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ABSTRACT

We describe a new set of self-consistent, equilibrium disk galaxy models that incorporate an exponential disk, a
Hernquist model bulge, an NFW halo, and a central supermassive black hole. The models are derived from explicit
distribution functions for each component, and the large number of parameters permit detailed modeling of actual
galaxies. We present techniques that use structural and kinematic data such as radial surface brightness profiles, ro-
tation curves, and bulge velocity dispersion profiles to find the best-fit models for the Milky Way and M3 1. Through
N-body realizations of these models we explore their stability against the formation of bars. The models permit the
study of a wide range of dynamical phenomenon with a high degree of realism.

Subject headings: dark matter — galaxies: individual (M31) — galaxies: structure — Galaxy: general —

methods: n-body simulations

1. INTRODUCTION

The modeling of spiral galaxies to match photometric and
dynamical measurements is a time-honored endeavor. A com-
plete and accurate characterization of the structural and kine-
matical properties of galaxies is necessary to understand the
diversity of galactic dynamical behavior and the origin of gal-
axies in the current cosmological paradigm.

This paper presents a new set of models for the phase-space
distribution functions (DFs) of axisymmetric disk galaxies. The
models consist of an exponential disk, a Hernquist model bulge
(Hernquist 1990), an NFW halo (Navarro et al. 1996), and a cen-
tral, supermassive black hole. They are defined by a large number
of parameters that permit detailed modeling of real galaxies by
fitting to observational constraints. Although the models represent
self-consistent equilibrium solutions to the coupled Poisson and
collisionless Boltzmann (CB) equations, they are subject to both
local and global nonaxisymmetric instabilities and are therefore
suitable as initial conditions for numerical studies of galactic
dynamics.

The standard practice in modeling disk galaxies has been to
assume simple functional forms for the space density and grav-
itational potential of the disk, bulge, and halo and then fit to a
wide range of observational data. For the Milky Way galaxy, op-
timal structural parameters for these “mass models” are found
primarily from surface brightness photometry, local stellar kine-
matics, the circular rotation curve, and observations of dynam-
ical tracer populations such as globular clusters, the Magellanic
clouds, and the dwarf satellite galaxies. These observational con-
straints have been used to determine the best-fit model param-
eters based on x> minimization techniques (see, e.g., Innanen
1973; Clutton-Brock et al. 1977; Bahcall & Soneira 1980;
Caldwell & Ostriker 1981; Kuijken & Gilmore 1991; Rohlfs &
Kreitschmann 1988; Malhotra 1995; Kochanek 1996; Dehnen
& Binney 1998a; Wilkinson & Evans 1999; Klypin et al. 2002).

For external galaxies, the problem is somewhat simpler be-
cause of the advantage of an outside view and the smaller
number of observational constraints. Optical and infrared de-

projected surface brightness profiles of the stellar distribution
are combined with rotation curves measured from H 1 gas kine-
matics to build mass models. The standard method is to perform
a bulge-disk decomposition of the surface brightness profile
usually into an R"* law surface density profile for the bulge and
a radial exponential profile for the disk (see, e.g., Kent 1985;
Simien & de Vaucouleurs 1986; Binney & Merrifield 1998; see
also Courteau et al. 1996 and references therein for a discussion
of bulge-disk decomposition with the more general Sérsic law
for the bulge). The halo model parameters are inferred by fitting
multicomponent mass models to the rotation curve data assum-
ing values for the mass-to-light ratios of the disk and bulge stars.
For nearby galaxies such as M31, kinematic data for the globular
cluster, planetary nebulae, and satellite systems are used to refine

the models (Evans & Wilkinson 2000).

There has also been parallel work in developing realistic
N-body realizations of galaxy models for numerical experimen-
tation in disk stability and galaxy interactions and mergers. To
generate an N-body realization, it is necessary to model the full
DFs for the multicomponent system, in principle by solving the
coupled Poisson and CB equations. Owing to the complexity of
these equations, various approximation schemes have been used.
Early work on disk galaxy simulations set up initial conditions
by estimating the velocity dispersion for a stable disk model with
Toomre parameter Q >1 and then assuming a locally Gaussian
distribution for the velocities (see, e.g., Sellwood 1985). Barnes
(1988) built three-component models by adiabatically grow-
ing a disk potential within a live halo model and then adding
an N-body disk with initial conditions generated as above.
Hernquist (1993) presented a simpler approximate prescription
for three-component disk-bulge-halo models where the bulge
and halo velocity distributions are assumed to be Maxwellian,
truncated at the local escape speed and with dispersions esti-
mated from the Jeans equations. These methods, while conve-
nient, produce models that are slightly out of equilibrium and so
require some relaxation time to damp out transients. Moreover,
the models readjust to a state different from the one proposed

(see, e.g., Kazantzidis et al. 2004).
838



DISK MODELS FOR MILKY WAY AND ANDROMEDA 839

As numerical methods and resolution improve, it has become
necessary to develop more sophisticated techniques to generate
initial conditions. Toward this end, Kuijken & Dubinski (1995,
hereafter KD95) presented a set of semianalytic models for the
DFs of disk galaxies consisting of an exponential disk, a cen-
trally concentrated bulge, and an extended halo. The DFs are
constructed from integrals of motion and use an iterative scheme
to generate self-consistent solutions to the Poisson and CB equa-
tions. They have been used extensively to study different aspects
of galaxy internal dynamics and interactions (e.g., Dubinski &
Kuijken 1995; Dubinski 1998; Dubinski et al. 1999; Garcia-Ruiz
et al. 2002; O’Neill & Dubinski 2003; Widrow et al. 2003). An
iterative scheme of this sort has been used by other authors in-
cluding Debattista & Sellwood (1998, 2000) in their work on the
evolution of bars.

Fitting models to actual galaxies requires one to “observe”
the model and compare with real observations. By providing
the full DFs, the KD95 models enable one to add a level of re-
alism to these pseudo-observations that is not possible with
simple mass models. For example, a mass model rotation curve
is constructed directly from the potential rather than from model
line-of-sight velocities. With the KD95 models it is possible
to construct the stellar rotation curve directly from stellar ve-
locities and thereby incorporate asymmetric drift. Gravitational
microlensing experiments provide another example where im-
proved pseudo-observations are possible since the full DF al-
lows for a self-consistent calculation of the predicted event rate
distribution (Widrow et al. 2003).

The bulge and halo of the KD95 models are characterized
by a constant-density core. Since their development it has be-
come widely accepted from numerous cosmological simula-
tions that dark halos have cuspy centers (Dubinski & Carlberg
1991; Navarro et al. 1996). Detailed analysis of the central sur-
face brightness and velocity dispersion profiles of early-type
galaxies and bulges suggest that these systems are also cuspy at
their centers and furthermore contain supermassive black holes.
We are therefore motivated to develop a new set of axisym-
metric disk galaxy models with cuspy halos and bulges that also
allow for the self-consistent addition of a supermassive central
object. These models have many purposes. They provide the
gravitational potential and mass and velocity distributions from
the sphere of influence of the central black hole in the inner few
parsecs out to the virial radius of the model galaxy. Circular ve-
locity curves, rotation curves incorporating asymmetric drift, ve-
locity ellipsoids, line-of-sight velocity distributions (LOSVDs),
and surface density (brightness) profiles can be generated easily.
The large parameter space permits a wide range of models for
comparison to real galaxies, and the good quality of the initial
equilibria makes them ideal for studying subtle dynamical pro-
cesses such as bar formation and disk warping and heating.

The DFs are described in § 2. Examples that match photo-
metric and dynamical data for the Milky Way and M31 are pre-
sented in § 3. This section also presents results from numerical
experiments on the stability of these models, as well as a brief
discussion of an M31 model that incorporates a supermassive
black hole. We conclude in § 4 with a summary and a discussion
of possible applications of the models.

2. DISTRIBUTION FUNCTIONS

The phase-space DFs for the disk, bulge, and halo of the
KD95 models are chosen analytic functions of the integrals of
motion. By Jeans theorem, any such DF yields a steady state
solution of the CB equation in any potential that respects these
integrals (Binney & Tremaine 1987). A self-consistent self-

gravitating model is one in which the potential and space den-
sity also satisfy the Poisson equation.

The KD95 models are, by design, axisymmetric with two
known integrals of motion, the energy E and the angular mo-
mentum about the symmetry axis J,. KD95 choose the King
model DF for the bulge, which, in isolation, yields a system that
is spherically symmetric and has a density profile characterized
by a constant-density core, an 7~ falloff at intermediate radii,
and a finite “‘tidal” radius where the density vanishes. For the
halo, KD95 use the DF of a lowered Evans model, which also
exhibits a constant-density core, power-law intermediate region,
and tidal radius. (We denote the tidal radius of the halo, which
represents the outer edge of the system as a whole, as 7;.)

The configuration and velocity space distributions of the King
and lowered Evans models are modified once they are incor-
porated into a multicomponent model. Recall that for a system of
collisionless particles in a static potential, any f(£) (i.e., any DF
that is a function only of the energy) yields a steady state solution
of the CB equation whose velocity distribution is isotropic ( Binney
& Tremaine 1987). For an isolated self-gravitating system, p and
W are necessarily spherically symmetric (for a proof see Perez &
Aly 1996). In the presence of an aspherical external potential, an

f(E) will yield an aspherical mass distribution through the de-

pendence of E on W. However, the velocities remain isotropic so
long as f'does not depend on angular momentum or some other
integral of motion. For the multicomponent models considered
here and in KD95, the disk potential causes a slight flattening of
the bulge and halo.

In this section we describe new models that have an NFW halo,
a Hernquist bulge, and a central supermassive black hole. We
begin by presenting DF's for the bulge and halo taken in isolation
and then describe how these DFs are modified for composite
models.

2.1. The Halo Distribution Function

Navarro et al. (1996) found that the density profiles of dark
matter halos in their cosmological simulations have a “universal”
shape (the so-called NFW profile) of the form

Ph
r)= 1

pNFW( ) (r/ah)(l +r/ah)2a ( )
where a;, is the scale radius, p, = 03/4ma; is a characteristic
density, and oy, is a characteristic velocity dispersion. (Here and
throughout we set Newton’s constant G = 1.) In contrast with
the profile of the Evans model halo, pnpyw has an inner »~! cusp
and an extended 73 outer halo. The gravitation potential for
this profile is

Dur () = —o%%w. @)

Our strategy is to use a DF that, in the absence of a disk or
bulge, yields a spherically symmetric NFW halo. We assume that
the velocity dispersion is isotropic so that the DF depends only
on the energy E. (Formally, E is the energy per unit mass.) For a
given density profile, the DF can then be calculated through an
Abel transform (Binney & Tremaine 1987), a procedure that has
been carried out for the NFW profile by Zhao (1997), Widrow
(2000), and Lokas & Mamon (2001). We write the DF as a func-
tion of the relative energy £ = —F,

fNFW(g) = U;laizj:NFw(g/O'i» (3)
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For the dimensionless DF F we use the analytic fitting formula

3 3/2 _s2f —loge o
WE (1—6) 1—_6 e, 0<€<1,

0 otherwise,
(4)

where P = P(£) is a fourth-order polynomial with P(1) =0
and a = 2.71 (Widrow 2000).

The NFW profile is infinite in extent and mass. For model
building it is desirable to have a finite halo and so, following King

Frrw(e) =

(1966), we introduce an energy cutoff £, = —&, = —ehaﬁ and
replace fypw With

Jrato(€) = 07, a3 Frato (€/77), (5)
where

Fnrw(e) — Farwl(en), e <e <1,
(e) = .
0, otherwise,

setting €, = 0 yields a full NFW profile while 0 < ¢, <1 yields
a truncated profile. Examples with a; = 0, = 1 and various
values of ¢, are shown in Figure 1. Note that the truncation
radius can be varied independently of the characteristic density
and scale radius. When building models a natural choice for
the truncation radius is the cosmologically motivated virial ra-
dius, ry;, (see below). After the inner properties of a model gal-
axy are set, a value of ¢, that gives 7; = r;; can be easily found.
In contrast, for the King and lowered Evans models a change
in the truncation radius results in a significant change in the in-
ner profile, making model building more cumbersome and less
intuitive.

The DF as written above is symmetric under J, — —J, and
therefore generates a model with no net rotation. By splitting the
DF into parts with positive and negative J, (¥ ) and recombining
them with a suitable coefficient, one can generate a model with
arbitrary amounts of rotation. Formally we write

Fhalo = apF 4 + (1 —ap)F_, (7)

where «, controls the amount of rotation (o, = % implies no
rotation).

2.2. The Bulge Distribution Function

Bulges are commonly modeled as the de Vaucouleurs !4 law
(de Vaucouleurs 1948) in projection, and the Hernquist model
is a simple density-potential pair that closely mimics this be-
havior (Hernquist 1990). We therefore model the bulge using a
Hernquist DF modified by an energy cutoff £}, to truncate the
profile in a fashion similar to what was done for the halo.

The standard Hernquist model has a density profile and po-
tential given by

Pb

P Jan) (L + r/ap)? ®
and
0.2
= ©

where ay, pp = 0%/271’61%, and oy, are the scale length, charac-
teristic density, and characteristic velocity of the bulge, re-
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Fic. 1.—Density profiles (fop) and rotation curves (bottom) for halo models
with a;, = o, = 1 and values of &, corresponding to tidal radii , = 5, 10, 40,
and 80. Also shown is the full NFW model (solid line).

spectively. While the total mass is finite, the density distribution
is infinite in extent with p oc 7—* at large radii.
‘We modify the Hernquist DF by incorporating an energy cutoff:

Fouge(€) = 73 @, Fouge (€21, (10)
where
Fulqg) — Fulgs), qp <q <1,
fbulge(Q) = { H( ) H( ) . (ll)
0, otherwise,

qy = (— Ep /Uﬁ)” 2, and Fyy is the infinite-extent Hernquist model
DF,

1 1
27/271-3 (1 _ q2)5/2

X [3 sin" g + q(l — qz)l/z(l - 2q2) (8q4 —8¢% — 3)}
(12)

As with the halo, rotation is introduced through an additional
parameter « .

It is straightforward to use other models for the bulge. For exam-
ple, the potential and DF for the density profile p o< 7—3/2(r 4 a)~>"2
are analytic, and the associated surface density profile provides
a somewhat better match to the de Vaucouleurs law than the sur-
face density profile of the Hernquist model (Dehnen 1993).

Fulg) =
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2.3. The Disk Distribution Function

The disk is assumed to be axisymmetric with space den-
sity paisk = pdisk (R, z) and quasi-Maxwellian DF taken directly
from the KD95 models, which, in turn, were based on the two-
dimensional model by Shu (1969) and extensions by Binney
(1987). This DF is a function of £, J,, and E., the latter being an
approximate third integral of motion that corresponds to the
energy in vertical oscillations. An implicit assumption in the
formulation of this DF is that the velocity dispersions are small
so that the epicyclic approximation is valid in the treatment of
disk star orbits. This assumption limits the application of the
models to cool disks. The DF can be tuned to yield a space den-
sity of a desired form. As in KD95, we assume that the surface
density profile of the disk is exponential in the radial direc-
tion with scale radius R, and truncation radius R,,;. The vertical
structure is given approximately by sech? (z/zz), where z, is the
vertical scale height. In all, five parameters define the space den-
sity of the disk: Ry, Ry, z4, the mass My, and a profile “shape”
parameter 6R, which governs the sharpness of the truncation.

The ““stars” of the KD95 disks have nonzero velocity dis-
persions in the radial, azimuthal, and vertical directions. The
dispersion in the radial direction, op(R), is assumed to be expo-
nential: o%(R) = wa exp (—R/R,). For simplicity, we set R, =
R, in accord with observations by Bottema (1993). The dis-
persion in the azimuthal direction is related to o through the
epicycle equations (Binney & Tremaine 1987), while the dis-
persion in the vertical direction is set by the vertical potential
gradient and the vertical scale height.

In total, the DFs for the three components are characterized
by 15 parameters, which we collect for convenience in Table 1.

2.4. DFs for the Composite Model

An isolated model halo is constructed by solving Poisson’s
equation self-consistently for the gravitational potential

VZ (Phalo - 47Tphalo ( 1 3)

together with the integral relation between the DF (eq. [6]), the
density, and the relative potential ¢ = —®:

P
prato = 2921 / dEE=Dhaol€  (14)

(Binney & Tremaine 1987). For a disk-bulge-halo model, equa-
tion (13) is replaced by

V20 = 4mp, (15)

where

p= /d3v (ﬁjisk +fbulgc +ﬁ1al0) (16)

is the total density.

The DFs in this expression depend on the energy (as well as
other integrals of motion), which in turn depends on ®. Since ¢
is the total gravitational potential, the density fields of the dif-
ferent components are interrelated in a complicated way. In fact,
the components of a disk-bulge-halo model constructed from
equation (6) of KD95 and equations (6) and (10) may bare little
resemblance to the corresponding isolated components, a sit-
uation that is cumbersome for model building.
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TABLE 1
SUMMARY OF MODEL PARAMETERS

Parameter Description

Halo tidal radius parameter

Halo characteristic velocity

Halo scale length

Halo rotation parameter

Disk mass

Disk scale length

Disk truncation radius

Sharpness of truncation

Disk scale height

Radial velocity dispersion at galaxy center
Scale length for radial dispersion
Bulge tidal radius parameter
Characteristic bulge velocity
Bulge scale length

Bulge rotation parameter

To alleviate this problem, we proceed as follows. The DF for
an isolated halo is nonzero over the energy range £ € {&),, 03 }.
Qualitatively, we may expect the energy range of halo particles
in the multicomponent system to be extended to £€{&;, o7 +
o7 + 04}, where 0% = M,/Ry is the depth of the disk potential.
These arguments suggest that we replace ff,,1,(€) of equation (5)
by fralo (€5,(€)), where &, (€) is a function that maps the energy
of a particle in the composite system (€) to the energy of a particle
in the would be isolated halo (£}). In what follows, we assume

0.2 2
5:5;<1+%5;). (17)
h

By construction, at low binding energies (€ — 0), &, ~ & whereas
& — o + o} + 0% as &, — o3 For the bulge, we replace fiye(E)
With fiee (€,(E)), With E,(E) = &y + o2 + o

These mappings are by no means unique and, apart from the
conditions discussed above, are not motivated by any particular
physical model. Indeed, other mappings can be shown to yield
similar and equally acceptable models.

In Figure 2 we show an example of the density profile and
rotation curve for a typical disk-bulge-halo model. (The model
parameters are given in Table 2.) Also shown is the halo profile
that results assuming the same values of the a;, 07, and & if the
disk and bulge are not included.

2.5. Comment on Adiabatic Compression

It is important to stress that the “isolated halo” in Figure 2
is not meant to represent the progenitor for the halo in the final
composite model. Indeed, the structure of dark halos in fully
developed disk galaxies can be determined only through de-
tailed modeling of galaxy formation. According to the standard
structure formation paradigm, at early times baryons and dark
matter are well mixed. Disks form when the (collisional ) bary-
ons lose energy (but not angular momentum) and settle to the
bottom of the dark halo potential well. The halo in turn responds
to the change in the gravitational potential and therefore a pris-
tine NFW halo will readjust to a new configuration.

Simulations of galaxy formation that include gas dynamics
and star formation are still relatively crude and computationally
expensive. An alternative is to treat the effect of baryon infall
on dark halos as an adiabatic process (Blumenthal et al. 1986;
Flores et al. 1993). If changes in the potential are slow com-
pared with the orbital time of dark halo particles, then for each
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Fic. 2.—Density profile (fop) and rotation curve (bottom) for the disk-
bulge-halo model described in the text. Shown are the contributions from the
disk (dotted line), bulge (dashed line), halo (long-dashed line), as well as the
total density profile and rotation curve (solid line). Also shown is the halo
model that results if the same halo parameters are used and the disk and bulge
are not included (dot-dashed line in the top panel).

particle, there is a set of quantities known as adiabatic invariants
that remain approximately constant even as the orbit changes.
Knowledge of the adiabatic invariants allows one to determine
the final DF from the initial DF without having to model the
evolution of the system explicitly.

Under a rather restrictive set of assumptions, the adiabatic
theorem leads to the following simple relation:

[Mbaryon(r) + Mdm] r= Mhalo(ri)ri (18)
(Young 1980; Blumenthal et al. 1986; Flores et al. 1993). In this
formula, My,qryon(7) is the baryon mass distribution as a function of
radius (i.e., a spherically averaged representation of the disk and
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bulge), My, is the final distribution of the dark halo, and Mj,,,(7;)
is the initial distribution of the baryon—dark matter protogalaxy.
Equation (18) allows one to go directly from the cosmologically
motivated NFW halo to the final dark halo in a fully formed
galaxy and has been used extensively in modeling disk galaxies
(see, e.g., Mo et al. 1998; Klypin et al. 2002).

In general, the dark halos predicted by equation (18) are more
centrally concentrated than the progenitors with a density pro-
file that is cuspier in the center (e.g., the ! cusp becomes an
7~ cusp as in Fig. 7 of Klypin et al. 2002). However, equation
(18) is based on a number of suspect assumptions. In addition to
spherical symmetry and adiabaticity, one must assume that the
dark halo particles are on circular orbits and therefore do not
cross as their orbits contract. The particle orbits in simulated
halos are, if anything, radially biased (see Moore et al. [2004],
who study the importance of the distribution of orbits for the
evolution of dark halos).

An indication of the uncertainty in the adiabatic prescription
can be seen in Figure 7 of Klypin et al. (2002), where two halos
from the same progenitor are shown. In one case, equation (18)
is used to determine the halo profile, while in the other, baryons
and dark matter are allowed to exchange angular momentum.
The difference between the two halos is significant, with the
former being denser in the central regions by a factor of 30!

How do our models fit in with the adiabatic compression
paradigm? In short, we sidestep the issue by focusing on models
offully developed disk galaxies. One might use equation (18) to
work backward from our final model and determine the pro-
genitor (and thus compare with the NFW profile), but given the
caveats associated with this equation, we do not see this as a par-
ticularly fruitful endeavor. We do note that the difference between
amodel halo in isolation and one incorporated into a composite
system is consistent with the general predictions of adiabatic
compression theory (the profile exhibits a slightly cuspier inner
region and is generally more concentrated ) and so the naive use
of the halo parameters as an indication of the general structure
of the progenitor halo seems a reasonable first pass for making
contact with cosmology.

2.6. Models with Central Supermassive Black Holes

The observation that most, if not all, disk galaxies harbor
supermassive black holes near their centers has led to consid-
erable interest in the structure of black hole—stellar systems, as
well as the effect a black hole might have on the central cusp ofa
dark matter halo. Tremaine et al. (1994) have derived DFs for a
variety of models with central black holes whose density pro-
files have 7~ central cusps and »~* outer parts. These so-called
n-models include the Hernquist profile (n = 1) and are there-
fore directly applicable to the bulge DF in our system and easily
generalized to the NFW halo model. The DFs of Tremaine et al.
(1994) produce a density profile that is independent of the black

TABLE 2
PARAMETERS FOR MODELS DiscuUsseD IN THE TEXT

Model €p ap ap Md Rd hd €p gp ap O'R()/wb (M/LR)[] (M/LR)h
0.079 1 1 0.1 0.3 0.02 0.1 1.15 0.15 e
0.17 2.496 12.96 19.66 2.806 0.409 0.213 4.444 0.788 1.211
0.11 3.447 8.818 14.47 2.817 0.439 0.209 4.357 0.884 1.244 . .
0.25 3.371 12.94 33.40 5.577 0.3 0.071 4.607 1.826 0.763 34 1.9
0.25 3.224 14.03 35.08 5.401 0.3 0.075 4.811 1.857 0.751 34 3.4
0.36 3.243 17.46 50.10 5.566 0.3 0.074 4.685 1.802 0.732 5.0 2.5

Nortes.—We assume G = 1. Units for the Milky Way and M31 models are kpc, 100 km s~!, and 2.33x10° M.



No. 2, 2005

hole mass: for a given 1-model, the black hole alters the velocity
distribution but not the space distribution of the stars and dark
matter particles in its vicinity. We build black holes into our
models under the same assumption.

Consider first the bulge—black hole system. The effect of a
black hole of mass Mpy is to modify the relative potential

M,
W) = )+ (19)

where, as in Tremaine et al. (1994), the asterisk denotes prop-
erties of models that include a black hole. While the Hernquist
DF is nonzero over the energy range £ € {€, o7}, with a black
hole, the energy range is extended to £* € {&;, oo}.

In principle, disk-bulge-halo models with a central black hole
can be constructed by replacing fiyjee With a DF from Tremaine
et al. (1994) that is modified by a suitable energy cutoff. The
DFs for the disk and halo would be similarly replaced. How-
ever, the DFs in Tremaine et al. (1994) are not analytic and
would have to be recalculated for each choice of Mpy. We there-
fore choose the following more efficient, albeit ad hoc scheme:
The potential and density profile for a particular disk-bulge-halo
model are calculated assuming no black hole. To incorporate a
black hole, the potential is modified according to equation (19)
and a new DF is found that interpolates between fiyq. Of equa-
tion (10) and the DF of the appropriate 7-model.

At large binding energies (£* — oo) the Hernquist—black
hole DF has the asymptotic form (Tremaine et al. 1994)
limg o f* = f% , where

o & -1/2
fo(&) = 3 M (a_ﬁ) - (20)
On the other hand,
3 -5/2
— (1 -&/o? 21
fH(g) - 25/27_‘_20_[)(1127 ( S/O'b) ( )

for & — o2. From the asymptotic form of the Hernquist potential,
Yu =~ 03/(1 — rlay), we have r ~ a; (1 + yu/o} ), suggesting

Mgu 1 1
&=¢£ - 22
+ ap <1—5/0’% l—gb/O%) ( )

as a mapping from & to £*. By construction, £*(&) = &,. We
take the DF to be

-1
&) } | )

f3(E)

which smoothly interpolates between f; and equation (21). A
similar procedure is carried out for the halo and disk.

3. MODELS FOR THE MILKY WAY
AND ANDROMEDA GALAXIES

In this section we present models chosen to fit observational
data for the Milky Way and Andromeda galaxies. The level of
realism in our models is dictated to a large extent by the assump-
tions upon which they are based. At first glance, the assumption
of axisymmetry seems rather restrictive since virtually all disk
galaxies exhibit nonaxisymmetric phenomena such as bars and
spiral arms. However, our models are subject to nonaxisymmetric
instabilities. The program adopted here is to find the best-fit
axisymmetric model and determine, through N-body simulations,

JHED) =1u(&) {1 +
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if the model evolves to a state that more closely matches the actual
galaxy. This approach has already been applied to the Milky Way
by Sellwood (1985, 1993), Fux (1997), and Valenzuela & Klypin
(2003).

Another key assumption is that the model galaxies are com-
prised of three components, a disk, bulge, and halo, whereas ac-
tual disk galaxies also have stellar halos and globular clusters
that are typically spheroidal, more extended than the bulge,
but (presumably) less extended than the dark halo. It would be
straightforward to include such systems in our models, but since
they contain relatively little mass, we do not do so here. The in-
clusion of globular cluster systems might be of interest for study-
ing their evolution during galaxy mergers and interactions.

Along similar lines, the structural parameters of the galactic
disks (e.g., radial and vertical scale heights, velocity dispersion
tensor) depend on color and metallicity (Dehnen & Binney 1998b),
whereas our models assume a single disk component. Stellar disks
may, in fact, be more accurately represented as two-component
systems with a young thin disk and an old thick disk. Our mod-
els can be easily modified to include two or more disklike com-
ponents, an improvement that may prove relevant for detailed
studies of bars and spiral structure.

Our models assume DFs for the bulge and halo that are
functions of the energy so that the velocity distribution in these
components is necessarily isotropic. By contrast, the velocity
distributions in simulated halos are typically biased toward ra-
dial orbits with a velocity anisotropy parameter 3 = 1 — v3/v2 =~
0.6 (van den Bosch et al. 1999). Spherical models with non-
zero anisotropy parameters can be constructed from functions
of E and J, where J is the total angular momentum (Osipkov
1979; Merritt 1985; Baes & Dejonghe 2002). However, J is
not an integral of motion of a general axisymmetric system.
Moreover, since disks rotate, we can be fairly certain that halos
do as well. Thus, realistic halo models require three or more
integrals of motion. The velocity structure of dark matter par-
ticles will have an effect on the dynamical interaction between
the halo and stellar components (e.g., the decay of the bar pattern
speed through dynamical friction) and so it may be of interest to
consider more general halo DFs. We leave the investigation of
these subtle effects for future work.

Perhaps the most severe assumption is that our models in-
clude only collisionless components whereas for some disk
galaxies a significant fraction of the “disk” mass is locked up in
neutral hydrogen gas. Future versions of our models will in-
clude H 1 disks, thereby expanding the applications to models
with gas as well as stars.

For each galaxy, we select a set of observational data that are
compared with pseudo-observations of the model galaxy to yield
a x? statistic. Minimization of x* over the multidimensional pa-
rameter space yields the desired best-fit model. In addition, one
can include nonobservational constraints so as to select models
with certain characteristics (e.g., specific value for the bulge-to-
disk mass ratio, baryon fraction, or halo concentration parameter).

In addition to the 15 parameters of Table 1, observer-dependent
parameters such as the inclination angle for external galaxies
or the galactocentric radius of the Sun for the Milky Way must
also be specified. If photometric data are used, then the mass-to-
light ratios of the disk and bulge are also required. Depending
on the type of observations, some of the parameters may be
fixed during the minimization process.

Following Widrow et al. (2003), we employ the downhill sim-
plex algorithm (see, e.g., Press et al. 1986) for the minimization
of x%. A simplex is a geometrical figure in N dimensions where
N is the number of parameters that define the model. During
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execution of the algorithm, the simplex moves through parameter
space seeking out the minimum of y2. As it does so, the simplex
changes shape, thus enabling it to move through complicated
regions of parameter space. The downhill simplex method has a
number of advantages over minimization procedures based on
gradients of x? (e.g., the method of steepest descent; see Press
et al. 1986 and references therein). In particular, the method ap-
pears to be less susceptible to false minima although restarts are
always executed to guard against this possibility.

3.1. The Milky Way

Numerous authors have attempted to model the Milky Way
with early important studies by Bahcall & Soneira (1980) and
Caldwell & Ostriker (1981). Bahcall & Soneira (1980) fit star
count data together with local values for the scale heights and
luminosity functions to parameterize global models of the disk
and bulge. Caldwell & Ostriker (1981) considered dynamical con-
straints (e.g., the Oort constants, rotation curve) in constructing
three-component mass models. More recently, Dehnen & Binney
(1998a) improved and updated these models by augmenting
rotation curve data with dynamical constraints on the vertical
structure of the Galaxy in the solar neighborhood.

3.1.1. Observational Constraints

The models developed here for the Milky Way are assembled
in the same spirit of early mass models but have the advantage
that the end result is a fully realized DF for the stars and dark
matter of the Galactic system. Seven observational data sets are
used to constrain the Milky Way models. Five of these data sets,
the inner and outer rotation curves, the Oort constants, the vertical
force in the solar neighborhood, and the total mass at large radii,
are taken directly from Dehnen & Binney (1998a) and references
therein. We also use measurements of the bulge dispersion at a
projected distance of 200 pc from the Galactic center (the peak of
the dispersion profile) from the compilation of data by Tremaine
et al. (2002). Finally, we incorporate estimates of the local ve-
locity ellipsoid from Binney & Merrifield (1998):

1. Inner rotation curve.—Qbservations of H 1 emission pro-
vide a direct measure of the Galactic rotation curve. Inside the
solar circle these observations are usually presented in terms of
the so-called terminal velocity, vem, the peak velocity along a
given line of sight at Galactic coordinates » = 0 and |/| < 7/2.
Assuming that the Galaxy is axisymmetric and the interstellar
medium rotates on circular orbits, the H 1 emission correspond-
ing to vy Originates from the galactocentric radius R = Ry sin /.
Relative to the local standard of rest, we have

Vterm — UC(R) - UC(RO) sin /, (24)

where v, is the circular speed (see, e.g., Binney & Merrifield
1998). Following Dehnen & Binney (1998a), we use data from
Malhotra (1995) restricted to the range sin/ > 0.3 so as to avoid
distortions from the bar. In particular, we use values of vy, from
Figure 7 of her paper at four representative values of | sin /|, av-
eraging the results from the first and fourth quadrants.

2. Outer rotation curve.—The radial velocity of an object
at Galactic coordinates (I, b) relative to the local standard of
rest, v R, is related to the circular rotation curve through the
equation

Ry

ULSR = |:

7 v.(R) — vc(Ro)} cos bsinl, (25)
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where R = (d? cos?h + RZ — 2Rd cos b sin1)""? and d is the dis-
tance to the object.

In general, the data consist of a set of measurements (vLsr.;,
d;), which is to be compared with the model estimate W(R) and
d(R), where R may be regarded as a free parameter and W(R) =
(Ro/R)ve(R) — ve(Roy) = vLsr/cos b sin [. For each data point, we
adjust R so as to minimize

, W@ - w1 [dR) - d;]?
X"_{ AW, %[ Ad, } (26)

where W; = v g i/ cos bsin /. The x? for this data set is the av-
erage of the individual x? values.

In what follows we use data from Brand & Blitz (1993) with
the same restrictions as in Dehnen & Binney (1998a) (i.e.,
[ <155° or/ >205°,d >1kpc, and W < 0).

3. Vertical force above the disk.—Kuijken & Gilmore (1991)
used K dwarf stars as tracers of the gravitational potential above
the Galactic plane, thereby placing a constraint on the total mass
surface density in the solar neighborhood. They found

|K=(1.1 kpc)|

=71 +6 M, pc? 27
G © pC ( )

independent of the relative contributions of the disk and halo.
Only by including additional constraints on the local circular speed,
galactocentric distance of the Sun, and Oort constants can one
ferret out the separate contributions of the disk and halo to the
local surface density. Doing so, Kuijken & Gilmore (1991) found

Saisk = 48 £ 9 M, pe 2, (28)

which is in excellent agreement with estimates of known mat-
ter in the solar neighborhood. Since we include constraints on
the Oort constants and rotation curve separately, we use equa-
tion (27) as a constraint on our models and equation (28) as a
consistency check.

4. Qort constants.—The Oort constants

1 (v, Ov,
4=3 (E - 8R> (29)

and

1 /v. Ov,
:_§(§+6R) (30)

measure, respectively, the shear and vorticity in the Galactic disk.
Following Dehnen & Binney (1998a), who review the published
measurements, we adopt the constraints

A=145+15kms ! kpc!,
B=125+2kms ' kpc . (31)

5. Local velocity ellipsoid—The kinematics of stars in the
solar neighborhood provides important constraints on the struc-
ture of the Milky Way. The observation that v% # v2 already
tells us that the disk DF cannot take the form ' = f(E, L.) and
necessarily involves a third integral of motion (Binney & Tremaine
1987). Since the KD95 disks are built from three-integral DFs, it
is possible to model anisotropic velocity dispersion in Galactic
disks. There are two important caveats. The first, already men-
tioned in the introduction to this section, is that the models assume
a single disk component so that the velocity dispersions in the
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Fic. 3.—Density profile and rotation curve for model MWa. Line types are
the same as in Fig. 2.

radial, azimuthal, and vertical directions are single-valued functions
of cylindrical radius. In point of fact, the shape of the velocity el-
lipsoid depends on color (see, e.g., Dehnen & Binney 1998b). Fur-
thermore, the velocity ellipsoid is rotated about the z-axis so that
the principle axes do not coincide with the R- and ¢-directions. The
“vertex deviation” varies from 0° to 30° depending on B — V color.

These limitations can be overcome without too much diffi-
culty (e.g., by including more than one disk component and by
generalizing the disk DF to allow for vertex deviation of the ve-
locity ellipsoid). We leave these improvements for future work
and consider a single-component disk. For constraints on the
velocity ellipsoid, we use values from Table 10.4 of Binney &
Merrifield (1998), which were derived from Edvardsson et al.
(1993). Binney & Merrifield (1998) give values for the thin and
thick disks, and we use a mass-weighted average assuming a
14:1 ratio between these two components (Dehnen & Binney
1998a) with 15% 1 o error bars.

6. Bulge dispersion.—QObservations of the LOSVD in the di-
rection of the bulge provide important constraints on the bulge
parameters (and, to a lesser extent, the parameters of the other
components). Tremaine et al. (2002) have compiled measure-
ments of the LOSVD between 0.085 and 1300 pc. The disper-
sion profile shows a minimum of ~55 km s~! at » ~ 5 pc and
a maximum of 130 km s~! at » ~ 200 pc (see also Kent 1992).
The rise of the dispersion profile inside » ~ 5 pc is presumably
due to the central black hole, while the detailed shape of the
dispersion profile at larger radii may be affected by the barlike
shape of the bulge. With this in mind, we average values of the
line-of-sight dispersion near the peak to arrive at the single
constraint o og(R = 210 pc) = 136 £ 12 km s~ .
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Fic. 4—Density profile and rotation curve for model MWb.

7. Mass at large radii—The system of satellite galaxies that
surround the Milky Way, the Magellanic Stream, and the high-
velocity tail of the local stellar velocity distribution provide con-
straints on the large-scale mass distribution of the Galactic halo.
Following Dehnen & Binney (1998a), who base their argu-
ments on work by Kochanek (1996) and Lin et al. (1995), we
adopt

M(r < 100 kpc) = (7 +2.5)x 10" M, (32)

as a constraint on the mass distribution at large radii.

3.1.2. Search Strateqy

A x? statistic is calculated by comparing each of the seven
data sets described above with pseudo-observations of the
model. The pseudo-observations are designed to match closely
the actual observations. For example, the LOSVD in the bulge
region is found by calculating the velocity dispersion along
a given line of sight of bulge “particles” chosen from the DF.
In principle, one can add additional layers of realism to the
pseudo-observations such as aperture smoothing for LOSVD
measurements.

The results are averaged in quadrature to yield a composite
X statistic. In addition to the 15 parameters in Table 1, we must
also specify the galactocentric radius of the Sun, R. We fix R
and R, to 30 and 1 kpc, respectively. Since the surface density
of the disk falls exponentially, varying these values will not
affect the model fit. In addition, the rotation parameters of the
halo and bulge are fixed so that neither component has net
angular momentum. (In principle, incorporating more detailed
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Fic. 5.—Results from the best-fit Milky Way model compared with ob-
servations for W (top) and vem (bottom) as defined in the text.

observations of the bulge would allow us to fit the bulge rota-
tion curve.) We pin the scale length of the radial dispersion
profile to half that of the disk scale length (i.e., R, = Ry so that
the 0% and the surface density have the same exponential decay
constant). We also fix ¢, = 0.2, which gives a tidal radius larger
than 100 kpc. Finally, we run the simplex algorithm with R, fixed
to different values. In summary, each implementation of the sim-
plex algorithm is run with nine free parameters.
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Fic. 6.—Line-of-sight dispersion profile for the bulge region. Data are from
a compilation by Tremaine et al. (2002) of published measurements.
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3.1.3. Results

The parameter set for the best-fit Ry = 8 kpc model (MWa) is
given in Table 2. Also given is the parameter set for a Milky
Way model with a less massive disk that also has an acceptable
x> (MWDb). The density profiles and rotation curves for the
two models are shown in Figures 3 and 4. We see that the disk
dominates the rotation curve in model MWa for 3 kpc SR <
12 kpc whereas the disk never dominates the rotation curve of
model MWb. We return to this point below.

A comparison of observations of v, and W(R) with model
predictions for MWa is shown in Figure 5, while a comparison
of observed and predicted quantities for the other observables is
given in Table 3. We see that both models provide an excellent
fit to the observations.

In Figure 6 we compare the line-of-sight velocity disper-
sion profile for model MWa with data compiled by Tremaine
et al. (2002). Recall that to find the model, a single constraint
at 210 pc was used. We see that the agreement between model
and observations is excellent for » > 100 pc. However, the model
dispersion profile at smaller radii is too flat in comparison with
the data. The slow rise in the dispersion profile appears to be a
feature our models have in common with the 7-models of Tremaine
et al. (1994) and may point to the necessity for a more com-
plicated DF (e.g., one that depends on two or more integrals of
motion).

Figure 6 also includes the dispersion profile obtained for a
model that includes a central black hole of mass 3.6x 10° M.

TABLE 3
ComPARISON OF OBSERVATIONS AND MODEL PREDICTIONS

o o - oLos M

Model . 4 B 2 AR 2 K.27G 210 pe) (100 kpc)
Observed........ccocevenee. ... 14.5 —12.5 36 25 20 71 136 70
0.75 13.6 —12.5 31.7 26.4 19.9 71.7 134 67
091 13.5 —-12.9 32.3 27.5 20.0 68.6 134 72

Note.—Units are km s~ for the velocity dispersions, 10'° M, for M, and M(100 kpc), and M., pc~2 for K./2nG.
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This value is roughly twice that found by Tremaine et al. (2002).
The agreement between model and observations is poor be-
tween 1 and 100 pc perhaps for the aforementioned reasons.
However, the model profile does exhibit a minimum at r ~
10 pc, a feature that is generic to galaxies that are believed to
harbor central supermassive objects.

How tightly do the data constrain the model? The answer in
part is given in Figures 7 and 8. For Figure 7, M, is fixed to
different values while the remaining eight free parameters are
allowed to float. The result is x? as a function of M as shown
in the top panel. The derived disk-to-bulge mass ratio, again as a
function of M, is shown in the bottom panel. Evidently, the
disk mass can vary by nearly a factor of 2 and still yield an ac-
ceptable fit to the data.

A similar analysis for R, is shown in Figure 8. Here the
minimum in x?(R,) is fairly flat especially toward larger values
of Ry. The preferred value of Ry >~ 8 kpc agrees with well-known
estimates.

For both MWa and MWb, R;/Ry ~ 0.36, which is approxi-
mately halfway between the two NFW models considered by
Dehnen & Binney (1998a; their models 2d and 4d). Table 4
summarizes values for a number of other derived quantities for
our models. Column (2) gives the bulge mass. The values for
these two models are in excellent agreement with estimates of M),
based on COBE DIRBE measurements (Dwek et al. 1995) and
gravitational microlensing observations (Bissantz et al. 1997).

the estimates from Kuijken & Gilmore (1991).

Columns (5) and (6) give the total mass and tidal radius for
the models. Recall that the tidal radius is controlled by the
parameter ¢;,. We have tuned this parameter so that r; is roughly
equal to the virial radius Ry;, of the Galaxy as predicted by the
standard cosmological model of structure formation. In this
scenario, R,;, and the mass interior to this radius, M,;,, are re-
lated through the equation

4 _
T AvirpRiiﬁ (33)

My =
where p is the mean density of the universe and A,;, param-
eterizes the average overdensity of the halo (see Bullock et al.
2001 and references therein). For the currently favored ACDM
cosmology (24 = 0.3, ©,, = 0.7) one finds Ay; = 337. For
both of our Milky Way models, r, ~ 240 kpc.

Based on these values of 7, we can estimate the halo concen-
tration parameter c; >~ r¢/ay (col. [7]). Model MWa compensates
for the heavy disk by choosing a larger halo scale length, and for
this reason its concentration parameter is smaller than that for
MWb. Both models have concentration parameters larger than
the mean value derived from cosmological simulations but within
the 1 o error bars (Bullock et al. 2001).

TABLE 4
DERIVED QUANTITIES FOR MILKY WAY MODELS

Model M, 0 K. yis27G M, vy Cr P(Ro)
O] @ “ ® © O ®)
1.1 1.3 53 74 239 19  0.0079
1.2 22 39 77 236 27 0.015

Notes.—Units are kpc for 7, and M, pc > for p(Ry). Otherwise the units are
the same as in Table 3.
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3.1.4. Local Dark Matter Density and the Terrestrial
Dark Matter Detectors

Dark matter detection experiments rely on halo models to de-
velop search strategies and to analyze and interpret experimental
data. Terrestrial dark matter detectors are sensitive to the local
density and velocity-space distribution of dark matter particles.
For these experiments, researchers have settled on a standard ref-
erence model, namely, Maxwellian velocities with an rms speed
0f270 km s~! and a local density of p(Ry) = 0.0079 M, pc—3 ~
0.3(GeV/c?) em™3. This reference model is useful for comparing
the sensitivities of different experiments, as well as making con-
tact with predictions from theoretical particle physics.

Our models allow one to study deviations from the standard
model while ensuring that observational and dynamical con-
straints are satisfied. In Figure 9 we compare the local speed
distribution for halo particles in models MWa and MWb with
that of the standard reference model. The corresponding density
is given in column (8) of Table 4. We see that the heavy disk
model (MWa) matches up quite well with the standard refer-
ence model while the light disk model has a local dark matter
density that is a factor of 2 higher. As discussed above, MWa
is unstable to bar formation, suggesting a higher value for the
local dark matter.

Numerous authors have considered variations on the standard
Galactic model such as bulk rotation of the halo, velocity space
anisotropy, triaxiality, tidal streams, and small-scale clumpiness.
Our models provide a starting point for further investigations
along these lines. As described above, rotation may be added to
the halo, while velocity-space anisotropy and triaxiality require
nontrivial modifications of the DF. In addition, our models are
well suited to numerical studies of the tidal disruption of sub-
clumps in the dark halo.

3.2. Models for M31

We now take up the challenge of modeling M31, which pro-
vides a case study of an external galaxy. The surface brightness
profile, the circular rotation curve, and the bulge velocity and
dispersion profiles are combined to yield observation-driven
models.

Recently, Widrow et al. (2003) combined observations of the
types described above to identify a suite of M31 models drawn
from the original KD95 set. As one might expect, suitable mod-
els were found over a wide range in values for the disk mass-to-
light ratio although models with particularly large values were
found to be unstable to the formation of a strong bar and could
therefore be ruled out.

Our disk-bulge-halo DFs offer the possibility for an improved
model of M31. The Hernquist bulge is favored by observa-
tions, while the NFW halo is favored by cosmological simula-
tions of structure formation. Moreover, with the new models, the
truncation radius of the NFW halo can be varied independently
of the inner density profiles of the three components (Fig. 1).
Thus, one can tune the truncation radius to correspond to the
virial radius as predicted by cosmology or alternatively constrain
the outer halo using observations of the M31 satellite system.

3.2.1. Observations

Following Kent (1989) and Widrow et al. (2003), we utilize
measurements of Andromeda’s surface brightness profile, rota-
tion curve, and bulge velocity profiles. We use the global R-band
surface brightness profile from Walterbos & Kennicutt (1987),
which was obtained by averaging the light distribution over el-
liptical rings assuming an inclination of 77°.
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Fic. 9.—Speed distribution of halo particles at the position of the solar
system for model M31a (dotted line), M31b (dashed line), and the standard
model used by experimentalists (solid line).

The global surface brightness profile represents a small sub-
set of the available photometric data. In principle, a more so-
phisticated bulge-disk decomposition, where the thickness of
the disk and inclination angle enter as free parameters, could be
performed using two-dimensional surface brightness maps. How-
ever, apparent deviations of the galaxy from axisymmetry suggest
that our models cannot adequately reflect this level of detail.
For example, the position angle of the major axes of elliptical
isophotes varies with galactocentric radius, suggesting that the
bulge is barlike and triaxial. Triaxiality can be introduced in a
controlled way, for example, by “adiabatically molding” the
model into the desired shape (Holley-Bockelmann et al. 2001).
Alternatively, one can evolve, via N-body methods, a model
galaxy that has a weak bar instability to see if some intermediate
state is consistent with the observations (e.g., twisting isophotes).
Such an exercise might further constrain the models and help
break the mass-to-light degeneracy.

For the rotation curve we combine measurements by Kent
(1989) and Braun (1991) using the same kernel smoothing as
in Widrow et al. (2003). The composite rotation curve extends
from 2 to 25 kpc in galactocentric radii. Although the mea-
surements in Braun (1991) extend to 30 kpc, we ignore data
beyond 20 kpc since for this region of the galaxy, measurements
were made along a single spiral arm on one side of the galaxy.
Stellar rotation and velocity dispersion results from McElroy
(1983) are used to constrain the dynamics of the inner 2 kpc
of the galaxy. Widrow et al. (2003) attempted to fit the disper-
sion profiles along the major and minor axes, as well as the
bulge rotation profile between 300 and 2000 pc. Acceptable
fits were found although, in general, the models had a difficult
time simultaneously reproducing a rising rotation curve and
falling dispersion profile. One possible explanation is that the
“bulge” data are contaminated by the disk (a rapidly rotating,
dynamically cold system). Here we use data between 300 and

1000 pc.
The composite x? statistic is given by
1
X = 3 (XéBP + Xre + X%)v (34)
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where X2gp, X&c» and x5 are for the surface brightness profile,
rotation curve, and bulge bulk velocity and dispersion profiles,
respectively.

3.2.2. Search Strateqy

Two of the seven parameters that describe the disk DF, the
mass and radial scale length, are allowed to vary in the pa-
rameter search algorithm. The vertical scale length, truncation
radius, and truncation shape parameter are fixed at the values
0.3, 30, and 1 kpc, respectively. Since our data do not depend on
the dispersion of disk stars, the parameters oy and R, are not
required for the fitting algorithm although they are required for
generating an N-body realization. The halo parameters o, and
ay, are allowed to vary, while the truncation parameter ¢, is fixed
to a value large enough so that the truncation radius is well
outside the visible part of the galaxy. This parameter is adjusted
after a suitable model for the visible part of the galaxy is found.
Finally, the four parameters that describe the bulge, a,, oy, fp,
and «, are allowed to vary.

3.2.3. Results

A wide range of models provide acceptable fits to the obser-
vations. Figure 10 is a contour plot of x? in the (M/Lg)4-(M/Ly),
plane [(M/Lg); and (M/Ly), are the R-band mass-to-light ratios of
the disk and bulge, respectively]. The general structure of a valley
running approximately parallel to the (M/Lg), axis arises for two
reasons. First, the bulge luminosity is constrained by the inner part
of'the surface brightness profile, while its gravitational potential is
constrained by the dispersion data. Hence, (M/Ly), is relatively
well determined. By contrast, the primary constraint on the disk
mass comes from the rotation curve. But since the disk and halo
contributions to the rotation curve are similar, one can be played
off the other and therefore the (M/Ly), is poorly constrained.

The degeneracy with respect to the disk mass-to-light ratio is
generic to modeling of spiral galaxies and has been known for
some time (see, e.g., van Albada et al. 1985). This degeneracy
may be broken by fixing the disk mass-to-light ratio to a the-
oretically preferred value, e.g., one derived from population
synthesis models. Alternatively, one may constrain the disk
mass-to-light ratio by requiring that the galaxy model be stable
against the formation of a strong bar. As with the Milky Way,
M31 may have a weak bar and so absolute stability is not a re-
quirement (or even desirable). However, models with very heavy
disks can clearly be ruled out as we demonstrate in the next sec-
tion. A third possibility is to include an additional data set that
probes more directly the disk mass distribution such as disk ve-
locity dispersion measurements as in the study by Bottema et al.
(1987) of NGC 5170.

The mass-to-light ratios in Figure 10 must be corrected for
foreground and external extinction if we are to make contact with
theoretical predictions. Foreground extinction toward M31 is
estimated to be 0.41 mag in B (de Vaucouleurs et al. 1976),
corresponding to 0.23 mag in R assuming the standard inter-
stellar extinction law (Binney & Merrifield 1998). Estimates of
(R band) internal extinction for the disk range from 0.6 (Monnet
& Simien 1977) to 0.74 mag (Kent 1989), while formulae in
Tully et al. (1998) give 0.64 mag. Assuming 0.65 mag internal
extinction for the disk and no internal extinction for the bulge
(Kent 1989), (M/Lg), and (M/LR),, in Figure 10 should be scaled
downward by 2.2 and 1.2, respectively, to give x? in terms of
intrinsic mass-to-light ratios.

Population synthesis models provide an independent means
of constraining the mass-to-light ratios in disk galaxies. Bell &

DISK MODELS FOR MILKY WAY AND ANDROMEDA 849

Y
J

M/L(disk)

3 4
M/L(bulge)

Fic. 10.—Contour plot of x? in the (M/Lg)s-(M/Lg), plane.

de Jong (2001) provide a table of predicted mass-to-light ratios
as a function of various color parameters. In particular, they find

log,o(M/Lg) = —0.820 +-0.851(B—R).  (35)

For the M31 disk, Walterbos & Kennicutt (1988) find B — R ~
1.53, which, when corrected for extinction, corresponds to B—
R ~1.18, implying (M/Lg),~1.5 (corrected) or (M/Lg), ~
3.4 (uncorrected ). Applying the same formula to the bulge re-
gion where B — R ~ 1.6 yields (M/Lg), ~ 3.2 (corrected) or
3.9 (uncorrected).

Our results may be compared with those from previous in-
vestigations. Kent (1989) modeled the disk and bulge of M31
using rotation curve and bulge dispersion measurements, as
well as photometric observations carried out in the 7 bandpass
of the Thuan & Gunn (1976) system. He found (uncorrected)
values for the mass-to-light ratios of (M/L,)yq = 10.5 and
(MIL;)pyyqe = 5-0. Using the transformation r — R = 0.43 +
0.15(B — V) from Kent (1985) witha B — ¥ color from Walterbos
& Kennicutt (1988), Kent’s values become (M/Lg), ~ 6.2 and
(M/Lg), ~ 3.0. Note that Kent (1989) assumes a constant-
density halo (i.e., halo with a very large core radius), which ex-
plains why his value for (M/L), is higher than ours and others
(Klypin et al. 2002).

Recent interest in bulge models has been driven in large
part by an attempt to understand their connection with galac-
tic supermassive black holes. Magorrian et al. (1998) have
constructed dynamical models for bulge—black hole systems
in 36 spiral galaxies. For M31, they find a mass-to-light ratio
in ¥ band of 4.83 £ 0.1 or (M/Lg), ~ 3.4 (uncorrected for
extinction).
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Fic. 11.—Predictions vs. observations for models M31a (/eft) and M31b
(right). Shown are the rotation curve (fop), R-band surface brightness profile
(middle), and residuals (predicted — observed) for surface brightness profile
(bottom). Line types in the rotation curve plots are the same as in previous
figures.
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To summarize, our analysis alone does little to constrain the
disk mass-to-light ratio. As for the bulge, previous modeling
and predictions from stellar population studies point to a mass-
to-light ratio a factor of 2 higher than our preferred value.

To better understand these results, we consider four models
in more detail. Model M31a has disk and bulge mass-to-light
ratios set equal to one another and to the value predicted by
population synthesis models. This model lies close to the x?
valley in Figure 10. The same disk mass-to-light ratio is used in
M31b, but here (M/Ly), is increased to 3.4 as estimated by
Magorrian et al. (1998). The rotation curve and surface bright-
ness profiles for these two models are shown in Figure 11, while
the bulge line-of-sight dispersion and bulk velocity profiles are
shown in Figure 12. The preference for lower values of (M/Lg),
is evident in the surface brightness and bulge line-of-sight
dispersion profiles. With the higher value of (M/Ly),;, the pre-
dicted dispersion profile is too flat, i.e., does not fall fast enough
with radius. The simplex algorithm strikes a balance between a
bulge that is too dim and one that is too massive but ultimately
cannot fit the surface brightness and dispersion profiles as well
as the low-(M/Lg), model. Note that Kent (1989) has the same
difficulty with the bulge dispersion profile while the analysis
of Magorrian et al. (1998) is restricted to the innermost 0/15
(30 pc) of the bulge.

M31c-M31a-M31d form a sequence of models from light to
heavy disk mass. The rotation curves for models M31c and
M31d are shown in Figure 13.

3.3. Equilibrium and Stability

We simulated N-body realizations of the four M31 models to
test for both the quality of the derived equilibria and stability
against bar formation. In all four models, the bulge dominates
the innermost part of the rotation curve. In M31c, the disk
contribution is subdominant throughout the system, whereas in
model M31d, the disk dominates the rotation curve between 5
and 25 kpc. We anticipate that M31d will form a bar while
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Fic. 12.—Bulge dispersion and bulk rotation profiles for model M31a
(solid line), M31b (dotted line), and observations (data points).

o

M3 1c will be stable. For models M31a and M31b the disk con-
tribution to the rotation curve is comparable to that of the other
components at about one scale radius.

For each model, we generate an N-body realization con-
taining a total of 3.5 million particles (1 million disk particles,
500,000 bulge particles, and 2 million halo particles) and evolve
the system using a parallel N-body tree code (Dubinski 1996).
The extent to which the initial conditions represent a system
in equilibrium and its susceptibility to the bar instability are
explored by monitoring the surface density of the disk+bulge
system, the disk velocity ellipsoid, the disk scale height, and the
density profiles of the bulge and halo. We begin by discussing
the results for model M31a, which does not form a bar and
represents a good test case. The central disk radial velocity dis-
persion has been set so that the Toomre O parameter is O ~ 1.2
at R = 2R;. This initial disk is rather cool and is unstable to
spiral instabilities arising from the swing amplification of par-
ticle shot noise, an effect that leads to emerging spiral structure
and disk heating. The disk is also heated through its interactions
with halo particles, but this effect is relatively minor with
2 million halo particles and a halo particle mass is only m;, =
2.9%10° M. (A halo made of 10° M, black holes will roughly

W"’ TR NN TSNS N BRI
0 10 20 0 10 20
r (kpc) r (kpc)

Fic. 13.—Rotation curves for models M31c (left) and M31d (right).
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Fic. 14.—Evolution of the surface density profile over 4.8 Gyr. The three
solid lines give the total surface density at t = 0, 2.4, and 4.8 Gyr. The dotted
lines show the separate contributions from the bulge and disk.

double the disk scale height over a Hubble time [e.g., Lacey &
Ostriker 1985] and so our halo should have a much smaller
effect.)

We ran model M31a for ¢ = 4.8 Gyr using 10,000 time steps.
The particle softening radius was set to s = 50 pc so the number
of time steps was more than adequate to follow orbits down to
the softening radius in the galaxy core. The first impression is
that the initial conditions are almost in perfect equilibrium with
essentially no transient readjustment of the disk at start-up, i.e.,
no evidence of the imperfections in the initial conditions that
are present in other methods (e.g., Hernquist 1993). Figure 14

290
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FiG. 15.—Evolution of the disk velocity ellipsoid over 10 Gyr. The profiles
of the velocity dispersions are shown at # = 0.0, 2.4, and 4.8 Gyr, showing a
slow increase over the disk.
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Fic. 16.—Disk scale height evolution at t = 0 (solid line) and ¢t = 2.4 and
4.8 Gyr (dotted lines).

shows the disk+bulge surface density profile at = 0, 2.4, and
4.8 Gyr along with the disk and bulge initial profiles. There is
no change in the profile over the 4.8 Gyr integration and there is
no sign of a bar. Figure 15 shows the evolution of the radially
averaged disk velocity ellipsoid throughout the disk and re-
veals the effect of natural heating through the growth of spi-
ral structure. The disk velocity ellipsoid at R = 15 kpc (about
3 disk exponential scale lengths) changes from (og, 04, 0;) =
(22, 15, 18) to (31, 22, 19) km s~ ! after 4.8 Gyr. Another in-
dicator of disk evolution and heating is the vertical scale height.
Figure 16 shows the variance in disk particle height above the
midplane as an estimator of disk scale height at three times.
There is some evolution with the scale height growing by about
10%, showing the good quality and relatively low shot-noise
effect in the models. The apparent flaring beyond about R =
4R, may result partially from poor vertical force resolution due
to discrete sampling of the disk. Since we choose a constant
disk particle mass, the particle number density drops off quickly
at large radii.

Figure 17 shows the density profile of the bulge and halo over
the course of the simulation. The denser bulge develops a core
radius of 7. = 300 kpc because of the use of force softening
while the halo maintains its 7~ cusp. We see below in models
with black holes that the cusp profile can be maintained if
smaller softening lengths and smaller time steps are used. We
also examined the evolution of the halo shape profile as a fur-
ther test. Near the vicinity of the disk, the halo profile shape is
flattened by the presence of the disk potential and so that flat-
tening should remain unchanged if the system is in proper
equilibrium. We compute the shape of the best-fit ellipsoidal
density contours as a function of radius at the start and end of
the simulation using the normalized inertial tensor using the
method described in Dubinski & Carlberg (1991) (Fig. 18).
This shows that the halo is flattened into an oblate spheroid
with ¢ =~ 0.8 near the disk and then becomes spherical at larger
radii. With the exception of the central point where softening
effects modify profiles, the shape profile remains unchanged



852

WIDROW & DUBINSKI

i 800

Vol. 631

T
o\

-1 0 1 2 3
log R/kpc

Fic. 17.—Bulge and halo radial density profiles over 4.8 Gyr. The vertical
dotted line corresponds to the softening length. A constant-density core de-
velops in the bulge on the scale of the softening length of s = 50 pc.

throughout the simulation, implying a good choice of equilib-
rium. In summary, the method produces an excellent equilib-
rium configuration of a spiral galaxy. The gradual heating of the
disk can be attributed to the formation of transient spiral struc-
ture and to a lesser extent heating by halo particles.

Simulations of the remaining models also show clean initial
equilibria. Only model M31d develops a bar. The bar forms at
3 Gyr and persists until the end of the simulation at t = 4.8 Gyr.
At the end of the simulation the bar has a length of r, = 7.7 kpc
with a pattern speed of 23 km s~ ! kpc~! and a corotation radius
of D; = 9.8 kpc. The ratio D : 7, = 1.3 makes this a ““fast” bar
in the standard nomenclature (e.g., O’Neill & Dubinski 2003) at
least at this stage of the simulation. While M31 appears to have
a triaxial barlike bulge, at present, it does not appear to be a
well-developed barred spiral. The absence of a bar in M31 sug-
gests that the disk mass in model M31d is too great and that one
of the other models is more acceptable for M31.

Axis ratios b/a, c/a
o o
@ ©

0'7 1 ‘ 1 1 ‘ 1 1 ‘ 1 1 ‘ 1 1
0 20 40 60 80
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Fic. 18.—Halo axis ratio profile at the start (solid line) and end (dashed line)

of the simulation over 4.8 Gyr. With the exception of the central point, the axis
ratio of the halo remains essentially constant throughout the simulation.
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Fic. 19.—Velocity dispersion (fop) and surface brightness (bottom) profiles
in the bulge.

We also simulated the two Milky Way models and found lit-
tle evolution in the velocity ellipsoid, vertical scale height, sur-
face density, and space density, again illustrating the excellent
quality of the models as a means of setting up initial conditions
for N-body simulations. Not surprisingly, model MWa (where
the disk provides the dominant contribution to the rotation
curve at intermediate radii) develops a bar while MWb appears
to be stable.

3.4. Incorporating a Black Hole

In this section we examine an axisymmetric model of M31
augmented by a central black hole. M31 is the nearest galaxy
with a demonstrable central black hole but unfortunately ex-
hibits a complex central structure in the form of a double nu-
cleus (Lauer et al. 1993; Bacon et al. 1994). Estimates of the
black hole mass based on dynamical models and the observed
bulge surface brightness and velocity dispersion profiles fall
in the range (3—8.5)x 107 M, (Tremaine 1995; Kormendy &
Bender 1999; Bacon et al. 2001).

As an illustration of our models, we place a black hole of
mass 3x 107 M, at the center of model M3 1a. Figures 19 and 20
show the line-of-sight velocity dispersion and surface density
profiles. To generate the inner portion of the curves (dashed
lines) in Figure 19, we sample 10 million particles from the
bulge DF within a thin tube 20 pc in radius centered on the galaxy
and aligned with the symmetry axis. The dispersion profile ex-
hibits the characteristic intermediate minimum and maximum
seen in the data (Tremaine 1995).

We also simulate a galaxy model including a black hole to
test the quality of the equilibrium focusing on the nuclear region
close to the black hole. The black hole moves freely as a single
particle within the simulation. For this test, we put most of the
particles in the bulge, N = 107, so the ratio of the black hole
mass to the bulge particle mass is ~10% The enclosed mass of
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Fic. 20.—Evolution of the velocity dispersion and surface brightness
profiles around the central black hole. Solid line: t = 0; dotted line: t ~ 10° yr;
short-dashed line: t ~ 2x10° yr; long-dashed line: t ~ 3x10° yr. The orbital
time for the black hole at 1 pc is 1.7x10* yr.

bulge stars equals the black hole mass at aradius » = 34 pc. The
halo and disk are represented by 2 million and 1 million par-
ticles, respectively, but their particles are unlikely to interact
with the black hole in this test. We set the particle and black hole
softening length to s = 1 pc and use a single time step of At =
100 yr. Even with a total of N = 107 particles in the bulge, there
are only 13 bulge particles initially within the softening radius.
Figure 20 also shows the evolution of the model, focusing on
the central region surrounding the black hole. The simulation
is run for 3000 time steps, corresponding to approximately 18
orbital times at a radius of 1 pc. We see that there is some evo-
lution of the system; toward the center, the velocity dispersion
fluctuates slightly within » ~ 10 pc and the surface density in-
creases slightly. At » = 1 pc where there are only a dozen or so
particles, we expect larger initial variations that may explain the
settling to a slightly higher density. Nevertheless, the profiles
remain close to the initial state, suggesting that the equilibrium
is reasonable. These effects may also result indirectly from using
force softening or may be a reflection of the approximations that
have gone into the DF. Clearly, high numerical resolution is
needed to treat the dynamics of stars around a central black hole,
and the short orbital times make these technically difficult and
costly.

Models such as this one may be used as initial conditions for
numerical experiments of black hole dynamics during galaxy
merger events such as the simulations by Milosavljevi¢ &
Merritt (2003) and will be explored in future investigations.

4. SUMMARY AND DISCUSSION

Our goals in this paper have been threefold. First, we have
presented a new set of model DFs for multicomponent disk
galaxies. Second, we have identified particular models that fit
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observational data for the Milky Way and M31. Finally, we have
explored the stability of the models using numerical simulations.

Our DFs represent self-consistent axisymmetric equilibrium
solutions to the Poisson and CB equations. The disk and bulge
DFs are motivated by observations, while the halo DF is mo-
tivated by results from cosmological N-body simulations. The
models permit the inclusion of a central supermassive black
hole.

Historically, two approaches have been used to construct DFs
for equilibrium systems (Binney & Tremaine 1987). The first
approach is to propose a DF built from chosen functions of
the integrals of motion and then calculate the density by solving
the Poisson equation. The second is to calculate the DF from the
desired density profile via an integral equation known as the Abel
transform. Our DFs are the product of a hybrid scheme. The DF
for the isolated NFW halo was derived from the Abel transform,
modified by the energy mapping as described in the text, and then
used for the halo in the composite system.

Our models are defined by 15 free parameters, which may be
tuned to fit a wide range of observational data. Typically most
of the parameters are poorly constrained. A galaxy’s surface
brightness profile is, in general, adequate to fix the disk scale
length and, in combination with velocity dispersion and rota-
tion curve measurements, provides a constraint on the disk mass
and halo and bulge structural parameters. However, degenera-
cies remain primarily due to uncertainties in the disk and bulge
mass-to-light ratios. Theoretical considerations such as results
from population synthesis studies or numerical experiments of
the bar instability can help narrow down the field of acceptable
models. Additional data for external galaxies such as velocity
dispersion measurements in the disk may help break the M/L
degeneracy. Observations of edge-on spiral galaxies can be
used to constrain the vertical scale height and disk truncation
parameters (Kregel et al. 2002).

We have constructed sequences of models for the Milky
Way and M31 that provide excellent fits to available data. The
models serve to illustrate the general procedure for searching a
large parameter space to find acceptable models for particular
galaxies.

A primary purpose of our models is to provide initial con-
ditions for N-body experiments, and well-developed techniques
allow one to sample the DFs with arbitrary numbers of particles.
Through a series of numerical experiments, we have explored the
quality of the models as initial conditions and their stability to
the formation of bars. Models in which the disk contribution to
the rotation curve is always subdominant to that of the bulge and
halo tend to be stable against bar formation and therefore provide
the best laboratory to study the quality of the model DFs. Our
analysis of one such model indicates that the DFs do indeed provide
excellent initial conditions. The radial profiles of the space den-
sity, surface density, velocity dispersion tensor, and vertical scale
height all remain relatively constant over 4.8 Gyr. Areas where
we do see some evolution may be understood from simple con-
siderations. For example, the bulge evolves from Hernquist cusp
to core inside the softening length because the velocity distri-
bution is calculated assuming an unsoftened force law. Spiral den-
sity waves, generated by swing amplification of shot noise, cause
the disk to thicken, but only by about 10%.

Models in which the disk contribution to the rotation curve is
dominant over some range in radius develop strong bars. We
confirm this well-known result for both Milky Way and M31
models.

Our models allow for the addition of a central supermassive
black hole. Our prescription for doing this maintains the density
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distribution of the black hole—less models while modifying the
velocities to establish a new dynamical equilibrium near the
black hole. The velocity dispersion profiles of our black hole
models have the right characteristics to match the data, namely,
high dispersion near the black hole falling to a minimum at tens
of parsecs, rising at a radius of a hundred or so parsecs, and then
falling again as one moves farther out in radius. Thus, we may
be able to model galaxies from the sphere of influence of the
black hole out to the virial radius, an impressive dynamic range
of 5 or more orders of magnitude.

There are numerous open avenues for future work. The model
fitting algorithm can accommodate any number and type of ob-
servations, and one may add to the pseudo-observations layers of
realism such as statistical fluctuations and the effects of seeing.
Our M31 study used a small subset of the available photometric
and kinematic data. Two-dimensional surface brightness and dis-
persion maps reveal the presence of the bar and may be com-
pared with corresponding maps from the “evolved” models,
providing a further constraint on the model.

A classic problem in galactic dynamics is the disruption of
satellite systems by the tidal field of the parent galaxy. The
discovery of an arc of stars associated with the Sagittarius dwarf
galaxy (see Majewski et al. 2003 and references therein) has
intensified interest in performing simulations of the tidal dis-
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ruption of this system (Ibata et al. 1997; Helmi 2004; see also
Geehan et al. 2005 for a study of the Andromeda stream in a
disk-bulge-halo model of M31). Our models offer the possi-
bility of performing such simulations of realistic and fully self-
consistent models for both parent and satellite systems. Since a
primary goal of previous investigations has been to constrain
the shape of the Galactic halo, our models will have to be
extended to include triaxial systems if they are to be useful in
this endeavor. The extension to triaxial systems might be ac-
complished by adiabatically molding the models as in Holley-
Bockelmann et al. (2001).

Our models might be extended in other important ways such
as the inclusion of a globular cluster system or thick disk as
discussed in the text. Perhaps the most significant and challeng-
ing improvement would be to add a gas component and star for-
mation since this would enable the study of spiral structure and
bar formation with a far greater level of realism.

It is a pleasure to thank S. Courteau, R. Henriksen, K. Perrett,
and S. Kazantzidis for useful conversations. This work was
supported, in part, by the Natural Science and Engineering
Research Council of Canada and the Canadian Foundation for
Innovation.
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