the dif-
fusion coefficient in a much more complicated version. To demonstrate this behavior
let us, for the sake of simplicity, restrict ourselves to one dimension only. In addition
we assume that the diffusion coefficient is constant. Then Eq. (8.105) simplifies to

i(kv − ω)δfs(k)−D
∂2δfs(k)

∂v2
= − qs

ms
δE(k)

∂f0s

∂v
(8.107)

Fourier-transforming the disturbed distribution function in velocity space

δf(k, v) =
1
2π

∫
δf(τ) exp(ivτ)dτ (8.108)

yields for the Fourier-transform,δf(τ) =
∫

δf(k, v) exp(−ivτ)dv

dδfs(τ)
dτ

+
(

iω

k
− τ2

k
D

)
δfs(τ) =

qs

ms

δE(k)
k

∫
∂f0s

∂v
exp(−ivτ)dv (8.109)
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The solution of this equation is obtained by direct integration. The result is

δfs(τ) =
qsδE(k)

msk
exp

[− (
iωτ/k −Dτ3/3k

)] ∫ τ

−∞
dτ ′

{
exp

[− (
iωτ ′/k −Dτ ′3/3k

)] ∫
dv′

∂f0s

∂v
exp(−iv′τ ′)

}
(8.110)

This shows the exponential dependence of the disturbed distribution function on the
diffusion coefficient,D, destroying the delta-function character of the resonance. We
define the velocity half-width of the particle resonance asδ ≈ k−1(k2D/3)1/3, solve
the Fourier integral overτ , and interpret the result as a resonant denominator

δfs(k) ≈ − iqs

ms

δE(k)
ω − kv + ikδ

∂f0s

∂v
(8.111)

The distortion of the particle orbits introduces an additional term into the resonant de-
nominator inδfs, which causes the broadening of the resonance during the interaction
between waves and particles. The resonance diffuses until the instability saturates.

Ion-Acoustic Mode

In particular, for resonant excitation of ion-acoustic waves by hot field-aligned electron
currents and cold ions (see Sec. 4.2), the resonance broadening appear on the electrons
only. In this case the imaginary part of the dielectric constant, including the resonance
broadeningδ = (k2D/3)1/3, is proportional to

Im ε ∝
∫

dv (∂f0e/∂v) δ

[ω − k(v0 + u)]2 + δ2
(8.112)

wherev0 is the current speed, andu is the width of the resonance. For large resonance
broadening,δ À kv0, the integral tends to zero as1/δ. This implies a vanishing
growth rate and thus saturation. The instability considered is resonant in the interval
cia < v0 < vthe. Thus stabilization is achieved when the resonance broadens beyond
this domain. This happens when the resonant width,∆ω, approaches the value

∆ω = kvthe = (k2D/3)1/3 (8.113)

Using the bandwidth,∆k, the diffusion coefficient can be expressed as

D ≈
(

mi

me

)1/2 πω2
pe

∆kvthe

WE

n0kBTe
v2
the (8.114)
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This enables us to determine the saturation level of the ion-acoustic instability, when-
ever the saturation is provided by simple resonance broadening in the turbulent wave
field

WE,ia

n0kBTe
≈

(
me

mi

)1/2

kλD (8.115)

This saturation level is surprisingly low. It indicates that the distortion of the electron
orbits in the wave field of the current-driven ion-acoustic wave is very strong. The
particle orbits are readily deformed, resonance broadening sets on, and the instability
saturates on the low level given by Eq. (8.115).

Ion-Cyclotron Resonance Broadening

Another important case is the excitation of electrostatic ion-cyclotron waves by field-
aligned currents which has been discussed in Sec. 4.4. This case includes the effects of
the magnetic field on the particle motion and is considerably more involved than reso-
nance broadening in ion-acoustic waves. We write the dielectric response susceptibility
of speciess including the resonance broadening in the denominator

χs(k, ω) =
1

k2λ2
Ds

[
1− (ω − k‖vds)

∞∑

l=−∞

∫
d3v fs(v)

J2
l (k⊥v⊥/ωgs)

ω + i∆ωs(v)− k‖v‖ − lωgs

]

(8.116)
The resonance broadening in frequency symbolized by the imaginary frequency term
in the denominator contains of course the full magnetized diffusion tensor. But for
k‖/k ¿ 1 the resonance broadening is predominantly transverse to the magnetic field.
Resonance broadening is now due to the ions because at these low frequencies the
electrons behave adiabatically. Restricting toD⊥ only, it can be estimated to

k2
⊥D⊥ ≈

(
k⊥δE

B0

)2 ∆ωiG(k⊥v⊥/ωgi)
(ω − k‖v‖ − ωgi)2 + ∆ω2

i

(8.117)

where we used only the first harmonic,l=1, neglected electrons, and introduced

G(ζi) = 1
4

[
J2

0 (ζi) + 2J2
1 (ζi) + J2

2 (ζi)
]

(8.118)

Saturation occurs for∆ωi = k2
⊥D⊥, a condition which yields for the ion-cyclotron

mode the wave amplitude at saturation

eδEsat

k⊥kBTe
≈ ω2

giΛ1(k2
⊥v2

thi/ω2
gi)

k2
⊥v2

thi[G(21/2k⊥vthi/ωgi)]1/2
(8.119)

Here we used the functionΛl(ζ) = Il(ζ) exp(−ζ). This saturation amplitude is inde-
pendent of the growth rate which at saturation is zero, and the above result is valid as
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long as the linear growth rate satisfies the conditionγ/(ω − ωgi) ¿ 1. This saturation
amplitude of current driven electrostatic ion cyclotron waves plays an important role
in the calculation of anomalous collision frequencies in ion-cyclotron turbulence, for
resonance broadening is the main saturation mechanism in this type of waves.

8.5. Pitch Angle Diffusion

The quasilinear theory developed in the last section can be applied to the particle dy-
namics in the magnetosphere. One must, however, distinguish between energetic parti-
cles and particles of lower energy. Energetic particles interact better with electromag-
netic waves, simply because their energy may exceed the threshold resonance energy
for this kind of interaction. The low energy component requires a different mechanism.

Whistler Turbulence

Assume that an energetic electron component is trapped in the dipolar geomagnetic
field close to the Earth, performing bounce motions along the magnetic field between
the mirror points of the particles, and at the same time gyrating about the geomagnetic
field. Electrons having their mirror point in the deep ionosphere will be lost from the
magnetic mirror due to collisions with the neutrals and the dense ionospheric plasma.
Therefore the energetic particle distribution function of the trapped electrons will be a
loss cone distribution. The trapped electrons will thus have some kind of temperature
anisotropy,Aeh > 0. In addition, the radiation belts are at comparably low geomagnetic
latitudes inside the dense plasmasphere withn0 À neh.

Under these conditions, for sufficiently large trapped radiation belt electron fluxes,
the hot electron component will excite whistler wave turbulence at frequencies below
the threshold frequency,ω < ωc, where

ωc/ωge = Aeh/(Aeh + 1) (8.120)

The growth rate of these waves is proportional to the ratio of trapped-to-plasmaspheric
electrons,neh/n0, and the whistlers propagate on the background plasmaspheric plasma.
The whistler waves, being trapped in the geomagnetic field and bouncing in space be-
tween the lower-hybrid resonance points, readily reach large amplitudes, thereby enter-
ing the quasilinear regime. They start scattering the electrons and building up a platform
in the resonant velocity space. Intuitively the only way to deplete the resonant electrons
is to scatter them into the loss cone. This mechanism explains in a simple and satis-
factory way the enhanced precipitation of electrons from the radiation belts in all cases
when the flux of electrons in the radiation belts is enhanced, e.g., during substorms
when transversely accelerated energetic electrons are injected into the radiation belts
from the Earth’s tail.
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Consider the distribution function in the quasilinear limit given in Eq. (8.103). In
this readily reached final stage the change in total energy of an electron,We, associated
with the change in the parallel energy,We‖, is given by

dWe

dWe‖
=

ω

kv‖
=

ω

ω − ωc
(8.121)

As a consequence, one expects that the particle energy is nearly unchanged for fre-
quencies sufficiently far below the critical frequency. At such frequencies, which are
highly plausible because their resonant particle energy is lowest, the diffusion caused
by the interaction of the electron distribution and the whistlers is apitch angle diffusion,
turning the particle orbits into the loss cone. The quasilinear diffusion equation for the
electrons then becomes a pure pitch angle diffusion equation

∂f0e(v, α, t)
∂t

=
1

sin α

∂

∂α

[
D(v, α, t) sin α

∂f0e(v, α, t)
∂α

]
(8.122)

whereα = tan−1(v‖/v⊥) is the pitch angle of a particle with velocityv and the diffu-
sion coefficient for constant energy, rewritten in terms of the magnetic fluctuation field
component instead of the electric field, is given by

D(v, α, t) = π2ω2
c

∑

k

1
|k‖|

∣∣∣∣
δB(k)

B0

∣∣∣∣
2

δ

(
v cos α− ω − ωc

k‖

)
(8.123)

In order to describe the stationary state achieved in equilibrium between injection and
precipitation, it is convenient to assume that the particles are injected in the nightside
equatorial plane with pitch angles outside the equatorial loss cone angle,α > α`. With
an injection source,Se(v, α), the stationary diffusion equation becomes

1
sinα

∂

∂α

[
D(v, α) sin α

∂f0e(v, α)
∂α

]
= Se(α, v) (8.124)

Within the loss cone atα < α`, and forα` ¿ 1, the diffusion equation must be
supplemented by a loss term which can simply be modeled asf(α, v)/τ`(α, v). Here
τ` is the characteristic loss time of the precipitating particles which is determined by
their bounce motion along the magnetic field and is for immediate loss equal to one
quarter bounce period. This choice allows to write

1
α

∂

∂α

[
αD(α, v)

∂f(α, v)
∂α

]
− f(α, v)

τ`(α, v)
= 0 (8.125)

These two equations together with the appropriate boundary condition, that the distribu-
tion functions and their derivatives be continuous across the boundary of the loss cone
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atα = α`, and an appropriate expression for the diffusion coefficient describe the pitch
angle scattering in a spatially homogeneous radiation belt.

The choice made for the diffusion coefficient depends on the interaction mech-
anism between the whistlers and the particles. A simple choice is to assume that
D ≈ D0α

q for small pitch angles inside the loss cone. Integrating Eq. (8.124) twice
with respect toα and defining

〈Se(v)〉 =
∫ π/2

α`

dα′ sin α′Se(α′, v) (8.126)

and assuming for simplicity that the injection is atα = π/2 only, such thatSe(v, α′) =
S(v)δ(α′ − π/2), the external solution is

fe(α, v) = 〈Se(v)〉
[∫ α

α`

dα′′

sin α′′D(α′′)
+ h(α`)

]
(8.127)

The arbitrary function,h(α), has to be determined from the boundary conditions. The
interior solution may be expressed in terms of modified Bessel functions. Demanding
thatD0α

q+1
` ∂h/∂α|α`

= 〈S〉, one finds

h(α) =
1

D0αq/2

(
D0τ`

α2
`

)1/2 Iq/(2−q)

[
(1− q/2)−1(α2−q/D0τ`)1/2

]

Iq/(2−q)

[
(1− q/2)−1(α2−q

` /D0τ`)1/2
] (8.128)

Two limiting cases are of interest. The first isweak pitch angle diffusion, when the
particles drift into the loss cone at a much slower rate than they are lost, implying that
the diffusion time is longer than one quarter bounce period. In this limitD0τ` ¿ 1 and

hwd(α) ≈ 1
D0αq/2

(
D0τ`

α2
`

)1/2(α`

α

)2−q
4

exp



(

α2−q

D0τ`

)1/2

−
(

α2−q
`

D0τ`

)1/2



(8.129)
One realizes that this solution contains one special limiting case,q = 2, when the
solution changes character. Forq > 2 the solution decays exponentially from the loss
cone boundary down toα = 0. Because there are only few particles inside the loss
cone and few particles per unit time enter it, the particle precipitation is a slow drizzle
of particles into the ionosphere. This is the usual weak diffusion precipitation case.
Qualitatively this behavior is the same for allq.

The other case of interest is when the diffusion into the loss cone is so strong that
the particles enter the loss cone in a time comparable to or shorter than the quarter
bounce period. ThenD0τ` À 1 and the Bessel functions can then be expanded in the
small-amplitude limit, yielding

hsd(α) ≈ 2τ`/α2
` À 1 (8.130)
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Fig. 8.6. Measured weakly diffusive electron fluxes in the radiation belts.

for all q. This expression does not depend onα inside the loss cone. Hence, the loss
cone distribution is flat atα ≤ α` for strong pitch angle diffusion, and the loss cone is
filled with particles. Of course, the strength of the pitch angle diffusion depends on the
intensity of the wave spectrum and thus on the number of particles in resonance with
the waves, which implies that it depends on the injected flux of particles with energies
above resonance energy. Predominantly, this should occur during injection of energetic
particles due to enhanced convection from the tail during storms.

The lifetime of the injected trapped particles can be estimated formally from

τL =
∫ π/2

α`

sin αdα

∫ α

α`

dα′

D(α′) sin α′
+ (1− sinα`)h(α`) (8.131)

In weak diffusion the last term can be neglected insofar as it is small and the lifetime
is long. The life time in weak diffusion is some kind of weighted average of the in-
verse diffusion coefficient,τL,wd ≈ 1/〈D0〉. Weak diffusion removes the particles in
stationary state at the same rate they are injected.

The weakly diffusive equilibrium described by the weak-diffusion pitch angle dis-
tribution can be used to determine the maximum fluxes of energetic electrons trapped
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Fig. 8.7. Formation of slot region between inner and outer radiation belt.

in the Earth’s radiation belt under the action of whistler turbulence wave-particle inter-
action. These omnidirectional fluxes as measured by early spacecraft are very close to
the theoretical limits (see Fig. 8.6) and provide a nice confirmation of the relevance of
quasilinear whistler turbulence for radiation belt dynamics.

When the diffusion coefficient increases towards strong diffusion, the second term
in the above expression for the lifetime increases rapidly until the integral can be ne-
glected. In this case the minimum lifetime becomes independent ofD0 and is given
by

τL,sd(α, v) ≈ hsd(α) = 2τ`(v)/α2
` (8.132)

Thus in strong diffusion the lifetime depends only on the quarter bounce time,τ`, and
the width of the equatorial loss cone. In addition, it is a function of the energy through
the energy dependence of the bounce period. Closer to the Earth the lifetime is shorter
due to the shorter bounce period and the wider loss cone.

The present pitch angle diffusion theory is quite general and can be applied to
electromagnetic ion-cyclotron waves in resonant interaction with energetic protons as
well. It explains precipitation from the ion ring current into mid-latitudes and some part
of auroral ion precipitation.
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Formation of Slot Region

So far we have considered only parallel propagation of whistler and ion-cyclotron
waves. In an inhomogeneous geomagnetic field even a slight deviation of the wave
vector from the parallel direction will cause the whistler to turn away gradually from
being parallel until it reaches its reflection point near the resonance cone. This spectrum
of oblique random-phased whistler waves is naturally excited in the magnetosphere by
the trapped particle component, and must be taken into account for a full theory of
pitch angle diffusion in the radiation belts and of ion-cyclotron waves in the proton ring
current region.

Such a theory requires calculating the different ray paths and using the full diffu-
sion tensor for obliquely propagating waves. The result of such a calculation is that the
reflected and amplified oblique whistlers are responsible for emptying theslot region
between the inner and outer electron radiation belts, simply because in this range of
L-values the amplification of the spectrum due to resonance and wave accumulation by
propagation effects causes the strongest pitch angle diffusion and thus the shortest life
times. Particles injected into this region have the highest probabilities of being lost to
the ionosphere due to pitch angle diffusion in the oblique whistler turbulence present
here.

This is schematically shown in Fig. 8.7. In this figure a whistler accidentally ex-
cited near the inner edge of the outer radiation belt region performs a complicated path
in the magnetosphere. Thereby it crosses the slot region many times and interacts with
the electron population therein. As result of this interaction the slot region becomes
emptied of energetic radiation belt electrons and appears as a region where the trapped
fluxes are very faint and the life times are short.

Electron-Cyclotron Turbulence

Whistler turbulence affects the energetic component of the magnetospheric particle dis-
tribution trapped in the radiation belts. On auroral field lines the energies of the particles
are generally below the required resonance energies for excitation of whistler turbu-
lence. On the other hand, strong electrostatic wave emission in the electron-cyclotron
harmonic bands with amplitudes of up to several tens of mV/m are frequently observed
during times when auroral electron fluxes dominate. We have shown in Sec. 4.5 that
such waves can be excited by loss cone instabilities. The required resonant energies
are lower than those for whistler mode noise, since it is easier to excite potential fluc-
tuations than electromagnetic waves by oscillations in the particle densities. These
electron-cyclotron waves extract the free energy from the loss cone distribution and
tend to deplete the loss cone, leading to enhanced electron precipitation.

This mechanism can be described by quasilinear theory. Take the lowest electron-
cyclotron harmonic, which is found nearω ≈ 1.5ωge in the oblique Bernstein mode.
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The phase velocity of this mode isω/k‖ ≈ 3vth‖e. The particles diffuse in phase space
resonantly along orbits which are circles around the phase velocity of the wave

(v‖ − ω/k‖)2 + v2
⊥ = const (8.133)

and which for velocities larger than the phase velocity are surfaces of constant energy,
such that energy diffusion is comparable to pitch angle diffusion. This requires to use
the full quasilinear diffusion equation to describe the nonlinear interaction of electro-
static electron-cyclotron waves with the electron component. The diffusion equation
written in terms of pitch angle and velocity takes the form

∂f

∂t
=

1
v sinα

∂

∂α

[
sin α

(
Dαα

1
v

∂f

∂α
+ Dαv

∂f

∂v

)]

+
1
v2

∂

∂v

[
v2

(
Dαv

1
v

∂f

∂α
+ Dvv

∂f

∂v

)]
(8.134)

where the components of the diffusion coefficient are defined as

Dαα =
∑

l

∫
k⊥dk⊥Ψl(k‖res)

[±lωge/ω(k‖res)− sin2 α

sin α cosα

]2

Dαv =
∑

l

∫
k⊥dk⊥Ψl(k‖res)

[±lωge/ω(k‖res)− sin2 α

sin α cosα

]
(8.135)

Dvv =
∑

l

∫
k⊥dk⊥Ψl(k‖res)

Here the resonant wavenumber is given byk‖resv‖ = ω ∓ lωge, and the wave spectral
function,Ψl(k), is defined as

Ψl(k) =
e2

4πm2
e

ω2

k2v2

J2
l (k⊥v⊥/ωge)
|v‖ − ∂ω/∂k‖| |δE(k)|2 (8.136)

whereJl(z) is the Bessel function of orderl. The diffusion coefficients given here have
dimensions ofv2/t. Dividing them byv2 gives diffusion coefficients which have the
dimension of an inverse time. ThusDαα is the pitch angle diffusion coefficient, and
Dvv is the velocity or energy diffusion coefficient, while the other coefficient is mixed
in pitch angle and velocity.

It is convenient to assume a Gaussian spectrum of wavenumber spread∆k2
‖ =

0.25/rge‖ as

|δE(k)|2 = Ak−1
⊥0δ(k⊥ − k⊥0) exp[−(|k‖| − k‖0/∆k2

‖ ] (8.137)
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Fig. 8.8. Quasilinear normalized diffusion coefficients of electron-cyclotron waves.

whereω = 1.5ωge, k‖0 = 0.5/rge‖, andk⊥0 = 2/rge⊥ are suggested by observations
in the magnetosphere and yield an amplitude given byA = 2π3/2WE/[∆k‖erf(1.6)]
according to

1
2ε0|δE(k)|2 = A[δ(k⊥ − k⊥0)/k⊥0] exp[−(|k‖| − |k‖0|)2/(∆k‖)2] (8.138)

The zero-indexed wavenumbers are assumed to be given. For magnetospheric applica-
tions it is appropriate to integrate the diffusion coefficients along the bounce path of the
particles. These average values are given by integrals of the type

〈Dαα〉 =
1

τb(αeq)

∫ λm

0

gαα(λ)Dαα(λ) cos7λ dλ (8.139)

Hereλm(v) is the mirror latitude of the particles of a certain energy,λ the geomagnetic
latitude,αeq the equatorial plane loss cone angle,τb the quarter bounce period, and the
angular weights for each of the diffusion coefficients are

gαα = cos α/ cos2 αeq

gαv = sinα/ sin αeq cosαeq (8.140)

gvv = sin2 α/ cosα sin2 αeq

For given particle energy and wave amplitude these equations allow to calculate the
dependence of the diffusion coefficients on the pitch angle and for different resonances,
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Fig. 8.9. Minimum wave amplitudes for strong diffusion in electron-cyclotron waves.

l, at different equatorial distances,L. Diffusion coefficients can be normalized to the
particle thermal energies,We, and wave energies,WE , as〈D〉kBTe/WE . Figure 8.8
shows these normalized coefficients atL = 7 for given energies. Largest diffusion is
obtained for particles close the thermal energy. Moreover, for these energies the parti-
cles experience an energy diffusion which is of the same order as pitch angle diffusion
at energies up to a few times the thermal particle energy.

As in whistler quasilinear theory, one can also consider the strong diffusion limit.
This limit occurs for〈Dαα(αeq)〉 ≥ α2

eq/τb at the edge of the loss cone. The mini-
mum electrostatic cyclotron wave amplitude to cause strong pitch angle diffusion can
be calculated numerically for given diffusion coefficients by satisfying this condition.
Figure 8.9 shows the result of such a calculation forL = 7. Thermal energies of
kBTe = 1 keV require electron-cyclotron wave fields of only about 1 mV/m to be in
the strong pitch angle diffusion regime. Since such particles also undergo energy diffu-
sion, they are accelerated at the same time. Hence, the particle component precipitated
by electron-cyclotron waves will have an energetic tail like the measured auroral elec-
tron distributions. Hence, electron-cyclotron waves may contribute to auroral electron
precipitation and to their energization and acceleration.

8.6. Weak Macro-Turbulence

The quasilinear theory developed in the previous sections can also be applied to macroin-
stabilities. This requires a different kind of technique, since the macro-variables depend
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only implicitly on the distribution function. The implicit dependence generates a quasi-
linear time variation of the macroscopic variables.

Firehose Mode Stabilization

The firehose instability (see Sec. 3.4) is a non-resonant instability with the growth rate
given in Eq. (3.78). Here we write in the form

γ2
fh =

k2v2
A

1 + v2
A/c2

[
p‖(t)− p⊥(t)

B2
0/µ0

− 1
]

(8.141)

Since quasilinear theory describes the evolution of the distribution function, we need to
express the pressure in terms off0s

p‖(t) =
∑

s

n0sms

∫
d3vv2

‖fs(v⊥, v‖, t)

p⊥(t) = 1
2

∑
s

n0sms

∫
d3vv2

⊥fs(v⊥, v‖, t)
(8.142)

Instability results whenever

p‖(t) > p⊥(t) + B2
0/µ0 (8.143)

The reaction of the plasma to the growing wave and the distortion of the magnetic field
will be such that the parallel pressure decreases and the perpendicular pressure increases
until the growth rate asymptotically approaches zero for large times. To calculate this
effect one must take into account the finite gyroradius corrections given in the growth
rate Eq. (3.81). Firehose modes propagate parallel to the magnetic field. Hence, the
evolution of the distribution functions is given by Eq. (8.94). Because the frequency of
the mode is small and the wave is non-resonant, we expand the denominator for small
frequencies. This expansion gives

∂f0s

∂t
=

ω2
ps

n0smsc2ω2
gs

(
v2
⊥

∂2

∂v2
‖

+
v2
‖

v⊥

∂

∂v⊥
v⊥

∂

∂v⊥
− 2v⊥

∂

∂v‖
v‖

∂

∂v⊥

)
f0s

∫
dk γWB

(8.144)
The spectral magnetic energy density introduced in this expression is related to the
electric field density of the electromagnetic wave by

WB(k, t) = c2k2WE(k, t)/ω2 (8.145)

andγ(k, t) > 0 is assumed, because only growing waves will cause quasilinear effects
on the distribution function. To proceed, one must calculate the velocity moments of
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the perturbed equation. This yields the quasilinear evolution equations for the hydro-
dynamic pressure

dp⊥(t)
dt

= p‖(t)
∫

dk
γ(k, t)WB(k, t)

B2
0/2µ0

dp‖(t)
dt

= −2[2p‖(t)− p⊥(t)]
∫

dk
γ(k, t)WB(k, t)

B2
0/2µ0

(8.146)

∂WB(k, t)
∂t

= 2γ(k, t)WB(k, t)

Initially, as long as the instability works, one has2p‖ > p⊥, and consequently

dp‖/dt ≤ 0
dp⊥/dt ≥ 0

(8.147)

indicating that the parallel pressure decreases from the very beginning while the perpen-
dicular pressure increases. The instability cools the plasma in the parallel and heats it
in the perpendicular directions as one expects from simple logic. In the long-time limit
the parallel pressure decreases as long until the growth rate vanishes, and one obtains
in the final state some kind of equipartition law for the firehose mode

p‖(∞) = p⊥(∞) + B2
0/µ0 (8.148)

Because, in addition, the cut-off wavenumber is proportional to the growth rate (see
Sec. 3.4),k0(∞) → 0 together with the growth rate. The wavelength of the firehose
mode thus increases with time in nonlinear interaction with the plasma.

From Eq. (8.146) we find that the evolution of the two pressure terms follows

dp⊥
dp‖

= − p‖/2
2p‖ − p⊥

(8.149)

If the changes in the pressure close to the stable state att → ∞ are small, this can be
expanded to obtain

p‖(∞)− p‖0 ≈ −Z(0)2p‖0(2p‖0 − p⊥0)
p⊥(∞)− p⊥0 ≈ Z(0)p2

‖0
(8.150)

where
Z(0) = (p‖0 − p⊥0 −B2

0/µ0)/p‖0(5p‖0 − 2p⊥0) (8.151)

The final spectral energy density in the magnetic field fluctuation follows from the
energy conservation law

1
2p‖0 + p⊥0 +

∫
dkWB(k, t) = const (8.152)
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Fig. 8.10. Evolution of wave field and pressure in the firehose mode.

Using the above expressions for the changes in the pressure the gain in magnetic field
energy can be estimated. It is given by the expression

∆WB =
∫

dk[WB(k,∞)−WB(k, 0)] ≈ p‖0Z(0)[p‖0 − p⊥0] (8.153)

Schematically, the evolution of the two pressure terms and the wave intensity is shown
in Fig. 8.10. The decrease in the parallel pressure and the increase in the transverse
pressure are not until equilibration. The difference left is just twice the original mag-
netic field pressure, while the wave intensity saturates at the level given by the above
equation. The energy needed to keep this level is taken from the excess in the par-
allel pressure, but only part of this excess is devoted to raise the wave field intensity.
The remaining part is attributed to heating of the plasma in the perpendicular direction.
Clearly, this latter part is the irreversible part increases the entropy of the system.

Mirror Mode Stabilization

The other magnetohydrodynamic instability of interest is the mirror mode instability
driven by transverse pressure excess (see Sec. 3.5). The quasilinear evolution equation
for this perpendicular mode requires solution of the quasilinear equation including the
perpendicular components of the diffusion tensor. When we denote its components
by D⊥⊥, D‖⊥, D⊥‖, andD‖‖, and form the temperature moments of the distribution
function, we find by integrating the full quasilinear equation the following evolution
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equations for the pressure

dps⊥
dt

= ms

∫
d3vfs

[
1
v⊥

∂

∂v⊥
(v2
⊥D⊥⊥) + v⊥

∂D⊥‖
∂v‖

]

dps‖

dt
= 2ms

∫
d3vfs

[
v‖
v⊥

∂

∂v⊥
(v⊥D‖⊥) +

∂

∂v‖
(v‖D‖‖)

] (8.154)

where the diffusion coefficients can be written (indicesa, b can be either of‖ or⊥)

Dab =
iω2

pi

n0mi

∫
d3k

J1(ηi)WE(k, t)
ω(k)− k‖v‖ + iγ(k, t)

A∗aAb (8.155)

andηi = k⊥v⊥/ωgi. The remaining abbreviations are

A⊥ = (v‖/v⊥)(ωgi/ω)
A‖ = 1− (ωgi/ω)

(8.156)

The electric and magnetic field intensities are related through

WE(k, t) = c2k2WB(k, t)/γ2(k, t) (8.157)

with γ the mirror mode growth rate. Of course, the magnetic wave intensity evolves
according to the usual wave evolution equation

∂WB(t)/∂t = 2γ(t)WB(t) (8.158)

Contrary to the firehose mode, it is not possible to solve these combined equations
analytically. The difficulty lies in the higher dimensionality of the problem.

Numerical solutions found that one needs a suprathermal ion component to force
the mirror mode into instability, since the mirror mode is strongly damped by parallel
Landau damping due to parallel ions, which eat up the energy pumped into the wave
by the excess in perpendicular pressure. This Landau damping increases the parallel
pressure, until the mirror mode saturates and its growth rate vanishes. The wavelengths
of the mode which are damped away first are the short wavelengths, both in the parallel
and in the perpendicular direction. Long parallel wavelengths grow longest, while per-
pendicular wavelengths have a wider growing spectrum, reaching from long to medium
lengths, longer than the ion inertial length,λ⊥ > c/ωpi. In saturation the peak in the
wave spectrum is found atk⊥sat ≈ 0.25ωpi/c andk‖sat ≈ 0.5ωpi/c.

The evolution of suprathermal pressure and magnetic wave intensity is shown in
Fig. 8.11. The mirror mode saturates rather fast within a few ion-cyclotron periods. The
background thermal parallel pressure remains about unaffected. The suprathermal pres-
sure responsible for the instability varies in the expected way, with the perpendicular
pressure decreasing and the parallel pressure increasing due to Landau damping.
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Fig. 8.11. Evolution of wave field and suprathermal pressure in the mirror instability.

These results are relevant for the mirror mode observations in the Earth’s magne-
tosheath shown in Fig. 3.11, which showed that forβ⊥ ≥ 1 the mirror instability is
marginally stable in the magnetosheath. To a certain extent this effect can be attributed
to the quasilinear stabilization of the mirror instability described above. Concluding
from the increasing discrepancy betweenβ⊥ and β‖ when approaching the magne-
topause, one may argue that the amplitude of the mirror mode waves should increase
towards the magnetopause, but so far the observations give no clear indication of such
an effect. An important reason for the failure of the interpretation in terms of quasilin-
ear mirror mode stabilization is the fact that in the magnetosheath the electromagnetic
ion-cyclotron instability competes with the mirror mode. But the mirror instability sur-
vives when a number of heavier ions are mixed into the plasma. The 3–5% Helium ions
detected in the magnetosheath are sufficient to account for this effect.

Concluding Remarks

BGK modes are just one example of exact nonlinear waves arising in the interplay of
wave evolution and particle trapping in single modes. These waves are of large ampli-
tude and separate the initial particle distribution function into two parts, trapped and un-
trapped distributions which achieve a subtle equilibrium between the number of trapped
particles and the wave amplitude. However, owing to the complexity of the kinetic de-
scription, the derivation of BGK modes has been successful in the one-dimensional
homogeneous electrostatic case only. Below, when treating strong plasma turbulence,
we will use a different approach to obtain exact stationary and non-stationary wave so-
lutions in plasmas. Such an approach takes advantage of the simpler hydrodynamic
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description of the plasma.
Trapping of particles in waves may change the wave dynamics in many ways. The

most obvious one is that trapping extracts part of the resonant particles from the dis-
tribution function. These particles loose their capability of further feeding instability.
Hence trapping will cause stabilization of the instability. But this applies to instabilities
of single modes. When the bandwidth of the mode becomes large, trapping becomes
less important, and other effects set on which we are going to discuss in the next chap-
ters. The main remaining effect of trapping is then the distortion of the particle orbit
by the broadband spectrum. This causes resonance broadening in wave-particle inter-
action.

In this chapter we presented only the wave-particle aspect the weak turbulence the-
ory, the zero-order response of the plasma to the presence of a random-phased broad-
band spectrum of unstable waves. In addition to quasilinear stabilization of the wave
spectrum as result of this response, the deformation of the particle distribution function
implies a number of effects like particle heating, resonant acceleration, energy diffu-
sion, and pitch-angle diffusion, of which only the latter two have been discussed so
far. Clearly, quasilinear weak wave-particle turbulence has a much wider application
than mere pitch-angle diffusion. Examples not treated here are the diffusion of cosmic
rays across astrophysical plasmas and acceleration of particles in their self-consistently
excited low-frequency wave spectra in front of shock waves. In particular, in particle
acceleration theory the quasilinear approach has proved to be very useful.

But quasilinear theory has also its drawbacks. For instance, in the context of gen-
tle beam stabilization it causes severe problems when applying it to electron streams
ejected from the solar corona which are the cause of solar type III radio bursts. Quasi-
linear theory would not permit these streams to propagate large distances in the corona,
contrary to what is suggested by observation. Thus, quasilinear theory and weak wave-
particle turbulence cannot be the last word spoken in nonlinear plasma theory. In the
following chapters we explore other nonlinear effects which are ignored in quasilinear
theory.

Further Reading

There is a small number of excellent books on nonlinear plasma theory, e.g., [1], [3],
[7], and [9], which all were written in the sixties and early seventies. Meanwhile,
nonlinear plasma physics has grown into a wide field, but no comprehensive modern
text is available. The reason is that analytical theory has not developed much during the
last twenty years, while the activities and interests have turned to numerical simulations.
A contemporary summary of numerical plasma simulations is given in [8].

Particle trapping is described, at least in rudimentary form, in most books on non-
linear plasma physics as for instance [1], [7] and [2]. Single wave stabilization for



218 8. WAVE-PARTICLE INTERACTION

Bernstein modes and whistler waves by particle trapping may be found in the original
literature. The former have been applied in space plasma physics context to radio emis-
sion from the Sun during solar type IV bursts. For references consult [4] and [6]. BGK
modes are treated extensively by Davidson [1]. Quasilinear theory is the main sub-
ject of most books on nonlinear theory, e.g., [1] and [7]. The ion-cyclotron resonance
broadening saturation theory has been taken from Dum and Dupree,Phys. Fluids13
(1970) 2064. Pitch-angle diffusion, as one of the results of quasilinear theory, has wide
application in space, and even in astrophysics, where it has been applied successfully
to the diffusion theory of cosmic rays. The readers interested more deeply in space
applications of pitch angle scattering are referred to [5].
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9. Weak Wave Turbulence

Quasilinear theory of wave-particle interaction is only one side of weak turbulence
theory. It is that part dealing with the simplest random-phase reaction of the unstably
excited wave field on the initial non-equilibrium distribution function. If only this kind
of interaction would occur in a plasma, the plasma would approach thermal equilibrium
in a straight way. In real plasmas this is by no means the case. In most cases, and
long before quasilinear interaction manages to stabilize the plasma, other modes of
interaction between the waves themselves come into play. Waves of certain frequencies
and wavenumbers start colliding and exchange momentum and energy. These mutual
interactions among the waves are described by the theory ofwave-wave interaction, the
other part of weak turbulence theory.

Wave-wave interaction theory or weak wave turbulence theory, as it is also called,
ignores the particle response to the presence and mutual interaction of the waves. The
plasma plays the role of an exciter and wave carrier but is otherwise a passive back-
ground, on top of which the various wave processes take place. In this chapter we treat
the waves and their interaction in a manner as if the plasma would be absent, but the
properties of the waves are still determined by the plasma dielectric properties. We
do not account for wave dissipation in the plasma but for simplicity assume that any
dissipation appears only among the waves themselves.

Dissipation is, however, a very important item insofar as it imposes a natural
threshold on the interaction of the waves and on the nonlinear instabilities which set
on when the waves may transform into each other. In most of space plasma physics
these processes are still out of reach. The presentation given here ignores them because
of this reason. But under certain conditions, such as heating of plasma in the iono-
sphere and the lower corona, and in dissipative wave transformation, neglecting wave
dissipation is not justified.

The present chapter presents essentially three different approaches to wave turbu-
lence in a plasma: the coherent approach, the incoherent or random-phase approach,
and one particular form of incoherent wave interaction theory for the very-low fre-
quency range of drift waves, which may be important for the evolution of low-frequency
turbulence in space plasmas.

219
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9.1. Coherent Wave Turbulence

Wave-wave interaction itself can be divided into two separate fields,coherent inter-
actionsandincoherent interactions. The theory of coherent interactions considers the
interaction of single waves, while the theory of incoherent interactions considers the
interaction among broad wave spectra and uses the random-phase approximation. The
latter corresponds to a kind of quasilinear theory of wave interaction, where particles
are considered as a background only providing the existence of plasma waves and al-
lowing for their propagation and dispersion. Expressed in terms of time-scales, one
can say that wave-wave interaction dominates over wave-particle interaction whenever
the collision time between the waves is considerably shorter than the wave-particle
quasilinear time-scale. Such conditions are frequently realized when the particle dis-
tribution function does not provide free energy and when the amplitude of at least one
of the interacting waves is large. Formally, both wave-wave interaction processes can
be described as collisions between pseudo-particles, with energy and momentum con-
servation in the pseudo-particle collision. The only additional condition is that in this
process the dispersive properties of the participant waves come into play through their
dispersion relations.

Coherency

To demonstrate what is meant by coherent wave-wave interaction it is sufficient to con-
sider the simplest possible case of a collision between waves. This is the case when two
waves experience a head-on collision and decay or merge into one third wave (Fig. 9.1),
the case of coherent three-wave interaction. For comparison, wave scattering where
two waves hit each other and escape as two other waves is already a four-wave process.
Hence, in three-wave interaction the number of waves participating in the interaction is
not conserved.

(ω0,k0)

(ω1,k1)

(ω2,k2)

(ω0,k0)

(ω1,k1)

(ω2,k2)

Fig. 9.1. Decay and merging in three-wave interaction.
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Fig. 9.2. Dispersion curves which may and may not yield wave-wave interaction.

Interaction of waves makes only sense if the waves are in resonance. This implies
the following. Each wave is described by its frequency,ω, and its wavenumber,k. The
first corresponds to its energy,h̄ω, the second to its momentum,h̄k. Conservation of
total energy and momentum during the collision of the three waves, considered as a
collision between three quasi-particles, requires that

ω − ω′ − ω′′ = 0
k− k′ − k′′ = 0

(9.1)

Here the three waves are distinguished by the primes. The two conditions (9.1) have
the form of resonant denominators and are therefore called the resonance conditions
or matching conditions, but physically spoken they are the two conservation laws of
energy and momentum.

Of course, not all waves of arbitrary dispersion can participate in such an inter-
action, because satisfying the resonance conditions demands that|k′ + k′′| = |k| ≤
|k′| + |k′′|. Hence, three waves belonging to the same dispersion branch can interact
only if this branch is convex from below as shown in Fig. 9.2. Only in this case the
triangle inequality can be satisfied. A high energy mode may decay spontaneously into
two lower energy modes (left part of Fig. 9.1) of the same kind if the dispersion relation
is convex from below, while it cannot decay if it is concave from below.

Decay is, of course, not restricted to the same mode. A given high-energy wave
mode with convex dispersion can decay into another wave of its own mode and a low-
frequency wave of a different mode. This would be the case for the convex disper-
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sion relation of Langmuir waves. These waves can easily decay spontaneously into a
longer-wavelength, lower-frequency Langmuir wave and, for instance, a much lower-
frequency, similar-wavelength ion-acoustic wave. This process is frequently realized in
nature, whenever the plasma is warm enough to permit the ion-acoustic wave to grow.
On the other hand, the inverse process is possible as well, when an ion-acoustic wave
collides with a Langmuir wave to mix the Langmuir frequency up.

Resonant Three-Wave Interaction

The resonant interaction requires that the waves satisfy the linear dispersion relation,
ε(k, ωk) = 0; for brevity we indicate the dependence of the frequency on the wavenum-
ber by an indexk. We consider the simplest electrostatic and unmagnetized three-wave
interaction case, i.e., Langmuir-ion-acoustic wave interaction. It is clear that the interac-
tion causes energy and momentum transfer and thus produces small shifts in frequency,
∆ω, and wavenumber,∆k, from the initial (linear) values,k0, ωk0 . Expansion of the
dispersion relation around the initial values gives for the variation ofε

δε(k) = Re δε(k0) + iIm δε(k0) +
∂δε

∂ω

∣∣∣∣
k0

∆ω +
∂δε

∂k

∣∣∣∣
k0

·∆k (9.2)

For electrostatic waves it is most convenient to consider the variation of the electrostatic
potential. The latter becomes a function of time,τ , related to the frequency shift, and
space,ξ, related to the wavenumber shift. With this in mind we can replace the shifts
by the equivalent operators∆ω → i∂/∂τ and∆k → −i∇ξ, where∇ξ = ∂/∂ξ is
the spatial gradient operator acting on the displacement vector,ξ. Moreover, using the
group velocity

vgr0 = ∂ωk/∂k|k=k0
(9.3)

and interpreting the variation of the dielectric function as an operator acting on the
variation of the potential, one obtains the following equation for the potential amplitude

δε(k)δφ(k0) = i
∂ε

∂ω0

(
∂

∂τ ′
− γ0

)
δφ(k0) (9.4)

where the following abbreviations have been used

∂

∂τ ′
=

∂

∂τ
− vgr0 · ∇ξ

∂ε

∂ω0
=

∂[Re δε(k)]
∂ωk

∣∣∣∣
k=k0

(9.5)

γ0 = − Im δε(k)
(∂ε/∂ω0)
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The quantityγ0 is clearly the linear growth rate of the wave with frequencyω(k0).
This interpretation is easy to understand. The dispersion relation of electrostatic waves
results from the equationεδφ = 0 for non-vanishing potential amplitude. Thus, when
the linear dispersion relation is satisfied for the initial wave, the remaining relation is
the product of the two distortions. This nonlinear term has been neglected in the devel-
opment of the linear theory. The wave-wave interaction theory is thus, from the point
of view of an expansion with respect to amplitudes, the first step of a true nonlinear
theory. Since the distortion of the dielectric function depends on space and time, it be-
comes an operator acting on the distortion of the wave field. This is the content of the
above nonlinear differential equation forδφ.

Coupled Wave Equations

We have found a representation of the nonlinear operator with the unprimed wave as
the modified wave. The wave system consists of three waves, however. Hence, the full
dispersion relation depends on all tree waves, implying that we must vary it with respect
to the three wave amplitudes. This yields up to the second-order variation

δε(k)δφ(k) +
∑

k=k′+k′′
δε(k′,k′′)δφ(k′)δφ(k′′) = 0 (9.6)

where we made use of the condition that in the coupling term only such couplings
appear which satisfy the conservation laws. Moreover, taking only a sum over three
waves in the second term restricts the consideration to three-wave interactions. Higher
order interactions would provide addition sums. If we now substitute Eq. (9.5) into Eq.
(9.6), we obtain the following coupled equations

(
∂

∂τ ′
− γ0

)
∂ε

∂ω0
δφ(k0) = iδε(k0,k1,k2)δφ(k1)δφ(k2)

(
∂

∂τ ′
− γ1

)
∂ε

∂ω1
δφ(k1) = iδε(k1,−k2,k0)δφ(−k2)δφ(k0) (9.7)

(
∂

∂τ ′
− γ2

)
∂ε

∂ω2
δφ(k2) = iδε(k2,k0,−k1)δφ(k0)δφ(−k1)

This system results by taking each of the three waves as the initial one and letting it
collide with the two others. Moreover, since the wave fields are real,δφ(−k) = δφ(k)∗.
Because each of the three waves can play the role of the initial wave, it is convenient
to symmetrize these three evolution equations for the three wave amplitudes under the
action of the two other waves. We define a normalized complex wave amplitude

A(kj ; τ, ξ) = δφ(kj ; τ, ξ)

∣∣∣∣∣
∂(ωε)
∂ω(kj)

ε0k
2
j

2ω(kj)

∣∣∣∣∣

1/2

(9.8)
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The derivative ofε in this expression is the expression which enters the fluctuation
energy in one wave mode given in Eq. (2.19). The sign of the wave amplitude can
be positive or negative and is determined as the sign of the derivative of the dielectric
function

sgn(∂ε/∂ωj) = S(kj) (9.9)

such that the spectral energy density isW (kj), and the wave action can be written as

S(kj)|A(kj)|2 = W (kj)/ω(kj) = h̄N(kj) (9.10)

whereN(kj) is the number of wave quanta contained in the mode of wavenumberkj .
Since the time derivative of the action is the energy, the new abbreviations can be used
to write the above system of equations in its simplest symmetrized form

S(k0)∂A(k0)/∂τ ′ = −iV A(k1)A(k2)
S(k1)∂A(k1)/∂τ ′ = −iV A(k0)A(k∗2) (9.11)

S(k2)∂A(k2)/∂τ ′ = −iV A(k∗1)A(k0)

The common factor,V = V (k0,k1,k2), on the right-hand sides of these equations
is the three-wave coupling coefficient. The three wave modes have been numbered
consecutively here. The coupling coefficient written satisfies the following symmetries

V (k1,−k2,k0) = V (k2,k0,−k1) = V (k0,k1,k2) (9.12)

and is given by the rather complicated expression

V (k0,k1,k2) =
√

2k2
0ε(k0,k1,k2)

ε0 |[k2
0∂ε/∂ω(k0)][k2

1∂ε/∂ω(k1)][k2
2∂ε/∂ω(k2)]|1/2

(9.13)

Wave Decay

These expressions close the system of equations for the amplitudes of the three waves.
All three waves are coupled, but because we have neglected all other ingredients in the
interaction apart from just these three waves, the total energy in this interaction and
the total momentum is necessarily conserved. This conservation can be checked by
expressing the complex amplitude by its modulus and a phase as

A = |A(τ)| exp[iθ(τ)] (9.14)

Introducing this ansatz into the above system of equations, it can be reduced to the fol-
lowing form (for simplicity we use the subscripts 0, 1, 2, instead of the wavenumbers)

S0∂|A0|/∂τ = −V |A1||A2| sin θ

S1∂|A1|/∂τ = +V |A0||A2| sin θ (9.15)

S2∂|A2|/∂τ = +V |A0||A1| sin θ
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and another equation for the time variation of the phase

∂θ/∂τ = V cos(θ0 − θ1 − θ2)∂[ln(|A0||A1||A2|)]/∂τ (9.16)

These equations determine the constants of motion during the interaction of the three
waves. The last equation immediately gives

|A0||A1||A2| cos θ = const (9.17)

The amplitude equations can, after multiplication with the appropriate amplitudes of
the waves and addition as well as using the resonance conditions, be managed to be
brought into the form of an energy density conservation law

W0 + W1 + W2 = const (9.18)

Also, integration of the amplitude equations (9.15) yields the conservation equations of
the wave occupation numbers

N0 + N1 = const
N0 + N2 = const (9.19)

N1 −N2 = const

These latter equations are equivalent to the creation and annihilation processes of oc-
cupations of states known from quantum field theory. Actually, taking one quantum
away from the 0-mode, it appears in the 1- and 2-modes such that∆N0 = −1 causes
∆N1 = ∆N2 = 1, a process which describes the decay of the 0-mode. Such decay
processes may stabilize an instability of the 0-mode. To demonstrate how this happens,
let us assume that|A0| is much larger initially than the amplitudes of the other two
waves. In this case we can linearize the amplitude equations (9.15) in a decay process,
in which the 0-mode can be considered to be a quasi-constant pump wave, the 1- and
2-modes both turn out to grow linearly in time according to

|A1,2| ∝ exp[V |A0|τ ] (9.20)

Of course, this linear growth phase is valid only for the short initial time interval, as
long as the 0-mode does not loose too much energy. The more exact solution to the
above system of equation with initial condition|A0(0)|2 = N0(0) À N1(0) and
|A2(0)|2 = N2(0) = 0 can be expressed in terms of elliptic functions. Clearly, the
process involving only three waves is a purely reversible process. The two small am-
plitudes grow in time on the expense of the pump wave. When the energy of the pump
wave is consumed, the daughter waves start pumping energy back into the mother wave,
and so on, as long as no dissipation is involved. Figure 9.3 shows the strictly reversible
evolution of the occupation numbers of the three waves.
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Fig. 9.3. Occupation number oscillation in coherent three-wave interaction.

Coherent processes depend heavily on the spectral width of the initial pump wave.
If this width is larger than the inverse nonlinear oscillation time of the three-wave pro-
cess,τnl, the pump wave cannot be considered as a single wave. The spectrum becomes
broad, and the process looses its coherence. Interaction of this kind are the random-
phase incoherent wave-wave processes considered in the next section. Hence, for a
coherent three-wave interaction the bandwidth must be narrow

∆ω ¿ τ−1
nl ≈ V |A0| (9.21)

If this condition is satisfied, the phase of the 0-mode changes slowly during the interac-
tion process, and phase mixing can be neglected, just as required in a coherent process.

We should note, finally, that if anegative energy modeis involved in the three-
wave interaction process, the character of the interaction changes completely, because
extracting one quantum from the negative energy wave in order to add it to a positive
energy wave, letting it grow, leads to growth of the negative energy wave as well. Such
growth is faster than exponential and cannot be described by simple linear growth. The
system explodes, and we encounter an irreversibleexplosive instability, which does
not saturate in a three-wave process. This observation is not purely academic, because
for instance, many of the drift modes in inhomogeneous plasmas turn out to be negative
energy waves. When these waves are involved in three-wave interaction processes, they
sometimes cause explosive instability, exciting other waves while growing themselves.
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9.2. Incoherent Wave Turbulence

The previous section dealt with the coherent case, considering single waves. The sit-
uation becomes fundamentally different when many waves of different phases are in-
volved in the interaction process. In such a case the conservation laws are not satisfied
independently in each particular case of interaction, but in the average over all phases
in the global interaction. This does not mean that they are not satisfied microscopically,
it means only that there is no information available over the exact microscopic inter-
action to the outer world. The information is provided in such a way that the energy
and momentum conservation laws are satisfied globally, while it is not important to
know which waves exactly had interchanged their momenta and energies at a particular
instant of time.

Random-Phase Wave-Wave Interaction

When Eq. (9.21) is strongly violated, the wave spectrum is broad enough to provide
sufficient phase mixing, and the interaction between the waves can be described in a
statistical version of weak turbulence theory, where the phases are considered to be
randomly distributed in exactly the same manner as in weakly turbulent wave-particle
interaction theory. In such a case the wave amplitude is represented as superposition of
many waves, and the time averaged amplitude,〈A(k)〉 = 0, vanishes because the phase
of the wave varies much faster than the amplitude factor

〈A(k, τ)〉 = lim
T→∞

1
T

∫ T

0

A(k, τ) exp[iθ(t)]dt = 0 (9.22)

This integral is zero because the slowly variable amplitude factor with time scaleτ
can be extracted from the integral. The presence of many waves with different wave
numbers in the random-phase approximation then implies that in the equations for the
wave amplitudes (9.11) we sum over all possible combinations of wavenumbers satis-
fying the momentum conservation condition. But in addition we must permit for small
frequency shifts,∆ω(k), which may arise in the interaction. These shifts correspond
to energy uncertainties caused by the random phases. The interacting waves do not
know precisely with which phase they have interacted. Of course, these mismatches in
frequency are not free, but must satisfy the conservation laws as well.

The general theory for many-wave interaction is very complicated. We thus will
discuss only the random-phase or incoherent weakly turbulent three-wave interaction
process. Summing over all possible combinations of wavenumbers gives

S0
∂A0

∂t
= −i

∑

k0=∆0

V (k0,k′,k′′)A(k′)A(k′′) exp(i∆ω0t)
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S1
∂A1

∂t
= −i

∑

k1=∆1

V (k1,−k′′,k)A(−k′′)A(k) exp(−i∆ω1t) (9.23)

S2
∂A2

∂t
= −i

∑

k2=∆2

V (k2,k,−k′)A(k)A(−k′) exp(−i∆ω2t)

The definitions of the quantities are the same as in the foregoing section, and the mis-
matches and summation conditions are

∆0 = k′ + k′′

∆1 = k− k′′ (9.24)

∆2 = k− k′

and

∆ω0 = ω(k0)− ω(k′)− ω(k′′)
∆ω1 = ω(k)− ω(k1)− ω(k′′) (9.25)

∆ω2 = ω(k)− ω(k2)− ω(k′)

For a continuous broad spectrum one can replace the sums in these expressions by
integrals over the primed wavenumbers and introduce aδ-function taking care of the
resonances. Then the master equation for an amplitude is of the form

S0
∂A0

∂t
=

∫ ∫
d3k1d

3k2δ(k0 − k1 − k2)V A1A2 exp[i∆ω0t] (9.26)

whereV = V (k0,k1,k2) is the three-wave coupling coefficient defined in Eq. (9.13).
The equations for the two other wave amplitudes are obtained by permutation of the
indices and observation of the symmetries inV .

Amplitude Equations

In the framework of a perturbation approach we assume that in any of the integrations
or summations performed, the amplitudes under the integrals or sums can be consid-
ered to be slowly variable and can therefore be held constant in the time integration.
Calculating the square of the amplitude by multiplication with the complex conjugate,
one obtains for the energy density or occupation number of the 0-mode

∂|A0|2
∂t

= −iS0

∑

k0=k1+k2

[V 〈A∗0A1A2 exp(i∆ω0t)〉 − V ∗ 〈A0A
∗
1A

∗
2 exp(−i∆ω0t)〉]

(9.27)
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and similar expressions for the energy densities of the other modes. In this formula there
appear time averages over three amplitudes. The amplitudes to be used are calculated
from the amplitude equations (9.23) in the manner indicated above by assuming that
the product of amplitudes appearing in their integrands varies slowly and can be con-
sidered to be constant. The remaining integrals contain exponentials of the frequency
mismatches and thus produce resonant denominators∆ω0,1,2 +iδ, where a small imag-
inary part is added to make the integrals converge. This imaginary part will later be set
to zero. In the random-phase approximation one now assumes that any average of a
product of amplitudes satisfies a condition like

〈A1A2〉 = |A1|2δ(k1 + k2) (9.28)

where, since the wave amplitudes are real quantities, we also haveA(−k) = A∗(k).
All the coupling coefficients,V , become symmetric functions of the wavenumbers un-
der this condition. Moreover, we replace the resonant denominators using Plemelj’s
formula (see Eq. (I.A.78) in the appendix of our companion book) by

(∆ω ± iδ)−1 = P/∆ω ∓ iπδ(∆ω) (9.29)

with P indicating the principal value, and theδ-function taking care of the exact res-
onance and energy conservation (note that theδ-function arises exclusively from the
small imaginary part,iδ, in the resonant denominator in the limitδ → 0). Carrying out
all these calculations, Eq. (9.27) becomes

∂|A0|2
∂t

= 4πS0

∑

∆k0

|δ(∆ω0)V |2
[
S0|A1|2|A2|2 − S1|A0|2|A2|2 − S2|A0|2|A1|2

]

(9.30)
and similar equations for the energy densities of the remaining wave modes. For a
broad spectrum it is convenient to replace the sum by an integral. In order to do this one
defines, as in Eq. (9.26), continuous spectral energy densities,|Aj |2 → h̄N(k)jd

3kj ,
which are expressed in the number densities of the photons contained in the particular
modej = 0, 1, 2, as given in Eq. (9.10). Moreover, when transforming the sum into an
integral one must take care of the restriction of the summation due to the requirement
of the conservation of the wave momentum, which is expressed in the fact that the
sums are taken only over the values∆k0, etc. Hence, in the integral appears another
δ-function, i.e.,δ(k0 − k1 − k2) = δ(∆k0) and similar expressions for the other two
modes

∆k0 = k0 − k1 − k2

∆k1 = k1 − k2 − k0 (9.31)

∆k2 = k2 − k0 − k1
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After all these preliminaries, we are now in the position to perform this transformation.
As result the equation for the number density of wave quanta in the 0-mode is obtained

∂N0

∂t
= 4πS0

∫ ∫
d3k1d

3k2 |V |2 [S0N1N2 − S1N0N2 − S2N0N1] δ(∆k0)δ(∆ω0)

(9.32)
The corresponding equations for the other quantum occupation numbers are obtained
by permutations (forN1 : 0→1, 1→−2, 2→0, for N2 : 0→2, 1→0, 2→−1) and ob-
serving the symmetry relations,S−0 = −S0, V (0, 1, 2) = V (1,−2, 0) = V (2, 0,−1),
andN(−k) = N(k), with S−0 = S(−k0), from Eq. (9.10)

∂N1

∂t
= −4πS1

∫ ∫
d3k0d

3k2|V |2 [S0N1N2 − S1N0N2 − S2N0N1] δ(∆k0)δ(∆ω0)

∂N2

∂t
= −4πS2

∫ ∫
d3k0d

3k1|V |2 [S0N1N2 − S1N0N2 − S2N0N1] δ(∆k0)δ(∆ω0)

(9.33)

The integrands of these three last equations (9.32) and (9.33) are identical. Only signs
and integration variables have changed. Taken together these are thewave kinetic equa-
tionsfor incoherent three-wave interaction.

The wave kinetic equations resemble the coherent wave equations (9.11). There
are two important differences between the coherent and the incoherent descriptions.
The first concerns the coupling time scale of evolution of the wave energies or ampli-
tudes. In the coherent case the time scale is inversely proportional to the amplitude of
the wave while in the incoherent random-phase case it is inversely proportional to the
energy of the wave or, equivalently, the number density of wave quanta. This implies
that the coherent time scale of the evolution is much shorter than the incoherent time
scale. Coherent systems evolve much faster than incoherent systems. In addition, the
coherent evolution was strictly reversible, while the incoherent interaction of the waves
is irreversible. In the random-phase interaction the waves forget what their initial phase
has been, and the systems can never return to this initial state. This can be demonstrated
by defining an entropy function for the random-phase interaction as

S(t) =
∑

j=0,1,2

∫
d3k ln Nj(kj) (9.34)

Differentiating with respect to time and inserting the wave kinetic equations into this
form yields an ever-positive right-hand side such thatdS/dt ≥ 0, which implies that the
entropy will always grow, and the system is irreversible. The condition for a stationary
final state is found to be given by

S0

N0
− S1

N1
− S2

N2
= 0 (9.35)
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which must be satisfied for each particular set of wavenumbers and frequencies satisfy-
ing the energy and momentum conservation laws or the resonance conditions. This sta-
tionary state implies some kind of equipartition between the quanta in the wave modes.

9.3. Weak Drift Wave Turbulence

The general theory of wave turbulence developed in the previous sections can be applied
to all cases of wave interaction. Here we consider the particular case of drift waves in
the plane perpendicular to the magnetic field, where a special two-dimensional kinetic
wave equation can be derived. It describes drift wave turbulence and is important in
space plasma applications where long wavelength modes are relevant in the particle
and energy diffusion processes.

Drift Wave Equations

The drift wave equation applies to the very low frequency range below the ion-cyclotron
frequency,ω < ωgi, which is of interest for large-scale plasma turbulence. The long-
wavelength range is defined as the domain of wavenumberskcia/ωgi ¿ 1. The wave
spectrum at shorter wavelengths, wherekcia/ωgi ≈ 1, is caused by scattering of the
long-wavelength mode. For the shorter wavelength part of the spectrum it is necessary
to include the inhomogeneity of the plasma. What we are interested in is the evolution
equation for this spectrum.

Turning to a fluid description, the following model equations are used as starting
point. Electrons are considered in the magnetized drift approximation with negligible
inertia parallel to the magnetic field

∂δn

∂t
+∇⊥ · (n0vd) = 0 (9.36)

wheren0 is the unperturbed density,vd = vE + vP is the sum of the electric field
and polarization drifts defined in Eqs. (1.10) and (1.11), and∇⊥ is the perpendicular
gradient operator. The electric field and thus the polarization drift is expressed through
the electric potential,φ, but includes the full nonlinearity caused by the transverse con-
vective derivative

vE = −∇⊥φ×B0

B2
0

vP = − 1
ωgiB0

[
∂

∂t
∇⊥ + (vE · ∇⊥)∇⊥

]
φ

(9.37)
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Parallel to the magnetic field the electrons obey Boltzmann’s equation

δn

n0
=

eφ

kBTe
(9.38)

The nonlinearity in the polarization drift of the ions is the driving force for the nonlinear
coupling.

Hasegawa-Mima Equation

From this set of equations one can derive a nonlinear equation. Using the identity

∇ · [(ê‖ ×∇φ) · ∇]∇φ = [(ê‖ ×∇φ) · ∇]∇2φ (9.39)

and normalizingn, t,x, φ to n0, 1/ωgi, cia/ωgi, kBTe/e, respectively, the above sys-
tem of equations can be reduced to the following nonlinear equation forφ

∂

∂t
(∇2φ− φ) = −[(ê‖ ×∇φ) · ∇]∇2φ (9.40)

This is theHasegawa-Mima equation. It describes the temporal and spatial evolution
of the potential of nonlinear drift waves in the very low-frequency approximation. The
Hasegawa-Mima equation is very similar to an equation describing incompressible hy-
drodynamic turbulence, but Eq. (9.40) describes turbulence of drift waves in compress-
ible plasma physics, with the compression given by the field-aligned electron motion.

Constants of Motion

The Hasegawa-Mima equation (9.40) has two constants of motion which indicate that
there are two different inertial ranges. These constants of motion are obtained by multi-
plying Eq. (9.40) byφ and integration over the entire volume. Then the nonlinear term
becomes

∫
d3xφ[(ê‖ ×∇φ) · ∇]∇2φ =

∫
d3x∇ · [φ∇2φ(ê‖ ×∇φ)] (9.41)

This expression can be transformed into a surface integral. Thus one finds that

∂W1

∂t
=

1
2

∂

∂t

∫
d3x [φ2 + (∇φ)2] = −

∫
j1 · dA (9.42)

where the current density is given by

j1 = −φ∇∂φ

∂t
+

1
2
(∇2φ)2ê‖ ×∇φ (9.43)
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In non-normalized variablesn = n0eφ/kBTe andv2
E = (∇φ)2/B2

0 , we find for the
first conserved quantity, which turns out to be the total energy

W1 = (n2kBTe/n0 + min0v
2
E)/2 (9.44)

The second conserved quantity is obtained by multiplying Eq. (9.40) by∇2φ

∂W2

∂t
=

1
2

∂

∂t

∫
d3x [(∇φ)2 + (∇2φ)2] = −

∫
j2 · dA (9.45)

where the second current density is given by

j2 = ∇φ
∂φ

∂t
+

1
2
(∇2φ)2ê‖ ×∇φ (9.46)

It can also be shown that the second conserved quantity,W2 = Wkin + Ω2, is the sum
of the kinetic energy and the squaredvorticity

Ω2 = (∇× vE)2 = (∇2φ)2(kBTe/eB0)2 (9.47)

Adding up both constants,W3 = W1 + W2, gives as an alternative conserved quantity
the expression

W3 =
[

n

n0
− (∇× vE)2

e2B2
0

k2
BT 2

e

]2

(9.48)

This is the squaredenstrophyin a compressible two-dimensional medium as can be
seen from the following derivation. Write the ion equation of motion

mi
dvi

dt
= e(E + vi ×B)− 1

n
∇p (9.49)

and consider an electromagnetic perturbation. Let us define the vorticity vector as
Ω = ∇ × vi + (e/mi)B. Taking the curl of the above equation, using Faraday’s
law, ∂E/∂t = −∇×B, and the identityv · ∇v = 1

2∇v2 − v ×∇× v, one gets

∂Ω
∂t

−∇× vi ×Ω =
1

min2
∇n×∇p (9.50)

The divergence of the vorticity vanishes,∇ ·Ω = 0. Therefore we have for the curl of
the cross product of velocity and vorticity,∇×v×Ω = −Ω∇·v+Ω ·∇v−v ·∇Ω.
The second term in this expression vanishes because there is no variation of the velocity
in the direction of the vorticity, and the above equation for the vorticity transforms into

dΩ
dt

+ Ω∇ · vi =
1

min2
∇n×∇p (9.51)
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For a cold ion fluid the ion pressure vanishes. Using the continuity equation to express
the divergence of the ion velocity∇× vi = −d(ln n)/dt, one finds

d

dt

(
Ω
n

)2

= 0 (9.52)

an equation which expresses conservation of enstrophy in a compressible fluid. Now
using Boltzmann’s distribution for the densityn this expression reduces to the conser-
vation of the quantityW3, showing that the compressible enstrophy is conserved by the
Hasegawa-Mima equation.

Kinetic Drift Wave Equation

The first step in the derivation of the nonlinear kinetic wave equation is standard and
follows the procedure discussed in the previous sections. One expands the electric wave
potential function into a spatial Fourier series

φ(x, t) = 1
2

∑

k⊥

[φ(k⊥, t) exp(ik⊥ · x) + c.c.] (9.53)

Let us normalize time to the inverse ion gyroperiod,1/ωgi, and lengths tocia/ωgi. This
implies that the frequencies are normalized to the ion-cyclotron frequency,ω/ωgi → ω.
The Fourier ansatz transforms the above set of nonlinear equations into the following
evolution equation for the spatial Fourier amplitudes

∂φ(k, t)
∂t

+ iωd(k)φ(k, t) = 1
2

∑

∆k=0

V (k,k′,k′′)φ(k′, t)φ(k′′, t) (9.54)

where∆k = k− k′ − k′′ and where we explicitly indicated thek- andt-dependences,
but dropped the⊥-sign onk. The interaction matrix is given by

V (k,k′,k′′) =
k′′2 − k′2

1 + k2
ê‖ · (k′ × k′′) (9.55)

The new frequency,ωd, is the drift wave frequency normalized to the ion-cyclotron
frequency,ωgi, and given by

ωd(k) = − kBTe

ωgieB0

k⊥Ln

1 + k2
(9.56)

with Ln = 1/∇⊥(lnn0) the gradient scale length.
Because of the assumption of very small parallel wavenumbers,k‖ ≈ 0, Eq. (9.54)

describes two-dimensional electrostatic low-frequency drift wave turbulence in magne-
tized plasmas. The drift frequency appearing in this equation plays somewhat the role
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of a viscosity. For very smallk the right-hand side can be dropped and the problem
becomes a linear one, with the dominating linear term yieldingω = ωd and no wave-
wave interaction present. For very large normalizedk À 1 the drift wave frequency
vanishes, and the linear term must be replaced by some kind of viscosity or ion Landau
damping. Here the wave energy is dissipated. This is logical because one expects that
damping occurs at very short wavelengths. The turbulent state belongs to wavenumbers
close tok ≈ 1, when all the couplings are included.

One can solve the above equation using the methods of weak turbulence by as-
suming that a large-amplitude wave exists initially at very long wavelengths. The first
step is to integrate Eq. (9.54) with respect to time to obtain

φ(k, t) = 1
2

∑

∆k=0

V (k,k′,k′′)

t∫

0

dt′ φ(k′, t)φ(k′′, t) exp[−iωd(k)(t− t′)] (9.57)

In order to find an equation for the root-mean square amplitude, we follow the usual
procedure by multiplying Eq. (9.54) by the conjugate complex functions,φ∗(k, t), and
adding the complex conjugate product. Then one obtains the symmetric equation

∂

∂t
|φ(k, t)|2 =

1
2

∑

∆k=0

V (k,k′,k′′)[φ(k′, t)φ(k′′, t)φ∗(k, t) + c.c.] (9.58)

This last equation determines the evolution of the wave intensity. One now substitutes
the integrated version of the wave potential in Eq. (9.57) for each of the amplitudes,
φ, into Eq. (9.58). Subsequently one takes the ensemble average of the resulting ex-
pression. Because we assume a broad spectrum, we can apply the random-phase ap-
proximation of the incoherent wave-wave interaction. This approximation produces a
two-point correlation function on the right-hand side which can be written as

〈φ(k, t)φ(k′, t)〉 = δ(k− k′)|φ(k, t)|2 exp[−(iω + γ)(t− t′)] (9.59)

The damping rate,γ, of the two-point correlation function has been introduced explic-
itly. As we know from incoherent interaction theory, it is necessary to introduce this as
a decoherence parameter in order to obtain non-diverging results. If we now follow the
indicated path, substituting Eq. (9.57) into Eq. (9.58), and using Eq. (9.59), we obtain
the wave kinetic equation of weak low-frequency drift wave turbulence

∂

∂t
|φ(k, t)|2 =

1
2

∑

k′
V (k,k′,k− k′)

[
V (k,k′,k− k′)

γ(k′) + γ(k− k′)
|φ(k′)|2|φ(k− k′)|2

V (k,k,−k′)
γ(k) + γ(k′)

|φ(k)|2|φ(k′)|2 +
V (k,k,k′ − k)

γ(k) + γ(k′ − k)
|φ(k)|2|φ(k′ − k)|2

]
(9.60)
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This is thedrift wave kinetic equationfor the wave-coupling in two-dimensional drift
wave turbulence in a magnetized plasma, with the turbulence being in the plane perpen-
dicular to the magnetic field. It is thek-space version of the Hasegawa-Mima equation
(9.40). Interpreting the three terms on the right-hand side shows that the first term
is the mode coupling term, while the two other terms describe the self-interaction of
the wave, which without the introduction of the imaginary damping part would lead to
divergence.

Spectral Evolution

Let us assume that a large-amplitude drift wave of initial potential amplitudeφ(k0) and
|φ(k0)|2 À |φ(k)|2 has been excited by some instability mechanism. One particular
example of such drift waves would be lower-hybrid drift modes. This wave is of long
wavelength,|k0| ¿ 1, corresponding to injection of wave energy at small wavenum-
bers. Moreover, we assume that the damping of the initial wave is much smaller than
the damping of the shorter wavelengths waves,|γ(k0)| ¿ |γ(k)|. Under these condi-
tions one can linearize the above wave kinetic equation (9.60) with respect to the weak
short-wave intensity in order to determine the spectral width of the shorter waves. To
this end we need the intensity of the shorter waves. This is obtained exactly along the
same lines as in the previous section. We multiply Eq. (9.54) by its conjugate com-
plex and use Eq. (9.57) to obtain an equation for the correlation of the small amplitude
short-wave spectrum

[
∂

∂t
+ iωd(k)− |φ(k0)|2

4γ(k)
V (k,k0,k− k0)V (k,k,−k0)

]
〈φ(k, t)φ∗(k, t)〉 = 0

(9.61)
Using Eq. (9.59) yields the following equality

2γ2(k) =
1
2

(k× k0)2

1 + k2

(k2 − 2k · k0)(k2 − k2
0)

1− (k− k0)2
|φ(k0)|2 (9.62)

from where one obtains for the damping rate

γ(k) =
1

23/2

k0k
3

1 + k2

[
1− k2

0

k2

(k2 − k2
1)(k

2 − k2
2)

1 + k2

]
|φ(k0)| (9.63)

wherek2
1,2 = −1 ± 1/

√
2 and we have assumed that|φ(k)|2 is isotropic, such that it

is allowed to average over the angle betweenk andk0. Only the lowest-order term in
k2
0/k2 is retained. As one observes, for small wavenumbers the spectral width behaves

like γ ∝ k3. On the other handω ∝ k. Hence, the width may become smaller than the
frequency, in contradiction to our assumption of small frequency. This sets a limitation
on the theory.



9.3. WEAK DRIFT WAVE TURBULENCE 237

100

10−1 100 101

101

102

103

k1.8

k−2.6

Normalized  Wavenumber

N
or

m
al

iz
ed

  S
pe

ct
ra

l D
en

si
ty



Fig. 9.4. Drift wave turbulent spectrum.

In the range of validity of the theory we are interested in the shape of the stationary
spectrum,|φ(k)|2. We set the time derivative on the left-hand side of Eq. (9.60) to zero
and equate the damping rate,γ(k), from Eq. (9.63) to the growth rate provided by the
mode-coupling term in Eq. (9.60). We then expand the spectral density,|φ(k − k0)|2,
around the small spectral density,|φ(k)|2, in powers ofk0. This yields

|φ(k− k0)|2 ≈ |φ(k)|2 − k0 · ∇k|φ(k)|2 + 1
2 (k0 · ∇k)2|φ(k)|2 (9.64)

The operator∇k = ∂/∂k is thek-space gradient operator. Using the explicit form of
the coupling constant,V , it can be shown that the leading term of the mode coupling
cancels with the corresponding term of the damping. Thus balancing the two terms of
the order ofk2

0, one obtains a particular ordinary differential equation for the isotropic
spectral density

(
d2

dk2
+

2
k

1 + 3k2

1 + k2

d

dk
+

15k4 + 18k2 − 5
k2(1 + k2)

)
|φ(k)|2 = 0 (9.65)

This equation describes the stationary spectrum of the spectral density of drift wave
turbulence and yields for the short-wavelength spectrum,k < min[10, (Te/Ti)1/2]

|φ(k)|2 ≈ k1.8/(1 + k2)2.2 (9.66)

This spectrum has a well-pronounced peak at normalized wavenumberk2
max ≈ 0.7 and

decays ask−2.6. Figure 9.4 shows a sketch of the stationary drift wave turbulent spec-
trum. One should, however, keep in mind that this spectrum has been obtained under the
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assumption that the turbulence is weak and that the waves interact with random phases.
At a later stage we will encounter a different kind of drift wave turbulence where the
interaction is much stronger. The present theory applies to weak drift wave turbulence
only, while the theory which we are going to develop in Chap. 10 of the present volume
applies to strong drift wave turbulence.

9.4. Nonthermal Radio Bursts

There are numerous applications of both the coherent and the incoherent wave-wave in-
teraction theories to space plasma problems. Coherent wave-wave interaction has been
favored in the explanation of various kinds of nonthermal radio wave emissions from
space plasmas. The three best-known examples are solar radio emissions originating in
the corona and in interplanetary space, radio emission from the Earth’s foreshock, and
auroral kilometric radiation.

The solar coronal examples include escaping radio radiation mostly in theX-mode
during solar type III events when electron beams travel across the low density corona,
during solar type II events, when matter ejected from the solar atmosphere drives a fast
shock wave in front of the ejecta, during solar type IV bursts when particles trapped
in magnetic mirror configurations generated electrostatic electron-cyclotron harmon-
ics, and during solar type I bursts, when local reconnection events occur. In all these
cases different types of plasma waves are generated which by interaction with Langmuir
waves excited by fast electrons produce an escaping radio wave at a frequency higher
than the local plasma frequency. These examples are ideal examples of three-wave in-
teractions in which the two electrostatic wave frequencies mix up into a high-frequency
electromagnetic wave.

Solar Type III Bursts

During a type III solar radio burst, when the merging waves are two oppositely directed
Langmuir waves(`), excited by a gentle electron beam in the solar corona, which un-
dergo a head-on collision, such a process can be symbolically described as

`1 + `2 → t0 (9.67)

Heret0 is the transverse electromagnetic radio wave. Clearly, because the wavelength
of the transverse wave is much longer than the wavelengths of the two Langmuir waves,
the two wave vectorsk1 andk2 must be about of equal length but opposite direction.
Since for Langmuir waves the dispersion curve is convex from below, this process is
possible. One could object that such a process is strictly reversible and thus would not
lead to an escaping wave. However, since the solar corona is an open system, once
the transverse wave comes into life during the interaction, it will, because of its high
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Fig. 9.5. Spectrogram of interplanetary type III burst and auroral kilometric radiation.

phase and group velocities close to the velocity of light,c, immediately escape from the
generation region. In this case there will be no chance for the wave to re-decay into the
Langmuir waves by which it had been created. The coherent interaction works here as
a generator of radiation very similar to a coherent laser.

The same mechanism applies to the generation of type III burst radiation in inter-
planetary space from travelling 10 keV electron beams ejected from the sun. An exam-
ple is shown in Fig. 9.5 where an electron beam encounters the Earth’s orbit and emits
local radiation at twice the local plasma frequency by the above mechanism. Close to
the Sun the density is high and the radiation has high frequencies. Close to the Earth
the density is low and nearly constant in the solar wind. Therefore the frequency at later
times, when the beam is closer to the Earth, is low and becomes nearly constant. From
the slope of the emission the velocity of the beam travelling across the solar wind can
be determined. It corresponds to a beam energy of about 10 keV. Moreover, the density
profile in the solar wind can be deduced, showing that the solar wind density decays
with distance from the sun asnsw(r) ∝ r−2.

The auroral kilometric radiation shown in Fig. 9.5 is generated close to the Earth
in the auroral zone and escaping into the solar wind. This radiation is not related to
the type III emission. Most of it is generated by a cyclotron maser mechanism in the
auroral magnetosphere, as described in Sec. 5.5.

Solar Type I Bursts

During type I solar radio bursts the radiation properties are different from type III burst.
Then presumably low-frequency electrostatic (or electromagnetic) waves generated in
the reconnection region may merge with Langmuir waves. The corresponding symbolic
equation reads

`1 + s2 → t0 (9.68)
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where` is again the Langmuir wave, ands is the low-frequency wave which can be an
ion-acoustic current generated wave or a lower-hybrid wave (in which case the Lang-
muir wave is to be replaced by an upper-hybrid wave). Observations suggest that the
radiation produced in this case is very intense and impulsive. Hence, the mechanism
must be strictly coherent. Ion-acoustic wave interaction is a good candidate. The waves
may be generated by the current in the reconnection region itself. On the other hand,
lower-hybrid waves at the boundary of the reconnection region are another candidate
because, being a natural resonance, they may grow to large amplitudes.

Solar Type II Bursts

Solar type II burst radiation is caused by travelling shock waves. Here the radiation
is produced by the reflected electrons in the foreshock region which excite Langmuir
waves. But shock radiation has also another so far unexplained strong component which
is attributed to the shock front itself and may arise from lower-hybrid wave interactions
with upper-hybrid waves. Part of the emission might be random-phased.

A nice example of an observation of this kind of wave-wave interaction, locally
producing an electromagnetic wave in the foreshock region at twice the electron plasma
frequency, is included in Fig. 4.2. The upper frequency band above the locally observed
plasma frequency shows the weak radiation. The much higher intensity of the Langmuir
wave emission indicates that the process does not have a very high efficiency. In fact,
referring to the equations for the three-wave interaction, we see that the efficiency is
proportional to the square of the wave amplitude in the coherent case, leading to a much
lower wave amplitude in the upmixed electromagnetic wave than in the electrostatic
wave.

Solar Type IV Bursts

Solar type IV emission is predominantly generated by a cyclotron maser mechanism,
whenever the density is low enough or the particle energies are relativistic, but random-
phased interaction between electron-cyclotron modes (oblique Bernstein modes) with
upper-hybrid modes, i.e., interaction among different harmonics of these waves, may
also play some role. Saturation of the electrostatic waves may be due to resonance
broadening.

Concluding Remarks

Though space plasma physics is inherently nonlinear and though most of the processes
in the solar atmosphere, solar corona, solar wind, and magnetosphere are nonlinear
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processes, only a few practical applications of nonlinear plasma physics and weak tur-
bulence theory exist. The reasons are manyfold.

First, observations are often not sophisticated enough to resolve the higher-order
nonlinear effects, and linear or macroscopic theory does in many cases explain the ob-
servations well enough. Second, the methodological difficulties in the nonlinear analyt-
ical treatment of nonlinear effects have, with the exception of the simplest quasilinear
ones, prevented people from wide application of these methods.

Third and most important, in most cases space plasmas reach a final long-term state
before they are observed by instrumentation. As a result, the real situations encountered
by spacecraft are final states of evolved nonlinear equilibria, which to a certain extent
have entirely forgotten their initial state. It is therefore nearly impossible to extract
information about this initial state from observations and to properly reconstruct the
whole nonlinear chain of interaction which led to the formation of this state. Only
when observing bursty and explosive effects, and when asking for anomalous transport
coefficients and the origin of nonlinear equilibria leading to stable non-Maxwellian
distribution functions, nonlinear theory comes into play.

Last, researchers are now treating nonlinear phenomena by numerical simulations.
This new kind of approach to nonlinear plasma physics encompasses the difficulties
encountered when trying to solve the complicated nonlinear equations analytically. It
is therefore not only very attractive but also successful, if its results are properly inter-
preted.

Because of the scarceness of applications, we also do not extend our presenta-
tion of weak turbulence to the next step in perturbation theory by including higher-
order wave-particle interactions. Usually these theories are collected under the name
of induced scatteringor nonlinear wave-particle interactionto distinguish them from
quasilinear theory.

Inclusion of dissipative effects into wave turbulence theory would extend the the-
ory into another important direction, which we have ignored here. Dissipation sets a
threshold on wave-wave instabilities, both in the coherent and in the incoherent cases.
A wave which would become unstable in the dissipationless interaction among waves
must, in addition, overcome the damping provided by the dissipative processes in a
plasma. Hence, dissipationa introduces a threshold into the interaction, just as in linear
instability theory.

Further Reading

The theory of coherent wave-wave interactions is described in many of the books cited
below. An extensive presentation is given in [9], but here we follow the shorter pre-
sentation in [3]. The general theory of incoherent plasma wave turbulence is contained
in [1]. A simplified shorter version is given in [8]. For a lucid derivation of the wave
kinetic equations and discussion of their properties see [1]. Drift wave effects are con-
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tained in [4]. The Hasegawa-Mima drift theory is taken from the original papers by
Hasegawa and Mima inPhys. Rev. Lett.39 (1977) 205, and inPhys. Fluids21 (1978)
87. Dissipative effects in wave-wave turbulence in application to ionospheric physics
are described in [2]. The general theory is given in [5]. Finally, the wave-wave theory
and observations of solar radio bursts can be found in [6] and [7].
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10. Nonlinear Waves

When perturbation theory cannot be applied to describe the evolution of the wave spec-
trum and its interaction with the particle component, one is forced to look for methods
which avoid the conventional WKB perturbation technique. In such cases it is difficult
to find a small parameter which can serve as an expansion parameter. The interaction
is then subject to long-range forces. Methods to treat conditions of this kind are sparse.
They have been developed in the past few decades and have provided insight into some
aspects of the physics, which is closely related to so-calledstrong plasma turbulence.
As in the previous chapter, the reader should consult the original literature for partic-
ular applications. Here we give a brief overview of the basic ideas with only a few
illustrative applications.

One may naively believe that strong plasma turbulence sets in simply when the
wave amplitudes have grown to high values. But this condition was also at the funda-
ment of weak turbulence theory and is thus not the decisive one to distinguish between
weak and strong turbulence. Rather it is decisive how the turbulence presents itself to
the observer. If it can be considered as a mixture of a large number of waves, with
the probability of collisions between the waves decreasing with the number of waves
involved in a collision, or as an ensemble of waves and particles, with the probability
of the interaction falling with the number of participants, the turbulence is weak.

On the other hand, this condition ceases to be applicable in many cases. Consider,
for instance, a single wave which grows in the absence of any other waves. Growth
of the wave must be limited by some process which becomes important at large am-
plitudes. At very large wave amplitudes an expansion of the disturbance with respect
to the ratio of the wave amplitude to the background equilibrium values fails, and the
resulting nonlinear evolution of the wave will not be describable by weak turbulence
theory. Cases like this one are typical for strong plasma turbulence. To treat them one
seeks for non-perturbative methods.

Because it is very difficult to treat strong turbulence on the basis of kinetic theory,
one usually returns to a fluid description of the plasma. The dominant nonlinearity is
then the nonlinearity in the convective derivative term. But even this comparably simple
and for more than two centuries well-known nonlinearity introduces a large number
of new and unexpected effects. It is, in principle, responsible for the whole field of
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hydrodynamic turbulence in fluid dynamics. In plasma physics new effects arise due to
the relatively short-range Coulomb interactions. Sometimes this makes investigation of
strong turbulence easier than in hydrodynamics.

In the present chapter we consider several basic nonlinear equations which lead
to the development of strong turbulence. The basic ingredient is that strong turbulence
consists of a large number of localized wave solutions of these equations, so-called
solitonsor sometimes alsocavitons. We prefer to call them solitons and to reserve the
name cavitons for the structures produced in strong plasma turbulent interaction (see
Chap. 11). The number of equations leading to such solutions is surprisingly small, and
we discuss only those which are of relevance for space plasma physics.

10.1. Single Nonlinear Waves

When perturbation theory cannot be applied to describe the interactions in a plasma,
one speaks of strong plasma turbulence. This happens when the wave amplitudes have
grown to such high values that an expansion of the disturbance with respect to the small
parameter, i.e., the ratio of the wave amplitude to the background equilibrium values,
fails. Hence, the primary concern of strong plasma turbulence is the treatment of the
evolution of single large-amplitude nonlinear waves. Surprisingly, such an approach
readily leads to the evolution of turbulence.

Wave Steepening

We have already been familiar with one type of exact nonlinear waves, the BGK modes
treated in Sec. 8.2. These were based on kinetic theory. A considerably more simple
approach is to treat nonlinear waves in terms of the hydrodynamic picture. Consider, for
example, the following one-dimensional nonlinear equation for the velocity amplitude
of a wave in a medium supported by some force,F

∂v

∂t
+ v

∂v

∂x
= F (10.1)

The left-hand side of this equation is nothing else but the convective derivative in a
fluid-like medium and thus of fairly general validity. The nonlinear term on the left-
hand side, when expanded into a Fourier series, contains a large number of wave-wave
interaction terms. Therefore this term can be considered as a coupling term between
many waves of different wavelengths.

Superposition and coupling of waves of different wavelength implies deformation
of the wave profile. This is easily understood. Assume that an initial wave,δv(x, t) =
δv cos[k(x − v0t)], is injected into the plasma, withv0 being the convection speed.
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Fig. 10.1. Steepening and breaking of a wave in a dissipationless plasma.

Together with the disturbance, the velocity amplitude will be

v(x, t) = v0 + δv cos[k(x− v0t)] (10.2)

The cosine function represents an oscillation between positive and negative values. In
the wave maxima on the top of the crest the total velocity will be larger than the stream-
ing velocity,v0, while in the wave minima, the valleys of the disturbance, the velocity
is reduced and thus is smaller. The wave minima stay behind the flow while the max-
ima run away. Necessarily, the minima must be overtaken by the maxima, leading to
wave steepening, and ultimately to wave breaking, if there is no dissipative effect which
counteracts the breaking. Figure 10.1 shows schematically how this breaking evolves
in time in a dissipationless fluid.

That the nonlinear term produces higher harmonics and thus shorter wavelengths
can be seen analytically. The productv∂v/∂x, with v ∝ cos(kx), generates the term
−k cos(kx) sin(kx) = −k sin(2kx)/2, which is a wave of half the original wavelength.
When further steepening occurs, these higher harmonics produce even shorter wave-
lengths, until the wave near its crest consists of a large number of nonlinearly super-
imposed waves of ever shorter wavelengths. This superposition generates a strongly
curved wave front which ultimately must break.

Burgers Equation

When the right-hand side of Eq. (10.1) is non-zero, wave steepening and breaking may
balance each other. Assume, for instance, that the dominant term on the right-hand side
is proportional to the second derivative of the velocity amplitude with respect tox. In
this case Eq. (10.1) can be written as

∂v

∂t
+ v

∂v

∂x
= α

∂2v

∂x2
(10.3)

This isBurgers equationwith α > 0. From the structure of Eq. (10.3) one recognizes
that it is a nonlinear diffusion equation, withα playing the role of the diffusion co-
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Fig. 10.2. Shock ramp solution of Burgers dissipative equation.

efficient and the convective term providing the nonlinearity. However, in comparison
with a linear diffusion equation lacking the nonlinear term the character of the solutions
change totally. The reason is that the diffusive second order derivative may compensate
for the nonlinearity. For increasing nonlinear steepening the second derivative starts
contributing more and more until it becomes comparable to the nonlinear term and the
steepening ceases. In this state the solution is stationary with vanishing time derivative.

The stationary solution can be found when transforming to a coordinate system
moving with the wave. Let the velocity of the wave beu and introduce the new coordi-
nate,y = x− ut, Burgers equation is written

α
∂2v

∂y2
= (v − u)

∂v

∂y
(10.4)

We are only interested in localized solutions which are regular at infinity. The solution
obtained is

v − u = −u tanh[u(x− ut)/2α] (10.5)

The form of this solution is ashock ramp. Figure 10.2 shows the form of the shock
ramp as solution of Burgers equation. The height of the ramp isu, the thickness of
the ramp isα/u, and the shock propagates with velocityu alongx. Hence, Burgers
equation yields as stationary solutions propagating shock waves where the dissipation
contained in the diffusion coefficient becomes effective in the steep gradient inside the
ramp where it balances the nonlinearity.

Korteweg-de Vries Equation

Balancing the nonlinearity with the help of dissipation is only one possibility. When
there is no dissipation in the medium, the right-hand side of Eq. (10.1) may contain a
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third-order derivative with respect tox. Third-order spatial derivatives describe disper-
sion. The equation obtained is theKorteweg-de Vries equation

∂v

∂t
+ v

∂v

∂x
+ β

∂3v

∂x3
= 0 (10.6)

The simplest way to understand the origin of nonlinear equations of the type of the
Burgers and the Korteweg-de Vries equations is to consider the general one-dimensional
dispersion relation,ω(k) = 0, where the frequency is an arbitrary function of the
wavenumber. With a Taylor expansion of the frequency with respect tok we get

ω(k) = ω(0) + vgrk +
1
2

∂2ω

∂k2
k2 +

1
6

∂3ω

∂k3
k3 + . . . (10.7)

If we now interpret frequency and wavenumber as one-dimensional operators

ω = i∂/∂t

k = −i∂/∂x
(10.8)

acting on the wave function,ψ(x, t), it is easy to see that the terms up to the third-order
derivative just reconstitute an equation which contains both the Burgers and Korteweg-
de Vries equations. In such an approach one can ignore the linear term in the above
expansion of the frequency, because this term describes only a Doppler shift. Hence,
all discussion which follows refers to a frame of reference which moves at the constant
group velocity,vgr.

The coefficients in front of the operators are derivatives of the frequency with
respect to wavenumber. It is the frequency which contains all information about the
nonlinear evolution of the system. This can be understood by analogy to quantum me-
chanics when one recognizes that the frequency is the energy and, hence, plays the role
of the Hamiltonian of the system in which all the information is stored. Burgers equa-
tion is obtained when cutting the expansion after the second derivative term, while the
Korteweg-de Vries equation follows when dropping the second derivative but keeping
the third-order derivative ofω(k).

Similar to Burgers equation, the Korteweg-de Vries equation also allows for sta-
tionary localized solutions. But because dispersion causes only reversible effects, such
a solution will be restricted to a finite spatial interval. Assume that it exists and moves
at speedu. Again introducing the coordinatey = x− ut, measured from the center of
the localized solution, the Korteweg-de Vries equation (10.6) can be transformed into
the third-order ordinary differential equation

(v − u)
∂v

∂y
+ β

∂3v

∂y3
= 0 (10.9)
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Fig. 10.3. Soliton solutions of the stationary Korteweg-de Vries equation.

Solution of this stationary equation requires the prescription of three boundary con-
ditions. Accounting for reversibility and localization we choosev = ∂v/∂y = 0 at
y → ±∞. It can then be shown by substitution that the following function solves the
stationary Korteweg-de Vries equation

vsol(x− ut) = 3u sech2
[
(u/β)1/2 (x− ut)/2

]
(10.10)

This function describes a stationary bell-shaped curve propagating at velocityu along
x without any change of its form. The width of this pulse is given by∆ = 2

√
β/u.

For the sameβ, high-speed solutions have a narrower width than low-speed solutions.
There is a distinct relation between the amplitude,A, of the pulse and its width

∆ = 2(3β/A)1/2 (10.11)

Figure 10.3 sketches how such pulses looks like. Since the pulses do not not change
their profile during propagation, do not slow down, and are stable against disturbances,
they have earned the namesolitary wavesor (topological)solitons.

It can be shown that a whole chain of different solitons with differentuj solves
the stationary Korteweg-de Vries equation. All these solitons move at their constant
speeds alongx without changing their shapes. Because the narrower and faster solitons
overtake the slower and wider solitons, one would expect that an interaction should
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occur. But calculations and numerical experiments show that collisions between two or
more solitons have practically now effect on the solitons. After collision they reappear
and separate at their initial speeds as sketched in the lower part of Fig. 10.3.

This behavior is characteristic for topological solitons and stationary structures.
In systems described by equations of the same family as the Korteweg-de Vries equa-
tion, characterized by dispersion effects only, topological solitons constitute a natural
fundamental eigenmode system of waves. On the other hand, when a wave evolves
into a chain of solitons of different amplitudes, widths and speeds, the plasma assumes
a grainy quasi-irregular structure, which cannot be described anymore by weak turbu-
lence theory. This is the origin of the notion that the soliton state of a plasma corre-
sponds to the state ofstrong plasma turbulence. In this state the plasma is filled with
localized waves and assumes the character of a gas of particles with the solitons con-
stituting the particles of different speeds, momenta and energies. One possibility to
describe such a strongly turbulent state would thus be a kinetic quasi-particle descrip-
tion with the particles being solitons.

Stationary Solution of the Korteweg-de Vries Equation

We have guessed the solution of the stationary Korteweg-de Vries equation. Let us
now demonstrate, how this solution is found. Equation (10.9) can be directly integrated
once. Applying the boundary conditions at infinity, the integration constant turns out to
be zero yielding the result

β
∂2v

∂y2
= v(u− 1

2v) (10.12)

Inspection of this equation shows immediately that it is of the type of the equation of
motion of a pseudo-particle with the left-hand side the acceleration,β the mass, and
the right-hand side the force. Such an equation can be solved by multiplying it with the
pseudo-velocity,∂v/∂y. The right-hand side can be represented as the derivative of a
pseudo-potentialor Sagdeev potential, S(v). Integrating once more and again applying
the boundary conditions at infinity gives the pseudo-energy conservation law

β

2

(
∂v

∂y

)2

=
v2

2

(
u− 1

3
v

)
= −S(v) (10.13)

This equation allows for a first conclusion. Because the left-hand side is a positive
quantity, solutions exist only under the condition that the pseudo-potential is negative

S(v) =
v2

2

(
1
3
v − u

)
< 0 (10.14)
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Stationary topological soliton solutions of the Korteweg-de Vries equation exist only in
the region of velocity space where this condition is satisfied. This implies that

v < 3u (10.15)

which suggests that all Korteweg-de Vries solitons must have velocities smaller than
the given characteristic speed3u. We will later demonstrate, for the particular example
of ion-acoustic waves, what the meaning of this conclusion is. However, quite generally
we have found a method by which a class of qualitative solutions can be obtained from
equations similar to the Korteweg-de Vries equation by looking for the pseudo-potential
and determining the regions where it becomes negative. Any initial condition leading
to a physical solution must fall into those domains. Under these conditions Eq. (10.13)
can be solved by quadrature to find∂v/∂y =

√
−2S(v)/β and solving the integral

y − y0 =
∫ v

0

dv

[−2S(v)/β]1/2
(10.16)

which yields the above solution (10.10) of the Korteweg-de Vries equation.

10.2. Nonlinear Wave Evolution

Stationary solutions are stationary only in the wave frame of reference. The nonlinear
Burgers and Korteweg-de Vries equations do allow not only for time evolution of these
single stationary pulses, but they also contain information if such a stationary state is
accessible or not from a given initial conditions. In order to decide what happens to a
given initial condition, it is necessary to solve the time-dependent equations.

Time-Dependent Solution of Burgers Equation

So far we considered the stationary equations with traveling wave solutions. One of the
solutions was the traveling shock wave, showing that in the fluid picture a shock ramp
can be a quite natural stable solution in the presence of nonlinear wave steepening and
dissipation. Such a wave necessarily travels across the plasma. On the other hand, this
solution identifies a shock as a nonlinear steepened wave which is subject to dissipative
equilibrium. The other type of solution was a traveling solitary structure which can be
considered as an eigenstate of a dispersive medium.

Such nonlinear structures must evolve from some initial state. One must thus solve
the time-dependent problem to justify the accessibility of the final stationary nonlinear
state. To solve the Burgers equation is comparably easy. It can be done by transforming
to a new variableφ related tov through

v(y, t) = −2α[∂ ln φ(y, t)/∂y] (10.17)
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Fig. 10.4. Time-asymptotic solution of Burgers equation.

Burgers equation then becomes a diffusion equation for the new functionφ

∂φ

∂t
= α

∂2φ

∂y2
(10.18)

and the solution can be immediately written down as

φ(y, t) =
1

(4παt)1/2

∞∫

−∞
dη exp

[
− (y − η)2

4αt
− 1

2α

∫ η

0

v0(τ)dτ

]
(10.19)

The initial disturbancev0 must satisfy the condition of convergence
∫ y

0
dy′ v0(y′) ≤

const · y for y →∞. Because of this condition one has
∫ ∞

−∞
dy′ v0(y′) = Θ < ∞ (10.20)

and the asymptotic solution for large times becomes

v(y, t →∞) ≈ −2α
d

dy
ln G

[
y

(4αt)1/2

]
(10.21)

where the functionG is given by

G(x) =
1√
π

[
e−Θ/4α

∫ x

−∞
dη e−η2

+ e+Θ/4α

∫ ∞

x

dη e−η2
]

(10.22)

This solution gives the asymptotic profile of the shock ramp as shown in Fig. 10.4. The
quasi-plateau behind the shock ramp at the maximum of the shock is the plateau which
in the stationary solution was assumed to exist aty = −∞. The non-stationary solu-
tion shows that the time evolution of the wave asymptotically leads to the qualitatively
predicted wave steepening and dissipative formation of a shock ramp.
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Fig. 10.5. Pseudo-potential for the Korteweg-de Vries-Burgers equation.

Laminar Shock Waves

Burgers equation led to a theory of shock waves as stationary solutions, caused by
the balance of nonlinear and dissipative effects. Having solved the Korteweg-de Vries
equation one may argue that another combined balance can be reached if both, dis-
sipation and dispersion together, brake the nonlinear steepening of a wave. In this
case one expects that the shock ramp will become modified by something like soli-
tary wave-like structures. This is indeed the case when one looks for solutions of the
Burgers-Korteweg-de Vries equation transformed to a system stationary in the shock
frame

β
∂3v

∂y3
− α

∂2v

∂y2
+

∂v

∂y
(v − u) = 0 (10.23)

Assuming as for the Burgers equation that aty → ∞, the boundary conditions are
v = ∂v/∂y = ∂2v/∂y2 = 0 and a first integration yields

β
∂2v

∂y2
− α

∂v

∂y
+ 1

2v2 − uv = 0 (10.24)

from which we derive the Sagdeev potential in the form

S(v) = 1
6v3 − 1

2uv2 (10.25)

The first-order derivative in the above equation corresponds to a friction force with
friction coefficientα, and time represented byτ = −y = −(x − ut). If the pseudo-
particle was at the origin atτ = 0, it will find itself at the ground of the pseudo-
potential,S(v), at τ = ∞ or y = −∞. The corresponding value of the velocity at
the minimum ofS is v = 2u. Figure 10.5 shows the form of the pseudo-potential and
the oscillatory path of the pseudo-particle down from the origin to the bottom of the
potential.
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Fig. 10.6. Laminar Burgers-Korteweg-de Vries shock profiles.

This downwalk of the pseudo-particle to the bottom of the pseudo-potential is
the irreversible dissipative process leading to the shock wave structure, which is pro-
voked by the Burgers contribution to the Burgers-Korteweg-de Vries equation. That the
pseudo-particle does not simply fall down to the ground, as in the pure Burgers case,
but walks down in several steps indicates that the shock profile oscillates in space. The
type of oscillation depends on the sign of the parameterβ. In particular, for positive
β > 0 the oscillatory part of the profile is behind the shock ramp in the downstream
compressed region (Fig. 10.6, top panel). Above a certain critical value ofβ the pseudo-
particle walks straight to the bottom of the potential, and the shock becomes the Burgers
shock solution. For negativeβ < 0 the oscillatory part of the profile is found upstream
of the shock ramp and is caused by disturbances which move against the incoming flow
(Fig. 10.6, bottom panel).

The shock wave described by the solution of Eq. (10.24) has a jump in velocity
of ∆v, and its speed in the moving frame is given byu = ∆v/2. Transforming to the
system in which the medium is at rest, this speed becomes∆v/2 + v0. Therefore, the
Mach number of the shock flow is

M = 1 + ∆v/2v0 (10.26)

and is independent of the dispersion parameterβ. The oscillations behind or in front of
the shock ramp are soliton-like and can be represented by the soliton solutions of the
Korteweg-de Vries equation.
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Invariants of Korteweg-de Vries’ Equation

Solving the time-dependent Korteweg-de Vries equation requires considerably more
effort. Before discussing the general method, we demonstrate that the Korteweg-de
Vries equation has a large number of invariants

In =
∫ ∞

−∞
Nn(x, t) dx (10.27)

where the generalized number densities,Nn, and generalized momentum flux densities,
Pn, satisfy the following one-dimensional conservation laws

∂Nn/∂t +∇xPn = 0 for n = 1, 2, 3 . . . (10.28)

The Korteweg-de Vries equation can be written as a conservation law forn = 1

∂v/∂t +∇x

(
1
2v2 + β∇2

xv
)

= 0 (10.29)

The generalized first-order number density is the velocity itself, while the first-order
momentum flux density is defined as the term in brackets, identifying the Korteweg-
de Vries equation as the conservation law of the generalized momentum

∫
v(x, t) dx.

The higher-order conservation laws can be obtained by successive multiplication of the
Korteweg-de Vries equation byv, v2, . . . The next conservation law is

1
2

∂v2

∂t
= −∇x

[
v3

3
+ β

(
v∇2

xv − 1
2
∇2

xv

)]
(10.30)

This equation corresponds to an energy conservation law. The other higher-order con-
servation laws have no direct physical interpretation. The point is that the Korteweg-de
Vries equation functions similar to a kinetic equation. It is the basic equation of a
hierarchy of conservation laws, which can be derived as moment equations in a way
similar to the derivation of moment equations for the hydrodynamic variables from the
Liouville equation.

It can be shown that thenth order ‘density’ invariants can be represented as poly-
nomials inv,∇xv when expanding with respect to the small dispersion parameter,β

Nn = vn/n− 1
2 (n− 1)(n− 2)βvn−3(∇xv)2 + O(β2) (10.31)

For the Korteweg-de Vries soliton (10.10) the solution forv is given, and the invariants
can be calculated explicitly

In,sol =
∫ ∞

−∞
dxNn[vsol] = (12β)1/2(3u)(n−1/2)2n[(n− 1)!]2/(2n− 1)! (10.32)

These invariants play a central role in the time-dependent solution of the Korteweg-de
Vries equation.
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10.3. Inverse-Scattering Method

In this section we present one very general method of solving time-dependent nonlinear
equations, which applies to a whole class of equations. We use this method for solving
the Korteweg-de Vries equation.

Inverse-Scattering Solution of Korteweg-de Vries Equation

It is quite simple to solve the linearized Korteweg-de Vries equation and to guess its
stationary nonlinear condition, but it is much more involved to find analytical time-de-
pendent solutions of the nonlinear equation. The idea of the method is as follows. In
quantum mechanics the Schrödinger equation describes the energy states of a system
exposed to an external potential. Knowing the full spectrum of these states it is possi-
ble to perfectly reconstruct this external potential by solving a particular GLM-integral
equation given by Gelfand, Levitan and Marchenko. Assuming that this potential is
the unknown solution of the Korteweg-de Vries equation and using the well-known
methods of solving the Schrödinger equation and the GLM-equation, together with the
knowledge of the initial condition and the form of the above invariants, the solution
of the Korteweg-de Vries equation can be constructed. This way of solving nonlin-
ear equations is calledinverse scattering method, because the inverse problem of the
Schr̈odinger equation arises in the investigation of light-scattering problems in astro-
physics.

In order to sketch how this method works, consider Schrödinger’s equation for the
wave function,ψ(x, t), in the particular form

∇2
xψ + 1

6 [λ(t)− v(x, t)] ψ = 0 (10.33)

The factor 1/6 has been extracted for convenience. The potentialv(x, t) is chosen as
the unknown function in the time-dependent KdV-equation. The Schrödinger equation
is assumed to be stationary and depends on time only via the time dependence ofv
and the corresponding time dependence of the energy eigenvalues,λ. Thus the time
dependence is only parametric and determined by the conditions onv

∂v

∂t
+ v∇xv +∇3

xv = 0 (10.34)

which is the Korteweg-de Vries equation withβ = 1, andv(x, 0) = 0 at x → ±∞.
Note that the solutions of the Korteweg-de Vries equation are reversible. The choice of
β corresponds to the following rescaling:v → β1/5v, t → β1/5t, x → β2/5x. Inserting
v from (10.33) into (10.34) gives

∇x

{
(ψ∇x −∇xψ)

[
∂ψ

∂t
− 1

2
(v + λ)∇xψ +∇3

xψ

]}
= −6ψ2 ∂λ

∂t
(10.35)
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The left-hand side of this expression is a divergence which, when integrating over all
space and taking into account that the solution of the Korteweg-de Vries equation and
thus also that of the Schrödinger equation is bounded, must vanish. Hence, the eigen-
values of the discrete spectrum of the Schrödinger equation must be time-independent,
wheneverv is a solution of the Korteweg-de Vries equation,∂λ/∂t = 0. Consequently,
one finds by integrating the last equation twice that the wave function satisfies the con-
dition

∂ψ

∂t
− 1

2
(v + λ)∇xψ +∇3

xψ = ψ

(
A + B

∫
dxψ2

)
(10.36)

The coefficientsA,B vanish for the discrete spectrum, since in the limitx → ±∞
the left-hand side must vanish and because of the normalization condition of the wave
function. In the case of a continuous spectrum one must, however, take into account
that a wave can fall in from infinity. In this caseA,B 6= 0.

In the discrete part of the spectrumψ is represented as the expansion with respect
to eigenfunctions,ψn, of the Schr̈odinger equation in the Hilbert space representation.
These eigenfunctions must be regular forx → ±∞, such that

ψn(x, t) ≈ cn±(t) exp(∓knx) for x → ±∞ (10.37)

where the spatial decay decrement isk2
n = −λn/6. In order to find the coefficients,

one inserts this asymptotic expression into the above condition onψ and finds

cn±(t) = cn±(0) exp(±4k3
nt) (10.38)

Similarly, the regular eigenfunctions of the continuous spectrum may be chosen as

ψcont ≈ c±(k, t) exp(±ikx) + δ∓ exp(−ikx) for x → ±∞ (10.39)

Hereδ+ = 1 andδ− = 0. Again inserting into Eq. (10.36) allows to determine the
coefficients of the continuous spectrum asB = 0, A = 4ik3, and one finds

c+(k, t) = c+(k, 0) exp(4ik3t)
c−(k, t) = c−(k, 0)

(10.40)

Clearly,c+ is the reflection coefficient, whilec− is the transmission coefficient of the
wave incident fromx = +∞, and we must have in addition

|c−|2 + |c+|2 = 1 (10.41)

The former expressions show that the time dependence of the coefficientscn andc is
entirely determined by the spectrum. One has to find only the initial coefficients at
t = 0. This can be done by solving the time independent Schrödinger equation using
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Fig. 10.7. Inverse-scattering solution of the Korteweg-de Vries equation.

a potentialv(x, 0), which corresponds to the known initial condition of the solution of
the Korteweg-de Vries equation. But the inverse scattering theory for the Schrödinger
equation provides a direct solution for the potentialv as solution of the Korteweg-de
Vries equation when solving the GLM-equation

K(x, y) = −B(x + y)−
∫ ∞

x

K(x, z)B(y + z) dz (10.42)

This solution is simply represented as the differential of the solutionK(x, x) of this
integral equation taken atz = x

v(x, t) = −12[dK(x, x; t)/dx] (10.43)

The kernel of the GLM-equation is hereby given as a function which is entirely ex-
pressed through the initial conditions and the spectrum of the Schrödinger equation

B(x) =
1
2π

∫
c+(k, t) exp(ikx) dk +

∑
n

c2
n+(t) exp(−knx) (10.44)

and one hask = (λ/6)1/2 andkn = (−λn/6)1/2.
The inverse-scattering procedure yields the solution of the time-dependent Kor-

teweg-de Vries equation, at least by solving the GLM-equation numerically for given
initial condition v(x, 0). Figure 10.7 shows schematically how the inverse scattering
method works starting from an initial disturbance, bypassing the impossible direct way
via solution of the stationary Schrödinger equation, boosting the scattered amplitudes
in time and solving the GLM-equation.

Let us apply this method to soliton solutions. In this case the continuous spectrum
contribution can be neglected. Otherwise we restrict ourselves to only the leading term,
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n = 1, in the sum in the functionB(x). This allows to write asymptotically

B(x, t) = c2
1(0) exp(8k3

1t− k1x) (10.45)

where we used the fact that asymptoticallyx ≈ 8k2
1t. With this expression the GLM-

equation gives

K(x, y; t) = −c2
1(0)

exp
[−k1(x + y) + 8k3

1t
]

1 + [c2
1(0)/2k1] exp [−2k1x + 8k3

1t]
(10.46)

which, when inserted in the prescription of obtaining the solution of the Korteweg-de
Vries equation from the derivative ofK, yields the soliton solution

v(x, t) = −12k2
1 sech2

[
k1(x− x0)− 4k2

1t
]

(10.47)

with c2
1(0) = 2k1 exp(2k1x0). The amplitude of the soliton is now12k2

1, and its veloc-
ity one third of this, which coincides with the solution found earlier.

Self-Similar Solution

Let us return to the Korteweg-de Vries equation (10.34) and write the initial condition
v(x, 0) = uφ(x/`) such that the functionφ describes the self-similar shape of the
solution,ξ = x/` is a dimensionless coordinate, and` is the characteristic width of
the localized solution which for the soliton solutionvsol is ` = (4β/u)1/2. It is then
possible to rewrite the Schrödinger equation

ψ′′(ξ) + 1
6σ2[Wn + φ(ξ)]ψ(ξ) = 0 (10.48)

where the double prime denotes the second spatial derivative, and the quantityσ2 =
u`2/β serves as a parameter. The amplitudes,cn, of the soliton solutions of the Korte-
weg-de Vries equation are related to the energy eigenvalues of the Schrödinger equation

cn = −2uWn (10.49)

The structure of the Schrödinger equation then shows that forφ(ξ) < 0 no discrete
spectrum and therefore no solitons exist. Initial disturbances of this kind do not evolve
into localized solutions. The discrete spectrum requires that

Φ =
∫

φ(ξ) dξ > 0 (10.50)

and the number of solitons which evolve depends on the value of the similarity parame-
ter,σ, such that for smallσ only one eigenvalue and thus one soliton exists. This value
is found by a lengthy perturbation calculation

W1 = −(σ2/24)Φ2 for σ2 ¿ 12 = σ2
sol (10.51)
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and the amplitude of this solitons can be represented through

c1 = 2uΦ (10.52)

The quantityσsol is the similarity parameter for the stationary soliton solution. This
implies that under non-stationary conditions an initial disturbance will decay into many
solitons of small amplitude. From this consideration it becomes clear that for large val-
ues ofσ the number of solitons which evolve from a given initial disturbance becomes
large by itself. The nature of the Korteweg-de Vries equation is thus to split a given
large initial disturbance into a large number of small-amplitude nonlinear structures
which, after formation, behave as independent non-interacting entities, while giving the
plasma a grainy texture which we call strong turbulence. The large-amplitude single
soliton found under stationary conditions is thus an idealized solution, which probably
does not exist when evolving from an initial condition.

Soliton Distribution

In the case of large initial disturbances it is possible to calculate the number of solitons
which evolve out of the disturbance. This number can be estimated using the infinite set
of invariants of the Korteweg-de Vries equation. Because the amplitudes of the evolv-
ing solitons are determined by these invariants and are not equally large, one can find
a distribution function of soliton amplitudes or, because the amplitudes are unambigu-
ously related to the soliton speeds, a distribution function of the solitons with respect to
their velocities. The numberdN of solitons with amplitudes in the interval[u, u + du]
can be defined as

dN = F (u) du (10.53)

On the other hand, the density of energy levels of the Schrödinger equation in the dis-
crete spectrum is given as

dN

dW
=

σ√
24π

∫
dξ

[φ(ξ)−W ]1/2
(10.54)

in the region of positive initial disturbance,φ > 0. These two expressions enable one
to find the distribution functionF (u) of the soliton amplitudes

F (u) =
σ

4π(3u0)1/2

∫
dξ [2u0φ(ξ)− 3u]−1/2 (10.55)

The integration is to be taken over the positive part of the argument of the square root,
2u0φ > 3u. The lengthy derivation is not given here. Integrating from zero to infinity
one can find the number of solitons

N =
∫

F (u)du =
σ√
6π

∫
dξ φ1/2(ξ) (10.56)
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These equations can serve to estimate the graininess of a Korteweg-de Vries turbulent
plasma. They also play a role in more general theories of strong plasma turbulence
caused by drift waves and electron acoustic waves.

10.4. Acoustic Solitons

To obtain nonlinear equations governing the evolution of plasma waves, it is necessary
to reduce the full set of complicated nonlinear equations of plasma physics which can-
not be solved by analytical methods to one of the nonlinear equations derived in the
previous sections. This can in general not be done, but there are a number of cases
when it is possible to apply some reduction methods which lead to the Korteweg-de
Vries or Burgers equations. In this section we show how this reduction method works
for a ion-acoustic, electron-acoustic, and kinetic Alfvén waves.

Reductive Perturbation Method

Both the Burgers and Korteweg-de Vries equations are general equations which do not
apply exclusively to plasmas. As a first example of solitons in a plasma we consider
nonlinear ion-acoustic waves in the two-fluid approximation. This means that we are
not interested in the instability causing these waves, but assume that an ion-acoustic
wave exists in the plasma and that this wave undergoes nonlinear evolution. What
then is the dynamics of this evolution and which of the nonlinear equations governs
it? Hence, we are interested in reducing the full nonlinear set of two-fluid equations
to one master equation, which describes nonlinear ion-acoustic waves. The general re-
duction scheme of finding such a reduced equation is the reductive method of stretched
coordinates.

Consider the invariance of the Korteweg-de Vries equation with respect to the
following coordinate transformations

t → εt x → ε1/3x v → ε−2/3v (10.57)

All its solutions have the same shape if transformed accordingly and are calledself-
similar. They can be written

v(x, t) = β(3βt)−2/3ψ[x/(3βt)1/3] (10.58)

A transformation of this kind is called aself-similarity transformation. A self-similarity
transformation can also be found for the Burgers equation. It can be applied to reduce
a system of partial differential equations of the kind for the column vector,U

∂U
∂t

+ A · ∇xU +
q∑

µ=1

p∏
ν=1

(
Hν

µ

∂U
∂t

+ Kν
µ∇xU

)
= 0 (10.59)
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with Hν
µ , Kν

µ matrices which themselves depend onU, to a simpler nonlinear equation.
One introduces a small parameterε ¿ 1 and expands

U = U0 + εU1 + . . . (10.60)

while at the same time introducing the stretched coordinates

ξ = εa(x− ut) τ = εa+1t (10.61)

wherea = (p − 1)−1. If we now require thatU1 → 0 for x → ∞, write U1 = Rφ,
and chose the equation which determines the column eigenvector,R, from the matrix
equation

(A − uI) ·R = 0 (10.62)

we can reduce the above very complicated system asymptotically to the simpler self-
similar equation forφ

∂φ

∂τ
+ αφ∇ξφ + β∇p

ξφ = 0 (10.63)

This equation is a nonlinear dispersive equation with a dispersion of orderp. Its coeffi-
cients can be expressed through the velocityu andR. β is the solution of the dispersion
relation of the linear system

ω = uk + ip−1βkp + . . . (10.64)

andα = ∇u · (u0R0). Here we used that the wavenumberk = O(εp) is of orderp.

Ion-Acoustic Solitons

The first example of solitons relevant for space plasmas are acoustic solitons. We con-
sider a one-dimensional system in which ion-acoustic waves have been excited by,
for example, a field-aligned current instability. In the one-dimensional field-aligned
case the physics is independent of the magnetic field. Normalizing all quantities,
nj →nj/n0, vj → vj/cia, E→ eE/(mekBTe)1/2ωpe (or φ→ eφ/kBTe), x→ x/λD,
andt→ωpit, and assuming Boltzmann-distributed electrons, the equations describing
the evolution of the plasma are

∂ni

∂t
+

∂(nivi)
∂x

= 0

∂vi

∂t
+ vi

∂vi

∂x
= −∂φ

∂x
(10.65)

∂2φ

∂x2
= −ni + exp(φ)
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When linearizing these equations one obtains the dispersion relation

ω2 = k2/(1 + k2) (10.66)

which in the small wavenumber limit,k2 ¿ 1, can be expanded and reduced to

ω = k(1− k2/2) (10.67)

One immediately recognizes that the dispersion coefficient will have the value|β| =
1/2. We now assume initial quasineutrality,ni = ne, and rewrite the equation of
motion as

∂vi

∂t
+ vi

∂vi

∂x
= − 1

ni

∂ni

∂x
(10.68)

This equation is identical with the momentum conservation equation of a gas with sound
velocity cia = 1, in which the electrons exert a pressure on the plasma through the
electric field,E = −∇xφ. Therefore the nonlinear wave is an ion-acoustic wave. But
when the wave steepens, the left-hand side of the Poisson equation,∇2

xφ, grows due
to inertial effects of the steepening gradients, and quasineutrality becomes obsolete.
This causes the dispersive effects in the dispersion relation, which ultimately lead to
stabilization of the nonlinear steepening. One therefore expects that ion-acoustic waves
may lead to the formation of topological solitons.

Let us look for a solution of the above nonlinear equations, which depends onx, t
in the formξ = x − ut, and let us further assume homogeneous boundary conditions
for |ξ|→∞, i.e.,ni→1, vi = φ = ∇ξφ→0. Then we get

1
2 (∇ξφ)2 = exp(φ) + u(u2 − 2φ)1/2 − (u2 + 1) (10.69)

Setting the left-hand side of this expression to zero and assuming that the potential has
an extremum,φmax, at the place where its derivative vanishes, we obtain for the speed
of the structure

u2 =
[exp φmax − 1]2

2[expφmax − 1− φmax]
(10.70)

Further assuming thatφmax ¿ 1, andu− 1 = δu ¿ 1, one gets

(∇ξφ)2 = 2
3φ2(3δu− φ) = −S(φ) (10.71)

where the right-hand side is the pseudo-potential of the ion-acoustic wave. We imme-
diately identify this equation as the first integral of the stationary Korteweg-de Vries
equation. The solution is the Korteweg-de Vries soliton

φ = 3δu sech2

[(
δu

2

)1/2

(x− ut)

]
(10.72)
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which is valid for small-amplitude slow ion-acoustic solitons. The maximum amplitude
of the soliton is given by the condition that the pseudo-potential must be negative for
solitons to occur. One finds thatφmax = u2/2. Inserting for the speed into Eq. (10.70)
yields φmax ≈ 1.3 and therefore as the maximum speed of the solitonumax ≈ 1.6.
Since this speed is normalized to the ion-acoustic velocity, we find that ion-acoustic
solitons exist for Mach numbers

Mia,sol < 1.6 (10.73)

The stationary solution obtained is, of course, not the full story because the system
must evolve toward the state where the soliton has formed. We now apply the reductive
perturbation method to the initial system of equations describing the nonlinear evolution
of ion-acoustic waves in order to find the basic nonlinear equation. Eliminating the ion
density and electric field from the equations, the system is reduced to the following two
equations

∂ne

∂t
+∇x(nevi)−∇x

[(
∂

∂t
+ vi∇x

)
∇x ln ne

]
= 0 (10.74)

∂vi

∂t
+ vi∇xvi +∇x ln ne = 0 (10.75)

From this equation we read thatp = 3, q = 1, a = 1/2, andβ = 1/2. It is then possible
to find expressions for the vectors and matrices. To zero order inε the two components
of the column vectorU0 are(1, 0). The eigenvalues of the matrixA0 are thenu0 = ±1.
The column vectorR has the components(1, 1), and∇u · (u0R0) = (0, 1), which
yieldsα = 1. The stretched coordinates are

ξ = ε1/2(x− u0t)
τ = ε3/2t

(10.76)

and the nonlinear equation obtained for the first-order inε is a version of the Korteweg-
de Vries equation written in terms of the electron density

∂ne1

∂τ
+ ne1

∂ne1

∂ξ
+

1
2

∂3ne1

∂ξ3
= 0 (10.77)

But because of the Boltzmann relation,ne1 = exp φ1 − 1 ≈ φ1, the same equation
holds for the electrostatic potential of the nonlinear wave. Thus its stationary solution
is the soliton found above.

The Korteweg-de Vries equation (10.77), derived for the ion-acoustic wave evo-
lution, implies that ion-acoustic waves will under most conditions by their inner dy-
namics, which determines their dispersive properties, evolve into a chain of solitons of
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Fig. 10.8. Symmetric reflection and transmission of particles in soliton.

small amplitudes and different speeds. The number of solitons and the turbulent struc-
ture of the plasma are determined by the initial condition. Small-amplitude waves will
decay into one or a few solitons, but when the mechanism of instability continuously
produces growing waves, the plasma will end up with a large number of ion-acoustic
solitons propagating across it. It will become striated perpendicular to the magnetic
field, and these density and reversible potential striations will propagate at velocities
well below the ion-acoustic speed. They will overtake each other, but will not interact
significantly.

Conditions of this kind are believed to exist in places where the ion-acoustic wave
instability is driven by field-aligned currents oder heat-fluxes. In the solar wind acoustic
solitons may be responsible for the medium level of density fluctuations observed and
may play a role in the generation of the radiation from foreshock electrons. In the mag-
netosphere they are involved in the formation of striations in the auroral and equatorial
upper ionospheres.

Microscopic Double Layers

Another important observation is that the solution of the Korteweg-de Vries equation
for the potential does not necessarily require the potentials on both sides to be the same.
This gives the possibility for the description of microscopic double layers in terms of
asymmetric solitons. The two particular families of solitons for which double layers
seem to be possible are the ion-acoustic soliton and a pure electron fluid soliton, the
electron-acoustic solitonarising from the electron-acoustic instability. In the latter the
cold electrons play the role of the ions.

In a fluid picture description of the double layer the formation of the potential
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Fig. 10.9. Equipotentials in the combination of a soliton and a double layer.

difference corresponds to the possibility that the low energy component may become
asymmetrically reflected from the potential well of the soliton with the asymmetry aris-
ing from asymmetries in the bulk velocities of the soliton or the particle fluids. The
condition for this reflection is that the thermal energy of the reflected particles is less
than the potential energy of the soliton. But in the magnetosphere, where energies are
not below 1 eV, this requires large potential drops, and fluid-like double layers will
barely evolve. Nevertheless, if thermal energies are low, the exclusion of the ions or the
cold electron component in the case of the electron-acoustic solitons yields violation of
the charge neutrality condition across the soliton. Clearly this happens only if the soli-
ton moves because it is the motion which introduces the asymmetry. Thus fast solitons
will easier be subject to double layer formation.

Figure 10.8 shows the reflection mechanism of particles of the right sign by the
symmetric potential hump inside the soliton. Only particles with energies< eφmax are
reflected, while higher energy particles are transmitted through the potential hump. Fig-
ure 10.9 shows the qualitative shape of equipotential contours in presence of a soliton
and a microscopic double layer. The plasma is assumed magnetized with the equipo-
tentials at infinity parallel to the field lines. The deviation of the equipotentials from
the field inside the soliton and double layer implies convective motions of cold particles
with gyroradii much less than the transverse extents of these structures while the fast
particles are not affected.

The conditions change when kinetic effects are included. Then the low energy par-
ticles in the distribution function may become reflected from the soliton potential and
asymmetry will arise in a more natural way. Moreover, the particles moving nearly in
resonance with the soliton have very low energy and may experience one-sided reflec-
tion easiest. In summary, microscopic solitons of the kind of ion- and electron-acoustic
solitons can in principle evolve into weak microscopic double layers containing po-
tential drops, which in the magnetosphere should amount to a fraction of an electron
volt. But such microscopic double layers may add up to large potential drops along a
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magnetic field line if they are aligned along the field with correct polarity.
Let us consider electron-acoustic double layers. The basic one-dimensional fluid

equations for the cold,s = c, and warm,s = h, electron components and neutralizing
cold ion,s = i, background are

∂ns

∂t
+∇x(nsvs) = 0

msns

(
∂vs

∂t
+ vs∇xvs

)
= −∇xps − ns∇xφ (10.78)

∂ps

∂t
+ vs∇xps + ps∇xvs = 0

which must be completed by the Poisson equation

∇2
xφ = n0h exp φ−

∑

s=i,c

ns (10.79)

The quantities have been normalized for simplicity here. For instance, the normaliza-
tion of the potential iseφ/kBTh→φ and so on. In addition one implies the following
boundary conditions

φ → 0 ∇xφ → 0 ∇2
xφ → 0

ns → n0s ps → p0s vs → 0

}
for x →∞ (10.80)

In order to derive the nonlinear equation describing the double layer formation we in-
troduce the following stretching transformation

ξ = ε(x− ut)
τ = ε3t

(10.81)

which differs from the one used before. We now expand all fluid quantities and the
potential in powers ofε and follow the procedure described in the previous section. We
then obtain the following nonlinear equation for the first order expansion term of the
potential

∂φ1

∂τ
+

a1

2
∇ξφ

2
1 + a2∇ξφ

3
1 + a3∇3

ξφ1 = 0 (10.82)

This is themodified Korteweg-de Vries equation. It contains a third order nonlinearity
and is valid as long as|a1/a3| = O(ε), and the coefficients are

a1 = − (n0c/n0h)2 + 3(n0c/n0h + 4Tc)
2(n0c/n0h)(n0c/n0h + 3Tc)1/2

a2 = − (n0c/n0h)4 − 15(n0c/n0h)2 − 180Tc(n0c/n0h)− 432T 2
c

12(n0c/n0h)3(n0c/n0h + 3Tc)1/2
(10.83)

a3 = (n0c/n0h)2/2n0c(n0c/n0h + 3Tc)1/2



10.4. ACOUSTIC SOLITONS 267

−2 −1 1 2
1.0

1.5

2.0

Potential Drop  in  Volts

A
lti

tu
de

  i
n 

 E
ar

th
 R

ad
ii

0

Fig. 10.10. Measured auroral double layer potentials.

The modified Korteweg-de Vries equation is in the form that another pseudo-potential
can be defined. Multiplying byφ1 and integrating once one arrives at the simplified
form, using the new coordinateζ = ξ − Uτ which is a stationary coordinate traveling
with the double layer across the plasma

1
2

(
dφ1

dζ

)2

=
U

2a3
φ2

1 −
a1

6a3
φ3

1 −
q2

4a3
φ4

1 = −S(φ1) (10.84)

where double layer solutions require thatS(0) = S(φmax) = 0 and the derivatives of
S satisfy the condition

∇φ1S|φmax = ∇φ1S|0 = 0 (10.85)

in addition to the condition that the second derivatives ofS atφmax andφ1 = 0 should
be negative. The potentialφmax is just the maximum achievable double layer potential.

One can satisfy the condition ifφmax = −a1/3a2 and the double layer speed is
U = −a2

1/18a2. Then the modified Korteweg-de Vries equation has the stationary
solution

φ = −1
2
χ

{
1− tanh

[(
−χ62a2

8a3

)1/2

[x− (u− 1
2χ2a2)t]

]}
(10.86)

whereχ = εa1/3a2 and the solution has been written in the original coordinates. In or-
der that a solution exists the arguments of the roots must be positive definite. This leads
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to a condition on the normalized cold plasma temperature as function of the density
ratio

Tc = −45δ

216

{
1±

[
1− 108

2025
(15− δ2)

]1/2
}

(10.87)

whereδ = n0c/n0h is the density ratio which for solutions to exist needs to beδ >√
15. Hence, as the theory demonstrates, electron-acoustic double layers are theoreti-

cally possible, but the restriction on their existence is rather severe requiring large cold
electron densities in which case any instability may become suppressed.

This is an interesting result which may throw some doubt onto the real existence
of stationary double layers in agreement with the experimental finding that only bursty
and very low voltages have been observed in real plasmas. Figure 10.10 gives a feeling
for the realistic values of double layer potentials in the lower auroral magnetosphere as
function of height above the Earth’s surface. Precise measurement of parallel electric
potentials is very difficult to perform. The voltages are differences between measured
and background potentials. Though occasionally potentials up to –2 V are detected, the
distribution of the voltages centers at very low potential values near zero. These data
indicate that most of the real double layers are very weak and microscopic double layers
which may have arisen from particle reflection at solitary structures.

10.5. Alfvén Solitons

Solitons exist also for low-frequency Alfvén waves, both for the kinetic and shear ki-
netic modes. We will not go through the whole process of reductive perturbation, but
look for solutions which are stationary in the frame of the traveling structure.

Kinetic Alfv én Solitons

As we know, there are two kinetic Alfvén modes, one for plasma betaβ > me/mi,
the other underβ < me/mi conditions. Remembering the two different dispersion
relations

ω =

{
k‖vA(1 + k2

⊥r̃2
gi)

1/2 for β > me/mi

k‖vA(1 + k2
⊥c2/ω2

pe)−1/2 for β < me/mi

(10.88)

we first find that kinetic Alfv́en solitons, if they exist, are intrinsically two-dimensional.
The second observation is that solitons resulting from the first of these dispersion re-
lation, which describes the proper kinetic mode, have dispersive properties different
from those of the ion-acoustic and electron-acoustic modes discussed so far. The shear
kinetic mode described by the second of the dispersion relations, on the other hand, has
dispersive properties similar to the ion-acoustic wave. These differences will necessar-
ily affect the properties of the solitons resulting from the underlying dynamics.
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Let us consider the kinetic mode first, because it promises to confront us with
some new effects. Referring to the fluid picture, we use the representation with two
electric potentials (cf. Sec. 10.6 of our companion book,Basic Space Plasma Physics),
E⊥ = −∇⊥φ⊥, E‖ = −∇‖φ‖. Assuming quasineutrality,ni = ne, and Boltzmann-
distributed electrons

ne = n0 exp(eφ‖/kBTe) (10.89)

the basic equations describing the evolution of nonlinear kinetic Alfvén waves are

∂B⊥
∂t

= ∇⊥∇‖(φ⊥ − φ‖)

∇2
⊥∇2

‖(φ⊥ − φ‖) = µ0∇‖
∂j‖
∂t

(10.90)

∂ni

∂t
=

1
ωgiB0

∇⊥
(

ni∇⊥ ∂φ⊥
∂t

)

The field-aligned current is entirely carried by the hot electron component. Hence

∇‖j‖ = e(∂ne/∂t) (10.91)

In dimensionless variables, withξ → xωgi/cia, ζ → zωpi/c, τ → ωgit, n → n/n0,
eφ⊥/kBTe → φ̃⊥, eφ‖/kBTe → φ̃‖, this system of equations can be made stationary
when transforming to the following co-moving coordinate

η = κ⊥ξ + κ‖ζ − τ (10.92)

This coordinate is introduced in order to transform to a frame which moves together
with the localized kinetic Alfv́enic structure. However, in the present case it is impor-
tant to note that this motion is neither parallel nor perpendicular to the magnetic field,
but is a two-dimensional motion in a direction oblique to the external field. It turns out
that the system of fundamental equations allows for such a transformation, reducing the
physics to a one-dimensional problem.

Being interested in localized solutions, the boundary conditions at infinity are cho-
sen such that the derivatives of the density parallel and perpendicular to the magnetic
field vanish at infinity,∇⊥n = 0 at ξ→±∞, and∇‖n = 0 at ζ →±∞. Hence, ex-
pressed in terms of the potentials, this implies that the potentials and their first, second,
and third derivatives vanish at infinity. Under these conditions it is easy to see that the
system of equations becomes stationary and does not explicitly depend on time. One
may combine it and integrate it one to find the following equation

κ2
⊥κ2

‖n
d2 ln n

dη2
= (1− n)(n− κ2

‖) (10.93)
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It is clear that when linearizing this equation and tries to find the linear dispersion
relation, one arrives at the normalized dispersion relation for the kinetic Alfvén wave

κ2
‖(1 + κ2κ2

⊥) = 1 (10.94)

whereκ2 = κ2
‖ + κ2

⊥ is the oblique normalized wave vector. If we express the normal-
ized quantities through their dimensional equivalents, we recover the dispersion relation

ω2 = k2
‖v

2
A(1 + k2

⊥r̃2
gi) (10.95)

with r̃gi the modified ion gyroradius, containing the ratio of electron-to-ion tempera-
ture, as shown in Eq. (I.10.179) of the companion volume.

From Eq. (10.93) it is possible to obtain a first integral by integration with respect
to η. This integral provides us with a pseudo-potential

(
dn

dη

)2

= −S(n, κ‖, κ⊥) (10.96)

given by the following expression

S(n, κ‖, κ⊥) = − 2n

κ2
⊥κ2

‖

[
(1− n)(n + κ2

‖) + (1 + κ2
‖)n ln n

]
(10.97)

SinceS must be negative for real solutions to exist, the expression in the brackets on
the right-hand side of this equation is positive.

The pseudo-potential determines the regions of localized solutions in the normal-
ized density plane. Because these solutions are both stationary and localized, they
correspond to solitons. Note that the condition for existence of kinetic Alfvén solitons
does not depend on the perpendicular wavenumber. This suggests that it is the parallel
electric field in the wave, which is responsible for the formation of topological soli-
tons. Dispersion of the wave parallel to the magnetic field causes the balance of the
nonlinearity in the basic equations.

Figure 10.11 shows where the regions of existence of the solitons are located. The
existence of solitons is heavily modulated by the parallel wavenumber dependence. As
one finds, solitons may exist both for normalized densitiesn ≥ 1 andn ≤ 1 with
n = 1 included. In the regionn > 1 the solitons have a well-defined maximum
amplitude given by the pointn = nmax, where the function representing the bracket
in the pseudo-potential crosses the real axis to negative values. The corresponding
wavenumbers in this region are allκ2

‖ > 1, which means that these solitons propagate
at a speed less than the Alfvén velocity,vA, parallel to the magnetic field and constitute
density compressions. Hence, such solitons are sub-Alfvénic.

There exists also a region of density depressionsn < 1, which propagate at sub-
Alfv énic speeds as well. The minimum density of these solitons would be atn = 0
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Fig. 10.11. Pseudo-potential and regions of solitons for the kinetic Alfvén wave.

and corresponds to total evacuation of the plasma from the region of the soliton. Such
solitons may not exist. At least the method of their description applied here breaks
down in this extreme case. Only the most dilute of these solitons would propagate at
super-Alfv́enic speeds. If they can exist at all, the form of the pseudo-potential predicts
that they must have a minimum amplitude in the dilution of the density defined by the
crossing point of the pseudo-potential with then-axis atn < 1. Thus there cannot be a
smooth transition in the stationary case from an undisturbed state to a dilute state. The
transition must be catastrophic. But from a stationary theory it cannot be decided if
such solitons can evolve or not.

The shape of the soliton solutions can be found from integration of Eq. (10.96).
This calculation must be performed numerically, but for small-amplitude compressive
sub-Alfvénic solitons,n − 1 = δ ¿ 1, an analytic solution is obtained when the
pseudo-potential is expanded with resect toδn. This solution is given by

δn =
3
2
M sech2

(
M1/2η

2|κ‖κ⊥|
)

(10.98)

which is identical to the stationary Korteweg-de Vries soliton solution obtained earlier.
Hence, kinetic Alfv́en solitons as stationary solutions when propagating at low Mach
number,0 < M = κ2

‖ − 1 ¿ 1, and sub-Alfv́enic speeds follow from the stationary
Korteweg-de Vries equation.

This stationary equation is found by Taylor-expanding the pseudo-potential (10.97)
up to third order inδn = n − 1. Due to the boundary conditions,S(1) = S′(1) = 0,
we find (

dδn

dη

)2

=
2

κ2
‖κ

2
⊥

(
M δn2 − 1

3
δn3

)
(10.99)
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If we now take the second derivative of both sides of this equation, we arrive at the
desired equation

δn′ +
2
M

δn δn′ − δn′ − κ2
‖κ

2
⊥

M
δn′′′ = 0 (10.100)

Supplementing it by the missing time derivative, a form of the Korteweg-de Vries equa-
tion is recovered. As we expected, low but finite amplitude sub-Alfvénic compressive
kinetic Alfvén waves evolve into solitons under the competitive action of their nonlin-
earity and their dispersive properties. If an initial condition is given, one thus expects
that kinetic Alfvén waves decay into a chain of low amplitude solitons which may be
distributed according to their amplitudes by a distribution law of the kind given in Eq.
(10.55).

Because there is no threshold for this kind of evolution of kinetic Alfvén waves,
they will always tend to evolve into solitons. Soliton formation will be restricted only
by other factors as the dimensions of the system, inhomogeneities, wave transformation
and wave coupling. The number of solitons which can be formed depends not only
on the initial disturbance but also on the available length of the field lines. In the
magnetosphere this length is restricted by two conditions, the value of the plasma beta
and the distance between the point whereβ > me/mi and the plasma sheet. Along
this length a magnetic pulse injected from the plasma sheet by, say, reconnection can
break off into a number of kinetic Alfv́en solitons, which travel as low amplitude pulses
into the inner magnetosphere up to the point whereβ < me/mi, where they possibly
transform into shear kinetic Alfv́en waves. The larger amplitude solitons will propagate
at higher speed and may overcome the lower amplitude pulses. How the transformation
works is unknown. The simplest way is that at the altitude of transition fromβ >
me/mi to β < me/mi the incoming kinetic Alfv́en solitons serve as initial conditions
for the evolution of shear kinetic Alfv́en solitons.

Shear Kinetic Alfv én Solitons

Shear kinetic Alfv́en waves can evolve into solitons in a way entirely analog to kinetic
Alfv én waves. The difference in the dispersive properties of the two modes suggests
that shear kinetic waves behave similar to ion-acoustic solitons with a negative disper-
sion factor.

It is simple matter to derive the pseudo-potential for these waves and to discuss
the conditions of existence of such solitons. The dynamics of low-amplitude solitons is
also governed by a Korteweg-de Vries equation, but the solitons have slightly different
properties. The basic equations for this case are the same as for the former case, with
the exception that one replaces the Boltzmann law for the electrons with the full com-
pressive electrons dynamics, as before in dimensionless variables
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∂ne

∂τ
+∇ζ(neve) = 0

∂ve

∂τ
+ 1

2∇ζv
2
e = 1

2α∇ζ [φ‖ − ln ne]
(10.101)

The coefficientα is defined asα = (mi/me)βe, whereβe is the electron plasma beta.
We change to the co-moving coordinates,η = κ‖ζ + κ⊥ξ − τ , and use homogeneous
boundary conditions at infinity. The basic equations then reduce to

(n− κ‖nve)′ = 0
(
ve − 1

2κ‖v
2
e

)′
= − 1

2ακ‖(φ‖ − ln n)′
(
n− κ2

⊥nφ′′⊥
)′

= 0

κ2
⊥κ‖(φ⊥ − φ‖)′′′′ = (nve)′′

(10.102)

The primes indicate the number of total derivatives with respect to the co-moving coor-
dinateη.

The last equation can be integrated twice, the other equations once inη from−∞
to η, and the variables may be expressed by the quasineutral normalized density,n

ve = (n− 1)/nκ‖

φ‖ = lnn + [(1− n2)/ακ2
‖n

2]
φ′′⊥ = (κ‖/κ⊥)ve

φ′′‖ = −(1− n)(n− κ2
‖)/nκ2

⊥κ2
‖

(10.103)

Sinceφ‖ depends only implicitly onη and since all variables can be expressed through
the density,n(η), it is sufficient to consider only the last of the above equations and to
solve forφ‖. This equation is readily transformed into a form containing the pseudo-
potential. We chose to write it as

1
2

(
dn

dη

)2

=
S(n; α, κ‖)

κ2
⊥F 2(n; α, κ‖)

(10.104)

where we haveF = (ακ2
‖/2)Ψ(n) andΨ(n) = (1− 2/n2ακ2

‖)/n. Then we can write

S = [Ψ2(n)κ2
⊥κ2

‖]
−1

∫ n

1

1− ξ

ξ
(ξ − κ2

‖)Ψ(ξ) dξ (10.105)

Solving the last integral, the pseudo-potential becomes explicitly

S =
α2κ2

‖

4

[
1− n

n
(n + κ2

‖) + (1 + κ2
‖) ln n +

(1− n)2

αn2

(
1
κ2
‖
− n + 2

3n

)]
(10.106)
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Fig. 10.12. Regions of existence of shear kinetic Alfvén solitons in parameter space.

For real solutions,S ≥ 0 is required. There is a wide range where compressive solitons
are possible, depending on the values ofα andκ‖. For sub-Alfv́enic speeds only com-
pressive solitons exist. But for super-Alfvénic Mach numbers also rarefaction solitons
can exist. These are density holes which propagate across the plasma at high speeds.
Usually, the holes are wide while compressions are very narrow in the super-Alfvénic
case.

As for kinetic Alfvén solitons, it is possible to derive a Korteweg-de Vries equation
for the small-amplitude shear kinetic solitons. Let us denote the right-hand side of Eq.
(10.104) byV (n). The Korteweg-de Vries equation is given as

n′′′ − {V (3)(1)n + [V (2)(1)− V (3)(1)]n′ = 0 (10.107)

Here the bracketed exponents stand for the order of derivations with respect to the
densityn. The solution of this equation is of the usual sech2-type. Calculating the
derivatives ofV (n), one obtains the two expressions

V (2)(1) = 4(ακ4
⊥κ6

‖)
−1(κ2

‖ − 1)(1− 2/ακ2
‖)
−3

V (3)(1) = − 8
ακ4

⊥κ6
‖

(
1− 2

ακ2
‖

)3 [
κ2
‖ + 5(κ2

‖ − 1)
(6/ακ2

‖)− 1
1− (2/ακ2

‖)

]
(10.108)

Because in the solution for the soliton the second derivative appears under the root sign,
these expressions impose some conditions on the existence of the solitons. In particular,
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Fig. 10.13. Cold plasma depletion containing a hot electron sheet.

for compressive kinetic Alfv́en solitons to exist one can derive the restriction

2(vA/vthc)2 < κ2
‖ < 7(vA/vthc)2 (10.109)

which must be satisfied simultaneously withκ2
‖ < 1.5. Combining both we find the

condition on the Mach number for shear kinetic compressive solitons (θ is the angle
between the original wave and the ambient magnetic field)

1
7 (vA/vthc) cos2 θ < M2 < 1

2 (vA/vthc) cos2 θ (10.110)

The corresponding condition for sub-Alfvénic rarefactive solitons to exist is

M2 < 1
7 (vA/vthc) cos2 θ (10.111)

Two-Electron Kinetic Alfv én Solitons

We now investigate one particularly interesting case when the plasma contains two
electron components of different densities and temperatures. The cold and hot electron
populations are indexed by the subscriptsc andh, respectively. Quasineutrality requires
that, in normalized coordinates,

ni = (nc + µnh)/(1 + µ) (10.112)
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whereµ = n0h/n0c is the ratio of the initial undisturbed densities of the hot to cold
electron components. Applying the same methods as in the previous section, we obtain
as the first integral of the stationary co-moving basic equations

(
dnc

dη

)2

= − αcn
6
c

κ2
⊥(1− n2

cαcκ2
‖/2)2

nc∫

1

dξ

ξ3
G(n; µ, κ‖)

(
1− ξ2αcκ

2
‖

2

)
(10.113)

Heren = (n/nc) = (1 + µ)−1(nc + µnh) is the total electron density,nh is expressed
in terms ofnc as

nh = nTc/Th
c exp

[
Tc(1− n2

c)/Thαcn
2
cκ

2
‖
]

(10.114)

and the integrand is
G = (n−1 − 1)[(1 + µ)n− κ2

‖] (10.115)

The above integral replaces the pseudo-potential used in the previous section. Now
the regions where the pseudo-potential is negative are modified by the additional two
parameters,µ andΘ = Th/Tc.

An analytical treatment yields two types of solitons as shown in Fig. 10.12. There
are slow and fast solitons possible, which can be either density compressions or dilu-
tions, depending on the values of the parameters. The two-electron solitons have one
special property. The cold component is more strongly affected than the hot component.
In particular, density depletions appear only in the cold component. In the particular
cases when such density depletions are observed, the density of the hot component
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peaks in the center of the cold depletion, forming a compressive hot electron structure
inside the diluted cold plasma. Figure 10.13 shows one example of such a soliton. The
cold plasma depletion contain a hot electron layer, with the peak density of the hot
electrons raised by more than a factor ten in order to compensate for the cold electron
decrease. It is the concentration of the hot electrons which pushes the cold plasma out
of the center of the soliton.

Two-electron plasmas are frequently encountered in space plasma physics. In the
plasmasphere it is the mixture of the ring current plasma and the low energy plasma-
spheric plasma of atmospheric origin. At auroral latitudes the mixture of cold iono-
spheric and warm plasma sheet plasma leads to conditions where the present theory of
kinetic Alfvén solitons is applicable. In the region of the low-latitude boundary layer
adjacent to the magnetopause the warm magnetospheric plasma blends into the cold
magnetosheath plasma on a scale where kinetic Alfvén waves and solitons may form
and contribute to the dynamics. An example of the presumable observation of the sig-
nature of a kinetic Alfv́en soliton in the low latitude boundary layer with frequency
close to the ion-cyclotron frequency is given in Fig. 10.14.

10.6. Drift Wave Turbulence

Weak drift wave turbulence is described by the Hasegawa-Mima equation (9.40) in the
two-dimensional approximation, which is based on wave-wave interactions. When the
drift waves evolve nonlinearly, the weakly turbulent wave-wave interaction approxima-
tion breaks down. The drift waves may decay into large-amplitude solitons. When such
solitons appear in large numbers, they constitute a state of turbulence which is very
different from weak turbulence and deserves the name ofstrong turbulence.

Drift Wave Solitons

We consider the simplest case of drift waves when the electrons, for low wave frequen-
cies, can be considered as Boltzmann-distributed, and the ions as cold. Then the ions
perform a simpleE×B-drift in the crossed ambient magnetic and wave electric fields,
a process which provides the nonlinearity, because when the waves are driven by the
ions, as in the case of the lower-hybrid drift instability, this coupling couples the wave
back to the motion of the ions. The waves, with their perpendicular and parallel electric
field components, propagate obliquely to the magnetic field. We introduce the density
and temperature scalesLn andLT and scale all lengths with respect torgi = cia/ωgi.

Because of the obliqueness of the problem the nonlinear wave is two-dimensional.
It is governed by theKadomtsev-Petviashvili equation, which is the two-dimensional
generalization of the Korteweg-de Vries equation. But fork2

⊥r2
gi < 1 andkyk2

⊥r3
gi ¿
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rgi/LT this equation can be reduced to the Korteweg-de Vries equation proper

∂φ

∂τ
+∇⊥φ +∇3

⊥φ− φ∇⊥φ = 0 (10.116)

for the normalized electrostatic potential,φ(x, t). Here timeτ is measured in units of
rgi/vde, where the drift velocity isvde = rgicia/Ln = kBTe/eB0Ln.

In the linear approximation the system evolves into drift modes which are eigen-
modes of the system considered. Because the nonlinear evolution of these drift waves
is governed by the Korteweg-de Vries equations, we expect that solitons will be gener-
ated in large number for sufficiently large initial wave amplitudes, and the system will
become turbulent consisting of non-interacting solitons of frequency,ω(k) ≈ kvde, and
dispersion relationωs = ku, whereu > vde is the soliton speed. The drift wave field is
then assumed to be composed of a large numberN of solitons

φ(x, τ) =
N∑

l=1

φs(x, τ, xl, ul) (10.117)

each having a different central position,xl, and speed,ul, with the speed satisfying the
soliton dispersion relation. Since the single solitons are nearly independent solutions of
the Korteweg-de Vries equation, their analytical representation is of the form

φs(x, τ, x0, u) = −3(u− 1)sech2[ 12 (u− 1)1/2(x− x0 − uτ)] (10.118)

Collisions are elastic and produce only an unimportant phase shift of the soliton posi-
tion.

The inverse scattering method gives us the possibility to define a distribution func-
tion of the soliton amplitudes and velocities, given in Eq. (10.55). The soliton amplitude
is A = 3(u− 1). With β = ` = 1 and3u0→A, we haveσ = 1/3 and

F [u] =
1

12π

∫

φ<−A/2

dx

[−2φ(x)−A]1/2
(10.119)

a formula which is valid for the negative-potential drift wave solitons withφ < 0.

Spectrum of Drift Wave Solitons

Equation (10.119) may serve as starting point for a statistical description through an
average over initial configurations. One may assume that the final turbulent state is
reached as the most probable state of a number of initial configurations, such that
the system containing many solitons will saturate at some randomly phased spectrum,
〈|φ(k)|2〉, with the angular brackets indicating the averaging procedure, andφ(k) being
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the Fourier transformed potential amplitude. The spread of the random-phased field,φ,
can be taken as given by some mean square amplitude,〈|φ|2〉 = φ2

0.
Given such an initial amplitude, knowing the distribution (10.119) of soliton am-

plitudes resulting from the solution of the Korteweg-de Vries equation, the distribution
of solitons can be obtained by calculating the average overF [u] with random-phased
amplitudes. For a broad wavenumber spectrum the initial spectrum can be taken as
white noise. Then the average ofF [u] is a Gaussian integral written in discrete form as

fsol(u) =
1
Z

l∏

j=1

∫
dφj exp

[
−φ2

j

2φ2
0

]
F [u; φ] (10.120)

Normalization requires that the integral overu-space just gives the total number of
solitons in the system ∫ ∞

vde

fsol(u)du = N (10.121)

Moreover, the indexed potentials are the soliton potential functions at positionsxj . It
is now possible to convert the integral in the functionalF [u] into a sum and to perform
the Gaussian integrations. Using a representation of the parabolic cylinder function
D−1/2(x) one finds

fsol(u) =
1

24π

L√
φ0

exp
[
−9(u− 1)2

16φ2
0

]
D−1/2

[
3(u− 1)

2φ0

]
(10.122)

L is the length of the system, defined asL =
∑l

j xj , wherexj = (j/l)L. This is the
distribution function for drift wave solitons, which is provided in drift wave turbulence
arising from the random-phased initial condition with amplitudeφ0. The distribution
of the soliton velocities turns out to be not purely Gaussian even in this simple case
of strong turbulence. The parabolic cylinder function introduces a skewing into the
distribution which is caused by the concentration of the wave energy in the solitary
wave solutions of the Korteweg-de Vries equation. As one of the consequences the
turbulent spectrum gets harder than a spectrum of randomly distributed waves.

It is not very difficult to calculate the spectral density of the soliton field know-
ing the distribution function. The spectral density,S(k, ω), is defined as the Fourier
transform of the two-point correlation function. Takingφsol from Eq. (10.117) and cal-
culating the Fourier transform of〈φsol(x+ ζ, t+ τ)φsol(x, t)〉 one finds for the spectral
shape

S(k, ω) =
96k2

√
3L

fsol

(ω

k

)
cosech2

[
πkrgi

(
kvde

ω − kvde

)1/2
]

(10.123)
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Note thatk, vde, L are all normalized quantities. This result has been obtained by re-
placing the sum over the solitons inφsol with an integral using the soliton distribution,
fsol, as weight, andu = ω/k, which is justified for a large number of solitons. This
number is defined as

N =
∫ ∞

vde

du fsol(u) = QLφ
1/2
0 (10.124)

whereQ ≈ Γ(3/4)/119. The first important property of the spectrum of solitons is
that it vanishes for frequenciesω < kvde, simply because there are no solitons in this
range with speeds smaller thanu < vde. Secondly, the spectrum peaks at frequencies
ω ≈ kvde[1 + O(φ0)] above the lower frequency cut-off. If one expands the parabolic
cylinder function for small and for large arguments these peaks are found at

ωmax ≈
{

kvde(1 +
√

2φ0) for π2k2 ¿ φ0

kvde[1 +
√

2(πkφ2
0)

2/5] for π2k2 À φ0

(10.125)

The interesting conclusion is thus that the calculation of the soliton spectrum verifies
the suspicion that the turbulent spectrum of a soliton gas, in this case the drift-soliton
gas, is harder than the spectrum of drift waves themselves from which it developed.

Application of this kind of turbulence to waves in equatorial spread-F and to in-
stabilities of the kind of the lower-hybrid drift instability in the Earth’s plasma sheet
and low-latitude boundary layer seems promising, but has not yet been tried. Spectra in
these regions look relatively structureless and thus do point on the existence of evolved
scale-independent or self-similar turbulence.

Similar considerations may also apply to kinetic Alfvén soliton turbulence, to ion
acoustic turbulence and electron acoustic turbulence. For these waves it is known that
the turbulence follows the Korteweg-de Vries equation as long as the amplitudes do not
become too large. One may expect that when this happens, particle reflection at the
many solitary structures in the turbulent plasma will produce dissipation and introduce
irreversibility, and the second-order derivative will become non-negligible, small po-
tential differences will arise, and the plasma will make the transition to micro-double
layer turbulence. The existence of this kind of turbulence manifests itself in localized
holes in phase space and may be very important in particle acceleration.

Concluding Remarks

A number of equations has been derived in this chapter, which lead to localized large-
amplitude wave solutions travelling across the plasma. The important insight is that
these solitons evolve as nonlinear dynamical equilibria between nonlinearity and dis-
persivity of single waves, but that the equations allow a given initial condition to decay
into a large number of such solitons, travelling at their own and well-defined speeds
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with negligible interaction, thus comprising a turbulent state of the plasma which can
be described in a statistical way.

A few examples are given in this chapter, e.g., ion-acoustic, electron-acoustic, ki-
netic Alfvén, and drift wave solitons. Their application to space plasmas is still open.
The reason is that in spite of the well-known importance of soliton turbulence only few
observations allow for an unambiguous interpretation in terms of solitons. In this situ-
ation the link between theory and observation in space plasma physics is still missing.

Further Reading

There is a small number of excellent books on nonlinear plasma theory like [1], [5], and
[11], which all were written in the seventies. Meanwhile nonlinear plasma physics has
grown into a wide field, but no comprehensive modern text is available. The reason is
that analytically not so much has been achieved during the last twenty years while the
activities and interests have turned to numerical simulations. A contemporary summary
of numerical plasma simulations is given in [7].

Derivation of the Burgers and Korteweg-de Vries equations from the general hy-
drodynamics set of Navier-Stokes equations is given in [4]. Derivation from plasma
fluid equations are contained in [8]. The inverse scattering method has found wide
application in the theory of one-dimensional nonlinear wave equations. It is given in
[4], [8], and many other texts. Drift wave turbulence is treated in [3]. The double
layer theory is taken from Mace and Hellberg,J. Plasma Phys. 49 (1993) 283. For the
Kadomtsev-Petviashvili equation we followed Meiss and Horton,Phys. Rev. Lett. 48
(1982) 1362. Kinetic Alfv́en soliton theory is included in [2]. Double layer potentials
were measured by M̈alkki et al.,J. Geophys. Res. 99 (1994) 6045. Shear kinetic Alfvén
soliton theory for one- and two-electron fluids is taken from Treumann et al.,Astron.
Astrophys.236 (1990) 242. Observational information on shocks is found in [6] and
[10]. Laminar and turbulent shocks are discussed in [9].
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11. Strong Turbulence

The previous chapter attempted the first step into strong turbulence theory. We consid-
ered the evolution of large-amplitude waves when the dispersion competes with nonlin-
earity and obtained that plasmas may in this case evolve into turbulent states containing
large numbers of quasi-stable solitary waves, so-called topological solitons, which con-
stitute turbulence.

Another important effect arising in a plasma is a consequence of the fact that
plasma waves are carriers of energy. The energy density stored in a plasma wave cor-
responds to a real pressure exerted on the plasma. Any inhomogeneity developing on
the wave spectrum by localized reflection, for instance, by absorption or interaction
with other waves and particles or simply by focussing or spreading of a wave, causes a
wave-pressure force, theponderomotive force. This force appears as an ordinary force
on the particles or fluid and may act on the plasma and change the propagation proper-
ties of the wave itself or may affect the propagation of other waves. It also may lead to
interchanges between the waves. We expect that under such conditions another type of
turbulence will develop and call itstrong turbulence, a term whose meaning will have
to be clarified in this chapter.

Strong turbulence has a number of different aspects. In a first step we are go-
ing to derive the ponderomotive force which is exerted by the plasma wave pressure
onto the background plasma. This can be done with the elementary knowledge of ba-
sic plasma physics using a simple high-frequency wave model. The simple theory can
then be extended to a much more general case, but for the purposes of understanding
the elementary theory is sufficient. Hereafter, we consider the basic equations which
in the presence of nonlinearity and wave pressure govern strong turbulence. Solution
of these equations leads to caviton formation instead of solitons. Cavitons behave dif-
ferently from solitons. Their dynamics will be discussed in detail for Langmuir waves
uncovering some entirely new effects.

283
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11.1. Ponderomotive Force

The wave pressure force exerted by a large-amplitude wave on the plasma background
is the ponderomotive force of the inhomogeneous wave field experienced by the parti-
cle components. Such forces can be generated by any wave transporting energy, i.e.,
moving at a certain group velocity and thus being spatially inhomogeneous.

Radiation Pressure Force

The simplest example of such a force is the radiation pressure of a high-frequency
electromagnetic field experienced by an isotropic medium of dielectric function given
in Eq. (I.9.36) of our companion book

ε(ω) = 1− ω2
pe/ω2 (11.1)

The pressure force in this most simple case can be estimated as follows. The electric
field energy density is known to be given by

Ww =
∂(ωε)
∂ω

WE (11.2)

with WE = (ε0/2)|δE|2. This energy density is equal to the wave field pressure which,
from the point of view of the background medium carrying the wave, behaves exactly
like an ordinary gas pressure acting on a hydrodynamic fluid. The radiation pressure or
ponderomotive forceis then simply defined as

Fpm = − 1
2n0

∇Ww (11.3)

where we divide by the number density in order to obtain the force acting on one par-
ticle. There is an additional factor of 1/2 in this expression, the origin of which will
become clear below. Inserting the expression for the dielectric function (11.1) and car-
rying out the differentiations with respect to the frequency,ω, yields

Fpm =
ε− 1
2n0

∇WE(x, t) +
WE(x, t)

2n0
∇ε (11.4)

For approximately constantε the last term disappears, and the ponderomotive pressure
force assumes the particularly simple form

Fpm =
ε− 1
2n0

∇WE(x, t) = − ε0ω
2
pe

4n0ω2
∇|δE(x, t|2 (11.5)
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In the present case this force is a potential force, with potential given by

φpm = −ε(ω)− 1
2n0

WE =
e2

4meω2
|δE|2 (11.6)

Because the Debye length is much smaller than the characteristic length of the field
inhomogeneity, the electrons obey the Boltzmann law in the ponderomotive force po-
tential

ne = n0 exp[−φpm/kB(Te + Ti)] = n0 exp[−|δE(x, t)|2/E2
c ] (11.7)

where the ponderomotive critical electric field is given by

E2
c = 4meω

2kB(Te + Ti)/e2 (11.8)

Therefore, for wave electric field intensities coming close to the critical electric field,
the nonlinear pressure force effects become large and the distortions of the plasma
density may become of the same order as the background density.

Density Variation

The nonlinear ponderomotive effect may result in a violent modification of the plasma
background caused by the waves, in which case the plasma looses its homogeneous
character, but changes on a comparably short spatial scale. This is a typical property
of turbulence. Strong turbulence may thus be caused by the ponderomotive effects of
large amplitude waves. The nonlinear distortion of the density for moderate turbulence
is obtained from the Boltzmann law by small amplitude expansion

δnnl/n0 ≈ −|δE(x, t)|2/E2
c (11.9)

This variation in the density is a negative modulation. For the model under considera-
tion the expected modulation of the background plasma density in presence of a large-
amplitude electromagnetic wave, which exerts a radiation pressure onto the plasma, the
expected density variation will always result in a local decrease of the plasma density
in the region of large amplitudes. Such depletions of density are usually calledcavitons
and should be distinguished from the ordinary or topological solitons discussed in the
previous chapter, because of the entirely different physics involved in their production
and evolution.

It should, however, be mentioned that the consideration of the ponderomotive force
in this section is not restricted to the radiation pressure of the electromagnetic wave.
Our only assumption was that the wave frequency should be high enough to neglect
other effects. Therefore the same argument also applies to Langmuir waves. Their
response function is the same, since their high frequencies radiation pressure works in
exactly the same way as discussed above. But because Langmuir waves have very low
phase and group velocities, their ponderomotive effect may even be stronger than that
of electromagnetic waves when their energy accumulates locally.
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Fluid Theory

The intuitive approach to the ponderomotive force given in the previous section must
be based on safer grounds and at the same time must be extended to arbitrary large-
amplitude waves. It is easiest to start from the hydrodynamic set of equations of a
plasma and to average over the fast time scale of the large-amplitude wave. Depending
on the fluid model used one obtains different results.

Here we only sketch the derivation of the ponderomotive force. The simplest
model is that of a magnetohydrodynamic fluid. We assume that the fluid is subject
to a nonlinear large-amplitude magnetohydrodynamic or electromagnetic wave

[δB(x, t), δE(x, t)] = [δB0(x, t), δE0(x, t)] exp(k · x− ωt) (11.10)

where the amplitudes are slowly varying functions of space and time. The nonlinear
terms in the magnetohydrodynamic equations, i.e., the convective derivative,v · ∇v,
the flux term,nv, and the Lorentz force term,j×B, contain products of the amplitudes
and after fast-time and fast-space averaging will contribute to a wave force term.

The easiest way is to calculate the components of the wave stress tensor,Σ, under
such an averaging. The ponderomotive force density is then defined as

fpm(x, t) = ∇ ·Σ (11.11)

When the wave amplitude depends on space and time as a slowly varying function,
i.e., when the wave field is inhomogeneous and varying, the ponderomotive force will
also be a function of space and time. Performing the calculations, one finds that the
ponderomotive force density obtained is composed of two terms according to

fpm(x, t) = fpm,∇(x, t) + fpm,t(x, t) (11.12)

The first term results from the spatial dependence of the wave amplitude and is given
by

fpm,∇ =
ε0
4

[
∇

(
δE∗

l δEm n
∂εlm

∂n

)
− δE∗

l δEm

(
∇εlm − ∂εlm

∂B0j
∇B0j

)]
(11.13)

Here we have written the tensorε = εlm in index notation. It depends on the plasma
density,n, and on the ambient magnetic field,B0.

The second term in (11.12) comes from the slow time variation of the wave ampli-
tude and is given by

fpm,t =
ε0

4µ0

{
∂

∂t
[(ε− I) · δE× δB∗] +

[(
ω

∂ε

∂ω
· ∂δE

∂t

)
× δB∗

]
+ c.c.

}
(11.14)

where c.c. stands for the conjugate complex part. These expressions simplify for plane
circularly polarized waves of parallel wavenumber,k‖, and frequency,ω. In this case
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one simply adds the two components of the ponderomotive force

fpm‖ =
ε− 1

2
∇‖WE +

k‖
2ω2

∂ω2(ε− 1)
∂ω

∂WE

∂t

fpm⊥ = −1
2

∂ω(ε− 1)
∂ω

∇⊥WE − B0

µ0
∇⊥δB‖

(11.15)

to the stationary Lorentz force on the right-hand side of the equation of motion. For
vanishing time dependence and otherwise homogeneous conditions and for an inci-
dent electromagnetic wave one recovers the simple wave pressure force of the previous
section. But already Alfv́en or whistler waves in the stationary case give different ex-
pressions for the ponderomotive force than the simple pressure force.

When the magnetohydrodynamic ponderomotive force is extended to the two-fluid
case, it turns out that the ponderomotive force is different for each of the species. Thus
it may drive currents and not only give rise to motions as in the magnetohydrodynamic
case. Another possible effect is that the ponderomotive force may contribute to new
terms in Ohm’s law and affect plasma transport or accelerate particles.

11.2. Nonlinear Wave Equation

Imagine an intense but localized wave entering a low density plasma with a plasma fre-
quency just above the electron-cyclotron frequency. If the wave pressure force pushes
the plasma out of the region of the wave and dilutes the plasma below the electron-
cyclotron frequency, the properties of the plasma change drastically, and wave propa-
gation becomes very different from what it was before the wave was injected into the
plasma. This simple example demonstrates the importance of wave pressure effects.

Effects of this kind are common in plasmas where the number of the possible
modes is large. One immediately realizes that these effects must have to do with the
amplitude of the wave instead of the wavenumber. In this section we investigate the
importance of the wave amplitude on the dispersive properties and propagation of the
wave.

Nonlinear Dispersion Relation

Let us assume that the wave dispersion relation is not only a function of the wavenum-
ber,k, but also depends on the wave amplitude. In linear dispersion theory and in the
consideration of the topological effects leading to the Burgers and Korteweg-de Vries
equations any explicit dependence of the frequency on the wave amplitude had been
neglected. Abandoning this neglect, introduces an entirely new view into wave theory.

Let us denote the wave function of the large-amplitude disturbance symbolically
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by Ã, whereÃ can be either a scalar or a column vector. A quite general ansatz forÃ is
to extract a plane wave rapidly variable phase factor from its space and time dependence
and to assume that this plane wave is modulated by a possibly slower varying amplitude
factor,A0(x, t), which is also a function of space and time

Ã = A0(x, t) exp[i(k0x− ω0t)] (11.16)

The wavenumber,k0, and frequency,ω0, belong to the fast carrier wave part of the wave
field. The amplitude itself may now be written as the product of another unspecified
phase factor and an amplitude which is again variable in space and time as

A0(x, t) = A(x, t) exp[iϕ(x, t)] (11.17)

Clearly, in the linear approximation the wave function,Ã, satisfies a linear equation
with ω0(k0) being the solution of the linear dispersion relation. In the general nonlinear
case the frequency of the nonlinear wave which we denote byω will become a function
of the wave energy as well.

Let us derive an equation which takes into account this energy dependence of the
frequency. The energy of a wave is proportional to the square of its amplitude,A, since
when taking the product̃A·Ã∗, the complex phase factors cancel. Letting the frequency
depend on energy, thenonlinear dispersion relationcan formally be written as

ω = ω(k, A2) (11.18)

For simplicity we supposed an isotropic case and realA. Extensions to non-isotropic
cases and complexA are straightforward. In the latter case one replacesA2 → |A|2.

Finite-Amplitude Equations

Let us assume that the dependence on the energy is weak. In this case the nonlinear
dispersion relation or frequency can be expanded with respect to the energy

ω = ω0(k) + ∇Aω|0 A2 + O(A4) (11.19)

where∇Aω is defined as
∇Aω = ∂ω/∂(A2) (11.20)

and the index0 implies that the indexed quantity has to be taken at zero wave amplitude.
Thusω0 is the usual dispersion relation with its full dependence on the wavenumber,k,
which has been used in the previous sections. It contains the nonlinearities described
there. Taking into account the dependence on the wave amplitude therefore introduces
another nonlinearity which we so far has not been aware of.

In order to illuminate the nature of this kind of nonlinearity, let us assume that the
wave is nearly stationary. In this case one applies the eikonal approximation, assuming
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that the phase of the wave varies slowly under the influence of its evolution, while its
amplitude may be a function of space and time,A(x, t). We write the total phase as

φ(x, t) = k0 · x− ω0t + ϕ(x, t) (11.21)

with ϕ the small disturbance of the phase which is introduced by the amplitude depen-
dence. Geometrical optics prescribes the following relations between the frequency,
wavenumber and the phase

ω(x, t) = −∂φ(x, t)/∂t = ω0 − ∂ϕ(x, t)/∂t

k(x, t) = ∇φ(x, t) = k0 +∇ϕ(x, t)
(11.22)

These definitions can be used in Eq. (11.19) to derive an equation for the variation in
the phase function. Restricting to terms of second order inA and in∇ϕ gives

dϕ

dt
+

ggr0

2
(∇xϕ)2 +

vgr0

2k0
(∇⊥ϕ)2 + ∇Aω|0 A2 = 0 (11.23)

where the convective derivative

d/dt = (∂/∂t) + vgr0 · ∇ (11.24)

is defined with the help of the zero-order group velocity

vgr0 = ∇kω(k, A2)
∣∣
k0,A=0

(11.25)

and the coordinatex points in the direction ofvgr0. Moreover, the derivative of the
group velocity is defined by

ggr0 = ∇2
kω(k, A2)

∣∣
k0,A=0

= ∇k · vgr0 = 3vgr0/k +∇kvgr0 (11.26)

Equation (11.23) is an equation for the variation in the phase of the wave. The under-
lying assumption is that the wave constitutes a wave packet with well-defined group
velocity, whose evolution can be described by following its phase variation. But an-
other equation is needed for the wave amplitude. This equation is provided by the
energy equation, which can be written in the following form

∂A2/∂t +∇ · (A2vW

)
= 0 (11.27)

In this equation energy dissipation is suppressed. The velocity of energy convection,
vW (A2,k), is itself a function of the wavenumber as defined in Eq. (11.22) and the
square of the wave amplitude. Since we restrict ourselves to second-order expressions
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only, theA2-dependence in the convective term in the energy transport equation con-
tains only the zero-order energy convection velocity which is the zero-order group ve-
locity

vW (0,k) = vgr0 = vgr0k/k (11.28)

with k given in Eq. (11.22). Written explicitly the two components are

vW‖ = vgr0 + ggr0∇xϕ

vW⊥ = (vgr0/k)∇⊥ϕ
(11.29)

and the equation for the wave amplitude follows from the energy transport equation

(
∂

∂t
+ vgr0∇x

)
A2 +

[
ggr0∇x(A2∇x) +

vgr0

k0
∇⊥(A2∇⊥)

]
ϕ = 0 (11.30)

The two equations (11.23) and (11.30) describe the nonlinear evolution of the wave
amplitude and phase variation up to second order in the amplitude. The amplitude is
assumed to be small but finite.

The important conclusion which can be drawn from these two fundamental equa-
tions for the evolution of finite-amplitude nonlinear waves is that it is sufficient to de-
termine the nonlinear dispersion relation in order to obtain the full set of nonlinear
equations, from which the further behavior of the wave amplitude and phase can be de-
termined. The problem is therefore reduced to finding the nonlinear dispersion relation
before solving the above set of equations.

Nonlinear Parabolic Equation

The set of nonlinear equations (11.23) and (11.30) derived above can be combined into
one single equation, which is known under the namenonlinear parabolic equation.
Under some simplifying conditions it can be written in the form of anonlinear Schr̈o-
dinger equation, which we will use in later sections.

Let us return to the initial definition of our wave function,Ã(x, t). Formally intro-
ducing a response function,F (ω), the linearized equation for̃A can be written as

[
−∇2 − F0

(
i
∂

∂t

)]
Ã(x, t) = 0 (11.31)

With the help of−i∇ = k andi∂/∂t = ω one obtains the linear dispersion relation

k2 = F0(ω) (11.32)
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The functionF0(ω) is the inverse of our usual linear dispersion relations which we
wrote in the formω = ω(k), here written down for the isotropic case which is easily
generalized to non-isotropic conditions.

Since we are dealing with the nonlinear case, the functionF (ω) is an operator
function acting on the complex wave amplitude,Ã(x, t). But if the change in the am-
plitude proceeds slow enough that the wave performs a number of oscillations before
the amplitude has changed remarkably, we can expand the nonlinear equation corre-
sponding to Eq. (11.31) with the full functionF (ω) instead ofF0(ω), aroundF0(ω0)
to obtain

F0(ω)Ã =
[
F0(ω0) + i

dF0(ω)
dω

∣∣∣∣
0

∂

∂t
− 1

2
d2F0(ω)

dω2

∣∣∣∣
0

∂2

∂t2

]
A0(x, t)e−i(k0x−ω0t)

(11.33)
From the linear dispersion equation we havek2

0 = F0(ω0) and the resulting two rela-
tions for the derivatives of the response function are

dF0(ω)/dω|0 = 2k0/vgr0

d2F0(ω)/dω2
∣∣
0

= 2(vgr0 − k0ggr0)/v3
gr0

(11.34)

With the help of these three expressions we can rewrite the general dispersion relation
in terms of an equation for the complex amplitude

[
i
d

dt
+

ggr0

2
∇2

x +
vgr0

2k0
∇2
⊥

]
A0(x, t) = 0 (11.35)

In the derivation of this equation we took into account only the nonlinearity of the
response function, but still neglected the amplitude dependence. The coefficient of the
missing term is proportional toA2 = |A0|2, as we found before in the last term of
Eq. (11.23). Moreover, it is proportional to the derivative of the frequency with respect
to the amplitude. Hence, adding it to the above equation (11.35) gives the nonlinear
equation we are looking for

[
i
d

dt
+

ggr0

2
∇2

x +
vgr0

2k0
∇2
⊥ − (∇Aω|0) |A0(x, t)|2

]
A0(x, t) = 0 (11.36)

This is thenonlinear parabolic equationfor the slowly varying complex wave ampli-
tude,A0(x, t). It is third order in the amplitude, but the nonlinearity is only in the
modulus and not in the phase of the amplitude, which simplifies the equation a little.

The physical meaning of the nonlinear equation (11.36) or the equivalent system
of equations for the square of the amplitude,A2, and its phase,ϕ, is that the large-
amplitude wave affects its own temporal and spatial evolution. Thisself-modulationof
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the wave is caused by the reaction of the background medium to the wave energy flow
and therefore to the wave pressure exerted by the wave on the medium. The pressure
variations change the local conditions of wave propagation by affecting the background
plasma density and temperature, and in magnetized plasmas also the magnetic field
pressure and stresses. When these changes become susceptible, they cause the plasma
dielectric response function to deviate from its linear form. As a consequence, the wave
properties themselves are modulated, and the nonlinear wave may look very unlike the
familiar linear waves. Famous examples are hydrodynamic and plasma turbulence,
where the media are highly distorted and the wave modes present cannot in a simple
way be identified with the well-known linear hydrodynamic or plasma modes.

Nonlinear Schrödinger Equation

For electromagnetic waves with the dielectric constant given by Eq. (11.1), the nonlin-
ear parabolic equation assumes a particularly simple form. As we already know, large-
amplitude waves exert a dynamic pressure on the plasma which leads to a pondero-
motive potential and ponderomotive force. Using a very simple quantum-mechanical
argument, one can obtain an equation for the wave amplitude which is a generalization
of the Schr̈odinger equation to include nonlinear effects, thenonlinear Schr̈odinger
equation.

Before presenting this argument, we will derive the nonlinear Schrödinger equa-
tion from the nonlinear parabolic equation (11.36). The dielectric (11.1) allows to write
the refraction indexN2(ω, A2) = ε(ω,A2) as function of the wave intensity. The
square of the wave amplitude isA2 = |δE|2. Expanding with respect to|δE|2, one
obtains

N2(ω, |δE|2) = N2
0 (ω)(1 + α|δE|2) (11.37)

whereN2
0 (ω) is the linear refraction index. Withggr0 = (−v3

gr0/c)[∂2(ωN0)/∂ω2],
and∇Aω = −(vgr0k0/2N2

0 )∇AN2 along the wave ray path, the nonlinear parabolic
equation can be rewritten into the following equation for the amplitude of the electric
field

[
2i

(
∂

∂t
+ vgr0∇x

)
− v3

gr0

∂2k0

∂ω2
0

∇2
x +

vgr0

k0
∇2
⊥ + vgr0k0α|δE|2

]
δE = 0

(11.38)
This is one form of the nonlinear Schrödinger equation. It is now trivial to see that this
equation actually has the form of a quantum-mechanical wave equation if the amplitude,
E(x, t), of the electric field is interpreted as being proportional to the wave function,
ψ(x, t). Schr̈odinger’s equation of a particle in a potential,U , reads

[
ih̄

∂

∂t
+

h̄2

2m
∇2 − U(x)

]
ψ(x, t) = 0 (11.39)
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Except for the linear spatial derivatives in Eq. (11.38), which can be absorbed by a
suitable transformation of the coordinates, the two equations are formally identical.
The nonlinear dependence of the ponderomotive potential on the wave amplitude is the
main difference between both equations. It describes the self-modulation of the plasma
wave.

The peculiar nonlinearity of the nonlinear Schrödinger equation (11.38) is of third
order in the wave amplitude. In this respect the nonlinear Schrödinger equation differs
from the other nonlinear wave equations, which contained first-order nonlinearities only
but higher derivatives. Instead, the Schrödinger equation is second-order in space but
third-order in the wave function equation. In the version given here it is free of any
dissipation and has localized solutions similar to the Korteweg-de Vries equation.

But the present solutions are physically very different from those of the Korteweg-
de Vries equation. The localized solutions of the latter equation are topological de-
formation of the wave profile. In contrast, the solutions of the nonlinear Schrödinger
equation are holes in the background plasma density which is the carrier of the wave.
Thesecavitiesare caused by the wave pressure force, and the wave itself is trapped
inside the cavities with the cavities formingenvelopesaround the region of high wave
intensity. In a stationary state the localized solution is produced by the equilibrium
between the plasma and wave pressures or, more precisely, between the total pressure,
including plasma and magnetic pressure, and the wave pressure.

11.3. Modulational Instability

Before proceeding to find a method to solve the nonlinear parabolic or nonlinear Schrö-
dinger equations (11.36) and (11.38) for a number of particular cases, we investigate
the stability of Eq. (11.36) or the equivalent set of equations (11.23) and (11.30).

Linearization Around Initial Wave

The idea is the following. Given a finite-amplitude wave of amplitudeA2(0), it is
asked if the above nonlinear equations allow for an instability to arise and what are the
conditions of instability. This means that we are going to investigate the evolution of
deviations from the initial large amplitude of the wave caused by the nonlinear character
of the interaction between the wave and the plasma. Rewriting Eq. (11.23) for this
particular case, we obtain

dϕ

dt
+

ggr0

2
(∇xϕ)2 +

vgr0

2k0
(∇⊥ϕ)2 + (∇Aω|0) [A2 −A2(0)] = 0 (11.40)

Note thatd/dt is the convective derivative. The formal replacement ofA2 → A2 −
A2(0) is justified by Eq. (11.19). It shows that in an external initial wave field of
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amplitudeA(0) the frequency is Doppler-shifted by− ∇Aω|0 A2(0), which implies
that the operator∂ϕ/∂t is to be replaced by(∂ϕ/∂t)− ∇Aω|0 A2(0).

As taken from Eq. (11.40), the stationary wave has the solutionA = A(0), ϕ = 0.
The one-dimensional non-stationary case obeys the nonlinear equations

∂ϕ

∂t′
+

1
2
[∇x′ϕ]2 +

1
2ggr0

(∇Aω|0) [A2 −A2(0)] = 0

∂A2

∂t′
+∇x′ [A2∇x′ϕ] = 0

(11.41)

These equations have been written in the new coordinates,t′ = ggr0t andx′ = x −
vgr0t, in order to get rid of the linear derivative with respect tox. They are similar to the
hydrodynamic set of equations ifA2 is interpreted as a density, and∇x′ϕ as a velocity.
The first equation is then a Hamilton-Jacobi equation, and the velocity of pseudo-sound
can be read from the pseudo-pressure term as

c2
s0 = (A2(0)/ggr0) ∇Aω|0 (11.42)

Instability Criteria

It follows immediately that instability arises if the pseudo-sound speed becomes nega-
tive, because then the linear pseudo-sound dispersion relation

ω̃ = ±ik̃|cs0| (11.43)

has complex conjugate imaginary solutions for the frequency,ω̃. The condition for
parallel instability, theLighthill condition, is therefore

∇Aω|0/ggr0 < 0 (11.44)

Note thatggr0 may be positive or negative and that parallel is meant with respect to
the direction of the zero-order group velocity. Similarly, linearizing the above equa-
tions one easily finds that transverse disturbances become unstable under the simpler
condition

∇Aω|0 < 0 (11.45)

Again it is sufficient to know the nonlinear dispersion relation in order to decide whether
or not the finite amplitude wave will become unstable. The initial behavior of the large-
amplitude wave is entirely determined by its dispersive properties which, in contrast to
the Korteweg-de Vries equation, in this case depends also on the wave amplitude.



11.3. MODULATIONAL INSTABILITY 295

The instability found is a result of the presence of the large-amplitude wave and the
change of the properties of the medium on top of which the wave propagates caused by
the pressure of the wave. This change modifies the dispersion properties, and instability
of the wave amplitude may arise. As result of this instability the amplitude of the
wave is modulated locally. Instabilities of this kind are therefore calledmodulational
instabilities. They do not exist in the linear theory of waves and are a very peculiar
dynamical response of the plasma to the presence of finite amplitude waves.

The modulational instability can formally be considered as a four-wave interac-
tion which could also be described in the terms of the weakly turbulent wave-wave
interaction theory. The four waves are the high-frequency carrier mode of the initial
finite-amplitude spatially inhomogeneous wave, its slowly varying envelope wave and
the two end products, the large-amplitude envelope and the modified carrier wave. It
must, however, be emphasized that such a description, sometimes called theoscillating
two-stream instabilityis valid only in the initial linear phase of the modulational insta-
bility. Later evolution cannot be described anymore by wave-wave interaction theory
because of the strong coupling of the interaction which is implied by the dependence of
the nonlinear dispersion relation on the large amplitude of the wave.

Modulational instabilities constitute the initial step of the nonlinear evolution of
large-amplitude waves. Further evolution must take into account the dynamical effect of
the nonlinearity, which in many cases leads to saturation and modification of the wave,
formation of solitary structures and self-focussing. In some particular cases, however,
further instability sets in leading to plasma collapse. Some of these problems will be
briefly investigated below.

Nonlinear Schrödinger Equation

The above theory can be applied to the nonlinear Schrödinger equation (11.38), which
in terms of the initial large-amplitude wave and in co-moving coordinates

β = −∇|δE|2/(∂2ω/∂k2
0)

ξ = x− t(∂ω/∂k0) (11.46)

τ = t(∂2ω/∂k2
0)

reads [
i

∂

∂τ
+

1
2
∇2

ξ + β
(|δE|2 − |δE0|2

)]
δE(ξ, τ) = 0 (11.47)

where|δE0|2 is the large-amplitude electric wave amplitude, which is injected into the
plasma and tends to modulate itself.

We again introduce new variables, the modulated amplitude,a, and the modulated
phase,φ, of the wave according toδE = a exp iφ, and find after substitution
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∂a2

∂τ
+∇ξ(a2∇ξφ) = 0

1
4a2

∇2
ξa

2 − 1
8a4

(∇ξa
2)2 + β(a2 − a2

0)−
∂φ

∂τ
− 1

2
(∇2

ξφ)2 = 0
(11.48)

We linearize this set of equations around the initial amplitude factor,a2
0, and phase,

φ0 = 0, and solve the linearized set with the usual plane wave ansatz,exp i(κξ −$τ),
for a andφ. This yields linearly oscillating wave solutions of wavenumber,κ, and
frequency,$, resulting from the dispersion relation

$2 = (κ2 − 2βa2
0)

2/4− β2a4
0 (11.49)

This dispersion relation allows for purely growing or damped solutions. Withβ > 0
instability becomes possible for smallκ. The maximum growth rate is obtained for
κ = (2βa2

0)
1/2 with maximum growth rate

γmax = Im$max = βa2
0 (11.50)

Instability sets on for wavelengthsλ > λcr where the critical threshold wavelength is

λcr = π/a0β
1/2 (11.51)

The nonlinear Schrödinger equation provides an example how a large-amplitude wave
under the action of its own pressure force begins to self-modulate. Self-modulation
of its amplitude commences with a simple linear phase, which can be described as a
modulational instability. As mentioned before, this instability can be envisioned as a
four-wave process where the initial large-amplitude wave, a low-frequency sound wave,
the modulated wave and the growing sound wave are involved. But this description is
valid only for the initial short linear state. Later on the modulation becomes strong and
generates a very large number of waves in both modes, the sound and the modulated
wave mode which must be described by a broad spectrum nonlinear theory. Here the
modulational instability picture fails and we deal with what we call strong turbulence.
In the next section we give a brief account of strong turbulence in one particular mode,
the Langmuir wave in a non-magnetized plasma.

Envelope Cavitons

We now proceed to solve thestationary nonlinear Schrödinger equation(11.38). For
simplicity we write it in one-dimensional form

[
i

(
∂

∂t
+

∂ω

∂k0
∇x

)
+

1
2

∂2ω

∂k2
0

∇2
x −

(∇|δE|2ω
) |δE|2

]
δE = 0 (11.52)
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and use the explicit expressions for the coefficients. In co-moving normalized coordi-
nates the linear term in the nonlinear Schrödinger equation disappears

(
i

∂

∂τ
+

1
2
∇2

ξ + β|δE|2
)

δE = 0 (11.53)

For localized solutions with vanishing fields and derivatives at infinity we can write

δE(ξ, τ) = a(ξ, τ) exp iφ(ξ, τ) (11.54)

The two coupled equations obtained for reala andφ area2∇ξφ = const, and

d

da2

[
1

4a2

(
∂a2

∂ξ

)2

+ βa4

]
−

(
∂φ

∂ξ

)2

= 0 (11.55)

Sinceφ can be expressed througha2, this equation becomes an ordinary differential
equation fora2 which is of the form of the energy conservation equation(da2/dξ)2 =
−S(a2) with pseudo-potential

S(a2) = 4βa6 − 8c1a
4 − c2a

2 + 4c3 (11.56)

For β > 0 the localized solution requiresc2 = c3 = 0. Introducinga2
m = 2c1/β for

the nonlinear maximum amplitude, the conservation equation can be written as

(da2/dξ)2 = −4βa4(a2 − a2
m) (11.57)

Its solution is, like for the Korteweg-de Vries equation, a hyperbolic function

a = am sech
(
amξβ1/2

)
(11.58)

In order to exist, the amplitude of the initial wave must be positive,am > 0. In contrast
to the Korteweg-de Vries soliton solution the envelope caviton solution is proportional
to the first power of the hyperbolic secans of the wave amplitude. Cavitons filled with
trapped waves are wider than the corresponding topological solitons. Another differ-
ence is that the caviton moves at the group velocity of the waves, and this is independent
of the wave amplitude. In the case of the topological soliton the velocity depends on
the amplitude, leading to faster speeds for larger amplitudes, but cavitons move all at
the same group velocity and therefore do not overtake each other.

Forβ < 0, we havec3 6= 0, and the basic equation can be written withã = const

(da2/dξ)2 = 4|β|(a2 − a2
m)(a2 − ã2)2 (11.59)
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which when integrated yields the inverse caviton solution

a = ã
[
1− b2sech2(ξb|ãβ|1/2)

]1/2

(11.60)

where we used the normalized quantityb2 = (ã2 − a2
m)/ã2 < 1. This solution corre-

sponds formally to the accumulation of density in a region where the wave intensity is
very low. It is another question if such solutions exist at all and if they are stable.

11.4. Langmuir Turbulence

Strong Langmuir turbulence is concerned with the formation of cavitons under the ac-
tion of spatially inhomogeneous radiation pressure of large-amplitude Langmuir waves.
For the purposes of the dynamics of the Langmuir wave field it is not important to ask
how the Langmuir waves can be excited. The most frequent generation mechanism for
Langmuir turbulence will be the gentle bump-in-tail instability of an electron beam.
The linear theory of this instability has been discussed in Sec. 4.1. A certain problem
arises insofar as we have shown that on a comparably short time scale this instabil-
ity will quasilinearly saturate with the electron escaping from resonance towards lower
speeds. The quasilinear saturation level may not be strong enough to drive modula-
tional instability and to initiate strong turbulence. But when modulational instability
sets in on a time scale short compared with the quasilinear time scale, the system will
necessarily evolve towards strong turbulence. We will follow such a philosophy before
justifying our assumptions a posteriori.

Zakharov Equations

Consider a large-amplitude Langmuir wave. The energy density of the wave is assumed
to be inhomogeneously distributed over the plasma. In such a case the radiation pressure
of the wave will exert a ponderomotive force (11.5) on the background plasma, which
will drive low-frequency waves. In an unmagnetized homogeneous plasma there is only
one other eigenmode, the ion-acoustic wave at low frequency below the ion plasma
frequency,ωpi. Its frequency is much less than the plasma frequency. Hence, it is the
mode which is driven by the radiation pressure of the high frequency Langmuir wave.

In a two-fluid model, with ions and electrons as separate fluids, the wave equation
for the ion-acoustic wave is given by

[
∂2

∂t2
− c2

ia∇2

]
δn

n0
=

ε0
4min0

∇2|δE|2 (11.61)
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This equation follows from a combination of the ion continuity equation and the ion-
momentum conservation equation if the ponderomotive pressure-force term is included
into the latter equation. Quasineutrality has been imposed, and the ion-acoustic speed
is given byc2

ia = (γekBTe + γikBTi)/mi. The ion-acoustic oscillations described by
the wave equation part on the left-hand side of Eq. (11.61) are driven by the pondero-
motive source term on the right-hand side of Eq. (11.61). Hence, they are by no means
free oscillations, but exist only because the high-frequency Langmuir wave-field feeds
energy into the low-frequency waves and excites low-frequency density fluctuations.

In the presence of these self-excited low-frequency density fluctuations, which
may reach large amplitudes, the dispersion relation

ω = ωpe

(
1 + 3

2k2λ2
D

)
(11.62)

of the high-frequency Langmuir waves will change, because the plasma switches from
the originally homogeneous to an inhomogeneous state. Let us assume that the den-
sity fluctuations are slow enough and any variations in the electron temperature can
be smoothed out within one oscillation. Then the electron temperature can be consid-
ered constant, and the variation of the frequency in the dispersion relation is entirely
determined by the density variation

δω1 = (δn/2n0)ωpe0 (11.63)

whereω2
pe0 = e2n0/ε0me is the plasma frequency with respect to the undisturbed

density,n0. The total variation,δωtot, of the frequency in the long-wavelength region
(small k) is the sum of the above variation in the plasma frequency, caused by the
density modulation, plus the thermal correction term,3k2λ2

D/2, which is of the same
order asδω1

δωtot =
ωpe0

2

(
δn

n0
+ 3k2λ2

D

)
(11.64)

We interpret this expression as an operator acting on the electric field amplitude and
obtain the following equation

[
i
∂

∂t
I +

3
2
ωpe0λ

2
D∇∇·

]
δE(x, t) =

ωpe0

2

(
δn

n0

)
δE(x, t) (11.65)

Equations (11.61) and (11.65) are theZakharov equationsof strong Langmuir turbu-
lence. They describe the coupling between the high-frequency Langmuir wave and the
low-frequency ion-acoustic wave via the density fluctuation caused by the ponderomo-
tive force and the reaction on the amplitude of the electric Langmuir wave field. The
latter of the two Zakharov equations has the form of the nonlinear Schrödinger equa-
tion.
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Modulation Threshold

We have already found that Langmuir waves may exert a kind of radiation pressure on
the plasma. Assume that we have a large number of Langmuir plasmons whose number
density obeys a Boltzmann distribution with respect to their momenta,h̄k, around an
average momentum,̄hk0

N(k) ≈ N0(2πk2
0)
−1/2 exp(−k2/2k2

0) (11.66)

In the presence of a density perturbation,δn, we have shown that the dispersion relation
of the Langmuir plasmons, i.e., is their energy law, includes the density variation of Eq.
(11.64), and the plasmon distribution becomes

N`(k) ≈ N0(2πk2
0)
−1/2 exp

{− [
1
2k2λ2

D + 1
3 (δn/n0)

]
/k2

0λ
2
D

}
(11.67)

The total plasmon density is then the integral over all wavenumbers,k, of this expres-
sion

N`,tot =
∫

dk N`(k) = N0 exp
(
− 1

3k2
0λ

2
D

δn

n0

)
(11.68)

From this we can calculate the variation of the density of plasmons, which is simply
given by the argument of the exponential. The radiation pressure turns out to be pro-
portional to this plasmon density variation

δppm ≈ − ppm0

3k2
0λ

2
D

δn

n0
(11.69)

and we obtain the threshold for instability when we require that this variation exceeds
the variation in the plasma pressure,kBTeδn. So the instability criterion becomes
simply that the initial radiation pressure satisfies

ppm0 > 3k2
0λ

2
Dn0kBTe (11.70)

which tells us that for smallk0 modulational instability will set on. This is exactly the
same conclusion as drawn above in the general discussion of modulational instability,
but now specialized to Langmuir wave turbulence. Using Eq. (11.5), the instability
condition is written as

ε0|δE|2
2n0kBTe

> 6k2
0λ

2
D (11.71)

which shows that it is sufficient to know the initial wavenumber,k0, and the plasma
parameters to decide if a Langmuir wave of a certain initial amplitude will undergo
modulational instability. The above condition tells that the wavelength of the Langmuir
wave must be sufficiently long for modulational instability to evolve. We are now going
into the more interesting effects which arise when this is the case.
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Subsonic Cavitons

The exact solution of the system of Zakharov equations is a formidable task. So far
only numerical solutions have been obtained. But there are two limiting cases which
allow a qualitative discussion of the behavior of its solutions.

The first limit is obtained when the time-derivative term in the ion equation (11.61)
can be neglected. Formally this case corresponds to changes with velocity$/k̃ ¿ cia,
where$ and k̃ are the frequency and wavenumber of the driven ion-acoustic wave.
When we assume that this wave will be localized, the ratio$/k̃ = u is interpreted
as the speed of the ion-acoustic wave. Therefore this case is known as thesubsonic
approximationto the Zakharov equations. We find that in this approximation

δn ≈ − ε0
4mic2

ia

|δE|2 (11.72)

Inserting forδn/n0 into the right-hand side of Eq. (11.65) just reproduces the nonlinear
Schr̈odinger equation for the Langmuir wave amplitude

[
i
∂

∂t
I +

3
2
ωpe0λ

2
D∇∇·

]
δE(x, t) = − ε0ωpe0

8min0c2
ia

[|δE(x, t)|2δE(x, t)
]

(11.73)

We have shown in Eq. (11.58) that the one-dimensional version of this equation, trans-
formed to the co-moving system of coordinates centered on the localized caviton, has
a solutionδE ∝ (Lβ1/2)−1sech(x/L), which is a caviton of widthL. The shape of
this caviton is preserved during its evolution, because in this one-dimensional state the
nonlinearity and the dispersion just balance each other. One immediately observes that
the wave intensity in the caviton changes with the inverse square of its width

|δE|2 ∝ L−2 (11.74)

Intense one-dimensional Langmuir cavitons will be narrower than weak cavitons. This
resembles Korteweg-de Vries solitons. Remember, however, that here all cavitons move
at the same speed. The one-dimensional nonlinear Schrödinger equation can also be
solved by the inverse scattering method, in which case it generates a large number of
cavitons from a given initial large-amplitude Langmuir wave in close similarity to the
behavior of the solutions of the Korteweg-de Vries equation. In the purely one-dimen-
sional case subsonic Langmuir turbulence will decay into a large number of cavitons
which may fill the plasma volume and generate small-scale large-amplitude density
fluctuations with all the cavitons being density depletions filled with Langmuir plas-
mons.

Let us check the dependence of stable caviton formation on the dimensionality,d,
of the system. The number of Langmuir plasmons trapped in one caviton is

N` ∝
∫

ddx|δE|2 (11.75)
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BecauseN` is finite and conserved, we immediately find instead of Eq. (11.74) the
general dependence of the wave intensity on the characteristic dimension of the caviton

|δE|2(t) ∝ L−d(t) (11.76)

We found from Eq. (11.64) thatδn/n0 ≈ k2(t)λ2
D. Sincek(t) ≈ L−1(t) we have

δn2 ∝ L(t) (11.77)

which is independent of the dimensionalityd. The pressure of the expelled plasma is
proportional toδn and thus is also independent ofd, while the radiation pressure from
Eq. (11.76) varies asL−d. Therefore, ford = 1 the radiation pressure can be balanced
by the plasma pressure. In other words, ford = 1 one obtains one well-defined width
L from pressure balance for the width of the caviton during the evolution, and a stable
caviton is formed. The pressure equilibrium condition just produces the above caviton
solution with its relation between the amplitude and the width of the caviton.

However, ford > 1 shrinking of the caviton in the course of the modulation
cannot be halted by the plasma pressure. The cavitons gets deeper and narrower with
time progressing. This behavior is known asplasma collapse. Of course, shrinking
will proceed only down to a width of the order of the Debye length, when the trapped
plasmon wavelength becomes so short that the Langmuir waves are strongly Landau
damped.

Caviton Collapse

Collapse of cavitons proceeds for|E|2 > L−2 (in normalized variables). In addition to
the plasmon number density, there are two other invariants of the nonlinear Schrödinger
equation for Langmuir waves, the total momentumP, and the total energy,H

2P = i

∫
ddx(δE∇ · δE∗ − δE∗∇ · δE)

2H =
∫

ddx(|∇ · δE|2 − |δE|4)
(11.78)

These quantities satisfy a virial theorem. Defining the root mean square spatial width of
the cavitons as〈(∆L)2〉 = 〈(L−〈L〉)2〉, where the average is〈f〉 =

∫
fddx|δE|2/N`,

it can be shown that∂〈L〉/∂t = P/N` = const and

∂2〈(∆L)2〉/∂t2 = H/N` − P 2/N2
` + (2− d)〈|δE|2〉 (11.79)

Integrating this virial theorem twice with respect to time yields

〈(∆L)2〉 = c1t
2 + c2t + c3 + (2− d)

∫ t

0

dt′
∫ t′

0

dt′′〈|δE|2〉 (11.80)
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where2c1 = H/N` − P 2/N2
` , andc2, c3 are constants of integration. One concludes

that the average width of the cavitons will shrink to zero during a finite time in all cases
whend ≥ 2 andc1 < 0, and the field,δE, will become singular in this case because
N` is conserved.

Collapse Scaling

The above argument demonstrates that in a certain regime cavitons cannot be prevented
from collapsing down to a few Debye lengths of width. Behavior like this is a typical
property of strong plasma turbulence. It has a number of consequences, which we will
briefly discuss below. But before doing so, let us quickly look into the dynamics of such
a collapse. Returning to the ion wave equation, we observe that in the regime where the
speed of the cavitons is larger than the ion acoustic speed, i.e., in thesupersoniclimit,
one finds

∂2δn

∂t2
≈ − ε0

4mi
∇2|δE|2 (11.81)

There is a continuous change in density with time under the action of the wave electric
field in this case. Becauseδn ∝ k2 ∝ ∇2, we find from a dimensional consideration of
the last equation that the electric field scales as

|δE|2 ∝ (tc − t)−2 ∝ L−d (11.82)

where the second part of the equation has already been obtained above. Hence, the
density varies with time according to

δn ∝ L−2 ∝ (tc − t)−4/d (11.83)

The constant time,tc, appearing in these expressions is the finite instant when the col-
lapse ends. Clearly, this time will never be reached in reality, because the field would
become infinitely large. Before this happens, Landau damping has set in, and elec-
tron heating will cause the waves to dissipate their energy. This scaling suggests that
it is possible to introduce a self-similar scaling according to|E| → ξ−1|E(x/ξ)| and
ξ(t) = (tc − t)1/2. In these quantities the shape of the caviton is conserved during the
collapse.

Figure 11.1 sketches the process of caviton formation from a long-wavelength ini-
tial Langmuir wave. The thin line is the Langmuir wave intensity|E|2. The radiation
pressure force is strongest at the position where the gradient is steepest but the intensity
already high. This is the region close but above the turning point on the intensity profile.
As shown, at this place high intensities of short-wavelength Langmuir waves accumu-
late due to modulational instability. At the same time cavities form on the background
density at these positions which trap the short Langmuir waves. Ford = 1 these would
become stable envelope cavitons. In higher dimensions they collapse, as shown by the
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Fig. 11.1. Caviton formation and collapse in Langmuir turbulence.

deepening and narrowing of the cavitons neart ∼ tc. The slight enhancements in den-
sity at the borders of the cavitons in the figure schematically account for the expelled
plasma density.

Returning briefly to the ion equation (11.61), we find that in the supersonic case,
where the non-local Laplace term on the left-hand side is neglected, the density varia-
tion during collapse scales as

δn ∝ [
(me/mi)|δE|2

]1/2
(11.84)

From here we find that the fastest growing caviton has a wavenumber

k ∝ |δn|1/2 ∝ [
(me/mi)|δE|2

]1/4
(11.85)

Because of the above scaling we can construct a collapse speed,uc ≈ L/tc. When
all terms in the second Zakharov equation are of the same order and thus of the same
importance, we have the scalingt−1

c ≈ L−2 ≈ δn. Then the collapse speed scales as

uc = L/tc ∝ |δn|1/2 (11.86)

The collapse speeds in the adiabatic subsonic and non-adiabatic supersonic limits there-
fore scale according to the following law

uc ∝
{
|δE| for subsonic collapse

[(me/mi)|δE|2]1/4 for supersonic collapse
(11.87)

In the supersonic case the rate of collapse is therefore slower than in the subsonic case.
The supersonic collapse takes longer time.
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11.5. Lower-Hybrid Turbulence

Langmuir waves are only one example of modulational instability, caviton formation
and collapse. A large number of other waves may experience the same or similar fate.
Among those waves are kinetic Alfvén waves, magnetosonic waves, electromagnetic
cavitons driven by intense laser and maser pulses, whistler waves in weakly magnetized
plasmas, and, as a particularly important application, lower-hybrid waves.

Musher-Sturman Equations

Lower-hybrid waves have the particular property that they propagate perpendicular to
the magnetic field and are intrinsically two-dimensional. As a consequence, the wave
radiation pressure becomes an anisotropic tensor, and the ponderomotive forces par-
allel and perpendicular to the magnetic field are different. The equations describing
strong lower-hybrid turbulence are not as simple as the Zakharov equations (11.65). In
particular, the parabolic equation cannot be written in the simple form of a cubic non-
linear Schr̈odinger equation. This is obvious from a first glance at the linear dispersion
relation of lower hybrid waves

ω = ωlh

(
1 +

R2k2

2
+

mi

2me

k2
‖

k2
− ω2

pe

k2c2

ω2
pe

ω2
pe + ω2

ge

)
(11.88)

where the quantityR is a typical dispersion length of lower-hybrid waves

R2 =
3kBTi

miω2
lh

+
2kBTe

meω2
ge

ω2
pe

ω2
ge + ω2

pe

(11.89)

which in the case of a dense plasma withωpe À ωge is the electron gyroradius.
If one takes the variation of the frequency in the same way as we did in strong

Langmuir turbulence, the resulting expression contains variations with respect to den-
sity, δn, magnetic field,δB, and terms containing the parallel, perpendicular, and full
wavenumbers. Interpreting the latter components as operators in space, the resulting
equations contain complicated and mixed derivatives of the electric field vector,E, in
all directions. One may, however, introduce a number of approximations. The simplest
one is the assumption that the wave field is purely electrostatic and that the electric field
drifts contribute most. In this case the electric field obeys the following set of equations

(
∂2

∂t2
− c2

ia∇2

)
δn =

iε0
4mi

ω2
pe

ωgeωlh
∇2 (∇δφ∗ ×∇δφ)‖

(
2i

ωlh
∇2 ∂

∂t
+ R2∇4 − mi

me
∇2
‖ −

mi

me

ω2
pe

c2

ω2
lh

ω2
ge

)
δφ =

i

n0

mi

me

ωlh

ωge
(∇δφ×∇δn)‖

(11.90)
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These equations are written in terms of the electric wave potential,δφ, instead of the
electric field,δE. They are calledMusher-Sturman equationsand govern strong lower-
hybrid turbulence and lower-hybrid collapse.

Lower-Hybrid Collapse Scaling

The Musher-Sturman equations (11.90) are written in terms of the wave potential and
the density variation in the background. The latter is simply the ion-acoustic wave
equation as before, but takes into account the anisotropy. The cross-products appear
becauseE×B motions and polarization motions are important in the lower-hybrid
wave. Solving these equations is much more difficult than in the Langmuir caviton
case. But it can also be shown that their solutions yield cavitons, which are formed by
modulational instability. The cavitons turn out to be two-dimensional structures, which
form cigars or pancakes of transverse and parallel lengths

L⊥ ≈ R

[
αme

2mi

n0kB(Te + Ti)
Wlh

]1/2

L‖ ≈ L2
⊥

R

(
mi

me

)1/2 (11.91)

Hence, these cavitons are elongated along the magnetic field but propagate at the ion-
acoustic velocity. They also experience self-similar collapse which can be described by
self-similar formulae. The threshold for modulational instability and caviton formation
is given by

WE

n0kB(Te + Ti)
≈ 2∆0

(
1 +

k2

k2
0

) (
1 +

ω2
pe

ω2
ge

)−1

(11.92)

The abbreviations used are

∆0 =
1
2

(
R2k2 − αω2

pe

k2c2 + k2
0c

2
+

αω2
pe

k2
0c

2
+

mi

me

k2
‖

k2 + k2
0

)
(11.93)

andα = (1 + ω2
ge/ω2

pe)
−1. This threshold condition shows that the threshold is fairly

low for lower-hybrid waves and that they can easily reach the regime of modulational
instability. Once the threshold given in Eq. (11.92) is exceeded, lower-hybrid waves will
inevitably undergo modulational instability, caviton formation and collapse in a way
similar to Langmuir turbulence. But this collapse is two-dimensional and anisotropic
and shows a number of differences when compared with Langmuir collapse.

In case of collapse, the length scales of the caviton become functions of the wave
intensity, and the time of caviton formation is equal to the inverse growth rate of the
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modulation of the lower-hybrid wave,tmod ∝ γ−1
mod, where

γmod ≈ ωlh
mi

me

(
1 +

ω2
pe

ω2
ge

)
WE

2n0kB(Te + Ti)
(11.94)

If one considers the self-similar evolution, one finds from the basic equations that the
density evolves asδn ∝ (tc − t)−1, while the speed of the collapse, which has been
defined above for Langmuir waves, isuc ∝ (tc − t)−1/2.

11.6. Particle Effects

So far we have neglected the effects on the particles and how the reaction of these par-
ticles affects the evolution of the collapse. Before performing some relevant estimates
let us explain the physics of this interaction.

Langmuir Turbulence Effects

The Zakharov equations with the ion wave equation (11.61) and the nonlinear Schrö-
dinger equation (11.65) describe the localized excitation of ion-acoustic waves form-
ing cavitons and the trapping of short-wavelength Langmuir waves in these cavitons
under the action of the Langmuir wave radiation pressure. The initial state is a long-
wavelength Langmuir pump wave, excited presumably by a gentle beam instability.

As the linear theory of the gentle beam instability suggests, Langmuir modes of
this kind are resonant with the positive slope part of the beam. Such waves may become
scattered at background cold ions in the plasma, in which process they transfer a large
part of their momentum to the ions. This scattering is symbolically described by

` + i → `′ + i′ (11.95)

where` stands for the Langmuir wave,i stands for the ion, and a prime indicates scat-
tered products. In particular, for the wavenumber this equation reads

h̄k` + pi → h̄k′` + p′i (11.96)

Since the momentum,̄hk`, of a wave is proportional to its wavenumber,k, loss of
momentum implies increase of the Langmuir wavelength and decreasing wavenumber.
The Langmuir spectrum, in the course of many scattering events, cascades down to low
k.

This implies that the phase velocity of the scattered wave,ω/k, increases consid-
erably, and the waves shift out of resonance to high velocities, where no particles exist
which could Landau damp the waves. This scenario is depicted in Fig. 11.2. Clearly
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Fig. 11.2. Langmuir wave dynamics during collapse.

the Langmuir wave energy accumulates here at long wavelengths until it surpasses the
threshold for modulational instability given in Eq. (11.71). When this happens, caviton
formation takes over and breaks the wave off into smaller parts of intense but localized
plasmon density.

Caviton Burn-Out

The process of modulational formation of cavitons is very fast so that the Langmuir
wave readily divides into short-wavelength modes trapped in the cavities. When the
wavelength of these modes becomes so short that the phase velocity decreases until it
matches the thermal velocity of the plasma, the trapped waves become quickly Landau
damped and disappear. One speaks of aburn-outof the cavitons. The burn-out leaves
empty cavitons which cannot sustain the plasma pressure anymore and break off into
propagating ion-acoustic holes which run away at the ion-acoustic speed until they re-
solve. These processes cause particle heating and acceleration and ultimately lead to
nonlinear deformation of the particle as well as the Langmuir wave spectrum.

Inertial Range Spectrum

Here we are interested in the deformation of the Langmuir wave spectrum. We con-
sider the inertial collapse range, when the Langmuir wave energy flows through the
wavenumber space during collapse from the long-wavelength regime into the short-
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wavelength regime before becoming dissipated. In this range the energy flux is simply
a constant, meaning that the energy flowing in at long wavelengths flows out at short
wavelengths

W`(k)[dk/dt(k)] = const (11.97)

This equation corresponds to Kolmogorov’s postulate. The velocity of energy flow in
k-space is given bydk/dt, with the time depending on the wavenumber. From the
above scaling we found for the collapse timetc ∝ Ld/2 ∝ k−d/2. Inserting into
Kolmogorov’s condition, we immediately find that the spectral energy density of the
Langmuir waves in the inertial range, where no dissipation is taken into account, scales
as

W`(k) ∝ k−(1+d/2) (11.98)

In two dimensions the spectrum thus scales asW` ∝ 1/k2, while in three dimensions
it scales asW` ∝ 1/k5/2. This shape of the spectral energy density of Langmuir waves
in strong turbulence is sketched in Fig. 11.3. The spectral energy density is given on
a logarithmic scale in dependence on the wavenumber,k. Long waves are injected at
smallk, from where the energy flows across a broad inertial range into the domain of
dissipation of wave energy by Landau damping.

Dissipative Range Spectrum

The spectral shape in the dissipative range can be estimated assuming self-similar col-
lapse and Landau damping. Self-similarity requires thatW` = Aξ−3F (r/ξ) for a
spherically symmetric caviton of shape functionF . The wave amplitude,A, and coor-
dinate,ξ, during collapse obey

∂A/∂t = −2γ(A, ξ−1)A
∂ξ/∂t = −ν(A, ξ)ξ

(11.99)

whereγ is the quasilinear Landau damping rate from Eq. (4.3), and the coefficient
ν = (A/ξ3)1/2 is the collapse rate expressed in the self-similar coordinates, sinceξ
is the self-similar size corresponding to wavenumber. Ifξ andA are assumed to be
random variables, the spectral energy density is defined as

W`(k) ∝ ncav

∫
dAdξ f(A, ξ)ξF (kξ) (11.100)

with ncav the spatial caviton density,f(A, ξ) the probability distribution function, and
F (kξ) the shape function. The former satisfies the Liouville equation

∂f/∂t = ∇ξ(νξf) + ∂(2γAf)/∂A (11.101)
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Fig. 11.3. Langmuir wave spectral energy in strong turbulence.

In exactly the same way one defines averages of the damping rateγ(W`) and ofν(W`)
as integrals overfξg. With these definitions, taking the time derivative of the spec-
tral energy density integral and replacing the distribution function with the Liouville
equation, one obtains the following kinetic equation for the spectral energy density

∂W`(k)/∂t = −α∇k(k5W 2
` )− 2γ(k)W` (11.102)

Hereα is a constant, which results from the various replacements of integrals and vari-
ables in arriving at this equation and whose exact form we do not need to know in this
qualitative consideration. The first term on the right-hand side is the divergence of the
energy flow ink-space, the second is the dissipation term.

In the inertial range the time derivative and damping rate are both zero. The first
term on the right-hand side then immediately reproduces thek−5/2 dependence of the
inertial spectrum. In the dissipative range one can use the quasilinear set of equations
consisting of the growth rate, the quasilinear diffusion equation for the electron distri-
bution function, and the quasilinear diffusion coefficient which we write here as

γ(k) ≈
∫

d3vk · ∇vfeδ(ωl − k · v)

∂fe/∂t = ∇vD(v)∇vfe

D(v) ≈
∫

d3kW`(k)δ(ωl − k · v)kk/k2

(11.103)

These equations have to be solved simultaneously with the above equation forW`.
Let us assume isotropy in velocity and wavenumber space. In this case one can find

a steady state solution for both the spectral energy density and the particle distribution
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function,fe, which holds for Landau damping in the dissipative domain ofk-space

W`(k) ∝ k−2−d/2

fe(v) ∝ v1−3d/2
(11.104)

This dependence yields in three-dimensional space thek−7/2 spectrum of the dissipa-
tive short wavelength region. This kind of spectrum is shown at largek in Fig. 11.3.
As a side product, the electron distribution function turns out to develop a tail, which
decays much less steeply with velocity than the initial electron Maxwell distribution
function.

Lower-Hybrid Turbulence Effects

Lower-hybrid collapse does also affect the particle distribution, but the interactions are
even more subtle than in Langmuir turbulence. This is not only due to the anisotropy
of the lower-hybrid wave spectrum, but also to the entirely different dynamics involved
in these waves due to the magnetization of the plasma.

Ions behave unmagnetized and observe a wave field, which is a high-frequency
field on their time scales. In such a field they can readily be heated. However, be-
cause the wave field is predominantly perpendicular to the magnetic field with only a
small parallel electric field component, ion heating is predominantly transverse. This
transverse heating implies transverse damping and is one of the main dissipation mech-
anisms of lower-hybrid turbulence. Electrons, on the other hand, are strongly magne-
tized in lower-hybrid waves and see a low-frequency field. Hence, their acceleration
and heating proceeds only parallel to the magnetic field. Parallel Landau damping due
to electrons is the main dissipation mechanism for the parallel wave component.

The collapse itself proceeds in an anisotropic way forming cigars. But at the same
time it has been found in numerical simulations that the trapping of lower-hybrid waves
in cavitons is not complete. Some of the lower-hybrid plasmons may leak out of the
caviton and form escaping wave trains, which, as long as their intensity exceeds the
threshold for modulational instability, may collapse themselves and produces a very
broad wavenumber spectrum of low intensity lower-hybrid cavitons at wave energies
close to threshold. Lower-hybrid collapse is therefore a very complicated process,
which has not yet been understood satisfactory. Assuming that an inertial range ex-
ists as in Langmuir turbulence, the spectral energy density can be estimated as

WE ∝ k−3 (11.105)

It decays withk at a slightly steeper power law than the Langmuir collapse spectrum.
But by the argument given above one expects that the spectral energy density of lower-
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Fig. 11.4. Modulated and burnt-out Langmuir waves and cavitons in Jupiter’s foreshock.

hybrid cavitons will settle close to the threshold intensity for caviton formation and
modulational instability.

The nonlinear evolution of large-amplitude lower-hybrid waves is thus similar to
that of Langmuir waves. Lower-hybrid waves evolve towards strong turbulence, creat-
ing a large number of cavitons with energies close to the threshold. The large-amplitude
cavitons undergo collapse, accompanied by transversely heated ions, parallel acceler-
ated electrons, and by burnt out cigar structures in the background density.

Collapse Observations

Jupiter’s bow shock accelerates fast electron beams in the same way as the Earth’s bow
shock against the solar wind, giving rise to a gentle-beam situation and generation of
intense Langmuir waves. These waves scatter off solar wind ions, condensate at long
wavelengths, and undergo modulational instability and collapse. As result highly modu-
lated Langmuir wave forms will be produced. Such large-amplitude narrow-modulated
wave packets are shown in Fig. 11.4. Their amplitudes are more than four orders of
magnitude above the normal level, and the modulation length is some tenλD, resem-
bling the expectations. However, there is some difference between naive collapse theory
and observation. Collapse theory predicts that the most narrow packets have the largest
amplitudes, which is not the case. Hence, the narrow structures should be interpreted as
burnt-out cavitons, having undergone dissipation and nucleation into smaller structures.

Measurements of narrow cavitons in the solar wind are very difficult, since the
cavitons propagate at the speed of ion-acoustic waves, which is much lower than the
undisturbed solar wind speed,cia ¿ vsw. Hence, direct measurements of structures
only a few Debye lengths wide and blown across the spacecraft at the solar wind speed
are impossible at the currently achievable time resolution. However, because the cavi-
tons have a broadk-spectrum, broadband spikes of electrostatic low-frequency waves
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can be interpreted as the signature of cavitons in the solar wind plasma.

Stabilization of Interplanetary Electron Beams

Another important application of Langmuir collapse theory are the type III radio bursts.
Here the production of cavitons provides the counter-propagating Langmuir waves in-
side the caviton, which are needed for the Langmuir wave-wave interaction producing
the escaping radio wave (see Sec. 9.4). Actually, the strongly enhanced wave am-
plitudes inside the caviton lead to much more intense radio waves than predicted by
weakly turbulent wave-wave interaction theory. Moreover, the modulation of the wave
spectrum and its condensation into cavitons removes the Langmuir waves from reso-
nance with the beam, where they otherwise would deplete the electron beam which
causes the Langmuir waves by linear instability. This way the nonlinear modulation of
the Langmuir wave spectrum self-stabilizes the electron beam and lets it survive over
large distances, from the solar surface far into interplanetary space beyond the orbit
of the Earth. This is sketched in Fig. 11.5 for an interplanetary type III radio burst as
shown in Fig. 9.5.

Auroral Lower-Hybrid Cavitons

Spikeletsof electrostatic wave emissions near the lower-hybrid frequency are observed
above the aurora. They are correlated with localized density variations and have am-
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Fig. 11.6. Auroral lower-hybrid waveform and density cavities.

plitudes of up to 100 mV/m. The density variations are negative, indicating that the
plasma is expelled from the region of high wave pressure. Such observations suggest
caviton formation in lower-hybrid wave collapse.

Figure 11.6 shows a waveform measurement combined with the observed density
variation. The association of the density depletions and the simultaneous excursions of
the lower-hybrid wave amplitude is interpreted as strong indication for the existence of
lower-hybrid cavitons and possible lower-hybrid collapse in the auroral plasma. Fast
electron beams and transverse ion heating are also observed, but the association with
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Fig. 11.7. Lower-hybrid cavitons as double layers in the auroral magnetosphere.

the collapse and caviton structure could not be established. Sometimes electric field
measurements also show a double-peak structure across a density depletion (see Fig.
11.7), which may be interpreted as a double-layer (see Sec. 10.4) inside a caviton.

Concluding Remarks

The theory of strong turbulence is different from weak turbulence theory, i.e., more
qualitative, since the basic equations cannot be solved analytically. Only when they
can be reduced to, e.g., the Korteweg-de Vries or the nonlinear Schrödinger equation,
closed solutions exist for the stationary state. These solutions describe solitary wave
structures, which in the case of strong turbulence are driven by the wave pressure but
balanced by the dispersive effect introduced by the background plasma pressure.

These solitary structures trap the high-frequency waves, but are themselves low-
frequency waves. In the case of Langmuir and lower-hybrid turbulence they are ion-
acoustic waves, but one can imagine that magnetosonic modes or kinetic Alfvén waves
can do the same service. Little has been done in investigating these modes because of
the mathematical difficulties involved and the presumably sparse applications. But low-
frequency modes other than ion-acoustic waves might be important in understanding
large-scale turbulence on scales close to the magnetohydrodynamic turbulence scale.

The nonlinear evolution of cavitons uncovers a new instability,plasma collapse.
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During collapse the plasma pressure cannot balance the pressure of the wave field,
and the plasma is expelled from the region until the wavelength of the trapped waves
becomes so short that dissipation sets in and the wave field burns out. Collapse may
therefore provide the basic mechanism for dissipation of wave energy out of resonance.
It causes localized plasma heating and particle acceleration and redistributes energy.

Further Reading

The theory of modulation of large-amplitude waves can be found in [8]. In the deriva-
tion of the nonlinear parabolic equation we used [3]. The nonlinear Schrödinger equa-
tion is given in [1], [2], [4], and many other books. A short account of modulational
instability is found in [2]. The ponderomotive force is derived in the magnetohydrody-
namic approximation by Karpman and Washimi,J. Plasma Phys., 18 (1977) 173. The
briefest reference for the theory of strong Langmuir turbulence is Sagdeev,Rev. Mod.
Phys., 51 (1979) 1. Waves in the foreshock region and reports on strong turbulence are
given in [5] and [7]. The observation of Langmuir wave packets is taken from Gurnett
et al.,J. Geophys. Res., 86 (1981) 8833. Formation of shock waves in nonlinear wave
evolution is found in [6]. In lower-hybrid collapse theory we followed Shapiro et al.,
Phys. Fluids B, 5 (1993) 3148. The measurements of lower-hybrid cavitons are taken
from Eriksson et al.,Geophys. Res. Lett., 21 (1994) 1843, and Dovner et al.,Geophys.
Res. Lett., 21 (1994) 1827.
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12. Collective Effects

In this last chapter we consider three special types of collective interactions, the gen-
eration of anomalous collisions and diffusion in an otherwise collisionless plasma, col-
lisionless shock waves, and the acceleration of plasma particles to high energies. This
selection of topics is guided by practical needs in space physics. Of course, all chap-
ters of this book include collective effects. But the present chapter selects those effects
which fall somewhat outside the main course of the theory-oriented presentation, which
proceeded from linear instability to the nonlinear processes.

The first effect, anomalous collisions, is probably the most important macroscopic
effect in a collisionless plasma. It is caused by close correlations between the parti-
cles, which replace the two-body collisions in ordinary collision-dominated systems.
Binary collisions let collisional systems evolve towards relaxation and equilibrium and
allow for a macroscopic description in terms of a fluid theory. In a collisionless plasma
there are no binary collisions. Instead the collisions are replaced by interactions be-
tween the particles and various kinds of waves, which are responsible for relaxation
processes in collisionless plasmas and ultimately justify the use of a fluid description.
The immediate consequence of anomalous collisions is anomalous plasma resistivity,
the appearance of finite relaxation times, and plasma diffusivity. These enter the phe-
nomenological fluid equations of the plasma as transport coefficients and lead to its
non-ideality.

Collisionless shock waves, the second collective effect selected, play a dominant
role in many fast flows encountered in space. Since the magnetosphere including its
dynamics is the result of the interaction of the fast solar wind flow with the geomagnetic
field as an obstacle, the investigation of the processes at bow shock is of vital interest.
Shock physics can be studied in situ by investigating its properties. Many of the results
have been extrapolated to other shocks in the solar system and astrophysical objects.

The last collective effect treated in this chapter is particle acceleration in collision-
less plasmas, leading to particle heating and particle beams. We discuss a number of
conditions under which such acceleration can appear. This discussion is by no means
exhaustive nor even complete. Only some basic acceleration processes are sketched.
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12.1. Anomalous Resistivity

The determination of transport coefficients is one of the most important aspects of mi-
croscopic theory. Measured quantities, like density, flow velocity, and temperature, are
usually of macroscopic nature. These quantities are mutually related through macro-
scopic conservation laws or evolution equations. The latter are derived from the mi-
croscopic equations, as demonstrated in Chap. 7 of our companion book,Basic Space
Plasma Physics. In collisionless plasmas, the absence of collision and correlation terms
in the Vlasov equation corresponds to a lack of transport coefficients and, hence, to the
absence of any obvious irreversible effects. Transport of a macroscopic quantity in this
case proceeds by convection. This means that only macroscopic motions like flow and
wave propagation lead to transport.

In such a case there would be no energy exchange, and in reality this is not pos-
sible. We have learned that instabilities arise and that irreversible processes may exist
in a collision-free plasma. The irreversible processes are a consequence of nonlinear
interactions between the fields and particles. Viewed from a macroscopic position, they
produce transport coefficients which are calledanomalous, because they arise from
these pseudo-collisions. These pseudo-collisions are a result of the property of the
Vlasov equation to generate unstable and irreversible interactions between fields and
particles, which can formally be reflected in the appearance of an average correlation
term on the right-hand side of the general quasilinear equation (8.38).

Determination of anomalous transport coefficients requires to solve this equation
and to derive the macroscopic evolution or transport equations by taking moments of
Eq. (8.38). This is a difficult problem. In the present section we give a short account on
how to calculate anomalous resistivities in a plasma under certain restrictive conditions.

Anomalous Collisions

Resistivity is caused by friction. Friction results from collisions between particles.
The problem of finding the resistivity is thus reduced to the problem of finding the
collision frequency. Instead of anomalous resistivity one may speak of anomalous col-
lision frequencies. How collision frequencies are determined in the collisional case
has been shown in Chap. 4 of our companion book. Let us restrict ourselves to the
one-dimensional unmagnetized case and consider the electron equation of motion in an
external electric field

me dve/dt = −eE −meνve (12.1)

Under stationary conditions the current is defined asj = −en0ve = σE. The electrical
resistivity,η = 1/σ, is given by

η = ν/ω2
peε0 (12.2)



12.1. ANOMALOUS RESISTIVITY 319

For a collisional plasma, with electron-ion Coulomb collisions dominating the dynam-
ics, Eq. (I.4.9) from our companion book suggests that the Spitzer collision frequency
can be expressed as

νei ∝ ωpe

n0λ3
D

=
ωpeWtf

n0kBTe
(12.3)

The classical collision frequency in a plasma thus turns out to be proportional to the
energy density of thermal fluctuations,Wtf in Eq. (2.54), normalized to the thermal en-
ergy density of the plasma. One thus realizes that in Coulomb collisions the interaction
between electrons and ions is mediated by the thermal fluctuation energy stored in the
Langmuir wave field, assuming that the plasma is in thermal equilibrium. The colliding
electrons are scattered by the oscillations in the thermal wave field.

This picture is somewhat surprising, but it explains the physical mechanism and
may serve as starting point of a theory of anomalous collisions, since if one can increase
the strength of the wave fluctuation field by some means, e.g., by instability, one also
enhances the collision frequency. This is the basic idea of the mechanism of anoma-
lous collisions. It is of particular importance in plasmas which are so dilute and hot
that Coulomb collisions are spurious, as in the case of most space plasmas. Instabil-
ities which saturate the wave fields on a high level, orders of magnitudes higher than
the thermal fluctuation level, may be responsible for the observed enhanced collisions,
dissipation, and transport.

Collisions do not act on electrons and ions in the same way. Electrons are typically
affected most. Hence, collision frequencies will always cause currents and the problem
of finding self-consistent anomalous collision frequencies becomes the problem of cur-
rent instabilities. Initially a sufficiently strong current excites plasma oscillations which
grow until saturation. At that time the current is either disrupted by strong anomalous
resistivity or at least retarded, with the energy of the current transformed into irregular
electron scattering and anomalous Joule heating of the plasma. Thus the anomalous
resistivity will heavily depend on the kind of instability, on the instability threshold,
and on the strength of the current.

A simple expression for the anomalous collision frequency arising from any linear
current instability can be found in a way, which formally duplicates the above derivation
of the classical collision frequency. There the collision frequency has been defined
implicitly as the rate of momentum transfer between the electron fluid and the wave
fluctuations. In the presence of an unstable current-driven wave spectrum and under
stationary conditions, when both the instability has saturated and an equilibrium has
been established between the friction the electrons experience and the electric force
which accelerates them, the momentum transfer is determined by

meνanvde = −eE (12.4)

The momentum on the left-hand side of this equation is transferred to the wave with
energy densityWw. Remember that the wave momentum can be defined as the wave
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energy divided by frequency,ω, and multiplied by wavenumber,k. Thus the change in
wave momentum,∆pw, is

∆pw =
∫

d3k

8π3

k
ω(k)

γ(k)Ww(k) (12.5)

In equilibrium between the change in electron momentum and wave momentum, this
expression gives an estimate of the anomalous collision frequency

νan ≈ 1
n0mev2

de

∫
d3k

8π3

k · vde

ω(k)
γ(k)Ww(k) (12.6)

in terms of the phase velocity of the unstable spectrum, the wave spectral energy density,
and the drift velocity of the electrons which provide the electric current. The problem
is thus reduced to the problem of finding the saturated spectral density (2.19) of the
waves,Ww(k). The growth rate entering Eq. (12.6) is understood in the quasilinear
sense as the growth rate before saturation, but depending on the saturation mechanism.

Let us assume, for example, that we are dealing with the current-driven ion-
acoustic instability. The ion-acoustic instability is an electrostatic resonant instability
with drifting electrons. The quasilinear equation for the electron distribution function
responsible for an electrostatic resonant instability can be written as

∂f0e(t)
∂t

=
e2

8π2m2
e

∫
d3k k · ∂

∂v

[
|δφ(k, t)|2 δ(ω − k · v)k · ∂

∂v

]
f0e(t) (12.7)

were δφ(k) is the wave electric potential. We multiply this equation withmv and
integrate over velocity space, using the dispersion relation for ion-acoustic waves. In
the stationary state the integral over the term on the right-hand side gives the friction
term

νanmen0vde =
1

8π3

∫
d3k

k
ω(k)

γ(k)Ww(k) (12.8)

where we replacedWw = (∂ωε/∂ω)WE . This expression agrees with Eq. (12.6).

Sagdeev Formula

Estimates for the anomalous collision frequencies can be obtained in a particular case
by calculating the saturated wave amplitudes and finding the growth rates. The simplest
way is to use the linear maximum growth rates and the wave dispersion relations. The
maximum growth rate for the ion-acoustic instability given in Eq. (4.27) can be used,
for instance, to find an estimate for the ion-acoustic anomalous resistivity. As we know,
the ion-acoustic wave becomes unstable for current driftsvde > cia. The maximum
unstable wavelength is of the order of the Debye length, such thatkmax ≈ 1/λD. We
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approximateγ ≈ ωvde/vthe for large drifts and find theSagdeev formulafor the ion-
acoustic anomalous collision frequency

νia,an ≈ ωpeWw/n0kBTe (12.9)

which leaves us with the determination of the saturation level of ion-acoustic waves.

Buneman Collision Frequency

The Buneman instability is a very strong instability, which must switch off itself when
evolving. Its phase velocity isω/k ≈ vthe

√
me/mi, and the wave energy density is

Ww ≤ Wi, less or equal to the ion thermal energy. Hence, the collision frequency
turns out to beνbun,an ≈ ωpi, which is of the order of the ion plasma frequency, the
highest possible frequency of ion-acoustic waves. For example, in the solar wind the
ion plasma frequency is of the order of 3 kHz. If one compares this with the Spitzer
collision frequency of roughly 0.5 collisions per 1 AU, or1.4 · 10−4 Hz, one realizes
that the anomalous collision frequency caused by the Buneman instability is about2·107

times larger than the Spitzer collision frequency.

Ion-Acoustic Collision Frequency

In order to find the ion-acoustic collision frequency, one must calculate the wave sat-
uration level, which depends on the mechanism by which the waves saturate. There
are several possibilities. The instability can saturate quasilinearly, by particle trapping
in the wave and subsequent resonance broadening, by wave-wave interaction between
the current-driven ion-acoustic wave and Langmuir waves, resulting in escaping radia-
tion, by other kinds of wave-wave interactions with Langmuir or lower-hybrid waves,
leading to the formation of envelope solitons or cavitons, by nonlinear evolution of the
ion-acoustic waves into topological solitons, or, finally, by generation of holes in phase
space and hole collisions. Few of these mechanisms have been explored and some of
them may be unimportant, since the fastest saturation mechanism will in most cases
dominate. In particular, single wave effects as particle trapping, topological soliton
formation or envelope solitons will be of little importance in broadband ion-acoustic
turbulence excited by currents at sufficiently large speeds above threshold.

In the weak turbulence approximation the evolution of the wave energy density is
described in the simplest case by the evolution equation

∂Ww(k)
∂t

=

[
2γ(k)−Aω(k)

Ww

n0kBTe
−Bω(k)

(
Ww

n0kBTe

)2

+ . . .

]
Ww(k)

(12.10)
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The different terms in the expansion on the right-hand side of this equation correspond
to the quasilinear, three-wave, four-wave interaction, etc. The coefficientsA,B in this
expression are in fact integral operators describing the different coupling terms con-
tributing to the second and third orders in the expansion. Clearly, the mere expansion
requires that the wave energy density is small compared to the plasma energy, thus ex-
cluding non-perturbative nonlinearities like solitons. The only process contributing to
the quadratic term is scattering of ion-acoustic waves on ions with the resonance condi-
tion ω−ω′ = (k−k′) ·vi. Under stationary conditions the terms on the right-hand side
balance. Usually one keeps only the two first terms balancing the linear growth rate and
the scattering of waves by ions at very large electron temperatures,Te À Ti, when the
ion-acoustic instability can develop. It leads to the following anomalous ion-acoustic
collision frequency

νan,ia = 0.01 ωpi
vde

cia

Te

Ti
θ−2 (12.11)

where the small factor 0.01 is partially compensated by the large electron-to-ion temper-
ature ratio. Also, for large current drift velocities, exceeding the ion-acoustic velocity
by far, and for narrow wave scattering angle,θ, the anomalous collision frequency can
become substantial and of the order of the Buneman collision frequency.

Critical Electric Field

The production of anomalous resistivity by scattering of current-carrying electrons off
the self-excited ion-acoustic waves will reduce the current and thus lead to quasilinear
effects and possible reduction of the current, such that the current speed is reduced
until some equilibrium is reached. This equilibrium depends on the applied electric
field. Quasilinearly the current will saturate at a certain velocity,jcr = −envd,cr.

But when the electric field is very large, larger than another critical value,E =
Ecr, the current will again increase, since then fast electrons, therun-away electron
part of the distribution function, start to escape the collisions because of their large
mean free paths. Actually, the fast electrons ignore the field fluctuations like a fast car
ignores the short-length roughness of a street cover.

The electron-ion Spitzer collision frequency is given by

νei = n0σc〈ve〉 (12.12)

where the angular brackets indicate the ensemble average as well as the average over
the electron deflection angle. The Spitzer collisional cross-section (I.4.9) is a function
of the actual electron velocity,ve. It can be written as

σc =
ω4

pe

16πn2
0v

4
e

(12.13)
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Fig. 12.1. Relation between current and field in a collisionless plasma.

All the electrons with velocities up to the thermal speed,〈ve〉 = vthe, are confined by
collisions. However, for the much faster tail electrons the collision frequency decreases
asv−3

e , such that these electrons become asymptotically free again.
For large electric fields and given collision frequency,ν, no equilibrium can be

reached because the acceleration of the electrons by the field is faster than the collisional
deceleration. The critical electric field above which the electrons become free is easily
found from the one-dimensional non-relativistic electron equation of motion

medve/dt = −eE −meνve (12.14)

Hence, the marginal field amplitude for equilibrium is given by

Ecr = meνve/e (12.15)

Inserting the Spitzer collision frequency yields theDreicer fieldstrength

ED = e/16πε0λ
2
D (12.16)

But Eq. (12.15) holds more generally for any anomalous collision frequency. It may be
expressed through the wave intensity using the Sagdeev formula (12.9)

Ecr = Ww/2en0λD (12.17)
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In the ion-acoustic case, the critical electric field is given approximately by

Ecr ≈ 0.01
mi

e

(
me

mi

)1/4

ωpicia (12.18)

The critical current stays constant for an increasing electric field as long asE < Ecr.
But whenE exceedsEcr, the current increases drastically. The increase in the current
aboveEcr is approximatelyj ∝ E1/3. This is shown schematically in Fig. 12.1.

Ion-Cyclotron Collision Frequency

A number of other instabilities can also be excited by currents (see Sec. 4.4). Most im-
portant are ion-cyclotron waves excited by field-aligned currents. These waves saturate
predominantly by resonance broadening of the otherwise narrow spectral band (see Sec.
8.4), causing the collision frequency to be of the order of a fraction of the ion-cyclotron
frequency

νic,an ≈ 0.25ωgi

(π

2

)1/2 k‖vthe

ωgi
(12.19)

This value is clearly much lower than that of the ion-acoustic instability. Nevertheless,
anomalous collisions due to ion-cyclotron waves may sometimes be important when the
threshold of the ion-acoustic instability is not exceeded by weak field-aligned currents
and ion-cyclotron waves undergo instability. This may occur in strong magnetic fields
when the plasma is underdense,ωpe ¿ ωge, like in the upper auroral ionosphere.

Electron-Cyclotron Collision Frequency

Similar to ion-cyclotron waves, electron-cyclotron waves may also become unstable in
the presence of field-aligned currents. One can imagine that these waves are excited
by the electron beam constituting the current, especially if the current is carried by
energetic electrons. In this case the wave also saturates by resonance broadening.

If the current is carried by the bulk electrons, the current flow will Doppler-shift
the frequency down toω′ = lωge − k‖vde in the rest frame of the ions, which do
not participate in the current flow. Forω′ ≈ k‖vthi the ions can interact with the
electron-cyclotron waves, and a negative energy wave will be excited. This happens
even for low electron temperatures, but saturation of the waves occurs at very small
amplitudes due to trapping and broadening. The wavenumber of the growing waves is
aboutk‖ ≈ ωge/vde, and the collision frequency becomes

νec,an ≈ 0.1ωge(vde/vthe)3 (12.20)
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Because the current drift speed is generally much less than the electron thermal velocity,
this value is low. For instance, in the auroral magnetosphere, where this instability
might be important, the drift velocity is of the order of the ion-acoustic speed, implying
νec,an ≈ 10−6ωge. The most important region for auroral processes is the excitation
region of auroral kilometric radiation at about 3000 km altitude. There the electron-
cyclotron frequency is about 300 kHz. Multiplying with2π one finds that the collision
frequency becomes not more thanνec,an ≈ 1 Hz, too low to be of any importance.

Lower-Hybrid Drift Collision Frequency

The last instability important for the excitation of anomalous collisions is the lower-
hybrid drift instability. The quasilinear saturation level of this instability is given in
Eq. (8.75). We recall that the lower-hybrid drift instability is caused by transverse cur-
rents, not by the field-aligned currents discussed so far. This instability will therefore
be most important for interrupting perpendicular currents, which exist in extended cur-
rent layers subject to reconnection. One can expect that it will provide the diffusivity
and anomalous resistivity needed to initiate reconnection in such current sheets and to
disrupt magnetic fields and release magnetic field energy stored in transverse currents.

Lower-hybrid drift instabilities require density and temperature gradients but are
stabilized by magnetic shear which counteracts the density gradients. On the other
hand, plasma streaming may help to destabilize the waves by coupling it to the Kelvin-
Helmholtz mode and low-frequency turbulence. However, it is generally believed that
low-β conditions are needed to keep this instability growing while high-β conditions
should inhibit its growth. This is true for the excitation of the instability, but if a guide
field is present and the current causes an additional transverse shear in the field, this ar-
gument does not apply, because the guide field makes up for the low-β condition while
the transverse field may in the region of anomalous resistivity merge and reconnect.

The anomalous collision frequency caused by the lower-hybrid drift instability in
a dense plasma,ωpe > ωge, can be represented as

νlh,an ≈
(π

2

)1/2 ω2
pe

ωlh

WE(k⊥,∞)
n0kBTi

(12.21)

Using Eq. (8.75) to express the saturation level of the lower-hybrid drift instability
under the assumption that saturation proceeds via quasilinear plateau formation, one
gets

νlh,an ≈
(π

2

)1/2
(

rgi

4Ln

)2

ωlh (12.22)

This value is of the order of the lower-hybrid frequency itself. In a strong magnetic
field with steep density gradients of the order of the ion gyroradius, it becomes equal
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to the ion plasma frequency. In weaker magnetic fields it is the geometric mean of the
electron- and ion-cyclotron frequencies.

Thatνlh,an becomes proportional to the cyclotron frequency implies that the colli-
sion frequency is proportional to the magnetic field. The lower-hybrid drift anomalous
collision frequency will be very important whenever the plasma is able to evolve short
scale density gradients. Such situations are encountered in the auroral magnetosphere,
near the magnetopause and the bow shock, and in some regions of the magnetotail.

The critical electric field for the lower-hybrid drift instability, above which elec-
trons will escape, can be estimated from the collision frequency, if one assumes that the
waves propagate at a large angle to the magnetic field. In this casek‖/k⊥ ¿ 1, only
the parallel field plays a role in the confinement, and the critical electric field is given
by

Ecr ≈ mirgi

e

k2
‖

k2
⊥

(
πTe

2Ti

)1/2 (
rgi

4Ln

)2

ω2
lh (12.23)

Electric fields exceeding this value will readily accelerate the electrons parallel to the
magnetic field. However, due to the small angular factor these parallel fields can be
quite small. On the other hand, regions of strong lower-hybrid drift wave turbulence
may serve as sources of parallel electron fluxes. Below we will show that in such
regions electrons may be accelerated to substantially high energies fitting into the range
of auroral electron energies.

Strongly Turbulent Collisions

Anomalous collision frequencies are dominated by the level of wave turbulence. The
lowest level is the thermal fluctuation level, which in the case of Langmuir fluctuations
just leads to the Spitzer collision frequency given in Eq. 12.12. In the former sections
we estimated fluctuation levels based on saturation levels of various plasma instabili-
ties in weak turbulence. However, in many cases the state of weak turbulence is not
reached, and the plasma undergoes modulational instability and switches over to strong
turbulence. In strong turbulence the wave spectrum breaks off into a large number of
solitons and cavitons with heavily modulated background density. Electron-ion colli-
sions become considerably more frequent and violent under these conditions, and the
collision frequencies may exceed the quasilinear and weakly turbulent values.

In order to determine the strongly turbulent collision frequencies, one can follow
the same line of arguments as before and substitute the strong turbulence level of the
corresponding waves into the Sagdeev formula (12.9). Let us write this formula for a
strong turbulence wave level,Wst

νan ≈ αωpe (Wst/n0kBTe) (12.24)
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with an unknown numerical proportionality factor,α, of the order of 0.1–10, which
must be determined from numerical simulations. The wave power dissipated in the
plasma due to the presence of this anomalous collision frequency will be

dWE/dt ≈ νanWE (12.25)

At the same time the power entering the inertial range by modulational instability from
the injection site ink-space will be

dWst/dt ≈ γmodWst (12.26)

whereγmod is the modulational growth rate. This growth rate is found from the modu-
lational dispersion relation,ω2 ≈ k2(kBTe − ppm0/n0k

2λ2
D)/mi, as

γmod ≈ (Wst/n0miλ
2
D)1/2 (12.27)

where we used the Langmuir strong turbulence theory. Equating the absorbed with the
generated power, one finds that in equilibrium

Wst

n0kBTe
≈ α2 mi

me

(
ε0|δE|2

2n0kBTe

)2

(12.28)

The large mass ratio in this formula reflects the increase in the wave intensity in the col-
lapsing inertial range in strong turbulence. But the wave energy density is proportional
to the fourth power of the pump wave field|δE|, i.e., it is proportional to the square of
the Langmuir wave energy density to thermal energy density ratio,WE/n0kBTe, after
scattering off ions and condensating in the long-wave range just before modulational
instability commences. Hence, unless the pump wave density is high, the wave energy
density will be moderate in the inertial regime.

Substituting Eq. 12.28 into Eq. 12.24 for the anomalous collision frequency, one
finds for strongly turbulent collisions

νan ≈ α3ωpe
mi

me

(
ε0|δE|2

2n0kBTe

)2

(12.29)

This collision frequency is enhanced over the Spitzer collision frequency. But as long
as the numerical factor has not been precisely determined, it is not certain how far it
exceeds the quasilinear collision frequencies derived above, e.g., for the ion-acoustic
mode. Moreover, the dependence of the strongly turbulent collision frequency on the
pump wave energy density is quadratic. Therefore, if the pump wave energy density is
not very large, the anomalous collision frequency may be even reduced with respect to
the quasilinear value. The reason for such a reduction lies in the fact that dissipation
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Fig. 12.2. Collision frequency in strong turbulence.

in the strongly turbulent regime is not necessarily restricted to Joule dissipation and
heating, but proceeds via transport of the wave energy into the dissipative range across
the inertial range and resonant generation of run-away electrons.

Close to the threshold of the modulational instability, but nevertheless well inside
the inertial range, the collision frequency is

νan ≈ 6α3(mi/me)ωpek
2
0λ

2
D (12.30)

Like the quasilinear collision frequency, the nonlinear collision frequency found here
is based on interaction with ion-acoustic modes, but in strong turbulence this mode
is driven by the plasma wave pressure force. The interaction between the wave field
and the plasma is stronger only in the localized regions, where the streaming electrons
are possibly slowed down more than by quasilinear interaction. This corresponds to
locally higher Joule dissipation and heating. But at the same time the concentration of
wave energy in cavitons reduces the frequency of interaction of the streaming particles
with the wave spectrum and thus counteracts the Joule dissipation, leading to an overall
decrease of the collision frequency in strong interactions compared to the quasilinear
value.

The above theory breaks down when the wave intensity becomes too strong. Then
the source region overlaps with the dissipation region of Landau damping and the iner-
tial range disappears. In this case the anomalous collision frequency becomes reduced.
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Figure 12.2 shows the dependence of the anomalous collision frequency on the initial
pump wave energy density. The collision frequency increases in the inertial range and
presumably decays when the inertial range disappears for very strong initial wave am-
plitudes. The absolute scale can be determined only after the unknown factorα has
been determined by numerical simulations.

12.2. Anomalous Diffusion

It is natural to extend the discussion of anomalous collision frequencies to other pro-
cesses where collision frequencies play a role. Such processes are thermal conduction
and diffusion of matter. Thermal conductivities are known to be inversely proportional
to the collision frequency. Hence, substantial increases in the collision frequency as
suggested in the previous section will tend to inhibit thermal conduction and decrease
the heat flux, supporting storage of heat in regions bounded by zones of high anoma-
lous collision frequencies. When anomalous collisions arise in regions of strong current
flow, the heat flux from this region will become strongly inhibited, the region will ther-
mally decouple from the environment, and will heat up to substantial temperatures. In
regions of field-aligned currents the zone of anomalous collision frequency and resistiv-
ity along the magnetic field lines will always become a region of strong plasma heating
and accumulation of heat.

The other important effect is plasma diffusion. Anomalous collision frequencies
cause diffusion coefficients to change. Parallel diffusion behaves similar to heat con-
ductivity. Since it is defined as

D‖ = kBT/mν (12.31)

use of the anomalous collision frequency in the place ofν indicates that diffusion par-
allel to the magnetic field is strongly inhibited in regions of high anomalous collision
frequency. Particles are trapped in these regions due to the large number of collisions
they experience. Moreover, ambipolar effects set on and limit the diffusion of both
particle components to about the diffusivity of the lesser mobile species, thereby main-
taining plasma quasineutrality.

For perpendicular diffusion with a diffusion coefficient defined as

D⊥ = D‖/(1 + ω2
ge/ν2) (12.32)

no ambipolar diffusion arises, because a transverse electric field can exist in magnetized
plasmas. They simply reflect plasma motions. In strong magnetic fields perpendicular
diffusion is proportional to the anomalous collision frequency and is strongly enhanced
due to the scattering of particles in the wave fields in all directions, which provides a
transverse motion of the particles. Classically, the diffusion is known to be inversely
proportional to the square of the magnetic field.
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Lower-Hybrid Drift Diffusion

Two kinds of anomalous collisions do change this dependence, i.e., the cyclotron in-
stabilities of ions and electrons. However, the electron-cyclotron collision frequency is
restricted by the very low saturation level of the instability, and the ion-cyclotron in-
stability also produces only low collision frequencies. The most important instability
for diffusion is the lower-hybrid drift instability with an anomalous collision frequency
given in Eq. (12.22). Using its dependence on the cyclotron frequency one finds that it
not only increases the transverse diffusion rate, but it also reproduces the Bohm-scaling
of the diffusion coefficient

D⊥lh ≈ kBTe

16eB

(
πme

2mi

)1/2 r2
gi

L2
n

(12.33)

In all regions, where the density gradient is steep enough to become comparable to
the ion gyroradius, anomalous diffusion due to the lower-hybrid drift instability starts
scaling asD⊥lh ∝ kBTe/B, which is Bohm diffusion. It will thus cause fast diffusion
and losses of plasma from the corresponding gradients.

Kinetic Alfv én Diffusion

Kinetic Alfv én waves may also be efficient for plasma diffusion. These waves are
low-frequency waves and it can be assumed that the particles will behave adiabatically
in the wave field. However, kinetic Alfv́en waves have a field-aligned electric wave
component and carry field-aligned currents. Therefore, electrons may be in resonance
with these waves and may be scattered in the wave field. Their average distribution
function,〈fe〉, in the presence of a density gradient transverse to the magnetic field will
evolve according to a resonant quasilinear diffusion equation

∂〈fe〉
∂t

= ∇x

[∑

k

k2
⊥v2

‖ |δE‖(k)|2πδ(k‖v‖ − ω)
2ω2B2

0

∇x

]
〈fe〉 (12.34)

which results from the quasilinear random-phase ensemble average of the drift-kinetic
equation (I.6.27) for the electron distribution function,fe

{
∂

∂t
+ v‖∇‖ +∇⊥ · vde − e

me
[δE‖ + (vde × δB⊥) · ê‖] ∂

∂v‖

}
fe = 0 (12.35)

with vde = vE + v‖(δB⊥/B0) and using Amp̀ere’s law to replace the magnetic field
component by the wave electric field. The averaging procedure is performed in the
usual resonant manner, replacing the resonant denominator by a delta function.
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Fig. 12.3. Plasma parameters across the low-latitude boundary layer.

Integrating Eq. (12.34) with respect to velocity and assuming that the undisturbed
distribution function is a Maxwellian, the diffusion equation for the electrons becomes

∂ne/∂t = ∇x(De∇xne) (12.36)

By comparison the diffusion coefficient is defined as

De =
(π

8

)1/2 ∑

k

1
k‖vthe

k2
⊥|δE‖(k)|2

k2
‖B

2
0

(12.37)

This diffusion coefficient holds for any low-frequency electromagnetic wave with a
non-vanishing parallel electric field. Specifying the waves as kinetic Alfvén modes
allows to write it in the form

De =
(π

8

)1/2 ∑

k

ζiav2
A

|k‖|vthe

|δBx(k)|2
B2

0

1− Λ0(ζi)
1 + [1− Λ0(ζi)]Te/Ti

Te

Ti
(12.38)

whereΛ0(ζ) = I0(ζ) exp(−ζ) andζ = k2
⊥v2

ths/ω2
gs with s = i, e for ions and elec-

trons, respectively. The value ofζia = k2
⊥c2

ia/ω2
gi is based on the ion-acoustic speed.

Low-Latitude Boundary Layer

The most important application of this theory is magnetopause diffusion and the for-
mation of the low-latitude boundary layer. To put the problem into the right context, let
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Fig. 12.4. Typical boundary layer electric wave spectrum.

us recall the physical conditions at the magnetopause. Figure 12.3 shows a schematic
collection of the variation of magnetic field, density, and temperature during a transition
from the magnetosheath across the low-latitude boundary layer of thicknessdBL into
the magnetosphere. For northward interplanetary magnetic field, the magnetopause is
a non-permeable sharp discontinuity between the turbulent magnetosheath plasma and
the magnetosphere. The width of the boundary transition layer should be of the order
of the ion gyroradius, roughly 100 km. But observations demonstrate that the average
width of the transition is 1000–1200 km.

Estimates of the diffusion required for maintenance of such a thick boundary layer
show that it must reach the Bohm limit, which at the magnetopause is of the order
of DB ≈ 109 m2/s, a comparably large value. It is hardly possible to reproduce this
value with any of the anomalous collision frequencies except for the lower-hybrid drift
anomalous collision frequency. In order to compare with measured wave intensities it
is convenient to use

Ww =
(

1 +
ω2

ω2
ge

)(
1 +

k2v2
thi

ω2
lh

)
WE (12.39)

Usingγmax ≈ 0.3(vde/vthi)2ωlh, the collision frequency can be expressed as

νan,lh ≈ ωlh

(π

8

)1/2 mi

me

(
1 +

ω2
pe

ω2
ge

)
WE

nkBTi
(12.40)
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Fig. 12.5. Diffusion coefficients in the boundary layer.

which serves as an expression that contains the measurable total wave energy,WE .
Measurements show that the wave spectra in the boundary layer are nearly featureless,
with possible peaks near the lower-hybrid frequency (Fig. 12.4). Integrating over fre-
quency yields the value ofWw. Using this value and applying it to the magnetospheric
low-latitude boundary layer, with measured values ofn0 ≈ 10 cm−3, kBTe ≈ 25 eV,
andkBTi ≈ 1 keV, one obtains Fig. 12.5, which shows the dependence of the transverse
diffusion coefficient on the measured value of the squared electric field amplitude.

In this figure the horizontal line atD⊥ ≈ 109 m2/s is the Bohm limit required for
maintenance of the low-latitude boundary layer by scattering magnetosheath particles
in the lower-hybrid field generated in the density gradient at the magnetopause, and
subsequent diffusion perpendicular to the magnetopause into the magnetosphere. The
vertical line is the uppermost measured electric wave intensity. As one observes, the
lower-hybrid drift instability is marginally capable of providing the required diffusion
rate for maintenance of the low-latitude boundary layer. We have included into this
figure also the diffusion coefficients of the ion-acoustic,Dia, and modified two-stream
instabilities,Dmts. These coefficients turn out to be much smaller than the lower-hybrid
drift diffusion coefficient for all reasonable wave intensities. They give considerably
lower diffusion and presumably do not contribute to the formation of a low latitude
boundary layer.

But one should take this figure with care. It assumes that very high electric field
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strengths can be reached. It is not established so far that such wave fields are realistic.
Measurements do not sufficiently resolve the wave structures in space or time. In local
gradients, however, where the gradient scale may even be near the electron gyroradius,
wave intensities may be high enough to make lower-hybrid drift waves an efficient
diffusion mechanism. During disturbed times one would expect that reconnection will
cause formation of the low-latitude boundary layer and yield plasma transport into the
magnetosphere. In this case the anomalous lower-hybrid drift collisions provide the
diffusivity which the successful models of reconnection are looking for.

12.3. Collisionless Shock Waves

One of the most important aspects of nonlinear plasma theory are collisionless shock
waves. Collisionless shocks exist both in laboratory and space plasma physics. The
problem is to explain what causes the dissipation needed to generate the shock front
and to provide the irreversibility and entropy increase during the transition. When dis-
cussing magnetohydrodynamic discontinuities in Chap. 8 of our companion book, it
was assumed that these dissipative processes are restricted to the narrow shock front
transition layer. Hence, anomalous transport coefficients must be generated therein
by some instability mechanism. Most probable are ion-acoustic anomalous collisions,
electron-acoustic anomalous collisions, though these are known to be low, Buneman
anomalous collisions, though these can act only temporarily, and lower-hybrid drift
anomalous collision, which need low plasmaβ. Related to the latter are modified two-
stream anomalous collisions, which survive in high-β plasmas but have lower collision
frequencies.

Because of the irreversibility of the shock transition process, a shock wave can-
not be described as a purely steepened nonlinear wave. While wave steepening is a
transitory process which, when not stopped, inevitably leads to wave breaking, shock
waves are stationary states with the breaking prevented by some other process, in gen-
eral by dissipation. Any fast, slow, or intermediate shock is, from a macroscopic point
of view, a steepened fast, slow, or intermediate magnetosonic wave, with breaking in-
hibited due to the balance of steepening and dissipation. Hence, nonlinear wave theory
is applicable to the shock process. The steepening of a fast magnetosonic wave is the
ignitor of the follow-up microscopic processes, which provide the dissipation inside
the shock front and cause irreversibility. In principle, such a picture will be correct for
sufficiently slow shocks, where the flow speed leaves sufficient time for the steepening
and the subsequent evolution of the microscopic processes.

Low Mach number shocks will follow this scenario. But in high Mach number
shocks there will be not enough time for the anomalous process to provide the required
collision frequencies. When a critical Mach number is surpassed, new effects like par-
ticle reflection from the shock front arise. Such shocks are called supercritical. In
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addition, the shock character depends strongly on the magnetic field direction. Quasi-
perpendicular shocks behave more regularly than quasi-parallel shocks.

Rankine-Hugoniot Conditions

The Rankine-Hugoniot conditions do neither provide any information about the forma-
tion of shocks nor about the intrinsic dissipative processes which are at work in the
shock transition layer. Moreover, they are based on the one-fluid model of the plasma,
which is a very rough approximation to reality. Therefore, they hold only sufficiently
far away from the shock front itself, deep in the ideal magnetohydrodynamic regions to
both sides of the shock front. Prescribing the inflow parameters the serve as conditions
from which the outflow parameters can be calculated.

Denoting the upstream and downstream values by the indices 1 and 2, and defin-
ing the following new variablesN = n2/n1, un = vn2/vn1, ut2 = vt2/vn1, uth1 =
vth1/vn1, uth2 = vth2/vn1, bt1 = Bt1/(µ0min1v

2
n1)

1/2, bt2 = Bt2/(µ0min1v
2
n1)

1/2,
andbn = Bn/(µ0min1v

2
n1)

1/2, the whole set of the shock jump conditions with non-
vanishing flow across the shock may be written as

Nun = 1
2N(u2

th2 + u2
n) + b2

t2 = 2(u2
th1 + 1) + b2

t1

unbt2 − ut2bn = bt1 (12.41)

bt2bn − ut2 = bt1bn

5u2
th2 + u2

n + u2
t2 + 2bt2bt1 = 5u2

th1 + 1 + 2b2
t1

From the third and fourth equation one finds for the tangential magnetic and velocity
fields behind the shock

bt2 = bt1(1− b2
n)/(un − b2

n)
ut2 = bt1bn(1− un)/(un − b2

n)
(12.42)

The rest of the equations can be reduced to a cubic equation for the normal velocity,un,
behind the shock. But it is more interesting at this stage to consider the limiting case
of a perpendicular shock. This case is defined asbn = ut2 = 0, bt1 6= 0. The cubic
equation becomes quadratic in this case

u2
n −

(
1
4 + 5

4u2
th1 + 5

8b2
t1

)
un − 1

8b2
t1 = 0 (12.43)

This equation yields the values of the quantities behind the shock in terms of those in
front of the shock. In particular, the density, velocity and magnetic field jumps are all
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given by the same expression

1
N

= un =
(

bt2

bt1

)−1

=
1
8

{
1 + 5u2

th1 + b2
t1 +

[(
1 + 5u2

th1 + 5
2b2

t1

)2
+ 8b2

t1

]1/2
}

(12.44)
and the jump in the temperature or the thermal velocity follows as

u2
th2 = u2

th1 + 1
5 [1− u2

n + 2b2
t1(1− u−1

n )] (12.45)

For the shock to exist one requires that the medium behind the shock is slowed down,
and thereforeun < 1. This condition leads to the additional condition on the magne-
tosonic Mach number of the incident flow

M =
(

5
3u2

th1 + b2
t1

)−1/2
> 1 (12.46)

The last condition simply means that the flow is super-magnetosonic for fast perpen-
dicular shocks to develop.

The jump conditions of the perpendicular shock given in Eq. (12.44) depend on
the upstream ratio of thermal-to-magnetic field energy density, i.e., on the plasma beta
parameter in the upstream flow,β1. Forβ1 ¿ 1 the influence of the magnetic field is
strong. In this case the Mach number becomes the upstream Alfvénic Mach number,
MA = vn1/vA1. In the opposite case, it is negligible, and the magnetohydrodynamic
shock resembles a simple hydrodynamic shock. But one should be careful with this
conclusion, since the magnetohydrodynamic approximation readily fails in reality, and
particle and wave processes may become extremely important in shock dynamics.

The most important conclusion drawn from the above jump conditions is that for
relatively high Mach numbersM À 1 the jumps simplify to some expressions which
can easily be used for estimating the strongest possible changes of the field quantities
across the shock transition in perpendicular shocks. For the original unormalized quan-
tities these are written as

n1/n2 = Bt1/Bt2 = vn2/vn1 ≈ 1/4
kBT2/mi ≈ 3v2

n1/16
(12.47)

These conditions show that the density and magnetic fields in a perpendicular shock will
not increase by more than a factor of 4.

Theoretically, parallel shocks should behave like ordinary gasdynamic shocks, be-
cause the magnetic field inside the shock is aligned exactly along the inflow and the
shock normal, and thus drops out of the magnetohydrodynamic Rankine-Hugoniot con-
ditions. But, again, one must be careful in drawing such a conclusion, since for fast
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shocks with strong magnetic fields,β1 < 1, the fast magnetosonic velocity parallel to
the field becomes the shear Alfvén velocity, and the fast wave couples over to the shear
Alfv én wave, which has a transverse magnetic field component. At the shock front the
magnetosonic wave steepens, and this perpendicular field component increases. Hence,
strictly parallel shock waves do not exist in a plasma. Near the shock front these shocks
contain a transverse magnetic field component, and the shock wave becomes necessar-
ily oblique and exhibits a complicated magnetic structure.

Critical Mach Numbers

The limit of extremely high Mach numbers given above is unrealistic. When the Mach
number of a collisionless shock becomes too large, the character of the shock transi-
tion changes from laminar to turbulent. This change has to do with the process which
dissipates the inflowing kinetic and magnetic energies in order to increase the entropy
during shock transition and to generate irreversibility.

Laminar shock waves are steepened magnetohydrodynamic waves with breaking
of the wave inhibited by dissipative effects. Two kinds of such dissipative effects may
work in laminar shock fronts. The first is Joule heating due to the generation of anoma-
lous collisions and resistivities in the current layer inside the shock, the second is vis-
cous interaction in the shock front. Both processes are mutually related. In wave steep-
ening both processes account for the production of different flow, density, and potential
levels on both sides of the shock front. Therefore, neglecting dissipation and consid-
ering a solitary wave state should give an estimate of the maximum possible Mach
number in laminar shocks.

Figure 12.6 shows a soliton-shock configuration withB1 the undisturbed upstream
tangential magnetic field,Bm the soliton, andBs the shock amplitude. Consider the
one-dimensional two-fluid model of magnetosonic waves at a perpendicular shock with
the magnetic field parallel to the front

d(nvsx)/dx = 0
dBz/dx = µ0envey

mevixdvix/dx = eEx + eviyBz (12.48)

mevixdviy/dx = eEy − evixBz

mevixdviz/dx = 0

which is to be completed by the condition for the continuity of the tangential electric
field, dEy/dx = 0, and quasineutrality,ne ≈ ni. The x direction is normal to the
shock front,z andy are tangential. The first of these equations is the continuity equa-
tion, which holds for electrons and ions. The second equation is Ampère’s law with
the current carried exclusively by the electrons,jy = −envey. The three remaining
equations are the equations of motion of the ions.
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Fig. 12.6. Magnetosonic soliton-shock model to estimateMcr.

The continuity equation implies constancy of the flux for both plasma components
such thatn = n1v1/vsx, where the index 1 refers to the values far upstream of the
shock atx = −∞. There the electron and ion densities and speeds are the same. Hence,
for the assumed quasineutrality the ion and electron perpendicular speeds are approx-
imately the same at the shock as well,vix ≈ vex = vn. It follows thatEy = v1B1,
n = n1v1/vn, and isEx = −Bzvey. This equation results from neglecting the very
small contribution of the ions to they component of the velocity or from the fact that
only the electrons are frozen-in. Remember that we consider perpendicular shocks with
the magnetic field only in thez direction and changing in value only across the shock
transition. In addition, summing the species in the equation forBz and integrating once
produces for the normal component of the velocity

vn = vix = vex = v1 − (B2
z −B2

1)/2µ0min1v1 (12.49)

which shows that the normal fluid velocity decreases in the shock. This form can be
used to express the current speed

vey =
1

µ0en1

dBz

dx

(
1− B2

z −B2
1

2µ0min1v2
1

)
(12.50)

With the help of these expressions one derives an equation for the magnetic field com-
ponent tangential to the shock,Bz, which can be integrated once with respect tox in
order to be written in the form of the energy conservation of a pseudo-particle

(dBz/dx)2 = −2S(Bz) (12.51)
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with the pseudo-potential,S(Bz), defined through

S(Bz) =
ω2

pe

2c2
(Bz −B1)2

[
1− (Bz + B1)2

4µ0min1v2
1

](
1− B2

z −B2
1

2µ0min1v2
1

)−1

(12.52)

where we assumed that at infinity all derivatives vanish. In order to permit for solutions,
this potential must be negative in a certain region,B1 ≤ Bz ≤ Bm anddBz/dx = 0 at
Bm. FromS(Bm) = 0 one immediately finds that

Bm/B1 = 2(v1/vA1)− 1 (12.53)

wherevA1 is the upstream Alfv́en speed. The requirement that the normal velocity
component from Eq. (12.49) after transition is positive, gives an upper limit on the
Mach number. This limit is found by combining Eqs. (12.53) and (12.49)

MA = v1/vA1 < Mcr = 2 (12.54)

When inserted into Eq. (12.53), one obtains for the maximum magnetic fieldBm <
3B1, i.e., a compression factor of maximum 3.

The fast magnetosonic soliton solutions considered here correspond to dissipation-
free laminar shocks and are therefore the extreme case of laminar shocks. For larger
Mach numbers these waves overturn and cannot sustain stationary states anymore. In-
cluding dissipation into the above equations means that the pseudo-particle moves down
in time in the pseudo-potential trough towards the minimum of the potential in a way
similar as discussed for the solution of the Burgers equation. During this falling-down,
the pseudo-particle encounters a gradually narrower potential. Hence, the maximum
amplitude,Bs < Bm of the shock will be smaller than the soliton amplitude. This be-
havior is shown in Fig. 12.7, where the amplitude of the solitary solution corresponds
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to the zero-point of the pseudo-potential,Bm, with the shock amplitude being the first
downward oscillation,Bs, in the potential.

Let us define the ratio of the maximum shock to the maximum soliton amplitude,
Bs/Bm = α ≤ 1. Requiring thatvn > 0 and repeating the same calculation as before,
we have approximately

Mcr ≈ 2α/(2α− 1) α > 1/2 (12.55)

for a resistive shock wave to exist in fast flows. For instance, forα = 0.9 one obtains
Mcr = 2.25.

However, an absolute upper limit on the possible Mach number for resistive shocks
is obtained from the simple argument that the downstream flow velocity,vn = vn2,
should be less than the relevant downstream wave speed for information transport be-
tween the obstacle and the shock. If this condition is not satisfied, the information about
the obstacle cannot reach the shock in a flow time, resistivity cannot sustain the shock,
and resistive shocks cannot evolve. The condition imposed is related to theevolution-
ary conditionof the shock. For fast shocks the wave speed for information transport
from the obstacle to the shock is the fast mode velocity given in Eq. (I.9.100) of our
companion book. Heating of the plasma in the shock and behind increases the sound
speed. It is thus sufficient to require that the downstream flow speed should be less than
the downstream sound speed,vn2 < cia2.

Evaluating this condition, by using the temperature jump and velocity drop across
a perpendicular shock, it can be shown that the critical dissipative Mach number up to
which shocks can resistively be sustained is about

Mcr1 ≈ 2.7 (12.56)

This limit is valid for strictly perpendicular shocks with a magnetic field to shock nor-
mal angleθBn = 90◦. For oblique shocks with smaller angles, the critical Mach num-
ber decreases, and the shock becomes supercritical already at moderate Mach numbers.
Enhancing the resistivity will cause the shock transition to widen. But resistivity cannot
prevent supercritical shocks to break and to become turbulent. The most common and
most efficient way is the generation of shock feet and foreshock.

The critical Mach number,Mcr1, is only approximate and is obtained on the as-
sumption that resistivity is the basic dissipation mechanism. A second, slightly larger
critical Mach number,Mcr2, can be defined if anomalous viscosity is added. Anoma-
lous viscosity heats the ions, increasing their momentum when passing through the
shock. Accordingly, the second critical Mach number is defined as the Mach number
at which the downstream speed equals the downstream heated ion thermal velocity,
vn = vthi2. Mcr2 depends on the downstream electron-to-ion temperature ratio, the
incident plasma beta,β1, and the angleθBn1. It can be several times the first critical
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Mach number. BelowMcr2 the shock is sustained by resistivity and viscosity. Above
Mcr2 it can only be supported by ion reflection into the upstream region as the basic
dissipation mechanism.

But for extremely strong shocks with very high Mach numbers even ion reflection
cannot support the shock anymore, and a third critical Mach number will exist, because
even a very fast flow into the shock cannot reflect more ions than a certain percentage
of the incident ions. Suchsuper-supercriticalshocks will heat the plasma to such high
temperatures that the magnetic field can be neglected and the shock will become gas-
dynamic. Actually, compression of the magnetic field is restricted. Hence, the plasma
may indeed become super-heated. The third critical Mach number,Mcr3, would be
the solution of the balance equation between the downstream flow and sound speeds,
vn = cs, wherecs is to be calculated by accounting for the unknown ion dynamics,
reflection, and heating processes.

12.4. Shock Wave Structure

Collisionless shocks have a well-defined substructure, which depends on the angle be-
tween the upstream magnetic field and the shock normal (see Sec. 8.5 of the companion
volume). For a given upstream magnetic field structure, this angle often depends on
the form and nature of the obstacle. For obstacles of finite extension around which the
incident matter can flow, it changes with location along the shock. Shocks can have a
totally different character at different locations and may thus have different structure.

Shock Foot

Mach numbers exceeding one or more of the the critical Mach numbers are not unusual
in space and astrophysical plasmas. The solar wind has variable Mach numbers in the
range1.5 < M < 15, with the lower and upper bounds depending on the state of solar
activity. Clearly, even during times of high Mach numbers the Earth’s bow shock wave
exists. Astrophysical shock waves may have Mach numbers up to several thousands.
Such shocks aresupercriticalor evensuper-supercriticalin contrast to thesubcritical
shocks with low Mach numbers. How can such shocks be sustained and how do they
manage to generate the required dissipation?

Within the framework of the cold plasma theory used in the previous section, the
width of the soliton transition is determined by the electron inertial length,c/ωpe. This
assumption is unrealistic for a shock. Widening due to dissipation increases the width
to v1/νan, and one expects the transition to be of the order of the ion gyroradius in
the compressed magnetic field of the shock ramp. The main property of supercritical
shocks is that they need to reflect particles from the shock front into the undisturbed
flow region upstream of the shock. For some part of the incident particle population,
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Fig. 12.8. Ion phase space components in a quasi-perpendicular shock transition.

the shock itself assumes the property of a rigid obstacle at which these particles are
specularly reflected. The purpose of this reflection is to inform the incident flow about
the existence of the obstacle-shock system and, before reaching the shock transition, to
slow it down to a speed which allows to satisfy the evolutionary condition. In addition,
the crest of the shock starts breaking and generates turbulence behind the shock which
helps slowing down the flow further.

At a perpendicular shock the reflection of particles produces afoot regionin front
of the shock ramp. This foot region has the width of an energetic ion gyroradius. Two
kinds of ions may form the foot. The first component is the lowest energy part of the
incident ions, which have energies less than the shock potential and are reflected from
the shock potential well. Note that the shock generates a potential leading to a non-
zero normal electric field component pointing upstream, as described in Sec. 8.5 of the
companion volume,Basic Space Plasma Physics.

The other component consists of ions with large gyroradii. To them the shock
ramp appears as a thin steep wall and the ions are again reflected. The condition of
reflection is that the adiabatic motion of these ions is broken at the shock ramp, or
simply thatrgi > d, whered is the width of the ramp which is about a thermal ion
gyroradius. In addition, some perpendicularly heated ions from the ramp may escape
upstream and contribute to the foot region. All these ions are further accelerated by
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the solar wind electric field. The ion phase space representation sketched in Fig. 12.8
shows all these components. The incident cool but dense solar wind ion beam hits the
shock transition. It splits into a broad heated and slowed-down downstream distribution
and a dilute nearly monochromatic gyrating reflected energetic ion component which
after gyration and acceleration becomes more diffuse.

Electrons contribute very little to the foot. Since their small gyroradii let them
behave adiabatically, most of them will not be reflected. In addition, the normal shock
electric field points sunward and accelerates electrons into the shock instead of reflect-
ing them. The foot region is thus produced solely by reflected ions, which constitute a
non-compensated perpendicular current whose magnetic field forms the foot.

A large part of the gyratory orbit of the foot-region ions is parallel to the elec-
tric field in the incident flow,Esw = −vsw × Bsw. This field accelerates the foot
region ions further (Fig. 12.9), to about twice the incident solar wind velocity, thereby
increasing the foot current and magnetic field at the expense of the flow energy. Af-
ter sufficient acceleration the angle of incidence of such ions onto the shock front may
change in such a way that the reflection condition does not hold anymore, and the ions
finally pass through the shock. In the shocked region behind the shock ramp these ions
still have a temperature anisotropy and generate anisotropy-driven wave turbulence,
until they are quasilinearly scattered and merge into the background.

Foot-region ions constitute a fast ion beam in the solar wind flow and, in addi-
tion, cause instability and wave activity by counterstreaming beam interaction. Hence,
the foot region contains an enhanced level of low-frequency magnetic fluctuations. Fur-
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thermore, the acceleration of the ions causes an increase in their temperature anisotropy
and contributes to the excitation of anisotropy-driven instabilities, plasma heating, and
further dissipation of flow energy in front of the shock.

Foreshock

A behavior like described above is characteristic for all quasi-perpendicular supercriti-
cal shocks (θBn > 45◦). But for shocks with anglesθBn < 90◦, the ions may escape
further upstream along the magnetic field into the incident flow, where they generate
waves by beam- and anisotropy-driven instabilities, which quasilinearly scatter them
into a hot halo distribution. This distribution is convected downstream by the incident
flow towards the shock front. The foot region of a strictly perpendicular shock thus
transforms into a broad ion foreshock for quasi-perpendicular shocks. Quasi-parallel
supercritical shocks have even broader foreshock regions. Hence, a foreshock is a very
general property of any supercritical shock which is not strictly perpendicular. Its pur-
pose is to warn the incident flow about the existence of an obstacle, to dissipate part
of the incident energy, to raise the incident temperature, and to slow down the flow. In
principle, a foreshock already belongs to the shock transition region.

Curved shocks like the Earth’s bow shock wave can always be divided into re-
gions of perpendicular, quasi-perpendicular and quasi-parallel shocks (see Fig. 8.10 in
the companion volume). Such shocks always have extended foreshock regions. These
are further divided into two zones, theelectron foreshockand theion foreshock(see Fig.
12.10). The electron foreshock is a narrow downstream region, bounded on one side
approximately by the magnetic field line tangential to the shock. It contains electrons
which have been reflected at or have escaped from the shock. The most energetic elec-
trons appear at the tangential point. They are either specularly reflected or heated in the
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shock ramp. Some electrons have sufficiently large field-aligned velocities to escape
upstream into the solar wind, where they may travel far along the tangential field line,
excite Langmuir and upper-hybrid waves, become slowed down and scattered into an
isotropic halo distribution (see left-hand panel of Fig. 12.11), and are ultimately swept
down again by the solar wind flow into the foreshock region. In contrast, the ion fore-
shock (see Fig. 12.10) forms a much larger angle with the tangential field line than the
electron foreshock, because the velocity of the reflected ions is much lower than the
speed of the reflected electrons and the upstream solar wind flow velocity cannot be
neglected.

De Hoffmann-Teller Frame

Because the foreshock is formed by particle reflection, the mechanism of reflection and
upstream injection is of interest. The simplest assumption is that the particles, mainly
ions of large gyroradii but also a few energetic electrons, are specularly reflected from
the narrow shock front. This mechanism is most easily visualized in thede Hoffmann-
Teller frame, a reference frame moving parallel to the shock surface with a velocity
which transforms the upstream inflow velocity of the solar wind into a velocity compo-
nent which is entirely parallel to the incident field

vsw = vHT + vsw‖ (12.57)

Since the de Hoffmann-Teller velocity is parallel to the shock front, it can be expressed
by the shock normal unit vector,̂n. Noting thatn̂ · vHT = 0, one obtain a

vHT = n̂× (vsw ×Bsw)/n̂ ·Bsw (12.58)

as the general expression for the de Hoffmann-Teller velocity. This velocity is parallel
to the shock and at the same time transverse to the magnetic field, which implies that
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the magnetic field is moving with just this velocity along the shock front. In the de
Hoffmann-Teller frame any particle incident on the shock front will have only a gyro-
motion around the moving magnetic field line in addition to its parallel bulk speed along
the magnetic field. Of course, rapid variations and accelerations by outer forces are not
affected by this transformation, which merely reverses the Lorentz transformation in
order to get rid of stationary perpendicular electric fields at the shock.

Shock Potential and Non-Coplanarity

Each shock has a significant cross-shock potential which is generated by the charge
separation built up in the shock front when particles of different mass and gyroradii
encounter the magnetic shock ramp (see Sec. 8.5 of the companion volume). Ions are
reflected by this potential while electrons are accelerated downstream. This shock po-
tential is frame-dependent. The difference between the electric fields in the normal
incidence and de Hoffmann-Teller frames is related to a magnetic component at the
shock front which is not coplanar (the coplanarity theorem derived by the ideal magne-
tohydrodynamics treatment in Sec. 8.4 of the companion volume does not necessarily
hold in two-fluid or kinetic theory.)

The normal incidence frame is the frame in which the plasma stream (e.g., the
solar wind) flows into the shock along its normal vector. Denoting components in this
frame by the indexNI, the Lorentz transformation gives the following relation between
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the normal components of the electric fields in the two frames

EnHT − EnNI = vnBnc tan θBn (12.59)

wherevn is the normal incident plasma speed,Bnc is the non-coplanar component of
the magnetic field, and the angleθBn is the angle between the shock normal and the
incident magnetic field. Hence, the shock potential difference between the two frames
becomes

∆φ = φNI − φHT = vn tan θBn

∫
Bncdn (12.60)

the integral of the non-coplanar magnetic field component across the shock transition.
Whenever the above potential difference is non-zero, the magnetic field possesses a
non-coplanar component.

Specular Reflection

During specular reflection the normal component of an incident particle is reversed from
downstream to upstream. Though the reflection mechanism is not known and should
in principle be non-adiabatic, in ideal specular reflection the inversion of the normal
component of the particle velocity does not change the particle magnetic moment. This
is the simplest model of upstream injection. No definite mechanism has been given up
to date. Figure 12.12 demonstrates what happens to a particle in the de Hoffmann-Teller
frame when its incident normal velocity is reversed. The particle velocity consists of the
sum of the gyration and the parallel velocity. Its total velocity in the plane containing
the shock normal and the magnetic field isv. Decomposition into gyrovelocity,vg, and
sign-reversed parallel component,−v‖, yields escape from the front upstream along the
magnetic field line only if the reflected parallel velocity points upward and, in addition,
the gyration of the particle does not intersect the shock front.

Specular reflection may not be the correct mechanism to produce the upstream
particle component. However, at least for ions the properties of the measured distribu-
tions are in relatively good qualitative agreement with the specular reflection mecha-
nism. Actual reflection is based on a combination of reflection in the shock potential,
which works only for the low-energy component of the incident particles, and non-
adiabaticity. The latter poses an unresolved problem in which the shock-generated
plasma turbulence is strongly involved. In a qualitative picture one can assume that
small-scale, much shorter than the ion gyroradius, but large-amplitude magnetic fluc-
tuations in the shock front prevent that ions pass through the shock and keep them at
the shock front. Here they are accelerated by the electric field and by reflection from
magnetic waves convected downstream towards the shock from the foreshock region,
until they reach sufficiently high energies to escape along the magnetic field into the
upstream direction (Fig. 12.13). Recent numerical simulations suggest that most of the
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specularly reflected ions are captured in the shock reformation process by the newly
formed shock and find themselves soon after reflection behind the shock ramp in the
downstream region. The upstream escaping particle component is thus composed just
of the shock confined ions which are at rest in the de Hoffmann-Teller frame until they
become energized sufficiently much and may escape from the shock.

Populating the foreshock region, these ion beams excite a high level of wave inten-
sity, which scatters the ions self-consistently into so-calledkidney beamdistributions.
Further down in the foreshock the ion distributions evolve into a nearly isotropicring
distribution. This ring distribution is taken up by the solar wind in the foreshock and
flows in the direction of the shock. Figure 12.14 shows the evolution of a reflected
ion beam in the foreshock into a kidney and a ring around the solar wind beam, when
passing from the boundary of the foreshock into the heart of the foreshock.

Upstream Waves and Shock Reformation

The reflected ion beams in the foreshock region are a source of free energy and drive
several ion-ion beam instabilities. The two beams involved in the interaction are the
dense but cold incident solar wind and the warm reflected ion beam, which is only a
little less dense than the solar wind. The dominant ion beam instability in the fore-
shock is the right-hand resonant instability (see Fig. 5.10). The mode is an Alfvén-
cyclotron mode, which scatters the ion beam into the diffuse ion distribution of the
deeper foreshock. Part of this diffuse distribution may reach high energies due to addi-
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tional reflection when the ions reach the shock, and this acceleration can be a repeated
process. These energetic diffuse ions exert an additional inhomogeneous pressure and
may help decelerating and deflecting the solar wind in the foreshock. At the same time,
the diffuse ions drive the left-hand resonant instability and generate left-hand polarized
wave modes which, when convected downstream, may appear as right-hand modes in a
spacecraft frame.

The unstably excited waves are convected downstream by the solar wind. At the
same time, they steepen in this strongly driven situation and may undergo parametric
decay as well as modulation to form large-amplitude nonlinear structures which are
calledslamsor shocklets. These structures are also convected downstream towards the
shock where they pile up. Such large-amplitude but short-wavelength magnetic pulsa-
tions in the quasi-parallel foreshock are a common feature in observations and simula-
tions. The shocklets are important in the shock formation and reformation process. The
waves generated by the two kinds of instabilities in the foreshock steepen and reach
very large amplitudes, much larger than the initial field.

The large-amplitude shocklets in the quasi-parallel foreshock have steep flanks,
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comparable to the shock transition itself. Their transverse extension is of the order of
the energetic ion gyroradius, about 1RE . They propagate toward the shock with the
super-Alfv́enic foreshock flow. The shocklets resemble small shock pieces, but they
are not real shocks, because they behave reversibly. Rather they resemble deformed
solitary structures, i.e., large-amplitude wave packets. They play a very important role
in building the shock by piling up at the shock transition. At the same time, they
constitute the moving mirrors for reflected and diffuse ions, which trap the ions between
the shock front and themselves and accelerate them to high velocities.

Figure 12.15 shows a sketch of shock reformation by pile-up of large-amplitude
magnetic shocklets from a numerical simulation. The shocklets upstream of the shock
are generated by the interaction of the solar wind with the diffuse upstream ion com-
ponent and convected to the right. The shock consists of blobs of merged shocklets,
with the shock itself not forming a rigid wall but consisting of merged shocklets. Short
wavelength waves are produced in the shock front. These are interface waves. The
right-hand side of the figure shows a cut across the figure parallel to the abscissa. The
shocklets, the merged wave, and the interface waves appear as steep maxima.

There is a certain periodicity of shock reformation, which obviously has to do
with the nonlinear evolution of the solitary structures, their transport to the shock, and
the ion dynamics in the foreshock. The quasi-parallel shock is therefore not station-
ary, but periodically switches between two states. The solitary wave pulses provide
the tangential field component which transforms the quasi-parallel shock locally into a
quasi-perpendicular shock.

Shock Transition

A particularly complex region is the shock transition, the place of most intense anoma-
lous dissipation. Various kinetic instabilities may arise here, e.g., current-driven ion-
acoustic modes, lower-hybrid waves, electron-acoustic modes, and so on. The locations
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Fig. 12.16. Ion-cyclotron wave spectrum downstream of the shock.

of these instabilities may not coincide because of different threshold conditions for the
instabilities. For instance, the lower-hybrid modes are stabilized in theβ > 1 regions,
while ion-acoustic modes are stabilized in the high-temperature downstream part of the
shock transition. Electron-acoustic modes require the presence of two electron popu-
lations and will thus overcome damping in the shock ramp, where the incoming solar
wind and the heated electrons mix.

Kinetic waves, including drift wave modes, presumably generate the anomalous
resistivities and viscosities needed in the shock ramp to increase entropy and to generate
the shock potential and currents. In addition, ion instabilities may be generated in
the shock ramp. The dominant instability is a short-wavelength so-calledinterface
instability, which arises from the fast dilute solar wind ion stream mixing into the heated
dense shock ion distribution within about one ion gyroradius. This mixing of the two
ion streams causes short-wavelength magnetic oscillations in the shock, which may be
convected downstream into the magnetosheath plasma, where they become damped.

Magnetosheath Turbulence

Another instability is generated by the diffuse hot ion component, which crosses the
shock front from the solar wind towards the downstream magnetosheath. These ions
contribute to a perpendicular temperature anisotropy just behind the shock and excite
ion-cyclotron waves, which scatter these ions over a certain distance until they merge
into the downstream magnetosheath plasma. Figure 12.16 gives an example of the mag-
netic wave spectrum excited by these particles just after the shock. The frequency of the
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left-hand polarized waves is close but below the ion-cyclotron frequency. Hence, these
waves are important for downstream heating of the plasma by depleting the remaining
free energy of the penetrating ions.

At still larger distances from the shock, in the downstream magnetosheath, one
encounters a turbulent plasma exhibiting strong magnetic fluctuations and broadband
electric turbulence. The origin of this turbulence is not clear yet. Most of the energy in
the spectrum is at the lowest frequencies, signaling the presence of intense magnetohy-
drodynamic fluid turbulence. A number of ion waves contribute to this turbulence, but
most important are ion-cyclotron and mirror mode waves. Both these waves are driven
by the transverse temperature anisotropy of the magnetosheath plasma and competing
for dominance. Closer to the shock mirror waves may prevail under certain condi-
tions, while ion-cyclotron waves are more important deeper inside the magnetosheath
away from the shock. The spectrum of Fig. 12.16 is taken at such a position. Here
the compressional waves are suppressed relative to the left-hand mode, but closer to
the shock the compressional part is much stronger. In addition, the interface mode may
contribute to the turbulence. Numerical simulations show that this mode may propagate
deep into the magnetosheath and that it is a relatively short-wavelength low-frequency
mode. Also right-hand modes may pass across the shock to contribute to magnetosheath
turbulence.

The high-frequency part of the spectrum in the downstream region is mainly elec-
trostatic. It contains Doppler-shifted ion-acoustic waves and drift modes, which may
be excited in the density, temperature, and field gradients of the low-frequency turbu-
lence. All these modes have large amplitudes and behave nonlinearly. This leads to
the broad power law spectrum typically observed throughout the downstream region
of shocks and makes identification of single modes difficult. A summary of the shock
wave instability system is given in Fig. 12.17.
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12.5. Particle Acceleration

Fast flows and beams of particles are frequently met in space and astrophysics, and their
generation poses one of the biggest problems insofar as, from a fundamental point of
view, their appearance can hardly been brought into accord with the naive idea that all
processes tend towards equilibrium. We have discussed various mechanisms leading to
instability, but in all these mechanisms unstable plasma configurations were assumed,
very far from equilibrium. Many of them had beams as their sources of free energy.
However, such beams must have been injected or excited, leading to the question which
mechanisms are responsible for beam injection and, more generally, particle accelera-
tion in a plasma.

The simplest way of accelerating a magnetized plasma is by applying an electric
field perpendicular to its internal magnetic field. This is the mechanism exploited in a
plasma gun. The plasma which is initially at rest is immediately set into motion with
vE = E×B/B2 into the direction perpendicular to both, the magnetic and the electric
field. The energy gained by the plasma flow isW = miv2

E/2. By increasing either the
magnetic or the applied electric field one can reach appreciable energies, only limited
by relativistic effects, which appear in very strong electric and magnetic fields.

Particle Acceleration in Reconnection

Most of the fast plasma flows observed in space and astrophysics are believed to be
caused by mechanisms similar to a plasma gun. One of these mechanisms is magnetic
reconnection, where the applied electric field is the induction field caused in the re-
connection process, and the acceleration of the plasma reaches energies of the order of
the Alfvén energy. For example, the fast solar wind outflow during solar flares reaches
velocities of the order of 1000 km/s, which are the range of fast reconnection speeds in
the lower corona. Optical line observations during flares have demonstrated one-sided
broadening of the lines, which are successfully interpreted as Doppler broadening due
to bulk acceleration in reconnection of the antiparallel magnetic field lines in coronal
magnetic arcades. Similarly, fast flows in the magnetotail of the Earth’s magnetosphere
are interpreted as result of reconnection in the tail current sheet. Hence, although the
reconnection process is not yet satisfactorily understood, impulsive bulk acceleration
generated by reconnection seems a common process in inhomogeneous magnetized
and moving plasmas. This process clearly leads to reorganization of magnetic fields
from a regular state into a simpler configuration, relaxation of energy, and increase of
entropy.

Current sheets can also lead to particle acceleration. This has been demonstrated
by numerical simulations, where test particles are fed into the neutral point region of
the reconnecting current sheet. The idea behind such a calculation is based on the
special form of particle orbits in a magnetic neutral sheet as shown in Fig. 12.18. The
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magnetic field lines are nearly antiparallel outside the sheet and the current flowing in
the sheet is assumed to be driven by an electric field parallel to the current. Ions with
gyroradii larger than the width of the sheet but not too large perform meandering orbits
in the magnetic fields to the both sides of the sheet. At the same time these particles
experience the electric field of the sheet and are accelerated along the field direction
similar to the acceleration of ions in the foot region of the perpendicular shock. This
acceleration takes place until the ions reach sufficiently large energies and are scattered
out of the sheet to escape along the magnetic field.

It is believed that this mechanism is responsible for energetic ion beams ejected
from the geomagnetic tail into the inner magnetosphere and detected as high-speed
flows near the neutral sheet and as fast ion beams in the plasma sheet boundary layer.
However, the burstiness of such fast flows and beams and their correlation with geo-
magnetic activity suggests that reconnection in the neutral sheet is more important than
steady current sheets. Magnetohydrodynamic simulations of X-line formation and plas-
moid evolution in the tail neutral sheet have been used to investigate the acceleration of
ion injected into the X-line. Figure 12.19 shows the idea of such a simulation as well as
the schematic velocity distribution and the energy spectrum in the plasma sheet bound-
ary layer. The velocity distribution (left insert) exhibits the nearly stagnant background
ion distribution and the beam distribution streaming towards the Earth. The differential
energy spectrum (right insert) shows the background power law differential energy flux
of energetic ions with the accelerated 60 keV ions popping out as a broad peak. This
acceleration is due to the nonadiabatic effects in the reconnection process, the inductive
electric fields, and multiple reflection of the ions in the X-line.

Beams of such energetic ions propagate both towards the Earth and along the sepa-
ratrix of the plasmoid into interplanetary space. Similar ion beam injections, though not
directly observable are common during solar flare events. Their indirect signatures are
line emissions in gamma radiation detected during solar flares. It is, however, not yet
fully established that ion acceleration by reconnection can produce the required ener-
getic beams of GeV energies, which lead to the line emissions via nuclear interactions.
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Another place, where reconnection has been found to generate ion beams, is merg-
ing at the magnetopause during periods when the magnetic fields in the magnetosheath
and the magnetosphere have oppositely directed components. Observations indicate
that jetting of plasma occurs in such cases. Sometimes also counterstreaming beams
propagating along the magnetic field are observed during magnetic merging.

Accelerated Distributions

The former section dealt with two main types of acceleration, i.e., bulk acceleration and
beam generation. There is another type of acceleration which is summarized under the
term heating. All these kinds of accelerations lead to changes in the particle distribution
function as shown schematically in Fig. 12.20.

Bulk acceleration like the plasma gun process simply shifts the entire distribution
function up to the new bulk speed without changing its shape. Heating causes broad-
ening of the distribution which may not necessarily be as symmetric as suggested by
the figure. Beam acceleration shifts only one particular (possibly resonant) part of the
distribution function to higher speeds as shown in an exaggerated form in Fig. 12.20.

The shape of the right-most distribution function is clearly unstable and will lead to
relaxation of the beam into a gradual distribution function. Many observations in space
have shown that the final distribution functions which result after such a relaxation
process is some kind of power law distribution with negative power law index. An
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example is theα = −3 power law ion distribution in the tail mentioned above. But
a more general distribution function is described by thekappa distribution, which we
introduced in Secs. 6.3 and 6.4 and in Fig. 6.8 of the companion volume.

There is no general theory for the power law index,κ, of the kappa distribution,
rather this index depends on the process which generates the beam and on the follow-
up process which relaxes the beam. Because these processes are both nonlinear, they
depend on the properties of the plasma, the conditions for instability and relaxation. It
seems, however, that such distributions with differentκ are a very general property of
plasmas and are encountered in almost every place, where strong interaction between
plasma and turbulence is observed.

Auroral Acceleration

In the auroral region magnetic merging and reconnection cannot be made responsible
for the local acceleration of both electrons and ions. Observed energetic electron and
ion beams thus require a different explanation. Figure 12.21 gives an example of elec-
tron distributions measured over active aurora. The left-hand part is a velocity space
cross-section through the electron distribution. One recognizes the downward electron
beam at large negative parallel and small perpendicular speeds and the backscattered
electrons at large positive parallel and small perpendicular speeds as well as the broad
plateau of mirrored particles at large transverse and small parallel velocities. The right-
hand part shows the differential flux spectrum with the peak caused by the downward
electron beam at about 2 keV.

An example of a dynamical electron spectrogram during a spacecraft flight across
an active auroral event is given in Fig. 12.22. The signature in energy is that of an
inverted V, with high fluxes at low parallel energies at the borders of the event and high
fluxes at high energies in its center. In the center the trapped fluxes are also enhanced,
but exhibit an isotropic distribution, while at the borders one finds the electron beams.
Such structures are observed in the lower auroral magnetosphere up to about 3000 km
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height and are obviously spatial structures which are being traversed by the spacecraft.
Their spatial extension ranges from tens of meters to several 10 km, corresponding to
transition times of the order of several 10 ms to several seconds.

Ion acceleration is also observed in the auroral region, but the sites of acceleration
do not necessarily coincide for electrons and ions. At altitudes below 2000 km ions are
accelerated out of the background hydrogen and oxygen distributions to perpendicular
energies of typically 100 eV which, when moving up the field lines, evolve into so-
calledion conics, conical velocity space distributions resembling a gyrating beam. Two
types of such conics have been observed. The first type is a pitch angle distribution
which is confined to a narrow range of oblique pitch angles. It is expected that such
a distribution results from an acceleration process which itself is confined to a certain
altitude. The second type has a broader pitch angle distribution and such conics may
be caused by scattering during propagation in wave fields which have a wide extension
along the field.

Surely, the easiest way of producing beams is by letting the particles fall through
a stationary electric potential confined to a certain altitude range, adouble layer. When
passing across the potential the particle simply picks up the potential drop. The sig-
nature of such steady potentials is acceleration of ions and electrons in opposite di-
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Fig. 12.22. Auroral electron spectrogram for parallel fluxes.

rections. Clearly, for a potential drop∆φ a particle of chargeq with an initial energy
W0 ¿ |q∆φ| will have a final energy ofW1 ≈ |q∆φ|, while energetic particles with
larger initial energies,W0 À |q∆φ|, will remain almost unaffected. Hence the low-
energy part of the energy distribution will become shifted to energies of the order of
the potential drop. The energy distribution just above the potential drop flattens, and
the energy distribution is cut at the potential. This behavior should be observed in both
cases, in a non-resistive double layer and in a resistive potential drop, where current
instabilities cause anomalous resistivity and Ohm’s law generates the potential drop.

An example where a potential drop along the field is generated by differences
in the mirror heights of electrons and ions is shown in Fig. 12.23. In this case the
mirror force on the particles causes the drop and the parallel current of the precipitating
electrons. As a result an U-shaped electric potential structure resembling large-scale
double layers is caused. Such a structure is shown in Fig. 12.24. Outside the parallel
potential drop the isopotentials are parallel to the field lines. Here the magnetospheric
electric field is simply mapped down into the ionosphere. To both sides of the drop this
mapping is in opposite directions and the plasma convection flow across the drop is a
shear flow. Thus, the observation of shear flows may be an indication of the presence
of parallel potentials along the magnetic field. Numerical solutions of the propagation
of an Alfvénic pulse from the plasma sheet into the auroral magnetosphere have shown
that current instabilities may indeed cause such potential drops at altitudes close to
1RE in the auroral region.

If such a pulse starts as a kinetic Alfvén wave somewhere in the plasma sheet, car-
rying a parallel current down into the ionosphere, it changes character at about 1RE al-
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titude, where the plasma beta becomesβ < me/mi. The pulse becomes a shear-kinetic
Alfv én wave below this altitude, with the current carried by the background plasma.
Such field-aligned currents can be unstable to ion-cyclotron and ion-acoustic waves,
which give rise to the corresponding anomalous resistivities. Although the ion-acoustic
resistivity is theoretically higher, ion-cyclotron resistivity is more likely because of its
lower threshold. Reflection of part of the wave pulse at the dense ionosphere helps
concentrating the wave energy. The calculations use ion-cyclotron waves and indicate
that up to about 50% of the initial kinetic Alfvén wave energy may be transformed into
a stationary potential drop along the field and thus used for auroral acceleration.

Ion Holes

The linear threshold for current-driven ion-acoustic waves to become unstable is that
the electron current-drift velocity exceeds the ion-acoustic velocity,vde > cia. On
this basis it was concluded that ion-cyclotron modes have a lower threshold than ion-
acoustic waves. But particle simulations suggest that this might not be true in the non-
linear stage, simply because local variations in the in phase space may cause the ion to
clump together, leaving behind local accumulations of electrons. This implies density
variations which appear as ion-acoustic fluctuations in the field (Fig. 12.25). Numeri-
cal simulations have shown that in field-aligned current systems with hot electrons and
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warm ions such holes can evolve, grow, and survive for long times, even when linear
instability does not arise at low current speeds.

Why such holes grow when being attracted by the bulk of the ion distribution
can be understood from the left-hand sketch in Fig. 12.26. The randomly produced
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Fig. 12.25. Ion distribution in velocity-configuration space and evolved hole.



12.5. PARTICLE ACCELERATION 361

γia

cia vde

Unstable Holes

v

fe(v )

fi (v )

t0

t1

t2t0< t1< t2

Li
ne

ar
Th

eo
ry

Fig. 12.26. Growth of an ion hole and corresponding ion-acoustic growth rate.

hole appears first at the edge of the ion distribution function. Being a negative charge
accumulation, it is attracted by the center of the ion distribution and starts moving
without changing its size. But in the denser ion distribution its actual amplitude is much
larger than where it started, implying growth of its associated ion-acoustic disturbance.
In the right-hand part of Fig. 12.26 the resulting ion-acoustic growth rate is sketched.
At small current-drift velocities this growth rate is caused by hole formation, reaching
asymptotically the linear ion-acoustic growth rate for speeds exceeding the threshold.

The presence of ion holes causes two effects. First, it enhances the level of
ion-acoustic fluctuations and increases the ion-acoustic resistivity. Second, the holes
themselves reflect electrons (Fig. 12.27) on both sides, leading to a localized soliton
structure. But because the holes move at the ion-acoustic speed,cia, the solitons are
slightly deformed and evolve into small-scale double layers with a non-zero potential
drop across them. This potential drop causes electron acceleration. The potentials of
many ion holes along a field line will add up to a large potential drop, in which the
electrons may be accelerated to appreciable energies.
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Fig. 12.27. Reflection of electrons from an ion hole.
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12.6. Acceleration in Wave Fields

Particle acceleration in various kinds of plasma waves is probably the most important
acceleration mechanism. The reason is simply that plasmas evolve most easily by gen-
erating a number of waves by unstable processes which try to dissipate the free energy.
These processes are not straightforward but suffer from the response of the particle
population to the presence of the waves. Some particle are trapped in the wave fields,
others may be reflected from it. Phase-mixing may cause disorder and local heating.
All these processes show that waves will affect the particle distribution locally and lead
to acceleration and heating, beam formation and deformation of the particle distribution
function. Equilibrium is ultimately reached only a long way through all these processes
which include wave generation and plasma response.

General Formulation

Much effort has been invested looking into the different mechanisms of acceleration
in which waves are directly involved. These mechanisms can be divided roughly into
the following classes: resonant acceleration in extended wave fields, acceleration in
localized wave fields, heating in collapse, ponderomotive force acceleration, shock ac-
celeration, and last not least chaotic acceleration. With the exception of the ponderomo-
tive force and collapse acceleration, all other mechanisms are based on the quasilinear
Fokker-Planck diffusion equation in energy or velocity space.

The idea behind this theory is that the particles encounter a random-phased wave
field, which scatters them in energy space up to high energies. This scattering is de-
scribed as energy diffusion, and the problem is reduced to the determination of the
diffusion coefficient and solution of the quasilinear equation for the particles. This so-
lution can be found non-selfconsistently or selfconsistently. In the former case the wave
field is given and the reaction on the wave field is neglected. In the latter case the damp-
ing and amplification of the wave field by the accelerated particle component is taken
into account.

One can be critical about the unanimous use of quasilinear theory in particle accel-
eration. But for random wave fields this approach is certainly a good first step towards
an acceleration theory. If it is justified, one writes for the particle distribution function

∂f(v)
∂t

=
∂

∂v
·
[
D(v) · ∂f(v)

∂v

]
− f(v)

τ(v)
(12.61)

where the diffusion tensor,D(v), depends on the velocity and is a functional of the
wave fields. It also contains an advective term. We have included a provisional loss
term into Eq. (12.61) with a characteristic loss-time,τ(v), which is also a function of
velocity.
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The quasilinear diffusion coefficient is determined by the wave field, which sat-
isfies the wave kinetic equation. The latter can be written, including wave damping,
γl(k), and sources,Sw(k), as

∂Ww(k, t)
∂t

=
∂

∂k
·
[
Dw(k)

∂Ww(k, t)
∂k

]
− γl(k)Ww(k, t) + Sw(k) (12.62)

The wave diffusion coefficient describes the spread of the wave spectral energy across
wavenumber space. With the appropriate expressions for damping rates, source terms,
loss coefficients, and particle and wave diffusion coefficients, Eqs. (12.61) and (12.62)
describe to lowest order the particle acceleration process in the interaction between
particles and waves. Particular models specify these equations for the wave mode under
consideration and solve numerically for the distribution function of the particles.

Lower-Hybrid Electron Acceleration

Electron acceleration is one-dimensional because electrons are strongly magnetized,
and the acceleration proceeds parallel to the magnetic field. In order to achieve high
particle energies, large wave phase velocities are required to satisfy the resonance con-
dition ω = kv. The most important electrostatic wave with high parallel phase velocity
is the lower-hybrid wave. Restricting to parallel energy diffusion only, the parallel elec-
tron diffusion equation neglecting losses can be written

∂fe

∂t
=

∂

∂v‖

(
D‖‖

∂fe

∂v‖

)
(12.63)

whereD‖‖ is the parallel component of the electron diffusion tensor

D‖‖ =
8π2e2

m2
e

∫
d3k

k2
‖

k2
Wlh(k)δ(ω − k‖v‖) (12.64)

The wave spectral density,Wlh(k), of the lower-hybrid waves can, in the simplest
model, be taken as given. In this case it is reasonable to approximate it as a prod-
uct of two functions, each of which depends only onk⊥ or k‖, such thatWlh(k) =
ψ⊥(k⊥)ψ‖(k‖). In addition one may assume that the parallel spectrum is a power law

ψ‖(k‖) = Aq|k‖/km|−q (12.65)

for |k‖/km|> 1. For |k‖/km|< 1 the coefficientAq = 0 and thuskm is the minimum
wavenumber where the power law spectrum is cut off at long wavelengths. In addition,
because the total wave energy is the integral overk-space of the wave spectral density,
we can require that

∫
dkxdkyψ⊥ = W , and

∫
dk‖ψ‖ = 1. Moreover, fast electrons
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have speeds larger than the group velocity of the lower-hybrid wave,vgr‖ ¿ v‖. Thus
the parallel diffusion coefficient can be approximated as

D‖‖ ≈ Ãq|v‖|−3|kmv‖/ω|q (12.66)

whereÃq = 2πω2
pev

2
0WAq/men0 is another coefficient. We now set formallyω =

k⊥v0 and introduce normalized parallel velocities and times according tou = v‖/vthe

andτ = t(Ãq/v5
the)|kmvthe/ω|q, which allows us to rewrite the parallel electron ve-

locity space diffusion equation into the simple form

∂fe(u, τ)
∂τ

=
∂

∂u

(
1

|u|3−q

∂fe(u, t)
∂u

)
(12.67)

This equation must be solved under an appropriate initial condition. For example, one
can assume that the initial distribution function at timeτ = 0 is a Maxwellian

f0(u) = π−1/2n0 exp(−u2) (12.68)

It should be noted that the above equation has a trivial solution forq = 3, because
for the corresponding spectrum the diffusion coefficient is constant, and the solution is
simply that of a dispersing heat pulse. However, this solution is of little interest, since
it is inappropriate for nearly all conditions encountered in space plasmas. The solution
of the diffusion equation for generalq can be constructed with the help of the Laplace
transform technique. It is represented in the form of an integral

fe(u, τ) =
∫ ∞

0

du′gq(u, u′, τ)f0(u′) (12.69)

where the Green’s function is determined from the Laplace transform of the above one-
dimensional electron diffusion equation. One finds

gq(u, u′, τ) =
(uu′)2−q/2

(5− q)τ
I−ν(η) exp

[
−u5−q + u′5−q

(5− q)2τ

]
(12.70)

with the following abbreviationsν = (4−q)/(5−q) andη = 2(uu′)(5−q)/2/(5−q)2τ ,
andI−ν a Bessel function.

For any given parallel power law index,q, this expression shows a complicated
dependence on velocity and time, but as is typical for diffusive processes, the entire
distribution will decrease with time and will at the same time broaden inu-space with
increasing time. This implies that the initial Maxwellian will spread out inu to generate
a long extended tail indicating continuous acceleration of electrons to high energies.
The long-time behavior for a power law index ofq = 4, say, is found to evolve like

fe(u, τ) ≈ n0τ
−1 exp(−|u|/τ) (12.71)

This function decays much less steeply with velocity than the Gaussian function.
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Localized Lower-Hybrid Waves

The theory presented above shows that extended lower-hybrid wave fields may, in con-
tinuous interaction with an electron distribution, generate tails on the distribution and
accelerate electrons to high energies. But this model is unrealistic, because electrons
move rather fast along the magnetic field and will readily leave from the region occu-
pied by the waves. In addition, lower hybrid waves of high intensity may evolve into
localized wave packets, with the interaction between electrons and waves limited to the
transition time of the electrons across the packets which may be described as cavitons
filled with lower-hybrid plasmons. The observation of such lower-hybrid cavitons in
correlation with the appearance of auroral electron beams strongly suggests that accel-
eration in localized wave fields is more important in most cases than acceleration in
extended fields.

Localization of the wave field considerably complicates the simple theory of the
previous section. Progress can be made by assuming that the electric wave field entering
the diffusion coefficient is derived from an electrostatic potential

Φ(ξ, t) = (2π)−1/2V (ξ, t)
∑

k

Q(k) exp i[kξ − ω(k)t] (12.72)

with V (ξ, t) the slowly variable envelope potential, andξ the spatial coordinate parallel
to the direction of the lower-hybrid wave vector. The functionQ(k) is thek-spectrum of
the waves trapped inside the caviton. If the wave is a single mode, then this spectrum is
a delta-function, and thek-dependence is solely given by the transform of the envelope.
Since the caviton moves at speedu0, the coordinate in the moving frame isx = ξ −
u0t cos θ, andθ is the angle against the magnetic field. This propagation speed is nearly
parallel to the magnetic field.

In order to determine the diffusion coefficient we need the spectral energy density
of the waves. This can be calculated from the correlation function knowing the wave
electric field

E(x, t) = −(2π)−1/2V (x)
∑

k

R(k) exp i(kx−$t) (12.73)

with $ = ω − ku0 cos θ andR = ikQ. For the envelope we assume the caviton
function

V (x) = A sech(bx) (12.74)

But for technical purposes it is simpler to actually use a corresponding Gaussian profile,
V (x) = A exp(−bx2), which has a similar shape. Calculating the correlation function
of the total lower-hybrid wave field

C(x, t) =
∫ ∫

dζdτE∗(ζ, τ)E(x + ζ, t + τ) (12.75)
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one finds that the correlation function can be represented as

C(x, t) = C0g(
√

2a, x/2L⊥)
∑

k

|R(k)|2 exp i(kx−$t) (12.76)

whereC0 = A2/8(2aπ)1/2, the functiong is defined as

g(v, w) = {erf[v(w + 1)]− erf[v(w − 1)]} exp(−v2|w|2) (12.77)

anda = bL2
⊥. The length scaleL⊥ is the perpendicular scale of the caviton as obtained

from the nonlinear Schrödinger theory. It is related to the amplitude,A, by Eq. (11.58)

A2L2
⊥

∑

k

|Q(k)|2 ≈ (12λDikBTe/e)2 (12.78)

The next step is to take the Fourier transform of the correlation function to obtain the
spectral energy density as

W (κ, Ω) = W0

∑

k

|R(k)|2δ(Ω−$)g(a1/2, w) exp(−a|w|2) (12.79)

and from it to construct the parallel electron velocity space diffusion coefficient

D(v) =
W0 cos θ

2|v|
∑

k

|R(k)|2g
(
a1/2, γ

)
exp(−1|γ|2) (12.80)

where we used the abbreviations,W0 = A2L⊥/8a(2π)1/2, andw = i(k − κ)L⊥/2a.
In addition,γ = iαkL⊥/2a andα = [ω − k(u0 + v) cos θ]/kv cos θ.

This diffusion coefficient is shown in the left-hand part of Fig. 12.28 as a function
of the normalized electron velocity,v/vthe. It peaks well outside the center of the
electron distribution, thus leaving the lowest energy electrons unaffected since they do
not come into resonance with the waves trapped in the caviton. Hence, cavitons or
localized waves cause different electron dynamics than extended wave fields. Only a
relatively narrow range of electron energies will be accelerated by the localized packets,
since an electron can spend only finite time in the caviton.

The above diffusion coefficient can be used to solve the diffusion equation for
electrons. A Monte-Carlo simulation solution using many electrons initially distributed
as a parallel Maxwellian is shown in the right-hand panel of Fig. 12.28. In the long-
time limit the distribution function starts exhibiting well expressed maxima outside the
main peak. These maxima are at about 16 times the thermal energy of the electrons, in
rough agreement with observations. Also, the shape of the spectrum resembles those
measured in the auroral magnetosphere.
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Fig. 12.28. Diffusion coefficient and electron distribution in localized acceleration.

Transverse Ion Heating

Ion heating in lower-hybrid waves leading to ion conics has been observed near 1000 km
altitude in the auroral ionosphere. These observations show a good correlation between
lower-hybrid cavitons and transverse acceleration of heavy ions like oxygen up to about
10 eV out of the cold background population. A mechanism suggested for this kind of
ion acceleration or heating is lower-hybrid caviton collapse, where the transverse wave-
length of the trapped lower-hybrid waves shrinks until it is short enough for the waves
to resonate with the transverse ion motion. At altitudes above 2000 km ion heating
seems to be a result of cyclotron resonance with broadband electrostatic noise. In the
intermediate region heating up to about 50–100 eV is uncorrelated with lower-hybrid
cavitons and the conics produced are believed to be the result of lower-hybrid heat-
ing in the extended wave turbulence. It is predominantly perpendicular because of the
nearly perpendicular nature of the waves and the non-magnetized nature of the ions at
these frequencies.

The most interesting mechanism of such kind of heating is intrinsic resonance or
chaotic heating. The theory of this kind of interaction can be based on an investigation
of the Hamiltonian of a single particle in a single lower-hybrid wave of constant ampli-
tude. Let the external magnetic field beB = Bêz, and the wave electric field for purely
perpendicular propagation

E = êy E0 cos(ky − ωt) (12.81)

wherek = kêy is the wavenumber, andω the lower-hybrid wave frequency, which is
not exactly equal toωlh, but much larger than the ion-cyclotron frequency such that
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Fig. 12.29. A gyrating ion gets a kick at resonance.

ν = ω/ωgi À 1. Thus the ions behave nearly unmagnetized at these high frequencies,
but they still perform a gyratory motion. At some places on this orbit, where the un-
magnetized resonance condition,ω = k · v, is satisfied, they experience a kick in their
motion extracting energy out of the wave, and become accelerated in the perpendicular
direction. Thereby they increase their gyroradius on the expense of the wave amplitude.

We consider a non-selfconsistent problem in which the wave amplitude and energy
are kept constant. Using normalized coordinates, with time normalized to1/ωgi, length
to 1/k, and velocity toωgi/k, the Hamiltonian of the ions becomes

H = 1
2 [(px + y)2 + p2

y]− α sin(y − νt) (12.82)

The coefficientα controls the behavior of the ion motion. It is given by

α = kE0/ωgiB (12.83)

The momentum,px, is a constant, because the Hamiltonian does not depend onx.
From this Hamiltonian it is possible to derive the equations of motion of the ion in

the lower-hybrid wave field. The first equation is simply

dx/dt = y (12.84)

The second equation is a driven oscillator equation

(d2y/dt2) + y = α cos(y − νt) (12.85)
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Moreover, the above resonance condition for ion acceleration can be written as

ν = dy/dt (12.86)

showing that resonance is at the position where the fraction of the frequency equals the
velocity. Figure 12.29 shows schematically for a given ion circular orbit around the
magnetic field in phase space that a kick is experienced by the gyrating ion whenever
its phase space orbit passes the resonance.

The above equations of motion can be solved numerically for different values of
α. It turns out that for smallα, when the wave field can be neglected, the ion orbits are
regular and not disturbed. For large wave amplitudes and sufficiently high frequencies
the disturbance of the orbits is large, and the ion gyroradius increases, leading to accel-
eration in the perpendicular direction. In order to represent this diffusive behavior in
energy or phase space one must find an appropriate system of variables. It is most con-
venient to use cyclic action variables(I1, w1) and(I2, w2) in which the Hamiltonian
can be represented as

H = I1 − νI2 − α sin[(2I1)1/2 sin w1 − w2] (12.87)

The transformation to the original normalized variables is

y = (2I1)1/2 sin w1

x = −I2 − (2I1)1/2 cosw1
(12.88)

anddw2/dt = ∂H/∂I2 = ν, which givesw2 = νt. The equations of motion to be
integrated in these variables look

dw1/dt = ∂H/∂I1 = 1− α(2I1)1/2 sin w1 cos[(2I1)1/2 sin w1 − w2]
dw2/dt = ∂H/∂I2 = ν

(12.89)

One recognizes that the gyroradius is given byrgi = (2I1)1/2, w1 is the gyrophase
angle, whilew2 = νt is the wave phase angle. The best representation of the particle
orbit is therefore to consider its crossings of the planew1 = π in dependence on the
gyroradius for differentα and different initial start positions.

Figure 12.30 shows three such plots of crossings of the planew1 = π as function of
the gyroradius and of wave phase. The wave frequency isω = 30.23 ωgi or ν = 30.23,
while α assumes the values 1, 2.2, and 4. In the first case the particle orbits are slightly
modulated by the presence of the wave, yet behave adiabatically. For largerα the
adiabatic motion is destroyed by the large kicks the particles experience near resonance.
The closed regular orbits break off creating islands with large regions of stochastic
motions between the islands where the particles diffuse across towards larger gyroradii.
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Fig. 12.30. Three different cases of ion orbits in the planew1 = π.

These island disappear for even larger values ofα or larger wave amplitudes, indicating
strong particle acceleration transverse to the magnetic field.

The above mechanism is nonadiabatic and non-regular. It is based on chaotic
resonance of the ions with the wave and leads to chaotic diffusion in phase space and
acceleration of ions on the expense of wave energy. Inclusion of parallel motions and
parallel wavenumbers slightly changes the picture, but does not change the physics.
Actually, ion acceleration due to stochastic motion in wave fields is the most important
mechanism of transverse heating and may be responsible for ion conics.

Ponderomotive Force Acceleration

Another mechanism of particle acceleration is based on the ponderomotive force ex-
erted by electromagnetic waves. Since inhomogeneous electromagnetic waves of large
temporally varying amplitude exert a radiation pressure onto plasmas, it is immediately
understood that the pressure force may act as an accelerating force. Two-fluid theories
of ponderomotive forces show that the force is mass-dependent. This property is the
reason for mass-selective acceleration in ponderomotive force fields of electromagnetic
or plasma waves. The space charge electric field produced by a ponderomotive force
on the electrons,fpme, can be written as

Epm ≈ fpme/e (12.90)

This field is an ambipolar electric field. Eliminating it from the ion equation of motion,
one finds that the ion momentum conservation equation becomes

min0
dvi

dt
= − 1

µ0
B×∇×B−∇pi + n0(fpme + fpmi) (12.91)

which shows that the ions can be accelerated by slowly varying electromagnetic wave
fields. The ponderomotive forces depend on the model used. Expressions are given in
Eq. (11.15). Applying these expressions to an electromagnetic left-circular polarized



12.6. ACCELERATION IN WAVE FIELDS 371

ion wave, the acceleration parts in the ion equation of motion can be written as

min0
dvi‖

dt
= − ω2

pi

ω ωgi

[
ω

ω − ωgi
∇‖ − k

ω

(
1− ω2

gi

(ω − ωgi)2

)
∂

∂t

]
WE

min0
dvi⊥
dt

= −ω2
pe

ω2
ge

[
1− me

mi

ω2
ge

(ω − ωgi)2

]
∇⊥WE

(12.92)

Obviously, there is acceleration of ions in the field of an electromagnetic ion-cyclotron
wave with the acceleration acting in both directions. Parallel to the field it will result
in acceleration, the transverse effect is heating. The above equations suggest that ion
acceleration is significantly enhanced when the frequency is close to the ion-cyclotron
frequency. But this conclusion must be taken with care because close to the cyclotron
resonance the ponderomotive effect is changed by other kinetic effects.

Diffuse Fermi Acceleration

Very often one observes ion distributions which are not simple beams but diffusely
accelerated distributions. We have mentioned such examples in connection with ion re-
flection and further evolution of the so-called kidney distributions into diffuse ring dis-
tributions at the Earth’s bow shock wave in the quasi-parallel foreshock region where
large-amplitude low-frequency magnetic turbulence evolves into shocklets. The in-
teraction of this turbulence with the non-isotropic ion distribution is believed to lead
to strong ion heating and ion acceleration in these cases. This process is usually re-
ferred to assecond-order Fermiacceleration, but in essence it is stochastic acceleration
in extended large-amplitude low-frequency electromagnetic waves propagating in the
whistler or ion-cyclotron band.

This process is formally described by Eqs. (12.61) and (12.62). The acceleration
process is quasilinear. In order to solve these equations, assumptions must be intro-
duced about the damping, growth, and loss rates of particles and waves and about the
particle and wave diffusion coefficients. So far these assumptions have been based
only on simple considerations, and nonlinear effects have never been taken into ac-
count. Usually a spatial diffusion coefficient parallel to the magnetic field,κ‖ =
〈(∆s)2〉/(2∆t), is introduced. This coefficient gives the diffusive escape time of the
particles asτd ≈ L2/8κ‖, whereL = 2∆s is the length of the system along the mag-
netic field. An approximation forκ‖ is obtained from pitch angle diffusion theory. The
resulting approximative expression for the particle loss-time is

τd =
9π2e2

4c2

L2

m2
i v

3

∞∫

k0

dk‖
k‖

(
1− k2

0

k2
‖
Ww(k‖

)
(12.93)
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Fig. 12.31. Stochastically accelerated ion energy spectrum in MHD waves.

In a similar way the diffusion coefficient of the ions can be written

D(v) =
2π2e2

v

v2
A

c2

∞∫

k0

dk‖
k‖

(
1− k2

0

k2
‖
Ww(k‖

)
(12.94)

Herek0 is the smallest wavenumber of the extended wave spectrum, andWw is the
electric wave spectral density. The wave diffusion coefficient is estimated assuming a
Kolmogorov law with inertial range turbulence

Dw ∝ vA|k‖|7/2β1/2
w (k‖) (12.95)

whereβw = 2µ0Ww/B2 is the wave plasma beta. One needs further assumptions
about the wave absorption rate,γl, and energy gain in the source and loss terms in Eq.
(12.62) to solve the diffusive acceleration equations numerically.

Figure 12.31 shows a numerical example of an ion spectrum resulting from stochas-
tic acceleration in Alfv́en waves without any nonlinear evolution of the waves. The
wave energy spectrum is given in the right part of the figure as function of the ratio
ck‖/ωgi. The main lesson learned from this acceleration process is that with increasing
time the evolution of the energy spectrum is towards the generation of a high-energy
tail with sharp cut-off at large energies where transit time effects limit the accelera-
tion. Spectra like this indeed resemble measured spectra of particle acceleration in
solar flares and in the diffuse foreshock region.
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The current theory is semi-selfconsistent. It takes into account the modification
of the spectrum and particle fluxes under the interaction, but it introduces severe as-
sumptions about the spatial extent of the waves and about the growth, damping, loss,
and diffusion rates. Nevertheless, it explains the generation of very high energy tails as
observed in foreshocks, solar flares, and in cosmic rays.

Concluding Remarks

We have excluded many facts and fields from this last chapter, mainly because of lack
of space. In particular, we regret not having been able to review slow and intermediate
shock theories, which all still are under ongoing discussion. Also shock acceleration
in its two variants, first-order Fermi and shock drift acceleration, has been left aside.
In spite of their wide application in cosmic ray physics and astrophysics these theories
form the simpler part of all acceleration mechanisms.

Further Reading

The general theory of transport coefficients is summarized in [1]. The calculation of
anomalous transport coefficients is described in [2] and [4]. The calculation of form
factors is given in [3]. Thresholds of ion-acoustic turbulence were determined by Kindel
and Kennel,J. Geophys. Res.76 (1971) 3055. Ion-cyclotron collision frequencies are
given by Dum and Dupree,Phys. Fluids13 (1970) 2064. Ion-acoustic resistivity is the
subject of Dum,Phys. Fluids, 21 (1978) 945. Strongly turbulent Langmuir collision
frequencies are found in Sagdeev,Rev. Mod. Phys., 51 (1979) 1.

Observational information on shocks is found in [7] and [9]. The older theories
of laminar and turbulent shocks are discussed in [8], more recent information is found
in [6]. The various critical Mach numbers are discussed by Kennel et al. in [7]. Mi-
croinstabilities and their effects on shocks are found in Wu et al.,Space Sci. Rev., 37
(1984) 63. Ion distributions in the foreshock are given in Sckopke et al.,J. Geophys.
Res., 88 (1983) 6121. Measured ion-cyclotron spectra are presented by Sckopke et al.,
J. Geophys. Res., 95 (1990) 6337. Waves in the magnetosheath are summarized by La-
combe and Belmont in [6]. A summary of electron distribution functions in and near
shocks is given by Feldman in [9]. Upstream waves, slams and shocklets and their role
in reformation are discussed by Scholer,J. Geophys. Res., 98 (1993) 47.

For the kinetic Alfv́en wave mechanism of auroral acceleration we followed Lysak
and Dum,J. Geophys. Res., 88 (1983) 365. Ion hole formation is taken from Tetreault,
J. Geophys. Res., 96 (1991) 3549 and Gray et al.,Geophys. Res. Lett., 18 (1991) 1675.
For the acceleration in extended lower-hybrid wave fields see Wu et al.,J. Plasma
Phys., 25 (1981) 391. The theory of localized electron acceleration follows work by
Dubouloz et al.,Geophys. Res. Lett., 22 (1995) 2969. Perpendicular ion heating is the
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Epilogue

There would be infinitely more to say about observation and theory of space and astro-
physical plasmas. But an introductory text must close at some point. In our two books,
Basic Space Plasma PhysicsandAdvanced Space Plasma Physics, we have tried to give
an overview of the current state of the art in space plasma physics on a level which we
hope is accessible to the student and to the beginning researcher. Clearly, both volumes
should be taken together in order to get a relatively complete picture of space plasma
physics, reaching from the elementary level of particle motion in crossed electric and
magnetic fields through the state of plasma equilibria up to the more sophisticated level
of nonlinear plasma theory.

As far as the available space allowed, we tried to follow the demand of theoretical
rigor. However, the reader will find that this intention has been violated at several
places, where we skipped the derivation and went on to a verbal description. In all these
cases we have put effort into a relatively clear description of the physics involved and a
discussion of its consequences. We feel that sometimes such a choice is more valuable
than being lost in the rigorous but complicated mathematical jungle. In most of those
cases we tried, however, to write down the fundamental mathematical expressions.

As the authors of this text we are left with the unpleasant feeling that we have
only touched the problems, skipped a large number of important and interesting effects,
which we either felt to go too far beyond an introductory presentation or, worse, we
have not been aware of. In the latter case we would be grateful for hints which fields
should be included in any possible forthcoming edition. However, the inevitable incom-
pleteness of this course may be compensated by consulting the book edited by M. G.
Kivelson and C. T. Russell,Introduction to Space Physics. There the reader will find a
more phenomenological description of many space plasma phenomena which we have
mentioned (or neglected). In a sense the two approaches to space plasma physics given
there and here complement each other.

Numerical simulations are the largest field which we have excluded from this in-
troduction to space plasma physics. Contemporary theoretical space plasma physics is
to a large part based on numerical simulations. The great advantage of simulations is
that they include the nonlinear evolution of the simulated system in a quite natural way.
Thus they provide deep insight into the evolution of many phenomena which sometimes
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cannot even be formulated analytically. There are many examples, especially involv-
ing inhomogeneities and nonlinearities, where problems could only be solved by the
simulation technique.

Interestingly, numerical simulations create a different view of the phenomena. Nu-
merical simulation can be taken as an experiment done not on real but model plasmas.
Space plasma physics has used this possibility in order to investigate those aspects of
which real experiments in space can give only sporadic information. This tendency
is interesting and challenging, because for a really deep understanding of the various
natural and simulated phenomena the combination of observation, simulation, and an-
alytical investigation is required. To provide the basis for the latter was the intention
of the writing of this book. But in application to real problems the contemporary re-
searcher will typically enter numerical simulations. A small number of books where an
introduction into numerical simulation technique can be found have been mentioned in
the last few chapters.
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