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Physics of Space Plasma Activity

Space plasma is so hot that the atoms break up into charged particles which
then become trapped and stored in magnetic fields. When critical condi-
tions are reached the magnetic field breaks up, releasing a large amount
of energy and causing dramatic phenomena. A prominent example is the
magnetospheric substorm occurring in the Earth’s magnetosphere. It in-
volves plasma and magnetic field structures extending from 100 km to tens
of Earth radii, and can be seen as strong intensifications of the northern and
southern lights. The largest space plasma activity events observed in the
Solar System occur on the Sun, when coronal mass ejections expel several
billion tons of plasma mass into space.

Physics of Space Plasma Activity provides a coherent and detailed treat-
ment of the physical background of large plasma eruptions in space. It pro-
vides the background necessary for dealing with space plasma activity, and
allows the reader to reach a deeper understanding of this fascinating natural
event. The book employs both fluid and kinetic models, and discusses the
applications to magnetospheric and solar activity.

This book will form an interesting reference for graduate students and
academic researchers in the fields of astrophysics, space science and plasma
physics.
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Preface

A major motivation for writing this book is the strong fascination that
visible signatures of plasma activity are able to generate. This goes along
with considerable professional research interest in this area. Also, those who
have admired spectacular pictures or video presentations on the internet
displaying spacecraft observations of auroral activity or of solar eruptions,
are often motivated to learn more about their physical background.

In the early days of spacecraft observations, the understanding of dynami-
cal phenomena such as geomagnetic storms and solar flares was considered
as poor and high up on the list of particularly challenging problems. Re-
markably, this is still true today. The observational database has increased
dramatically and important new phenomena were discovered, such as coro-
nal mass ejections and manifestations of the global nature of magnetospheric
substorms involving large regions of the magnetosphere. There are many
more aspects than envisaged originally, and today we have good reasons to
use the comprehensive notions of solar and magnetospheric activity, which
in this book are combined under the working term space plasma activity.
The desire to understand these complex phenomena has mobilized consi-
derable research efforts, but due to the overwhelming complexity that one
encounters, our present understanding is still far from being satisfactory.

One might ask, whether in this situation it is appropriate to write a book
that concentrates on space plasma activity. Would it not be more reasonable
to wait until our understanding of the underlying physical processes has
settled down more solidly?

The main reason for writing this book at this time is the fact that during
past decades a substantial wealth of theoretical tools has been developed,
which can be expected to remain useful, even if many of the final answers
are still to be found. In fact, good knowledge and further development of
those tools could well help to accelerate progress in this field. The situation
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appears to be similar to that of the Earth’s lower atmosphere, where sev-
eral phenomena associated with atmospheric disturbances are still not well
understood; on the other hand, there is little doubt that gas-dynamics meth-
ods play an important role in present and future investigations in that area.
Regarding that the electrodynamic interactions make plasma dynamics con-
siderably more complicated than gas dynamics, it is obvious that there is
a strong need for reviewing and, where possible, for improving the exist-
ing tools and for developing new ways of approach. Therefore, after the
phenomenological survey given in Part I, the relevant methods and plasma
properties are addressed in Parts II and III, starting from basic plasma mod-
els. In this way an updated (although necessarily incomplete) toolbox for the
study of space plasma activity arises. I hope that this will be found useful
for research in space plasma activity.

A further aim is to meet the needs of scientists or graduate students trying
to enter the field of large-scale space plasma phenomena. They often ask
for coherent descriptions of the theoretical methods that would allow them
to discriminate between conclusions that can safely be drawn and concepts
that are more of a speculative nature.

There are also indications suggesting that the occupation with topics re-
lated to space plasma activity have enjoyed increasing attractiveness since
it became clear that such phenomena have aspects falling under notions
of modern theoretical physics, such as nonlinear dynamics, spontaneous
processes or catastrophe theory.

The separation between the theoretical tools (Parts II and III) and the
applications (Part IV) was chosen for several reasons. First, this separation
allows a systematic and coherent presentation of the theory. Further, it
makes it possible to present the applications of Part IV in such a way that,
to some extent, they can be understood without detailed knowledge of Parts
II and III. Lastly, the separation suggests itself in view of the speculative
elements that necessarily play a more important role in Part IV than in
Parts II and III.

The reader should have knowledge of physics and basic mathematical tech-
niques, as is commonly available after, say, four years’ study of physics or
astronomy, mathematics, or engineering. Some knowledge of plasma physics,
as drawn from textbooks (e.g., Sturrock, 1994; Boyd and Sanderson, 2003;
Cravens, 2004), would help the reader to understand the basic plasma models
and to follow the formal developments of Parts II and III. Selected back-
ground material, tailored to the requirements of this book, is available on the
internet; the addresses are inserted in the text where appropriate. Part IV
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is more descriptive and needs less background in mathematics and plasma
physics.

It is a pleasure to acknowledge the invaluable help and support that I
received from many sides before and during the preparation of this book.
A substantial part of the material originates from the research carried out
before the mid 1990s by our group Theoretische Physik IV at the Ruhr-
University of Bochum. It still fills me with joy when I remember its lively
and creative atmosphere. Particularly, I feel indebted to Joachim Birn and
Michael Hesse, with whom fruitful and pleasant collaboration has continued
until today. I also profited greatly from discussions with many colleagues
of the plasma, space and solar physics communities, too numerous to name
all of them. But I wish to mention those with whom I had particularly
valuable contacts during my extended struggle with space science, namely
Ian Axford, Dieter Biskamp, Jörg Büchner, Peter Gary, Akira Hasegawa, Ed
Hones, Jim McKenzie, Eric Priest, Philip Rosenau, Roald Sagdeev, Rein-
hard Schlickeiser, George Siscoe, Bengt Sonnerup, Ted Speiser and Vytenis
Vasyliunas. I am grateful to the space science group of the Los Alamos
National Laboratory for their warm hospitality during numerous visits.

For their thoughtful comments that led to many important improvements
of the manuscript I am deeply thankful to Joachim Birn, Terry Forbes,
Michael Hesse, Gunnar Hornig, Michael Kiessling, Thomas Neukirch, An-
tonius Otto and Heinz Wiechen. I thank Angelika Schmitz, Isabelle Tissier
and Heike Neukirch for their competent assistance in the early days of the
project.

I am particularly grateful to my wife Erika for her continuous understand-
ing support and valuable help.

Bochum, August, 2006 Karl Schindler
ks@tp4.ruhr-uni-bochum.de
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Introduction

Space plasma phenomena have attracted particular interest since the begin-
ning of the exploration of space about half a century ago. Already a first
set of pioneering observations (e.g., Ness, 1969) discovered that matter and
electromagnetic fields in space have a complex structure, which was largely
unpredicted. Terrestrial and, particularly, spacecraft observations of solar
plasmas and fields point in the same direction. In fact, our present picture
of the plasma and the electromagnetic fields in space throughout the solar
system (and beyond) is that of an extremely complex medium with spatial
and temporal variations on large ranges of scales. The wealth of dynamical
phenomena observed in space plasmas has steadily increased as more and
more refined observational techniques have become available, and it can be
expected that important processes still await their detection.

An outstanding class of space plasma phenomena is addressed here under
the notion of space plasma activity. Quite generally, in the area of space and
astrophysical plasmas the term activity is used for a set of particular mag-
netospheric, stellar or galactic phenomena, which, although vastly different
regarding their space and time scales and their dominant physical processes,
have an important characteristic property in common. In all cases they show
sudden transitions from relatively quiet states with less pronounced time-
dependence to dynamic states in a strongly time-dependent evolution. (Note
that this property by no means is restricted to plasma phenomena, volcanic
activity being a prominent example from another discipline.)

The term activity is commonly used in two different ways. In a narrow
sense activity refers to the strongly time-dependent dynamic phase alone.
In a wider sense, it means the entire phenomenon including the relevant
quiescent intervals. The latter meaning is adopted for the title of this book
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2 Introduction

and, to a large extent, also for the text. It will be clear from the context,
when, occasionally, we will use the narrower meaning.

Strictly speaking, as is the Earth’s atmosphere, the plasma in space
is always in a time-dependent evolution. Therefore, in a strict sense it is
impossible to identify intervals where the space plasma (in some region) is
quiet. However, as in the atmosphere, it often does make sense to speak
of quiet and dynamic plasma conditions in an approximate way. There is
a qualitative difference between a situation where during an atmospheric
storm a strong gust blows across a countryside and the comparatively quiet
state of the air before the gust arrives. It is in this sense that we will speak
of quiescent and of dynamic space plasma states. Also, as we will see, the
notion of quiescence can be an important theoretical tool even if the real
system considered has a level of superimposed time-dependent phenomena.

Generally, for systems with multiple time scales quiescence and dynamics
are relative terms; what counts is that the processes that one compares occur
on different, well-separated time scales. A more precise definition of activity
in the present context does not seem to be available, nor is it necessary for
our purposes. From a phenomenological point of view we simply refer to the
processes described in Chapter 2.

For magnetospheric activity, the most direct visual evidence is provided
by auroral light emission. Here, a corresponding black and white reproduc-
tion (Fig. 1.1) should suffice to indicate strong temporal variations of the

Fig. 1.1 Auroral luminosity enhancement at two magnetic meridians during a mag-
netospheric substorm approximately lasting from 17:10 to about 19:00 Universal
Time (reproduced from Sergeev et al. (2001) by permission of the American Geo-
physical Union).
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aurora occurring in connection with magnetospheric activity. A quiescent
state ends near 17:10 UT (Universal Time), when the dynamic phase starts.
Such strong enhancement of auroral emissions are important signatures of
magnetospheric substorms (Akasofu, 1968), to be addressed in detail later.
There are many manifestations of such changes in the signatures of char-
acteristic plasma quantities, monitored by spacecraft in the Earth’s magne-
tosphere (see Section 2.1).

A most spectacular class of activity processes in the solar system involves
large plasma outbursts from the solar corona into interplanetary space. Such
events are called coronal mass ejections. An example is shown in Fig. 2.8; a
brief survey is given in Section 2.2.

Part I sets the scene with regard to the phenomenological background and
to the basic plasma models. Concerning the latter, the kinetic description
follows from basic principles, specifically Newton’s mechanics, Maxwell’s
theory of electromagnetism and statistical mechanics, while the fluid pic-
tures involve additional simplifications. The models are presented without
derivations, but their physical meaning is outlined. For more on the foun-
dations the reader should consult introductions to plasma physics.

Parts II and III are devoted to theoretical tools, specific to space plasma
activity. Their splitting into two parts reflects the fact that it makes sense
to distinguish the quiescent from the dynamic phases not only in their phe-
nomenological appearance but also in the choice of appropriate theoretical
modelling.

The present tasks are complicated by the fact that the plasmas that we
want to study are spatially inhomogeneous. This excludes a considerable
fraction of the available methods in space plasma physics, such as the the-
ory of waves, instabilities and wave–particle interaction on a homogeneous
background. Such processes will be considered only if a special motive for
doing so arises. Our present purpose leads us to consider space plasma
processes with background gradients playing an important role.

We mostly deal with situations where the gradients are supported by large-
scale magnetic forces. In addition, the present scope does include external
gravity in a few instances, but self-gravitation is excluded. Thus, although
small scale galactic magnetic field structures may be covered in principle,
active galactic nuclei are outside the present scope.

Our approach takes into account that it has proven appropriate to deal
with inhomogeneous space plasmas by considering systems with both two
and three spatial dimensions, profiting from their characteristic advantages.
3D systems are more realistic, but general analytical results are scarce,
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so that in many cases numerical simulations are required. For models with
two spatial dimensions a considerable wealth of analytical techniques is avail-
able, but the results are less realistic. Still, they are often indispensable for
providing a qualitative understanding of complex phenomena. Also, 2D
results can provide valuable guidance for the interpretation of numerical
simulations.

In Part IV it is attempted to discuss particular aspects of magnetospheric
and solar activity in the light of Parts II and III. It will become apparent that
in some areas the theoretical results are able to provide a deeper physical
understanding. In other domains the discussion reveals a strong need for
further theoretical investigations.

The provided references should be regarded as typical examples, complete
referencing would have exceeded the scope of this book.



Part I

Setting the scene
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Sites of activity

Here we will give a qualitative overview on major activity processes in the
solar system. Since our main aim is to concentrate on basic aspects and on
theoretical results, a full account of the observational background is outside
our present scope. However, in the following sections we will summarize
the main observational facts that are relevant for our later discussion. For
details the reader is referred to the literature. Note that in the present
chapter we will largely refrain from giving physical interpretations. They
will be discussed in Part IV using the tools provided in Parts II and III.

2.1 Geospace

Magnetospheric activity comprises the major global dynamical phenomena
of the Earth’s magnetosphere including ionospheric processes. It results from
the interaction of the solar wind with the Earth’s magnetosphere (Fig. 2.1).

The solar wind is characterized by a fast (supersonic) plasma flow from
the Sun into interplanetary space. The magnetosphere is the region above
the ionosphere that is dominated by the geomagnetic field. The solar wind
compresses the Earth’s magnetic field on the day-side and stretches it out
to a long tail (magnetotail) on the night-side of the Earth (Fig. 2.1). A bow
shock wave stands in front of the magnetosphere, which has a rather thin
boundary, the magnetopause. Its thickness, which varies considerably, can
become as small as a few hundred km.

The magnetotail consists of tail lobes, where the magnetic field energy
density dominates, and the plasma sheet, which in its central part (central
or inner plasma sheet) is dominated by the energy density of the plasma.
Since the plasma sheet is particularly important for magnetospheric activity,
typical values of plasma sheet parameters are listed in Table 2.1. Because of
substantial spatial and temporal variability these numbers can provide only

7



8 Sites of activity

Fig. 2.1 A qualitative sketch of major features of the Earth’s magnetosphere. Here
‘pl sph’, ‘rc’, ‘aa’ and ‘ab’ stand for plasma sphere, ring current, Aurora Australis
(southern lights) and Aurora Borealis (northern lights), respectively. An interplan-
etary magnetic field line is shown for a case with a southward field component.

Table 2.1 Characteristic properties of the plasma sheet.

plasma sheet thickness 20 000 km
length 500 000 km

central plasma sheet number density 2 × 105 m−3

ion temperature 5 × 107 K
electron temperature 107 K
magnetic field strength 2 nT

magnetic lobes magnetic field strength 20 nT

a general orientation. Temperatures are not thermodynamic temperatures,
they simply measure kinetic energy of random motion. Fig. 2.2 shows a
cross-section of the magnetotail.

The solar wind transfers energy into the magnetosphere. Correlation
studies (e.g., Bargatze et al., 1985) have established that the energy flux
is particularly strong when the interplanetary magnetic field component
perpendicular to the ecliptic plane points southward (Fig. 2.1). The magne-
tosphere responds to the energy input through a set of complex dynamical
phenomena.
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north lobe

plasma sheet

south lobe

Fig. 2.2 A qualitative sketch of a cross section of the magnetotail. The view is
from the tail to the Earth. Black arrows indicate the perpendicular current pattern
of the tail. The plasma sheet is surrounded by boundary layers (broad line). The
outer boundary is the magnetopause.

Fig. 2.3 gives an example (Sergeev et al., 2001) showing detailed measure-
ments obtained from spacecraft and ground instruments on 10 December
1996. The time interval is the same as that of Fig. 1.1. The panels a and b
show the solar wind dynamic pressure PD and a parameter (Eps3), which
strongly emphasizes the occurrence of a southward component of the inter-
planetary magnetic field, and which can be regarded as a measure of the
energy flux directed into the magnetosphere. The panels c and d show the
ground observation indices Dst and AE. Here, Dst measures the distur-
bance of the mid-latitude magnetic field component parallel to the dipole
axis, so that it monitors the intensity of the magnetospheric ring current.
The AE index (in panel c shown as a stackplot of magnetograms from several
stations) measures magnetic signatures caused by the auroral electrojet (an
east-west electric current), which intensifies and changes its location during
dynamic periods. The solid curves in panels e, f, g show measurements made
aboard the GEOTAIL spacecraft, located at about 25 RE (Earth radii) geo-
centric distance on the night-side of the Earth. Panel e shows a pressure
parameter PT, which is the sum of (scalar) kinetic and magnetic pressure
and can serve as a rough measure of the energy density of the magnetotail.
The parameters IPS and LOBE/BLPS indicate whether the satellite was
in the inner plasma sheet or in the lobe or plasma sheet boundary layer
regions (see Fig. 2.2), respectively. Panel f gives the magnetic field compo-
nent Bz perpendicular to the mid-plane of the plasma sheet (positive in the
northward direction) and panel g shows the plasma velocity component in
the earthward direction, vx. Vertical dashed lines show approximate onsets
of enhanced auroral activity.

Before 17:10 UT the magnetosphere was in a comparatively quiescent state
with a substantial energy flux entering it. A significant fraction of the energy
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Fig. 2.3 Ground-based and satellite measurements during a dynamic period of the
magnetosphere, details are explained in the text (reproduced from Sergeev et al.
(2001) by permission of the American Geophysical Union).

accumulates in the magnetotail, indicated by a corresponding increase of
PT. Near 17:10 UT the magnetosphere suddenly turns into a different state,
which is much more dynamic and involves the entire system consisting of
the magnetosphere and the ionosphere. This is a magnetospheric substorm
(Akasofu, 1968).

Under suitable conditions sequences of substorms can be accompanied
by a gradual build-up of the ring current (Reeves and Henderson, 2001).
A significant increase of |Dst| indicates a magnetic storm (Chapman and
Bartels, 1940). This means that understanding magnetic storms requires
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insight into the substorm process. Therefore, the magnetospheric substorm
is widely regarded as the basic element of magnetospheric activity.

Substorms, however, cannot account for all large scale activity processes
in the magnetosphere. This is clear from the plots in Fig. 2.3 also. In fact,
shortly after 19:00 UT a second dynamic period begins. This period does not
show the typical substorm signatures. Detailed studies indicate that such
periods show features consistent with quasi-steady phases of considerable
plasma flow. The plasma flow velocity includes a significant component per-
pendicular to the magnetic field, the corresponding plasma transport being
referred to as convection (Axford and Hines, 1961). This has led to the term
convection bay. (The term bay refers to the shape of the magnetograms.)

In the following we discuss a few further properties of magnetospheric
substorms. Note that in view of our overall topic we deliberately concentrate
on substorms, leaving aside many magnetospheric phenomena that would be
of interest from other viewpoints.

One distinguishes three phases of a magnetospheric substorm (McPherron
et al., 1973; Russell and McPherron, 1973):

(i) the growth phase, which coincides with the quiescent phase before
onset, where energy is accumulated in the magnetotail (before 17:10
UT in Fig. 2.3),

(ii) the expansion phase, which is the dynamical phase following substorm
onset (near 17:10 UT in Fig. 2.3),

(iii) the recovery phase, which – at least in a fraction of the cases – can be
identified as the phase during which the magnetosphere returns to a
more quiescent state. (In the example of Fig. 2.3 the recovery phase
does not fully develop as it goes over into the convection bay.)

These and many similar findings have led to the interpretation that during
the growth phase (predominantly magnetic) energy is loaded into the mag-
netotail and is released, i.e., turned into heat, kinetic energy of directed flow
and energetic particles, during the expansion phase (Baker et al., 1985). The
overall energy transfer that occurs during a substorm has been estimated as
amounting to 1014–1015 J. The duration of a growth phase is of the order of
an hour but shows large variability. The dynamic processes observed after
onset have a broad spectrum of time scales, the largest typically being of
the order of 10 min.

In the late stages of a growth phase often a new feature occurs in the near-
Earth tail, described as the formation of thin current sheets (McPherron
et al., 1987; Kaufmann, 1987; Mitchell et al., 1990; Sergeev et al., 1990;
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Pulkkinen et al., 1994). Here, the electric current in the plasma sheet de-
velops a considerable concentration in a rather small region which may well
develop widths of the order of a few 100 km or even smaller, which is small
compared with typical plasma sheet widths (Table 2.1).

During the substorm expansion phase one typically observes significant
earthward flow in the near-Earth tail region with flow velocities of a few hun-
dred km/s. Also, the magnetic field, which becomes considerably stretched
during the growth phase, relaxes into a more dipolar shape, a process called
dipolarization (Slavin et al., 1997; Nakai and Kamide, 2000). This process is
connected with the development of a wedge-shaped structure in the pattern
of the electric current (McPherron et al., 1973), the current wedge, which
forms as a sizable fraction of the near-Earth tail current, is deviated through
the ionosphere. A particular current wedge event that was investigated in de-
tail by Angelopoulos et al. (1996) occurred late in the expansion phase. The
substorm wedge is well correlated with the intensification of the auroral elec-
trojet (e.g., Baumjohann, 1982). The change in the magnetospheric current
pattern has also been described as current disruption (Lopez et al., 1993).

In the more distant parts of the magnetotail, say beyond 30 RE, large
tailward plasma flows are characteristic for expansion phases. Large scale
structures are embedded in these flows, which are described as plasmoids
(Hones, 1977; Moldwin and Hughes, 1992; Ieda et al., 1998, 2001). The
internal magnetic field of plasmoids is often found to have a helical or flux
rope structure (Slavin et al., 1989).

The early observations of plasma flow and magnetic fields have led to
the phenomenological concept of the formation of a near-Earth magnetic
neutral line (Hones, 1973; Nishida and Nagayama, 1973; Nishida and Hones,
1974; Hones, 1977), as a magnetic island, the magnetic signature of the
plasmoid, begins to form in the magnetotail. For details we have to refer to
Sections 11.2.10, 11.4.2 and 13.3.2.

It is also typical of magnetospheric substorms that their onset is closely
associated with sudden increases of energetic particle fluxes in the inner mag-
netosphere (e.g., Reeves et al., 1990). They are typically observed by geo-
stationary satellites (circling the Earth at a geocentric distance of 6.6 RE).
Such injections are largely dispersionless (within a few hours of local mid-
night), which excludes that the particles are accelerated elsewhere and then
move to the observation location with speeds corresponding to their energy.

The magnetospheric current system plays an important role in the cou-
pling of the magnetospheric dynamics with ionospheric dynamics (magne-
tosphere/ionosphere coupling). One of the direct manifestations of that
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coupling is the enhancement of auroral activity during substorms (Fig. 1.1).
Thus, the understanding of the auroral emissions necessarily requires insight
into the magnetosphere/ionosphere coupling. In view of this complicated
coupling, it is not surprising that in spite of considerable progress made
during the last decades many questions about this fascinating phenomenon
are still open. Historically, the Aurora Borealis has provided the first evi-
dence of magnetospheric activity.

From the point of view of thermodynamics or statistical mechanics, the
magnetosphere is a nonequilibrium system. This is manifested by the pres-
ence of considerable pressure gradients and electric currents (see Table 2.1,
Fig. 2.1 and Fig. 2.2). It is apparent from Fig. 2.1 that the plasma is largely
organized by the magnetic field. For instance, the boundary of the (quies-
cent) plasma sheet is a magnetic flux surface, at least approximately. The
spatial inhomogeneity of the plasma is sustained by the magnetic forces.

However, the thermodynamic nonequilibrium nature of space plasmas
does not exclude phases of approximate equilibrium in the sense of force
balance between mechanical and electromagnetic forces. This is the notion
of equilibrium that will play an important role in our discussions.

Observations of plasmoids and of the dipolarization indicate that magne-
tospheric activity involves large scale reconfigurations of the magnetic field,
with indications of changes in the magnetic topology. The central plasma
physics process that leads to changes of magnetic topology is magnetic
reconnection (Dungey, 1961; Vasyliunas, 1975; Biskamp, 2000). Naturally,
considerable attention will be paid to that process.

We have already mentioned a convection bay as an example for a plasma
sheet process that is not directly related to a genuine substorm. Other ex-
amples are pseudo-breakups (Koskinen et al., 1993; Partamies et al., 2003),
which seem to initiate like a substorm, without however reaching the large
scale signatures of a substorm.

With the exception of the thin current sheets, the phenomena described so
far have spatial scales of the order of an Earth radius or larger and time scales
of the order of minutes or larger. This, however, by far is not the full space
plasma picture. In fact, magnetospheric dynamics involves a broad spectrum
of wave phenomena with a rich set of wave-particle interaction processes.
This is a wide field with many detailed observational results (e.g., Gurnett
and Frank, 1977; Tsurutani et al., 1998). We will return to particular aspects
of waves and turbulence at several points in this book. Here, it seems
sufficient to point out that, for example, waves have been observed in the
entire frequency range (from 5 Hz to 311 kHz) by the Polar satellite with
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a correspondingly wide range of wavelengths (e.g., Tsurutani et al., 1998).
Most pronounced wave activity is often seen in the magnetospheric boundary
layers such as the plasma sheet boundary layer and the magnetopause (see
Fig. 2.2).

The existence of the broad wave spectrum is closely related to intrinsic
length and time scales of a magnetized plasma. By intrinsic scales we mean
characteristic times and lengths that depend on particle mass or charge
(see the discussion farther below). Table 2.2 gives a list of typical intrinsic
plasma scales for central plasma sheet conditions. For details and for the
exact definitions of the quantities listed in the table, we refer to the ap-
propriate sections. (The relevant equations are quoted in the table.) Here,
the following qualitative explanations should suffice to bring out the main
points. The electron plasma frequency is a frequency characteristic for elec-
tric plasma oscillations and the gyroradius rg (for particles moving with
thermal velocity corresponding to temperature) and the gyrofrequency ωg

are quantities characteristic for particle orbits in magnetic fields. In a suf-
ficiently strong magnetic field the particles perform helical orbits around
the magnetic field lines (they gyrate) with radius rg and frequency ωg. The
electron inertial length plays the role of an inertia-based skin depth for elec-
tromagnetic disturbances. The Debye length λD is a characteristic shielding
length for electric fields in a plasma. The table includes the plasma pa-
rameter Λ, which is the number of electrons in a sphere with radius λD.

Table 2.2 Intrinsic plasma scales and the plasma parameter for central
plasma sheet conditions. The numbers in brackets are generated by

replacing the magnetic field strength of the plasma sheet by the
corresponding lobe value. Where appropriate, the last column gives the

number of the defining equation.

ion (proton) plasma frequency ωpi = 600/s (3.24)
gyroradius rgi = 6000 km (600 km) (3.4)
gyrofrequency ωgi = 0.2/s (2/s) (3.5)
inertial length c/ωpi = 500 km

electron plasma frequency ωpe = 3 × 104/s (3.24)
gyroradius rge = 60 km (6 km) (3.4)
gyrofrequency ωge = 400/s (4000/s) (3.5)
inertial length c/ωpe = 10 km

Debye length λD = 500 m (3.23)
plasma parameter Λ = 1014 (3.25)
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A large value of Λ means that the fluctuation level caused by the presence
of discrete particles is small and indicates that the plasma is approximately
collisionless.

At this point we draw only two general conclusions from the table. First
we observe that length and time scales cover wide ranges over several orders
of magnitude. This is qualitatively consistent with a wide observed fluctu-
ation spectrum, because the length and time scales of the table enter the
dispersion relations as characteristic wavelengths and frequencies of waves
and instabilities (Gary, 1993). The second conclusion is that the plasma is
collisionless, indicated by the large value of Λ.

Here, an additional discussion of the meaning of the term quiescence is
necessary. The background of a first remark is the difference in the scales
contained in Tables 2.1 and 2.2. The first are macroscopic in nature, they
exclusively are determined by the interaction with the surrounding medium,
namely the solar wind and the Earth with its magnetic dipole and its at-
mosphere. Clearly, the shape of the magnetosphere will be determined by
solar wind conditions, by the strength of the Earth’s magnetic dipole and
by ionospheric conditions. In contrast to the macroscopic scales of Table 2.1
the scales of Table 2.2 depend on particle charge or mass in addition to
local plasma properties. Since they tend to be considerably smaller than
the macroscopic scales they are also called microscopic scales. We can now
define the notion of quiescence more precisely, by associating it with a low
level of macroscopic variations only. Microscopic turbulence can still be
present. This definition of quiescence is motivated by the fact that observa-
tions convey the general impression that during macroscopically quiet times
the coupling between micro- and macro-dynamics is rather weak. This is in
contrast to dynamic periods, when that coupling seems to be strong or at
least non-negligible. We return to this important aspect in Part IV.

The second remark concerns the relevance of quiescent states. Even under
the restricted definition, introduced just above, one might argue that the
central plasma sheet often is not in a quiescent state even when large scale
dynamics is absent. In particular, bursty bulk flows (Angelopoulos et al.,
1992, 1993) are not uncommon. Given these time-dependent flows, one
might question the relevance of the concept of quiescence altogether. For
an answer let us consider the two cases, concerning the role of bursty bulk
flows in large scale dynamics. If they play a relevant role, it is essential
to study their origin. One way of doing so would be to start out from a
hypothetical quiescent state and perform a stability analysis. Possibly one
finds an instability that grows into a bursty bulk flow. Alternatively, if the
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bursty bulk flows are irrelevant for large scale dynamics, one might decide
to ignore them in that context and treat the plasma sheet before onset of
the dynamic phase as quiescent. In both cases, the quantitative theoretical
approach would require introducing a quiescent state. Thus, the notion
of quiescence can still be important as a theoretical tool even if the real
system has a time-varying feature. Note that the same situation applies to
the theory of gas-dynamic turbulence, where an important approach is to
consider the stability of quiescent states such as a stratified atmosphere in
a gravity field or a steady state with sheared bulk flow.

This brief outline of major characteristics of magnetospheric activity is
meant as a morphological introduction. At this stage we have refrained from
providing detailed physical interpretations. Although it is one of the main
purposes of this book to provide such interpretations, we have to develop
appropriate methods before we can do so. Therefore, we postpone a more
profound discussion of magnetospheric activity; it will be given in Part IV.

2.2 Solar atmosphere

Solar activity is the most spectacular manifestation of plasma activity in
the solar system. Compared with magnetospheric activity, solar activity has
the advantage that spacecraft such as SOHO can take pictures of the entire
phenomenon. (In magnetospheric research first promising steps have been
taken in the same direction, using emission of neutral atoms generated from
plasma ions by charge exchange. However, because of the large differences in
intensity, the results cannot compete with solar observations.) Traditionally,
it has been regarded as a clear disadvantage of solar research that in situ
observations are not available. However, as we will see, today’s spacecraft
instruments can well carry out in situ observations of structures resulting
from large scale solar eruptions, as they propagate outward from the solar
atmosphere into the interplanetary medium.

Fascinating documentation of solar activity can be found in the large
collection of corresponding pictures and movies available on the internet.
Here we can discuss only a few fundamental aspects in connection with the
main theme of this book. Be aware that the present grey-scale pictures are
poor compared with original colour graphs.

As in the magnetosphere, the plasma of the solar atmosphere is organized
by the magnetic field. This aspect is evident in all figures of this section.
For example, Fig. 2.4 illustrates the association between sunspots and active
regions. Obviously, the two phenomena are closely related.
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Fig. 2.4 Two pictures of the Sun taken at about the same time in early Sep-
tember 2001. The right image shows visible light emission from the photosphere.
Sunspots, regions with stronger magnetic field and lower plasma temperature com-
pared with the surroundings, appear as dark spots. On the left, the Sun is shown
in ultraviolet emission corresponding to a plasma temperature of about 60 000 K.
The brighter parts are traces of magnetic activity. Source: SOHO (ESA&NASA).

The classical manifestation of solar activity is the solar flare. Its char-
acteristic properties are well documented (e.g., Tandberg-Hanssen and
Emslie, 1988; Forbes, 2000b). The name stems from the sudden appearance
of photospheric light emission, observed in the Hα-line (see the left image of
Fig. 2.5). Today, flares are observed in a broad range of the electromagnetic
spectrum. Within minutes the emission sharply increases and the plasma
is heated up to 107 K.

Several types of flares have been distinguished. In the two-ribbon flare two
bright ribbons appear in the photospheric light emission; the flare shown in
the left image of Fig. 2.5 is of that type. Typically, the ribbons are located
on opposite sides and roughly oriented along a polarity reversal line, where
the magnetic field component normal to the surface of the Sun reverses.

Magnetic flux tubes connecting to the flare site typically stand out as
X-ray loops in their X-ray emission. Fig. 2.6 shows the X-ray loops as part
of a particular flare model. Such loops can exist for some time after the
optical flare, then called post-flare loops; the right image of Fig. 2.5 shows an
example. The compact flare is characterized by a spot-like emission coming
from bright points in the solar corona. For detailed observations of a large
flare observed by the Yohkoh spacecraft see Phillips (2004).

Another type of structure relevant for solar eruptions are filaments. Fila-
ments are localized clouds of high density and low temperature plasma held
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Fig. 2.5 Solar flares. The image on the left shows a two-ribbon flare in Hα emission
observed on April 7, 1997; the right image shows post-flare loops, observed on April
3, 2001 at 701 Å. Source: National Solar Observatory/AURA/NSF (left image)
and TRACE consortium (right image); TRACE is a mission of the Stanford-
Lockheed Institute for Space Research, and part of the NASA Small Explorer
program.

Fig. 2.6 Flare model exhibiting various physical properties (courtesy of T. G.
Forbes).

together and kept above the solar surface by magnetic forces (Tandberg-
Hanssen, 1994). Filaments are often associated with flares. A filament may
stably exist over a time interval of the order of a solar rotation period, and
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in this form constitutes a remarkable manifestation of quiescence. Neverthe-
less, a quiescent filament may suddenly erupt, in other words, it suddenly
disappears as a filament, a process called disparition brusque.

At the solar limb, filaments can appear as large bright structures against
the sky, which are called prominences. The overall diameter of a prominence
can be of the order of 100 000 km. Sometimes erupting solar prominences
show strong emissions from neutral atoms, indicating that, in addition to
the plasma, chromospheric gas is launched into space. Fig. 2.7, apart from
three bright active regions, shows a sweeping prominence.

The most spectacular manifestation of solar activity is the coronal mass
ejection (CME), in the course of which huge amounts of mass and energy,
typically in the ranges of 2 · 1011–4 · 1013 kg and 1022–1025 J, respectively,
are ejected into interplanetary space (Howard et al., 1982; Gosling, 1990;
Hundhausen et al., 1994; Hundhausen, 1999). CMEs assume velocities in

14 September 1997

Fig. 2.7 A sweeping prominence appearing in the lower-left part of the image
of the Sun’s atmosphere, observed by SOHO/EIT at 304 Å. Source: SOHO
(ESA&NASA).
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the range of several tens to 1000 km/s (Hundhausen et al., 1994). When the
CME disturbance reaches the Earth the magnetosphere becomes strongly
active (Brueckner et al., 1998). Space missions, such as SOHO and Yohkoh,
have been providing us with most valuable material on this phenomenon.
For example, Fig. 2.8 shows a large CME propagating in interplanetary
space. It is a beautiful example of a lightbulb CME.

It seems that coronal streamers play an important role in the formation of
coronal mass ejections. Streamers reach far out into the solar wind (for in-
stance indicated by the bright structures seen in the lower-right of Fig. 2.8).
Frequently, coronal mass ejections involve a multiple streamer configuration.

The different manifestations of solar activity that we have introduced
here in this brief overview, are not independent of each other. However,
their connection and causal relationship is not yet clear. This is an impor-
tant issue, because the answers would set constraints to theoretical models.
Although in many cases CMEs can be associated with filament eruptions,

Fig. 2.8 An image of a lightbulb-shaped coronal mass ejection (CME), showing
the classical 3-part structure, observed by SOHO/LASCO on February 27, 2000.
The Sun is blocked out by an occulting disk, the white circle indicates the size
of the Sun. Source: SOHO (ESA&NASA).
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there does not seem to be a 1:1 relationship (Choudhary and Moore, 2003).
The same applies to the relationships between filament eruptions and flares
and to CMEs and flares. Gosling (1993) pointed out that observations sug-
gest that large flares are caused by CMEs, contradicting earlier suggestions.
An analysis of more than 300 flares revealed that 40% of (M-class) flares
did not have a CME association (Andrews, 2003). It seems that the struc-
ture of the magnetic field in the relevant region plays an important role in
determining what type of activity or what combination of processes results
(Švestka, 2001).

A property of solar activity that is widely accepted is the release of mag-
netic energy, previously accumulated in the solar chromosphere and corona.
Magnetic energy is largely turned into heat and kinetic energy of plasma
flow; a fraction also goes into electromagnetic and particle radiation. Re-
garding the overall changes in magnetic structures, the net effect seems to be
a reduction in complexity. Often, solar flares are described as releasing en-
ergy that was associated with magnetic shear or twist in configurations with
current sheets (Priest, 1981). For a two-ribbon flare Asai et al. (2004) esti-
mated the released energy as 6 · 1023J, using a model based on reconnection
in a current sheet. These processes will be the topic of Chapter 14.

Solar activity exhibits an 11-year cycle in its intensity, quantitatively mon-
itored by sunspot counts. Although a final explanation is not yet available,
the solar cycle is generally believed to be a signature of the solar magnetic
dynamo, which is driven by the differential rotation of the Sun.

Typical parameters of the plasma and magnetic field in the solar corona,
where most of the activity takes place, are highly variable. Therefore the
values of Table 2.3 can only serve as a rough guideline for general orientation.

Table 2.3 Characteristic parameters of the solar photosphere and corona.
For n and T see Guenther et al. (1992), the photospheric magnetic

field refers to a sunspot, the coronal magnetic field to an active region
(Lin, 2003).

Photosphere Corona

Number density n [m−3] 8 × 1022 1 × 1015

Temperature T [K] 6 × 103 2 × 106

Magnetic field strength B [T] 2 × 10−1 1 × 10−2

Length L [m] 1 × 106 3 × 107

Plasma parameter 2 1 × 108
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(For instance, the magnetic field strength varies by more than two orders of
magnitude.) Note that the table indicates a large difference in the values of
the plasma parameter. While the coronal plasma is essentially collisionless
the photospheric plasma is substantially influenced by collisions.

We will resume the topic of solar activity in Part IV, where we attempt
to address the underlying physical processes.

2.3 Other sites

The phenomenon of activity is by no means confined to the Solar System.
Of the many planets that one speculates to be present in the Universe –

an increasing number is being detected in our galaxy – a significant fraction
will be in conditions favourable for magnetospheric activity. Necessary con-
ditions are a stellar wind and a sufficiently strong magnetic dipole moment.
In the solar system this applies to Mercury, Earth, Jupiter, Saturn, Uranus
and Neptune. The size of the magnetosphere, measured by the distance be-
tween the subsolar point of the magnetopause and the centre of the planet,
is determined by force balance between the solar wind and the planetary
magnetic field. Measured in units of the radius of the planet, the size varies
from 1.4–1.6 for Mercury to 50–100 for Jupiter (S. Curtis and P. Clark,
lep694.gsfc.nasa.gov).

Substorm-like phenomena have been observed on several planets, partic-
ularly in the Jovian magnetosphere (Nishida, 1983; Russell et al., 2000).
As Kronberg et al. (2005) concluded from measurements of the spacecraft
Galileo, there is a slow loading phase, during which the Jovian plasma sheet
is in a stable configuration. The onset of the dynamic phase takes place in
a thinned plasma sheet and leads to inward and outward plasma flows and
plasmoid ejection. The authors envisage that the main difference, compared
with the Earth, is that the dominant energy source is plasma loading of fast
rotating flux tubes rather than supply from the solar wind.

Stellar flares (e.g., Bopp and Moffett, 1973), analogous to solar flares,
occur on many stars (Shibata and Yokoyama, 2002). Stellar flares are
observed typically on stars with a sufficiently hot corona (e.g., Feldman
et al., 1995; Shibata and Yokoyama, 2002). Also, starspots seem to be a
common feature of sun-like stars (Solanki and Unruh, 2004).

Flares also have been suggested to originate from coronae of accretion
disks (Galeev et al., 1979) and from stellar objects interacting with their
accretion disks (Hayashi et al., 1996). Again, the invoked processes show
close similarities with corresponding solar phenomena.
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The term activity is also applied to galactic nuclei. There is strong ev-
idence indicating that large plasma jets are emitted from active galactic
nuclei.

Finally, let us have a brief look at the brightest astrophysical flare events
that are observed on Earth. The sources are galactic X-ray stars, belonging
to the variety of soft-γ-ray repeaters (SGRs). They are believed to be mag-
netars, which are neutron stars with exceptionally strong magnetic fields,
with typical field strengths of the order of 1011 T (Duncan and Thompson,
1992; Kouveliotou et al., 1998). SGRs emit giant flares in a sporadic way.
The largest event (ever seen so far) was observed on 27 December 2004 from
SRG 1806-20 (Hurley et al., 2005).

In that event a short initial pulse, lasting 0.2 sec, contained the main part
of the total energy of the order of 1039 J, corresponding to a photon energy
pulse of about 10−3 J/m2. That pulse makes the event the most intense of
all solar or cosmic transients observed on Earth before (Hurley et al., 2005).
The total energy that the magnetar emitted during 0.2 sec equals the energy
the Sun radiates in about 300 000 years.

It is assumed (e.g., Thompson et al., 2002) that magnetars accumulate
energy in a twisted magnetic field configuration. The eruption is believed
to involve the breaking of the crust of the neutron star, so that mechanical
stresses play an important role. It is interesting to note that these extreme
phenomena are likely to have important aspects in common with the erup-
tions characteristic of space plasma activity in the Solar System.
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Plasma models

By plasma model we denote a set of equations governing the temporal evo-
lution of a plasma under a given set of boundary and initial conditions.
Ideally, plasma models should be based on first principles. Unfortunately,
these are not yet available, at least not from a strict point of view. In any
event, simplifications are necessary to keep applications feasible.

For describing space plasma dynamics, it is largely appropriate to ignore
quantum effects. The condition for this assumption to be satisfied is that
typical values of the action, such as momentum × length or energy × time

are much larger than Planck’s constant h = 6.63 · 10−34 Js. This condition
is well satisfied for typical space dynamical processes. Therefore, we will
discuss models based on classical elementary or statistical mechanics and
electromagnetism. Radiation reaction is ignored.

After the foundations were laid by Isaac Newton, James Clerk Maxwell,
Ludwig Boltzmann, Albert Einstein and others, these theories have been ex-
tremely successful within their ranges of applicability and form the classical
basis of modern technology. Thus, the difficulties that we will be facing, to a
large extent, do not lie in uncertainties about the foundations but rather in
the complexity of the interactions, which require further simplifying assump-
tions. Therefore, a number of different plasma models exist, each of which
has its characteristic range of applicability. It is the aim of this chapter to
summarize the plasma models that are relevant for our purposes.

Regarding particle dynamics, the plasma models are formulated in their
non-relativistic limit, because the velocities involved mostly are considerably
smaller than the speed of light. Occasional use of relativistic generalizations
will be discussed where needed.

For completeness, we begin with single particle motion in prescribed elec-
tromagnetic fields. This model uses the mechanical equation of motion alone

25
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and it is useful for understanding particle motion if a realistic model of the
electromagnetic field is available, e.g., from observations, from separate the-
oretical analysis or from computer simulations.

However, in many cases such a field model is not available. Then the
electromagnetic field vectors have to be included in the set of unknowns. In
other words, by including Maxwell’s equations the field vectors are deter-
mined in a self-consistent way. Typically, self-consistent plasma models are
formulated as fluid models or kinetic models. Mixtures of both types result
in hybrid models. (Thus, the fields are macroscopic approximations of the
microscopic fields.)

In the present chapter the plasma models are simply listed with a few
comments on properties and physical significance added. For derivations
the reader should consult the basic plasma physics literature quoted in each
section. Readers with some plasma physics background may find this part
still useful as a formulary.

The meaning of the symbols is explained in the List of Symbols. In the
text definitions are given only for the more important variables.

3.1 Single particle motion

A characteristic property of a plasma is the presence of charged particles
moving in electromagnetic fields. If the electromagnetic field vectors E(r, t)
and B(r, t) are prescribed, the motion of a particle with mass m, charge q

and velocity w(t) in the non-relativistic limit is determined by the equation
of motion together with the definition of velocity,

m
dw

dt
= q

(
E(r, t) + w × B(r, t)

)
− m∇ψ(r) (3.1)

dr

dt
= w, (3.2)

where we have added an external gravity force represented by the potential
ψ. Equations (3.1) and (3.2) are two, typically nonlinear, ordinary differen-
tial equations for the location of the particle r(t) and its velocity w(t) at
time t. We summarize a number of properties.

By scalar multiplication with w one finds from the equation of motion
(3.1) an energy equation of the form

d
dt

(
1
2
mw2

)
= qw · E − mw · ∇ψ. (3.3)
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The magnetic part of the Lorentz force in (3.1) is perpendicular to w and
therefore does not change kinetic energy.

The most pronounced property of the particle motion in the presence of a
magnetic field is the gyration. For its illustration let us set E = 0, ∇ψ = 0
and let B be a constant magnetic field. Then, the particle moves along
a helix oriented along the magnetic field direction with constant velocity.
The gyroradius rg (radius of the helix) and the gyrofrequency ωg (angular
frequency of the gyration) are given by

rg =
mw⊥
|q|B (3.4)

ωg =
|q|B
m

, (3.5)

where w⊥ is the velocity component perpendicular to the magnetic field.
A particle with positive (negative) charge q performs a left (right) sense
rotation with respect to the positive field direction.

If a constant electric field E directed perpendicular to B is present, the
helix moves with a drift velocity

uE =
E × B

B2
. (3.6)

In other words, this motion corresponds to gyration in a reference frame
moving with velocity uE , which is easily verified explicitly by a correspond-
ing Galilean transformation applied to (3.1).

The gyration property qualitatively persists for electromagnetic fields that
vary slowly in space and time compared with the spatial and temporal gyro-
scales defined by (3.4) and (3.5). This regime is referred to as adiabatic
particle motion.

Time variations and gradients of E and B lead to drifts in addition
to (3.6). The total drift of the centre of the instantaneous gyro-motion
(gyrocentre) is obtained to first order in an expansion with respect to typi-
cal values of 1/(ωgtf) and rg/rf , where tf and rf are characteristic time and
length scales of the electromagnetic field. Treating both quantities as of
the order of a smallness parameter, say ε, and assuming that the compo-
nents of the electric field and the gravity force parallel to the magnetic field
are of order ε also, one finds for the gyrocentre velocity to zeroth and first
order,

ud = u||b + uE +
µ

qB2
B ×∇B +

m

qB2
B ×

(
u||

db

dt
+

duE

dt
+ ∇ψ

)
, (3.7)
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where b is the unit vector associated with the magnetic field direction and
the parallel (with respect to B) drift velocity component u|| satisfies the
differential equation

m
du||
dt

= qE|| − µb · ∇B + muE · db

dt
− mb · ∇ψ (3.8)

with
d
dt

=
∂

∂t
+ u||b · ∇ + uE · ∇. (3.9)

Here, µ is the magnetic moment associated with the gyration (area × cur-
rent),

µ =
1
2mw2

⊥
B

. (3.10)

An important property is that µ is an adiabatic invariant. This means
that, within the present approximation, µ stays constant over time periods of
order 1/ε, during which the electromagnetic field develops changes of order 1.
(For an outline of adiabatic invariance see www.tp4.rub.de/∼ks/tb.pdf.)

Additional adiabatic invariants exist for special magnetic field geometries.
For instance, if particles are trapped between regions of enhanced magnetic
field strength, the integral

I2 =
∫

u|| ds (3.11)

is an adiabatic invariant, where the integration is carried out along the arc
length of the field line, on which the gyrocentre is located instantaneously,
and is limited by the mirror points. In a slowly time-varying field with ro-
tational invariance, the magnetic flux encircled by the gyrocentre trajectory
is another adiabatic invariant.

There is a simple intuitive interpretation of the expressions (3.7) and (3.8).
Consistent with (3.6) a force F acting on the particle causes a drift velocity
(F /q) × B/B2. The magnetic force, considered in the limit of small gyro-
radii, is given by −µ∇B, the inertia and gravity forces give corresponding
contributions. This explains (3.7). To understand (3.8), one applies the
same argument to the parallel (to B) component of the equation of motion.

For details of adiabatic particle motion and derivations see the literature
(e.g., Northrop, 1963; Balescu, 1988; Boyd and Sanderson, 2003).

For later reference we add the Hamiltonian formulation of single parti-
cle motion. This is an equivalent representation of the problem (3.1) with
(3.2) using electromagnetic potentials φ(r, t) (electric potential) and A(r, t)
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(magnetic vector potential) instead of the field vectors (Jackson, 1998). In
terms of the potentials the field vectors are obtained as

E = −∇φ − ∂A

∂t
(3.12)

B = ∇× A. (3.13)

This representation is valid for any arbitrary electromagnetic field satisfying
the homogeneous subset of Maxwell’s equations (see (3.28) and (3.29)).

In Cartesian coordinates (r1, r2, r3) the Hamiltonian is given by

H(P , r) =
1

2m
(P − qA(r, t))2 + qφ(r, t) + mψ(r) (3.14)

where P = mw + qA is the canonical momentum. The equations of motion
then are obtained from Hamilton’s equations

dri

dt
=

∂H

∂Pi
i = 1 . . . 3 (3.15)

dPi

dt
= −∂H

∂ri
i = 1 . . . 3 . (3.16)

These are ordinary differential equations for r(t) and P (t). For details see
standard texts (e.g., Landau and Lifshitz, 1963; Goldstein, 2002).

3.2 Kinetic models

Consider a plasma consisting of several particle species, such as electrons
and a number of different ions. To introduce kinetic models we first look at
the simple case where the particles interact only through an electromagnetic
field of the form E(r, t), B(r, t). In other words, the particles do not interact
directly with each other so that the trajectory of each particle is governed
by the equations of single particle motion. Then, Hamilton’s equations of
motion (3.15) and (3.16) imply a Liouville equation of the form

∂Fs

∂t
+

∂Fs

∂r
· ∂Hs

∂P
− ∂Fs

∂P
· ∂Hs

∂r
= 0 . (3.17)

Under the present assumptions, Fs(r, P , t) may be understood as the distri-
bution function of particles of species s in 6-dimensional phase space spanned
by r and P . Equation (3.17) simply expresses Liouville’s theorem (Balescu,
1975; Goldstein, 2002) in single particle phase space, stating that the distri-
bution function is constant on particle trajectories.

If particle interactions, such as collisions, have to be taken into account,
Liouville’s theorem no longer applies to single particle phase space but to
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6N -dimensional phase space, where N is the number of particles. For suf-
ficiently weak collisional coupling, one can still find a description in single
particle space with an additional term, the collision term. The equation is
then called kinetic equation or transport equation. For plasmas, the particle
phase space density, traditionally, is expressed in terms of velocity rather
than of canonical momentum, i.e., it has the form f(r, w, t), usually called
single particle distribution function. The kinetic equation then assumes the
form

∂fs

∂t
+ w · ∂fs

∂r
+
(

qs

ms
(E + w × B) − ms∇ψ

)
· ∂fs

∂w
=

∂fs

∂t

∣∣∣
c

, (3.18)

where the term on the right side is the collision term, and E and B are the
macroscopic fields. Such an equation exists for each particle species s. Often,
equation (3.18) is named after the specific form of the collision term, exam-
ples being Boltzmann, Fokker–Planck or Lenard–Balescu equations (Balescu,
1975).

The distribution function is normalized such that the integration over
velocity space gives particle number density ns,

ns =
∫

fs d3w . (3.19)

Then, bulk velocity vs is

vs =
1
ns

∫
wfs d3w . (3.20)

The equations (3.18) are coupled to Maxwell’s equations, where charge den-
sity σ and current density j are given by

σ =
∑

s

σs, σs =
∑

s

qsns (3.21)

j =
∑

s

js, js =
∑

s

qsnsvs . (3.22)

Equations (3.18) and Maxwell’s equations form a closed set of equations
only if the collision term, at least approximately, can be expressed by fs, s =
1, 2, ... alone. If the plasma has this property, it is said to be in a kinetic
regime.

In general, the collision term involves the distribution functions in two-
particle phase space. Therefore, equations for the two-particle distribu-
tion functions are needed, too. However, these equations couple to even
higher order distribution functions. The result is an infinite hierarchy of
distribution functions and corresponding equations. If the interaction can
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approximately be represented by an electrostatic force, which suffices for
most purposes, this hierarchy can be derived from Liouville’s equation in
the full 6N -dimensional phase space by standard techniques of statistical
mechanics (Ichimaru, 1973; Balescu, 1975).

In fully ionized plasmas, collision terms arise from Coulomb collisions
between the charged particles. They are based on electric fluctuations in
the Debye sphere, a sphere with the Debye length

λD =
√

ε0kBTe/e2ne =
1
ωp

√
kBTe

me
(3.23)

as its radius. Here, ne is electron density and, in local thermodynamic equi-
librium, Te electron temperature. For plasmas in nonequilibrium states kBTe

measures the energy of random electron motion. Further, ωp is the (electron)
plasma frequency (the ion plasma frequency is defined analogously)

ωp =

√
e2ne

ε0me
. (3.24)

Typical Coulomb collision terms scale as log(Λp)/Λp, where

Λp =
4π

3
λD

3ne (3.25)

is the plasma parameter, which equals the number of electrons in the Debye
sphere. Clearly, more particles cause less collective fluctuations, at least in
a local thermodynamic equilibrium picture.

As the plasma parameter scales as T
3/2
e /n

1/2
e , Coulomb collisions are neg-

ligible for sufficiently high temperatures and low densities, the regime of
collisionless plasmas. This regime applies to most plasmas in space, which
show extremely large plasma parameters (see Tables 2.2, 2.3 and 9.1). The
regime where the collision term in (3.18) is neglected is usually referred to
as the Vlasov regime. With the collision term all consequences of the pres-
ence of discrete particles have disappeared. Electric charge and mass can be
regarded as smeared out continuously in phase space.

For reference reasons we list the equations of the Vlasov theory:

∂fs

∂t
+ w · ∂fs

∂r
+
(

qs

ms
(E + w × B) − ms∇ψ

)
· ∂fs

∂w
= 0 (3.26)

∇ · E =
1
ε0

∑
s

qs

∫
fs d3w (3.27)
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∇× E = −∂B

∂t
(3.28)

∇ · B = 0 (3.29)

∇× B = µ0

∑
s

qs

∫
wfs d3w +

1
c2

∂E

∂t
. (3.30)

This is a set of nonlinear integro-differential equations for the unknowns
fs(r, w, t), E(r, t), B(r, t). It consists of a kinetic equation (3.26) for each
species and Maxwell’s equations (3.27)–(3.30).

For prescribed electromagnetic fields, the problem of solving (3.26) for the
distribution function is equivalent to solving the problem of single particle
motion. This is based on the fact that (3.1) and (3.2) are the characteristic
equations of the partial differential equation (3.26).

The Vlasov theory is the theory best suited for describing space phenom-
ena occurring in collisionless, fully ionized plasmas.

An important aspect of kinetic theories of plasmas is that the separation
of the electromagnetic field in averaged fields and fluctuation fields is not
unambiguous, which has consequences for the meaning of the collision term
in (3.18). Here we have chosen the classical point of view, where the collision
term contains only the fluctuations resulting from particle discreteness in the
sense of two-particle correlations. All other effects are described by E and
B.

In the presence of turbulence there is another possibility, which is applica-
ble if the time scales of the turbulence and of the averaged quantities are
well separated. Then, after suitable averaging, the turbulence gives rise to
an effective collision term even in Vlasov theory. (Separate equations are
needed for describing local turbulence properties.) To distinguish the result-
ing transport effects from the transport due to discrete particle collisions,
one speaks of turbulent transport. More details of this aspect are discussed
in connection with collective interactions in Section 9.3.2.

We mention some important properties and consequences of Vlasov the-
ory. Integrating (3.26) over velocity space gives the conservation of particles,

∂ns

∂t
+ ∇ · (nsvs) = 0 (3.31)

which implies conservation of mass with mass density given by ρs = msns

∂ρs

∂t
+ ∇ · (ρsvs) = 0 (3.32)
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and conservation of electric charge,

∂σs

∂t
+ ∇ · js = 0. (3.33)

By multiplying (3.26) by msws and integrating over velocity space and
then making use of (3.31) one finds the momentum equation for species s,

ρs
∂vs

∂t
+ ρsvs · ∇vs = −∇ · Ps + js × B + σsE − ρs∇ψ. (3.34)

Here, Ps is the pressure tensor of species s with components

Ps,ik =
∫

ms(wi − vs,i)(wk − vs,k)fs(r, w, t) d3w (3.35)

or, using the dyadic tensor formulation,

Ps(r, t) = ms

∫
(w − vs)(w − vs)fs(r, w, t) d3w. (3.36)

Equation (3.34) is an equation of motion analogous to (3.1), however, it
applies to a spatial plasma element rather than to a single particle and
therefore contains particles with different velocities, which generates the
pressure term.

The energy equation is obtained by applying the factor mw2/2 to (3.26)
before integrating over velocity space,

∂ekin,s

∂t
+ ∇ · Qs = E · js − ρsvs · ∇ψ (3.37)

where

ekin,s =
∫

msw
2

2
fs d3w (3.38)

Qs =
∫

msw
2

2
wfs d3w (3.39)

denote kinetic energy density and the energy flux density of species s. By
taking the sum of (3.37) over plasma species one finds the energy conserva-
tion law

∂

∂t
(ekin + emag + eel + ρψ) + ∇ · (Q + S + ρvψ) = 0 (3.40)

where

ekin =
∑

s

ekin,s, Q =
∑

s

Qs, emag =
B2

2µ0
, eel =

ε0E
2

2
(3.41)
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with emag and eel being magnetic and electric energy densities and

S =
1
µ0

E × B (3.42)

the electromagnetic energy flux density (Poynting vector). In deriving (3.40)
the Poynting theorem

∂

∂t
(emag + eel) + ∇ · S = −E · j (3.43)

has been used, which is a consequence of Maxwell’s equations (Jackson,
1998).

An equation for the pressure tensor is obtained by multiplying (3.26) by
the tensor m(w−vs)(w−vs) and integrating over velocity space. With the
help of (3.32) and (3.34) one finds

∂Ps

∂t
+ vs · ∇Ps + Ps∇ · vs + Ps · ∇vs + [Ps · ∇vs]

T

+
qs

ms
B × Ps +

qs

ms
[B × Ps]

T + ∇ · Qs = 0,

(3.44)

where

Qs = ms

∫
(w − vs)(w − vs)(w − vs)fs(r, w, t) d3w (3.45)

is the (third-order) heat flow tensor. Note that ekin,s = Tr(Ps)/2 + ρsv
2
s/2.

Also, Q is related to the heat conduction vector qs =
∫

(ms/2)(w−vs)2(w−
vs)fs d3w by

Qs = ekin,svs + vs · Ps + qs . (3.46)

A typical simplification consists in the assumption of quasi-neutrality,
which allows one to approximate the Poisson equation (3.27) by the condi-
tion of charge neutrality,

σ = 0. (3.47)

This approximation is best understood as an asymptotic expression in the
limit of small ratio of λD/rf . In a suitable dimensionless form, the square
of that ratio appears as a factor in front of ∇ · E in (3.27), such that one
obtains (3.47) in lowest order of a singular perturbation scheme. Note that,
in this asymptotic sense, (3.47) does not imply that ∇ · E vanishes.

A useful physical picture here is that electric fields in plasmas are cou-
pled to the random particle motion. An energy balance shows that strong
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charge separation, driven by that motion, can occur only over distances of
the order of the Debye length. For distances large compared with the Debye
length charge separation becomes negligible. Keeping σ = 0 in the presence
of particle species with different masses or charges, typically requires an
electric field. Thus, (3.47) can still be understood as imposing a constraint
on the electric field, although E does not appear explicitly. Similarly, ex-
ternally applied electric fields, in typical situations, are shielded from the
plasma (assumed to be stable) by a layer that has a thickness of a few Debye
lengths. If, within the plasma volume, structures on the Debye scale develop,
quasi-neutrality breaks down and the exact form of Poisson’s equation
is needed.

3.3 Fluid models

Fluid models result from attempts to formulate a self-consistent plasma
description exclusively by observables that are defined as functions of co-
ordinates and time (fluid variables), such as ρ(r, t) or v(r, t). (Here, the
term fluid is meant to include compressible media, a terminology largely
used in plasma physics, although in other fields it implies incompress-
ibility.) Primarily, fluid variables arise as integrals of the form Mn =∫

gn(w)fs(r, w, t) d3w where gn(w) is a suitable (dyadic) polynomial of
particle velocity w, n being the order of the polynomial. The integral is
called velocity moment of the distribution function of order n. Equations
for the temporal evolution of the moments are obtained by multiplying the
transport equation (3.18) (or (3.26) for collisionless plasmas) by gn(w) and
integrating over velocity space. The resulting equations are called moment
equations. Examples are (3.31), (3.34) and (3.44).

Typically, moment equations are coupled and do not form a finite closed
set. Any given moment equation for a moment of order n involves a mo-
ment of order n + 1. (Note that the equation (3.31) for ns involves vs, the
equation (3.34) for vs involves Ps and the equation (3.44) for Ps involves
Qs.) Thus, the moment equations form an infinite hierarchy. A finite set of
fluid equations arises by truncation of that hierarchy such that a closed set
of equations is obtained.

A serious drawback of standard truncation procedures is that often the
manipulations that lead to closure are difficult to justify rigorously for given
plasma conditions. Therefore, fluid equations play the role of model equa-
tions on their own. It seems that a safe way to assess their validity is to
gain experience with applications and to compare the results with those of
other approaches.
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A set of fluid equations for each particle species typically is obtained by
assuming quasi-neutrality, ignoring heat flux (Qs = 0) and assuming an
isotropic pressure tensor

Ps = psI, (3.48)

where I is the unit tensor and ps the scalar pressure of species s. The
assumption of isotropy requires an isotropization process, and indeed obser-
vations show that in particular space plasma regions such processes must
be active. Also, let us assume that collisions between the particles of a
given species are mass, momentum, and energy conserving, which excludes
chemical reactions. Under these conditions fluid models take the form

∂ρs

∂t
+ ∇ · (ρsvs) = 0 (3.49)

ρs
∂vs

∂t
+ ρsvs · ∇vs = −∇ps + js × B + σsE − ρs∇ψ + M cs (3.50)

∂ps

∂t
+ vs · ∇ps +

5
3
ps∇ · vs + Ncs = 0 (3.51)∑

s

σs = 0 (3.52)

∇× E = −∂B

∂t
(3.53)

∇ · B = 0 (3.54)

∇× B = µ0

∑
s

js . (3.55)

M cs and Ncs result from the collision term in (3.18). The equation (3.49)
is a consequence of (3.31); (3.50) and (3.51) can be obtained from (3.34)
and from the trace of (3.44) using the truncation assumptions. In (3.55) the
displacement current is neglected, which is consistent with quasi-neutrality,
for which charge conservation simply is given by ∇ · j = 0.

The following specializations and modifications are of particular interest.

3.3.1 Momentum equations of two-fluid models

Let us consider a plasma consisting of electrons (subscript e) and a single ion
species (subscript i) with qi = e. In that case it is convenient to rearrange the
model equations and to use variables representing the fluid as a whole instead
of the ion variables. The condition of quasi-neutrality gives ne = ni = n and
the conservation properties of the collisions M ce + M ci = 0, Nce + Nci = 0.
Density is defined as ρ = ρe + ρi, bulk velocity as v = (ρeve + ρivi)/ρ and
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pressure as p = pe + pi. Taking the sum of the momentum equations (3.34)
for electrons and ions, one finds

ρ
∂v

∂t
+ ρv · ∇v = −∇p + j × B − ρ∇ψ . (3.56)

As the second momentum equation one chooses the momentum equation
of the electrons, where in the ve × B-term one uses ve = vi − j/ene and
expresses vi by v. For me � mi the result can be written as

E + v × B = − 1
ene

∇pe +
1

ene
j × B + ηj. (3.57)

The second term on the right side is called the Hall term. It is relevant for
phenomena occurring on intrinsic ion scales (see Section 3.6). The term ηj,
where η denotes resistivity, stems from M ce, which for moderate resistivities
can be assumed to be proportional to the relative velocity between electrons
and ions, i.e., to the current density j.

The equation (3.57) is written in the form of Ohm’s law. As pointed
out above, for typical space plasmas, the collisional resistivity is negligible.
However, an analogous term can take into account effects resulting from
micro-turbulence. In that case one refers to η as the turbulent resistivity
ηturb, see Section 9.3.2.

3.3.2 Ideal magnetohydrodynamics

The equations of ideal magnetohydrodynamics may be obtained from a two-
fluid picture with Ohm’s law of the form (3.57) by assuming that scale
lengths are small as compared to the ion gyro- and inertia scales and that
resistive effects are ignorable. One then finds from (3.57) Ohm’s law in its
ideal form E + v × B = 0. The resulting model equations are

∂ρ

∂t
+ ∇ · (ρv) = 0 (3.58)

ρ
∂v

∂t
+ ρv · ∇v = −∇p + j × B − ρ∇ψ (3.59)

E + v × B = 0 (3.60)(
∂

∂t
+ v · ∇

)(
p

ργ

)
= 0 (3.61)

∇× E = −∂B

∂t
(3.62)

∇ · B = 0 (3.63)

∇× B = µ0j. (3.64)
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Regarding (3.61), an additional simplification has been introduced. For
Ncs = 0 the equations (3.49) and (3.51) would yield an adiabatic law of the
type (3.61) for each species separately. However, as ideal MHD does not
refer to individual species, one postulates a corresponding equation for the
fluid as a whole, in analogy to the standard entropy conservation law of
neutral gases. In (3.61) the polytropic index γ is left open as a parameter,
for most purposes one chooses 5/3, corresponding to local thermodynamic
equilibrium of a gas of particles with 3 degrees of freedom. With internal
energy u = p/(γ − 1), one may rewrite (3.61) as

∂u

∂t
+ ∇ · (uv) = −p∇ · v, (3.65)

which indicates that internal energy changes by compression.
The basic equations (3.58)–(3.64) do not involve the plasma temperature

explicitly. A temperature, which is not defined in the thermodynamic sense
but as measuring the random part of kinetic energy per particle, is conve-
niently introduced by the ideal gas law

p = nkBT, (3.66)

where number density n is related to density ρ by ρ = nm, m being an
effective ion mass.

3.3.3 Resistive magnetohydrodynamics

If resistive effects cannot be ignored, the equations of ideal MHD are modi-
fied in two ways. Ohm’s law now reads

E + v × B = ηj, (3.67)

and in (3.65) resistive dissipation has to be taken into account by adding the
term ηj2 on the right side. This corresponds to the following modification
of (3.61) (

∂

∂t
+ v · ∇

)(
p

ργ

)
=

γ − 1
ργ

ηj2, (3.68)

which keeps total energy conserved. For sufficiently small values of |j|, the
quadratic dissipation term in (3.68) may be ignored, such that the only
modification of the ideal MHD equations is the ηj term in Ohm’s law.
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3.4 Chew–Goldberger–Low momentum equation

In cases where an isotropic pressure tensor is not available, there are still a
number of useful simplifications. In particular, this applies to the limit of
strong magnetic fields, where the form of the pressure tensor Ps simplifies
considerably. Its form is found from the condition that the sum of the terms
involving B in (3.44) must vanish, assuming that all velocity moments are
bounded for large B. One finds that Ps must have the form

Ps = p⊥sI + (p||s − p⊥s)bb (3.69)

where p||s and p⊥s denote pressures associated with directions parallel and
perpendicular to the magnetic field direction, and I is the unit tensor. Chew
et al. (1956) derived equation (3.69), which is called the CGL momentum
equation, by a corresponding large-B expansion of the equations of the
Vlasov theory, i.e., (3.26)–(3.30), and averaging over the gyration. They also
showed that in the absence of heat flux p||s and p⊥s satisfy the equations(

∂

∂t
+ vs · ∇

)(
p⊥s

ρsB

)
= 0 (3.70)(

∂

∂t
+ vs · ∇

)(
p||sB

2

ρs
3

)
= 0 . (3.71)

These equations are readily obtained from the trace and the bb-component
of (3.44), using the relationship

1
B

dB

dt
− 1

ρ

dρ

dt
= b · (∇vs) · b. (3.72)

The latter relationship is based on the fact that in lowest order guiding
centre theory one finds (consistent with (3.6))

E + vs × B = 0 (3.73)

which by (3.28) implies

∂B

∂t
−∇× (vs × B) = 0. (3.74)

(3.72) is then obtained from the b-component of (3.74), after elimination of
∇ · vs with the help of mass conservation.

To obtain an anisotropic generalization of the ideal MHD model one
postulates the form of (3.69) with (3.70) and (3.71) for the one-fluid pres-
sure tensor P. Then, the quantities p⊥/ρB and p||B

2/ρ3 are constant on
streamlines defined by the plasma velocity v and play the role of adiabatic
invariants, the former invariant being consistent with the invariance of the
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magnetic moment (3.10). The CGL model has proven useful for describing
space plasmas with anisotropic pressures (e.g., Shuo and Wolf, 2003).

The isotropic limit of (3.70) and (3.71) is not straightforward, because
of the additional effects that must be at work to keep the pressure tensor
isotropic on long time scales. Nevertheless, by eliminating B from the two
invariants, one finds the invariant p|| p⊥

2/ρ5, which for p|| = p⊥ = p is
consistent with (3.61) for γ = 5/3. Then, the isotropy condition replaces
the adiabatic invariance of the magnetic moment, which requires that the
isotropizing fluctuations are in an appropriate frequency range.

3.5 On the validity of MHD models for space plasmas

Fluid models face the difficulty that, by the various simplifications, their
applicability for a given space plasma phenomenon often is not obvious.
Sometimes it is only after a sequence of studies of a characteristic sample
process using different techniques that one develops a feeling for the range in
which fluid models are useful. Clearly, the answer also depends on the rigour
that one wishes to achieve. Even in domains where fluid models are consi-
dered as useful, their main strength is to provide information on the qualita-
tive behaviour of a process by comparatively simple means. Quantitatively
exact results generally require a kinetic treatment. It is in that sense that
fluid models have proven useful even for collisionless plasmas under a variety
of circumstances.

There are a few general guidelines indicating the range where fluid models
can be expected to give useful results.

By assuming an isotropic pressure one typically eliminates resonant in-
teractions between waves and particles. This is intuitively clear considering
that the resonance strongly modifies the distribution function in the region
of resonance in phase space, resulting in a complex, typically non-isotropic,
pressure tensor. Resonances associated with frequencies near intrinsic fre-
quencies of the plasma become unimportant for plasmas with length and
time scales much larger than the intrinsic ion scales (see the discussion in
Section 2.1). This MHD limit is a domain where fluid models are generally
expected to be useful.

Many non-resonant features of waves are qualitatively correctly described
in the MHD limit, compared with a kinetic treatment of waves on a com-
parable background. A quantitative comparison typically shows that the
truncation method, such as the omission of heat flux, can lead to incorrect
numerical factors in dispersion relations.

The question of validity of MHD is still more complicated than it might
seem so far. The reason is that there exist other resonances, which are not
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associated with the intrinsic scales and which do not necessarily disappear in
the MHD limit. A particle moving along a magnetic field line with a velocity
close to the phase velocity of a wave propagating in the same direction is in
resonance with that wave even in the MHD limit. This type of resonance
typically causes Landau damping (Gary, 1993); for example, it eliminates
ion acoustic waves in two-component plasmas with Ti > Te.

Nevertheless, MHD models have proven quite useful for fostering our un-
derstanding of space plasma dynamics on large scales. But one has to keep
their limitations in mind. Uncritical application of fluid models to collision-
less plasmas can lead to drastic errors!

Occasionally, fluid models can be useful tools even for processes occurring
on small scales, as the example of the following section demonstrates.

3.6 Electron magnetohydrodynamics, Hall current

Consider a non-resonant process in a plasma consisting of electrons and a
single ion species, with length and time scales small compared with the
corresponding ion scales. Under such conditions one can expect a fluid
theory to apply, in which the ions are treated as unaffected by the process. A
particularly simple model arises if the scales are still larger than the electron
scales, such that electron inertial effects are unimportant, and if the electrons
are sufficiently cold for electron pressure effects to be negligible. Then, in
a local frame where the ions are at rest, one finds that in the non-resistive
case Ohm’s law (3.57) reduces to

E =
1

ene
j × B (3.75)

where by quasi-neutrality ne = qini/e, with ni being the unperturbed ion
density. Here, the current is entirely carried by electrons,

j = −eneve (3.76)

and Ohm’s law can also be written as E + ve × B = 0; the perpendicular
(with respect to B) component of j becomes

j⊥ = −ene
E × B

B2
, (3.77)

which is called the Hall current density. This regime is a simple version of
electron magnetohydrodynamics (EMHD).

If ne is set to a constant, the only non-trivial two-fluid equations that
survive in addition to (3.75) are Maxwell’s equations.

This regime is often called the whistler regime, named after the wave mode
of EMHD (e.g., Gary, 1993).
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3.7 Initial and boundary conditions

All models discussed above require the specification of initial and boundary
conditions. Clearly, the initial conditions of the observables must satisfy the
equations that do not contain time derivatives. Examples are (3.29), (3.52)
and (3.64). Also, any physical constraint, such as positiveness of a particle
distribution function or of a plasma mass density or pressure, must be taken
into account.

Rigorous results on the sets of initial and boundary conditions that lead to
unique solutions are extremely difficult to obtain and not generally available.
Even when available, such a classical dynamics point of view often is of
little use in practice. For instance, in a bifurcation study of a spontaneous
dynamical process the non-uniqueness of solutions can be more relevant than
uniqueness. Also, most numerical simulations give best results with simple
boundary conditions, chosen ad hoc; resulting boundary layers do not seem
to pose a severe problem. In practice, the boundary values are dealt with
on a case by case basis.

3.8 Conservation laws

An important key to the understanding of space plasma activity is the fact
that ideal MHD implies a rich set of conservation laws. It will turn out that
often ideal MHD conservation laws typically suppress the onset of an activity
process. In those cases the occurrence of activity requires the breaking of
at least one of the ideal MHD conservation laws.

3.8.1 Conservation of mass and energy in ideal MHD

Here we consider ideal MHD and begin with conservation of mass, which
is expressed by the continuity equation (3.58). The conservation property
is more directly seen in integral form, obtained by integrating (3.58) over a
spatial domain D with a non-moving boundary S,

d
dt

∫
D

ρ d3r = −
∮

S
ρv · n dS (3.78)

where n is the unit normal vector of the boundary. This means that the
total mass inside the domain changes only by inflow of mass through the
boundary. There is no volume source of matter.

Let us now turn to the energy balance. Multiplying (3.59) by v and
making use of (3.62), (3.64) and (3.65) one finds
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∂

∂t

(
ρv2

2
+ u +

B2

2µ0

)
+∇ ·

(
ρv2

2
v + (u + p)v +

1
µ0

E × B
)

= 0 ,

(3.79)

which expresses conservation of energy. Equation (3.79) is the ideal MHD
version of (3.40). Note that the kinetic energy density has been split into
internal and bulk flow energy densities and that (by assumption) there is no
heat flow and (by quasi-neutrality) no electric energy density.

3.8.2 Magnetic flux, line and topology conservation

Here three conservation laws are formulated without specifying a particular
plasma model. In each case the result is applied to ideal MHD.

We begin with conservation of magnetic flux. Consider a singly connected
surface S with normal n and the boundary l, which moves with a smooth
(differentiable) velocity V (Fig. 3.1). The smoothness of V keeps the surface
singly connected during its motion. The rate at which the magnetic flux
connected with S changes is

d
dt

∫
S

n · B dS =
∫

S
n · ∂B

∂t
dS −

∮
l
V × B · dl

= −
∫

S
∇× (E + V × B) · ndS . (3.80)

Setting this change to zero for arbitrary choices of S one finds that the
velocity field V conserves magnetic flux if and only if

∇× (E + V × B) = 0 . (3.81)

B

dl

V

S

n

Fig. 3.1 Magnetic flux through an arbitrary surface S, the boundary moving with
velocity V .
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With (3.60) it follows immediately that in ideal MHD the plasma velocity
v conserves magnetic flux. In other words, the magnetic flux connected with
an arbitrary surface that moves with the plasma velocity is conserved.

Let us now turn to line and topology conservation, which are closely re-
lated. It is important to understand under what conditions the evolution
of a magnetic field can be described in terms of moving field lines (New-
comb, 1958; Stern, 1966; Vasyliunas, 1972). In this concept any given field
line, identified at an initial time, may undergo displacement and deforma-
tion, but it can be traced through the evolution and thereby it preserves its
identity. A velocity field w that transports magnetic field lines in that way
is said to have the property of magnetic line conservation, or shorter w is
line-conserving. If for a given smooth magnetic field B(r, t) there exists a
smooth line-conserving velocity, B is said to conserve its magnetic topology.
(Throughout this book smooth means differentiable if not stated otherwise.)

Naturally, for a velocity to be line-conserving it must satisfy a certain
requirement. To obtain a corresponding criterion we begin by describing a
field line at time t by the vector F B(r0, σ, t) tracing the field line, where
r0 is a fixed point on the field line (identifying the line) and σ a parame-
ter determining the running position on that line (Fig. 3.2), with σ = 0

B

w
Fw(r,t',t)

r = Fw(r,t,t)

FB(r0,s,t)

B
B

w

w

r

r'

r0

time t time t'

r
0
'

O

r0 = FB(r0,0,t)

Fig. 3.2 Magnetic line conservation: The velocity field w generates the temporal
magnetic field evolution by transporting the field line to its new position. Magnetic
field lines are represented by full lines, trajectories associated with w by broken
lines. The field lines and the trajectories are characterized by the vectors F B and
F w (left panel). The right panel illustrates the transport of a field line from its
position at time t to its position at time t′. For line conservation the characteristic
requirement is that the points r0

′ and r′ lie on the same field line.



3.8 Conservation laws 45

corresponding to r0. Obviously, ∂F B/∂σ is tangential to the field line, so
that we can choose σ such that

B =
∂F B

∂σ
. (3.82)

The same procedure is applied to the trajectories associated with the trans-
port of the field line. The trajectory beginning at the point r at time t

is characterized by the vector F w(r, t′, t), with time t′ being the parame-
ter that fixes the points on the trajectory and r = F w(r, t, t). Then, the
velocity is represented as

w =
∂F w

∂t′
. (3.83)

(The field line velocity w should not be confused with the single particle
velocity denoted by the same symbol in other sections.) The characteristic
property of magnetic line conservation is that the points r0

′ and r′ lie on
the same field line for arbitrary σ, t, t′. This means that r′ is connected
with r0 by field line and trajectory sections via r and via r0

′. Accordingly,
we can express r′ in the following two ways:

r′ = F w(r, t′, t) = F w(F B(r0, σ, t), t′, t), (3.84)

r′ = F B(r0
′, σ′, t′) = F B(F w(r0, t

′, t), σ′, t′) , (3.85)

where the parameters σ and σ′ belong to r and r′, respectively; σ′ depends
on (r0, t, σ, t′).

Equating (3.84) and (3.85), differentiating the resulting equation with
respect to t′ and σ and then setting t′ = t and σ = 0, gives

B · ∇w = w · ∇B +
∂B

∂t
+ λ1B , (3.86)

where λ1 = ∂2σ′/∂σ∂t′. Finally, one rewrites (3.86) as

∇× (E + w × B) = λB , (3.87)

where λ = λ1 −∇ · w and (3.62) was used together with the identity

∇× (w × B) = B · ∇w − w · ∇B − B∇ · w . (3.88)

As λ depends on w (although rather implicitly), for a given B(r, t) the
equation (3.87) is a condition on w. Therefore, one defines a velocity field
w(r, t) as line-conserving if and only if (3.87) is satisfied.

It is tempting to eliminate λ by taking the cross-product of (3.87) with
B, which gives

B × (∇× (E + w × B)) = 0 . (3.89)
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This equation was chosen by several authors to define line conservation
(Newcomb, 1958; Stern, 1966; Vasyliunas, 1972). For many purposes (3.87)
and (3.89) are indeed equivalent. However, there is a subtle difference
(Hornig and Schindler, 1996a). At a magnetic neutral point (B = 0) the
condition (3.87) requires that ∇ × (E + w × B) = 0, while (3.89) does
not necessarily impose that constraint. That difference, however, vanishes
if the neutral point is connected with its environment by a field line. (In
two dimensions an x-type neutral point is connected with the environment
by each of the two separatrices, while for the o-point there is no such con-
nection (Fig. 3.3). In the presence of a separatrix one can argue as follows.
At any point with B �= 0, (3.89) is equivalent to

∇× (E + w × B) = ΛB , (3.90)

where Λ is a scalar field, which must be smooth at any point with B �= 0.
What can we say about Λ at the neutral point? Away from the neutral point
the divergence of (3.90) gives B ·∇Λ = 0, so that Λ is constant on field lines.
Let Λ = Λs on the separatrix, where Λs at most is a (smooth) function of
time. We conclude that the right side of (3.90) becomes arbitrarily small
as, at any fixed time, the neutral point is approached along the separatrix.
Then, by continuity one finds that ∇× (E + w × B) = 0 is satisfied at the
neutral point.

To include the remaining cases (with no separatrix), we reformulate the
necessary and sufficient condition for w to be line conserving as

B × (∇× (E + w × B)) = 0

∇× (E + w × B) = 0 where B = 0 .
(3.91)

The second condition in (3.91) adds the conservation of neutral points.
Note that at a neutral point ∇× (E +w×B) = 0 is equivalent to ∂B/∂t+
w · ∇B = 0, which describes the transport of the neutral point.

The necessary and sufficient criterion for conservation of magnetic topol-
ogy then becomes the existence of a smooth velocity field w satisfying (3.91).

Fig. 3.3 Neutral points of two-dimensional magnetic fields. The x-type neutral
point (left) is the crossing point of two field lines (separatrices, broken lines), the
o-type (right) has no separatrices.
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Equivalently, using (3.87), the criterion requires the existence of a smooth
vector field w⊥ and a smooth scalar field λ. Here w⊥ is perpendicular to
B, the parallel component enters through λ.

In ideal MHD, (3.91) is solved by w = v, so that magnetic topology is
conserved.

Depending on the application, it can be appropriate to consider line con-
servation for a restricted class of transport velocities. The latter will play
an important role for magnetic reconnection (Chapter 11).

Comparing the requirements for flux, line and topology conservation one
finds the following hierarchy

∃ magnetic flux-
conserving velocity ⇒ ∃ magnetic line-

conserving velocity ⇒ conservation of
magnetic topology

implying

breakdown of
magnetic topology

conservation
⇒ � magnetic line-

conserving velocity ⇒ � magnetic flux-
conserving velocity

Note that we defined flux and line conservation for a selected w, while
topology conservation is defined on the space of all admissible velocities.

For ideal MHD we can summarize that all three properties hold.

3.8.3 Conservation of magnetic helicity

Magnetic helicity K is a measure of linkage or twist of magnetic flux tubes.
For a given domain D and suitable boundary conditions (discussed below)
it is defined as

K =
∫

D
A · B d3r (3.92)

where A is the magnetic vector potential, which generates the magnetic field
by B = ∇× A. Helicity K plays a central role in describing the magnetic
field topology (Berger and Field, 1984).

For a non-moving boundary S, Maxwell’s equations imply

dK

dt
+
∮

S
n · (φB − A × E) dS = −2

∫
D

E · B d3r . (3.93)

This equation is obtained by applying the time-differentiation to the inte-
grand, using (3.12) and (3.62) to express ∂A/∂t and ∂B/∂t.
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In view of (3.60) the term E · B vanishes for ideal MHD systems and
(3.93) assumes the form of a continuity equation in integral representation.
Then, helicity is conserved if the surface integral in (3.93) vanishes. For
instance, this is the case for sets of isolated closed flux tubes. One finds
that K vanishes for a single closed flux tube without twist, while K assumes
a finite value for two linked flux tubes or a single flux tube with a twisted
field structure (Moffatt, 1978; Berger and Field, 1984).

It should be noted that K as given by (3.92) is not necessarily indepen-
dent of the electromagnetic gauge, unless special conditions prevail. One
such condition is that n · B = 0 on the boundary. Modified definitions of
helicity have been introduced with different invariance properties (Finn and
Antonsen, 1985). For more on magnetic helicity see Section 11.5.3.

3.9 Discontinuities

Space plasmas can develop thin structures with small spatial scales embed-
ded in a large-scale background. In the thin structures physical properties
can become important that do not play a significant role in the background.
An exact description of such double-scale structures is rather difficult to
achieve.

Luckily, in some cases the large-scale behaviour can be approximated by
discontinuous solutions, where the thin structures are reduced to disconti-
nuities. An appropriate set of equations provides jump conditions relating
the quantities on both sides of the discontinuity to each other. To derive the
jump conditions, some knowledge of the properties of the thin structure is
still required. For instance, one has to decide what quantities are allowed to
become singular (e.g., current density) or remain bounded (e.g., magnetic
field or pressure). Also, a careful choice of the equations is necessary. For
instance, in ideal MHD it is equivalent to use entropy conservation (3.61) or
energy conservation (3.79). As one finds that entropy can change across a
discontinuity, e.g., by viscous dissipation, while energy can be expected to
be conserved, it is essential to use the energy and not the entropy equation.

Consider an equation of the (conservation) form

∂f

∂t
+ ∇ · g = 0 (3.94)

and assume that the scalar f and the vector g remain bounded. Then, for
a discontinuity at rest the ‘pillbox’ argument leads to the jump condition

[n · g] = 0 , (3.95)
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n

n

2

n1

Shside 2

side 1

Fig. 3.4 Box-shaped region (‘pillbox’) as the integration domain for deriving the
jump condition from an equation of the type (3.94) at a discontinuity surface (S).
The normal of the discontinuity is identified with the normal n2 after applying
Gauss’s theorem and taking the limit h → 0.

where [a] = a2 −a1 with a1 and a2 denoting the values of a on the two sides
of the continuity, and n is the unit normal of the discontinuity, pointing
from side 1 to side 2 (Fig. 3.4).

To derive (3.95) one considers a cylindrical box-type volume extending
across the discontinuity as illustrated in Fig. 3.4. One integrates the equa-
tion (3.94) over the box, applies Gauss’s theorem, takes the limit h → 0 and
finally chooses the radius of top and bottom surfaces sufficiently small so
that g can be considered as being constant over those surfaces (Landau and
Lifshitz, 1963). The contribution from the time derivative vanishes in the
limit h → 0. The jump condition (3.95) remains valid when f is replaced
by a vector and g by a tensor.

For obtaining the jump conditions of ideal MHD it is appropriate to start
from the MHD equations written in the form

∂ρ

∂t
+ ∇ · (ρv) = 0 (3.96)

∂ρv

∂t
+ ∇ ·

(
ρvv + (p +

B2

2µ0
)I − BB

µ0

)
= 0 (3.97)

∂

∂t

(
ρv2

2
+

p

γ − 1
+

B2

2µ0

)

+∇ ·
(

ρv2

2
v +

γp

γ − 1
v − 1

µ0
(v × B) × B

)
= 0 (3.98)

∂B

∂t
+ ∇ · (vB − Bv) = 0 (3.99)

∇ · B = 0 . (3.100)
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All of these equations have the form of (3.94) or of its vector/tensor gener-
alization, so that the jump conditions are readily obtained from (3.95) (e.g.,
Jeffrey and Taniuti, 1964).

The resulting conditions can be written in the form (Weitzner, 1983):

m[τ ] − [vn] = 0 (3.101)

m[v] +
[
p +

B2

2µ0

]
n − Bn

µ0
[B] = 0 (3.102)

m

([
τp

γ − 1

]
+ [τ ]〈p〉 + [τ ]

[B]2

4µ0

)
= 0 (3.103)

m〈τ〉[B] + m[τ ]〈B〉 − Bn[v] = 0 . (3.104)

Here vn = n · v, Bn = n · B, m = ρ1vn1 = ρ2vn2, which is the mass flow
through the discontinuity. We choose vn ≥ 0 so that for vn �= 0 the plasma
flows from side 1 (upstream region) to side 2 (downstream region). Further,
〈q〉 = (q1 + q2)/2 for any quantity q. The specific volume τ = 1/ρ is used
instead of the density ρ. The continuity of Bn resulting from (3.100) has
already been incorporated. Note that [qr] = [q]〈r〉 + [r]〈q〉 for any q and r.

One distinguishes linear and nonlinear discontinuities. A discontinuity is
called linear or nonlinear if [vn] = 0 or [vn] �= 0, respectively. Further classi-
fication uses properties of the tangential magnetic field Bt. By considering
the tangential contributions of (3.102) and (3.104) and eliminating vt one
finds

(m2〈τ〉 − B2
n/µ0)[Bt] = −m2[τ ]〈Bt〉 . (3.105)

By (3.101) linear solutions correspond to m[τ ] = 0. Three cases of that
type can be distinguished, which are listed under (a), (b) and (c) below.
Several distinct classes of nonlinear solutions are listed under (d).

(a) Contact discontinuities have m = 0, [τ �= 0], Bn �= 0. The jump con-
ditions give [p] = 0, [vt] = 0, [Bt] = 0. So density is the only
non-continuous quantity.

(b) Tangential discontinuities have m = 0, [τ �= 0], Bn = 0. The only
nontrivial condition comes from (3.102),[

p +
B2

2µ0

]
= 0, (3.106)

the pressure balance across the discontinuity. No restriction is im-
posed on the tangential velocity vt.
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(c) Rotational discontinuities are characterized by m �= 0 and [τ ] = 0,
Bn �= 0. The jump conditions give

vn =
|Bn|√
µ0ρ

[v] = ± [B]
√

µ0ρ
[B2] = 0 [p] = 0 , (3.107)

where ± represents the sign of Bn. Through the discontinuity the
magnetic field rotates from B1 to B2, so that for fixed B1 the tip of
B2 can lie on any point of the circle defined by the constancy of Bn

and B. The plasma crosses the discontinuity in the normal direction
with the Alfvén velocity with respect to Bn.

(d) Shock waves have m �= 0 and [τ ] �= 0. Thermodynamics requires that
fluid elements experience an increase of entropy when crossing the
shock. This condition implies that shocks must be compressive, i.e.,
[τ ] < 0.

For slow shocks and fast shocks Bt does not vanish and points into
the same direction on both sides. From (3.105) one concludes that
m2〈τ〉 − B2

n/µ0 �= 0. One defines

fast shock for (m2〈τ〉 − B2
n/µ0) > 0 (3.108)

slow shock for (m2〈τ〉 − B2
n/µ0) < 0 . (3.109)

In both cases (3.105) confirms that Bt1 and Bt2 are either parallel or
antiparallel. This implies that n, B1, B2 lie in a plane (coplanarity
theorem), so that Bt can be expressed by a single component (Bt).
Note that tangential and rotational discontinuities are not subject
to the coplanarity constraint.

From (3.108) and (3.109) together with the properties of Bt one
finds that for fast (slow) shocks v2

n > a2
n (v2

n < a2
n) holds on both

sides, where

a2
n =

B2
n

ρµ0
, (3.110)

an being the Alfvén velocity with respect to the normal component.
To obtain a further difference between fast and slow shocks one

uses scalar multiplication of (3.105) with 〈Bt〉,
1
2
[B2

t ] = − m2[τ ]〈Bt〉2

m2〈τ〉 − B2
n/µ0

. (3.111)

With [τ ] < 0 this implies that for fast shocks [B2
t ] > 0 such that, in

view of the continuity of Bn, one finds that [B] > 0, i.e., the magnetic
field strength increases across the shock. For slow shocks (3.111)
gives the opposite result, the magnetic field strength decreases. So,
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fast shock slow shock
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Fig. 3.5 Magnetic fields at fast and slow MHD shock waves.

fast shocks deflect the magnetic field away from the normal direction,
while the slow shocks deflect it toward the normal (Fig. 3.5).

A limiting case of fast shocks with Bt1 = 0 is the switch-on
shock requiring vn2 = |Bn|/

√
(µ0ρ2). The corresponding slow limit

(switch-off shock) has Bt2 = 0 and vn1 = |Bn|/
√

(µ0ρ1). Although
switch-on and switch-off shocks can be understood as limiting cases
of fast and slow shocks, strictly speaking, they do not fall under the
definition of fast or slow shocks, because several properties, such as
the condition Bt �= 0, are violated. For Bt vanishing on both sides
the magnetic field drops out of the problem, so that the result is an
ordinary gas dynamic shock.

The above classification leaves the case (m2〈τ〉 − B2
n/µ0) = 0 as

the final (nontrivial) possibility. Such solutions are called interme-
diate shocks. There is an ongoing debate about the physical signifi-
cance of intermediate shocks. On the one hand, typical intermediate
shocks can be shown to be non-evolutionary (Jeffrey and Taniuti,
1964), which implies that they are structurally unstable with re-
spect to small changes in the initial conditions. On the other hand,
intermediate shocks have been observed in two-dimensional simula-
tions, e.g., by Brio and Wu (1988). Results obtained by Falle and
Komissarov (2004) suggest that the two-dimensional case has singu-
lar mathematical properties, which cause the intermediate wave to
be evolutionary while the three-dimensional case is non-evolutionary
based on the larger class of initial conditions of the perturbations.
This and further arguments led Falle and Komissarov (2004) to dis-
miss the intermediate shocks as unphysical, except for very short
time intervals during which they might exist before they decay.

For the solutions with Bn �= 0 there is a frame of reference, called the
de Hoffmann–Teller frame (de Hoffmann and Teller, 1950) in which the
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velocity (v′) becomes aligned with the magnetic field. With v′ = v − u,
where u is the transformation velocity with un = 0, the alignment condition
gives

u = vt −
vn

Bn
Bt . (3.112)

Note that, in view of (3.104), [u] = 0. The transformed electric field van-
ishes. For example, rotational discontinuities have

v′ = ± B
√

µ0ρ
(3.113)

and u = vt ∓ Bt/
√

µ0ρ .
Treating a plasma as incompressible does not necessarily imply the ab-

sence of shock waves. As discussed above, there may be good reasons for
describing the physical conditions inside and outside a thin structure with
different model equations. So, a thin structure may well involve compress-
ible dynamics internally while for the smooth regions incompressibility may
be a good approximation.

If the plasma pressure tensor is not isotropic, the jump conditions and the
resulting discontinuity properties have to be generalized accordingly (Hud-
son, 1970; Walthour et al., 1994).

Situations that are more complex than discussed here arise when two dis-
continuities merge to form a compound structure, which has become known
as double discontinuity. Refined plasma models beyond ideal MHD seem to
be necessary to describe such structures. Whang (2004) showed that a dou-
ble discontinuity consisting of a slow shock and a rotational discontinuity
can exist in a plasma described by Hall-MHD.





Part II

Quiescence
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Introduction

As outlined in Chapter 1, it is widely understood that an essential aspect
of space plasma activity is that quiescent plasma configurations suddenly
turn into a state of fast dynamic evolution. Examples for activity-relevant
quiescent structures are the magnetotail during the growth phase of a mag-
netospheric substorm and a preflare configuration in the solar atmosphere.

Fundamental questions arise about the conditions under which such tran-
sitions take place. Since they start out from a quiescent state it is important
to obtain detailed knowledge about those states, before one can tackle the
transitions themselves. The present part is devoted to that task.

Even during quiescence a system often undergoes significant changes due
to external driving forces. Planetary magnetospheres are driven by the solar
wind, solar chromospheric or coronal structures by subphotospheric convec-
tive motions. But any snapshot that one would take during a sufficiently
slow evolution would approximately satisfy the equations of a steady state.
Thus, quiescence is an asymptotic concept, applying to situations where the
time scale of external driving is large compared with any relevant dynamical
time scale of the system considered.

We illustrate these aspects more precisely for fluid models. Let the char-
acteristic time of external forces be tc and the largest dynamical time scale
be td. Here, td typically is the time it takes for the slowest wave mode to
travel across the system. The present assumption is that ε = td/tc is much
smaller than 1, such that the two time scales are well separated. In that
case one is led to use a formulation which exhibits the different time scales
explicitly. In the simplest version of such a (multiple time scale) procedure
it is assumed that any fluid quantity q may be written as

q(r, t) = Q(r, t0, t1, ε) (4.1)
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where t0 = t and t1 = εt, such that the presence of two time scales becomes
explicit. In general, a system will vary on both time scales. However, here
we are interested in the limiting behaviour, where – at least approximately –
the dependence with respect to t0 is absent, such that q depends on t only
through t1. (We will return to the t0-dependence below.) This implies that
time derivatives are small, because

∂q

∂t
= O(ε) (4.2)

such that, to zeroth order in ε, the system is approximately found in a steady
state at any time t1. Such a steady state is what we mean by a snapshot.
Nevertheless, over a sufficiently long period T of time, say, T = 1/ε, small
changes might secularly accumulate to a change of order 1.

Under these conditions, the secular evolution is appropriately described as
a sequence of steady states, where a careful handling of conserved quantities
is required. This is a standard procedure in thermodynamics and statistical
mechanics. However, space plasmas are far from any thermodynamic equi-
librium state so that the construction of sequences of steady states is a more
complicated problem.

Note that we have restricted the multiple scale argument to time-
dependence. For spatial variations a corresponding separation of scales is
available only under particular circumstances. An example is the plasma
sheet in the Earth’s magnetotail, which will be addressed later.

The spatial structure of space plasmas requires inhomogeneous steady
state models. This is a rather involved topic, most difficulties arising from
the nonlinearity of the underlying equations. Here, it is a pleasing fact
that, in the past, appropriate solutions of the nonlinear equations have been
obtained, which can be used to model quiescent states of space plasmas and
associated sequences in considerable complexity.

A point of potential weakness of describing space plasmas by steady
state models results from the presence of fluctuations, causing t0-dependent
observables q. (For the relevance of non-thermal fluctuations see the corre-
sponding discussions in Chapters 2 and 3.) Frequently, however, the fluc-
tuation level is small enough for not entering the steady state properties
explicitly. In other cases the effect of the fluctuations can be taken into ac-
count by imposing a suitable constraint on the steady state. An important
example is the case where observations indicate that the fluctuations keep
the pressure tensor close to isotropic. Then it may turn out to be a reason-
able approach to choose an isotropic pressure tensor and to ignore any other
effects of the fluctuations.
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Even in the presence of a non-negligible fluctuation level, steady state
models without fluctuations are needed to study the origin of the fluctua-
tions if they are excited by a microinstability (Gary, 1993). A typical sta-
bility analysis requires a steady state background configuration. The same
applies to most computer simulation studies. In fluid models, if necessary,
small scale fluctuations may be taken into account through anomalous trans-
port terms such as anomalous resistivity (see Section 9.3.2). Thus, there
is ample motivation for using steady state models for describing quiescent
configurations.

Sets of basic equations, describing steady states, are readily obtained from
the time-dependent models of Chapter 3 by setting all partial time deriva-
tives to zero. For later reference we here list two cases explicitly:

(a) Steady state magnetohydrodynamics for an ideal plasma in electro-
magnetic and (external) gravity fields, derived from (3.58)–(3.64),

∇ · (ρv) = 0 (4.3)

ρv · ∇v = −∇p + j × B − ρ∇ψ (4.4)

E + v × B = 0 (4.5)

v · ∇(p/ργ) = 0 (4.6)

∇× E = 0 (4.7)

∇ · B = 0 (4.8)

∇× B = µ0j , (4.9)

(b) steady state Vlasov theory, i.e., the steady state version of (3.26)–
(3.30),

w · ∂fs

∂r
+
(

qs

ms
(E + w × B) − ms∇ψ

)
· ∂fs

∂w
= 0 (4.10)

∇ · E =
1
ε0

∑
s

qs

∫
fs d3w (4.11)

∇× E = 0 (4.12)

∇ · B = 0 (4.13)
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∇× B = µ0

∑
s

qs

∫
wfs d3w. (4.14)

Because of (4.7) or (4.12) the fields E can be derived from the electric
potential alone, E = −∇φ.

The physical significance of the individual equations of both models are
covered by the discussions of Chapter 3. The simplifications discussed there,
such as the quasi-neutrality assumption, and the generalizations, such as
the CGL pressure tensor, in principle, can also be applied to the present
steady state equations. But in view of the small Debye lengths of the envis-
aged plasmas it seems justified to employ the quasi-neutrality approximation
throughout this part.

Even if large sets of snapshot solutions are available, it is not a straight-
forward procedure to combine them to a secular evolution. The snapshots
contain parameters or free functions that are functions of t1. Their choice
must be consistent with all physical constraints, such as conservation of
particle number or of entropy.

Chapters 5–7 deal with steady state snapshots; the problem of secular
evolution is addressed in Chapter 8.

Some of the properties that are discussed in this part also hold for time-
dependent systems.



5

Magnetohydrostatic states

In quiescent states that are candidates for becoming active, the plasma
flow velocity is often small compared to typical magnetohydrodynamic wave
velocities. Then, at any given time during the slow quiescent evolution
the plasma and the fields can be approximately described as a static state.
A corresponding ideal MHD model is provided by the magnetohydrody-
namic equations (4.3)–(4.9) with v set to zero. The resulting equations
define magnetohydrostatics. Typically, for space plasmas that are trapped
in regions of closed magnetic fields in stellar and planetary environments
magnetohydrostatics turns out to be a useful model on spatial scales large
compared with the intrinsic plasma scales.

5.1 General properties

Although the model of magnetohydrostatics is already considerably simpli-
fied as compared to general steady state plasma models, it is still complicated
enough, and its application spectrum is wide enough, to call for a discussion
of its major properties.

5.1.1 Basic equations

If bulk velocity v is negligible, the equations of magnetohydrodynamics re-
duce to the equations of magnetohydrostatics (MHS),

−∇p + j × B − ρ∇ψ = 0 (5.1)

∇× B = µ0j (5.2)

∇ · B = 0 . (5.3)
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Frequently, a further simplification is possible in that the gravity term in
(5.1) can be neglected. The condition for this approximation to be applicable
follows from a comparison between the gravity force and the pressure force,
where the gradient is expressed by a characteristic scale length L and −∇ψ

is identified as the gravity acceleration g,

|ρ∇ψ|
|∇p| =

ρg

p/L
=

L

h
� 1 (5.4)

where

h =
p

ρg
(5.5)

is the gravity scale height. Neglecting gravity is largely justified for magne-
tospheric plasmas, for solar plasmas (5.4) may or may not apply, depending
on circumstances.

For reasons of reference we rewrite the MHS equations without the gravity
term,

−∇p + j × B = 0 (5.6)

∇× B = µ0j (5.7)

∇ · B = 0 . (5.8)

In spite of the seemingly simple structure of (5.6)–(5.8), the nonlinearity
in (5.6) causes considerable difficulties. In fact, a general mathematical
existence theory is not available. There are, however, a number of interesting
properties that are readily accessible.

A first property that follows from (5.6) is that B · ∇p = 0 implying that
the pressure is constant on magnetic field lines. Next, consider the Lorentz
force density fL = j × B. Eliminating the current density by (5.2), and
expanding the double vector product we find

fL =
1
µ0

(∇× B) × B

= −∇ B2

2µ0
+

1
µ0

B · ∇B . (5.9)

The first term has the same effect as a scalar pressure, therefore B2/2µ0

is called magnetic pressure. The second part is anisotropic, involving the
direction of the magnetic field explicitly. Physical insight is gained by asking
under what conditions the anisotropic part vanishes. Writing B = Bb,
where b is the unit vector in the direction of B, we find

B · ∇B = B2 b · ∇b + B b b · ∇B . (5.10)
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Noting that the two terms on the right of (5.10) are perpendicular to each
other, both terms must vanish for the anisotropic part of fL to be zero
(unless B vanishes identically). Since |b · ∇b| = 1/R, where R is the local
radius of curvature of the field line, we find that magnetic fields must be
straight lines and that the field magnitude B must be constant on each field
line. A simple example of a magnetic field satisfying these conditions is a
vector field B which (in Cartesian coordinates) has no x-component and the
two other components depend on x only.

The identity (5.10) implies that strongly curved magnetic field lines will
exert a large magnetic force on the plasma. The Lorentz force acting on
a finite part of the plasma covering a domain D (cut out arbitrarily) with
surface S and outward pointing normal vector n is obtained by noting that
the Lorentz force density can also be written as

fL = ∇ ·M , (5.11)

where M is (the magnetic part of) Maxwell’s stress tensor

M =
B2

2µ0
I − BB

µ0
(5.12)

with I denoting the unit tensor. Thus, we obtain for the total Lorentz force

F L =
∫

D
∇ ·M d3r

=
∮

S
n · Md2S

=
1
µ0

∮
S
(
B2

2
n − n · BB) d2S . (5.13)

This indicates that the magnetic stress exerted locally on the surface consists
of a part directed along the normal vector of the surface and a part that
locally is directed along the field line. In the absence of other forces, the
latter force causes a tendency for the magnetic field lines to shorten. (In
that sense magnetic fields behave like rubber bands, however, that analogy
is rather limited otherwise.)

In (5.6) the pressure and the current density may be eliminated by taking
the curl of that equation, and using (5.7). Then the MHS equations assume
the form

∇× (B · ∇B) = 0 (5.14)

∇ · B = 0 . (5.15)
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Furthermore, (5.15) may, of course, be eliminated by deriving B from a
vector potential B = ∇× A, such that (5.14) becomes

∇× [(∇× A) · ∇(∇× A)] = 0 . (5.16)

A further representation of magnetic fields is considered in the following
section.

5.1.2 Euler potentials

Under suitable conditions (defined below) a magnetic field B may be repre-
sented in the form

B(r) = ∇α(r) ×∇β(r) (5.17)

where α and β are the Euler potentials (also called Clebsch potentials), which
are functions of position r (Stern, 1970).

As in the case of a vector potential, the presentation of a magnetic field by
Euler potentials ensures that ∇ · B = 0. In fact, Euler potentials generate
a vector potential A in the form

A = α∇β. (5.18)

The Euler representation (5.17) implies that each field line is the inter-
section line of two surfaces, on which α and β are constant, respectively
(Fig. 5.1).

Although Euler potentials can be quite useful for representing magnetohy-
drostatic states, it must be kept in mind that not all magnetic fields can be
represented by Euler potentials in the entire domain of interest. Euler po-
tentials, however, do exist under the following circumstances (Stern, 1970).

Let B �= 0 in the entire domain of interest and consider a surface S which
is intersected by magnetic field lines unidirectionally and assume that every
field line, which intersects that surface, intersects it only once (Fig. 5.2).
Then, every field line can be uniquely labelled by a pair of coordinates

 

B

a 

b 

Fig. 5.1 In the Euler representation a magnetic field line is the intersection line of
two surfaces with constant potentials α and β.
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(a,b)

S

Fig. 5.2 A magnetic field can be represented by Euler potentials if each field line
passes through a surface S once and only once. The point at which a given field
line intersects S is specified by a pair of surface coordinates (a, b).

a, b marking the intersection point on S. For sufficiently smooth magnetic
fields B(r), the set of all points connected with S by a field line define
a domain DS . Every point r ∈ DS is uniquely determined by specifying
the intersection coordinates a, b and the arc length s measured along the
field line (increasing in the direction of B) with an arbitrary choice of s on
S. Under the present conditions, the vector function r = r(a, b, s) can be
inverted, yielding a(r), b(r), s(r). Here, the values of a and b are simply
transported from the surface S along field lines into the domain DS .

Since B is perpendicular to both ∇a and ∇b, B can be represented as

B = g(a, b)∇a ×∇b . (5.19)

Here, the condition that ∇ · B = 0 forces the multiplying scalar func-
tion g to depend on a and b only. A suitable nonsingular transformation
a(α, β), b(α, β) leads to the desired form (5.17) of B.

Particular care must be taken for the case of toroidal magnetic fields.
Obviously, for domains containing a magnetic flux torus, a surface cutting
the torus in general cannot be identified with the surface S in the sense
discussed above, because, generically, a field line returns to any surface
that it intersects with multiple intersection points. In fact, there may be
infinitely many intersection points, such that the notion of magnetic field
lines becomes questionable. Regions may exist where field lines become
chaotic in the sense of Hamiltonian mechanics. In such cases, one either
must restrict the domain of interest suitably or abandon (a single set of)
Euler potentials altogether. It seems, however, that many space plasma
structures are non-toroidal and do admit the use of Euler potentials. For
instance, in models of the magnetic field in the Earth’s magnetotail or of
simple magnetic loops above the solar photosphere recurrent fields do not
play an important role. Therefore, using Euler potentials is much more
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common in space and astrophysics than in laboratory plasma physics. We
will employ them in several places in this book. However, the limitations
must be kept in mind.

To express the MHS equations in terms of Euler potentials α and β, we
write the pressure as a function of the Euler potentials

p = P (α, β), (5.20)

which is possible because the pressure is constant on field lines. Inserting
(5.17) and (5.20) into (5.6) and collecting the coefficients of ∇α and ∇β

gives

j · ∇β =
∂P

∂α
(5.21)

j · ∇α = −∂P

∂β
. (5.22)

With the help of (5.7) the equations (5.21) and (5.22) assume the form

∇β · ∇ × (∇α ×∇β) = µ0
∂P (α, β)

∂α
(5.23)

∇α · ∇ × (∇α ×∇β) = −µ0
∂P (α, β)

∂β
. (5.24)

Euler potentials can be interpreted as magnetic flux coordinates in the
following sense. The magnetic flux FΣ through a surface Σ with unit normal
vector n is

FΣ =
∫

Σ
n · B dS =

∫
Σ̂
±dα dβ (5.25)

where the first integral extends over Σ and the second over the corresponding
domain Σ̂ in α, β-space, the +(−) sign corresponding to n · B > 0 (< 0).
Thus, magnetic flux is simply the (directed) area in α, β-space. Magnetic
flux coordinates have proven quite useful for modelling magnetic fields (e.g.,
Zweibel and Boozer, 1985).

Note that P (α, β) can be chosen freely, as long as P is positive. This
freedom is related to the free choice of initial conditions in a time-dependent
case, where the initial pressure can be specified arbitrarily.

Finally we remark that Euler potentials, representing a given magnetic
field, are not unique. Like the vector potential they are subject to a gauge
transformation. From (5.18) it is clear that

A′ = α∇β + ∇ϕ (5.26)
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is a possible vector potential, too, for an arbitrary choice of the gauge func-
tions ϕ. If, however, A′ is to have the form α′∇β′, ϕ is subject to a restric-
tion. Defining

χ = ϕ + αβ (5.27)

we find from (5.26) and (5.27) after eliminating ϕ

α′∇β′ = −β∇α + ∇χ, (5.28)

which implies that it must be possible to write χ as a function of α and β′

alone such that ∇χ = ∂χ/∂α∇α + ∂χ/∂β′∇β′. Inserting this expression
into (5.28) one concludes that

β =
∂χ(α, β′)

∂α
, α′ =

∂χ(α, β′)
∂β′ . (5.29)

This means that the gauge transformation for α and β is formally identi-
cal with a canonical transformation with a generating function χ(α, β′) as
known from Hamiltonian mechanics (Goldstein, 2002). In other words, any
arbitrary χ(α, β′) generates a new set of Euler potentials α′, β′ which can be
computed by solving (5.29) for α′ and β′. In α, β-space the class of gauge
transformations (α, β) → (α′, β′) represents the class of all incompressible
maps. This condition is equivalent to |J | = 1, where

J =
∂α′

∂α

∂β′

∂β
− ∂α′

∂β

∂β′

∂α
(5.30)

is the Jacobian of the map.
We add that by (5.27) a transformation generated by χ leads to an electric

potential

φ′ = φ − ∂ϕ

∂t
= φ +

∂

∂t
(αβ − χ). (5.31)

(Note that the assumption of a steady-state condition for the electro-
magnetic field does not necessarily exclude certain forms of time-varying
potentials.)

5.1.3 Boundary conditions and a variational principle

The magnetohydrostatic equations (5.6)–(5.8) require boundary conditions
for p and B. These conditions are rather difficult to formulate. The main
problem is that the boundary condition for the pressure must be consistent
with the property that pressure is constant on field lines, which, however,
are not known beforehand. Furthermore, because of the nonlinearity of
the equations, it is not clear a priori whether for a given set of boundary
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conditions a solution does exist at all. (We return to this difficulty in the
context of bifurcation properties in Part III.) A more formal discussion of
the boundary conditions requires an analysis of the characteristic manifolds
(e.g., Parker, 1979). Here we pursue a different line, based on Euler poten-
tials. In that case, with P (α, β) specified, an obvious choice of magnetic
boundary conditions are Dirichlet conditions, i.e.,

α(r) and β(r) prescribed for r on the boundary. (5.32)

Physically, this boundary condition prescribes the location where a field line
with labels α, β cuts through the boundary. Thus, this boundary condition
fixes the footpoints of flux tubes, as, for instance, it is appropriate for mod-
elling quiescent states in the solar atmosphere.

On some boundaries (or sections of boundaries) homogeneous Neumann
conditions

n · ∇α = 0, n · ∇β = 0 (5.33)

may also be appropriate; (5.33) means that the tangential magnetic field
component vanishes (e.g., as a consequence of an imposed symmetry). This
is easily seen by expressing the tangential part of the magnetic field Bt =
n × (B × n) by Euler potentials,

Bt = n ×∇β n · ∇α − n ×∇α n · ∇β . (5.34)

One might wonder whether boundary value problems are useful for quies-
cent space plasmas at all. Although in some cases a boundary or a section
of a boundary may actually be identified with a physical boundary (e.g., the
magnetopause), other model boundaries are artificial, because the actual
plasma extends smoothly beyond the domain chosen in the model. Clearly,
any extended field assumes certain values on the surface representing the
boundary in a model description. If such realistic values were used to for-
mulate boundary conditions, the field inside the domain could be expected
to provide a useful model for the actual field quantities. The obvious prob-
lem is that, although realistic boundary conditions exist, there is usually no
way to get hold of them exactly. This means that it takes a good deal of
physical intuition to construct appropriate models of space plasmas. (This
problem is less stringent for laboratory plasmas where physical boundaries
exist. Note, however, that even there, e.g., in studies of plasma-wall inter-
action processes, the idealization of a wall as a smooth surface might not be
good enough.)

As it will become clear later, it is of considerable interest that the equilib-
rium equations (5.23) and (5.24) may be derived from a variational principle.
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This is straightforward for Dirichlet or Neumann boundary conditions for α

and β.
Consider the functional F [α, β] defined as

F [α, β] =
∫

D

[
1

2µ0
(∇α ×∇β)2 − P (α, β)

]
d3r. (5.35)

One obtains (5.23) and (5.24) from the condition that the variation of F [α, β]
vanishes, i.e., δF = 0 with boundary conditions either of the form (5.32) or
(5.33). In fact, for an arbitrary domain D with boundary ∂D the condition
δF = 0 can be written as∮

∂D

[
δα(n · ∇α(∇β)2 − n · ∇β∇α · ∇β)

+ δβ(n · ∇β(∇α)2 − n · ∇α∇α · ∇β)
]
dS

+
∫

D

[
δα(∇β · ∇ × (∇α ×∇β) − µ0

∂P

∂α
)

− δβ(∇α · ∇ × (∇α ×∇β) + µ0
∂P

∂β
)
]

d3r = 0 . (5.36)

The surface integral vanishes due to the boundary conditions, and the van-
ishing of the volume integral for arbitrary δα and δβ (satisfying the bound-
ary conditions) implies (5.23) and (5.24). As in many other cases, this
variational principle is not only a handy tool for deriving the equilibrium
equations, but it also provides a stability criterion. We return to this point
in Part III.

5.1.4 Field-aligned currents and current closure

It is instructive to observe that in general the current density j has compo-
nents j‖ and j⊥ parallel and perpendicular to the magnetic field B. Useful
expressions for j⊥ and j‖ are obtained in the following way.

Taking the vector product of equation (5.6) with B, we find

j⊥ =
1

B2
B ×∇p . (5.37)

The parallel component of j follows from the equation ∇ · j = 0 which is a
consequence of (5.7), giving

∇ · j‖ = −∇ · j⊥ . (5.38)
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By using ∇ · B = 0, by writing j‖ = j‖B/B and noting that (B · ∇)/B =
∂/∂s, where s is the arc length on a given field line, we find

j‖
B

=
[
j‖
B

]
s0

−
∫ s

s0

∇ · j⊥
B

ds′ (5.39)

with s0 being the origin of s on each field line.
The expression (5.39) assumes a particularly interesting form when Euler

potentials are used. Noting that the divergence of an arbitrary vector field
u may be written as

∇ · u = B

[
∂

∂α

(
u · ∇α

B

)
+

∂

∂β

(
u · ∇β

B

)
+

∂

∂s

(
u · ∇s

B

)]
(5.40)

we find
j‖
B

=
[
j‖
B

+
j⊥ · ∇s

B

]
s0

− j⊥ · ∇s

B

− ∂

∂α

∫ s

s0

j⊥ · ∇α

B
ds′ − ∂

∂β

∫ s

s0

j⊥ · ∇β

B
ds′ . (5.41)

Using (5.21) and (5.22) this expression assumes the form (Vasyliunas, 1970)

j‖
B

=
[
j‖
B

+
j⊥ · ∇s

B

]
s0

− j⊥ · ∇s

B
+

∂P

∂β

∂V

∂α
− ∂P

∂α

∂V

∂β
(5.42)

where V = V (α, β, s) is the differential flux tube volume

V (α, β, s) =
∫ s

s0

ds′

B(α, β, s′)
. (5.43)

The expression (5.42) is particularly useful, when the magnetic field is
close to a potential field, so that pressure gradients and currents can be
treated as small perturbations. Then, one can use the potential field in
(5.42) to evaluate the parallel current density in the leading order. The
result may be improved by further iterations (Vasyliunas, 1970).

For field lines passing through the boundary, in (5.42) the term which
is to be evaluated at s = s0 will require a boundary condition. Here, we
encounter an example of the general difficulty of specifying boundary con-
ditions that was discussed above. How do we know whether the outside
regime can cope with an assumed parallel electrical current? This prob-
lem, for instance, arises for magnetospheric models where parallel currents
exist, such as Birkeland currents, manifesting the coupling between magne-
tospheric and ionospheric processes. It is generally necessary to deal with
the closure of the electric currents (Alfvén, 1972). Fully satisfactory models
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must cover sufficiently large domains, such that the currents close inside.
Note that there is no problem of current continuity inside the model domain
itself, because ∇ · j = 0 is satisfied everywhere in an MHD system.

5.1.5 Force-free fields

Here we consider the limiting situation where the pressure gradient is uni-
formly small compared to |j| |B|. Neglecting pressure gradients, (5.6) im-
plies that j × B = 0 or j ‖ B which may be expressed as

∇× B = κB (5.44)

where κ is a scalar function of r. Taking the divergence of (5.44) and using
(5.8) one finds

B · ∇κ = 0 , (5.45)

implying that κ is constant on magnetic field lines.
Solutions B of equation (5.44) with (5.45) are called force-free fields. Note

that neither j nor p is required to be small. The quantities that must be
small are j⊥ and |∇p|. The force-free field approximation is thought to be
applicable to large regions of the solar corona.

The magnitude of the current density is tied to the magnitude of the
magnetic field because

∂

∂s

(
j‖
B

)
= 0 (5.46)

which follows directly from ∇ · j = 0.
A simple example, often used for analytical representations of force-free

fields, is obtained by choosing κ to be a constant. Then, (5.45) is satisfied
automatically and (5.44) is a linear differential equation for B(r) which for
a number of simple domains can be solved analytically. This case, how-
ever, does not only serve as a mathematical simplification. As we shall
see, constant-κ force-free fields are believed to be the result of a particular
relaxation process, which conserves magnetic helicity. This is based on the
following property.

Force-free fields with constant κ minimize the magnetic energy under the
constraint of helicity conservation and with the normal component kept fixed
on the boundary ∂Ω of a finite domain Ω (Woltjer, 1958). The corresponding
variational problem is

δ

∫
Ω

(
(∇× A)2

2µ0
− κ0

2µ0
A · ∇ × A

)
d3r = 0 , (5.47)



72 Magnetohydrostatic states

where (3.92) was used for the helicity and κ0/(2µ0) is the Lagrangian mul-
tiplier. Carrying out the variation and using Gauss’s law, with the surface
terms vanishing due to the boundary condition, one finds

∇× (∇× A) = κ0∇× A (5.48)

so that indeed the minimizing field is force-free with constant κ.

5.1.6 Tangential discontinuities

It is of considerable interest from both the theoretical and the practical point
of view to explore whether the MHS equations (5.6)–(5.8) admit discontin-
uous solutions.

So let us specialize the general discontinuities of ideal MHD, as found in
Section 3.9 for MHS conditions. Setting the plasma velocity to zero one
finds that the only remaining discontinuity is the tangential discontinuity so
that [

p +
B2

2µ0

]
= 0, (5.49)

so that the sum of kinetic and magnetic pressure is continuous. There is no
magnetic field component normal to the discontinuity.

By (5.7) a tangential discontinuity carries a surface current with density

K =
1
µ0

n × (B2 − B1) (5.50)

where it is important to understand n as pointing from side 1 to side 2 of the
discontinuity. Equation (5.50) is derived in a way similar to the derivation
of the jump conditions of Section 3.9; instead of the pillbox-integration a
line integral is taken along a closed contour intersecting the test surface.

5.1.7 Virial theorem and generalizations

Here we address conditions that are necessary for an isolated magnetic flux
tube to exist in MHS equilibrium. This is an application of the virial the-
orem (Chandrasekhar, 1961; Priest, 1982; Low, 1999). Although conditions
derived from the virial theorem are not sufficient for equilibrium, the virial
approach has proven quite useful; its particular strength lies in its potential
to classify certain test configurations as not being in MHS equilibrium.

First, let us consider a test equilibrium in which the magnetic flux is
isolated in the sense that B vanishes outside a bounded domain d embedded
in a larger domain D where the pressure p assumes a constant value p0. The
surface ∂d of the domain d may be a tangential discontinuity.
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A set of useful relations is derived in the following way. We start from the
MHS momentum balance (5.6), which with the help of (5.12) is written as

∇ · T = 0, (5.51)

where

T = −(p +
B2

2µ0
)I +

BB

µ0
. (5.52)

Let us multiply (5.51) by an arbitrary differentiable vector field V (r) and
integrate the result over the domain d,∫

d
V · (∇ · T ) d3r = 0 . (5.53)

Integration by parts (using Gauss’s theorem) gives∮
∂d

V · T · nd dS −
∫

d
T : (∇V ) d3r = 0 (5.54)

where nd is the outward-pointing normal of ∂d and the colon denotes com-
plete contraction of the two tensors. Using (5.52) we find

V · T · n = −
(

p +
B2

2µ0

)
V · n +

1
µ0

V · BB · n (5.55)

T : (∇V ) = −
(

p +
B2

2µ0

)
∇ · V +

1
µ0

B · (B · ∇V ) . (5.56)

The surface integral over ∂d is evaluated as follows,∫
∂d

V · T · nd dS =
∫

∂d

(
−p − B2

2µ0

)
V · nd dS

= −p0

∫
∂d

V · nd dS

= −p0

∫
d
∇ · V d3r (5.57)

where, for the case of ∂d being a tangential discontinuity, (5.49) has to be
invoked. Thus, we obtain from (5.54)∫

d

[(
p − p0 +

B2

2µ0

)
∇ · V − 1

µ0
B · (B · ∇V )

]
d3r = 0 . (5.58)

The equation (5.58) also remains valid if the equilibrium contains addi-
tional tangential discontinuities inside d. In that case integration by parts
would give rise to additional surface integrals, which cancel each other.
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For a given MHS equilibrium of the present type, equation (5.58) has to be
satisfied for arbitrary choices of V . Here we explore cases where V depends
linearly on the coordinates,

V = A · r (5.59)

where A is a constant tensor. From (5.58) we obtain

∫
d

[(
p − p0 +

B2

2µ0

)
Tr (A) − 1

µ0
B · A · B

]
d3r = 0 . (5.60)

Particularly interesting are the special choices

A = I ⇒
〈

B2

2µ0

〉
d

= 3〈p0 − p〉d (5.61)

A = exex + eyey ⇒
〈

B2
z

2µ0

〉
d

= 〈p0 − p〉d (5.62)

A = exey ⇒ 〈BxBy〉d = 0 (5.63)

where 〈. . .〉d means
∫
d . . .d3x/

∫
d d3x.

Since the z-axis is not particularly preferred, equation (5.62) also holds for
Bz replaced by Bx or By. Similarly, (5.63) remains valid for BxBy replaced
by ByBz or BzBx. Equations (5.61)–(5.63) imply that there is equipartition
in the large of energy in different Cartesian magnetic field components, and
that there is no spatial correlation between those components.

A major conclusion to be drawn from (5.61) is that the magnetic field and
the pressure must vanish for p0 = 0. This implies nonexistence of magneto-
hydrostatic self-confinement, i.e., confinement of a static plasma (described
by MHS) by its own magnetic field. Although for p0 �= 0 nontrivial solutions
are no longer excluded by the virial expressions that were considered here,
there is no guarantee for their existence. In fact, the existence of three-
dimensional MHS solutions defined in entire space is by no means trivial
(see Section 5.4.4).

Now let us turn to configurations which are less likely to face existence
problems. Consider the case where the domain d is cut by a surface Q. An
example is a plane surface cutting a bent flux tube with intersections q1 and
q2 (Fig. 5.3).
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Q

q
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q2

d

Fig. 5.3 A magnetic flux tube cut by a plane surface Q.

Let Q be parallel to the x, y-plane of a Cartesian coordinate system. Only
the upper half space needs to be in MHS equilibrium conditions, a different
physical situation may prevail in the lower half. Then, instead of (5.61) one
finds∫

d

[
3 (p − p0) +

B2

2µ0

]
d3r −

∫
q1,q2

1
µ0

Bz(xBx + yBy) dS = 0 . (5.64)

Here one uses∫
q1,q2

[
−(p − p0 +

B2

2µ0
)nd +

1
µ0

nd · B B

]
dS = 0 (5.65)

which is obtained by integrating (5.51) over d. Equation (5.65) also makes
sure that (5.64) does not depend on the choice of the origin of the coordinate
system. Note that for a force-free field (p = p0) the magnetic energy con-
tained in the flux tube is determined uniquely by the boundary conditions
on the surface Q.

The same method can be applied to find virial expressions for a domain d
covering full 3D space, however, a finite region being excluded. From (5.54)
with V = r one finds (assuming the existence of the integrals)

∫
d

[
3p +

B2

2µ0

]
d3r−

∫
∂d

[(
p +

B2

2µ0

)
r · n − 1

µ0
r · BB · r

]
dS = 0 . (5.66)

Note that the normal n points into the excluded domain. Specializing for a
sphere of radius R gives

∫
r>R

[
3p +

B2

2µ0

]
d3r = R

∫
r=R

[
B2

n

2µ0
− B2

t

2µ0
− p

]
dS , (5.67)



76 Magnetohydrostatic states

where Bn and Bt are the components normal (positive outward) and tangen-
tial to the sphere surface, respectively. As seen later, the expression (5.67)
is relevant for the solar corona.

5.2 Symmetric MHS states

Quite generally, symmetries provide valuable tools for solving problems
which otherwise are hopelessly complicated. This is most obvious for trans-
lational invariance with respect to a Cartesian coordinate because here the
invariance simply means that one of the coordinates can be ignored.

Fortunately, there exist configurations of space plasmas for which a two-
dimensional model can be regarded at least as a crude approximation. Ex-
amples are magnetic arcades in the solar corona (Fig. 14.1) or the quiescent
magnetotail configuration in the Earth’s magnetosphere. Fig. 5.4 illustrates
how a model with (internal) translational invariance represents the plasma
sheet of the Earth’s magnetotail (Fig. 2.2). Two-dimensional tail models
where the cross-tail coordinate is ignorable inside the magnetosphere have
proven successful in various respects.

Another example is rotational invariance, which is outlined only briefly.
The question, whether invariance can also be found for other coordinates,

is answered in Section 5.2.4.
For simplicity, the following discussion is confined to static systems with-

out external gravity force.

L

MP

MP

L

PS

Fig. 5.4 Sketch of the cross-section of a two-dimensional version of a magnetotail
model; shown are the magnetopause (MP), the lobes (L), the plasma sheet (PS)
with its boundary layers, and the tail current system (arrows). Internal quantities
are invariant with respect to translation in the horizontal direction.
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5.2.1 MHS systems with translational invariance

The standard example of a symmetry in MHD is translational invariance
with respect to a Cartesian coordinate, say z. In magnetohydrostatics, the
invariance is then defined by z-independence of the observable quantities p,
j, and B. (Note that electromagnetic and Euler potentials are not directly
observable and particular forms of linear z-dependence of the potentials may
be admitted without destroying the invariance of the electromagnetic fields
E and B.)

It is appropriate to decompose vector fields with translational invariance in
a poloidal component comprising the x- and y-components, and the remain-
ing z-component, denoted as the toroidal part. (This terminology (Moffatt,
1978) is borrowed from rotational symmetry.) For the magnetic field this
decomposition reads

B = Bp(x, y) + Bt(x, y) (5.68)

where

Bp = Bxex + Byey (5.69)

Bt = Bzez . (5.70)

Note that the divergence of Bp and of Bt vanishes separately. Therefore,
we can introduce a vector potential for Bp alone. By a suitable gauge
transformation, that vector potential can be put in the form A(x, y)ez such
that B may be written as

B = ∇A × ez + Bzez . (5.71)

Note that here we did not include Bz in the representation by a vector
potential. Instead, the field B is described by the two scalar quantities A and
Bz, which often is a convenient representation. Since B ·∇A = Bp ·∇A = 0,
as follows from (5.71), the function A is constant both on the field lines of
B and on the field lines of Bp.

The current density is obtained by inserting (5.71) into (5.7),

j = − 1
µ0

∆A ez +
1
µ0

∇Bz × ez . (5.72)

With (5.71) and (5.72) the momentum balance (5.6) assumes the form

−∇p − 1
µ0

∆A∇A − 1
µ0

(∇Bz × ez) · ∇A ez −
1
µ0

Bz∇Bz = 0 . (5.73)

The z-component of (5.73) reads

(∇Bz ×∇A) · ez = 0 , (5.74)
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which implies that Bz depends on x, y only via A(x, y),

Bz = Bz(A), ∇Bz =
dBz

dA
∇A . (5.75)

With these properties in mind we take the vector product of (5.73) with ∇A

which gives

∇p ×∇A = 0 (5.76)

implying

p = p(A) . (5.77)

Using (5.75) and (5.77) we finally take the dot product of (5.73) with ∇A

which gives (e.g., Lüst and Schlüter, 1957; Grad and Rubin, 1958; Shafranov,
1958)

− 1
µ0

∆A =
d

dA

(
p(A) +

Bz(A)2

2µ0

)
. (5.78)

This equation is usually called the ‘Grad–Shafranov equation’.
In a strict sense, defining the functions Bz(A) and p(A) it is assumed that

a given value of A corresponds to a single-branch field line. In situations
where two or more spatially separated branches with the same value of A

exist, a label would have to be attached to the functions Bz(A) and p(A) that
identifies the branch, so that different functions can be assigned to different
branches. Here we allow for that possibility, but the label is suppressed in
the notation.

In (5.78) the toroidal magnetic field component Bz simply generates a
magnetic pressure Bz

2/2µ0 which adds to the plasma pressure p. Because
of curvature effects, the poloidal field, represented by the function A, enters
in a different way.

With (5.75) and (5.78) the electric current density (5.72) can be written
as

j = − 1
µ0

∆A ez +
1
µ0

dBz

dA
Bp (5.79)

=
dp

dA
ez +

1
µ0

dBz

dA
B (5.80)

where (5.79) separates j in toroidal and poloidal components, and (5.80)
best illustrates the force-free limit.

In the present formulation it is straightforward to switch to Euler
potentials. Obviously, the function A itself can be chosen as one of the
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Euler potentials, because A is constant on magnetic field lines. Thus, we
identify

α = A . (5.81)

The second Euler potential β is easily found by writing

β = z + β̃(x, y) (5.82)

and setting B = ∇α ×∇β in (5.71) we find

Bz = ∇A ×∇β̃ · ez

= −Bp · ∇β̃

= −Bp
∂β̃

∂σ
(5.83)

where σ is the arc length on poloidal field lines. Equation (5.83) is easily
inverted,

β̃ = −Bz

∫ σ dσ

Bp
(5.84)

= −Bz

∫ s ds

B
(5.85)

where we have used that on a given field line dσ/ds equals Bp/B and Bz is
constant. The integrations in (5.84) and (5.85) are carried out along poloidal
and full field lines, respectively.

Since A and β are Euler potentials, they are magnetic flux coordinates in
the sense of (5.25). Similarly, A and z are flux coordinates of the poloidal
field, which implies that A(x2, y2) − A(x1, y1) is the poloidal magnetic flux
(per unit length with respect to the z-coordinate) passing through a line
connecting the points (x1, y1) and (x2, y2). Therefore, A is also called the
(poloidal) flux function.

The force-free limit of the Grad–Shafranov equation (5.78) is obtained by
setting dp/dA to zero. Note that, by (5.80), indeed j × B vanishes.

Finally, we remark that every choice of p(A) + Bz(A)2/2µ0 defines an
equilibrium problem in terms of a Grad–Shafranov equation (5.78). An
important particular choice is discussed in the following section.
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5.2.2 Liouville’s solutions

Here we consider a special form of the Grad-Shafranov equation (5.78).
Suppose

p(A) +
B2

z (A)
2µ0

=
1
2
pc e−2 A

Ac (5.86)

Bz(A) = 0 , (5.87)

where pc and Ac are constants. Normalizing x- and y-coordinates by
Ac/

√
µ0pc and A by Ac, we find from (5.86)

∆A = e−2A (5.88)

where, for simplicity, we keep the symbols for the normalized quantities
unchanged.

The equation (5.88) has important applications also in areas other than
space plasma physics; Joseph Liouville took a strong interest in that equation
in the context of fluid dynamics (Liouville, 1853). He found that solutions of
(5.88) can be generated by arbitrary analytical (complex) functions, called
generating functions. To express this property appropriately, let us replace
the real coordinates x and y by the complex variables ζ = x + iy and its
complex conjugate ζ̄, such that A may be understood as a function of ζ

and ζ̄. With this substitution the Grad–Shafranov equation (5.88) takes the
form

4
∂2A

∂ζ∂ζ̄
= e−2A . (5.89)

In this form it is straightforward to verify that any conformal mapping

ζ ′ = ζ ′(ζ) (5.90)

with ζ ′ = x′ + iy′ generates a new solution A′(x′, y′) of (5.89) from a known
solution A(x, y) with

A′ = A + ln
∣∣∣∣dζ ′

dζ

∣∣∣∣ . (5.91)

Obviously, if any solution exists at all, infinitely many solutions can be
readily obtained by conformal mapping.

These solutions can be parameterized by the analytical functions. If
f(ζ) = a(x, y) + ib(x, y) is an analytical function, then

A(x, y) = ln
1 + |f(ζ)|2

2
∣∣∣df

dζ

∣∣∣ (5.92)
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is a solution of the Grad–Shafranov equation (5.88), which easily can be
verified explicitly.

We have introduced (5.88) in an ad hoc way, such that one may ask,
whether that particular choice has any physical significance at all. For-
tunately, the choice (5.88) indeed is of considerable importance from the
physical point of view, too. For constant Bz it is associated with local ther-
modynamic equilibrium. This aspect will be dealt with in Section 6.2.2,
where we will look at static states from the kinetic point of view.

For explicit examples of Liouville solutions see Section 5.3.4.

5.2.3 Rotational invariance

A symmetry which also deserves attention within our context is rotational
invariance. This symmetry is best described in cylindrical or spherical co-
ordinates. Here we choose cylindrical coordinates r, ϕ, z. We assume that
observable quantities do not depend on ϕ. Then, we may proceed as in
the case of translational invariance; the only difference is the appearance of
metric coefficients, which are powers of r. In analogy with (5.71) we write

B = ∇× (Aϕeϕ) + Bϕeϕ (5.93)

= ∇ψ ×∇ϕ + H∇ϕ (5.94)

where ψ = rAϕ and H = rBϕ. This is the decomposition of B in poloidal
and toroidal components, similar to (5.71). The toroidal component of j×B

must vanish, which gives

H = H(ψ) (5.95)

in analogy with (5.75).
The poloidal component of the force balance (5.6) implies that the pres-

sure must be of the form p = p(ψ) and also gives the final form of the
Grad–Shafranov equation in cylindrical coordinates,

− 1
µ0

{
1
r

∂

∂r

(
1
r

∂ψ

∂r

)
+

1
r2

∂2ψ

∂z2

}
=

dp

dψ
+

H

µ0r2

dH

dψ
. (5.96)

Obviously, this equation has a structure similar to that of (5.78), except for
the appearance of the metric coefficients.

The Grad–Shafranov equation in the form of (5.96) has been applied suc-
cessfully to many astrophysical objects, as well as to laboratory plasmas.
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From the structure of (5.94) it is obvious that ψ and ϕ can be regarded
as Euler potentials of the poloidal field component. Euler potentials for the
total field can be constructed in a way similar to the Cartesian case,

B = ∇ψ ×∇β (5.97)

β = ϕ + β̃ (5.98)

where

β̃ = −H

∫ σ dσ

r2Bp
. (5.99)

Here, as in (5.84), σ denotes the arc length on the poloidal field lines.

5.2.4 General invariance

As seen in Sections 5.2.1–5.2.3 a suitable invariance property may lead to
a considerable simplification, consisting of a reduction from three to two
independent variables. This raises the question whether there exist further
symmetries of that nature. We first assume that such further symmetry
exists and write down the generalized equations describing the correspond-
ing equilibria. In a second step we will then describe the general class of
equilibria with symmetry (Solov’ev, 1975; Edenstrasser, 1980b,a).

This section requires more formal mathematics than is needed for
most other sections. On the other hand symmetry is a fundamen-
tal physical aspect which, in the present context, should be covered at
least by a brief overview. (A more detailed presentation is given in
www.tp4.rub.de/∼ks/tb.pdf.)

Since non-orthogonal coordinate systems are included, covariant and con-
travariant vectors and tensors are used which, in standard notation, are
denoted by upper and lower indices, respectively. Also, the summation con-
vention is applied, such that the simultaneous appearance of an index in
lower and in upper position in a product implies summation over that index
from 1 to 3.

Let ξ1, ξ2, ξ3 denote general coordinates, which may be defined by a co-
ordinate transformation xi(ξ1, ξ2, ξ3) where x1, x2, x3 are Cartesian coordi-
nates. The central quantity characterizing general coordinates is the metric
tensor which is defined in terms of the arc length element ds expressed in
the general coordinates,

ds2 = gik dξidξk, (5.100)
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where gik denote the covariant components of the metric tensor, explicitly
given by

gik = δrs
∂xr

∂ξi

∂xs

∂ξk
, (5.101)

where δrs denotes the components of the unit tensor (Kronecker’s symbol).
For the formulation of the MHS equations in coordinates that exhibit a

symmetry, we follow the analysis of Edenstrasser (1980a) and Edenstrasser
(1980b). Let us assume invariance with respect to ξ3 in the sense that
observables do not depend on ξ3. To achieve that property we have to
make sure that appropriate components of gij do not depend on ξ3 as well,
because they enter the expressions for the divergence and for the curl of the
magnetic field. In fact, all gij must be independent of ξ3. This is necessary
to guarantee that all covariant vector components obey the symmetry if the
contravariant components have that property and vice versa.

Thus we define the present invariance property by the condition

∂gij

∂ξ3
= 0. (5.102)

If this condition is satisfied, all physical quantities can be written in invariant
form. For instance, the pressure and the magnetic field take the form

p = p(ξ1, ξ2) (5.103)

Bi = Bi(ξ1, ξ2) . (5.104)

The current density j and the pressure gradient ∇p then are also symmetric.
The general form of the Grad–Shafranov equation is found by a procedure
analogous to that applied to translational invariance above. One finds

1
√

g

∂

∂ξ1

(
g11√g

g33

∂A

∂ξ1
+

g12√g

g33

∂A

∂ξ2

)

+
1
√

g

∂

∂ξ2

(
g21√g

g33

∂A

∂ξ1
+

g22√g

g33

∂A

∂ξ2

)
+

B3√
g

[
∂

∂ξ2

(
g13

g33

)
− ∂

∂ξ1

(
g23

g33

)]

+
1

2g33

dB3(A)2

dA
+ µ0

dp(A)
dA

= 0 , (5.105)

where g is the determinant of the metric tensor. The equation (5.105) was
derived by Edenstrasser (1980b) based on work by Solov’ev (1975).
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The second step is concerned with the class of coordinates that satisfy
the symmetry condition (5.102). This is a classical problem of differential
geometry, often referred to as the search for Lie symmetry. Here, we briefly
outline the main steps. For details the reader may consult texts on differ-
ential geometry or on general relativity. The problem is considerably sim-
plified by the fact that in the present non-relativistic context the geometry
is Euclidian.

The form of the condition (5.102) is not useful as it stands, because it is
expressed in terms of an unknown metric. For a more appropriate formula-
tion one introduces a vector u(ξ1, ξ2, ξ3) tangent to the lines of constant ξ1,
ξ2 (Killing vector),

u =
∂r

∂ξ3
(5.106)

which defines the direction of invariance. In the present Euclidian geome-
try, Killing vectors satisfy the following differential equation (vanishing Lie
derivative)

∇u + (∇u)T = 0 (5.107)

where the superscript T stands for transpose.
The general solution of (5.107) is readily obtained as

u = ω × r + w (5.108)

where ω and w are constant vectors. Equation (5.108) states that the general
isometric displacement of Euclidian geometry is simply a combination of
rigid rotation and translation.

Inserting (5.108) into (5.106) we find the differential equation for
r(ξ1, ξ2, ξ3)

∂r

∂ξ3
= ω × r + w (5.109)

where ξ1 and ξ2 enter as integration constants.
Solving that equation we find the most general form of the metric tensor

that allows for a symmetry. The solution is conveniently expressed in a
polar coordinate system r, ϕ, z where the z-axis is oriented parallel to ω and
the location of the origin is adjusted such that w points in the z-direction
also, allowing us to write w = νez. Then, a sufficiently general solution
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r(ξ1, ξ2, ξ3) of (5.109) gives after inversion

ξ1 = r (5.110)

ξ2 = η (5.111)

ξ3 =
z

ν
+ m(r, η) (5.112)

where η = νφ − ωz. The arbitrary function m(r, η) is left unspecified for
convenience.

Inserting the corresponding metric into the general form of the Grad–
Shafranov equation (5.105), we obtain

1
r

∂

∂r

(
r

ν2 + ω2r2

∂A

∂r

)
+

1
r2

∂2A

∂η2
− 2νωB3(A)

(ν2 + ω2r2)2

+
1

2(ν2 + ω2r2)
dB3(A)2

dA
+ µ0

dp(A)
dA

= 0 . (5.113)

This equation essentially represents all symmetric magnetohydrostatic
equilibria. We remark that the function m(r, η) has dropped out.

The geometric properties of the general case can be visualized in terms
of the coordinate surfaces. While the surfaces of constant ξ1 are simply
cylinders, the surfaces of constant ξ2 have a helical structure.

The limits of translational and rotational invariance as discussed in the
previous sections are easily recovered. In both cases the ξ2-surfaces reduce
to planes. Translational invariance is found for

ω = 0, ν = 1, m(η, r) = 0 (5.114)

and rotational invariance is obtained in the limit

ω = 1, m(η, r) =
η

ν
, ν → 0 . (5.115)

In most cases where symmetric equilibria have been applied to describe
quiescent states of space plasmas these limiting cases were considered. In a
few cases, however, helical equilibria were already addressed (Ali and Sneyd,
2002, and S. Titov, private communication, 2003).

5.3 Examples of exact solutions

In this section we provide a collection of explicit examples of magnetohy-
drostatic configurations, which are relevant for the modelling of quiescent
states of space plasmas under a variety of different conditions. We start out
with extremely simple, however widely used, one-dimensional magnetohy-
drostatic structures. These cases have only local significance, for instance
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as a model for the local magnetopause structure. Structures on larger scales
require variation in at least two spatial directions, while fully satisfactory
models need three-dimensional descriptions. Relevant three-dimensional ex-
amples are rare and typically require approximations. The present examples,
with one exception, are without a gravity force.

5.3.1 One-dimensional systems with magnetic fields

of the form (Bx(z), By(z), 0)

Let all observables depend on the Cartesian z-coordinate only and let Bz

vanish:

B = (Bx(z), By(z), 0), (5.116)

then B · ∇B = 0 such that the MHS momentum equation (5.6) with (5.9)
reduces to

d
dz

(p +
B2

2µ0
) = 0. (5.117)

Since ∇·B = 0 is satisfied trivially, there is no further condition. Thus, any
arbitrary choice of p(z) > 0, Bx(z) and By(z) with constant total pressure
p(z) + (Bx(z)2 + By(z)2)/2µ0 is a magnetohydrostatic solution.

If the pressure p is constant separately, the magnetic field is force-free,
(5.44) is satisfied with

κ =
1

µ0By

dBx

dz
= − 1

µ0Bx

dBy

dz
. (5.118)

We briefly discuss two special cases.

Rotating field

A simple example for a field of type (5.116) is given by the choice

Bx = B0 sin(hz)

By = B0 cos(hz),
(5.119)

B0, h and the pressure p are constants. (5.119) is a force-free field with
κ = h/µ0.

The field direction rotates as z varies, resulting in magnetic shear.
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5.3.2 Harris sheet

Here we choose

p =
B0

2

2µ0 cosh2(hz)
Bx = −B0 tanh(hz)

By = Bz = 0,

(5.120)

such that the pressure balance (5.117) is satisfied. At z = 0 this field
has a neutral sheet, where B vanishes. The neutral sheet separates regions
of oppositely directed fields (see Fig. 5.5). Originally, this solution was
obtained by Harris (1962) from a particle point of view, see Section 6.2.2.

The Harris sheet can also be regarded as a one-dimensional solution of the
Liouville problem (5.88). If the flux function varies only in the z-direction,
(5.88), written in dimensionless form, reduces to

d2A(z)
dz2

= e−2A(z). (5.121)

This equation is solved by the magnetic flux function

A = ln cosh(z) (5.122)

generating the magnetic field

Bx = − tanh(z) (5.123)
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Fig. 5.5 Harris sheet: Flux function A(z), magnetic field Bx(z) and electric current
density jy(z) in non-dimensional form.



88 Magnetohydrostatic states

and the current density

jy = − 1
cosh2(z)

, (5.124)

consistent with (5.120).
It is instructive to find out what function f(ζ), introduced in Section 5.2.2,

generates the solution (5.122). The answer is

f(ζ) = eiζ (5.125)

as is readily verified by inserting (5.125) into (5.92), identifying ζ with x+iz.
The Harris sheet is a standard model of a one-dimensional structure with

a neutral sheet. It describes one of the simplest situations where a plasma
is confined (here in one direction only) by a magnetic field.

5.3.3 Cylindrical configurations, Bennett pinch

Let us choose cylindrical coordinates (r, ϕ, z) and let B = (0, Bϕ(r), Bz(r)).
Unlike the Cartesian case, the B · ∇B term does not vanish. Instead of
(5.117) the momentum balance gives

d
dr

(
p +

B2
ϕ

2µ0
+

B2
z

2µ0

)
+

B2
ϕ

µ0r
= 0. (5.126)

This condition describes pinch-configurations.
The Bennett pinch solution (Bennett, 1934) is characterized by the choice

B =
(

0, 2B0
r/L

1 + (r/L)2
, 0
)

(5.127)

p(r) =
2B0

2

µ0

1
(1 + (r/L)2)2

. (5.128)

Since not only ϕ but also z is an ignorable coordinate, we can understand
this solution also as translationally invariant.

As, again, the pressure function turns out to be the exponential, the
Bennett pinch must also be a solution of the Liouville problem. In fact,
f(ζ) = ζ generates (5.127) and (5.128) in dimensionless form (normalizing
Bφ and r by B0 and L, respectively). The non-dimensional flux function is

A = ln
1 + r2

2
. (5.129)

Bennett (1934) seems to be the first to emphasize the capacity of magnetic
fields to confine plasmas.
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5.3.4 Examples of Liouville’s solutions

Here we discuss two further examples of the general method described in
Section 5.2.2.

Kelvin’s cat’s eyes

A two-dimensional generalization of the Harris solution is generated by the
function

f(ζ) =
1√

1 − p2

(
eiζ + p

)
, (5.130)

where p is a real parameter with 0 ≤ p < 1. The choice p = 0 corresponds
to the Harris sheet. For 0 < p < 1 one finds a structure, which is periodic
in x with period 2π. The flux function is

A = ln

(
cosh(y) + p cos(x)√

1 − p2

)
(5.131)

where ζ = x + iy such that z is the ignorable coordinate. Fig. 5.6 shows
the magnetic field lines (contours of constant A) for p = 0.3 extending
over two periods. Such structures were originally discussed by Kelvin in a
corresponding fluid-dynamics context and have been termed Kelvin’s cat’s
eye solution.

The case (5.130) is one of the few known choices of f(ζ) that does not suffer
from singularities. However, even a solution that contains singularities may
still be useful in nonsingular regions. After all, the regions in space where
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Fig. 5.6 Magnetic field lines of the cat’s eye solution for p = 0.3.
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MHS is a reasonable approximation are finite also. The following example
illustrates that point.

Two-dimensional magnetosphere model

Here we discuss a simple two-dimensional magnetohydrostatic model of the
Earth’s magnetosphere (Section 2.1). Besides morphological description,
various other purposes require a quantitative background configuration, for
instance, the study of wave propagation, of stability properties and of single
particle motion.

We will make use of non-dimensional variables. Coordinates are nor-
malized by a characteristic scale length L, magnetic field components by
a characteristic field strength B0, flux functions by B0L and pressures by
B0

2/µ0, however, without changing the notation. The net effect is simply
that µ0 is set to 1. As customary for 2D magnetosphere models, y is chosen
as the ignorable coordinate. The By-component is set to zero. Thus, we are
looking for a solution A(x, z) of the Grad–Shafranov equation (5.78). The
pressure function is chosen as an exponential such that, in the chosen nor-
malization, the Grad–Shafranov equation reduces to the Liouville equation
(5.88).

The problem is to find a suitable generating function f(ζ). An interesting
choice, which for a number of purposes provides an acceptable description
of the nightside (x > 0) magnetosphere, is based on the generating function

f(ζ) = ei(ζ+
√

ζ/ε), ζ = x + iz . (5.132)

This choice was motivated by the aim to find an appropriate modification of
the Harris sheet function (5.125). The exact form of the modification then
is a matter of trial and error.

The corresponding flux function is found from (5.92),

A(x, z) = ln
cosh
[(

1 + 1√
2(r1+x1)

)
z

]
√

1 +
√

r1+x1√
2 r1

+ 1
4r1

(5.133)

where r1 =
√

x1
2 + z1

2, x1 = εx, z1 = εz. The parameter ε measures the
strength of the x-dependence in the distant tail. Fig. 5.7 shows the magnetic
field lines for ε = 0.2.

The pressure profiles (Fig. 5.8) are strongly peaked in the plasma sheet.
Beyond, say, x = 9 the profiles show only moderate x-dependence.
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Fig. 5.7 Magnetic field lines from the magnetic flux function (5.133) with ε = 0.2.

Fig. 5.8 Plasma pressure from the flux function (5.133) with ε = 0.2. The figure
shows pressure p vs. z for four values of x.

The singularity at the origin corresponds to a line current rather than to
a line dipole. Nevertheless, the qualitative increase of the magnetic field
strength with decreasing radial distance is well represented.

A similar solution, however, showing a more rapid tailward decay, was
presented by Kan (1973).
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Fig. 5.9 Magnetic arcade taken from a sequence of preflare states (Low, 1977).
Plotted are magnetic field lines projected onto the x, y-plane.

A simple arcade model

A simple model for an arcade-like magnetic structure in the solar atmosphere
is also available from Liouville’s general solution. It belongs to a set of 2D
equilibria discussed by Low (1977) as a sequence of preflare states. The flux
function is given by

A = ln(1 + x2 + y2 −
√

3y) . (5.134)

The magnetic field is force-free with Bz = exp(−A). The magnetic field
lines are circles centered at (0,−

√
3/2). The x-axis is identified with the

solar photosphere, where the solution satisfies the boundary condition A =
ln(1 + x2). A set of field lines projected onto the x, y-plane is shown in
Fig. 5.9.

The footpoints of the field lines are displaced in the z-direction by a
distance

Dz =
1
2

arctan
(

2x0√
3

)
(5.135)

where x0 gives the location of the footpoint on the positive x-axis (Fig. 5.9).
In terms of the Liouville approach (Section 5.2.2) the solution (5.134) is

generated by the function f(ζ) = 2ζ −
√

3 i.

5.3.5 A linear two-dimensional solution

Although in typical cases the Grad–Shafranov equation is nonlinear, there
is an interesting linear exception. Let us choose p(A)+Bz(A)2/2µ0 = cA2/2
in (5.78) with c being a constant. This gives the linear differential equation

1
µ0

∆A + cA = 0 . (5.136)
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Analytical solutions of that equation have been used to model the Earth’s
magnetotail (Voigt, 1986). We will return to a solution of (5.136) in the
context of stability (see (10.103)).

5.3.6 A sheet supported by gravity

Here is a simple example with a gravity force taken into account. Suppose
we consider a vertical magnetohydrostatic sheet with a gravity force (−gez)
corresponding to ψ = gz, which has been suggested as a model for the
inner region of a solar prominence (Kippenhahn and Schlüter, 1957) in a
potential field environment. Let the sheet (in Cartesian coordinates) be
one-dimensional with non-ignorable coordinate x, such that the relevant
observables to be determined are p(x), ρ(x) and B = (Bx, By, Bz(x)) where
Bx �= 0 and By are constants. A further observable is temperature T , which
may be obtained from the perfect gas law (3.66).

Then, after eliminating current density j, the equations (5.1)–(5.3) reduce
to

d
dx

(
p(x) +

Bz(x)2

2µ0

)
= 0 (5.137)

Bx

µ0

dBz

dx
− ρ(x)g = 0 . (5.138)

Here (5.137) is simply the pressure balance of a one-dimensional sheet
without gravity and (5.138) states that the gravity force is balanced by the
z-component of the j×B force. These equations are solved by the following
choice

Bz = B0 tanh
(x

d

)
(5.139)

p =
B0

2

2µ0

1

cosh
(

x
d

)2 (5.140)

ρ =
BxB0

µ0gd

1

cosh
(

x
d

)2 (5.141)

with kBT = mghB0/2Bx. The magnetic field lines projected in the x, z-
plane are shown in Fig. 5.10.

5.4 Asymptotic expansions

The class of exact solutions of the MHS equations (5.6)–(5.8), although
useful for selected purposes, is insufficient for modelling all relevant quiescent
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Fig. 5.10 Inner part of the Kippenhahn–Schlüter sheet.

states of space plasmas. Therefore, there is a strong demand for approximate
solutions.

A situation that is particularly suited for an asymptotic approach is an
equilibrium with two distinct length scales, prominent examples being tails
of planetary magnetospheres or solar streamer configurations.

Particular care has to be taken to ensure validity of the approximation
over the relevant spatial range. Consider a function f that depends on the
coordinates x and z with length scales Lx and Lz, respectively, and suppose
that Lz/Lx = ε � 1. Then f may be expressed in the form

f = f(εx, z, ε) . (5.142)

If both coordinates are normalized with Lz the x-scale Lx becomes 1/ε

and any approximation must be valid on that scale. This is ensured by
employing the standard multiple-scale expansion widely used in boundary
layer theory (Eckhaus, 1973). We briefly summarize the basic idea adjusted
to the present (particularly simple) case.

It is tempting to try to expand f in a power series with respect to ε.
However, the straightforward power expansion of f(εx, z, ε) fails to hold on
the x-scale 1/ε, because the expansion of the εx-dependence is applicable
only in the range εx � 1. This difficulty is avoided by excluding the εx-
dependence from the expansion, which is achieved by introducing the new
variable x1 = εx and expanding the function f(x1, z, ε) in a power series
with respect to ε,

f =
∑

n

fn(x1, z)εn . (5.143)



5.4 Asymptotic expansions 95

We will apply this method in the following two sections to two- and three-
dimensional configurations.

5.4.1 Systems with translational invariance

Here we employ the method outlined in the previous section to obtain an
asymptotic expansion for an equilibrium with translational invariance with
respect to the y-coordinate. It is assumed that the equilibrium is character-
ized by different length scales in z- and x-directions with ratio ε (Schindler,
1972; Birn et al., 1975). Thus, our aim is to find a corresponding approxi-
mate solution of the Grad–Shafranov equation (5.78) which we write in the
form

∆A + J(A) = 0, (5.144)

where

J = µ0jy = µ0
d

dA

(
By(A)2

2µ0
+ p(A)

)
. (5.145)

Choosing weak spatial variation with respect to the x-direction,

A = A(x1, z, ε), x1 = εx (5.146)

the Grad–Shafranov equation becomes

ε2 ∂2A

∂x2
1

+
∂2A

∂z2
+ J(A) = 0 . (5.147)

Inserting the formal power expansion of type (5.143)

A =
∑

n

An(x1, z)εn (5.148)

into (5.147) and expanding J(A) also in powers of ε, we obtain an ordinary
differential equation for every power of ε. Writing out the first five of these
equations explicitly one finds

∂2A0

∂z2
+ J(A0) = 0 (5.149)

∂2A1

∂z2
+ J ′(A0)A1 = 0 (5.150)
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∂2A2

∂z2
+ J ′(A0)A2 = −∂2A0

∂x2
1

− 1
2
J ′′(A0)A2

1 (5.151)

∂2A3

∂z2
+ J ′(A0)A3 = −∂2A1

∂x2
1

− 1
6
J ′′′(A0)A3

1 − J ′′(A0)A1A2

(5.152)

∂2A4

∂z2
+ J ′(A0)A4 = −∂2A2

∂x2
1

− 1
24

J ′′′′(A0)A4
1 − J ′′(A0)A1A3

−1
2
J ′′(A0)A2

2 −
1
2
J ′′′(A0)A2

1A2 (5.153)

· · ·

Here, the prime symbol denotes the derivative with respect to A0. Note
that in each one of these equations the right side may be regarded as known,
because it is determined by the previous equations.

Since there is no partial derivative with respect to x1, the asymptotic
solution A depends on x1 in a parametric way, determined by suitable
(x-dependent) boundary conditions. Let us choose a domain as shown in
Fig. 5.11, which is typical for applications of the present approach. In that
case boundary conditions are to be prescribed at the upper and lower bound-
aries b and d. It is a remarkable property of the system (5.149)–(5.153) that
it is not possible to specify boundary conditions on the lateral boundaries
(a and c in Fig. 5.11). The reason is that the expansion is not appropriate
for arbitrary boundary conditions. In fact, a more general expansion would
be of the form

A =
∑

n

An(x, x1, z)εn (5.154)

allowing for strong variation in the x-direction also. Solutions that show
a weak x-dependence are characterized by particular values of A on the
lateral boundaries. Thus, by insisting in solutions with weak dependence on

z

x1

b

c

d

a

Fig. 5.11 Domain for two-scale expansion.
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x, we have lost the freedom to specify boundary conditions on the lateral
boundaries. Formally, this behaviour is a consequence of the fact that we
are dealing with a problem of singular perturbation theory (Eckhaus, 1973).

The system (5.149)–(5.153) is solved as follows. First, (5.149) together
with suitable boundary conditions yields A0(x1, z). Conveniently, the exact
boundary conditions on the boundaries b and d are applied to A0, such
that all An with n > 0 will have to vanish on those boundaries. The next
equation, (5.150), is of a different nature. It is appropriately discussed in
terms of the eigenvalue problem

∂2a

∂z2
+ J ′(A0)a = λa (5.155)

where a is to vanish on the upper and lower boundaries. For any x1 this
is a one-dimensional Schrödinger equation. Since the domain is finite, we
expect a discrete spectrum of eigenvalues λn, which depend parametrically
on x1. Clearly, the existence of an eigenvalue vanishing for all x1 is highly
exceptional, because it would require specially chosen boundary conditions
on the upper and lower boundaries. Here we will assume the generic case,
where the λn vanish at most for isolated values of x1. As a consequence,
(5.150) implies that A1 must vanish. Then, A3 vanishes because of (5.152).
In fact, this argument continues and all An of odd order n can be shown to
vanish.

Thus, the system (5.149)–(5.153) reduces to

∂2A0

∂z2
+ J(A0) = 0 (5.156)

∂2A2

∂z2
+ J ′(A0)A2 = −∂2A0

∂x2
1

(5.157)

∂2A4

∂z2
+ J ′(A0)A4 = −∂2A2

∂x2
1

− 1
2
J ′′(A0)A2

2 (5.158)

· · ·

So far, our procedure is only formal and does not guarantee convergence,
nor can we be sure that the expansion at least is an asymptotic represen-
tation of the actual solution. However, by a detailed analysis it has been
established (Kopp and Schindler, 1991) that, for sufficiently small values of ε,
the series (5.148) does converge to an exact solution of the Grad–Shafranov
equation.

Note that the vanishing of A1 implies that A0 represents an exact solution
within an error of order ε2, which is sufficient for most purposes.
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It is a convenient property that (5.156) can be integrated in general form,
without specifying J(A). We illustrate this procedure for the case where
By = 0, such that J = µ0 dp(A)/dA. Using that property after multiplying
(5.156) by ∂A/∂z one finds

∂

∂z

[
1
2

(
∂A

∂z

)2
]

+ µ0
dp(A)
dA

∂A

∂z
= 0 . (5.159)

Integration of (5.159) with respect to z gives

1
2µ0

(
∂A

∂z

)2

+ p(A) = p̂(x1) , (5.160)

where p̂(x) is an arbitrary function of x. This equation describes the local
pressure balance perpendicular to the central plane (Siscoe, 1972; Schindler,
1972), which indicates that the lowest approximation consists of considering
each cross-section (fixed x) as a one-dimensional structure (Section 5.3).

After separating variables, further integration gives the solution in the
form

z = z0(x1) +
∫ A

Â(x1)

dA′√
2µ0(p̂(x1) − p(A′))

. (5.161)

Here z0(x1) describes a surface (line in the x1, z-plane) on which A assumes
the boundary values Â(x1). For systems with a mirror symmetry with re-
spect to the plane z = 0 the function z0(x1) vanishes and Â is determined by
the condition p(Â(x1)) = p̂(x1). This symmetric form of (5.161) has been
widely used for making simple two-dimensional asymptotic models of the
tail of the Earth’s magnetosphere during quiescent intervals.

We have introduced the present problem as a boundary value problem
with a boundary condition prescribed on the boundaries b and d (Fig. 5.11).
In this interpretation the functions p(A) and p̂(x1) have to be chosen con-
sistent with that boundary condition. However, the form of (5.161) suggests
the alternative procedure of prescribing p(A) and p̂(x1) instead of a bound-
ary condition. This approach has proven useful for a number of applications,
as in the following example. (We return to the boundary value problem in
the next section.)

An example

Consider (5.161) and, for example, let us choose p(A) = pc exp(−2A/Ac)/2,
the same pressure function that was used in Section 5.2.2. With the same
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normalization that was used there and choosing z0 = 0 we find from (5.161)
(Birn et al., 1975)

z =
∫ A

Â(x1)

dA′√
2(p̂(x1) − p(A′))

(5.162)

with p(A) = exp(−2A)/2 and Â(x1) = − ln(2p̂(x1))/2. Carrying out the
integration and solving for A gives

A(x1, z) = ln

⎡⎣cosh
(√

2p̂(x1) z
)

√
2p̂(x1)

⎤⎦ . (5.163)

This expression has become a familiar tool for the modelling of tail-like
configurations, with p̂(x1) adapted from observations. Therefore, it seems
worthwhile to test its applicability by comparing the exact solution (5.133)
with its asymptotic representation for small ε.

As expected one finds that to lowest order (5.133) reduces to the asymp-
totic form (5.163) with

p̂(x1) =
1
2

(
1 +

1
2
√

x1

)2

. (5.164)

Fig. 5.12 illustrates the usefulness of the asymptotic expression for ε = 0.2.
In a large region (bounded by the thick lines) the relative difference between
the exact flux function and its asymptotic representation is smaller than
0.01.

A final remark concerns the use of the variable x1 = εx. It was introduced
to develop the ε-expansion and asymptotic expressions. Predominantly, we
dealt with cases with a single x-scale, and relevant quantities Q of the form
Q(x1, z). In those cases one can absorb ε in the function Q and use quantities
of the form Q(x, z) in the approximate expressions, where, however, the
dependence on x must be kept much weaker than the z-dependence. We
will use the latter form in some of the applications.

5.4.2 A boundary value problem of two-dimensional MHS

Here we return to the boundary value problem formulated in the previous
section and give an outline of the theory of Birn (1991).

Let us assume a configuration that is symmetric with respect to the plane
z = 0 and let us choose a boundary condition which prescribes the shape
of a bounding field line in the form z = a(z). We also prescribe p̂(x1) as
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Fig. 5.12 Thin lines: field lines of exact magnetosphere solution for ε = 0.2 (same
as Fig. 5.7); thick lines: curves on which the relative difference between the as-
ymptotic solution (5.163) and the exact solution is 0.01; the relative difference is
smaller than 0.01 between the upper and lower thick lines except for the regions
on the concave side of the loop-shaped thick lines on the left.

a monotonic function and try to find a monotonic function p(A) matching
these assumptions. Let the pressure on the bounding field line be pb.

To find p(A), we write (5.161) in the form

z(x1, A) =
∫ p̂(x1)

p(A)

(
−dA′(p′)

dp′

)
dp′√

2µ0(p̂(x1) − p′)
, (5.165)

where the integration variable A′ has been replaced by p′, obtained by in-
verting the equation p′ = p(A′). The boundary condition then takes the
form

a(x1) =
∫ p̂(x1)

pb

(
−dA′(p′)

dp′

)
dp′√

2µ0(p̂(x1) − p′)
. (5.166)

Since p̂(x1) is monotonic, one may express a in (5.166) as a function of p̂.
Then (5.166) assumes the form of Abel’s integral equation (Whittaker and
Watson, 1973) which can be solved for the unknown function dA/dp

dA

dp
= −

√
2µ0

π

d
dp

∫ p

pb

a(p̂)
dp̂√
p − p̂

. (5.167)



5.4 Asymptotic expansions 101

By integration we find the inverse of p(A)

A = −
√

2µ0

π

∫ p

pb

a(p̂)
dp̂√
p − p̂

, (5.168)

an arbitrary integration constant is chosen such that A(pb) = 0. As long as
A(p) turns out to be a monotonic function, inversion of (5.168) gives p(A).
For non-monotonic functions a more refined treatment is necessary.

With the present procedure the freedom of choosing p(A) and p̂(x1) is
replaced by the freedom of choosing a(x1) and p̂(x1).

After determining p(A) from (5.168) one can obtain A(x1, z) from (5.165).
The procedure described here requires that all field lines are closed in

the sense that they cross the plane z = 0. However, the approach can be
generalized to include an open field line region (Birn, 1991).

5.4.3 Birn’s asymptotic solutions of three-dimensional MHS

Although the 2D theory described in the previous two sections has proven
useful for a variety of purposes, its limitation to two spatial dimensions is
a severe restriction which, in some cases, may not be acceptable. For in-
stance, the inclusion of realistic field-aligned currents in MHS models of
magnetospheric structures requires three-dimensional models. It is the pur-
pose of this section to describe a two-scale asymptotic approach to MHS,
which generalizes the theory of Section 5.4.1 to fully three-dimensional con-
figurations (Birn, 1991). The price that one has to pay for achieving this
generalization is that the solution is not completely explicit, even not to
lowest order. However, the problem is reduced to solving two coupled or-
dinary differential equations. Given the complexity of the MHS equations,
this represents a rather drastic and useful simplification.

We start out from the MHS equations (5.6)–(5.8) without gravity, which
with the help of (5.9) we write in the form

B · ∇B = µ0∇
(

p +
B2

2µ0

)
(5.169)

∇ · B = 0 . (5.170)

We generalize the scaling of Section 5.4.1 by allowing for a weak y-
dependence (in addition to the weak x-dependence),

Bz, ∂/∂x, ∂/∂y = O(ε)

p, Bx, By, ∂/∂z = O(1) .
(5.171)
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For Lx, Ly, Lz denoting characteristic lengths in the x, y, z directions, re-
spectively, this ordering means that Lz/Lx and Lz/Ly are of order ε. This
approximation applies to highly stretched three-dimensional configurations
and provides realistic descriptions of magnetospheric tails or stretched coro-
nal structures.

Here we aim for an approximation to lowest order in ε, corresponding to
the zeroth order solution A0 of Section 5.4.1. (For dealing with lowest order
only, there is no need to introduce new variables corresponding to x1 in the
2D case.)

Since B · ∇Bz is O(ε2), i.e., vanishing in the present approximation, we
find from the z-component of (5.169) with (5.171) that to lowest order

p +
Bx

2 + By
2

2µ0
= p̂(x, y) (5.172)

where p̂(x, y) is arbitrary. Birn’s approach (Birn, 1991) is to represent B by
Euler potentials α and β

B = ∇α ×∇β (5.173)

(see Section 5.1.2). A field line may then be represented by the position
vector

r = r(x, α, β) (5.174)

where x is used as the parameter marking points along the field line.
Since in MHS theory the pressure p is constant on magnetic field lines

(see Section 5.1.1), p can be expressed as p(α, β).
Let

q =
By

Bx
(5.175)

be a new variable defining the slope of any given magnetic field line projected
into the x, y-plane. Then one finds from (5.174)

∂y(x, α, β)
∂x

= q(x, α, β) . (5.176)

We use these properties to rewrite the y-component of (5.169)

µ0
∂p̂

∂y
= B · ∇By

= B · ∇(qBx)

= µ0q
∂p̂

∂x
+ BxB · ∇q

= µ0q
∂p̂

∂x
+ Bx

2 ∂q(x, α, β)
∂x

(5.177)
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where we have used the x-component of (5.169) also.
Eliminating By from (5.172) and (5.175) we find an expression for Bx

which is inserted into (5.177). Solving for ∂q/∂x gives

∂q(x, α, β)
∂x

=
1 + q2

2(p̂ − p)

(
∂p̂

∂y
− q

∂p̂

∂x

)
. (5.178)

Considering the functions p̂(x, y) and p(α, β) as given, the equations (5.176)
and (5.178) represent two first order differential equations for y and q as a
function of x for any fixed pair of α, β values. Since both equations involve
derivatives with respect to x only, they are ordinary differential equations
with independent variable x and parameters α and β.

Solving (5.176) and (5.178) we find y(x, α, β) and q(x, α, β) including ar-
bitrary functions of α and β, the integration constants with respect to the
x-integration.

By solving y(x, α, β) for β we can express β as a function of x, y, and
α. It remains to determine α. For this purpose we note that (5.173) with
β = β(x, y, α) gives

Bx = −∂α(x, y, z)
∂z

∂β(x, y, α)
∂y

(5.179)

By =
∂α(x, y, z)

∂z

∂β(x, y, α)
∂x

. (5.180)

Inserting these expressions into pressure balance (5.172) we get(
∂α

∂z

)2

|∇2β|2 = 2µ0(p̂ − p) (5.181)

where |∇2β|2 = (∂β(x, y, α)/∂x)2 +(∂β(x, y, α)/∂y)2. Equation (5.181) can
be integrated (for fixed x and y),

z = z0(x, y) +
∫ α

α0(x,y)
±|∇2β|α′

dα′√
2µ0[p̂(x, y) − p̂(α′, β(x, y, α′))]

(5.182)

where z0(x, y) is an arbitrary function and α0(x, y) = α(x, y, z0(x, y)). Solv-
ing (5.182) for α gives the solution in the form α(x, y, z), which allows us to
write β as a function of x, y and z also.

Summarizing, Birn’s solution method reduces the equilibrium problem to
solving the two ordinary differential equations (5.176) and (5.178) and to
inverting y(x, α, β) to find β(x, y, α) and evaluating the integral in (5.182).
This is possible by straightforward procedures for finite domains.
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In the two-dimensional case of Section 5.4.1, where all observables are
independent of y and By vanishes, it is appropriate to set

α = A(x, z) (5.183)

β = y (5.184)

q = 0 . (5.185)

Then, the differential equations for q and β are satisfied trivially and (5.182)
reduces to (5.161), where z0 is chosen independent of y and p independent
of β and where α0 is identified with Â.

5.4.4 On nonequilibrium theorems and their limitations

In view of the rareness of exact three-dimensional solutions of the MHS
equations it seems natural to try to start from an exact two-dimensional
solution and then add a three-dimensional perturbation in the form of a
power expansion with respect to a small parameter measuring the amplitude
of the perturbation. Surprisingly, such expansions do not exist in general.

Parker (1979) has investigated the analytical neighbourhood of a number
of one- and two-dimensional equilibria under a variety of conditions and
proved several nonexistence theorems. A typical result can be summarized
as follows (Rosner and Knobloch, 1982). Consider a magnetic field B0 and
a pressure p0 with one ignorable Cartesian coordinate, say, z, satisfying the
MHS equations (5.6)–(5.8) in the domain −L/2 < z < L/2, where L is
allowed to go to infinity. Stresses exerted on the boundaries are ignored.
The perturbations

δB(x, y, z) =
∞∑

n=1

εnbn(x, y, z)

δp(x, y, z) =
∞∑

n=1

εnpn(x, y, z)

(5.186)

with ε � 1 define the perturbed quantities

B(x, y, z) = B0(x, y) + δB(x, y, z)

p(x, y, z) = p0(x, y) + δp(x, y, z) .
(5.187)

If B(x, y, z) and p(x, y, z) satisfy the MHS equations (5.6)–(5.8) and re-
main bounded as L → ∞ then the coefficients bn can be shown to satisfy
the additional constraint

∂bn

∂z
= 0. (5.188)
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This means that under the imposed conditions the perturbed magnetic field
necessarily has the same symmetry as the original state and an analytic
non-symmetric neighbourhood is not available. This result was generalized
to include plasma flow by Tsinganos (1982).

These exciting findings have led to the (more general) question, whether
three-dimensional magnetohydrostatic states can exist at all. Nonexistence
would imply that a symmetric system that somehow is forced into a non-
symmetric state would lose equilibrium and would become dynamic.

This question has been answered positively. Non-symmetric solutions
of the MHS equations have been shown to exist (Rosner and Knobloch,
1982). Also, note that Birn’s 3D solutions discussed in Section 5.4.3 are not
constrained to symmetry.

How can these different results be reconciled? A partial answer is based
on the property that in finite domains, and for unrestricted boundary con-
ditions, non-symmetric states of the form (5.187) with (5.186) can be found
and explicit examples have been constructed (Arendt and Schindler, 1988).
This possibility is based on formal differences between the cases of infinite
and finite domains. For instance, consider a term of the type a(x, y)z. For
an infinite domain boundedness requires that a vanishes, while this is not
the case if the domain remains bounded. Similarly, ∆g(x, y, z) = 0 implies
g = 0 for infinite domains and bounded g, while g does not vanish identi-
cally for almost all boundary conditions if the domain remains finite. Using
these properties one finds that the constraint (5.188) can be avoided for
finite domains. Notably, in the applications to be discussed (Part IV) the
regions where magnetohydrostatics is applicable, at least approximately, are
bounded.

Van Ballegooijen (1985) found non-symmetric equilibria without restrict-
ing the domain, however, applying an expansion scheme different from
Parker’s. The existence of 3D MHS solutions was also confirmed by Neukirch
(1997).
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Particle picture of steady states

As discussed in Part I, the limitations of MHD are difficult to assess in
general and seem to vary considerably from application to application. In
particular, phenomena occurring on spatial and temporal scales near the
intrinsic plasma scales (see Chapter 2) require a kinetic description based
on the particle picture. Therefore, in this chapter steady states are explored
from that point of view. We will restrict the discussion to plasmas for which
binary particle collisions are negligible, so that the equations of motion (3.1)
with (3.2) apply and a self-consistent description of steady states is provided
by the Vlasov theory in the form (4.10)–(4.14).

6.1 General properties

Even if time-dependence is absent, steady state Vlasov theory still is a formi-
dable nonlinear system of integro-differential equations, and a general solu-
tion method is not available. Luckily, there exist a number of special cases,
for which important steps of the solution procedure can be carried out by
analytical techniques. Typically, one exploits constants of motion of particle
dynamics.

We briefly illustrate the significance of constants of motion for Vlasov
theory. Although the method is applicable to the general (time-dependent)
case, in view of the present context we specialize the argument for steady
states.

The point is simply that (4.10) means that the distribution function
fs(r, w) of species s is constant on particle trajectories in phase space, so
that

dfs

dt
= 0 , (6.1)
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where the time derivative is taken along the particle orbit. This is easily
verified by noting that

dfs

dt
=

∂fs

∂r
· dr

dt
+

∂fs

∂w
· dw

dt
. (6.2)

Inserting dr/dt and dw/dt from (3.2) and (3.1) into (6.2) one immediately
finds that (6.1) and (4.10) are equivalent.

Suppose now that Ks(r, w) is a constant of motion for particle species s,

dKs

dt
= 0 . (6.3)

Obviously, this implies that any function fs(r, w) that can be written in
the form

fs = F (Ks) (6.4)

is a solution of (4.10), where F is an arbitrary (differentiable) function of Ks.
For the particle motion in steady state force fields a Hamiltonian (typ-

ically identical with energy) can be found, which does not depend on
time explicitly. Such a Hamiltonian is a constant of motion. This is be-
cause the Hamiltonian equations of motion (3.15) and (3.16) imply that
dHs/dt = ∂Hs/∂t. Thus, for ∂Hs/∂t = 0 any choice fs = F (Hs) is a
solution of (4.10). However, solutions of that form, which are successfully
used in statistical mechanics (for the entire many-body system) are of little
use for space plasmas. The main reason is that the electric current density,
which plays an important role in space plasmas, would vanish.

An obvious way out of this difficulty is to look for situations where at
least one more constant of motion is available (e.g., Schindler et al., 1973).
This is the case for translational or rotational invariance (or for the more
general invariance discussed in Section 5.2.4).

6.2 Systems with translational invariance

Consider a system for which the Hamiltonian (3.14) is independent of
the Cartesian z-coordinate. This implies the existence of an additional
constant of motion, because from (3.16) one immediately concludes that
Pz,s = mswz + qsAz(r) is a constant of motion.

It is important to note that translational invariance of the electromagnetic
field vectors E and B does not necessarily imply translational invariance of
the Hamiltonian. For steady state electric fields E = −∇φ the condition
∂E/∂z = 0 leads to ∇(∂φ/∂z) = 0, implying φ = −Ezz + φ0(x, y), where
Ez is the (constant) z-component of E and φ0(x, y) is an arbitrary function.
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Clearly, for translational invariance of the Hamiltonian, requiring transla-
tional invariance of φ, it is necessary that Ez = 0. At first sight, a similar
argument seems to apply to the magnetic field. However, one can always find
a gauge transformation that leads to a vector potential of the form A(x, y)
for any B(x, y). We conclude that for achieving translational invariance of
the Hamiltonian with respect to z we impose translational invariance on E

and B with the additional restriction

Ez = 0 . (6.5)

(Note that in a steady state with ∂Hs/∂t = 0 it is not possible to avoid the
z-dependence of φ by deriving Ez from a time-dependent vector potential.)
For reasons of simplicity (rather than necessity) we ignore the gravity force.

Then, the Hamiltonian (3.14) takes the form

Hs(x, y,P ) =
1

2ms
(P − qsA(x, y))2 + qsφ(x, y). (6.6)

This means that

fs(x, y,P ) = Fs(Hs(x, y,P ), Pz) (6.7)

is a solution of (4.10) for any choice of Fs.
Returning to x, y,w as the independent variables, we find

f(x, y,w) = Fs

(
msw

2

2
+ qsφ(x, y), mswz + qsAz(x, y)

)
. (6.8)

Without loss of generality we can choose the Coulomb gauge

∇ · A = 0 . (6.9)

Having solved the kinetic equation (4.10), it remains to consider steady
state Maxwell’s equations (4.11)–(4.14), which determine the potentials Az

and φ. In the following, Maxwell’s equations first are discussed in their exact
form and then in quasi-neutral formulation.

6.2.1 The equations for A and φ

First we note that for distribution functions of the form (6.8) the current
density components jx and jy vanish. By (4.14) and (6.9) this means that
∆Ax = ∆Ay = 0. Again using (6.9), this implies that Bz is a constant.
As the symbols Ax, Ay, jx, jy are no longer needed, we set Az = A and
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jz = j. Under those conditions steady state Maxwell’s equations (4.11)–
(4.14) assume the (dimensional) form

−∆φ =
1
ε0

σ(A, φ) (6.10)

−∆A = µ0j(A, φ) , (6.11)

where

σ(A, φ) =
∑

s

qs

∫
Fs

(
msw

2

2
+ qsφ, mswz + qsA

)
d3w (6.12)

j(A, φ) =
∑

s

qs

∫
wzFs

(
msw

2

2
+ qsφ, mswz + qsA

)
d3w (6.13)

are the electrical charge density and the z-component of the electrical current
density, respectively, jx and jy vanish. For prescribed distribution functions
Fs, the equations (6.10) and (6.11) are two nonlinear partial differential
equations for A(x, y) and φ(x, y).

At first sight one might have the impression that the freedom to choose
the functions Fs(Hs, Pz,s) arbitrarily corresponds to an arbitrary choice of
σ(A, φ) and j(A, φ). However, this is not the case, because σ and j are
subject to an important restriction, namely

∂σ(A, φ)
∂A

+
∂j(A, φ)

∂φ
= 0 . (6.14)

This condition is readily obtained in the following way

∂σ

∂A
+

∂j

∂φ

=
∑

s

qs

(
∂

∂A

∫
Fs d3w +

∂

∂φ

∫
wzFs d3w

)
=
∑

s

q2
s

∫ (
∂Fs

∂Pz
+ wz

∂Fs

∂Hs

)
d3w

=
∑

s

q2
s

ms

∫
∂fs(x, y,w)

∂wz
d3w

= 0 . (6.15)

The final step uses that fs has to vanish at large |w| for σ and j to exist.
The condition (6.14) implies that σ and j can be derived from a potential

p(A, φ), which is found as

p(A, φ) =
∑

s

∫
ms

2
(w2

x + w2
y)fs d3w , (6.16)
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such that

σ(A, φ) = −∂p(A, φ)
∂φ

(6.17)

j(A, φ) =
∂p(A, φ)

∂A
, (6.18)

where we have used integration by parts and d3w = (2π/ms)d(w2
⊥/2) dP .

The function p(A, φ) has an obvious physical interpretation. Noting that
the bulk velocity

vs =
∫

wfs d3w∫
fs d3w

(6.19)

has vanishing x- and y-components and that fs depends on wx and wy only
through w2

x +w2
y, we can identify p(A, φ) with the xx-component Pxx of the

pressure tensor P =
∑

s Ps, given by

Pxx =
∑

s

∫
msw

2
xfs d3w

=
∑

s

∫
ms

2
(w2

x + w2
y)fs d3w

= p(A, φ) ; (6.20)

for the definition of the pressure tensor Ps see (3.35). Analogously, one finds
Pyy = p(A, φ); the non-diagonal components vanish. Thus, the pressure
tensor is isotropic in the x, y-plane.

It is instructive to realize that (6.17) and (6.18) guarantee the validity
of the momentum balance, specialized from (3.34) for steady states and for
vanishing poloidal bulk velocity (projection onto the x, y-plane) and gravity,
summed over particle species,

−∇ · P + j × B + σE = 0 . (6.21)

Indeed, using pressure isotropy in the x, y-plane, translational invariance
together with B = ∇A × ez and jx = jy = 0, we get

−∇ · P + j × B + σE

= −∇p + j∇A − σ∇φ

=
(

j − ∂p

∂A

)
∇A −

(
σ +

∂p

∂φ

)
∇φ

= 0.

Appropriate boundary conditions for solving the system (6.10) and (6.11)
are Dirichlet conditions, Neumann conditions or suitable mixtures.
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We also note that (6.10) and (6.11) can be derived from a variational
principle where the variation functional is given by

V (A, φ) =
∫ (

(∇A)2

2µ0
− ε0(∇φ)2

2
− p(A, φ)

)
dx dy . (6.22)

It is easy to verify that (6.10) and (6.11) are the corresponding Euler–
Lagrange equations for the above-mentioned boundary conditions.

The approach presented in this section is exact for arbitrary z-independent
systems with Ez = 0 and constant Bz. No approximation is made and the
analysis is based on exact particle orbits.

One may wonder how such a rather simple formulation is possible, given
the complications of determining the particle orbits. Obviously, equilibrium
theory requires only partial knowledge of the orbits and, fortunately, that
knowledge is available in analytical form.

6.2.2 Quasi-neutral systems and local Maxwellians

As in fluid theory we may use the quasi-neutrality approximation (see
Section 3.2) if all length scales are much larger than the Debye length.
Correspondingly, (6.10) is replaced by

σ(A, φ) = 0 , (6.23)

which in many interesting cases can be inverted to give φ(A).
The equation (6.11) then reduces to

−∆A = µ0
dp(A)
dA

, (6.24)

where we have written p(A, φ(A)) as p(A). We also replaced ∂p/∂A by
dp/dA because of the following property,

dp(A)
dA

=
∂p

∂A
+

∂p

∂φ

dφ

dA

=
∂p

∂A
− σ

dφ

dA
(6.25)

=
∂p

∂A
. (6.26)

Obviously, (6.24) agrees with the Grad–Shafranov equation (5.78) for con-
stant Bz. Thus, the quasi-neutral limit of present Vlasov theory for systems
with translational invariance and constant Bz reduces to a corresponding
magnetohydrostatic description. This fact is easily explained by the pres-
sure isotropy in the poloidal plane and by the fact that setting σ to zero
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eliminates the σE term in the momentum equation (6.21) such that this
equation reduces to the corresponding MHD version.

We illustrate the present procedure for a commonly used choice of the
distribution functions Fs (Harris, 1962), given by

Fs(Hs, Pz,s) = Cs exp(−αsPz,s − βsHs), (6.27)

where Cs, αs and βs = 1/kBTs are constants. If expressed in terms of
velocity w, (6.27) reads

fs(x, y,w) = Cs exp
(

1
2
βsmsu

2
s − βsqsφ(x, y) − αsqsA(x, y)

− 1
2
βsms(wx

2 + wy
2 + (wz − us)2)

)
. (6.28)

Obviously, this is a local Maxwellian centred at velocity us = −αs/βs in the
wz-direction.

The pressure p is obtained from (6.16)

p =
∑

s

n̂skBTs exp
(
− qs

kBTs
(φ − usA)

)
, (6.29)

where n̂s = Cs(2πkBTs/ms)3/2 exp(msβsus
2/2). From (6.17) and (6.18) we

find σ and j as

σ =
∑

s

qsn̂s exp
(
− qs

kBTs
(φ − usA)

)
(6.30)

j =
∑

s

qsn̂sus exp
(
− qs

kBTs
(φ − usA)

)
. (6.31)

The potentials A and φ are found by solving (6.10) and (6.11) with (6.30)
and (6.31).

For a plasma consisting of electrons (species e) and a single ion species (i)
with charge Ze, the quasi-neutrality approximation yields

n̂e = Zn̂i (6.32)

φ =
Tiue + ZTeui

Ti + ZTe
A . (6.33)

Inserting (6.32) and (6.33) into (6.31) we find

j = en̂e(ui − ue) exp
(

Ze(ui − ue)
kBTi + ZkBTe

A

)
. (6.34)
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Thus, from (6.11) we obtain a Grad–Shafranov equation in the form consid-
ered earlier (see Section 5.2.2)

∆a = e−2a (6.35)

with

a = − Ze(ui − ue)
2(kBTi + ZkBTe)

A (6.36)

and where the coordinates are normalized by the length

L =
(

2(kBTi + ZkBTe)
µ0e2Zn̂e(ui − ue)2

)1/2

. (6.37)

We conclude that the exponential choice for p(A), which is frequently used
for applications and which we also encountered in connection with Liouville’s
approach, corresponds to the choice of local Maxwellians in a quasi-neutral
plasma.

A particularly simple case results from choosing the parameters, such that

Tiue + ZTeui = 0. (6.38)

Then φ vanishes identically and we find (6.35) with

a =
eue

2kBTe
A, L =

(
2Zk2

BT 2
e

µ0e2n̂eu2
e(kBTi + ZkBTe)

)1/2

, (6.39)

which is an exact description of a charge neutral equilibrium. The condition
(6.38) can be achieved by a Galilean transformation in the z-direction.

Clearly, all solutions of (6.35) that we discussed in Sections 5.2.2 and 5.3
from the MHD point of view also apply to the present kinetic picture, as long
as the magnetic field component in the invariant direction is kept constant.

A remark seems necessary about the surprising property that there is
a parameter choice for which the electric field vanishes. This property is
closely tied to the choice (6.27) of the distribution function. Non-Maxwellian
choices, which also are of interest for collisionless plasmas, generally lead to
solutions with non-vanishing electric fields. Choosing a Maxwellian with
(6.38), one must be aware that one does not obtain a representative electric
field signature. This aspect plays an important role for kinetic models of
thin current sheets (see Section 8.5).

6.3 Adiabatic particle motion

As discussed in the previous sections, the use of constants of motion in
addition to the Hamiltonian gives us a powerful method for constructing



6.3 Adiabatic particle motion 115

current-carrying kinetic equilibria. On the other hand, such constants, if
based on a symmetry, seem to exist only under rather special circumstances.
It is clear from the discussions in Section 5.2.4 that we can find symmetry-
based constants of motion only for helical invariance with the limiting cases
of translational and rotational invariance.

Fortunately, in an approximate sense, there exist constants of motion
that do not require an exact symmetry of the fields. These are the adiabatic
invariants (see www.tp4.rub.de/∼ks/tb.pdf).

The most widely used example of an adiabatic invariant is the magnetic
moment (3.10) of a particle gyrating in a field with spatial and temporal
scales large compared with the gyroscales. Other adiabatic invariants are
associated with near-periodic motion of the gyrocentre. If a particle oscil-
lates along magnetic field lines between regions of enhanced field magnitude
(magnetic mirrors) there is a second invariant given by (3.11).

For adiabatic particle motion in weakly varying fields, the zeroth order
gyrocentre velocity is simply E ×B/B2 (see (3.6)), which implies magnetic
line conservation. For a magnetic field possessing Euler potentials this means
that potentials α, β can be found which, approximately, are constants of
motion.

Thus, for adiabatic particle motion we have several additional quantities,
that can serve to construct models of steady states. As an example, let us
consider a set of adiabatic particles where the only near-periodic motion is
the gyration and where there is no bulk plasma flow. Let us also assume
that the magnetic field possesses Euler potentials α, β. Then, H, µ, α, β is
an appropriate set of (exact or approximate) constants of motion and

f = F (H, µ, α, β) (6.40)

is a steady state distribution function for arbitrary functions F to lowest
order in the smallness parameter.

For particles that are not reflected in their motion along field lines, the
distribution function F can be specified differently for particles moving in
different directions along the field. In other words, the sign of w||, denoted
by sgn(w||), is an additional constant of motion. In that case we can even
allow for a bulk flow component parallel to the magnetic field by choosing

f = F (H, µ, α, β, sgn(w||)) (6.41)

as the distribution function.
The pressure tensor that one obtains from (6.40) or (6.41) has the form

of the CGL tensor (3.69).
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6.4 Regular and chaotic particle motion

As we have discussed in Section 3.1, the motion of particles in electromag-
netic fields may be formulated as a problem of Hamiltonian mechanics. Here
we discuss the case of negligible gravity force and steady state electromag-
netic fields. For convenience, we repeat the corresponding Hamiltonian in
Cartesian coordinates

H(r, p) =
1

2m
(P − qA(r))2 + qφ(r) (6.42)

and the equations of motion

dr

dt
=

∂H

∂P

dP

dt
= −∂H

∂r
.

(6.43)

It is well known that under suitable conditions Hamiltonian systems are
subject to the phenomenon of deterministic chaos. For details we refer to the
literature on this subject (e.g., Arnold, 1979; Lichtenberg and Liebermann,
1983). In the present context we cannot do more than make a few comments
and illustrate the main aspects in terms of a simple example that is relevant
for later applications.

First we have to distinguish between integrable and nonintegrable systems,
where the term integrable essentially means that solving the dynamical prob-
lem can be reduced to evaluating a number of integrals. For a system of n

degrees of freedom to be integrable it is necessary that n constants of mo-
tion can be found. (Sufficiency requires that these constants of motion are
isolating (Lichtenberg and Liebermann, 1983) which, in many cases, does
not apply to constants involving initial conditions. However, this will not
cause a problem for the cases that we are going to discuss here.)

Integrable systems have well-ordered (regular) trajectories, while noninte-
grable systems (i.e., systems with an insufficient number of constants of mo-
tion) have regions of phase space where the trajectories are irregular in the
sense that small variations of the initial conditions lead to much larger dif-
ferences between the trajectories at later times than for integrable systems.
It is mainly that strong dependence on initial conditions that characterizes
chaos.

Even chaotic systems can have large regular domains of phase space. A
quantitative formulation of this property is provided by the famous KAM
theorem. (For a historical note and original references see Lichtenberg and
Liebermann, 1983.)
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Chaotic orbits play an important role in space plasma physics. The best
studied examples belong to the systems with translational invariance as
discussed in Section 5.2. Since in most cases the invariance is chosen with
respect to the y-coordinate we will adopt this choice here. Then, setting
By = 0, the vector potential may be chosen as

A = A(x, z)ey . (6.44)

We start out from systems where A depends on z only. As we will show, these
systems are integrable. This choice (together with the assumed vanishing
of By) corresponds to a one-dimensional configuration with B having an x-
component only. Of particular interest are cases with a neutral sheet, which
means that B vanishes for some value of z. Such fields show a particularly
rich variety of different types of particle orbits (Sonnerup, 1971).

A simple example is the choice

A = −B0
z2

2L
, (6.45)

where Bx varies linearly with z changing its sign at z = 0. Another example
is the Harris sheet (see Section 5.3) with

A(z) = −B0L ln
(
cosh
( z

L

))
. (6.46)

Here, Bx changes its sign at the plane z = 0 also, but the field becomes
asymptotically homogeneous for large |z|.

In these and other cases with A = A(z) the Hamiltonian (6.42) assumes
the form

H =
1

2m

(
Px

2 + Pz
2 + (Py − qA(z))2

)
, (6.47)

where the electric potential was set to zero, which for the Harris sheet is
justified by the choice (6.38).

Since H does not depend on the variables t, x, y, we see from the property
dH/dt = ∂H/∂t and from (6.43) that our system possesses three constants
of motion, namely H, Px, Py. This property makes our system integrable. In
fact, x and y are ignorable coordinates so that, formally, our system has one
degree of freedom with a Hamiltonian of the form H(Pz, z). The equations
of motion can be integrated simply by noting that Pz = m dz/dt, which can
be inserted into the Hamiltonian. Straightforward integration gives

t =
∫ z

z0

± dz′√
2
m

(
H − Px

2

2m − 1
2m (Py − qA(z′))2

) , (6.48)
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where z0 is the value of z at t = 0 and the sign in the integrand is fixed by
the initial condition and continuity. Here we see explicitly that our system
is integrable. (In fact it is a general result that every autonomous system
with one degree of freedom is integrable.)

Integrability does by no means imply that the orbits have a simple struc-
ture. Depending on the initial conditions, the orbits show different qualita-
tive properties (e.g., Sonnerup, 1971). Orbits of particles with sufficiently
small energies and initial position sufficiently far away from the neutral sheet
are simple gyration orbits with a ∇B-drift superimposed (see (3.7)). Parti-
cles that cross the neutral sheet have rather exotic orbits; Fig. 6.1 shows an
example for the magnetic flux function given by (6.45).

A transition from integrable to nonintegrable systems takes place through
an additional x-dependence of the flux function, such that A = A(x, z).
Then, Px is no longer a constant of motion, the system becomes noninte-
grable, and regions with chaotic particle motion can be expected to exist in
phase space.

Physically, this transition means the addition of a Bz-component. In
typical cases this eliminates exact neutral sheets. However, for sufficiently
small |Bz| the field configuration is geometrically close to the neutral sheet
case and often the term neutral sheet is also used for that case. Since one of
the constants of motion is missing, the particle orbits are no longer tied to a
line in the Pz, z-plane (as it is the case for Bz = 0) and the intersection points
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Fig. 6.1 An orbit of a particle crossing a one-dimensional neutral sheet projected
in the y, z-plane (left) and x, z-plane (right).
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with an appropriately chosen Pz, z-plane (surface of section) may scatter and
cover certain areas of that plane more densely, indicating the chaotic regions.
One of the most striking consequences is the strong dependence on initial
conditions.

In a simple model case Bz is a constant, say Bn. Adding a corresponding
term to (6.45) the magnetic flux function reads

A = −B0
z2

2L
+ Bnx , (6.49)

the magnetic field lines (level curves of A) are parabolas.
Particle orbits in two-dimensional neutral sheet configurations were stud-

ied by Speiser (1965), Chen and Palmadesso (1986), Büchner and Zelenyi
(1989), and others. Here we emphasize the strong dependence on initial
conditions. For an illustration we use (6.49), so that the Hamiltonian (6.42)
becomes

H =
Px

2

2m
+

Pz
2

2m
+

1
2m

(
Py + qB0

z2

2L
− qBnx

)2

. (6.50)

Obviously, the constant Py can be eliminated by transforming to the new x-
coordinate x−Py/qBn. Normalizing H by mw2, where w is the magnitude of
the particle velocity, Px, Pz by mw and x, z by

√
Lrg0 with rg0 = mw/|q|B0

being the gyroradius of a particle moving with velocity w in the field B0, we
obtain (leaving, however, the notation of the variables unchanged)

H =
Px

2

2
+

Pz
2

2
+

1
2

(
z2

2
− λx

)2

, (6.51)

where

λ =
Bn

B0

√
L

rg0
. (6.52)

An orbit with energy E is confined between the (bounding) field lines

z2

2
= λx ±

√
2E (6.53)

and performs an oscillatory motion around the centre field line z2/2 = λx,
on which wy vanishes. This field line carries the guiding centre in the limit
of small gyroradius. The orbits depend on a single parameter, λ. This
parameter has a direct physical meaning: λ2 is the ratio of the radius of
curvature of the field lines and the gyroradius, both taken at z = 0 (Büchner
and Zelenyi, 1989).
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For small values of λ one expects relatively small chaotic effects, the
chaotic regions in phase space are strongly localized. Over large sections
the orbits are similar to those of the case where Bn vanishes. However, be-
tween these sections the orbit may switch between the different types, e.g.,
from a gyration orbit to the orbit shown in Fig. 6.1.

Orbits with large values of λ satisfy the condition that the gyroradius is
small compared to the smallest scale length L of the field, such that the
magnetic moment µ associated with that particle is an adiabatic invariant
(Section 6.3). Thus, in the large λ limit we have an additional (approximate)
constant of motion and the system becomes integrable.

Pronounced chaotic motion requires values of λ not too far from 1. Fig. 6.2
shows two particle orbits for λ = 0.2. The initial conditions are chosen such
that the bounding and centre field lines coincide. In both cases the particle
starts at the same point (with z = 3) on the centre field line. The remaining
freedom is used to impose a 1% difference of initial velocity components for
the two orbits. This small initial difference has a very large effect on the
orbits: after the same run-time the upper orbit has returned into a gyrating
mode (with a magnetic moment different from the initial one), while the
lower orbit was reflected back into the chaotic domain near z = 0. The end
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Fig. 6.2 Two particle orbits in a parabolic magnetic field with Hamiltonian (6.51)
for λ = 0.2, illustrating strong dependence on initial conditions. The orbits are
projected into the x, z-plane. Also shown are the field lines that bound the ac-
cessible domain and the centre field line, which are the same in both cases. The
initial conditions differ only by a one per cent difference in the velocity.
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points lie in entirely different regions. This is the signature of chaos that we
emphasize in the present context.

Surfaces of section for orbits with the Hamiltonian (6.51) were studied
by Büchner and Zelenyi (1989) and by Chen and Palmadesso (1986). See
also Chapman and Watkins (1996). The role of chaotic motion in slowly
time-dependent sheets is discussed in Section 8.5.

Due to the small field magnitude near z = 0 the particle is displaced by
rather large distances along the y-axis. (The particle spends rather long
periods of time on a given side of the centre field line, where wy has a given
sign.) If there is an additional y-component of the electric field, strong en-
ergetic coupling between chaotic particles and the electromagnetic field can
arise. In a steady state field configuration particles that are energized during
their meandering motion are ejected along field lines with high velocities.
This effect was intensively studied by Speiser (1965), and the corresponding
orbits are called Speiser orbits. This kind of coupling is also relevant for
collisionless instabilities (see Section 10.4).
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A unified theory of steady states

Earlier in this part we have encountered several different forms of equations
describing steady states. The simplest case is magnetohydrostatics, physi-
cally richer versions include an anisotropic pressure tensor, directed flow or
gravity.

In this chapter we consider a generalized formulation for a class of steady
states that includes such generalizations. The method reduces the original
fluid equations to two field equations, which can be understood as general-
izations of the MHS equations (5.21) and (5.22).

In the first part the effect of an external gravity force is ignored; however,
it will be incorporated in the second part. In all cases we assume that
the magnetic field possesses Euler potentials. Again, it should be kept in
mind that in space physics environments Euler potentials have considerable
applicability (Section 5.1.2).

Remarkably, it turns out that in each of the cases that we consider the
steady state problem can be reduced to solving the field equations for the
Euler potentials. The form of these equations is uniquely determined by a
single scalar function, which also serves as a Lagrangian generating the field
equations.

However, it should be kept in mind that this is not a general theory
of steady states. Besides the existence of Euler potentials this procedure
excludes bulk flow perpendicular to the magnetic field. Is is only for a
particular symmetric configuration that we show how a perpendicular flow
component can be included (Section 7.3.2).

Here we outline the main properties of our unified formulation. More
details and derivations are given in Appendix 1.
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7.1 Steady states without gravity

Ignoring the gravity force we consider the following form of the momentum
equation,

∇ ·M = 0 (7.1)

with the stress tensor M having the structure

M = R I + SBB (7.2)

where R and S are scalar expressions and I is the unit tensor.
The stress tensor (7.2) is oriented with respect to the direction of the

magnetic field and keeps local isotropy around that direction. The main
physical restrictions are absence of nonideal transport effects, such as viscous
stresses, of radiation losses and of perpendicular flow. Pressure anisotropy
and plasma flow parallel to the magnetic field are included.

The main aim is to derive the field equations, i.e., an appropriate set of
differential equations for the Euler potentials α and β. For our procedure it
is appropriate to understand R and S as functions of α, β and the magnitude
of the magnetic field B, which formally replace the coordinates x, y, z. We
assume that the Jacobian |B · ∇B| of that transformation will not vanish
identically. (Cases where the Jacobian vanishes everywhere have a rather
simple field structure and may be discussed by more explicit means.) Thus,
R and S are assumed to be given in the form R(α, β, B) and S(α, β, B).

It turns out (see Appendix 1) that (7.1) implies that the functions R and
S are subject to the constraint

RB + B2SB + SB = 0 (7.3)

where here and throughout this chapter differentiation is indicated by sub-
scripts. Physically, (7.3) states momentum balance in the direction of ∇B.
Using that constraint one finds the remarkable fact that the problem (7.1)
with (7.2) can be characterized by the single function

T = b · M · b = R + B2S , (7.4)

where b = B/B is the unit vector in the magnetic field direction. We refer
to T as the steady state potential. From the potential T , the functions R

and S can be computed by partial differentiation,

S =
TB

B
(7.5)

R = T − BTB , (7.6)
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which immediately follows from (7.3) and (7.4). The final form of T (α, β, B)
has to satisfy appropriate constraints where the set of constraints consists
of (7.5) or (7.6) (the other one being satisfied automatically) and additional
constraints such as conservation laws.

Then the field equations for the Euler potentials assume the following
form (see Appendix 1),

∇β ·
[
∇×
(

TB

B
∇α ×∇β

)]
+ Tα = 0

−∇α ·
[
∇×
(

TB

B
∇α ×∇β

)]
+ Tβ = 0 .

(7.7)

Here, B, which so far played the formal role of a variable, is reinstalled in
its original meaning |∇α × ∇β|, such that the field equations become two
(nonlinear) partial differential equations for α and β.

The field equations (7.7) can be derived from the variational principle

δ

∫
T (α, β, B) d3r = 0 (7.8)

where the independent functions to be varied are α and β. The field equa-
tions (7.7) are the Euler–Lagrange equations of the variation problem (7.8).
Thus, T also plays the role of a Lagrangian of the field equations.

The existence of a variational principle for steady state conditions is of
considerable interest in connection with questions regarding the existence
and the stability of solutions. For stability properties see Part III.

The present formulation is also well suited to incorporate additional con-
straints that are part of the original plasma model. For instance, this applies
to mass conservation and entropy conservation in the presence of plasma
bulk flow along the magnetic field (see the corresponding example discussed
below).

7.1.1 Examples

Here we give the final form of the steady state potential T (α, β, B) for a
number of different plasma models. With T known, the field equations are
available from their general form (7.7). Details are given in Appendix 1.

Magnetohydrostatics with isotropic pressure

For MHS defined by (5.6)–(5.8) one finds

T (α, β, B) =
B2

2µ0
− p(α, β). (7.9)
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The constraint (7.5) reduces to pB = 0 which is already taken into account
in (7.9).

Magnetohydrostatics with CGL pressure tensor

For a MHS model with a CGL pressure tensor P =
∑

s Ps, where Ps has
the form of (3.69), one obtains

T (α, β, B) =
B2

2µ0
− p||(α, β, B). (7.10)

Here (7.5) yields a relationship between p⊥ and p|| (Cowley, 1978),

p|| − p⊥ = B
∂p||
∂B

. (7.11)

If no further constraints are imposed, the function p||(α, β, B) can be
chosen arbitrarily, p⊥ is then determined by (7.11).

Steady state with isotropic pressure and parallel flow

Here we consider the steady state version of ideal MHD, defined by (4.3)–
(4.9) with v parallel to B and negligible gravity force. Parallel velocity
implies E = 0.

The continuity equation (4.3) is integrated and gives
ρv||
B

= m(α, β) (7.12)

where m(α, β) is arbitrary. Similarly, the adiabatic law (4.6) gives p/ργ =
k(α, β) with arbitrary k(α, β). We generalize this property and assume that
the pressure is an arbitrary function of the form

p = P (ρ, α, β) . (7.13)

Then one finds

T (α, β, B) =
B2

2µ0
− P (ρ, α, β) − m(α, β)2B2

ρ
. (7.14)

Here, ρ is understood as a function of α, β, B, which is determined by the
equation

B2m(α, β)2

2ρ2
+
∫ ρ Pρ(ρ, α, β)

ρ
dρ = C(α, β), (7.15)

where C(α, β) is arbitrary. Equation (7.15) is Bernoulli’s equation for the
flow in each magnetic flux tube.

This model has several aspects that are standard in fluid dynamics, such
as the appearance of Bernoulli’s equation. Here, the emphasis is placed on
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embedding these fluid dynamics techniques into a self-consistent electromag-
netic picture in a unified way.

If the adiabatic law (4.6) is replaced by the incompressibility law

∇ · v = 0 (7.16)

one finds from (7.16) and (4.3) that ρ is an arbitrary function of α and β

and v|| = n(α, β)B with n(α, β) arbitrary. Then the steady state potential
becomes

T (α, β B) =
B2

2µ0
− 1

2
ρ(α, β)n(α, β)2B2 − D(α, β) (7.17)

where the pressure was eliminated by Bernoulli’s law, which here takes the
form

p(α, β) +
1
2
ρ(α, β)n(α, β)2B2 = D(α, β), (7.18)

where D(α, β) is arbitrary.

7.2 Inclusion of the gravity force

To include a gravity force we replace (7.1) by

∇ ·M− ρ∇ψ = 0. (7.19)

We will introduce functions R̂, Ŝ and T̂ instead of R, S and T , where the
hat-label on a variable indicates that the variable formally is understood as
a function of α, β, B, ψ. Accordingly, we define

M = R̂ I + ŜBB (7.20)

T̂ = R̂ + B2Ŝ. (7.21)

The ψ-dependence of T̂ is fixed by the condition

T̂ψ = ρ. (7.22)

The conditions (7.5) and (7.6) are replaced by

Ŝ =
T̂B

B
(7.23)

R̂ = T̂ − BT̂B . (7.24)

Again, only one of the two latter equations is needed, the other one is
satisfied automatically.
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If the function T̂ (α, β, B, ψ) satisfying all constraints has been determined,
as shown in Appendix 1, the field equations then assume the form

∇β ·
[
∇×
(

T̂B

B
∇α ×∇β

)]
+ T̂α = 0

−∇α ·
[
∇×
(

T̂B

B
∇α ×∇β

)]
+ T̂β = 0.

(7.25)

Here, for B and ψ one has to insert |∇α ×∇β| and the known gravity po-
tential ψ( r), respectively, so that again one obtains two (nonlinear) partial
differential equations for α and β.

The variational principle, from which (7.25) may be derived, is

δ

∫
T̂ d3r = 0 , (7.26)

where again the two Euler potentials are the functions to be varied indepen-
dently.

As an illustration of this formalism we revisit two earlier examples and
include a gravity force.

MHS with gravity

From the model equations (5.1)–(5.3) one readily finds

T̂ (α, β, B, ψ) =
B2

2µ0
− p(α, β, ψ) (7.27)

with

ρ = − ∂p

∂ψ
. (7.28)

If one uses (7.28) to determine ρ, the only condition on the function
p(α, β, ψ) is that the derivative with respect to ψ is negative.

MHD with parallel flow and gravity

As shown in Appendix 1 we find in this case

T̂ (α, β, B, ψ) =
B2

2µ0
− P (ρ, α, β) − m(α, β)2B2

ρ
. (7.29)

Here, ρ is a function of α, β, B, ψ determined by Bernoulli’s equation, which
now reads

ψ +
B2m2

2ρ2
+
∫ ρ Pρ

ρ
dρ = C(α, β), (7.30)

where C(α, β) is arbitrary.
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7.3 Symmetric states

In Section 5.2 we have described steady state theory for symmetric magne-
tohydrostatic states. Here we generalize that description from the present
unified point of view. Details and derivations are given in Appendix 1. Here
we only give the unified form of the Grad–Shafranov equation for transla-
tional and rotational invariance. The case of helical invariance is given in
Appendix 1. The gravity force is ignored, it can be included by the general
method outlined above.

As in Section 5.2 we assume translational invariance with respect to the
Cartesian z-component and write the magnetic field as

B = ∇A(x, y) × ez + Bz(x, y)ez, (7.31)

where A(x, y) is the magnetic flux function, and observe that B may also
be expressed by the Euler potentials

α = A(x, y) (7.32)

β = z + β̃(x, y) , (7.33)

where

Bz = ez · ∇A ×∇β̃ . (7.34)

Symmetry requires that the steady state potential T is independent of z

which implies T = T (A, B). From the field equations we find (unless ∇A

vanishes identically)

Bz =
BG(A)

TB
(7.35)

where G(A) is arbitrary and the unified Grad–Shafranov equation

−∇ ·
(

TB

B
∇A

)
− B

TB
G(A)G′(A) + TA = 0 . (7.36)

For magnetohydrostatics with isotropic pressure this equation reduces to
equation (5.78).

For rotational invariance we use cylindrical coordinates r, ϕ, z and as in
Section 5.2.3 assume that the observables do not depend on ϕ. In this case
the Euler potentials are chosen as

α = U(r, z) (7.37)

β = ϕ + β̃(r, z), (7.38)
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implying that

Bϕ = eϕ · ∇U ×∇β̃ . (7.39)

The steady state potential has the form T (U, B). We obtain

Bϕ =
K(U)

rS
(7.40)

where K(U) is arbitrary, and the unified form of the Grad–Shafranov equa-
tion becomes

−1
r

∂

∂r

(
TB

rB

∂U

∂r

)
− 1

r2

∂

∂z

(
TB

B

∂U

∂z

)
− BK(U)K ′(U)

r2TB
+ TU = 0 . (7.41)

Helical invariance is discussed in Appendix 1. Inclusion of a gravity force
leads to the same field equations as found without gravity except for replac-
ing T (α, β, B) by T̂ (α, β, B, ψ) and determining the ψ-dependence of T̂ by
the condition T̂ψ = ρ.

7.3.1 Gravity supported sheets revisited

For an example we revisit the problem of magnetohydrostatic structures
supported by gravity. A simple explicit model was given in Section 5.3.6.

Consider a configuration with translational invariance with respect to the
Cartesian z-coordinate. For this case (7.27) and (7.28) reduce to

T̂ (A, B, ψ) =
B2

2µ0
− p(A, ψ) (7.42)

with

ρ = −∂p(A, ψ)
∂ψ

. (7.43)

The field equation for A is found from (7.36) as

1
µ0

∆A +
d

dA

Bz(A)2

2µ0
+ pA = 0 . (7.44)

After inserting |∇A| for B and the actual gravity potential ψ(x, y) for ψ,
the differential equation (7.36) can be solved for A(x, y).

An interesting simplification consists in setting ψ = −gy and choosing
constant values for Bx and Bz. Then A(x, y) = Ã(x) + Bxy. Further let
us choose p(A, ψ) = F (A + Bxψ/g). Then, p reduces to p = F (Ã(x)).
The y-dependence has dropped out and the field equation (7.44) becomes
an equation for Ã(x). For any monotonically decreasing function F a sheet
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structure arises in which the y-component of the Lorentz force balances the
gravity force. The special choice

F (Ã) =
B2

0

2µ0
e−2 Ã

B0d (7.45)

leads to the particular sheet model discussed in Section 5.3.6.

7.3.2 A case with a perpendicular flow component

The unified formulation, as discussed so far, restricts the plasma bulk ve-
locity to be directed parallel to the magnetic field. Here we present a case,
where it is possible to include a perpendicular velocity component. The
geometry is restricted to translational invariance with respect to the Carte-
sian z-coordinate. The magnetic field and the plasma bulk velocity are
decomposed in their poloidal (x, y) and their toroidal (z)-components,

B = Bp + Bzez, v = vp + vzez, (7.46)

with the familiar representation Bp = ∇A× ez. For concreteness let us as-
sume that the perpendicular flow stems from ideal Ohm’s law (4.5). Present
symmetry would imply an electric potential of the form φ = Φ(x, y) − Ezz.
Choosing Ez = 0 gives

v × B = ∇Φ(x, y). (7.47)

Models with these properties typically generate stress tensors of the type

M = R̂ I + ŜBpBp + V̂ (Bpez + ezBp) + Ûezez . (7.48)

We follow the same procedure as in the case of parallel flow with a gravity
force included, except that we use variables A, Bp, ψ instead of A, B, ψ (see
also Appendix 1). Correspondingly, we define

T̂ (A, Bp, ψ) = R̂(A, Bp, ψ) + B2
pŜ(A, Bp, ψ), (7.49)

fixing the ψ-dependence by

T̂ψ = ρ. (7.50)

Then one finds

−∇ ·
(

T̂Bp

Bp
∇A

)
+ T̂A = 0 (7.51)

V̂ = V̂ (A). (7.52)
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The coefficient Û has dropped out of the problem because ∇ · (Ûezez) van-
ishes. Besides (7.50), the function T̂ has to satisfy the condition

T̂Bp

Bp
= Ŝ. (7.53)

For symmetric static fields (7.51) is equivalent to (7.36); the different struc-
ture results from using the variables A, Bp in (7.51) and A, B in (7.36).
Additional constraints such as conservation laws have to be incorporated
also.

To illustrate this procedure let us deal with a steady state ideal MHD
model. (Ideal Ohm’s law has already been anticipated.) Let ρ = ρ(A) and
ψ = ψ(x, y). The continuity equation is integrated to represent vp by a
scalar function D,

vp =
1
ρ
∇D × ez. (7.54)

Ohm’s law (7.47) implies that D = D(A) and Φ = Φ(A)

vz −
1
ρ
DABz = ΦA. (7.55)

From (7.48) specialized for the present example, one then finds
Bz

µ0
− DAvz = V̂ . (7.56)

From (7.55) and (7.56) we conclude that Bz = Bz(A) and vz = vz(A). The
condition (7.53) gives Bernoulli’s equation in the form

p +
B2

z

2µ0
+

ρv2
p

2
+ ρψ = C(A) (7.57)

where (7.50) was used also. The final form of T̂ with all constraints taken
into account is obtained as

T̂ (A, Bp, ψ) =
B2

p

2µ0
−

DA(A)2B2
p

2ρ(A)
+ ρ(A)ψ − C(A) (7.58)

and the field equation (7.51) takes the form(
1 − µ0DA

2

ρ

)
∆A − (∇A)2

2
d

dA

(
µ0DA

2

ρ

)
− µ0ψ(x, y)

dρ

dA
+ µ0

dC

dA
= 0.

(7.59)
This equation was derived directly from the MHD equations by Tsinganos
(1981). (In a comparison one should be aware that the functions
C(A), V̂ (A), D(A) are defined differently in Tsinganos’ work.) Goedbloed
(2004) obtained a corresponding equation from a variational approach de-
vised for axisymmetric systems.
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Quasi-static evolution and the formation of thin
current sheets

8.1 Introduction

In many ways the simplest description of a quiescent plasma state is pro-
vided by a steady state model. We dealt with such models in detail in
previous chapters, especially emphasizing static states. However, as dis-
cussed in Chapter 4, we cannot expect that exact steady states exist in
nature, a more realistic picture of quiescence being that of slow temporal
evolution. A convenient description of such a system is a temporal sequence
of (approximate) steady state configurations. Each member of such a quasi-
steady sequence describes a snapshot of the system taken at a particular
time during its evolution (Chapter 4).

An important aspect of slow evolution is that in a set of cases relevant for
space and astrophysics the evolution leads to the formation of thin current
sheets (TCS). That formation is spontaneous in the sense that the small
length scale associated with thin current sheets is not present in the external
driving forces. Thus we are dealing with spontaneous formation of structure.

As it will turn out, thin current sheets seem to play a crucial role in
transitions from quiescence to activity (Parker, 1972; Priest, 1981; Parker,
1994). Parker has argued that braiding of coronal magnetic fields caused by
foot-point motion leads to the formation of tangential discontinuities, which
cause dynamic resistive dissipation even for extremely small dissipation.
These processes are believed to play an important role in solar activity.
Theoretical models (e.g., Birn et al., 1998a) as well as observations (e.g.,
Kaufmann, 1987) have led to the conclusion that thin current sheets also
play a central role in magnetospheric activity. This chapter concentrates
on the formation of thin current sheets, their role in the transitions from
quiescent to active states will be discussed in Part III.
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As we have seen, a characteristic property of steady state solutions is the
large freedom that they offer for the choice of parameters and free functions.
For instance, the general form of asymptotic tail solutions (5.161) contains
three free functions, z0(x1), p̂(x1) and p(A). As discussed, part of that
freedom allows us to impose boundary conditions. The remaining freedom
provides the possibility to satisfy constraints, such as conservation laws.

For a reminder, let us look at mass conservation expressed by the conti-
nuity equation, which we repeat here for convenience,

∂ρ

∂t
+ ∇ · (ρv) = 0 . (8.1)

For the purpose of a snapshot of a quasi-static equilibrium sequence, this
equation, to lowest order, is satisfied trivially as ∂/∂t and v vanish in that
order. Equation (8.1), however, can no longer be ignored for a quasi-static
sequence if we consider a large time interval, during which appreciable
changes of density ρ occur. If we scale time variation and velocity with
a parameter δ, such that ∂ρ/∂t = O(δ), v = O(δ), the long time interval
τ for appreciable changes is of order τ = O(1/δ).

Integrating (8.1) over a domain D with surface ∂D, which has the outward
pointing unit normal n and moves with velocity u, one finds

d
dt

∫
D

ρd3r +
∫

∂D
ρn · (v − u)d2r = 0 . (8.2)

For vanishing outflow, represented by the surface integral, total mass is
conserved. Here, mass conservation remains to be a nontrivial property
even for arbitrarily small values of δ. As we will see below, for ideal MHD
with appropriate boundary conditions mass conservation may be formulated
separately for each magnetic flux tube.

For the full set of MHD quantities, one finds the following scaling for
quasi-static evolution,

p, B, ρ,∇ = O(1) (8.3)

j, v, E,
∂

∂t
= O(δ) . (8.4)

The zeroth order quantities obey the static equilibrium equations.
In certain cases a conservation law can be replaced by connecting the

system to a large reservoir, which fixes the value of a quantity such as
pressure or density.
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8.2 Perturbed Harris sheet

Consider a finite portion of a Harris sheet (Section 5.3.2) with flux function
A0(z), enclosed in a rectangular box of dimensions (0 ≤ x ≤ l, −s ≤ z ≤ s)
in the x, z-plane (upper panel of Fig. 8.1). Note that the current density is
bounded (see Fig. 5.5).

Now, consider a two-dimensional quasi-static deformation of that system
following Hahm and Kulsrud (1985). This may be achieved by magnetic
flux transfer through the boundary, described by changing the values of A

on the unperturbed upper and lower boundaries. The perturbation vanishes
on the lateral boundaries.

For simplicity, we assume the following symmetry properties with respect
to the axis (z = 0). Let A be symmetric, i.e., A(x,−z) = A(x, z), which
implies antisymmetry for Bx, and let vx be symmetric and vz antisym-
metric. The present gauge implies Ey = −∂A/∂t (for an explanation see
Section 8.3.1). We set vy = 0, By = 0. As we will see, it makes a qualitative
difference whether or not Ohm’s law in its ideal form (3.60) is imposed.

Let us first allow for a general nonideal form of Ohm’s law, which allows
E �= 0 at the neutral sheet (case 1). In a first step, we consider only the
upper half of the box (z ≥ 0). For the perturbed (half-box) problem we
then have the following boundary conditions:

1

0

1

z

1

0

1

z

1

0

1

z

0 10 1 2 32 3

0 1 2 3

x

x

x

Fig. 8.1 Magnetic field lines of a Harris sheet without (top panel) and with bound-
ary perturbation for box dimensions l = 3, s = 2. The nonideal continuous
solution (lower left) shows changing magnetic topology. Imposing Ohm’s law in
ideal form (lower right) keeps magnetic topology but causes a singular current
sheet (thick line).
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case 1
upper boundary: prescribing A(x, s) (external force),
side boundaries: A(0, z) − A0(z) = A(l, z) − A0(z) = 0,
x-axis: ∂A/∂z = 0 for z = 0 (symmetry, assuming continuous Bx).

In a second step we map the solution to the lower half of the box, again
using symmetry. Obviously, this generates a continuous solution. It has
the structure shown in the lower left panel of Fig. 8.1. The perturbation
has changed the magnetic topology in that the field lines connect to the
boundary in a different way as compared to the unperturbed sheet.

Let us now impose ideal Ohm’s law (3.60) (case 2). This case is qualita-
tively different from the previous case, because it requires that the electric
field vanishes at the neutral sheet.

Ideal Ohm’s law implies that the flux function A is a constant of the
motion. This is a consequence of magnetic flux conservation and follows
directly from the y-component of (3.60), which gives ∂A/∂t + v · ∇A = 0.
Thus, the moving plasma sees a constant value of A. Since the symmetry
requires that vz vanishes on the axis, the plasma that was situated on the
axis originally will stay on the axis. Since A is a constant of the motion,
A remains zero on the axis as the perturbation is applied. This boundary
condition replaces the vanishing of the normal derivative of case 1. Thus,
for ideal MHD we find the boundary conditions:

case 2
upper boundary: prescribing A(x, s) (external force),
side boundaries: A(0, z) − A0(z) = A(l, z) − A0(z) = 0,
x-axis: A(x, 0) = 0 (from ideal form of Ohm’s law).

For the upper half, this is a well-posed problem for a continuous solution.
There is no room for an additional boundary condition. In particular, we
cannot impose ∂A/∂z = 0 on the x-axis, although for a smooth flux function
that condition would be necessary to keep the assumed symmetry. In fact,
the solution in the upper half plane will generally yield a non-zero normal
derivative as z approaches zero, which means that Bx = −∂A/∂z does not
necessarily vanish for z → 0.

Mapping that solution to the lower half of the box by the symmetry condi-
tion Bx(x,−z) = −Bx(x, z) results in a jump of the (tangential component
of the) magnetic field at z = 0. Thus, the x-axis carries a tangential discon-
tinuity. The absolute value of the sheet current is given by |2Blim/µ0|, where
Blim denotes the one-sided limit of |Bx| for z approaching zero. Figure 8.1



8.2 Perturbed Harris sheet 137

illustrates such a solution in the lower right panel. The singular current
sheet is marked by the thick horizontal line.

The solution either violates continuity (lower right panel of Fig. 8.1) or
conservation of magnetic topology (lower left panel). If the conservation of
magnetic topology is a built-in property of plasma dynamics (by Ohm’s law
in ideal form), a continuous solution is not available and a singular current
sheet forms. If, on the other hand, Ohm’s law contains a suitable nonideal
term, the system can be expected to relax to a continuous solution with
a change in magnetic topology. Note that this picture is consistent with
Parker’s general hypothesis (Parker, 1994) on the formation of tangential
discontinuities.

Clearly, in a real plasma dissipative terms will become available when
critical parameter conditions are reached. (This property is discussed in
Chapter 9.) Thus, as the boundary perturbation is applied, a thin current
sheet will build up. Beyond criticality, the dissipation will lead to a change
of topology. Since the quasi-static evolution and the relaxation are different
physical processes, they can be expected to occur on different time scales.

Although, strictly speaking, the state shown in the lower right panel of
Fig. 8.1 will never be reached, the concept of such a state as a limiting case
is valuable to understand the behaviour of real plasmas, where the current
density becomes locally large.

Imposing inhomogeneous Dirichlet boundary conditions applied to the
side boundaries (i.e., prescribing A(0, z) and A(l, z)), also leads to singular
current sheets even if the upper boundary remains unperturbed.

The current sheet formation in a perturbed Harris sheet was confirmed by
a time-dependent treatment of the perturbation (Hahm and Kulsrud, 1985).
It was shown that an Alfvén wave steepens at z = 0 because of the singularity
in the Alfvén velocity. Nonlinear numerical computations have confirmed
and extended these findings (Voge et al., 1994; Rastätter et al., 1994).

Example

A simple explicit example may illustrate the properties outlined above
(Schindler and Birn, 1993). Consider a linear perturbation a(x, z) of the
flux function A0 of a Harris sheet

A(x, z) = A0(z) + a(x, z) (8.5)

with A0(z) = ln(cosh z). Inserting (8.5) into the Grad–Shafranov equation
(5.78), we find after linearization and using dimensionless variables

−∆a =
d2p0(A0)

dA2
0

a +
dp1(A0)

dA0
, (8.6)



138 Quasi-static evolution and thin current sheets

where the last term is due to a possible perturbation of the pressure function
p(A), which, however, is set to zero. This choice can be justified by the fact
that all field lines intersect the vertical boundaries. They are assumed to
connect to some region where the perturbation becomes negligible. There,
the pressure p(A) coincides with the unperturbed pressure p0(A). Since p is
constant on field lines, p(A) equals p0(A) everywhere. Thus, instead of de-
termining the pressure from entropy conservation, we have simply used the
notion of a pressure reservoir (for each flux tube separately). A correspond-
ing argument can be applied to density.

Inserting the expression for the pressure function of the Harris sheet
(5.120) into (8.6), we obtain (in dimensionless form)

∆a(x, z) +
2

cosh2 z
a(x, z) = 0 . (8.7)

This equation can be solved in closed form using separation of variables
and a Fourier representation of the x-dependence, incorporating the lateral
boundary conditions,

a(x, s) =
∞∑

n=1

tn sin(kn x), kn = πn/l. (8.8)

One finds

a(x, z) =
∞∑

n=1

tn
vn(z)
vn(s)

sin(knx) . (8.9)

The function vn(z) is different for the two cases,

case 1:

vn(z) = sinh(knz) tanh(z) − kn cosh(knz) , (8.10)

case 2:

vn(z) = cosh(kn |z|) tanh(|z|) − kn sinh(kn |z|) . (8.11)

The expression (8.9) with (8.10) and (8.11) have been used to compute
the perturbed solutions of Fig. 8.1, where t1 was set to 0.2, all other tn
vanishing.

The surface current density of the singular current sheet arising in case 2
is given by the jump of Bx on the axis (Section 5.1.6)

K(x) = −2
∞∑

n=1

tn
vn(s)

(
1 − kn

2
)
sin(knx) . (8.12)
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Note that the response a(x, z) to a given boundary condition represented
by the coefficients tn may differ strongly, depending on parameter values.
In the neighbourhood of a zero of one of the denominators vn(s) in (8.9)
the perturbation formally becomes arbitrarily large and linear theory no
longer gives satisfactory answers. We will return to this property later in
connection with bifurcation theory. To emphasize this aspect the parame-
ters of the case plotted in Fig. 8.1 are chosen such that the response to the
boundary perturbation is rather strong. The wave number is π/3, the sin-
gularity formally would occur at wave number 0.92 for case 1 and 1.00 for
case 2. The surface current density (8.12) remains bounded as the singular-
ity is approached. Similar expressions have been derived for the case, where
inhomogeneous Dirichlet conditions hold at the lateral boundaries.

We add the solution of (8.7) for the ideal MHD case, where Dirichlet
conditions are prescribed at one of the lateral boundaries, say at x = 0, the
other boundary moved to infinity. Then the boundary conditions are

case 3
upper boundary: a(x, s) = 0,
side boundaries: a(0, z) =

∑∞
n=1 rnwn(z), a(l, z) → 0 for l → ∞,

x-axis: a(x, 0) = 0 (from ideal form of Ohm’s law),

where

wn(z) = tanh z cos(κnz) + κn sin(κnz). (8.13)

The solution is

a(x, z) =
∞∑

n=1

rnwn(z) e−κnx, (8.14)

where the numbers κn are the solutions of

tanh s + κ tan(κs) = 0. (8.15)

As before, a singular sheet current forms on the x-axis with density

K(x) = −2
∞∑

n=1

rn(1 + κn
2) e−κnx. (8.16)

There is no singularity in the expansion in this case.
One-dimensional adiabatic compression of a Harris sheet can also lead to

thin or singular current sheets. Examples include cases with plasma losses
or with expansion along the direction of the magnetic field. (For details see
www.tp4.rub.de/∼ks/tc.pdf.)
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8.3 MHD tail model with flux transfer

As we have seen in the previous section, exploring the perturbed Harris sheet
is a rather straightforward matter with clear-cut results on the formation of
TCS. However, if the starting configuration is two- or three-dimensional and
if the evolution is allowed to be nonlinear, the situation is far more compli-
cated. Particularly, this applies to magnetic fields that, although becoming
weak locally, do not go to zero. Then, as we will see, the resulting struc-
ture and, in particular, current sheet formation crucially depend on details
of boundary and initial conditions. Notably, there exist regimes where the
solution remains smooth with no indication of current sheet formation. In
this section we illustrate these aspects for a magnetospheric tail model.

8.3.1 Model and procedure

Here we take a look at quasi-static sequences with translational invariance
with respect to y.

We begin with a remark on the choice of the electromagnetic gauge. As in
the static case, we will use a gauge where the electromagnetic potentials are
independent of y, however, here we allow for time-dependence. In contrast to
the static case, the time-dependence makes this gauge generally applicable.
The y-component of the electric field does no longer have to be excluded,
because it is generated by the time-dependence of the y-component of the
vector potential, which coincides with the flux function A. Note that there
is still the freedom of adding an arbitrary function of time to A.

The model consists of a sequence of states, each of which is an asymp-
totic magnetohydrostatic solution for small aspect ratios as derived in Sec-
tion 5.4.1. Here is a brief outline of the model, which is described in detail
elsewhere (Schindler and Birn, 1982).

To lowest order, and assuming symmetry with respect to z = 0, the flux
function A(x, z, t) is implicitly given by

z =
∫ A

Â(x,t)

dA′√
2µ0(p̂(x, t) − p(A′, t))

, (8.17)

where Â(x, t) is determined by p̂(x, t) and p(A, t) through the equation

p(Â(x, t), t) = p̂(x, t). (8.18)

The dependence on x is weak in accordance with the assumption of a small
aspect ratio.
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Formally, (8.17) can be regarded a solution of local pressure balance

1
2µ0

(
∂A(x, z, t)

∂z

)2

+ p(A, t) = p̂(x, t), (8.19)

where p(A, t) and p̂(x, t) are arbitrary positive functions, which can be used
to accommodate additional constraints. A given value of A, at time t, gen-
erates a magnetic field line in the x-interval where p̂(x, t) ≥ p(A, t). The
pressure balance results from the Grad–Shafranov equation (5.78) to lowest
order in the aspect ratio.

Considering continuous fields, symmetry requires that ∂A/∂z vanishes
for z = 0. In view of (8.18) and (8.19) this boundary condition may be
expressed as A(x, 0, t) = Â(x, t).

One possible way of taking into account a boundary condition at the
magnetopause is to specify the function p̂(x, t). This is because, typically,
magnetic flux transfer to the magnetotail is associated with an increase of the
magnetic field strength Bl in the tail lobes. By pressure balance (8.19), Bl is
related to p̂. Thus, specifying Bl(x, t) determines p̂(x, t) = Bl(x, t)2/(2µ0), if
the lobe pressure is ignored as being small. This reasoning suggests choosing
p̂(x, t) as an appropriate external signature driving the temporal evolution.

Fig. 8.2 shows a typical flux tube in the region considered (x ≥ 0). In view
of the strong convergence of field lines on the left the flux tube is treated as
closed at x = 0.

Under the present conditions the ideal MHD model implies that mass
conservation holds for each flux tube separately. This follows by applying
(8.2) to an arbitrary flux tube of the type shown in Fig. 8.2. One might
wonder how this is possible, as the velocity u is to be identified with the
velocity of the bounding magnetic field lines, which, however, is not defined
unambiguously. Here the ambiguity stems from the freedom of adding an

Fig. 8.2 Magnetic flux tube A of width dA in two dimensions. For conservation
aspects the flux tube is considered to be closed at x = 0.
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arbitrary function of time to a particular choice of the flux function. To
show that mass conservation is not subject to this ambiguity (i.e., gauge
invariant) let us replace A(x, z) by A(x, z) + g(t), where g(t) is arbitrary. A
magnetic field line is then identified by a fixed value of A(x, z) + g(t) and
the field line velocity u satisfies the equation

∂A

∂t
+

∂g

∂t
+ u · ∇A = 0 . (8.20)

A corresponding equation for the plasma velocity v follows from the
y-component of Ohm’s law (4.5),

∂A

∂t
+

∂g

∂t
+ v · ∇A = 0 . (8.21)

Ignoring the end sections of the flux tube boundary on the z-axis, the normal
is n = ∇A/|∇A| such that by (8.20) and (8.21) one finds (v − u) · n = 0,
independent of the choice of g(t). Thus, mass conservation holds for each
flux tube separately, i.e.,

d
dt

∫
A

ρ
ds

|∇A| = 0 , (8.22)

where the integral is a line integral along the field line section lying in the
region x ≥ 0. The denominator |∇A| is the Jacobian of the coordinate
transformation (x, z) → (A, s), where s is the arclength on field lines.

Correspondingly, an adiabatic law (4.6) holds for each flux tube also. This
follows by combining (4.6) with (4.3) to give the adiabatic law in conserva-
tion form

∂

∂t

(
p

ργ−1

)
+ ∇ ·

(
p

ργ−1
v

)
= 0 , (8.23)

which can be handled in the same way as mass conservation. One finds

d
dt

∫
A

p

ργ−1

ds

|∇A| = 0 . (8.24)

A useful simplification is available if density is constant on field lines
such that ρ = ρ(A, t). Since pressure is constant on field lines in each
magnetohydrostatic snapshot, the constant-ρ assumption can be justified
by the notion of high thermal conductance along field lines, which keeps
parallel temperature gradients small. Then (8.22) and (8.24) simplify as

d
dt

(ρV ) = 0,
d
dt

(
pV

ργ−1

)
= 0 , (8.25)
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where V is the (differential) flux tube volume

V =
∫

A

ds

|∇A| . (8.26)

The volume of a flux tube of width dA is V dA. (For simplicity, we keep the
notion of a ‘volume’, although in the present two-dimensional geometry we
are dealing with an area.)

Eliminating ρ between the two equations of (8.25) one finds the familiar
thermodynamic adiabatic law, valid for each flux tube A,

d
dt

(pV γ) = 0 . (8.27)

The adiabatic law (8.27) determines the pressure function p(A, t) for a
given driver p̂(x, t). To show this, we first write (8.26) in the form

V (A, t) =
∫ ξ(A,t)

0

dx

|Bx|

=
∫ ξ(A,t)

0

dx√
2µ0(p̂(x, t) − p(A, t))

. (8.28)

Here ξ(A, t) is the x-coordinate of the point (vertex) where at time t the field
line A intersects the x-axis (see Fig. 8.2), and pressure balance (8.19) was
used to replace Bx. Understanding V as a function of p and t and changing
the integration variable from x to p̂, one finds

V (p, t) =
1√
2µ0

∫ p̂(0,t)

p

dp̂

f(p̂, t)
√

p̂ − p
, (8.29)

where −∂p̂/∂x is expressed as f(p̂, t).
By time-integrating (8.27) and using (8.29) one obtains

p1/γ

∫ p̂(0,t)

p

dp̂

f(p̂, t)
√

p̂ − p
= M(A) , (8.30)

where M(A) is determined by the initial state. Solving (8.30) for p gives the
pressure function p(A, t).
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Inserting p(A, t) together with the specified driver p̂(x, t) into (8.17) and
solving that equation for A completes the construction of the quasi-static
sequence A(x, z, t) as a result of varying lobe field strength. The latter enters
(8.30) through the function f(p̂, t).

8.3.2 Selfsimilar solutions

Here we look at the time-evolution of tail solutions A(x, z, t) satisfying (8.17)
that can be understood simply by selfsimilar stretching or compression of an
initial configuration A0(x, z). Accordingly, the flux function has the form

A(x, z, t) = A0(x̃, z̃), x̃ = Λ(t)x, z̃ = Γ(t)z, (8.31)

with Λ(0) = Γ(0) = 1. Further, each physical quantity Q factorizes as

Q(x, z, t) = Q1(t)Q0(x̃, z̃). (8.32)

The first task is to consider the variables describing the quasi-static snap-
shots (O(1) variables in the δ-expansion, see (8.3)) and to determine the
corresponding functions Q1 in terms of the driver function κ(t) = p̂1(t).
The second step addresses quantities of order δ, particularly v and E.

With (8.31) and (8.32) pressure balance (8.19) takes the form

1
2µ0

Γ(t)2
(

∂A0

∂z̃

)2

+ p1(t) p0(A) = p̂1(t) p̂0(x̃) . (8.33)

In view of the similarity condition (8.31), the time-dependence must drop
out of (8.33), which gives

p1 = κ, Γ = κ1/2. (8.34)

The flux tube volume (8.28) factorizes as

V (A, t) =
∫ ξ(A,t)

0

dx

|Bx|

=
1

ΛΓ

∫ ξ̃(A)

0

∣∣∣∣∂A0

∂z̃

∣∣∣∣−1

dx̃

(8.35)

where ξ̃ = Λξ. The second line of (8.35) yields

V1 =
1

ΛΓ
. (8.36)

The adiabatic law (8.27) gives(
p1(t)p0(A)

)1/γ
V1(t)V0(A) = M(A) (8.37)
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which implies

p
1/γ
1 V1 = 1. (8.38)

The time factor of density is obtained from (8.22),

ρ1 =
1
V1

. (8.39)

From (8.31), (8.34), (8.36), (8.38) and (8.39) one finds that for all snapshot
quantities Q the time factors are power laws of the form Q1(t) = κ(t)mQ .
The powers mQ are listed in Table 8.1.

Quantities of order δ depend on the time rate of change represented by
the logarithmic derivative κ̇/κ, where κ̇ = dκ/dt,

vx = −R
κ̇

κ
x (8.40)

vz = −1
2

κ̇

κ
z (8.41)

Ey = − κ̇

κ

(
R x̃

∂A0

∂x̃
+

z̃

2
∂A0

∂z̃

)
. (8.42)

The present selfsimilar solutions require boundary conditions compatible
with the assumed similarity conditions. This is a substantial constraint on
possible modes of evolution of the tail configuration.

Other than cases discussed in later sections, selfsimilar evolution excludes
a thin current sheet forming inside a main current sheet that does not con-
tain a thin sheet initially. As any snapshot quantity, the current density j

remains similar to the initial current density. The corresponding time factor
κ (Table 8.1) is simply the result of lobe field strength scaling as κ1/2 and
characteristic length Lz = 1/Γ as κ−1/2.

The electric field shows substantial spatial variation. For γ = 5/3 one finds
R = 1/10, such that in typical cases the second term in (8.42) dominates.
Then Ey shows an approximate linear variation with z in lobe regions where
∂A0/∂z̃ is nearly constant.

Table 8.1 The powers mQ that control the time-dependence of the
snapshot quantities Q, R = 1/γ − 1/2.

Q A p j Bx Bz Λ Γ ρ V

mQ 0 1 1 1/2 R R 1/2 1/γ −1/γ
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8.3.3 Steady state and pressure crisis

The theory of quasi-static evolution also applies to steady states with plasma
flow velocities sufficiently small for the δ-scaling (see (8.3) and (8.4)) to be
applicable. A non-vanishing component Ey can be included by keeping A

time-dependent, where the assumption of a steady state electromagnetic
field reduces A(x, z, t) to the form

A(x, z, t) = As(x, z) − Eyt , (8.43)

As(x, z) being the flux function of a static magnetic field configuration and
Ey a constant of order δ. All snapshot states are identical in their physical
properties.

Regarding the adiabatic law (8.30), two steady state properties lead to
modifications. First, the right side M becomes independent of A because,
unlike in the time-dependent case, all flux tubes experience the same time
history and therefore contain the same entropy. Let the constant value
of M be M0. Second, it is no longer possible to assign a finite pressure
to a flux tube with a vanishing volume. The adiabatic law p1/γV = M0

implies that p diverges as V → 0 such that p̂(0, t) has to be set to infinity.
Although that singularity is unphysical, the fact that p becomes large as
the volume becomes small is entirely realistic. So we simply exclude the
immediate neighbourhood of the singularity from the discussion to have a
realistic description.

Taking both modifications into account, the adiabatic law (8.30) takes the
form

p1/γ

∫ ∞

p

dp̂

f(p̂)
√

p̂ − p
= M0 . (8.44)

The equation (8.44) is to be read as a constraint on the function p̂(x).
There is no longer any freedom left for specifying p̂(x) by a boundary condi-
tion. In fact, (8.44) is Abel’s integral equation for the function 1/f(p̂). The
solution is given by (Whittaker and Watson, 1973)

1
f(p̂)

= −M0

π

d
dp̂

∫ ∞

p̂

dp

p1/γ
√

p − p̂
. (8.45)

Noting that f = −dp̂/dx, this equation is readily integrated with respect to
x, giving
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x =
M0

π

∫ ∞

p̂

dp

p1/γ
√

p − p̂

=
M0

π
p̂1/2−1/γ

∫ ∞

1

dζ

ζ1/γ
√

ζ − 1
(8.46)

= Cp̂−R, (8.47)

where C is a constant and R = 1/γ−1/2. The additive integration constant
was set to zero such that the pressure singularity is placed at x = 0. We fix
C by choosing p̂ = pL at x = L. Inverting (8.47) then gives

p̂

pL
=
(x

L

)−1/R
. (8.48)

Fig. 8.3 shows Y = p̂/pL versus X = x/L for several values of γ. A
model curve, which is regarded as a reasonable fit to the observed pressure
decay in the Earth’s magnetotail, is shown also. The pressure singularity
is excluded by using the interval (0.25, 1) as a representative region of the
tail. Evidently, the steady state curves must be regarded as unrealistic.

Fig. 8.3 Illustration of the pressure crisis. The dimensionless pressure Y = p̂/pL is
plotted as a function of X = x/L under steady state conditions for γ = 1, 4/3, 5/3.
The solid curve shows the function Y = 1/X, which corresponds to a realistic
snapshot model of the Earth’s magnetotail.
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In particular, the classical ideal gas value γ = 5/3 is off by a factor greater
than 105.

This property has been called the pressure inconsistency, pressure balance
inconsistency or pressure crisis. It was first found by Erickson and Wolf
(1980) using a somewhat different approach. The present picture, based
on Schindler and Birn (1982), is fully self-consistent (in the limit of small
aspect ratio).

The physical reason of the pressure crisis is simply the large change in
the flux tube volume that the convecting plasma experiences. The pres-
sure increases accordingly by a large factor. However, these large pressures
are inconsistent with any realistic values. Pressure balance would require
an equally large total (magnetic plus kinetic) pressure applied at the tail
boundary, which is not available.

The pressure crisis has become an important issue of magnetospheric
physics. The task is to find out in what way nature avoids this crisis. In
principle, there are several possibilities. The tail could respond to flux trans-
fer in a time-dependent fashion. Note that there is no indication of a crisis
in the time-varying model of Section 8.3. Another possibility is a steady
state with strong (e.g., turbulent) cooling. The model profile in Fig. 8.3
would correspond to a steady state with γ = 2/3, indicating loss of energy
during compression. The crisis could also be an indication of a process that
reduces the flux tube volume (Erickson and Wolf, 1980). Also, in principle,
three-dimensional and/or kinetic effects (Kivelson and Spence, 1988) might
also play an important role. We will return to this problem area in Part IV.

8.3.4 Role of flux tube volume for TCS formation

Consider the two-dimensional quasi-static evolution of Section 8.3.1 with
mass and entropy conservation and density constant on field lines. As we
have seen, one can choose parameters such that the configuration remains
smooth (Section 8.3.2), without showing any indication of a crisis nor of
the formation of thin sheets. Therefore, it seems appropriate to identify
conditions under which thin current sheets do form.

For that purpose, we first remind ourselves that current density is constant
on field lines and related to the pressure function p(A, t) by

j(A, t) =
∂p(A, t)

∂A
. (8.49)

Thus, a steep gradient of the pressure function results in the formation of a
thin current sheet.
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An alternative version of that condition is obtained by expressing the
pressure function by the flux tube volume V (A, t), using the adiabatic law
(8.27) in the form

p(A, t) = p(A, 0)
(

V (A, 0)
V (A, t)

)γ

, (8.50)

such that (8.49) takes the form

j(A, t) = j(A, 0)
(

V (A, 0)
V (A, t)

)γ

+ p(A, 0)
∂

∂A

[(
V (A, 0)
V (A, t)

)γ ]
. (8.51)

Thus, a thin current sheet forms if one of the two terms in (8.51) or both
become large. Either the flux tube volume itself or its gradient (as a function
of A), or both, must increase strongly.

Although the discussion of the flux tube volume gives insight into the
physical mechanism at work, it does not indicate whether or not a given
external driving force causes a thin current sheet. To answer that question
one has to relate the current density to the driver function p̂. The following
example illustrates how this is possible.

Example

The magnetospheric model described in Section 8.3.1 is well suited to con-
struct an example of the formation of thin current sheets based on local
properties of the flux tube volume. In fact, the inner magnetosphere has
small flux tubes and the tail flux tubes are large with a rather rapid transi-
tion from one region to the other. In the present example, the rapid decrease
of the flux tube volume toward the Earth is idealized by setting V = 0 at
the earthward tail boundary, which is located at x = 0.

We use the gauge freedom (Section 8.3.1) to set A(0, 0, t) = 0, such that
Â(0, t) = 0 and therefore p(0, t) = p̂(0, t) (see (8.18)).

Anticipating that the near-Earth region is particularly sensitive to cur-
rent sheet formation, we evaluate the expression (8.29) for V (A, t) under
the condition that p(A, t) differs from p̂(0, t) only slightly. Then, in the in-
tegral in (8.29) the square root in the denominator varies much faster than
f(p̂). Thus, taking f(p̂) in front of the integral, we find the asymptotic
expression

V (A, t) = −
√

2
µ0

√
p̂(0, t) − p(A, t)

p̂ ′(0, t)
, (8.52)
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where the prime symbol denotes differentiation with respect to x. The
expression (8.52) gives

V (A, 0)
V (A, t)

=

√
p̂(0, 0) − p(A, 0)
p̂(0, t) − p(A, t)

p̂ ′(0, t)
p̂ ′(0, 0)

=

√
j(0, 0)
j(0, t)

p̂ ′(0, t)
p̂ ′(0, 0)

,

(8.53)

where the second line is the result of taking the limit A → 0 (making use
of l’Hôpital’s rule) and using (8.49). The adiabatic law (8.50) then gives
approximately

j(0, t)
j(0, 0)

=
[

p̂(0, t)
p̂(0, 0)

]−2/γ [ p̂ ′(0, t)
p̂ ′(0, 0)

]2
. (8.54)

For realistic values of γ, such as γ = 5/3, the second factor in (8.54) dom-
inates. Thus, we see that thin current sheet formation is favoured by large
gradients of the pressure function p̂(x).

The present model was first studied by Wiegelmann and Schindler (1995)
for the special choice

p̂ = p0
τ2

1 + τ2x/Lx
, p(A, 0) = p0 e−2A/Ac , γ = 5/3, (8.55)

where τ = 1 + t/tc. The lobe field strength Bl at x = 0 increases with time
linearly. Note that (8.55) significantly breaks selfsimilarity (Section 8.3.2).
It was found that j(0, t) rises with time as τ28/5, which also follows from the
general expression (8.54), specialized for (8.55).

It is of interest to consider this case also away from A = 0. Solving (8.50)
for p(A, t) by a power expansion with respect to a = A/Ac, valid up to order
a2, one finds

p(A, t) =
[
τ2 − 2 τ28/5 a +

(
88
15 τ46/5 − 58

15τ28/5
)

a2
]
p0 , (8.56)

giving current density and flux tube volume as

j(A, t) =
[
−2 τ28/5 +

(
176
15 τ46/5 − 116

15 τ28/5
)

a
] p0

Ac
(8.57)

V (A, t) =
[
2 τ−6/5a1/2 +

(
29
15τ−6/5 + 12

5 τ12/5
)

a3/2
] L
√

µ0p0
. (8.58)
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From (8.58) we can determine which of the terms in (8.51) is leading. One
finds

j(A, 0)
(

V (A, 0)
V (A, t)

)γ

= −2 τ2 p0

Ac

p(A, 0)
∂

∂A

[(
V (A, 0)
V (A, t)

)γ ]
=
(
2 τ2 − 2 τ28/5

) p0

Ac
,

(8.59)

which indicates that it is the gradient of the flux tube volume rather than
the flux tube volume itself that gives rise to the strong increase of the current
density.

For a prescribed value of Bl the z-integrated current is fixed. Therefore,
the large current density near the origin can only occur in a thin sheet. A
rough estimate for the sheet thickness is d = 2|Bl/(µ0j)|ν, where ν is the
fraction of the total current flowing in the thin current sheet. Since ν ≤ 1
we get at x = 0

d ≤ 2
|j(0, t)|

√
2p̂(0, t)

µ0
= L0τ

−23/5, (8.60)

where L0 is the thickness of the initial sheet at τ = 1. Thus, the sheet shows
pronounced thinning as the flux transfer proceeds.

8.4 TCS from boundary deformation

So far current sheet formation was discussed as a result of magnetic flux
transfer, which was represented by the total pressure p̂(x, t). Here, we look
at boundary deformation by external forces as an alternative driver.

8.4.1 The model

Again, the model is based on asymptotic tail theory as described in Sec-
tion 5.4.1. The magnetic flux function A(x, z) is given by (8.17). The con-
struction of the temporal evolution, which is represented by the functions
p(A, t) and p̂(x, t), differs from that of Section 8.3.1 because a different
boundary condition is applied (Birn and Schindler, 2002). The boundary
condition prescribes the shape of a bounding magnetic field line.

For magnetohydrostatic equilibria, which here we are dealing with for
fixed t, the corresponding theory was described in Section 5.4.2. There, it
was shown that the boundary condition z = a(x) for the shape of field line
with pressure pb determines the function p(A). The procedure actually uses
the boundary condition in the form of a prescribed function a(p̂). As p̂(x)
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was also prescribed and assumed to be monotonic, the step from a(x) to
a(p̂) was trivial.

Here, the situation is different in that p̂ is not free to be chosen but will be
determined from entropy conservation. Therefore, the boundary condition
is directly formulated as prescribing the function a(p̂, t). The shape of the
bounding field line in the form a(x, t) is available after finding p̂(x, t).

In this way one can compute p(A, t) using the procedure of Section 5.4.2.
This is done by writing the solution (8.17) for the bounding field line in the
form (Birn and Schindler, 2002)

a(p̂, t) =
∫ p̂

pb

(
−∂A

∂p

)
dp√

2µ0(p̂ − p)
(8.61)

where pb is the pressure on the boundary. Abel-inversion (Whittaker and
Watson, 1973) of (8.61) gives ∂p/∂A and integration with respect to p gives

A(p, t) = −
√

2µ0

π

∫ p

pb

a(p̂, t)
dp̂√
p − p̂

; (8.62)

solving (8.62) for p gives the pressure function p(A, t).
It remains to determine p̂(x, t) from entropy conservation (8.27), which

we write as

p(A, t)V (A, t)γ = M(A) , (8.63)

where M(A) is determined by the initial configuration.
Using that p(A, t) is known, and assuming monotonic dependence on A

(see the discussion below), one conveniently replaces A by p as the running
variable in (8.63). Solving for V one then finds V as a function of p and t,

V (p, t) =
[
M(A(p, t))

p

]1/γ

. (8.64)

The flux tube volume in the form of (8.29) is then understood as an equation
for f(p̂, t). Again using Abel-inversion, one finds

1
f(p̂, t)

= −
√

2µ0

π

∂

∂p̂

∫ p̂(0,t)

p̂
V (p, t)

dp√
p − p̂

. (8.65)

As f = −∂p̂/∂x (see Section 8.3.1), (8.65) can be integrated with respect
to x,

x(p̂) =
√

2µ0

π

∫ p̂(0,t)

p̂
V (p, t)

dp√
p − p̂

. (8.66)



8.4 TCS from boundary deformation 153

Solving (8.66) for p̂ gives p̂(x, t). Having found p(A, t) and p̂(x, t), the solu-
tion for the flux function A(x, z, t) can now be obtained from (8.17).

The present procedure requires that p(A, t) and p̂(x, t) are monotonic
functions of A and x, respectively. This property is equivalent to the absence
of neutral points and thus ensures the conservation of magnetic topology
(Birn and Schindler, 2002). It is significant that a(p̂, t) is not restricted
to being monotonic in p̂, so that non-monotonic deformations a(x, t) are
admitted.

Note that the current density j(A, t) = ∂p(A, t)/∂t is available already
from the first step, i.e., from (8.62). That result already indicates whether
or not a thin current sheet forms, manifested by a steep gradient of p(A).
Surprisingly, it turns out that it is not very difficult to find cases where at
some stage during the temporal evolution an infinite slope occurs, corre-
sponding to a singularity of the current density. Here is an example.

8.4.2 An example with loss of equilibrium

Following Birn and Schindler (2002), an initial state is chosen with the
pressure function

p(A, 0) = pb exp(−2(A − Ab)/Ac) , (8.67)

where the subscript b refers to the boundary. This choice corresponds to
the boundary profile

a(p̂, 0) =
Ac√
2µ0pb

√
p̂

pb
arccosh

√
p̂

pb
. (8.68)

A deformation is applied to this profile by choosing the boundary condition

a(p̂) =
Ac√
2µ0pb

√
p̂

pb
arccosh

√
p̂

pb

[
1 − a1

1 + ((p̂ − pm)/∆p)2

]
. (8.69)

The term in the square brackets adds a local indentation of amplitude a1,
location pm and width ∆p. These parameters can be arbitrary functions of
time.

After obtaining p(A, t) from (8.62) one finds that, typically, for fixed pm

and ∆p and a1 increasing with time, p(A, t) remains to be a monotonic
function of A only for amplitudes a1 below a critical value. At the critical
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amplitude the slope becomes infinite at some A-value, such that the current
density assumes a singularity (Fig. 8.4).

For larger amplitudes the pressure function is no longer monotonic, in-
dicating the presence of neutral points. Therefore, the present topology-
conserving sequence that exists for subcritical amplitudes is terminated
when the critical amplitude is reached. In that sense the singularity marks
loss of equilibrium.

The next step is to compute M(A) from the initial state, choosing
p̂(x, 0) = p0/(1 + x/L). Then p̂(x, t) follows from (8.66). The magnetic
field lines are found from (8.17). Fig. 8.5 shows the field lines for the three
cases of Fig. 8.4. The effect of the thin current sheet is clearly seen in
panels b and c. The indentations that cause the current singularity remain
moderate (panels b and c of Fig. 8.5). The magnetic field remains bounded
although the current density diverges.

Loss of equilibrium has been confirmed by more extended investigations
(Birn and Schindler, 2002; Birn et al., 2003) as well as by a 3D generalization
(Birn et al., 2004).

Fig. 8.4 The pressure function p(A) obtained from the boundary condition (8.69)
for the initial state (a1 = 0) and for two cases (pm = 0.7 and pm = 0.8) at
critical amplitudes; the width is fixed at ∆p = 0.1, dimensionless variables are
used. (Reproduced from Birn and Schindler (2002) by permission of the American
Geophysical Union.)
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Fig. 8.5 Magnetic field lines corresponding to the three cases of Fig. 8.4: case (a)
with a1 = 0; cases (b) and (c) have critical amplitudes and pm = 0.8 and pm = 0.7,
respectively. (Reproduced from Birn and Schindler (2002) by permission of the
American Geophysical Union.)
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8.5 Vlasov approach to quasi-static evolution

So far we have discussed slow evolution and the formation of thin current
sheets only from the point of view of fluid theory. However, fluid theories
are confined to the earlier stages of the sheet formation process, when the
sheet thickness is still larger than the ion scales (see Section 3.5). Smaller
thicknesses require a more rigorous treatment. For collisionless space plas-
mas this means that an appropriate description must be based on a particle
picture, such as Vlasov theory.

For the description of snapshots we use the equilibrium results of Sec-
tion 6.2, valid for systems with a translational invariance. To conform with
the choice of coordinates of Section 8.4.1 we change the ignorable coordinate
from z to y.

Thus, we consider two-dimensional snapshots with distribution functions
of the form

f = F (H, Py, K) , (8.70)

where K is a possible further constant of motion or adiabatic invariant, for
instance the magnetic moment µ (see Section 3.1).

A slow evolution, described by a sequence of equilibrium states, would
then have the distribution function

f = F (H, Py, K, t) (8.71)

with a weak dependence on time t. (8.71) can be understood as a sequence
of equilibria with t playing the role of the sequence parameter.

The functions (8.71) cannot be chosen freely, except for an initial distri-
bution function f0 = F0(H, Py, K) = F (H, Py, K, 0).

The further development (t > 0) requires an additional constraint. Often,
such a constraint is provided by an adiabatic invariant, valid on the long
time scale, on which H undergoes appreciable changes. Let Ω be such an
invariant and let it be of the form

Ω = Ω(H, Py, K, t) . (8.72)

(Details of how to derive such an invariant are provided later.) Then, the
appropriate distribution function is given by

f = G(Ω, Py, K) , (8.73)

where we have assumed that K is invariant on the long time scale. Im-
portantly, the distribution function (8.73) is expressed only by long-term
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constants of the motion. This makes (8.73) a valid Vlasov distribution
function, albeit in an approximate sense. The function G is determined
by F0.

We illustrate this procedure for the case of chaotic motion.

8.5.1 Adiabatic sequences for chaotic particle motion

As discussed in Section 6.4, the particle motion in sufficiently thin sheets
may become chaotic. Here we deal with the slow evolution in that regime.
More precisely, we assume that the particles cover the hypersurface defined
by their values of H and Py in the sense of ergodic motion. Then, the
equilibrium distribution function has the form F (H, Py) and slow evolution
is described by a sequence of such states. With the additional assumption
of quasi-neutrality, the equilibrium model of Section 6.2.2 applies to the
individual snapshots. In addition, let us assume that the magnetic field
strength is bounded away from zero.

It should be noted that distribution functions of the form F (H, Py) are not
exclusively the consequence of chaotic particle motion (Section 6.4) but, con-
ceivably, may also arise from the presence of a weak fluctuation field (Nötzel
et al., 1985). Although the following explicitly addresses chaotic motion,
the results can be expected to apply to cases with suitable fluctuation fields
also.

Outline of the procedure

The main aim is to determine the snapshot state for an arbitrary time t. The
present procedure is largely analogous to the MHD approach by Birn and
Schindler (2002) as described in Section 8.4. We summarize that approach
by breaking it up in a sequence of steps. This is useful because it will turn
out that only one of these steps has to be modified in the Vlasov picture.
Since time is fixed, t is suppressed in the arguments. We distinguish the
following steps of the fluid theory.

Step 1: A boundary perturbation is chosen in the form a(p̂). This leads
to the pressure function p(A):

a(p̂) → A(p) → p(A). (8.74)

Step 2: Using entropy conservation (pV 5/3 constant), one finds the differ-
ential flux tube volume:

p(A) → V (p). (8.75)
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Step 3: The definition of V then gives the pressure p̂:

V (p) → x(p̂) → p̂(x). (8.76)

Step 4: The magnetic flux function A(x, z) follows as(
p(A), p̂(x)

)
→ A(x, z). (8.77)

Step 5: The current density is

j(A) =
dp(A)
dA

, j(x, z) = j(A(x, z)) . (8.78)

The present kinetic approach allows us to proceed in a similar way. All
steps, with the exception of step 2, make use only of the asymptotic solu-
tion of the Grad–Shafranov equation for small aspect ratios (Section 5.4.1)
and of the expression for the flux tube volume. As shown in Section 6.2,
the present assumptions lead to a Grad–Shafranov equation, too. The un-
derlying property is that distribution functions of the form F (H, Py) give a
pressure tensor that is isotropic in the plane perpendicular to the direction
of translational invariance, which allows us to define a pressure function
p(A). Thus, steps 1, 3, 4, 5 can be taken over directly from the fluid theory.

In step 2 the fluid invariant, the entropy, has to be replaced by a suit-
able adiabatic invariant of the particle motion. Also, the electric potential
appears as an additional unknown, which has to be determined, too.

The invariant

To establish the (kinetic) invariant for the long-term evolution, we first
have to discuss the topological structure of the hypersurfaces of constant
H (energy surfaces) in 4-dimensional phase space spanned by (x, z, Px, Pz).

The Hamiltonian has the form (see (3.14))

H =
1

2m
(P 2

x + P 2
z ) + ψ(A, Py, t) (8.79)

with

ψ(A, Py, t) =
1

2m
(Py − qA)2 + qφ(A, t) , (8.80)

where quasi-neutrality ensures that φ depends on x, z only through A. Note,
however, that the A-dependence of ψ is not available explicitly before φ(A, t)
is known. When dealing with φ directly, one should understand ψ as a
function of A, φ, Py, t.

For illustration, we begin with the simple case where the electric potential
φ vanishes. In that case the energy surfaces are singly connected and nested
in the sense that a given surface with H = H0 encloses all surfaces with
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H < H0. These properties can be visualized by noticing that for φ = 0 and
a fixed value of Py the Hamiltonian depends on A and P̃ =

√
P 2

x + P 2
z only.

In the P̃ , A-plane the level curves of H are nested ellipses with centres at
P̃ = 0, A = Py/q.

Under such conditions and with ergodic particle motion covering the entire
H-surface, the volume of the domain enclosed by a particle’s energy surface
is an adiabatic invariant of that particle. This is well known in statistical
mechanics, where the entropy of a microcanonical ensemble is derived from
the invariance of phase space volume. A derivation matching the present
circumstances is given in www.tp4.rub.de/∼ks/tb.pdf. There, cases of non-
vanishing φ are included. It turns out that the above arguments still apply,
as long as (for fixed Py and t) the function ψ(A) has a single minimum ψmin

and varies monotonically with A elsewhere (Fig. 8.6). Then, the energy
surfaces are still singly connected and nested in qualitatively the same way
as in the simpler case where φ vanishes. Typically, this means that φ must
not get too large. In any given application the assumption regarding ψ has
to be checked explicitly.

In the present 4-dimensional phase space the invariant Ω is given by

Ω(H, Py, t) =
∫

S(H − H(x, z, Px, Pz, Py, t)) dx dz dPx dPz , (8.81)

where S denotes the unit-step function.
After transforming to polar coordinates P̃ , α in momentum subspace

spanned by (Px, Pz), then using η = P̃ 2/2m instead of P̃ as integration
variable, and transforming x, z to A, s, where s is the arclength on field
lines, we carry out the α and s integrations and obtain

Ω(H, Py, t) = 2πm

∫
S(H − ψ(A, Py, t) − η)V (A, t) dη dA , (8.82)

where

V (A, t) =
∫

A

ds

B(A, s, t)
(8.83)

is the differential flux tube volume, the integration being carried out along
the entire field line with flux label A. Here we assume that field lines have
finite length, as is typical for regions with closed magnetic flux.

For fixed Py and t the step-function in (8.82) limits the integration to the
region bounded by the curve ψ(A) and the line η = H in the A, η-plane
(Fig. 8.6). Thus we find (after carrying out the η-integration)

Ω(H, Py, t) = 2πm

∫ A2(H,Py ,t)

A1(H,Py ,t)
(H − ψ(A, Py, t))V (A, t) dA, (8.84)
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Fig. 8.6 The shaded area is the region where the integrand of the integral in (8.82)
does not vanish, A1 and A2 are the limiting values of A appearing in (8.84).

where A1(H, Py, t) and A2(H, Py, t) are the solutions of the equation H =
ψ(A, Py, t), solved for A (see Fig. 8.6).

We note that the derivative of Ω with respect to H is

∂Ω(H, Py, t)
∂H

= 2πmD(H, Py, t) (8.85)

with

D(H, Py, t) =
∫ A2(H,Py ,t)

A1(H,Py ,t)
V (A, t) dA , (8.86)

which is positive. The function D(H, Py, t) simply represents the area of the
region in the x, z-plane that is accessible to a particle with constants of the
motion H, Py at time t.

The distribution function

Suppose an adiabatic sequence of quasi-static equilibrium states, driven by
slowly varying boundary conditions, starts out with an initial distribution
function F0(H, Py) and with potentials A0(x, z), φ0(A0). Then, specializ-
ing (8.73) to the present case with no additional invariant K, the function
G(Ω, Py) is obtained from the initial distribution function in the following
way. Since the invariant Ω is monotonic in H (see (8.85) and (8.86)) the
expression (8.84) can be solved for H,

H = H(Ω, Py, t) . (8.87)

Choosing t = 0 in (8.87) one finds

G(Ω, Py) = F0(H0(Ω, Py), Py) , (8.88)
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where H0(Ω, Py) = H(Ω, Py, 0). For an arbitrary state during the sequence
the instantaneous distribution function is obtained as (see (8.73))

F (H, Py, t) = G(Ω(H, Py, t), Py) . (8.89)

Kinetic version of step 2

As outlined above, we have to replace step 2 of the fluid theory by a cor-
responding kinetic version. Since the electric potential is an additional
unknown, we look for a way to determine both V (A) and φ(A).

The corresponding equations are the charge neutrality condition (vanish-
ing of space charge σ, see (6.16)) and the definition of the pressure (6.17).
With the time parameter t suppressed, these equations yield

σ(A, φ) =
∑

q

∫
F d3v

=
∑ 2πq

m2

∫ ∞

qφ
dH

∫ P2

P1

F (H, Py) dPy = 0 (8.90)

p(A, φ) =
∑∫

m

2
(v2

x + v2
z)F d3v

=
∑ 2π

m2

∫ ∞

qφ
dH

∫ P2

P1

(H − ψ(A, φ, Py))F (H, Py) dPy (8.91)

where
∑

sums over particle species and P1, P2 ≥ P1 are functions of A, φ, H,
defined as the solutions of H = ψ(A, φ, Py), solved for Py; F is taken from
(8.89). From (8.90) one determines φ(A) and after inserting that result into
(8.91) one finds V (A). This completes the new step 2.

Recovering the fluid approach for m → 0

Ideally, a Vlasov description of slow evolution should be embedded in a fluid
description in such a way that the Vlasov model approaches the fluid model
in the limit where the intrinsic plasma scales are small compared to the
macroscopic scales. A convenient way to look at that limit is to let the
particle mass go to zero. Here we show that, indeed, we recover the fluid
result in that limit.

In the derivation we deal with the more general case where we allow for
the presence of one or more species that are treated exactly. This covers the
situation where the electrons have reached the small-mass limit while the
ions have not.

Let the contributions of a species that can be described in the small-mass
limit to the sums in (8.90) and (8.91) be σ1 and p1, respectively.
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To lowest order in m one finds the integration limits in (8.84) as

A1 =
Py

q
− 1

|q|

√
2m(H − φ(Py/q)), A2 =

Py

q
+

1
|q|

√
2m(H − φ(Py/q)) .

(8.92)
Introducing ξ = A − Py/q as integration variable and noting that ξ =
O(

√
m), and (Py − qA)2/2m = q2ξ2/2m = O(1), one finds from (8.84)

the invariant to lowest order in m,

Ω(H, Py) =
4π

3|q|
(
2m(H − qφ(Py/q))

)3/2
V (Py/q) . (8.93)

Solving for H and evaluating the result for t = 0 gives

H0(Ω, Py) =
1

2m

(
|q|Ω

4πV0(Py/q)

)2/3

+ φ0(Py/q) . (8.94)

Inserting this expression into the initial distribution function and then using
(8.93) to express Ω by H (according to (8.87)), one finds for an arbitrary
instantaneous distribution function

F (H, Py) = F0

((
V (Py/q)
V0(Py/q)

)2/3

(H − qφ(Py/q)) + qφ0(Py/q), Py

)
.

(8.95)
With that distribution function σ1 and p1 are readily computed from (8.90)
and (8.91). To lowest order in m one finds

P1(H, A, φ) = qA −
√

2m(H − qφ), P2(H, A, φ) = qA +
√

2m(H − qφ)

(8.96)
σ1(A, φ) =

4πq

m2

∫ ∞

qφ

√
2m(H − qφ)F0

((
V (A)
V0(A)

)2/3

(H − qφ) + qφ0(A), qA

)
dH.

(8.97)

Introducing h = (V (A)/V0(A))2/3 (H − qφ) + qφ0(A) as integration variable
one finds

σ1(A, φ) =
4π

√
2q

m3/2

V0(A)
V (A)

∫ ∞

qφ0

√
h − qφ0(A)F0(h, qA) dh . (8.98)
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Identifying

σ10 =
4π

√
2q

m3/2

∫ ∞

qφ0

√
h − qφ0(A)F0(h, qA) dh (8.99)

as the initial space charge density, one finally obtains

σ1(A) = σ10(A)
V0(A)
V (A)

. (8.100)

This is the same result as that of a fluid description. The analogous be-
haviour is found for the pressure (8.91). The procedure is similar to that of
σ1. Regarding the additional factor (H − qφ), it is important to note that
the term (Py − qA)2/2m remains of order 1. Then to lowest order in m

one finds

p1(A) = p10(A)
(

V0(A)
V (A)

)5/3

. (8.101)

Again, this is the behaviour of an (ideal) adiabatic fluid.
One might wonder why the present case, which formally is described by a

Hamiltonian with two degrees of freedom, reproduces the exponent (5/3) of
a gas with 3 degrees of freedom. The reason is that the energy represented
by the ‘potential’ ψ is the kinetic energy associated with the velocity in the
invariant direction and thus all 3 physical degrees of freedom are taken into
account.

If the small-mass limit applies to all particle species, the kinetic version of
step 2 reduces to the fluid limit. In this case the present kinetic model com-
prises the fluid theory as an asymptotic regime, without further assumptions
being required.

A model based on gyro-centre motion with pitch angle scattering keeping
the pressure tensor isotropic gives similar results. Particularly, the invariant
(8.93) is exactly the same (Wolf, 1983; Garner et al., 2003).

8.5.2 A kinetic snapshot containing a thin current sheet

Constructing an explicit kinetic equilibrium sequence is beyond the present
scope. Instead, we will give an example of a kinetic snapshot, which is em-
bedded in a corresponding fluid case. The latter is taken from the sequence
discussed in Section 8.4, which illustrates the formation of a thin current
sheet reaching a singularity of the current density at a critical amplitude
of the external perturbation. Here we give an outline only, for details see
Schindler and Birn (2002).
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A two-species quasi-neutral plasma is considered that consists of electrons
and protons. Anticipating that for thin current sheets the Py-dependence of
the distribution functions Fs(H, Py) plays a more important role than the
H-dependence, we fix the H-dependence as exponential and leave the Py-
dependence open at this point to match it to the fluid case asymptotically
for small ρi. Thus, we set

Fs(H, Py) = Cs exp

(
− Hs

kBTs

)
gs(Py). (8.102)

Dimensionless quantities are used, which are defined by the following nor-
malizations. Coordinates x and z are normalized by a characteristic sheet
thickness L (in cases of a double structure L is the thickness of the wider
sheet), the thickness of the thin sheet, normalized by L, is denoted by d.
Bulk velocities vxs and vzs are normalized by

√
kBTs/ms, Py by eB0L, where

B0 is a typical magnetic field strength outside the sheet, A by B0L, φ by
kBT/e, where T = Te + Ti, Hs by kBTs, densities ns by their value n0 for
vanishing A and φ, jy by B0/µ0L, and pressure by B2

0/µ0. The constants Cs

can be expressed by these normalization parameters. Dimensionless quanti-
ties are denoted by the same symbols as the original quantities, except that
the subscript y at Py and at jy is dropped. Also we assume that parame-
ters satisfy the relationship n0kBT = B2

0/2µ0, in accordance with pressure
balance in the limit of a strictly one-dimensional sheet. The sign of particle
charges is denoted by λs = qs/e. Quasi-neutrality gives ne = ni = n.

The equilibrium theory involves the following dimensionless parameters,

τe =
Te

T
, τi =

Ti

T
, ρi =

√
mikBTi

eB0L
, ρe =

√
mekBTe

eB0L
, (8.103)

where, for convenience, we listed both τe and τi although their sum
equals 1. Under these conditions, the distribution function (8.102) leads
to densities

ns = exp
(
−λs

τs
φ

)
n̂s(A) , (8.104)

where

n̂s(A) =
I2s(A)

I1s
(8.105)



8.5 Vlasov approach to quasi-static evolution 165

with

I1s =
∫ ∞

−∞
exp
(
− P 2

2ρ2
s

)
gs(P ) dP (8.106)

I2s(A) =
∫ ∞

−∞
exp
(
−(P − λsA)2

2ρ2
s

)
gs(P ) dP . (8.107)

For details see Schindler and Birn (2002). Similarly, one finds for the current
density

js =
λsτs

2
exp
(
−λs

τs
φ

)
I3s(A)

I1s
, (8.108)

where

I3s(A) =
∫ ∞

−∞

(P − λsA)
ρ2

s

exp
(
−(P − λsA)2

2ρ2
s

)
gs(P ) dP (8.109)

and pressure becomes

ps =
nsτs

2
. (8.110)

The quasi-neutrality condition ne = ni = n determines the electric
potential φ

φ(A) = τeτi ln
(

n̂i(A)
n̂e(A)

)
, (8.111)

such that from (8.104) we find for n

n = n̂τi
i n̂τe

e . (8.112)

Consider the case where ρ is small compared to 1 for both ions and elec-
trons. In the limit ρs → 0 the factor exp

(
−(P − λsA)2/2ρ2

s

)
localizes the

integrands in (8.107) and (8.109) to the neighbourhood of P = λsA and one
obtains

n = gi(A)τige(−A)τe (8.113)

φ = τeτi ln
(

gi(A)ge(0)
ge(−A)gi(0)

)
(8.114)

je = −τe

2

(
gi(A)
gi(0)

)τi
(

ge(−A)
ge(0)

)τe g′e(−A)
ge(−A)

(8.115)

ji =
τi

2

(
gi(A)
gi(0)

)τi
(

ge(−A)
ge(0)

)τe g′i(A)
gi(A)

. (8.116)
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For corrections taking small non-vanishing ρ into account, see Schindler
and Birn (2002).

The special choice ge(−P ) = gi(P ) corresponds to the same spatial dis-
tributions of the particle orbits. This property allows us to study thermal
particle effects in thin current sheet configurations obtained from magneto-
hydrostatics. As an example we choose the equilibrium sequence discussed
in Section 8.4. Figures 8.7 and 8.8 show properties of a member of that se-
quence corresponding to an amplitude of the boundary perturbation slightly
below the critical amplitude (a1 = 0.52, pm = 0.7, ∆p = 0.2), ge(−P ) =
gi(P ), a realistic value of mi/me (ions being protons) and Ti/Te = 5. Fig. 8.7

Fig. 8.7 Pressure p, electric potential φ and current densities j, je, ji versus the flux
function A for ρi → 0. (Reproduced from Schindler and Birn (2002) by permission
of the American Geophysical Union.)
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Fig. 8.8 Pressure p, electric potential φ and current densities j, je, ji versus the
flux function A for ρi = 0.1. (Reproduced from Schindler and Birn (2002) by
permission of the American Geophysical Union.)

corresponds to the limit ρi → 0. The maximum current density magnitude
is about a factor of 10 larger than the background value with a rather sharp
peak, with the corresponding change of slope of the pressure. As expected,
the electric potential is vanishingly small and the contributions of electrons
and ions to the total current density scale as their temperatures.

For ρi = 1.0 (Fig. 8.8) the ion current is smoothed considerably and even
electron effects begin to become visible through a reduction of the maximum
of |je| (note the difference in scale). Nevertheless, even in this extreme case,
there is still a current sheet with |j| enhanced by about 50%.
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8.5.3 Role of the electric potential

The major differences between MHS and kinetic structures of thin current
sheets can be understood in terms of the electric potential φ.

To discuss the modification consider the identity

dpi

dA
=

∂pi

∂A
+

∂pi

∂φ

dφ

dA
. (8.117)

Using (6.17) and (6.18), which, formulated for ions, in the present normal-
ization read ∂pi/∂A = ji, ∂pi/∂φ = −n/2, one finds with pi = τip and
j = dp/dA, that

ji = τij +
n

2
dφ

dA
. (8.118)

The corresponding electron equation is

je = τej −
n

2
dφ

dA
. (8.119)

The second term in (8.119) is the (y-component of the) electron Hall current,
which is easy to verify as

jeH = −n

2
E × B

B2
= −n

2
dφ

dA
ey . (8.120)

Equations (8.118) and (8.120) may be combined to give

j =
1
τi

ji +
1
τi

jeH . (8.121)

It is essentially the electron Hall current that provides the current peak
in Fig. 8.8.

Under the present assumptions the electric potential would map along field
lines to regions away from the thin current sheet. Possible consequences of
this feature are discussed in Part IV.

8.6 Further aspects

Here we add a brief outline of further aspects relevant for slow evolution
and/or thin current sheet formation.

8.6.1 Potential fields

For ignorable plasma pressure quasi-static magnetic fields are force-free fields
and in the simplest case potential fields. Even in the latter case, singular
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current sheets can form by quasi-static evolution (Bungey and Priest, 1995).
Here, we give a simple example. The arguments are similar to those used in
the case of the perturbed Harris sheet in Section 8.2.

Suppose two antiparallel line dipoles of equal absolute strength oriented
parallel to the y-axis start out with a large (formally infinite) distance
between them and quasi-statically approach each other, moving along the
x-axis. The plasma pressure is assumed to be negligible but the electrical
conductivity to be large such that Ohm’s law can be assumed to hold in
its ideal form. As outlined earlier, this means that a gauge can be found
so that the flux function A(x, y, t) is a constant of motion (setting g(t) = 0
in (8.21)). Let the dipole positions be x0 and −x0, where x0 is a positive
function of time. Then, by symmetry, the plasma at x = 0 does not move
along x, such that A(0, y, t) = 0 for all times.

As a first attempt to construct A(x, y, t) one might try to simply add the
two dipole fields. The top panel of Fig. 8.9 shows that case for x0 = 1.
However, one finds that A(0, y, t) �= 0. In fact, noting that in suitable non-
dimensional units the flux function AD of a positive dipole (directed along
the positive y-axis) located at (x0, 0) is given by

AD(x, y, x0) =
x − x0

(x − x0)2 + y2
, (8.122)

we find AD(0, y, x0) − AD(0, y,−x0) = −2x0/(x0
2 + y2), which does not

vanish for x0 �= 0.
Therefore, the vacuum solution is not available in a highly conducting

plasma, even if the pressure is negligible. The vacuum electric field is in
conflict with ideal Ohm’s law. Since the vacuum field of the dipoles is a
unique solution of Laplace’s equation, it is obvious that the solution of our
plasma problem cannot be completely smooth. Again, we have to make a
choice between field continuity and the ideal plasma behaviour.

To construct the solution, let us start with the vacuum case of two
parallel dipoles (middle panel of Fig. 8.9). This solution is satisfactory
for the plasma case in the left half-plane including x = 0, because
AD(0, y, x0) + AD(0, y,−x0) = 0. In the right half-plane that function re-
produces the dipole singularity at the correct location, however, for a dipole
with the wrong sign. Thus, we simply have to change the sign in the right
half-plane and obtain the wanted solution in the form

A(x, y, t) =

{
AD(x, y, x0) + AD(x, y,−x0), x ≥ 0

−AD(x, y, x0) − AD(x, y,−x0), x < 0 .
(8.123)
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Fig. 8.9 Two line dipoles approaching each other. Their instantaneous locations
are x = ±1, y = 0. The graphs are confined to y > 0. The top panel shows
the vacuum solution for antiparallel dipoles. The middle panel gives the vacuum
solution for parallel dipoles, which is used to construct the wanted solution (bottom
panel) for antiparallel dipoles embedded in a highly conducting plasma. The latter
shows a singular current sheet (thick line).

Since By shows a jump on the y-axis, that axis carries a tangential dis-
continuity (thick line in the bottom panel of Fig. 8.9). The surface current
density has a z-component only, which is given by

Kz = 2
x0

2 − y2

(x0
2 + y2)2

. (8.124)
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Kz changes its sign at y = ±1 and the integrated surface current vanishes.
In general, two-dimensional potential fields can be constructed by using

complex variables, because the real and imaginary parts of an analytical
function satisfy Laplace’s equation. For that purpose one defines a complex
magnetic field

Bc(z) = By + iBx, z = x + iy . (8.125)

The Cauchy–Riemann differential equations guarantee that ∇ · B = 0. A
complex flux function is obtained by

Ac = −
∫ z

Bc dz , (8.126)

such that the physical flux function is given by

A(x, y) = Re(Ac) . (8.127)

For the dipole field (8.122) the complex formulation is

Bc =
1

(z − z0)2
, Ac =

1
z − z0

. (8.128)

For suitable choices of Bc or Ac singular current sheets may arise from
branch cuts (Biskamp, 1993; Bungey and Priest, 1995).

As an example let us choose

Bc =
√

z2 − L2 , (8.129)

the corresponding field lines are shown in Fig. 8.10 for L = 1.

Fig. 8.10 Field lines of model (8.129), the thick line indicates the singular current
sheet.
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A singular current sheet extends on the x-axis for −L < x < L, where the
sheet current density goes to zero at x = ±1. The end points are magnetic
neutral points, but other than at x-points, where the magnetic field varies
linearly with distance, here B goes to zero as the square root of distance. As
the two separatrices and the current sheet form the letter Y, these neutral
points are often referred to as y-type neutral points.

The complex flux function is given by

Ac =
1
2

(
L2 ln(z +

√
z2 − L2) − z

√
z2 − L2

)
. (8.130)

At large distances from the origin one finds asymptotically

Ac = −z2

2
+

L2

2
ln(z) (8.131)

which is the superposition of a current-free neutral point configuration (hy-
perbolic field lines) and the field of a line singularity at the origin. This is
expected, because the current sheet singularity viewed from a large distance
shrinks to a line singularity.

It has been suggested that current sheets of the form of Fig. 8.10 can
arise from a pressure-free collapse of a hyperbolic x-line singularity (Dungey,
1953). However, it seems that a finite pressure might prevent the collapse
from progressing (for a detailed discussion see Priest and Forbes (2000)).

A modified interpretation assumes that during a quasi-static evolution
(with flux-conserving flow) the configuration instantaneously relaxes into a
potential field (Longcope, 2001). Then, by adding magnetic flux, a current
sheet is expected to form and its width L increases with the increasing flux,
as can be seen from the example of (8.130).

The actual form of the current sheet and the surrounding field will depend
on the boundary conditions. A class of more general current sheet fields has
the form (Syrovatskii, 1971)

Ac = −α

2
z
√

z2 + b2 − β ln
z +

√
z2 + b2

b
, (8.132)

where α, β, b are spatially constant, but they may be regarded as functions
of time describing the development of the current sheet field.

8.6.2 Current sheets at separatrices

Here we address the formation of tangential discontinuities in the MHD
picture. Consider a magnetic separatrix that separates two regions from each
other, in which some magnetic field and/or plasma properties are different.
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A typical example is the separatrix between a planetary dipolar field and
the interplanetary magnetic field. For simplicity, let us assume that the
field lines on the magnetospheric side are all connected with the interior of
the planet, while the interplanetary field lines have a much larger extent.
(For the present argument their actual connection properties are irrelevant,
what counts is the difference in connectivity of the field lines across the
separatrix.) Clearly, in this situation the differential flux volume has a jump
at the separatrix. Thus, by the previous discussion we can expect that a
quasi-static evolution will lead to a singular current sheet, even if the initial
fields are continuous.

For singular current sheets to occur it suffices that the thermodynamic
properties of the plasmas on both sides of the separatrix are different. This
difference leads to a jump in the plasma pressure and, by pressure balance,
to a jump in the magnetic field and thus to a non-vanishing surface current
density. The following simple example illustrates this process.

Consider the situation shown in Fig. 8.11, where the separatrix located
at position x separates the regions 1 and 2 with two thermodynamically
different MHD media. This system undergoes adiabatic compression by
slow reduction of length L with the following properties:

initial conditions:

B1 = B2 = B0, p1 = p2 = p0, x = x0, (8.133)

magnetic flux conservation for each region:

B1x = B0x0, B2(L − x) = B0(L0 − x0), (8.134)

thermodynamic constraints:

p1 = p0, p2(L − x)γ = p0(L0 − x0)γ , (8.135)

se
pa

ra
tr

ix

P1,B1 P2,B2

0

1 2

x L

Fig. 8.11 Model configuration in which a singular current sheet forms at the sep-
aratrix located at position x and separating thermodynamically different regions
1 and 2 with pressures and magnetic field magnitudes p1, B1 and p2, B2, respec-
tively; the magnetic field direction is perpendicular to the plane of the graph.
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where the label ‘0’ refers to initial values. Note that initially pressure and
magnetic field are continuous. For region 1 it is assumed that the pressure
remains constant. This may be due to large flux tubes, plasma mass or
energy losses. For region 2 an adiabatic pressure law is assumed.

Pressure balance at the separatrix

p1 +
B1

2

2µ0
= p2 +

B2
2

2µ0
(8.136)

together with the conditions (8.133), (8.134) and (8.135), determine the
variables x, p1, B1, p2, B2 as functions of the box width L. The magnitude
of the surface current density is

K = |B2 − B1|/µ0| . (8.137)

Fig. 8.12 gives an example. It seems that this mechanism, among others,
is able to explain the sharp boundary of a magnetosphere, i.e., its magne-
topause.

More realistic cases reveal a relationship between separatrices and mag-
netic neutral points, a topic that will be taken up in Chapters 11 and 14.
For a current sheet arising from the compression of a Harris sheet, see
www.tp4.rub.de/∼ks/tc.pdf.

Fig. 8.12 The variables p1, B1, p2, B2 (quantities normalized by their initial values)
and the magnitude of surface current density K (normalized by B0/µ0) as functions
of the box width L for x0/L0 = 2µ0p0/B0

2 = 0.5.
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8.6.3 Quasi-static formation of tangential discontinuities?

We have seen that, in some cases, thin current sheets are represented by
tangential discontinuities. In a mathematical context, where discontinuous
fields are admitted, there is no reason to raise questions about representing
current sheets as singularities. From a more realistic physical point of view,
the following question arises. For realistic (continuous) fields the tangential
discontinuity must be understood as an approximate description of a narrow
sheet in which the magnetic field rapidly changes. For illustration let us
choose a case where the discontinuity separates oppositely directed fields
and there exists a plane where B vanishes. It was pointed out by Parker
(1994) that under (quasi-)static conditions the inner structure of the sheet
must be in equilibrium also, which means that pressure balance holds across
the sheet. In particular, the pressure pn at the neutral plane is determined
by the total pressure P = p + B2/(2µ0) which is constant across the sheet,
therefore pn = P .

Except for 1D cases, the pressure and the magnetic field vary along the
discontinuity, see Fig. 8.9 for an example. This means that P and therefore
pn vary along the discontinuity. In the absence of a magnetic field component
normal to the sheet (a characteristic feature of a tangential discontinuity,
see Section 3.9), there is no force to compensate the pressure gradient at
the neutral plane. There is lack of equilibrium and plasma flow will ap-
pear, which transports plasma in the direction of −∇pn. In the regions of
higher pn the pressure will be reduced so that the local sheet structure will
be compressed. Under suitable boundary conditions this would continue
as a runaway process and there will be regions where the sheet becomes
arbitrarily thin. This is Parker’s nonequilibrium argument (Parker, 1994).

A consequence of this phenomenon is rapid decay of current sheets by mag-
netic reconnection (see Chapter 11), which would be a powerful mechanism
for dissipating magnetic energy. This would also mean that the quasi-static
build-up of thin current sheets, as discussed in previous parts of this chapter,
would turn into a dynamic phase (see also Zhang and Low (2002)).

However, this nonequilibrium argument, which may play an impor-
tant role under suitable circumstances, does not apply to thin current
sheets in general. The thin current sheets that were considered in
Sections 8.3 and 8.4 are not affected by internal nonequilibrium condi-
tions, although they can become arbitrarily thin (The loss of equilib-
rium of Section 8.4.2 has a different cause.) They contain a small nor-
mal magnetic field component Bn, which together with the large cur-
rent density gives rise to a j × B force that balances the internal
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pressure gradient. It is true that in the limit of vanishing thickness Bn

vanishes, but the current density becomes infinitely large so that their prod-
uct remains finite. This follows from the fact that in the models described in
Sections 8.3 and 8.4 the thin current sheets are inherent parts of quasi-static
states.

This property may be relevant for a variety of self-consistent models of
current sheets (see also Zhang and Low (2002)). For an explicit illustra-
tion, let us discuss a simple case of the type considered in Section 5.4.1,
choosing

p(A) =
1
2
e−2A/δ, p̂ =

1
1 + x2

1

. (8.138)

The current density is given by

jy = − 2p̂

δ cosh2(z
√

2p̂/δ)
(8.139)

which in the limit δ → 0 assumes the singular form

jy → −2
√

2p̂δ(z) (8.140)

consistent with a tangential discontinuity.
Fig. 8.13 shows the magnetic field lines and the current density for δ = 0.1

(top graphs) and the field lines for the limit δ → 0 (bottom graph), illustrat-
ing the tangential discontinuity. For any value of δ �= 0 the configuration
is in static equilibrium in the sense of the asymptotics of Section 5.4.1. In
particular, there is force balance along the sheet. Fig. 8.13a indicates the in-
ternal structure that causes a Bz-component of order δ; the current density
(Fig. 8.13b) is of order 1/δ; their product balances the pressure gradient,
which is of order 1.

Even in that approach a quasi-static sequence can find its end in a sin-
gularity so that there is no equilibrium beyond that point, but that is a
different matter (see Section 8.4.2).

Another possibility to avoid sheet nonequilibrium in thin sheets is to apply
a gravity force to balance the internal pressure gradient (e.g., Zhang and
Low, 2002).

8.6.4 Weak singularities

So far we have discussed singular current sheets mostly in the sense of a
tangential discontinuity, where the current density has a δ-function singu-
larity, leading to a non-vanishing surface current density and a step-function
jump in the magnetic field. This, however, is not the only possibility of a
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Fig. 8.13 Formation of a tangential discontinuity with pressure balance using the
model of (8.138). Graph a shows the field lines for δ = 0.1, graph b the corre-
sponding current density, graph c gives the field lines in the limit δ → 0 where the
current sheet shrinks to a tangential discontinuity (thick line).

current sheet, in which the current density diverges. It is also possible that
the current density has an integrable singularity, with no surface current
and with a continuous magnetic field.

We illustrate this possibility by the following simple one-dimensional
example. Let the current density have a y-component only, which is given
by

jz =

{
1, x ≤ 0

1√
x
, x > 0 .

(8.141)
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This choice is consistent with a magnetic field with vanishing x- and
z-components and

By =

{
x, x ≤ 0

2
√

x, x > 0 .
(8.142)

Obviously, the current density diverges, although the magnetic field remains
continuous.

It is tempting to consider such weak singularity of the current density as a
mathematical oddity with little physical significance. However, the plasma
physics of a current sheet may become substantially different if some critical
value of the current density is surpassed (Section 9.2). In fact, a transition
from an ideal to a nonideal plasma behaviour might take place, such that a
change of magnetic topology suddenly becomes possible.

A weak singularity may also mark a point of loss of equilibrium. This
applies to the example discussed in Section 8.4.1.

Magnetic fields with a weak current singularity also have been studied
in connection with structures in the solar atmosphere. As shown by Low
(1993), a two-dimensional force-free magnetic field (see Section 5.1.5) can
develop a weak current singularity by continuous footpoint displacement in
the invariant direction, starting out from a potential field.

8.6.5 Three-dimensional systems

Several of the two-dimensional models that we have discussed so far in re-
lation to quasi-static evolution may be generalized to three dimensions in a
straightforward way. In particular, this applies to the flux-transfer model of
Section 8.3. The snapshots may be taken from the approach described in
Section 5.4.3. Accordingly, the magnetic field is expressed by Euler poten-
tials α and β, and the adiabatic law is to be applied to every flux tube (α, β).

A corresponding model has been evaluated for magnetospheric conditions
(Birn and Schindler, 1983). Several features that we encountered in the two-
dimensional case persist in three dimensions. Examples are the existence of
similarity solutions, strong shielding of an external electric field and the
pressure crisis.

The formation of thin current sheets based on large gradients of the flux
tube volume, as discussed in Section 8.3.4, in principle also applies to three-
dimensional fields. This is readily illustrated for fields possessing Euler
potentials. From (5.21) and the adiabatic law

p(α, β) = p0(α, β)
(

V0(α, β)
V (α, β)

)γ

(8.143)
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one finds

j · ∇β =
∂p0

∂α

(
V0

V

)γ

+ p0
∂

∂α

(
V0

V

)γ

. (8.144)

Even if the initial pressure gradient and current density are not particularly
large, a large gradient of V can soon lead to a large gradient of V0/V , such
that j · ∇β will become large. A corresponding argument applies to j · ∇α.
Numerical simulations have confirmed the formation of thin current sheets
in the evolution of three-dimensional fields under suitable conditions (e.g.,
Birn et al., 2004).
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Dynamics
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In this part we turn to the description of dynamical plasma states. In view of
our main objectives particular emphasis is placed on the question of how the
sudden transition from a quiescent state to a fast evolving dynamical state
may take place and how such transitions may be described quantitatively.

There are two major ways in which a physical system can go from a
quiescent to a dynamical state.

In the first case the dynamical behaviour may be the obvious result of
external forces and, in particular, the energy associated with the dynamical
evolution is supplied from external sources. In other words, there is no
release of previously stored energy. It is typical for this case that small
external perturbations will have small internal effects.

The other possibility is that there is some amount of energy (usually called
‘free energy’) available in the original quiescent system, which leads to an
enhancement of the dynamical reaction. In response to the external pertur-
bation the system moves away from its original state and, because of the
available free energy, the energy associated with the dynamic development
is not bounded by the energy supplied by external action. In this way a
small perturbation can have a large effect.

If the first case applies to a system for all relevant perturbations, that
system is stable. If a system admits a perturbation realizing the second
possibility, the system is unstable. (There are many everyday examples,
e.g., a ball on a hilltop.)

Although these (rather fuzzy) notions of stability and instability can be
quite valuable in qualitative arguments, they have to be put on a more
rigorous basis before they become useful as quantitative tools. This will be
the topic of Section 10.1.

Obviously, understanding activity requires a thorough discussion of the
relevant instability processes. Therefore, a major fraction of this part will
be devoted to instabilities (Chapter 10).

Even if the stability problem is solved, the consequences that a given
instability has for an actual physical system are not easy to assess. Typically,
the following difficulty arises. Although for a given system it is important to
obtain as much stability information as possible, an unstable quiescent state
remains a theoretical fiction; it does not exist in the real world, because a
broad spectrum of external perturbations, which is always present, is likely
to excite the unstable modes.

Analysing bifurcation properties will shed some light on the ways in which
instabilities might become effective in real systems. In that context physical
constraints and their sudden breakdown will be found to play an important
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role. (In the picture of a ball on a hilltop, a constraint could be realized by
a human hand holding the ball and the breakdown by the release occurring
when suddenly the hand opens.)

A set of constraints relevant for space plasma activity results from ideal
Ohm’s law (see Section 3.8). Their breakdown would require that at some
stage of the slow evolution nonideal effects in Ohm’s law become relevant.
Therefore, we begin with a discussion of such nonideal effects.



9

Nonideal effects

For the dynamic processes that are of interest for activity of space plas-
mas an important issue is the deviation from the ideal form of Ohm’s
law (3.60).

Nonideal processes play an important role for stability properties and they
are crucial for breaking constraints holding under ideal MHD conditions,
among them magnetic flux and line conservation (see Section 3.8.2). Before
addressing the consequences of such breakdown of conservation laws, we
rewrite Ohm’s law in a suitable form, called generalized Ohm’s law, and
discuss possible nonideal effects and the underlying physics.

9.1 Generalized Ohm’s law

We start our discussion by considering a form of Ohm’s law that is more
general than (3.57). It is obtained by multiplying the electron kinetic equa-
tion (3.18) with mew and integrating over velocity space. The result is the
momentum equation of the collisionless case (3.34), specified for electrons,
with the additional collision term M

(bc)
e =

∫
mew∂fe/∂t|coll d3w, arising

from binary collisions,

mene
∂ve

∂t
+ meneve · ∇ve = −∇ · Pe − ene(E + ve × B)

−mene∇ψ + M (bc)
e . (9.1)

The superscript ‘bc’ stands for binary collisions. To rewrite (9.1) in the
form of Ohm’s law, we again make the assumption that there is only one ion
species present and that the ions are singly charged. Then, making use of
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the definitions of charge density σ, current density j and plasma bulk flow
velocity v

σ = eni + ene (9.2)

j = enivi − eneve (9.3)

v =
nimivi + nemeve

nimi + neme
, (9.4)

we rewrite (9.1) in the form

E + v × B = − 1
ene

∇ · Pe +
(j − σve) × B

ene(1 + σ
ene

+ me
mi

)

− me

e

(
∂ve

∂t
+ ve · ∇ve

)
− me

e
∇ψ +

M
(bc)
e

ene
. (9.5)

In this detailed version of generalized Ohm’s law the nonideal effects are
introduced by the right-hand side. From left to right the terms are referred
to as the pressure term, the generalized Hall term, the electron inertia term,
the gravity term and the resistive term based on particle collisions. If there
is no magnetic field, typically the resistive term is parallel to j. One then
writes

M
(bc)
e

ene
= ηj (9.6)

where η is the resistivity. The term ηj is widely used also for non-vanishing
magnetic fields, ignoring the fact that then M

(bc)
e and j are not strictly

parallel (Spitzer, 1962; Braginskii, 1965).
For quasi-neutrality (σ = 0, ne = ni = n), me/mi � 1 and the resistive

term given by (9.6), (9.5) reduces to

E + v × B = − 1
ene

∇ · Pe +
j × B

ene
− me

e

(
∂ve

∂t
+ ve · ∇ve

)
+ ηj , (9.7)

where the inertia term was kept to cover cases where it cannot be ignored
because ve becomes large.

The pressure term is sometimes written as

Pe = pe I + P(V )
e , (9.8)

where

p =
1
3
Tr(Pe), P(V )

e = Pe −
1
3
Tr(Pe) I . (9.9)
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Here, pe is the scalar electron pressure and P(V )
e has vanishing trace and

describes the non-isotropic part of Pe, which typically accounts for viscous
interactions.

For assessing the role that resistivity plays under various circumstances,
it is necessary to link η to plasma properties that are directly observable.
This is done in the following section.

9.2 Resistivity

In a fully ionized gas resistivity is due to Coulomb collisions between elec-
trons and ions. If the corresponding collision time is τei, the resistivity η

may be expressed as

η =
me

e2neτei
. (9.10)

Here, τei is understood as the relaxation time for electron–ion momentum
transfer, such that (in the ion rest frame) M

(bc)
e = −meneve/τei, which

combined with (9.6) and j = −eneve gives (9.10).
An appropriate expression for the collision time τei follows from an explicit

treatment of electron–ion collisions. Since, as we will see, collisional effects
are often extremely rare in space plasmas, we skip rigorous derivations here
and just list a number of relevant definitions with brief explanations.

Resistivity in fully ionized plasmas is a classical topic of plasma physics
(e.g., Spitzer, 1962; Trubnikov, 1965). Here we follow Spitzer (1962).

The resistivity is given by

η =
π3/2

4
√

2
e2√me

(4πε0)2(kBTe)3/2

λc

γE
. (9.11)

The factor γE = 0.582 corrects for the deviation of the electron distribution
function from a shifted Maxwellian (Spitzer, 1962) and λc is the Coulomb
logarithm. The latter takes care of the cumulative effect of distant electron–
ion encounters with small deflections, adding up to an average deflection of
90◦. Typical values of λc lie between 10 and 30, indicating that collisions
caused by distant encounters typically dominate.

In the presence of a magnetic field an error arises from ignoring the fact
that a more rigorous approach would result in a resistivity tensor that is
anisotropic (Spitzer, 1962). However, this correction is widely ignored as it
does not seem to have a drastic influence on dynamical properties.

However, there are other restrictions to the validity of (9.11) which do
play a crucial role. We mention three particularly important items.
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1. The expression (9.11) for η is valid only for weakly coupled plasmas.
These are plasmas for which two-particle correlations dominate, which re-
quires Λp � 1 (Balescu, 1975; Ichimaru, 1973). Weakly-coupled plasmas are
also called ‘ideal’. We do not use that term here to avoid confusion with the
regime of the ideal form of Ohm’s law, where collisional effects are ignored
completely.

2. The theory of Coulomb collisions as used here is valid only for plasmas
with macroscopic length scales larger than the mean free path le = veτei of
the electrons. If this condition is violated and if the collision time exceeds the
typical time a particle spends within the system (life-time), it is appropriate
to set the resistivity to zero. In that case quantities such as (9.11) represent
extrapolations and have no quantitative physical significance.

3. The linear relationship between E and j, implied by the existence of a
resistivity, breaks down if E exceeds a critical value. Then, the collisional
momentum transfer saturates and the force M

(bc)
e is unable to balance the

electric force −eneE. In plasmas without magnetic field (or in the presence
of a magnetic field and an electric field component parallel to B) the satu-
ration results in acceleration (runaway) of the electrons. The runaway effect
occurs if the electron drift velocity exceeds the electron thermal velocity vte,
such that the critical electric field strength (Dreicer field) approximately is
given by (Dreicer, 1960)

Ec =
meve

eτei
. (9.12)

So far we have looked at Coulomb collisions from a local particle point of
view. We now turn to the relevance of collisional resistivity for macroscopic
dynamics. A strict assessment requires solving the resistive MHD equations
of Section 3.3.3 for the system of interest. A rough estimate can be obtained
from considering the induction equation and Ohm’s law alone. Eliminating
the electric field between these equations one finds

∂B

∂t
−∇× (v × B) + ∇× (

η

µ0
∇× B) = 0 (9.13)

which has the form of a vector diffusion equation. Let us consider the
resistive decay of an initial equilibrium, assuming that the diffusion process
can be regarded as a slow evolution with static snapshots. Then, typically,
the second term of (9.13) will not dominate the first one and a rough estimate
of the diffusion time scale τD can be obtained by equating the first term to
the third term,

τD =
L2µ0

η
. (9.14)
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Here it was assumed that there is only one characteristic length scale, L,
such that ∇ scales as 1/L. Also, ∂/∂t was replaced by 1/τD. The time τD

is the characteristic time scale for the evolution due to resistive dissipation
alone.

A non-dimensional measure for the relevance of resistive diffusion is
obtained by comparing τD with the time scale of a typical ideal MHD
process. Choosing as that time scale the Alfvén time τA = L/vA, where
vA = B/(µ0ρ)1/2 is the Alfvén velocity, leads to defining the Lundquist
number

S =
τD

τA
=

µ0LvA

η
. (9.15)

If S is large compared to 1, resistive effects can be neglected for phenomena
occurring on the Alfvén time scale or faster.

When using S it should be kept in mind that the Alfvén velocity was
used as the typical macroscopic signal velocity in the plasma. This applies
to plasmas for which the ratio of kinetic to magnetic pressure

βp =
2µ0p

B2
(9.16)

is not large compared to 1. Otherwise, vA must be replaced by a suitable
MHD phase velocity. One uses S even for β � 1 by introducing an appropri-
ate effective magnetic field. For the centre of a Harris sheet (Section 5.3.2)
with Ti > Te the effective magnetic field is the field outside the sheet. (By
pressure balance the ion thermal velocity in the centre is approximately
equal to the external Alfvén velocity.)

Table 9.1 shows several quantities relevant for Coulomb collisions for three
different plasma media. The cases 1–3 lie in the general parameter ranges of
the interstellar medium (HII regions), the solar corona and the Earth’s mag-
netosphere, respectively. In the latter case the values for the central plasma
sheet were taken (see Table 2.1), except for the magnetic field, where the
lobe value is the appropriate effective field for the high-β plasma sheet. Note
that in view of strong spatial and/or temporal variability unique ‘typical’
parameter sets cannot be defined. Therefore, the numbers do not give more
than rough indications.

Clearly, the values of the plasma parameter Λp and of the Lundquist
number S are large compared to 1 in all three cases, so that the regime
of weak coupling applies and resistivity can be ignored in the macroscopic
dynamics on scale L.

In case 3 the electron mean free path le by far exceeds L. Also, consider-
ing the plasma sheet, the formal collision time of 5.1 × 107 s is much larger
than the time a particle typically spends in the sheet (smaller than one day).
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Table 9.1 Quantities relevant for Coulomb collisions for three media,
standing for HII-regions (case 1), the solar corona (case 2) and the

Earth’s plasma sheet (case 3). Brackets indicate extrapolation.

case 1 case 2 case 3

n/m−3 5 × 109 1 × 1015 2 × 105

Te/K 1 × 104 2 × 106 1 × 107

L/m 1 × 1015 3 × 107 2 × 107

B/T 1 × 10−9 1 × 10−2 2 × 10−8

ωp/s−1 4 × 106 2 × 109 3 × 104

Λp 2 × 107 1 × 108 1 × 1014

le/L 4 × 10−9 2 × 10−2 (2 × 109)
τei/s 6 × 100 7 × 10−2 (2 × 109)
η/(Vm/A) 1 × 10−3 5 × 10−7 (7 × 10−8)
S 3 × 1014 5 × 1014 (3 × 1014)

Therefore, collisional effects can be ignored altogether. As mentioned above,
in that case parameters involving resistivity are extrapolations without pre-
cise quantitative meaning and therefore are put in brackets in the table.
This feature does not necessarily apply to radiation belt populations, where
the particle life-times can be much longer.

If instead of a single scale L (as assumed in the present discussion) a
system possesses two or more different length scales, a more complicated
situation arises. Then, resistive processes associated with a scale much
smaller than the corresponding value given in Table 9.1 may still play a
significant role.

9.3 Microturbulence

As we have seen above, electric fluctuations associated with the motion of
discrete plasma particles are the cause of collisional resistivity. Here we
consider the consequences of fluctuations in a collisionless plasma. Thus,
we are dealing with the Vlasov regime (Section 3.2). Microturbulence has
become a very large field and here we can touch on a few basic facts only. A
number of examples, relevant for the present context, are discussed in some
detail in www.tp4.rub.de/∼ks/ta.pdf.

In the absence of collisions, fluctuations largely arise from plasma insta-
bilities. Here we are interested in instabilities that lead to turbulence with
length and time scales small compared with the corresponding macroscopic
scales. Such (linear) instabilities and the associated (nonlinear) turbulence
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are referred to as microinstabilities and microturbulence, respectively. From
a macroscopic point of view microturbulence, suitably averaged over small
scales, may be the cause of turbulent or collective transport, analogous to
collisional transport. Then the collective electron–ion momentum transfer
causes a contribution M

(turb)
e /(ene) to generalized Ohm’s law (9.5) which is

analogous to M
(bc)
e /(ene) based on collisions. If M

(turb)
e is parallel to j, we

may write M
(turb)
e /(ene) = ηturbj where ηturb is the turbulent or collective

resistivity. (We avoid the notion of ‘anomalous resistivity’ as widely used
in laboratory plasma physics, because in space plasmas turbulent resistivity
seems to play a more important role than its collisional counterpart.)

A common aspect of collisional and turbulent resistivity is the presence
of space charge and associated electric field fluctuations, which lead to
momentum exchange between electrons and ions.

Since the collective resistivity will depend on the amplitudes of the fluc-
tuations, a quantitative description must come from a nonlinear theory.
Nevertheless, the question of the excitation of the fluctuations also poses
a linear stability problem. Thus, we will first discuss the linear stability
problem and then turn to the nonlinear regime.

9.3.1 Microinstabilities

Microinstabilities require deviation from thermodynamic equilibrium, such
as counterstreaming, velocity shear, pressure anisotropy or gradients. Here
we give a brief overview, concentrating on aspects that are of particular
relevance for our present purposes. For detailed descriptions we refer to
the literature (e.g., Davidson, 1972; Mikhailovskii, 1974; Hasegawa, 1975;
Melrose, 1986; Gary, 1993). See also www.tp4.rub.de/∼ks/ta.pdf.

The standard linear stability analysis in Vlasov theory starts from the col-
lisionless Boltzmann equation (3.26). This equation is linearized for small
perturbations (fs1, E1, B1) added to a given background state solution (sub-
script 0). In most analytical treatments the background is a spatially ho-
mogeneous steady state or it varies on large length scales. The latter case
is particularly important for systems where the instability is caused by the
inhomogeneity. We begin by assuming that the background is homogeneous.

The linearized version of (3.26) is

∂fs1

∂t
+ w · ∂fs1

∂r
+

qs

ms
(E0 + w × B0) ·

∂fs1

∂w

= − qs

ms
(E1 + w × B1) ·

∂fs0

∂w
. (9.17)
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The left side of (9.17) can be interpreted as the total time-derivative of fs1

taken along particle orbits in the unperturbed electric and magnetic fields.
Thus, a (formal) solution of (9.17) is obtained by integrating the right side
along those unperturbed orbits,

fs1(r, w, t) = f in
s1(r0, w0)

− qs

ms

∫ t

t0

(E1(r′, t′) + w′ × B1(r′, t′)) · ∂fs0(w′)
∂w′ dt′ , (9.18)

where r′ = r′(r, w, t, t′) describes the particle orbit that assumes position
and velocity (r′, w′) at time t′ and (r, w) at time t. The variables appearing
in the argument of the initial perturbation f in

s1 are r0 = r′(r, w, t, t0), w0 =
w′(r, w, t, t0).

The fact that the coefficients multiplying the perturbations in (9.17) can
be regarded as independent of r and t suggests the introduction of exponen-
tial modes. This would mean

E1 = Ê1(k, ω) eik·r−iωt (9.19)

for the electric field perturbation and corresponding expressions for B1

and fs1.
It turns out, however, that in general the Vlasov theory possesses modes

of the type (9.19) only asymptotically for large times elapsed after an ini-
tial perturbation is applied (see e.g., Ichimaru, 1973). This follows from
an analysis using a combined Laplace–Fourier transform assuming suffi-
ciently smooth initial conditions (e.g., Krall and Trivelpiece, 1973), where
the Laplace transform appropriately takes into account causality. Then, a
mode with γ = Im(ω) > 0 can be treated as adiabatically switched on, i.e.,
as growing from vanishing initial conditions at t = −∞,

f̂s1(k, ω) =

− qs

ms

∫ 0

−∞
(Ê1(k, ω) + w′ × B̂1(k, ω)) · ∂fs0(w′)

∂w′ eik·(r′−r)−iωτdτ ,
(9.20)

where the integration variable has been changed from t′ to τ = t′− t. Modes
with γ ≤ 0 require analytical continuation.

The central problem is to find the dispersion relation, which determines
how ω is related to the wave number k. To obtain the dispersion relation,
one expresses B̂1 by Ê1 via the induction equation (3.28),

B̂1 =
1
ω

k × Ê1 , (9.21)
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such that in view of (9.20) the perturbation amplitude f̂s1 becomes linear
and homogeneous in the components of Ê1. This property is carried over
to the components of the electrical current density amplitude

ĵ1 =
∑

s

∫
qswf̂s1d3w , (9.22)

which may be expressed as

ĵ1(k, ω) = C(k, ω) · Ê1(k, ω) , (9.23)

where the tensor C(k, ω) is the sum of the species contributions Cs(k, ω).
The electric charge density is directly obtained from the current density

via charge conservation (3.33),

σ̂1(k, ω) =
1
ω

k · ĵ1(k, ω) . (9.24)

Again, σ1 and j1 are sums over the contributions of all particle species.
The dispersion relation is determined by introducing modes of the form

(9.19) into Maxwell’s equations (3.27)–(3.30). Making use of (9.23) and
(9.24) one obtains

K(k, ω) · Ê1(k, ω) = 0 , (9.25)

where

K(k, ω) =
c2

ω2
(kk − k2I) +

i
ε0ω

C(k, ω) + I , (9.26)

with I denoting the unit tensor.
For a non-vanishing electric field to exist, (9.25) implies that the determi-

nant of K vanishes,

det(K(k, ω)) = 0 , (9.27)

which is the dispersion relation. It determines the complex frequency ω for
a given wave number k, which for the present initial value problem is real.

The dispersion relation usually has a number of discrete solution branches
for ω(k). The sign of γ determines whether a mode is stable (γ < 0) or
unstable (γ > 0).

For longitudinal modes, satisfying ∇ × E1 = 0, Ê1 is parallel to k, B̂1

vanishes, and E1 can be derived from a scalar potential φ1 with Ê1 = −ikφ̂1.
In that case the dispersion relation may be simplified considerably. One finds

1 + χ(k, ω) = 0 (9.28)
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where

χ(k, ω) =
∑

s

χs(k, ω) with χs(k, ω) =
i

ε0ωk2
k · Cs(k, ω) · k (9.29)

is the electric susceptibility. The contributions χs can be determined from
the relationship

σ̂s1 = −ε0k
2χsφ̂1 . (9.30)

In view of the existence of a potential, longitudinal modes are widely
referred to as electrostatic modes. Note that in the present context this
term does not necessarily imply time-independence.

The present procedure can be generalized to include cases where the equi-
librium has a weak spatial dependence in the sense that the wave number
k is large compared to 1/L, where L is the characteristic scale length of
the equilibrium. Then, one uses a two-scale expansion similar to the pro-
cedure of Section 5.4. To lowest order in (kL)−1 one finds local dispersion
relations by the same procedure as outlined above. The only difference is
the appearance of quantities with a weak spatial dependence describing the
inhomogeneity. A few explicit examples of dispersion relations can be found
in www.tp4.rub.de/∼ks/ta.pdf.

9.3.2 Collective transport

A linear instability will generate a field of non-thermal fluctuations. The
amplitudes of these fluctuations are determined by nonlinear effects, such as
particle trapping in the wave troughs, nonlinear Landau damping or mode-
coupling. To determine the amplitudes is the most difficult part of the
theory of microturbulence, and the most reliable results seem to come from
large particle simulation studies.

A problem which under some simplifying conditions can be treated by
analytical techniques is to compute the turbulent momentum transfer M turb

e

analogous to the corresponding binary collision term Mbc
e in (9.1) from a

given field of microturbulence. Under further restricted circumstances this
leads to the turbulent or collective resistivity.

Consider a plasma with a clear separation of scales between a large scale
background configuration and small scale turbulence. Let us write any field
quantity Y as Y = 〈Y 〉+δY , where 〈. . . 〉 denotes the ensemble average taken
over a suitable set of realizations of the turbulence, implying 〈δY 〉 = 0.
Averaged quantities are large scale quantities. In contrast to the linear
theory, let us begin by considering the exact equations.
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For simplicity, however, we assume that δB can be ignored. At least
approximately, this can be expected to apply to turbulence arising from
longitudinal instability modes of moderate amplitudes.

Averaging the Vlasov equation (3.26) for species s, one then finds

∂〈fs〉
∂t

+ w · ∇〈fs〉 +
qs

ms
(〈E〉 + w × 〈B〉) · ∂〈fs〉

∂w
=

∂〈fs〉
∂t

∣∣∣
turb

, (9.31)

where
∂〈fs〉
∂t

∣∣∣
turb

= −
〈 qs

ms
δE · ∂δfs

∂w

〉
(9.32)

plays the role of a ‘collision’ term based on the presence of collective fluctu-
ations, analogous to the Coulomb collision term in (3.18).

The collision term can be expressed in terms of correlation coefficients.
Since δB = 0, δE can be derived from a scalar potential δφ, which satisfies
Poisson’s law

−∆δφ =
1
ε0

∑
s′

qs′

∫
δfs′ d3w (9.33)

with the solution

δφ(r, t) =
1

4πε0

∑
s′

qs′

∫
d3r′ d3w′ 1

|r − r′|δfs′(r′, w′, t) . (9.34)

Inserting δE = −∇δφ with (9.34) into (9.32) one obtains

∂〈fs〉
∂t

∣∣∣
turb

=

∑
s′

qsqs′

4πε0ms

∫
d3r′ d3w′ ∂

∂r

1
|r − r′| ·

∂

∂w
〈δfs(r, w, t)δfs′(r′, w′, t)〉 . (9.35)

In the momentum equation of species s (see (3.34)) the collective collisions
generate a friction force represented by the momentum transfer

M (turb)
s =

∫
msw

∂〈fs〉
∂t

∣∣∣
turb

d3w

=
∑
s′

M
(turb)
ss′

(9.36)

where

M
(turb)
ss′ = −qsqs′

4πε0

∫
d3r′

∂

∂r

1
|r − r′| 〈δns(r, t)δns′(r′, t)〉. (9.37)
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This indicates that the momentum transfer due to collective interaction
results from the inter-species correlation of density fluctuations. (The self-
transfer M

(turb)
ss vanishes, as shown in the quasi-linear approximation farther

below.)
Since, locally, both the background state and the statistical properties

of turbulence are regarded as homogeneous, near r the density correlation
function depends on r and r′ only through a = r − r′, with an additional
parametric dependence on r (not shown) describing the large scale variation.

For the next step let us include temporal correlations, such that the cor-
relation function is a function of a and τ = t − t′,

〈δns(r, t)δns′(r′, t′)〉 = Sss′(a, τ) , (9.38)

and let us introduce its Fourier representation

Sss′(a, τ) =
∫

d3k

(2π)3/2

∫
dω

(2π)1/2
Ŝss′(k, ω) eik·a−iωτ , (9.39)

where, regarding the factors involving powers of 2π, the symmetric version
of the Fourier transform has been chosen.

With (9.39) the momentum transfer (9.37) becomes

M
(turb)
ss′ = −qsqs′

ε0

∫
d3k

(2π)3/2

∫
dω

(2π)1/2

k

k2
Im[Ŝss′(k, ω)] . (9.40)

In deriving (9.40) one uses that Sss′ is a real quantity and that by
∂/∂r(1/a) = −∂/∂r′(1/a) the r differentiation can be moved to Sss′ by
integration by parts. In view of (9.37) t′ was reset to t and the integration
variable r′ in (9.37) has been replaced by a, where, for reasons of causality,
the radial integration is kept well-defined by introducing an arbitrarily small
damping, so that ∫

1
a

eik·a d3a =
4π

k2
. (9.41)

For details see the literature (e.g., Tange and Ichimaru, 1974).
It is important to realize that (9.40) is exact except for the separation of

scales and the restriction to longitudinal waves.
A drawback exists in that the density correlation function is difficult to

assess both theoretically and observationally. A more useful expression is
provided by relating the density correlation function to the energy spectrum
of the turbulence. However, such a formulation generally requires further
restrictions.

Here we will briefly describe the quasi-linear approach, which uses
density fluctuations that are small enough to be covered by linear theory
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(e.g., Sagdeev and Galeev, 1969). Then one identifies fluctuation quantities
with the linear modes (e.g., δns with n1s) and uses (9.30) (applied to each
species separately) to obtain

qsqs′〈ns1(r, t)ns′1(r′, t)〉 = 〈σs1(r, t)σs′1(r′, t)〉

= ε2
0

∫
d3k

(2π)3/2
k2χs(k)χ∗

s′(k)G(k)eik·a (9.42)

where G(k) is the Fourier transform

G(k) =
∫

d3a

(2π)3/2
〈E1(r, t)E1(r′, t)〉e−ik·a . (9.43)

In view of the restriction to longitudinal modes the electric field perturbation
is represented by the component E1 = k · E1/k. Again, local homogeneity
is assumed, so that 〈E1(r, t)E1(r′, t)〉 locally depends on a = r − r′ only.

The fact that we are dealing with eigenmodes of the type of (9.19) can be
taken into account in space-time Fourier transformed quantities by a factor
δ(ω − ω(k)), where ω(k) is the relevant solution of the dispersion relation
(9.28). Integration with respect to ω then generates functions of k alone, in
particular, χs(k) = χs(k, ω(k)).

The function G(k), introduced by (9.43) as the Fourier transform of the
correlation function of the electric field fluctuations, may be identified as
the spectral density of 〈|E1|2〉,

〈|E1|2〉 =
∫

d3k

(2π)3/2
G(k). (9.44)

This suggests following common practice and rename G(k) as 〈|E1|2(k)〉; for
basic properties of correlation functions see e.g., Landau and Lifshitz (1963,
vol. Statistical Physics).

Using (9.42) in (9.37) and applying the same techniques that led to (9.40)
gives

M
(turb)
s,s′ = −ε0

∫
d3k

(2π)3/2
k Im[χs(k)χ∗

s′(k)]〈|E1|2(k)〉 , (9.45)

where it was used that 〈|E1|2(k)〉 is real.
The total momentum transfer to a given species from all others is found as

M (turb)
s =

∑
s′

M
(turb)
ss′

= ε0

∫
d3k

(2π)3/2
k Im[χs(k)]〈|E1|2(k)〉 ,

(9.46)

using the dispersion relation (9.28).
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The property

M
(turb)
ss′ + M

(turb)
s′s = 0 (9.47)

ensures momentum conservation, in particular M
(turb)
ss = 0 and∑

ss′ M
(turb)
ss′ = 0.

As M
(turb)
s is a force that appears in the momentum equation of species s,

M
(turb)
e gives rise to a term M

(turb)
e /(ene) in generalized Ohm’s law (9.5)

taking the role of M
(bc)
e /(ene). We see from (9.37) that this term is due

to collective density fluctuations and associated fluctuations of the electric
field (see (9.43)).

For current driven instabilities it is typical that the fluctuation term
M

(turb)
e is parallel to the current density j. Then this term formally can

be written as a resistive term in (9.5), where then the resistivity is termed
ηturb, the turbulent resistivity.

For a two-species plasma with singly charged ions with densities ne =
ni = n, one finds

M
(turb)
e

en
= ηturb j (9.48)

or

ηturb =
1

e2n2v2
d

M (turb)
e · vd , (9.49)

where vd is the drift velocity defined in terms of the current density,
j = envd.

The main difficulty in evaluating the k-integration in (9.46) for a given
application is the lack of sufficient knowledge of the spectral density
〈|E1|2(k, ω)〉. A useful estimate is available for cases where the spectrum
sharply peaks at a value of k = k0, where the growth rate maximizes
(Sagdeev and Galeev, 1969). Then, with the help of (9.44) one finds

ηturb ≈ 2k0 · vd

e2n2v2
d

Im[χe(k0)]Wf (9.50)

where

Wf =
ε0

2
〈|E1|2〉 (9.51)

is the average electric energy density associated with the fluctuations. Al-
though an exact value of Wf may not be available either, it may be easier
to arrive at an estimate for a single value than for an entire spectrum. One
may find estimates for Wf from observations, numerical simulations or from
theoretical estimates.
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Originally, the approximation (9.50) was derived for the ion-acoustic in-
stability. Here, suppressing a numerical factor, one finds k0 ≈ 1/λD. For
vde > via, up to a numerical factor, this gives (see e.g., Sagdeev and Galeev,
1969; Treumann and Baumjohann, 1997)

ηturb ≈ 1
ε0ωp

Wf

nkBTe
(9.52)

where it is to be noted that vd = −vde, and via =
√

kBTe/mi is the ion
acoustic speed. The expression (9.52) is known as Sagdeev’s formula. Inter-
estingly, it gives a rough estimate also for Coulomb collisions if for Wf one
inserts the energy density of the electric field fluctuations due to Coulomb
interaction.

In view of the approximations made to obtain (9.50) or (9.52) it cannot be
expected that these expressions are precisely valid in a quantitative sense.
Nevertheless, these and similar expressions have proven useful for order-of-
magnitude estimates and for the interpretation of simulation results.

9.3.3 LHD turbulence

Here we briefly discuss the collective momentum transfer due to lower-
hybrid-drift (LHD) turbulence (Davidson and Gladd, 1975; Huba et al.,
1978). The LHD instability is of particular interest for space plasmas
with Te � Ti, where several other modes, such as the ion-acoustic
mode, fail. The linear theory is outlined in Gary (1993), see also
www.tp4.rub.de/∼ks/ta.pdf.

We choose the explicit solution obtained for a two-species plasma with
small βp = 2µ0p/B2 and in the limit of vanishing electron temperature,
where one finds for the electron susceptibility xe, the real part of the fre-
quency ωr and the growth rate r,

χe =
ω2

pe

Ω2
e

− ω2
i vd

v2
i kω

(9.53)

ωr =
kvd

1 + k2v2
i /ω2

lh

, ωen =
√

ΩeΩi (9.54)

γ =
√

π

2
k3v2

dviω
4
lh

(ω2
lh + k2v2

i )3
. (9.55)

Both vd and k are directed perpendicular to the magnetic field. Small βp

ensures that the LHD modes are approximately longitudinal. For β > 1 the
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LHD instability does not play a significant role. For turbulence based on
this mode with k ‖ j one finds an expression for the turbulent resistivity
from (9.49) with (9.46) where χe is inserted from (9.53).

The approximation (9.50) is obtained with k0 = ωlh/vi and corresponding
values of ωr and γ from (9.54) and (9.55). One finds

ηturb =
1

2ε0

√
π

2
ωlh

Ω2
e

(
vd

vi

)2 ε0〈|E1|2〉/2
nmev2

d/2
. (9.56)

In cases where ε0〈|E1|2〉/2 ≈ nmev
2
d/2 (Huba et al., 1977) the expression

(9.56) becomes fully explicit in terms of equilibrium quantities.
A fully satisfactory theoretical estimate of the nonlinear stages of the

lower-hybrid modes does not seem to be available. Work by Drake et al.
(1983) and Drake et al. (1984) shows that the main saturation process is
mode coupling with energy transfer from growing long wavelength modes to
damped short wavelength modes.

9.4 Non-turbulent kinetic effects

In the previous section we saw that, under suitable conditions, the effect
of kinetic fluctuations can be incorporated into a fluid picture in the form
of a collective resistivity. Here we turn to nonideal effects for which such a
connection with fluid theory does not seem to exist. This applies to plasmas
without a significant level of microturbulence. In those cases it is no longer
appropriate to refer to the fluid form of Ohm’s law (9.5) but rather to Vlasov
theory directly. We can still use its exact moment equations to discuss the
different possibilities of nonideal effects.

We begin with the momentum balance (3.34) of the electrons where we
ignore the gravity term, which is legitimate for most space plasma phe-
nomena because of the smallness of the electron mass. We write (3.34) for
electrons in the form

E + ve × B = − 1
ene

∇ · Pe −
me

e

(
∂ve

∂t
+ ve · ∇ve

)
, (9.57)

where Pe denotes the electron pressure tensor (see (3.35)), the time-evolution
of which is governed by (3.44). Note that we are not averaging over any fast
processes and that gravity is neglected.

To break magnetic flux or line conservation, it is necessary that the right
side of (9.57) is different from zero (see Section 3.8.2). There are essentially
two different groups of effects, ‘pressure tensor effects’ based on the term
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involving the electron pressure tensor and ‘inertial effects’ due to the iner-
tial term (last term in (9.57)). For orientation let us look at a few simple
examples.

The first example deals with the significance of the off-diagonal compo-
nents of the pressure tensor. Consider a two-dimensional geometry with
translational invariance with respect to the y-direction and the magnetic
field lying in the x, z-plane. Then, the y-component of (9.57) is of particular
interest,

E′
y = − 1

ene

(
∂Pe,xy

∂x
+

∂Pe,zy

∂z

)
− me

e

(
∂ve,y

∂t
+ ve · ∇ve,y

)
(9.58)

where E′ = E + ve × B.
Obviously, in (9.58) the pressure tensor effects are due to off-diagonal

components of the electron pressure tensor. These components can be at-
tributed to nongyrotropic effects. In fact, under the present assumptions
Pe,xy and Pe,zy vanish for the gyrotropic form of Pe given by (3.69). We will
return to this case later.

The second example addresses the relative weight of the pressure and in-
ertial terms in (9.57). Consider a spatially homogeneous background plasma
with electrons at rest and B = 0. The background is perturbed by a lon-
gitudinal linear wave mode. In that case, the terms in (9.57) are easily
computed, using linear Vlasov theory. We restrict our attention to the k-
component of (9.57) and write that component as

E′
k = T pr

k + T in
k . (9.59)

To find the pressure term T pr
k and the inertial term T in

k the essential
quantity containing the necessary information is χe, to be obtained from
(9.30) specialized for electrons, which gives

ne1 =
ε0k

2χe

e
φ1 . (9.60)

With this expression together with the particle conservation law (see (3.31))
for electrons

ωne1 − ne0k · ve1 = 0 (9.61)

one finds

T in
k =

i ω2k

ω2
pe

χe φ1 . (9.62)
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Similarly, one may compute T pr
k from the definition of the pressure tensor.

However, an easier way is to use (9.59), which gives immediately

T pr
k = −ikφ1

(
1 +

ω2

ω2
pe

χe

)
. (9.63)

To get an expression that indicates which of the two contributions in
(9.59) dominates, let us evaluate the magnitude of their ratio,

R0 =
∣∣∣∣T in

k

T pr
k

∣∣∣∣
=

∣∣∣∣∣∣
ω2

ω2
pe

χe

1 + ω2

ω2
pe

χe

∣∣∣∣∣∣ .

(9.64)

One can expect that R0 tends to be larger for faster modes than for
slower modes. In fact, for Langmuir waves with frequency (real part)√

(ω2
p + 3k2v2

e ), valid for ke/k � 1, one finds R0 = k2
e/(3k2) � 1. Here, the

frequency is of the order of the (electron) plasma frequency ωp, indicating
that the electron inertia is important. For ion acoustic modes, which are
much slower, the ratio R0 equals me/mi, consistent with negligible electron
inertia.

For fast modes, such as modes varying on time scales near 1/ωp, one
would prefer a description in terms of average microturbulence, rather than
the present point of view, where the variations are fully resolved. Thus, for
modes that are slow enough for the present resolved picture to be appropri-
ate, it is reasonable to expect that the pressure term in (9.57) dominates.
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Selected macroinstabilities

A macroinstability is an instability that has a length scale comparable with
an equilibrium length. Since there is a considerable variety of macroinsta-
bilities, even a brief description of each instability would break the present
scope. So we concentrate on instabilities that seem to play an important
role in space plasma activity.

We begin with a brief discussion of stability concepts and then turn to
particular dynamical models and resulting instabilities.

Since changes of the magnetic topology are believed to play an important
role for activity phenomena, considerable room is given to instabilities that
involve such changes, covering both fluid and kinetic models.

An instability that changes magnetic topology is particularly relevant if
the system considered is stable with respect to topology-conserving insta-
bilities. This motivates the inclusion of ideal MHD modes.

10.1 Stability concepts

In general terms, a stable steady state is characterized by its robustness
against external perturbations, while for an unstable steady state there ex-
ists at least one perturbation that leads to substantial changes, which in
some cases have dramatic consequences. Turning such qualitative state-
ments into quantitative notions requires operational definitions of stability
and instability. There are several possibilities of such definitions.

One line of approach is based on exponential modes as used in our dis-
cussion of microinstabilities (Section 9.3.1). This approach considers time-
dependence of the form exp(−iωt); stability corresponds to Im(ω) ≤ 0,
instability to Im(ω) > 0.

This approach has the advantage that it does not only tell us whether a
given steady state is stable or unstable but it also provides the frequencies ω,

203
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including damping or growth rates. A drawback is that in some cases the
discrete exponential modes do not form a complete set of eigenmodes. Also,
as we have seen in Section 9.3.1 for Vlasov systems, exponential modes exist
only in a time-asymptotic sense. It seems, however, that these deficiencies
do not cause serious problems in practical applications.

Lyapunov’s theory (Zubov, 1964; Arnold, 1979; Holm et al., 1985) con-
centrates on exact formal definitions and criteria of stability and instability.
Perturbations are measured by distances defined in a metric function space,
allowing for nonlinear perturbations.

A more physics-oriented approach (energy approach) counts a system as
stable if a suitably selected test energy remains bounded by the energy
supplied from external sources. For stability of static equilibria the test
energy is simply the kinetic energy of bulk flow.

Interestingly, all these schemes largely agree in the resulting stability cri-
teria. For instance, the familiar MHD energy principle (Hain et al., 1957;
Bernstein et al., 1958) results in each case.

We prefer the energy approach, because it turns out to be useful not only
for MHD but also for Vlasov systems. Predominantly, the energy approach
provides us with criteria that are sufficient for stability. Necessity requires
additional considerations.

10.2 Ideal MHD stability

Here we give a brief derivation of the MHD energy principle and discuss a
number of special cases and applications in detail. The derivation should
illustrate the usefulness of the energy approach, which later will also be
applied to kinetic systems.

10.2.1 The energy principle

Let us consider an ideal MHD system with a spatial domain D, a state being
symbolized by a suitable state vector g, and a solution of the MHD equations
by g(t) satisfying initial conditions g(t0) and the boundary conditions. The
equilibrium state g0 is magnetohydrostatic. For time t ≥ t0 the system
is closed in the sense that the energy flux through the boundary vanishes.
Then, equation (3.79), integrated over D, gives energy conservation

dW (g(t))
dt

= 0, W (g(t)) = T (g(t)) + V(g(t)), (10.1)
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where

T (g) =
∫

D

ρv2

2
d3r (10.2)

V(g) =
∫

D

(
p

γ − 1
+

B2

2µ0

)
d3r . (10.3)

In deriving (10.1) Gauss’s integral theorem was used.
Obviously, T is the kinetic energy of bulk motion, which is non-negative,

and V, at least formally, takes the role of the potential energy.
The system is allowed to have energy exchange with the surroundings

only for t < t0, so that for t ≥ t0 it has a (constant) energy, which can be
different from the equilibrium value W (g0). Let g = g0 + ∆g, ∆W (∆g) =
W (g0 + ∆g) − W (g0), ∆T (∆g) = T (g0 + ∆g) − T (g0) and ∆V(∆g) =
V(g0 + ∆g) − V(g0), where the equilibrium is kept fixed. Here we have
included T (g0) for a later (non-MHD) application.

From (10.1), evaluated at some time t and for the equilibrium, and taking
the difference, one obtains

∆T (∆g(t)) = ∆W (∆g(t)) − ∆V(∆g(t)) (10.4)

where ∆W (∆g(t)) is constant in time. We use the following stability
definition:

An equilibrium is stable if for all t

∆T (∆g(t)) < ∆W (∆g(t)) for all ∆g(t0). (10.5)

In other words, the kinetic energy can only draw from the energy that
was transferred to the system in the period before t0. There is no dynamic
conversion of equilibrium energy into kinetic energy (of bulk motion).

From (10.4) it is obvious that a system is stable if

V(∆g) > 0 for all ∆g �= 0. (10.6)

For comparison with Lyapunov-based stability notions it should be noted
that ∆T is not necessarily a norm in state space. For ∆T = 0 the plasma
velocity v vanishes but a static perturbation (neighbouring equilibrium) is
not excluded. However, in practice this subtle difference seems to be irrele-
vant. Also, we argue that the energy approach more directly corresponds to
the intuitive notion of a large scale plasma instability. (Note that a static
perturbation with vanishing kinetic energy requires infinite time.)
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The criterion (10.6) is not subject to any amplitude restriction. But for
the further analysis we turn to the linearized case, valid for small perturba-
tions. (Note, however, that the perturbations can be renormalized once the
equations have been linearized.)

The equations for the perturbations are obtained from (3.58)–(3.64), lin-
earized in the perturbations (subscript ‘1’) of the static equilibrium quanti-
ties (subscript ‘0’) satisfying (5.1)–(5.3). In the absence of a gravity force
we find

∂ρ1

∂t
+ ∇ · (ρ0v1) = 0 (10.7)

ρ0
∂v1

∂t
= −∇p1 + j1 × B0 + j0 × B1 (10.8)

E1 + v1 × B0 = 0 (10.9)

∂p1

∂t
+ v1 · ∇p0 + γp0∇ · v1 = 0 (10.10)

∇× E1 = −∂B1

∂t
(10.11)

∇ · B1 = 0 (10.12)

∇× B1 = µ0j1 , (10.13)

where (10.7) has been used to derive (10.10).
After eliminating E1 and j1 by (10.9) and (10.13), the equations (10.7),

(10.10) and (10.11) can be used to express ρ1, p1 and B1 by the displace-
ment vector ξ, which describes the displacement of a fluid element from its
equilibrium position r0 to its perturbed position r at time t,

r(t) = r0 + ξ(r0, t). (10.14)

Although this is a Lagrangian concept, for the present linearized version
we can replace r0 by r in the argument of ξ and retain the Eulerian point
of view, keeping in mind that all perturbations vanish for ξ ≡ 0 and that
(10.14) implies that

v1(r, t) =
∂ξ(r, t)

∂t
. (10.15)

The required closure with respect to energy is achieved by imposing the
boundary condition that ξ vanishes on the boundary. This implies that
there is no plasma flow across the boundary and that, for a non-vanishing
normal magnetic field component, there is no transport of the field line
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footpoints (line-tying). Also, there is no Poynting flux across the boundary.
We will refer to this kind of boundary as a closed boundary, it is also known
as rigid-wall.

After integration with respect to time we find

ρ1 = −∇ · (ρ0ξ) , (10.16)

p1 = −γp0∇ · ξ − ξ · ∇p0 (10.17)

B1 = Q, Q = ∇× (ξ × B0) . (10.18)

Using these expressions in (10.8) with (10.13) gives

ρ0
∂2ξ

∂t2
= F (ξ) , (10.19)

where

F (ξ) = ∇(γpo∇ · ξ + ξ · ∇p0) +
1
µ0

(∇× Q) × B0 + j0 × Q . (10.20)

Equation (10.19) has the form of an equation of motion with force F .
We are now in a position to show that the first variation V1 of V vanishes

at the equilibrium, as can be expected from a functional playing the role of
a potential energy. That variation is obtained by linearization of (10.3) with
respect to the perturbations,

V1 =
∫

D

(
B0 · B1

µ0
+

p1

γ − 1

)
d3r

=
∫

D
ξ · (∇p0 − j0 × B0)d3r

= 0 , (10.21)

where (10.17) and (10.18) were used and two integrations by parts were car-
ried out with the surface integrals vanishing because of the boundary con-
dition. The last step in (10.21) makes use of the fact that the unperturbed
quantities satisfy the force balance of magnetohydrostatics (5.6). Thus, V
is stationary in equilibrium.

Continuing the search for T and V in the small perturbation limit we
express these functionals as quadratic functionals of ∂ξ/∂t and ξ, denoted
by T2 and V2. A convenient way to find these quantities is to derive energy
balance from the linear equation of motion (10.19). Multiplying (10.19) by
ξ̇ (short for ∂ξ/∂t) and integrating over the domain D one finds

d
dt

∫
D

1
2

ρ0 ξ̇
2
d3r =

∫
D

ξ̇ · F (ξ)d3r . (10.22)
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At this stage it is important that the force (10.20), understood as a linear
operator acting on ξ, is symmetric, such that∫

D
ξ1 · F (ξ2) d3r =

∫
D

ξ2 · F (ξ1) d3r . (10.23)

This property holds for arbitrary smooth, real displacements ξ1 and ξ2 sat-
isfying the boundary condition. For a derivation of (10.23) see, for instance,
Appendix A of Freidberg (1987). Making use of (10.23) we write (10.22) in
the form

d
dt

∫
D

1
2

ρ0 ξ̇
2
d3r =

1
2

∫
D

ξ̇ · F (ξ) d3r +
1
2

∫
D

ξ · F (ξ̇) d3r (10.24)

=
1
2

d
dt

∫
D

ξ · F (ξ) d3r , (10.25)

which, by integration with respect to time gives us second-order energy
conservation in the form

W2 = T2 + V2 (10.26)

with

T2 =
1
2

∫
D

ρ0 ξ̇
2
d3r (10.27)

V2 = −1
2

∫
D

ξ · F (ξ)d3r (10.28)

and W2 being a constant.
Using (10.20) one finds, after integration by parts, the following explicit

expression for V2,

V2 =
1
2

∫
D

(
Q2

µ0
+ γp0(∇ · ξ)2 + j0 · ξ × Q + ∇ · ξ ξ · ∇p0

)
d3r . (10.29)

For applications it is useful to note that the parallel component ξ‖ =
B0 · ξ/B0 drops out of the last two terms in the integrand of (10.29).

The MHD problem is now in a form that allows us to apply the local (i.e.,
small perturbation) version of the criterion (10.6). Thus, we can draw the
conclusion that for an ideal MHD system it is sufficient for local stability
that V2 > 0 holds for all perturbations ξ that do not vanish identically and
that satisfy the boundary condition.

So stability can be assessed by finding the minimum of (10.29), which
exists in typical applications. (There is no maximum, because for a suffi-
ciently small spatial scale of the test displacements the positive expression
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Q2/µ0 +γp0(∇·ξ)2 in (10.29) dominates and becomes arbitrarily large com-
pared with the other terms.)

For evaluating the minimum it is appropriate to introduce a normalization
condition, such as

1
2

∫
D

ρ0ξ
2d3r = c0 , (10.30)

where c0 is a positive constant. (10.30) excludes the trivial displacement
(ξ = 0) and keeps negative minima bounded.

For the remaining part of this section, let us use (10.30) and assume that
V2 has a minimum V2,m with minimizing test displacement (minimizer) ξm.
Then a system is stable if V2,m > 0.

The minimizer satisfies the Euler–Lagrange equation associated with the
functional V2 given by (10.28)

−F (ξ) = λρ0ξ . (10.31)

The derivation of (10.31) uses (10.23). The eigenvalue λ is the Lagrangian
multiplier associated with the condition (10.30), it is real because of (10.23).
The lowest eigenvalue has the same sign as the minimum of V2, so that λm >

0 implies stability. The eigenfunction associated with λm is the minimizer.
A modification is necessary if an external gravity field is included. The

corresponding generalization of (10.29) is

V2 =
1
2

∫
D

(
|Q|2
µ0

+ j0 · ξ∗ × Q + γp0|∇ · ξ|2

+ ∇ · ξ∗ ξ · ∇p0 − ξ∗ · ∇ψ0 ∇ · (ρ0ξ)
)

d3r , (10.32)

where ψ(r) is the gravity potential.
We have written (10.32) in a form that demonstrates the changes that

occur if one uses complex displacements (the definition of the dot product
left unchanged). Note that the restriction to real displacements does not
imply a loss of generality. Nevertheless, a complex formulation often is
chosen for convenience.

In analogy to (10.23) for real ξ, complex displacements are Hermitean,
i.e., they have the property∫

D
ξ∗1 · F (ξ2) d3r =

∫
D

ξ2 · F (ξ∗1) d3r , (10.33)

where the star denotes the conjugate complex quantity. Equation (10.33)
ensures real eigenvalues for complex displacements.
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For reasons of comparison let us briefly discuss what one obtains by choos-
ing the exponential time-dependence in (10.19). Using the complex formu-
lation one finds

−F (ξ) = ω2ρ0ξ , (10.34)

where ω2 takes the role of the eigenvalue. Since (10.31) and (10.34) have
the same eigenvalue spectrum we obtain full agreement for stable systems.
For both stability notions it is sufficient for stability that all eigenvalues are
positive.

The energy approach does not provide criteria for instability. In view of
the agreement for stable systems we adopt the exponential-mode criterion,
giving instability if there exists a negative eigenvalue.

An approach by Laval et al. (1965) avoids the incertitude regarding ex-
ponential modes by using the energy approach for stability and by giving
an explicit proof of unbounded growth for the cases where V2 assumes a
negative value. The result is fully consistent with the present approach.

We can summarize the results on MHD stability by the criterion:

It is necessary and sufficient for local stability of an ideal MHD
system that the functional V2(g) is positive for all perturbations g

satisfying the boundary conditions. The system is unstable if there
exists a perturbation for which V2 is negative.

(10.35)

This formulation does not address states with vanishing minimum of V2

(marginal states); they form a separate category. They often can be ignored
as being of zero measure.

10.2.2 Properties and specializations

Here we discuss a number of qualitative properties of the MHD energy func-
tional V2 and specialize it for several choices of invariance. In each case it
is assumed that the displacement vector ξ vanishes on the boundary of the
domain D considered.

Role of pressure gradient and parallel current

Pressure gradients in combination with the curvature of magnetic field lines
as well as the presence of a component of the electric current density parallel
to the magnetic field play a particularly important role for MHD instabilities.
There is a form of the MHD variational principle that exhibits these features
explicitly. For a discussion of this form we ignore gravity, which, however,
will be included in one of the cases considered farther below.
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Then, for real ξ, the variational functional is given by (10.29), which can
be rewritten in the form

V2 =
1
2

∫
D

(
Q2

⊥
µ0

+
B2

0

µ0

(
∇ · ξ⊥+ 2 ξ⊥ · κ

)2 + γp0(∇ · ξ)2

− 2 ξ⊥ · κξ⊥ · ∇p0 − j0‖(ξ⊥× b0) · Q⊥

)
d3r . (10.36)

Here, the subscripts ⊥, ‖ denote the components perpendicular and parallel
to the magnetic field, e.g., ξ⊥ = b0 × (ξ× b0) and j0‖ = b0 · j0, b0 being the
unit vector in the direction of B0, and κ is the field line curvature vector

κ = b0 · ∇b0 . (10.37)

For a detailed derivation of (10.36) see Freidberg (1987).
All but one of the terms in (10.36) contain only ξ⊥, the parallel com-

ponent of the displacement enters only through (∇ · ξ)2. This property
allows for an explicit minimization with respect to ξ‖, generating a func-
tional that contains ξ⊥ only. A complicating feature of this procedure is
that a spatial average appears in the integrand of the resulting functional
(see Section 10.2.5).

The first three terms in (10.36) are non-negative and thus stabilizing.
Instabilities can arise only from the fourth and fifth terms containing a
combination of curvature and pressure gradient and parallel current density,
respectively. Instability requires that the sum of these terms becomes suffi-
ciently negative to overcome the other terms. Therefore, depending on the
dominating term in (10.36), one distinguishes between instabilities based on
pressure gradients and curvature and instabilities based on parallel currents.
The former require that in a sufficiently large region ξ⊥·κ and ξ⊥·∇p0 have
the same sign. Particularly favourable for instability are regions where κ

and ∇p0 are parallel. This is relevant for the ballooning mode discussed in
Section 10.2.5.

Inspection of (10.36) also indicates that an MHD instability is a macroin-
stability, i.e., an instability that possesses a spatial scale that is comparable
with or larger than the smallest equilibrium scale. This can be seen by
observing that perturbations ξ with spatial scales much smaller than the
equilibrium scales in all directions are stable. As the positive-definite terms
involve two derivatives of ξ and the last two terms contain only one deriv-
ative, V2 will be positive for sufficiently small perturbation scales. If the
perturbation has different scales in different directions, it turns out that at
least one of the scales must be comparable with or larger than the smallest
equilibrium scale.
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Significance of the steady state potential T for stability

In Chapter 7 we have seen that under fairly general conditions the steady
state potential T acts as a Lagrangian for steady states in the sense that
the steady state field equations can be obtained from the condition that the
first variation of the integral

U =
∫

D
T d3r (10.38)

vanishes.
Here we raise the question whether, in the present context of ideal MHD,

the second variation of U provides information on stability properties.
As in the steady state discussion we assume that the magnetic field pos-

sesses Euler potentials α, β. Then, for ideal MHD the potential T is given
by (7.9), such that U has the form

U =
∫

D

(
(∇α ×∇β)2

2µ0
− p(α, β)

)
d3r . (10.39)

The aim is to compare U2, the second variation of U , with V2. To ob-
tain a meaningful comparison we must establish a relationship between the
displacement vector ξ and the perturbations δα and δβ of the Euler poten-
tials. This relationship is provided by the frozen-in condition of ideal MHD,
which implies that potentials α and β can be found which are constants of
the motion, such that in linearized form

∂δα

∂t
+ v · ∇α0 = 0 ,

∂δβ

∂t
+ v · ∇β0 = 0 . (10.40)

Integration of (10.40) with respect to time, observing the appropriate initial
condition that perturbations vanish for ξ = 0, gives

δα = −ξ · ∇α0 , δβ = −ξ · ∇β0 . (10.41)

Taking into account that the first variation of U vanishes, we find the second
variation as

U2 =
1
2

∫
D

(
1
µ0

(∇δα ×∇β0 + ∇α0 ×∇δβ)2 +
2
µ0

B0 · ∇δα ×∇δβ

− ∂2p0

∂α2
0

δα2 − 2
∂2p0

∂α0∂β0
δαδβ − ∂2p0

∂β2
0

δβ2

)
d3r , (10.42)

where B0 = ∇α0 ×∇β0 and δα and δβ have to be inserted from (10.41).
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After appropriate manipulation of U2 including integration by parts, the
comparison with V2 gives

V2 = U2 +
∫

D
γp0(∇ · ξ)2d3r (10.43)

consistent with the fact that U and V coincide for the (formal) choice of γ =
0. As the additional term on the right side of (10.43) is non-negative, U2 ≥ 0
for all ξ vanishing on the boundary is sufficient for stability. Necessity cannot
be expected because the adiabatic constraint has not been incorporated into
the formulation of U2.

Thus we can conclude that for ideal MHD the notion of the steady state
potential T is useful not only for formulating the steady state field equations
but also for assessing stability properties. It will be interesting to find out
in future studies whether the same is true for the other plasma models
discussed in Chapter 7.

3D perturbations of 2D equilibrium

Let ∂/∂y = 0 for the equilibrium quantities while the perturbations are
kept fully three-dimensional. If an external gravity force is included, the
equilibrium is described by T̂ as given by (7.27), specialized for systems
with translational invariance,

T̂ (A, B, ψ) =
B2

2µ0
− P (A, ψ) . (10.44)

Note that this description requires that ∇A, ∇B and ∇ψ do not lie in a
plane everywhere. A case violating that condition will be discussed later.
The pressure p is written as P (A, ψ), and density satisfies

ρ = −∂P (A, ψ)/∂ψ . (10.45)

The assumed symmetry allows us to rewrite (10.32) in the form (Schindler
et al., 1983)

V2 =
1

2µ0

∫ { ∣∣∣∣B · ∇A1

Bp

∣∣∣∣2 + Vc|A1|2 + |By∇ · ξp − Bp · ∇ξy|2

+
∣∣∣∣∇A · ∇A1 + JA1

Bp
− ∂

∂y
(Bpξy − Byξp‖)

∣∣∣∣2
+ µ0

(
γp +

ρ2

∂ρ/∂ψ

)
|∇ · ξ|2 − µ0

∂ρ

∂ψ

∣∣∣∣ξ · ∇ψ +
ρ

∂ρ/∂ψ
∇ · ξ
∣∣∣∣2}d3r ,

(10.46)
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where

A1 = −ξ · ∇A, (10.47)

Vc = ∇ · J∇A

B2
p

− J2

B2
p

− ∂J

∂A
(10.48)

and

J = µ0jy = µ0
∂

∂A

(
p +

B2
y

2µ0

)
(10.49)

(see (5.80) noting that the ignorable coordinate has changed from z to y).
As in Section 5.2.1, Bp is the poloidal part of the magnetic field, i.e., per-
pendicular to the invariant direction. The component of ξ perpendicular
to Bp is represented by A1, the component parallel to Bp by ξp‖. Note
that the subscript ‘0’ has been dropped for all equilibrium quantities. An
alternative form of (10.46) was given by de Bruyne and Hood (1989).

Using A1 as a test function the following precaution has to be taken.
Since ξ by definition is unrestricted (except for continuity and boundary
conditions), (10.47) implies that A1 is subject to the constraint

A1 = 0 where Bp = 0 . (10.50)

In the absence of gravity (10.46) reduces to

V2 =
1

2µ0

∫ { ∣∣∣∣B · ∇A1

Bp

∣∣∣∣2 + Vc|A1|2 + |By∇ · ξp − Bp · ∇ξy|2

+
∣∣∣∣∇A · ∇A1 + JA1

Bp
− ∂

∂y
(Bpξy − Byξp‖)

∣∣∣∣2 + µ0γp|∇ · ξ|2
}

d3r . (10.51)

In (10.46) one can distinguish two different effects that in principle might
give rise to instability. The second term of the integrand shows that suitable
current distributions might cause instability. This term combines the effect
of pressure-gradient/curvature with that of parallel currents. The terms
involving the gravity potential ψ in (10.46) can cause instability for suitable
density distributions.

3D perturbations of 1D equilibrium

Here we consider the equilibria of Section 5.3.1 with a magnetic field of the
form

Bp = Bx(z)ex, By = By(z) , (10.52)
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there is no external gravity force so that (10.51) applies. So, in principle, the
Vc term is the only term that could give rise to instability. However, with the
choice (10.52), one finds that Vc vanishes, such that V2 is non-negative for
all perturbations. The equilibria are stable with respect to arbitrary ideal
MHD modes. In particular, this applies to the specializations discussed in
Section 5.3.1, the rotating field and the Harris sheet.

We add that for the present simple equilibria one can rewrite V2 in the
form

V2 =
1

2µ0

∫ {
|B · ∇ξ − B∇ · ξ|2 + γp|∇ · ξ|2

}
d3r . (10.53)

In the first term of the integrand ξ can be replaced by ξ⊥. Clearly, the ex-
pression (10.53) can also be found directly from the general form of (10.32),
ignoring gravity, but the procedure is rather cumbersome.

It is worthwhile pointing out that of the two destabilizing terms in (10.36)
only the curvature term vanishes, because all field lines are straight lines.
The j‖ term does not necessarily vanish, but, as (10.53) implies, that term
cannot lead to negative values of V2 for the present equilibria.

2D perturbations of 2D equilibrium

Let us now assume two-dimensionality in the sense that translational invari-
ance with respect to the y-direction is imposed on both the equilibrium and
perturbed states. Here, for convenience, the term ‘stability’ is used in the
same restricted sense, applying to two-dimensional modes only. It suffices
to limit the spatial integrations to the x, z-plane.

Then, after integration by parts of the term |A1|2∇ · (J∇A/B2
p), which

needs (10.50), one finds that (10.46) assumes the form

V2 =
1

2µ0

∫ {
|∇A1|2 −

dJ

dA
|A1|2 + |By∇ · ξp − Bp · ∇ξy|2

+ γµ0p

(
1 +

ρ2

γp∂ρ/∂ψ

)
|∇ · ξ|2

− µ0
∂ρ

∂ψ

∣∣∣∣ξ · ∇ψ +
ρ

∂ρ/∂ψ
∇ · ξ
∣∣∣∣2}d2r . (10.54)

Let us first look at the effect of gravity. It is sufficient for the absence of
gravity-associated instabilities that

1 +
ρ2

γp∂ρ/∂ψ
≥ 0 . (10.55)
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In order to see the physical significance of (10.55), let us discuss the limiting
case,

∂ρ

∂ψ
= − ρ2

γp
. (10.56)

With the help of (10.45), the equation (10.56) is easily shown to be solved
by p/ργ = c(A), where c(A) is an integration constant with respect to ψ.
Thus, the limiting case corresponds to an adiabatic pressure profile on each
field line. This is in agreement with the well-known limiting case of the
convection instability (Lang, 1974), which we obtain here for each field line
separately.

In the absence of gravity the functional (10.54) reduces to

V2 =
1

2µ0

∫ {
|∇A1|2 −

dJ

dA
|A1|2 + |By∇ · ξp − Bp · ∇ξy|2

+ γµ0p|∇ · ξ|2
}

d2r . (10.57)

From (10.57) one can obtain the following stability result. If (after suit-
able rotation of the coordinate system in the x, z-plane) there exists a non-
vanishing Cartesian component of the poloidal magnetic field Bp, the func-
tional (10.57) is positive definite, implying stability.

For a proof let us consider the functional

F2 =
1

2µ0

∫ {
|∇A1|2 −

dJ

dA
|A1|2

}
d2r . (10.58)

In view of (10.57) positive-definiteness of F2 is sufficient for stability for the
present class of 2D perturbations. Arranging the coordinate system such
that the non-vanishing component of Bp is the x-component and differen-
tiating the Grad–Shafranov equation of the equilibrium (see (5.78) but the
invariant direction adjusted to y) with respect to z gives

−∆Bx =
dJ

dA
Bx . (10.59)

Using (10.59) the functional (10.58) can be written as

F2 =
1

2µ0

∫ {
|∇A1|2 +

∆Bx

Bx
|A1|2

}
d2r . (10.60)

Now let us substitute A1 = ηBx, which after integration by parts gives

F2 =
1

2µ0

∫
B2

x|∇η|2d2r , (10.61)
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which is positive definite for unrestricted η. As Bp does not vanish the
restriction (10.50) does not apply and A1 is unrestricted. The condition
Bx �= 0 assures that property of A1 for unrestricted functions η. This
completes the proof.

For reasons of reference we add that (10.58) is the second variation of

F =
∫ (

(∇A)2

2µ0
− p(A)

)
d2r, (10.62)

the first variation vanishes (Grad, 1964).
For one-dimensional sheets of the form (10.52) the same argument proves

stability for arbitrary Bx(z). At points where Bx vanishes the substitution
A1 = ηBx generates a constraint on A1 that is equivalent to (10.50), and
therefore admissible. For the present class of 2D perturbations this result
confirms the stability of fields of the form (10.52) shown above for 3D per-
turbations.

Remark on the significance of the constraint (10.50)

Here we return to the constraint (10.50) and illustrate its significance by a
simple example, the Harris sheet introduced in Section 5.3.2, subject to 2D
perturbations. Using the same dimensionless formulation as in Section 5.3.2,
we obtain

F2 =
1
2

∫ {
|∇A1|2 −

2
cosh2(z)

|A1|2
}
dxdz . (10.63)

Here, without loss of generality, modes of the form

A1(x, z) =
√

k/2π exp(ikx)a(z) (10.64)

are chosen and the x-integration is extended over the period 2π/k.
First, let us minimize this functional without the constraint (10.50) by

solving the corresponding Euler–Lagrange equation. As that equation is
linear-homogeneous in A1 we are free to choose a normalization condition,
which we set to

∫
|A1|2/2 dx dz = 1 which implies

∫∞
−∞ |a|2/2 dz = 1. Intro-

ducing a corresponding Lagrangian multiplier λ we find the Euler–Lagrange
equation in the form of the eigenvalue equation

−a′′ − 2
cosh2(z)

a = Λa (10.65)

which is a one-dimensional eigenvalue problem of the Sturm–Liouville type
(Morse and Feshbach, 1953) with the eigenvalue Λ = λ − k2. The lowest
eigenvalue λ equals the minimum value of F2.
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Equation (10.65) has a solution

Λ0 = −1, a0 =
1

cosh(z)
. (10.66)

This solution satisfies the boundary condition (a(±∞) = 0) and has no zeros
and therefore Λ = −1 is the lowest eigenvalue. As k is arbitrary, the choice
k → 0 leads to the lowest eigenvalue λ = −1. Thus, the minimum of F2 is
negative.

If we take the constraint (10.50) into account, it is clear that the solution
(10.66) has to be removed because it violates the constraint (at z = 0). This
removal is realized by setting A1 = Bxη with η being continuous. However,
as shown above (see (10.61)), there is no η that makes F2 negative. So, the
Harris sheet is stabilized by the frozen-in constraint.

For later reference we add here that this argument implies that Λ0 is
the only negative eigenvalue of (10.65). If there was a second negative
eigenvalue, the corresponding eigenfunction would be antisymmetric with
respect to z and therefore it would satisfy the constraint (10.50), implying
that a function η would exist with the corresponding F2 being negative.
This contradicts (10.61).

The case By = 0

For By = 0 the functional (10.57), minimized with respect to ξy, reduces to

V2 =
1
2

∫ ( |∇A1|2
µ0

− dj0

dA0
|A1|2 + γp0|∇ · ξ|2

)
dx dz, (10.67)

subject to (10.50). Minimizing with respect to the component ξ‖ = ξ·B0/B0

one obtains a functional of A1 alone. The corresponding Euler–Lagrange
equation is B0 · ∇(∇ · ξ) = 0, such that

∇ · ξ = g(A0) (10.68)

where g(A0) is determined in the following way. Noting that the perpendic-
ular component of ξ is −A1∇A0/B2

0 , one writes (10.68) as

B0
∂

∂s0

(
ξ‖
B0

)
−∇ ·

(
A1∇A0

B2
0

)
= g(A0) . (10.69)

Dividing (10.69) by B0, integrating with respect to s0 and taking into ac-
count that ξ‖ vanishes on the boundary, one finds

−
∫

∇ ·
(

A1∇A0

B2
0

)
ds0

B0
= V (A0)g(A0) (10.70)
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where V (A0) is the differential flux tube volume
∫

ds0/B0. Noting that∫
· · ·ds0/B0 = (d/dA0)

∫
D(A0) · · ·dx dz, where the domain DA0 is bounded

by the field line A0 and by the boundary, and applying Gauss’s theorem one
obtains g(A0) = −Q1(A0), where

Q1 =
1

V (A0)
d

dA0

∫
A0

A1
ds0

B0
. (10.71)

Inserting g(A0) for ∇ · ξ in (10.67) one obtains the minimum of V2 in the
form

V2 =
1
2

∫ ( |∇A1|2
µ0

− dj0

dA0
|A1|2 + γp0|Q1|2

)
dx dz , (10.72)

subject to (10.50). This functional will be recovered later in the discussion
of Vlasov plasmas.

If the equilibrium is one-dimensional with B = Bx(z)ex and infinitely
extended along x, one chooses perturbations of the form (10.64) which gives
Q1 = 0, so that

V2 =
1
2

∫ ( |∇A1|2
µ0

− dj0

dA0
|A1|2

)
dx dz , (10.73)

subject to (10.50).

10.2.3 Rayleigh–Taylor instability

Here, we return to the case of two-dimensional perturbations of a one-
dimensional equilibrium, however, taking gravity into account. Suppose
that the equilibrium magnetic field has a y-component only, that By, pres-
sure p and density ρ depend on z only, and that the gravity force points
into the negative z-direction such that ψ = gz where g is a constant gravity
acceleration. Note that in this case the gradients of A, B and ψ are coax-
ial such that the equilibrium representation (10.44), (10.45) breaks down.
Therefore, we treat this degenerate case separately. For simplicity, we con-
fine the discussion to two-dimensional (∂/∂y = 0) displacements ξ, which
are incompressible (i.e., ∇ · ξ = 0), and lie in the poloidal plane (ξy = 0).
Under these conditions the equilibrium is characterized by the equation

d
dz

(
p(z) +

By(z)2

2µ0

)
+ ρ(z)g = 0 (10.74)

and the general expression (10.32) for V2 reduces to

V2 = −g

2

∫
ρ′|ξz|2d3r, ρ′ =

dρ

dz
, (10.75)
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where all but the last term in (10.32) have cancelled out. We conclude that
there is instability for ρ′ > 0, i.e., for heavier fluid layers located above
lighter fluid layers. Perturbations will grow by lowering the centre of mass
of the fluid, which thereby gains potential energy.

Since both the magnetic field perturbation Q = −ξzB
′
y(z)ey and the

equilibrium magnetic field have y-components only, the perturbation simply
consists of rearrangement of straight magnetic field lines together with the
plasma. This perturbation can be described as an ‘interchange’ of plasma
and magnetic flux leading to a net gain of gravitational potential energy.
Field line curvature can have a similar effect.

10.2.4 Kink instability of plasma columns

Here we briefly consider a particular instability of a cylindrical plasma
column. For concreteness let us assume that the column has a radius
r0 and that it is surrounded by a vacuum region (r > r0). The equi-
librium is static and is independent of ϕ and z, using cylindrical co-
ordinates r, ϕ, z. The invariance properties suggest modes of the form
f(r, ϕ, z) = f̂(r) exp(imϕ + ikz) for any perturbation quantity f . It turns
out that the modes with m = ±1 are most difficult to stabilize. These are
the kink modes. They lead to helical deformations of the column (Fig. 10.1).
The physical reason is that the azimuthal magnetic field is deformed such
that magnetic forces enhance the perturbation (Fig. 10.1). The instability
is absent if there is no longitudinal current so that the azimuthal magnetic
field vanishes. Another stable configuration is a column with a sufficiently
small length Lz together with a finite longitudinal magnetic field. Details
can be found in the plasma literature (e.g., Freidberg, 1987). Here we just
add a remark on the mechanism.

The instability is based on a resonance between the helices defined by the
perturbation with wave number k = (m/r)eϕ + kez and the helix traced
by a field line. The resonance condition is given by k · B = 0. As this is
a local condition, depending on the radius r, one has to identify the most
unstable helix. Consider the case where the resonance is in the vacuum
region (external kink mode). As the external Bz-component is constant and
Bϕ ∝ 1/r the external resonance condition becomes independent of r, so
that one can formulate it at r = r0. Thus, using that kLz ≥ 2π, one finds
that for kink modes resonance is absent if and only if∣∣∣∣Bϕ(r0)

Bz

∣∣∣∣ < 2πr0

Lz
. (10.76)



10.2 Ideal MHD stability 221

z z

Fig. 10.1 The kink instability leads to a helical deformation (right) of a cylindrical
plasma column (left). The field lines of the azimuthal magnetic field become denser
on the inner side causing a net magnetic force, so that an initial helical perturbation
grows.

Expressed in terms of the longitudinal current Iz, the limiting current for
a stable column is given by

Iz =
(2πr0)2Bz

µ0Lz
(10.77)

which is known as the Kruskal–Shafranov limit.
For the prototype field of a force-free column (Gold and Hoyle, 1960)

Bϕ = B0
r/a

1 + (r/a)2
, Bz = B0

1
1 + (r/a)2

(10.78)

a rough estimate is obtained from (10.77) by identifying a with r0, which
gives Lz/a = 2π as the stability limit. A rigorous approach (Hood and
Priest, 1981) for a closed boundary gave a limit of 2.49π. (See also Einaudi
and van Hoven, 1983 and An, 1984.)

10.2.5 The ballooning limit

Here we turn to instabilities with 3D perturbations that are strongly local-
ized in a direction perpendicular to B. Such modes are generally termed
ballooning modes, they are based on the pressure-gradient/curvature term in
(10.36). We begin with the general case of 3D equilibria and then specialize
for two dimensions including examples. Gravity is ignored.
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Ballooning of 3D equilibria

The localization is introduced by the (eikonal) ansatz

ξ = η eiΣ . (10.79)

The function Σ is constant on field lines (B · ∇Σ = 0) but varies strongly
across B, i.e., ν = |L∇⊥Σ| � 1, where L is a typical equilibrium scale
length; η varies on scale L. The ballooning regime is characterized by as-
ymptotic expressions for large ν. The corresponding asymptotic form of V2

is obtained as (Freidberg, 1987)

V2 =
1

2µ0

∫
d3r
[
|∇ × (η⊥ × B)⊥|2 + B2|ik⊥ · η⊥ + ∇ · η⊥ + 2κ · η⊥|2

− 2µ0(η⊥ · ∇p)(η∗
⊥ · κ) − µ0j‖(η

∗
⊥ × b) · ∇ × (η⊥ × B)⊥

+ µ0γp |∇ · η‖ + ∇ · η⊥ + ik⊥ · η⊥|2
]

, (10.80)

where k⊥ equals ∇Σ. In (10.80) we have added the compressibility term
γp|∇·ξ|2 (the last term), which was left out by Freidberg, who concentrated
on sufficient stability criteria. By using a power expansion η⊥ = η⊥0+η⊥1+
· · · with respect to 1/ν and by minimizing V2 with respect to η⊥0, η⊥1 and
η‖ one finds that the stability problem reduces to finding the minimum of
the one-dimensional functional (Schindler and Birn, 2004)

w =
1

2µ0

∫ [
k2
⊥|b · ∇X|2 − 2µ0

B2
(b × k⊥) · ∇p (b × k⊥) · κ |X|2

+
1
q

∣∣∣2(b × k⊥) · κX/B
∣∣∣2]ds

B
, (10.81)

where s is the distance along field lines and X is defined through the mini-
mizing η⊥0, which is given by Xb × k⊥/B. The bar denotes the average

(· · · ) =
∫

(· · · )ds/B∫
ds/B

, (10.82)

where the integral is extended over the entire field line section inside the
domain under consideration, and

q =
1

µ0γp
+

1
B2

. (10.83)

The last term in (10.81) stems from the compressibility term in (10.80).
To avoid a rather involved discussion of the role of field singularities, it is
assumed that B �= 0 and that all field lines reach the boundary. However,
singularities will be included in the discussion of the two-dimensional case.
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Assuming that B can be represented by Euler potentials as B = ∇α×∇β

(Section 5.1.2) one can arrange the potentials such that Σ depends on β

alone.
Defining X1 = dΣ/dβX one obtains

w =
1

2µ0

∫ [
(∇β)2|b · ∇X1|2 −

2µ0

B2
(b ×∇β) · ∇p (b ×∇β) · κ |X1|2

+
1
q

∣∣∣2(b ×∇β) · κX1/B
∣∣∣2]ds

B
. (10.84)

The expression (10.84) is put into a more compact form by expressing κ

by its covariant components (there is no ∇s-component)

κ = κα∇α + κβ∇β (10.85)

and by introducing the curvature potential Uc

Uc = −2µ0
∂p

∂α
κα . (10.86)

With these expressions (10.84) can be written as

w =
1

2µ0

∫ [
(∇β)2

∣∣∣∂X1

∂s

∣∣∣2 + Uc|X1|2 +
1

q (µ0∂p/∂α)2

∣∣∣UcX1

∣∣∣2]ds

B
. (10.87)

Instability can occur only through the term Uc|X1|2.
As the test function space has been restricted by (10.79) and ν � 1 the

functionals (10.81)–(10.87) can be used only to find instability. Therefore,
it is not a severe additional drawback that the choice of k⊥ in (10.81) (or
of ∇β in (10.84)) is not unique. It suffices to find a particular k⊥ (or ∇β)
that leads to an unstable field line. As seen below, for symmetric equilibria
an appropriate choice is to have ∇β point in the invariant direction.

Rotational invariance

As a first symmetric case let us choose a system which in cylindrical coor-
dinates r, ϕ, z is characterized by ∂/∂ϕ = 0 and Bϕ = 0. Then one can set
α = rAϕ(r, z), where Aϕ is the ϕ-component of the vector potential, and
β = ϕ (see Section 5.2.3). It will be seen below that this choice of β is the
most efficient one.

For such systems (10.87) becomes

w =
1

2µ0

∫ [
1
r2

∣∣∣∂X1

∂s

∣∣∣2 + Uc,rot|X1|2 +
1

q (µ0p′)2

∣∣∣Uc,rotX1

∣∣∣2]ds

B
(10.88)
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where now

Uc,rot = −2µ0κ · ∇p

r2B2

= −2µ0p
′

B2

(
µ0p

′ +
∇B · ∇α

r2B

)
(10.89)

and p′ = dp(α)/dα.
An expression equivalent to (10.88) was obtained by Bernstein et al.

(1958), who also showed that negative values of (10.88) are not only suf-
ficient but also necessary for instability. This confirms that the invariant
direction is the most efficient direction of ∇β.

Interchange mode

In one of their applications of (10.88) Bernstein et al. (1958) assumed lon-
gitudinal periodicity of equilibrium and perturbations in such a way that
functions X1 that are constant along field lines can be admitted as test
functions. (The energy principle remains valid, although the boundary con-
ditions differ from the closed boundary case considered here.) Also, it is
assumed that the field lines pass through the entire period (Fig. 10.2). For
constant X1 one finds from (10.88)

w =
|X1|2V

2µ0

(
Uc,rot +

Uc,rot
2

q (µ0p′)2

)
, (10.90)

where

V =
∫

ds

B
(10.91)

is the differential flux volume.

( a,b )

a0

( a,b+δb )
z=0 z=z0

z

r

Fig. 10.2 The integration domain over which the identity (10.94) is integrated.
The equilibrium quantities are periodic in z with period z0; the upper boundary
is a surface generated by the field lines (α, β′) with β ≤ β′ ≤ β + δβ.
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The expression (10.90) can be put in a more useful form by employing the
relationship

VcUc,rot + q (µ0p
′)2 =

µ0p
′2

γ

dS

dp
, (10.92)

where

S = ln (pV γ) (10.93)

is the flux tube entropy.
The relationship (10.92) is found from the identity

∇ ·
(

P ′∇α

r2B2

)
= P ′′ + Uc,rot +

P ′2

B2
, (10.94)

where P = µ0p. Integrating (10.94) over the domain shown in Fig. 10.2 and
applying Gauss’s theorem, taking into account the assumed periodicity, one
finds for infinitesimal δβ

δβP ′V = δβ

∫ α

α0

dα

∫
ds

B

(
P ′′ + VcUc,rot +

P ′2

B2

)
. (10.95)

Differentiating (10.95) with respect to α and using (10.83) one finds (10.92).
Making use of (10.92) in (10.90) one finds

w =
|X1|2V
2µ2

0γ q
Uc,rot

dS

dp
, (10.96)

implying instability for Uc,rot dS/dp < 0. This criterion is equivalent to the
condition Λ < 0 of Bernstein et al. (1958) (see their equation (6.27)).

In important applications (interchange mode) there exist field lines with
Uc,rot<0. In view of (10.89) (first line) this means that field line sections with
the higher pressure on their concave side dominate. Then (10.96) implies
instability if dS/dp > 0.

It should be noted that, because of the assumed periodicity, the inter-
change mode has rather limited applicability. In particular, the interchange
mode does not exist for a closed boundary as it does not allow us to set X1

to a constant. Nevertheless, as shown in the following section the sign of
dS/dp remains relevant for the stability of a particular class of configurations
where the perturbations satisfy ξ = 0 on the boundary.

Translational invariance

Let us now choose equilibria that are independent of the Cartesian
y-component with By = 0 (see Section 5.2.1). Accordingly, we set α =
A(x, z), where A(x, z) is the y-component of the vector potential, and
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β = y. The equilibria have the symmetry A(x,−z) = A(x, z). Then, setting
Σ = Σ(y) and identifying X1 exp(iΣ(y)) with A1 we find that (10.81) reduces
to

w =
1

2µ0

∫ ( ∣∣∣∣∂A1

∂s

∣∣∣∣2 + Vc|A1|2 +
1

J2 q

∣∣VcA1

∣∣2)ds

B
, (10.97)

where J = µ0jy and Uc from (10.86) specializes to Vc as given by (10.48),
which can be written as

Vc = −2µ0

B2
κ · ∇p. (10.98)

For periodic systems one finds a relationship analogous to (10.92), which
reads

Vc + J2q =
J2

µ0γ

dS

dp
(10.99)

and leads to the interchange criterion, which again states instability for
VcdS/dp > 0.

As in the case of rotational invariance, positive-definiteness of (10.97)
is necessary and sufficient for MHD stability. Here, the following simple
explanation is available. The necessity is clear from the restriction of the
test-function space to ballooning modes. The sufficiency can be seen by con-
sidering (10.51) with By = 0. Omitting the positive term |Bp ·∇ξy|2 results
in an expression which implies stability if it is positive-definite. By minimiz-
ing that expression with respect to ξy and ξ‖ one finds (10.97). Interestingly,
the positive term that was left out also disappears in the ballooning limit.
In fact, that is the only change that the ballooning limit causes on (10.51)
with By = 0, so that the same expression arises in both cases. Thus, we
conclude that under the present conditions (2D equilibrium with By = 0 and
closed boundary), positive-definiteness of (10.97) is necessary and sufficient
for stability with respect to arbitrary ideal MHD modes.

MHD stability of magnetotail equilibria

Here, this criterion is used to address stability of magnetotail equilibria
with a closed boundary. The implied line-tying of magnetospheric field lines
at the near-Earth boundary qualitatively represents a highly-conducting
ionosphere, which is a reasonable approximation when the timescale for the
evolution of the instability is short compared to resistive diffusion times at
the ionosphere. Parallel flow is inhibited by the strong near-Earth magnetic
field strength.
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The plasma sheet is a potential candidate for a ballooning instability
based on the strong field line curvature at the vertex of closed field lines
(i.e., field lines passing through the centre of the plasma sheet) with κ ·
∇p > 0. However, there are also stabilizing effects, such as the plasma
compressibility, which also becomes large in the centre of the plasma sheet.
Also, a constant background pressure stabilizes, as it does not contribute to
the destabilizing pressure gradient but increases the compressibility effect
via the quantity q. A detailed study of these effects was carried out by
Schindler and Birn (2004).

In that work the stability was determined by numerical minimizations of
(10.97) for several equilibrium models, considering strongly stretched field
lines, typical for magnetotail configurations. Accordingly, the aspect ratio
ε = Lz/Lx is chosen small compared to 1 (see Section 5.4.1).

Before giving a brief description of the results, for later application we
raise the question how the relationship (10.99) is modified by the boundary
condition (Fig. 10.3). As shown in Schindler and Birn (2004), a procedure
analogous to the corresponding treatment for rotational invariance described
above leads to the relationship

Vc + J2q =
J2

µ0γ
Q , (10.100)

where

Q =
dS

dp
+ cb (10.101)

z

nb A

x0 xv(A)

t (sb)

t (s)

Fig. 10.3 Qualitative shape of a closed magnetic field line A in the plasma sheet
with a conveniently defined running coordinate τ(s). The earthward boundary is
located at x = x0, the vertex at x = v(A).
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with

cb =
γ

JV

[
1

B2

nb · ∇A

|nb · B|

]
sb

, (10.102)

sb denoting the location on field line A where that field line crosses the
boundary, which has an outward-pointing normal nb (Fig. 10.3). In the
present 2D case, integrations

∫
. . .ds are carried out on the field line sections

in the half-plane z > 0.
The expression (10.100) with (10.101) shows that the boundary condition

generates an additional term cb. However, as shown in Schindler and Birn
(2004), for strongly stretched fields cb typically is a small correction (see also
Lee and Wolf (1992)). If at the boundary B is considered as of order 1, one
finds V = O(1/ε), nb · ∇A = O(ε) and nb · B = O(1) so that cb = O(ε2).
So, in an approximate sense, Q equals dS/dp and (10.100) approximates
(10.99). Accordingly, we will see that the entropy derivative dS/dp plays
an important role also for the stability of the present systems with closed
boundary.

As the first example, let us choose an equilibrium represented by the
linear version of the Grad–Shafranov equation (5.136) including a constant
background pressure.

Expressed in non-dimensional variables (formally setting µ0 = 1, see Sec-
tion 5.3.4) the magnetic flux function is given by

A = − 2
π

cos(
π

2
z) e−x1 for 0 ≤ z ≤ 1, (10.103)

A =
1
ε

sin(ε(z − 1)) e−x1 for z > 1, (10.104)

with x1 = εx and A(−z) = A(z). The plasma pressure is

p =
A2

2

(
π2

4
− ε2

)
+ p0 for 0 ≤ z ≤ 1, (10.105)

p = p0 for z > 1. (10.106)

The magnetic field components obtained from (10.103) are

Bx = − sin(
π

2
z) e−x1 (10.107)

Bz =
2ε

π
cos(

π

2
z) e−x1 = −εA . (10.108)
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A set of magnetic field lines is shown in Fig. 10.4. The equilibrium parame-
ters are ε and the pressure ratio K = p0/pm, where pm = (1−4ε2/π2)/2+p0

is the maximum pressure in the domain considered. The closed field lines
are parameterized by v1, the x1-coordinate of the vertex (Fig. 10.3).

For symmetric modes the most interesting feature is the presence of an
unstable region embedded in an extended region of stability (Fig. 10.5).
In the figure the points are the result of numerical minimizations, iterated
for vanishing minimum of (10.97). The smooth curve corresponds to the

Fig. 10.4 Field lines of the model (10.103)–(10.106). The left boundary is placed
at x1 = 0. (Reproduced from Schindler and Birn (2004) by permission of the
American Geophysical Union.)

Fig. 10.5 Stability diagram with ε = 0.1 of the model (10.103)–(10.106). (Repro-
duced from Schindler and Birn (2004) by permission of the American Geophysical
Union.)
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marginal entropy criterion dS/dp = 0. The differences are smaller than the
resolution of the graph. An explanation of this surprising result is provided
below.

Note that a rather small amount of background pressure suffices for com-
plete stabilization.

A typical unstable symmetric mode is sharply peaked at the vertex, where
the combination of pressure gradient and strong curvature provides the free
energy for the instability. As the antisymmetric mode is forced to vanish
at the vertex, it explores the region of large curvature less efficiently, which
stabilizes. Correspondingly, all antisymmetric modes that were investigated
in a scan of parameter space were found stable, in spite of the absence of the
compressibility term. (This is consistent with an exact stability criterion for
antisymmetric modes discussed below.)

The region of open flux (A > 0) is trivially stable. There is no pressure
gradient (see 10.106), such that Vc = 0 and w becomes positive definite.

In the closed field region (described by (10.103), (10.105)) the equilibrium
has a rather strong (exponential) pressure decay along the tail axis. This
seems to destabilize in comparison with models that show a more gradual
pressure variation. This point was investigated with the help of the model
(5.133), where the pressure on the x1-axis is given by (1 + 1/(2

√
x1))2/2,

showing a rather moderate decrease compared with the exponential law
of the first model. Numerical minimizations gave stability for the entire
parameter set studied. Again, this is consistent with the entropy criterion,
as S decreases monotonically with p (see Schindler and Birn (2004)).

Further results are based on the tail asymptotic model discussed in
Section 5.4.1 with the exponential pressure function p(A) and p̂(x1)
chosen as

p̂(x1) =
1

x1
n

(10.109)

where n was varied from 1 to 14. The symmetric modes were found stable
for n < 10 and unstable for higher values of n. Again, this behaviour is
consistent with the entropy criterion, as illustrated in Fig. 10.6.

For the parameters of the study, antisymmetric modes were stable for
n < 6 and unstable above.

The findings of all three models provide the following picture. Instability
occurs only for rather strong x1-dependence of the pressure on the tail axis,
such as p ∝ exp(−x1) or ∝ x−n

1 , n > 10. For symmetric modes rather small
background pressures lead to complete stabilization. Within the numerical
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Fig. 10.6 Entropy S is plotted as a function of the vertex location v1 for the tail
asymptotic model with (10.109). S increases monotonically with v1 for n < 10.
(Reproduced from Schindler and Birn (2004) by permission of the American
Geophysical Union.)

accuracy, stability of symmetric modes was found to be consistent with
the entropy criterion in the form that the modes are stable if and only if
dS/dp < 0.

In contrast to intuitive expectation, the large field line curvature in the
central plasma sheet does not necessarily lead to ballooning instability. Note,
however, that this result was established only for strongly stretched config-
urations; less stretched equilibria may well behave differently (Roux et al.,
1991; Cheng and Zaharia, 2004).

The ballooning stability of tail configurations has been studied by a num-
ber of other authors (Miura et al., 1989; Lee and Wolf, 1992; Hurricane, 1997;
Bhattacharjee et al., 1998; Miura, 2000; Cheng and Zaharia, 2004). In most
cases their results are largely consistent with the findings described above.
A discrepancy with Miura (2000) is likely to be the result of his neglecting
the compressibility term (for details see Schindler and Birn (2004)).

The central role of the entropy criterion, as for instance demonstrated by
Fig. 10.5, can be understood from analytic considerations (Schindler and
Birn, 2004). Here is a brief outline of the arguments. The discussion is con-
fined to the region of closed field lines of 2D equilibria with higher pressure
on the concave side of the field lines, so that κ · ∇p > 0, implying that the
curvature potential Vc is negative. The running coordinate along field lines
is chosen as τ =

∫ s
0 B ds, and the perturbation A1 is written as α(τ). Also,

one uses the fact that the norm of the perturbation employed to obtain the
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Euler–Lagrange equation associated with the variational expression (10.97)
can be chosen arbitrarily. A convenient choice is

1
2

∫ τb

0
α2φ dτ = 1, (10.110)

where τb = τ(sb) corresponds to the near-Earth boundary (see Fig. 10.3)
and

φ = − Vc

B2
. (10.111)

The length of the field line and τb both are of order 1/ε.
Dealing with symmetric modes and using the abbreviations

D =
1

J2
∫

q dτ/B2
, Y =

∫ τb

0
φα dτ, (10.112)

the Euler–Lagrange equation for the minimizer of (10.97) assumes the form

α̈ + (1 + λ)φα = DφY, (10.113)

where the dot denotes differentiation with respect to τ . The boundary
conditions are α̇(0) = 0, α(τb) = 0.

Also consider the associated homogeneous eigenvalue problem

η̈ + σφη = 0, η̇(0) = 0, η(τb) = 0. (10.114)

In contrast to (10.113), the problem (10.114) is a Sturm–Liouville eigenvalue
problem (e.g., Morse and Feshbach, 1953) with its characteristic ordering
properties of eigenvalues and zeros of eigenfunctions (well known from one-
dimensional Schrödinger problems).

The equation (10.113) may be solved in two steps (Hurricane, 1997). First,
one sets Y = 1 and finds a solution of (10.113) for arbitrary values of λ,
except for the values λ = σν −1, where the solution has singularities. Then,
the eigenvalues follow from the equation

Y (λ) = 1. (10.115)

It is convenient to express the solution of (10.113) with Y = 1 in terms of
the solution u(τ, λ) of the homogeneous equation

ü + (1 + λ)φu = 0 (10.116)

understood as an initial value problem with initial conditions u(0, λ) =
1, u̇(0, λ) = 0 (not to be confused with the eigenvalue problem (10.114)).
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Then, the solution of (10.113) with Y = 1 is

α(τ, λ) =
D

1 + λ

(
1 − u(τ, λ)

ub(λ)

)
(10.117)

with ub(λ) = u(τb, λ). With the help of (10.116), integrated from 0 to τb,
this gives

Y (λ) =
DZ

1 + λ
+

D

(1 + λ)2
u̇b(λ)
ub(λ)

(10.118)

where Z =
∫ τb
0 φ dτ and u̇b(λ) = u̇(τb, λ).

It turns out that, for small ε, (10.118) assumes a rather simple structure.
If ε is sufficiently small, the second term of (10.118) is significant only in
small intervals of λ containing a singularity at λν = σν − 1, (corresponding
to vanishing ub). Outside those regions Y (λ) can therefore be approximated
by the first term,

Y0(λ) =
DZ

1 + λ
(10.119)

which gives an eigenvalue

λQ = DZ − 1. (10.120)

With (10.100) λQ can be written as

λQ = − Q

µ0γq̄
. (10.121)

Here, some exceptional cases are ignored that are physically insignificant
and can be avoided by small changes of parameters.

As Y0(λ) is a monotonic function, all eigenvalues other than (10.121) must
be associated with the singularities of (10.118) arising from zeros of ub.

Fig. 10.7 gives an example of the function Y (λ), evaluated for the asymp-
totic tail model with (10.109). The figure also indicates that, outside the
singularities, the expression (10.119) (smooth curves) is a good approxima-
tion. The graph includes the singularity at λ = σ2 − 1.

The narrow structure of the singular parts of Y (λ) and other details can be
understood in terms of the following properties (for derivations see Schindler
and Birn (2004)):

0 < σ0 = O(ε3), 0 < σ2 = O(1), λmin ≥ σ0 − 1

λQ = O(ε), δλn = O(ε3), n = 0, 2, . . . (10.122)



234 Selected macroinstabilities

Fig. 10.7 The function Y (λ) for the tail-asymptotic model with (10.109) for n =
2, x10 = 1, v1 = 2 and ε = 0.3 (curve a) and ε = 0.1 (curve b). The smooth
curves correspond to (10.119). The dashed vertical lines indicate the positions of
the singularities at λ = σ2 − 1. (Reproduced from Schindler and Birn (2004) by
permission of the American Geophysical Union.)

where λmin is the minimum eigenvalue of (10.113) and δλ characterizes the
width of the thin structures of Y (λ) associated with the singularities. These
properties immediately lead to the following result:

λmin = min(λQ, σ2 − 1) , (10.123)

where a small difference of order ε3 has been ignored.
Thus, the stability problem is reduced to determining whether σ2 is

smaller or larger than λQ + 1. Due to the Sturm–Liouville properties of
(10.114) this can be done by simply plotting u(τ, λQ). If that curve has not
more than one internal (0 < τ < τb) zero, then λmin = λQ; if it has two or
more internal zeros, then λmin = σ2 −1. For sufficiently small ε it suffices to
investigate u(τ, 0) instead of u(τ λQ). For the three models discussed above
it was established that λmin = λQ. For the first model, this explains the
excellent fit of the minimization results by the entropy criterion in Fig. 10.5.
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These results suggest that under the present equilibrium properties,
Q < 0, or approximately dS/dp < 0, is necessary and sufficient for the sta-
bility with respect to arbitrary symmetric MHD modes, an equally simple
and powerful criterion.

One might wonder how it is possible that stability turns out to be deter-
mined by Q, which (other than, e.g., Vc) is not particularly sensitive to the
strong curvature at the vertex. The explanation is that the dominant con-
tributions from curvature and from compressibility cancel each other. This
follows from (10.120) which can be written as

λQ = − 1
J2q̄

(V̄c + J2q̄). (10.124)

Both V̄c and J2q̄ are of order 1/ε, the leading terms being −(J2/B2) and
(J2/B2), which cancel out.

So far the discussion was confined to symmetric modes. Regarding an-
tisymmetric modes, there is an interesting sufficient stability criterion that
can be stated as follows: Let Bz be symmetric and Bx antisymmetric with
respect to z and consider a field line A that is closed. If{

BxBz �= 0, BxBz
∂2B2

z

∂A∂z
≤ 0
}

for z > 0 (10.125)

on that field line, then the field line is stable with respect to antisymmetric
modes. A proof of this criterion is given in Schindler and Birn (2004).
This criterion directly proves stability of antisymmetric modes of the model
(10.103), where Bz is constant on field lines.

10.3 The resistive tearing instability

For the purposes of this book, instabilities that involve a change of magnetic
topology are of particular interest. This is because such instabilities allow for
an efficient release of previously stored magnetic energy. A simple potential
candidate for showing an instability that changes the magnetic topology is a
one-dimensional current sheet with a reversal of the magnetic field direction.
As discussed above (Section 10.2.2), in ideal MHD such a configuration is
stabilized by the frozen-in constraint. The purpose of this section is to relax
that constraint by allowing for a (small) resistivity. As we will see, this in
fact leads to an instability that changes magnetic topology. This instability,
the resistive tearing mode (Furth et al., 1963), in many ways is the prototype
of topology-changing instabilities, and therefore it is discussed in detail. (An
analogous kinetic process will be discussed farther below.)
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The resistive tearing instability is described by the equations of resistive
MHD (Section 3.3.3), specialized for the present purpose.

10.3.1 The model equations

Let us assume translational invariance with respect to the y-direction and
let the poloidal magnetic field (x- and z-components) be derived from a flux
function A(x, z, t), which gives the magnetic field of the form

B = ∇A(x, z, t) × ey + By(x, z, t)ey . (10.126)

The electromagnetic gauge is fixed such that the electric potential has no
y-dependence implying Ey = −∂A/∂t.

For simplicity, we follow the standard procedure in assuming that the
velocity field v is divergence-free. This assumption tends to be applicable to
processes that are slow compared with the propagation of ideal MHD waves,
which is the case for the tearing mode. Thus, in analogy with (10.126) we
write v in the form

v = ∇D(x, z, t) × ey + vy(x, z, t)ey , (10.127)

where the stream function D = D(x, z) generates the poloidal velocity vp.
Under these conditions, the resistive MHD equations (see Section 3.3.3)

assume the form
∂ρ

∂t
+ [ρ, D] = 0 (10.128)

∇ ·
(

ρ∇∂D

∂t

)
− [D, ρ∆D] − 1

2
[ρ, v2

p] +
1
µ0

[A, ∆A] = 0 (10.129)

∂A

∂t
+ [A, D] − η

µ0
∆A = 0 (10.130)

ρ
∂vy

∂t
+ ρ[vy, D] +

1
µ0

[A, By] = 0 (10.131)

∂By

∂t
+ [By, D] + [A, vy] −∇ ·

(
η

µ0
∇By

)
= 0 . (10.132)

Here, the square brackets signify

[f, g] =
∂f

∂z

∂g

∂x
− ∂f

∂x

∂g

∂z
(10.133)

for arbitrary functions f(x, z), g(x, z).
The equations (10.128), (10.130) and (10.131) express mass conservation

and the y-components of Ohm’s law and of momentum balance, respectively.



10.3 The resistive tearing instability 237

Equations (10.129) and (10.132) are generated by applying the operator
ey · ∇× to the poloidal components of the momentum equation and Ohm’s
law to eliminate the gradients of the pressure and of the electric potential.

It is an interesting property of (10.128)–(10.132) that the equations
(10.128)–(10.130) do not involve vy and By, so that, in a first step, they
can be solved for ρ, A, D without considering the others. When a solution
is found, vy and By can then be obtained from (10.130) and (10.131) in a
second step. Here we will deal mainly with the first step, which already
gives us the stability properties.

Here we consider the limit of small resistivity η. To lowest order in η the
static version of that system becomes

[A0, ∆A0] = 0 (10.134)

[A0, By0] = 0 . (10.135)

These equations represent the Grad–Shafranov equation (5.78) in a differ-
entiated form.

Let us choose a one-dimensional static state A0(z), By0(z) satisfying
(10.134) and (10.135) subject to small two-dimensional perturbations de-
pending on x, z, t.

For the static state a Harris sheet is chosen (Section 5.3.2) with By0

superimposed. Accordingly, we set

A0 = − ln cosh(z) (10.136)

such that

Bx0(z) = tanh(z); (10.137)

By0 is arbitrary except that pressure balance must be satisfied. The density
ρ is set to a constant ρ0, so that in the following the continuity equation
(10.128) can be ignored.

In (10.136) and (10.137) and in the following non-dimensional quanti-
ties are used with B normalized by the magnitude B0 of the asymptotic
component Bx outside the Harris sheet, x and z by the sheet width L, A

by B0L, D by vAL, and vy by vA, where vA = B0/
√

µ0ρ0 is the Alfvén
velocity.

The perturbations imposed on the static state A0, By0, D0 = 0, vy0 = 0
are denoted by ψ, by, θ, vy, respectively. Anticipating the symmetry of the
tearing mode we choose ψ symmetric and θ antisymmetric with respect
to z.

In the equations for the perturbations the resistivity has to be taken into
account. This is because under the present conditions the unstable mode
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develops a thin boundary layer centred at z = 0, in which gradients of
the perturbations become large so that the terms involving η cannot be ne-
glected. The presence of the boundary layer calls for a singular perturbation
treatment (e.g., Eckhaus, 1973), applying different scaling prescriptions to
the region outside the layer (external region) and to the layer itself (inter-
nal region). Since there is no such boundary layer in the background state,
the present asymptotics, in leading order, treats that state correctly as an
equilibrium, ignoring slow resistive diffusion.

The next step is to linearize (10.129) and (10.130) for small perturbations,
which gives

∆
∂θ

∂t
+ [ψ, ∆A0] + [A0, ∆ψ] = 0 (10.138)

∂ψ

∂t
+ [A0, θ] −

1
S

∆ψ = 0 (10.139)

with

S =
µ0LvA

η
(10.140)

being the Lundquist number. For simplicity, η is treated as a constant
parameter. (Since resistivity is ignored in the external region the assumption
of constant resistivity is actually used in the internal region only.) The
present regime of small η is characterized by S � 1.

Choosing modes of the form

ψ(x, z, t) = ψ̂(z) eikx+γt (10.141)

with a corresponding expression for θ, (10.138) and (10.139) give two ordi-
nary differential equations for ψ̂ and θ̂,

γθ̂′′ − k2γθ̂ + ikB′′
x0ψ̂ + ik3Bx0ψ̂ − ikBx0ψ̂

′′ = 0 (10.142)

γψ̂ − ikBx0θ̂ +
1
S

k2ψ̂ − 1
S

ψ̂′′ = 0 . (10.143)

To solve these equations one has to anticipate the ordering of the terms.
The present regime is characterized by

γ2 � k2 � 1 (10.144)

|γ| � 1
S

. (10.145)

Here, the first inequality implies that γ is much smaller than 1, which means
that the time variation is slow compared with the Alfvén time scale (unity
in the present non-dimensional form). On the other hand, (10.145) says that
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the mode is fast compared to resistive diffusion of the current sheet, which
would take place on the time scale S. Thus, we expect that the tearing time
scale lies between the Alfvén scale and the diffusion scale.

The equations (10.142) and (10.143) are solved analytically by a singular
perturbation method for external and internal regions separately. The dis-
persion relation γ(k) is then obtained by a matching procedure. Here we
follow the work of Janicke (1980) and Otto (1991). It turns out that it is
sufficient to consider k ≥ 0.

10.3.2 External solution

In the external region gradients are scaled as of order 1. In view of the
symmetry of ψ̂, it suffices to confine the discussion to the half plane z ≥ 0.

From Ohm’s law (10.143) one concludes that θ̂ is of the same order as
γψ̂/(kBx0). Using that in (10.142) one finds to lowest order

ψ̂′′ +
(

2
cosh2 z

− k2

)
ψ̂ = 0 . (10.146)

The general solution of this equation is

ψ̂ = K1e−kz(tanh z + k) + K2ekz(tanh z − k) (10.147)

where K1 and K2 are arbitrary constants. Since we are looking for an
instability, ψ̂ must decay to zero for large values of z, implying K2 = 0.
Thus the external solution is

ψ̂e = K1e−kz(tanh z + k) . (10.148)

For later reference we compute

ψ̂′
e(0)

ψ̂e(0)
=

1 − k2

k
. (10.149)

10.3.3 Internal solution

The internal region is a thin layer around z = 0 of width ε � 1, where the
value of ε is to be determined later; derivatives of the perturbations scale
as 1/ε. To achieve that scaling formally, one introduces a new coordinate
ζ = z/ε. In the layer ζ as well as derivatives of the perturbations with
respect to ζ are of order unity. The equilibrium magnetic field, on the other
hand, remains a smooth function of z. Inside the layer Bx0(z) = Bx0(εζ)
can be represented by the leading term of a Taylor expansion with respect
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to ε. In this way one finds the following leading contributions to (10.142)
and (10.143)

γθ̂′′ − ikzψ̂′′ = 0 (10.150)

γψ̂ − ikzθ̂ − 1
S

ψ̂′′ = 0 . (10.151)

Since the only purpose of the new coordinate was to compare the scaling of
the different terms, in (10.150) and (10.151) we have returned to expressing
the variables in terms of the coordinate z. The final formulation is obtained
by integrating (10.150) once and eliminating θ by (10.151), which gives

zψ̂′′′ − ψ̂′′ − (χ2z3 + λχz)ψ̂′ + (λχ + χ2z2)ψ̂ = χ2z2c̃ , (10.152)

where

χ =
kS1/2

γ1/2
(10.153)

λ =
γ3/2S1/2

k
(10.154)

and c̃ being an integration constant. The general solution of (10.152) is
available in the following form

ψ̂i(z) = c̃ + c0z + c1z

∫ χz2

0
m1(w)dw − c2z

∫ ∞

χz2

m2(w)dw

− cpz

∫ ∞

χz2

mp(w)dw ,

(10.155)

where

m1(w) = e−w/2M

(
λ + 5

4
,
5
2
, w

)
(10.156)

m2(w) = e−w/2U

(
λ + 5

4
,
5
2
, w

)
(10.157)

mp(w) = m2(w)
∫ w

0
m1(w′)dw′ + m1(w)

∫ ∞

w
m2(w′)dw′ (10.158)

cp =
λ
√

χΓ(λ+5
4 )

8Γ(5
2)

c̃ (10.159)

with M and U denoting the confluent hypergeometric functions, also called
Kummer functions (Abramowitz and Stegun, 1965). In (10.155) the four in-
tegration constants c0, c1, c2 and c̃ are subject to three boundary conditions.
The solution should remain bounded for z → ∞, which requires c1 = 0.
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The conditions that ψ̂i be an even function of z yields ψ̂′
i(0) = 0 and

ψ̂′′′
i (0) = 0. The latter boundary conditions allow us to express c0 and c2 by

c̃, which remains unspecified, because we are dealing with a linear problem.
(The same applies to K1 in (10.148).) For later reference we compute

lim
z→∞

ψ̂′
i(z)

ψ̂i(z)
=

πλ
√

χΓ
(

λ+3
4

)
(1 − λ2)Γ

(
λ+1

4

) . (10.160)

The explicit handling of the boundary conditions and the derivation of
(10.160) is rather involved and must be omitted here. The details can
be found in the literature (Janicke, 1980; Otto, 1987, 1991). (A simpler
approximate procedure is indicated below.)

10.3.4 The dispersion relation

In the transition region between the external and the internal regions solu-
tions (10.148) and (10.155) do not smoothly match for arbitrary values of
k and γ. For the present case, singular perturbation theory provides the
following condition for a smooth transition from one solution to the other
(Eckhaus, 1973)

ψ̂′
e(0)

ψ̂e(0)
= lim

z→∞
ψ̂′

i(z)

ψ̂i(z)
. (10.161)

Strictly speaking, this is a necessary condition. For sufficiency one needs
the existence of an intermediate scaling for which both expansions coincide.
This is satisfied in the present case (Janicke, 1980).

With (10.149) and (10.160) the matching condition (10.161) assumes the
form

πλ
√

χΓ
(

λ+3
4

)
(1 − λ2)Γ

(
λ+1

4

) =
1 − k2

k
. (10.162)

This equation provides the desired relationship between wave number k and
growth rate γ, in other words, (10.162) is the dispersion relation of the
resistive tearing mode.

The thickness δz of the resistive layer is obtained from the internal solution
(10.155), the z-scale of which is determined by its depending on z2χ. Writing
that expression as (z/δz)2 one finds for the characteristic length δz (which
also may be identified with ε)

δz = 1/
√

χ

=
γ1/4

k1/2S1/4
.

(10.163)
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Analysing the dispersion relation numerically for a given value of S one
finds that within the present regime there is a range of k-values with 0 ≤
k ≤ km where for each k there is a unique positive solution for the growth
rate γ. For a more detailed discussion it is useful to introduce the growth
rate parameter

Q = γ
√

S (10.164)

such that λ = Q3/2/(kS1/4). Then the dispersion relation (10.162) becomes

πQ2Γ
(

λ+3
4

)
√

λ(1 − λ2)Γ
(

λ+1
4

) = 1 − k2 . (10.165)

This equation is particularly useful for k � 1, where, approximately, Q

becomes a function of λ only. This function assumes its maximum Q0 at
λ = λ0, with

λ0 = 0.362 (10.166)

Q0 = 0.623 . (10.167)

Using the definitions (10.154) and (10.164) one finds the associated values
of k and γ

k0 =
1.358
S1/4

(10.168)

γ0 =
0.623
S1/2

, (10.169)

valid asymptotically for S � 1. The associated thickness of the resistive
layer is obtained from (10.163) as

δz0 =
0.762
S1/4

. (10.170)

Fig. 10.8 shows the dispersion relation in the form Q(k) for several values
of S and Fig. 10.9 depicts the field lines of a tearing-perturbed state with
its characteristic chain of magnetic islands. The islands form because the
attraction of parallel currents dominates the counteracting field deforma-
tion. The non-vanishing resistivity breaks the frozen-in constraint thereby
allowing the change of magnetic topology.

For the range 1/S1/4 � k ≤ 1 (to the right of the maximum of the
corresponding curve in Fig. 10.8) λ becomes small compared to 1. Using
this in (10.165) one finds

γ = 0.953(1 − k2)4/5 1
S3/5k2/5

. (10.171)
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Fig. 10.8 The dispersion relation Q(k) of the resistive tearing mode for four values
of the Lundquist number S.

Fig. 10.9 The magnetic field lines of a Harris sheet subject to a tearing perturba-
tion. The Lundquist number S is chosen large such that the internal region is not
resolved. The amplitude of the perturbation is 0.25 and the wave number k = 0.5.

Disregarding the precise value of the numerical factor, this approximation
has a simple interpretation. Approximating the first order current density in
the internal region by a constant, one can set ψ′′(δz) ≈ ψ′′(0). This implies
ψ′(δz) ≈ ψ′′(0)δz and

ψ(δz) ≈ ψ(0)
(

1 +
ψ′′(0)
ψ(0)

δz2

2

)
(10.172)

≈ ψ(0)
(

1 +
λ

2

)
≈ ψ(0) , (10.173)

where (10.151) at z = 0 and (10.163) were used. Thus, one obtains

ψ′(δz)
ψ(δz)

=
γ5/4S3/4

k1/2
. (10.174)
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Equating this expression to (10.149) one finds the approximate dispersion
relation

γ = (1 − k2)4/5 1
S3/5k2/5

, (10.175)

which agrees with (10.171) except for the numerical factor. This approxi-
mate procedure is particularly useful for cases for which a rigorous matching
is not available. An approximation that sets ψ to a constant in the inner
region (see (10.173)) is generally called the constant ψ approximation, in-
troduced by Furth et al. (1963), who obtained γ with the scaling of (10.171)
in this way.

Because of the decoupling of the basic equations mentioned above, the
growth rate given by (10.165) does not depend on By0. However, this does
not mean that By completely drops out of the stability problem. The reason
is that we have forced the wave number vector k to point in the arbitrarily
chosen x-direction. To get the full picture one would have to rotate the
x-axis into all possible directions perpendicular to ez and to solve the present
stability problem (generally for non-symmetric fields) in each case. (Alter-
natively, we could have started with fixed coordinates and a more general
k-vector, the singular layer would then be found to centre at positions z

where k · B = 0.) Thereby the original y-component would enter the prob-
lem. It seems that only in simple cases is it a priori clear which choice of
the x-direction leads to the maximum growth rate. A simple example is a
field with one Cartesian component vanishing. Then, the maximum growth
rate corresponds to placing ex perpendicular to that direction. This means
that for the Harris sheet with no component along the invariant direction
the maximum growth rate is available from the dispersion relation (10.162),
which was derived with the appropriate choice of ex.

10.3.5 Effect of an embedded thin current sheet

Here we consider the case where the equilibrium structure contains a thin
current sheet. Since the analysis closely follows the procedure described in
the previous section, we give only a brief outline. (For details see Schindler
and Birn (1999).)

We choose a magnetic field of the form

Bx0 = −
tanh(z) + κtanh( z

ν )
1 + κ

ex . (10.176)

Here, Bx0 again is normalized by the asymptotic field magnitude B0, and
z by the width L of the broader sheet. The superimposed thin sheet, in
non-dimensional form, has the width ν < 1. The parameter κ controls the
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strength of the thin current sheet; the Harris sheet is recovered for κ = 0.
The maximum magnitude of the current density jy, normalized by B0/(µ0L),
is given by

jm =
1 + κ/ν

1 + κ
. (10.177)

Figure 10.10 shows the current density profiles jy(z) for several choices of κ

and ν.
The plasma pressure p is given by pressure balance p + B2/2 = 1/2.

Following the procedure described in the previous section one finds the dis-
persion relation in the form (Schindler and Birn, 1999)

πQ̃2

k
√

λ̃(1 − λ̃2)

Γ
(

λ̃+3
4

)
Γ
(

λ̃+1
4

) = g(k) , (10.178)

where Q̃ = γ
√

S̃/jm with S̃ = vAµ0L
∗/η, L∗ = L/jm and λ̃ =

Q̃3/2/(kS̃1/4), and g(k) denotes ψ̂′/ψ̂ computed from the external solution
for z → 0. In the external region ψ satisfies

ˆ̂
ψ′′ −

(
B′′

x0(z)
Bx0(z)

− k2

)
ψ̂ = 0 , (10.179)

which generalizes (10.146). By obtaining g(k) from (10.179) and solv-
ing (10.178) numerically one finds the dispersion relation explicitly in the

Fig. 10.10 Current density jy(z) of the magnetic field model (10.176) for the Harris
sheet (κ = 0) and for κ = 0.6 with ν chosen as 0.4, 0.2, and 0.1, corresponding
to increasing jm (from Schindler and Birn (1999) by permission of the American
Geophysical Union).
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Fig. 10.11 Dispersion relation of the resistive tearing instability for the field model
(10.176). The parameters are chosen as κ = 0 (Harris sheet, curve a), as κ = 0.6
and ν = 0.4 (curve b), as κ = 0.6 and ν = 0.2 (curve c), and as κ = 0.6 and
ν = 0.1 (curve d). The curve c′ corresponds to κ → ∞, ν = 0.243, representing a
Harris sheet of width 0.243, chosen such that the points of marginal stability are
the same as in case c. (Reproduced from Schindler and Birn (1999) by permission
of the American Geophysical Union.)

form Q̃(k). Several examples are shown in Fig. 10.11. It is evident that
the presence of the thin current sheet significantly enlarges the unstable
wave number range and increases the maximum growth rate. Qualitatively,
the shape of the curves resembles the dispersion relation of a Harris sheet
with an appropriately chosen sheet width, as illustrated by a comparison
between curves c and c′. In view of the definition of S̃, the same value of S̃

corresponds to values of η varying as η ∝ 1/jm.
Here we have assumed that the thin current sheet is of infinite extent

in the x-direction. If the sheet has a finite length, one can expect a more
structured dispersion relation (Schindler and Birn, 1999).

10.3.6 Further generalizations

First let us briefly discuss asymmetric magnetic fields (Bx0(−z) �= −Bx0(z)),
assuming that for large |z| the field has asymptotically constant values and
that the total field change across the sheet Bx0(∞) − Bx0(−∞) is set to
2, which allows a direct comparison between different field models. The
following two cases have been considered, both containing the Harris sheet
as a special case.

A constant field in the x-direction is superimposed on the Harris sheet field
(Biskamp, 1982). In that case the asymmetry has a stabilizing effect, the
growth rate decreases. This can be attributed to the fact that the singular
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layer moves to positions of smaller current density compared with the Harris
sheet.

An alternative model uses different Harris solutions for positive and neg-
ative values of z (Birk and Otto, 1991). Here the asymmetry results from
different asymptotic fields for z = ±∞ and different sheet widths necessary
for achieving smooth matching at z = 0. In this case the asymmetry in-
creases the growth rate strongly. In contrast to the previous model, here
the singular layer remains at the position of the current density maximum,
which even increases.

A generalization that is particularly interesting for magnetospheric tail
applications adds the effect of a small magnetic field component normal to
the sheet, as it arises from a weak two-dimensionality of the equilibrium
(Section 5.4.1) with aspect ratio ε. For constant resistivity with S � 1
one finds that the dispersion relation (10.178) is valid as long as ε � 1/

√
S,

although in that regime the normal component can already have a significant
effect on the mode (Janicke, 1980; Otto, 1991). Larger values of the normal
component have a significant stabilizing influence (Paris, 1987).

Cases with general resistivity models were studied by Otto (1991). The
resistivity was treated as an arbitrary function of the current density, mass
density and temperature. Losses through thermal radiation were also taken
into account. It was shown that a resistivity depending on current density
can lead to a considerable enhancement of the growth rate compared to
constant resistivity.

10.3.7 Nonlinear tearing

The nonlinear development of the tearing instability has been studied by
both theoretical and numerical simulation techniques (e.g., White et al.,
1977; Biskamp and Welter, 1977). An important result is that the growth of
the tearing islands undergoes a strong saturation process. Tearing saturation
has been estimated by taking (weak) nonlinearities into account. However,
if the domain considered is large enough, a pair of islands will coalesce to
form one larger island, such that growth may continue in that fashion. For
details see Biskamp (1993).

Certain two-dimensional configurations are not subject to severe satura-
tion. This applies to two- and three-dimensional models that were developed
for solar flares and magnetospheric substorms (e.g., Birn, 1980; Otto, 1991;
Forbes and Priest, 1983; Mikić et al., 1988), based on current sheet config-
urations with a non-vanishing normal component Bn. It should be noted
that in this case linear theory breaks down before the point where a neutral
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line forms and magnetic topology is changed. It takes a nonlinear pertur-
bation to achieve a local compensation of the equilibrium component Bn.
Fig. 10.12 illustrates the magnetic field structure as it develops with time
in a stretched two-dimensional equilibrium discussed in Section 5.4.1. Here
a linear tearing mode is extrapolated to a finite, however still small, am-
plitude. The main feature is the characteristic island structure bounded
by a field line that intersects itself in an x-type neutral point. This type
of island is usually referred to as a plasmoid. Fig. 11.12 shows a corre-
sponding figure from a simulation study by Otto (1987), which confirms
the formation of a plasmoid under nonlinear resistive dynamics. Depend-
ing on the details of the configuration, more than one plasmoid may form.

Fig. 10.12 Expected structure of a generalized tearing mode of a two-dimensional
equilibrium, obtained by extrapolation of a linear mode.
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We will return to plasmoid dynamics in the context of magnetic reconnection
(Chapter 11).

10.4 Collisionless tearing

Instabilities with signatures typical for tearing modes can also exist in col-
lisionless current sheets. Two limiting cases are of particular interest.

In the first case, a sufficiently strong level of microturbulence, such as
considered in Section 9.3, leads to a tearing mode that can be described by
the resistive fluid picture outlined in the previous section. An expression
for the resistivity (such as (9.56)) would be obtained from an appropriate
turbulence theory. For resistive tearing with examples of collective resistivity
see Birk and Otto (1991).

The other limiting possibility is a non-turbulent version of tearing based
on Landau resonance (Section 9.3.1). This process, which is usually called
collisionless tearing, is addressed in the remaining part of this section.

A useful benchmark problem of collisionless tearing consists in choosing
singly charged ions and setting the mass ratio mi/me to 1. In that case
the electric coupling, which in realistic cases arises from the differences in
gyro-scales, vanishes. Although this approach does not directly cover any
real space applications, it has proven quite useful. By comparing results of
more realistic treatments with equal-mass results, one gains insight into the
role of the electric coupling. As we will see, in some cases electric coupling
can have dramatic effects.

10.4.1 Harris sheet with equal masses

Here we consider the Harris sheet (see Sections 5.3.2, 6.2.2) and set mi =
me = m and qi = −qe = e. The tearing mode is selected by choosing
perturbations independent of y and A1 symmetric with respect to z.

For the Harris sheet the equilibrium distribution function for particle
species s has the form (Section 6.2.2)

fs0 = Fs(Hs0, P ) = Cs e−αsP−βsHs0 (10.180)

where Cs, if expressed by the maximum density n0, is

Cs = n0

(
mβs

2π

)3/2

e−mα2
s/(2βs) (10.181)

and Hs0 is the equilibrium Hamiltonian and P the y-component of the
canonical momentum. (P does not carry labels, because P is used as an
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independent variable.) The drift velocity vys is given by −αs/βs and the
temperature Ts by 1/(kBβs). Charge neutrality requires qiαi = qeαe (see
(6.38)) such that we can set αi = −αe = α.

Particle and current densities have the form

n =
n0

cosh2(z/L)
(10.182)

jy0 = −
∑

s

eαn0

βs
e−eαA0 = −eα

β

n0

cosh2(z/L)
(10.183)

with L = (2β/(µ0α
2e2n0))1/2 and 1/β = 1/βe+1/βi. There is no equilibrium

By-component and the magnetic flux function A0 is given by

A0 =
2
eα

ln cosh
( z

L

)
. (10.184)

The growth rate γ is computed from the linearized Vlasov equation. A
crucial parameter is d/L, where d =

√
2Lrg is the width of the region

of exotic orbits (Section 6.4), rg being the gyro-radius in the asymptotic
magnetic field B0, and L is the width of the current sheet. Here we consider
the cases d/L � 1 and d/L ≈ 1, where approximate expressions for γ are
available.

As ∂/∂y = 0 holds for both equilibrium and perturbations, the canonical
momentum component P is a constant of motion. Therefore, the parti-
cle distribution functions, if written as f(x, z, wx, wz, P, t), satisfy a Vlasov
equation in the 4-dimensional phase space (x, z, wx, wz), i.e., an equation of
the form (see (3.17))

df

dt
=

∂f

∂t
+

∂f

∂x

dx

dt
+

∂f

∂z

dz

dt
+

∂f

∂wx

dwx

dt
+

∂f

∂wz

dwz

dt
= 0 . (10.185)

Such an equation holds for each of the two species. Using Ex = Ez = 0,
which is consistent with the assumed exact neutrality, and inserting the
equations of single particle dynamics into (10.185) one finds for each particle
species s

dfs

dt
=

∂fs

∂t
+ wx

∂fs

∂x
+ wz

∂fs

∂z
+

qs

m

(
P − qsA

m
Bz − wzBy

)
∂fs

∂wx

+
qs

m

(
wxBy −

P − qsA

m
Bx

)
∂fs

∂wz
= 0 (10.186)
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where wy has been replaced by (P − qsA)/m. By linearizing (10.186) and
using (10.180), we find

dfs1

dt
= −qs

∂Fs

∂Hs0

P − qsA0

m
(wxBz1 − wzBx1) −

q2
s

m

∂Fs

∂Hs0
Bx0 wzA1

= − d
dt

(
qs

m

∂Fs

∂Hs0
(P − qsA0)A1

)
+

qs

m

∂Fs

∂Hs0
(P − qsA0)

∂A1

∂t
.

(10.187)

Here d/dt is taken along unperturbed orbits. Integrating (10.187) gives

fs1 = −qs

m

∂Fs

∂Hs0
(P − qsA0)A1 +

qs

m

∂Fs

∂Hs0

∫ t

−∞
(P − qsA0)′

(
∂A1

∂t

)′
dt′,

(10.188)

where the prime symbol refers to the unperturbed orbit. (Setting the lower
limit of the integral to −∞ is explained in Section 9.3.1.)

Let us now specialize for d � L. In the region of gyrotropic orbits (z > d)
the time-average of wy = (P − qsA0)/m is the gradient-B drift velocity
(Section 3.1), which is of the order of vtrg/L, where vt is the thermal velocity.
Therefore, the integral term in (10.188) can be neglected. Then fs1 becomes
the quasi-static perturbation, in direct analogy to the resistive case discussed
in the previous section.

In the internal region particles move rather freely along the y-direction
such that the average value of wy is of order vt and the integral term has to be
kept. A useful approximation treats wy as a constant by taking (P−qsA0)/m

in front of the integral.
We consider modes of the form A1 = Â1(z) exp(γt + ikx). Noting that

x′ = x + wx(t′ − t) with wx constant, and anticipating that Â1(z) has neg-
ligible variation inside the internal region (constant ψ-approximation of the
previous section) we obtain for the internal distribution function

fs1 = −qs

m

∂Fs

∂Hs0
(P − qsA0)A1 + γ

qs

m

∂Fs

∂Hs0

P − qsA0

γ + ikwx
A1. (10.189)

With these results the perturbed current density

jy1 =
∑

s

qs

∫
P − qsA0

m
fs1 dτ −

∑
s

q2
s

m
A1

∫
Fs dτ, (10.190)
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where dτ stands for dwxdwzdP/m, becomes (e.g., Galeev, 1984)

jy1 =

⎧⎨⎩
∂jy0

∂A0
A1 + γA1

∑
s

q2
s

m2

∫ (P−qsA0)2

γ+ikwx

∂Fs
∂Hs0

dτ z < d

∂jy0

∂A0
A1 z > d.

(10.191)

The external solution of ∇×B1 = µ0jy1 is the same as in the resistive case,
such that, in (dimensional) analogy to (10.149), we find[

1
Â1

dÂ1

dz

]
z=0

=
1 − k2L2

kL2
. (10.192)

Evaluating the integral in (10.191) gives with (10.180)∫
(P − qsA0)2

γ + ikwx

∂Fs

∂Hs0
dτ = −

√
πβs

2
m3/2n0

k cosh2(z/L)

(
1 + 2

r2
g

L2

)
. (10.193)

Here, the plasma dispersion function, which arises from the wx-integration,
was taken in the limit of small γ. For the internal region this allows us to
write

jy1 =
2A1

µ0L2 cosh2(z/L)

(
1 − γM

(
1 − 2

r2
g

L2

))
, M =

√
πL2

2r2
gkvt

. (10.194)

The amplitude Â1 is obtained by solving the equation (y-component of ∇×
B1 = µ0j1)

d2Â1

dz2
−
(

k2 −
2 − 2γM(1 + 2r2

g/L2)

L2 cosh2(L/z)

)
Â1 = 0. (10.195)

The dispersion relation is obtained by applying the simplified procedure
that proved useful in the resistive case. Anticipating that γM is of order√

L/d, a boundary layer expansion with respect to
√

d/L, which uses the
variable θ = z/

√
d/L, shows that to lowest order in

√
d/L and for k2L2 < 1

(10.195) becomes

d2Â1

dz2
=

2γM

L2
Â1(0). (10.196)

Solving that equation with the symmetry condition dÂ1/dz = 0 at z = 0,
and equating (dÂ1/dz)/Â1 of the external and internal solutions at z = d,
evaluated to lowest order, one finds the growth rate

γ = c0Ω0

(rg

L

)5/2
(1 − k2L2) (10.197)
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where c0 is a numerical factor of order 1. The expansion that led to (10.197)
formally breaks down for kL near 0 and 1. Nevertheless, kL = 1 gives the
correct value (γ = 0).

Several authors (Laval et al., 1966; Schindler, 1974) dealt with the growth
rate γ, or its maximum value, using somewhat different approaches. The
results are consistent with (10.197), see also Galeev (1984).

Next, we study the case of a thin current sheet, where d ≈ L, following
Pritchett et al. (1991). In that case the entire sheet can be regarded as filled
with particles performing exotic orbits. Therefore, it seems reasonable to
generate a model equation by extending the validity of (10.195) over the
entire sheet. This equation must be solved without the help of a boundary
layer expansion.

Fortunately, (10.195) has a relevant analytical solution. Setting A1 =
cosh−r(z/L) one finds a solution satisfying the boundary conditions for r =
kL and k2L2 + kL − 2 − 2γM(1 + 2r2

g/L2) = 0. The latter condition gives
the growth rate as (see Pritchett et al., 1991)

γ =
Ω0√

π

(rg

L

)3 kL(2 + kL)(1 − kL)
1 + 2r2

g/L2
. (10.198)

As expected, the growth rate of the thin sheet (equation (10.198) with
L ≈ rg) is considerably larger than that of the wide sheet (equation (10.197)
with L � rg).

An improvement of (10.198) for arbitrary values of rg/L, however available
only in an implicit form, was obtained by Brittnacher et al. (1995).

10.4.2 Realistic particle masses

For mi �= me the perturbation can no longer be described by a single func-
tion. The different particle masses lead to charge separation effects and
therefore to electric fields in the x, z-plane. Also, By no longer vanishes.
Numerical solution of the linearized Vlasov equations for realistic mass ra-
tios were carried out by Hoshino (1987) and Daughton (1999). Fig. 10.13
shows the growth rate as a function of rgi/L for a fixed value of kL. The
growth rate for mi/me = 1836 is reduced by a factor of 1.5–2 in comparison
with the mi/me = 1 result. This seems to reflect a general trend, which is
also confirmed by particle simulations (Pritchett, 1994).

For further discussions of the properties of the collisionless tearing mode
we now turn to a variation method, described in the following section.
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Fig. 10.13 Growth rate of the collisionless tearing mode as a function of rgi/L
for Ti = Te and kL = 0.5 after Daughton (1999). The solid lines correspond to
numerical results, the dashed line to the analytical expression of Brittnacher et al.
(1995), consistent with (10.198) for rgi/L near 1. (With permission from William
Daughton. Copyright 1999, AIP.)

10.5 Variational principle for 2D collisionless plasmas

For two-dimensional Vlasov plasmas stability properties can be expressed in
terms of a nonlinear variational principle (Schindler and Goldstein, 1983),
which uses the energy approach that was described in Section 10.2.1. As
in the MHD case, for the present purpose it is sufficient to work with the
version valid for linear perturbations. That version may be obtained in
the small amplitude limit of the exact variational principle (see Schindler
and Goldstein, 1983), however, it is more readily obtained by a more direct
method.

The method was originally developed for one-dimensional equilibria with
two-dimensional perturbations (Schindler, 1966). An equivalent approach is
due to Laval et al. (1966). Later, the formalism was generalized for appli-
cations to two-dimensional equilibria (Schindler et al., 1973; Lembège and
Pellat, 1982). Since collisionless tearing of two-dimensional configurations
has been playing an important role in the discussion of the onset of mag-
netospheric activity, we will give a rather detailed account of the associated
variational principle.

10.5.1 Formulation

The equilibrium is chosen to be two-dimensional as in Section 6.2; however,
in view of magnetospheric application the invariant direction is changed
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to ey. As in Section 10.4.1, the equilibrium distribution function of particle
species s is of the form

fs0 = Fs(Hs0, P ). (10.199)

(Again, P is treated as an independent variable and therefore has no label.)
Distribution functions fs are normalized such that species s has number den-
sity ns =

∫
fsdτs with dτs = dwxdwzd(P/ms). We define F ′

s = ∂Fs/∂Hs0

and choose F ′
s < 0. The consideration is restricted to quasi-neutral plasmas

(Section 6.2.2).
Again, A = A(x, z, t) is the magnetic flux function of the poloidal mag-

netic field (projection onto the x, z-plane). The equilibrium magnetic field
B0 is assumed to be poloidal, i.e., By0 = 0. However, the perturbations gen-
erally involve a non-vanishing By-component. The equilibrium flux function
A0 satisfies a Grad–Shafranov equation of the form (6.24).

The boundary conditions for t > 0 correspond to energy conservation,
i.e., there is no energy flux across the boundary. Thus, as in the MHD case,
we can use energy conservation as the starting point. Details are given in
Appendix 2; here we summarize and discuss the results. The perturbations
are treated as real quantities, but a brief prescription of how to generate the
corresponding results for complex perturbations is added (Section 10.5.4).

The energy conservation law is obtained from (3.40) by integration over
the spatial domain,

W =
∑

s

∫ (ms

2
(w2

x + w2
z) +

1
2ms

(P − qsA)2
)
fs dΩs

+
1

2µ0

∫
B2 dx dz .

(10.200)

Here W is a constant measuring the energy of the system after an external
perturbation has been supplied (at t ≤ 0) and dΩs stands for dx dz dτs. In
the expression (10.200) electric energy density is ignored, which is consistent
with quasi-neutrality. Gravity is ignored for simplicity.

There are two ways of taking into account the dynamical constraints
(Schindler et al., 1973). One can either use the explicit solution expressed
by a time-integral such as (10.188), or incorporate a set of corresponding
constraints. Here we follow the latter path.

As shown in Appendix 2, incorporation of the conservation of P and of
Liouville’s theorem allows us to show that the first-order contribution to W
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vanishes and that the second-order energy expression can be written in the
form

W2 = −1
2

∑
s

∫
1
F ′

s

(
fs1 +

qs

ms
(P − qsA0)A1F

′
s

)2 dΩs

+
1
2

∫ ((∇A1)2

µ0
− ∂j0

∂A0
A2

1 +
B2

y1

µ0

)
dx dz , (10.201)

where in view of (6.13) we have used

∂j0

∂A0
= −
∑

s

∫ ( q2
s

m2
s

(P − qsA0)2F ′
s +

q2
s

ms
Fs

)
dτs . (10.202)

Due to the energy closure W2 is constant for t > 0. To apply the for-
malism of Section 10.2.1, the next step is to define the quantities T2 and
V2. The latter is obtained by minimizing (10.201) with respect to (smooth)
perturbations fs1 and By1. The minimum defines V2 as a functional of A1,
where A1 is a smooth test function which is arbitrary except for the bound-
ary condition. Then T2 = W2 − V2, which is non-negative by construction.
With these definitions we can apply (10.6), which states stability if

V2(A1) > 0 for all A1. (10.203)

The quality of the resulting variational principle (minimization of V with
respect to A1) depends on the constraints that are taken into account in the
minimization of W2 with respect to fs1 and By1. These constraints reflect
the fact that in the actual dynamics the perturbations fs1, By1, A1 and φ1

are coupled to each other. There is no general prescription for the choice of
the constraints in a given case other than their consistency with dynamical
properties. Since constraints can only raise the minimum, the above stability
criterion is valid independent of the set of constraints that are incorporated.
Yet, working with too few constraints or imposing no constraint at all causes
the danger that for a system that is actually stable the potential V2(A1) may
assume negative values. Then, stability cannot be demonstrated and the
procedure becomes useless. On the other hand, working with all relevant
constraints might lead to rather complicated procedures. We discuss two
examples.

No constraints

In the absence of any constraints on the choice of fs1 the minimization of
W2 simply consists of setting the terms involving fs1 and By1 in (10.201)
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to zero. Note that both terms are non-negative, the first term because of
F ′

s < 0. Thus we find

V2 =
1
2

∫ ((∇A1)2

µ0
− ∂j0

∂A0
A2

1

)
dx dz . (10.204)

By construction, the property (10.203) would imply stability. In practice,
however, this is of limited use, because in many cases of interest the mini-
mum is negative, so that no stability result is available (see the discussion
of one-dimensional equilibria below).

Phase space condition and quasi-neutrality

Here the constraints are Liouville’s theorem and the quasi-neutrality condi-
tion. For simplification let us introduce the abbreviation

ψs =
1

2ms
(P − qsA)2 + qsφ . (10.205)

As shown in Appendix 2, the constraints can be expressed as

〈fs1〉s = 0 (10.206)∑
s

∫
qsfs1dτs = 0 (10.207)

where

〈...〉s =

∫
ψs0≤Hs0

... dx dz∫
ψs0≤Hs0

dx dz
. (10.208)

Note that these constraints are exact for quasi-neutral two-dimensional
Vlasov plasmas. So adiabatic particle motion is covered as well as non-
adiabatic motion.

Minimizing (10.201) under the constraints (10.206) and (10.207) gives (see
Appendix 2)

V2 =
1
2

∫ ((∇A1)2

µ0
− ∂j0

∂A0
A2

1 + 2
∂σ0

∂A0
A1φ1 +

∂σ0

∂φ0
φ2

1

)
dx dz

− 1
2

∑
s

∫
F ′

s〈ψs1〉2 dΩs , (10.209)

where for each A1 the potential φ1 is determined by the quasi-neutrality
condition (10.207), which takes the form∑∫

qsF
′
s(ψs1 − 〈ψs1〉s)dτs = 0 . (10.210)
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Making use of a Neumann series, Kiessling and Krallmann (1998) have solved
(10.210) for φ1 explicitly in the form φ1(A1).

The derivatives of σ0 and j0 contained in (10.209) are obtained from (6.12)
and (6.13), one finds

∂σ0

∂φ0
=
∑

s

∫
q2
sF

′
s dτ (10.211)

∂σ0

∂A0
= −
∑

s

∫
q2
s

ms
(P − qsA0)F ′

s dτ (10.212)

and ∂j0/∂A0 is given by (10.202).
We have addressed the derivation of V2 as a minimization, anticipating

that the variation procedure gives a minimum of W2 rather than a maximum
or a saddle point. It is easily confirmed that under the present conditions a
minimum actually occurs (see Appendix 2).

The expression (10.209) has been derived also by different methods
(Schindler et al., 1973; Schindler and Goldstein, 1983).

It is possible to write V2 in a form in which the effects of A1 and φ1

separate (Goldstein and Schindler, 1982)

V2 =
1
2

∫ ((∇A1)2

µ0
− ∂j0

∂A0
A2

1

)
dx dz

− 1
2

∑
s

∫
F ′

s

q2
s

m2
s

〈
(P − qsA0)A1

〉2
dΩs

− 1
2

∑
s

∫
F ′

sq
2
s

(
φ1 − 〈φ1〉

)2 dΩs . (10.213)

A comparison between (10.204) and (10.209) shows that the last two terms
are due to the imposed constraints. It is obvious that (in view F ′

s < 0) these
terms are non-negative, i.e., stabilizing.

Another form of V2 allows a more direct comparison with the correspond-
ing ideal MHD result,

V2 =
1
2

∫ (
(∇A1)2

µ0
− dj0

dA0
A2

1 − ∂σ0

∂φ0

[[(
〈Ψs1〉 − [[〈Ψs1〉]]

)2]])
dx dz.

(10.214)
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Here and later on, the following notation is used:

[[...]] =
∑

s

∫
... q2

sF
′
s dτs∑

s

∫
q2
sF

′
s dτs

, (10.215)

[[...]]s =
∫

... q2
sF

′
s dτs∫

q2
sF

′
s dτs

(10.216)

and Ψs1 = ψs1/qs.
The quasi-neutrality constraint (10.210) assumes the form

[[〈Ψs1〉]] = [[Ψs1]] . (10.217)

As in the MHD case of (10.57), in (10.214) the total derivative dj0/dA0

appears, which is related to the partial derivative appearing in (10.213) by
the relationship

dj0

dA0
=

∂j0

∂A0
+

∂j0

∂φ0

dφ0

dA0

=
∂j0

∂A0
+
(

∂σ0

∂A0

)2/∂σ0

∂φ0
, (10.218)

where (6.14) was used and

dφ0

dA0
= − ∂σ0

∂A0

/∂σ0

∂φ0
(10.219)

resulting from quasi-neutrality of the equilibrium.
In comparing collisionless results with MHD it is essential to take into

account that in MHD the additional idealness constraint (10.50) must be
imposed. In the presence of neutral points or sheets that can make a signif-
icant difference (see the corresponding remark in Section 10.2.2).

Using their solution of (10.210) mentioned above, Kiessling and Krallmann
(1998) eliminated φ1 from V2 and obtained a functional of A1 alone of the
form (see Appendix 2)

V2 =
1
2

∫ ((∇A1)2

µ0
− ∂j0

∂A0
A2

1

)
dx dz

+
1
2

∫ ∫
A1(r)K(r, r′)A1(r′)d2r d2r′ , (10.220)

where they expressed the kernel K explicitly in terms of the solution of
(10.210).



260 Selected macroinstabilities

One-dimensional equilibrium

Consider one-dimensional equilibria with B = Bx(z)ex and infinitely ex-
tended in the x-direction. Then the perturbations can be assumed to be of
the form (10.64) (using complex perturbations, see Section 10.5.4). Then
all averages [[· · · ]] vanish and one finds

V2 =
1
2

∫ (
(∇A1)2

µ0
− dj0

dA0
A2

1

)
dx dz , (10.221)

which coincides with the corresponding MHD result (10.73), except for the
absence of the MHD constraint (10.50). As discussed in Section 10.2.2 with-
out that constraint the minimum of the functional (10.214) is negative. This
is consistent with the instabilities found in Section 10.4.

10.5.2 The limit of small electron mass

Here we return to 2D equilibria. Because of the large value of the mass ratio
mi/me, which lies near 1836 for a proton/electron plasma, the dynamics
of the electrons often differs appreciably from the ion dynamics. Here, we
consider a case which is motivated by the regime of adiabatic electrons. A
straightforward procedure would introduce the additional adiabatic invari-
ants (Section 3.1) as constraints in the minimization of W2 and then consider
the limit of small electron mass, keeping the electron temperature fixed. It
turns out, however, that a useful stability criterion can be found in a simpler
way by going to the small electron mass limit even without taking adiabatic
invariants into account. Again, this possibility is based on the fact that the
incorporation of additional constraints can only stabilize.

So let us go back to V2 as given by (10.214) and take the limit me → 0,
with fixed electron temperature. For simplicity, a single ion species with
qi = e (e.g., protons) is considered. The distribution functions are kept
general, except for F ′

s < 0.
The limit is carried out in Appendix 2. With the definition

as = q2
s

∫
F ′

s dτs (10.222)

it is shown that for small electron mass (10.214) assumes the limiting form

V2 =
1
2

∫ (
(∇A1)2

µ0
− dj0

dA0
A2

1 + |ai|
[[(

〈Ψi1〉i − [[〈Ψs1〉i]]i
)2]]

i

+ n0Q
2
1

(
5
3
kBTe +

e2n0

|ai|

))
dx dz . (10.223)
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Here, n0 = ne0 = ni0 in view of quasi-neutrality and

Q1(A) =
1

V (A)
d

dA

∫
A

A1
ds0

B0
(10.224)

is the expression that we already encountered in the discussion of two-
dimensional MHD processes (see (10.71)) with V =

∫
ds0/B0 being the

differential flux tube volume and Te the kinetic electron temperature

kBTe =
2

3n0

∫
me

2
(w − v)2Fedτe , (10.225)

evaluated to lowest order in me.
In the case of exponential distribution functions (10.223) assumes the form

V2 =
1
2

∫ ((∇A1)2

µ0
− dj0

dA0
A2

1 + |ai|
[[(

〈Ψi1〉i − [[〈Ψs1〉i]]i
)2]]

i

+ n0Q
2
1

(5
3
kBTe + kBTi

))
dxdz . (10.226)

It is also of interest to assess the validity of the formal limit me → 0 by
carrying the expansion one step further. One finds that typical corrections
are of the order

δcor =
mekBTe

e2A∗2 (10.227)

where A∗ represents a characteristic scale for variation of φ0 or of∫
A1 ds0/B0 with A0 (see Appendix 2).

10.5.3 A lower bound of W2

Useful stability information can also be obtained by determining a lower
bound of W2, using Schwarz’s inequality. This method has been playing a
significant role in the literature (Pellat et al., 1991; Quest et al., 1996). As
shown in Appendix 2, one finds the inequality

W2 ≥ 1
2

∫ (
(∇A1)2

µ0
− ∂j0

∂A0
A2

1 +
∑

s

q2
s ñs1

2

|as|

)
dxdz , (10.228)

where ñs1 is a modified density perturbation defined by

ñs1 =
∫

f̃s1 dτ , (10.229)

with

f̃s1 = fs1 +
qs

ms
(P − qsA0)A1F

′
s . (10.230)
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Here again it is interesting to find the electron contribution in the small-
mass limit. This cannot be done in the fully systematic way that was used
above, because by applying the inequality dynamical information that would
have been required was lost. However, one can evaluate the small-mass limit
of ñe1 in a separate procedure. A corresponding derivation in Appendix 2
gives

ñe1 = ne0(A0)Q1(A0) . (10.231)

(Equivalent derivations are due to Pellat et al. (1991) and Quest et al.
(1996).) Inserting (10.231) into (10.228) gives

W2 ≥ 1
2

∫ (
(∇A1)2

µ0
− ∂j0

∂A0
A2

1 +
∑
ions

q2
s ñs1

2

|as|
+

e2

|ae|
n2

e0Q
2
1

)
dx dz .

(10.232)
Specializing again for a single ion species with qi = e, and, in addition,
choosing exponential distribution functions and the frame where φ0 vanishes,
one finds that n̂i1 = n̂e1, so that (10.232) becomes

W2 ≥ 1
2

∫ (
(∇A1)2

µ0
− dj0

dA0
A2

1 + n0kBT0Q
2
1

)
dx dz , (10.233)

with T0 = Te+Ti. Equation (10.233) was first derived by Pellat et al. (1991).
As expected, (10.233) is consistent with (10.226). (Note that by (10.218)
−dj0/dA0 ≥ −∂j0/∂A0.)

The functional (10.233), more precisely its complex version given below,
resembles the corresponding MHD functional (10.72). Note, however, that,
unlike the Vlasov version (10.233), in the MHD case the perturbation A1 is
subject to the constraint (10.50). As discussed in Section 10.2, this difference
can have an essential influence on stability. For Bp �= 0 under the present
assumptions (notably me → 0) MHD stability, evaluated for γ = 1, implies
Vlasov stability.

10.5.4 Complex perturbations

So far, without loss of generality, we have assumed that perturbations such
as A1 have real values. If for convenience one prefers to use complex-valued
perturbations, the analysis is easily adjusted. For quadratic functionals of a
single perturbation containing only squares of linear expressions, the squares
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simply are to be replaced by absolute squares. For example, (10.233) for
complex A1 becomes

W2 ≥ 1
2

∫ ( |∇A1|2
µ0

− dj0

dA0
|A1|2 + n0kBT0|Q1|2

)
dx dz . (10.234)

The same applies to other functionals such as (10.214), (10.223), (10.226)
or (10.232).

10.5.5 Effect of a normal magnetic field component in the

Earth’s magnetotail

For many realistic current sheet configurations deviations from the one-
dimensional Harris-type equilibrium can become important. In particular,
this is the case for the presence of a small magnetic field component Bn nor-
mal to the sheet, as it exists in the weakly two-dimensional configurations
discussed in Section 5.4.1. (Note that the Grad–Shafranov theory described
there in the framework of MHD also applies to the kinetic equilibria dis-
cussed here, as explained in Section 6.2.2.) Here we consider the plasma
sheet in the Earth’s magnetotail, following work by Lembège and Pellat
(1982), Pellat et al. (1991) and Quest et al. (1996).

Unless Bn gets extremely small, the electrons can still be described as adi-
abatic, such that the small-mass regime applies. The quantitative condition
is that the correction (10.227) is negligible compared to 1.

In that regime the electrons give rise to a strong stabilizing effect, at least
in the WKB regime (familiar from optics and quantum mechanics), where
the modes have x-scales of the order of the equilibrium sheet width Lz. (As
before, the x-axis points along and the z-axis perpendicular to the sheet
and all observables are independent of y.) We give a brief description of the
argument, starting from the lower bound (10.234).

The task is to identify a condition for that lower bound to be positive. The
sheet equilibrium is a strongly stretched tail equilibrium, as discussed in Sec-
tion 5.4.1. Accordingly, one chooses an equilibrium flux function A0(x, z),
which depends on the x-coordinate only weakly, such that the equilibrium
length scales Lx and Lz satisfy Lz � Lx. Let Bn = Bz(x, 0) and B0 the
magnetic field strength outside the sheet and b = |Bn/B0|, then b � 1.

Rather than carrying out an exact minimization we follow Lembège and
Pellat (1982) and assume a plausible test function for A1. Restricting the
perturbation to the WKB regime allows us to choose the test modes of the
form

A1 = Â1(z)eikx (10.235)
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where an additional weak x-dependence of the wave number k and of the
amplitude Â1 is not shown explicitly.

With regard to Q1 (given by (10.224)) it turns out that the main con-
tribution to the integral I =

∫
A1ds/B stems from a |z|-region with

|z|/Lz = O(
√

b). For the evaluation of Q1 this motivates choosing a simpli-
fied local approximation to the magnetic field structure with parabolic field
lines:

A0 = Bnx − B0z
2

2Lz
. (10.236)

Furthermore, changing the integration variable in I from s to z and treating
Â1 as approximately constant over the relevant integration interval one finds

I =
Â1(0)
Bn

e
ikA0
Bn

∫ ∞

−∞
ei kz2

2Lzb dz , (10.237)

where x in the exponent was expressed by A0 and z using (10.236). The
weak x-dependence of equilibrium quantities is ignored in the integration
and a convenient way to ensure convergence is adding −rz2 with r > 0 in
the exponent and taking the limit r → 0 of the resulting expression. One
obtains

I = (1 ± i)
Â1(0)
Bn

√
πLb

k
e

ikA0
Bn , (10.238)

where the sign in the first bracket is determined by the sign of Bn. With
the help of (10.224) one finds from (10.234)

W2 ≥ 1
2

∫ ( |∇A1|2
µ0

− ∂j0

∂A0
|A1|2 +

πkLz

b

1
V 2B2

n

|Â0(0)|2
µ0

)
dx dz , (10.239)

where the local pressure balance has been used to eliminate n0kBT0.
Using (10.66) and assuming monotonic decrease of |Â1(z)|2 with |z| in-

creasing from zero, one finds from (10.239)

W2 >

∫
1

2µ0L2
z

(
−1 +

πkLz

b

(
Lz

V Bn

)2
)
|A1(z)|2 dx dz . (10.240)

The ratio Lz/(V Bn) is of order 1. For orientation, let us use the model
(10.236) for |z| ≤ 1, although the parabolic model is of only qualita-
tive significance outside the thin region at the centre of the sheet. Then
Lz/(V Bn) = 1/2, such that (10.239) gives stability for

kLz >
4
π

b . (10.241)

This stability criterion was first derived by Lembège and Pellat (1982).



10.5 Collisionless plasmas: variational principle 265

For this criterion to be valid it is necessary that the correction δcor given
by (10.227) is negligible. From (10.238) one finds A∗ = Bn/k such that the
condition that the correction does not significantly alter (10.241) is

rge0

Lz
� c0

b

kLz
, (10.242)

where rge0 is the electron gyroradius with respect to B0; note that kLz is of
order 1 in view of the WKB condition. Electron stabilization of the plasma
sheet plays an important role in the substorm cycle (see Part IV).

It remains to address the physical mechanism that leads to the strong
electron stabilization in the adiabatic regime. One way is to look at the
current density associated with the minimizing electron distribution function
fe1 of the form (see Appendix 2)

f
(m)
e1 = F ′

e(ψe1 − 〈ψe1〉e) . (10.243)

One finds

je1 =
dj0

dA0
A1 +

(
5
3
n0kBTe + n0kBTi

)
dQ1

dA0
(10.244)

where the second term, resulting from 〈ψe1〉e, is shown only in leading order
in 1/b. The associated contribution to the second order energy integral is
found as∫

(−je1A1) dx dz =
∫ (

− dje0

dA0
A2

1 + n0Q
2
1

(
5
3
kBTe + kBTi

))
dx dz ,

(10.245)

after integration by parts with respect to A0 and, again, considering the
second term only in leading order. The comparison with (10.226) shows
that the first term in (10.244) gives the electron contribution to the driving
term and that the second term generates the strong stabilization through
the factor Q1. So, the second part of (10.244) is responsible for the sta-
bilization.

The physical interpretation differs for the two stabilizing contributions in
(10.245). To discuss the part depending on Ti let us look at the limit of
small electron temperature of the exponential model with φ0 = 0. Then,
the stabilizing current of (10.244) can be identified with the electron Hall
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current density jH, based on the E × B drift (3.6) of the electrons where
the electric field results from the quasi-neutrality condition. One finds

jH = −en0
E × B

B2
· ey (10.246)

=
en0

B2
E · ∇A , (10.247)

and to first order

jH1 = −en0
dϕ1(A0)

dA0
(10.248)

where ϕ1(A0) denotes the leading part of φ1. Evaluating ϕ1 with the help
of the quasi-neutrality condition, which couples the ions into the electron
current, one finds (for details see Appendix 2)

jH1 = n0kBTi
dQ1

dA0
(10.249)

which confirms that the stabilizing part of the electron current (10.244) for
Te � Ti indeed reduces to the electron Hall current.

The term of (10.245) depending on Te is best interpreted as resulting from
compressibility. It suffices to point at the fact that this term agrees with
the corresponding MHD term if γ is set to 5/3 (see (10.72), there written
for complex perturbations). In fact, the present electron description with
P being the only constant of the motion, with me going to zero and with
isotropy of the equilibrium distribution function (in the frame moving with
the bulk velocity) essentially behaves like a fluid with an adiabatic index of
5/3. We have encountered that fact already in Section 6.3.

In the magnetospheric literature most authors emphasize the stabilizing
effect of electron compressibility. However, in (10.245) compressibility has
the relative weight (5Te/3)/(5Te/3 + Ti), which becomes small for Te � Ti,
so that in this case the Hall effect dominates.

10.5.6 Ion tearing

Here we briefly return to the case of equal masses as introduced in Sec-
tion 10.4.1 with exponential distribution functions. Let us add the condition
Te = Ti. Then there is no charge separation in the poloidal plane and the
current densities are equal (je = ji). Correspondingly, the poloidal electric
field vanishes and (10.214) becomes

V2 =
1
2

∫ (
(∇A1)2

µ0
− dj0

dA0
A2

1 − 2ai

[[
〈Ψi1〉2i

]]
i

)
dx dz . (10.250)
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If the particles are strongly non-adiabatic (rg0/L of order 1 or larger) the
compressibility term is no longer large. If it becomes sufficiently small for
an instability to occur, one refers to it as a pure ion tearing mode.

In the opposite case, represented by the small-mass limit, one finds that
the compressibility term shown in (10.223) for the electrons applies to both
particle species,

V2 =
1
2

∫ (
(∇A1)2

µ0
− dj0

dA0
A2

1 +
5
3
n0kBT0Q

2
1

)
dx dz (10.251)

with T0 = Te + Ti. Again, this expression coincides with the MHD case
(10.72). Note that the assumed smallness of rgn excludes magnetic neutral
points so that the constraint (10.50) does not apply.

10.5.7 Remarks on boundary conditions and validity

The present approach is based on conservation of energy and of integrals
of the form

∫
G(fs, P )dΩs (see Appendix 2). In addition to the equations

of Vlasov theory this requires the vanishing of certain surface integrals.
For the present quasi-neutral case with translational invariance, and with
equilibrium distribution functions of the form (10.199), the conditions A =
A0, fs = fs0, satisfied on the boundary in the x, z-plane, guarantee that the
surface integrals vanish. There is no boundary condition for φ, consistent
with the quasi-neutrality condition, which does not involve any differential
operator acting on φ.

From these boundary conditions one would expect that the minimizer fm
s1

has to vanish on the boundary, which, however, is not the case. Still, that
does not cause a serious difficulty. As the variational expression (10.201)
does not involve a derivative of fs1, the minimizer fm

s1 can be approximated
arbitrarily well by functions that do satisfy the boundary condition. In other
words, V2 is not a minimum but an infimum on the test function space. As
this difference does not seem to have significant physical consequences, we
ignore this subtlety and keep using the terminology that would apply to a
minimum.

It is important to note that in deriving the expressions (10.209) or (10.214)
the only dynamical constraints that were imposed (within the framework of
Vlasov theory with prescribed boundary conditions) were the constancy of
Py and quasi-neutrality. Here we repeat that applying any further con-
straint can only raise the minimum of W2. The following implications are
particularly worthwhile mentioning.
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Pitch-angle diffusion of adiabatic electrons is not an additional destabiliz-
ing mechanism, as long as the fluctuation fields are subject to the assumed
translational invariance and the scattering is a Vlasov process satisfying the
present boundary conditions. Then the scattering process is included in the
dynamics allowable in the derivation of V2. Pitch-angle diffusion would sim-
ply destroy the adiabatic invariance of the electron motion. However, since
the adiabatic invariants were not imposed on the dynamics in the present
approach, the minimum cannot be lowered by their violation. There had
been discrepancies about this point in the literature until it was clarified by
Brittnacher et al. (1994) and Pellat et al. (1991) that pitch-angle diffusion
is not an efficient destabilizer.

Also it has been argued that the presence of transient electrons would have
a destabilizing effect (Sitnov et al., 1998), so that the criterion (10.241)
would be relaxed considerably. Again, systems with transient and non-
transient electron populations are included in the present approach, as long
as P is conserved and F ′

e < 0. This would lead one to argue that, in contrast
to the results of Sitnov et al. (1998), criteria such as (10.241) cannot be
relaxed by taking transient particles into account. It would be desirable for
future work to identify the origin of this discrepancy.
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Magnetic reconnection

The tearing instability, which was a dominant topic in the previous chapter,
is an important example of magnetic reconnection. In the present chapter
we will approach magnetic reconnection from a more general point of view
and include steady state and three-dimensional processes.

11.1 Introduction

Magnetic reconnection can be regarded as the process that resolves the
following dilemma. On sufficiently large length and time scales a plasma
behaves approximately as an ideal fluid. The main reason is that in this
regime generalized Ohm’s law (9.7) reduces to its ideal limit (3.60). As a
consequence, the magnetic field is frozen into the plasma motion, which sets
severe limitations to the accessible dynamical states (Section 3.8).

Already in the early stages of space exploration it became clear that these
limitations cannot be reconciled with observations. In particular, space
plasma activity seemed to involve the conversion of large amounts of mag-
netic energy into kinetic energy of bulk plasma and random particle motion
and of high energy particle populations. Such conversion, however, appeared
to be strongly inhibited, if not ruled out, by the frozen-in condition.

A particularly clear manifestation of that property is the stabilization of
one-dimensional current sheets by the constraint (10.50) that was discussed
in Section 10.2.2. As seen there, that constraint excludes the change of
the topological structure of the magnetic field. Breaking that constraint by
introducing a resistivity led to instability. So, already that simple example
indicated the central role that nonideal processes play in the present context.

When one began to look for processes that were able to break the frozen-in
property in an effective way the following question arose. How can nonideal
processes become efficient if all relevant terms of generalized Ohm’s law (9.7)

269



270 Magnetic reconnection

appear to be negligible? There is an obvious answer: With the exception
of the term containing ∂ve/∂t (which is negligible unless the time scale
is as short as 1/ωpe, see Section 9.4) these terms are negligible only on
large overall length scales. If a local structure developed on a much smaller
scale, nonideal processes could become important in that structure. A sig-
nificant example is the occurrence of a singular layer in the tearing mode
(Section 10.3).

There is a second task that reconnection has to fulfill. Nothing would be
gained if the effect of the local nonidealness remained local. It would be
of little interest if the effect was limited to plasma passing through a small
nonideal region. So it is necessary that the local nonideal process, to a
sufficient extent, leads to consequences on larger scales. Such consequences,
for instance, may concern energy transfer or the violation of magnetic line
conservation (see Section 3.8.2). This is the second property of magnetic
reconnection.

With both properties satisfied, magnetic reconnection enables plasmas
and fields of different origin to mix and large scale plasma structures to
transform magnetic to kinetic energy of the plasma particles in an efficient
way. According to major lines of present thinking, this is what happens in
solar flares or magnetospheric substorms, and possibly in many other plasma
processes in the universe.

Note that instead of starting from a clear-cut definition of reconnection
we have formulated requirements in qualitative terms. This reflects the
present situation. Although several attempts have been made to define
reconnection more precisely, none of the suggested notions has proven to be
fully satisfactory.

It seems reasonable to begin with considering the simplest geometry
that allows for efficient conversion of magnetic to kinetic energy with the
frozen-in condition violated. At first sight, one might think that in a
one-dimensional configuration with magnetic field reversal (e.g., a Harris
sheet) a constant electric field imposed along the direction of the electric
current might lead to a steady state energy conversion process, because the
Poynting vector would transport electromagnetic energy toward the neutral
sheet from both sides. But away from the neutral sheet, where the plasma
may be treated as ideal, the E × B motion would lead to an inward flow
of the plasma also. By mass conservation the plasma would pile up inside
the sheet, which excludes a steady state process. Even in a time-dependent
system the piling-up of the plasma would generate forces that would soon
stop the incoming flow. Therefore, reconnection requires a plasma flow with
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at least two spatial dimensions. We will see to what extent this applies to
the magnetic field as well.

The first attempt to deal with processes that today we would group un-
der magnetic reconnection is generally attributed to Giovanelli (1946), who
emphasized the importance of a weak field region for efficient particle accel-
eration. Beginning in the late 1950s, several authors, notably Sweet (1958),
Parker (1963b) and Petschek (1964), developed the first fluid models in the
context of energy conversion in solar flares; Dungey (1961) addressed the
interaction between the magnetized interplanetary medium and the Earth’s
magnetosphere. Several aspects of these pioneering contributions will briefly
be discussed in the following section. Today, magnetic reconnection is an
established field of research with many papers appearing every year dealing
with various facets of this fascinating phenomenon. Numerous details that
go beyond the present rather concise description are given in monographs es-
pecially devoted to magnetic reconnection, such as Biskamp (2000) or Priest
and Forbes (2000).

11.2 Two-dimensional fluid models

In this section we describe two-dimensional configurations by resistive MHD
(Section 3.3.3). The physical quantities are independent of the (Cartesian)
y-coordinate and the discussion is focussed on steady states.

11.2.1 Basic configuration and properties

The basic configuration is shown in Fig. 11.1. The magnetic field B and
the plasma velocity v are assumed to lie in the x, z-plane, while the electric
field has a non-vanishing y-component. As in the case of resistive tearing
the plasma is treated as incompressible with a constant density ρ0, and the
resistivity η is kept constant unless stated otherwise. The plasma is almost
ideal, such that the Lundquist number (9.15), evaluated with the global
length scale L, is much larger than 1.

To obtain an effect on the large scale, one assumes a stagnation flow
with velocity v (big arrows) and a magnetic field structure with a neutral
point at the origin, such that the x-components of the magnetic fields in
the upper and lower inflow regions are oppositely directed. (Viewed three-
dimensionally, instead of the neutral point, a neutral line extends along the
y-axis.)

The local nonidealness is realized by the presence of a diffusion region,
centred at the origin and characterized by length scales δ and ∆ with
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Diffusion
  region

z

x

Fig. 11.1 Qualitative pattern of two-dimensional reconnection with v and B sub-
ject to the following symmetry relations: vx(−x, z) = −vx(x, z), vx(x,−z) =
vx(x, z), vz(−x, z) = vz(x, z), vz(x,−z) = −vz(x, z), vy = 0, Bx(−x, z) =
Bx(x, z), Bx(x,−z) = −Bx(x, z), Bz(−x, z) = −Bz(x, z), Bz(x,−z) = Bz(x, z),
By = 0.

L ≥ ∆ � δ. There, the plasma and magnetic fields can decouple effectively,
so that the frozen-in property of ideal MHD is broken.

The fields may not be smooth everywhere, narrow regions with strong
spatial variation that may be idealized as discontinuities (Section 3.9) may
be present. In the case of shocks the associated nonidealness must also be
taken into account. For the occurrence of shocks in an otherwise incom-
pressible medium see Section 3.9. (Shocks are not indicated in Fig. 11.1,
but Fig. 11.6 shows a configuration with a slow shock.)

The term diffusion region suggests the presence of a diffusion process.
This notion results from the structure of the induction equation with the
electric field inserted from (3.67),

∂B

∂t
= ∇× (v × B) +

η

µ0
∇2B , (11.1)

which shows that the evolution of the magnetic field is determined by advec-
tion (first term on the right side) and diffusion (second term). Considerable
diffusion can take place if a length scale becomes small. Advection without
diffusion leads to the frozen-in motion (Section 3.8). Magnetic reconnection
is based on the interplay between both processes.

That the requirement of a large-scale effect is satisfied for the configu-
ration of Fig. 11.1 can be seen as follows. Under the present steady state
assumption ∇ × E vanishes, which in two dimensions implies that Ey is a
constant, say −E0, with E0 > 0 in the configuration of Fig. 11.1. The pres-
ence of the diffusion region allows for a non-vanishing value of E0. Under
ideal conditions (with ηj negligible) the y-component of Ohm’s law (3.67)
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would require Ey = 0 at the neutral point, such that E0 would have to van-
ish and with it the plasma flow perpendicular to B in the external region
everywhere. So, the existence of the large-scale stagnation flow is directly
tied to the presence of a localized diffusion region.

In some of the models to be discussed in this chapter the diffusion re-
gion is a sheet formally extending along the entire x-axis (or an analogous
coordinate axis in other geometries). The dynamics of this limiting case is
largely referred to as annihilation.

Under the present assumptions the resistive MHD equations (Sec-
tion 3.3.3) become

ρ0 v · ∇v = −∇p + j × B (11.2)

E + v × B = ηj (11.3)

∇ · v = 0 (11.4)

∇× B = µ0j (11.5)

∇ · B = 0. (11.6)

For several purposes, such as the search for analytical solutions or numer-
ical studies, it is convenient to represent both v and B by flux functions
D(x, z) and A(x, z, t), respectively. Here A has the form A′(x, z) + E0t, so
that Ey is generated by −∂A/∂t. Then, from (11.2)–(11.6) one finds the
equations

[∆D, D] = [∆A, A] (11.7)

MA + [A, D] =
1
S0

∆A, (11.8)

which are written in non-dimensional form, such that A is normalized by
B0L, the stream function D by vA0L and coordinates by L. Here vA0 =
B0/

√
µ0ρ0 is the Alfvén velocity in the outer inflow region and MA is given

by

MA =
E0

vA0B0
. (11.9)

The bracket-symbol is defined in (10.133) and S0 = µ0vA0L/η. The equa-
tions (11.2)–(11.6) and (11.7)–(11.8) are equivalent, except that in (11.7)
the pressure gradient has been eliminated by taking the curl. The equations
(11.7) and (11.8) can also be obtained from (10.128)–(10.132) when tailored
to the present conditions.

Magnetic reconnection as described here is irreversible. This follows from
the irreversibility of the general resistive MHD equations and is also obvious
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from their present specialization (11.7) and (11.8). For η = 0 these equa-
tions would be invariant against inversion of the direction of the plasma
velocity and of the electric field leaving B and j unchanged, reflecting the
reversibility of the ideal equations. For non-vanishing resistivity this sym-
metry is broken, the system becomes irreversible. A direct indication of
the irreversibility is the fact that at the neutral point (11.3) reduces to
Ey = ηjy, which in the present geometry implies E · j = ηj2 ≥ 0, so that E

cannot be reversed with j unchanged. It is an interesting question whether
irreversibility is a general property of magnetic reconnection.

Solutions of (11.7) and (11.8) have three dimensionless parameters, two of
them are MA and S0; the third does not appear in (11.7)–(11.8) because it
is associated with the pressure, which has been eliminated. The parameter
MA is called reconnection rate. As ideal Ohm’s law implies E0 = v0B0, MA

equals the inflow Alfvén Mach number v0/vA0 . The definition (11.9) can
also be understood as a non-dimensional representation of the electric field
strength E0, which is often used as the dimensional form of the reconnection
rate. It directly measures the rate at which magnetic flux conservation with
respect to the plasma velocity is violated by the presence of the diffusion
region. To illustrate that property, let us consider the rectangle Sr (Fig. 11.2)
located in the plane z = 0; line (c) is located in the ideal region. To the
rectangle Sr let us apply the balance of magnetic flux (see (3.80))

d
dt

∫
Sr

n · B dx dy = −
∮

∂Sr

(E + v × B) · ds

= −
∫ 1/2

−1/2
Ey dy

= E0 , (11.10)

y

(a)

(b)

(c)

(d)

x

−1/2

 1/2

n

Sr

E

v

ds

Fig. 11.2 Breakdown of magnetic flux conservation in the outflow region. The
magnetic flux considered is connected with the rectangle Sr, whose sides move
with the local plasma velocity. The normal n points in the negative z-direction.
The line (c) is located in the ideal outflow region.
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where ∂Sr is the boundary of Sr consisting of the lines (a),(b),(c),(d). Note
that only line (a) contributes to the line integral in (11.10). On the inflow
side there is a corresponding decrease of magnetic flux.

It is an important property of the present model (Fig. 11.1) that v violates
line conservation (Section 3.8.2) and that this violation affects the ideal
region. Two plasma elements that initially are situated on the same field
line above the separatrix but on different sides of the z-axis (Fig. 11.3), by
their perpendicular velocity E × B/B2, end up on different field lines in
the outflow region. Note that the plasma elements cannot cross the z-axis
because of symmetry (Fig. 11.1). As time proceeds, more and more field
lines appear between the outflowing elements (although the corresponding
magnetic flux is zero for the assumed symmetry). Eventually, the elements
get separated by distances on the large scale L, even if their original distance
was arbitrarily small. This gives the required large-scale effect.

Let us now consider magnetic field lines. In an ideal MHD system, the
field lines can be regarded as being transported by the fluid velocity. (The
condition (3.90) is satisfied for w = v, Λ = 0.) Applying this picture to
the ideal inflow region the question arises, what happens to the field lines
after they become connected to the nonideal region? Intuitively, they re-
connect at the neutral point. What is the corresponding formal property?
The answer is that there is no smooth transport of field lines. In formal
terms this is manifested by the nonexistence of a smooth velocity field w

z

x
DR

Fig. 11.3 Breakdown of magnetic line conservation in the ideal region, illustrated
for two plasma elements. The full lines are magnetic field lines, broken lines
the trajectories of the plasma elements. The elements start in the inflow region
on the same field line and then move to different field lines. The outflowing
elements become separated by an increasing number of field lines. DR is the
diffusion region. The presence of shocks (Fig. 11.6) would not affect the qualitative
conclusion.
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that coincides with the plasma velocity in the ideal region and satisfies the
transport condition (see Section 3.8.2)

∇× (w∗ × B) = λB , (11.11)

where the ∗ symbol indicates the condition that the transport velocity coin-
cides with v in the ideal region.

It is instructive to give a formal proof of this property in addition to
intuitive arguments such as given above. We show that the assumption
of a smooth solution w∗ leads to a contradiction. First we note that the
divergence of (11.11) implies that λ is constant on field lines. As all field
lines connect to the ideal region where λ = 0, λ must vanish everywhere.
Further, let us write

∇× (w∗ × B) = ∇w∗
y ×∇A −∇(w∗ · ∇A) × ey (11.12)

where we have used B = ∇A × ey.
Noting that By = 0 and that ∇A vanishes only at an isolated point and

treating derivatives of B and w∗ as continuous (Section 3.8.2), this implies

B · ∇(w∗ · ∇A) = 0 . (11.13)

In the ideal region v satisfies ideal Ohm’s law, which has the y-component
v · ∇A = Ey = −E0. Thus, the identification of w∗ with v in the ideal
region requires that w∗ · ∇A = −E0 in that region. Now, (11.13) implies
that w∗ · ∇A is constant on the entire field lines. This means that

w∗ · ∇A = −E0 (11.14)

must hold everywhere. Applying this to the separatrix, we see that w∗

necessarily has a singularity at the neutral point, so that there is no smooth
transport of field lines. As in the intuitive picture, smooth transport is
excluded by the presence of the neutral point.

In passing we note that this property can also be understood as a variant
of breakdown of magnetic topology conservation, where, however, the class
of (smooth) transport velocities to be taken into account is not arbitrary,
but has to be restricted by the condition that w = v in the ideal region.

As we have seen, for the configuration discussed here, the presence of a
separatrix plays a crucial role in the breakdown of line conservation. Vasyli-
unas (1975) tied his notion of magnetic merging to plasma motion across
separatrices. Unlike merging, the present criterion, based on breakdown
of line conservation, can be generalized to include configurations without
separatrix (Section 11.5).



11.2 Two-dimensional fluid models 277

For obtaining quantitative examples of reconnection one must solve the
nonlinear partial differential equations (11.7) and (11.8). Although they
might appear as not too complicated, because of their nonlinearity only very
few analytical solutions have been found. We will start with discussing a
class of annihilation solutions. Then we turn to more general configurations,
where drastic simplifications and assumptions are the price for obtaining
explicit results. Where necessary, the analytical results are complemented
by results of simulations.

11.2.2 Exact solutions: Magnetic annihilation

We begin by confirming that one-dimensional solutions with A and D de-
pending on only one coordinate, say on z, are useless for reconnection pur-
poses. In that case all [ ]-brackets in (11.7) and (11.8) vanish, implying
that there is neither advection nor diffusion, which contrasts the picture of
reconnection as an interplay between the two processes.

It turns out that the requirement of at least two spatial dimensions pri-
marily applies to the plasma flow rather than to the magnetic field. So it
is natural to look for solutions of (11.7) and (11.8) with a one-dimensional
magnetic field, say B = Bx(z)ex, so that A does not depend on x. (By
the vanishing of Bz the magnetic field is qualitatively different from that
of Fig. 11.1, so that those arguments of the previous section that refer to a
separatrix are not applicable.) Under the present simplifications (11.7) and
(11.8) reduce to

[∆D, D] = 0 (11.15)

MA +
∂A

∂z

∂D

∂x
− 1

S0

∂2A

∂z2
= 0 . (11.16)

In view of (11.16) ∂D/∂x does not depend on x. Luckily, a simple solution
meeting this requirement can be found as

D = −xz , (11.17)

such that (11.16) becomes (Sonnerup and Priest, 1975)

∂2A

∂ζ2
+ ζ

∂A

∂ζ
− MA = 0 , (11.18)

where ζ =
√

S0z.
For Bx(0) = 0 (11.18) is solved by

∂A

∂ζ
=

√
2MA daw(ζ/

√
2) , (11.19)
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where

daw(u) = e−u2

∫ u

0
et2 dt (11.20)

is the Dawson function (Abramowitz and Stegun, 1965). The solution ob-
tained from (11.19) is illustrated in Fig. 11.4.

The current density is concentrated in a region where ζ is of order 1 and
z of order 1/

√
S0. This region represents the diffusion region, which here

extends over the entire x-range.
As, for a moment, we have abandoned the neutral-point configuration of

Fig. 11.1, magnetic flux and line conservation have to be reconsidered. For
the plasma velocity one finds

∇× (E + v × B) = λB , (11.21)

where

λ = − η

Bx

dj

dz
, (11.22)

which remains bounded for z → 0. By (3.87) and (3.81) this means that
the plasma velocity is line-conserving but not flux-conserving. The former
is clear from the fact that vz depends on z only, so that for the assumed 1D
field structure all plasma elements that share a field line at one time keep
sharing the field line at all times.

The plasma pressure p imposes a limitation of validity (Litvinenko et al.,
1996). It is determined by (11.2), which gives

p = p0 −
ρv2

2
− B2

2µ0
, (11.23)

Fig. 11.4 Streamlines and (horizontal) magnetic field lines (left) and jy and Bx in
suitable normalization (right) of the Sonnerup–Priest solution (11.17), (11.19).
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where p0 is the pressure at the origin. For a given value of p0 the pressure
formally becomes negative outside a finite region containing the origin, so
that the solution is valid only inside that region. Here, (11.23) puts a strong
limitation on the flow velocity

ρv2

2
≤ p0 . (11.24)

Although formally there is unlimited acceleration by the j × B force, the
actual energy conversion is rather limited.

As we have seen, the present annihilation configuration, characterized by
a one-dimensional magnetic field, is qualitatively different from the recon-
nection configuration of Fig. 11.1.

The term reconnective annihilation is used for generalizations of annihi-
lation, where the magnetic field is two-dimensional with a point singularity
but the current density is still extended over the entire domain. Correspond-
ing solutions were presented by Craig and Henton (1995), who showed that
(11.7) and (11.8) are solved by

D =
β

α
g(z) + αxz +

1
2
γz2 (11.25)

A = g(z) + βxz , (11.26)

where g(z) is a suitable solution of the ordinary differential equation

1
S0

g′′ − α2 − β2

α
zg′ = MA − βγz2 (11.27)

which can be solved analytically. The example of Fig. 11.5 clearly shows
a two-dimensional magnetic field structure with a point singularity. The

Fig. 11.5 Solutions D and A of the Craig–Henton model equations (11.25) and
(11.26) for β = 2, α = 1, γ = 0, MA = 0.1, S0 = 100.
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separatrix extends into the ideal region. Therefore, one finds that, other than
in the annihilation case, there is no smooth field line transport with w = v

in the ideal region, which implies violation of line and flux conservation for
the plasma velocity. The diffusion region is still a one-dimensional current
sheet. The positive pressure requirement still restricts the domain. On the
x-axis (11.24) remains unchanged.

Equations (11.26), (11.25) reduce to the Sonnerup–Priest annihilation
case by the choice α = −1, β = γ = 0. Priest et al. (2000) succeeded
in generalizing the choice (11.26) and (11.25), still reducing the problem to
a set of ordinary differential equations.

A similar model was also formulated and solved in curvilinear coordi-
nates, which substantially enlarged the class of configurations covered by
this technique (Tassi et al., 2002, 2003).

11.2.3 Simplified picture of reconnection

Our next step is to consider more general cases with two-dimensional mag-
netic fields, which have a structure as shown in Fig. 11.1. This is possible,
however, only at the expense of drastic simplifications. Quantities in the
outer inflow region will be characterized by their magnitudes at the point
where the positive z-axis crosses the boundary, and are labelled by the sub-
script zero. The subscripts ‘1’ and ‘2’ refer to the centre inflow and outflow
points on the boundary of the diffusion region and the subscript ‘nl’ is used
for quantities on the neutral line. The symmetry properties are listed in the
figure caption.

Further, let us assume that derivatives with respect to x are small com-
pared with derivatives with respect to z and that |Bz| � B0. Pressure is
treated as a constant p0 in the external region. These assumptions allow us
to derive a set of simplified relations.

The condition of incompressibility (11.4) is applied to the diffusion region,
which, with the help of Gauss’s theorem, gives as a rough approximation

v1∆ = v2δ . (11.28)

The z-component of momentum balance (11.2) at x = 0 provides the pres-
sure balance across the upper half of the diffusion region

p1 +
B1

2

2µ0
= pnl , (11.29)

and the x-component of momentum balance (11.2) evaluated at z = 0,
ignoring the small contribution from Bz, gives
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ρ2v2
2

2
+ p2 = pnl . (11.30)

From Ohm’s law (11.3) applied to the outer and inner inflow points, to the
outflow point and to the origin, one finds

E0 = v0B0 = v1B1 = v2B2 = ηjnl (11.31)

and Ampère’s law (11.5) (replacing differentials by differences) gives

jnl =
B1

µ0δ
. (11.32)

By taking into account that ρ2 = ρ1 = ρ0 and p1 = p2 = p0 and by
eliminating pnl, jnl and E0 one obtains four equations, which we understand
as determining v1, v2, B2 and δ as functions of B1 and ∆. One finds

v1 = vA1

√
L

∆
1√
S1

(11.33)

v2 = vA1 (11.34)

B2 = B1

√
L

∆
1√
S1

(11.35)

δ = L

√
∆
L

1√
S1

, (11.36)

where S1 = µ0vA1L/η.
That an equation determining ∆ is missing reflects the fact that a full

solution of the problem was not achieved. In the classical models of Sweet
(1958) and Parker (1963b) and of Petschek (1964) that gap was filled by
additional assumptions. A brief description of these models follows, for
details see Vasyliunas (1975).

11.2.4 Sweet–Parker and Petschek models

In the Sweet–Parker model the diffusion region is a thin extended structure
such that ∆ becomes of the order of L. For simplicity, let us set ∆ =
L. The external region is assumed to be largely homogeneous such that
approximately B1 can be identified with B0 and one can set S = S1 = S0 and
MA = MA1. Under these conditions, (11.33) gives the reconnection rate as

MA =
1√
S

. (11.37)

This is the well-known Sweet–Parker reconnection rate. In stellar at-
mospheres and space plasmas S0 usually assumes large values (Table 9.1)
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so that the Sweet–Parker reconnection rate generally is regarded as too low
to be relevant.

Petschek’s model includes a shock wave in each quadrant (Fig. 11.6). Note
that the magnetic field is deflected toward the normal direction of the shock,
so that the shock is of the slow mode type (Section 3.9). Although a full
self-consistent incorporation of the shock dynamics is outside the scope of
the model, Petschek (1964) succeeded in deriving a lower limit for ∆ given
by

∆ > L
π

8
(ln S)2

S
. (11.38)

If, as in the Sweet–Parker model, one ignores the distinction between
outer and inner inflow region, one finds from (11.33)

MA <
π

8
1

lnS
. (11.39)

This upper limit is generally known as the Petschek reconnection rate. For
S � 1 it is considerably larger than the Sweet–Parker rate.

In contrast to the annihilation solutions described above, neither the
Sweet–Parker model nor the Petschek model represent a complete solution of
the MHD equation. Nevertheless these models have been extremely valuable
for further developments in reconnection theory.

Fig. 11.6 Petschek’s magnetic field configuration. The figure corresponds to the
quadrant of positive x and z of Fig. 11.1 with the diffusion region contracted
to a point; the thin lines are magnetic field lines, the broken line indicates the
separatrix. A slow shock wave (thick line) leads to the characteristic weak magnetic
field in the outflow region.
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11.2.5 Modifications

The models by Sweet–Parker and Petschek triggered a considerable search
for improvements. Here a brief, although incomplete, account is given of that
development in a non-chronological order. (For more complete presentations
see Priest and Forbes (2000) and Biskamp (2000).)

The identification of the upper limit given by (11.39) with the reconnection
rate had the advantage that a rate faster than the slow Sweet–Parker rate
became available. The disadvantage was that the two models gave conflicting
answers to the same problem, which has caused a great deal of debate.

Several investigations produced results in favour of the Sweet–Parker
regime. Fig. 11.7 shows, for example, a result Biskamp (1986) obtained
by solving the equations (11.7) and (11.8) numerically for a particular set
of boundary conditions. The solutions demonstrate that a Sweet–Parker
current sheet rapidly develops for increasing S0.

Kulsrud (2001) emphasized that the Petschek rate is only an upper limit
and that the actual rate must come from a more detailed analysis. He man-
aged to extract an extra condition from the steady state model equations.
It states that the Bz-component in the outflow region to remain in a steady
state requires that the supply of Bz from the diffusion region must balance
the frozen-in down-sweeping of Bz in the outflowing plasma. As Kulsrud
(2001) demonstrated, that condition demands that ∆/L must be of order
1, so that the Petschek reconnection rate would roughly agree with that of

Lx 0x (a) (b) (c)
Lx

Lz

0x Lx

0

0

z

Lz

0

z

x

Fig. 11.7 Numerical solutions of (11.7) and (11.8) (Biskamp, 1986). The upper
graphs show level curves of the stream function D, the lower graphs of the flux
function A. In cases (b) and (c) the Lundquist number of case (a) is increased by
factors of 2 and 4, respectively. (With permission from D. Biskamp.)
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Sweet–Parker. In this picture the estimate (11.39) is formally correct, but
the actual value is far below the upper limit. This is an interesting reconcil-
iation of the two results. Yet, the resulting reconnection rate is still much
too small to be of interest for typical applications.

Naturally, the search for measures that could enhance the reconnection
rate has been a central topic. In other words, the aim is to identify regimes
of fast reconnection, where fast means faster than the Sweet–Parker process.

As indicated in Fig. 11.6 the magnetic field strength of the Petschek model
decreases as the origin is approached along the z-axis. In his detailed analy-
sis, placing earlier work (e.g., Sonnerup, 1970; Yeh and Axford, 1970) in a
new perspective, Vasyliunas (1975) pointed out that this effect reduces the
maximum reconnection rate as compared with the opposite behaviour. This
is based on the fact that a pressure decrease along the z-axis toward the ori-
gin in the inflow structure corresponds to a fast mode MHD expansion wave.
By the same argument one expects an increase of the reconnection rate in
the presence of a slow mode expansion. As an expansion shock does not ex-
ist (Section 3.9), this argument favours boundary conditions that generate
an extended expansion wave structure.

Priest and Forbes (1986) presented a model in which they analysed the
effect of slow and fast expansion in a systematic way. The Petschek model
and the slow wave structure discussed above appeared as special cases. For
sufficiently strong expansion they saw a flux pile-up phenomenon in the inner
inflow region, which can cause a substantial increase of the reconnection rate.

These results indicate that fast reconnection can be achieved by imposing
suitable boundary conditions, which have the effect that the outer inflow
region is substantially different from the inner inflow region. This is neces-
sary also from a general physical point of view which emphasizes the fact
that inner inflow conditions must adjust to the boundary conditions, which
(within certain limits) must be allowed to be prescribed (Vasyliunas, 1975;
Axford, 1984).

Intuitively, one can expect that the control parameters are v0, B0, L,

ρ0, p0, η. To avoid separate counting of solutions that arise from similar-
ity transformations, we turn to the non-dimensional parameters that can
be formed from these quantities, after including µ0. One finds that there
are three such control parameters, which can be chosen as the Alfvén Mach
number MA = v0/vA0, the Lundquist number S0 = µ0vA0Lη and the di-
mensionless pressure 2µ0p0/B2

0 . To simplify the problem for illustration, we
here follow the earlier practice to ignore the effect of the pressure. Then it
must be possible to express normalized versions of all relevant quantities by
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MA and S0. However, in view of the lack of information regarding ∆ the
parameter ∆/L appears in addition. Using (11.31) one finds from (11.33)–
(11.36)

v1

vA0
=

B2

B0
=
(

MA

S0

L

∆

)1/3

(11.40)

v2

vA0
=

B1

B0
=
(

M2
AS0

∆
L

)1/3

(11.41)

δ

L
=
(

1
MAS2

0

∆
L

)1/3

. (11.42)

Note that the Sweet–Parker regime is recovered by insisting on B1/B0 = 1,
which for ∆/L = 1 requires MA = 1/

√
S0.

It is of course still possible to choose boundary conditions in a way that
the reconnection is slow. According to Priest and Forbes (1992a) this was
the case in the simulations by Biskamp (1986). In fact, from his simulations
he concluded that ∆/L scales as M4

AS2
0 , so that (11.40)–(11.42) give the

scaling relations (see also Biskamp, 2000)

v1

vA0
=

B2

B0
∼ 1

MAS0
(11.43)

v2

vA0
=

B1

B0
∼ M2

AS0 (11.44)

δ

L
∼ MA , (11.45)

which indicates the adjustment of the inner inflow conditions to the bound-
ary conditions. However, the maximum reconnection rate, reached for
∆/L ≈ 1, still scales as 1/

√
S0, as in the Sweet–Parker case. Lee and

Fu (1986) obtained scaling laws different from Biskamp’s. Priest and Forbes
(2000) argue that, again, the difference is due to different choices of bound-
ary conditions.

The majority of the studies described so far use constant resistivity, the
diffusion region being characterized by an increase of the current density
alone. A further degree of freedom which influences the reconnection rate is
the occurrence of a localized resistivity, which could be based on microtur-
bulence causing collective transport (Section 9.3.2). For the Petschek model
Biskamp (2000) argued that the lack of proper matching between external
and diffusion regions for the classical constant resistivity case would be less
serious for localized resistivity, probably due to the additional possibility
of adjustment, so that fast Petschek-type reconnection might exist under
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these circumstances. Kulsrud (2001) finds that for the Petschek model in
the presence of a collective resistivity, suitably depending on the current
density (Section 9.3.2), the balance of Bz can be achieved in the regime
∆ � L, which would correspond to fast reconnection. These results are
also consistent with simulations by Yan et al. (1992). Fast reconnection was
studied also in a simulation by Ugai (1992) for different resistivity models.

The analytical models discussed above are based on crude approximations
or they are focussed on particular aspects. As yet there is no fully satisfac-
tory analytical model of steady state reconnection. An important step in
that direction was made by Jamitzky and Scholer (1995), who treated con-
figurations in the neighbourhood of annihilation structures by a boundary
layer analysis for comparatively general boundary conditions.

The outflow ends of the diffusion region seem to have a complicated struc-
ture. The simulations by Biskamp (1993) have provided evidence indicating
that a finite-length Sweet–Parker current sheet can have a structure similar
to that of Syrovatskii’s model given by (8.132).

11.2.6 Non-symmetric configurations

So far we have dealt with symmetric configurations (Fig. 11.1). Before
considering more general cases let us tentatively superimpose a constant
By-component on an otherwise planar field configuration. (Byey is called
the guide field.) At first sight one might be misled to argue that this would
not affect the structure of the solution in the x, z-plane. It is true that
the general incompressible MHD equations with translational invariance in
the y-direction (10.128)–(10.132) have exactly that property. However, the
argument fails in the presence of shock waves. A characteristic feature of
shocks is coplanarity (Section 3.9). It is easily seen that the superposition
of a By-component would ruin that property. This does not contradict the
general property of the resistive MHD equations mentioned above, because
shocks by definition are compressive. (For discontinuities in an incompress-
ible medium see the remark at the end of Section 3.9.) So, in the presence of
shocks the poloidal structure of the configuration must change. The solution
to this problem consists in the addition of discontinuities that are not sub-
ject to coplanarity. In the presence of a non-vanishing normal component
Bn the only candidates are rotational discontinuities, which rotate the mag-
netic field in a required direction, so that the coplanarity of a subsequent
shock wave is no longer a problem.

Heyn et al. (1988) have considered more general cases. They generalized
Petschek’s approach by studying the corresponding non-symmetric Riemann
problem. The latter considers the decay of a plane tangential discontinuity
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into a system of MHD discontinuities and waves after introducing a finite
Bn. The sequence of the discontinuities and waves is determined by the
propagation speeds. In a Petschek-like reconnection configuration all dis-
continuities and waves originate from the diffusion region, which is assumed
to be concentrated at the origin. The result is a wedge-shaped structure on
each side of the diffusion region. If the z-components of v and B are assumed
to remain small, the wedge remains narrow. For that case Heyn et al. (1988)
find the steady state configuration illustrated in Fig. 11.8. The reconnection
layer is the region bounded by the two rotational discontinuities.

The rotational discontinuities change the orientation of the magnetic field
in the inflow regions so that the slow shock (upper part) or the slow expan-
sion wave (lower part) can bring out changes in the magnetic field strength
in the required coplanar geometry. The contact discontinuity provides a
density jump required to match both inflow sides. The occurrence of a slow
expansion wave instead of a slow shock on either side of the contact discon-
tinuity depends on the inflow conditions on both sides. At the transition
from a slow shock to a slow expansion wave the slow structure disappears.
Fast shocks or fast expansion waves are not involved under the present cir-
cumstances. For a hybrid simulation of a non-symmetric reconnection layer
see Nakamura and Scholer (2000).
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Fig. 11.8 A Petschek-like configuration for the general non-symmetric case after
Heyn et al. (1988). The diffusion region, concentrated at the origin, is the source
of two rotational discontinuities (RD) and either a slow shock (SS), shown in the
upper part, or alternatively a slow expansion wave (SE), shown in the lower part,
and a contact discontinuity (CD). The broken lines indicate the separatrices. For
illustration, the slopes of the lines shown in the figure are exaggerated.
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11.2.7 Reconnection with a guide field

The approach described in the previous section considered only the ideal
region. Although a complete analytical approach is not available, here we
concentrate on a particular problem that arises in the diffusion region when
a guide field is superimposed.

The problem is that the guide field causes the neutral point, which is
a dominant feature of the reconnection models without guide field, to dis-
appear. On the one hand, one might expect that without a neutral point
reconnection cannot operate, on the other hand, one might argue for physical
continuity as a small guide field is superimposed. As we will see, continuity
wins. We will show that the breakdown of line conservation is unaffected by
the guide field.

So, let us consider a steady state configuration with translational invari-
ance with respect to y but with a non-vanishing guide field (By �= 0). The
poloidal magnetic field (Bxex+Bzez) has a hyperbolic neutral point located
at the origin (Fig. 11.9), surrounded by a diffusion region and let Ey be dif-
ferent from zero. Near the neutral point the flux function of the poloidal
field has the form

A =
1
2
(αx2 − z2) , (11.46)

where α is a constant with 0 < α < 1. An ellipse α2x2 +z2 = r2
0 is placed at

y = 0, where r0 is positive and sufficiently small for the ellipse to lie inside
the diffusion region. On the ellipse one has

|∇A| =
√

α2x2 + z2 = r0 . (11.47)

For the breakdown of line conservation for plasma elements in the ideal
region we can simply refer to the case without By, illustrated in Fig. 11.3.
It remains to show the nonexistence of smooth field line transport. For the

x

z

DR E

Fig. 11.9 Poloidal magnetic field structure with a hyperbolic neutral point at the
origin and diffusion region DR. A non-vanishing By-component (guide field) is
superimposed (not shown). Field lines crossing the ellipse E (located at y = 0)
connect the diffusion region with the ideal region.
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purpose of an indirect proof, let us assume that there is a smooth velocity
w∗ and a smooth scalar field λ satisfying (Section 3.8.2)

∇× (w∗ × B) = λB , (11.48)

with w∗ = v and λ = 0 in the ideal region. As all field lines, except the
field line coinciding with the y-axis, connect to the ideal region, the property
B · ∇λ = 0 together with continuity of λ gives λ = 0 everywhere. Scalar
multiplication of (11.48) with ∇A yields B ·∇(w∗ ·∇A) = 0, so that w∗ ·∇A

is constant on all field lines. All field lines intersecting the ellipse E indicated
in Fig. 11.9 connect DR with the ideal region, so that w∗ ·∇A = Ey on those
field lines.

Let θ be the angle between w∗ and ∇A. Then, with the help of (11.47),
we find that on the ellipse

|w∗| =
|Ey|

r0| cos θ| ≥
|Ey|
r0

(11.49)

holds. This means that |w| is unbounded as r0 is chosen arbitrarily small.
This contradicts the assumed existence of a smooth velocity field w∗. Note
that the argument is similar to that used in the case By = 0 (Section 11.2.1).
The only difference is that here we had to deal with the fact that there is
one field line that stays inside the diffusion region.

We conclude that in two-dimensional steady state configuration with
non-vanishing guide field as defined above, breakdown of magnetic line
conservation occurs in qualitatively the same way as without By, so that
large-scale effects occur. The two conditions (Section 11.1) for reconnection
are satisfied.

11.2.8 Energy conversion

For a discussion of energy conversion let us return to the case By = 0. In
fluid theories the energy balance is obtained by scalar multiplication of the
momentum equation with the flow velocity v (see Section 3.8). Accordingly,
one finds from (11.2)

v · ∇
(

1
2
ρv2 + p

)
= v · j × B (11.50)

and, using (11.3)–(11.6), energy balance takes the form

∇ ·
(

1
2
ρv2v + pv +

1
µ0

E × B

)
+ ηj2 = 0, (11.51)
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or, with the help of Gauss’s theorem,∮
∂d

(
1
2
ρv2v + pv +

1
µ0

E × B

)
· n dl = −

∫
d
ηj2 dx dz (11.52)

for an arbitrary domain d with boundary ∂d and normal n in the x, z-plane.
In comparison with the steady state version of the energy balance (3.79)

of ideal MHD, (11.52) includes ohmic dissipation, but there is no internal
energy reservoir as a result of incompressibility. (In the resistive compress-
ible case (3.68) would ensure that ohmic heat goes into internal energy.)

Applying (11.52) to the diffusion region, one finds that in view of the
assumption p1 = p2 and (11.28) the pressure term drops out and the leading
term for large S1 is∫

in

1
2
ρv2|v · n|dl =

∫
out

1
µ0

E × B · n dl +
∫

d
ηj2 dx dz , (11.53)

where all three terms are of the same order of magnitude. Thus, the in-
coming energy flow separates into two parts of equal order, one of which is
ohmically dissipated, the other is transferred into energy of directed flow.
So, in the diffusion region a substantial transfer from magnetic to kinetic
energy takes place. In a more refined description the ohmic heating would
lead to an increase of pressure.

In cases where the diffusion region is not extended over the entire system
(∆/L < 1) the energy conversion taking place inside the diffusion region
concerns only a fraction of the plasma elements. A globally relevant effect
would require energy conversion in the ideal region as well. Here details
depend on the structure of the external solution. An obvious general re-
quirement is a non-vanishing current density j, as the transfer generally is
provided by the work of the j × B force (see (11.50)). The current may be
either extended or localized in thin structures, such as the slow shock waves
in the case of Petschek’s model or a current sheet that develops along the
magnetic separatrix (Biskamp, 1986).

11.2.9 Layers of parallel flow

Configurations as shown in Fig. 11.1 emphasize the velocity components v⊥
perpendicular to the magnetic field. Here we address parallel flows and their
possible concentration in layers.

Let us consider the magnetic field as being prescribed. Then, using the
model (11.2)–(11.6), one can determine the perpendicular velocity from the
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y-component of (11.3) and the parallel velocity from (11.4). In the ideal
region these equations reduce to the simple system

v⊥ · ∇A = Ey (11.54)

∇ · v = 0 , (11.55)

where Ey is a constant.
Writing v as v‖B/B + v⊥, one finds from (11.54) and (11.55)

v⊥ =
Ey

B2
∇A (11.56)

v‖
B

=
(v‖

B

)
0
− Ey

(
∂V (A, s)

∂A
+

∇A · ∇s

B3
−
(
∇A · ∇s

B3

)
0

)
, (11.57)

where s is the distance along field lines and the subscript zero refers to an
arbitrary point on the field line. V (A, s) is the flux tube volume

V (A, s) =
∫ s

s0

ds′

B(A, s′)
. (11.58)

The derivation of (11.57) is analogous to that of the parallel current (5.42)
when specialized for two-dimensional fields.

A layer of pronounced parallel flow can develop if ∂V/∂A becomes large in
a limited interval of magnetic flux. The lower sketch of Fig. 11.10 illustrates

z

x

z

x

DR

DR

Fig. 11.10 A layer of parallel flow (shaded area in the lower graph) arises from
a rapid change of the flux tube volume in the ideal region outside the diffusion
region DR. In the absence of such change no layer forms (upper graph).
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this effect. The frozen-in flow, after crossing the separatrix from above, is
squeezed into narrower flux tubes. Incompressibility requires adjustment by
enhanced parallel flow. The effect is particularly strong in the flux tubes
just below the separatrix. Formally, V (A, s) diverges at the separatrix in an
x-type neutral point geometry. Although the diffusion region has a regular-
izing effect, the parallel flow is still large in a layer just below the separatrix.
Qualitatively this effect may also be present on the upper side of the sepa-
ratrix in Fig. 11.10; however, it is less efficient because of the wider angle
formed by the separatrices on the inflow side.

The presence of discontinuities would modify this simple picture; how-
ever, as the qualitative geometrical argument would still apply, layers of
fast parallel flow might still form for a sufficiently fast decrease of the flux
tube volume in the outflow region. If the diffusion region is a finite-length
Sweet–Parker current sheet, parallel velocity layers form as long as there is
a separatrix connecting to a neutral point, which, for instance, applies to a
Syrovatskii layer.

Strong parallel flows that seem to be consistent with this picture have
been observed in simulations (e.g., Fig. 11.7). Also, this effect has been ap-
plied to the plasma sheet in the Earth’s magnetotail to explain the observed
boundary layer flow (Schindler and Birn, 1987).

There are many more details available in the literature about steady state
reconnection. We do not pursue this topic further here. There is no point
in repeating the material that has been described competently in articles
(Vasyliunas, 1975; Sonnerup, 1988) or more recent monographs (Biskamp,
2000; Priest and Forbes, 2000).

11.2.10 Time-dependent energy release via tearing and plasmoid

formation

An important example of time-dependent reconnection in two-dimensional
fields is the tearing mode considered in Section 10.3. The field structure
around the x-line (see Fig. 10.9) qualitatively resembles steady state recon-
nection (Fig. 11.1). Nevertheless, there are important differences, particu-
larly with respect to the boundary conditions. Steady state reconnection
is necessarily forced in the sense that the electric field remains finite at
the boundary. (Remember that in two-dimensional steady states the elec-
tric field component in the invariant direction is constant.) On the other
hand, tearing is an instability process, where the perturbations, including
the electric field component −∂A/∂t in the invariant direction, vanish at
the boundary. In that sense tearing is a spontaneous process. Note that this
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does not exclude that external forces drive the system towards the point of
onset of the instability, which usually has dynamical properties distinctly
different from the slow driver. The situation is similar to phase transitions
in equilibrium thermodynamics, where quasi-static changes drive the system
toward the point at which the phase transition takes place spontaneously. In
some cases, processes can be regarded as spontaneous even if the boundary
is partially open. For instance, some of the energy released by the instability
may flow out of the system through the open parts of the boundary.

The tearing mode seems to be an important ingredient in the unloading
of energy that originally was accumulated in stretched magnetic field con-
figurations. This process involves the formation of a plasmoid (or several
plasmoids). Plasmoids were introduced in Section 10.3.7, see Fig. 10.12.
Here we consider that process in a configuration which contains an x-type
neutral point already before the plasmoid starts forming.

Let us return to the case where the field is y-invariant with By set to zero.
Suppose energy has been accumulated in a region of closed flux bounded by
two separatrix surfaces that intersect in a neutral line as illustrated qual-
itatively in panel a of Fig. 11.11. The energy input can occur in different
ways. One possibility is energy flow through the left boundary, which may
be relevant for the solar corona. Another input mode is reconnection at the
neutral line, which is widely believed to happen in the Earth’s magnetotail.

If the left boundary is completely closed, the crucial role of reconnection
for the supply of mass, energy and magnetic flux is best illustrated by con-
sidering the absence of reconnection. For illustration let us assume a plasma
described by ideal MHD. Then, the flux function A(x, z, t) describing the
(time-dependent) magnetic field in the x, z-plane is constant on the separa-
trix by the following argument. For points ξ(t), η(t) on the separatrix the
value of the flux function As(t) is given by

A(ξ(t), η(t), t) = As(t) . (11.59)

Differentiating that expression with respect to t, specializing for the neu-
tral point and applying Ohm’s law (∂A/∂t = 0 at the neutral point) gives
dAs/dt = 0. So, the neutral point stays on the same field line, field lines
being identified by their value of A.

This property immediately excludes the transfer of magnetic flux across
the separatrix. The closed magnetic flux is given by As − Ab, where Ab is
the flux function of the field line just touching the left boundary. By the
closure condition, Ab is a constant, so that the constancy of As fixes the
closed flux to a constant.
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Fig. 11.11 Qualitative sketch of plasmoid formation and ejection in a stretched
magnetic field configuration.

It is equally simple to show that there is no mass flux across the separatrix.
Differentiating (11.59) for an arbitrary point on the separatrix gives

vs · ∇A +
∂A

∂t
= 0 . (11.60)

Comparing with Ohm’s law formulated for the same point gives

(v − vs) · ∇A = 0 , (11.61)

so that there is no bulk flow across the separatrix.
A similar result is obtained for the energy. However, here the situation is

complicated by the fact that, although energy flow through the separatrix is
excluded, some energy can still be supplied by compression. To see this let
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us integrate the energy conservation law (3.79) over the closed flux region
allowing for the boundary, the separatrix, to move with its velocity vs. One
finds

d
dt

∫ (
ρv2

2
+

p

γ − 1
+

B2

2µ0

)
d3r

= −
∫ (

ρv2

2
+

p

γ − 1
+

B2

2µ0

)
(v − vs) · n dl −

∫ (
p +

B2

2µ0

)
v · n dl ,

(11.62)

where n = ±∇A/|∇A|, the sign to be chosen so that n points outward,
and the line integrals are to be evaluated on the separatrices; there is no
contribution from the left boundary. The energy flux term (the first term on
the right) vanishes, so that energy can be changed only by the compression
work (second term).

In contrast to ideal MHD dynamics, magnetic reconnection, implying
∂A/∂t �= 0 and therefore v − vs �= 0 on the separatrix, would allow for
increasing magnetic flux, and for mass and energy flux across the separa-
trix.

Since the energy cannot grow indefinitely, an unloading process must be
at work also. In the case of resistive MHD reconnection, its irreversibility
would exclude a simple reversal of the loading process as long as |Bx| (outside
the current sheet) dominates over |Bz|. Then the direction of the current
density jy is conserved and, by E · j > 0 at the neutral line, the direction of
Ey also. Reversal of reconnection would require a change of both the electric
field direction and the current direction, which means that local steepening
must cause a situation where |∂Bz/∂x| becomes comparable with |∂Bx/∂z|,
which does not occur in strongly stretched current sheet configurations. So,
for stretched configurations the question arises of how the unloading takes
place. As we will see, the unloading is based on a different reconnection
process.

Since in the present stretched configuration the existing neutral line can
only be used for input, a new neutral line forms inside the closed flux re-
gion. The standard way of achieving this is plasmoid formation via tearing
(Section 10.3.7). Here the tearing mode picture is applicable as long as the
tearing mode grows fast compared with the temporal changes occurring on
large scales. This leads to the situation shown in panel b of Fig. 11.11.
Reconnection at the inner (new) neutral line reduces the magnetic flux be-
tween the two separatrices while reconnection at the distant (seen from the
left boundary) neutral line adds to that flux. But in view of the fast tearing
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process the net effect is a flux reduction. In other words, the two separatrices
merge into one (panel c). Further reconnection, with the inner process still
dominating, leads to a new topological structure (panel d). The plasmoid
has left the closed flux region, which is relaxed, as indicated by the reduced
stretching. The new neutral line now forms the end point of the closed flux
region. Typically, in the final step (not shown in the figure) the plasmoid
moves out of the system (to the right in panel d), driven by the outflow of
continuing reconnection and/or by forces acting on the plasmoid.

The figure 11.11 does not represent a self-consistent solution of the recon-
nection problem. It is based on a sequence of flux functions that depends
continuously on a parameter. So, the figure has only qualitative signifi-
cance, but it illustrates the existence of a smooth transition between the
field configurations of panels a and d.

The process of Fig. 11.11 has proven to be a basic key to the understanding
of the unloading of closed flux regions stressed by energy input. In that
scenario the build-up continues until a current sheet has formed that is
sufficiently pronounced for a tearing instability to start. So, it is the tearing
mode that initiates the unloading process.

This scenario can be tested by comparison with numerical simulation.
A corresponding set of resistive MHD results obtained by Otto (1987) is
shown in Fig. 11.12. The plasmoid forms spontaneously in the stretched
configuration of panel a. The topological evolution is consistent with the
one of Fig. 11.11.

Plasmoid formation and ejection occur in a similar form also when the
outer neutral line is moved to infinity (Birn, 1980). For further 2D simula-
tions with similar objectives see, e.g., Forbes and Priest (1983), Ugai (1982),
Otto (2001) or Wiechen et al. (1997). Corresponding 3D simulations are dis-
cussed farther below.

Most empirical models addressing solar or magnetospheric activity involve
plasmoids in one way or the other (see Part IV). Loss processes limiting
plasma confinement in laboratory experiments have a similar topological
evolution, although the geometry is different (Biskamp, 2000).

Regarding the reconnection process itself, time-dependent simulations
have revealed several important nonlinear phenomena. The reconnection
layer, generated by a tearing mode growing into its nonlinear regime, may
become tearing unstable itself. This phenomenon is known as secondary
tearing.

Two magnetic islands, such as realized by the cat’s eye solution (5.131),
can become unstable against coalescence into a single island (Biskamp and
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Fig. 11.12 Magnetic field lines of a resistive MHD simulation of plasmoid formation
and ejection from Otto (1987), the resistivity is constant with S = 100. (With
permission from A. Otto.)

Welter, 1980). There is an intermediate step with a thin current sheet
forming between the two islands, driven by the attractive forces between
the island currents. Reconnection at this current sheet initiates the merging
of the two islands into one.

11.3 Kinetic reconnection in 2D collisionless plasmas

For collisionless plasmas the resistive MHD model has been useful for general
qualitative orientation. For a detailed description of collisionless reconnec-
tion more refined models are necessary. The additional degrees of freedom,
which these models typically offer, give rise to a picture that is more complex
than the fluid picture considered so far.
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Consider a two-dimensional collisionless quasi-neutral electron–proton
plasma with the symmetry indicated in Fig. 11.1. The reconnection process
typically develops its own By-component, but here we exclude a guide field
from external sources unless stated otherwise. Note that structures on the
Debye scale are not covered in this section (see the remark at the end of
Section 3.2).

Both analytical estimates and simulations have led to the concept of a
structured reconnection region (Shay et al., 1998; Hesse et al., 2001). The
structure is shown in Fig. 11.13. The region in the centre is characterized by
nongyrotropic electrons; it is called the electron diffusion region or electron
dissipation region or region of unmagnetized electrons, here abbreviated as
electron region. The electron region is embedded in the region where the
ions are nongyrotropic (ion region). This region is larger than the electron
region because larger magnetic fields are required to make the (heavier) ions
gyrotropic. The part of the ion region that lies outside the electron region,
characterized by gyrotropic electrons and nongyrotropic ions, is called the
Hall zone, because there Hall currents play an important role (Section 3.6).
Outside the ion region both species are gyrotropic and the plasma has the
behaviour of an ideal fluid such as ideal MHD.

Fig. 11.13 The structured reconnection region of collisionless reconnection after
Hesse et al. (2001) (by permission of the American Geophysical Union).



11.3 Reconnection in 2D collisionless plasmas 299

11.3.1 The Hall zone

The basic significance of the Hall zone lies in the fact that the ions are
decoupled from the magnetic field while the electrons are not (e.g., Hesse
et al., 2001). Quasi-neutrality is established by a poloidal electric field. In
a useful simplified picture the current is dominated by the E × B drift
of the electrons, so that j ≈ −enve. The poloidal current density causes
a By-component with a characteristic quadrupolar structure (Fig. 11.13),
which in the present simplified picture can be seen as follows. The poloidal
component of µ0j = ∇× B gives

∇By = µ0ey × jp = −µ0eney × ve . (11.63)

Assuming a standard stagnation point pattern for ve, one finds that on any
closed curve in the inner part of the Hall zone By has minima and maxima
(Fig. 11.14), consistent with Fig. 11.13.

Although the ions can be considered as being essentially accelerated by
the electric field, the momentum balance for the plasma as a whole has no
electric force, so that, by self-consistency, the relevant electromagnetic force
is the j × B force.

Applying mass continuity to the ion region, we find the same equation as
obtained in the MHD case, (11.28), so that

v1 =
δi

∆i
v2 , (11.64)

where the additional subscript i refers to the ion region. Again, as in the
MHD case, by order of magnitude, v2 = vA1, so that again (setting ∆i = ∆)

MA1 =
δi

∆
. (11.65)
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Fig. 11.14 Explanation of the quadrupolar structure of By. By (11.63) the ex-
pected structure of the poloidal current density jp = −envep generates gradients
of By, which lead to minima (min) and maxima (max) of By on closed curves
enclosing the electron region (rectangle).
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In the resistive MHD case the problem of slow reconnection arises from
the small value of δ, which was found to be proportional to 1/

√
S1. Here

the situation is much more favourable for fast reconnection because δi can
be much larger than δ in the resistive case.

Let us estimate δi. In the nongyrotropic region the particles perform the
exotic orbits described in Section 6.4. Assuming that Ez does not play the
dominant role and that Bx increases linearly with z, one finds that an ion
moving with vz = v at z = 0 is turned around by the magnetic field Bx at
z = di, where di is the formal gyroradius evaluated at z = di. So one finds

δi =
miv

eB1
. (11.66)

Frequently, δi is found to be of the order of c/ωpi in apparent contrast to
(11.66). However, if v in (11.66) is chosen as the Alfvén velocity vA1, then δi

does reduce to c/ωpi. In fact, simulations have indicated that the ions during
their inflow are strongly accelerated by a localized electric field Ez, forcing
the ions to follow the electrons (Shay et al., 1998). By this acceleration the
ions reach a velocity of the order of vA1, which would explain a sheet width
of order c/ωpi. (An equivalent picture has the ions oscillate in an electric
potential well with scale c/ωpi, which indicates that Ez plays a finite role
but does not dominate the magnetic effect.)

It has been argued that the reason for δi = c/ωpi is the fact that c/ωpi is
the scale of the Hall physics. The scale length introduced by the Hall effect,
e.g., obtained by equating the v×B term with the Hall term in Ohm’s law,
is B/µ0env. Again, if v is of the order of the Alfvén velocity, this length
becomes c/ωpi.

Although, in principle, the ion thermal velocity would be a candidate for
v in (11.66) also, simulation results have indicated that the ion temperature
of the inflowing plasma does not play a dominant role for the structure of
the ion region (Shay et al., 1998).

As in the resistive case, the question of the x-scale ∆ of the ion region
is much more difficult to answer than it is for the z-scale. So it is remark-
able that in the picture developed by Shay and Drake and coworkers (Shay
et al., 1998, 1999) an almost complete scaling was derived from analyti-
cal estimates and simulation results. In that scheme ∆ increases with the
macroscopic length L until it saturates at a distance of about 10 c/ωpi, when
v2 approaches vA1. So, for large systems this would mean that by (11.65)
the reconnection rate, measured by the MA1, becomes a universal constant
near 0.1. For sufficiently large L Petschek-like shocks form downstream of
the separatrices. That the Rankine–Hugoniot relations (Section 3.9) are not
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satisfied quantitatively, has been attributed to the interaction of the shocked
ion population with the ion beam ejected from the diffusion region.

As already mentioned, the simplest model of the ion region ignores the ion
dynamics and uses Ohm’s law in the form E + ve × B = 0. Then electron
MHD applies (Section 3.6) and the currents are Hall currents. Accordingly,
spatial structures are interpreted in terms of the quadratic dispersion of the
whistler wave, characteristic for electron MHD. This interpretation was also
applied to more refined modelling (Shay et al., 1998). But is has been argued
also, that ion kinetic effects can give fast reconnection even when whistler
dispersion is switched off artificially (Karimabadi et al., 2004).

Even if the scaling described above should turn out not to cover the entire
parameter space of two-dimensional collisionless reconnection (Bhattachar-
jee et al., 2005), it forms a valuable basis to build upon in future work.

Although the Hall zone dynamics plays an important role, it should be
noted that without the presence of the electron region reconnection would
not work, because the reconnection electric field Ey would not be balanced
at the origin. Thus, it is of basic physical interest to address the electron
region also.

11.3.2 The electron region

Let us assume that for the electrons it is their thermal velocity that deter-
mines the geometry of the nongyrotropic electron region. So, in analogy
with (11.66) we obtain

δe =
mevte

eBx(0, δe)
, ∆e =

mevte

eBz(∆e, 0)
, (11.67)

where the brackets give the coordinates in the x, z-plane, here restricted
to the first quadrant with Bx(0, δe) and Bz(∆e, 0) chosen positive. When
needed, the implicit equations (11.67) are easily solved for δe and ∆e, as-
suming linear variation of the magnetic field components.

From the discussion of Section 9.4 it follows that in the electron region
the possible sources of nonidealness are electron nongyrotropy and electron
inertia (see (9.58)). A simple estimate, based on waves, also indicated that
inertia effects do not dominate if the relevant wave frequency is smaller than
ωpe. Adopting this criterion for the present problem it seems that we have to
compare the characteristic time scale of the electron motion with 1/ωpe. The
(shortest) relevant length scale being δe, the timescale becomes τ = δe/vte.
This gives

ωpeτ = ωpe
δe

vte
=

δe

λD
� 1, (11.68)
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because we are dealing with a quasi-neutral plasma on scales larger than the
Debye length λD. Although applying the wave criterion to the reconnection
problem is rather intuitive, it is still interesting to see that it favours ther-
mal effects, here represented by the off-diagonal components of the pressure
tensor. More importantly, this view is consistent with simulation results
(Horiuchi and Sato, 1994; Hesse et al., 1999; Ricci et al., 2002). So, in the
following let us concentrate on electron nongyrotropy. First, there is no By

externally superimposed; later such a (guide) field will be included.
In neutral fluids the off-diagonal pressure tensor components describe vis-

cous effects arising from velocity gradients. Here, at least formally, a similar
situation arises. Let us consider the equation for the evolution of the pres-
sure tensor (3.44), which provides useful expressions for the off-diagonal
components (Kuznetsova et al., 1998). For instance, one finds on the x-axis
(upper index x)

P x
exy =

−
[
Pexx

Ωez

∂vex

∂x
+

1
2Ωez

(
Pexx∇ · ve +

(
∂

∂t
+ vex

∂

∂x

)
Pexx + ∇ · Qe|xx

)]x
(11.69)

where the symmetry of Fig. 11.1 was assumed.
Except for the heat flux, the terms on the right side of equation (11.69)

are linearly related to first order spatial derivatives of the flow velocity. As
the interaction is not necessarily of genuinely viscous nature, Kuznetsova
et al. (1998) speak of a quasi-viscous interaction. Although the first term in
the square brackets of (11.69) alone was found useful for the interpretation
of simulation results (Kuznetsova et al., 1998), more detailed considerations
have indicated that a fully satisfactory picture requires taking into account
a contribution from the remaining terms (Hesse, 2005). Apart from de-
tails it seems clear that the off-diagonal pressure tensor components play an
important role in supporting the reconnection electric field.

Let us add a brief remark on the case in which a guide field By is super-
imposed, which, in contrast to the quadrupolar By structure, is generated
by external currents. A guide field is strong if |By| � |Bx(0, δ)|, so that
the motion of a thermal electron would become significantly affected by the
guide field. In that regime a relevant scale length is the electron gyroradius
with respect to By, which becomes �δe. Simulations (Hesse et al., 2004)
have indicated that on that scale electron pressure effects are still large
enough to support the reconnection electric field, but heat flux is required
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to sustain the off-diagonal components of Pe. The symmetry of the poloidal
components of the magnetic field that exists for By = 0 (Fig. 11.1) is bro-
ken. Alternative suggestions for the physics of the electron region employ
three-dimensional effects (Section 11.4).

In magnetospheric plasmas with small values of β, Scudder and Mozer
(2005) found strong, highly localized electric field enhancements (EFE) per-
pendicular to B, leading to an effective demagnetization of the electrons.
The authors suggest that this phenomenon plays an important role in sup-
porting the reconnection electric field via electron pressure anisotropy.

11.3.3 Comparative simulation studies

The results of 2D reconnection discussed so far suggest that fast reconnec-
tion processes crucially depend on the presence of an ion region. The ion
region seems to lead to a fast reconnection rate, essentially independent of
the mechanism by which the frozen-in constraint is broken in the electron
region. As discussed, there are also indications suggesting that the length
∆ of the ion region (in the outflow direction) remains microscopic, i.e., for
sufficiently large macroscopic length scales L it becomes independent of L.
In models without an ion region, such as resistive MHD, the reconnection
rate appears to depend on the electron dissipation process. In resistive MHD
with constant resistivity a Sweet–Parker-type current sheet may form and
the reconnection will be slow.

If this scenario was true, rates and other major reconnection features
could be obtained from any model, provided it contains an ion region, such
as Hall-MHD. This would mean a dramatic advantage, considering the cost
of full particle simulations.

This aspect has been a major motive for performing studies in which a
given reconnection problem is to be solved using a variety of different plasma
models. The GEM reconnection challenge (see Birn et al. (2001) and ref-
erences therein) compared results of full particle codes, hybrid codes with
and without electron mass and the off-diagonal electron pressure tensor,
Hall-MHD with and without electron inertia and MHD codes. The basic
configuration was a thin Harris sheet with a width of 0.5 c/ωpi and a 20%
background density and, for the models that include the electron mass, the
mass ratio mi/me was set to 25. The sheet is subject to an initial pertur-
bation, which forms a magnetic island. The reconnection rate is given by
the time derivative of the magnetic flux between the x- and o-points. The
results well confirmed the expected properties described above. Fig. 11.15
shows the reconnected flux for four runs with different simulation models.
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t

Fig. 11.15 GEM reconnection challenge: The reconnected magnetic flux versus
time for four different simulation models (from Birn et al. (2001) by permission of
the American Geophysical Union).

The models that include an ion region show very similar slopes over a wide
time interval. The reconnection is fast with a rate of the order of 0.2 vA0B0,
where vA0 is the Alfvén speed corresponding to the maximum magnetic field
strength B0 and sheet centre density. The agreement of reconnection rates
is contrasted by substantial differences in the geometrical structure of the
electron region and several other aspects. The resistive MHD case, with a
constant resistivity and Lundquist number of 0.005, shows a distinctively
smaller rate. The expected Sweet–Parker sheet forms for sufficiently small
resistivities. MHD models achieved fast reconnection with localized resis-
tivity, the maximum of S0 being of order 1.

Although the linear phase, dominated by the tearing mode, shows con-
siderable differences in the growth rates (manifested by the time shifts of
the curves in Fig. 11.15), these differences do not develop further in the
nonlinear regime.

The GEM challenge did not address the question of how the thin current
sheet that was present in the start configuration was formed. Therefore, the
current sheet formation was included in a second cooperative study, which
grew out of a workshop held in 2004 at the Isaac Newton Institute at Cam-
bridge, England, and has become known as the Newton challenge. Here the
initial sheet was wider by a factor of 4 than in the GEM challenge and the
reconnection process was initiated by a temporally limited, spatially vary-
ing inflow of magnetic flux. The forced thinning initiates the reconnection
process.
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Fig. 11.16 Newton reconnection challenge. The reconnected magnetic flux versus
time for four different simulation models; here η1 is the Lundquist number of
Birn’s MHD simulations, reproduced from Birn et al. (2005) by permission of the
American Geophysical Union.

Again, the particle studies and the Hall-MHD studies show very similar
reconnection rates (see Fig. 11.16). The final amount of reconnected flux is
also about the same with one exception, which has been explained as be-
ing caused by a somewhat smaller initial deformation. (Preliminary results
suggest that both the reconnection rate and the final reconnected flux are
influenced by the imposed perturbation.) Again, the MHD rates depend on
the resistivity, although the deviations from the other rates are smaller than
in the GEM case.

The final configurations are qualitatively similar in all cases, an example
is shown in the upper panel of Fig. 11.17. Interestingly, the final state re-
sembles an equilibrium solution (lower panel) obtained by solving the Grad–
Shafranov equation for the boundary conditions reached after the flux inflow
was shut off and for fixed pressure function p(A) (see Section 6.2.2). This
problem generally has more than one solution, the figure shows the one that
minimizes free energy (Chapter 12). A substantial amount of the initial
magnetic energy has been released.

11.4 Inclusion of the third dimension

The two-dimensional models as discussed so far apply to reconnection occur-
ring in three-dimensional space only if the y-dependence is small and if the
extent of the reconnection region along the y-direction is large enough for



306 Magnetic reconnection

8

−8

0

8

−8
−16  0 16

0

x

z

z

Fig. 11.17 Newton reconnection challenge: the final state; the upper panel shows
the final state of a particle simulation by M. Hesse, the lower panel the equilibrium
solution with the lowest (free) energy (reproduced from Birn et al. (2005) by
permission of the American Geophysical Union).

edge effects to be negligible. In spite of these restrictions, two-dimensional
reconnection research has proven to be a necessary intermediate step in the
approach to the enormously complicated world of three-dimensional recon-
nection.

For a given property the inclusion of the third dimension may or may not
lead to qualitatively new effects. Here we will give a few selected examples.
In some cases the structure becomes genuinely three-dimensional without
an obvious 2D analogy.

11.4.1 Role of microinstabilities

Typical current driven microinstabilities (Section 9.3.1) have a wave vec-
tor component in the current direction and therefore are excluded in
two-dimensional reconnection studies. So, how is the picture changed by
including the third dimension? The existing studies convey the impression
that there is no rich ensemble of microinstabilities leading to a completely
different picture over a broad range of parameters, but microinstabilities do
seem to play an important role under a variety of particular circumstances.
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At present a complete description of the role of microinstabilities is not yet
available, so that we can only convey general impressions resulting from an-
alytical studies and simulations. The following brief assessment is largely
guided by a recent more detailed survey by Büchner and Daughton (2006) on
this subject, emphasizing the role of microinstabilities in the plasma sheet
of the Earth’s magnetotail.

Microinstabilities can become important for magnetic reconnection in a
direct way by providing a collective nonidealness that supports the recon-
nection electric field in Ohm’s law (Section 9.3.2). Another possibility is
that an unstable mode influences reconnection indirectly through nonlinear
interaction with the reconnection dynamics.

In the following we comment on a number of instabilities that are consid-
ered as prime candidates for being relevant for the onset of reconnection.

Let us begin with the ion-acoustic instability. For the standard case of a
two-component plasma with shifted Maxwellian distribution functions the
ion-acoustic instability can be excited only in the regime where Te > Ti, oth-
erwise the instability is inhibited by strong Landau damping (Section 9.3.2).
As magnetospheric studies are focussed on current sheets with Te < Ti, ion
acoustic modes do not seem to play a significant role in corresponding recon-
nection processes. Note that in the plasma sheet in the Earth’s magnetotail
the electron temperature is smaller than the ion temperature by a factor of
about 5 (see Table 2.1). In principle, strong deviations from the Maxwellian
might reduce the damping, although the relevance of this effect seems un-
clear. It is also an open question whether the conclusions regarding Landau
damping also apply to strong ion acoustic turbulence, where the quasi-linear
approach, on which they are based, is no longer valid.

Different forms of the kink instabilities exist in the MHD and Vlasov
regimes. The ideal MHD kink mode typically occurs in cylindrical plasma
columns, leading to a wavy structure of the column along its axes
(Section 10.2.4). Highly stretched planar configurations such as the magne-
tospheric plasma sheet are MHD stable (Section 10.2.5). Observed oscilla-
tions (Sergeev et al., 2004) are therefore likely to be of non-MHD nature.
Their role in reconnection, however, is unclear. Vlasov versions are based on
the relative speed between ions and electrons (drift-kink mode) or on ion–
ion interaction (ion–ion kink mode) in the presence of a cold background
plasma. This case is considered to be relevant for the magnetosphere in
view of the hot plasma sheet and the cold lobe plasma. For the drift-
kink mode, although showing significant effects in simulation studies with
artificial ion–electron mass ratios near and below 100, the growth rate is
drastically reduced in the regime of realistic mass ratios (Daughton, 1999).



308 Magnetic reconnection

From full particle simulations Karimabadi et al. (2003, 2004) found that in
the presence of a 20% background density the ion–ion mode grows to signif-
icant amplitudes, but the kink and tearing modes seem to coexist without
significant interaction. Correspondingly, during the final stages the current
sheet reconnection process is similar to the corresponding two-dimensional
case. A wavy structure can also arise from a Kelvin–Helmholtz instability
in the nonlinear stage of the reconnection dynamics (Lapenta et al., 2003).

The lower-hybrid drift instability is exceptional in that it is not subject
to strong damping for Te < Ti. However, it is sensitive to β (= 2µ0p/B2),
such that the instability is inhibited for β > 1 (Section 9.3.2). Consid-
ering that in the centre of the magnetotail plasma sheet β typically is in
the range of 10–100, this instability does not exist in the centre, i.e., in
the region where it would be required if it was to support the reconnec-
tion electric field via a corresponding collective resistivity (Section 9.3.2).
This has led to a general scepticism regarding the role of this instability
as a reconnection-relevant source of collective resistivity under magnetotail
conditions. Long-wavelength perturbations seem to penetrate the centre of
the high-beta current sheet only for extremely thin sheets with thicknesses
substantially below rgi (evaluated with the external magnetic field).

However, it has been suggested also that there is an indirect way in which
the lower-hybrid drift mode might influence reconnection. Even if the mode
is localized to the edge of the current sheet (where β < 1), nonlinear interac-
tion might modify the current distribution and lead to anisotropic electron
heating, which in turn may enhance the effect of the tearing mode (Daughton
et al., 2004).

It should be noted that the large-β argument does not necessarily apply to
configurations with a sufficiently strong guide field. There, the lower-hybrid
drift instability has a good chance to play a significant role in current sheet
reconnection (e.g., Silin and Büchner, 2005). However, there are also cases
where, after some initial adjustments, in a fully three-dimensional system
with a strong guide-field, reconnection develops to an almost translationally
invariant state, where magnetic perturbations are aligned primarily along
the main current flow direction (Hesse et al., 2005b).

Further instabilities that have been suggested to be of interest for recon-
nection are modified two-stream instabilities (Lui, 2004) and modes that are
symmetric with respect to the central plane of the current sheet, such as
sausage modes. However, more work seems required to assess their part in
reconnection processes. In particular, it seems important to take into ac-
count the non-locality of kinetic modes in thin current sheets (Büchner and
Daughton, 2006).
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11.4.2 3D plasmoid formation

For magnetospheric purposes the plasmoid formation described in Sec-
tion 11.2.10 has been generalized to three dimensions. In their 3D resistive
MHD computation Birn and Hones (1981) took into account a cross-tail flar-
ing, however keeping By = 0. In the central plane (y = 0) the reconnection
process showed a striking similarity to the two-dimensional case (Fig. 11.12).
A near-Earth neutral line forms, large plasma flows develop and a rapidly
growing plasmoid moves tailward. The shape of the neutral lines, however,
is more complex than in the 2D case.

This trend becomes more pronounced when a non-vanishing By-
component is taken into account. Using a 3D MHS equilibrium based on the
technique described in Section 5.4.3, resistive MHD computations by Hesse
and Birn (1991b) confirmed the plasmoid formation process. Fig. 11.18
shows the magnetic field structure in the x, z-plane. The plasmoid receives
its tailward momentum mainly from the inflow of moving plasma through
its boundary.

The magnetic field structure becomes much more involved than in cases
with vanishing By, the reason being that the magnetic field lines inside the
plasmoid become helical and leave the plasmoid at its ends, there connecting
to field lines with earthward or tailward orientation. Fig. 11.19 illustrates
three types of field line connections; closed lines have both sides, half-open
lines one side and open lines no side connected with the Earth.

Determining the field line type by tracking the lines from their crossing
points in the plane z = 0, Hesse and Birn (1991b) found that the connectivity
changes rather rapidly with the crossing location (Fig. 11.20). For By → 0
the number of crossings of a plasmoid field line becomes large and the scale
of the connectivity variation in the x, z-plane becomes smaller and smaller,
tending to a chaotic behaviour.

The involved magnetic field structure has raised questions about the role
of topology in 3D reconnection (Hughes and Sibeck, 1987). We return to
this problem in Section 11.5.

11.4.3 Flux linkage

During the nonlinear evolution of 3D fields new reconnection configurations
may form that do not have direct two-dimensional counterparts. A typical
example is linkage of magnetic flux tubes. Figure 11.21 gives an example
from a resistive MHD simulation (Otto, 1995). The figure shows a snap-
shot of selected flux tubes. Reconnection releases the tension in the linked
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Fig. 11.18 The magnetic field structure in the central plane y = 0 of a 3D resistive
MHD simulation (Hesse and Birn, 1991b). As By does not vanish, the lines are
not field lines, they are based on Bx and Bz in the central plane (reproduced from
Hesse and Birn (1991b) by permission of the American Geophysical Union).

flux tubes. The reconnection site is characterized by a strong electric field
component parallel to B. Linkage of flux tubes can arise from the interac-
tion of multiple reconnection patches on an originally plane sheet separating
sheared magnetic fields. This is meant to apply to the magnetopause of the
Earth’s magnetosphere, where the interplanetary magnetic field comes in
close contact with the geomagnetic field.
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half-open openclosed

to Earth

Fig. 11.19 External connection of magnetic field lines of a plasmoid (helical field
line sections) in the Earth’s magnetotail for By �= 0.

11.4.4 Magnetic flux emergence

On the Sun, reconnection of magnetic fields of different origin occurs, where
new flux emerges into the corona from below (Heyvaerts et al., 1977).
Fig. 11.22 is a sketch of a corresponding planar configuration. Galsgaard
et al. (2005) studied flux emergence by a 3D MHD simulation. Fig. 11.23
illustrates some of the features observed after onset of the reconnection. A
concentrated current sheet with the shape of an arch is formed in the contact
region. The reconnection is accompanied by considerable plasma heating.
It generates high-speed plasma outflows, which propagate as jets along the
ambient magnetic field lines. The reconnection causes significant changes in
the field connectivity.

11.5 Kinematics of 3D reconnection

Important properties of magnetic reconnection can adequately be discussed
in terms of a kinematic description, which takes into account only the ho-
mogeneous subset of Maxwell’s equations and Ohm’s law

∇× E = −∂B

∂t
(11.70)

∇ · B = 0 (11.71)

E + v × B = R , (11.72)

where R is the unspecified nonideal term of Ohm’s law. Clearly, any general
kinematic result will hold in any plasma model that includes the kinematic
equations (11.70)–(11.72) as a subset of the model equations. Important ex-
amples of kinematic properties are the validity or the breakdown of magnetic
flux and line conservation (Section 3.8.2).
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Fig. 11.20 Connectivity of field lines in a 3D resistive MHD magnetotail model
(Hesse and Birn, 1991b). The different connection types for plasmoid field lines
with multiple crossing points (Fig. 11.19) and non-plasmoid field lines (one crossing
point) are indicated by shading differences. For details one should consult the
original colour figure. (Reproduced from Hesse and Birn (1991b) by permission of
the American Geophysical Union.)

In this section we discuss reconnection from a general 3D kinematic point
of view. As the starting point a consideration of magnetic line conserva-
tion will demonstrate that two basic classes of configurations have to be
distinguished.
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Fig. 11.21 Magnetic reconnection of linked flux tubes from a resistive MHD sim-
ulation (from Otto (1995) by permission of the American Geophysical Union).

Fig. 11.22 A simple planar sketch of magnetic flux emergence into the corona.
Magnetic field lines are shown before (a) and after (b) new magnetic flux has
emerged. As a potential site of reconnection a current sheet (shaded) forms where
antiparallel fields are pushed against each other.

Let us assume that a region of nonidealness is contained in a singly con-
nected compact region DR, outside of which R vanishes (Fig. 11.24). All
field lines connect to the ideal region. The criterion for a smooth transport
velocity w∗ to be line conserving is (see Section 3.8.2)

∇× (E + w∗ × B) = λB , (11.73)

where λ is a smooth scalar field. (Remember that the ∗ symbol signifies
coincidence with v in the ideal region.) Taking the divergence of (11.73)
gives B · ∇λ = 0, so that λ is constant on field lines. Since in the present
case all field lines connect to the ideal region, λ must vanish everywhere, so
that the criterion (11.73) becomes

∇× (E + w∗ × B) = 0 . (11.74)
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Fig. 11.23 Magnetic reconnection caused by magnetic flux emergence into the
corona (Galsgaard et al., 2005); features are explained in the text. (Reproduced
by permission of the AAS.)
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Fig. 11.24 In the present 3D kinematic picture the nonidealness is contained in a
bounded singly-connected region DR; the marked points lie on the same field line,
P1, P2 in the ideal region on opposite sides of DR and P ′

1, P ′
2 on the boundary.

For orientation, let us first consider the case in which

E‖ = E · B/B = 0 and B �= 0 everywhere in the system. (11.75)

This implies that R ·B = 0, so that R can be written as B × (R×B)/B2.
Then (11.74) is satisfied with the choice

w∗ = v +
R × B

B2
. (11.76)
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This transport velocity is smooth because with B �= 0 there is no singu-
larity; also (11.76) satisfies the requirement that w∗ = v in the ideal region
where R = 0. So, under the conditions (11.75) the plasma velocity is line-
conserving. There is deviation from the frozen-in motion in the ideal region,
but there is no large-scale effect that could be associated with a reconnection
process.

This leaves the following regimes as possible candidates for reconnection:

(a) B �= 0 everywhere and there exist points with E‖ �= 0; (11.77)

(b) there exist points with B = 0 . (11.78)

These cases will be discussed in subsequent sections. The general framework
that includes both candidates has been termed general magnetic reconnec-
tion, GMR (Schindler et al., 1988; Hesse and Schindler, 1988).

11.5.1 Finite-B reconnection

For the discussion of case (11.77) we largely follow Hesse and Schindler
(1988). For finite B this approach defines a general class of reconnection-
relevant kinematic processes and it offers a simple expression for the re-
connection rate in terms of the electric field component parallel to B. As
in 2D cases, breaking of magnetic line conservation is the central property
(Axford, 1984).

Basic aspects of the approach

Let B be represented by Euler potentials, B = ∇α × ∇β. This choice
requires the absence of recurrent field lines (see Section 5.1.2). Using the
vector potential A = α∇β, one can solve (11.70) by setting (Stern, 1970)

E = −∂A

∂t
−∇φ (11.79)

= −∂α

∂t
∇β +

∂β

∂t
∇α −∇ψ , (11.80)

where ψ = φ + α ∂β/∂t. Using α, β, s as coordinates, where s denotes the
arclength along field lines, the three covariant components of Ohm’s law
(11.72) yield

dα

dt
= −∂ψ

∂β
− Rβ (11.81)

dβ

dt
=

∂ψ

∂α
+ Rα (11.82)

−∂ψ

∂s
= Rs = E‖ , (11.83)

where d/dt = ∂/∂t + v · ∇ and R = Rα∇α + Rβ∇β + Rs∇s.
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Let us integrate (11.83) at a fixed time along a given field line between
points P1 and P2 both lying in the ideal region on the same field line but on
opposite sides of the nonideal region DR (Fig. 11.24) and define the quantity

U(α, β) = −
∫ P2

P1

E‖(α, β, s) ds = −
∫ P ′

2

P ′
1

E‖(α, β, s) ds , (11.84)

where the time-dependence is suppressed. Since the ideal sections on the
field line do not contribute to the integral, the integration interval can be
replaced by the interval between the points P ′

1, P ′
2 located on the boundary

of DR (Fig. 11.24), so that U is a function of α and β alone. Then, from
(11.83) it follows that

U(α, β) = [ψ]αβ , (11.85)

where the bracket [q]αβ of a quantity q denotes the difference q(P ′
2)− q(P ′

1)
on the field line α, β. Further, one finds from (11.81) and (11.82)[

dβ

dt

]
α,β

=
∂U

∂α
(11.86)[

dα

dt

]
α,β

= −∂U

∂β
(11.87)

implying
∂

∂α

[
dα

dt

]
α,β

+
∂

∂β

[
dβ

dt

]
α,β

= 0 . (11.88)

These results allow us to investigate breaking of line conservation for 3D
time-dependent fields. Consider the case where U does not vanish identically.
As U vanishes for field lines that are tangential to DR, there must exist
field lines for which ∂U/∂α or ∂U/∂β or both are different from zero. By
(11.86) and (11.87), the same holds for [dα/dt]α,β and [dβ/dt]α,β . So, two
plasma elements on opposite sites of DR that share a field line with this
property at some time t (Fig. 11.24) will be found on different field lines
after an arbitrarily small time interval. Thus, the presence of the local
nonideal region with U not identically vanishing has the global effect that
line conservation is broken.

The breakdown of line conservation involves non-vanishing values of
dα/dt = ∂α/∂t+v ·∇α or of dβ/dt = ∂β/∂t+v ·∇β or both. So, there are
contributions from time-dependence and from the plasma motion. Fig. 11.25
illustrates the two limiting cases of plasma motion in a time-independent
field (a) and plasma elements at rest in a localized time-dependent mag-
netic field (b). In both cases the plasma elements that originally shared
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Fig. 11.25 Breakdown of magnetic line conservation due to a localized nonideal
region (shaded) with U �= 0. Two limiting cases are those of a time-independent
electromagnetic field with plasma elements moving to different field lines (a) and
localized time-dependence of the field with non-moving elements. In both cases
the elements sharing a field line initially end up on different lines. Broken lines
refer to initial states. See also Hesse et al. (2005a).

a field line end up on different field lines and by (11.86) and (11.87) both
cases require non-vanishing U on the field lines involved. The general case
combines both effects.

Another way of looking at the breakdown of line conservation uses a rep-
resentation in α, β-space, a plane with Cartesian coordinates α, β (Hesse
and Birn, 1993). There the dynamics of plasma elements in the ideal region
is governed by Hamiltonian equations of motion obtained from (11.81) and
(11.82) for R = 0

dα

dt
= −∂ψ

∂β
,

dβ

dt
=

∂ψ

∂α
(11.89)

where ψ(α, β) is the Hamiltonian. That Hamiltonian, however, is different
on both sides of the nonideal region, because (11.83) or (11.85) give

ψ2(α, β, t) − ψ1(α, β, t) = U(α, β, t) . (11.90)
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Thus, if U �= 0, two plasma elements originally located on the same field
line (same point in α, β-space) but on opposite sides of DR have different
trajectories and become magnetically separated.

We emphasize that by (11.84) global breakdown of line conservation re-
quires the presence of a parallel electric field. This is one of the major
aspects that GMR has introduced into reconnection theory.

Reconnection rate

In the 2D case we have defined the reconnection rate as the rate of change of
the reconnecting magnetic flux. A corresponding definition in 3D is found
by again considering α, β-space (Hesse and Birn, 1993; Hesse et al., 2005a).

Let a point in α, β-space be characterized by the vector ξ = (α, β), and
assume that U(α, β) has a single extremum U = Û �= 0 (Fig. 11.26); the
generalization to multiple extrema is straightforward. At time t0 we choose a
one-parameter set of field lines ξ(U, t), where U is used as the set parameter.
(ξ(U, t) is to be defined piecewise on sections that cross the level curves of
U only once.) Consider the plasma elements on both sides of the nonideal
region occupying these field lines at time t0. As line conservation is broken,
the function ξ(U, t) will develop differently on the different sides of DR, so
that we have to distinguish between ξ1(U, t) and ξ2(U, t), where the subscript
refers to the side of DR. By assumption

ξ1(U, t0) = ξ2(U, t0) (11.91)

U

U

U=0

m

g

g'

τ

δξ

α

β

1

2

Fig. 11.26 Reconnection in α, β-space. The thin lines are level curves of U , the
lines marked as 1 and 2 represent a set of plasma elements on opposite sides of DR

at time t0 + δt that started on the same field lines at time t0. The reconnection
rate is obtained from the rate of change of the shaded area g.
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holds. The quantities ξ1 and ξ2 define lines in α, β-space, which coincide
at t = t0. At time t0 + δt these lines have moved to positions labelled
as 1 and 2 in Fig. 11.26. The original line (corresponding to t = t0, not
shown in the figure) has been arranged in such a way that if line 1 (i.e.,
ξ1(U, t0 + δt)) passes through the point where U = Û , then line 2 must also
pass through that point. Before establishing this property, let us define the
reconnection rate Rrec as |dg/dt|, where g is the shaded area in Fig. 11.26.
Since areas in the α, β-plane correspond to magnetic fluxes in configuration
space (Section 5.1.2), that area is an appropriate measure of the reconnected
magnetic flux. As we are interested in the reconnection rate at time t0, and
therefore in the limit δt → 0, it suffices to consider only terms in lowest
significant order in δt. Taking (11.91) into account, one then finds

dg

dt
=

1
δt

∫
m · τ × δξ dσ, (11.92)

where m is a unit vector perpendicular to the α, β-plane, which allows us to
use the vector product to define a (differential) area, and dσ is the arclength
element. Note that τ is the unit tangential vector on line 1. The integra-
tion is extended from the point where U = 0 to the point where U = Û

(Fig. 11.26). The vector δξ is given by

δξ = ξ2(U, t0 + δt) − ξ1(U, t0 + δt)

=
[
dξ

dt

]
t0

δt

= −∇αβU × mδt, (11.93)

where equations (11.86) and (11.87) were used in the last step. Using this
expression in (11.92), we obtain (Hesse and Birn, 1993)

dg

dt
=
∫

∇αβU · τ dσ (11.94)

=
∫ Û

0
dU = Û , (11.95)

so that

Rrec = |Û | = max
∣∣∣∣∫ E‖ ds

∣∣∣∣ . (11.96)

This expression is consistent with the rate |Ey| of stationary 2D states;
note that the 2D reconnecting flux is the corresponding 3D flux per unit
length in the y-direction.
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It remains to justify the crossing of the curves 1 and 2 at Û ; this imme-
diately follows from (11.93).

The reconnection rate could also have been based on the area g′ in
Fig. 11.26 with the same result, because g + g′ = 0. (Note that the area
in α, β-space, as defined here, carries a sign.) Although Euler potentials
are not gauge invariant themselves, the reconnection rate is an invariant
quantity.

The derivation given above can be carried out in configuration space by
using the original kinematic equations. However, this is a three-dimensional
problem and considerably more complicated than the present approach
which profits from the reduction to a planar problem. For steady state
reconnection the derivation in configuration space simplifies somewhat. A
detailed analysis of an example was presented by Hornig and Priest (2003).

Note that the relative velocity [dξ/dt] in α, β-space is directed paral-
lel to the level curves of U , as follows from (11.93). The resulting rota-
tional transport typically translates to configuration space. For instance,
in Fig. 11.25a the two plasma elements perform a relative rotation and in
the time-dependent case (b) the internal magnetic field typically develops a
twist. Among others, this effect was analysed by Hornig and Priest (2003)
in their model. The figure 11.27 shows the rotation of fluid elements on
opposite sides of the nonideal region represented by the field lines on which
they are instantaneously located. Employing a picture where the ideal field
line transport is extrapolated into DR from both sides, the authors visualize
that process as a splitting of flux tubes.

Hesse et al. (2005a) constructed models for both limiting cases. Fig. 11.28
illustrates the mechanism of their time-dependent model, which addresses
reconnection in the solar corona. The process is similar to the case of a
3D plasmoid in the Earth’s magnetotail, where transitions between the field
topologies shown in Fig. 11.19 occur. A corresponding change of topology
has been suggested for coronal mass ejections (Gosling et al., 1995).

A further important aspect that the present approach offers is that the
integral

∫
E‖ ds can be estimated from a known reconnection rate. For

a sufficiently conducting ionosphere the ionospheric plasma is frozen into
the geomagnetic field rotating with the Earth. Yet, the plasma in the tail
does not participate in that rotation. An estimate of the corresponding
reconnection rate gives

∫
E‖ ds in the kV range. Similar conditions can be

expected to apply to other astrophysical objects (Schindler et al., 1991). For
example, this concept provides values of U that could be relevant for solar
particle acceleration.
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Fig. 11.27 Relative rotation of plasma elements located on opposite sides of the
nonideal region, represented by the field lines on which they are instantaneously
located (Hornig and Priest, 2003). (Reproduced with permission from G. Hornig.
Copyright 2003, AIP.)
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Fig. 11.28 Illustration of the formation of helical field lines by reconnection; the
arrows on the left indicate the way reconnection establishes new magnetic connec-
tivity (after Hesse et al. (2005a) by permission of the AAS).

Remarks on the choice of gauge

Here we add a remark on the consequences of Euler potentials not being
gauge invariant (Section 5.1.2). In choosing the potentials for a given mag-
netic field one fixes the gauge. (Note that we have assumed that the condi-
tions for the existence of Euler potentials are satisfied.) As in the present
analysis we have not imposed any particular properties on the gauge, the
equations or sets of equations, such as (11.86) and (11.87), that involve
Euler potentials are gauge invariant. Naturally, the main physical prop-
erties are gauge invariant, such as the reconnection rate or the vanishing
of both [dα/dt]αβ and [dβ/dt]αβ. Particularly, the violation of line con-
servation is a gauge invariant concept. Individual quantities, e.g., dα/dt,
however, do depend on the choice of gauge.

The choice of gauge also enters certain intuitive pictures of reconnection.
For example, one might ask what the breakdown of magnetic line conserva-
tion has to do with the reconnection of magnetic field lines. Where and how
do field lines actually reconnect?

To answer this question it should suffice to consider the two limiting cases
of Fig. 11.25, which we related to the two contributions from d/dt = ∂/∂t+
v ·∇, applied to α and β. Already here we encounter the first gauge problem:
this distinction is not gauge invariant. Even a time-independent magnetic
field can be represented by time-dependent Euler potentials, for example,
by just adding functions of time. Here the essential property is that it is
possible to find time-independent potentials if and only if the magnetic field
is time-independent. In case (a) we have tacitly made use of that possibility,
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choosing potentials with ∂α/∂t = 0, ∂β/∂t = 0. In case (b) the plasma
velocity was set to zero, which is a gauge invariant condition.

Conspicuous reconnection of field lines occurs in case (b); due to the
internal time-dependent evolution the connectivity of the external field line
sections changes.

In case (a) there is no such change. Instead the plasma elements move
to different field lines. However, this is the result of having chosen a time-
independent gauge. If, instead, on each side separately one chooses a gauge
for which the field lines are frozen into the plasma motion, then the as-
signment of field line labels α and β to the field line on each side of DR is
different and changes with time, so that the connectivity changes, too. In
this way the reconnection of field lines becomes conspicuous also in case (a).
It should be noted, however, that this notion does not necessarily reflect a
real physical process, because it exists only for a particular choice of gauge.
What counts physically is the reconnection rate, which is the same for all
gauges.

Although the frozen-in picture outlined above is quite popular in reconnec-
tion physics, it has the complication that the field line identification inside
DR is no longer unique. So the internal field line identification depends on
the potential assignment that is used, that of side 1 or that of side 2. This
complication led some authors to choose an artificial surface separating DR

into two parts. On each side the frozen-in gauge is used up to that surface;
at the surface a jump of the field identification occurs, which visualizes the
reconnection.

Another possibility is to accept the double identification throughout DR,
which implies that an originally chosen field line with matching identification
splits into two field lines, which perform a relative rotation. Figure 11.27
gives an example of field line splitting and rotation.

Although these pictures seem attractive from an intuitive point of view,
they are less useful for formal developments. At least one should be aware
that one describes an electromagnetic field in two conflicting gauges. For
any choice of a uniformly valid gauge, the appropriate (formal and intuitive)
signature of reconnection is the violation of line conservation in the way we
have described it in the previous section.

11.5.2 Reconnection based on magnetic nulls

Here we turn to the second class of candidates for 3D reconnection,
characterized by (11.78). For three-dimensional magnetic fields, isolated
points where B vanishes play a role analogous to the neutral points in
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two-dimensional fields with vanishing component in the invariant direction.
It is common to refer to such a point as a null point or simply as null.
The structure of magnetic fields in the vicinity of nulls has been studied
thoroughly (Cowley, 1973; Greene, 1988; Lau and Finn, 1990; Parnell et al.,
1996; Priest and Titov, 1996). In the following we give a brief overview and
add a few remarks on kinematic properties.

The magnetic field near a null point

Assuming that the magnetic field has a Taylor expansion with respect to
the radius vector r originating at the null point, to lowest order the field
has the form

B = M · r , (11.97)

where the tensor M is given by

M = ∇B|r=0 . (11.98)

The condition ∇ · B = 0 requires that the trace of M vanishes,

Tr(M) = 0 . (11.99)

Of particular interest are nulls that are structurally stable. This property
implies that the null cannot be removed by the superposition of an arbitrary
perturbation (e.g., Lau and Finn, 1990). For a small perturbation b, which
can be considered as constant in the vicinity of the null, this means that the
null is shifted to a new location r′ determined by

M · r′ + b = 0 . (11.100)

So, structural stability requires that (11.100) has a solution r′ which means
that

det(M) �= 0 . (11.101)

Invariant properties of M are appropriately expressed in terms of its eigen-
values γj and eigenvectors ρj , i.e., the solutions of the eigenvalue problem

M · ρ = γρ . (11.102)

In view of (11.99) and (11.101) the tensor M has three non-vanishing eigen-
values with their sum vanishing. Since M is real, the eigenvalues are either
real or conjugate complex pairs. So there must be two eigenvalues, γ1, γ2,
with the same sign of their real parts and a third eigenvalue, γ3, must be
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real and must have the opposite sign. For concreteness let us assume that
γ3 < 0; the cases with γ3 > 0 are generated by reversal of the field direction.

There are field lines and flux surfaces that separate field regions of different
topological structure (analogous to the separatrices in 2D fields). These
are the axis defined by ρ3, called spine, and the plane defined by ρ1 and
ρ2, called fan. (Note that in the case of complex γ1 and γ2, the complex
eigenvectors still define two preferred real directions, again a consequence of
M being real.)

In a frame of reference that has the spine oriented along the z-axis, after
suitable normalization and rotation in the x, y-plane, the component matrix
of M assumes the general form (Parnell et al., 1996)

M =

⎛⎝ 1 (q − js)/2 0
(q + js)/2 b 0

0 jn −1 − b

⎞⎠ , (11.103)

where js is the current density component in the spine direction and jn the
component normal to the spine. The conditions 4b− q2 + j2

s > 0 and b > −1
must be satisfied to ensure that the spine lies on the z-axis and that the
inflow occurs along the spine (γ3 < 0). For vanishing perpendicular current
the spine is perpendicular to the fan. If j2

s < q2 + (b − 1)2, all eigenvalues
are real. For γ1 �= γ2 the fan lines emanate from the null tangent to one of
the eigenvector directions, and in the degenerate case γ1 = γ2 all fan lines
are straight lines emanating from the null. If j2

s > q2 + (b − 1)2, γ1 and γ2

are conjugate complex and the fan lines spiral out of the null.
Away from the null point, where the lowest approximation (11.97) be-

comes invalid, the spine generally continues as a curved field line and the
fan as a curved flux surface.

The case that in several respects has the simplest structure is characterized
by the choice js = 0, q = 0, b = 1, so that

B = xex + yey − 2zez , (11.104)

or in cylindrical coordinates r, θ, z

B = rer − 2zez . (11.105)

This field can be generated by Euler potentials

α = −r2z, β = θ, (11.106)

it has rotational symmetry about the spine axis and the fan lines are straight.
Note that in spite of the discontinuity of β the magnetic field B = ∇α×∇β

remains smooth. Fig. 11.29 shows the flux surface α = 0.1. The spine is the
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Fig. 11.29 Flux surfaces α = 0.1 of a magnetic null (located at the origin), repre-
sented by the potentials (11.106).
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Fig. 11.30 A configuration with two nulls; they are connected by the separator,
the intersection line of the fan surfaces.

z-axis. The surfaces rapidly approach the fan (x, y-plane) from above and
below as r =

√
x2 + y2 increases.

Sufficiently structured magnetic fields may have more than one null point.
In the case of a pair of nulls a generic configuration consists of a null with
spine inflow and one with spine outflow (Lau and Finn, 1990). There is a
topologically preferred field line, the separator, that connects the nulls, being
a fan line of both nulls (Fig. 11.30). A simple example has the magnetic
field (Priest and Forbes, 2000)

B = x(z − 3)ex + y(z + 3)ey + (1 − z2)ez , (11.107)

the nulls are located on the z-axis at z = ±1.
A pair of nulls can be generated by superimposing a homogeneous mag-

netic field on a dipole field, when the dipole axis is oblique to the homoge-
neous field (Cowley, 1973). This case is a simple model of a planetary dipole
field located in the large scale interplanetary field.
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Reconnection in fields with null points

A smooth ideal plasma flow cannot cross the fan nor the spine of a null.
In other words, if one forces a flow to cross the fan or the spine, it cannot
remain smooth. We illustrate this property for the example of (11.104).

Let us assume ideal steady state flow. Under these conditions the electric
field has a potential φ that is constant on field lines, so that we can under-
stand φ as a function of α and β. Then we obtain for the perpendicular
plasma velocity v⊥ = E × B/B2

v⊥ =
∂φ

∂α
reθ +

∂φ

∂β

1
r2 + 4z2

(
2z

r
er + ez

)
. (11.108)

A simple example of a flow that crosses the fan plane z = 0 has the
potential φ = φ0(θ), where φ0(θ) is 2π-periodic but arbitrary otherwise.
This gives (Priest and Forbes, 2000)

v⊥ =
dφ0

dθ

1
r2 + 4z2

(
2z

r
er + ez

)
. (11.109)

Except at the null the plasma crosses the fan with v⊥ = dφ0/dθ(1/r2)ez.
The velocity becomes singular along the spine (r = 0), so that here the ideal
dynamics breaks down.

Interpreting this breakdown as evidence for reconnection, this case has
been termed spine reconnection. Note, however, that the present simple
model has no current so that a finite resistivity would not cause resistive
diffusion. Craig and Fabling (1996) have solved the resistive MHD equations
for a model that includes currents and found that resistive diffusion can
indeed support spine reconnection.

The second example has flow crossing the spine, with the choice φ =√
−α sinβ, valid for z > 0. In Cartesian coordinates this gives

v⊥ =
1

x2 + y2 + 4z2

(
y2 + 4z2

2
√

z
ex − xy

2
√

z
ey + x

√
zez

)
. (11.110)

On the spine the perpendicular velocity is 1/(2
√

z)ex and it becomes singular
at the fan. This case has been termed fan reconnection. Craig and Fabling
(1996) have verified that resistive diffusion can regularize the flow field of
fan reconnection as well.

The singularities of the ideal flow have a rather simple explanation. Let us
consider spine reconnection. In the absence of a Bθ-component the velocity
component vz crossing the fan is given by vz = (∂φ/∂θ)(Br/B2), so that φ

must vary in the azimuthal direction. Fig. 11.31a illustrates the level curves
of φ in a plane cutting through the spine for the choice φ = sin θ. Lines
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Fig. 11.31 The electric potential φ and E · B in the x, y-plane for a kinematic
model of spine reconnection: (a) level curves of the singular ideal flow potential,
(b) the expected structure of the potential smoothed by nonideal processes, and
(c) the resulting parallel electric field, represented by level curves of E · B.

carrying different values of φ join at the spine, which causes the singularity.
So, ∇φ and with it the electric field and the plasma velocity diverges on the
spine.

For reconnection to occur, this divergence has to be removed by embed-
ding the spine in a nonideal region. In that region the electric potential must
be smoothed; the expected structure is shown in Fig. 11.31b, where lines of
equal potential are connected in the most direct way, so that they do not
continue into the spine, thereby avoiding the singularity. This implies an
electric field component parallel to the magnetic field. Fig. 11.31c illustrates
the distribution of E · B.

In the model of Fig. 11.31 the smoothing is based on the assumption that
near the spine the potential lines must connect along the x-axis, so that there
φ = r sin θ holds. This expression is smoothly matched with the external
ideal potential φ = sin θ by the choice

φ = tanh r sin θ , (11.111)

so that

E = − sin θ

cosh2 r
er −

tanh r

r
cos θ eθ, E · B = − r sin θ

cosh2 r
. (11.112)

It is a general property of kinematic models that the question of how the
nonidealness can be sustained self-consistently is set aside. Nevertheless,
it is interesting that the resistive MHD model of Craig and Fabling (1996)
yields a double structure of the electric current density that is qualitatively
consistent with that of Fig. 11.31c.

Resistive MHD models require currents to create the appropriate nonideal-
ness, which excludes simple potential fields as we discussed here. Kinematic
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models are not subject to that constraint and the reconnection process might
become more transparent. This has motivated the following global kinematic
model.

A global kinematic model of null point reconnection

For a global kinematic example we use (11.105) with potentials (11.106) and
extend the electric potential (11.111), which has only local significance, by
the choice

φ = tanh r sin θ
e−1/B2

cosh2 α
, (11.113)

where the extra factor avoids the singularity at the null and concentrates
the effect to the vicinity of α = 0. Further, we assume that the nonidealness
R is parallel to B.

This model generates an electric field and a velocity that are smooth
everywhere. The plasma crosses the fan (z = 0) with the velocity

vfan =
x tanh r

r
e−

1
r2 ez (11.114)

and the spine (r = 0) is crossed with

vspine =
1
2z

e−
1

4z2 ex . (11.115)

So, both spine and fan reconnection occur simultaneously. The velocity
signature in the x, z-plane is qualitatively equivalent to that of 2D x-point
reconnection (Fig. 11.32a), while in the y, z-plane the spine is not crossed
(Fig. 11.32b). At crossing the plasma elements swap partners over large

z

x

z

y

(a) (b)

Fig. 11.32 Null point reconnection based on (11.105) and (11.113): motion of
plasma elements, (a) crossing the spine and the fan in the x, z-plane, (b) crossing
only the fan in the y, z-plane.
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distances. In the picture of frozen-in field line motion the field lines reconnect
at the null in plane (a) and flip (Priest and Forbes, 1992b) across the fan in
plane (b).

The quantity E · B, which follows as

E · B = −e−1/B2 sin θ

cosh2(r2z)

(
2

tanh r(r2 − 8 z2)
B4

+
r

cosh2 r

)
, (11.116)

emphasizes the spine and fan regions (Fig. 11.33).
Although the nonideal region extends infinitely along spine and fan, some

of the tools that were applied to B �= 0 reconnection are still applicable
because the potential U(α, β), given by (11.84), is well defined. Along every
field line the nonidealness is concentrated, so that the integral converges and
U becomes

U(α, β) =
sinβ

cosh2 α
. (11.117)

The level curves of U are shown in Fig. 11.34, indicating a double struc-
ture with a positive peak (Umax = 1) and a negative peak (Umin = −1).
In this case the maximum reconnection rate occurs on a flux surface that
corresponds to a line connecting the two peaks, in the figure represented
by the straight vertical line. The reconnection velocity displaces this line

Fig. 11.33 Level curves of E · B, given by (11.116), of the model (11.105) and
(11.113).
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Fig. 11.34 The potential U in α, β-space. The lines are level curves of U and show
a double structure with a positive and a negative peak. The shaded area indicates
the reconnected flux.

as shown and the shaded area is the reconnected magnetic flux in a time
interval dt. An argument analogous to that applied to the case of Fig. 11.26
shows that the reconnection rate is given by |Umax − Umin| = 2.

Let us confirm this rate by leaving α, β-space and computing the recon-
nected flux explicitly. Although the spine is crossed by plasma flow, that
flow generates a line rather than a surface, so that no flux is involved. This
is contrasted by the flow across the fan which generates a finite magnetic
flux connected with the shaded surface of Fig. 11.35. This flux is readily
evaluated as

dF =
∫ π/2

−π/2
vzBrr dθ dt = 2e−

1
r2 tanh(r) dt , (11.118)

so that the reconnection rate (|dF/dt|), which is to be evaluated in the ideal
region, i.e., for r → ∞, assumes the value 2, in agreement with the result
obtained from U(α, β). This agreement had to be expected, because we
considered the same problem in two different representations.

We emphasize that these representations show a distinct geometrical dif-
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Fig. 11.35 The reconnected flux corresponding to the shaded area in Fig. 11.34
is the flux connected with the shaded area shown here. Spine and fan lines are
drawn thick, neighbouring lines thin.

ference. In coordinate space the reconnection has dramatic consequences:
plasma elements swap partners over large distances or, equivalently,
branches of field lines of grossly different shape reconnect or field lines un-
dergo flipping with a drastic change of their shape. None of these effects
appears in α, β-space, where the reconnection process is represented by a
smooth distortion of a curve. We return to this aspect in the following
section.

Fan and spine reconnection also have been studied in a resistive kinematic
approach in null configurations with currents by Pontin et al. (2004, 2005).
Their modelling included resolving the singularity at the null; they arrived
at similar conclusions.

From general magnetic reconnection to magnetic reconnection

We saw that the framework of the GMR approach with its two classes (11.77)
and (11.78) covers a wide range of processes that have important aspects
of the intuitive reconnection picture described in the introduction to this
chapter. Yet, there are striking differences. Fig. 11.36 illustrates a funda-
mental difference between two steady state examples. In the case shown
on the left the magnetic field is homogeneous and the plasma exhibits the
characteristic plasma rotation in the magnetic flux tube passing through the
nonideal region. This rotation directly reflects the relative rotation occurring
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Fig. 11.36 Examples of steady state B �= 0 configurations. The case shown on the
left has a homogeneous magnetic field. The localization of the parallel electric field
leads to the characteristic plasma rotation above and below the nonideal region.
The thin lines are lines of constant electrostatic potential φ. The configuration on
the right is quasi-two-dimensional, locally approximated by a 2D standard x-line
configuration with a constant guide field. The particular field structure leads to
plasma flow away from the nonideal region. The nonideal region is shaded in both
cases.

in α, β-space. It extends along the magnetic field in the ideal region on both
sides of DR, associated with perpendicular electric fields that become strong
for nonideal regions that are elongated along the magnetic field lines. The
relative perpendicular displacement between plasma elements on different
sides of DR remains of the order of the perpendicular dimension of DR,
which (by definition) is much smaller than the overall scale length.

The example shown on the right has the familiar magnetic field struc-
ture of the standard 2D x-type neutral line configuration (Fig. 11.1) with a
constant guide field superimposed. The electric field is assumed to have a
parallel component in a region which extends sufficiently in the y-direction,
so that the electric field near y = 0 can be approximated by the 2D field, i.e.,
constant Ey. The nonidealness is localized in the x, z-plane, because away
from the x-point the magnetic field strength increases, so that E‖ = EyBy/B
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becomes small. (For detailed discussions of cases with full 3D electric fields
taken into account see Hornig and Priest, 2003 and Hesse et al., 2005a.) In
this case two plasma elements that start on the same field line experience
increasing perpendicular separation, in the same way as in the case without
By (see Fig. 11.3); this is the large-scale effect that we have postulated for
magnetic reconnection to provide. The magnetic field geometry serves as an
amplifier of the reconnection process (Schindler et al., 1988).

Although this difference is difficult to grasp quantitatively, one of its as-
pects may be identified by the following argument. In all (finite-B) cases
that we discussed in this chapter, the reconnection process has a rather sim-
ple and non-spectacular structure in a suitable flux space such as α, β-space
(see Figs. 11.26 and 11.34). This is an important aspect, because it means
that any large-scale geometric effect must have to do with the mapping
between flux space and coordinate space. Ordinary magnetic flux intervals
must map to large configurational distances. Typically, this requires a strong
local expansion of the magnetic flux tubes. As illustrated by parts a and
b of Fig. 11.37, there are two obvious quantities (and perhaps not the only
ones) that may indicate such an expansion by assuming large values, the
cross-section area dα dβ/B and the flux tube volume dα dβ

∫
ds/B. The

reconnection site and the region of flux tube divergence can, but must not
spatially coincide. They may well be separated by a macroscopic distance
(part c).

a

b

c

reconnection
site

dαdβ

dαdβ ds

B

B

Fig. 11.37 Schematic sketches illustrating large scale effects of reconnection result-
ing from diverging field lines. The divergence may be due to large cross-section
area (a) or large flux tube volume (b). The region of flux tube divergence may be
well separated from the reconnection site (c).
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Is there a causal relationship between the reconnection process of part c of
Fig. 11.37 and the presence of the amplifying field divergence? This question
cannot be answered on the present kinematic level. But using additional dy-
namic information, discussed earlier, the following picture arises. The two
field lines shown in part c can be visualized to be located on opposite sides
of a separatrix. If that separatrix carries a current sheet (Section 8.6.2) it
would favour reconnection to occur somewhere on the separatrix. The loca-
tion and the details of the reconnection physics, however, would be deter-
mined entirely by the local conditions. For instance, the reconnection might
be initiated by some small-scale fluctuation, enhancing the current density
locally. The resulting reconnection pattern would evolve independent of the
gross magnetic field structure (see Section 11.2.7) and its dynamics would
not require any field singularity. In that sense there is no causal relationship
between the reconnection process and a distant amplifying field singularity
such as a magnetic null. This picture is applicable to the magnetopause of
the Earth’s magnetosphere (Chapter 13).

For most reconnection cases it is not necessary to distinguish between
possibilities a and b. For instance, in the presence of a 2D x-type neutral
point without a guide field or of a null point in a 3D field, both quanti-
ties diverge. However, in 2D reconnection with a poloidal x-point and a
guide field superimposed, which in many ways behaves similarly to the case
without the guide field, it is the flux tube volume that diverges, while the
cross-section area remains bounded. Fig. 11.38 illustrates the reason why
the flux tube volume becomes unbounded although B is bounded away from
zero. The distance between the entrance and exit points on the surface of
a test cylinder diverges on the separatrices. Correspondingly, on the sepa-
ratrices the integration interval of the flux tube volume becomes infinite, so
that the flux tube volume diverges.

One can understand this divergence as a singularity of the Jacobian of
the map between entrance and exit (foot) point locations of the field lines.
In cases where the Jacobian of such a map remains bounded but becomes
locally large, often a layer appears that qualitatively resembles a separatrix
and has been termed quasi-separatrix layer (Priest and Démoulin, 1995).
Corresponding reconnection processes have been shown to involve field line
flipping through such layers.

Diverging flux tubes is only one aspect of the need for a large-scale effect.
A suitable plasma flow can also lead to a large-scale separation of fluid
elements that are close to each other originally (Hornig, 2006). A standard
example is the stagnation flow of x-line reconnection, with or without a
guide field.
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Fig. 11.38 Singularity of the x-line configuration with a guide field. The magnetic
field has the components (z, 1, x). Left part: poloidal projection of field lines; the
field lines enter a cylinder (circle) at point a and leave the cylinder at b. Right
part: distance ∆y between the entrance and exit points in the y-direction versus
the poloidal flux function A. At the separatrices (A = 0) the displacement and
hence the flux tube volume becomes unbounded.

So it seems that the additional requirement, necessary for a general mag-
netic reconnection process to become a genuine reconnection process (i.e.,
reconnection with large-scale consequences), is that the separation of fluid
elements, provided by global breakdown of line conservation, must be ampli-
fied. As we have seen, this can be achieved by strongly diverging magnetic
field lines or by a suitable plasma flow geometry.

The attempt to confine the notion of reconnection to the presence of a
null as a necessary feature (Greene, 1988; Lau and Finn, 1990) seems too
restrictive, considering that examples such as 2D x-point configurations with
a guide field or fields with quasi-separatrix layers would not be covered. (See
also the discussion of magnetopause reconnection in Section 13.1.2.)

A final remark concerns a degenerate case. Using Euler potentials, it
is necessary for reconnection to occur that there must be field lines with
[dα/dt]α,β , [dβ/dt]α,β or both non-vanishing. Any relative motion of pairs of
plasma elements with one partner inside DR is not relevant for reconnection.
So, the one-dimensional steady state MHD shock waves would not count as
a reconnection site. This is directly evident by viewing the shock wave in
the de Hoffmann–Teller frame (see Section 3.9), where in the upstream and
downstream regions the velocity is parallel to the magnetic field, so that
dα/dt and dβ/dt both vanish. If one follows a pair of plasma elements
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starting upstream on the same field line, one finds that they get separated
when the first element enters the shock region, but they are on the same field
line again after both elements have entered the downstream region. There is
no effect on scales larger than the shock thickness. (Such effects have been
termed GMR local effects (Schindler et al., 1988).)

Summarizing, we conclude that magnetic reconnection can be character-
ized by the following kinematic properties:

• presence of a localized nonideal region DR,
• global breakdown of magnetic line conservation,
• spatial amplification of the effect of breakdown of line conservation, pro-

vided by strong divergence of magnetic field lines connected to DR and/or
a suitable plasma flow geometry, such as stagnation point flow.

The significance of diverging magnetic fields (third property) makes sep-
aratrices and separatrix layers preferred locations of magnetic reconnection.
This is consistent with the (dynamic) property that separatrices often are
associated with current sheets (Section 8.6.2).

11.5.3 Approximate conservation of helicity

Magnetic helicity

K =
∫

D
A · B d3r , (11.119)

as already defined in (3.92), was introduced into magnetohydrodynamics in
the context of dynamo theory (Elsasser, 1956) and force-free fields (Woltjer,
1958). In Section 3.8.3 we have seen that in ideal MHD magnetic helicity
is a conserved quantity. So the question arises what role helicity plays in
reconnection.

The helicity definition (11.119) in general is not gauge invariant. There are
several modifications by which gauge invariance of K and its time derivative
(3.93) can be achieved (Berger and Field, 1984; Finn and Antonsen, 1985);
here we mention two possibilities. The first is to restrict the applications to
configurations with special boundary conditions. This, for instance, applies
to plasmas surrounded by an infinitely conducting static boundary with
n · B = 0, which gives

dK

dt
= Θ, Θ = −2

∫
D

E · B d3r . (11.120)

The second method is to use modified versions of helicity, often called relative
helicity, which lead to gauge invariance for other boundary conditions, too
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(Berger and Field, 1984; Finn and Antonsen, 1985). A similar possibility
applies to instability processes in systems embedded in a static magnetic
field B0 with a vanishing electric field. Then, defining (Schindler et al.
(1988))

K̄ =
∫

D
(A + A0) · (B − B0) d3r , (11.121)

one finds dK̄/dt = Θ as in (11.120), so that, analogous to K, under the
assumed conditions K̄ is gauge invariant and conserved in ideal MHD.

Regarding magnetic reconnection processes, we first note that, strictly
speaking, typical reconnection processes would change magnetic helicity be-
cause of the presence of a parallel electric field entering the integral on the
right side of (11.120). However, the integrand is different from zero only in
the nonideal region. So, if the nonideal region is small compared with the
overall extent of the configuration, the integral might be small such that
helicity is approximately conserved. Quantitatively, this effect will depend
on how the integrand varies as the nonideal region shrinks. For an MHD
model exact limits on the helicity dissipation were derived by Berger (1984).
We outline the essence of the argument.

With Ohm’s law given by (3.67), one obtains

Θ = −2
∫

D
η(r)j‖(r)B(r) d3r . (11.122)

The integral can be estimated using Schwarz’s inequality,(∫
D

ηj‖B d3r

)2

≤
(∫

D
ηB2 d3r

)(∫
D

ηj‖
2 d3r

)
, (11.123)

so that one obtains from (11.122)

Θ2 ≤ 4η̄

∫
D

ηj‖
2 d3r

∫
D

B2 d3r , (11.124)

where

η̄ =

∫
D ηB2 d3r∫
D B2 d3r

(11.125)

is an average value of the resistivity η. Assuming that in the nonideal
region the rate of change Ẇm of magnetic energy Wm approximately equals∫

ηj2 d3r (the significance of that assumption is discussed below), (11.124)
can be put in the form

Θ2 ≤ 8 µ0η̄Wm|Ẇm| . (11.126)
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An expression for the magnitude of the change of helicity, |∆K|, during the
time interval (0, ∆t) is obtained by integrating (11.126) with respect to time,

|∆K| ≤ 2
√

µ0η̄

∫ ∆t

0

√
2Wm|Ẇm|dt . (11.127)

By a straightforward variational procedure the integral in (11.127) can be
seen to be maximized for

Wm = Wm,i

√√√√1 − t

∆t

(
1 −
(

Wm,f

Wm,i

)2
)

, (11.128)

such that

|∆K| ≤ 2
√

µ0η̄∆t
(
W 2

m,i − W 2
m,f

)
. (11.129)

Here, Wm,i and Wm,f denote the initial and the final value of Wm, respec-
tively. Solving (11.129) for ∆t gives an estimate of the time required for a
given change of helicity,

∆t ≥ |∆K|2

4µ0η̄
(
W 2

m,i − W 2
m,f

) . (11.130)

For a small nonideal region with volume VR and resistivity η0 embedded in
an external ideal region of volume V0, one finally obtains

∆t ≥ |∆K|2V0

4µ0η0VR

(
W 2

m,i − W 2
m,f

) , (11.131)

where it was assumed that B2 averaged over DR is not larger than averaged
over the macroscopic domain D. Clearly, for a given change of helicity and
initial and final magnetic energy the required time becomes arbitrarily large
as the volume VR of the nonideal region approaches zero.

The main assumption that was made in deriving (11.131) was to identify
Ẇm with

∫
ηj2 d3r. In resistive MHD the Poynting theorem for region D

with boundary ∂D reads (see (3.43))

Ẇm = − 1
µ0

∮
∂D

E × B · n dS −
∫

D
v · j × B d3r −

∫
D

ηj2
‖ d3r −

∫
D

ηj2
⊥ d3r .

(11.132)
Thus, the Poynting flux, the work associated with the Lorentz force and the
dissipation resulting from j⊥ have been neglected. This can be justified for
energetically isolated force free fields, for which the Poynting flux through
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the boundary and the terms involving j⊥ are negligible. (In fact, the esti-
mate (11.131) was derived in view of coronal magnetic fields (Berger, 1984),
which largely can be idealized as being force-free.) If these terms are not
negligible, (11.131) can still be regarded as an order of magnitude estimate
as long as the dissipation term due to j‖ is not small compared to the other
terms in (11.132).

Note that for VR/V0 � 1 approximate helicity conservation is consistent
with finite changes of magnetic energy, but it puts a constraint on the fi-
nal configuration. For instance, magnetic energy accumulated in field line
linkage can relax by reconnection into a twisted field configuration. Such re-
laxations were found in 3D nonlinear current sheet reconnection (Fig. 11.21).
For a covariant kinematic model see Fig. 11.39.

The general process of magnetic field relaxation under conservation of he-
licity is known as Taylor relaxation (Taylor, 1974). Under suitable boundary
conditions (e.g., vanishing normal magnetic field component) the relaxed
state is a force-free state with constant κ (see Section 5.1.5).

11.6 Remark on relativistic covariance

Here we briefly address relativistic reconnection.
In general, the laws of physics must be covariant, i.e., independent of the

observer’s frame of reference. (We confine the discussion to special relativity
where the relevant frames are the inertial frames, generated by the Lorentz
transformation.)

One could object that in most applications reconnection occurs in non-
relativistic plasmas, and that therefore relativistic covariance is not an
important requirement. However, some problems persist even for non-
relativistic frame velocities. In any case, it is of interest to see whether
or not a convincing relativistic notion of magnetic reconnection does exist
(Hornig, 1997a,b).

The problem originates from the fact that the notion of transport of mag-
netic field lines concerns only the magnetic field, which has no covariant
meaning. This has led Hornig (1997a) to investigate the transport of the
electromagnetic field, for instance, represented by the field tensor F with
components Fµν in Minkowski space. Here we briefly discuss that concept
(without derivation) and its consequences for magnetic reconnection.

Mathematically, the condition of existence of a line conserving transport
velocity of the magnetic field (Section 3.8.2) can be expressed in terms of
the Lie derivative of B. This formulation has a straightforward generaliza-
tion to the transport of the field tensor. It turns out that a parameter that
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corresponds to Λ in (3.90) would be zero in many cases. Ignoring that para-
meter altogether, one obtains the following condition for smooth transport
of the electromagnetic field

V 0 ∂Φ
∂x0

+ V · ∇Φ = 0 (11.133)

V 0E + V × B = ∇Φ , (11.134)

where F is transported by the 4-vector V = (V 0, V ). Here Φ is an arbi-
trary function of r, t, combined to the 4-vector xλ, where x1, x2, x3 are the
components of r and x0 = ct. By construction, this condition is covari-
ant, implying that under (11.133) and (11.134) the Lorentz transformation
conserves the property of smooth transport of the electromagnetic field.

In the non-relativistic limit with V = (1, v) the conditions (11.133) and
(11.134) reduce to

∂Φ
∂t

+ v · ∇Φ = 0 (11.135)

E + v × B = ∇Φ . (11.136)

Clearly, ideal MHD is contained as a special case. More generally, (11.131)
states conservation of magnetic flux rather than magnetic line conservation.

In fact, under the conditions (11.133) and (11.134), magnetic flux conser-
vation generalizes to conservation of electromagnetic flux∫

C
F · dA =

∫
B · da +

1
c

∫
E · da0 = const . (11.137)

Here, the integrals are taken over projections of a selected surface in
Minkowski space (for details see Hornig and Schindler (1996b)).

Flows conserving electromagnetic flux may transform magnetic flux (first
term in (11.137)) into electric flux (second term in (11.137)). In that sense
conservation of electromagnetic flux can break the frozen-in constraint im-
plied by magnetic flux conservation. Obviously, this is of interest for recon-
nection processes.

Another important feature of electromagnetic flux conservation is conser-
vation of helicity for flows with V 0 > 0. (For a more precise statement see
Hornig, 1997a.)

The physical properties of the transporting flow depend on the sign of
V 02 − V 2. For magnetic reconnection it turns out that the most relevant
cases are those with coexisting time-like (positive sign) and space-like (neg-
ative sign) subdomains and with lines on which both V 02 and V 2 vanish.
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time = 0 0.5

 0.6 0.8

0.9 1.0

Fig. 11.39 Kinematic example of magnetic reconnection under helicity conserva-
tion (Hornig, 1997b): Linked flux tubes without twist turn into unlinked twisted
tubes (by permission from G. Hornig).

Fig. 11.39 shows an example illustrating a reconnection process described
by a covariant transporting flow, where the magnetic field does not involve
nulls. Helicity is conserved and flux linkage turns into twist.

The non-relativistic limit of this approach corresponds to violation of mag-
netic flux conservation, as is clear from (11.136). To cover violation of line
conservation it seems that the function Λ, mentioned above, has to be in-
corporated in a nontrivial way.



12

Aspects of bifurcation and nonlinear dynamics

Important aspects of activity of space plasmas can be described in terms
of transitions from stable to unstable states. Therefore, it was necessary to
deal with the stability properties of selected equilibria, which has been a
major aspect in this part of the book.

However, to obtain a deeper physical understanding of the dynamic prop-
erties of a given system it is desirable to have available a complete overview
of all equilibrium states and their stability properties for every choice of a
suitable (control) parameter. Such information is provided by bifurcation
diagrams. They are particularly useful to assess the qualitative behaviour of
nonlinear systems. Here we can give only an elementary introduction aimed
at clarifying notions that will be used later. For rigorous treatments the
reader should consult the literature (e.g., Berge et al., 1986; Guckenheimer
and Holmes, 1983).

Statistical mechanics and nonlinear dynamics provide additional tech-
niques that have been applied to space plasma activity.

12.1 Bifurcation

For illustration of bifurcations let us begin with a set of simple examples
shown in Fig. 12.1. A point mass moves in a potential U(x, λ) subject to
the force −∂U/∂x, λ being the control parameter. On the right, the figure
also shows the bifurcation diagrams, which are the plots of the equilibrium
positions versus λ. At bifurcation points the solution structure (here mani-
fested by the number of solutions for a given value of λ) as well as stability
undergoes qualitative changes. In the present model bifurcation points are
characterized by the simultaneous vanishing of the first and second deriv-
atives of U with respect to x. The cases a and b are bifurcations of the
pitchfork type (pitchfork bifurcation) while c is the simplest version of a

343
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Fig. 12.1 Examples of bifurcation diagrams (on the right) for one-dimensional
mechanical systems with several choices of the potential U(x, λ) (on the left); x0

denotes the equilibrium positions and λ is the control parameter. Stable branches
are marked as s and unstable branches as u. The black dots indicate the bifurcation
points. For the cases a, b, c, the potentials are chosen as Ua = x4−(λ−1)x2+λ/4,
Ub = −x4− (λ−1)x2 +(λ+3)/4, Uc = −(x−1)3− (λ−1)(x−1)+1, respectively.

catastrophe, characterized by loss of equilibrium on one side of the bifurca-
tion point.

A stable equilibrium is globally stable if it corresponds to the lowest pos-
sible value of the potential (minimum energy state). For λ < 1 the stable
states of Fig. 12.1a are globally stable while there are no globally stable
states in Figs. 12.1b and 12.1c.

The dynamical solutions x(t) evolve as expected from the bifurcation di-
agrams. Fig. 12.2 shows an example, where λ is slowly increased with time,
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Fig. 12.2 A dynamic solution for the catastrophe scenario of case c of Fig. 12.1,
with λ slowly increasing with time so that the bifurcation point is reached at
t = 40. Initially the dynamic solution (d) oscillates around the quasi-static solution
(q); when the bifurcation point is reached, the orbit ‘catastrophically’ changes its
structure and the point mass rapidly moves to large distances, away from the
bifurcation position.

so that the system moves toward a catastrophe point. The sudden change
of the orbit near the bifurcation point is typical for a catastrophe.

In the cases shown in Fig. 12.1 the potential is symmetric with respect to
the sign of the coordinate x. Each one of the branches bifurcating away from
the equilibria x0 = 0 breaks that symmetry. A different type of symmetry
breaking may apply to the potential itself. A symmetry breaking pertur-
bation of the potential may cause a structural instability of the bifurcation
diagram obtained with the original symmetric potential. For example, a
small perturbation turns the bifurcation diagram of case a of Fig. 12.1 into
that shown in Fig. 12.3. However, for sufficiently small perturbations typical
solutions x(t) remain qualitatively unaffected.

It is essential that the parameter λ is an appropriate control parameter in
the sense that it must be freely adjustable. For the present one-dimensional
example it is not difficult to imagine that the potential can be adjusted by
external measures. In more complex situations discussed later, this require-
ment plays a crucial role for the interpretation of the diagrams.
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Fig. 12.3 Bifurcation diagram resulting from applying a small perturbation to case
a of Fig. 12.1; the potential is chosen as U = Ua − 0.05x.

A final remark concerns dynamical constraints. We will encounter a case
where two models, in a simplified description, differ only by the absence or
presence of a constraint imposed on the perturbations. The second model
is unstable, in the first model the unstable perturbations are suppressed
by the constraint. Both models have an identical equilibrium branch but
with different stability properties. The sudden breakdown of the constraint
will have dramatic consequences. Fig. 12.4 illustrates this possibility for the
example of a breaking dam of a water reservoir.

12.1.1 Bifurcation properties of Grad–Shafranov theory

Let us consider the Grad–Shafranov equation for one- or two-dimensional
Cartesian coordinate spaces. For concreteness, let us assume that the do-
main of interest Ω is bounded with a smooth boundary ∂Ω. Equilibrium
sequences with a sequence parameter λ can be generated by choosing the
pressure of the form p(x, λ), where x stands for the coordinate(s). A simple
prototype case corresponds to p = λ exp(2A)/2 so that the Grad–Shafranov
equation becomes

−∆A = λe2A . (12.1)

This case is equivalent to the choice (5.88), the two cases differ only in
that the magnetic fields have opposite directions. The following section
addresses the bifurcation properties of a more general class of boundary
value problems.
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Fig. 12.4 Symbolic illustration of the role of a constraint. A dam (rectangle) of a
water reservoir may be stable (a) or unstable (b) against perturbations that cause
a leakage. In case (a) there is a single (stable) equilibrium branch represented by
the plot of the potential energy Epot of the supplied water vs. its mass M . If in the
absence of the constraint the leakage instability is active (b), the solution where
the reservoir still contains water is unstable (thin line) and the stable solution
corresponds to complete unloading (thick line, the entire mass is lost to the ground
level, so that its potential energy is 1). If for some reason the constraint breaks
down at some point in the evolution (M = 1 in part (c)), the breakdown of the
constraint leads to a sudden dramatic unloading of the reservoir, releasing the
previously stored potential energy.

Convex currents

Consider Grad–Shafranov equations of the following type:

−∆A = f(A, x, λ) x ∈ Ω (12.2)

A = 0 x ∈ ∂Ω . (12.3)

Here the current density is represented by f(A, x, λ), a smooth function
(continuous first derivatives) with the following properties:
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(i) f(0, x, 0) = 0, all x ∈ Ω̄, (12.4)

(ii) ∃ µ > 0, ν ≥ 0 such that f(A, x, λ) ≥ λ(µA + ν),

all A ≥ 0, x ∈ Ω̄, λ ≥ 0 , (12.5)

where (ii) can be regarded as a particular form of convexity.
As there is no smooth solution that assumes negative values (absence of a

minimum), one concentrates on positive solutions. Although this problem is
nonlinear, several useful existence theorems are available (e.g., Fujita, 1969).
(For a review of the subject, details and generalizations see Amann, 1976.)
In the present context the most important property can be expressed as
follows:

The conditions (12.4), (12.5) imply that there exists a parameter value λ∗

such that there is no solution for λ > λ∗. The solutions that exist in some
λ-range below λ∗ are not necessarily unique.

If, in addition,

∂f(A, x, λ)
∂λ

≥ 0,
∂2f(A, x, λ)

∂A2
≥ 0 (12.6)

holds for all A ≥ 0, 0 ≤ λ ≤ λ∗, then there is a smallest λ∗ such that for
values of λ satisfying 0 ≤ λ ≤ λ∗ there is at least one positive solution. The
smallest (with respect to maximum norm) positive solution is stable in the
sense that the functional ∫ (

(∇ξ)2 − ∂f

∂A
ξ2

)
d2r (12.7)

is positive definite. As this functional, except for an irrelevant factor,
is a generalized version of (10.58) we refer to this stability definition as
F-stability .

Fig. 12.5 illustrates these properties in the bifurcation diagram ||A||max

vs. λ. If λ is a control parameter (i.e., a freely adjustable parameter), λ∗

is a catastrophe point. Crossing that point the system loses equilibrium
and necessarily becomes dynamic, at least within the present 2D picture.
Also, note that the 2D variational expression (10.57) for MHD and the
corresponding functional of the Vlasov theory (10.214) consist of F2 plus
positive terms. Therefore, the smallest solution is stable within 2D MHD
and Vlasov theories.

So the full set of equilibrium solutions provides interesting stability prop-
erties, a fact that we encountered already in the elementary examples dis-
cussed above.
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||A||
max

no solution

ll∗

Fig. 12.5 Qualitative sketch illustrating the bifurcation properties of the solutions
of (12.2), (12.3) with (12.4)–(12.6). The solutions on the thick line sections are
F -stable.

Harris sheet: Loss of equilibrium

As the conditions (12.4)–(12.6) are satisfied for the example of (12.1), we
can conclude that the Harris sheet problem of Section 5.3.2, understood as
a boundary value problem with A vanishing on the boundary, must show
the properties listed above. Here A is a function of z alone so that (12.1)
reduces to

−∂2A

∂z2
= λ e2A, A(±1) = 0 . (12.8)

Concentrating on the region z ≥ 0, the boundary condition at z = −1 is
replaced by vanishing derivative with respect to z at z = 0.

Equation (12.8) has the general symmetric solution

A = − ln
cosh(kz)
cosh(k)

, (12.9)

where k is related to λ by

λ =
k2

cosh2(k)
. (12.10)

The maximum norm of A is

||A||max = ln cosh(k), (12.11)
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so that (12.10) and (12.11) represent the solution curve in the bifurcation
diagram which is shown in Fig. 12.6.

Consistent with the general properties listed above, there is no solution for
λ > λ∗ ≈ 0.439. Below λ∗ there are two solutions, the lower being F -stable.
The critical value of k is k∗ ≈ 1.200, which is the solution of

k tanh(k) = 1 . (12.12)

By continuity, at the bifurcation point the minimum of the functional F2

goes to zero. This can be tested explicitly by considering the Euler–Lagrange
equation for the minimizer of F2, which is the eigenvalue equation

A′′
1 +

2k2

cosh2(kz)
A1 = ΛA1 . (12.13)

The eigenvalue Λ vanishes at the bifurcation point (marginal stability) and
the symmetric solution is

A1 = k∗z tanh(k∗z) − 1 , (12.14)

where (12.12) ensures that A1 satisfies the boundary condition A1(1) = 0.
The catastrophe of the Harris solution has attracted much attention in the

context of space plasma activity as a simple model of a current sheet that
from quasi-static stable evolution (lowest solution, λ increasing) suddenly

Fig. 12.6 Bifurcation diagram of the problem (12.8). The critical parameter is
λ∗ = 0.439. The lower solution (thick line) is F -stable, the upper one (thin line)
F -unstable.
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enters a dramatic dynamic phase. (For details see Low, e.g., 1977; Birn and
Schindler, e.g., 1981.) However, it also has become clear that a region of
nonexistence with respect to a particular parameter must not necessarily
mean that a catastrophe actually occurs as a physical process.

The problem is that λ must be a control parameter which can be assigned
values on both sides of λ∗. This is not obvious in the present case. At
first sight, one might be misled to understand the parameter λ in (12.8) as
controlling the current density in a monotonic relationship. However, the
central current density jc is given by k2. Using jc as control parameter
(Fig. 12.7) the catastrophe has disappeared. In fact, its presence in the
graph of ||A||max(λ) results from the non-monotonic relationship between λ

and jc, which is given by λ = jc/ cosh2(
√

jc).
This case obviously does not fall under the general class described in the

previous section. In fact, the convexity condition (ii) is violated.
A monotonic bifurcation diagram also arises if the integrated current of

the sheet is used as the control parameter.
Note that in both cases a slow temporal increase of the control parameter

will lead to a transition from a quiescent to a dynamic phase. The reason for
the stability transition in the diagram of Fig. 12.7 is that with increasing jc

the current sheet becomes more and more concentrated between the (fixed)

||A||max

0

0.5

1

1.5

1

s

u

3 jcjc* 2 4

Fig. 12.7 Bifurcation diagram of the problem (12.8) with the central current den-
sity jc as the control parameter; j∗c corresponds to λ∗.
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boundaries at z = ±1. This is obvious from (12.9), which shows that 1/k =
1/
√

jc is the width of the Harris sheet profile. The stability transition occurs
at the width 1/k∗ = 0.834.

If the sheet profile is expressed in terms of the coordinate kz rather than
z, the evolution consists of the boundaries moving outward for a fixed Harris
profile, and the stability transition occurs at the critical location 1.200.

It might surprise that the graph in Fig. 12.7 shows a stability transi-
tion without a bifurcating solution branch. In fact, there is a bifurcation,
but the corresponding solutions are two-dimensional, they do not appear in
the present one-dimensional treatment. We will return to this question in
Section 12.2.2.

In spite of the strong simplifying assumptions that were imposed on the
sequences described above, some of their features will persist when more
realistic models are described in the course of this chapter. In particular, the
nonequilibrium scenario of Fig. 12.6 and the stability transition of Fig. 12.7
are prototypes of two basic bifurcation processes.

Low’s solution

Low (1977) considered a sequence of cylindrical states based on the Bennett
pinch solution (5.129). A selected equilibrium of that sequence was already
considered in Section 5.3.4. Let z be the invariant direction and assume that
instead of the plasma pressure the magnetic pressure based on Bz supports
the configuration. Consider the half space x > 0 and locate the centre of
the circular poloidal field lines at (x=0, y=h). The poloidal flux function
A satisfies the boundary condition A(x, 0) = ln(1 + x2) and Bz is chosen as
Bz =

√
λ exp(−A), λ ≥ 0, where again λ is taken as the control parameter.

The solution is

A = ln(1 + x2 + y2 − 2h±y) (12.15)

with

h± = ±
√

1 − λ/4 . (12.16)

For λ < λ∗ = 4 there are two solutions (Fig. 12.8) and there is no solution
for λ > λ∗. Again, λ∗ is a catastrophe point. Low emphasized the fact that
the two solutions for λ < λ∗ are topologically different.

Similar solutions and generalizations were discussed by several authors
in the context of solar activity. It was emphasized by Jockers (1978) that
magnetic shear, described by footpoint displacements, rather than Bz, is
an appropriate control quantity. This difference is a serious problem for
λ ≥ λ∗; for further remarks on this problem see Section 14.2. Priest and
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y

h_(l)

h+(l)
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Fig. 12.8 Two field lines of Low’s solution (12.15) belonging to the same value
of λ. The field lines are helices with circular poloidal projections. There is no
solution for λ > 4.

Milne (1980) found non-unique solutions for fixed shear. A rather general
study by Heyvaerts et al. (1982) addressed the existence of closed and open
MHS configurations. For small current or pressure there always exist solu-
tions with closed topology, but they disappear at a bifurcation point. Open
solutions exist for arbitrary currents or pressures. Aly (1995) considered
sheared axisymmetric force-free fields. After an initial period of quiet en-
ergy gain the field starts expanding at an increasing rate, so that at some
stage the quasi-static approximation breaks down. This is interpreted as the
global singular nonequilibrium. Notably, loss of equilibrium occurs in close
connection with the formation of a current sheet. For two-dimensional con-
figurations supported by pressure, Birn and Schindler (2002) constructed a
quasi-static sequence that also led to loss of equilibrium by the formation of
a singular current sheet (see Section 8.4.2).

Bifurcation-relevant results for three-dimensional configurations largely
come from numerical simulations. It seems that both loss of equilibrium and
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stability transitions occur under different circumstances. We will return to
these aspects in Part IV.

Marginal states

Independent of the choice of the control parameter, the Harris sheet evolu-
tions described above contain marginal states, in the sense that the minimum
of the functional F2 becomes zero. That mathematical condition says little
about the qualitative properties that an equilibrium must have for being a
marginal state. For the Grad–Shafranov equation

−∆A = J(A) (12.17)

there is a simple necessary condition that a two-dimensional marginal state
with neighbouring stable states must satisfy (Birn et al., 1984). Let us
assume a singly connected bounded domain in the x, y-plane with a smooth
boundary. Then it is necessary for a solution with neighbouring stable states
to represent a marginal state that for all directions t the projection t · B

must assume both signs on the boundary or vanish identically. So, if for
a given solution there is a direction t with t · B having a definite sign on
the boundary, the solution cannot represent a marginal state with stable
neighbours. Fig. 12.9 gives several examples. The cases a, b, c cannot be
marginal states because there is a direction t with no change of sign of t ·B
on the boundary; in the cases d, e, f the criterion is satisfied.

Fig. 12.9 Field lines of 2D magnetic fields that do not satisfy the marginal state
condition (a, b, c) and of structures that do satisfy that condition (d, e, f).
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This criterion is easily obtained in the following way. In the marginal
state the Euler–Lagrange equation for the minimizer A1 of F2 is

−∆A1 = J ′(A)A1 , (12.18)

A1 vanishing on the boundary. If the state A has a stable neighbourhood, A1

has no zeros. (A1 is the eigenfunction associated with the lowest eigenvalue
of a Sturm–Liouville eigenvalue problem, here the eigenvalue vanishes.)

Let us first choose the Cartesian coordinate direction ex as the direction
t. Differentiating (12.17) with respect to y we find

−∆Bx = J ′(A)Bx . (12.19)

Eliminating J ′ from (12.18) and (12.19) one can write the result as

∇ · (Bx∇A1 − A1∇Bx) = 0 . (12.20)

With the help of Gauss’s theorem and the boundary condition of A1 one
finally obtains ∮

Bxn · ∇A1 dl = 0 , (12.21)

where the integral is extended over the boundary with normal n. As A1 has
no zeros inside the boundary, n · ∇A1 does not change sign. Therefore, Bx

must change its sign or be zero for the integral to vanish. Considering that
we could have chosen any direction as the x-direction completes the proof.

Note that for this derivation it is essential that ∆ commutes with ∇, which
is the case for the Cartesian coordinates employed here. We add that the
examples d, e, f in Fig. 12.9 contain neutral points, but this is not a strict
requirement for the criterion to be satisfied. A neutral point is present in
case c, although the criterion is violated. It seems that the magnetic field
of a marginal equilibrium has to be sufficiently structured on the boundary.

12.2 A statistical mechanics approach to 2D current sheet
bifurcation

A closed ensemble of particles will eventually relax into thermodynamic
equilibrium, in which the current density vanishes. So particular circum-
stances must prevail to allow a current sheet to persist. Kiessling (1995) has
obtained a class of kinetic equations with effective collision operators where
the electric field term and the collision term cancel each other, so that the
model formally reduces to a two-dimensional Vlasov description with no
electric field in the current direction. For such systems the minimum formal
requirement for avoiding relaxational decay of the current is the conservation
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of the total canonical momenta of electrons and ions. The statistical me-
chanics of such systems was developed and applied to current sheets by Hesse
and Schindler (1986); Kiessling et al. (1986); Brinkmann (1987); Kiessling
and Schindler (1987); Kiessling (1993). The work by Kiessling et al. (1986)
includes a discussion of the requirements for fluctuation spectra of weak
turbulence. Here we use that approach for a two-dimensional bifurcation
analysis of current sheets.

12.2.1 Brief outline of the model

Formally, the plasma is treated as a two-dimensional thermodynamic equi-
librium in a finite poloidal domain Ω with boundary ∂Ω, coupled to a heat
reservoir of temperature T . The system is invariant in the y-direction and it
is assumed that the y-component of the canonical momentum of each parti-
cle species s remains constant. This is the appropriate statistical mechanics
constraint for making sure that the system relaxes into an equilibrium that
carries a non-vanishing current. By applying the standard canonical ensem-
ble methods one obtains the following expression for the free energy

F =
∫

Ω

(
1

2µ0
(∇A)2 − ε0

2
(∇φ)2

)
d2r − 1

2

∑
s

Nsmsu
2
s

−
∑

s

NskBT

(
ln

Us

Nsl2s
+ 1
)

(12.22)

where

Us =
∫

Ω
exp
(
− qs

kBT
(φ − usA)

)
d2r (12.23)

ls =

√
h2

2πmskBT
. (12.24)

Here Ns is the number of particles per unit length in the invariant direction
and us the y-component of the bulk velocity for species s; the magnetic and
electric fields are poloidal with flux function A and potential φ, respectively;
ls is the thermal de Broglie wavelength of species s.

Introducing quasi-neutrality with Ni = Ne = N and dimensionless nota-
tion, assuming an electron–proton plasma and omitting an additive constant,
one finds that (12.22) reduces to

F =
1
λ

∫
Ω
(∇A)2 d2r − ln

∫
Ω

e2A d2r (12.25)



12.2 Statistical mechanics of 2D current sheets 357

with

λ =
µ0I

2

4NskBT
. (12.26)

Here I = Ne(ui − ue) is the electric current; A is normalized by 4NkBT/I

and coordinates by an arbitrary length.
Importantly, a single parameter λ appears, which is interpreted as the

natural control parameter.
Equilibria are characterized by extrema of the free energy, obtained from

setting the first variation of (12.25) to zero. This gives the equilibrium
equation

−∆A = λ
e2A∫

Ω e2A d2r
, (12.27)

which is an integro-differential equation for A. For any given solution the
integral in (12.27) is constant and (12.27) has the form of a Grad–Shafranov
equation, but the integral plays an important role in the stability and bifur-
cation properties.

In the sense of statistical mechanics, an equilibrium described by a solu-
tion of (12.27) is locally stable if at the equilibrium the free energy (12.25)
assumes a local minimum, it is globally stable if the minimum is a global
one. (Note that this is consistent with the stability concept of Section 10.1
and the elementary examples of Fig. 12.1.)

So, local stability is determined by the second variation of F

F2 =
1
λ

∫
Ω

(
(∇A1)2 −

2λ exp(2A)∫
Ω exp(2A) d2r

(A2
1 − Ã1

2
)
)

d2r , (12.28)

where the tilde symbol denotes the average

.̃ . . =

∫
Ω . . . exp(2A)d2r∫

Ω exp(2A)d2r
. (12.29)

An equilibrium is locally stable if and only if F2 is positive definite with
respect to test functions A1 vanishing on the boundary. As it is the case for
the variational expressions considered in Sections 10.2 and 10.5 this crite-
rion can also be expressed in terms of the Euler–Lagrange equation for the
minimizer, which becomes the eigenvalue problem

−∆A1 −
2λ exp(2A)∫

Ω exp(2A)d2r
(A1 − Ã1) = ηA1 , (12.30)

where η is the eigenvalue. The sign of the lowest eigenvalue determines local
stability.
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Notably, this model can also be based on a statistical mechanics treatment
of interacting line currents (Kiessling, 1995). This approach most directly
exhibits the close analogy with 2D gravitational interaction and with systems
of line vortices. The common aspect is 2D attractive interaction with the
force varying as 1/r with separation r.

12.2.2 Bifurcations of the Harris sheet

Let us apply this approach to the Harris sheet equilibrium. For a rectangular
domain 0 ≤ x ≤ a, −b/2 ≤ z ≤ b/2 the corresponding solution of (12.27) is

AH = − ln cosh(νz) (12.31)

λ = 2aν tanh(νb/2) , (12.32)

where ν > 0 (the inverse thickness of the sheet) acts as a parameter so that
A can be understood as a function of x, z, λ and AH defines the (Dirichlet)
boundary condition.

As in the case of fixed current density of Fig. 12.7, but unlike the case of
the catastrophe of Fig. 12.6, the solution exists for all positive λ. So, the
next problem is to find the stability transitions.

The eigenfunction corresponding to the lowest eigenvalue was found to be
(Zwingmann, 1983; Hesse and Schindler, 1986)

A1,0 =
(
sinh(µνz) tanh(νz) − µ cosh(µνz)

)
sin(2πz/a) (12.33)

where µ is determined by the boundary condition, such that

tanh(µνb/2) tanh(νb/2) − µ = 0 . (12.34)

The lowest eigenvalue is

η0 =
4π2

a2
− µ2ν2 . (12.35)

A1,0 was found to be the eigenfunction corresponding to the lowest eigen-
value (Hesse and Schindler, 1986; Kiessling and Schindler, 1987) although
it has zeros inside the domain, which would not occur for Schrödinger-type
problems.

Combining (12.32), (12.34) and (12.35) one finds

λ =
2
√

4π2 − η0a2

tanh(
√

4π2 − η0a2 b
2a)

(12.36)
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which shows that η0 decreases monotonically from its value 4π2/a2 and
changes its sign at

λ∗ =
4π

tanh(πb
a )

. (12.37)

This is a bifurcation point, where a new branch bifurcates from the Har-
ris solution (Hesse and Schindler, 1986). The branch is back-bending and
therefore unstable. The full bifurcation diagram is shown in Fig. 12.10 for
three different values of the parameter b/a.

For b/a = ∞ the bifurcating solutions are the cat’s eye solutions (5.131).
Here they take the form

A = − ln

(
cosh(2πz/a) + p sin(2πx/a)√

1 − p2

)
. (12.38)

The (maximum) norm becomes ||A − AH|| = 0.5 ln[(1 + p)/(1 − p)]. As
this norm is independent of λ the branch is vertical. On this branch the
parameter p increases from p = 0 (Harris sheet) to p = 1, where the current
becomes concentrated as a line current located at (x = 0.75a, z = 0) so that
the norm becomes infinite. Including this solution, we have left the realm
of continuous functions and turned to generalized functions (distributions).
Remarkably, here we are dealing with one of the rather rare occasions where

0

0 l2π 4π 30
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||A-AH||

Fig. 12.10 Bifurcation diagram (maximum norm of (A−AH) vs. λ) of the problem
(12.27). On the boundary of a rectangular domain with sides a, b the solutions
assume the values of the Harris sheet solution AH given by (12.31). The lower
horizontal line (vanishing norm) corresponds to the Harris sheet solution, the
upper horizontal line refers to line current solutions with infinite norm. Branches
bifurcating off the Harris sheet solution are shown for b/a = 0.25, b/a = 0.5,
b/a = ∞, with bifurcation points at λ∗

0.25 = 19.162, λ∗
0.5 = 13.702, λ∗

∞ = 4π.
Thick lines indicate global stability. (Reused with permission from A. Schröer
et al., copyright 1994, AIP.)
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such mathematical subtlety has important physical implications (Hesse and
Schindler, 1986; Kiessling, 1989, 1993; Schröer et al., 1994).

The singular cat’s eye solution turns out to be a member of a whole
branch of infinite norm solutions covering the range of λ ≥ 2π. For these
states free energy has the following signature: F = +∞ for 2π ≤ λ ≤ 4π and
F = −∞ for λ > 4π. Assuming that the bifurcation diagram of Fig. 12.10
is complete, we find that for λ < 4π the Harris sheet has lowest free energy
and therefore is globally stable, while for λ > 4π the singular branch has
lowest free energy and is the globally stable solution. Local stability changes
at λ = λ∗, as discussed above. In the range 4π < λ < λ∗ the Harris sheet is
metastable, i.e., locally but not globally stable.

The qualitative structure of the solutions lying on the bifurcating branches
corresponds to the structure of the cat’s eye solutions at λ = 4π. This is
illustrated in Fig. 12.11 for the choice b/a = 0.85. In fact the bifurcating

Fig. 12.11 Details of solutions on the bifurcating branch for b/a = 0.85
(Fig. 12.10), shown on the right; the dots mark the solutions (level curves of A)
that are plotted on the left in the same vertical sequence. (Reused with permission
from A. Schröer et al., copyright 1994, AIP.)
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branch seems to approach the cat’s eye branch asymptotically as the norm
becomes large.

12.2.3 Breakdown of a constraint

In applications one sometimes finds that the actual control parameter values
lie far on the unstable side of a bifurcation point. Let us assume, for example,
that in the model of the previous section one chooses b/2 = 10 and a = 100,
with the width of the current sheet set to 1, so that ν = 1. This gives
λ∗ ≈ 22.6 and λ ≈ 200. This would mean that the sheet is in the unstable
regime. If such states exist it must mean that the relaxation process is
inhibited; in other words, a realistic description is obtained by imposing
a suitable constraint. In the present case such a constraint could be the
conservation of magnetic topology. This would exclude the appearance of
closed field lines, which seem to be typical for the bifurcating states (see
Fig. 12.11). If for some reason (not included in the model) at some value of
the control parameter this constraint breaks, the Harris sheet will collapse
into a configuration with strong localization of the current. Note that this is
qualitatively the same conclusion that was reached in the plasmoid formation
scenario of Section 11.2.10, although here we are not referring to a particular
instability such as the tearing mode. So, the breakdown of a constraint
appears as a powerful notion in space plasma activity.

12.3 Role of perturbations

Here we address external perturbations superimposed on systems in quasi-
static evolution. As we will see, such perturbations will have drastic effects
near bifurcation points.

For orientation let us again consider the Grad–Shafranov problem (12.1)
with Dirichlet conditions on the boundary ∂Ω of a finite 2D domain Ω. The
flux function A0 of the unperturbed problem satisfies

∆A0 + λe2A0 = 0, (12.39)

with

A0 = g0(r), r ∈ ∂Ω. (12.40)

A solution A0(r, λ) is assumed to be located on the lower branch of the
bifurcation diagram of Fig. 12.6.



362 Aspects of bifurcation and nonlinear dynamics

The perturbation consists in a change of the boundary condition with the
differential operator unchanged, so that

∆A + λe2A = 0, A = g0(r) + h(r), r ∈ ∂Ω, (12.41)

where h is the perturbation.
It is convenient to make a transformation to a problem with unperturbed

boundary values and perturbed differential equation. This is easily done by
introducing the potential field u(r) with u(r) = h(r), r ∈ ∂Ω. Then, let us
write

A = A0 + u + a (12.42)

where a represents the perturbation of the flux function with a = 0 on the
boundary. Substituting (12.42) in (12.41) and linearizing in the perturbation
quantities u and a, we obtain

Ga = I, a(r) = 0, r ∈ ∂Ω, (12.43)

where G is the operator G = ∆ + 2λ exp(2A0) and I the inhomogeneity
I = −2λ exp(2A0)u, which is treated as known.

G generates the eigenvalue problem

Gvj = ηjvj (12.44)

with eigenvalues ηj and eigenfunctions vj .
The problem (12.43) is integrable because on the lowest branch for λ < λ∗

all eigenvalues are positive (a direct consequence of F -stability). So there
is no vanishing eigenvalue (empty kernel) and the integrability condition is
satisfied trivially.

However, as λ approaches λ∗ the perturbation a becomes larger and larger.
This divergence can only be avoided for the case where I and v0 are orthog-
onal at λ = λ∗; then a solution exists for λ = λ∗ also. This case, however,
is highly exceptional and can be disregarded in view of the arbitrariness of
the perturbation.

These properties are obtained explicitly by expanding a and I with respect
to vj (assuming absence of degeneracy for simplicity)

a =
∑

j

ajvj , I =
∑

j

Ijvj , (12.45)

which gives aj = Ij/ηj so that

a =
∑

j

Ij

ηj
vj . (12.46)
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The term j = 0 diverges as η0 → 0 as λ → λ∗. (The exception occurring for
I0 = 0 is disregarded.) Near the bifurcation point a becomes approximately
I0v0/η0.

For an illustration let us consider a sheet A0 = − ln cosh z with vary-
ing extent in the x-direction. The domain is given by −xm ≤ x ≤ xm,
−zm ≤ z ≤ zm, where zm is fixed and xm takes the role of the control parame-
ter (Fig. 12.12). From the examples discussed above we expect destabiliza-
tion for increasing domain size. The perturbation is a triangular indentation,
vanishing at x = ±xm, which is represented by an infinite Fourier series. One
finds

A = A0 + â
N

2Nm
+

4â

π2

∞∑
j=1

1
(2j − 1)2

wj

wjm
cos(kjx), (12.47)

where kj = π(2j − 1)xm, N = z tanh z − 1, Nm = zm tanh zm − 1, wj =
kj cosh(kjz)−tanh(z) sinh(kjz), wjm = kj cosh(kjzm)−tanh(zm) sinh(kjzm)
and â is a constant amplitude factor.

A singularity of A would occur if one of the kj coincided with k∗, the root
of

k∗ cosh(k∗zm) − tanh(zm) sinh(k∗zm) = 0, (12.48)

so that one of the denominators wjm vanishes. At the bifurcation point this
takes place for the smallest value of k so that the critical value of xm is given
by x∗

m = π/k∗. In Fig. 12.12 zm was chosen as 2.5, which corresponds to
k∗ = 0.971 and x∗

m = 3.23. The increase of the effect of the perturbation is
seen clearly. Note that the maximum boundary indentation is kept fixed.

It is a rather general property that near bifurcation points a system be-
comes extremely sensitive to external perturbations. This is analogous to

Fig. 12.12 Field lines of a perturbed Harris sheet for xm = 0.5x∗
m (a), xm = 0.75x∗

m
(b), xm = 0.95x∗

m (c); xm is the halfwidth in the x-direction and x∗
m the bifurcation

point value. The z-halfwidth is 2.5, so that x∗
m becomes 3.23.
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the resonances of forced oscillators. The linear perturbation analysis breaks
down, so that the dynamics becomes nonlinear. Therefore, realistic theoret-
ical descriptions of the bifurcation dynamics must take nonlinear processes
into account (Kropotkin et al., 2002a,b).

12.4 Self-organized criticality

As discussed above, a system that is in a quasi-statical development along a
stable branch by external driving, typically turns to a fast dynamic evolution
at a bifurcation point. The state corresponding to the bifurcation point is
called critical state. In most cases the subsequent dynamics carries the
system away from the critical state.

However, there is the possibility of an interesting exception. The nonlin-
ear evolution might have the effect that it restores criticality in some average
sense, so that the system can be described as a critical state with a superim-
posed noise. Such systems were suggested by Bak et al. (1988). They have
critical states that are scale invariant, corresponding to power law spectra
of the noise and remain close to the critical state. This property has been
termed self-organized criticality.

A widely discussed (however possibly over-idealized) prototype model of
self-organized criticality is a sand pile, with sand grains added continuously,
so that the accretion leads to a steepening of the slope. If a critical slope is
surpassed, sand avalanches are visualized to restore the critical slope as the
background state, the noise being represented by the avalanches. In a large
system (formally infinite) there will be no preferred scale of the avalanches.

Typical statistical realizations of self-organized criticality use cellular au-
tomata models (Dendy and Helander, 1998), where the system is represented
by discrete cells. They have also been applied to magnetospheric activity
(e.g., Chapman et al., 1998). Continuous models are rare. For an applica-
tion of a continuous model to the magnetotail see Klimas et al. (2000). We
return to this model in Part IV.

12.5 Low-dimensional modelling

Here we briefly discuss a different type of model simplification.
Space plasma structures have many degrees of freedom; for continuum

models that number is infinitely large. However, this does not mean that all
phenomena involve the entire set. In fact, it is possible that the time-series
characteristics of a given observable can approximately be reproduced from
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a low-dimensional description. In the simplest case the model is assumed to
be autonomous, i.e., the dynamics is determined by internal properties alone.
Another possibility is to take external influences into account explicitly. In
the space plasma context, such models are usually referred to as input–output
models.

A famous example of an autonomous low-dimensional representation
of a continuous system is the Lorentz attractor (e.g., Lichtenberg and
Liebermann, 1983), a model of atmospheric convection described by an
autonomous system of three ordinary differential equations. Its chaotic
solutions lead to an essentially unpredictable long-term behaviour.

In view of the obvious advantages of a low-dimensional autonomous de-
scription considerable effort was devoted to apply this method to space plas-
mas. For magnetospheric activity the AE index, a measure of the auroral
electrojet, was used to determine whether a low-dimensional representation
exists and, if so, what dimension could be assigned to it. However, despite a
considerable number of statistical studies, a clear picture has not emerged.
A review is contained in Klimas et al. (1996). Intuitively, it seems plausi-
ble to expect that the solar wind conditions have to be taken into account
as an external agent to explain AE statistics. The solar wind could keep
the magnetosphere from converging to a low-dimensional attractor even if
it existed (Takalo et al., 1994).

Low-dimensional input–output models have been more successful than the
autonomous descriptions. There is no general recipe for the construction of
such models. It is based on intuition and trial and error. For magnetospheric
activity, there are models using analogous systems from different contexts
for orientation (e.g., the dripping faucet model (Hones, 1979; Baker et al.,
1990)) and models selecting particular physical aspects of the actual system
(e.g., the Faraday loop model (Klimas et al., 1992) or the energy conserving
model by Horton and Doxas (1996)).

Input–output models can play a valuable role in improving the under-
standing of the process in question on an intuitive level. However, it cannot
fully replace a description that is justified by physical principles entirely.
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Applications
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The main challenge for explaining space plasma activity is to understand
the transition from a quiescent phase, during which energy is slowly ac-
cumulated, to a dynamic phase, during which energy is released in a fast
evolution of the system. Examples have been described phenomenologically
in Part I. Here we will use the theoretical tools provided in Parts II and III
to address this problem in a more fundamental way.





13

Magnetospheric activity

In this chapter we will address the activity of the Earth’s magnetosphere,
with emphasis placed on the substorm, which is regarded as the dominant
dynamical process of the magnetosphere. What can be expected from our
theory-oriented approach? Certainly not deterministic predictions, which
are excluded not only by the limitations of the present state of the theory,
but also by more fundamental properties such as the chaotic nature of large
particle ensembles. Rather, the realistic question is this: Equipped with the
tools of Parts II and III, how far do we get? Can the tools help us to make
the step from a mere phenomenological picture to a description which allows
insights and interpretations in terms of physical processes? Where this goal
is not reached, can we at least identify realistic possibilities?

To pursue this line, substantial observational input is required, which
means that we abandon the strict theoretical point of view, which was
appropriate in Parts II and III to generate a set of tools. (Even there, the
selection of problem areas, the choice of parameter regimes or of simplifica-
tions were influenced by observations.)

A full discussion of all processes observed to be related to magnetospheric
activity is far beyond the present scope. In particular, this applies to the
wealth of ionospheric phenomena. The aim is to understand the physics of
the large-scale magnetospheric phenomena.

13.1 Interaction between the solar wind and the magnetosphere

We begin with some fundamental aspects of the interaction between
the solar wind and the magnetosphere. We largely use geocentric solar-
magnetospheric coordinates, the x-axis pointing sunward, the z-axis
arranged so that the Earth’s dipole moment lies in the x, z-plane and the
y-direction completing a right-handed Cartesian coordinate system. For
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most purposes we consider the simplified configuration with the Earth’s
dipole moment pointing in the z-direction. (Note that in some of the theo-
retical studies of the magnetotail the x-axis points tailward.)

13.1.1 Open versus closed magnetosphere

Let us, for a moment, consider the consequences of a hypothetical model,
which describes the solar wind/magnetosphere interaction by ideal MHD,
including MHD discontinuities (Section 3.9). As the Earth’s dipole field
is an obstacle in the supersonic solar wind, a fast MHD shock wave, the
bow shock, stands in front of the magnetosphere. The magnetopause is a
tangential discontinuity, confining the geomagnetic field. It is a necessary
element of the initial value problem (an analogous case was discussed in
Section 11.2.6); the magnetized solar and magnetospheric plasmas cannot
mix, because magnetic line conservation (Section 3.8.2), which holds in our
hypothetical model, would be violated. The solar wind, when switched on,
would sweep the magnetospheric medium toward the Earth until pressure
equilibrium is reached. The magnetosphere would be completely closed and,
as the magnetopause would separate media of different origin, we can expect
the magnetopause to carry a current (Section 8.6.2).

In spite of the fundamental deficiencies of such a model, which are de-
scribed below, it is not completely off the mark; it can explain global features
such as the positions of the bow shock and of the frontside magnetopause
reasonably well (Spreiter et al., 1966). It drastically fails, however, in other
respects. For example, for a closed magnetosphere the interaction with the
solar wind would be independent of a reversal of the directions of the in-
terplanetary magnetic and electric fields. It follows from the structure of
the ideal MHD equations (Section 3.3.2) that this reversal would not affect
the hydrodynamic variables and the magnitude of the magnetic field B. In
particular the total pressure (p + B2/2µ0) at the magnetopause remains
unchanged. Since in MHD, besides vanishing normal velocity and magnetic
field components, total pressure balance is the only condition for a tangential
discontinuity, the field reversal has no consequences for the interaction.

The closed magnetosphere is in conflict with both observational facts and
theoretical results. Observationally, one finds that magnetospheric dynam-
ics, and in particular substorm dynamics, is strongly correlated with the
sign of the z-component of the interplanetary magnetic field (IMF). This
is based on an impressive history of studies investigating the correlation
between interplanetary signatures with geomagnetic disturbances in the au-
roral zones (e.g., Bargatze et al., 1985, 1999). In one of the earlier studies
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Arnoldy (1971) correlated the AE index , a quantitative measure of auro-
ral zone magnetic activity (Davis and Sugiura, 1966), with Bs, which is set
to zero for IMF Bz ≥ 0 and to |Bz| for southward orientation of Bz. On
the basis of hourly averages a correlation coefficient of 0.8 was obtained,
while other solar wind variables produced coefficients < 0.4. Further studies
introduced more refined coupling expressions (e.g., Perreault and Akasofu,
1978; Bargatze et al., 1985); for instance, Bs was replaced by the dawn–
dusk electric field component VswBs (Burton et al., 1975), where Vsw is the
solar wind velocity. All studies, although varying in details, confirmed that
the southward directed IMF component plays a central role in determining
the strength of energy coupling between the solar wind and the terrestrial
magnetosphere (Bargatze et al., 1999), so that these (as many other) obser-
vations are in conflict with the closed magnetosphere model.

A conceptual model of an open magnetosphere by Dungey (1961) removes
this difficulty, at least qualitatively. The magnetic topology and the resulting
flow pattern are illustrated in Fig. 13.1 for a southward-pointing IMF. If the
IMF was northward the structure would be quite different, as discussed later.
So, in this model the magnetospheric structure is strongly influenced by the
direction of the IMF z-component.

Clearly, Dungey’s model involves magnetic reconnection (Section 11.2.1).
(In fact, the term magnetic reconnection was suggested by Dungey in this

Fig. 13.1 Sketch of magnetic field lines of Dungey’s open magnetosphere in the
non-midnight meridian plane; the plasma flow is indicated by the open arrows.
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context.) In the midnight meridian plane shown in Fig. 13.1 there is a recon-
nection site at the front side and one at the night side of the magnetosphere.
As reconnection involves nonideal processes, the open topology violates ideal
MHD, consistent with the above reasoning.

What do the theoretical tools teach us about the issue of closed versus
open magnetosphere? An important fact is that a collisionless current sheet
like the magnetopause can become the site of magnetic reconnection. The
collisionless tearing instability (Section 10.4) occurs under a variety of cir-
cumstances. Although single modes might saturate at small amplitudes,
mode coupling can lead to further growth; more details are given below.
Also, external driving by local perturbations can speed up the instability,
so that a nonlinear reconnection pattern would arise (Section 11.3.3). This
scenario would have the consequence that an initially closed magnetopause
would open by magnetic reconnection. The details would depend on the ef-
fectiveness of the opening and on the orientation of the interplanetary field.
Intuitively, one expects most efficient reconnection for southward interplan-
etary field orientation, when the magnetospheric and interplanetary fields
are antiparallel at the subsolar magnetopause region. These arguments give
strong support to Dungey’s field topology. For an MHD model of a complete
open magnetotail boundary see Siscoe and Sanchez (1987).

On purely theoretical reasoning, the opening of the magnetosphere, al-
though fairly plausible, cannot be considered as rigorously established.
Therefore, it seems advisable to test it by looking at in situ observations
of reconnection at the magnetopause.

13.1.2 Observation of magnetopause reconnection

Reconnection signatures have been observed in situ at the magnetopause
for negative IMF Bz since the pioneering work of Paschmann et al. (1979),
confirmed and extended by Sonnerup et al. (1981), Cowley (1984) and oth-
ers. Typically, observed reconnection sites are stretched configurations with
strong variation only perpendicular to the current sheet (Fig. 13.2). Plasma
velocities are of the order of 1/10 of the Alfvén velocity, as expected for
standard reconnection processes (Section 11.2). As the configuration is non-
symmetric, a structure that can be idealized as a rotational discontinuity
should be present (Section 11.2.6), which locally is the current sheet identi-
fied as the magnetopause.

Near the current sheet, in many cases the relation (3.113), called the
Walén relation, is approximately satisfied, which is an important consistency
check.
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Fig. 13.2 Magnetopause reconnection layer; MP refers to the magnetopause, BL to
the boundary layer, full lines are magnetic field lines, the plasma flow is indicated
by velocity vectors (v) and stream lines (dashed lines), Et is the tangential elec-
tric field component (after Sonnerup et al. (1981) by permission of the American
Geophysical Union).

Many more observations have confirmed the occurrence of reconnection
at the magnetopause, but they have also shown that more details have to
be added to the simple picture of Fig. 13.2. Let us look at a few examples.

Evidence for slow shocks (Section 3.9), which are to be expected to form
in Petschek-type reconnection (Section 11.2.4), has been reported in a few
cases. In one of the best documented cases pressure anisotropy was found to
play an important role (Walthour et al., 1994). Further, a slow shock may
form an intermediate shock (Section 3.9) by combining with the rotational
discontinuity (Wu, 1987).

Reconnection does take place not only at the subsolar magnetopause with
the interplanetary magnetic field pointing southward, but under much more
general conditions. If the IMF z-component is positive, there are still po-
sitions at the magnetopause favourable for reconnection. Particularly, this
applies to the high latitude magnetosphere tailward of the cusp region (see
Fig. 2.1); for an example of a corresponding observation see Retinò et al.
(2005).



376 Magnetospheric activity

A significant IMF y-component plays the role of a guide field (Sec-
tion 11.2.7). From the material of Chapter 11 it is clear that, in princi-
ple, reconnection is possible for non-vanishing guide fields, also. But at
the magnetopause there is the additional requirement that the reconnection
time scale has to compete with the time scale of the solar wind flow along
the magnetopause. Two models based on geometrical considerations have
been distinguished, antiparallel merging (Crooker, 1979), strongly empha-
sizing locations with antiparallel fields and component merging (Sonnerup,
1974), which admits reconnection even for relatively strong guide fields.
For collisionless tearing, Karimabadi et al. (2005) presented theoretical esti-
mates and simulation results with the following conclusions. A single linear
tearing mode in a sheet with isotropic pressure requires thin sheets with
thickness of the order of rgi to play a significant role. Electron anisotropy
with T⊥/T‖ > 1 can significantly speed up the linear tearing mode (Sec-
tion 10.4) in the antiparallel case. Linear tearing modes generally saturate
at too low amplitudes to be effective, but the coupling of several modes can
lead to realistic growth. Without further instabilities, this picture is com-
patible with component merging, but lower-hybrid excitation could favour
anti-parallel merging.

Significant parallel electric field components (Section 11.5.1) were found
in global simulations (Siscoe et al., 2001) as well as in local magnetopause
observation (Scudder et al., 2002).

Multiple satellite observations have discovered many more details than
single spacecraft can provide. For instance, observations by the CLUSTER
satellites have revealed a case with a complex magnetic structure (Louarn
et al., 2004), which is similar to the flux linkage shown in Fig. 11.21. Also
the interpretation, in terms of the interaction between two neighbouring
reconnection events, is the same.

13.1.3 Alternative processes opening the magnetopause

The direct observation of reconnection at the magnetopause does not rule
out other modes of interaction between the solar wind and the magne-
tosphere, taking place at other times and locations. Observations pertaining
to that question relate the polar cap potential φPC to the interplane-
tary electric field (IEF). This is relevant for the following reason. In the
closed ideal MHD magnetosphere there is no tangential electric field at
the magnetopause, which follows directly from ideal Ohm’s law (3.3.2). (If
the magnetopause is locally in motion, this statement applies to a local
co-moving frame.) In other words, in a quasi-steady state the interplanetary
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electric field cannot penetrate the magnetopause, it is completely shielded.
Magnetic reconnection changes this picture drastically, because it leads to
a tangential electric field at the magnetopause (Fig. 13.2). If one makes
the (questionable) assumption that the inner magnetospheric flow is ideal
and stationary, the electric potential φ would be constant on magnetic field
lines. (Ideal Ohm’s law (Section 3.3.2) gives B · ∇φ = 0.) Therefore,
the tangential magnetic field inside the magnetopause would lead to a po-
tential difference across the polar cap. If the observed polar cap poten-
tial φPC was entirely due to reconnection, it would be (approximately)
proportional to the IEF (for IMF Bz < 0). Observations confirm that
property, but only above some background value φ0. The latter is inter-
preted as resulting from entry processes that do not involve reconnec-
tion as the primary process. For pronounced negative values of the IMF
z-component, Burke et al. (1999) found values of φPC above 200 kV, with
φ0 in the range of 30 to 40 kV; this is just one example of a substantial
number of similar investigations. The results indicate the role of magne-
topause reconnection as the dominant solar wind/magnetosphere coupling
process.

The processes that generate φ0 are not yet clearly identified. Viscous drag
(Axford and Hines, 1961), possibly in combination with Kelvin–Helmholtz
instabilities, might play a role.

If Kelvin–Helmholtz modes are important one would expect to observe
them when the magnetopause reconnection is weak, i.e. for strongly north-
ward IMF. This has indeed been observed (Fairfield et al., 2000). It was
also seen in simulations (Otto and Fairfield, 2000), suggesting that some
plasma entry is made possible by reconnection occurring inside the Kelvin–
Helmholtz vortices.

13.1.4 Flux transfer

As a result of magnetopause reconnection the IMF connects to the geo-
magnetic field. If the medium away from the reconnection site has scales
much larger than the intrinsic plasma scales (Section 2.1) one can expect
that there the flow can be modelled approximately as an ideal fluid. Then,
due to the frozen-in property (Section 3.3.2), the solar wind would drag the
reconnected flux along the magnetopause to the night side, so transferring
magnetic flux to the magnetotail. If the original reconnection takes place as
an individual burst, the result is a flux transfer event (FTE) (Russell and
Elphic, 1978). For component merging a rope-like structure with a spiralling
internal field would form, called magnetic flux rope (Fig. 13.3).



378 Magnetospheric activity

Fig. 13.3 Sketch of the formation of a magnetic flux rope during a flux transfer
event (from Russell and Elphic (1979) by permission of the American Geophysical
Union).

Multiple spacecraft observations have largely confirmed that picture (e.g.,
Sonnerup et al., 2004). Wild et al. (2005) analysed FTE signatures that were
observed by both CLUSTER and GEOTAIL missions.

13.2 Convection and pressure crisis

Here we enter the central part of our discussion of geomagnetic activity,
dealing with the further fate of the magnetic flux and energy supplied to the
magnetotail by flux transfer from the front side magnetosphere.

13.2.1 Convection

Dungey’s open topology implies that the magnetic flux which is transferred
to the magnetotail again reconnects at the distant neutral line and the earth-
ward part (termed closed field region) returns to the inner magnetosphere.
Let us first concentrate on the midnight meridian plane. There, a simple flow
field that provides this return is indicated in Fig. 13.1. The plasma velocity
component perpendicular to the magnetic field is referred to as convection
velocity.
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In this picture the flux return in the closed field region is of particular
interest. For getting insight into the underlying physics it is convenient to
proceed in the following, admittedly somewhat unusual, fashion. We will
formulate a set of test assumptions and prove that under these assumptions
the flux return is not possible. This will teach us that at least one of the
assumed properties must be violated, which will provide valuable input to
the further reasoning.

Test assumptions

The test assumptions concern a smooth tail configuration with a quasi-
neutral collisionless electron/proton plasma that evolves in response to the
flux transfer from the front side magnetosphere. The main assumptions are

(i) large scale quasi-static flux return,
(ii) isotropic pressure tensors, adiabatic pressure laws with γ = 5/3,
(iii) U � kBTi/e,
(iv) temperatures constant on field lines and negligible parallel losses from

flux tubes.

Here, U is the cross-tail electric potential, parallel refers to the direc-
tion parallel to the magnetic field and large scale means that spatial and
temporal scales are large compared with the intrinsic plasma scales (Sec-
tion 2.1). Gravity is ignored which is an excellent approximation for most
magnetospheric phenomena. (For plasma sheet conditions (Section 2.1) the
gravity scale height (Section 5.1.1) exceeds 1000 RE.)

The assumptions (i)–(ii) allow us to specialize the fluid equations of Sec-
tion 3.3 as (s = i, e)

∂n

∂t
+ ∇ · (nvs) = 0 (13.1)

−∇ps + qsn(E + vs × B) = 0 (13.2)
∂

∂t

( ps

nγ

)
+ vs · ∇

( ps

nγ

)
= 0 . (13.3)

Adding the equations (13.2) for electrons and ions to form the total mo-
mentum equation and using the assumptions (iii) and (iv) in (13.3) one
finds

0 = −∇p + j × B (13.4)

pV γ conserved for each flux tube, (13.5)

where V is the flux tube volume (8.26).
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The significance of property (iii) can be illustrated by combining (13.2)
and (13.3) to obtain

∂
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nγ

)
+ uE · ∇

( p

nγ

)
+

γ

2B2enγ+2
B ×∇n · ∇(p2

i − p2
e) = 0 , (13.6)

where uE is the E × B drift velocity (Section 3.2). Under assumption (iii)
the last term is negligible (for the scaling (5.171)). Also, Ohm’s law reduces
to its ideal form.

The pressure crisis and its consequences

As shown in Section 8.3.3 in detail, a 2D model satisfying the test assump-
tions predicts a serious problem for the assumed steady state convection,
manifested by the pressure crisis or pressure balance inconsistency. This cri-
sis has a simple reason (Erickson and Wolf, 1980; Schindler and Birn, 1982):
During flux return, the plasma that originally was contained in a large flux
tube extending far into the tail would be strongly compressed during the
earthward convection, when the flux tube volume decreases drastically.

Fig. 8.3 illustrates the pressure crisis by a plot of the pressure in the
centre of the plasma sheet versus distance from the Earth for the 2D steady
state polytropic model. In the near-Earth plasma sheet the adiabatic curve
(γ = 5/3) shows an extremely large deviation from a pressure profile in the
observed regime. The model does not provide a realistic description. If one
formally considers γ as an open parameter, one finds values well below 1,
indicating strong losses.

This interpretation together with the extremely large effect suggest that
the crisis applies not only to exact steady states but also to the case of slowly
time-dependent flux return, where the same large change of volume would
occur. For three-dimensional systems the pressure crisis was confirmed by
Birn and Schindler (1983), so that one arrives at the same conclusion.

The real process in the magnetosphere must find a way to avoid the pres-
sure crisis; corresponding observational evidence was presented by Borovsky
et al. (1998), Garner et al. (2003) and others.

For our theoretical reasoning the crisis argument means that at least one
of the test properties must be violated. We will argue that, if (i) is sat-
isfied, significant violation of (ii), (iii) and (iv) will not occur. This will
lead us to conclude that (i) must be violated in magnetic flux return in the
magnetotail.

Let us begin with assumption (ii). A collisionless plasma, in general, can-
not be expected to be isotropic. Typically, isotropizing instabilities become
efficient only beyond a critical anisotropy. For an important example, let
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us look at the fire hose instability (see, e.g., www.tp4.rub.de/∼ks/ta.pdf).
It requires p‖ − p⊥ − B2/µ0 > 0 to become excited. One can expect that
the turbulence arising from the instability keeps the anisotropy near a finite
threshold (Gary et al., 1994). In the centre of the plasma sheet the value
of B is small, of order ε in the tail asymptotic expansion (Section 5.4.1),
so that the anisotropy 2(p‖ − p⊥)/(p‖ + p⊥) should be small, formally of
order ε2. Away from the centre, and in the absence of parallel electric
fields, equilibrium momentum balance requires a characteristic variation of
the anisotropy along field lines, described by (7.11). This holds both in
fluid and kinetic descriptions. On that basis Nötzel et al. (1985) investi-
gated a plasma sheet model with local Maxwellian distribution functions,
including anisotropy resulting from different temperatures along and per-
pendicular to the magnetic field direction. They found that the anisotropy
decreases away from the plasma sheet centre. 3D anisotropic MHD sim-
ulations by Birn et al. (1995), taking isotropizing turbulence into account
by effective forces, confirmed that the centre region of the plasma sheet re-
mains close to isotropic, with a small p‖ > p⊥ anisotropy left. Instabilities
with p‖ < p⊥ remained limited to the boundary of the plasma sheet and
the lobe regions.

Observations also indicate small pressure anisotropies in the central
plasma sheet (Stiles et al., 1978), particularly during quiet times (Mitchell
et al., 1990), i.e., intervals with a low level of geomagnetic perturbations in
the auroral zones.

Here, it is an interesting aspect that in the presence of isotropizing tur-
bulence, fluid pictures which take care of the isotropization by postulating
an isotropic pressure or suitable threshold states, tend to be more realistic
than collisionless plasma models that ignore the turbulence.

Regarding losses from flux tubes, the situation is less clear. Let us first
discuss perpendicular losses (losses by motion perpendicular to the magnetic
field). Kivelson and Spence (1988) obtained results suggesting that losses by
gradient/curvature drift in a tail of finite width can avoid the pressure crisis
(see also Wang et al. (2001)). Doubts regarding the significance of losses
in this context were expressed by Erickson et al. (1991) and Garner et al.
(2003). The arguments can be understood considering our test assumptions,
which exclude perpendicular losses by property (iii). This means that per-
pendicular losses can play a significant role only for rather small cross-tail
electric potentials, not much exceeding kBTi/e ≈ 5 kV. This range is con-
siderably below typical potentials, which can reach the order of 100 kV. So,
perpendicular losses are unlikely to play the dominant role in avoiding the
pressure crisis.



382 Magnetospheric activity

Substantial parallel losses of particles precipitating along field lines into
the ionosphere are considered to apply mainly to electrons (e.g., Borovsky
et al., 1998), so that the mass content of the plasma sheet would not be
affected significantly, the same applies to entropy because of the electron
temperature (on plasma sheet field lines) being considerably smaller than
that of the ions (Section 2.1). The assumption of temperature being constant
on field lines was made to arrive at the MHD equations used in Section 8.3.3
to demonstrate the pressure crisis. It can be expected that this assumption
is not crucial for the crisis to occur.

As at least one of the test assumptions must be violated to avoid the pres-
sure crisis, we conclude that our discussion, although not rigorous, strongly
suggests property (i) as the most likely candidate for being broken. It seems
that the flux return cannot occur as a large scale quasi-static process. It
will necessarily involve dynamical phenomena on length and/or time scales
shorter than those of the external flux supply, which we have assumed to
be a large scale phenomenon. Note that in ruling out significant violation
of properties (ii), (iii) and (iv) we had to assume that (i) holds, so that
dynamic processes violating (i) can violate the other properties, too.

Two major possibilities have been suggested for dynamical processes rele-
vant for large-scale flux return; these are non-quasi-static flow events, widely
referred to as bursty bulk flows, and near-Earth magnetic reconnection.

13.2.2 Bursty bulk flows

A bursty bulk flows event (BBF) (Baumjohann et al., 1990; Angelopoulos
et al., 1992) shows large bulk plasma flows during periods of the order of
10 min, with a peak bulk velocity above 300 or 400 km/s, details depending
on the definition that is applied. In principle, the presence of such flows can
drastically invalidate quasi-static modelling. A rough quantitative criterion
is found from the scaling (8.3) and (8.4), where δ may be understood as
v/v0, where v0 is a typical MHD phase velocity. Choosing the sound speed
in the plasma sheet and using pressure balance (Section 8.3.1), one conve-
niently identifies v0 with the Alfvén velocity vA based on central plasma
sheet density and lobe magnetic field strength. The inertial term in the
momentum equation (3.59) is of the order of δ2; so it can be ignored if
(v/vA)2 � 1, assuming that the flow has the same length and time scales
as the ambient medium. Typical Alfvén velocities are near 1000 km/s (see
data in Table 2.1). Admitting an error of 10%, this means that flow should
not exceed about 320 km/s to keep quasi-static conditions, which is sur-
passed by the peak values given above. But it must be realized that spatial
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or temporal localization of a BBF can modify that threshold considerably.
Even if the flow is below the threshold instantaneously, turbulent flows with
a preferred direction, or flow fluctuations that are correlated with magnetic
and/or density fluctuations, might still lead to significant secular transport
of mass, energy and magnetic flux (Baumjohann, 2002).

During quiet times the secular consequences of transient flow events in
the plasma sheet may well be small. Indeed, during quiet times, BBFs with
a large flow component perpendicular to the magnetic field (necessary for
efficient flux transport) appear to have a rather low occurrence rate in the
high-beta plasma sheet. For β > 0.5 and in time bins of duration of 1 min
or a fraction of a minute (depending on the data set), peak velocities above
300 km/s were observed only in ≈ 0.1% of the bins, which caused doubts
about their relevance for large scale transport (Paterson et al., 1998, 1999).
(See Angelopoulos et al. (1999) for an alternative view.)

Other studies also find that the BBF occurrence correlates positively with
terrestrial geomagnetic disturbances (Schödel et al., 2001; Baumjohann,
2002). For an example, Figure 13.4, taken from Tanskanen et al. (2005),
includes a period that was identified as an extended loading phase with neg-
ative IMF z-component. The velocity component along the Earth–Sun line
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Fig. 13.4 An extended loading phase from GEOTAIL data (Tanskanen et al.,
2005). The loading process is manifested by a significant increase of pT,tail, the
sum of magnetic and ion pressures. (From Tanskanen et al. (2005) by permission
of the American Geophysical Union.)
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(vx) assumes rather small magnitudes in the plasma sheet, particularly so
during the last two hours of the interval.

To avoid misinterpretations it is necessary to distinguish between strong
parallel flows in the plasma sheet boundary layer and BBFs. The boundary
layer flows are mainly parallel to the magnetic field, possibly originating from
the reconnection site in the distant tail (Fig. 13.1). A possible mechanism
is discussed in Section 11.2.9.

At present, the origin of BBFs is not well understood. A possible cause is
localized reconnection (Borovsky et al., 1998; Chen and Wolf, 1999). Indeed,
reconnection is one of the most efficient generators of localized large bulk
flows (Chapter 11).

Apart from reconnection, can BBFs be caused by some plasma instability?
A smooth tail configuration, which is stretched but has a sufficiently broad
plasma sheet for ideal MHD to be applicable, is stable. For two-dimensional
equilibria with 3D perturbations this is shown explicitly in Section 10.2.5.
Also, 3D MHD large-scale simulations did not produce evidence for an in-
stability.

However, in the case of strong inhomogeneous flux transfer an interchange
instability (Section 10.2.5) seems to be possible. It has been suggested that
in this case bubbles of low entropy content move toward the Earth with high
speed (Pontius and Wolf, 1990; Chen and Wolf, 1993, 1999). It is unclear,
though, whether this process alone removes the pressure crisis completely. In
a widely supported version of the bubble scenario, near-Earth reconnection
creates the bubble, so that its flux tube volume is already strongly reduced
at its birth. If that is the main contribution to the entropy reduction, the
basic transport is similar to the one arising from near-Earth reconnection,
the topic of the following section.

13.2.3 Near-Earth reconnection

Clearly, magnetic reconnection has the potential of violating most of our
test assumptions. Reconnection is not quasi-static and the necessity of non-
ideal processes in the diffusion region (Section 11.2.1) implies inconsistency
with adiabatic models; typically, pressure tensors become non-isotropic (Sec-
tion 11.3.2). Stretched-out field lines will suddenly be cut and the earthward
part shortens substantially (Fig. 11.11), reducing their entropy content by a
large factor. If the reconnection takes place sufficiently close to the Earth,
the return of the shortened flux tubes will not suffer from a pressure crisis.

Motivated by observations, it seems that one has to distinguish two lim-
iting cases, global reconnection at a newly forming near-Earth neutral line
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affecting the entire plasma sheet and localized reconnection events with con-
sequences only for a limited portion of the plasma sheet. The former is
widely identified with the tail signature of a magnetospheric substorm, the
latter has more local significance, and is a possible source of BBFs. Although
there are indications of intermediate cases, it proves useful to concentrate
on the two limiting cases. As we will see, basic observational facts can be
discussed in such a framework.

13.3 Magnetospheric substorms

Here we discuss the presence of global reconnection in the magnetotail at a
newly formed reconnection site in the region of closed flux. Our aim is to
understand the underlying physics of the substorm phases (Section 2.1).

13.3.1 Growth phase

As the initial state consider a simplified tail configuration that possesses our
test properties. In particular, the length scales are large compared with the
intrinsic plasma scales, which is satisfied for tail conditions if L � c/ωpi

or equivalently (because of pressure balance) L � rgi. Then, the tail is
in a state that can approximately be considered as an ideal MHD state.
If sufficiently smooth and stretched, that state is stable (Section 10.2.5).
Models of this type have proven successful in describing the magnetotail
under quiet time conditions, at least from a global point of view (e.g., Birn
and Schindler, 1983)

Under those conditions, the magnetic flux that transferred to the tail
cannot return to the near-Earth region because of the pressure crisis. The
flux will get piled up in the tail, which becomes loaded with magnetic flux
and energy. It is natural to identify this phase with the growth phase of a
magnetospheric substorm (McPherron, 1970) (Section 2.1).

The temporal development can be expected to be reasonably approxi-
mated by the model of Section 8.3, building on a first, extremely simplified,
theoretical model (Schindler, 1974). The selfsimilar solution, which can give
a rough indication of the convection properties under the assumed condi-
tions, indicates that the lobe magnetic field increases and the plasma sheet
thins. Due to induction, the cross-tail electric field becomes small in the
centre plasma sheet so that there the bulk flow velocities are small also.
For orientation, let us choose a magnetopause electric field of 0.2 mV/m,
a lobe field of 20 nT, the magnetopause location at z = 20RE. Then with
the help of Table 8.1 and equations (8.40), (8.42), vx becomes −4 km/s at



386 Magnetospheric activity

x = 40RE. Here x is positive in the tailward direction, so that the flow is
earthward. This direction follows from the fact that for γ < 2 the plasma
pressure increase is less than that of the lobe magnetic pressure, so that an
additional earthward compression is required. In the similarity solution |vx|
increases proportional to x. There is no flux return to the near-Earth tail
boundary x = 0. However, there may be flow parallel to B in the plasma
sheet boundary layer, as discussed above.

The growth phase cannot last forever, at least not in the framework of
Dungey’s topology, where (for periods of negative IMF Bz) there is con-
tinuous earthward flux transport issuing from the reconnection site in the
distant tail (Fig. 13.1). How can the flux return? In stretched field configu-
rations the reconnection at Dungey’s distant neutral line cannot be reversed
(Section 11.2.10). (This argument assumes that reconnection is generally
irreversible, as it is for resistive fluids.) Further, a sufficiently smooth and
stretched tail configuration is stable from the ideal MHD point of view (Sec-
tion 10.2.5).

Also, reconnection cannot set in under the ideal conditions that we found
as characteristic for the growth phase. Reconnection requires nonidealness,
which in the collisionless tail plasma needs scales of the order of c/ωpi or
smaller. Interestingly, such thin sheets will actually form during the later
stages of the growth phase. This was shown, under various different assump-
tions, in Chapter 8. In fact, the formation of thin current sheets seems to be
a natural part of the ideal dynamics of the tail configuration. (The selfsim-
ilar solutions are untypical in this respect, because current sheet formation
is excluded by the imposed selfsimilarity.) As in the pressure crisis argu-
ment, the radial variation of the flux tube volume plays an important role
in the process of current sheet thinning (Section 8.3.4). Loosely speaking,
the same property that is responsible for the development of the pressure
crisis also offers the means of its resolution!

In the model of Birn et al. (2004) the current can even become singu-
lar at a finite time, when the plasma sheet experiences loss of equilibrium
(Section 8.4). Even in more regular MHD cases, the build-up of the current
sheet is a rapid process (see (8.54)).

It has been verified that thin current sheets also exist in kinetic equilibrium
theory. They are characterized by strong electric fields perpendicular to the
magnetic field (Section 8.5.3). The corresponding potentials would extend
along the magnetic field lines into the inner magnetosphere. It has been
speculated that these potentials might close through parallel electric fields in
the auroral acceleration region, as illustrated in Fig. 13.5. Further, magnetic
field lines, frozen into the electron motion in a time-dependent situation,
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Fig. 13.5 Possible generation of parallel electric fields and field-aligned currents
by kinetic current sheet formation (after Schindler and Birn (2002) by permission
of the American Geophysical Union).

would become bent out of the x, z-plane causing a pattern of field-aligned
currents (dashed arrows). This would suggest a direct link between thin
current sheets in the tail and auroral arcs. A thin current sheet of a width
of 500 km would map to an arc width of about 10 km.

13.3.2 Expansion phase

In the real plasma sheet, reconnection will set in when the current sheet
has become sufficiently thin. The actual onset process is still unclear. But
the collisionless tearing instability will start when the normal magnetic field
component (Bz) has become sufficiently small for the electrons to become
significantly non-adiabatic (Section 10.5.5). Sufficiently thin sheets are also
subject to microinstabilities (Section 9.3.1), which also may lead to nonideal
effects (Section 9.3.2).

For a sufficiently thin sheet the tearing instability is stabilized only for
sheets enclosed in a narrow region by boundaries. Close boundaries would
lead to F-stability in the sense of Section 12.1.1, which also applies to the
collisionless tearing instability, as seen from the structure of the variational
principles of Section 10.5. The presence of pronounced lobes and a tailward
scale large compared to the sheet width avoid boundary stabilization.

The onset of a linear instability is likely to be obscured by external per-
turbations, which will have an increasingly large effect as marginality is
approached (Section 12.3).

As the instability has developed into its nonlinear regime, reconnection
will proceed at a rate that depends on the details of the diffusion mechanism
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only weakly (see the comparisons of Section 11.3.3). This means that,
although a satisfactory physical understanding requires detailed knowledge
of the plasma physics of collisionless reconnection (Section 11.3), we can con-
tinue the discussion of the macroscopic development in an approximate sense
without specifying the microscopic mechanism. Also, choosing a mechanism
for a specific model is a matter of convenience. Even resistive MHD, with an
appropriate choice of the resistivity model, gives acceptable answers. This
is essential, particularly as long as kinetic simulations are too large or too
costly to cover the long term and large scale consequences of reconnection.

Corresponding 2D and 3D MHD magnetotail results are presented in Sec-
tions 11.2.10 and 11.4.2. They clearly show near-Earth reconnection with
the formation and growth of a plasmoid on the tailward side and dipolar-
ization earthward of the reconnection site. Fig. 11.11 shows a qualitative
sketch of snapshots of this process.

The dipolarization is associated with earthward plasma flows, generated
by the reconnection process (Chapter 11). The flow runs against the dipolar
field region closer to the Earth and (approximately treated as ideal) com-
presses the Bz-component in the midnight meridian plane, which is a major
signature of dipolarization. Away from the y = 0-plane, the flow is deflected
by the dipolar field region and deforms the field lines in the near-Earth
plasma sheet accordingly. This deformation is associated with field-aligned
currents (Fig. 13.6). Mapping these currents along field lines and assuming
that they close in the ionosphere generates the electrojet (Section 2.1), the

Fig. 13.6 Sketch illustrating the origin of field-aligned currents during dipolar-
ization (from Birn and Hesse (1996) by permission of the American Geophysical
Union).
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main ionospheric current signature during the expansion phase, causing en-
hanced auroral light emission. This picture also suggests gross conjugacy of
expansion phase auroral forms in the two hemispheres, which is an observed
fact (e.g., Pulkkinen et al., 1995).

This current system deviates a near-Earth fraction of the tail current
through the ionosphere and generates the observed current wedge (Sec-
tion 2.1). This feature also has been termed current disruption (Lui, 1996).
Resistive MHD simulations (Hesse and Birn, 1991a) have shown that the
dipolarization and the current wedge can be understood as a feature of
the large-scale reconnection dynamics. The results are consistent with cor-
responding observations (McPherron et al., 1973; Lopez and Lui, 1990).
Current disruption has also been viewed as a process caused by microinsta-
bilities (Section 11.4.1), independent of reconnection (Lui, 1996). However,
this view has not been supported by simulations. If a microinstability causes
a significant collective resistivity, corresponding resistive MHD models have
always shown reconnection (e.g., Birn and Hesse, 1996).

What causes the electric fields that accelerate the auroral electrons during
substorms? A possible cause could be plasma slippage with respect to the
magnetic field in the dipolarization. In fact, it is difficult to visualize an
efficient dipolarization with the frozen-in condition satisfied. Such slippage
would pose a typical GMR problem (Section 11.5.1). The corresponding par-
allel potential has been estimated by Schindler et al. (1991) to be of the order
of a few kV. (A similar problem arises from the coexistence of ionospheric
plasma rotating with the Earth and non-rotating magnetospheric plasma on
the same field lines.)

Also, large perpendicular electric fields in combination with demagnetized
electrons, as observed by Scudder and Mozer (2005) near the magnetopause,
need to be explained. The authors point out that strong perpendicular elec-
tric fields would be required to cause nongyrotropic electrons in reconnection
with a strong guide field (Section 11.3.2). Alternatively, it could be relevant
that, under quasi-steady conditions, reconnection with a bounded nonideal
region elongated along magnetic field lines leads to strong perpendicular
electric fields in the ideal region, even at considerable distances from the
reconnection site (Fig. 11.36).

13.3.3 Recovery phase

During the recovery phase the magnetosphere relaxes from the state after
the expansion phase to a state more typical for quiet times. It can best be
observed during isolated substorms.
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The pronounced dipolar magnetic field at, say, the geostationary orbit,
relaxes toward the quiet time configuration. Also, the near-Earth neutral
line seems to retreat tailward, as originally suggested by Hones et al. (1984).
Interestingly, during recovery, a double oval configuration has been observed
in the ionosphere, where the higher latitude structure maps to the plasma
sheet boundary layer (Mende et al., 2002), which should contain the mag-
netic separatrix.

It has been suggested that the recovery phase is not just a simple re-
laxation phase. There are indications that the northward-turning of the
IMF might have an influence on recovery (Rostoker, 1983). But from their
magnetic field measurements at the geostationary orbit during 11 recovery
phases Pulkkinen et al. (1994) concluded that the start time of the increase
of Bz as well as the duration of the relaxation did not depend on the direc-
tion of the IMF z-component.

From ionospheric signatures Opgenoorth et al. (1994) concluded that the
recovery phase even involves its own form of activity, distinct from the ex-
pansion phase.

13.3.4 Extended simulations

There are MHD simulations that cover both growth and expansion phases.
Fig. 13.7 illustrates corresponding results from a 3D resistive MHD simula-
tion by Birn and Hesse (1996) with S = 500 (Section 10.3) of the magneto-
tail including the transition to a dipolar field. Slow external driving leads
to a growth phase which lasts until about t = 80 (in non-dimensional units
(Section 10.3.1)). The accumulation of magnetic flux and the formation of
a thin current sheet is clearly seen. At t = 80 the current sheet becomes
unstable, which initiates the expansion phase. A resistive tearing mode (Sec-
tion 10.3) grows into a nonlinear reconnection regime, resulting in plasmoid
formation and tailward ejection, and dipolarization in the near-Earth region.
The current sheet bifurcates in the later stages. The time-dependence of the
reconnected flux and of the maximum values of the cross-tail electric field
Ey, current density jy and velocity vx are given in Fig. 13.8. Due to the thin
current sheet the reconnection pattern grows very fast, on the time scale of
a few minutes.

The reconnection has a finite extent in the y-direction. It starts in the
midnight meridian plane, where the structure qualitatively agrees with plas-
moid formation in systems with translational invariance (y-independence).
However, instead of x- and o-lines extending to infinity, they join at an in-
creasing distance from the centre (Fig. 13.9) and, in the present symmetric
geometry, form a closed loop (Vasyliunas, 1976).
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Fig. 13.7 Results from a resistive MHD simulation by Birn et al. (1996). Shown
are the magnetic field lines and the cross-tail current density |jy| (shading); note
that the x-axis points sunward. (From Birn et al. (1996) by permission of the
American Geophysical Union.)

In the presence of a unidirectional By-component the plasmoid assumes a
flux rope structure with complicated magnetic connectivity properties at its
ends (Section 11.4.2). Fig. 13.10 gives a perspective view of such a plasmoid.
The absence of neutral points (Hughes and Sibeck, 1987) has been the main
motivation for studying finite-B reconnection (Section 11.5.1).
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Fig. 13.8 Results from a resistive MHD simulation; shown are the reconnected
magnetic flux and maximum values of Ey (left) and of jy and vx (right), measured
in units of 3.2 · 106 Wb, 80 mV/m, 10−8 A/m2 and 1000 km/s, respectively, the
time unit is 6.3 s; note that the x-axis points sunward. (Courtesy of J. Birn.)
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Fig. 13.9 Results from a 3D resistive MHD simulation; shown is the temporal
evolution of the neutral line (Bz = 0) in the equatorial plane. (From Birn et al.
(1996) by permission of the American Geophysical Union.)
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Fig. 13.10 Perspective view of a partially separated plasmoid as seen from the
Earth (Birn et al., 1996). Indicated are regions of field lines with both feet con-
nected to the Earth (white), with one foot connected to the Earth (black) and of
field lines that are completely disconnected (gray). (From Birn et al. (1996) by
permission of the American Geophysical Union.)

As already mentioned, the dipolarization is associated with a field-aligned
current system (Fig. 13.6) and with particle acceleration. The latter largely
results from the cross-tail electric field. While in quasi-steady reconnection
the electric field Ey is rather smoothly distributed over a wide region (in 2D
steady states Ey is a constant), the pronounced time-dependence leads to a
strong localization. This is illustrated in the upper panel of Fig. 13.11.

Surprisingly, the strongest electric fields do not appear at the reconnection
site, where one might be tempted to expect them, but closer to the Earth.
These fields are generated by the strong time-dependence of the magnetic
field associated with the dipolarization. These strong fields lead to intense
acceleration of both ions and electrons, and are largely consistent with the
observed injection events (Birn et al., 1997, 1998b) (Section 2.1).

The simulations discussed so far address intermediate magnetospheric
scales. They cover a relevant fraction of the magnetotail and, in some cases,
include a part of the inner magnetosphere. They start out from realistic self-
consistent configurations and have good resolution of the reconnection site.
Alternatively, global simulations include the solar wind and the ionosphere.
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Fig. 13.11 A snapshot from a 3D MHD simulation; shown are the magnetic field
lines in the midnight meridian plane and the cross-tail electric field (upper panel)
and the temperature (lower panel). (From Birn et al. (1996) by permission of the
American Geophysical Union.)

Naturally their resolution tends to be smaller than that of the intermediate
simulations, but they already have reproduced large-scale substorm signa-
tures in the magnetosphere. Fig. 13.12 shows an example. The substorm was
initiated by a southward turning of the IMF after a long northward period.
It shows complete growth and expansion phases, qualitatively consistent
with the picture outlined above and with the intermediate simulations (e.g.,
Fig. 13.7).

In a global simulation (Ogino et al., 1990) the formation of a flux rope for a
large y-component of the IMF was confirmed. Ashour-Abdalla et al. (2002)
reported a simulation, where the earthward flow from the reconnection line
initiated a vortical pattern in the inner magnetosphere.

Global MHD simulations have reached a stage that allows quantitative
comparison with satellite observations (Ohtani and Raeder, 2004), defining
areas of agreement, but also shedding light on the reasons for the deviations.
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Fig. 13.12 A substorm in a global simulation. (From Slinker et al. (1995) by
permission of the American Geophysical Union.)

The most difficult part seems to be the coupling with the ionosphere (Raeder
et al., 2001). For northward-pointing IMF a global MHD simulation by Song
et al. (1999) demonstrated that large parts of the magnetopause are closed
and that reconnection is limited to regions near the cusps.

Obviously, the described theoretical and simulation results are grossly
consistent with the phenomenological near-Earth neutral line model
(Section 2.1), but have reached a much more developed stage offering many
more details.

13.3.5 Observations

The last step is to compare the substorm picture, as it emerged from theo-
retical reasoning and simulations (enriched by some key observational facts),
with further observations. This is a vast field by itself, so that here we must
content ourselves with a few typical examples.

Statistical results demonstrating that a negative IMF z-component
favours geomagnetic activity have already been mentioned. This has also
been confirmed by looking at individual cases. Freeman and Farrugia (1999)
investigated a period consisting of a 14 h interval of continuous and strong
IMF Bz < 0, a 16 h interval of continuous and strong IMF Bz > 0 and a 22 h
interval of intermittent IMF polarity. They found 5 substorms in the interval
of strong negative Bz, no substorm in the interval of strong positive Bz and
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6 substorms in the intermittent polarity regime. The occurrence rate was
higher by a factor of 1.4 in the first interval compared with the third. Their
results suggest substorm onset to occur at a fixed energy or flux threshold,
and subsequent flux loss proportional to the input rate at onset.

Using GEOTAIL data, Tanskanen et al. (2005) have investigated the re-
sponse of the Earth’s magnetotail to periods of prolonged southward IMF.
They examined the total magnetotail pressure pt = B2/2µ0+nkBTi, because,
by pressure balance (Section 5.4.1), variations in this parameter should be
similar in the lobes and in the plasma sheet. (Te is disregarded as it is consid-
erably smaller than Ti.) They identified 13 events with the IMF z-component
southward for 8 hours or longer and with GEOTAIL located in the magne-
totail farther than 10 RE downstream. The events were subdivided into 37
intervals characterized as loading (pt increases by more than 100%), as un-
loading (pt decreases by more than 50%) and as continuous magnetospheric
dissipation (CMD) (pt increases by less than 100% or decreases by less than
50%). With these definitions, 37 loading, 37 unloading and 28 CMD events
were found. So, the loading/release scenario was verified, but the results
also indicate the existence of a different type of magnetospheric response to
flux transfer from the solar wind. We return to this aspect farther below.

Another important question is whether there is in situ evidence of a coher-
ent reconnection process in the magnetotail. Part of the GEOTAIL mission
was especially designed for this task by exploring the plasma sheet in the
region −20RE > x > −30RE, where the near-Earth reconnection site is
to be expected. The satellite has encountered the near x-line region fre-
quently. It has confirmed rapid flow reversals, interpreted as the reconnec-
tion site crossing the satellite. In a statistical study by Asano et al. (2004),
substorm-associated x-line crossings were analysed in detail using the veloc-
ity moments of both ions and electrons simultaneously. Ampère’s law was
used to determine the current sheet width near the x-line. In some cases it
was near 500 km, that is, below c/ωpi ≈ 750 km. Accordingly, a Hall zone
(Section 11.3.1) with its magnetic quadrupolar signature (see Fig. 11.13 and
Fig. 11.14) were identified. Near the x-line the electric current density was
found to be dominated by the electron Hall current, generated by strong
electric fields in the inflow direction. Away from the x-line the current den-
sity bifurcates (see also Lottermoser and Scholer, 1997). Similar conclusions
have been reached from 4-satellite CLUSTER data by Runov et al. (2003).

Other studies focussed on plasmoids in the magnetotail. A statisti-
cal study by Ieda et al. (1998) covered 824 plasmoid events in the range
−210 RE < x < −16 RE, a plasmoid being defined by a rotating magnetic
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field structure and enhanced total pressure (the enhancement is due to the
curvature term in (5.9)). In the near tail the plasmoids were observed around
the tail axis and found to expand in the y-direction. The authors interpret
their findings as strongly supporting the view that the plasmoids are initially
formed at the near-Earth neutral line, which has a limited extent in the y-
direction. The plasmoids move tailward with velocities up to 700 km/s, but
with a considerable spread and y-dependence. The findings are summarized
in Fig. 13.13. Attributing on average 1.8 plasmoids to a substorm, it was
concluded that the average energy carried away by plasmoids in a typical
substorm is ∼ 3 × 1014 J. However, fast flows accompanying the plasmoids
are estimated to carry even more energy so that the total energy released
tailward in the course of a substorm is estimated as roughly ∼ 1015 J. This
is about the same energy as has been estimated for the substorm energy
released into the inner magnetosphere and the ionosphere.

The results from in situ satellite observations are generally consistent with
the phenomenological near-Earth neutral line model (Section 2.1), but they
have detected many more details and new aspects. Note that we arrived
at largely the same conclusion from theory and simulation points of view.
This means that the near-Earth neutral line model of substorms has found
strong support from all three sources of information.
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Fig. 13.13 Schematic illustration of plasmoid properties (from Ieda et al. (1998)
by permission of the American Geophysical Union).
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13.4 Further large-scale processes

Here we briefly describe two other large-scale phenomena of the magne-
tosphere that have to be addressed for the sake of a more complete picture
of magnetospheric dynamics.

13.4.1 Quasi-steady convection

The pressure crisis eliminates steady state convection under our test assump-
tions. As discussed, substorms represent a major resolution of this problem.
They drastically shorten the flux tubes and thereby strongly reduce their
entropy content. Also we have seen that the remaining possibility is likely
to be bursty flows. As discussed, and following Garner et al. (2003), one
would discard losses as the main entropy reducing process, because losses
may play a significant role only for rather weak convection states, although
this view might still require final confirmation (Wang et al., 2004).

There is considerable evidence regarding non-laminar convection states,
not directly related to substorm activity (Sergeev et al., 1996). Correspond-
ing events carry different names (convection bay, steady magnetospheric
convection, SMC, continuous magnetospheric dissipation, CMD), reflecting
differences in the operational definitions. In Section 2.1 Fig. 2.3 shows a
convection bay. The sporadic appearance of intense auroral streamers point
at bursty plasma flows in the plasma sheet, with characteristics similar to
those of plasma bubbles. It was suggested further that they could be the
main process supporting the earthward convection in the plasma sheet, and
represent a necessary condition to realize the driven mode.

The occurrence of the CMD events by Tanskanen et al. (2005), mentioned
above, points in the same direction; they also show considerable bursty flow
activity.

A directly driven component of magnetospheric energy dissipation also
appears in studies correlating solar wind properties with auroral activity
indices (see Section 13.1.1). The study by Bargatze et al. (1985) showed
that two distinct dissipation modes exist, a delayed mode at interme-
diate activity levels, interpreted as substorm activity, and an undelayed
mode at higher activity levels, interpreted as consistent with directly driven
dissipation.

In addition to the bursty bulk flows there is a background of turbulence
in the plasma sheet (Borovsky and Funsten, 2003; Weygand et al., 2005). A
possible origin is shear flow, but it is not clear whether the turbulence plays
a significant role for the large-scale dynamics.
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13.4.2 Magnetic storms

Although the basic eruption phenomenon in the magnetosphere, and there-
fore our main object of interest, is the substorm, it is appropriate to add
at least a brief description of the geomagnetic storm and its relation to
substorms.

In a traditional picture there is a direct causal relationship between sub-
storms and ring current intensifications (Akasofu et al., 1974). Here, the
injection of energized particle fluxes generated by substorms feed the ring
current in an accumulative way. This concept would imply a corresponding
correlation between VswBsw Section 3.1.1 and Dst, which in fact is observed
(e.g., Kamide et al., 1998).

However, as we have seen, periods of southward IMF may cause not only
substorms but also quasi-steady convection. Does that phenomenon con-
tribute to storms also? A case where quasi-steady convection led to a (weak)
magnetic storm has been identified and investigated in a multisatellite study
(Zhu et al., 2003).

Considerable efforts have been devoted to the simulation of the inner
magnetospheric dynamics with emphasis on magnetic storms. Rather com-
plex models have been devised, such as the renowned Rice convection
model (Wolf, 1983). Until recently, the models concentrated on the electric
field, prescribing the magnetic field. Such modelling (e.g., Wolf et al., 1997)
suggested that the IMF-driven convection would play a more important role
than substorms. This was surprising, as the convection should be inhibited
by the need to avoid the pressure crisis, as discussed above. However, to
cover that effect requires taking into account field lines that are stretched
out into the tail region (Section 8.3.3). Indeed, a more recent study (Lemon
et al., 2004), which included the near-Earth tail and computed the magnetic
field self-consistently, confirmed that adiabatic convection did not cause an
increase of the ring current particle flux. To achieve a significant intensifi-
cation of the ring current, the pressure crisis was shown to be avoided by an
artificial lowering of the flux tube entropy. So, this leads us back to the (as
yet unanswered) question of the dominant mode of plasma sheet transport.
We can expect that, once this problem is solved, it will also become clear
whether the substorm plays a leading or just a supporting role in deter-
mining the intensity of magnetic storms (Kamide et al., 1998; Moon et al.,
2004).

13.4.3 Spontaneous versus directly driven processes

The presence of directly driven processes and of processes that are not di-
rectly driven raises questions about classification. Spontaneous processes
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occur without requiring a particular external trigger signal in addition to
a broad noise spectrum. As a typical example consider an instability that
occurs when a system passes a bifurcation point (Chapter 12) and becomes
unstable. Now suppose that one observes a perturbation pulse at the time
of the onset of the instability. Is this pulse evidence against the instability
scenario? The answer is no, because otherwise a system, which has almost
reached the bifurcation point and is helped over the last threshold by the ex-
ternal perturbation pulse, would be considered as directly driven, although
after a short time interval the instability would have started without the trig-
ger process. Here, a meaningful distinction requires a deeper consideration.
A possible criterion is based on the energetics of the system. A system that
releases more energy than the external pulse supplies is unstable; if there is
no release of system energy, the system is stable and the dynamic response
can be regarded as directly driven. This is the point of view that motivated
the stability concept described in Section 10.1.

This point of view implies for the magnetosphere that the appropriate
distinction is to be made between directly driven energy supply and the
loading/release scenario (Bargatze et al., 1985; Tanskanen et al., 2005). The
search for triggers does not carry far enough to allow a fundamental distinc-
tion. Nevertheless, trigger studies provide information on the sensitivity of
the magnetosphere with respect to the different perturbation forms.

13.5 Statistical and nonlinear dynamics aspects

Magnetospheric activity is based on the nonlinear mean field interaction of
many particles. In principle, for the collisionless magnetospheric plasma the
Vlasov theory is the most appropriate description, but only if fluctuations
are properly taken into account. As we have seen, in some cases fluctuations
may cause a fluid behaviour of the collisionless plasma. There are other
concepts developed in statistical mechanics and nonlinear dynamics that
might also be useful for magnetospheric physics. Some of these approaches
have been summarized in Chapter 12. Here we will give a brief account of
their applications to magnetospheric activity.

As we will see, they provide valuable conceptual input, but they are not
particularly strong in the area of quantitative morphology.

13.5.1 Statistical mechanics with constraint

As already discussed (Section 12.2), several stability properties of a current
sheet can be understood, at least qualitatively, by treating it as a canonical
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ensemble of particles. The control parameter is λ = µ0I
2/(4NkBT ).

A non-vanishing current per unit length I is sustained by the different par-
ticle species having different total canonical momentum in the invariant
direction. Without further restrictions the sheet is stable only in the regime
of wall-stabilization, which is unrealistic for the plasma sheet. However,
the instability is removed by introducing a constraint that is equivalent to
topology conservation. That constraint would be relevant during the growth
phase. Then the plasma is considered as an ideal medium, so that the sheet
stably evolves as the current I increases due to flux transfer to the tail. The
instability will set in, as soon as the topology constraint breaks down. This
occurs by the formation of a thin current sheet (Chapter 8), which sets an
end to the ideal evolution. (Within Vlasov theory this might correspond to
the onset of a collisionless tearing mode for sufficiently thin sheets. (Sec-
tion 10.4)). Formally, at this point the sheet would develop toward its state
of lowest free energy (Fig. 12.10). That state is characterized by the current
being concentrated into a single filament. This concentration can be under-
stood as the result of the attractive force between parallel current filaments.
So the final state would be an extreme form of a plasmoid (Fig. 12.11).

It is interesting that the growth phase, the instability onset and the plas-
moid formation are contained in this model in a qualitative sense. The role
of current filament attraction is brought out without the need for considering
a particular dynamical model.

Apparently, in the real magnetosphere the current collapse cannot proceed
to a singular state. This is due to the influence of the environment of the
sheet, which is not well represented in the model, in which the current sheet
is simply enclosed in a box, in thermal contact with the environment.

13.5.2 Low-dimensional modelling

Attempts to identify magnetospheric activity as a low-dimensional au-
tonomous system (Section 12.5) have not yielded a clear result (Klimas
et al., 1996). It seems that the interaction with the solar wind counteract
the relaxation into an attractor.

Low-dimensional input–output models have been more successful (Sec-
tion 12.5). In particular, this applies to the model by Horton and Doxas
(1996). This model is completely based on physics, although it builds on
earlier models containing analogies such as the dripping faucet; for a review
see Klimas et al. (1996).

In its improved version (Horton and Doxas, 1998) the Horton–Doxas
model has a 6-dimensional state space and 13 parameters. The state space
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Fig. 13.14 Comparison of the electrojet current I1 derived from the low-
dimensional model by Horton and Doxas (1998) with corresponding AE results
obtained from the database of Bargatze et al. (1985); ARV stands for average
relative variance. (From Horton and Doxas (1998) by permission of the American
Geophysical Union.)

variables are the total plasma sheet current, the auroral electrojet cur-
rent, the cross-tail and ionospheric potentials, the kinetic energy in parallel
plasma motion and the plasma sheet pressure. Integral versions of the basic
momentum and energy conservation laws and of Faraday’s law were used to
derive a set of ordinary differential equations for the temporal evolution of
the state variables. The model involves a critical plasma sheet current at
which a bifurcation occurs into a fast unloading mode. Plasma sheet physics
based on nongyrotropic particle orbits (Section 6.4) is also included.

Fig. 13.14 shows an example of a result produced by this model in compar-
ison with corresponding data base results. The agreement seems fairly good.
One might argue that with 13 parameters one should be able to fit many
models to a given data set. But one should keep in mind that the parame-
ters are physics-based and their values must lie in a realistic range. Again,
the loading/unloading scenario is a basic aspect of the model, allowing for
isolated substorms (see, for instance, the subinterval 5–12 h in Fig. 13.14).

13.5.3 Self-organized criticality

The concept of self-organized criticality (Section 12.4) also has been applied
to the magnetospheric dynamics. Chapman et al. (1998) developed a cellular
automaton model consisting of a scale-free part (corresponding to a sand pile
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model) and a non-selfsimilar systemwide discharge. The first part addresses
non-substorm activity, the second describes substorms.

Klimas et al. (2000) abandoned the discrete cellular automata approach
and adopted a continuous model by reinterpreting an earlier model devel-
oped by Lu (1995). The background is the assumption of localized short-
duration reconnection events occurring on a broad range of scales in the
plasma sheet (Baumjohann et al., 1990). A simplified resistive MHD (Sec-
tion 3.3.3) model is used and, by additional measures, adjusted to that
situation. The resulting model is spatially one-dimensional. The basic
process is magnetic annihilation at a neutral sheet, described by the dif-
fusion/advection equation (11.1). The input velocity is prescribed and the
resistivity, caused by a current-driven microinstability, jumps from a low
value to a high value at a critical current density. Under suitable conditions
this model shows typical aspects of self-organized criticality. The inflowing
magnetic flux is dissipated in the form of annihilation avalanches, which,
on average, restore the critical state. The model also shows a selfsimilar
regime. The authors suggest that the actual plasma sheet can develop a
similar state.

A model by Chang is based on overlapping resonances of plasma fluctua-
tions (see the review by Chang (1999)). The corresponding fluctuations are
considered as a model for BBF activity. The substorm is due to a nonclas-
sical global instability and during the substorm evolution the magnetotail is
in a state of forced and/or self-organized criticality.

Again, in view of the necessity of model assumptions, these approaches
are unlikely to reproduce the morphology of magnetospheric dynamics in
detail. But they do have the potential of contributing to the basic physical
understanding of the processes involved. They concentrate on the statistical
aspects, thereby complementing the deterministic studies, which represent
the main stream of present theoretical and simulation studies. (This book
is not an exception.)

13.6 Discussion

We have seen that the theoretical tools described in the main parts of this
book can help to understand major phenomena of magnetospheric activity.
The following picture becomes visible, at least in its gross contours.

The magnetosphere is necessarily open and the opening involves magnetic
reconnection. A major consequence is magnetospheric convection with flux
transfer to the magnetotail.
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The flux return is a more complicated phenomenon. The straightforward
return by quasi-steady convection is largely impeded, if not eliminated, by
the need of magnetotail dynamics to avoid the pressure crisis. We have
argued that (for not too small cross-tail potentials) the most promising
candidates for avoiding the crisis and for allowing flux return are bursty
bulk flow and near-Earth reconnection.

During periods where such processes are not available, the flux cannot
return to the inner magnetosphere and piles up in the tail. This process is
characterized by a small cross-tail electric field in the centre of the plasma
sheet. As flux piles up, thin current sheets form. They bring a fundamen-
tally new aspect into the picture. As current sheets assume a scale of the
order of the ion gyro-scale or smaller, non-fluid properties of the plasma
become important. This leads to a reconnection process, which shortens the
earthward part of the field lines so that flux return becomes possible.

If there is a pronounced loading phase and if the thin current sheet favours
a particular location in the plasma sheet, this picture provides the tail sig-
nature of a magnetospheric substorm. Consequences include tailward losses
with a significant plasmoid contribution, earthward dipolarization, current
wedge, field-aligned currents and particle acceleration.

In the presence of a sufficient level of turbulence, the flux return may
occur in a quasi-steady way. Such states may represent the observed steady
convection states or convection bays, with bursty bulk flows providing flux
transport events localized in space and time.

Although there is substantial overlap between theory, simulation and ob-
servation, at least regarding the overall picture, substantial gaps still exist.
One such gap concerns pseudo-breakups (Section 2.1). Qualitatively, one
might describe them as local expansion phase signatures that do not evolve
to ordinary substorm level, but a quantitative criterion is not available.

Also, it is unknown under what conditions magnetic flux transfer leads
to substorms or to steady convection. There is no clear-cut hint available
from our theoretical arsenal, but it suggests the following speculation. As-
sume that the quasi-steady convection states are characterized by the net
effect of a set of individual reconnection events, distributed over the central
plasma sheet, as discussed above. This would require several, if not many,
thin current sheets to initiate reconnection. This is different from a (pro-
totype) substorm, where the reconnection starts at a single current sheet.
Further, there is no significant energy accumulation during steady state con-
vection periods, while substorms have a growth phase. A possible property
discriminating between the two phenomena is the magnetic configuration
prevailing in the plasma sheet at the beginning of the southward turning of
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the IMF. If that configuration has a significant magnetic flux normal to the
centre plane of the plasma sheet, thin current sheets are not available imme-
diately. It takes a significant flux transfer and associated stretching, before
current sheets form. (This is evident from Chapter 8.) In other words, a
growth phase is required to set the conditions for reconnection to start.

The situation is different when initially the magnetic flux through the
midplane of the plasma sheet is small enough so that thin current sheets
can form more easily. This case can be understood best by looking at the
extreme case of a locally one-dimensional sheet with no flux through the
midplane. Then, thin current sheets form as the consequence of arbitrarily
small external perturbations (Section 8.2). If the actual plasma sheet is
sufficiently close to that limiting state, flux transfer will cause several, or
even many, thin current sheets which then become local reconnection sites.
How can such a process be kept in a stable steady state on average? If
the reconnection transports too much flux toward the Earth, the plasma
sheet field lines become a little more dipolar, which makes the current sheet
formation less efficient. Flux transfer counteracts this development. So,
it is conceivable that, once a thin sheet with multiple reconnection sites is
established, it would stay in that state as long as the flux transfer continues.
Clearly, sufficiently strong perturbing forces exerted by solar wind variations
might be able to terminate a steady convection period. It should be noted
that this scenario, although consistent with theoretical results, is still largely
speculative.

Here we have concentrated on the activity mainly from the magne-
tospheric point of view. We have addressed the ionosphere essentially in
two contexts. The first is determining the ionospheric electric fields by
mapping the convection electric field along field lines (ignoring the paral-
lel electric field component and the associated local plasma processes), the
second is ionospheric closure of field-aligned currents in the electrojet. One
could argue that this way of dealing with the ionosphere does not pay ap-
propriate attention to the large wealth of research that has gone into the
understanding of these processes. However, their omission is the price for
giving a more detailed discussion of the overall magnetospheric eruption,
which is our main topic.

As we have discussed, the variations associated with magnetospheric ac-
tivity are related to the conditions of the solar wind, the direction of the
interplanetary magnetic field playing an important role. The cause of these
interplanetary variations can be traced back to phenomena occurring on the
Sun. We will return to this aspect in the following chapter.
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Models of solar activity

In the Solar System the most spectacular manifestations of space plasma
activity are the large-scale solar eruptions, such as coronal mass ejections
(CMEs), solar flares and prominence eruptions, as briefly described in Sec-
tion 2.2. In this chapter we attempt to address the underlying physical
processes. The approach leaves aside many details, although they would be
exciting from a more morphological point of view. Instead, we are inter-
ested in the basic physical mechanisms and concentrate on the models and
numerical simulations, which provide an excellent frame for our discussion.
Naturally, as in the previous chapter on magnetospheric activity, the focus
is on loading and release processes.

As we will see, the building blocks, such as ideal dynamics, magnetic re-
connection, formation of thin current layers, plasmoid or flux rope formation
are relevant elements also in current modelling of solar activity. However, in
most solar activity models their role is different from their magnetospheric
role. In other words, the building blocks are put together in a different way.

14.1 General aspects

Observations strongly suggest that solar eruption processes are of the load-
ing/release type. The energy flux into the corona from below is considerably
smaller than the energy flux that would be required if the eruptions were
directly driven by the subphotospheric dynamics. In fact, it has been ar-
gued that models based on direct driving have been shown to be grossly
inconsistent with observations (e.g., Forbes, 2000a).

As the eruptions originate from the lower corona, we can expect that
the relevant energy reservoir is the energy of that region. In an active
region, the magnetic energy density exceeds the thermal energy density by
a factor above 1000; the kinetic energy density of the bulk plasma flow is
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even smaller than the thermal energy density. So, the eruptions are believed
to be fed by the free energy of the pre-eruption coronal magnetic field.
Further, at sufficient temporal and spatial distance from an eruption the
corona is thought to be in a state of relative quiescence. In that picture, as in
the magnetospheric tail during the growth phase, one ignores superimposed
fluctuations on smaller scales.

For further discussion we need quantitative information about a num-
ber of selected quantities. Again, it should be noted that this chapter is
not meant to give a survey on solar atmospheric physics in general, but it
concentrates on the basic physics of eruptions with emphasis on the most
spectacular events. Where possible, the numbers are based on the values
given in Section 2.2 and in Table 9.1.

The energies released by a CME can be as large as 1025 J and within a few
solar radii CMEs assume velocities in the range of several tens to 1000 km/s
(Hundhausen et al., 1994). Photospheric plasma velocities are of the order of
1 km/s. Typically, the gravitational scale height (Section 5.1.1) is 60 000 km
in the lower corona and 200 km in the chromosphere. So, in a broad range
of length scales, gravity effects do not play an important role in the lower
corona, while buoyancy of cooler plasma regions, magnetically separated
from hotter parts, is an important transport mechanism below the coronal
base (Parker, 1979). Higher up in the corona, where the temperature is
lower, gravity can again become important, examples being the equilibrium
of quiescent prominences, which are suspended in an equilibrium between
gravity and magnetic forces. Also for the expanding solar wind gravity
plays a crucial role (Parker, 1963a), as well as for the propagation of CMEs
in interplanetary space (Gibson and Low, 1998).

Except on extremely short scales the coronal plasma is ideal (see Ta-
ble 3.25). The Alfvén velocity in an active region with a magnetic field
strength of 0.01 T and a density of 1015/m3 is 7000 km/s, so that the changes
resulting from footpoint motion induced by subphotospheric motions can be
regarded as quasi-static.

Taking these facts together, one finds that in a wide range of scales qui-
escent coronal structures can be described as being in force-free magneto-
hydrostatic evolution without gravity. In thin current layers pressure can
become important and on large scales (such as the solar radius scale) both
pressure and gravity have to be taken into account.

There is a difficulty regarding terminology. In the solar context the term
current sheet usually is reserved to the (idealized) case of an infinitely thin
current structure, as represented by tangential discontinuities. In magne-
tospheric physics one uses the term thin current sheet for a structure with a
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large, but not necessarily singular, current density, an option we choose in
other parts of this book (e.g., Chapter 8). To avoid confusion, in the present
chapter we follow the solar physics terminology for current sheet and use the
term current layer, when the current density is not necessarily singular.

14.1.1 Aspects of loading

It is widely accepted that the build-up of magnetic energy in the corona
largely is the result of the motion of the field line footpoints, which are
frozen into the photospheric medium with its fluctuating velocity field. This
leads to complex deformations of the coronal magnetic field. The field gets
braided, twisted and sheared (Parker, 1972). In addition, new magnetic
flux emerges into the corona, where it is believed that buoyancy plays an
important role in driving the upward motion (Parker, 1979). A considerable
fraction of the rising structures may consist of largely contained fluxes so
that they bodily enter the corona, possibly playing a significant role for the
overall helicity budget (Low, 1996).

An often considered simple mode of energy transfer by photospheric mo-
tion is due to shear motion of footpoints of a magnetic structure lying above
a reversal line of the normal magnetic field component, see Fig. 14.1; sev-
eral examples are discussed below. The energy flux through the base of the
corona is the Poynting flux B2n · v⊥, where v⊥ is the velocity component
perpendicular to the magnetic field. Note that in the figure the Poynting
flux on the side of the larger velocity is upward, while downward for the
smaller velocity, so that there is a net upward Poynting flux. A conspicuous
effect of the energy transfer is an upward expansion of the field lines (e.g.,
Low, 1977; Inhester et al., 1992) (Section 5.3.4).

As in the magnetospheric case, one may ask whether the loading can
be reversed so that a steady state is possible, where on the global average
the loading is balanced by its reverse process. For flux emergence based
on buoyancy this is clearly not possible, due to the preferred direction of
gravity.

Also a completely random photospheric velocity would lead to a secular
input of energy (Parker, 1983). In the absence of dissipation, random twist-
ing of flux tubes produces vanishing average twist (measured by the twist
angle), but the mean square of the twist increases with time (Berger, 1991),
as intuitively expected.

It should be noted that the convection velocity field is not completely
random, it has a directed shear component resulting from solar rotation.
Imagine the large velocity arrow in Fig. 14.1 to be parallel to the equator,
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v

Fig. 14.1 The field lines of a magnetic arcade above a reversal line (broken line)
are sheared by the photospheric velocity v.

which lies on the right side, the angular velocity vector pointing to the left.
Then the velocity shear in the figure would be consistent with the shear
produced by solar rotation. In the absence of stochastic motions this effect
would lead to a monotonic increase of the shear of coronal arcades.

So, we can conclude that the stochastic convective shuffling of the foot-
points of closed coronal flux tubes as well as directed effects based on gravity
and rotation would secularly increase the magnetic energy in the corona. So,
there must be one or more counteracting release processes at work.

Obviously, realistic coronal fields in which energy is accumulated can
be much more complicated than the highly idealized arcade structure of
Fig. 14.1. We will see examples for more realistic fields, for example, mul-
tiple arcades (Fig. 14.7) or twisted flux ropes. Many models assume trans-
lational or rotational invariance. Although this is a necessary step towards
identification of physical processes, final answers require 3D modelling (e.g.,
Birn et al., 2000).

14.1.2 Aspects of release

The literature on possible release processes conveys the following picture.
The release processes cover a wide range of length, time and energy scales.
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On the large end of these scales one finds the most spectacular phenomena,
such as CMEs, large flares and eruptive prominences. The largest events
often seem to involve all three phenomena. These processes will be addressed
in Section 14.4. But there are also single events of each category and dual
combinations. The detailed association, however, is not yet understood.

Release on small scales is intimately interwoven with the problem of coro-
nal heating. The proposed heating scenarios fall into two main groups. One
group is based on the release of energy in stressed magnetic fields, the other
on heating by waves excited by photospheric motions. Mandrini et al. (2000)
distinguish 14 stressing models and 8 wave models. These models are dis-
tinguished according to their scaling laws governing the dependence of the
heating rate on the length of the flux tube considered. A comparison with
observations seems to favour stressing models, although the authors empha-
size the preliminary nature of their results in view of the imperfections of
both the models and the observations.

Most stressing models of coronal heating invoke magnetic reconnection in
one way or the other, which in essence goes back to suggestions by Gold
(1964) and Parker (1979). In some of the models the reconnection process
is incorporated only implicitly, for instance in the Taylor relaxation process
(Section 11.5.3) (Heyvaerts and Priest, 1984) or in some of the current layer
models, where current layers automatically develop into tangential disconti-
nuities, decaying by reconnection (Parker, 1983). The reconnection process
may occur in the form of small flare-like events (nanoflares), releasing en-
ergies smaller than a large flare by a factor of about 109 (Parker, 1988;
Browning and Jain, 2004). Small-scale flare activity at network bound-
aries was invoked by Axford and McKenzie (2002). If flare mechanisms
were confirmed as being relevant for coronal heating, this would bridge two
historically different branches of solar physics (Vekstein and Katsukawa,
2000).

Let us close this brief discussion of coronal heating by looking at the sim-
ulation of Galsgaard and Nordlund (1996), which covers both loading and
release. In full 3D MHD simulation with resistive and viscous dissipation
a stochastic plasma flow was applied to opposing boundaries of the simula-
tion box. One of the most pronounced effects was the rapid formation of
thin current layers (Fig. 14.2), at which energy was dissipated by magnetic
reconnection. In the initial phase (before reconnection becomes important)
the root-mean-square of current density grows with time exponentially, con-
sistent with results by Van Ballegooijen (1986).
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Fig. 14.2 Current layers obtained in a simulation by Galsgaard and Nordlund
(1996). An initially homogeneous magnetic field in a cube is subject to a random
motion at two opposing boundaries. The velocity amplitude was 0.2 vA and the
run time was about 15 Alfvén times. On average an approximate balance between
stochastic energy input and dissipation by reconnection was reached. The current
density was measured halfway between the driving boundaries. (From Galsgaard
and Nordlund (1996) by permission of the American Geophysical Union.)

14.2 Model constraints and boundary conditions

Let us now turn to the solar eruptions. In view of the complex structure
of the active corona it seems highly unlikely that one can construct a single
theoretical model that explains all aspects of solar activity. So it is not
surprising that there is a considerable variety of different models addressing
particular features.

For models of solar activity, several constraints have been identified
resulting from both theoretical arguments and observations.

14.2.1 Constraints

As already mentioned, the lower corona, from where the eruptions origi-
nate, is a low-β highly conductive medium. The plasma pressure is largely
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negligible, except in thin sheets, such as tangential discontinuities (Sec-
tion 5.1.6). As discussed, gravity can be ignored on scales below, say,
60 000 km. In embedded cooler structures, such as prominences/filaments,
gravity can become important on considerably smaller scales.

Missions such as SOHO or Yohkoh provide more and more constraining
observational details. An important observational constraint concerns the
CME-flare association. Although not all CMEs are accompanied by large
flares, it seems that every large flare is associated with a CME (e.g., Forbes,
2000a). Here the fundamental question is that of causality. There is con-
siderable evidence for the CME erupting from the lower corona before an
associated large flare occurs (e.g., Gosling, 1993). In this picture models
that predict the opposite sequence are not applicable.

In the earlier modelling the following question was raised (Aly, 1984).
Consider a coronal structure such as a magnetic arcade which receives energy
by footpoint motion. The structure typically grows in the radial direction.
The question is, whether an eruption simply consists of a sudden opening
so that eventually all field lines extend to infinity without change of topol-
ogy. This possibility has been largely excluded by work of Aly (1991) and
Sturrock (1991). Aly’s result says that any finite-energy force-free magnetic
field occupying a half-space D (or the exterior of a ‘star-shaped’ region) and
having all its lines unknotted and tied to the boundary ∂D of D must have
an energy which is not larger than that of the ‘open field’ having the same
flux distribution on ∂D. Although the proof is not fully rigorous mathemat-
ically, the arguments are quite convincing. Also, the theorem has proven
relevant in several numerical simulations.

In principle, the Aly–Sturrock constraint may be bypassed by violating
its assumptions (Forbes, 2000a). Examples are partial opening of magnetic
flux, change of magnetic topology so that a part of the energy is carried
by flux not connected to the base, or energy supply during the eruption,
analogous to the heating processes driving the solar wind expansion.

For given normal magnetic field component at the base the lowest energy
configuration is the potential field. So, one might be tempted to conclude
that the free energy of a stressed force-free configuration, available for re-
lease, is given by the difference between its energy and the corresponding
potential field energy. This, however, is not the case, if the main relaxation
process is magnetic reconnection. The reason is that the global magnetic
helicity is approximately conserved (Section 11.5.3). Typically, the helicity
will survive the relaxation in form of magnetic twist of large-scale magnetic
flux ropes (Berger and Field, 1984; Berger, 1991).
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14.2.2 Boundary conditions for quasi-static evolution

As discussed in Chapter 12, important dynamical information can be ob-
tained from solution diagrams of quasi-static evolution. At bifurcation
points, stability properties change in a systematic way and turning points
suggest loss of equilibrium. So, in principle, the quantitative description of
the loading phase can already give hints on possible release processes.

Despite these advantages, there is some danger of misinterpretation. The
problem is that the instantaneous MHS equations must be complemented by
conditions that single out the physical solution(s). Avoiding the immense
complications of a self-consistent inclusion of the driving subphotospheric
motions, one typically restricts the domain of interest to the lower corona
(see, however, Zweibel (1985)). Then, the coupling to the driver is taken
into account by boundary conditions at the base of the corona, which usually
is identified with the photosphere. Unfortunately, the solution diagrams
are sensitive to the choice of boundary conditions. Therefore, a detailed
discussion is needed. The problem of choosing realistic boundary conditions
is not restricted to eruptions, it also applies to the modelling of coronal loops
and other coronal features.

A standard idealization is to treat the boundary as a rigid wall (e.g.,
Hood and Priest, 1979). Here the magnetic field is anchored (or line-tied) in
the subphotospheric medium, which is treated as infinitely conducting and
massive and there is no plasma motion across the boundary (vn = n · v =
0). A normal magnetic field component Bn = n · B must of course be
allowed to be non-zero. Intuitively, one expects that the quantities that
one can prescribe at the boundary in this case are Bn and the tangential
velocity vt. In fact, these are the quantities that are continuous across
the boundary, which immediately follows from the electromagnetic jump
conditions stating that Bn and Et must be continuous. One can also inspect
the MHD jump conditions of Section 3.9, realizing that m = 0 and that the
momentum balance does not apply, being replaced by the formal assumption
of infinite mass of the wall. Other quantities, such as the tangential magnetic
field at the coronal side of the boundary, are not necessarily continuous
and are determined by the coronal dynamics alone. Thus, they cannot be
used to present the subphotospheric driving (Jockers, 1978; Klimchuk and
Sturrock, 1989; Finn and Chen, 1990). Therefore, earlier results based on
prescribing Bt (Birn and Schindler, 1981; Low, 1982) were invalid (Jockers,
1978; Sturrock, 1989; Finn and Chen, 1990) and had to be reconsidered
(Zwingmann, 1987; Platt and Neukirch, 1994), details will be given farther
below. In the rigid-wall model the pressure would be determined by entropy
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conservation if the effects of heating and radiation can be ignored on the
timescale considered (Finn and Chen, 1990).

Several authors have criticized the rigidity assumption vn = 0 as being
inappropriate. For instance, Einaudi and van Hoven (1983) refer to this
boundary condition as ‘overly restrictive’. In the context of stability An
(1984) concludes that this constraint should be discarded and Karpen et al.
(1990) arrived at a similar conclusion. Mok and van Hoven (1995) explained
that the surface acts as a reservoir of mass and energy, determining density
and temperature at the footpoints. In all those cases, although differing
in details, the boundary is advocated to admit normal plasma flow (vn �=
0). The view taken by Mok and van Hoven (1995) would imply that the
photospheric conditions determine the instantaneous pressure of the coronal
flux tubes.

A different view was expressed by Finn and Chen (1990), who argue that
there is no conservation law, based upon an energy equation for the plasma,
by which the pressure in the corona can be specified. On that basis they
consider results that were obtained with fixing the pressure on the surface
(and thereby on coronal flux tubes if gravity can be ignored) as not cor-
responding to a physical process. This view favours the rigid-wall picture
where the pressure is determined by entropy conservation or a corresponding
law incorporating heating and radiation effects.

Mok and van Hoven (1995) have attempted to clarify the boundary con-
dition issue by studying wave propagation in coronal loops from the corona
into the chromosphere. They compared a continuous model with the rigid-
wall model and a model in which the transition region is represented by
a contact discontinuity, where density and temperature are discontinuous
while the pressure is continuous. The former model is called the discontin-
uous density model. The conclusion is that none of the heuristic models is
fully satisfactory. In particular, they found the rigid-wall model too restric-
tive, while the discontinuous density model at least reproduces the correct
parameter scaling. Note that the discontinuous density model describes a
physical situation where the pressure in a flux tube is continuous so that the
pressure on the coronal side is determined by chromospheric conditions, the
pressure being adjusted by normal flow. In other words, the equation for
the internal energy is replaced by a boundary condition; in the absence of
gravity the pressure becomes a conserved quantity. In terms of Euler po-
tentials α, β (Section 5.1.2), defined as comoving with the subphotospheric
medium (dα/dt = dβ/dt = 0), one has p = p(α, β) so that dp/dt = 0.
(The Euler potentials are continuous, their normal derivatives may jump in
accordance with the jump of Bt.)
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So far we have discussed several possibilities of boundary conditions with-
out reference to time scales. It is quite possible that the slow loading phase
and the rapid release phase require different boundary conditions. It seems
that the final decision needs a case by case consideration.

Fortunately, as seen below, in some cases there are comparison properties,
which render a given boundary condition useful even outside its physical
range of validity.

14.3 Arcade models of solar flares

Many solar flare models are based on magnetic arcade configurations
(Fig. 14.1). The prototype is the two-ribbon flare (Section 2.2).

14.3.1 Footpoint motion

Consider an ideal MHD arcade with line-tying, so that Bn and vt is to be
prescribed. Energy loading requires that the field line footpoints move with
different velocities. Let us illustrate this for force-free fields with trans-
lational invariance in the z-direction (Fig. 14.3 and Section 5.2.1) and a
rigid-wall boundary.

Energy supply

If the magnetic field strength decays sufficiently fast for large x and y the
rate of change of the magnetic energy per unit length in the z-direction, Wm

is given by

dWm

dt
=
∫

S · ndxdz

=
1
µ0

∫
Bn>0

∆vzBzdA . (14.1)

Fig. 14.3 Footpoint motion of a line-tied magnetic field. The relative velocity
v2

z − v1
z causes the footpoint displacement ∆z; the z-axis is the polarity reversal

line, where the normal field component Bn changes its sign.
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Here, it is used that Bndxdy = dAdβ (Sections 5.1.2, 5.2.1), the length
in the z-direction is set to 1 and S is the Poynting vector and n the surface
normal pointing into the corona. A and β = z + β̃ are Euler potentials.
The integrand in the second line of (14.1) has different contributions from
the different sides of the reversal line (Fig. 14.3), which leads to the velocity
difference ∆vz = v2

z − v1
z in the integral. Equation (14.1) confirms that

energy input requires relative footpoint motion.
With the help of Section 5.2.1 one immediately finds a well-known relation

between the footpoint displacement ∆z and Bz. As the Euler potential β is
constant on field lines one finds

∆z = −∆β̃ = Bz(A)V (A) , (14.2)

where V(A) is the (differential) flux tube volume (Section 8.3.4).
For simplicity let ∆vz be time independent and ∆z = 0 at t = 0, so that

∆z = ∆vzt. With this simplification and using (14.2) one finds

dWm

dt
=

t

µ0

∫
Bn>0

[∆vz(A)]2

V (A, t)
dA . (14.3)

Note that flux tubes with large volumes give only small contributions to the
input. The reason is that by (14.2), for a given ∆z, large V corresponds to
small |Bz| so that the Poynting flux n · S = −BnBzvz is small.

Loss of equilibrium and stability

In the simple examples with one degree of freedom of Section 12.1 there is
a close relationship between bifurcation points and stability properties. A
corresponding property was found for the Grad–Shafranov equation under
the conditions studied in Section 12.1.1. For example, without further sta-
bility analysis we could conclude that the lowest branch of models sketched
in Fig. 12.5 is F-stable. The occurrence of the stability functional F2 given
by (10.58) can be understood in the following way. In simplified terms,
the equilibrium is determined by the vanishing of the first variation of the
functional F , given by (10.62). The second variation comes in, when one
considers an infinitesimal step along the solution curve. The existence of a
unique neighbouring state requires that the minimum of the second varia-
tion has a definite sign (Zwingmann, 1987). So, stability, as defined by the
sign of second variation of F cannot change unless the evolution has reached
a point at which the uniqueness is lost. This happens at a bifurcation point.
So, if one knows that a branch starts stable, this property implies that sta-
bility can be inferred for the entire branch before the next bifurcation point
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is reached. Apart from F-stability, this argument was shown to be correct
also under more general conditions (see the model by Zwingmann (1987),
discussed below).

In both cases, the stability functional has a simple interpretation in terms
of the MHD energy principle (Section 10.2.1). The stability functional F2 is
obtained if one imposes the model constraints regarding symmetry, bound-
ary conditions and global constraints on V2, given by (10.29). In particular,
F2 is obtained from V2 by confining the perturbations to two dimensions and
by allowing for normal flow at the boundary. The open boundary implies
that the compressibility term γp(∇ · ξ)2 minimizes to zero. In other words,
one can use ∇ · ξ = 0 as a boundary condition for ξ (Schindler et al., 1983).
This means that positive definite F2 is sufficient for 2D ideal MHD stability
in the sense of (10.57). Note that, if pressure exchange is still possible on the
time scale of the instability, the F2 criterion becomes necessary and sufficient
for perturbations subject to the translational invariance restriction.

The numerical iteration scheme of Zwingmann (1987) automatically pro-
vides the minimum of the stability functional so that stability information
is obtained without additional effort.

Zwingmann’s model

Earlier arcade models were based on the formal equivalence between force-
free and pressure supported systems (Low, 1977; Birn et al., 1978), see
Section 5.2.1. One finds a catastrophe indicating loss of equilibrium (see
Fig. 12.6). However, as already mentioned this approach prescribes Bt,
which is inappropriate. An acceptable magnetic boundary condition for
equilibrium sequences is line-tying, realized by prescribing the footpoint dis-
placement ∆z, see Fig. 14.3 (e.g., Jockers, 1978; Zwingmann, 1987; Klim-
chuk and Sturrock, 1989; Finn and Chen, 1990). Let us look at Zwingmann’s
model as an illustrative example.

Zwingmann (1987) assumed line-tying and prescribed footpoint locations
and plasma pressure. He also included gravity. Thus, the photosphere was
assumed to be open to parallel flow, keeping the pressure constant (see the
discussion on boundary conditions above). The boundary condition for the
poloidal flux function α at the coronal base (y = 0), fixing Bn, corresponds
to a line dipole located below the photosphere at x = 0, y = y0, so that
on the boundary α ∝ 1/(x2 + y2

0). The function β̃ was chosen proportional
to λs tanh(x/L) so that ∆z = 2λsL tanh(x1/L) (Fig. 14.3). The pressure
was described by p0(α) exp(−y/H), where H is the gravity scale height (see
(7.27)) and p0(α) is chosen from
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dp0

dα
=

⎧⎨⎩
λp

µ0α3
cL2

(
1 − α

αc

)
for 0 < α < αc,

0 otherwise.
(14.4)

Here L and αc are fixed constants, the control parameters are λs and λp,
controlling shear and pressure. On the lateral boundaries the normal mag-
netic field component is prescribed and on the upper boundary Neumann
conditions are applied, so that one can consider the field lines that cross the
upper boundary as open, they remain unsheared.

Fig. 14.4 shows a set of solution curves. Importantly, the force-free case
λp = 0 gives a unique total energy W profile, there is no turning point so
that there is no loss of equilibrium. The shear considerably enlarges the flux
tubes. Fig. 14.5 compares a strongly sheared field with the corresponding
unsheared case.

There is a finite region in the λs − λp-plane for which the solution curves
become S-shaped so that three solutions exist. The turning points indicate
possible loss of equilibrium. However, the corresponding pressures are too
high to be realistic for the lower corona (Zwingmann, 1987). All branches,
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Fig. 14.4 Solution curves of the model by Zwingmann (1987); shown is (normal-
ized) total energy vs. the pressure parameter λp for several values of the shear
parameter λs; the scale height H is 5L. (From Zwingmann (1987) with permission
of Springer Science and Business Media.)
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Fig. 14.5 Poloidal field lines of the cases λs = 0 (upper panel) and λs = 8.5
(lower panel) and λp = 1 in both cases (Zwingmann, 1987). The dashed lines
(inserted qualitatively into the original figure) indicate the separatrices between
sheared and unsheared flux, joining at a neutral point on the boundary. (From
Zwingmann (1987) with permission of Springer Science and Business Media.)

except the intermediate branches of the S-shaped curves, are MHD stable
by the argument explained above.

Although we do not wish to enter details of the numerical procedure, it
seems appropriate to point out that special measures were taken to ensure
that unstable solution branches are computed without difficulties. Straight-
forward iteration schemes often do not have that capability.



14.3 Arcade models of solar flares 421

Platt and Neukirch (1994) have pointed out that the upper branch of
the S-shaped curves is sensitive to the position of the lateral boundaries,
and that there are thin current layers along the separatrices, which can be
interpreted as tangential discontinuities (see Section 15.1 below).

It is to be expected that the existence of multiple solutions in Fig. 14.4
will disappear if, instead of prescribing the pressure as a boundary condition,
rigid-wall conditions are used so that the pressure is derived from entropy
conservation (Finn and Chen, 1990).

We conclude from Zwingmann’s arcade study that under realistic coro-
nal parameters this model does not give any indication concerning an ideal
eruptive process, neither by loss of equilibrium nor by (ideal) instability.
This result is consistent with conclusions reached by Klimchuk and Stur-
rock (1989), Finn and Chen (1990) and others. However, as seen in the
following section, this does not mean that shearing of a single 2D magnetic
arcade in the coronal plasma must be excluded entirely as a process leading
to an eruption.

Analytical arcade models are largely two-dimensional. An interesting class
of 3D models was presented by Neukirch (1997), who solved the nonlinear
MHS equations analytically.

14.3.2 Dynamic arcade models

An alternative to quasi-static modelling is solving the dynamic MHD equa-
tions with a boundary condition prescribing vt. The 2D models to be dis-
cussed here have either translational or rotational invariance including a
magnetic field component in the invariant direction (often referred to as 2
1/2-dimensional fields (Section 5.2)).

A sometimes wanted, but sometimes unwanted typical feature of MHD
simulations is that even without a nominal resistivity, the effect of numeri-
cal diffusion may lead to magnetic reconnection of thin current layers that
develop during the evolution; this often makes it difficult to decide whether
a current layer would develop into a state where physical reconnection is to
be expected (see Section 15.1 below). However, several authors (e.g., Mikić
and Linker, 1994; Hu, 2004) have found ways to avoid numerical diffusion
in a current layer.

An example is the simulation by Mikić and Linker (1994), which has
taken up earlier work by Barnes and Sturrock (1972) with new methods.
Fig. 14.6 shows a typical result. The field has rotational invariance, i.e., it is
independent of φ in spherical coordinates r, θ, φ. The computational domain
has an outer boundary at r = 200R0 (R0 being the solar radius) with an
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Fig. 14.6 Sheared arcade model by Mikić and Linker (1994) under ideal force-free
conditions. The magnetic field has rotational invariance. The left panel shows the
poloidal field lines for increasing toroidal footpoint displacement with maximum
∆smax. Near ∆smax ≈ 1.8R0 the field rapidly opens and a tangential discontinuity
develops in a time-dependent process. The right panel shows the corresponding
jump in the radial magnetic field at r = 3R0 for ∆smax = 2.2R0. (Reproduced by
permission of the AAS.)

upper boundary condition that allows for outward flow. The initial field is
generated by a dipole singularity located at the centre of the Sun. On the
surface the footpoints move in the φ direction, with velocity depending on
θ, the maximum velocity being 0.94 km/s. The parameter ∆smax represents
half the maximum displacement applied in each case. When that value is
reached, the velocity is turned off. At a critical point near ∆smax = 1.8R0

there is a rapid transition from solutions with essentially all field lines closed
to states with large open fluxes. The supercritical development is a rapid
(non-quasi-static) evolution, during which an equatorial thin current layer
develops (on the left of Fig. 14.6), associated with a large gradient in Br (on
the right). The authors point out that the current layer will rapidly develop
into a true tangential discontinuity. Emphasizing the formation of current
sheets by nonequilibrium (Parker, 1972, 1994), the transition at the critical
displacement is termed magnetic nonequilibrium.
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It is not clear whether this phenomenon corresponds to loss of equilib-
rium in the sense of a turning point of the quasi-static solution curve (Sec-
tion 12.1.1). A clear distinction between loss of equilibrium in the sense of a
catastrophe and instability is difficult to assess in dynamical computations.
The main distinguishing element between the cases b and c of Fig. 12.1 is the
presence or absence of an unstable branch in the supercritical regime, and
it takes special measures to include unstable branches (Zwingmann, 1987;
Isenberg et al., 1993; Schröer et al., 1994). Although this distinction is im-
portant from a basic theoretical point of view, what counts observationally
is loss of stable equilibrium. We will use that term when a further distinction
is not available.

The addition of a small resistivity (physical or due to numerical diffusion)
gives rise to a sudden onset of a fast reconnection process and plasmoid
formation, qualitatively similar to the process of Section 11.2.10. Violent
eruption, however, occurs only after the critical point was reached.

Although the system opens, the energy constraint (Aly, 1984; Sturrock,
1991) is satisfied, for large shear the energy of the open configuration is
approached from below but not reached. The reason is that a small amount
of the arcade flux remains closed. Note that energy release occurs through
the final fast reconnection process.

In another version of their model Mikić and Linker (1994) included a
small pressure. These studies show a behaviour quite similar to that of the
pressureless case described above.

Traditionally, arcade structures have been considered appropriate models
for two-ribbon flares. Nevertheless, there is ample evidence for eruptions
arising from magnetic fields with a more complicated structure. Accord-
ingly, double and triple arcades as well as periodic arcade sequences have
been studied (e.g., Mikić et al., 1988; Biskamp and Welter, 1989; Finn et al.,
1992). The work by Finn et al. (1992) provides a detailed picture of the re-
sponse of double arcades with translational invariance to shearing footpoint
motion. In typical cases the field complexity leads to an interplay of instabil-
ity, current layer formation and fast reconnection with plasmoid formation.
Their study includes cases where the strength of the shearing was shifted
from one arcade to the other in the course of the evolution. Some eruptions
were found to be due to loss of equilibrium in the sense of a multidimensional
form of the cusp catastrophe (Chapter 12). Plasmoids that formed inside
the structure find their way through an overlaying separatrix by a process,
the essential part of which is topologically equivalent to the case illustrated
by Fig. 11.11.
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The tendency of an arcade to erupt can be strengthened by adding to the
shearing motion a converging flow component, i.e., on both sides directed
toward the reversal line. This effect was studied by Inhester et al. (1992) in
a configuration with translational invariance. They considered a case that
was found stable for pure shear flow. The addition of a suitable amount
of convergence led to current layer enhancement, resistive instability and
plasmoid formation.

Birn et al. (2000) generalized this work by dropping the constraint of
translational invariance. They found that one of the parameters that had
a major influence on stability was the fanning of the field lines as viewed
horizontally and perpendicular to the reversal line. Less fanning gave more
pronounced eruptions. Their 3D configuration allowed them to determine
the parallel electric potential U associated with the reconnection process
(Section 11.5.1). They found values of the order of several 100 MV.

In most of the cases discussed so far, and in others with similar objectives,
the eruption is initiated by a reconnection process and, typically, by the for-
mation and ejection of a plasmoid, which in the presence of a magnetic field
component in the invariant direction, is a flux rope. The reconnection also
energizes several phenomena below the reconnection site. This includes ab-
lation (also called evaporation) of heated chromospheric material (Fig. 2.6);
for details see articles in Strong et al. (1999) and for corresponding mod-
elling, e.g., Forbes et al. (1989) and Yokoyama and Shibata (2001).

14.4 Coronal mass ejections

The flare scenario discussed in the previous section needs a modification for
large flares that are associated with CMEs (Gosling, 1993). At first sight,
the flare process as described so far can explain not only the emissions from
below the reconnection site, but also the CMEs, if one identifies them with
the expelled plasmoid. However, this picture would imply that the flare-
associated heating of coronal loops starts before the beginning of the CME,
which is in conflict with the observational constraint stated in Section 14.2.1,
demanding the opposite sequence.

This dilemma is removed by models, in which the CME is initiated by
some largely ideal process or a process which involves only moderate re-
connection (which could be interpreted as preflare brightening (Sterling and
Moore, 2005)). Such processes should generate an upward motion. The
rising structure may be a flux rope or the top of an arcade (Fig. 14.8). Typ-
ically, there is magnetic flux on top of this structure, which will be stretched
by the upward motion, so that a current layer forms below it. If reconnection
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tears that layer, a flare process is initiated similar to that described above
(see also Magara et al. (1996)).

If this picture applies, CME models must explain rapid upward motion
with no or only moderate reconnection. Several models have been con-
structed that have this property. The simulation method of Mikić and
Linker (1994), already discussed for arcade shearing (Fig. 14.6), also has
been applied to a helmet streamer configuration. Again, magnetic nonequi-
librium leads to a fast upward motion (Fig. 14.8). The structure contains a
current layer, which via reconnection could initiate the flare. Linker et al.
(2003) concentrated on the effect of flux cancellation caused by footpoint
motion toward the reversal line in a streamer configuration, including a so-
lar wind flow. They obtained a rapid transition from a stable flux rope
configuration to an eruption, when a critical threshold of flux cancellation is
surpassed.

A flux rope that has risen by some MHD process may assume an equi-
librium state by the magnetic stress exerted by overlying flux, still rooted
in the photosphere. That flux assumes the role of a tether that keeps the
flux rope from further rising (Kopp and Pneuman, 1976). Reconnection be-
low the rope then has the effect of tether cutting (Sturrock, 1989; Moore
and Roumeliotis, 1992), which eventually initiates the upward motion and
eruption of the flux rope (Lin et al., 2001; Sterling and Moore, 2005).

A CME model based on a more complex field is the magnetic breakout
model by Antiochos et al. (1999). In its simplest version the initial field
is generated by the superposition of a dipole and an octopole at the cen-
tre of the Sun, generating a quadrupolar field on the surface (Fig. 14.7).
Magnetic shear is applied to the central region of the inner arcade, which
rises and pushes against the overlying flux. This generates currents as the
angle between the separatrices decreases (Section 11.2.10). In this picture
the eruption is started by reconnection at the stressed neutral point con-
figuration, which reduces the overlying unsheared flux, so that the central
arcade can burst open. The eruption has been seen in MHD computations
(MacNeice et al., 2004). The results comprise the initiation, the plasmoid
formation and ejection, and the transition of the coronal field to a more
relaxed state. This process satisfies the Aly–Sturrock energy constraint due
to partial opening.

In this context a question has been raised about the appropriate mini-
mum energy state reached by relaxation via reconnection. As mentioned
above, Taylor relaxation would result in the linear force-free field (see also
Section 11.5.3) consistent with the boundary condition. However, this re-
quires that all flux tubes participate in the reconnection. It was pointed out
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Fig. 14.7 Field lines of a quadrupolar field in the corona, generated by the su-
perposition of a dipole and an octopole at the centre of the Sun, suggested by
Antiochos et al. (1999).

by Antiochos et al. (2002) that in cases where the reconnection can occur
only near a neutral point, the minimum energy state is a nonlinear force-free
field and the minimum energy is larger than the Taylor value. In simula-
tions even that minimum was not reached, instead Antiochos et al. (2002)
found highly complex end states, which led them to introduce the notion of
reconnection-driven current filamentation.

Considerable attention has been devoted to the question whether there is
a suitable quasi-static evolution that leads to loss of equilibrium in the pres-
ence of a pre-existing flux rope. A largely analytical approach is based on
the combination of potential fields with current sheets in translationally in-
variant geometry (Van Tend and Kuperus, 1978; Démoulin and Priest, 1988;
Forbes and Isenberg, 1991; Forbes and Priest, 1995; and others). In simple
terms, ignoring gravity, the quasi-static evolution starts under conditions
where the flux rope, often carrying a filament, is in a stable equilibrium.
One assumes that the flux rope has formed on a time scale that does not al-
low its field to penetrate the photosphere, treated as a perfectly conducting
boundary. This requires shielding currents in the boundary, which generate
a magnetic field that causes an upward Lorentz force at the flux rope. For an
axial flux rope current the shielding effects are the same as in the case of an
oppositely directed mirror current, symmetrically located below the bound-
ary. Here the upward Lorentz force is particularly obvious as the opposite
currents repel each other. The downward force stems from the tension of
overlying fluxes anchored in the photosphere.

It has been shown for several different configurations of that type that
a suitable quasi-static evolution can reach a catastrophe point. A number
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of earlier models suffered from the restriction that loss of equilibrium was
available only for unrealistically small flux rope radii (Anzer and Ballester,
1990). The reason for this property was analysed by Lin (2001), who con-
cluded that such radius limitation is not necessarily a problem, if there is
no current sheet in the pre-eruption field. In one of the explicit earlier
approaches Isenberg et al. (1993) used boundary conditions that correspond
to a magnetic quadrupole with strength σ located at a distance d below the
photosphere. The quasi-static sequence is generated by gradually reducing
σ, until a point of loss of equilibrium is reached. An example of the bifur-
cation diagram is shown in Fig. 14.9. The diagram indicates that at the
critical point the flux rope suddenly rises. The upper equilibrium (which
would probably not be reached in an overshooting dynamic process) has a
current layer beneath the flux rope as shown in the right panel of Fig. 14.8.
Note that σ controls the boundary condition and therefore can be regarded

Fig. 14.8 Ideal phase of CME eruptions. On the left the upward motion is the con-
sequence of footpoint shearing of a helmet streamer configuration (Pneuman and
Kopp, 1971) leading to magnetic nonequilibrium in a system with rotational in-
variance (Linker and Mikić, 1995). On the right a quasi-static evolution of an ideal
MHD configuration with translational invariance including a pre-existing low-lying
flux rope experiences loss of equilibrium, so that the rope rises (Forbes, 2000a).
In both cases a current layer develops beneath the rising structure. (Reproduced
by permission of the American Astronomical Society (left part) and the American
Geophysical Union (right part).)
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Fig. 14.9 Bifurcation diagram of the eruption model of Isenberg et al. (1993).
(Reproduced by permission of the AAS.)

as an appropriate control parameter. It should be noted that the current
sheet forming as a tangential discontinuity rather than as a thin continuous
current layer could be a consequence of simplifying model assumptions. We
return to this point below.

The rapid rise of a pre-existing flux rope can also be induced by flux
emergence inside or at the edges of a filament channel (Chen and Shibata,
2000).

In several flux rope models mentioned so far the translational invariance
did not allow an escape of the plasmoid to infinity. In the absence of re-
connection in the current layer forming below the rope an escape to infinity
would require infinite energy. This is different for systems with rotational
symmetry, where the energy remains finite. Also, there is an additional ra-
dial force on the flux rope, which in rotational symmetry has the shape of a
torus around the Sun. In the absence of any external forces the torus cannot
be in equilibrium (Section 5.1.7), so that it expands. The Aly–Sturrock con-
straint is not applicable, because not all field lines are anchored at the base.
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It takes 3D modelling to anchor the flux rope at its ends. A flux system
may also emerge from below the photosphere as a magnetically contained
structure (Low, 2001).

Hu et al. (2003) used a relaxation method to find force-free equilibria
numerically. A low-lying flux rope is introduced into a dipolar or partly
open potential field. The configuration either relaxes into a stable equi-
librium without significant rising of the flux rope or the flux rope erupts
catastrophically to infinity forming a corresponding current layer. What
type of behaviour takes place depends on the energy; the eruption occurs if
the process is energetically possible.

Zhang et al. (2005) considered a low-lying flux tube suspended in the
quadrupole field suggested by Antiochos et al. (1999), see Fig. 14.7, using
the same numerical method as Hu et al. (2003). Other than Hu et al. (2003),
they found a parameter regime where increasing toroidal flux of the rope
led to a critical stage where the flux rope rises catastrophically but relaxes
into an equilibrium at a finite height, with a current layer below it (see
Fig. 14.10). Increasing the toroidal flux in the rope further causes a second
catastrophe resulting in an equilibrium at a still larger height. In the ideal
dynamics, the neutral point of the potential field without flux rope turns
into an overlying current layer, which seems to prevent an escape to infinity.
It is expected that a sufficient amount of reconnection at the current layers
will cause the flux rope to escape.

There are also 3D computations concerning twisted flux ropes. As al-
ready mentioned, this offers the possibility of anchoring the rope ends in
the photosphere. The interesting question is, what happens if the twist is
gradually increased by footpoint motion. Several authors (e.g., Amari et al.,
2000) have studied this case by ideal MHD simulations. It was found that
after a quasi-static phase a dynamical phase develops, characterized by a
fast expansion. Maximum energies can amount to a considerable fraction
of the energy of the corresponding fully open configuration. The transition
from a quasi-static to a dynamic evolution may be due to loss of equilibrium
or instability (Chapter 12).

Several eruption models are based on the kink instability (Section 10.2.4)
of a twisted flux tube (Roussev et al., 2003; Kliem et al., 2004). In the
simulation by Kliem et al. (2004), a flux rope that is helically distorted by
the kink instability deforms the ambient coronal field. Current layers form
at the interface with the surrounding medium and below the rising part
of the rope. This approach profits from the 3D flux rope model of Titov
and Démoulin (1999), which includes a background field. As in the 2D case,
reconnection is expected to drive a flare. Without reconnection the eruption
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Fig. 14.10 Two step catastrophe model from Zhang et al. (2005). A flux rope
embedded in the quadrupole field shown in Fig. 14.7 relaxes into different equilibria
for increasing toroidal flux. Shown are the equilibria: (a) right before, (b) right
after the first catastrophe point, (c) right after and (d) at a distance away from
the second catastrophe point. (Reproduced by permission of the AAS.)

saturates at a finite amplitude. In the study by Roussev et al. (2003), also
based on the equilibria of Titov and Démoulin (1999), the regime of loss of
stable equilibrium was investigated. For the flux rope to escape, the arcade
field had to be eliminated.

Fan and Gibson (2004) simulated the emergence of a flux rope. The rope
becomes kink-unstable when a sufficient amount of twist is transported into
the corona. Also in this case a thin current layer forms. The results indicate
that this layer is consistent with being a tangential discontinuity smoothed
by finite numerical resolution.

Some of the flux rope CME simulations, which were already mentioned
(e.g., Linker and Mikić, 1995; Linker et al., 2003; Roussev et al., 2004),
include the presence of the solar wind. A further, largely analytical approach
uses a 3D selfsimilar MHD expansion model (Gibson and Low, 1998). This
model concentrates on the CME propagation into the solar wind, however,
leaving open the process that leads from a quiescent state to the dynamic
evolution. Envisaged possibilities are the loss of prominence material or
increasing twist of the flux rope (Low, 2001). As in other flux rope models
a two-ribbon flare is caused by reconnection of a current layer that forms
beneath the rising structure.
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14.5 Further aspects

14.5.1 Particle acceleration

In this book the discussion focusses on large-scale loading/release processes.
Corresponding fluid models, as widely used for describing solar eruptions,
do not directly address the acceleration of nonthermal particles. This is an
unfortunate limitation, because observations show that in solar eruptions
particles are efficiently accelerated. It has been stated that a considerable
fraction of the magnetic energy, released in an (impulsive) flare, goes into
energetic particles (Miller et al., 1997) with energies far above the thermal
level. The presence of high energy particles is manifested by continuum
emission extending into the GeV regime, as well as by γ-ray line emission.
These observations set strong constraints to flare models (Miller et al., 1997),
but tests would require the inclusion of single particle aspects. The existing
modelling suffers from a severe gap between the MHD eruption models on
the one hand and single particle models or corresponding kinetic theories on
the other (Neukirch et al., 2006).

In an approximate approach one studies single particle orbits in electro-
magnetic fields obtained from MHD simulation, a method that has been
successfully applied to magnetospheric particle acceleration (Chapter 13).
For solar applications Turkmani et al. (2005) have used the fields from MHD
braiding simulations for test particle calculations.

Other test particle studies are based on prescribed field geometries ex-
pected to represent reconnection sites (e.g., Martens and Young, 1990; Wood
and Neukirch, 2005). For a 2D reconnection geometry with a guide field
Wood and Neukirch (2005) included the parallel electric field associated
with finite-B reconnection (Section 11.5.1). As qualitatively expected from
Figs. 11.36 and 11.38, the particle energies were strongly peaked for particles
staying near separatrices. This behaviour was demonstrated by Wood and
Neukirch (2005) for electrons reaching energies above 5 keV.

It is a general property of this and similar models that the number of ac-
celerated particles remains too small to explain observed fluxes. Shock waves
or MHD turbulence can accelerate more particles than reconnection fields,
but they often suffer from other deficiencies (Miller et al., 1997; Neukirch
et al., 2006). Interestingly, in simulations by Roussev et al. (2004) the erup-
tion caused a fast MHD shock wave (Section 3.9), for which diffusive shock
acceleration theory (see, e.g., Schlickeiser, 2003) predicts a distribution of
solar energetic protons with a cutoff energy near 10 GeV.

Despite such promising results, a satisfactory picture of particle accelera-
tion in solar eruptions is not yet available.
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14.5.2 Sun–Earth connection

As a typical CME expands into the interplanetary medium it develops a
magnetic substructure called magnetic cloud (Burlaga et al., 1981). It is
characterized by an enhanced magnetic field strength and low ion tempera-
ture and by a rotation of the magnetic field direction as seen by a stationary
observer. The association between CMEs and magnetic clouds is well es-
tablished. There is evidence even for the presence of prominence material
in magnetic clouds (Burlaga et al., 1998).

Magnetic clouds also are known to play an important role in geomag-
netic activity (Chapter 13). Due to the magnetic field rotation the cloud
provides long periods of southward-pointing IMF, which leads to enhanced
magnetospheric activity.

So here we encounter a fascinating connection between solar and magne-
tospheric activity, which has been referred to as Sun–Earth connection. This
connection aroused considerable research interest. A strong CME eruption
in January 1997 and its consequences were tracked from cradle to grave
(Fox et al., 1998, and references therein). Consistent with the expected
travel time, the CME was observed to leave the lower corona about 4 days
before the magnetic cloud was seen near the Earth. The magnetosphere was
strongly disturbed resulting in a magnetic storm. During a period of about
12 hours with southward-pointing IMF there was intensified substorm and
auroral activity. The fact that the solar surface activity remained low and
no pronounced flare signatures could be associated with the CME underlines
the fact that large flares are not necessarily associated with CMEs. In terms
of the models discussed in this chapter, we might speculate that the absence
of a flare might be a consequence of the overlying flux being small, so that a
significant current layer did not form or a significant current layer may have
formed but it did not reconnect. Alternatively, a flare did occur but it was
difficult to observe (Reeves and Forbes, 2005).

The investigations of Sun–Earth connections are motivated not only from
a basic science point of view but also by its relevance for the safety of human
life and of technical systems. This has led to the notion of space weather
defined as conditions on the Sun and in the solar wind, magnetosphere,
ionosphere and thermosphere that can influence the performance and relia-
bility of space-borne and ground-based technological systems and can endan-
ger human life or health (US National Space Weather Programme, 1995).
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Discussion

Having considered two major applications of space plasma activity, it seems
appropriate to close this part with a discussion of their differences and sim-
ilarities. We first address the role of magnetic reconnection and then sug-
gest a general eruption scheme that covers both magnetospheric and solar
activity.

15.1 The reconnection problem

We begin by considering reconnection in solar activity and then bring in
magnetospheric reconnection for comparison.

As we have seen, models of solar activity involve magnetic reconnection
in one way or the other. In some models reconnection is involved in the
eruption process itself. In addition, reconnection is considered generally as
a potential release process for a field configuration with a thin current layer
below a fast rising object. A CME-associated flare would be the consequence
(e.g., Amari et al., 2000).

Here, and more generally in the context of solar activity, the difficult
question arises of what are the quantitative criteria for reconnection to occur.
Unfortunately, we can only narrow down the problem, a clear-cut answer is
not yet available. We limit the discussion to fast reconnection (Chapter 11).

As magnetic reconnection cannot take place under ideal MHD conditions,
the first point to address is whether the necessary nonideal process is colli-
sional or collisionless. Using the values of the middle column of Table 9.1 as
an example for coronal plasma conditions, we see that the plasma parameter
is of the order of 108, which is a first indication that collisions are extremely
rare. This is confirmed by the large value of the Lundquist number S, which
is larger than 1014. In fact, it takes more than 10 million years for resistive

433
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diffusion (based on (11.1)) to become significant on the assumed overall scale
length of 3 × 107 m.

What about smaller scales? Let us assume a reconnection rate of 0.1 vAB0

(Section 11.3.3). With Ohm’s law (11.3) and (11.32) this means that the
current layer width is of the order of δ = 10L/S, which is smaller than
10−6 m. However, here we have left the regime of validity of resistive MHD,
because that scale is much smaller than the electron mean free path, and
the corresponding time scale (using velocity vA) is much smaller than the
collision time, so that the standard transport theory, based on small mean
free paths, is no longer applicable. It has to be realized that below, say,
600 km, collisional reconnection can safely be excluded for the present para-
meters. (The temporal condition gives the same order of magnitude, which
is a consequence of the thermal electron velocity being of the same order
of magnitude as the Alfvén velocity.) So, in the collisional regime resistive
effects are much too small to allow for fast magnetic reconnection; in other
words, the reconnection must be collisionless. (There is a complicated tran-
sition region between the two regimes, but under coronal conditions that
region can be ignored.)

For laminar processes this immediately puts the length scale in the
regime below the ion inertial length c/ωpi ≈ 7 m or the proton gyrora-
dius rgi ≈ 0.2 m. To avoid stabilization of an undisturbed current sheet
with a normal component Bn, the ratio Bn/B must not exceed rge/L (Sec-
tion 10.5.5), which is of the order of 10−10. If the reconnection is based on
microturbulence, the scale condition can be less restrictive. For considering
the regime of the LHD instability (Section 9.3.3), let us assume that the
drift velocity equals the ion thermal velocity. This gives a length scale of
the order of 100 m. So, under the assumed conditions, current layer scales
of the order of or smaller than 100 m are necessary for reconnection.

As we have seen, in the MHD picture an attractive possibility for the
generation of small current scales would be the formation of tangential dis-
continuities, where formally the current layer becomes infinitely thin (Sec-
tion 3.9). It has been suggested that the shuffling of footpoints of loops or
arcades by subphotospheric motions would lead to nonequilibrium and relax-
ation into states that contain tangential discontinuities (Parker, 1972, 1994;
Low, 1987). Although the general nonequilibrium argument has been chal-
lenged (Van Ballegooijen, 1985; Zweibel and Li, 1987; Arendt and Schindler,
1988), there is ample evidence for thin current layers to form under a variety
of circumstances.
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(a) (b)

(d)(c)

L-L

Fig. 15.1 Current sheets arising from footpoint motion, (a) initial potential field,
(b) magnetic shear causes separatrix sheets, (c) motion toward the separator causes
a separator sheet, (d) more general motions can cause separatrix and separator
sheets simultaneously. (From Priest et al. (2005) by permission of the AAS.)

Tangential discontinuities can be expected to be associated with separa-
trices (Section 8.6.2), resulting from a change in magnetic field connectivity.
In particular, connectivity changes typically arise in fields that contain a
neutral line or a null. If one assumes a process where the end state has re-
laxed into a potential field, one can see that, typically, the end states involve
singular current sheets (Longcope, 2001; Priest et al., 2005). For a system
with translational invariance this is illustrated in Fig. 15.1. If one starts
with a simple x-line configuration (with a guide field admitted), suitable
footpoint motion leads to separatrix or separator sheets or both.

A separator sheet was discussed in Section 8.6.1, see Fig. 8.10. The flux
function (8.130), written as A(x, y, L), can be understood as describing cur-
rent layer formation in response to flux transfer. The flux ψ = A(0, 1, L) −
A(0, 0, L) increases monotonically with L, so that L increases monotonically
with the added flux ψ (Priest et al., 2005). Qualitatively the same process
occurs at separators connecting two nulls (Priest and Forbes, 2000).

Under suitable conditions separatrix sheets can be obtained also in the
cases that include pressure and distributed currents. An example by Zwing-
mann (1987) was discussed above, see Fig. 14.5. The separatrix current
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Fig. 15.2 The magnetic field component in the invariant direction arising from
applying a shear motion to the field line footpoints in the model by Zwing-
mann (1987). The jump at the separatrix is smoothed only by finite grid effects.
(From Platt and Neukirch (1994) with permission of Springer Science and Business
Media.)

layer of that model was analysed in detail by Platt and Neukirch (1994).
It results from the fact that the ‘open’ field lines (intersecting the upper
boundary) do not bend in the direction of the footpoint motion. Fig. 15.2
gives an example showing the profile of the magnetic field component in the
invariant direction (Bz) resulting from footpoint shear obtained by using
Zwingmann’s numerical method. The width of the current layer (rapid vari-
ation of Bz) was found to be determined by the scale of the grid spacing.
So, the authors suggest, that the observed rapid transition approximates
a tangential discontinuity. A corresponding result was found by Fan and
Gibson (2004), as discussed in Section 14.4.

Even the presence of an MHD discontinuity is not sufficient for reconnec-
tion to occur. We have to look inside. If one does so in a particle picture,
one sees a continuous structure, which, however, may be extremely com-
plicated, possibly involving a significant level of fluctuations. The reason
is that (possibly with a few unphysical exceptions) the motion of particles
with a random velocity spread will not be consistent with a sharp field dis-
continuity. Note that even a discontinuous distribution function does not
necessarily imply a discontinuous current density, for example see (6.13). So
we have to expect that the build-up of the current density will stop before
a real discontinuity is reached.
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It has been argued that pressure effects will not stop the current build-up
because of motions of plasma inside the current layer arising from a gradient
parallel to the sheet. This picture is intuitively attractive, but as we have
seen in Section 8.6.3, it is not necessarily applicable in all cases. The ex-
ample discussed there shows how a counteracting pressure gradient can be
sustained in an arbitrarily thin current layer, independent of the presence of
gradients along the sheet. On the other hand, pressure gradient reduction
by parallel flow may well be possible in other situations. Adiabatic processes
with losses or longitudinal expansion can also lead to extremely thin current
sheets (Section 8.2). A general conclusion does not seem to be available
without specifying details of the configuration.

This can be illustrated for the Earth’s magnetosphere. The magnetopause,
which is a tangential discontinuity in the MHD descriptions (Chapter 13),
has the possibility to adjust the pressure, at least on the open field lines,
in the outer parts of the sheet. As a consequence, the thickness reduces
down to the intrinsic particle scales, see Table 2.2, which is necessary for
magnetopause reconnection to occur. The near-Earth tail current layer is
different. It is located on closed field lines and, due to pressure forces, it
settles down to thicknesses that, under quiescent conditions, can be much
larger than the particle scales. Further flux transfer eventually leads to
thin current layers, forming inside the plasma sheet, at which eventually the
reconnection starts.

In resistive MHD computations the choice of the Lundquist number S

and the grid spacing is a compromise between physical and numerical re-
quirements. If the physical resistivity is set to zero, the resistive dissipation
results from the finite grid (unless special measures are taken (Mikić and
Linker, 1994; Hu, 2004)). Thus, for the collisionless plasmas discussed here,
resistive reconnection simulations must be understood as representing col-
lisionless reconnection. That this is possible, at least in some crude sense,
has been demonstrated by comparative studies (Section 11.3.3). Although
the details depend on the circumstances (e.g., whether or not the resistivity
is localized), a rough guide line for an appropriate regime of S is obtained
by choosing the value of S, such that reconnection would take place at a
sheet width of the critical length scale, i.e., 100 m for the corona. This would
set S to 3 × 105 and would require that the grid spacing must resolve this
length at least in the region where reconnection takes place. For numerical
dissipation the effective Lundquist number becomes L/Lgrid, as the scale of
a thinning structure reaches the grid scale Lgrid (Antiochos et al., 1999).
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In cases where a current layer settles down at a scale that is too large to
allow for significant reconnection, external perturbations might still initiate
the reconnection locally. Note that under suitable conditions an external
pulse of finite duration can initiate an eruptive reconnection process, which
continues to evolve well after the end of the pulse (Section 11.3.3). Also,
at bifurcation points small perturbations can have large effects (see Sec-
tion 12.3).

In the Earth’s magnetosphere the understanding of reconnection, although
still incomplete, enormously profited from in situ observations, resolving
particle scales (Chapter 13), while it has proven much more difficult to assess
the large-scale dynamics from spacecraft observations. Regarding reconnec-
tion in the solar atmosphere, one is faced with the opposite situation: there
are the excellent global pictures (Section 2.2) on the one hand, and severely
limited knowledge about the extremely small scales on which reconnection
is expected to be active on the other.

15.2 A general eruption scheme

The two application areas that we have discussed in some detail, magne-
tospheric and solar activity, are quite different in many ways. Not only do
the plasma properties show substantial differences (Table 9.1), but also the
overall geometry, as well as the role of gravity. As we have seen, these dif-
ferences manifest themselves in different properties of reconnection. Never-
theless, in both cases the models use the same basic building blocks, namely
quasi-static MHD evolution, formation of thin current layers, MHD insta-
bility or loss of equilibrium, and magnetic reconnection. So, let us now
concentrate on the common aspects.

As we have seen, a common property of magnetospheric and coronal plas-
mas is that, to a very good approximation, they are ideal on the overall
length and time scales (Table 9.1). We have also discussed that this poses
significant constraints on the energy release from closed flux regions on those
scales (see Sections 3.8.2 and 11.4.2). Efficient release requires breakdown
of magnetic line conservation, which most efficiently is provided by recon-
nection (Chapter 11). But reconnection, requiring nonideal effects, works
only on small scales, typically, at thin current layers (Chapter 8). Viewed
in this way the common relevance of thin layers and reconnection for mag-
netospheric and solar activity is less surprising.

Nevertheless, there remain important consequences of the fact that the
coronal magnetic field has a much more involved large scale structure than
the magnetosphere. One of the consequences is that ideal instabilities and
ideal loss of equilibrium is more commonly available on the Sun than in the
magnetosphere (Section 10.2.5).
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Energy loading, largely magnetic, 
from external source, slow 
internal evolution on large scales

Energy loading, largely magnetic, 
from external source, slow 
internal evolution on large scales

Ideal instability or 
loss of equilibrium

Formation of thin current layer(s) leading 
to nonidealness or loss of equilibrium

Magnetic reconnection

Energy release into plasmoid (rope) ejection, 
plasma flows, heating, particle acceleration, 
gravitational potential energy; relative weight 
depending on circumstances 

Reconnection path

Ideal dynamic reconfiguration,
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Fig. 15.3 Scheme illustrating possible paths of plasma eruptions.

Fig. 15.3 is an attempt to put the magnetospheric and solar eruption
models, discussed in Chapters 13 and 14, into a unifying scheme. The
path shown on the right illustrates the prototype of eruptions based on
reconnection. It applies to the magnetospheric substorm model discussed in
Section 13.3. The loading phase is the substorm growth phase (which is ideal
by considering magnetopause reconnection as an external source process);
the second step addresses thin current sheet formation in the plasma sheet,
which leads to the onset of reconnection, initiating energy release in the
substorm expansion phase. As we concentrate here on loading and eruption,
the recovery phase is not included in the scheme.

The reconnection path also applies to several models of solar flares (e.g.,
Inhester et al., 1992), including models based on tether cutting (e.g., Moore
and Roumeliotis, 1992). The essential difference with respect to the mag-
netospheric case is that the loading in the magnetosphere is due to flux
transfer while it is largely footpoint motion for coronal eruptions, but the
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basic principles are the same. As discussed in the previous chapter, this type
of model, however, seems to be restricted to flares that are not associated
with CMEs. (If it was, the process would be in conflict with the CME/flare
timing constraint, see Chapter 14.)

On the ideal path (left side of Fig. 15.3) the quasi-static loading is ter-
minated by an ideal loss of stable equilibrium. As discussed in the previous
chapter, ideal loss of stable equilibrium is an element of many solar activity
models (Isenberg et al., 1993; Mikić and Linker, 1994; Amari et al., 2000; Hu
et al., 2003; Roussev et al., 2003; Fan and Gibson, 2004; Zhang et al., 2005;
and others). However, a complete eruption process requires the inclusion
of reconnection in all models. This is indicated by the links in Fig. 15.3,
generating compound paths. One of the compound paths, generated by
link 1, describes an ideal process (such as ideal loss of stable equilibrium)
followed by a nonideal process (such as a large flare based on reconnection
of a trailing current layer associated with a CME). On the other compound
path (link 2) both processes (loss of stable equilibrium and subsequent cur-
rent sheet dynamics) require reconnection. The breakout model (Antiochos
et al., 1999; MacNeice et al., 2004) is an example (if reconnection of the
trailing current layer is included). The scheme does not distinguish between
ideal loading and loading with reconnection being important. Therefore,
the flux cancellation model of Linker et al. (2003) is counted as starting on
the ideal path. Note that the main purpose of the links concerns the possi-
ble reconnection at the trailing current layer that forms behind an ejected
structure in a solar eruption (Fig. 14.8).

Observations indicate that for CMEs the links are not always of equal im-
portance. For instance, the well studied Sun–Earth connection event (Fox
et al., 1998) did not exhibit a large flare (Section 14.5.2). This may be due
to the fact that, as we have seen in Section 15.1, the occurrence of reconnec-
tion requires rather restrictive conditions. Alternatively, the magnetic field
strength in the erupting region may play a decisive role (Reeves and Forbes,
2005).

Hopefully, the reader found that the theoretical tools of Parts II and III
were helpful for providing a deeper understanding of major aspects of space
plasma activity.

However, important questions remained unanswered. This applies, for
instance, to the competition between quasi-steady convection and substorms
in the magnetosphere and to the precise conditions under which current
sheets erupt by reconnection in both magnetospheric and solar contexts.
So, in this fascinating research area there remain great challenges for future
observations, analytical theory and simulations.



Appendix 1

Unified theory: details and derivations

Here we consider the theory of steady states which includes pressure
anisotropy, parallel flow and a gravity force. We first treat the momentum
equation in a general form covering these cases and derive the associated
equations for the magnetic field. Then we show that the field equations pos-
sess a variational principle. Finally, we incorporate mass and entropy con-
servation. In all cases the magnetic field is represented by Euler potentials

B = ∇α ×∇β (A1.1)

(see Section 5.1.2).

The momentum equation

We consider a momentum equation that has the form

∇ ·M− ρ∇ψ = 0 (A1.2)

with the tensor M given by

M = R I + SBB, (A1.3)

where R and S are scalar functions, and I is the unit tensor, ρ density and
ψ the external gravity potential.

This form of momentum conservation is sufficiently general to allow for
incorporating pressure anisotropy and plasma flow parallel to the magnetic
field, in addition to the magnetic stresses.

In the first step the external gravity force is ignored, such that we are
dealing with a momentum equation of the form

∇ ·M = 0 . (A1.4)

441
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In the second step the gravity force is taken into account.

The steady state potential and the field equations

Using the form (A1.3) of M in (A1.4) we find

∇R + B · ∇(SB) = 0 . (A1.5)

With the vector identity

B × (∇× SB) = B2∇S + SB∇B − B · ∇(SB) (A1.6)

we obtain from (A1.5)

∇R − (∇α ×∇β) × (∇× SB) + B2∇S + SB∇B = 0, (A1.7)

where in one instant (A1.1) was used.
We now reinterpret the functions R and S locally as functions of α, β, B

such that, for instance, ∇R may be expressed as

∇R = Rα∇α + Rβ∇β + RB∇B, (A1.8)

where the subscripts indicate partial differentiation. Then, expanding the
triple vector product, we find from (A1.7)

Rα∇α + Rβ∇β + RB∇B −∇β ∇α · (∇× SB) + ∇α∇β · (∇× SB) +

B2Sα∇α + B2Sβ∇β + B2SB∇B + SB∇B = 0. (A1.9)

Excluding the trivial case where B · ∇B vanishes identically (this case may
be treated in a more direct way), the gradients of α, β, B can be regarded
as linearly independent, which implies

Rα + ∇β · (∇× SB) + B2Sα = 0 (A1.10)

Rβ −∇α · (∇× SB) + B2Sβ = 0 (A1.11)

RB + B2SB + SB = 0 . (A1.12)

These are two equations for α and β and a condition on the choice of R and
S. The latter implies that we can replace R and S by a single independent
function

T = R + B2S , (A1.13)

which is related to M by T = B ·M·B/B2. Then S and R can be expressed
by T as
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S =
TB

B
(A1.14)

R = T − BTB . (A1.15)

In fact, (A1.12) and (A1.13) are equivalent to (A1.15) and (A1.14). The
function T plays a central role in the present formulation and we refer to T

as the steady state potential. In the following we will express the steady state
problem in terms of T alone. Equation (A1.14) will then pose a constraint
on the form of the function T (α, β, B). The relation (A1.15) is then satis-
fied automatically. There may be further constraints, e.g., resulting from
additional conservation laws.

Using the final form of T (α, β, B), where all constraints are incorporated,
we can rewrite the field equations (A1.10) and (A1.11) to obtain the final
field equations for the Euler potentials as functions of r:

∇β ·
[
∇× (

TB

B
∇α ×∇β)

]
+ Tα = 0

−∇α ·
[
∇× (

TB

B
∇α ×∇β)

]
+ Tβ = 0 ,

(A1.16)

where B is understood as |∇α ×∇β|.
We now incorporate the gravity force −ρ∇ψ. For this purpose we replace

R, S formally by R̂, Ŝ, which are functions of the four variables α, β, B, ψ.
We proceed in essentially the same way as we did above without gravity.
Instead of (A1.9) we obtain

R̂α∇α + R̂β∇β + R̂B∇B −∇β ∇α · (∇× ŜB) + ∇α∇β · (∇× ŜB) +

B2Ŝα∇α + B2Ŝβ∇β + B2ŜB∇B + ŜB∇B +

(R̂ψ + B2Ŝψ − ρ)∇ψ = 0 . (A1.17)

Defining T̂ = R̂ + B2Ŝ and specifying the ψ-dependence of T̂ by

∂T̂

∂ψ
= ρ , (A1.18)

we find analogous to (A1.14) and (A1.15)

Ŝ =
T̂B

B
(A1.19)

R̂ = T̂ − BT̂B (A1.20)
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and the field equations in the form

∇β ·
[
∇×
(

T̂B

B
∇α ×∇β

)]
+ T̂α = 0

−∇α ·
[
∇×
(

T̂B

B
∇α ×∇β

)]
+ T̂β = 0 .

(A1.21)

The constraints on T̂ are (A1.18), (A1.19) together with any additional
constraints (conservation laws etc.). Using T̂ with (A1.19), the relation
(A1.20) is satisfied automatically.

The field equations (A1.21) are the same as (A1.16) except that T is re-
placed by T̂ . As before, they are partial differential equations for α(r), β(r),
where B is understood as |∇α × ∇β| and ψ as the known gravity poten-
tial ψ(r).

The derivation of (A1.21) from (A1.17) requires a remark. In (A1.17) only
three of the four gradients ∇α,∇β,∇B,∇ψ can be regarded as independent.
Accordingly, we set the coefficients of ∇α,∇β and ∇B to zero on the account
of independency. The coefficient of ∇ψ is set to zero for a different reason:
the vanishing of that coefficient specifies the ψ-dependence of T̂ , which was
open up to that point. The idea behind that procedure was borrowed from
the technique of using Lagrange multipliers.

Variational principle

The steady state potential T , or T̂ in the presence of gravity, not only
governs the differential representation of the fields, but also a variational
formulation. For a negligible gravity force, one finds that the steady states
satisfying (A1.16) can be derived from the variational principle

δ

∫
Td3r = 0, (A1.22)

where the independent functions to be varied are the Euler potentials α, β,
which assume fixed values on the boundary of the domain of integration.
Thus, the variations δα and δβ vanish at the boundary. The magnetic field
magnitude B is understood as |∇α × ∇β|. All constraints are assumed to
be incorporated.

We briefly verify that the Euler–Lagrange equations associated with
(A1.22) are the field equations (A1.16). Since T is given as a function
of α, β, B we obtain from (A1.22)
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∂T

∂α
δα +

∂T

∂β
δβ +

∂T

∂B
δB

)
d3r = 0 . (A1.23)

Here, δB has to be expressed by the independent variations δα and δβ. To
do this we write

∂T

∂B
δB =

TB

B
δ

(
B2

2

)
=

TB

B
B · δB

=
TB

B
B · ∇δα ×∇β +

TB

B
B · ∇α ×∇δβ , (A1.24)

where we have used (A1.1).
With the help of the identity

∇ · (δαTB

B
B ×∇β) = δα∇β · ∇ × TB

B
B − TB

B
B · ∇δα ×∇β (A1.25)

and a corresponding identity for terms involving δβ, we find from (A1.24)

∂T

∂B
δB = δα∇β · ∇ × TB

B
B −∇ · (δα TB

B
B ×∇β)

− δβ∇α · ∇ × TB

B
B + ∇ · (δβ TB

B
B ×∇α). (A1.26)

Inserting (A1.26) into (A1.23) and using Gauss’s theorem, we get∫
D

[(
Tα + ∇β · ∇ × TB

B
B

)
δα +

(
Tβ −∇α · ∇ × TB

B
B

)
δβ

]
d3r

+
∮

S

(
TB

B
n · B ×∇α δβ − TB

B
n · B ×∇β δα

)
d2S = 0 , (A1.27)

where n denotes the outward-pointing unit normal vector of the surface
S bounding the domain D. The surface integral vanishes because of the
boundary conditions. Since α and β are varied independently, the brackets
multiplying δα and δβ in the integrand of the volume integral have to vanish,
which gives the field equations (A1.16).

In the presence of an external gravity potential ψ one proceeds in the
same way, however using the variation functional T̂ (α, β, B, ψ) instead of
T (α, β, B). Since the potential ψ is externally prescribed, it is not included
in the variation procedure. As before, the condition (A1.18) is simply added
to determine the ψ-dependence of T̂ . Thus, one finds the field equations in
the form (A1.21).
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Examples

For several simple plasma models the steady state potential T is readily ob-
tained from the momentum equation. For instance, in magnetohydrostatics
without gravity one finds from the momentum equation (A1.2) that

R = −p − B2

2µ0
, S =

1
µ0

, T =
B2

2µ0
− p. (A1.28)

The relation (A1.14) gives pB = 0, such that p = p(α, β). The field equations
(A1.16) reduce to (5.23) and (5.24).

For a static case with a (one-fluid) CGL pressure tensor (3.69) one obtains

R = −p⊥ − B2

2µ0
, S =

1
µ0

−
p|| − p⊥

B2
, T =

B2

2µ0
− p||. (A1.29)

Here, (A1.14) gives

p|| − p⊥ = B
∂p||
∂B

. (A1.30)

The field equations are obtained from (A1.16).
In the presence of parallel plasma flow or gravity, the problem of finding

T or T̂ , respectively, is more complicated due to further constraints. Here
we illustrate the procedure of determining T̂ for the case of scalar pressure,
parallel plasma flow, entropy conservation and gravity. This is the model
(4.3)–(4.9) specialized for flow parallel to the magnetic field.

The presence of parallel plasma flow requires supplementing the steady
state momentum equation by conservation of mass

∇ · (ρv) = 0, (A1.31)

where v = v||B/B is the flow velocity, and by an energy or entropy equation,
which for an ideal plasma may have the form of the adiabatic law

v · ∇
(

p

ργ

)
= 0 . (A1.32)

These additional constraints must be incorporated into the formalism de-
scribed above. To do that, we write the momentum equation (A1.2) as

∇ ·
(
−
(

p +
B2

2µ0

)
I +

(
1 −

µ0ρv2
||

B2

)
BB

µ0

)
− ρ∇ψ = 0 , (A1.33)

such that

R̂ = −p − B2

2µ0
, Ŝ =

1
µ0

−
ρv||

2

B2
(A1.34)
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and thus

T̂ =
B2

2µ0
− p − ρv||

2. (A1.35)

All observables are understood as functions of α, β, B, ψ with

ρ = T̂ψ , (A1.36)

which determines the function ρ(α, β, B, ψ). We integrate (A1.31) to obtain

ρv||
B

= m(α, β) , (A1.37)

where m(α, β) is an arbitrary function. Similarly, (A1.32) implies that p/ργ

is an arbitrary function of α and β. For convenience, let us use a more
general pressure law of the form

p = P (ρ, α, β) , (A1.38)

where for the present purpose P (ρ, α, β) does not have to be specified. In-
serting (A1.37) and (A1.38) into (A1.35) we obtain

T̂ =
B2

2µ0
− P (ρ, α, β) − m2B2

ρ
. (A1.39)

Now (A1.36) is used to find

−Pρρψ +
m2B2

ρ2
ρψ = ρ . (A1.40)

This equation is integrated to give

ψ +
B2m2

2ρ2
+
∫ ρ Pρ

ρ
dρ = C(α, β, B) . (A1.41)

The condition (A1.19), evaluated by using (A1.39) and (A1.41) gives
∂C/∂B = 0 such that (A1.41) finally reads

ψ +
B2m2

2ρ2
+
∫ ρ Pρ

ρ
dρ = C(α, β) , (A1.42)

from which one determines ρ(α, β, B, ψ). Equation (A1.42) is Bernoulli’s
equation, which holds in each flux tube. Inserting ρ(α, β, B, ψ) into (A1.35)
gives ˆT (α, β, β, ψ) in its final form. By this procedure the problem is reduced
to solving the field equations (A1.21), just as in the simple MHS case.
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Symmetric states

Here we explore how the theory of symmetric magnetohydrostatic states
with an isotropic pressure tensor generalizes in the present unified picture.
In particular, we are interested in the unified form of the Grad–Shafranov
equation for translational and rotational invariance and for the more general
case of helical invariance. For simplicity, we do not take into account an
external gravity force. However, at the end it is pointed out, how such a
force is readily included.

We begin with translational invariance with respect to the Cartesian z-
coordinate. In Section 5.2.1 it is shown that in this case the magnetic field
may be written as

B = ∇A(x, y) × ez + Bz(x, y)ez , (A1.43)

which can be expressed by the Euler potentials

α = A(x, y) (A1.44)

β = z + β̃(x, y) , (A1.45)

where

Bz = ez · ∇A ×∇β̃ . (A1.46)

The invariance requires that the steady state potential T is independent of
z which implies T = T (A, B).

To discuss the field equations, we consider the identity

∇× TB

B
B = −∇ ·

(
TB

B
∇A

)
ez + ∇

(
TB

B
Bz

)
× ez . (A1.47)

Using (A1.47) in the field equations (A1.16) gives

−∇ ·
(

TB

B
∇A

)
+ ∇β̃ · ∇

(
TB

B
Bz

)
× ez + TA = 0 (A1.48)

∇A · ∇
(

TB

B
Bz

)
× ez = 0 . (A1.49)

Here, (A1.49) implies that BzTB/B is a function only of A,

Bz =
BG(A)

TB
, (A1.50)

where G(A) is arbitrary. Using (A1.50) in (A1.48) gives the unified Grad–
Shafranov-type equation for translational invariance in unified form,
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−∇ ·
(

TB

B
∇A

)
− B

TB
G(A)G′(A) + TA = 0 . (A1.51)

For magnetohydrostatics this equation reduces to (5.78).
In an analogous way one finds the unified Grad–Shafranov equation for

rotational invariance

−1
r

∂

∂r

(
TB

rB

∂A

∂r

)
− 1

r2

∂

∂z

(
TB

B

∂A

∂z

)
− BK(A)K ′(A)

r2TB
+ TA = 0 (A1.52)

and

Bφ =
BK(A)

rTB
(A1.53)

where K(A) is arbitrary.
The corresponding results for helical invariance (Section 5.2.4) are

1
r

∂

∂r

(
r

ν2 + ω2r2

TB

B

∂A

∂r

)
+

1
r2

∂

∂η

(
TB

B

∂A

∂η

)

− 2νωL(A)
(ν2 + ω2r2)2

+
BL(A)

TB(ν2 + ω2r2)
dL(A)

dA
− TA = 0 (A1.54)

and

B3 =
BL(A)

TB
, (A1.55)

L(A) arbitrary.
The inclusion of an external gravity force is easily possible in the same way

as in the general 3D case. The potential T̂ receives an additional dependence
on the gravity potential ψ, indicated by the hat label. The generalized Grad–
Shafranov equation (A1.54) holds with T replaced by T̂ .

In all cases treated so far the plasma flow is aligned with the magnetic field.
In a symmetric case a generalization is possible, allowing for a perpendicular
component also. In Cartesian coordinates one replaces the stress tensor
(A1.3) by

M = R I + SBpBp + V (Bpez + ezBp) + Uezez , (A1.56)

where Bp is the poloidal component (projection in the x, y-plane). The
functions R, S, V, U are understood as functions of A, Bp or A, Bp, ψ, when
an external gravity potential ψ is taken into account. One defines T =
R + B2

pS and obtains

−∇ ·
(

TBp

Bp
∇A

)
+ TA = 0 (A1.57)
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together with the condition that V depends on A only. As before, explicit
constraints can be incorporated into the final form of T . A necessary con-
straint is TBp/Bp = S with Tψ = ρ added in the presence of gravity, the
∧ symbol being ignored here for simplicity. The stress tensor (A1.56), for
instance, allows choosing a velocity field with ∇× (v ×B) = 0, such that v

is not necessarily parallel to B.



Appendix 2

Variational principle for collisionless plasmas

Here we use the energy method described in Section 10.2.1 to obtain suffi-
cient stability criteria for two-dimensional collisionless plasmas.

All observables are y-independent and the equilibrium distribution func-
tion of particle species s is of the form of

fs0 = Fs(Hs0, P ) , (A2.1)

where Hs0 = (msw
2
x + msw

2
z)/2 + ψs0 with

ψs0 =
1

2ms
(P − qsA0)2 + qsφ (A2.2)

is the one-particle Hamiltonian and P the y-component of the canonical
momentum, which is treated as an independent variable. Number density is
ns =

∫
fsdτs with dτs = dwxdwzd(P/ms). We assume ∂Fs/∂Hs0 < 0 and

consider a quasi-neutral plasma.
The equilibrium magnetic field has the form B0 = ∇A0(x, z)× ey, where

A0 satisfies the Grad–Shafranov equation (6.24). Unlike the equilibrium,
the perturbations may involve a non-vanishing By-component. There is no
energy flux across the boundary.

Consider energy conservation (3.40), specialized for quasi-neutrality and
integrated over the selected domain

W =
∑

s

∫ (ms

2
(w2

x + w2
z) +

1
2ms

(P − qsA)2
)
fsdΩs

+
1

2µ0

∫
B2 dxdz ,

(A2.3)

where dΩs = dxdzdτs and W is a constant.
Expanding the time-dependent quantities to second order in a power series

with respect to a parameter that measures the linear perturbation A1 of the

451
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flux function, we find∑
s

∫ [(ms

2
(w2

x + w2
z) +

1
2ms

(P − qsA0)2
)
(Fs + fs1 + fs2)

− qs

ms
(P − qsA0)A1(Fs + fs1) +

q2
s

2ms
A2

1Fs

]
dΩs

+
1

2µ0

∫ (
B2

0 + 2B0 · B1 + B2
1

)
dxdz = W0 + W1 + W2 . (A2.4)

The zeroth order of (A2.4) simply gives the equilibrium energy W0. The
first order contribution vanishes implying W1 = 0. This is shown in two
steps, with the second step being postponed to after the equation (A2.9).
In the first step we demonstrate that two of the linear terms cancel each
other:∑

s

∫ (
− qs

ms
(P − qsA0)A1Fs

)
dΩs +

1
µ0

∫
B0 · B1dxdz

=
∫ (

− j0A1 +
1
µ0

∇A0 · ∇A1

)
dxdz

=
∫ (

− j0A1 −
1
µ0

∆A0 A1

)
dxdz = 0 .

(A2.5)

Here, the expression for the equilibrium current density was used in the first
term, integration by parts (with A1 = 0 on the boundary) was applied to
the second term and the Grad–Shafranov equation was used to obtain the
final result. Thus, we find from (A2.4)

∑
s

∫ (
Hs0(fs1 + fs2) −

qs

ms
(P − qsA0)A1fs1 +

q2
s

2ms
A2

1Fs

)
dΩs

+
1

2µ0

∫ (
(∇A1)2 + B2

y1

)
dxdz = W2 . (A2.6)

The equilibrium kinetic energy of a particle of species s was replaced by Hs0,
which is possible because the assumed quasi-neutrality implies∑

s

qs

∫
fsdτs = 0 (A2.7)

to all orders, such that the term involving φ0 drops out of (A2.6).
The term involving Hs0 in (A2.6) can be put in a more appropriate form

by using the fact that fs is a solution of the Vlasov equation. Since y

is an ignorable coordinate, the Vlasov equation and thus Liouville’s theo-
rem holds in four-dimensional phase space (x, z, wx, wz) separately. This
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implies that during the time-evolution the values of the distribution func-
tion fs(x, z, wx, wz, P, t) are incompressibly redistributed in that four-
dimensional phase space for any value of P . This property implies that∫

G(fs, P )dΩs =
∫

G(Fs, P )dΩs (A2.8)

for arbitrary functions G(fs, P ).
In first order (A2.8) gives∫

Xs(Hs0, P )fs1dΩs = 0, Xs(Hs0, P ) arbitrary, (A2.9)

implying that the remaining linear term of (A2.6) vanishes. In second order
(A2.8) gives∫ (

∂G(Fs, P )
∂Fs

fs2 +
1
2

∂2G(Fs, P )
∂F 2

s

f2
s1

)
dΩs = 0 . (A2.10)

The particular choice ∂G(Fs, P )/∂Fs = Hs0(Fs, P ), where Hs0(Fs, P )
is obtained by solving Fs(Hs0, P ) for Hs0 (uniqueness being ensured by
∂Fs/∂Hs0 < 0), leads to∫

Hs0fs2dΩs = −
∫

f2
s1

2∂Fs/∂Hs0
dΩs , (A2.11)

such that from (A2.6) one finds second-order energy conservation as

W2 =
1
2

∑
s

∫ (
− f2

s1

F ′
s

− 2
qs

ms
(P − qsA0)A1fs1 +

q2
s

ms
A2

1Fs

)
dΩs

+
1

2µ0

∫ (
(∇A1)2 + B2

y1

)
dxdz , (A2.12)

where we have used the abbreviation

F ′
s =

∂Fs

∂Hs0
. (A2.13)

The final expression for W2 is obtained by rewriting (A2.12) as

W2 = −1
2

∑
s

∫
1
F ′

s

(
fs1 +

qs

ms
(P − qsA0)A1F

′
s

)2dΩs

+
1
2

∫ ((∇A1)2

µ0
− ∂j0

∂A0
A2

1 +
B2

y1

µ0

)
dxdz , (A2.14)
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where in view of (6.13) we have used

∂j0

∂A0
= −
∑

s

∫ ( q2
s

m2
s

(P − qsA0)2F ′
s +

q2
s

ms
Fs

)
dτs . (A2.15)

The form of W2 as given by (A2.14) allows us to derive stability criteria
as described in Section 10.2.1 where the energy perturbation is decomposed
into two terms (see (10.26))

W2 = T2 + V2 . (A2.16)

Here, it is not appropriate to identify T with the kinetic energy of bulk flow
because the bulk flow velocity is not a variable appearing in the functional
W2. Fortunately, the only formal property that is needed for applying the
method described in Section 10.2.1 is that T is non-negative. For the sta-
bility definition (10.6) to make sense, T must be a sizable part of the energy
involved in the dynamic evolution. In the present case a suitable decompo-
sition of the form (A2.16) is obtained by minimizing W2 with respect to fs1

and By1 for a fixed perturbation A1, which generates the functional V2(A1),

V2(A1) = min
(f1,By1)

W2 (A2.17)

and T2 then follows from (A2.16). By construction, T2 is non-negative.
The further procedure depends on the constraints that one imposes on

the minimization.

No constraints

In the absence of any constraints the minimization of W2 simply sets the
terms involving fs1 and By1 in (A2.14) to zero, which gives

V2 =
1
2

∫ ((∇A1)2

µ0
− ∂j0

∂A0
A2

1

)
dxdz (A2.18)

T2 = −1
2

∑
s

∫
1
F ′

s

(
fs1 +

qs

ms
(P − qsA0)A1F

′
s

)2
dΩs

+
1

2µ0

∫
B2

y1 dxdz . (A2.19)

By construction T2 is positive (note that F ′
s < 0). Positive definite V2 implies

stability.
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Phase space condition and quasi-neutrality

Here the constraints are the phase space condition (A2.9) together with the
quasi-neutrality condition (A2.7) evaluated to first order. The former will be
rewritten by expressing the integration over velocity space by an integration
over Hs0 and P ,∫

Xs(Hs0, P )fs1dΩs

=
2π

m2
s

∫
Xs(Hs0, P )dHs0dP

∫
ψs0≤Hs0

fs1dxdz = 0 . (A2.20)

The Hs0, P -integration can be stripped because X(Hs0, P ) is arbitrary. The
resulting condition is written as 〈fs1〉s = 0, where 〈...〉s denotes an average
defined as

〈...〉s =

∫
ψs0≤Hs0

... dxdz∫
ψs0≤Hs0

dxdz
. (A2.21)

The average 〈...〉s depends on Hs0, P and s. Thus, the functions fs1 are
subject to the constraints

〈fs1〉s = 0 (A2.22)∑
s

∫
qsfs1dτs = 0 . (A2.23)

The minimization of (A2.14) with respect to fs1 and By1 subject to con-
straints (A2.22) and (A2.23) is expressed as

δ

(
− 1

2

∑
s

∫
1
F ′

s

(
fs1 +

qs

ms
(P − qsA0)F ′

sA1

)2dΩs

+
∑

s

∫ (
Ys(Hs0, P )fs1 + φ1(x, z)qsfs1

)
dΩs

+
1
2

∫ ((∇A1)2

µ0
− ∂j0

∂A0
A2

1 +
B2

y1

2µ0

)
dxdz

)
= 0 . (A2.24)

Here, Ys(Hs0, P ) and φ1(x, z) play the role of Lagrangian multipliers associ-
ated with the constraints. That these parameters are functions rather than
constants reflects the fact that we are dealing with infinite sets of constraints.
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Carrying out the variation procedure with A1 kept fixed we find from
(A2.24) for the minimizing functions f

(m)
s1 and B

(m)
y1

f
(m)
s1 = F ′

s(ψs1 + Ys) (A2.25)

B
(m)
y1 = 0 , (A2.26)

with

ψs1 = − qs

ms
(P − qsA0)A1 + qsφ1 . (A2.27)

The Lagrangian multipliers Y and φ1 are determined by inserting (A2.25)
into the constraints (A2.22) and (A2.23). From (A2.22) one obtains

Ys = −〈ψs1〉s , (A2.28)

such that

f
(m)
s1 = F ′

s(ψs1 − 〈ψs1〉s) . (A2.29)

Using (A2.29) in (A2.23) gives an equation for φ1,∑∫
qsF

′
s(ψs1 − 〈ψs1〉s)dτs = 0 . (A2.30)

Inserting (A2.26) and (A2.29) into (A2.14) we find

V2 =
1
2

∑
s

∫ (
− F ′

sq
2
sφ

2
1 + 2F ′

sqsφ1〈ψs1〉s − F ′
s〈ψs1〉s2

)
dΩs

+
1
2

∫ ((∇A1)2

µ0
− ∂j0

∂A0
A2

1

)
dxdz , (A2.31)

where φ1 is determined by (A2.30).
By considering marginal states it can be shown that φ1 can be interpreted

as the perturbation of the electric potential (Schindler et al., 1973), which
explains the notation.

Using (A2.30) we rewrite (A2.31) in the form

V2 =
1
2

∫ ((∇A1)2

µ0
− dA2

1 + 2bA1φ1 + aφ2
1

)
dxdz

− 1
2

∑
s

∫
F ′

s〈ψs1〉s2dΩs , (A2.32)
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where again for each A1 the potential φ1 is determined by (A2.30). The
quantities a, b, d are defined as

a =
∂σ0

∂φ0
=
∑

s

as, as =
∫

q2
sF

′
sdτ (A2.33)

b =
∂σ0

∂A0
= − ∂j0

∂φ0
=
∑

s

bs, bs = −
∫

q2
s

ms
(P − qsA0)F ′

sdτ (A2.34)

d =
∂j0

∂A0
, (A2.35)

with ∂j0/∂A0 given by (A2.15).
So far only first-order variation calculus was applied to W2. It remains to

confirm that V2 corresponds to a minimum of W2 rather than to a maximum
or a saddle point. In fact, the difference W2(f

(m)
s1 + δfs1, B

(m)
y1 + δBy1) − V2

is easily shown to be positive for (δfs1)2 + (δBy1)2 �= 0. Remember-
ing that the linear term in (A2.24) vanishes, one finds for that difference
−1

2

∑
s

∫
(δfs1)2/F ′

sdΩs +
∫

(δBy1)2/2µ0dxdz which is positive because of
F ′

s < 0. This confirms that W2 assumes a minimum at (f (m)
s1 , B

(m)
y1 ) and

that T2 = W2 − V2 is positive.
The expression (A2.32) can be simplified further by substituting

φ1 =
dφ0

dA0
A1 + ϕ1 , (A2.36)

where the fact has been used that φ0 is a function of A0 alone, which is
implied by quasi-neutrality. The derivative dφ0/dA0 is found from the un-
perturbed quasi-neutrality condition σ0(A0, φ0) = 0. Differentiating this
equation with respect to A0 gives

dφ0

dA0
= − b

a
. (A2.37)

Using (A2.36) with (A2.37) in (A2.32) gives

V2 =
1
2

∫ ((∇A1)2

µ0
− dj0

dA0
A2

1 + aϕ2
1

)
dxdz

− 1
2

∑
s

∫
F ′

s〈ψs1〉s2dΩs , (A2.38)

where dj0/dA0 = d + b2/a was used. The perturbed quasi-neutrality condi-
tion (A2.7) becomes

aϕ1 −
∑

s

qs

∫
F ′

s〈ψs1〉sdτ = 0 . (A2.39)
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At this point it is convenient to introduce the following definitions:

Ψs1 =
ψs1

qs
, (A2.40)

[[...]] =
∑

s

∫
... q2

sF
′
sdτ∑

s

∫
q2
sF

′
sdτ

, (A2.41)

[[...]]s =
∫

... q2
sF

′
sdτ∫

q2
sF

′
sdτ

. (A2.42)

With these definitions (A2.38) and (A2.39) assume the form

V2 =
1
2

∫ ((∇A1)2

µ0
− dj0

dA0
A2

1 + aϕ2
1 − a[[〈Ψs1〉2s]]

)
dxdz (A2.43)

and

ϕ1 − [[〈Ψs1〉s]] = 0 , (A2.44)

which implies that ϕ1 is a function of A0 alone.
An alternative form of (A2.43) is obtained by eliminating the explicit

occurrence of ϕ1 from (A2.43) and (A2.44):

V2 =
1
2

∫ ((∇A1)2

µ0
− dj0

dA0
A2

1 − a
[[(

〈Ψs1〉s − [[〈Ψs1〉s]]
)2]])

dxdz . (A2.45)

Kiessling and Krallmann (1998) solved (A2.30) for φ1 using a Neumann
series, expressing φ1 by A1. Inserting that result into V2, they found a
representation of the form

V2 =
1
2

∫ ((∇A1)2

µ0
− ∂j0

∂A0
A2

1

)
dxdz

+
1
2

∫ ∫
A1(r)K(r, r′)A1(r′)d2rd2r′ , (A2.46)

where the kernel K was expressed explicitly in terms of the solution of
(A2.30).

The limit me → 0 for two-species plasmas

Here we specialize for a plasma consisting of electrons and a single ion species
with qi = e. The equilibrium is chosen such that in the domain considered
the width of the region accessible to an electron is much smaller than the
smallest scale of the equilibrium (Fig. A2.1). In that case we can describe
the electrons in the formal limit me → 0, however keeping its kinetic energy
finite.
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The first step is to write (A2.43) and (A2.44) explicitly for ions and elec-
trons (s = i, e), using that

a[[...]] = ai[[...]]i + ae[[...]]e (A2.47)

and

[[〈Ψi1〉2i ]]i = [[(〈Ψi1〉i − [[〈Ψi1〉i]]i)2]]i + [[〈Ψi1〉i]]2i . (A2.48)

Eliminating [[〈Ψi1〉]]2i with the help of the quasi-neutrality condition gives

V2 =
1
2

∫ ((∇A1)2

µ0
− dj0

dA0
A2

1 − ai

[[(
〈Ψi1〉i − [[〈Ψi1〉i]]i

)2]]
i

− ae

[[(
〈Ψe1〉e − ϕ1

)2]]
e
− a2

e

ai

(
[[〈Ψe1〉e]]e − ϕ1

)2) dxdz . (A2.49)

Consider an electron with constants of motion (P, He0). For sufficiently
small me the domain De accessible to the electron (ψe0 ≤ He0) becomes a
narrow flux tube centred at the field line A0 = Ac, where ψe0 assumes a
minimum. The domain is bounded by the field lines Ac ± δA corresponding
to ψe0 = He0; Fig. A2.1 gives an example. Here, Ac is a function of P and
satisfies the equation

1
me

(P + eAc) − φ′(Ac) = 0 , (A2.50)

which states that at the centre field line wy equals the y-component of the
E × B drift velocity. (Note that −∇φ0 × B0 · ey/B2

0 = ∇φ0 · ∇A0/B2
0 =

φ′(A0).) For δA one finds to lowest order in me

δA =
1
e

√
2me(He0 + eφ0(Ac)) . (A2.51)

Ac Ac+dAAc-dA

Fig. A2.1 Magnetic flux tube accessible to an electron.
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We now turn to the average 〈Ψe1〉e, which, with the integrals over De

written explicitly, takes the form

〈Ψe1〉e =
∫ Ac+δA

Ac−δA
dA0

∫
A0

ds0

B0

(
− P + eA0

me
A1 +φ1

)/∫ Ac+δA

Ac−δA
dA0

∫
A0

ds0

B0
.

(A2.52)
To lowest order in me this expression becomes

〈Ψe1〉e = − 2
3e

Q(Ac)(He0 + eφ0(Ac)) + ϕ1(Ac) , (A2.53)

where the integrand was expanded in powers of A0 − Ac and (A2.50) and
(A2.51) were used; Q(A) is defined as

Q(A) =
1

V (A)
d

dA

∫
A

A1
ds0

B0
, (A2.54)

where V (A0) =
∫
A0

ds0/B0 is the flux tube volume associated with the field
line A0.

The [[]]-averages involve integrals of the form∫
G(H, P )dτ =

2π

m2
e

∫ ∞

−eφ0

dH

∫ −eA0+δP

−eA0−δP
dPG(H, P ) (A2.55)

where δP = (2m2(H+eφ0)1/2). To lowest order in the electron mass (A2.55)
becomes∫

G(H, P )dτ =
4π

m2
e

∫ ∞

0
G(h − eφ0,−eA0)

√
2mehdh . (A2.56)

For the equilibrium electron density ne0 one finds (after integration by parts)

ne0 = − 8π
√

2

3m
3/2
e

J3/2 (A2.57)

with

Jr =
∫ ∞

0
F ′

e(h − eφ0,−eA0)hrdh . (A2.58)

Using these expressions one finds

[[〈Ψe1〉e]]e − ϕ1 =
ene0Q(A0)

ae
(A2.59)

and

ae[[(〈Ψe1〉e − ϕ1)2]]e = −
2Q(A0)2ne0J5/2

3J3/2
. (A2.60)
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With (A2.59) and (A2.60) one then finds from (A2.49)

V2 =
1
2

∫ ((∇A1)2

µ0
− dj0

dA0
A2

1 + |ai|
[[(

〈Ψi1〉i − [[〈Ψs1〉i]]i
)2]]

i

+ n0Q
2
(5
3
kBTe +

e2n0

|ai|
))

dxdz , (A2.61)

where n0 = ne0 = ni0 in view of quasi-neutrality and Te is the kinetic
electron temperature

kBTe =
2

3n0

∫
me

2
(w − v)2Fedτe , (A2.62)

which to lowest order in me equals 2J5/2/(5J3/2). In the case of exponential
distribution functions (6.27) e2n0/|ai| becomes kBTi.

The validity of the formal limit me → 0 can be judged by carrying the ex-
pansion one step farther. One finds that the first corrections are of the
order of me. Typical corrections have the form me(dφ0/dA0)2/kBTe or
me(He0 + eφ0I(A0)′′′/(e2I(A0)′), where I(A0) =

∫
A0

A1ds0/B0. Assuming
that φ0 is of order kBTe/e and replacing derivatives with respect to A0 by
1/A∗, where A∗ is a typical scale of the corresponding A0-dependence, both
expressions assume the form mekBTe/(e2A∗2).

A lower bound on W2

A lower estimate of W2 can be found in the following way (Pellat et al.,
1991). Writing (A2.14) as

W2 =
1
2

∑
s

∫
1

|F ′
s|

f̃2
s1dΩs +

1
2

∫ ((∇A1)2

µ0
− ∂j0

∂A0
A2

1 +
B2

y1

µ0

)
dxdz , (A2.63)

where

f̃s1 = fs1 +
qs

ms
(P − qsA0)A1F

′
s (A2.64)

and applying Schwarz’s inequality to the first term of (A2.63), one finds

W2 ≥ 1
2

∫ (
(∇A1)2

µ0
− ∂j0

∂A0
A2

1 +
∑

s

q2
s ñs1

2

|as|

)
dxdz (A2.65)

with

ñs1 =
∫

f̃s1dτ , (A2.66)
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such that

ns1 = ñs1 +
bs

qs
A1 . (A2.67)

In view of the inequality sign in (A2.65) it was legitimate to drop
the By1 term.

Let us now consider the small electron mass regime, which allows express-
ing ñe1 by A1. In that limit the number of electrons confined to a flux
interval dA′ at A = A′ remains invariant. To lowest order in me this means

dA′
∫

A=A′
ne(A, s)

ds

B(A, s)
= dA′

∫
A0=A′

ne0(A0)
ds0

B0(A0, s0)
. (A2.68)

From this equation one obtains∫
dA g(A)

∫
A

ne(A, s)
ds

B(A, s)
=
∫

dA0 g(A0)
∫

A0

ne0(A0)
ds0

B0(A0, s0)
,

(A2.69)
where an arbitrary function g(A) was introduced and the integration vari-
ables were renamed. On the left side of (A2.69) we now transform the
integration variables (A, s) to (A0, s0), noting that dAds/B = dA0ds0/B0,∫

dA0ds0

B0
g(A0 + A1)ne(A0 + A1, s0 + s1) =

∫
dA0ds0

B0
g(A0)ne0(A0) .

(A2.70)
After linearizing in the perturbations and integration by parts (which elim-
inates dg/dA), one finds∫

dA0g(A0)
(
−ne0

d
dA0

∫
A0

A1
ds0

B0
+
∫

A0

ñe1
ds0

B0

)
= 0 . (A2.71)

As g is arbitrary, the A0 integration can be stripped, which gives

ñe1 =
ne0(A0)
V (A0)

∫
A0

A1
ds0

B0
, (A2.72)

and with the help of (A2.54)

ñe1 = ne0(A0)Q(A0) . (A2.73)

With this result we rewrite (A2.65) as

W2 ≥ 1
2

∫ (
(∇A1)2

µ0
− ∂j0

∂A0
A2

1 +
∑
ions

q2
s ñs1

2

|as|
+

e2

|ae|
n2

e0Q
2

)
dxdz. (A2.74)
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Specializing for one ion species with qi = e, choosing exponential distribution
functions and the frame of exact neutrality (ni0 = ne0 = n0), one finds
ñi1 = ñe1 and q2

s/|as| = kBTs/n0 such that (A2.74) gives

W2 ≥ 1
2

∫ (
(∇A1)2

µ0
− ∂j0

∂A0
A2

1 + n0kBT0Q
2

)
dxdz , (A2.75)

where T0 = Te + Ti.
Note that (A2.75) is consistent with (A2.61).





Appendix 3

Symbols and fundamental constants

Symbols

General symbols (additional and deviating definitions are declared locally):

α, β Euler potentials
β ratio of kinetic and magnetic pressures
γ polytropic index, ratio of specific heats, growth rate

δ, ∆ length scales of current sheets
∆ Laplace operator
ε parameter measuring smallness
η resistivity

λ, Λ eigenvalue
λ control parameter, wavelength

λD Debye length
ξ displacement of fluid element

ξ(A) vertex position, see also v(A)
ρ mass density
σ charge density
φ electric potential
Ψ gravity potential, term in the single-particle Hamiltonian
ω angular frequency

ωg, Ω gyrofrequency
ωp plasma frequency
ωs plasma frequency of species s

∇ nabla-operator (gradient)
A magnetic flux function
B magnetic field
D stream function
D domain

DR nonideal region (or diffusion region) of a reconnection site
e unit vector
E electric field

f, F distribution function
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F stability functional
F2 second variation of F

F free energy, electromagnetic field tensor
g gravity acceleration
H Hamiltonian
I unit tensor
j electric current density
k wave number
K helicity
K surface current density
L scale length
m particle mass
n number density
n unit normal vector
N number of particles
P canonical momentum
P pressure tensor
p pressure
q particle charge

rg gyroradius
s arclength (e.g., on magnetic field lines)
S Lundquist number, entropy, unit step function
S Poynting vector
T temperature, potential of unified steady state theory
T generalized kinetic energy
t time

U potential (in several different contexts)
Uc, Vc curvature potential

V (differential) flux tube volume
v bulk plasma velocity

v(A) vertex position, see also ξ(A)
vA Alfvén velocity

vs, vts thermal velocity of species s

V generalized potential energy
W total energy
w particle velocity, transport velocity of magnetic field lines

w∗ transport velocity as w, but coinciding with v in the ideal
region
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General subscripts:

e electron
g gyration
i ion
n normal
p proton, poloidal
t toroidal, thermal
s species

Brackets:

[ ] difference
〈 〉, [[ ]], 〈〈〈 〉〉〉 averages

Fundamental constants

Boltzmann’s constant kB = 1.3806 · 10−23 VAs/deg
elementary charge e = 1.6022 · 10−19 As

gravitational constant G = 6.6726 · 10−11 m3/(kg s2)
mass of electron me = 9.1094 · 10−31 kg
mass of proton mp = 1.6726 · 10−27 kg

Planck’s constant h = 6.6261 · 10−34 VAs2

vacuum dielectric constant ε0 = 8.8542 · 10−12 As/(Vm)
vacuum permeability µ0 = 1.2566 · 10−6 Vs/(Am)

velocity of light c = 2.9979 · 108 m/s
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R. W., Potemra T. A. (1993). Simultaneous observations of the pole-
ward expansion of substorm electrojet activity and the tailward expan-
sion of current sheet disruption in the near-earth magnetotail. J. Geophys.
Res. 98, 9285–9295.

Lottermoser R.-F., Scholer M. (1997). Undriven magnetic reconnection in
magnetohydrodynamics and Hall magnetohydrodynamics. J. Geophys.
Res. 102, 4875–4892.

Louarn P., Fedorov A., Budnik E. et al. (2004). Cluster observations of
complex 3D magnetic structures at the magnetopause. Geophys. Res.
Lett. 31. doi:10.1029/2004GL020625.

Low B. C. (1977). Evolving force-free magnetic fields. I - The development
of the preflare stage. Astrophys. J. 212, 234–242.

Low B. C. (1982). Nonlinear force-free magnetic fields. Rev. Geophys. Space
Phys. 20, 145–159.

Low B. C. (1987). Electric current sheet formation in a magnetic field in-
duced by continuous magnetic footpoint displacements. Astrophys. J. 323,
358–367.

Low B. C. (1993). Force-free magnetic fields with singular current-density
surfaces. Astrophys. J. 409, 798–808.

Low B. C. (1996). Solar activity and the corona. Solar Phys. 167, 217–265.
Low B. C. (1999). Coronal mass ejections, flares and prominences. In Solar

Wind Nine, S. R. Habbal, R. Esser, J. V. Hollweg and P. A. Isenberg, eds.
Woodbury, N. Y.: AIP, pp. 109–114.

Low B. C. (2001). Coronal mass ejections, magnetic flux ropes, and solar
magnetism. J. Geophys. Res. 106, 25141–25164.

Lu E. T. (1995). Avalanches in continuum driven dissipative systems. Phys.
Rev. Lett. 74, 2511–2514.

Lui A. T. Y. (1996). Current disruption in the Earth’s magnetosphere:
Observations and models. J. Geophys. Res. 101, 13067–13088.

Lui A. T. Y. (2004). Potential plasma instabilities for substorm expansion
onsets. Space Sci. Rev. 113, 127–206.



488 REFERENCES
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Retinò A., Bavassano Cattaneo M. B., Marcucci M. F. et al. (2005). Cluster
multispacecraft observations at the high-latitude duskside magnetopause:
Implications for continuous and component magnetic reconnection. Ann.
Geophys. 23, 461–473.

Ricci P., Lapenta G., Brackbill J. U. (2002). GEM reconnection challenge:
Implicit kinetic simulations with the physical mass ratio. Geophys. Res.
Lett. 29. doi:10.1029/2002GL015314.

Rosner R., Knobloch E. (1982). On perturbations of magnetic field config-
urations. Astrophys. J. 262, 349–357.

Rostoker G. (1983). Triggering of expansive phase intensifications of magne-
tospheric substorms by northward turnings of the interplanetary magnetic
field. J. Geophys. Res. 88, 6981–6993.

Roussev I. I., Forbes T. G., Gombosi T. I., Sokolov I. V., DeZeeuw D. L.,
Birn J. (2003). A three-dimensional flux-rope model for coronal mass
ejections based on a loss of equilibrium. Astrophys. J. 588, L45–L48.

Roussev I. I., Sokolov I. V., Forbes T. G. et al. (2004). A numerical model
of a coronal mass ejection: Shock development with implications for the
acceleration of GeV protons. Astrophys. J. 605, L73–L77.



494 REFERENCES

Roux A., Perraut S., Robert P. et al. (1991). Plasma sheet instability related
to the westward traveling surge. J. Geophys. Res. 96, 17697–17714.

Runov A., Nakamura R., Baumjohann W. et al. (2003). Current sheet struc-
ture near magnetic X-line observed by Cluster. Geophys. Res. Lett. 30.
doi:10.1029/2002GL016730.

Russell C. T., Elphic R. C. (1978). Initial ISEE magnetometer results:
Magnetopause observations. Space Sci. Rev. 22, 681–715.

Russell C. T., Elphic R. C. (1979). ISEE observations of flux transfer events
at the dayside magnetopause. Geophys. Res. Lett. 6, 33–36.

Russell C. T., McPherron R. L. (1973). The magnetotail and substorms.
Space Sci. Rev. 15, 205–266.

Russell C. T., Khurana K. K., Kivelson M. G., Huddleston D. E. (2000).
Substorms at Jupiter: Galileo observations of transient reconnection in
the near tail. Adv. Space Sci. 26, 1499–1504.

Sagdeev R. Z., Galeev A. A. (1969). Nonlinear Plasma Theory. New York:
Benjamin.

Schindler K. (1966). A variational principle for one-dimensional plasmas.
In Proceedings of the Seventh International Conference on Phenomena in
Ionized Gases, Vol. II. Belgrade: Gradevinska Knjiga Publishing House,
p. 736.

Schindler K. (1972). A self-consistent theory of the tail of the magnetosphere.
In Earth’s Magnetospheric Processes, B. M. McCormac, ed. Dordrecht:
D. Reidel, pp. 200–209.

Schindler K. (1974). A theory of the substorm mechanism. J. Geophys.
Res. 79, 2803–2810.

Schindler K., Birn J. (1982). Self-consistent theory of time-dependent con-
vection in the Earth’s magnetotail. J. Geophys. Res. 87, 2263–2275.

Schindler K., Birn J. (1987). On the generation of field-aligned plasma flow
at the boundary of the plasma sheet. J. Geophys. Res. 92, 95–107.

Schindler K., Birn J. (1993). On the cause of thin current sheets in the
near-Earth magnetotail and their possible significance for magnetospheric
substorms. J. Geophys. Res. 98, 15477–15485.

Schindler K., Birn J. (1999). Thin current sheets and magnetotail dynamics.
J. Geophys. Res. 104, 25001–25010.

Schindler K., Birn J. (2002). Models of two-dimensional embedded thin
current sheets from Vlasov theory. J. Geophys. Res. 107. doi:10.1029/
2001JA000304.

Schindler K., Birn J. (2004). MHD stability of magnetotail equilibria



REFERENCES 495

including a background pressure. J. Geophys. Res. 109. doi:10.1029/
2004JA010537.

Schindler K., Goldstein H. (1983). A nonlinear kinetic energy principle for
two-dimensional collision-free plasmas. Phys. Fluids 26, 2222–2226.

Schindler K., Pfirsch D., Wobig H. (1973). Stability of two-dimensional
collison-free plasmas. Plasma Phys. 15, 1165–1184.

Schindler K., Birn J., Janicke L. (1983). Stability of two-dimensional pre-
flare structures. Solar Phys. 87, 103–133.

Schindler K., Hesse M., Birn J. (1988). General magnetic reconnection,
parallel electric fields, and helicity. J. Geophys. Res. 93, 5547–5557.

Schindler K., Birn J., Hesse M. (1991). Magnetic field-aligned electric po-
tentials in nonideal plasma flows. Astrophys. J. 380, 293–301.

Schlickeiser R. (2003). Cosmic Ray Astrophysics. Berlin: Springer-Verlag.
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