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Preface

This book is based on a two-semester sequence of courses taught to incoming graduate
students at the University of Illinois at Urbana-Champaign, primarily physics students
but also some from other branches of the physical sciences. The courses aim to intro-
duce students to some of the mathematical methods and concepts that they will find
useful in their research. We have sought to enliven the material by integrating the math-
ematics with its applications. We therefore provide illustrative examples and problems
drawn from physics. Some of these illustrations are classical but many are small parts
of contemporary research papers. In the text and at the end of each chapter we provide
a collection of exercises and problems suitable for homework assignments. The former
are straightforward applications of material presented in the text; the latter are intended
to be interesting, and take rather more thought and time.

We devote the first, and longest, part (Chapters 1-9, and the first semester in the
classroom) to traditional mathematical methods. We explore the analogy between linear
operators acting on function spaces and matrices acting on finite-dimensional spaces,
and use the operator language to provide a unified framework for working with ordinary
differential equations, partial differential equations and integral equations. The mathe-
matical prerequisites are a sound grasp of undergraduate calculus (including the vector
calculus needed for electricity and magnetism courses), elementary linear algebra and
competence at complex arithmetic. Fourier sums and integrals, as well as basic ordinary
differential equation theory, receive a quick review, but it would help if the reader had
some prior experience to build on. Contour integration is not required for this part of
the book.

The second part (Chapters 10—14) focuses on modern differential geometry and topol-
ogy, with an eye to its application to physics. The tools of calculus on manifolds,
especially the exterior calculus, are introduced, and used to investigate classical mechan-
ics, electromagnetism and non-abelian gauge fields. The language of homology and
cohomology is introduced and is used to investigate the influence of the global topology
of a manifold on the fields that live in it and on the solutions of differential equations
that constrain these fields.

Chapters 15 and 16 introduce the theory of group representations and their applications
to quantum mechanics. Both finite groups and Lie groups are explored.

The last part (Chapters 17—19) explores the theory of complex variables and its
applications. Although much of the material is standard, we make use of the exterior

X1



xii Preface

calculus, and discuss rather more of the topological aspects of analytic functions than is
customary.

A cursory reading of the Contents of the book will show that there is more material
here than can be comfortably covered in two semesters. When using the book as the basis
for lectures in the classroom, we have found it useful to tailor the presented material to
the interests of our students.
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1

Calculus of variations

We begin our tour of useful mathematics with what is called the calculus of variations.
Many physics problems can be formulated in the language of this calculus, and once
they are there are useful tools to hand. In the text and associated exercises we will meet
some of the equations whose solution will occupy us for much of our journey.

1.1 What is it good for?

The classical problems that motivated the creators of the calculus of variations include:

(1) Dido's problem: In Virgil’s Aeneid, Queen Dido of Carthage must find the largest

area that can be enclosed by a curve (a strip of bull’s hide) of fixed length.

(i) Plateau'’s problem: Find the surface of minimum area for a given set of bounding
curves. A soap film on a wire frame will adopt this minimal-area configuration.

(ii1) Johann Bernoulli'’s brachistochrone: A bead slides down a curve with fixed ends.
Assuming that the total energy %mv2 + V' (x) is constant, find the curve that gives
the most rapid descent.

(iv) Catenary: Find the form of a hanging heavy chain of fixed length by minimizing
its potential energy.

These problems all involve finding maxima or minima, and hence equating some sort
of derivative to zero. In the next section we define this derivative, and show how to
compute it.

1.2 Functionals

In variational problems we are provided with an expression J[y] that “eats” whole func-
tions y(x) and returns a single number. Such objects are called functionals to distinguish
them from ordinary functions. An ordinary function is a map f/ : R — R. A functional
JisamapJ : C°(R) - R where C*°(R) is the space of smooth (having derivatives
of all orders) functions. To find the function y(x) that maximizes or minimizes a given
functional J[y] we need to define, and evaluate, its functional derivative.



2 1 Calculus of variations

1.2.1 The functional derivative

We restrict ourselves to expressions of the form
x
J[y] :/ 4f(x9y>y/sy//9'"y(n))dxs (11)
X1

where f depends on the value of y(x) and only finitely many of its derivatives. Such
functionals are said to be /ocal in x.

Consider first a functional J = [fdx in which /" depends only x, y and )’. Make a
change y(x) — y(x) + en(x), where ¢ is a (small) x-independent constant. The resultant
change in J is

X2

J[y+8n]—J[V]=/ {fy+eny +en)—fxp.))} dx

1

Y e UK 2
_fxl{ i 8,+0(s)}arx

X2 9
= [onge ], + [ e {5 - & (50 o
dy
+ 0(?).
If n(x;) = n(xp) = 0, the variation dy(x) = en(x) in y(x) is said to have “fixed

endpoints”. For such variations the integrated-out part [. . .2 vanishes. Defining 8/ to
be the O(¢) part of J[y + en] — J[y], we have

X2 o) d (90
= [ -4 ()]
X2 8J
= | sy( )( )d. (1.2)
/xl P\ m) T

The function

s a4 (in) 05

=2 _ — 9y

is called the functional (or Fréchet) derivative of J with respect to y(x). We can think
of it as a generalization of the partial derivative d.J /dy;, where the discrete subscript “i”
on y is replaced by a continuous label “x”, and sums over i are replaced by integrals
over x:

yl 1

aJ % 8J
8J = Z by = /x dx ((Sy(x)) Sy (x). (1.4)
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1.2.2 The Euler-Lagrange equation

Suppose that we have a differentiable function J (y1, 2, . . ., v,) of n variables and seek
its stationary points — these being the locations at which J has its maxima, minima and
saddle points. At a stationary point (y1,2, .. .,V,) the variation

"L aJ
i=1 8yl

must be zero for all possible §y;. The necessary and sufficient condition for this is that all
partial derivatives dJ/dy;, i = 1,...,n be zero. By analogy, we expect that a functional
J[y] will be stationary under fixed-endpoint variations y(x) — y(x) + 8y(x), when the
functional derivative §J /3y (x) vanishes for all x. In other words, when

af d(af

() o By/(x)) =0, x <x<xp. (1.6)

The condition (1.6) for y(x) to be a stationary point is usually called the Euler—Lagrange
equation.

That 8J /8y (x) = 01is a sufficient condition for §J to be zero is clear from its definition
in (1.2). To see that it is a necessary condition we must appeal to the assumed smoothness
of y(x). Consider a function y(x) at which J[y] is stationary but where §J/8y(x) is
non-zero at some xg € [x1,x2]. Because f(y,)/,x) is smooth, the functional derivative
8J /8y(x) is also a smooth function of x. Therefore, by continuity, it will have the same
sign throughout some open interval containing x¢. By taking §y(x) = en(x) to be zero
outside this interval, and of one sign within it, we obtain a non-zero 8/ — in contradiction
to stationarity. In making this argument, we see why it was essential to integrate by parts
so as to take the derivative off §y: when y is fixed at the endpoints, we have [ 8y’ dx = 0,
and so we cannot find a §)’ that is zero everywhere outside an interval and of one sign
within it.

When the functional depends on more than one function y, then stationarity under all
possible variations requires one equation

Syix) Ay dx

5 of d(of
<8y,’-)

=0 (1.7)

for each function y;(x).
If the function f depends on higher derivatives, y”, y®, etc., then we have to integrate
by parts more times, and we end up with

O_Sy(x)_5_5<8_y’>+@<3y//>_$(w>+'“. (1.8)




4 1 Calculus of variations

Figure 1.1 Soap film between two rings.

1.2.3 Some applications

Now we use our new functional derivative to address some of the classic problems
mentioned in the introduction.

Example: Soap film supported by a pair of coaxial rings (Figure 1.1). This is a simple
case of Plateau’s problem. The free energy of the soap film is equal to twice (once for
each liquid—air interface) the surface tension o of the soap solution times the area of the
film. The film can therefore minimize its free energy by minimizing its area, and the
axial symmetry suggests that the minimal surface will be a surface of revolution about
the x-axis. We therefore seek the profile y(x) that makes the area

Jv] = 2;1/ 2y,/l + /% dx (1.9)

of the surface of revolution the least among all such surfaces bounded by the circles of
radii y(x;) = y; and y(x2) = y». Because a minimum is a stationary point, we seek
candidates for the minimizing profile y(x) by setting the functional derivative 8./ /5y (x)
to zero.

We begin by forming the partial derivatives

0 9 47yy
Y anfi4yr, Y A (1.10)
ay y

and use them to write down the Euler-Lagrange equation

d '
[l S22 (1.11)
dx / >
14y
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Performing the indicated derivative with respect to x gives

N2 Z N2,
/1+y/2_ (y) Yy + y()’))’ —0. (112)

\/1 +y/2 \/1 +y/2 (1 +y/2)3/2

After collecting terms, this simplifies to

1 3 yy// _ 0
/1 —|—y’2 (1 +y/2)3/2

The differential equation (1.13) still looks a trifle intimidating. To simplify further, we
multiply by )’ to get

(1.13)

/ /3,07
0= 2 2y

/1+y/2 (1+y/)/
d

== . (1.14)
\ / +y72

The solution to the minimization problem therefore reduces to solving
S (1.15)

V14572

where « is an as yet undetermined integration constant. Fortunately this nonlinear, first-
order, differential equation is elementary. We recast it as

d
@& Yy (1.16)
dx K

and separate variables

/dx:/\/%. (1.17)

We now make the natural substitution y = k cosh ¢, whence

/dx:l(/dt. (1.18)

Thus we find that x + a = k¢, leading to

x+a

y = k cosh (1.19)
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ALy

Figure 1.2 Hanging chain.
We select the constants « and « to fit the endpoints y(x;) = y; and y(x2) = y».

Example: Heavy chain over pulleys. We cannot yet consider the form of the catenary, a
hanging chain of fixed length, but we can solve a simpler problem of a heavy flexible
cable draped over a pair of pulleys located at x = L, y = &, and with the excess cable
resting on a horizontal surface as illustrated in Figure 1.2.

The potential energy of the system is

L
PE. = ng/ = pg/Ly,/l + (v')2dx + const. (1.20)

Here the constant refers to the unchanging potential energy

h
2x/ mgy dy = mgh® (1.21)
0

of the vertically hanging cable. The potential energy of the cable lying on the horizontal
surface is zero because y is zero there. Notice that the tension in the suspended cable is
being tacitly determined by the weight of the vertical segments.

The Euler-Lagrange equations coincide with those of the soap film, so

(x+a)
K

y = k cosh (1.22)

where we have to find « and a. We have

h =k cosh(—L + a)/«,
=k cosh(L 4 a)/«k, (1.23)
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v = htlL

»t= Lk

Figure 1.3 Intersection of y = ht/L with y = cosh ¢.

soa = 0and & = «k cosh L/k. Setting t = L/« this reduces to

(%) t = cosht. (1.24)

By considering the intersection of the line y = ht/L with y = cosh ¢ (Figure 1.3) we
see that if /2/L is too small there is no solution (the weight of the suspended cable is too
big for the tension supplied by the dangling ends) and once //L is large enough there
will be two possible solutions. Further investigation will show that the solution with the
larger value of « is a point of stable equilibrium, while the solution with the smaller « is
unstable.

Example: The brachistochrone. This problem was posed as a challenge by Johann
Bernoulli in 1696. He asked what shape should a wire with endpoints (0, 0) and (a, b)
take in order that a frictionless bead will slide from rest down the wire in the shortest
possible time (Figure 1.4). The problem’s name comes from Greek: fpaylotog means
shortest and x povog means time.

When presented with an ostensibly anonymous solution, Johann made his famous
remark: “Tanquam ex unguem leonem” (I recognize the lion by his clawmark) meaning
that he recognized that the author was Isaac Newton.

Johann gave a solution himself, but that of his brother Jacob Bernoulli was superior
and Johann tried to pass it off as his. This was not atypical. Johann later misrepresented
the publication date of his book on hydraulics to make it seem that he had priority in this
field over his own son, Daniel Bernoulli.

We begin our solution of the problem by observing that the total energy

1 1
E= Em(;c2 +3%) — mgy = mez(l +12) — mgy, (1.25)
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v

(a.b)

Figure 1.4 Bead on a wire.

of the bead is constant. From the initial condition we see that this constant is zero. We
therefore wish to minimize

T aq a 1 2
T=/ dt:/ de:/ T (1.26)
0 0 X 0 2gy

so as to find y(x), given that y(0) = 0 and y(a) = b. The Euler—Lagrange equation is

1
W+ S0 +y? =0. (1.27)

Again this looks intimidating, but we can use the same trick of multiplying through by
V' to get

v (4 3a40) =32 pa ) o (1.28)
Thus
2¢ = y(1 +y?). (1.29)
This differential equation has a parametric solution

x =c(0 —sinfh),

y=c(l —cosb), (1.30)

(as you should verify) and the solution is the cycloid shown in Figure 1.5. The parameter
¢ is determined by requiring that the curve does in fact pass through the point (a, b).
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, .
xy)

(ab)

y

Figure 1.5 A wheel rolls on the x-axis. The dot, which is fixed to the rim of the wheel, traces out
a cycloid.

1.2.4 First integral

How did we know that we could simplify both the soap-film problem and the brachis-
tochrone by multiplying the Euler equation by y'? The answer is that there is a general
principle, closely related to energy conservation in mechanics, that tells us when and
how we can make such a simplification. The )’ trick works when the /" in [ dx is of the
form f'(y,"), i.e. has no explicit dependence on x. In this case the last term in

i— /Bi(+ ”%4_%

= 1.31
dx Y ay Y ay’ = ox (1.31)
is absent. We then have
af of  yof L d (o
- =y =+ = -V=-yV—-l
8y ay ay ay dx \ 9y
a d (9
=y v _ 4 (Y , (1.32)
ay dx \ 9y
and this is zero if the Euler—Lagrange equation is satisfied.
The quantity
0
I1=f —y’l (1.33)
ay’
is called a first integral of the Euler—Lagrange equation. In the soap-film case
/\2
/- y’f_ lrop- 2 (1.34)

VIFOP? T+ 00%

When there are a number of dependent variables y;, so that we have

J1,32, -l = /f(y1,yz, YV Vas Yy dx (1.35)
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then the first integral becomes

3
1=f—Zy;a—§. (1.36)

1

Again
dl  d ,of
o dr (f - 213%3_)/;)

of of of d (of
] e e b
- ay; ay; oy; dx \ 0y}

=2j:y§ (%_%G_f)), (137)

Ay y;

and this is zero if the Euler—Lagrange equation is satisfied for each y;.
Note that there is only one first integral, no matter how many y;’s there are.

1.3 Lagrangian mechanics

In his Mécanique Analytique (1788) Joseph-Louis de La Grange, following Jean
d’Alembert (1742) and Pierre de Maupertuis (1744), showed that most of classical
mechanics can be recast as a variational condition: the principle of least action. The idea
is to introduce the Lagrangian function L = T — V where T is the kinetic energy of the
system and V' the potential energy, both expressed in terms of generalized coordinates
¢' and their time derivatives ¢. Then, Lagrange showed, the multitude of Newton’s
F = ma equations, one for each particle in the system, can be reduced to

d (aL\ oL
d <_> _AL L, (138)
dt \ 9¢’ aq’

one equation for each generalized coordinate q. Quite remarkably — given that Lagrange’s
derivation contains no mention of maxima or minima — we recognize that this is precisely
the condition that the action functional

[ﬁnal . .
Slg] = / Lit.q' g™y dr (139)
1,

initial

be stationary with respect to variations of the trajectory ¢’(¢) that leave the initial and
final points fixed. This fact so impressed its discoverers that they believed they had
uncovered the unifying principle of the universe. Maupertuis, for one, tried to base a
proof of the existence of God on it. Today the action integral, through its starring role in
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Figure 1.6 Atwood’s machine.

the Feynman path-integral formulation of quantum mechanics, remains at the heart of
theoretical physics.

1.3.1 One degree of freedom

We shall not attempt to derive Lagrange’s equations from d’Alembert’s extension of
the principle of virtual work — leaving this task to a mechanics course — but instead
satisfy ourselves with some examples which illustrate the computational advantages of
Lagrange’s approach, as well as a subtle pitfall.

Consider, for example, Atwood s machine (Figure 1.6). This device, invented in 1784
but still a familiar sight in teaching laboratories, is used to demonstrate Newton’s laws
of motion and to measure g. It consists of two weights connected by a light string of
length / which passes over a light and frictionless pulley.

The elementary approach is to write an equation of motion for each of the two weights

mX =mg—T,

m2552 =myg — T. (1.40)
We then take into account the constraint x; = —x, and eliminate X, in favour of X;:

mi =mg—T,

—mpX1 =mpg —T. (1.41)
Finally we eliminate the constraint force and the tension 7', and obtain the acceleration

(m1 + mp)x1 = (my — ma)g. (1.42)
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Lagrange’s solution takes the constraint into account from the very beginning by
introducing a single generalized coordinate ¢ = x; = / — x, and writing

1 .
L=T—V=c(m+ m2)g* — (my —my)gq. (1.43)

From this we obtain a single equation of motion

d (9oL oL .
= a_ql _a_qi:o = (m+m)g = (m —my)g. (1.44)

The advantage of the Lagrangian method is that constraint forces, which do no net work,
never appear. The disadvantage is exactly the same: if we need to find the constraint
forces — in this case the tension in the string — we cannot use Lagrange alone.

Lagrange provides a convenient way to derive the equations of motion in non-cartesian
coordinate systems, such as plane polar coordinates.

Consider the central force problem with F,, = —d,V (r). Newton’s method begins
by computing the acceleration in polar coordinates. This is most easily done by setting
z = re’ and differentiating twice:

z=(+irf)e”,
Z = (F —r6?)e? +i2i6 + rb)e” . (1.45)

Reading off the components parallel and perpendicular to e/ gives the radial and angular
acceleration (Figure 1.7)

a, =7 —ré?,

apg = r6 + 2i6. (1.46)

Newton’s equations therefore become

) E14
m@ — rf?) = ——
or
.. d 5.
m@r§ +2i0) =0, = E(mr 6) = 0. (1.47)

Setting / = mr>6, the conserved angular momentum, and eliminating 6 gives

2 v
P — = 1.48
— or (148)
(If this were Kepler’s problem, where V' = GmM /r, we would now proceed to simplify
this equation by substituting » = 1/u, but that is another story.)
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V>

Figure 1.7 Polar components of acceleration.

Following Lagrange we first compute the kinetic energy in polar coordinates (this

requires less thought than computing the acceleration) and set

1 )
L=T-V= Em(f2 +1r26%) — V().

The Euler—Lagrange equations are now

d (dL oL . o OV
— )| —— =0,= m¢ —mro +8_
-

dr \ 97 or
d (0dL oL d .
—=)-==0=—mr?6) =0,
dt(é)@) a9 = = g
and coincide with Newton’s.
The first integral is
oL .0L
E=r—+460—-1L
ar a0

1 .
= 5m(i2 +26%) + V().

(1.49)

=0,

(1.50)

(1.51)

which is the total energy. Thus the constancy of the first integral states that

dE
— =0,
dt

or that energy is conserved.

(1.52)
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Warning: we might realize, without having gone to the trouble of deriving it from the
Lagrange equations, that rotational invariance guarantees that the angular momentum
I = mr?6 is constant. Having done so, it is almost irresistible to try to short-circuit some
of the labour by plugging this prior knowledge into

L= %m(fz +r26%) =V (r) (1.53)

s0 as to eliminate the variable 6 in favour of the constant /. If we try this we get
2 1 ) 12

We can now directly write down the Lagrange equation r, which is
.. ?
mr+ — = ——. (1.55)

Unfortunately this has the wrong sign before the /% /mr> term! The lesson is that we must
be very careful in using consequences of a variational principle to modify the principle.
It can be done, and in mechanics it leads to the Routhian or, in more modern language,
to Hamiltonian reduction, but it requires using a Legendre transform. The reader should
consult a book on mechanics for details.

1.3.2 Noether’s theorem

The time-independence of the first integral

d [.0L
—1¢——L} =0, (1.56)
dt | 9q

and of angular momentum
d .
E{mrze} =0, (1.57)

are examples of conservation laws. We obtained them both by manipulating the Euler—
Lagrange equations of motion, but also indicated that they were in some way connected
with symmetries. One of the chief advantages of a variational formulation of a physical
problem is that this connection

Symmetry < Conservation law

can be made explicit by exploiting a strategy due to Emmy Noether. She showed how
to proceed directly from the action integral to the conserved quantity without having
to fiddle about with the individual equations of motion. We begin by illustrating her
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technique in the case of angular momentum, whose conservation is a consequence of
the rotational symmetry of the central force problem. The action integral for the central
force problem is

(1 .
S =/ {Em(f2 +r26%) — V(r)} dt. (1.58)
0
Noether observes that the integrand is left unchanged if we make the variation
0@t) —> 0(t) + ea (1.59)

where « is a fixed angle and ¢ is a small, time-independent, parameter. This invariance
is the symmetry we shall exploit. It is a mathematical identity: it does not require that »
and 6 obey the equations of motion. She next observes that since the equations of motion
are equivalent to the statement that S is left stationary under any infinitesimal variations
in r and 0, they necessarily imply that S is stationary under the specific variation

0(t) — 0(t) + e(Hax (1.60)

where now ¢ is allowed to be time-dependent. This stationarity of the action is no longer
a mathematical identity, but, because it requires 7, 0, to obey the equations of motion,
has physical content. Inserting 50 = &(¢)« into our expression for S gives

58 = « /OT {mrzé} & dt. (1.61)

Note that this variation depends only on the time derivative of ¢, and not ¢ itself. This is
because of the invariance of S under time-independent rotations. We now assume that
e(t) =0att =0and ¢ = T, and integrate by parts to take the time derivative off ¢ and
put it on the rest of the integrand:

58S = —« / {%(mrzé)} e(t) dt. (1.62)

Since the equations of motion say that §S = 0 under all infinitesimal variations, and in
particular those due to any time-dependent rotation &(¢)c, we deduce that the equations
of motion imply that the coefficient of &(¢) must be zero, and so, provided r(¢), 6(¢),
obey the equations of motion, we have

0= %(mﬂé). (1.63)

As a second illustration we derive energy (first integral) conservation for the case
that the system is invariant under time translations — meaning that L does not depend
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explicitly on time. In this case the action integral is invariant under constant time shifts
t — t + ¢ in the argument of the dynamical variable:

q(t) = q(t+¢) = q(t) + &q. (1.64)

The equations of motion tell us that the action will be stationary under the variation

3q(t) = e(t)g, (1.65)

where again we now permit the parameter ¢ to depend on ¢. We insert this variation into

T
S = / Ldt (1.66)
0
and find
T (oL, oL .. ..
3S = —qge+ —(ge + ¢é) ¢ dt. (1.67)
0o ldg 9q

This expression contains undotted ¢’s. Because of this the change in S is not obviously
zero when ¢ is time independent, but the absence of any explicit # dependence in L tells
us that

L AL, oL
N b’} 1.68
i~ ag? T g4 (1.68)

As a consequence, for time-independent &, we have

T
8S:/ {ed—L} dt = ¢e[L]], (1.69)
0 dt

showing that the change in S comes entirely from the endpoints of the time interval. These
fixed endpoints explicitly break time-translation invariance, but in a trivial manner. For
general £(f) we have

as—/T 0% L 4 (1.70)
=/, e o aqqs . .

This equation is an identity. It does not rely on g obeying the equation of motion. After
an integration by parts, taking £(¢) to be zero at = 0, T, it is equivalent to

r d aL .
55:/0 8(t)E{L—8—qq} dt. (1.71)
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Now we assume that ¢(¢) does obey the equations of motion. The variation principle
then says that 65 = 0 for any £(¢), and we deduce that for ¢(¢) satisfying the equations
of motion we have

d oL .
—{L——. } =0. (1.72)
dt g

The general strategy that constitutes “Noether’s theorem” must now be obvious: we look
for an invariance of the action under a symmetry transformation with a time-independent
parameter. We then observe that if the dynamical variables obey the equations of motion,
then the action principle tells us that the action will remain stationary under such a
variation of the dynamical variables even after the parameter is promoted to being time
dependent. The resultant variation of S can only depend on time derivatives of the
parameter. We integrate by parts so as to take all the time derivatives off it, and on to the
rest of the integrand. Because the parameter is arbitrary, we deduce that the equations
of motion tell us that that its coefficient in the integral must be zero. This coefficient is
the time derivative of something, so this something is conserved.

1.3.3 Many degrees of freedom

The extension of the action principle to many degrees of freedom is straightforward. As
an example consider the small oscillations about equilibrium of a system with N degrees
of freedom. We parametrize the system in terms of deviations from the equilibrium
position and expand out to quadratic order. We obtain a Lagrangian

AN S TS I
L=>Y" {EMJW - zwq’c/} , (1.73)

i,j=1

where M;; and V;; are N x N symmetric matrices encoding the inertial and potential
energy properties of the system. Now we have one equation

N
d (dL aL i
O=a (a) Tag ,Z-l (M + Vid)) (1,74

for each i.

1.3.4 Continuous systems

The action principle can be extended to field theories and to continuum mechanics.
Here one has a continuous infinity of dynamical degrees of freedom, either one for
each point in space and time or one for each point in the material, but the extension
of the variational derivative to functions of more than one variable should possess no
conceptual difficulties.
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Suppose we are given an action functional S[¢] depending on a field ¢(x*) and its
first derivatives

de
= —. 1.75
Pu axH ( )
Here x*, u = 0,1,...,d, are the coordinates of (d 4+ 1)-dimensional space-time. It is

traditional to take x* = ¢ and the other coordinates space-like. Suppose further that

Sle] :/Ldt:/ﬁ(x“,go,gou)dd"’lx, (1.76)

where L is the Lagrangian density, in terms of which
L= /Cddx, (1.77)

and the integral is over the space coordinates. Now

- aC 0L\ uir
ss= | {Sw(x)awm ”“"“(x))amo}d g

. oL B i oL a1
= /8¢(x) { 0t) ot (a(pu(x))}d X. (1.78)

In going from the first line to the second, we have observed that

3
S 0o (1.79)

8(pux)) =

and used the divergence theorem,

dAM
/(a—u>d”+1x=/ At n,ds, (1.80)
Q X Q

where Q is some space-time region and 9<2 its boundary, to integrate by parts. Here dS
is the element of area on the boundary, and n,, the outward normal. As before, we take
8¢ to vanish on the boundary, and hence there is no boundary contribution to variation
of S. The result is that

8S L 9 ( L )
= - (=), (1.81)
dp(x)  dp(x)  dxH \ gy (x)

and the equation of motion comes from setting this to zero. Note that a sum over the
repeated coordinate index u is implied. In practice it is easier not to use this formula.
Instead, make the variation by hand — as in the following examples.

Example: The vibrating string. The simplest continuous dynamical system is the
transversely vibrating string (Figure 1.8). We describe the string displacement by y(x, 7).
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I y(xt)

Figure 1.8 Transversely vibrating string.

Let us suppose that the string has fixed ends, a mass per unit length of p and is under
tension 7. If we assume only small displacements from equilibrium, the Lagrangian is

L 1, 1,
L:/ dx{—pj/ — =Ty } (1.82)
0 2 2

The dot denotes a partial derivative with respect to ¢, and the prime a partial derivative
with respect to x. The variation of the action is

L
88 = // didx { py 8y — Ty'8y'}
0

L
= / /O didx {8y(x, 1) (—py + Ty")} . (1.83)

To reach the second line we have integrated by parts, and, because the ends are fixed,
and therefore §y = 0 at x = 0 and L, there is no boundary term. Requiring that §S = 0
for all allowed variations §y then gives the equation of motion

pj — T = 0. (1.84)

This is the wave equation describing transverse waves propagating with speed ¢ =
/T /p. Observe that from (1.83) we can read off the functional derivative of S with
respect to the variable y(x, ) as being

58S . .
oD —p¥Cx, 1) + Ty"(x, 1). (1.85)

In writing down the first integral for this continuous system, we must replace the sum
over discrete indices by an integral:

. 0L . SL
E=) qim-—L— /dx {y(x)m} ~ L. (1.86)
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When computing §L/5y(x) from

L /Ld Lo _Llpp
= x _— —_ — ,
A PV = 5Ty

we must remember that it is the continuous analogue of 9L/d¢g;, and so, in contrast to
what we do when computing 35/8y(x), we must treat y(x) as a variable independent of
y(x). We then have

=R (1.87)
. = X), .
s
leading to
L 1 <2 1 /2
E:/ dx{-py 4+ =Ty . (1.88)
0 2 2

This, as expected, is the total energy, kinetic plus potential, of the string.

The energy—momentum tensor

If we consider an action of the form
s= [ Lw.pnatis (1.89)

in which £ does not depend explicitly on any of the coordinates x*, we may refine
Noether’s derivation of the law of conservation of total energy and obtain accounting
information about the position-dependent energy density. To do this we make a variation
of the form

P(x) = p(x* + e (x) = p(x*) + e (¥) e + O(lel?), (1.90)

where ¢ depends onx = (x°, . .. ,x7). The resulting variation in S is

58S = / {ws“aﬂ¢+ S0, BV(S“@#(p)}d +lx

0 v L d+1
_ /g“(x)axv {cau . E%w}d x. (1.91)

When ¢ satisfies the equations of motion, this §S will be zero for arbitrary e (x). We
conclude that

ad oL
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The (d + 1)-by-(d + 1) array of functions

L
T, = 5 8 = 84L (1.93)

is known as the canonical energy—momentum tensor because the statement
I, =0 (1.94)

often provides bookkeeping for the flow of energy and momentum.
In the case of the vibrating string, the u = 0,1 components of 3,7”,, = 0 become
the two following /ocal conservation equations:

d(p, T o] @ _,
P _ —{_T =0 1.95
8t{2y +3 +8x{ 7'} =0, (1.95)
and
0] . 0 P .o T/z
iy Sy e BTN ) 1.96
Bt{ pyy}+8x{2y +3y (1.96)

It is easy to verify that these are indeed consequences of the wave equation. They are
“local” conservation laws because they are of the form

9
a_(f Fdivd =0, (1.97)

where ¢ is the local density, and J the flux, of the globally conserved quantity O =
[q d?x. In the first case, the local density ¢ is

P.o T 2
7% = 597 + =2, 1.98
LRy (1.98)
which is the energy density. The energy flux is given by 7 10 = —Tyy/, which is the rate
that a segment of string is doing work on its neighbour to the right. Integrating over x,
and observing that the fixed-end boundary conditions are such that

Ly ) . L
/(; P {=Tyy'} dx = [ - T3], =0, (1.99)
gives us
d (t T
E/o {gy'2+5y’2} dx =0, (1.100)

which is the global energy conservation law we obtained earlier.
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The physical interpretation of 7 01 = —py/, the locally conserved quantity appearing
in (1.96), is less obvious. Ifthis were a relativistic system, we would immediately identify
/T 01 dx as the x-component of the energy—momentum 4-vector, and therefore 7’ 01 as the
density of x-momentum. Now any real string will have some motion in the x-direction,
but the magnitude of this motion will depend on the string’s elastic constants and other
quantities unknown to our Lagrangian. Because of this, the 7’ 01 derived from L cannot be
the string’s x-momentum density. Instead, it is the density of something called pseudo-
momentum. The distinction between true and pseudo-momentum is best appreciated by
considering the corresponding Noether symmetry. The symmetry associated with New-
tonian momentum is the invariance of the action integral under an x-translation of the
entire apparatus: the string, and any wave on it. The symmetry associated with pseudo-
momentum is the invariance of the action under a shift y(x) — y(x — a) of the location
of the wave on the string — the string itself not being translated. Newtonian momen-
tum is conserved if the ambient space is translationally invariant. Pseudo-momentum
is conserved only if the string is translationally invariant — i.e. if p and T are position-
independent. A failure to realize that the presence of a medium (here the string) requires
us to distinguish between these two symmetries is the origin of much confusion involving
“wave momentum”.

Maxwell’s equations

Michael Faraday and James Clerk Maxwell’s description of electromagnetism in terms
of dynamical vector fields gave us the first modern field theory. D’ Alembert and Mau-
pertuis would have been delighted to discover that the famous equations of Maxwell’s 4
Treatise on Electricity and Magnetism (1873) follow from an action principle. There is a
slight complication stemming from gauge invariance but, as long as we are not interested
in exhibiting the covariance of Maxwell under Lorentz transformations, we can sweep
this under the rug by working in the axial gauge, where the scalar electric potential does
not appear.
We will start from Maxwell’s equations

divB =0,
oB
curlE = ——,
ot
oD
cul H=J + —,
ot
divD = p, (1.101)

and show that they can be obtained from an action principle. For convenience we shall
use natural units in which o = ey = 1,andsoc=1and D = E and B = H.
The first equation div B = 0 contains no time derivatives. It is a constraint which we
satisfy by introducing a vector potential A such that B = curl A. If we set
A

E=——, 1.102
P ( )
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then this automatically implies Faraday’s law of induction

B
curlE = ——. (1.103)
dt
We now guess that the Lagrangian is
1
L=/ar3x[5 {EZ—B2}+J~A]. (1.104)

The motivation is that L looks very like 7 — ¥ if we regard 1E2 = 1A2 as being
the kinetic energy and %B2 = %(curlA)2 as being the potential energy. The term in J
represents the interaction of the fields with an external current source. In the axial gauge
the electric charge density p does not appear in the Lagrangian. The corresponding action
is therefore

1., 1
S = /Ldt://d3x[§A2— E(curlA)2+J~A} dr. (1.105)

Now vary A to A 4 §A, whence
58S = /f d*x[-A - 8A — (curl A) - (curl 5A) + J - 8A] dr. (1.106)
Here, we have already removed the time derivative from §A by integrating by parts in

the time direction. Now we do the integration by parts in the space directions by using
the identity

div (A x (curl A)) = (curl A) - (curl SA) — SA - (curl (curl A)) (1.107)

and taking SA to vanish at spatial infinity, so the surface term, which would come from
the integral of the total divergence, is zero. We end up with

88 = // d*x {8A - [-A — curl (curl A) + J]} dt. (1.108)

Demanding that the variation of S be zero thus requires

3%A
Frie —curl (curl A) + J, (1.109)
or, in terms of the physical fields,
oE
curlB=J+§. (1.110)

This is Ampére’s law, as modified by Maxwell so as to include the displacement current.
How do we deal with the last Maxwell equation, Gauss’ law, which asserts that
div E = p? If p were equal to zero, this equation would hold if div A = 0, i.e. if A were
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solenoidal. In this case we might be tempted to impose the constraint div A = 0 on the
vector potential, but doing so would undo all our good work, as we have been assuming
that we can vary A freely.

We notice, however, that the three Maxwell equations we already possess tell us that

d 0
— (divE — p) = div (curl B) — divJ—i——'o . (1.111)
ot ot
Now div (curl B) = 0, so the left-hand side is zero provided charge is conserved,
i.e. provided
p+divd =0. (1.112)

We assume that this is so. Thus, if Gauss’ law holds initially, it holds eternally. We
arrange for it to hold at # = 0 by imposing initial conditions on A. We first choose A|,—
by requiring it to satisfy

Bl,—o = curl (A],—o). (1.113)

The solution is not unique, because may we add any V¢ to A|,—, but this does not affect
the physical E and B fields. The initial “velocities” A|,—q are then fixed uniquely by
Al;—o = —E|;—o, where the initial E satisfies Gauss’ law. The subsequent evolution of
A is then uniquely determined by integrating the second-order equation (1.109).

The first integral for Maxwell is

3
. 8L
E=§ Pxla—V — L
i=1/ { 1514:'}

:/d3x|:%{ 2+B2}—J~A]. (1.114)

This will be conserved if J is time-independent. If J = 0, it is the total field energy.
Suppose J is neither zero nor time-independent. Then, looking back at the derivation

of the time-independence of the first integral, we see that if L does depend on time, we
instead have

dE oL

— = ——. 1.115

dt ot ( )
In the present case we have

oL

_aL —[J-Ad3x, (1.116)
at

so that

. dE d ..
—/J-Ad3x= == E(FieldEnergy)—/{J-A—i—J-A} d*x. (1.117)
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Thus, cancelling the duplicated term and using E = —A, we find
E(Fleld Energy) =— | J-Ed°x. (1.118)

Now [J - (-E) d3x is the rate at which the power source driving the current is doing
work against the field. The result is therefore physically sensible.

Continuum mechanics

Because the mechanics of discrete objects can be derived from an action principle, it
seems obvious that so must the mechanics of continua. This is certainly true if we use
the Lagrangian description where we follow the history of each particle composing the
continuous material as it moves through space. In fluid mechanics it is more natural to
describe the motion by using the Fulerian description in which we focus on what is going
on at a particular point in space by introducing a velocity field v(r, ¢). Eulerian action
principles can still be found, but they seem to be logically distinct from the Lagrangian
mechanics action principle, and mostly were not discovered until the twentieth century.
We begin by showing that Euler’s equation for the irrotational motion of an inviscid
compressible fluid can be obtained by applying the action principle to a functional

d 1
Si, o] =/drd3x{pa—f+5p<V¢)2+u(p)}, (1.119)

where p is the mass density and the flow velocity is determined from the velocity potential
¢ by v = V¢. The function u(p) is the internal energy density.

Varying S[¢, p] with respect to p is straightforward, and gives a time-dependent
generalization of (Daniel) Bernoulli’s equation

dp 1,
— 4+ = h(p) = 0. 1.120
5 +2V + h(p) ( )

Here h(p) = du/dp is the specific enthalpy.! Varying with respect to ¢ requires an
integration by parts, based on

div(p ¢ V) = p(Vép) - (Vo) + ¢ div (pVe), (1.121)
and gives the equation of mass conservation

ad .

9P 4 div(pv) = 0. (1.122)

at

! The enthalpy H = U + PV per unit mass. In general u and & will be functions of both the density and the

specific entropy. By taking u to depend only on p we are tacitly assuming that specific entropy is constant.
This makes the resultant flow barotropic, meaning that the pressure is a function of the density only.
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Taking the gradient of Bernoulli’s equation, and using the fact that for potential flow the
vorticity @ = curlv is zero and so d;v; = d;v;, we find that

ov

5, VvV ==V (1.123)

We now introduce the pressure P, which is related to /# by

h(P) —/Pd—P (1.124)
o p@)’ '

We see that pVh = VP, and so obtain Euler’s equation

v
P (E + (v- V)V) = —-VP. (1.125)

For future reference, we observe that combining the mass-conservation equation

dp + 0 {pv} =0 (1.126)
with Euler’s equation
p(dv; + vjdv;) = —d;P (1.127)
yields
3 {pvi} + 9; {pvjvy + 8;P} =0, (1.128)

which expresses the local conservation of momentum. The quantity
IT;; = pviv; + 3ifP (1.129)

is the momentum-flux tensor, and is the j-th component of the flux of the i-th component
pi = pv; of momentum density.

The relations & = du/dp and p = dP /dh show that P and u are related by a Legendre
transformation: P = ph — u(p). From this, and the Bernoulli equation, we see that the
integrand in the action (1.119) is equal to minus the pressure:

ap 1 )
—P=p—+-p(Vp)~ +u(p). (1.130)
a2
This Eulerian formulation cannot be a “follow the particle” action principle in a clever
disguise. The mass conservation law is only a consequence of the equation of motion,
and is not built in from the beginning as a constraint. Our variations in ¢ are therefore
conjuring up new matter rather than merely moving it around.
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1.4 Variable endpoints

We now relax our previous assumption that all boundary or surface terms arising from
integrations by parts may be ignored. We will find that variation principles can be very
useful for working out what boundary conditions we should impose on our differential
equations.

Consider the problem of building a railway across a parallel sided isthmus (Figure 1.9).
Suppose that the cost of construction is proportional to the length of the track, but the
cost of sea transport being negligible, we may locate the terminal seaports wherever we
like. We therefore wish to minimize the length

L@p:/nJ1+om%m, (1.131)

by allowing both the path y(x) and the endpoints y(x;) and y(x») to vary. Then

/

Y

N

/1_,’_(y/)2 *
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o X dx v /1+(y/)2 ydx 1+0//)2

V'(x2) Sy(x1) V'(x1)
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x2
Lly +8y] — LDy = f )
X1

= 8y (x2)

X d y/
_£1®5(7765>ﬁ' (1.132)

yix)

y(x)

Figure 1.9 Railway across an isthmus.
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We have stationarity when both

(i) The coefficient of §y(x) in the integral,

d /
AL ), (1.133)
dx /1 4 (y/)Z
is zero. This requires that y’ = const., i.e. the track should be straight.
(i) The coefficients of §y(x1) and §y(xz) vanish. For this we need
/ /
yix) oy (1.134)

VIO VTR0
This in turn requires that )’ (x1) =)' (x2) = 0.

The integrated-out bits have determined the boundary conditions that are to be imposed
on the solution of the differential equation. In the present case they require us to build
perpendicular to the coastline, and so we go straight across the isthmus. When boundary
conditions are obtained from endpoint variations in this way, they are called natural
boundary conditions.

Example: Sliding string. A massive string of linear density p is stretched between two
smooth posts separated by distance 2L (Figure 1.10). The string is under tension 7', and
is free to slide up and down the posts. We consider only small deviations of the string
from the horizontal.

As we saw earlier, the Lagrangian for a stretched string is

L= FLL 1T’2 d 1.135
_/_L{Epy—i (y)}x (1.135)

Now, Lagrange’s principle says that the equation of motion is found by requiring the
action

tr
S:/ Ldt (1.136)
ti
y
<>\
—L 1L X

\\<>

Figure 1.10 Sliding string.
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to be stationary under variations of y(x, ¢) that vanish at the initial and final times, # and
te. It does not demand that §y vanish at the ends of the string, x = L. So, when we
make the variation, we must not assume this. Taking care not to discard the results of
the integration by parts in the x-direction, we find

tr pL It
58 = / / 8y(x, 1) {—pj + T} dxdt — / Sy(L, 0T (L) dt
tJ—L 14

1
+ [ ' Sy(—L,O T/ (—L) dt. (1.137)
1,

i

The equation of motion, which arises from the variation within the interval, is therefore
the wave equation

0y — B =0. (1.138)

The boundary conditions, which come from the variations at the endpoints, are
V(L,t)=y(=L,1) =0, (1.139)
at all times ¢. These are the physically correct boundary conditions, because any up-or-

down component of the tension would provide a finite force on an infinitesimal mass.
The string must therefore be horizontal at its endpoints.

Example: Bead and string. Suppose now that a bead of mass M is free to slide up and
down the y axis, and is attached to the x = 0 end of our string (Figure 1.11). The
Lagrangian for the string—bead contraption is

L—lM'(O)]2+/L L Laely, 1.140
=5 h% A 7PV =3y x. (1.140)

Here, as before, p is the mass per unit length of the string and 7 is its tension. The end
of the string at x = L is fixed. By varying the action S = [ Ldt, and taking care not to

AT X

Figure 1.11 A bead connected to a string.
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throw away the boundary part at x = 0 we find that

tf tr pL
55:/ [Ty’—My]xzoay(o,t)dtJr/ / {B" — pp} dy(x,tydxdt.  (1.141)
4 t; JO

The Euler—Lagrange equations are therefore

pyx) =" (x) =0, 0<x<lL,
M#0) — T/(0) =0, y(L) =0. (1.142)

The boundary condition at x = 0 is the equation of motion for the bead. It is clearly
correct, because 73’ (0) is the vertical component of the force that the string tension exerts
on the bead.

These examples led to boundary conditions that we could easily have figured out for
ourselves without the variational principle. The next example shows that a variational
formulation can be exploited to obtain a set of boundary conditions that might be difficult
to write down by purely “physical” reasoning.

Harder example: Gravity waves on the surface of water (Figure 1.12). An action
suitable for describing water waves is given by’ S[¢, h] = [ Ldt, where

h(x,t)
L:/dx/ po{%-i- l(V<;s)2+gy}aiy. (1.143)
0 at 2

Here ¢ is the velocity potential and py is the density of the water. The density will not be

varied because the water is being treated as incompressible. As before, the flow velocity
is given by v = V¢. By varying ¢ (x,y,t) and the depth A(x, f), and taking care not

h(x,t)

Figure 1.12  Gravity waves on water.

2 J.C. Luke, J. Fluid Dynamics, 27 (1967) 395.
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to throw away any integrated-out parts of the variation at the physical boundaries, we
obtain:

V2¢ =0, within the fluid

0 1
a_‘f + E(V(;;)z +gy =0, on the free surface
0
% =0, on y=0
dy
oh 0 oh o
oh _ 99 % =0, on the free surface (1.144)

ot 3y | oxox

The first equation comes from varying ¢ within the fluid, and it simply confirms that the
flow is incompressible, i.e. obeys divv = 0. The second comes from varying 4, and is
the Bernoulli equation stating that we have P = Py (atmospheric pressure) everywhere
on the free surface. The third, from the variation of ¢ at y = 0, states that no fluid
escapes through the lower boundary.

Obtaining and interpreting the last equation, involving 9/4/9¢, is somewhat trickier. It
comes from the variation of ¢ on the upper boundary. The variation of S due to §¢ is

_ 9 D (5622 1 2 (5692 _ 5592
SS_:/M48f¢+8x<Mﬁx>+8y(M8y> 5¢v¢}m@@a (1.145)

The first three terms in the integrand constitute the three-dimensional divergence
div (8¢ @), where, listing components in the order ¢, x, y,

P = |:1’8_¢>,8_¢>]. (1.146)
dx  dy

The integrated-out part on the upper surface is therefore [(® - n)d¢ d|S|. Here, the
outward normal is

n=|(1+ %2+ a—hz“m—%—-%l (1.147)
o ot dx ar’ oax’ |’ ’

and the element of area

am\2  ram2\"’
ﬂ&=(1+(5>-+<£>) didx. (1.148)

The boundary variation is thus

ah ¢

9h d¢
8S|y=p = — —— — 4+ ——16 h(x,t),t ) dxdt. 1.149
= f{at ay+3xax}¢(x, (. 1),1) dx (1.149)
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Requiring this variation to be zero for arbitrary §¢ (x, h(x,t), t) leads to

oh 0 ohd
oh 3¢ dhd$ _ (1.150)
at  dy  Ox ox

This last boundary condition expresses the geometrical constraint that the surface moves
with the fluid it bounds, or, in other words, that a fluid particle initially on the surface
stays on the surface. To see that this is so, define f (x, y, t) = h(x, t) — y. The free surface
is then determined by f'(x,y,#) = 0. Because the surface particles are carried with the
flow, the convective derivative of f,

a _of

=V, (1.151)

must vanish on the free surface. Using v = V¢ and the definition of f, this reduces to

oh  dpah o
oh 090k 09 _ (1.152)
at  dx dx Ay

which is indeed the last boundary condition.

1.5 Lagrange multipliers

Figure 1.13 shows the contour map of a hill of height # = f'(x, y). The hill is traversed
by a road whose points satisfy the equation g(x, y) = 0. Our challenge is to use the data
f(x,y) and g(x,y) to find the highest point on the road.

When r changes by dr = (dx, dy), the height /' changes by

df = Vf - dr, (1.153)

where Vf = (0yf, 0,f). The highest point, being a stationary point, will have df' = 0
for all displacements dr that stay on the road — that is for all dr such that dg = 0. Thus

(N

Figure 1.13 Road on hill.
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Vf - dr must be zero for those dr such that 0 = Vg - dr. In other words, at the highest
point Vf will be orthogonal to all vectors that are orthogonal to Vg. This is possible
only if the vectors Vf and Vg are parallel, and so Vf = AVg for some A.

To find the stationary point, therefore, we solve the equations

Vf —AVg =0,
gx,y) =0, (1.154)
simultaneously.

Example: Letf = x> +y*andg = x +y — 1. Then Vf = 2(x,y) and Vg = (1, 1). So
A
20, ) =AML, D=0 = &y = 5(1, 1)

11
x+y=1 = r=1 = wy=\=2].
2°2
When there are n constraints, g1 = g2 = --- = g, = 0, we want Vf to lie in

(Ve H)* = (Va), (1.155)
where (e;) denotes the space spanned by the vectors e; and (e;)" is its orthogonal com-
plement. Thus Vf lies in the space spanned by the vectors Vg;, so there must exist n
numbers A; such that

n
Vf =) xVg. (1.156)
i=1

The numbers A; are called Lagrange multipliers. We can therefore regard our problem
as one of finding the stationary points of an auxiliary function

F=f=) kg (1.157)
i
with the » undetermined multipliers A;,i = 1,...,n, subsequently being fixed by
imposing the n requirements that g; = 0,i = 1,...,n.

Example: Find the stationary points of
1 1
F(X) = EX -Ax = Ex,-A,'jxj (1158)

on the surface x - x = 1. Here 4;; is a symmetric matrix.

Solution: We look for stationary points of

G(x) = F(x) — %)»|X|2. (1.159)
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The derivatives we need are

oF 1 1
ﬁ = ESk,AUx/ + Ex,-A,'jS‘k
= Ay, (1.160)
and
a (A
@ E.X'jx]' = )LXk. (1161)

Thus, the stationary points must satisfy

Aixj = Axg,
xixl =1, (1.162)

and so are the normalized eigenvectors of the matrix A. The Lagrange multiplier at each
stationary point is the corresponding eigenvalue.

Example: Statistical mechanics. Let I' denote the classical phase space of a mechanical
system of n particles governed by a Hamiltonian H (p, ¢). Let dT" be the Liouville measure
d*'p d*"q. In statistical mechanics we work with a probability density p (p, ¢) such that
p(p,q)d T is the probability of the system being in a state in the small region dI". The
entropy associated with the probability distribution is the functional

S[pl = —/ plnpdrl. (1.163)
r

We wish to find the p(p, ¢) that maximizes the entropy for a given energy

(E) = /r,oHdF. (1.164)

We cannot vary p freely as we should preserve both the energy and the normalization
condition

/pdr =1 (1.165)
r

that is required of any probability distribution. We therefore introduce two Lagrange
multipliers, 1 4+ « and 8, to enforce the normalization and energy conditions, and look
for stationary points of

F[,o]:/ {—plnp+ (@4 1)p — BpH} dT. (1.166)
r
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Now we can vary p freely, and hence find that
8F=/{—ln,0+a—ﬂH}8,odF. (1.167)
r

Requiring this to be zero gives us
p(p.q) = e PHED, (1.168)

where «, B are determined by imposing the normalization and energy constraints. This
probability density is known as the canonical distribution, and the parameter § is the
inverse temperature 8 = 1/T7.

Example: The catenary. At last we have the tools to solve the problem of the hanging
chain of fixed length. We wish to minimize the potential energy

L
E[y] = 1 N2d R 1.169
0 f_Ly\/ )2 (1.169)

subject to the constraint

L
Iyl = / 1+ 0/)%dx = const., (1.170)
—L

where the constant is the length of the chain. We introduce a Lagrange multiplier A and
find the stationary points of

L
Fly] = /_L(y—x),/l + (v')2dx, (1.171)

so, following our earlier methods, we find

= &+ cosh 9. (1.172)
K

We choose , A, a to fix the two endpoints (two conditions) and the length (one condition).

Example: Sturm—Liouville problem. We wish to find the stationary points of the quadratic
functional

x2
ab1= [ 75 [P0 + gwn?) ax (1.173)

subject to the boundary conditions y(x) = 0 at the endpoints x1,x; and the normalization

K[y =/x2y2dx= 1. (1.174)

1
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Taking the variation of J — (A/2)K, we find

X2
5J=/ {=@" +qv — iy} sydx. (1.175)

1

Stationarity therefore requires

~@) +qy =2y, y(x1)=yx) =0. (1.176)

This is the Sturm—Liouville eigenvalue problem. It is an infinite-dimensional analogue
of the F(x) = %x - Ax problem.

Example: Irrotational flow again. Consider the action functional

dp

S[v, ¢, p] = / {1pv2 —u(p) + ¢ (Bt +divpv)}dtd3x. (1.177)

2
This is similar to our previous action for the irrotational barotropic flow of an inviscid
fluid, but here v is an independent variable and we have introduced infinitely many
Lagrange multipliers ¢ (x,?), one for each point of space-time, so as to enforce the
equation of mass conservation p + div pv = 0 everywhere, and at all times. Equating
8S/év to zero gives v = V¢, and so these Lagrange multipliers become the velocity
potential as a consequence of the equations of motion. The Bernoulli and Euler equations
now follow almost as before. Because the equation v = V¢ does not involve time
derivatives, this is one of the cases where it is legitimate to substitute a consequence
of the action principle back into the action. If we do this, we recover our previous
formulation.

1.6 Maximum or minimum?

We have provided many examples of stationary points in function space. We have said
almost nothing about whether these stationary points are maxima or minima. There is a
reason for this: investigating the character of the stationary point requires the computation
of the second functional derivative
82
8y (x1)dy(x2)
and the use of the functional version of Taylor’s theorem to expand about the stationary
point y(x):
8J

8y(x)

J[V+8ﬂ]=J[y]+8/n(X)
y
2
— | dxid 1.178
SyGnaye |, T (1.178)

y

82
+7/77(X1)?7(X2)
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Since y(x) is a stationary point, the term with 6. /8y (x)|,, vanishes. Whether y(x) is a
maximum, a minimum, or a saddle therefore depends on the number of positive and
negative eigenvalues of 82J /8 (y(x1))8(y(x2)), a matrix with a continuous infinity of
rows and columns, these being labelled by x; and x>, respectively. It is not easy to
diagonalize a continuously infinite matrix! Consider, for example, the functional

by
1= [ 5 e + aen?) ax (1179)

with y(a) = y(b) = 0. Here, as we already know,

& _, _ . d d 1.180
vo 2= a (p(x)ay(x)> +q)y(x), (1.180)

and, except in special cases, this will be zero only if y(x) = 0. We might reasonably
expect the second derivative to be

5
2wy =L, (1.181)
3y

where L is the Sturm—Liouville differential operator

d d
L= T (p(x)$> + g(x). (1.182)

How can a differential operator be a matrix like 82J /6(¥(x1))8(¥(x2))?
We can formally compute the second derivative by exploiting the Dirac delta
“function” & (x) which has the property that

ylr2) = f5(X2 —x1)y(x1) dxi. (1.183)
Thus
Sy () = / 50c — x1)8y(xr) di, (1.184)

from which we read off that

8y (x2)
Sy (x1)

= 8(x2 — x1). (1.185)

Using (1.185), we find that

: =)= st - 8y — 1.186
8y(x1) (5y(x2)> T o (P(xz)dx2 (x2 x1)> +q(x2)8(x2 —x1).  (1.186)
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How are we to make sense of this expression? We begin in the next chapter where we
explain what it means to differentiate § (x), and show that (1.186) does indeed correspond
to the differential operator L. In subsequent chapters we explore the manner in which
differential operators and matrices are related. We will learn that just as some matrices can
be diagonalized so can some differential operators, and that the class of diagonalizable
operators includes (1.182).

If all the eigenvalues of L are positive, our stationary point was a minimum. For each
negative eigenvalue, there is direction in function space in which J[y] decreases as we
move away from the stationary point.

1.7 Further exercises and problems

Here is a collection of problems relating to the calculus of variations. Some date back
to the sixteenth century, others are quite recent in origin.

Exercise 1.1: Asmooth path in the xy-plane is given by r(¢) = (x(¢), y(¢)) withr(0) = a,
and r(1) = b. The length of the path from a to b is therefore

1
S[r] =f X2+ 2 dt,
0

where X = dx/dt, y = dy/dt. Write down the Euler-Lagrange conditions for S[r] to be
stationary under small variations of the path that keep the endpoints fixed, and hence
show that the shortest path between two points is a straight line.

Exercise 1.2: Fermat’s principle. A medium is characterized optically by its refractive
index n, such that the speed of light in the medium is ¢/n. According to Fermat (1657),
the path taken by a ray of light between any two points makes the travel time stationary
between those points. Assume that the ray propagates in the xy-plane in a layered medium
with refractive index n(x). Use Fermat’s principle to establish Snell’s law in its general
form n(x) sin ¢ = constant, by finding the equation giving the stationary paths y(x) for

Fily] :/n(x) l+y’2dx.

(Here the prime denotes differentiation with respect to x.) Repeat this exercise for the
case that n depends only on y and find a similar equation for the stationary paths of

Byl = /n(y) 1+ y%dx.

By using suitable definitions of the angle of incidence i in each case, show that the
two formulations of the problem give physically equivalent answers. In the second
formulation you will find it easiest to use the first integral of Euler’s equation.
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Problem 1.3: Hyperbolic geometry. This problem introduces a version of the Poincaré
model for the non-Euclidean geometry of Lobachevski.

(a) Show that the stationary paths for the functional

1
&M=/;“+W%

with y(x) restricted to lying in the upper half-plane, are semicircles of arbitrary radius
and with centres on the x-axis. These paths are the geodesics, or minimum length
paths, in a space with Riemann metric

1
ds> = F(dxz + dyz), y > 0.

(b) Show that if we call these geodesics “lines”, then one and only one line can be drawn
though two given points.

(c) Two lines are said to be parallel if, and only if, they meet at “infinity”, i.e. on the
x-axis. (Verify that the x-axis is indeed infinitely far from any point with y > 0.)
Show that given a line g and a point A not lying on that line, there are fwo lines
passing through A that are parallel to ¢, and that between these two lines lies a pencil
of lines passing through A that never meet g.

Problem 1.4: Elastic rods. The elastic energy per unit length of a bent steel rod is given
by % YI/R?. Here R is the radius of curvature due to the bending, Y is the Young’s modulus
of the steel and / = [ y?dxdy is the moment of inertia of the rod’s cross-section about
an axis through its centroid and perpendicular to the plane in which the rod is bent. If
the rod is only slightly bent into the yz-plane and lies close to the z-axis, show that this
elastic energy can be approximated as

L
Um=/§ny¥¢,
0

where the prime denotes differentiation with respect to z and L is the length of the rod.
We will use this approximate energy functional to discuss two practical problems.

(a) Eulers problem: The buckling of a slender column. The rod is used as a column
which supports a compressive load Mg directed along the z-axis (which is vertical;
see Figure (1.14a)). Show that when the rod buckles slightly (i.e. deforms with both
ends remaining on the z-axis) the total energy, including the gravitational potential
energy of the loading mass M, can be approximated by

L(vr Mg
U[y]:/ {2(y )Z_Zg(y)z} dz.
0
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(a (b)

Figure 1.14 A rod used as: (a) a column, (b) a cantilever.

By considering small deformations of the form
> niwz
y(z) = ’; ay sin I

show that the column is unstable to buckling and collapse if Mg > 72 YI/L?.

(b) Leonardo da Vinci'’s problem: The light cantilever. Here we take the z-axis as hori-

zontal and the y-axis as being vertical (Figure 1.14b). The rod is used as a beam or

cantilever and is fixed into a wall so that y(0) = 0 = }/(0). A weight Mg is hung

from the end z = L and the beam sags in the (—y)-direction. We wish to find y(z)

for 0 < z < L. We will ignore the weight of the beam itself.

o Write down the complete expression for the energy, including the gravitational
potential energy of the weight.

o Find the differential equation and boundary conditions at z = 0, L that arise from
minimizing the total energy. In doing this take care not to throw away any term
arising from the integration by parts. You may find the following identity to be
of use:

:;_Z(f/g// _fg///) :f//g// _fg////.

o Solve the equation. You should find that the displacement of the end of the beam
isy(L) = —IMgL3/YI.

Exercise 1.5: Suppose that an elastic body 2 of density p is slightly deformed so that the
point that was at cartesian coordinate x; is moved to x; + 1;(x). We define the resulting
strain tensor e;; by

1 (9n;  dn
= 2 <8xi + ij .
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It is automatically symmetric in its indices. The Lagrangian for small-amplitude elastic
motion of the body is

1, 1
Linl = / {5077,-2 - Ee,»j-c;;klekz} d3x.
Q

Here, c;ji is the tensor of elastic constants, which has the symmetries
Cijkl = Cklij = Cjiki = Cijik-
By varying the n;, show that the equation of motion for the body is

D

P~ 0ji =
ar oy T
where
Oij = Cijkl€kl

is the stress tensor. Show that variations of n; on the boundary 92 give as boundary
conditions

O‘l‘jnj = 0,

where n; are the components of the outward normal on 9€2.

Problem 1.6: The catenary revisited. We can describe a catenary curve in paramet-
ric form as x(s), y(s), where s is the arc-length. The potential energy is then simply
fOL pgy(s)ds where p is the mass per unit length of the hanging chain. The x, y are not
independent functions of s, however, because x> + > = 1 at every point on the curve.
Here a dot denotes a derivative with respect to s.

(a) Introduce infinitely many Lagrange multipliers A(s) to enforce the > + j2 constraint,
one for each point s on the curve. From the resulting functional derive two coupled
equations describing the catenary, one for x(s) and one for y(s). By thinking about
the forces acting on a small section of the cable, and perhaps by introducing the
angle ¢ where x = cos ¢ and y = sin ¥, so that s and  are intrinsic coordinates
for the curve, interpret these equations and show that A(s) is proportional to the
position-dependent tension 7 (s) in the chain.

(b) You are provided with a lightweight line of length wa/2 and some lead shot of total
mass M. By using equations from the previous part (suitably modified to take into
account the position dependent p(s)) or otherwise, determine how the lead should
be distributed along the line if the loaded line is to hang in an arc of a circle of radius
a (see Figure 1.15) when its ends are attached to two points at the same height.
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Figure 1.15 Weighted line.

Figure 1.16 The Poincaré disc of Exercise 1.7. The radius OP of the Poincaré disc is unity, while
the radius of the geodesic arc PQR is PX = QX = RX = R. The distance between the centres of
the disc and arc is OX = x¢. Your task in part (c) is to show that ZOPX = ZORX = 90°.

Problem 1.7: Another model for Lobachevski geometry (see Exercise 1.3) is the
Poincaré disc (Figure 1.16). This space consists of the interior of the unit disc
D? = {(x,y) € R? : x> + y? < 1} equipped with the Riemann metric

g2 — dx? + dy?
- (1 _x2_y2)2'

The geodesic paths are found by minimizing the arc-length functional

1 [r | -
S[r]E/dS:/{m x2+y2}dt,

where r(¢) = (x(¢), y(¢)) and a dot indicates a derivative with respect to the parameter ¢.
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(a) Either by manipulating the two Euler—Lagrange equations that give the conditions
for s[r] to be stationary under variations in r(¢), or, more efficiently, by observing
that s[r] is invariant under the infinitesimal rotation

Sx= ey
§y = —ex

and applying Noether’s theorem, show that the parametrized geodesics obey

d 1 Xy — yx
— =0.
dt\1—-x2—y? {2432

(b) Given a point (a, b) within D?, and a direction through it, show that the equation
you derived in part (a) determines a unique geodesic curve passing through (a, b) in
the given direction, but does not determine the parametrization of the curve.

(c) Show that there exists a solution to the equation in part (a) in the form

x(t) = Rcost + xg
y(t) = Rsint.

Find a relation between xp and R, and from it deduce that the geodesics are circular
arcs that cut the bounding unit circle (which plays the role of the line at infinity in
the Lobachevski plane) at right angles.

Exercise 1.8: The Lagrangian for a particle of charge ¢ is
A S .
L[x,x] = me — g9 (x) +gx - A(X).
Show that Lagrange’s equation leads to
mX = q(E + x x B),

where

A
E=-V¢——, B=curlA.
ot

Exercise 1.9: Consider the action functional

1 1 1
Slw,p,r] = f <§Ila)% + 3 2w§ + Elga)g +p- F+wx r)} dt,

where r and p are time-dependent 3-vectors, as is @ = (w1, w2, w3). Apply the action
principle to obtain the equations of motion for r, p, @ and show that they lead to Euler’s
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Y

Figure 1.17 Vibrating piano string.

equations

Loy — (I — )waws =0,
hay — (I3 — )wsw; =0,

Bz — (I1 — h)wiwy =0,

governing the angular velocity of a freely rotating rigid body.

Problem 1.10: Piano string. An elastic piano string can vibrate both transversely and
longitudinally, and the two vibrations influence one another (Figure 1.17). A Lagrangian
that takes into account the lowest-order effect of stretching on the local string tension,
and can therefore model this coupled motion, is

_ 1 o6\ fon\?] alw o 1 an\2]
“a“—/ﬁ”E”[Qﬁ)*(&)}‘z[7+5;+§<§>}

Here &(x, ?) is the longitudinal displacement and 1 (x, #) the transverse displacement of

the string. Thus, the point that in the undisturbed string had coordinates [x, 0] is moved

to the point with coordinates [x+ & (x, ), n(x, ¢)]. The parameter 7( represents the tension
in the undisturbed string, A is the product of Young’s modulus and the cross-sectional
area of the string and pq is the mass per unit length.

(a) Usethe action principle to derive the two coupled equations of motion, one involving
9> . .y
2 and one involving R

(b) Show that when we linearize these two equations of motion, the longitudinal
and transverse motions decouple. Find expressions for the longitudinal (cr) and
transverse (ct) wave velocities in terms of 79, pp and A.

(c) Assume that a given transverse pulse n(x,#) = no(x — ctt) propagates along the
string. Show that this induces a concurrent longitudinal pulse of the form & (x — c1¢).
Show further that the longitudinal Newtonian momentum density in this concurrent
pulse is given by

d 1
'008_5252 L2T0
t cf —cr
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where

dn on
7% = —pp——
LT

is the associated pseudo-momentum density.

The forces that created the transverse pulse will also have created other longitudinal
waves that travel at cr . Consequently the Newtonian x-momentum moving at ¢t is not
the only x-momentum on the string, and the total “true” longitudinal momentum density
is not simply proportional to the pseudo-momentum density.

Exercise 1.11: Obtain the canonical energy—-momentum tensor 7", for the barotropic
fluid described by (1.119). Show that its conservation leads to both the momentum
conservation equation (1.128), and the energy conservation equation

%€ + 0i{vi(€ + P)},

where the energy density is

1
€= 2p(V$)* +u(p).
Interpret the energy flux as being the sum of the convective transport of energy together
with the rate of working by an element of fluid on its neighbours.

Problem 1.12: Consider the action functional®

ap

1
Sv,p,0,8,v]1= /d“x{——pv2 —¢ <8t + div (pv))

2

dy

+pﬂ(at

+(V~V)J/> +u(,0)},

which is a generalization of (1.177) to include two new scalar fields 8 and y. Show that
varying v leads to

v=V¢+BVy.

This is the Clebsch representation of the velocity field. It allows for flows with non-zero
vorticity

®w=curlv=Vg x Vy.

3 H. Bateman, Proc. Roy. Soc. Lond. A, 125 (1929) 598; C. C. Lin, Liquid Helium in Proc. Int. Sch. Phys.
“Enrico Fermi”, Course XXI (Academic Press, 1965).
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Show that the equations that arise from varying the remaining fields p, ¢, B, y together
imply the mass conservation equation

ap

o T div (pv) =0,

and Bernoulli’s equation in the form
ov 1,
— =-V|= h).
57 +oxV (2V + )

(Recall that # = du/dp.) Show that this form of Bernoulli’s equation is equivalent to
Euler’s equation

av

-V)v=—Vh.
” +(v-V)v
Consequently S provides an action principle for a general inviscid barotropic flow.

Exercise 1.13: Drums and membranes. The shape of a distorted drumskin is described by
the function /(x, y), which gives the height to which the point (x, y) of the flat undistorted
drumskin is displaced.

(a) Show that the area of the distorted drumskin is equal to

2 2
o= o (2 -3
ax ay

where the integral is taken over the area of the flat drumskin.
(b) Show that for small distortions, the area reduces to

1
A[h] = const. + 3 f dx dy |Vh|?.

(c) Show that if / satisfies the two-dimensional Laplace equation then A is stationary
with respect to variations that vanish at the boundary.

(d) Suppose the drumskin has mass pg per unit area, and surface tension 7. Write down
the Lagrangian controlling the motion of the drumskin, and derive the equation of
motion that follows from it.

Problem 1.14: The Wulff construction. The surface-area functional of the previous exer-
cise can be generalized so as to find the equilibrium shape of a crystal. We describe
the crystal surface by giving its height z(x,y) above the xy-plane, and introduce the
direction-dependent surface tension (the surface free-energy per unit area) « (p, ¢), where

0z _ 0z

a’ 9—5 (*)

p:
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We seek to minimize the total surface free energy

Flz] = /dxdy {oz(p,q),/ 1+ p? +q2} ,
subject to the constraint that the volume of the crystal
Viz] = / z dxdy

remains constant.

(a) Enforce the volume constraint by introducing a Lagrange multiplier 21!, and so
obtain the Euler-Lagrange equation

9 <%) L2 <%) _ o
dx \ dp ay \dq) '

f@.9) =ap.gy/1+p>+q%

(b) Show in the isotropic case, where « is constant, that

Here

200,3) =/ @A)? = (x — a)? — (v — b)? + const.

is a solution of the Euler—Lagrange equation. In this case, therefore, the equilibrium
shape is a sphere.

An obvious way to satisfy the Euler—Lagrange equation in the general anisotropic case
would be to arrange things so that

X=A—, y=Ai—. (%)
P

(c) Show that (x*) is exactly the relationship we would have if z(x, y) and Af (p, ¢) were
Legendre transforms of each other, i.e. if

Mp,q) = px +qy —z(x,¥),

where the x and y on the right-hand side are functions of p, ¢ obtained by solving
(*). Do this by showing that the inverse relation is

z(x,y) =px+qv — A (p,q)

where now the p, ¢ on the right-hand side become functions of x and y, and are
obtained by solving (xx).
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Figure 1.18 Two-dimensional Wulff crystal. (a) Polar plot of surface tension « as a function of
the normal n to a crystal face, together with a line perpendicular to n at distance « from the origin.
(b) Wulff’s construction of the corresponding crystal surface as the envelope of the family of
perpendicular lines. In this case, the minimum-energy crystal has curved faces, but sharp corners.
The envelope continues beyond the corners, but these parts are unphysical.

For real crystals, «(p,q) can have the property of being a continuous-but-nowhere-
differentiable function, and so the differential calculus used in deriving the Euler—
Lagrange equation is inapplicable. The Legendre transformation, however, has a
geometric interpretation that is more robust than its calculus-based derivation.

Recall that if we have a two-parameter family of surfaces in R? given by
F(x,y,z;p,q) = 0, then the equation of the envelope of the surfaces is found by solving
the equations

aF  OF
0 = F = ——= —

ap g
so as to eliminate the parameters p, g.

(d) Show that the equation

F,y,z:p,q) =px+qy —z —ra@p,q)\/1 +p> +¢* =0

describes a family of planes perpendicular to the unit vectors

(pyqa_l)
VI+p?+4?

and at a distance A (p, g) away from the origin.

(e) Show that the equations to be solved for the envelope of this family of planes are
exactly those that determine z(x, y). Deduce that, for smooth «(p, g), the profile
z(x, ) is this envelope.

n=—=

Wulff conjectured” that, even for non-smooth «(p, ¢), the minimum-energy shape is
given by an equivalent geometric construction: erect the planes from part (d) and, for

4 G. Wulff, Zeitschrift fiir Kristallografie, 34 (1901) 449.
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each plane, discard the half-space of R that lies on the far side of the plane from the
origin. The convex region consisting of the intersection of the retained half-spaces is the
crystal. When « (p, q) is smooth this “Wulff body” is bounded by part of the envelope of
the planes. (The parts of the envelope not bounding the convex body — the “swallowtails”
visible in Figure 1.18 — are unphysical.) When o (p, ¢) has cusps, these singularities can
give rise to flat facets which are often joined by rounded edges. A proof of Wulff’s claim
had to wait 43 years until 1944, when it was established by use of the Brunn—Minkowski
inequality.”

5 A. Dinghas, Zeitshrift fiir Kristallografie, 105 (1944) 304. For a readable modern account see: R. Gardner,
Bulletin Amer. Math. Soc. 39 (2002) 355.
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Function spaces

Many differential equations of physics are relations involving linear differential opera-
tors. These operators, like matrices, are linear maps acting on vector spaces. The new
feature is that the elements of the vector spaces are functions, and the spaces are infinite
dimensional. We can try to survive in these vast regions by relying on our experience in
finite dimensions, but sometimes this fails, and more sophistication is required.

2.1 Motivation

In the previous chapter we considered two variational problems:

(1) Find the stationary points of
1 1
F(x) = =x- AXx = —x;4;x; 2.1
2 2
on the surface x - x = 1. This led to the matrix eigenvalue equation

AX = AX. 2.2)

(2) Find the stationary points of
"1 2 2

R I R R @3)

a
subject to the conditions y(a) = y(b) = 0 and
b
K[yl = f yrdx = 1. (2.4)
a

This led to the differential equation

@) +qv =21y, y(a@) =yb)=0. (2.5

There will be a solution that satisfies the boundary conditions only for a discrete set
of values of A.

50
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The stationary points of both function and functional are therefore determined by linear
eigenvalue problems. The only difference is that the finite matrix in the first is replaced
in the second by a linear differential operator. The theme of the next few chapters is
an exploration of the similarities and differences between finite matrices and linear
differential operators. In this chapter we will focus on how the functions on which the
derivatives act can be thought of as vectors.

2.1.1 Functions as vectors

Consider F[a, b], the set of all real (or complex) valued functions f'(x) on the interval
[a, b]. This is a vector space over the field of the real (or complex) numbers: given two
functions f1 (x) and f>(x), and two numbers A| and A, we can form the sum A f] (x) +
A2f2(x) and the result is still a function on the same interval. Examination of the axioms
listed in Appendix A will show that F'[a, b] possesses all the other attributes of a vector
space as well. We may think of the array of numbers (f'(x)) for x € [a, b] as being the
components of the vector. Since there is an infinity of independent components — one
for each point x — the space of functions is infinite dimensional.

The set of all functions is usually too large for us. We will restrict ourselves to
subspaces of functions with nice properties, such as being continuous or differentiable.
There is some fairly standard notation for these spaces: the space of C” functions (those
which have n continuous derivatives) is called C"[a, b]. For smooth functions (those
with derivatives of all orders) we write C*[a, b]. For the space of analytic functions
(those whose Taylor expansion actually converges to the function) we write C*|[a, b].
For C* functions defined on the whole real line we write C°°(R). For the subset of
functions with compact support (those that vanish outside some finite interval) we write
CG°(R). There are no non-zero analytic functions with compact support: C§’(R) = {0}.

2.2 Norms and inner products

We are often interested in “how large” a function is. This leads to the idea of normed
function spaces. There are many measures of function size. Suppose R(¢) is the number
of inches per hour of rainfall. If you are a farmer you are probably most concerned with
the total amount of rain that falls. A big rain has big f |[R(#)| dt. If you are the Urbana
city engineer worrying about the capacity of the sewer system to cope with a downpour,
you are primarily concerned with the maximum value of R(¢). For you a big rain has a
big “sup [R(?)|”.]

! Here “sup”, short for supremum, is synonymous with the “least upper bound” of a set of numbers, i.e. the
smallest number that is exceeded by no number in the set. This concept is more useful than “maximum”
because the supremum need not be an element of the set. It is an axiom of the real number system that
any bounded set of real numbers has a least upper bound. The “greatest lower bound” is denoted “inf”, for
infimum.
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2.2.1 Norms and convergence

We can seldom write down an exact solution function to a real-world problem. We are
usually forced to use numerical methods, or to expand as a power series in some small
parameter. The result is a sequence of approximate solutions f, (x), which we hope will
converge to the desired exact solution f'(x) as we make the numerical grid smaller, or
take more terms in the power series.

Because there is more than one way to measure of the “size” of a function, the con-
vergence of a sequence of functions f, to a limit function f is not as simple a concept as
the convergence of a sequence of numbers x, to a limit x. Convergence means that the
distance between the f,, and the limit function f* gets smaller and smaller as » increases,
so each different measure of this distance provides a new notion of what it means to
converge. We are not going to make much use of formal “¢, §” analysis, but you must
realize that this distinction between different forms of convergence is not merely aca-
demic: real-world engineers must be precise about the kind of errors they are prepared to
tolerate, or else a bridge they design might collapse. Graduate-level engineering courses
in mathematical methods therefore devote much time to these issues. While physicists
do not normally face the same legal liabilities as engineers, we should at least have it
clear in our own minds what we mean when we write that f, — f.

Here are some common forms of convergence:

(1) If, for each x in its domain of definition D, the set of numbers £, (x) converges to
f(x), then we say the sequence converges pointwise.
(i1) If the maximum separation

sup [f (x) —f (x| (2.6)
xeD
goes to zero as n — 00, then we say that f;, converges to f* uniformly on D.
(iii) If

/ Vfn(x) —f ()| dx 2.7)
D

goes to zero as n — 00, then we say that f;, converges in the mean to f on D.

Uniform convergence implies pointwise convergence, but not vice versa. If D is a finite
interval, then uniform convergence implies convergence in the mean, but convergence
in the mean implies neither uniform nor pointwise convergence.

Example: Consider the sequence f,, =x" (n =1,2,...)and D = [0, 1). Here, the round
and square bracket notation means that the point x = 0 (Figure 2.1) is included in the
interval, but the point 1 is excluded.

As n becomes large we have x” — 0 pointwise in D, but the convergence is not
uniform because

sup " — 0] = 1 (2.8)
xeD
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Figure 2.1 x" — 0 on [0, 1), but not uniformly.

for all n.

Example: Let f,, = x" with D = [0, 1]. Now the two square brackets mean that both
x = 0 and x = 1 are to be included in the interval. In this case we have neither uniform
nor pointwise convergence of the x” to zero, but x” — 0 in the mean.

We can describe uniform convergence by means of a norm — a generalization of the
usual measure of the length of a vector. A norm, denoted by || ||, of a vector f* (a function,
in our case) is a real number that obeys

(i) positivity: || /|| = 0,and || /|| =0 & f =0,
(i) the triangle inequality: ||/ + gl < |/l + ligll;
(iii) linear homogeneity: [|Af]| = [A ][l f]l.

One example is the “sup” norm, which is defined by

[/ oo = sup [/ (x)]. 29

xeD

This number is guaranteed to be finite if / is continuous and D is compact. In terms of
the sup norm, uniform convergence is the statement that

tim /4 = flloo = 0. (2.10)
n— o0

2.2.2 Norms from integrals

The space LP[a, b], for any 1 < p < 00, is defined to be our F[a, b] equipped with

b 1/p
||f||p:(f lf(x)l"dx) , @.11)

as the measure of length, and with a restriction to functions for which || |, is finite.
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We say that f, — f in L? if the L7 distance || f* — f,ll,, tends to zero. We have already
seen the L' measure of distance in the definition of convergence in the mean. As in that
case, convergence in L7 says nothing about pointwise convergence.

We would like to regard || /||, as a norm. It is possible, however, for a function to have
Il /1l = 0 without f being identically zero — a function that vanishes at all but a finite set
of points, for example. This pathology violates number (i) in our list of requirements for
something to be called a norm, but we circumvent the problem by simply declaring such
functions to be zero. This means that elements of the L” spaces are not really functions,
but only equivalence classes of functions — two functions being regarded as the same
if they differ by a function of zero length. Clearly these spaces are not for use when
anything significant depends on the value of the function at any precise point. They are
useful in physics, however, because we can never measure a quantity at an exact position
in space or time. We usually measure some sort of local average.

The L? norms satisfy the triangle inequality for all 1 < p < oo, although this is not
exactly trivial to prove.

An important property for any space to have is that of being complete. Roughly
speaking, a space is complete if when some sequence of elements of the space look as if
they are converging, then they are indeed converging and their limit is an element of the
space. To make this concept precise, we need to say what we mean by the phrase “look
as if they are converging”. This we do by introducing the idea of a Cauchy sequence.

Definition: A sequence f, in a normed vector space is Cauchy if for any ¢ > 0 we can
find an N such that n,m > N implies that || f, — fnll < €.

This definition can be loosely paraphrased to say that the elements of a Cauchy sequence
get arbitrarily close to each other as n — oo.

A normed vector space is complete with respect to its norm if every Cauchy sequence
actually converges to some element in the space. Consider. for example, the normed
vector space QQ of rational numbers with distance measured in the usual way as |gq; —
q21l = |q1 — g2]- The sequence

g0 = 1.0,
g1 =14,
g = 141,
g3 = 1.414,

consisting of successive decimal approximations to +/2, obeys

1

|gn — qml| <
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and so is Cauchy. Pythagoras famously showed that /2 is irrational, however, and so
this sequence of rational numbers has no limit in Q. Thus Q is not complete. The space
R of real numbers is constructed by filling in the gaps between the rationals, and so
completing Q. A real number such as +/2 is defined as a Cauchy sequence of rational
numbers (by giving a rule, for example, that determines its infinite decimal expansion),
with two rational sequences ¢, and ¢, defining the same real number if ¢, — ¢, converges
to zero.

A complete normed vector space is called a Banach space. If we interpret the norms
as Lebesgue integrals” then the ZP[a, b] are complete, and therefore Banach spaces.
The theory of Lebesgue integration is rather complicated, however, and is not really
necessary. One way of avoiding it is explained in Exercise 2.2.

Exercise 2.1: Show that any convergent sequence is Cauchy.

2.2.3 Hilbert space

The Banach space L?[a, b] is special in that it is also a Hilbert space. This means that its
norm is derived from an inner product. If we define the inner product

b
o= [ rrgar @.13)
a
then the L2[a, b] norm can be written

(WA PERVAVAVAR (2.14)

When we omit the subscript on a norm, we mean it to be this one. You are probably
familiar with this Hilbert space from your quantum mechanics classes.

Being positive definite, the inner product satisfies the Cauchy—Schwarz—Bunyakovsky
inequality

Kf@ = fIgl- (2.15)

That this is so can be seen by observing that

1717 <f,g>> (A)
M 4+ ung, AMf + =A*,*<' 2.16
(W + ng, A + ng) = (A5, 1) ror 1) (2.16)
must be non-negative for any choice of A and p. We therefore select A = ||g||, u =

—(f,2)*lgll~", in which case the non-negativity of (2.16) becomes the statement that

/1171l = ¢, ) 1> = 0. 2.17)

2 The “L” in LP honours Henri Lebesgue. Banach spaces are named after Stefan Banach, who was one of the
founders of functional analysis, a subject largely developed by him and other habitués of the Scottish Café
in Lvov, Poland.
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From Cauchy—Schwarz—Bunyakovsky we can establish the triangle inequality:

I/ +glII> = 1717 + gl + 2Re(f . g)
< I/17 + lgh? + 21(f.8),
< I/17+ lgh* + 21/ gl
= (/1 + liglh?, (2.18)

SO

I/ +egl <171+ ligll- (2.19)

A second important consequence of Cauchy—Schwarz—Bunyakovsky is that if f, — f
in the sense that || f, — || — O, then

[(fn8) — () = U = 1), &)
< lfn =S lgl (2.20)

tends to zero, and so

(fn.8) = (f.8) (2.21)

This means that the inner product (f', g) is a continuous functional of /" and g. Take care
to note that this continuity hinges on ||g|| being finite. It is for this reason that we do not
permit ||g|| = oo functions to be elements of our Hilbert space.

Orthonormal sets

Once we are in possession of an inner product, we can introduce the notion of an
orthonormal set. A set of functions {u,} is orthonormal if

(Un, Um) = Spm- (2.22)

For example,
1
2] sin(nmx) sin(mmax) dx = 8y, n,m=1,2,... (2.23)
0

so the set of functions u,, = /2 sin nrx is orthonormal on [0, 1]. This set of functions
is also complete — in a different sense, however, from our earlier use of this word. An
orthonormal set of functions is said to be complete if any function f for which || £||? is
finite, and hence f an element of the Hilbert space, has a convergent expansion

)= anuy ).
n=0
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If we assume that such an expansion exists, and that we can freely interchange the order
of the sum and integral, we can multiply both sides of this expansion by u, (x), integrate
over x, and use the orthonormality of the u,’s to read off the expansion coefficients as
ap = (uy,f). When

1
112 = /0 @ dx (2.24)

and u,, = +/2 sin(nmx), the result is the half-range sine Fourier series.

Example: Expanding unity. Supposef (x) = 1. Since fol [f 12dx = 1is finite, the function
f(x) = 1 can be represented as a convergent sum of the u, = V2 sin(nmx).
The inner product of /* with the u,’s is

1 0, n even,
(up,f) = / «/Esin(nrrx) dx =
0 22 6dd
nmw ° :
Thus,
> 4
_ . . 2
1= FTETe sm((2n 4 l)n'x), in L2[0,1]. (2.25)

n=0

It is important to understand that the sum converges to the left-hand side in the closed
interval [0, 1] only in the L? sense. The series does not converge pointwise to unity at
x = 0orx = 1—every term is zero at these points.

Figure 2.2 shows the sum of the series up to and including the term with n = 30. The
L?[0, 1] measure of the distance between f (x) = 1 and this sum is

[

We can make this number as small as we desire by taking sufficiently many terms.

2
dx = 0.00654. (2.20)

30

4
-y ETET sm((Zn 4 l)nx)

n=0

Figure 2.2 The sum of the first 31 terms in the sine expansion of ' (x) = 1.
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It is perhaps surprising that a set of functions that vanish at the endpoints of the interval
can be used to expand a function that does not vanish at the ends. This exposes an impor-
tant technical point: any finite sum of continuous functions vanishing at the endpoints
is also a continuous function vanishing at the endpoints. It is therefore tempting to talk
about the “subspace” of such functions. This set is indeed a vector space, and a subset
of the Hilbert space, but it is not itself a Hilbert space. As the example shows, a Cauchy
sequence of continuous functions vanishing at the endpoints of an interval can converge
to a continuous function that does not vanish there. The “subspace” is therefore not
complete in our original meaning of the term. The set of continuous functions vanishing
at the endpoints fits into the whole Hilbert space much as the rational numbers fit into
the real numbers: a finite sum of rationals is a rational number, but an infinite sum of
rationals is not in general a rational number and we can obtain any real number as the
limit of a sequence of rational numbers. The rationals Q are therefore a dense subset
of the reals, and, as explained earlier, the reals are obtained by completing the set of
rationals by adding to this set its limit points. In the same sense, the set of continuous
functions vanishing at the endpoints is a dense subset of the whole Hilbert space and the
whole Hilbert space is its completion.

Exercise 2.2: Inthis technical exercise we will explain in more detail how we “complete”
a Hilbert space. The idea is to mirror the construction to the real numbers and define the
elements of the Hilbert space to be Cauchy sequences of continuous functions. To specify
a general element of L?*[a, b] we must therefore exhibit a Cauchy sequence f,, € Cl[a, b].
The choice is not unique: two Cauchy sequences f,,(l) (x) and fn(z) (x) will specify the
same element if

: (1 (2
Jim £ — 2] =0.

Such sequences are said to be equivalent. For convenience, we will write “lim,,_, oo f;, =

/7 but bear in mind that, in this exercise, this means that the sequence f,, defines the
symbol £, and not that /" is the limit of the sequence, as this limit need have no prior
existence. We have deliberately written “f”, and not “f (x)”, for the “limit function” to
warn us that f is assigned no unique numerical value at any x. A continuous function
£ (x) can still be considered to be an element of L[a, b] — take a sequence in which every
fn(x) is equal to f'(x) — but an equivalent sequence of f;,(x) can alter the limiting f'(x) on
a set of measure zero without changing the resulting element f € L?[a, b].

(1) If f, and g, are Cauchy sequences defining f, g, respectively, it is natural to try to
define the inner product (f, g) by setting

(f,g) = lim (fu,gn).

Use the Cauchy—Schwarz—Bunyakovsky inequality to show that the numbers F,, =
(fn»gn) form a Cauchy sequence in C. Since C is complete, deduce that this limit
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exists. Next show that the limit is unaltered if either £, or g, is replaced by an
equivalent sequence. Conclude that our tentative inner product is well defined.

(i) The next, and harder, task is to show that the “completed” space is indeed complete.
The problem is to show that any given Cauchy sequence f; € L’[a, b], where the
fx are not necessarily in C[a, b], has a limit in L*[a, b). Begin by taking Cauchy
sequences fi; € Cla, b] such that lim;,~ fr; = fi. Use the triangle inequality to
show that we can select a subsequence f; ;) that is Cauchy and so defines the
desired limit.

Later we will show that the elements of L2[a, b] can be given a concrete meaning as
distributions.

Best approximation

Let u,(x) be an orthonormal set of functions. The sum of the first N terms of the Fourier
expansion of f(x) in the u, is the closest — measuring distance with the L? norm — that
one can get to /* whilst remaining in the space spanned by uy, us, . .., uy.

To see this, consider the square of the error-distance:

N N N
def
A1 S gyl = <f S ot — 2>
1 m=1 n=1

N N N
= FIP =) an(foun) = D a@lumf) + Y aan(tm, ttn)
m=1

n=1 n,m=1

N N N
=117 =D an(foun) = D @l lumf) + Y lanl. (2.27)
n=1 m=1 n=1

In the last line we have used the orthonormality of the u,. We can complete the squares,
and rewrite A as

N N
A =17 = D WP+ Y lan = (. (2.28)
n=1 n=1

We seek to minimize A by a suitable choice of coefficients a,. The smallest we can
make it is

N
Amin = 1117 =D lun /P, (2.29)
n=1

and we attain this bound by setting each of the |a, — (u,,f)| equal to zero. That is, by
taking

an = (un.f). (2.30)

Thus the Fourier coefficients (u,,f) are the optimal choice for the a,,.
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Suppose we have some non-orthogonal collection of functions g,, n = 1,...,N,
and we have found the best approximation Z;VZI angn(x) to f(x). Now suppose we are
given a gy to add to our collection. We may then seek an improved approximation
Zﬁlvjll a,g,(x) by including this new function — but finding this better fit will generally
involve tweaking al/l the a,, not just trying different values of a 1. The great advantage
of approximating by orthogonal functions is that, given another member of an orthonor-
mal family, we can improve the precision of the fit by adjusting only the coefficient of

the new term. We do not have to perturb the previously obtained coefficients.

Parsevals theorem

The “best approximation” result from the previous section allows us to give an alternative
definition of a “complete orthonormal set”, and to obtain the formula a, = (u,, ) for
the expansion coefficients without having to assume that we can integrate the infinite
series Y _ ayu, term-by-term. Recall that we said that a set of points S is a dense subset
of a space T if any given point x € T is the limit of a sequence of points in S, i.e. there
are elements of S lying arbitrarily close to x. For example, the set of rational numbers Q
is a dense subset of R. Using this language, we say that a set of orthonormal functions
{u, (x)} is complete if the set of all finite linear combinations of the u, is a dense subset
of the entire Hilbert space. This guarantees that, by taking NV sufficently large, our best
approximation will approach arbitrarily close to our target function f'(x). Since the best
approximation containing all the u, up to uy is the N-th partial sum of the Fourier series,
this shows that the Fourier series actually converges to /.

We have therefore proved that if we are given u, (x),n = 1,2, ..., acomplete orthonor-
mal set of functions on [a, b], then any function for which || f'|| 2 is finite can be expanded
as a convergent Fourier series

f&) =" anu ), 2.31)
n=1
where
b
iy = (i f) = / (O () . (2.32)

The convergence is guaranteed only in the L2 sense that

b N
lim }/(x) — > aptin(x)

N—o0
n=1

2
dx = 0. (2.33)

Equivalently

N
Ay =If = anul* — 0 (2.34)

n=1
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as N — oo. Now, we showed in the previous section that

N
Ay = I£1P =D )

n=1
N
= /17 =) lanl, (2.35)
n=1
and so the L? convergence is equivalent to the statement that
o0
A1 =" lal*. (2.36)
n=1

This last result is called Parseval’s theorem.

Example: In the expansion (2.25), we have ||f2 | =1 and

2 8/(n*m?), nodd,

lan (2.37)
, neven.
Parseval therefore tells us that
i LU S B (2.38)
Qn+1)2 320 52 T8 ’

n=0

Example: The functions u,(x) = ﬁei"x, n € Z, form a complete orthonormal set on
the interval [—m, 7r]. Let f(x) = ﬁei{x . Then its Fourier expansion is

1 ifx . 1 inx
et = cpr—e™, —m<x<m, 2.39
V2 n;oo NG (2.39)
where
1 T . i —
on = / giergint gy — SNOTE = M) (2.40)
27 J_» (¢ —n)
We also have that
2 1
AN =/ Z—dx =1. (2.41)
_g 2T
Now Parseval tells us that
00 .2
sin“ (7 (¢ — n))
/1> = — (2.42)
n;oo T2 (& —n)?

the left-hand side being unity.
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Finally, as sin? (€ —n) = sin® (w¢), we have

oo

2y Ly b
cosec”(w¢) = S 0rE) = n;oo 2@ —n2 (2.43)

The end result is a quite non-trivial expansion for the square of the cosecant.

2.2.4 Orthogonal polynomials

A useful class of orthonormal functions are the sets of orthogonal polynomials associated
with an interval [a, b] and a positive weight function w(x) such that fab w(x) dx is finite.
We introduce the Hilbert space L%U [a, b] with the real inner product

b
(U, V) = / w@)ulx)v(x) dx, (2.44)
a
and apply the Gram—Schmidt procedure to the monomial powers 1,x,x%,x>, ... so as to
produce an orthonomal set. We begin with
Po(x) = 1/[[1]w, (2.45)
where ||1]w =4/ fab w(x) dx, and define recursively
P — 38 Pi(x){P;, xP,
Pt (x) = xXPy(x) Zg i () (P, x n)w. (2.46)
lxP, — ZOPi<Pi>XPn>”w
Clearly P, (x) is an n-th order polynomial, and by construction
<PnaPm>w = 8nm- (247)
All such sets of polynomials obey a three-term recurrence relation
xXPy(x) = bpPuy1(x) + apPp(x) + by 1Pp_1(x). (2.48)

That there are only three terms, and that the coefficients of P, and P,_ are related,
is due to the identity

(PnsXPp) oy = (XPuy Pin) - (2.49)

This means that the matrix (in the P, basis) representing the operation of multiplication
by x is symmetric. Since multiplication by x takes us from P, only to P, 1, the matrix
has just one non-zero entry above the main diagonal, and hence, by symmetry, only one
below.
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The completeness of a family of polynomials orthogonal on a finite interval is guar-
anteed by the Weierstrass approximation theorem, which asserts that for any continuous
real function f'(x) on [a, b], and for any ¢ > 0, there exists a polynomial p(x) such that
If () — p(x)| < ¢ for all x € [a, b]. This means that polynomials are dense in the space
of continuous functions equipped with the || ... ||c norm. Because |f'(x) — p(x)| < ¢
implies that

b b
/ If () — p(o)Pw(x) dx < & / w(x) dx, (2.50)

they are also a dense subset of the continuous functions in the sense of L%U [a, b] conver-
gence. Because the Hilbert space L%U [a, b] is defined to be the completion of the space
of continuous functions, the continuous functions are automatically dense in L%U [a, b].
Now the triangle inequality tells us that a dense subset of a dense set is dense in the
larger set, so the polynomials are dense in L2 [a, 4] itself. The normalized orthogonal
polynomials therefore constitute a complete orthonormal set.

For later use, we here summarize the properties of the families of polynomials named
after Legendre, Hermite and Tchebychef.

Legendre polynomials

Legendre polynomials have a = —1, b = 1 and w = 1. The standard Legendre
polynomials are not normalized by the scalar product, but instead by setting P, (1) = 1.
They are given by Rodriguez’ formula

P,(x) = o ﬁ(x — D" (2.51)
The first few are
Po(x) =1,
Pi(x) =x,

1 2
Pr(x) = 5(396 -1,

1 3
P3(x) = 5(5x — 3x),

1 4 2
Pi(x) = 5(35x — 30x~ 4 3).

Their inner product is

1
2
/;1 Pn(x)Pm(x) dx = Zn——{—lanm' (252)
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The three-term recurrence relation is
(2n + DxPy(x) = (n + 1)Ppy1(x) + nPy—1(x).
The P,, form a complete set for expanding functions on [—1, 1].

Hermite polynomials

The Hermite polynomials have a = —o0o, b = 400 and w(x) = e~

by the generating function
2 1
2tx—t- _ n
e = EO n!H,,(x)t .
n=

If we write

2 2 (r_p)2
e2tx t — ¢ (x t)’

we may use Taylor’s theorem to find

d" 2 2d" 2
H — £ x=(-0 — (=D — —x’
n(x) = ~Te - (=De e

which is a useful alternative definition. The first few Hermite polynomials are
Ho(x) =1,
Hi(x) = 2x,
Hy(x) = 4x* — 2
Hi(x) = 8x° — 12x
Hy(x) = 16x* — 48x? + 12.

The normalization is such that

o0
/ Hy () Hy(x)e™ dx = 2"'n\ /T8,
—0oQ

(2.53)

2, and are defined

(2.54)

(2.55)

(2.56)

2.57)

as may be proved by using the generating function. The three-term recurrence relation is

2xHy (x) = Hp1(x) + 2nH, -1 (x).

Exercise 2.3: Evaluate the integral

o0 2 2 2
F(s, 1) :/ e ¥ est—s eth—t dx

—00

(2.58)
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and expand the result as a double power series in s and 7. By examining the coefficient
of s"t™, show that

o0
/ Hy () Hyy ()™ dx = 2"n) /T S m.
—00

Problem 2.4: Let

H,y(x)e ™12

1
Pn(x) = /—2"n!ﬁ

be the normalized Hermite functions. They form a complete orthonormal set in L*(R).
Show that

iy B 1 dxyt — (2 4y (1 +12)
Zt Pn(X)@n(y) = ) exp{ 2= }, 0<t<l.

n=0

This is Mehler's formula. (Hint: expand the right-hand side as Z;iio an(x, e, (»). To

25y —s

find a,, (x, ), multiply by e 222 and integrate over y.)

Exercise 2.5: Let ¢,(x) be the same functions as in the preceding problem. Define a
Fourier-transform operator F : L>(R) — L?(R) by

F(f) = ™1 (s) ds.

1 o
A/ 21 /;oo
With this normalization of the Fourier transform, F* is the identity map. The possible

eigenvalues of F' are therefore £1, +i. Starting from (2.56), show that the ¢, (x) are
eigenfunctions of 7', and that

F(pn) = 1"@p(x).

Tchebychef polynomials

Tchebychefpolynomials are defined by takinga = —1,b = +1andw(x) = (1—x2)*1/2,

The Tchebychef polynomials of the first kind are

T,(x) = cos(ncos™ ! x). (2.59)
The first few are
To(x) =1,
T (x) = x,
Tr(x) = 2x% — 1,

T3(x) = 4x> — 3x.
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The Tchebychef polynomials of the second kind are

1

lmww=%%%}§=%ﬂm (2.60)
and the first few are
U-1(x) =0,
Uo(x) =1,
Up(x) = 2x,
Ur(x) = 4x* — 1,

Us(x) = 8x° — 4x.
T, and U, obey the same recurrence relation

2Ty = Tyt1 + Ty,
2xUp = Uy + Uy,
which are disguised forms of elementary trigonometric identities. The orthogonality is

also a disguised form of the orthogonality of the functions cos n6 and sin n6. After setting
x = cos6 we have

b4 1 1
/o cos n6 cos mb do =/_1«/1—__)62T,,(x)Tm(x)dx=h,,8nm, n,m,>0, (2.61)

where hg = 7, h, = /2, n > 0, and

T 1
/ sin n6 sin mO d6 = f 1 —x2U,—1(x)Up—1 (x) dx = %(Snm, n,m> 0.
0 -1
(2.62)

The set {T},(x)} is therefore orthogonal and complete in L%l )i [—1,1], and the set
{U,(x)} is orthogonal and complete in L%l RV [—1, 1]. Any function continuous on the
closed interval [—1, 1] lies in both of these spaces, and can therefore be expanded in
terms of either set.

2.3 Linear operators and distributions

Our theme is the analogy between linear differential operators and matrices. It is therefore
useful to understand how we can think of a differential operator as a continuously indexed
“matrix”.
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2.3.1 Linear operators
The action of a matrix on a vector y = Ax is given in components by
Vi = A,'jx]‘. (263)

The function-space analogue of this, g = Af, is naturally to be thought of as

b
g0 = / A ) dy, (2.64)

where the summation over adjacent indices has been replaced by an integration over the
dummy variable y. If A(x,y) is an ordinary function then A(x,y) is called an integral
kernel. We will study such linear operators in the chapter on integral equations.

The identity operation is

b
16 = [ 5 — Vf ) dy, 2.65)

and so the Dirac delta function, which is not an ordinary function, plays the role of the
identity matrix. Once we admit distributions such as §(x), we can think of differential
operators as continuously indexed matrices by using the distribution

d
8 (x) = IO (2.66)

The quotes are to warn us that we are not really taking the derivative of the highly singular
delta function. The symbol &' (x) is properly defined by its behaviour in an integral

b b d
f §'(x — »)f ) dy = / 3= 0)dy

a

b d
= —/ f(y)d—a(x—y)dy
a ly

b
= / f'()8(x —y)dy (integration by parts)
a
= f.
The manipulations here are purely formal, and serve only to motivate the defining

property

b
/ 5'(x = f ) dy =f'x). 2.67)

a

It is, however, sometimes useful to think of a smooth approximation to §’(x — a) being
the genuine derivative of a smooth approximation to § (x — a), as illustrated in Figure 2.3.
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d(x—a) d'(x—a)

W)
I\

Figure 2.3 Smooth approximations to §(x — @) and 8’ (x — a).

We can now define higher “derivatives” of § (x) by

b
/ 50 (of (dx = (—1)'7 @ (0), (2.68)

a
and use them to represent any linear differential operator as a formal integral kernel.

Example: In Chapter 1 we formally evaluated a functional second derivative and ended
up with the distributional kernel (1.186), which we here write as

d d
k(x,y) = & (P@)ES(J/ —x)> +q0é(y —x)
="y —x) = p (MY —x) + g8 —x). (2.69)

When £ acts on a function u, it gives

/k(x,y)u(y) dy = / {=p18"(y =) =P 'y —x)
+q0)8(y —x)}u(y) dy
= /50/ =) {=[pu]" + [P’ 0Hum) + gWu@)} dy

= /S(y —x) {—p)u" () = p' W' ) + q)u)} dy

d du
= T (p(x)a) + g(x)u(x). (2.70)

The continuous matrix (1.186) therefore does, as indicated in Chapter 1, represent the
Sturm—Liouville operator L defined in (1.182).

Exercise 2.6: Consider the distributional kernel

k(x,p) = a2(1)8"(x — ) + a1(0)8' (x — ¥) + ao (M8 (x — ).
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Show that

/ ke y)u() dy = (@u() + (a1 @ue))’ + aoux).
Similarly show that

k(x,y) = az(x)8" (x — y) + a1 (x)8'(x — y) + ao(x)8(x — y),
leads to

/k(x,y)u(y) dy = ay(¥)u’ (x) + a1 ()u' (x) + ag()u(x).

Exercise 2.7: The distributional kernel (2.69) was originally obtained as a functional
second derivative

_ b (W
k(x])x2) - 8y(xl) ((Sy(x2)>

d d
= (P(xz)—S()Q - X1)) + q(x2)8(x2 — x1).
X dxo

By analogy with conventional partial derivatives, we would expect that

) (8J[y]>_ ) <6J[y]>
Sy(e) \8y(x2) ) 8y(x2) \Sy(x1) /)’

but x; and x, appear asymmetrically in k(x1,x7). Define

k' (x1,x2) = k(x2,x1),

and show that
/kT(xl,xz)u(xz)dxz = /k(xl,xz)u(xz)dxz.

Conclude that, superficial appearance notwithstanding, we do have k(x1,x2) = k(x2,x1).

The example and exercises show that linear differential operators correspond to con-
tinuously infinite matrices having entries only infinitesimally close to their main
diagonal.

2.3.2 Distributions and test-functions

It is possible to work most of the problems in this book with no deeper understanding of
what a delta-function is than that presented in Section 2.3.1. At some point, however, the
more careful reader will wonder about the logical structure of what we are doing, and
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a

Figure 2.4 Approximation 8¢ (x — @) to §(x — a).

will soon discover that too free a use of §(x) and its derivatives can lead to paradoxes.
How do such creatures fit into the function-space picture, and what sort of manipulations
with them are valid?

We often think of 5 (x) as being a “limit” of a sequence of functions whose graphs are
getting narrower and narrower while their height grows to keep the area under the curve
fixed. An example would be the spike function 8. (x — @) appearing in Figure 2.4.

The L? norm of &,

1
||8g||2=/|88(x>|2dx= - 2.71)

tends to infinity as & — 0, so 8, cannot be tending to any function in L?. This delta
function has infinite “length”, and so is not an element of our Hilbert space.

The simple spike is not the only way to construct a delta function. In Fourier theory
we meet

A dk 1sinA
8A(x):/ e”“z—z—sm a 2.72)
—A T T X

which becomes a delta function when A becomes large. In this case
) % sin® Ax
18all” = 2 dx = A/m. (2.73)
oo X

Again the “limit” has infinite length and cannot be accommodated in Hilbert space. This
S (x) is even more pathological than §,. It provides a salutary counter-example to the
often asserted “fact” that §(x) = 0 for x # 0. As A becomes large 5, (0) diverges to
infinity. At any fixed non-zero x, however, §, (x) oscillates between +1/x as A grows.
Consequently the limit lima_, oo 84 (x) exists nowhere. It therefore makes no sense to
assign a numerical value to §(x) at any x.

Given its wild behaviour, it is not surprising that mathematicians looked askance at
Dirac’s §(x). It was only in 1944, long after its effectiveness in solving physics and
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engineering problems had become an embarrassment, that Laurent Schwartz was able to
tame 8 (x) by creating his theory of distributions. Using the language of distributions we
can state precisely the conditions under which a manoeuvre involving singular objects
such as 8’ (x) is legitimate.

Schwartz’ theory is built on a concept from linear algebra. Recall that the dual space
V* of a vector space V' is the vector space of linear functions from the original vector
space V to the field over which it is defined. We consider §(x) to be an element of the
dual space of a vector space 7 of test functions. When a test function ¢(x) is plugged
in, the §-machine returns the number ¢ (0). This operation is a linear map because the
action of § on Ap(x) + wx (x) is to return Ap(0) + wx (0). Test functions are smooth
(infinitely differentiable) functions that tend rapidly to zero at infinity. Exactly what
class of function we chose for 7 depends on the problem at hand. If we are going to
make extensive use of Fourier transforms, for example, we might select the Schwartz
space, S(R). This is the space of infinitely differentiable functions ¢(x) such that the
seminorms’

m

d"e
dxm

@ |mn = sup {le” } (2.74)

xeR
are finite for all positive integers m and n. The Schwartz space has the advantage that if
¢ is in S(R), then so is its Fourier transform. Another popular space of test functions is
D consisting of C* functions of compact support — meaning that each function is iden-
tically zero outside some finite interval. Only if we want to prove theorems is a precise
specification of 7 essential. For most physics calculations infinite differentiability and
a rapid enough decrease at infinity for us to be able to ignore boundary terms is all that
we need.

The “nice” behaviour of the test functions compensates for the “nasty” behaviour of
8(x) and its relatives. The objects, such as §(x), composing the dual space of 7 are
called generalized functions, or distributions. Actually, not every linear map 7 — R
is to be included in the dual space because, for technical reasons, we must require the
maps to be continuous. In other words, if ¢,, — ¢, we want our distributions u to obey
u(pn) — u(p). Making precise what we mean by ¢, — ¢ is part of the task of specifying
7. In the Schwartz space, for example, we declare that ¢, — ¢ if |9, — ¢|,n — 0, for
all positive m, n. When we restrict a dual space to continuous functionals, we usually
denote it by ¥’ rather than V*. The space of distributions is therefore 7.

When they wish to stress the dual-space aspect of distribution theory, mathematically
minded authors use the notation

3(p) = ¢(0), (2.75)

or
6,9) = ¢(0), (2.76)

3 A seminorm | - - - | has all the properties of a norm except that || = 0 does not imply that ¢ = 0.
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in place of the common, but purely formal,

/S(x)go(x) dx = ¢(0). (2.77)

The expression (8, ) here represents the pairing of the element ¢ of the vector space 7°
with the element § of its dual space 7. It should not be thought of as an inner product as
the distribution and the test function lie in different spaces. The “integral” in the common
notation is purely symbolic, of course, but the common notation should not be despised
even by those in quest of rigour. It suggests correct results, such as

1
/ S(ax — b)p(x)dx = ﬁgo(b/a), (2.78)
a
which would look quite unmotivated in the dual-space notation.
The distribution §’(x) is now defined by the pairing

¢, 9) = —¢'(0), (2.79)

where the minus sign comes from imagining an integration by parts that takes the
“derivative” off §(x) and puts it on to the smooth function ¢(x):

“f & X)) dx” = —/8(x)<p’(x) dx. (2.80)

Similarly 8§ (x) is now defined by the pairing

6™, 0) = (=1)"9(0). (2.81)

The “nicer” the class of test function we take, the “nastier” the class of distributions
we can handle. For example, the Hilbert space L? is its own dual: the Riesz—Fréchet
theorem (see Exercise 2.10) asserts that any continuous linear map F : L?> — R can be
written as F[f] = (I,f) for some / € L?. The delta-function map is not continuous when
considered as a map from L> — R, however. An arbitrarily small change, f — f + 8f,
in a function (small in the L? sense of |8 being small) can produce an arbitrarily
large change in £(0). Thus L? functions are not “nice” enough for their dual space to
be able to accommodate the delta function. Another way of understanding this is to
remember that we regard two L? functions as being the same whenever || fi — /|| = 0.
This distance will be zero even if f| and f> differ from one another on a countable set
of points. As we have remarked earlier, this means that elements of L? are not really
functions at all — they do not have an assigned value at each point. They are, instead,
only equivalence classes of functions. Since f'(0) is undefined, any attempt to interpret
the statement | §(x)f (x) dx = f(0) for /" an arbitrary element L? is necessarily doomed
to failure. Continuous functions, however, do have well-defined values at every point.
If we take the space of test functions 7 to consist of all continuous functions, but not
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demand that they be differentiable, then 7 will include the delta function, but not its
“derivative” §'(x), as this requires us to evaluate /' (0). If we require the test functions
to be once-differentiable, then 7’ will include §’(x) but not 8" (x), and so on.

When we add suitable spaces 7 and 7" to our toolkit, we are constructing what is
called a rigged* Hilbert space. In such a rigged space we have the inclusion

Tcl*=[*cT. (2.82)

The idea is to take the space 7’ big enough to contain objects such as the limit of our
sequence of “approximate” delta functions 8., which does not converge to anything in 2.

Ordinary functions can also be regarded as distributions, and this helps illuminate the
different senses in which a sequence u,, can converge. For example, we can consider the
functions

u, =sinnmx, 0<x<l, (2.83)

as being either elements of L2[0, 1] or as distributions. As distributions we evaluate them
on a smooth function ¢ as

1
(s 9) = /0 (it (x) d. (2.84)
Now
nlizlgo(uns (/)) = Oa (285)

since the high-frequency Fourier coefficients of any smooth function tend to zero. We
deduce that as a distribution we have lim,_, », u,, = 0, the convergence being pointwise
on the space of test functions. Considered as elements of L2[0, 1], however, the u, do
not tend to zero. Their norm is ||u,| = 1/2 and so all the u,, remain at the same fixed
distance from 0.

Exercise 2.8: Here we show that the elements of L%[a, b], which we defined in Exer-
cise 2.2 to be the formal limits of Cauchy sequences of continuous functions, may be
thought of as distributions.

(1) Let ¢(x) be a test function and f;,(x) a Cauchy sequence of continuous functions
defining f € L?. Use the Cauchy—Schwarz-Bunyakovsky inequality to show that
the sequence of numbers (g, f,,) is Cauchy and so deduce that lim,,_, o (@, f;;) exists.

(i) Let ¢(x) be a test function and f,,(l) (x) and f,,(z) (x) be a pair of equivalent sequences
defining the same elementf € L?. Use Cauchy—Schwarz-Bunyakovsky to show that

tin (o 1) =0,

4 “Rigged” as in a sailing ship ready for sea, not “rigged” as in a corrupt election.
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Combine this result with that of the preceding exercise to deduce that we can set
(¢.f) = lim (9", f),
n—oQ

and so define /' = lim,_, o f;, as a distribution.

The interpretation of elements of L? as distributions is simultaneously simpler and more
physical than the classical interpretation via the Lebesgue integral.

Weak derivatives

By exploiting the infinite differentiability of our test functions, we were able to make
mathematical sense of the “derivative” of the highly singular delta function. The same
idea of a formal integration by parts can be used to define the “derivative” for any
distribution, and also for ordinary functions that would not usually be regarded as being
differentiable.

We therefore define the weak or distributional derivative v(x) of a distribution u(x)
by requiring its evaluation on a test function ¢ € 7 to be

def

/ (X)) dx = — / u(x)¢’ (x) dx. (2.86)
In the more formal pairing notation we write

o) € —ug). (2.87)

The right-hand side of (2.87) is a continuous linear function of ¢, and so, therefore, is the
left-hand side. Thus the weak derivative #’ = v is a well-defined distribution for any u.

When u(x) is an ordinary function that is differentiable in the conventional sense, its
weak derivative coincides with the usual derivative. When the function is not conven-
tionally differentiable the weak derivative still exists, but does not assign a numerical
value to the derivative at each point. It is therefore a distribution and not a function.

The elements of L? are not quite functions — having no well-defined value at a point —
but are particularly mild-mannered distributions, and their weak derivatives may them-
selves be elements of L2. It is in this weak sense that we will, in later chapters, allow
differential operators to act on L? “functions”.

Example: In the weak sense

2 1) = sgn(o), (2.88)
dx
9 ) = 28(r). (2.89)
dx

The object |x| is an ordinary function, but sgn(x) has no definite value at x = 0, whilst
8(x) has no definite value at any x.
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Example: As a more subtle illustration, consider the weak derivative of the function
In |x|. With ¢(x) a test function, the improper integral

o8} —& 00
I = —/ ¢’ (x) In|x|dx = — lim (/ —i—/ )(p/(x) In |x| dx (2.90)
—00 £,6/—>0 — 00 o

is convergent and defines the pairing (— In |x|, ¢"). We wish to integrate by parts and
interpret the result as ([In |x|]’, ¢). The logarithm is differentiable in the conventional
sense away from x = 0, and

1
[In[x|p(x)]" = Z¢@) +1n xlg'(x), x#0. 291

From this we find that

—& o0 1
—(In |x|,¢") = 1i/m0{</ —i—/ > )—C<p(x) dx
+ (<p(e’) Inl¢'| — p(—¢)In |g|)} . (2.92)

So far ¢ and &’ are unrelated except in that they are both being sent to zero. If, however,
we choose to make them equal, ¢ = ¢’, then the integrated-out part becomes

((p(s) — (p(—s)) In|e| ~ 2¢'(0)¢ In |¢], (2.93)

and this tends to zero as € becomes small. In this case

~(linlxll,¢") = lim {( f oy / )%(p(x)dx}. (2.94)

By the definition of the weak derivative, the left-hand side of (2.94) is the pairing
([In |x|1, ¢). We conclude that

d 1
—Inx|=P{-]), (2.95)
dx X

where P(1/x), the principal-part distribution, is defined by the right-hand side of (2.94).
It is evaluated on the test function ¢(x) by forming [ ¢(x)/x dx, but with an infinites-
imal interval from —e to +¢, omitted from the range of integration. It is essential that
this omitted interval lie symmetrically about the dangerous point x = 0. Otherwise the
integrated-out part will not vanish in the ¢ — 0 limit. The resulting principal-part inte-
gral, written P [ ¢(x)/x dx, is then convergent and P(1/x) is a well-defined distribution
despite the singularity in the integrand. Principal-part integrals are common in physics.
We will next meet them when we study Green functions.

For further reading on distributions and their applications we recommend
M. J. Lighthill Fourier Analysis and Generalised Functions, or F. G. Friedlander
Introduction to the Theory of Distributions. Both books are published by Cambridge
University Press.
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2.4 Further exercises and problems

The first two exercises lead the reader through a proof of the Riesz—Fréchet theorem.
Although not an essential part of our story, they demonstrate how “completeness” is used
in Hilbert space theory, and provide some practice with “e, §” arguments for those who
desire it.

Exercise 2.9: Show that if a norm || || is derived from an inner product, then it obeys
the parallelogram law

If+gl? +1f — gl =2dLA 1 + llgl®.

Let N be a complete linear subspace of a Hilbert space H. Let g ¢ N, and let
inf ||g—f| =d.
ot lg =71l

Show that there exists a sequence f; € N such that lim, || f, — gll = d. Use the
parallelogram law to show that the sequence f,, is Cauchy, and hence deduce that there
is a unique f* € N such that ||g — f|| = d. From this, conclude that d > 0. Now show
that ((g —f),h) =0forallh € N.

Exercise 2.10: Riesz—Fréchet theorem. Let L[h] be a continuous linear functional on a
Hilbert space H. Here continuous means that

A, — hll = 0 = L[h,] — L[A].

Show that the set N = {f € H : L[f] = 0} is a complete linear subspace of H.
Suppose now that there is a g € H such that L(g) # 0, and let/ € H be the vector
“g — f” from the previous problem. Show that

LUk = (al,h), where o* = L[gl/(l,g) = Ligl/I!I*

A continuous linear functional can therefore be expressed as an inner product.

Next we have some problems on orthogonal polynomials and three-term recurrence
relations. They provide an excuse for reviewing linear algebra, and also serve to introduce
the theory behind some practical numerical methods.

Exercise 2.11: Let {P,(x)} be a family of polynomials orthonormal on [a, b] with respect
to a positive weight function w(x), and with deg [P, (x)] = n. Let us also scale w(x) so
that [” w(x) dx = 1, and Po(x) = 1.

(a) Suppose that the P,(x) obey the three-term recurrence relation

xXPy(x) = bpPpy1(x) + apPy(x) + by_1Pp_1(x);
P_1(x) =0, Po(x) = 1.
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Define

Pn(x) = Py (x)(bp—1by—2 - - - bo),

and show that

XPn(x) = a1 () + anpn(x) + B2 1pam1(x); po1(x) =0, po(x) = 1.

Conclude that the p,(x) are monic — i.e. the coefficient of their leading power of x
is unity.
(b) Show also that the functions

b _
() = / 2n) = Pn8), e g
a X _S

are degree n — 1 monic polynomials that obey the same recurrence relation as the
Pn(x), but with initial conditions go(x) = 0, g1 (x) = f ab wdx = 1.

Warning: while the g, (x) polynomials defined in part (b) turn out to be very useful,
they are not mutually orthogonal with respectto ( , ).

Exercise 2.12: Gaussian quadrature. Orthogonal polynomials have application to
numerical integration. Let the polynomials {P,,(x)} be orthonormal on [a, b] with respect
to the positive weight function w(x), and let x,, v = 1,..., N, be the zeros of Py (x).
You will show that if we define the weights

b
Wy :/ Aw(x)dx
a PyG)x—xy)

then the approximate integration scheme

b
/ S @wx) dx ~ wif (x1) + waf (2) + - - - wnf (xw),

known as Gauss’ quadrature rule, is exact for f (x) any polynomial of degree less than
or equal to 2N — 1.

(@) Let m(x) = (x — &)(x — &) --- (x — &y) be a polynomial of degree N. Given a
function F'(x), show that

N

def 7(x)

Frx) = Fé) =
VZ:; ' (&) (x — &)

is a polynomial of degree N — 1 that coincides with F(x) atx = &,,v =1,...,N.
(This is Lagrange s interpolation formula.)
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(b) Show that if F(x) is a polynomial of degree N — 1 or less then F7(x) = F(x).

(c) Let f(x) be a polynomial of degree 2N — 1 or less. Cite the polynomial division
algorithm to show that there exist polynomials Q(x) and R(x), each of degree N — 1
or less, such that

S @) =Pn@)Q(x) + R(x).

(d) Show that ' (x,) = R(x,), and that

b b
[ S@w(x)dx = / R)w(x) dx.

(e) Combine parts (a), (b) and (d) to establish Gauss’ result.

(f) Show that if we normalize w(x) so that f wdx = 1 then the weights w, can be
expressed as w, = gy (xy) /p}v (xy), where p, (x), g, (x) are the monic polynomials
defined in the preceding problem.

The ultimate large-N exactness of Gaussian quadrature can be expressed as

w(x) = Nli_r)noo [ZS(}C —xv)wv] .

Of course, a sum of Dirac delta functions can never become a continuous function in any
ordinary sense. The equality holds only after both sides are integrated against a smooth
test function, i.e. when it is considered as a statement about distributions.

Exercise 2.13: The completeness of a set of polynomials {P,(x)}, orthonormal with
respect to the positive weight function w(x), is equivalent to the statement that

Y Pu)Py(y) =

n=0

o) S(x —y).

It is useful to have a formula for the partial sums of this infinite series.
Suppose that the polynomials P, (x) obey the three-term recurrence relation

XPp(x) = bpPpi1(x) + anPp(x) + bp—1Pp—1(x);  P_1(x) =0, Po(x) = 1.

Use this recurrence relation, together with its initial conditions, to obtain the Christoffel—
Darboux formula

N—-1

by_1[P Pyn_ — Pv_ P
S Pa)Py(y) = NN ;(i)y V-1 Py ()]
n=0

Exercise 2.14: Again suppose that the polynomials P, (x) obey the three-term recurrence
relation

xP,(x) = bpPyy1(x) + anPy(x) + by—1Pr_1(x);  P_1(x) =0, Po(x) = 1.
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Consider the N-by-N tridiagonal matrix eigenvalue problem

_a]v_l bN_z 0 0 . 0 _uN_l _uN_l
bv—y an—2 by—3 0 ... O] |uv— UN_2
0 by_3 av—3 bnv—4 ... O | |un_3 UN_3
=X
0 . b2 an b] 0 uz up
0 Ce 0 by ai bo uj ui
| 0 0 0 bo ao || wuo | | uo |
(a) Show that the eigenvalues x are given by the zeros x,,, v = 1,..., N, of Py (x), and
that the corresponding eigenvectors have components u,, = P,(x,),n =0,...,N —

1.

(b) Take the x — y limit of the Christoffel-Darboux formula from the preceding prob-
lem, and use it to show that the orthogonality and completeness relations for the
eigenvectors can be written as

N—-1

ZPn(xv)Pn(xu) = w;l&,u,

n=0
N
Zvan(xv)Pm(xu) = 8pym, nm =N —1,
v=1

where wy ! = by_1 Py (x,)Py_1(xy).

(c) Use the original Christoffel-Darboux formula to show that, when the P,(x) are
orthonormal with respect to the positive weight function w(x), the normalization
constants w, of this present problem coincide with the weights w, occurring in
the Gauss quadrature rule. Conclude from this equality that the Gauss quadrature
weights are positive.

Exercise 2.15: Write the N-by-N tridiagonal matrix eigenvalue problem from the pre-
ceding exercise as Hu = xu, and set dy (x) = det (xI — H). Similarly define d,(x) to be
the determinant of the n-by-n tridiagonal submatrix with x — a,_1,...,x — ap along its
principal diagonal. Laplace-develop the determinant d, (x) about its first row, and hence
obtain the recurrence

d1 (1) = (¥ = a)dn () = b1 (x).
Conclude that
det (1 — H) = py (x),
where p,,(x) is the monic orthogonal polynomial obeying

XPn(X) = a1 (¥) + anpn(x) + b2 1pa1(x); p_1(x) = 0, po(x) = 1.
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Exercise 2.16: Again write the N-by-N tridiagonal matrix eigenvalue problem from the
preceding exercises as Hu = xu.

(a) Show that the lowest and rightmost matrix element
01T — H)~'0) = (1 — H),

of the resolvent matrix (xI—H)~!is given by a continued fraction Gy_1 o(x) where,
for example,

1
G3,Z (-x) = bz
X —ay— 0 3
X —da) — bl
b2
X—ay— — 22—
xX—a3+z
(b) Use induction on #z to show that
4n(0)z + gnr1(0)

Gpz(x) = ,
T pa)z 4 pas1 ()

where p;, (x), g, (x) are the monic polynomial functions of x defined by the recurrence

relations

XPn(X) = a1 (%) + @npn(x) + b2 1pa—1(x),  p_1(x) =0, po(x) = 1,
Xqn(X) = Gui1 () + angn () + b2 1gn-1(x),  qo(x) =0, q1(x) = 1.

(¢) Conclude that

gn (x)

0|1 —H)~'0) = ,
pN(x)

has a pole singularity when x approaches an eigenvalue x,,. Show that the residue
of the pole (the coefficient of 1/(x — x,,)) is equal to the Gauss quadrature weight
wy, for w(x), the weight function (normalized so that [wdx = 1) from which the
coefficients a,,, b, were derived.

Continued fractions were introduced by John Wallis in his Arithmetica Infinitorum
(1656), as was the recursion formula for their evaluation. Today, when combined with
the output of the next exercise, they provide the mathematical underpinning of the
Haydock recursion method in the band theory of solids. Haydock’s method computes
w(x) = limy_o0 {°, 8(x — x,)w, }, and interprets it as the local density of states that
is measured in scanning tunnelling microscopy.

Exercise 2.17: The Lanczos tridiagonalization algorithm. Let V' be an N-dimensional
complex vector space equipped with an inner product ( , Yandlet H : V' — V be a
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hermitian linear operator. Starting from a unit vector ug, and takingu_; = 0, recursively
generate the unit vectors u, and the numbers a,,, b, and ¢, by

Hu, = bnun+l + ayu, + Cchp—1Uy—1,
where the coefficients

ap = (uy, Huy),

Cn—1 = (uy—1, Huy),
ensure that u, is perpendicular to both u,, and u,_1, and
by = |Huy, — ayuy — cp_1uy1ll,

a positive real number, makes [lu,41]| = 1.

(a) Use induction on 7 to show that u,,, although only constructed to be perpendicular
to the previous two vectors, is in fact (and in the absence of numerical rounding
errors) perpendicular to all u,, with m < n.

(b) Show that a,, ¢, are real, and that ¢,_| = b,_1.

(c) Conclude that by_; = 0, and (provided that no earlier b, happens to vanish) that the
u,, n=0,...,N — 1, constitute an orthonormal basis for V', in terms of which H
is represented by the N-by-N real-symmetric tridiagonal matrix H of the preceding
exercises.

Because the eigenvalues of a tridiagonal matrix are given by the numerically easy-to-
find zeros of the associated monic polynomial py (x), the Lanczos algorithm provides a
computationally efficient way of extracting the eigenvalues from a large sparse matrix.
In theory, the entries in the tridiagonal H can be computed while retaining only u,,
u,—1 and Hu, in memory at any one time. In practice, with finite precision computer
arithmetic, orthogonality with the earlier u,, is eventually lost, and spurious or duplicated
eigenvalues appear. There exist, however, stratagems for identifying and eliminating
these fake eigenvalues.

The following two problems are “toy” versions of the Lax pair and fau function
constructions that arise in the general theory of soliton equations. They provide useful
practice in manipulating matrices and determinants.

Problem 2.18: The monic orthogonal polynomials p;(x) have inner products

Pip) = [ PR W) dx = b,
and obey the recursion relation

xpi(¥) = pis1(x) + aipi(¥) + b7 pi1(x);  p_1(x) = 0, po(x) = 1.
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Write the recursion relation as

Lp = xp,
where
L= I oa bp 0| - |p
1 o b% D1
0 0 1 a 0
Suppose that

w(x) = exp {— Zt,,x”} ,
n=1

and consider how the p;(x) and the coefficients a; and b? vary with the parameters #,.

(a) Show that

P _ mo,
o1,

where M™ is some strictly upper triangular matrix —i.e. all entries on and below its
principal diagonal are zero.
(b) By differentiating Lp = xp with respect to #, show that

oL

— =M®, L.
o, [ 1

(¢c) Compute the matrix elements

) . _ api
e =2 =i (o )
ty w

(note the interchange of the order of i andj inthe { , ),, product!) by differentiating
the orthogonality condition (p;, p;),, = h:8;;. Hence show that

M(n) — (LVI)+

where (L"), denotes the strictly upper triangular projection of the n-th power of
L — i.e. the matrix L, but with its diagonal and lower triangular entries replaced
by zero.

Thus

E = [(Ln)+’L]
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describes a family of deformations of the semi-infinite matrix L that, in some formal
sense, preserve its eigenvalues x.

Problem 2.19: Let the monic polynomials p, (x) be orthogonal with respect to the weight
function

w(x) = exp {— Zt,,x”} .
n=1

Define the “tau-function” 7,(¢1, t2, 13 . . .) of the parameters ¢; to be the n-fold integral

(t,t,...) = //'~/dxxdx2...dan2(x)exp!—Zzlmxﬁn}

v=1 m=1

where
x;’j x{'j x; 1
Xy oxy, o .. x|
Alx) = . . . . = n(xv _x/l.)
: : Lo v<pt
R R S |
is the n-by-n Vandermonde determinant.
(a) Show that
n—1 n—2
X X coooxp 1 pn—1(x1)  pn—2(x1) ... pi(x1) polx1)
ngl x§72 cooxp 1 Dn—1(x2) pn2(x2) ... pi1(x2) po(x2)
)CZ_I Xz_z ce Xn 1 Pn—l (xn) pn—2 (xn) ... Pl (xn) pO(x”)

(b) Combine the identity from part (a) with the orthogonality property of the p, (x) to
show that

pn(x) = %/dxldxz o dx A% (x) l_Il(x — X,) €Xp {— Z Z tmx")”}
ll/:

n v=1 m=1

/ )
_ T(t), 1,1, . . .)
T}’l(tlytZat_’n . )

where

, 1
tm —Z‘m—i—m
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Here are some exercises on distributions:

Exercise 2.20: Let f(x) be a continuous function. Observe that f'(x)§(x) = £ (0)é(x).
Deduce that

d .
ASLOIEN) (0)8'(x).
/X
If £ (x) were differentiable we might also have used the product rule to conclude that
d / I
E[f(x)S(X)] =1 ()8 (x) + 1 ()8 (x).

Show, by evaluating f(0)8’(x) and f”(x)8(x) + f(x)8'(x) on a test function ¢(x), that
these two expressions for the derivative of £ (x)d(x) are equivalent.

Exercise 2.21: Let ¢(x) be a test function. Show that

i{P/"" %) dX}ZP/“ o) — 9@
dt oo (X—1) o (x—1)?

Show further that the right-hand side of this equation is equal to

d 1 [ YW
‘(ap (:)"P) =P/_m a—n

Exercise 2.22: Let 6(x) be the step function or Heaviside distribution

1, x>0,
0(x) = { undefined, x =0,
0, x < 0.

By forming the weak derivative of both sides of the equation

lim In(x 4 ie) = In |x| + in6(—x),

e—04

1 1
lim ( - ) =P <—) —imd(x).
e—>04 \ X + 18 X

Exercise 2.23: Use induction on n to generalize Exercise 2.21 and show that

d" > p(x)
am {P/oo (x—1) dx}

) n! n—1 1 o
P/_oom P00 = Y — = 0" (@) | dx,

m=0
00 (n)
P/ L4 dx.
oo X — 1

conclude that
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Exercise 2.24: Let the non-local functional S[f] be defined by

1= L / f {f(xi_i(x/)} -

Compute the functional derivative of S[f] and verify that it is given by

S 1d [, [* [
(Sf(x)_ndx{P _oox—x/dx}'

See Exercise 6.10 for an occurence of this functional.
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Linear ordinary differential equations

In this chapter we will discuss linear ordinary differential equations. We will not describe
tricks for solving any particular equation, but instead focus on those aspects of the general
theory that we will need later.

We will consider either homogeneous equations, Ly = 0 with

Ly = po)y™ +p1y" = + -+ pa(x)y, (3.1)
or inhomogeneous equations Ly = f . In full,
POy +p1 @y 4 4 pa )y = £ (). (3.2)

We will begin with homogeneous equations.

3.1 Existence and uniqueness of solutions

The fundamental result in the theory of differential equations is the existence and
uniqueness theorem for systems of first-order equations.

3.1.1 Flows for first-order equations

Letx!,...,x" beasystem of coordinates in R”, and let X’ (x!,x%, ... ,.x",0),i = 1,...,n,
be the components of a ¢-dependent vector field. Consider the system of first-order
differential equations

dx!

= =x'ah 2L,

dx?

= =X2G a2 x 0,

dx"

= =X"(x', X2, ..., x"0). (3.3)
For a sufficiently smooth vector field (X!, X2, ..., X") there is a unique solution x(¢)

for any initial condition x’(0) = xf). Rigorous proofs of this claim, including a statement

86
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of exactly what “sufficiently smooth” means, can be found in any standard book on
differential equations. Here, we will simply assume the result. It is of course “physically”
plausible. Regard the X’ as being the components of the velocity field in a fluid flow,
and the solution x(¢) as the trajectory of a particle carried by the flow. A particle initially
atx'(0) = xf) certainly goes somewhere, and unless something seriously pathological is
happening, that “somewhere” will be unique.

Now introduce a single function y(¢), and set

X =y,
X =j,
¥ =¥,
xn :y(}’l—l)’ (34)

and, given smooth functions pg(?), . .., pn(?), with po(¢) nowhere vanishing, look at the
particular system of equations
dx! 5

— =X,

dt
dx? 3

—_— =X,

dt

dx"— 1
dt
dx" 1

-V =—— (Plxn -I—pzx”_l + - +anl)~ (3.5)
dt Po

This system is equivalent to the single equation

dny n—1
t
o TP Q)

d
T P (0% + a0y = 0. (3.6)

Po(1) o

Thus an n-th order ordinary differential equation (ODE) can be written as a first-order
equation in n dimensions, and we can exploit the uniqueness result cited above. We
conclude, provided po never vanishes, that the differential equation Ly = 0 has a unique
solution, y(¢), for each set of initial data (y(0), 7(0),(0), ..., y"~1D(0)). Thus,

() If Ly = 0 and y(0) = 0, (0) = 0, $(0) = 0, ..., y#~D(0) = 0, we deduce that
y=0.

(i) If y1(¢) and y»(¢) obey the same equation Ly = 0, and have the same initial data,
then y1 (1) = y2(2).



88 3 Linear ordinary differential equations

3.1.2 Linear independence

In this section we will assume that py does not vanish in the region of x we are interested
in, and that all the p; remain finite and differentiable sufficiently many times for our
formula to make sense.

Consider an n-th order linear differential equation

oY ™ +pr )y + -+ pu(x)y = 0. 3.7)

The set of solutions of this equation constitutes a vector space because if y1 (x) and y; (x)
are solutions, then so is any linear combination Ay (x) + wy2(x). We will show that the
dimension of this vector space is n. To see that this is so, let y;(x) be a solution with
initial data

y1(0) =1,

y1(0) =0,

Wb —o, (3.8)
let y» (x) be a solution with

»2(0) =0,

y,(0) =1,

W =, (3.9)
and so on, up to y, (x), which has

yn(0) =0,

y,(0) =0,

y=b =1, (3.10)

We claim that the functions y;(x) are linearly independent. Suppose, to the contrary, that
there are constants Aq, ..., A, such that

0=x1y1(x) +A202(x) + - - 4+ A yn(x). (3.11)
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Then
0=21y1(0) + 2232(0) + - - - + Xy, (0) = A1 =0. (3.12)
Differentiating once and setting x = 0 gives
0 =211Y1(0) + 2205(0) + - - - 4+ Ay, (0) = 22 =0. (3.13)
We continue in this manner all the way to
0= O + 2y O + -+ AP0 =, =0. (3.14)

All the A; are zero! There is therefore no non-trivial linear relation between the y;(x),
and they are indeed linearly independent.

The solutions y;(x) also span the solution space, because the unique solution with
initial data y(0) = a1,)'(0) = ap, .. ., y(”’l)(O) = a, can be written in terms of them as

y@) = a1y1(x) + ay2(x) + - - + apyn(x). (3.15)

Our chosen set of n solutions is therefore a basis for the solution space of the differential
equation. The dimension of the solution space is therefore 7, as claimed.

3.1.3 The Wronskian

If we manage to find a different set of » solutions, how will we know whether they are
also linearly independent? The essential tool is the Wronskian:

non
Wor.omn & 7T (3.16)
y%n'—l) yén'—l) y’({,;])
Recall that the derivative of a determinant
an a2 ... Qi
ay ax» ... an

p=|. T (3.17)

anyl ap2 ... Qpp
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may be evaluated by differentiating row-by-row:

/ /
ay, dy, ... d), ail app ... ai
/ / /
dD |an axn ... ax| |y dy ... d,
— +
dx
apl 42 ... Qapn apl Aap2 ... dpn
ayl a2 ... Qain
a) ax ... ap
-+ ]
/ / ’
Ay Ay Aun

Applying this to the derivative of the Wronskian, we find

Y1 Y2 .o In
aw | Yy e
de |
yin) ygn) o y’(1n)

(3.18)

Only the term where the very last row is being differentiated survives. All the other row
derivatives give zero because they lead to a determinant with two identical rows. Now,

if the y; are all solutions of
poy™ +piy" V4 py =0,

we can substitute

1 -1 -2
= "o (p1yf" "y 4 +pnyi),

use the row-by-row linearity of determinants,

Aaiy + pbir Aap + ubio Aaiy + pbiy
C21 022 e C2n
Cnl Cn2 cee Cnn
ail  an ain bt bz bin
1 Con 1 Con
Cnl  Cn2 Cnn Cnl  Cn2 Cnn

>

(3.19)

(3.20)

(3.21)
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and find, again because most terms have two identical rows, that only the terms with p;
survive. The end result is

aw __ (’1) w. (3.22)
dx Po

Solving this first-order equation gives

W (i) = I (v x0) exp {— / (i ;g;) ds}. (3.23)

Since the exponential function itself never vanishes, W (x) either vanishes at all x, or
never. This is Liouville's theorem, and (3.23) is called Liouville s formula.

Now suppose that yy,...,y, are a set of C” functions of x, not necessarily solutions
of an ODE. Suppose further that there are constants A;, not all zero, such that

Ay1(xX) + Aoy (xX) + -+ -+ Apyun(x) =0 (3.24)
(i.e. the functions are linearly dependent). Then the set of equations

AY1(0) + Aoya(x) + - -+ Apyp(x) =0,
MY () + A5 (x) + - -+ Ay (x) = 0,

—1 —1 _
! V0 + 20y V@ 4 V@) =0 (3.25)
has a non-trivial solution A, As, ..., A,, and so the determinant of the coefficients,
Y1 )2 cee Yn
/ / /
Ng Vs . v
W = . . ) o, (3.26)
- - ' -
yin ) ygn ) . y;n )

must vanish. Thus

’ Linear dependence = W = 0.

There is a partial converse of this result: suppose that y1,. . .,y, are solutions to an n-th
order ODE and W (y;;x) = 0 at x = xg. Then there must exist a set of A;, not all zero,
such that

Y(x) = 2y1(x) + Ay2(x) + - - + Apyu(x) (3.27)
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has 0 = Y(xp) = Y'(xg) = --- = Y" D(xp). This is because the system of linear
equations determining the ; has the Wronskian as its determinant. Now the function
Y (x) is a solution of the ODE and has vanishing initial data. It is therefore identically
zero. We conclude that

ODE and W = 0 = Linear dependence.

If there is no ODE, the Wronskian may vanish without the functions being linearly
dependent. As an example, consider

() = 0, x <0,
1= exp{—1/x*}, x>0,
_ [ exp{=1/¥), x <0,

&) = { 0. Y (3.28)

We have W (y1,y2;x) = 0, but y1, > are not proportional to one another, and so not lin-
early dependent. (Note that y » are smooth functions. In particular they have derivatives
of all orders at x = 0.)

Given # linearly independent smooth functions y;, can we always find an n-th order
differential equation that has them as its solutions? The answer had better be “no”, or
there would be a contradiction between the preceding theorem and the counter-example
to its extension. If the functions do satisfy a common equation, however, we can use a
Wronskian to construct it: let

Ly = po)y™ + p1)y" ™ + - pax)y (3.29)

be the differential polynomial in y(x) that results from expanding

oy
—1
DS G
D@y)=| . ) . - (3.30)
: S
R R G

Whenever y coincides with any of the y;, the determinant will have two identical rows,
and so Ly = 0. The y; are indeed » solutions of Ly = 0. As we have noted, this
construction cannot always work. To see what can go wrong, observe that it gives

—1 -2
(A e
n— n—
V2 2 RS )
po(x) =" . , | =Whix). (3.31)
yr(ln—l) yr(ln—Z) Vi
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If this Wronskian is zero, then our construction fails to deliver an n-th order equation.
Indeed, taking y; and y» to be the functions in the example above yields an equation in
which all three coeffecients pg, p1, p2 are identically zero.

3.2 Normal form
In elementary algebra a polynomial equation
apx" + a1 x" ' +...a, =0, (3.32)

with ag # 0, is said to be in normal form if a; = 0. We can always put such an equation
in normal form by defining a new variable ¥ with x = ¥ — a1 (nag) ™.

By analogy, an n-th order linear ODE with no "~ term is also said to be in normal
form. We can put an ODE in normal form by the substitution y = wy, for a suitable
function w(x). Let

poy™ +piy "V 44 py = 0. (3.33)

Set y = wy. Using Leibniz’ rule, we expand out

(wj;)(”) — w}(”) + nw’j/(”_l) + #w”}“’_z) 4oy w(n)j;. (3.34)
The differential equation becomes, therefore,
(wpo)F™ + (prw + ponw")F" "V 4+ = 0. (3.35)
We see that if we chose w to be a solution of
prw + ponw’ =0, (3.36)
for example
w(x) = exp {—l f <p1($)> ds}, (3.37)
nJo \po(§)
then y obeys the equation
(wpo)f ™ + Py + -+ =0, (3.38)

with no second-highest derivative.

Example: For a second-order equation,

V' +p1y +py =0, (3.39)
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we set y(x) = v(x) exp{—% gpl (£)d£} and find that v obeys

v 4+ Qu =0, (3.40)
where
Q= Ly _1p (3.41)
=P2= 5P = P :

Reducing an equation to normal form gives us the best chance of solving it by inspec-
tion. For physicists, another advantage is that a second-order equation in normal form
can be thought of as a Schrédinger equation,

d*y

2 T V@ =By =0, (3.42)

and we can gain insight into the properties of the solution by bringing our physics
intuition and experience to bear.

3.3 Inhomogeneous equations

A linear inhomogeneous equation is one with a source term:
Q] (=1 4 .. = 3.43
PoY™ +p1e)y" Y + -+ pa(x)y = £ (x). (3.43)

It is called “inhomogeneous” because the source term f (x) does not contain y, and so is
different from the rest. We will devote an entire chapter to the solution of such equations
by the method of Green functions. Here, we simply review some elementary material.

3.3.1 Particular integral and complementary function

One method of dealing with inhomogeneous problems, one that is especially effective
when the equation has constant coefficients, is simply to try and guess a solution to
(3.43). If you are successful, the guessed solution ypy is then called a particular integral.
We may add any solution ycr of the homogeneous equation

oY ™ + p1 )y D 4 4 pa(r)y =0 (3.44)

to ypy and it will still be a solution of the inhomogeneous problem. We use this freedom
to satisfy the boundary or initial conditions. The added solution, ycF, is called the
complementary function.

Example: Charging capacitor. The capacitor in the circuit in Figure 3.1 is initially
uncharged. The switch is closed at # = 0.
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Figure 3.1 Capacitor circuit.

The charge on the capacitor, O, obeys

o 0
R=+==V,
a T C

where R, C, V are constants. A particular integral is given by Q(t) =

complementary-function solution of the homogeneous problem is

O(t) = Qoe™"/RC,

where Qy is constant. The solution satisfying the initial conditions is
o) =CV (1 - e—’/RC) :

3.3.2 Variation of parameters
We now follow Lagrange, and solve
o™ + 1y 4 p )y = £ ()

by writing

y=uvyr+uvy2+--+ Uy

95

(3.45)

CV. The

(3.46)

(3.47)

(3.48)

(3.49)

where the y; are the n linearly independent solutions of the homogeneous equation and
the v; are functions of x that we have to determine. This method is called variation of

parameters.
Now, differentiating gives

Y =vy +oh 4o, {on H o4+ vl

(3.50)

We will choose the v’s so as to make the terms in the braces vanish. Differentiate again:

V' = vyl F o+ oyl U Foph )

(3.51)
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Again, we will choose the v’s to make the terms in the braces vanish. We proceed in this
way until the very last step, at which we demand

—1 n—1 —
{0 e = o). (3.52)
If you substitute the resulting y into the differential equation, you will see that the
equation is satisfied.
We have imposed the following conditions on v}:

Vv + v o+ =0,
vy v+ oy, =0,

o' oy T = 70 /po ). (3:53)
This system of linear equations will have a solution for v{,...,v), provided the
Wronskian of the y; is non-zero. This, however, is guaranteed by the assumed linear
independence of the y;. Having found the v’l ,..., V), weobtainthe vy, . . ., v, themselves
by a single integration.

Example: First-order linear equation. A simple and useful application of this method
solves

Y Py =/, (3.549)
The solution to the homogeneous equation is
y = e Ja PO, (3.55)
We therefore set
y=v(x)e Ja POB, (3.56)
and find that
v (x)e™ Ja PO — £y, (3.57)
We integrate once to find
o) = /bxf@)eff PO by, (3.5)
and so
v = [ [ o) e (3.59

We select b to satisfy the initial condition.
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3.4 Singular points

So far in this chapter, we have been assuming, either explicitly or tacitly, that our
coefficients p;(x) are smooth, and that po(x) never vanishes. If pg(x) does become zero
(or, more precisely, if one or more of the p; /pg becomes singular) then dramatic things
happen, and the location of the zero of pg is called a singular point of the differential
equation. All other points are called ordinary points.

In physics application we often find singular points at the ends of the interval in
which we wish to solve our differential equation. For example, the origin » = 0 is often
a singular point when r is the radial coordinate in plane or spherical polar coordinates.
The existence and uniqueness theorems that we have relied upon throughout this chapter
may fail at singular endpoints. Consider, for example, the equation

' +y =0, (3.60)

which is singular at x = 0. The two linearly independent solutions for x > 0 are
y1(x) = 1 and y»(x) = Inx. The general solution is therefore 4 + B Inx, but no choice
of 4 and B can satisfy the initial conditions y(0) = a, )’(0) = b when b is non-zero.
Because of these complications, we will delay a systematic study of singular endpoints
until Chapter 8.

3.4.1 Regular singular points

If, in the differential equation

poy” +p1y +py =0, (3.61)

we have a point x = a such that
po(x) = (x —a@)’P(x), pi(x¥) = (x —@)QX), pa(x) = RX), (3.62)
where P and Q and R are analytic' and P and O non-zero in a neighbourhood of @ then

the point x = a is called a regular singular point of the equation. All other singular
points are said to be irregular. Close to a regular singular point a the equation looks like

P@)(x — >y + 0@ (x — @)y + R(@y = 0. (3.63)
The solutions of this reduced equation are
yi=x—-aM, y=@x-a’, (3.64)

1 A function is analytic at a point if it has a power-series expansion that converges to the function in a
neighbourhood of the point.
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where A1 are the roots of the indicial equation
AL —1DP(a) +10(a) + R(a) = 0. (3.65)
The solutions of the full equation are then
y=G-aMi@, y=6-aRhw, (3.66)

where f] » have power series solutions convergent in a neighbourhood of a. An exception
occurs when A1 and X, coincide or differ by an integer, in which case the second solution
is of the form

32 = (=" (In(x = i @) +), (3.67)

where f] is the same power series that occurs in the first solution, and f; is a new power
series. You will probably have seen these statements proved by the tedious procedure of
setting

fi) = (x — ) (bo +b1(x —a) + by(x —a)* + -+, (3.68)

and obtaining a recurrence relation determining the ;. Far more insight is obtained,
however, by extending the equation and its solution to the complex plane, where the
structure of the solution is related to its monodromy properties. If you are familiar with
complex analytic methods, you might like to look ahead to the discussion of monodromy
in Section 19.2.

3.5 Further exercises and problems

Exercise 3.1: Reduction of order. Sometimes additional information about the solutions
of a differential equation enables us to reduce the order of the equation, and so solve it.

(a) Suppose that we know that y; = u(x) is one solution to the equation
V' +Vx)y=0.

By trying y = u(x)v(x) show that

X dé
Y2 = u(x)/ uz_(é)

is also a solution of the differential equation. Is this new solution ever merely a
constant multiple of the old solution, or must it be linearly independent? (Hint:
Evaluate the Wronskian W (y2,y1).)
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(b) Suppose that we are told that the product, y1y», of the two solutions to the equation
Y+ p1y’ + pay = 0 is a constant. Show that this requires 2p1p; + p5 = 0.
(c) By using ideas from part (b) or otherwise, find the general solution of the equation

G+ DxB +x) — x+ Dy =0.

Exercise 3.2: Show that the general solution of the differential equation

is
y(x) = Ae* + Bxe* — %ex In(1 + x2) + xe* tan~'x.

Exercise 3.3: Use the method of variation of parameters to show that if y1 (x) and y> (x)
are linearly independent solutions to the equation

d%y dy

z7 'l =0

pox) 5+ -+ pa(x)y =0,

then the general solution of the equation

d’y

Po(x) +P1(x)— +p2()y =f(x)
is
2(8)f (§) 1(8) (S)

P@fFE £+ 1200) / @S &)

y(x) = Ay1(x) + Bya(x) yl(x)_/ PoW (1,)2) poW(yl,yz)

Problem 3.4: One-dimensional scattering theory. Consider the one-dimensional
Schrodinger equation

d*y

—— 5 VY = By,

where V (x) is zero except in a finite interval [—a, a] near the origin (Figure 3.2).

: Vi)
L | ‘ | A

, | ,
T T X
—a. ‘ 'a

Figure 3.2 A typical potential ' for Problem 3.4.
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Let L denote the left asymptotic region, —0co < x < —a, and similarly let R denote
a < x < oo. For E = k? there will be scattering solutions of the form

ek 4 rL(k)e’”‘x, xel,
tr(k)e™, X E€R,

Y (x) = {

which for £ > 0 describe waves incident on the potential V' (x) from the left. There will
be solutions with

tr(k)e™, xel,
et 4 rR(k)e’ik", X €R,

Y (x) = {

which for £ < 0 describe waves incident from the right. The wavefunctions in [—a, a]
will naturally be more complicated. Observe that [y (x)]* is also a solution of the
Schrdédinger equation.

By using properties of the Wronskian, show that:

() IrLRl +lopl® = 1.

(b) 1L.(k) = tr(—k).

(c) Deduce from parts (a) and (b) that |77 (k)| = |[rr(—k)|.

(d) Take the specific example of V' (x) = A§(x — b) with |b| < a. Compute the transmis-
sion and reflection coefficients and hence show that »; (k) and rg(—k) may differ in
phase.

Exercise 3.5: Suppose 1 (x) obeys a Schrodinger equation

L& +Vx) —El)¢y =0
2 dx? * -
(a) Make a smooth and invertible change of independent variable by setting x = x(z)
and find the second-order differential equation in z obeyed by ¥ (z) = ¥ (x(2)).
Reduce this equation to normal form, and show that the resulting equation is

1 d2 /N2 V E 1 7 = 0
(—E@Jr(x) [V (x(2) — ]‘Z{"’Z}) V(2 =0,

where the primes denote differentiation with respect to z, and

def X" 3 /x" 2
2zt = ——-5=
X 2 \x

is called the Schwarzian derivative of x with respect to z. Schwarzian derivatives
play an important role in conformal field theory and string theory.

(b) Make a sequence of changes of variable x — z — w, and so establish Cayleys
identity

dz \?
(-) {x,z} + {z,w} = {x,w}.
dw

(Hint: if your proof takes more than one line, you are missing the point.)
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Linear differential operators

In this chapter we will begin to take a more sophisticated approach to differential
equations. We will define, with some care, the notion of a linear differential opera-
tor, and explore the analogy between such operators and matrices. In particular, we will
investigate what is required for a linear differential operator to have a complete set of
eigenfunctions.

4.1 Formal vs. concrete operators

We will call the object
d" n—1
L=P0(X)W +p1(x)dx”—*1+“.+pn(x)’ (4.1)
which we also write as
PO} +p10) 4+ pa(x), (4.2)

a formal linear differential operator. The word “formal” refers to the fact that we are
not yet worrying about what sort of functions the operator is applied to.

4.1.1 The algebra of formal operators

Even though they are not acting on anything in particular, we can still form products of
operators. For example if v and w are smooth functions of x we can define the operators
0y + v(x) and 9, + w(x) and find

(B + ) (O + w) = 32+ w' + (w + v)dy + vw, (4.3)
or
(B +w) By +v) = 32+ + (w + v)dy + vw. (4.4)

We see from this example that the operator algebra is not usually commutative.
The algebra of formal operators has some deep applications. Consider, for example,
the operators

L=—-3>+q) (4.5)

101
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and
P =83+ a(x)d, + dea(x). (4.6)

In the last expression, the combination dya(x) means “first multiply by a(x), and then
differentiate the result”, so we could also write

a=ad, +d. 4.7
We can now form the commutator [P, L] = PL — LP. After a little effort, we find
[P,L] = (3¢ +4d)0> + 3¢" + 4a")d; + ¢ + 2aq' +d". 4.8)

If we choose a = —%q, the commutator becomes a pure multiplication operator, with
no differential part:

1 3
[P.L]= 74" = Saq" (4.9)
The equation
dL
o= [P, L], (4.10)
or, equivalently,
. l " 3 /
=-q" - = 4.11
q=49" — 399 (4.11)
has a formal solution
L(t) = P L(0)e™ ™, (4.12)

showing that the time evolution of L is given by a similarity transformation, which
(again formally) does not change its eigenvalues. The partial differential equation (4.11)
is the famous Korteweg—de Vries (KdV) equation, which has “soliton” solutions whose
existence is intimately connected with the fact that it can be written as (4.10). The
operators P and L are called a Lax pair, after Peter Lax who uncovered much of the
structure.

4.1.2 Concrete operators

We want to explore the analogies between linear differential operators and matrices acting
on a finite-dimensional vector space. Because the theory of matrix operators makes much
use of inner products and orthogonality, the analogy is closest if we work with a function
space equipped with these same notions. We therefore let our differential operators act
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on L?[a, b], the Hilbert space of square-integrable functions on [a, b]. Now a differential
operator cannot act on every function in the Hilbert space because not all of them are
differentiable. Even though we will relax our notion of differentiability and permit weak
derivatives, we must at least demand that the domain D, the subset of functions on which
we allow the operator to act, contains only functions that are sufficiently differentiable
that the function resulting from applying the operator remains an element of L[, b]. We
will usually restrict the set of functions even further, by imposing boundary conditions
at the endpoints of the interval. A linear differential operator is now defined as a formal
linear differential operator, together with a specification of its domain D.

The boundary conditions that we will impose will always be linear and homogeneous.
This is so that the domain of definition is a vector space. In other words, if y; and y, obey
the boundary conditions then so should Ay; 4+ wy;. Thus, for a second-order operator

L = pod; +p1ds +p2 (4.13)
on the interval [a, b], we might impose

Bilyl = any(a) + a2y’ (@ + B1iy(b) + B2y (b) = 0,
Ba[y] = az1y(a) + a2y’ (@) + B21y(b) + P22y (b) = 0, (4.14)

but we will not, in defining the differential operator, impose inhomogeneous conditions,
such as

Bilyl = any(a) + any'(a) + Briy(d) + B2y (b) = 4,
B[yl = az1y(a) + a2y’ (a) + B1y(b) + Bazy' (b) = B, (4.15)

with non-zero 4, B —even though we will solve differential equations with such boundary
conditions.

Also, for an n-th order operator, we will not constrain derivatives of order higher
than n — 1. This is reasonable:' if we seek solutions of Ly = f with L a second-order
operator, for example, then the values of y” at the endpoints are already determined
in terms of ' and y by the differential equation. We cannot choose to impose some
other value. By differentiating the equation enough times, we can similarly determine
all higher endpoint derivatives in terms of y and y’. These two derivatives, therefore, are
all we can fix by fiat.

The boundary and differentiability conditions that we impose make D a subset of the
entire Hilbert space. This subset will always be dense: any element of the Hilbert space
can be obtained as an L? limit of functions in D. In particular, there will never be a
function in L?[a, b] that is orthogonal to all functions in D.

! There is a deeper reason which we will explain in Section 9.7.2.
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4.2 The adjoint operator

One of the important properties of matrices, established in Appendix A, is that a matrix
that is self-adjoint, or hermitian, may be diagonalized. In other words, the matrix has
sufficiently many eigenvectors for them to form a basis for the space on which it acts. A
similar property holds for self-adjoint differential operators — but we must be careful in
our definition of self-adjointness.

Before reading this section, we suggest you review the material on adjoint operators
on finite-dimensional spaces that appears in Appendix A.

4.2.1 The formal adjoint

Given a formal differential operator

n n—1

d
L=P0(x)ﬁ +p1(x)dx,,—_1+"'+]?n(x), (4.16)

and a weight function w(x), real and positive on the interval (a, b), we can find another
such operator LY, such that, for any sufficiently differentiable u(x) and v(x), we have

* ToN* d
w (u Lv —v(L"u) ) = aQ[u, v], 4.17)

for some function O, which depends bilinearly on # and v and their first » — 1 derivatives.
We call LT the formal adjoint of L with respect to the weight w. The equation (4.17)
is called Lagrange s identity. The reason for the name “adjoint” is that if we define an
inner product

b
(1, V), :/ wu™v dx, (4.18)
a

and if the functions u and v have boundary conditions that make O[u, v]|2 = 0, then
(4, L)y, = (LT, v)y, (4.19)

which is the defining property of the adjoint operator on a vector space. The word
“formal” means, as before, that we are not yet specifying the domain of the operator.

The method for finding the formal adjoint is straightforward: integrate by parts enough
times to get all the derivatives off v and on to u.

Example: 1f

L=—i— (4.20)
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then let us find the adjoint LT with respect to the weight w = 1. We start from

d
u (Lv) =u ( ldxv>’
and use the integration-by-parts technique once to get the derivative off v and onto u*:
d d d
u* <—iav> = <lau*> v — ia(u*v)
L) 'd( *v)
=—-i—u) v—i—@W"
dx dx
4 2
=v({lL"w)* + —QOlu,v]. (4.21)
dx

We have ended up with the Lagrange identity

«f .4 d N\ 4, .,
u (—lav> —v (_la7xu> = CE(—m v), (4.22)
and found that
i d -k
L'=—i—, OQOlu,v] =—iu"v. (4.23)
dx

The operator —id /dx (which you should recognize as the “momentum” operator from
quantum mechanics) obeys L = LY, and is therefore, formally self-adjoint, or hermitian.

Example: Let
d2

d
L=pos 4 p1 424
po 5 tpi- P, (4.24)

with the p; all real. Again let us find the adjoint LT with respect to the inner product with
w = 1. Now, proceeding as above, but integrating by parts twice, we find

u* [pov” + p1v’ + pav] — v [(pow)” — (p1u)’ + pau]”

d , N
= [po™" — vy + (p1 — pp)u*v]. (4.25)

From this we read off that

Lt = & -
_dX2p0 dxpl p2

d2 / d /" /
= P03 + Qph = p1) -+ (Pf — Pi +p2). (4.26)
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What conditions do we need to impose on py,1» for this L to be formally self-adjoint
with respect to the inner product with w = 1? For L = LT we need
Po =Ppo
Wh—pr=p1 = py=p
pPo—Pitr2=p2 = pi=p1 (4.27)

We therefore require that p; = p{, and so

d d

L=2(pZ , 428
T (Podx> +p (4.28)

which we recognize as a Sturm—Liouville operator.
Example: Reduction to Sturm—Liouville form. Another way to make the operator
L= @ + d + (4.29)
=Po ) pP1 e P2 .

self-adjoint is by a suitable choice of weight function w. Suppose that py is positive on
the interval (a, b), and that pg, p1, p> are all real. Then we may define

w= L exp {/x (lﬂ> dx’} (4.30)
Po a Po

and observe that it is positive on (a, b), and that

1
Ly = E(wpoy/)’ + pay. (4.31)
Now
(u, Lv)yy, — (Lu, v),, = [wpo(u*v' — u*/v)]Z, (4.32)
where
b
(U, )y, = / wu™v dx. (4.33)
a

Thus, provided pg does not vanish, there is always some inner product with respect to
which a real second-order differential operator is formally self-adjoint.
Note that with

1
Ly = E(wpoy/)’ + p2y, (4.34)
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the eigenvalue equation
Ly =)y (4.35)
can be written
(wpoy')' + prwy = Awy. (4.36)

When you come across a differential equation where, in the term containing the eigen-
value A, the eigenfunction is being multiplied by some other function, you should
immediately suspect that the operator will turn out to be self-adjoint with respect to
the inner product having this other function as its weight.

[llustration (Bargmann—Fock space): This is a more exotic example of a formal adjoint.
You may have met it in quantum mechanics. Consider the space of polynomials P(z) in
the complex variable z = x + iy. Define an inner product by

1 X
7.0 =~ / Pz [PETF 00),

where d?z = dx dy and the integration is over the entire xy-plane. With this inner product,
we have

(z",2™) = n'8um.

If we define

then

1 X d
(PaQ) = - / Pz PO Loe)
T dz

. f Pz (ie—f‘z [P(z)]*) 0)
dz

T

- % / d’ze 72 [P(2)]* O(z)

- / d’ze™ 77 [2P(2)]* O(z)
T
=@'p,0)

where a = z, i.e. the operation of multiplication by z. In this case, the adjoint is not
even a differential operator.”

2 In deriving this result we have used the Wirtinger calculus where z and z* are treated as independent variables
so that
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Exercise 4.1: Consider the differential operator L = id/dx. Find the formal adjoint of
L with respect to the inner product (u,v),, = [wu*vdx, and find the corresponding
surface term QO[u, v].

Exercise 4.2: Sturm—Liouville forms. By constructing appropriate weight functions w(x)
convert the following common operators into Sturm-Liouville form:

@) L=(1-x»d?*/dx® +[(x —v) — (u + v + 2)x]d/dx;

(b) L= —x%)d?/dx? — 3xd/dx;

(¢) L=d?/dx? —2x(1 —=x®)~Vd/dx — m? (1 —x2)~1.
4.2.2 A simple eigenvalue problem

A finite hermitian matrix has a complete set of orthonormal eigenvectors. Does the same
property hold for a hermitian differential operator?
Consider the differential operator

T=-032, D(T)={.Ty e L*[0,1] : y(0) = y(1) = 0}. (437)

With the inner product

1
V1y2) = fo Vv d (4.38)
we have

W1, Bn) — (B, p2) = v — sl = 0. (4.39)

The integrated-out part is zero because both y; and y, satisfy the boundary conditions.
We see that

01, D) = (T, »2) (4.40)

and so T is hermitian or symmetric.
The eigenfunctions and eigenvalues of T are

yn(x)=smn7rx} n=1.2.... (4.41)

An = 2

and observed that, because [P(z)]*is a function of z* only,
d
— [P@T* =0.
e [P(2)]

If you are uneasy at regarding z, z*, as independent, you should confirm these formulae by expressing z and
z* in terms of x and y, and using

d 179 ) d 1/9 4 9
—=———i— — == +i—).
dz 2\ox 9y)’ dz*  2\ox 9y
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We see that:

(i) the eigenvalues are real;
(i1) the eigenfunctions for different X, are orthogonal,

1
2/ sinnwxsinmurxdx = 6y, n=12,...; (4.42)
0

(iii) the normalized eigenfunctions ¢, (x) = /2 sin nmx are complete: any function in
L2[0, 1] has an (L?) convergent expansion as

o0
y(x) = Z ayN/2 sin nmx (4.43)
n=1
where
1
anp = / y(x)«/z sin nwx dx. (4.44)
0

This all looks very good — exactly the properties we expect for finite hermitian matrices.
Can we carry over all the results of finite matrix theory to these hermitian operators?
The answer sadly is no! Here is a counter-example:

Let

T =—id,, D(T)=Tyel0,1] : y(0) = y(1) = 0}. (4.45)

Again

1
o1, ) — (i1, n2) = /o dx {y} (—idey2) — (—idey1)*y2}
= —i[yHald = 0. (4.46)

Once more, the integrated out part vanishes due to the boundary conditions satisfied by
y1 and y;, so T is nicely hermitian. Unfortunately, 7 with these boundary conditions has
no eigenfunctions at all, never mind a complete set! Any function satisfying 7y = Ay
will be proportional to ¢/**, but an exponential function is never zero, and cannot satisfy
the boundary conditions.

It seems clear that the boundary conditions are the problem. We need a better definition
of “adjoint” than the formal one — one that pays more attention to boundary conditions.
We will then be forced to distinguish between mere hermiticity, or symmetry, and true
self-adjointness.

Exercise 4.3: Another disconcerting example. Let p = —id,. Show that the following
operator on the infinite real line is formally self-adjoint:

H =x’p +px°. (4.47)
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Now let

Ui (x) = x| exp {—i} : (4.48)

4x2

where A is real and positive. Show that
Hy = —idy, (4.49)

so V¥, is an eigenfunction with a purely imaginary eigenvalue. Examine the proof that
hermitian operators have real eigenvalues, and identify at which point it fails. (Hint: A
is formally self-adjoint because it is of the form T + T'T. Now v, is square-integrable,
and so an element of L2(R). Is Ty, an element of L?(R)?)

4.2.3 Adjoint boundary conditions

The usual definition of the adjoint operator in linear algebra is as follows: given the
operator 7 : V' — V and an inner product ( , ), we look at (1, Tv), and ask if there is a
w such that (w,v) = (u, Tv) for all v. If there is, then u is in the domain of 77, and we
set TTu = w.

For finite-dimensional vector spaces V' there always is such a w, and so the domain
of T' is the entire space. In an infinite-dimensional Hilbert space, however, not all
(u, Tv) can be written as (w, v) with w a finite-length element of Z2. In particular delta
functions are not allowed — but these are exactly what we would need if we were to
express the boundary values appearing in the integrated out part, Q(u, v), as an inner-
product integral. We must therefore ensure that « is such that Q(u, v) vanishes, but then
accept any u with this property into the domain of 7. What this means in practice is that
we look at the integrated out term Q(u, v) and see what is required of u to make Q(u, v)
zero for any v satisfying the boundary conditions appearing in D(T’). These conditions
on u are the adjoint boundary conditions, and define the domain of T'F.

Example: Consider

T=—idy, D(T)={,Tye L1210, 1] :y(1) =0} (4.50)
Now,
1 1
/ dx u* (—idv) = —i[u* (Dv(l) — u*(0)v(0)] +/ dx(—idu)*v
0 0
= —i[u* (Dv(1) = u*(0)v(0)] + (w,v), (4.51)
where w = —id,u. Since v(x) is in the domain of 7', we have v(1) = 0, and so the first

term in the integrated out bit vanishes whatever value we take for u(1). On the other hand,
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v(0) could be anything, so to be sure that the second term vanishes we must demand that
u(0) = 0. This, then, is the adjoint boundary condition. It defines the domain of 7'

TH = —id,, DT ={y, Ty € L*[0,1] : y(0) = 0}. (4.52)

For our problematic operator

T =—idy, D) ={TeLl0,1] :3(0) = y(1) =0}, (4.53)
we have
1 1
f dx u* (—idev) = —i[u*v](l) +/ dx(—idzu)*v
0 0
=0+ (w,v), (4.54)
where again w = —idyu. This time no boundary conditions need be imposed on u to

make the integrated out part vanish. Thus
Tt =—ia,, DT ={, Iy e L*[0,1]}. (4.55)
Although any of these operators “7T" = —id,” is formally self-adjoint we have,
D(T) # D(TY), (4.56)

so T and T are not the same operator and none of them is truly self-adjoint.

Exercise 4.4: Consider the differential operator M = d*/dx*. Find the formal adjoint
of M with respect to the inner product (u,v) = [ w*vdx, and find the corresponding
surface term Q[u, v]. Find the adjoint boundary conditions defining the domain of M
for the case

DM) = {y,y® € L2[0,1] : y(0) =" (0) = y(1) = y"(1) = 0}.

4.2.4 Self-adjoint boundary conditions

A formally self-adjoint operator T is truly self-adjoint only if the domains of 71 and T
coincide. From now on, the unqualified phrase “self-adjoint” will always mean “truly
self-adjoint”.

Self-adjointness is usually desirable in physics problems. It is therefore useful to
investigate what boundary conditions lead to self-adjoint operators. For example, what
are the most general boundary conditions we can impose on 7' = —id, if we require the
resultant operator to be self-adjoint? Now,

1 1
/ dx 1t (—id,v) —/ dx(—ideu)*v = —i(u*(l)v(l) - u*(O)v(O)). (4.57)
0 0
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Demanding that the right-hand side be zero gives us, after division by u*(0)v(1),

w (1) v(0)
w(0)  o(l)’

(4.58)

We require this to be true for any u and v obeying the same boundary conditions. Since
u and v are unrelated, both sides must equal a constant «, and furthermore this constant
must obey k* = k! in order that (1) /u(0) be equal to v(1)/v(0). Thus, the boundary
condition is

uh v _

= =e (4.59)

u(0)  v(0)

for some real angle 8. The domain is therefore
D(T) = {y, Ty € L*[0,1] : y(1) = “y(0)}. (4.60)

These are twisted periodic boundary conditions.
With these generalized periodic boundary conditions, everything we expect of a self-
adjoint operator actually works:

(i) The functions u, = /@"T0% withn =...,—-2,—1,0,1,2... are eigenfunctions

of T with eigenvalues k, = 2mn + 6.
(i) The eigenvalues are real.
(iii) The eigenfunctions form a complete orthonormal set.

Because self-adjoint operators possess a complete set of mutually orthogonal eigenfunc-
tions, they are compatible with the interpretational postulates of quantum mechanics,
where the square of the inner product of a state vector with an eigenstate gives the
probability of measuring the associated eigenvalue. In quantum mechanics, self-adjoint
operators are therefore called observables.

Example: The Sturm—Liouville equation. With

L= f g, xerabl (.61)
dx dx
we have
(u, Lv) — (Lu,v) = [p(u*v' —u" v)]5. (4.62)

Let us seek to impose boundary conditions separately at the two ends. Thus, atx = a
we want

W —u )|, =0, (4.63)
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or

' (a) V(@)
wa)  wva)’

(4.64)

and similarly at b. If we want the boundary conditions imposed on v (which define the
domain of L) to coincide with those for u (which define the domain of LT) then we
must have

v'(@)  u(a)

v(a) u(a) -

an 6, (4.65)

for some real angle 6,, and similar boundary conditions with a 6 at . We can also write
these boundary conditions as

agy(a) + Bay'(a) =0,
apy(b) + Bpy'(b) = 0. (4.66)

Deficiency indices and self-adjoint extensions

There is a general theory of self-adjoint boundary conditions, due to Hermann Weyl and
John von Neumann. We will not describe this theory in any detail, but simply give their
recipe for counting the number of parameters in the most general self-adjoint boundary
condition: to find this number we define an initial domain Dy(L) for the operator L
by imposing the strictest possible boundary conditions. This we do by setting to zero
the boundary values of all the y with n less than the order of the equation. Next
count the number of square-integrable eigenfunctions of the resulting adjoint operator
TT corresponding to eigenvalue =i. The numbers, ;. and n_, of these eigenfunctions
are called the deficiency indices. If they are not equal then there is no possible way
to make the operator self-adjoint. If they are equal, ny = n_ = n, then there is an
n? real-parameter family of self-adjoint extensions D(L) D Do(L) of the initial tightly
restricted domain.

Example: The sad case of the “radial momentum operator”. We wish to define the
operator P, = —id, on the half-line 0 < r < co. We start with the restrictive domain
Py = —idy, Do(T) = {p,Pry € L*[0,00] : y(0) = O}. (4.67)

We then have

Pf =—id,, D(P])={y,Ply e L*[0, 001} (4.68)

7

with no boundary conditions. The equation Pj y = iy has a normalizable solution y =

e~ ". The equation PI y = —iy has no normalizable solution. The deficiency indices are
therefore ny = 1, n— = 0, and this operator cannot be rescued and made self-adjoint.
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Example: The Schrédinger operator. We now consider —83 on the half-line. Set
T= —Bf, Do(T) = {y, Ty € L*[0,00] : y(0) = y'(0) = 0}. (4.69)
We then have
Th=-82, DT ={y, Tty e L*0,00]}. (4.70)

Again T comes with no boundary conditions. The eigenvalue equation 7Ty = iy has
one normalizable solution y(x) = e~ D¥/ ‘/5, and the equation 7Ty = —iy also has one
normalizable solution y(x) = e~ (+D¥/ V2, The deficiency indices are therefore ny =
n— = 1. The Weyl-von Neumann theory now says that, by relaxing the restrictive
conditions y(0) = y’(0) = 0, we can extend the domain of definition of the operator
to find a one-parameter family of self-adjoint boundary conditions. These will be the
conditions 3’(0)/y(0) = tan & that we found above.

If we consider the operator —8)% on the finite interval [a, b], then both solutions of
(T £ i)y = 0 are normalizable, and the deficiency indices will be ny = n_ = 2. There
should therefore be 2> = 4 real parameters in the self-adjoint boundary conditions. This
is a larger class than those we found in (4.66), because it includes generalized boundary
conditions of the form

Bilyl = a1y(a) + a12)y' (@) + Briy(b) + B2y (b) =0,
B[yl = az1y(a) + a2y’ (@) + Bo1y(b) + P22y’ (b) = 0.

Physics application: Semiconductor heterojunction

We now demonstrate why we have spent so much time on identifying self-adjoint
boundary conditions: the technique is important in practical physics problems.

A heterojunction is an atomically smooth interface between two related semiconduc-
tors, such as GaAs and Al,Ga|_,As, which typically possess different band masses. We
wish to describe the conduction electrons by an effective Schrodinger equation contain-
ing these band masses (see Figure 4.1). What matching condition should we impose on
the wavefunction v (x) at the interface between the two materials? A first guess is that

v v
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Figure 4.1 Heterojunction and wavefunctions.
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the wavefunction must be continuous, but this is not correct because the “wavefunction”
in an effective-mass band-theory Hamiltonian is not the actual wavefunction (which is
continuous) but instead a slowly varying envelope function multiplying a Bloch wave-
function. The Bloch function is rapidly varying, fluctuating strongly on the scale of a
single atom. Because the Bloch form of the solution is no longer valid at a disconti-
nuity, the envelope function is not even defined in the neighbourhood of the interface,
and certainly has no reason to be continuous. There must still be some linear relation
between the 1’s in the two materials, but finding it will involve a detailed calculation
on the atomic scale. In the absence of these calculations, we must use general principles
to constrain the form of the relation. What are these principles?

We know that, were we to do the atomic-scale calculation, the resulting connection
between the right and left wavefunctions would:

e be linear;
e involve no more than v (x) and its first derivative ¥/ (x);
o make the Hamiltonian into a self-adjoint operator.

We want to find the most general connection formula compatible with these principles.
The first two are easy to satisfy. We therefore investigate what matching conditions are
compatible with self-adjointness.

Suppose that the band masses are my, and mg, so that

1 d°
= _Eﬁ + Vi), x<0,
1 d?
= —%E + VR(X), x > 0. (471)

Integrating by parts, and keeping the terms at the interface, gives us
1 * /! 1%
Wi H) = (o) = 5 {Yis, = 9o

1 / 1%
" 2mp {WI*R‘ﬂZR -V 1RW2R} . (4.72)

Here, g refers to the boundary values of 1 immediately to the left or right of the
junction, respectively. Now we impose general linear homogeneous boundary conditions

on !
Yo\ _ (a b\ (¥2r
()= 2 (- @7

This relation involves four complex, and therefore eight real, parameters. Demand-
ing that

(Y1, Hyra) = (HYr1,¥2), (4.74)
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we find

{Virvar — ¥ 1rV2zr}
(4.75)

1 / » / |
2my {UiL(cVar + dyig) — ¥ (avar + bg) | = T

and this must hold for arbitrary ¥2g, Y3z, so, picking off the coefficients of these
expressions and complex conjugating, we find

E X
P = (=) (9 ) (). 4.76)
Vir mg - a VL
Because we wish the domain of H to coincide with that of H, these must be the same
conditions that we imposed on v,. Thus we must have

-1
a b mg d* —b*
(o) -G ) a7
a b\ 1 d —b
<c d> " ad — be (—c a)’ (4.78)

a b g ML A B
(C d)—e /m—R<C D)’ (4.79)

where ¢, A, B, C, D are real, and 4D — BC = 1. Demanding self-adjointness has
therefore cut the original eight real parameters down to four. These can be determined
either by experiment or by performing the microscopic calculation.” Note that 4 = 22,
a perfect square, as required by the Weyl-Von Neumann theory.

Since

we see that this requires

Exercise 4.5: Consider the Schrodinger operator H= —8)? on the interval [0, 1]. Show
that the most general self-adjoint boundary condition applicable to H can be written as

O] _ ig|a bffed)

¢'(0) c d]le'(D]’
where ¢, a, b, ¢, d are real and ad — bc = 1. Consider H as the quantum Hamiltonian of
a particle on a ring constructed by attaching x = 0 to x = 1. Show that the self-adjoint
boundary condition found above leads to unitary scattering at the point of join. Does the

most general unitary point-scattering matrix correspond to the most general self-adjoint
boundary condition?

3 For example, see T. Ando, S. Mori, Surf. Sci., 113 (1982) 124.
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4.3 Completeness of eigenfunctions

Now that we have a clear understanding of what it means to be self-adjoint, we can
reiterate the basic claim: an operator T that is self-adjoint with respect to an L[, b] inner
product possesses a complete set of mutually orthogonal eigenfunctions. The proof that
the eigenfunctions are orthogonal is identical to that for finite matrices. We will sketch
a proof of the completeness of the eigenfunctions of the Sturm—Liouville operator in the
next section.

The set of eigenvalues is, with some mathematical cavils, called the spectrum of T.
It is usually denoted by o (7). An eigenvalue is said to belong to the point spectrum
when its associated eigenfunction is normalizable, i.e. is a bona fide member of L*[a, b]
having a finite length. Usually (but not always) the eigenvalues of the point spectrum
form a discrete set, and so the point spectrum is also known as the discrete spectrum.
When the operator acts on functions on an infinite interval, the eigenfunctions may fail
to be normalizable. The associated eigenvalues are then said to belong to the continuous
spectrum. Sometimes, e.g. the hydrogen atom, the spectrum is partly discrete and partly
continuous. There is also something called the residual spectrum, but this does not occur
for self-adjoint operators.

4.3.1 Discrete spectrum

The simplest problems have a purely discrete spectrum. We have eigenfunctions ¢, (x)
such that

Tn(x) = Antpn(x), (4.80)
where 7 is an integer. After multiplication by suitable constants, the ¢, are orthonormal,
/ ¢:(x)¢m(x) dx = 8um, (481)

and complete. We can express the completeness condition as the statement that

Y e () = 8(x —x). (4.82)

If we take this representation of the delta function and multiply it by /' (x’) and integrate
over x’, we find

100 = Y ta) [ 6160 a (4.83)

So,

f&) =" anpn(x) (4.84)
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with
an = f o ()f () dx'. (4.85)

This means that if we can expand a delta function in terms of the ¢, (x), we can expand
any (square integrable) function.

Warning: the convergence of the series ), ¢, (x)¢;; (x') to § (x —x’) is neither pointwise
nor in the L? sense. The sum tends to a limit only in the sense of a distribution — meaning
that we must multiply the partial sums by a smooth test function and integrate over x
before we have something that actually converges in any meaningful manner. As an
illustration consider our favourite orthonormal set: ¢, (x) = +/2 sin(n7rx) on the interval
[0, 1]. A plot of the first 70 terms in the sum

Z V2 sin(nrx)vV/2 sin(nrx’) = 8(x — x')

n=1

is shown in Figure 4.2. The “wiggles” on both sides of the spike at x = x’ do not
decrease in amplitude as the number of terms grows. They do, however, become of
higher and higher frequency. When multiplied by a smooth function and integrated, the
contributions from adjacent positive and negative wiggle regions tend to cancel, and it
is only after this integration that the sum tends to zero away from the spike at x = x’.

Rayleigh—Ritz and completeness

For the Schrodinger eigenvalue problem

Ly=—y"+qx)y =21y, xE¢€lab], (4.86)
] A In I/\{\./\/ﬁ/\l\/\l .{\I[\{‘i/\ﬁ\/\/\ |PNA A N A | A
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Figure 4.2 The sum ZZOII 2 sin(nmx) sin(nmx’) for x¥' = 0.4. Take note of the very disparate
scales on the horizontal and vertical axes.
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the large eigenvalues are A, ~ n’72/(a — b)*. This is because the term gy eventually
becomes negligible compared to Ay, and we can then solve the equation with sines and
cosines. We see that there is no upper limit to the magnitude of the eigenvalues. The
eigenvalues of the Sturm—Liouville problem

Ly=—p) +qv=»%y, xe€lab], (4.87)

are similarly unbounded. We will use this unboundedness of the spectrum to make an
estimate of the rate of convergence of the eigenfunction expansion for functions in the
domain of L, and extend this result to prove that the eigenfunctions form a complete set.

We know from Chapter 1 that the Sturm-Liouville eigenvalues are the stationary
values of (y, Ly) when the function y is constrained to have unit length, (y,y) = 1. The
lowest eigenvalue, X, is therefore given by

ho= inf 2D (4.88)

~yeDw) (1,))

As the variational principle, this formula provides a well-known method of obtaining
approximate ground state energies in quantum mechanics. Part of'its effectiveness comes
from the stationary nature of (y, Ly) at the minimum: a crude approximation to y often
gives a tolerably good approximation to A¢. In the wider world of eigenvalue problems,
the variational principle is named after Rayleigh and Ritz.*

Suppose we have already found the first » normalized eigenfunctions yo, 1, ..., Vn—1.
Let the space spanned by these functions be V;,. Then an obvious extension of the
variational principle gives

(4.89)

We now exploit this variational estimate to show that if we expand an arbitrary y in the
domain of L in terms of the full set of eigenfunctions y,,,

o
Y= amym: (4.90)
m=0
where
am = Ym> ), (4.91)

then the sum does indeed converge to y.
Let

n—1
hn=y = anym (4.92)
m=0

4 J. W. Strutt (later Lord Rayleigh), Phil. Trans., 161 (1870) 77; W. Ritz, J. reine angew. Math., 135 (1908).
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be the residual error after the first » terms. By definition, 4, € V,,J-. Let us assume that
we have adjusted, by adding a constant to g if necessary, L so that all the A, are positive.
This adjustment will not affect the y,,. We expand out

(hns Lhy) = (v, Ly) — me|am| (4.93)
where we have made use of the orthonormality of the y,. The subtracted sum is
guaranteed positive, so

(hn, Lhy) < (y,Ly). (4.94)
Combining this inequality with Rayleigh—Ritz tells us that

0.L3) (s L)
i) = (i) = (495)

In other words

-1
. Ly) <
=== lly =D anyml®. (4.96)
n —

Since (y, Ly) is independent of n, and A,, — 0o, we have ||y — ngl amym||2 — 0. Thus
the eigenfunction expansion indeed converges to y, and does so faster than k;l goes
to zero.

Our estimate of the rate of convergence applies only to the expansion of functions y
for which (y, Ly) is defined, i.e. to functions y € D (L). The domain D (L) is always
a dense subset of the entire Hilbert space L*[a, b], however, and, since a dense subset
of a dense subset is also dense in the larger space, we have shown that the linear span
of the eigenfunctions is a dense subset of L?[a, b]. Combining this observation with the
alternative definition of completeness in Section 2.2.3, we see that the eigenfunctions
do indeed form a complete orthonormal set. Any square-integrable function therefore
has a convergent expansion in terms of the y,,, but the rate of convergence may well be
slower than that for functions y € D (L).

Operator methods
Sometimes there are tricks for solving the eigenvalue problem.
Example: Quantum harmonic oscillator. Consider the operator
H= (=0 +x)0 +x) +1=-08>+x% (4.97)

This is in the form QTQ + 1, where Q = (3, + x), and QT = (=8, + x) is its formal
adjoint. If we write these operators in the opposite order we have

00" =@+ 1) (= +x) == +x> +1=H + 1. (4.98)
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Now, if ¥ is an eigenfunction of OTQ with non-zero eigenvalue A then Qv is an
eigenfunction of QQT with the same eigenvalue. This is because

o'oY =y (4.99)
implies that
00" 0y) = 20v, (4.100)
or
00" (Qy) = 1(QW). (4.101)

The only way that Qv can fail to be an eigenfunction of QO is if it happens that
Qv = 0, but this implies that OTQy = 0 and so the eigenvalue was zero. Conversely,
if the eigenvalue is zero then

0= (y,0'0v) = (OV, 0y), (4.102)

and so Oy = 0. In this way, we see that OTQ and Q0O have exactly the same spectrum,
with the possible exception of any zero eigenvalue.
Now notice that OO does have a zero eigenvalue because

Yo=e 2" (4.103)
obeys Q9 = 0 and is normalizable. The operator QQ7, considered as an operator on

L?[—00, 0], does not have a zero eigenvalue because this would require QT = 0,
and so

Y =etv, (4.104)

which is not normalizable, and so not an element of L2[—o0, co].
Since

H=0'0+1=00"-1, (4.105)
we see that Y is an eigenfunction of H with eigenvalue 1, and so an eigenfunction of

00" with eigenvalue 2. Hence O g is an eigenfunction of OO with eigenvalue 2 and
so an eigenfunction H with eigenvalue 3. Proceeding in this way we find that

Y = (01" (4.106)

is an eigenfunction of H with eigenvalue 2n + 1.
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Since O = —e%xz axe’%"z, we can write
Yn(x) = Hy(x)e 2, 4.107)
where
Hy(x) = (—1)%)“2%{)‘2 (4.108)

are the Hermite polynomials.

This is a useful technique for any second-order operator that can be factorized — and
a surprising number of the equations for “special functions” can be. You will see it later,
both in the exercises and in connection with Bessel functions.

Exercise 4.6: Show that we have found all the eigenfunctions and eigenvalues of H =
—83 +x2. Hint: show that Q lowers the eigenvalue by 2 and use the fact that OTQ cannot
have negative eigenvalues.

Problem 4.7: Schrodinger equations of the form

d2
——‘f —I(l + Dsech’x ¢ = Eyr
dx
are known as Poschel-Teller equations. By setting u = [tanh x and following the strategy
of this problem one may relate solutions for / to those for / — 1 and so find all bound

states and scattering eigenfunctions for any integer /.
(a) Suppose that we know that ¥ = exp {— /™ u(x/)dx'} is a solution of

d2
L¢E< +W(x))w=0.

2

Show that L can be written as L = MM where

=Ly ()) M= (L ())
N\ ) U YY)

the adjoint being taken with respect to the product (u,v) = [ w*v dx.

(b) Now assume L is acting on functions on [—oo, o0] and that we do not have to
worry about boundary conditions. Show that given an eigenfunction _ obeying
MTMy_ = Ay_ we can multiply this equation on the left by M and so find an
eigenfunction 14 with the same eigenvalue for the differential operator

L' =MMT = (i + u(x)) <—i + u(x))
dx dx

and vice versa. Show that this correspondence y_ <« ¢ will fail if, and only
if, . =0.
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(c) Apply the strategy from part (b) in the case u(x) = tanhx and one of the two
differential operators MM, MM is (up to an additive constant)

2

d
H = —— — 2sech?x.
dx

Show that H has eigenfunctions of the form v/, = e’ P(tanh x) and eigenvalue £ =
k? for any k in the range —0o < k < oo. The function P(tanh x) is a polynomial in
tanh x which you should be able to find explicitly. By thinking about the exceptional
case A = 0, show that H has an eigenfunction 1 (x), with eigenvalue £ = —1,
that tends rapidly to zero as x — Zo0o. Observe that there is no corresponding
eigenfunction for the other operator of the pair.

4.3.2 Continuous spectrum

Rather than give a formal discussion, we will illustrate this subject with some examples
drawn from quantum mechanics.
The simplest example is the free particle on the real line. We have

H= - (4.109)
We eventually want to apply this to functions on the entire real line, but we will begin
with the interval [—L/2, L/2], and then take the limit L — oo.
The operator H has formal eigenfunctions

o (x) = €™, (4.110)

corresponding to eigenvalues 4 = k2. Suppose we impose periodic boundary conditions
atx = +£L/2:

ok (=L/2) = @r(+L/2). (4.111)

This selects k, = 2mwn/L, where n is any positive, negative or zero integer, and allows
us to find the normalized eigenfunctions

I
Kn(x) = —=e"™". (4.112)
VL
The completeness condition is
o
1 iknx ,—ikyx' ’ /
> pereTI Y =50 —x), xx € [-L/2,1/2]. (4.113)

n=—0o0
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As L becomes large, the eigenvalues become so close that they can hardly be distin-
guished; hence the name continuous spectrum,’ and the spectrum o (H) becomes the
entire positive real line. In this limit, the sum on » becomes an integral

o0

> {} —>/dn{...}=/dk (j—Z) {} (4.114)
where
dn L
d—z == (4.115)

is called the (momentum) density of states. If we divide this by L to get a density of states
per unit length, we get an L independent “finite” quantity, the local density of states. We
will often write

dn

— = p(k). 4.116

o p (k) ( )
If we express the density of states in terms of the eigenvalue A then, by an abuse of
notation, we have

dn
A= —= . 4.117
pR) = P (4.117)
Note that
dn dn dk

which looks a bit weird, but remember that two states, £k, correspond to the same A
and that the symbols

dn dn

-, - 4.119
dk’>  dx ( )

are ratios of measures, i.e. Radon—Nikodym derivatives, not ordinary derivatives.
In the limit L — oo, the completeness condition becomes

o0
/ dk ik _ S(x —x), (4.120)

oo 2T
and the length L has disappeared.

5 When L is strictly infinite, @i (x) is no longer normalizable. Mathematicians do not allow such un-
normalizable functions to be considered as true eigenfunctions, and so a point in the continuous spectrum
is not, to them, actually an eigenvalue. Instead, they say that a point A lies in the continuous spectrum if for
any € > 0 there exists an approximate eigenfunction ¢ such that ||@¢|| = 1, but | Lpe — Ape|| < €. This is
not a profitable definition for us. We prefer to regard non-normalizable wavefunctions as being distributions
in our rigged Hilbert space.
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Suppose that we now apply boundary conditions y = 0 onx = +L/2. The normalized
eigenfunctions are then

2
Yo = \/;sink,,(x—i-L/Z), (4.121)

where k, = nm /L. We see that the allowed k’s are twice as close together as they were
with periodic boundary conditions, but now # is restricted to being a positive non-zero
integer. The momentum density of states is therefore

L
dn _L (4.122)

P(k)=%=n

which is twice as large as in the periodic case, but the eigenvalue density of states is

L

)\,z E]
p) Py

(4.123)

which is exactly the same as before.

That the number of states per unit energy per unit volume does not depend on the
boundary conditions at infinity makes physical sense: no local property of the sublunary
realm should depend on what happens in the sphere of fixed stars. This point was not
fully grasped by physicists, however, until Rudolph Peierls® explained that the quantum
particle had to actually travel to the distant boundary and back before the precise nature
of the boundary could be felt. This journey takes time 7" (depending on the particle’s
energy) and from the energy—time uncertainty principle, we can distinguish one boundary
condition from another only by examining the spectrum with an energy resolution finer
than /7. Neither the distance nor the nature of the boundary can affect the coarse
details, such as the local density of states.

The dependence of the spectrum of a general differential operator on boundary con-
ditions was investigated by Hermann Weyl. Weyl distinguished two classes of singular
boundary points: /imit-circle, where the spectrum depends on the choice of boundary
conditions, and /imit-point, where it does not. For the Schrodinger operator, the point
at infinity, which is “singular” simply because it is at infinity, is in the limit-point class.
We will discuss Weyl’s theory of singular endpoints in Chapter 8.

Phase shifts

Consider the eigenvalue problem

dZ

——+VO) |y =Ey (4.124)
dr

6 Peierls proved that the phonon contribution to the specific heat of a crystal could be correctly calculated by

using periodic boundary conditions. Some sceptics had thought that such “unphysical” boundary conditions
would give a result wrong by factors of two.
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on the interval [0, R], and with boundary conditions 1/ (0) = 0 = ¥ (R). This problem
arises when we solve the Schrodinger equation for a central potential in spherical polar
coordinates, and assume that the wavefunction is a function of » only (i.e. S-wave, or
! = 0). Again, we want the boundary at R to be infinitely far away, but we will start with
R at a large but finite distance, and then take the R — oo limit. Let us first deal with the
simple case that J'(r) = 0; then the solutions are

Vi (r) o sinkr, (4.125)

with eigenvalue E = k2, and with the allowed values being given by k,R = nx. Since
k R
/ sin® (k,r) dr = —, (4.126)
0 2
the normalized wavefunctions are

2
Vi = \/; sin (4.127)

and completeness reads

Z <%> sin(k,r) sin(k,r’) = 8(r — r'). (4.128)

n=1

As R becomes large, this sum goes over to an integral:

Z <%) sin(k,7) sin(k,#') — /00 dn (%> sin(kr) sin(kr’),
= R 0 R
= /00 kak (E) sin(kr) sin(kr’). (4.129)
0 v R
Thus,
(%) /OO dk sin(kr) sin(kr') = 8(r — 7). (4.130)
0

As before, the large distance, here R, no longer appears.

Now consider the more interesting problem which has the potential V' (r) included.
We will assume, for simplicity, that there is an Ry such that V' (r) is zero for » > Ry. In
this case, we know that the solution for » > Ry is of the form

Y (r) = sin (kr + n(k)), (4.131)

where the phase shift n(k) is a functional of the potential V. The eigenvalue is still
E =K.
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Nora

Figure 4.3  Delta-function shell potential.

Example: A delta-function shell. We take V (r) = A8(r — a). See Figure 4.3.

A solution with eigenvalue £ = k? and satisfying the boundary condition at » = 0 is

A sin(kr), r<a,
v =9 . (4.132)
sin(kr +mn), r>a.

The conditions to be satisfied at » = a are:

(1) continuity, ¥ (a — €) = Y (a + €) = ¥ (a); and
(ii) jump in slope, —v'(a + €) + ¥'(a — €) + AP (a) = 0.

Therefore,
Vet va-o @133)
Y (a) v(a)
or
kc?os(ka +n) _ k(.:os(ka) _ (4.134)
sin(ka + n) sin(ka)
Thus,
A
cot(ka + n) — cot(ka) = o (4.135)
and
n(k) = —ka + cot™! (% + cot ka> ) (4.136)

A sketch of n(k) is shown in Figure 4.4. The allowed values of & are required by the
boundary condition

sin(kR + n(k)) = 0 (4.137)
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A k)

ka

\

Figure 4.4 The phase shift (k) of Equation (4.136) plotted against ka.
to satisfy
kR + n(k) = nm. (4.138)

This is a transcendental equation for &, and so finding the individual solutions %, is not
simple. We can, however, write

n=%@R+M@) (4.139)

and observe that, when R becomes large, only an infinitesimal change in £ is required to
make n increment by unity. We may therefore regard » as a “continuous” variable which
we can differentiate with respect to & to find

dn 1 an
— =—1{R+ —. 4.140
dk w { + ok } ( )
The density of allowed k& values is therefore
1 9
pk) = — 1R+ 1. (4.141)
T ok

For our delta-shell example, a plot of p(k) appears in Figure 4.5. This figure shows a
sequence of resonant bound states at ka = nw superposed on the background continuum
density of states appropriate to a large box of length (R — @). Each “spike” contains
one extra state, so the average density of states is that of a box of length R. We see that
changing the potential does not create or destroy eigenstates, it just moves them around.

The spike is not exactly a delta function because of level repulsion between nearly
degenerate eigenstates. The interloper elbows the nearby levels out of the way, and all
the neighbours have to make do with a bit less room. The stronger the coupling between
the states on either side of the delta shell, the stronger is the inter-level repulsion, and
the broader the resonance spike.
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a

Figure 4.5 The density of states for the delta shell potential. The extended states are so close in
energy that we need an optical aid to resolve individual levels. The almost-bound resonance levels
have to squeeze in between them.

Normalization factor

We now evaluate

R
/O drlyy|* = N, (4.142)

so as to find the the normalized wavefunctions

Xk = Nklﬁk. (4.143)
Let v (r) be a solution of
2
Hy = <__2 + V(r)) v =iy (4.144)
dr

satisfying the boundary condition v (0) = 0, but not necessarily the boundary condition
at » = R. Such a solution exists for any k. We scale i by requiring that v (r) =
sin(kr 4+ n) for » > Ry. We now use Lagrange’s identity to write

R R
(k? —k/z)fo dr Y Y 2/0 dr {(HYi) Ve — i (H )}

R
= [vavp — vivw ]y
= sin(kR + n)k’ cos(k’'R + n)
— kcos(kR + n) sin(k'R + n). (4.145)
Here, we have used ¥ 4 (0) = 0, so the integrated out part vanishes at the lower limit,

and have used the explicit form of v 4 at the upper limit.
Now differentiate with respect to k, and then set k = k’. We find

R 1 B
2k/0 dr(p? = =3 sin<2(kR n n)) k {R + a_Z} . (4.146)
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In other words,

/Rd Wt = S lrpnl L (2(kR—|— )) (4.147)
r == — t — —sin . .

o Ke=3 ok |~ ak 7

At this point, we impose the boundary condition at » = R. We therefore have

kR + n = nm and the last term on the right-hand side vanishes. The final result for
the normalization integral is therefore

R

1 ad

/ drly* = {R+ —"} . (4.148)
0 2

Observe that the same expression occurs in both the density of states and the normal-

ization integral. When we use these quantities to write down the contribution of the
normalized states in the continuous spectrum to the completeness relation we find that

o d 2 00
/ dk (ﬁ) NEY (Y () = <—> / dk Yy ()Y (), (4.149)
0 T 0

the density of states and normalization factor having cancelled and disappeared from the
end result. This is a general feature of scattering problems: the completeness relation
must give a delta function when evaluated far from the scatterer where the wavefunctions
look like those of a free-particle. So, provided we normalize ¥ so that it reduces to a
free-particle wavefunction at large distance, the measure in the integral over k£ must also
be the same as for the free particle.

Including any bound states in the discrete spectrum, the full statement of completeness
is therefore

2 o0
3 wn(r)wn(r’w(;) /0 o) Uy = 50— 1. (4150)

bound states

Example: We will exhibit a completeness relation for a problem on the entire real line.
We have already met the Poschel-Teller equation,

dZ
Hy = (—d—2—1(1+1)sech2x>1/f=E1// (4.151)
X
in Exercise 4.7. When / is an integer, the potential in this Schrodinger equation has the
special property that it is reflectionless.
The simplest non-trivial example is / = 1. In this case, A has a single discrete bound
state at £p = —1. The normalized eigenfunction is

Yox) = Jisechx. (4.152)
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The rest of the spectrum consists of a continuum of unbound states with eigenvalues
E(k) = k?* and eigenfunctions

1 .
Vi (x) = ——— ™ (—ik + tanh x). (4.153)
V1+k?
Here, k is any real number. The normalization of 4 (x) has been chosen so that, at large
|x|, where tanh x — +1, we have

Y)Y () — e Ko, (4.154)

The measure in the completeness integral must therefore be dk /27, the same as that for
a free particle.
Let us compute the difference

, © dk " ,
1:8(x—x)—/ El/fk(x)lﬁk(x)

= / S (7 — yr o))

oo 2T

- o (4.155)

/Oo dk _it—yy 1+ ik(tanhx — tanh x') — tanh x tanh x’

We use the standard integral,

00 ﬁefik(xfx/)L _ lef\xfx’\ (4 156)
oo 2T 1+k2 2 ’ ’

together with its x’ derivative,

C dk e ik R
/;Oogel xxm:sgn(x—x)ze xx, (4157)
to find
1 /
I = —={1+sgn(x —x')(tanhx — tanhx’) — tanh x tanh x’ }e ™1 (4.158)
2

Assume, without loss of generality, that x > x’; then this reduces to

1 ’ 1
5(1 + tanhx)(1 — tanhx')e” ) = Esechx sech x’

= Yo (x)Yo(x). (4.159)
Thus, the expected completeness condition,
* dk
Yol Yo (') + / SV CYR() = 8(x =), (4.160)

is confirmed.
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4.4 Further exercises and problems

We begin with a practical engineering eigenvalue problem.

Exercise 4.8: Whirling drive shaft. A thin flexible drive shaft is supported by two bear-
ings that impose the conditions x’ = y/ = x = y = 0 at z = =+L (see Figure 4.6).
Here x(z), y(z) denote the transverse displacements of the shaft, and the primes denote
derivatives with respect to z.

The shaft is driven at angular velocity w. Experience shows that at certain critical
frequencies w, the motion becomes unstable to whirling — a spontaneous vibration and
deformation of the normally straight shaft. If the rotation frequency is raised above wy,,
the shaft becomes quiescent and straight again until we reach a frequency w;,1, at which
the pattern is repeated. Our task is to understand why this happens.

The kinetic energy of the whirling shaft is

L R
T=2|[ plx"+y}dz,
2)p

and the strain energy due to bending is

1 L
Vieyl = 5 / I+ O

(a) Write down the Lagrangian, and from it obtain the equations of motion for the shaft.
(b) Seek whirling-mode solutions of the equations of motion in the form

x(z,t) = V¥ (z) coswt,

y(z,t) = ¥ (z) sin wt.

Show that this quest requires the solution of the eigenvalue problem

d41/f 2 / /
e w0, Y(=L) =y (-L) =y L) =y(L) =0.

> =

Figure 4.6 The n = 1 even-parity mode of a whirling shaft.
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(c) Show that the critical frequencies are given in terms of the solutions &, to the
transcendental equation

tanh &, = +tan &, (*)

as

Show that the plus sign in (x) applies to odd parity modes, where ¥ (z) = —(—z),
and the minus sign to even parity modes where ¥ (z) = ¥ (—z).

Whirling, we conclude, occurs at the frequencies of the natural transverse vibration
modes of the elastic shaft. These modes are excited by slight imbalances that have
negligible effect except when the shaft is being rotated at the resonant frequency.

Insight into adjoint boundary conditions for an ODE can be obtained by thinking about
how we would impose these boundary conditions in a numerical solution. The next
problem illustrates this.

Problem 4.9: Discrete approximations and self-adjointness. Consider the second-order
inhomogeneous equation Lu = u”” = g(x) on the interval 0 <x < 1. Here g(x) is known
and u(x) is to be found. We wish to solve the problem on a computer, and so set up a
discrete approximation to the ODE in the following way:

e Replace the continuum of independent variables 0 <x <1 by the discrete lattice of
points 0 < x, = (n — )/N <1.Here N is a positive integer and n = 1,2,...,N.

e Replace the functions u(x) and g(x) by the arrays of real variables u,, = u(x,) and
gn = g(xn).

e Replace the continuum differential operator d2/dx? by the difference operator D2,
defined by Du, = Upt1 — 2Up + Up—1.

Now do the following problems:

(a) Impose continuum Dirichlet boundary conditions #(0) = u(1) = 0. Decide what
these correspond to in the discrete approximation, and write the resulting set of
algebraic equations in matrix form. Show that the corresponding matrix is real and
symmetric.

(b) Impose the periodic boundary conditions #(0) = u(1) and «/(0) = u/(1), and show
that these require us to set ug = uy and uy4+; = u;. Again write the system of
algebraic equations in matrix form and show that the resulting matrix is real and
symmetric.
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(c) Consider the non-symmetric N-by-N matrix operator

o 0 o o0 o ... 0 uy
1 =2 1 0 0 ... 0 UunN—1
0o 1 -2 1 0 ... Of]unv=
Du=|: & oo i
0 ... 0 1 =2 1 0 u3
o ... 0 0 1 =21 up
o ... 0 0 0 0 O u

(i) What vectors span the null space of D*?
(ii) To what continuum boundary conditions for d?/dx* does this matrix corre-
spond?
(iii) Consider the matrix (D?)". To what continuum boundary conditions does this
matrix correspond? Are they the adjoint boundary conditions for the differential
operator in part (ii)?

Exercise 4.10: Let

~ —id my — im
b= x 1 ‘ 2
my + imo 10y
= —i030y + m G| +myor

be a one-dimensional Dirac Hamiltonian. Here m2; (x) and m; (x) are real functions and the
0, are the Pauli matrices. The matrix differential operator H acts on the two-component
“spinor”

_ (V1™
Fo = (vfz(x))‘

(a) Consider the eigenvalue problem HW = EW¥ on the interval [a, b]. Show that the
boundary conditions

¥ (a) — explif,] Y1 (b)
V2 (a) T Ya(b)

= exp{ibh},

where 6,,, ), are real angles, make H into an operator that is self-adjoint with respect
to the inner product

b
(‘1/1,‘1’2)=/ W () Wy (x) dx.

(b) Find the eigenfunctions W,, and eigenvalues E, in the case that m; = my = 0 and
the 6, are arbitrary real angles.
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Here are three further problems involving the completeness of operators with a
continuous spectrum:

Problem 4.11: Missing state. In Problem 4.4.7 you will have found that the Schrodinger
equation

dx?

d2
(— — 2sech2x> v =Ey
has eigensolutions
Vi (x) = € (—ik + tanh x)

with eigenvalue E = k2.

e For x large and positive Y (x) ~ 4 e® ) while for x large and negative ¥ (x) ~
A e e the (complex) constant A being the same in both cases. Express the phase
shift (k) as the inverse tangent of an algebraic expression in k.

e Impose periodic boundary conditions ¢ (—L/2) = v (+L/2) where L > 1. Find
the allowed values of £ and hence an explicit expression for the k-space density,
pk) = Z,—Z, of the eigenstates.

e Compare your formula for p (k) with the corresponding expression, po(k) = L/2x,

for the eigenstate density of the zero-potential equation and compute the integral

AN = / (k) — pol)}dk.

e Deduce that one eigenfunction has gone missing from the continuum and becomes the
localized bound state o (x) = \%sech X.

Problem 4.12: Continuum completeness. Consider the differential operator

d2

1::——, 0<x<o0
dx? -

with self-adjoint boundary conditions v (0)/v’(0) = tan & for some fixed angle 6.

e Show that when tan 6 < O there is a single normalizable negative-eigenvalue eigen-
function localized near the origin, but none when tan6 > 0.

e Show that there is a continuum of positive-eigenvalue eigenfunctions of the form
Y (x) = sin(kx + n(k)) where the phase shift n is found from

1+ iktan®
V1+k2tan2e

e Write down (no justification required) the appropriate completeness relation

) —

d
=) = [ ENROUC) dk+ Y D)

bound
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with an explicit expression for the product (not the separate factors) of the density of
states and the normalization constant Nk2, and with the correct limits on the integral
over k.

o Confirm that the v continuum on its own, or together with the bound state when it
exists, form a complete set. You will do this by evaluating the integral

1(x,x") = ; /000 sin(kx + n(k)) sin(kx” + n(k)) dk

and interpreting the result. You will need the following standard integral

/"o LR N vy}

o2 14 k2T 20

Take care! You should monitor how the bound state contribution switches on and off
as 6 is varied. Keeping track of the modulus signs |...| in the standard integral is
essential for this.

Problem 4.13: One-dimensional scattering redux. Consider again the one-dimensional
Schrdédinger equation from Chapter 3, Problem 3.4:

d>y

T2 + V)Y =Ey,

where V (x) is zero except in a finite interval [—a, a] near the origin (Figure 4.7).
For k > 0, consider solutions of the form

aiL“eikx + azute_”“, xel,
ale™e 4 gutelhe x e R.

v(x) = {

(a) Show that, in the notation of Problem 3.4, we have

[az“t} _ [mk) m(—k)} [azl}
ay™ tr (k) rr(=k)| lag |’

Figure 4.7 Incoming and outgoing waves in Problem 4.13. The asymptotic regions L and R are
defined by L = {x < —a}and R = {x > a}.
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and show that the S-matrix

re(k)  tr(—k)
S = [a(k) rR(—k)]
is unitary.
(b) By observing that complex conjugation interchanges the “in” and “out” waves, show
that it is natural to extend the definition of the transmission and reflection coefficients
to all real k by setting 7 g(k) = 1] p(—k), 1y g(k) = ] p(—k).
(c) In Problem 3.4 we introduced the I;articular solutions

ikx k —ikx L

Vi (x) = ¢ +ArL( Jem, xel, k>0,
1 (k)e™, X €ER,

tr(k)e™, x€L, k<0

= X . < V.
X 4 rp(k)e= ™ x e R.

Show that, together with any bound states v, (x), these ¥ (x) satisfy the complete-
ness relation

o]

3 () + /

bound -0

dk * nN=25 /
Ewk(x)l/fk(x)— (x—x")

provided that
* / < dk —ik (x+x") /
= Y v = [ Sinte o el
bound -

< dk N
=f — (ke =)y e L, x €R,
2

—00

> dk : /
- / z_fR(k)e_’k(x_“, x€R, x €L,

o0 2T

* dk . /
= / — rr(k)e e+ x,x €R.
2

—00

(d) Compute 7 g(k) and #; (k) for the potential V' (x) = A8(x — b), and verify that the
conditions in part (c) are satisfied.

If you are familiar with complex variable methods, look ahead to Chapter 18 where
Problem 18.22 shows you how to use complex variable methods to evaluate the Fourier
transforms in part (c), and so confirm that the bound state 1, (x) and the v (x) together
constitute a complete set of eigenfunctions.
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Problem 4.14: Levinson's theorem and the Friedel sum rule. The interaction between an
attractive impurity and (S-wave, and ignoring spin) electrons in a metal can be modelled
by a one-dimensional Schrédinger equation

2

—S S VX =R
Here r is the distance away from the impurity, V' () is the (spherically symmetric) impu-
rity potential and x () = /47y () where ¥ (r) is the three-dimensional wavefunction.

The impurity attracts electrons to its vicinity. Let x;’ () = sin(kr) denote the unperturbed
wavefunction, and x;(r) denote the perturbed wavefunction that beyond the range of
impurity potential becomes sin(kr + 1 (k)). We fix the 2nwr ambiguity in the definition
of n(k) by taking 1(oco) to be zero, and requiring 1 (k) to be a continuous function of
k.

o Show that the continuous-spectrum contribution to the change in the number of
electrons within a sphere of radius R surrounding the impurity is given by

2 ke R 1
—/ (/ {I)(k(x)|2 — |X,?(x)|2} dr) dk = — [n(ks) — n(0)] + oscillations.
T Jo 0 b

Here k¢ is the Fermi momentum, and “oscillations” refers to Friedel oscillations
~ cos(2(k¢fR + 1)). You should write down an explicit expression for the Friedel
oscillation term, and recognize it as the Fourier transform of a function k~sin n(k).

o Appeal to the Riemann—Lebesgue lemma to argue that the Friedel density oscillations
make no contribution to the accumulated electron number in the limit R — oo.
(Hint: you may want to look ahead to the next part of the problem in order to show
that £~ sin 5(k) remains finite as k — 0.)

The impurity-induced change in the number of unbound electrons in the interval [0, R]
is generically some fraction of an electron, and, in the case of an attractive potential,
can be negative — the phase shift being positive and decreasing steadily to zero as k
increases to infinity. This should not be surprising. Each electron in the Fermi sea speeds
up as it enters an attractive potential well, spends less time there, and so makes a smaller
contribution to the average local density than it would in the absence of the potential.
We would, however, surely expect an attractive potential to accumulate a net positive
number of electrons.

o Show that a negative continuous-spectrum contribution to the accumulated electron
number is more than compensated for by a positive number

*1

o0 an
Noound = f (po(k) — p(k))dk = — f k= —n(O)
0 0
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of electrons bound to the potential. After accounting for these bound electrons, show
that the total number of electrons accumulated near the impurity is

1
Orot = —n(ke).
b4

This formula (together with its higher angular momentum versions) is known as the
Friedel sum rule. The relation between 1(0) and the number of bound states is called
Levinson's theorem. A more rigorous derivation of this theorem would show that
n(0) may take the value (n + 1/2)7 when there is a non-normalizable zero-energy
“half-bound” state. In this exceptional case the accumulated charge will depend on R.
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Green functions

In this chapter we will study strategies for solving the inhomogeneous linear differential
equation Ly = f. The tool we use is the Green function, which is an integral kernel
representing the inverse operator L~!. Apart from their use in solving inhomogeneous
equations, Green functions play an important role in many areas of physics.

5.1 Inhomogeneous linear equations

We wish to solve Ly = f for y. Before we set about doing this, we should ask ourselves
whether a solution exists, and, if it does, whether it is unique. The answers to these
questions are summarized by the Fredholm alternative.

5.1.1 Fredholm alternative

The Fredholm alternative for operators on a finite-dimensional vector space is discussed
in detail in the Appendix on linear algebra. You will want to make sure that you have
read and understood this material. Here, we merely restate the results.

Let V' be finite-dimensional vector space equipped with an inner product, and let 4
be a linear operator 4 : ¥ — V on this space. Then

I. Either
(i) Ax = b has a unique solution,
or
(i1)) Ax = 0 has a non-trivial solution.
II. If Ax = 0 has n linearly independent solutions, then so does 47x = 0.
III. If alternative (ii) holds, then Ax = b has no solution unless b is perpendicular to all
solutions of ATx = 0.

What is important for us in the present chapter is that this result continues to hold for
linear differential operators L on a finite interval — provided that we define L' as in the
previous chapter, and provided the number of boundary conditions is equal to the order
of the equation.

If the number of boundary conditions is not equal to the order of the equation then the
number of solutions to Ly = 0 and LTy = 0 will differ in general. It is still true, however,
that Ly = f has no solution unless f is perpendicular to all solutions of LTy = 0.

140
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Example: As an illustration of what happens when an equation possesses too many
boundary conditions, consider

Ly=—, »(0)=y()=0. (5.1)

Clearly Ly = 0 has only the trivial solution y = 0. If a solution to Ly = f exists,
therefore, it will be unique.

We know that LT = —d/dx, with no boundary conditions on the functions in its
domain. The equation Ly = 0 therefore has the non-trivial solution y = 1. This means
that there should be no solution to Ly = f unless

1
)= [ rac=o (52)
0
If this condition is satisfied then
X
v = [ e (53)
0
satisfies both the differential equation and the boundary conditions at x = 0, 1. If the
condition is not satisfied, y(x) is not a solution, because y(1) # 0.
Initially we only solve Ly = f for homogeneous boundary conditions. After we have

understood how to do this, we will extend our methods to deal with differential equations
with inhomogeneous boundary conditions.

5.2 Constructing Green functions

We will solve Ly = f, a differential equation with homogeneous boundary conditions,
by finding an inverse operator L~!, so that y = L~!f. This inverse operator L~ will be
represented by an integral kernel

(L Dee = Gx, £), (5.4)

with the property

LiG(x,&) = 8(x — &). (5.5

Here, the subscript x on L indicates that L acts on the first argument, x, of G. Then

) = / G, )/ (&) de (5.6)

will obey

Ly= / LG, ) (€) dE = / S(x— £ (€) dE = f ). 5.7)
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The problem is how to construct G(x, §). There are three necessary ingredients:

e the function x (x) = G(x, &) must have some discontinuous behaviour at x = & in
order to generate the delta function;

e away from x = &, the function y (x) must obey Ly = 0;

o the function x (x) must obey the homogeneous boundary conditions required of y at
the ends of the interval.

The last ingredient ensures that the resulting solution, y(x), obeys the boundary condi-
tions. It also ensures that the range of the integral operator G lies within the domain of
L, a prerequisite if the product LG = [ is to make sense. The manner in which these
ingredients are assembled to construct G(x, §) is best explained through examples.

5.2.1 Sturm—Liouville equation
We begin by constructing the solution to the equation
PN + gy = f(x) (5.8)
on the finite interval [a, b] with homogeneous self-adjoint boundary conditions

y'(a) Y'(b)
=tanf;,, ——
(@) (b)

We therefore seek a function G(x, &) such that x (x) = G(x, &) obeys

= tan 6p. 5.9

Lx =@x) +qx =8x—§). (5.10)

The function x(x) must also obey the homogeneous boundary conditions we
require of y(x).

Now (5.10) tells us that x (x) must be continuous at x = &. For if not, the two
differentiations applied to a jump function would give us the derivative of a delta function,
and we want only a plain §(x — &). If we write

Ay (x)yr&), x <§,
G(x, ) = x () = (5.11)
YTV p@mre), x> &,

then x (x) is automatically continuous at x = &. We take y (x) to be a solution of Ly = 0,
chosen to satisfy the boundary condition at the left-hand end of the interval. Similarly
Yr(x) should solve Ly = 0 and satisfy the boundary condition at the right-hand end.
With these choices we satisfy (5.10) at all points away from x = &.

To work out how to satisfy the equation exactly at the location of the delta function,
we integrate (5.10) from & — ¢ to £ + ¢ and find that

PO E+e)—x'E—o]=1 (5.12)
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With our product form for y (x), this jump condition becomes

Ap©) (v EWRE — i EWr®) =1 (5.13)

and determines the constant 4. We recognize the Wronskian W (v, yg; &) on the left-hand
side of this equation. We therefore have 4 = 1/(pW) and

SVLOOVRE), x <&,

; (5.14)
owYLER(X), x> §.

G(x,§) ==

For the Sturm—Liouville equation the product pW is constant. This fact follows from

Liouville’s formula,
X pl
W(x) = W(0) exp {—/ <—) d&} , (5.15)
0 \Po

and from p; = p{ = p’ in the Sturm—Liouville equation. Thus

0
W(x) = W() CXP<— 1ﬂ[p(X)/P(0)]> = W(O)[&- (5.16)
p(x)
The constancy of p/ means that G(x, £) is symmetric:
G(x,8) =G, x). (5.17)

This is as it should be. The inverse of a symmetric matrix (and the real, self-adjoint,
Sturm-Liouville operator is the function-space analogue of a real symmetric matrix) is
itself symmetric.

The solution to

Ly =@y +qp=fx) (5.18)
is therefore

1

yx) = 7

b x
{yL(x) / VRE ) dE + yr(0) / yL(é)f(S)d%‘}- (5.19)

Take care to understand the ranges of integration in this formula. In the first integral
& > x and we use G(x,&) « yr(x)yr(€). In the second integral £ < x and we use
G(x,&) x yr(§)yr(x). It is easy to get these the wrong way round.

Because we must divide by it in constructing G (x, £), itis necessary that the Wronskian
W (yr,yr) not be zero. This is reasonable. If W were zero then y; o yg, and the single
function yp satisfies both Lyg = 0 and the boundary conditions. This means that the
differential operator L has yp as a zero-mode, so there can be no unique solution to

Ly=f.
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Figure 5.1 The function x (x) = G(x,&).

Example: Solve

—0ky =f(x), y(0)=y(l) =0. (5.20)
We have
yRyLzzlfx} = yVR — Vg = L. (5.21)
We find that (Figure 5.1)
x(1—-§&), x<§&,
G(x,§) = 5.22
(x,€) L(l_x)’ e (5.22)
and
x 1
Y@ = (1—x) /0 EF(6)dE +x f (1— )/ (®) dt. (5.23)

5.2.2 Initial value problems

Initial value problems are those boundary value problems where all boundary conditions

are imposed at one end of the interval, instead of some conditions at one end and some

at the other. The same ingredients go into constructing the Green function, though.
Consider the problem

d
=0y =F@). y©)=0. (5.24)

We seek a Green function such that
/ d ! /
LG, t) = (E — Q(t)) Gt,t)y=48(t—1) (5.25)

and G(0,7) = 0.
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A G(t, tr)

Figure 5.2 The Green function G(¢, ') for the first-order initial value problem.
We need x (t) = G(¢,¢) to satisfy L;x = 0, exceptatt = ¢/, and need x (0) = 0. The

unique solution of L, x = 0 with x(0) = 0is x (#) = 0. This means that G(¢,0) = 0 for
all 1 < ¢'. Near ¢t = ¢ we have the jump condition

Gt +e,0)— Gt —e,t)=1. (5.26)

The unique solution is (Figure 5.2)

t
G(t,!)=0(—1t)exp {/ Q(S)ds} , (5.27)
t/

where 0 (¢ — ) is the Heaviside step distribution

0, t<0,
0(t) = (5.28)
1, t>0.

Therefore

W) = / G F @,
0

! ‘
= / exp {/ 0(©s) ds} F{)dt
0 t
t t 4
= exp {/ 0(s) ds} / exp {— / O(s) ds} F)dt. (5.29)
0 0 0

We earlier obtained this solution via variation of parameters.

Example: Forced, damped, harmonic oscillator. An oscillator obeys the equation

¥4 2yx + (2 + yHx = F(o). (5.30)
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Figure 5.3 The Green function G(¢, t) for the damped oscillator problem.

Here y > 0 is the friction coefficient. Assuming that the oscillator is at rest at the origin
at t = 0, we will show that

t
x(1) = (é)f e 7 sin Q¢ — T)F (1)dx. (5.31)
0

We seek a Green function G(¢, ) such that x (f) = G(¢,t) obeys x(0) = x'(0) = 0.
Again, the unique solution of the differential equation with this initial data is x (¢) = 0.
The Green function must be continuous at ¢ = 7, but its derivative must be discontinuous
there, jumping from zero to unity to provide the delta function. Thereafter, it must satisfy
the homogeneous equation. The unique function satisfying all these requirements is (see
Figure 5.3)

1
G(t,7) =0(t — z)ﬁefﬂH> sinQ(t — 7). (5.32)

Both these initial-value Green functions G(¢,¢’) are identically zero when ¢ < ¢’. This
is because the Green function is the response of the system to a kick at time ¢ = ¢/, and
in physical problems no effect comes before its cause. Such Green functions are said to
be causal.

Physics application: Friction without friction — the Caldeira—Leggett
model in real time

We now describe an application of the initial value problem Green function we found in
the preceding example.

When studying the quantum mechanics of systems with friction, such as the viscously
damped oscillator, we need a tractable model of the dissipative process. Such a model
was introduced by Caldeira and Leggett.! They consider the Lagrangian

b= % (0 - @ - aeyg?) - 0 fiai+ Z% (#-elad), 33

U A. Caldeira, A. J. Leggett, Phys. Rev. Lett., 46 (1981) 211.
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which describes a macroscopic variable Q(¢), linearly coupled to an oscillator bath of

very many simple systems ¢; representing the environment. The quantity

2
def /i
N <—2) (5.34)
i i
is a counter-term that is inserted to cancel the frequency shift
2 2 17
1
Q2 - Q2 - Z (Z) (5.35)
i 1
caused by the coupling to the bath.”
The equations of motion are
O+ (- AQHO+ ) figi =0,
i
i + o7 qi + £,0 = 0. (5.36)
Using our initial value Green function, we solve for the ¢; in terms of Q(¢):
t fj2
figi = —/ (’—) sin w; (t — 1)Q(r)d. (5.37)
—0o \W;
The resulting motion of the ¢; feeds back into the equation for O to give
.. t
0+ (2> — AQHO +/ F(t—1)0(x)dt =0, (5.38)
—00
where
FiyE -3 i sin(w;t) (5.39)
= o ; .
is a memory function.
It is now convenient to introduce a spectral function
SEAN AP 40
J() = 5; o ) 8@ =, (5.40)
2 The shift arises because a static O displaces the bath oscillators so that fig; = —(fi2 /wl-z)Q. Substituting

these values for the f;¢; into the potential terms shows that, in the absence of AQZQZ, the effective potential

seen by Q would be

2
104 0Y g+ Y sk = 5 (92 -2 (ﬂ)) 0.

i \%
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which characterizes the spectrum of couplings and frequencies associated with the
oscillator bath. In terms of J (w) we can write

F(t) = —; fo OoJ(a)) sin(w?) do. (5.41)

Although J (w) is defined as a sum of delta function “spikes”, the oscillator bath contains
a very large number of systems and this makes J(w) effectively a smooth function.
This is just as the density of a gas (a sum of delta functions at the location of the
atoms) is macroscopically smooth. By taking different forms for J (w) we can represent
a wide range of environments. Caldeira and Leggett show that to obtain a friction force
proportional to O we should make J (w) proportional to the frequency . To see how
this works, consider the choice

A2

which is equal to nw for small w, but tends to zero when @ >> A. The high-frequency
cutoff A is introduced to make the integrals over w converge. With this cutoff

na)A2 iwt
—/ J (o) sin(wt) dow = —/ o do = sgn (Hn A2e M. (5.43)

Therefore,

t t
f F(t —1)Q(t)dt = —/ nA2e M) de
—00 —00
. T’ .
= —nAQ(®) + Q) — ﬂQ(t) +-e, (5.44)
where the second line results from expanding Q(7) as a Taylor series

0) =0 + (T —H0W) +---, (5.45)

and integrating term-by-term. Now,

2 2
—a?=Y" (fl—z) = ;/0 ‘@dw - / Az”iw do=nA.  (5.46)

i\
The —AQ2Q counter-term thus cancels the leading term —nAQ(¢) in (5.44), which
would otherwise represent a A-dependent frequency shift. After this cancellation we
can safely let A — oo, and so ignore terms with negative powers of the cutoff. The only
surviving term in (5.44) is then nO. This we substitute into (5.38), which becomes the
equation for viscously damped motion:

0+ 10+ Q*0=0. (5.47)
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The oscillators in the bath absorb energy but, unlike a pair of coupled oscillators which
trade energy rhythmically back-and-forth, the incommensurate motion of the many g;
prevents them from cooperating for long enough to return any energy to Q(¢).

5.2.3 Modified Green function

When the equation Ly = 0 has a non-trivial solution, there can be no unique solution
to Ly = f, but there will still be solutions provided f is orthogonal to all solutions of
Lty =0.

Example: Consider
Ly=-dly=f), »(0) =y(1)=0. (5.48)

The equation Ly = 0has one non-trivial solution, y(x) = 1. The operator L is self-adjoint,
LY = L, and so there will be solutions to Ly = f provided (1,f) = f01 fdx=0.
We cannot define the Green function as a solution to

—0}G(x,§) = 8(x — &), (5.49)

because fol S(x —&)dx =1 # 0, but we can seek a solution to

—02G(x,&) =8(x —£) — 1 (5.50)
as the right-hand side integrates to zero.
A general solution to —8)% =—1lis
1
y=A+Bx+§x, (5.51)

and the functions

PR
= —X
YL R
1 2
yR=C—x+§x , (5.52)

obey the boundary conditions at the left and right ends of the interval, respectively.
Continuity at x = £ demands that 4 = C — &, and we are left with

C—&+1x% 0<x<¢

G(x,§) =
C—x—l—%xz, E<x<l.

(5.53)

There is no freedom left to impose the condition

G —e8)-GE+ed) =1, (5.54)
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€

Figure 5.4 The modified Green function.

but it is automatically satisfied! Indeed,

G —eb)=¢
G'(€+e ) =—1+&.

We may select a different value of C for each &, and a convenient choice is

C=1g24
2 3

which makes G symmetric (Figure 5.4):

1 2482
’ I e E<x<1
3 2 '

It also makes fol G(x,&)dx = 0.
The solution to Ly = [ is

1
Y0 = /0 G, &) (€) dE + A,

where A is arbitrary.

5.3 Applications of Lagrange’s identity

5.3.1 Hermiticity of Green functions

(5.55)

(5.56)

(5.57)

(5.58)

Earlier we noted the symmetry of the Green function for the Sturm—Liouville equation.

We will now establish the corresponding result for general differential operators.

Let G(x,&) obey L G(x,&) = 8(x — &) with homogeneous boundary conditions B,
and let G (x, &) obey Lz G'(x,&) = 8(x — &) with adjoint boundary conditions B'. Then,
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0 £ 1 0 € 1

Figure 5.5 G(x,&) =60(x —&),and GT(x,£) = 0(¢ —x).

from Lagrange’s identity, we have

06.6hi = [ (L1670, G0 - (6T L6081
. *
=/a dx{(S(x—E)G(x,E/)— (GT(x,S)) a(x—s@}

=G, - (¢'6.9) (5.59)

Thus, provided [Q(G, GT)]g = 0, which is indeed the case because the boundary
conditions for L, L' are mutually adjoint, we have
*

"0 = (G0 6) (5.60)

and the Green functions, regarded as matrices with continuous rows and columns, are
hermitian conjugates of one another.

Example: Let
L=— D(L) = {y,Ly € L?[0,1] : y(0) = 0}. (5.61)
In this case G(x,&) = 6(x — &); see Figure 5.5.

Now, we have

Lt = _%, D(L) = {y,Ly € L*[0,1] : y(1) = 0} (5.62)

and GT(x,€) = 6(& — x) ; see Figure 5.5.

5.3.2 Inhomogeneous boundary conditions

Our differential operators have been defined with linear hiomogeneous boundary condi-
tions. We can, however, use them, and their Green-function inverses, to solve differential
equations with inhomogeneous boundary conditions.

Suppose, for example, we wish to solve

—%y =f(), yO0)=a, y()=b. (5.63)
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We already know the Green function for the homogeneous boundary condition problem
with operator

L=-9 DL ={.lyel20.11:p0)=0y1)=0}.  (564)
Itis
X(l - E): X < %‘7
G = 5.65
(x.8) {S(l_x)’ - (5.65)

Now we apply Lagrange’s identity to x (x) = G(x, &) and y(x) to get

/-01 dx {G(x,f)(—agy(x)) —y(x)(—a)%G(xﬂg))}
= [G' (v, &)y(x) — G(x, &)y ()]0 (5.66)

Here, as usual, G’ (x,§) = 0,G(x, §). The integral is equal to

/ dx (G, ) (x) — y()d(x — £)) = / G, £)/ () dx — y(©), (5.67)
whilst the integrated-out bit is

—(1 = &)y(0) — 0)/(0) — &¥(1) + 0y (1). (5.68)

Therefore, we have

&) = / G, €) (0 dx + (1 — E)(0) + Ev(1). (5.69)

Here the term with f'(x) is the particular integral, whilst the remaining terms constitute
the complementary function (obeying the differential equation without the source term)
which serves to satisfy the boundary conditions. Observe that the arguments in G(x, &)
are not in the usual order, but, in the present example, this does not matter because G is
symmetric.

When the operator L is not self-adjoint, we need to distinguish between L and LT,
and G and GT. We then apply Lagrange’s identity to the unknown function u(x) and
x@ =G, 8).

Example: We will use the Green-function method to solve the differential equation

du =f), xel0,1], u(0) = a. (5.70)
dx

We can, of course, write down the answer to this problem directly, but it is interesting
to see how the general strategy produces the solution. We first find the Green function
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G(x, &) for the operator with the corresponding homogeneous boundary conditions. In
the present case, this operator is

L=23d, D) ={ulLuecL?0,1]:u0) =0} (5.71)

and the appropriate Green function is G(x,&) = 0(x — &). From G we then read off
k

the adjoint Green function as Gtx,8) = (G(E ,x)) . In the present example, we have

Gt(x,x) = 6(¢§ — x). We now use Lagrange’s identity in the form

/l dx {(L;’;G*'(x,g))* u(x) — (GT(x,g))*Lxu(x)} - [Q (GM)]; (5.72)

0

In all cases, the left-hand side is equal to

1
/0 dx {8(x — &) — GT(x,g)f(x)} , (5.73)

where T denotes transpose, G7 (x, &) = G(£, x). The left-hand side is therefore equal to

1
u(e) — /O dx G(&, ) (%), (5.74)

The right-hand side depends on the details of the problem. In the present case, the
integrated out part is

[Q(GT,u)](l) —_ [GT (x,é)u(x)](l) — u(0). (5.75)

At the last step we have used the specific form G7 (x, &) = 6 (£ — x) to find that only the
lower limit contributes. The end result is therefore the expected one:

y
u(y) = u(0) + / f(x)dx. (5.76)
0

Variations of this strategy enable us to solve any inhomogeneous boundary value problem
in terms of the Green function for the corresponding homogeneous boundary value
problem.

5.4 Eigenfunction expansions

Self-adjoint operators possess a complete set of eigenfunctions, and we can expand the
Green function in terms of these. Let

Loy = dnn. (5.77)
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Let us further suppose that none of the A, are zero. Then the Green function has the
eigenfunction expansion

That this is so follows from
TAOIAG) (Lgn0) g5 ®)
_ 3 e ©)
= n »
=" o)} (&)
=d(x—8). (5.79)

Example: Consider our familiar exemplar

L=—-98% D) ={y,Ly e L*[0,1]: y(0) = y(1) = 0}, (5.80)
for which
x(l - g)’ X < ga
G(x,£) = 5.81
%) {é(l—x), x> E&. ( )
Computing the Fourier series shows that
Gx.&) =) <#) sin(nx) sin(nwé). (5.82)

n=1
Modified Green function

When one or more of the eigenvalues is zero, a modified Green function is obtained by
simply omitting the corresponding terms from the series.

Gmod@,§) = Y %‘f”(g). (5.83)
o0
Then
LyGmod(x,8) =8(x — &) — Z On@)@; (§). (5.84)
An=0

We see that this Giyq is still hermitian, and, as a function of x, is orthogonal to the
zero modes. These are the properties we elected when constructing the modified Green
function in Equation (5.57).
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5.5 Analytic properties of Green functions

In this section we study the properties of Green functions considered as functions of
a complex variable. Some of the formula are slightly easier to derive using contour
integral methods, but these are not necessary and we will not use them here. The only
complex-variable prerequisite is a familiarity with complex arithmetic and, in particular,
knowledge of how to take the logarithm and the square root of a complex number.

5.5.1 Causality implies analyticity

Consider a Green function of the form G(¢# — t) and possessing the causal property that
G(t — 1) =0, for t < 7. If the improper integral defining its Fourier transform,

G(w) = / G dt = lim { f
0 T—o00 0

converges for real w, it will converge even better when w has a positive imaginary part.
Consequently G(w) will be a well-behaved function of the complex variable w every-
where in the upper half of the complex w plane. Indeed, it will be analytic there, meaning
that its Taylor series expansion about any point actually converges to the function. For
example, the Green function for the damped harmonic oscillator

T
G (1) dt} , (5.85)

Lesin(Qr), >0
G ={2° sin(€), 1> 0, (5.86)
0, t<0,
has Fourier transform
G(w) = ! (5.87)
TR wrin? ‘

which is always finite in the upper half-plane, although it has pole singularities at v =
—iy £ Q in the lower half-plane.

The only way that the Fourier transform G of a causal Green function can have a pole
singularity in the upper half-plane is if G contains an exponential factor growing in time,
in which case the system is unstable to perturbations (and the real-frequency Fourier
transform does not exist). This observation is at the heart of the Nyquist criterion for the
stability of linear electronic devices.

Inverting the Fourier transform, we have

G@t) / T w4 i e sinan (5.88)
— e = —e V'sin . .
oo 22— (w+iy)? 2 Q

It is perhaps surprising that this integral is identically zero if ¢ < 0, and non-zero if
t > 0. This is one of the places where contour integral methods might cast some light,
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but because we have confidence in the Fourier inversion formula, we know that it must
be correct.

Remember that in deriving (5.88) we have explicitly assumed that the damping coef-
ficient y is positive. It is important to realize that reversing the sign of y on the left-hand
side of (5.88) does more than just change e~ 7’ — e¥’ on the right-hand side. Naively
setting y — —y on both sides of (5.88) gives an equation that cannot possibly be
true. The left-hand side would be the Fourier transform of a smooth function, and the
Riemann—Lebesgue lemma tells us that such a Fourier transform must become zero when
|t| — oo. The right-hand side, on the contrary, would be a function whose oscillations
grow without bound as ¢ becomes large and positive.

To find the correct equation, observe that we can legitimately effect the sign-change
y — —y by first complex-conjugating the integral and then changing # to —¢. Performing
these two operations on both sides of (5.88) leads to

o

/ meﬂ‘wt ‘;—: = —0(—t)éeyt sin(7). (5.89)
—0oQ

The new right-hand side represents an exponentially growing oscillation that is suddenly

silenced by the kick at # = 0.

The effect of taking the damping parameter y from an infinitesimally small positive
value ¢ to an infinitesimally small negative value —e is therefore to turn the causal Green
function (no motion before it is started by the delta-function kick) of the undamped
oscillator into an anti-causal Green function (no motion after it is stopped by the kick);
see Figure 5.6. Ultimately, this is because the differential operator corresponding to a
harmonic oscillator with initial value data is not self-adjoint, and its adjoint operator
corresponds to a harmonic oscillator with fina/ value data.

This discontinuous dependence on an infinitesimal damping parameter is the subject
of the next few sections.

Physics application: Caldeira—Leggett in frequency space

If we write the Caldeira—Leggett equations of motion (5.36) in Fourier frequency space
by setting

oodw —iwt
o) = / 22 0wy, (5.90)

S 1 1
NV

iy=+ie

=—je

Figure 5.6 The effect on G(¢), the Green function of an undamped oscillator, of changing iy
from +ie to —ie.
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and

qi(1) =f —;Uql'(w)e_""’, (5.91)

)

we have (after including an external force Fex; to drive the system)
(—? + (@ - A2))0) = Y figi(@) = Fext@),
i

(—0” + 0})gi(®) + /iQ() = 0. (5.92)
Eliminating the ¢;, we obtain

f2

wz

(0 + @~ 22))0@ = 3- "1 0@) = Fex@).  (5.93)

As before, sums over the index i are replaced by integrals over the spectral function

wzf_z == / /J(“’) , (5.94)
and
~AQ = Z (’;’—22) — %/Ooo Jf:‘/’/) do'. (5.95)
Then
Ow) = <m> Fext(®), (5.96)

where the self-energy I1(w) is given by

M(w) = %/w {JW) NCECH }da)’ o2 [Ty som
0

o' w? — w? TJo o(@?*—o?)

The expression

1
=—— 5.98
O T (5.98)
is a typical response function. Analogous objects occur in all branches of physics.
For viscous damping we know that J (w) = nw. Let us evaluate the integral occurring
in IT(w) for this case:

o dw/
1 = _— 5.99
= [ = (5.99)

— W
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We will initially assume that w is positive. Now,

1 _1 1 1 (5.100)
a)’z—a)z_2a) o -0 o4l .

SO

o0

I(w) = [i(ln(a}’ —w) — 1n(w’+w))] . (5.101)

«'=0

At the upper limit we have In ((oo — w)/(co0 + a))) = In1 = 0. The lower limit

contributes
1
—— ( In(—w) — ln(a))). (5.102)
2w
To evaluate the logarithm of a negative quantity we must use
Inw =In|w| +iargw, (5.103)
where we will take arg  to lie in the range —7 < argw < 7.

To get an unambiguous answer, we need to give  an infinitesimal imaginary part +ie
(Figure 5.7). Depending on the sign of this imaginary part, we find that

I(w=+ie) = +%. (5.104)
2w
This formula remains true when the real part of w is negative, and so
[M(w £ ie) = Finw. (5.105)

Now the frequency-space version of

Ot) + 10 + Q%0 = Feu (1) (5.106)
I e

Figure 5.7 When w has a small positive imaginary part, arg (—w) ~ —.
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is
(—0” — inw + Q) Q) = Fext(), (5.107)
so we must opt for the small shift in w that leads to IT(w) = —inw. This means that
we must regard w as having a positive infinitesimal imaginary part, o — @ + ie. This

imaginary part is a good and needful thing: it effects the replacement of the ill-defined
singular integrals

o0

1 .

G = / ———e " dw, (5.108)
0 Wi —w

which arise as we transform back to real time, with the unambiguous expressions
G.(t) = / ” ;e*"w’ do. (5.109)
0 ©} —(w+ie)?
The latter, we know, give rise to properly causal real-time Green functions.

5.5.2 Plemelj formulce

The functions we are meeting can all be cast in the form

b /
f(w) = l/ P@) ey, (5.110)
7J, o —w
If w lies in the integration range [a, b], then we divide by zero as we integrate over
' = w. We ought to avoid doing this, but this interval is often exactly where we desire
to evaluate 1. As before, we evade the division by zero by giving w an infintesimally
small imaginary part: @ — w =% ie. We can then apply the Plemelj formulce, named for
the Slovenian mathematician Josip Plemelj, which say that

|
E(f(a) Fie) — f(w— ie)) —ip(w), o€ la,b]

1

b /
%(f(a)+is) +f(a)—is)) - ;P/a p@)

o —w

do'. (5.111)

As explained in Section 2.3.2, the “P” in front of the integral stands for principal part.
Recall that it means that we are to delete an infinitesimal segment of the ' integral lying
symmetrically about the singular point o’ = w.

The Plemelj formulee mean that the otherwise smooth and analytic function f'(w) is
discontinuous across the real axis between a and b (see Figure 5.8). If the discontinuity
p(w) is itself an analytic function then the line joining the points a and b is a branch cut,
and the endpoints of the integral are branch-point singularities of f (w).
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© L

4
€

Figure 5.8 The analytic function f (w) is discontinuous across the real axis between a and b.

ey

Figure 5.9  Sketch of the real and imaginary parts of g(0') = 1/(0/ — (@ + i€)).

The reason for the discontinuity may be understood by considering Figure 5.9. The
singular integrand is a product of p (') with

1 _ ) n i€
o —(wtie) (0 —w)?+e> (0 —w)?+e2

(5.112)

The first term on the right is a symmetrically cut-off version 1/(w’ — w) and provides
the principal-part integral. The second term sharpens and tends to the delta function
+ind(w — w) as ¢ — 0, and so gives +imp(w). Because of this explanation, the
Plemelj equations are commonly encoded in physics papers via the “ie” cabbala

1 o
o — (0 + ig) =P<w/_w) Tind(w — o). (5.113)

3
If p is real, as it often is, then f(w + in) = (f(a) — in)) . The discontinuity across
the real axis is then purely imaginary, and

%(f(erie) +f(w—ie)) (5.114)
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is the real part of /. In this case we can write (5.110) as

/
Ref(w) = -P fb /@) 4o, (5.115)
T J, o —ow

This formula is typical of the relations linking the real and imaginary parts of causal
response functions.

A practical example of such a relation is provided by the complex, frequency-
dependent, refractive index, n(w), of a medium. This is defined so that a travelling
electromagnetic wave takes the form

E(x,1) = Eg "@k—iot, (5.116)

Here, £ = w/c is the in vacuo wavenumber. We can decompose 7 into its real and
imaginary parts:

n(w) = ng + ing

= np(w) + ﬁy(w), (5.117)
where y is the extinction coefficient, defined so that the intensity falls off as / =
Iy exp(—yx).Anon-zero y can arise from either energy absorbtion or scattering out of the
forward direction. For the refractive index, the function /' (w) = n(w) — 1 can be written
in the form of (5.110), and, using n(—w) = n*(w), this leads to the Kramers—Kronig
relation

y (@)

/

c o0
nr(w) :1+—P/
T Jo

Formule like this will be rigorously derived in Chapter 18 by the use of contour-integral
methods.

5.5.3 Resolvent operator

Given a differential operator L, we define the resolvent operator tobe Ry = (L —AI)~!.
The resolvent is an analytic function of A, except when A lies in the spectrum of L.
We expand R, in terms of the eigenfunctions as

Ru(x, £) :Z%. (5.119)

When the spectrum is discrete, the resolvent has poles at the eigenvalues L. When the
operator L has a continuous spectrum, the sum becomes an integral:

Ry, 6) = / 2 ® (5.120)
wea (L) = A
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where p () is the eigenvalue density of states. This is of the form that we saw in connec-
tion with the Plemelj formule. Consequently, when the spectrum comprises segments
of the real axis, the resulting analytic function R, will be discontinuous across the real
axis within them. The endpoints of the segments will be branch point singularities of
R, and the segments themselves, considered as subsets of the complex plane, are the
branch cuts.

The trace of the resolvent Tr R,, is defined by

TrR; = /dx {R).(x,x)}

:/MH %mﬁm}
A — A

n

_ 1
=
—)/Mdu. (5.121)
nw—>»x
Applying Plemel;j to R, we have
Im [lin}){Terrig” =mp()\). (5.122)
e—

Here, we have used the fact that p is real, so
*
TrRy_je = (TrRH,-g> . (5.123)

The non-zero imaginary part therefore shows that R, is discontinuous across the real
axis at points lying in the continuous spectrum.

Example: Consider
L=—-3>4+m? D)=y, Ly e L*[—o00,0]}. (5.124)

As we know, this operator has a continuous spectrum, with eigenfunctions

U ik
QO = —=e". (5.125)
VI

Here, L is the (very large) length of the interval. The eigenvalues are £ = k* + m?, so
the spectrum is all positive numbers greater than m?. The momentum density of states is

L
pk) = —. (5.126)
2
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The completeness relation is

o
/ dk jik—e) _ S(x — &), (5.127)
00 2T

which is just the Fourier integral formula for the delta function.
The Green function for L is

°  (dn\ k@i () [ dk X1
Glx— ) = ar () TG0 — = ¢ " (5128
(=) /_Oo <dk> 2+ m? /_00271k2+m2 m’ (5.128)

We can use the same calculation to look at the resolvent Ry, = (— 83 — 2)~!. Replacing
m?* by —A, we have

Ri(x,y) = %eﬂlw. (5.129)

To appreciate this expression, we need to know how to evaluate /z where z is complex.
We write z = |z|e’® where we require —7 < ¢ < . We now define

vz = )z|e?/?. (5.130)

When we evaluate /z for z just below the negative real axis then this definition gives
—i/z| (see Figure 5.10), and just above the axis we find +i./|z|. The discontinuity
means that the negative real axis is a branch cut for the square-root function. The v/—1’s
appearing in R, therefore mean that the positive real axis will be a branch cut for R;.
This branch cut therefore coincides with the spectrum of L, as promised earlier.

If A is positive and we shift . — A 4+ ie then

L vyl L tivAkeyl—eleyl/2VE (5.131)

—=€

2= 2%

Figure 5.10 If ImA > 0, and with the branch cut for /Z in its usual place along the negative
real axis, then 4/—A has negative imaginary part and positive real part.



164 5 Green functions

Notice that this decays away as [x —y| — oo. The square root retains a positive real part
when 1 is shifted to A — ig, and so the decay is still present:
L v Ty L gmiv/Ab—yl—elv—y1/2v%

—e - ———e . 5.132

24— 2V (132
In each case, with X either immediately above or immediately below the cut, the small
imaginary part tempers the oscillatory behaviour of the Green function so that x (x) =
G(x, ) is square integrable and remains an element of L>[R].

We now take the trace of R by setting x = y and integrating:

TrRyyie = im znf/m. (5.133)
Thus,
L
p(A) = Q(A)zn—m, (5.134)
which coincides with our direct calculation.
Example: Let
L=—id,, D(L)={yLyel*R]. (5.135)

This has eigenfunctions ¢’ with eigenvalues k. The spectrum is therefore the entire real
line. The local eigenvalue density of states is 1 /2. The resolvent is therefore

(—idy — )} = R e (5.136)
* 7o ) o k=1 '

To evaluate this, first consider the Fourier transforms of

Fi(x) = 0(x)e™ ",
Fr(x) = —0(—x)e"", (5.137)

where « is a positive real number (see Figure 5.11).

We have
- —K. —ik 1 1
{e(x)e x}e e e =~~~ (5.138)
oo i k—ix
o0 . 11
O\ kX | —ikx ——
/_OO{ 0(—x)e }e dr= . (5.139)
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/ A

~~—

=X - X

—

Figure 5.11 The functions F(x) = 0(x)e™* and F, (x) = —0(—x)e*~.

Inverting the transforms gives

O(x)e " = L - ;eﬂ‘x dk,
2mi J_oo k — ik
—0(—x)e" = ™ dk. 5.140
(=x)e T 2mi / k + ik ( )

These are important formula in their own right, and you should take care to understand
them. Now we apply them to evaluating the integral defining R;.
If we write A = u + iv, we find

(5.141)

1 / gk L i0(x — £)eH6—8e=v0=E) 1, 5 (,
27 k — & | —ifE — x)eireE =8y, 0.

In each case, the resolvent is oc ¢"** away from &, and has a jump of +i at x = & so as
to produce the delta function. It decays either to the right or to the left, depending on the
sign of v. The Heaviside factor ensures that it is multiplied by zero on the exponentially
growing side of e, so as to satisfy the requirement of square integrability.

Taking the trace of this resolvent is a little problematic. We are to setx = £ and integrate
— but what value do we associate with 6(0)? Remembering that Fourier transforms
always give the mean of the two values at a jump discontinuity, it seems reasonable to
set 6(0) = % With this definition, we have

fL, ImA >0,
TrR;, = ' (5.142)
—5L, Imx <O.

Our choice is therefore compatible with Tr Ry ;e = wp = L/2m. We have been lucky.
The ambiguous expression 8(0) is not always safely evaluated as 1/2.
5.6 Locality and the Gelfand-Dikii equation

The answers to many quantum physics problems can be expressed either as sums over
wavefunctions or as expressions involving Green functions. One of the advantages of
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writing the answer in terms of Green functions is that these typically depend only on
the local properties of the differential operator whose inverse they are. This locality
is in contrast to the individual wavefunctions and their eigenvalues, both of which are
sensitive to the distant boundaries. Since physics is usually local, it follows that the
Green function provides a more efficient route to the answer.

By the Green function being local we mean that its value for x, £ near some point can
be computed in terms of the coefficients in the differential operator evaluated near this
point. To illustrate this claim, consider the Green function G(x, &) for the Schrodinger
operator —8)% + g(x) + X on the entire real line. We will show that there is a not-exactly-
obvious (but easy to obtain once you know the trick) local gradient expansion for the
diagonal elements D(x) = G(x,x). These elements are often all that is needed in physics.
We begin by recalling that we can write

G(x,8) occu(x)v(§)

where u(x), v(x) are solutions of (—8)% + g(x) + A)y = 0 satisfying suitable boundary
conditions to the right and left respectively. We set D(x) = G(x,x) and differentiate
three times with respect to x. We find

3Dx) = u®v + 3"V + 3u'v" 4+ uw®
= (Ox(g +Mu) v + 3(q + A)0x (uv) + (dx(g + A)v) u.

Here, in passing from the first to the second line, we have used the differential equation
obeyed by u and v. We can re-express the second line as

1
(qdx + 0q — zaj)D(x) = —223:D(x). (5.143)

This relation is known as the Gelfand—Dikii equation. Using it we can find an expansion
for the diagonal element D(x) in terms of ¢ and its derivatives. We begin by observing
that for g(x) = 0 we know that D(x) = 1/ (24/2). We therefore conjecture that we can
expand

D(x) =

1 bi(x)  ba(x) by (x)
1 — —1)" )
2ﬁ< + 4 (=1 + )

20 (20?2 @r)"
If we insert this expansion into (5.143) we see that we get the recurrence relation
1.3
(qox + dxq — Eax)bn = Oxbp41. (5.144)

We can therefore find 5,41 from b, by differentiation followed by a single integration.
Remarkably, 0,5, 1 is always the exact derivative ofa polynomial in ¢ and its derivatives.
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Further, the integration constants must be zero so that we recover the ¢ = 0 result. If we
carry out this process, we find

bi(x) = q(v),
390 ')

b2 ()C) = 2 2 ,
540 540 Sqwe'e) | ¢Pw
b3(x) = R ; N ©,
ba(x) = 35"8(x)4 _ 35‘1@3‘@@2 35 q(xf 7w, Zlq;(x)z
'(x) g% ) ©)
n Tq (X)zf] (x) n 7q(x)f (x) g S(X)’ 5115

and so on. (Note how the terms in the expansion are graded: each b, is homogeneous in
powers of g and its derivatives, provided we count two x derivatives as being worth one
q(x).) Keeping a few terms in this series expansion can provide an effective approxima-
tion for G(x,x), but, in general, the series is not convergent, being only an asymptotic
expansion for D(x).

A similar strategy produces expansions for the diagonal element of the Green function
of other one-dimensional differential operators. Such gradient expansions also exist in
higher dimensions but the higher-dimensional Seeley-coefficient functions are not as
easy to compute. Gradient expansions for the off-diagonal elements also exist, but,
again, they are harder to obtain.

5.7 Further exercises and problems

Here are some further exercises that are intended to illustrate the material of this
chapter:

Exercise 5.1: Fredholm alternative. A heavy elastic bar with uniform mass m per unit
length lies almost horizontally. It is supported by a distribution of upward forces F'(x);
see Figure 5.12.

y '

Figure 5.12  Elastic bar.




168 5 Green functions

The shape of the bar, y(x), can be found by minimizing the energy

L1
U[y]=/O {Ex(y”)z—(F(x)—mg)y}dx-

o Show that this minimization leads to the equation

-~ d4y_ "o _
Ly=«k—5=Fkx)—mg, y =y =0 at x=0,L
dx

o Show that the boundary conditions are such that the operator Lis self-adjoint with
respect to an inner product with weight function 1.

o Find the zero modes which span the null space of L.

o Ifthere are n linearly independent zero modes, then the codimension of the range of L
is also n. Using your explicit solutions from the previous part, find the conditions that
must be obeyed by F(x) for a solution of Zy = F — mg to exist. What is the physical
meaning of these conditions?

e The solution to the equation and boundary conditions is not unique. Is this
non-uniqueness physically reasonable? Explain.

Exercise 5.2: Flexible rod again. A flexible rod is supported near its ends by means of
knife edges that constrain its position, but not its slope or curvature (Figure 5.13). It is
acted on by a force F'(x).

The deflection of the rod is found by solving the boundary value problem

d4y

i F(), »0)=y1)=0, »"(0)=y"(1)=0.

We wish to find the Green function G(x, &) that facilitates the solution of this problem.

(a) If the differential operator and domain (boundary conditions) above is denoted by
L, what is the operator and domain for LT? Is the problem self-adjoint?

(b) Are there any zero modes? Does F' have to satisfy any conditions for the solution to
exist?

(c) Write down the conditions, if any, obeyed by G(x, £) and its derivatives 0,G(x, &),
32.G(x,&), 8., G(x,&)atx = 0,x =& and x = 1.

x
Il
(@)

F(x) x=1

Figure 5.13  Simply supported rod.
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(d) Using the conditions above, find G(x, £). (This requires some boring algebra — but
if you start from the “jump condition” and work down, it can be completed in under
a page.)

(e) Is your Green function symmetric (G(x,x) = G(&,x))? Is this in accord with the
self-adjointness or not of the problem? (You can use this property as a check of your
algebra.)

(f) Write down the integral giving the general solution of the boundary value problem.
Assume, if necessary, that F'(x) is in the range of the differential operator. Differ-
entiate your answer and see if it does indeed satisfy the differential equation and
boundary conditions.

Exercise 5.3: Hot ring. The equation governing the steady state heat flow on a thin ring
of unit circumference is

=" =f, 0<x<1, pO0) =y, »(©0)=yQ).

(a) This problem has a zero mode. Find the zero mode and the consequent condition on
f(x) for a solution to exist.
(b) Verify that a suitable modified Green function for the problem is

1 , 1
g, 8) == - slx—&l.

You will need to verify that g(x, &) satisfies both the differential equation and the
boundary conditions.

Exercise 5.4: By using the observation that the left-hand side is 27 times the eigenfunc-
tion expansion of a modified Green function G(x,0) for L = —83 on a circle of unit
radius, show that

S olinx 1 7.[2

Z =5 —1)? — <> *el02m).

n=—0o0

The term with n = 0 is to be omitted from the sum.

Exercise 5.5: Seek a solution to the equation

d?y
) =f@), xe€l0,1]

with inhomogeneous boundary conditions y'(0) = Fy, /(1) = F}. Observe that the
corresponding homogeneous boundary condition problem has a zero mode. Therefore
the solution, if one exists, cannot be unique.

(a) Show that there can be no solution to the differential equation and inhomogeneous
boundary condition unless f'(x) satisfies the condition

1
/Of(x)dX=F0—F1. *)
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(b) Let G(x, &) denote the modified Green function (5.57)

2 2
G(xé)—{%_ngx;E’ 0<x<§&
RO | x> +&2
37X

E<x<l.

Use the Lagrange-identity method for inhomogeneous boundary conditions to
deduce that if a solution exists then it necessarily obeys

1 1
y(x) =/0 y(§)d§ +/0 G, x)f (§)dE + G(1,x)F1 — G(0,x)Fo.

(c) By differentiating with respect to x, show that

1
Vientatne(6) = /0 G(&,0f (&) dE + G(1,1)F) — G(0,x)Fo + C,

where C is an arbitrary constant, obeys the boundary conditions.
(d) By differentiating a second time with respect to x, show that yieptative (x) is a solution
of the differential equation if, and only if, the condition (%) is satisfied.

Exercise 5.6: Lattice Green functions. The k x k matrices

2 -1 0 0 0o ... O
-1 2 -1 0 0o ... 0
o -1 2 -1 0 0
Ti=|: & o
0 o -1 2 -1 0
0 0 o -1 2 -1
0 0 0 o -1 2
2 -1 0 0 0 0
-1 2 -1 0 0 0
o -1 2 -1 0 0
Tz: .
0 o -1 2 -1 0
0 0 o -1 2 -1
0 0 0 0o -1 1

represent two discrete lattice approximations to —8)% on a finite interval.

(a) What are the boundary conditions defining the domains of the corresponding contin-
uum differential operators? [They are either Dirichlet (y = 0) or Neumann (3/ = 0)
boundary conditions.] Make sure you explain your reasoning.
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(b) Verify that

Sy i
[T, 1 = min(i,j) — e
[T '] = min(i,j).

(c¢) Find the continuum Green functions for the boundary value problems approximated
by the matrix operators. Compare each of the matrix inverses with its corresponding
continuum Green function. Are they similar?

Exercise 5.7: Eigenfunction expansion. The resolvent (Green function) R, (x, &) = (L —
)‘)x_sl can be expanded as

On(X)n(§)
An— A

E)

L—h)y =
An

where ¢, (x) is the normalized eigenfunction corresponding to the eigenvalue A,,. The
resolvent therefore has a pole whenever A approaches 1,,. Consider the case

—1

2,
sz (xas) = _dxz — @ )
xé

with boundary conditions y(0) = y(L) = 0.

(a) Show that

1
sz(x,";“)zmsinwxsinw(L—f), x<§,

= _;sin ol —x)sinwé, & <x.
wsin wL
(b) Confirm that R, becomes singular at exactly those values of w? corresponding to
eigenvalues w? of _ZC_ZZ'
(c) Find the associated eigenfunctions ¢, (x) and, by taking the limit of R > as w? — a)ﬁ,
confirm that the residue of the pole (the coefficient of 1/ (wﬁ — w?)) is precisely the
product of the normalized eigenfunctions ¢, (x)@, ().

Exercise 5.8: In this exercise we will investigate the self-adjointness of the operator
T = —id/dx on the interval [, b] by using the resolvent operator Ry = (T — Al)~!.

(a) The integral kernel R), (x, &) is a Green function obeying

)
<—i— - /\) Ru(x,8) =d8(x —§).
ax
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Use standard methods to show that
1 .
Ry (x,&) = 3 <KA(§) +isgn(x — E))elk(x—S),

where K (§) is a number that depends on the boundary conditions imposed at the
endpoints, a, b, of the interval.

(b) If T is to be self-adjoint then the Green function must be hermitian, i.e. R) (x,&) =
[Ry.(&,x)]*. Find the condition on K, for this to be true, and show that it implies that

Rib.E) _
Ri@g

where 6, is some real angle. Deduce that the range of R, is the set of functions

D; = (p(x) : y(b) = e y(a)).

Now the range of R, is the domain of (7 — Al), which should be the same as the
domain of T and therefore not depend on A. We therefore require that 6, not depend
on A. Deduce that T will be self-adjoint only for boundary conditions y(b) = €y (a)
—i.e. for twisted periodic boundary conditions.

(c) Show that with the twisted periodic boundary conditions of part (b), we have

)\(b—a)—9>

Kkz—cot( >

From this, show that R, (x,&) has simple poles at A = X,, where A, are the
eigenvalues of 7.

(d) Compute the residue of the pole of R) (x, &) at the eigenvalue 1, and confirm that it
is a product of the corresponding normalized eigenfunctions.

Problem 5.9: Consider the one-dimensional Dirac Hamiltonian

i_ —l'a).c mi — imy
my + imy +i0,
= —i030y + m(x)o1 + my(x)03.

Here my (x), my(x) are real functions, and the o; are the Pauli matrices. H acts on a
two-component “spinor”

_ ("1™
e = (wzoc))'

Impose self-adjoint boundary conditions

Vi@ _ expli6] 1 (b)
V2(a) T Y (b)

= exp{ifp}
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at the ends of the interval [a, b]. Let Wy (x) be a solution of HY = \¥ obeying the
boundary condition at x = a, and Wg(x) be a solution obeying the boundary condition
at x = b. Define the “Wronskian” of these solutions to be

W (W, Wg) = U535,

(a) Show that, for real A and the given boundary conditions, the Wronskian W (¥, Wg)
is independent of position. Show also that W (W, W) = W (W, W) = 0.
(b) Show that the matrix-valued Green function G(x, £) obeying

(H — ADG(x,£) = 18(x — £),

and the given boundary conditions, has entries

i
VLV E), x <,

Gapr§) =1 ¥
3 VRa V] p(E), x> .

Observe that Gupg (x,§) = G,Za (&€, x), as befits the inverse of a self-adjoint operator.
(c) The Green function is discontinuous at x = &, but we can define a “position-
diagonal” part by taking the average

def 1

Gap(r) < 2 (# VRa (V] () = = VLa Vi (x)) :

Show that if we define the matrix g(x) by setting g(x) = G(x)53, then trg(x) =0
and g%(x) = — %I . Show further that

laxgz [/g:g]: (*)
where K (x) = &3 (M — my (X)5) — ma (x)52).

The equation (x) obtained in part (c) is the analogue of the Gelfand-Dikii equation for
the Dirac Hamiltonian. It has applications in the theory of superconductivity, where (x)
is known as the Eilenberger equation.
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Partial differential equations

Most differential equations of physics involve quantities depending on both space and
time. Inevitably they involve partial derivatives, and so are partial differential equations
(PDEs). Although PDEs are inherently more complicated that ODEs, many of the ideas
from the previous chapters — in particular the notion of self-adjointness and the resulting
completeness of the eigenfunctions — carry over to the partial differential operators that
occur in these equations.

6.1 Classification of PDEs

We focus on second-order equations in two variables, such as the wave equation

227? - CLZB;T(; =f(x,t)  (Hyperbolic), (6.1)
the Laplace or Poisson equation
?;Tf + ‘327‘2’ =f(x,»)  (Elliptic), (6.2)
or Fourier’s heat equation
Bzgp o .
T K, =& (Parabolic). (6.3)

What do the names hyperbolic, elliptic and parabolic mean? In high-school coordinate
geometry we learned that a real quadratic curve

ax® +2bxy +cy* + i+ gy +h=0 (6.4)

is a hyperbola, an ellipse or a parabola depending on whether the discriminant, ac — b?,
is less than zero, greater than zero or equal to zero, these being the conditions for the

a b
|:b Ci| (6.5)

to have signature (+, —), (+, +) or (+, 0).

matrix

174



6.1 Classification of PDEs 175

By analogy, the equation

92 92 92
a(x,y)—(p + 2b(x,y)—(p + c(x,y)—(p + (lower orders) = 0 (6.6)
0x2 dxdy 92

is said to be hyperbolic, elliptic or parabolic at a point (x, y) if

a(x,y) bx,y)

22
bry) ety — @7 lw 6.7)

is less than, greater than or equal to zero, respectively. This classification helps us
understand what sort of initial or boundary data we need to specify the problem.
There are three broad classes of boundary conditions:

(a) Dirichlet boundary conditions: The value of the dependent variable is specified
on the boundary.

(b) Neumann boundary conditions: The normal derivative of the dependent variable
is specified on the boundary.

(c) Cauchy boundary conditions: Both the value and the normal derivative of the
dependent variable are specified on the boundary.

Less commonly met are Robin boundary conditions, where the value of a linear combi-
nation of the dependent variable and the normal derivative of the dependent variable is
specified on the boundary.

Cauchy boundary conditions are analogous to the initial conditions for a second-order
ordinary differential equation. These are given at one end of the interval only. The other
two classes of boundary condition are higher-dimensional analogues of the conditions
we impose on an ODE at both ends of the interval.

Each class of PDEs requires a different class of boundary conditions in order to have
a unique, stable solution.

(1) Elliptic equations require either Dirichlet or Neumann boundary conditions on a
closed boundary surrounding the region of interest. Other boundary conditions
are insufficient to determine a unique solution, are overly restrictive or lead to
instabilities.

(2) Hyperbolic equations require Cauchy boundary conditions on an open surface.
Other boundary conditions are either too restrictive for a solution to exist, or
insufficient to determine a unique solution.

(3) Parabolic equations require Dirichlet or Neumann boundary conditions on an open
surface. Other boundary conditions are too restrictive.



176 6 Partial differential equations
6.2 Cauchy data

Given a second-order ordinary differential equation

poy' +p1y +py =1 (6.8)

with initial data y(a), y’(a) we can construct the solution incrementally. We take a step
8x = ¢ and use the initial slope to find y(a + &) = y(a) + &)/(a). Next we find y” (a)
from the differential equation

1
V(@) = " (P (@ + pay(a) = f(a)), (6.9)

and use it to obtain y'(a + &) = y'(a) + €y”(a). We now have initial data, y(a + ¢),
V'(a + ¢), at the point a + ¢, and can play the same game to proceed to a + 2¢, and
onwards.

Suppose now that we have the analogous situation of a second-order partial differential
equation

2
a,w(x)ajt% + (lower orders) = 0 (6.10)
in R”. We are also given initial data on a surface, I', of codimension one in R” (see
Figure 6.1).
At each point p on I" we erect a basis m, t, to, ..., t,_, consisting of the normal to I"
and n — 1 tangent vectors. The information we have been given consists of the value of
@ at every point p together with

09 def 1 99

o e (6.11)

the normal derivative of ¢ at p. We want to know if these Cauchy data are sufficient to
find the second derivative in the normal direction, and so construct similar Cauchy data

"

L

Figure 6.1 The surface I" on which we are given Cauchy data.
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on the adjacent surface I' 4+ en. If so, we can repeat the process and systematically
propagate the solution forward through R”.
From the given data, we can construct

82§0 def s az‘p
ondt; P oxtgxy’

%0 def o 9%

= —, 6.12
01;0t; b 9xHaxY 6.12)
but we do not yet have enough information to determine
9? 92
i (6.13)
onon axHoxY
Can we fill the data gap by using the differential equation (6.10)? Suppose that
g v
_ v
e ¢y +ntn"d® (6.14)

where ¢ " is a guess that is consistent with (6.12), and @ is as yet unknown, and, because
of the factor of n*n", does not affect the derivatives (6.12). We plug into

2
Ay (xi)m + (known lower orders) = 0 (6.15)
and get
a,yn*n’ ® + (known) = 0. (6.16)

We can therefore find ® provided that
agyntn” # 0. (6.17)

If this expression is zero, we are stuck. It is like having pg(x) = 0 in an ordinary
differential equation. On the other hand, knowing ® tells us the second normal derivative,
and we can proceed to the adjacent surface where we play the same game.

Definition: A characteristic surface is a surface ¥ such that a,,,n*n” = 0 at all points
on X. We can therefore propagate our data forward, provided that the initial-data surface
I' is nowhere tangent to a characteristic surface. In two dimensions the characteristic
surfaces become one-dimensional curves. An equation in two dimensions is hyperbolic,
parabolic, or elliptic at a point (x,y) if it has two, one or zero characteristic curves
through that point, respectively.

Characteristics are both a curse and blessing. They are a barrier to Cauchy data, but,
as we see in the next two subsections, they are also the curves along which information
is transmitted.
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6.2.1 Characteristics and first-order equations

Suppose we have a linear first-order partial differential equation
ou ou
a(x,y)—— +b(x,y)— + cx, pu = f(x,y). (6.18)
dx ay

We can write this in vector notation as (v - V)u + cu = f, where v is the vector field
v = (a,b). If we define the flow of the vector field to be the family of parametrized
curves x(¢), y(¢) satisfying

dx dy

- = a(an’)a dt

7 = b(x,y), (6.19)

then the partial differential equation (6.18) reduces to an ordinary linear differential
equation

du

o Heu =1 (6.20)

along each flow line. Here,

u(t) = ux(0),y(1)),
c(t) = c(x(1),y(1),
SO =7x@),y0). (6.21)

Provided that a(x, y) and b(x, y) are never simultaneously zero, there will be one flow-
line curve passing through each point in R2. If we have been given the initial value of u
on a curve I' that is nowhere tangent to any of these flow lines then we can propagate
these data forward along the flow by solving (6.20). On the other hand, if the curve I'
does become tangent to one of the flow lines at some point then the data will generally be
inconsistent with (6.18) at that point, and no solution can exist. The flow lines therefore
play arole analogous to the characteristics of a second-order partial differential equation,
and are therefore also called characteristics (see Figure 6.2). The trick of reducing the
partial differential equation to a collection of ordinary differential equations along each
of its flow lines is called the method of characteristics.

Exercise 6.1: Show that the general solution to the equation

dp  0d¢
—_——— = — = 0
ox  ay (x=y)e

is
px,y) =e Vf(x+y),

where f is an arbitrary function.
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X

Figure 6.2 Initial data curve I, and flow-line characteristics.

6.2.2 Second-order hyperbolic equations

Consider a second-order equation containing the operator

92 92 92
D= — +2b — —. 6.22
a(x,y) =7 +2b(x,y) ox3y + c(x,y) 57 (6.22)
We can always factorize
aX? +2bXY 4 cY? = (aX + BY)(yX +68Y), (6.23)

and from this obtain

92 92 92 9 9 9 9
— 42— c—=a—+B— — +8— | + lower,
as3 + oxdy +Cay2 (a +8 ) ()/ ™ + ay) + lower

0 +4é 0 + B 0 + lower
— — ) a— — Wer.
yax ay 0x ay
(6.24)

Here “lower” refers to terms containing only first-order derivatives such as
ay\ 0 a8\ o
ol —)—, B|l—)—, ectc
dx ) ox ay ) dy
A necessary condition, however, for the coefficients «, 8, y, 8 to be real is that
2 1 2
ac—b =aﬂy8—z(a8+;3y)

= @~y <0, (625)
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A factorization of the leading terms in the second-order operator D as the product of two
real first-order differential operators therefore requires that D be hyperbolic or parabolic.

It is easy to see that this is also a sufficient condition for such a real factorization. For
the rest of this section we assume that the equation is hyperbolic, and so

1
ac —b* = —@s - By)? <O0. (6.26)

With this condition, the two families of flow curves defined by

dx dy
: _— = _ = 2
Ci = o (x,y), i B, ), (6.27)
and
dx dy
C: — = - =34 6.28
2 dt )’(XJ/)s dt (x’y)a ( )

are distinct, and are the characteristics of D.
A hyperbolic second-order differential equation Du = 0 can therefore be written in
either of two ways:

d a
a—+B— U +F =0, (6.29)
ox ay
or
0 0
Y-+t — U2+ F2=0, (6.30)
x ay
where
U — ou +88u
1= V 8.X 8_)/’
a d
U =a st 4 g% (6.31)
ax ay

and £ » contain only du/dx and du/dy. Given suitable Cauchy data, we can solve the
two first-order partial differential equations by the method of characteristics described
in the previous subsection, and so find Uj (x, y) and U;(x, y). Because the hyperbolicity
condition (6.26) guarantees that the determinant

Yy 8| _ .
aﬁ‘—yﬂ ad

is not zero, we can solve (6.31) and so extract from U] > the individual derivatives du/dx
and du/dy. From these derivatives and the initial values of u, we can determine u(x, y).
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6.3 Wave equation

The wave equation provides the paradigm for hyperbolic equations that can be solved
by the method of characteristics.

6.3.1 d’Alembert’s solution
Let ¢(x, f) obey the wave equation

2 1 0%

W_C_ZWZO’ —00 < X < 00. (6.32)

We use the method of characteristics to propagate Cauchy data ¢(x,0) = ¢o(x) and
@(x,0) = vo(x), given on the curve I' = {x € R, t = 0}, forward in time.
We begin by factoring the wave equation as

2 2
Thus,
(i n lﬁ) U -1y =0, (6.34)
ox ¢ ot
where
U:(p/:g_z, V:%¢=é%—(f. (6.35)

The quantity U — V is therefore constant along the characteristic curves
X — ct = const. (6.36)

Writing the linear factors in the reverse order yields the equation

(5 — EE) (U+V)=0. (6.37)

This implies that U + V' is constant along the characteristics
X + ct = const. (6.38)
Putting these two facts together tells us that
Vix,t') = %[V(x, H+ U@, )]+ %[V(x, ) —U,t)]

1 1
= e+ ct',0) + U(x + ct',0)] + NUCE ct',0) — U(x — ct’, 0)].

(6.39)
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The value of the variable V at the point (x, ¢') has therefore been computed in terms of the

values of U and V on the initial curve I'. After changing variables from ¢ to § = x ¢t/
as appropriate, we can integrate up to find that

t
px,1) = ¢(x,0) +c/ V(x,t)dt
0
1 x+ct 1 x—ct
= ¢(x,0) + E/ ¢'(§,0)dE + 5/ ¢'(&,0)dg

1 x—+ct
to [ eoas
x—ct

1 1 x—+ct
= —{px+ct,0) + @ —ct,0)} + —/ ¢(&,0)dE. (6.40)
2 2¢ Jy—ct
This result
1 xX—+ct
P50 = 3 lgole+ ) + ol — ) + 5 / wEds  (641)
x—ct

is usually known as d’Alembert’s solution of the wave equation. It was actually obtained
first by Euler in 1748.

The value of ¢ at x,¢, is determined by only a finite interval of the initial Cauchy
data. In more generality, ¢(x, ) depends only on what happens in the past light-cone
of the point, which is bounded by a pair of characteristic curves. This is illustrated in
Figure 6.3.

D’ Alembert and Euler squabbled over whether ¢g and vg had to be twice differentiable
for the solution (6.41) to make sense. Euler wished to apply (6.41) to a plucked string,
which has a discontinuous slope at the plucked point, but d’ Alembert argued that the wave
equation, with its second derivative, could not be applied in this case. This was a dispute
that could not be resolved (in Euler’s favour) until the advent of the theory of distributions.

x+c£

Figure 6.3 Range of Cauchy data influencing ¢ (x, 7).
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It highlights an important difference between ordinary and partial differential equations:
an ODE with smooth coefficients has smooth solutions; a PDE with smooth coefficients
can admit discontinuous or even distributional solutions.

An alternative route to d’ Alembert’s solution uses a method that applies most effec-
tively to PDEs with constant coefficients. We first seek a general solution to the PDE
involving two arbitrary functions. Begin with a change of variables. Let

E=x+ct,
n=x—ct (6.42)

be light-cone coordinates. In terms of them, we have

1
X = 5(%‘ + 77):
1
t= 2_(5 — ). (6.43)
c
Now,
0 ox 0 ot o 1 /0 10
— = —— ==+ -—=). (6.44)
o0& 0§ ox 0&dt 2 \dx cot
Similarly
0 1/0 10
— = (==-==). (6.45)
an 2 \dx cot
Thus
2 19 d 139 d 19 a2
— )=+ =) =4—. (6.46)
axz 2 o2 ax cdt) \dx cot &I
The characteristics of the equation
82
Y _o (6.47)
0Edn

are & = const. or n = const. There are two characteristics curves through each point, so
the equation is still hyperbolic.
With light-cone coordinates it is easy to see that a solution to

2 1 92 BRI
(W B 0_287)¢)=48$8n =0 (©49)
is
o, 1) =1 (&) +gm) =f(x+ct) +glx —cp). (6.49)

It is this expression that was obtained by d’Alembert (1746).
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Following Euler, we use d’ Alembert’s general solution to propagate the Cauchy data
o(x,0) = @o(x) and ¢(x, 0) = vo(x) by using this information to determine the functions

f and g. We have

S @) +g(x) = po(x),
c(f'(x) — g'(x)) = vo(x). (6.50)

Integration of the second line with respect to x gives

1 X
fo) — g0 = - /0 v0(®) d + A, 6.51)

where 4 is an unknown (but irrelevant) constant. We can now solve for /" and g, and find

1 1 X 1
@ = 50000+ o / vo(€) dE + ~A,
¢ Jo

2 2
= ! ! ’ d 1A 6.52
g(x)—yo(x)—%/o w(®) d — 54, 6.52)
and so
1 x—+ct
05,0 = 3 (g D)+ golx = eD} + 5 / wE)dE. (653)
x—ct

The unknown constant 4 has disappeared in the end result, and again we find
“d’Alembert’s” solution.

Exercise 6.2: Show that when the operator D in a constant-coefficient second-order PDE
D¢ = 0 is reducible, meaning that it can be factored into two distinct first-order factors
D = P P;, where

d 0
P = iz + ﬂi@ + Vi,

then the general solution to Dp = 0 can be written as ¢ = ¢1 + ¢o, where Pi¢p; = 0,
P>¢> = 0. Hence, or otherwise, show that the general solution to the equation

is
ex,y) =f(2x —y) +e'gx),

where f, g, are arbitrary functions.
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Exercise 6.3: Show that when the constant-coefficient operator D is of the form

s d d 2
D=P =\a—+p—+v]) .,
x ay

with ¢ # 0, then the general solution to Dg = 0 is given by ¢ = ¢ + x¢p, where
Pp12=0.(Ifo =0and B # 0, then ¢ = ¢1 + y¢2.)

6.3.2 Fourier’s solution

In 1755 Daniel Bernoulli proposed solving for the motion of a finite length L of
transversely vibrating string by setting

o0
. niwx nwct
y(x, ) = X}A” sin (T) cos ( 7 ) , (6.54)
n=

but he did not know how to find the coefficients 4, (and perhaps did not care that
his cosine time dependence restricted his solution to the initial condition y(x,0) =
0). Bernoulli’s idea was dismissed out of hand by Euler and d’Alembert as being too
restrictive. They simply refused to believe that (almost) any chosen function could be
represented by a trigonometric series expansion. It was only 50 years later, in a series
of papers starting in 1807, that Joseph Fourier showed how to compute the 4, and
insisted that indeed “any” function could be expanded in this way. Mathematicians have
expended much effort in investigating the extent to which Fourier’s claim is true.

We now try our hand at Bernoulli’s game. Because we are solving the wave equation
on the infinite line, we seek a solution as a Fourier integral. A sufficiently general form is

> dk ikx—iwyt * —ikx+iwyt
o= [ o [a(k)e K g (ke ko } (6.55)
T

—00

where w; = c|k| is the positive root of w* = c?k?. The terms being summed by the
integral are each individually of the form f'(x — ct) or f (x + c?), and so ¢(x, ?) is indeed
a solution of the wave equation. The positive-root convention means that positive k
corresponds to right-going waves, and negative & to left-going waves.

We find the amplitudes a(k) by fitting to the Fourier transforms

det [ ;
O (k) = / o(x,t = 0)e g,
—0o0

def [, ik
x (k) = o, t =0)e “dx, (6.56)
—0Q
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of the Cauchy data. Comparing

* dk .
p(x,t =0) = f — @ (k)e'r,
27

—0o0

Gt = 0) = / Tk e, 6.57)
27

—00
with (6.55) shows that
(k) = a(k) + a*(—k),

x (k) = iy, (a*(—k) - a(k)). (6.58)

Solving, we find
1 .
atk) = 5 (<D(k> + ix(k)),
Wk
a* (k) = % <<I>(—k) _ X(—k)) : (6.59)
Wi

The accumulated wisdom of 200 years of research on Fourier series and Fourier integrals
shows that, when appropriately interpreted, this solution is equivalent to d’ Alembert’s.

6.3.3 Causal Green function

We now add a source term:

1 9% 8%

We solve this equation by finding a Green function such that

19?92 .
<c_2W — @> Gx,t;6,71) =8(x — £)8(t — 7). (6.61)

If the only waves in the system are those produced by the source, we should demand
that the Green function be causal, in that G(x,t;&,7) = 0if # < t (see Figure 6.4).

To construct the causal Green function, we integrate the equation over an infinitesimal
time interval from v — ¢ to T + ¢ and so find Cauchy data

Gx,t+¢&6,71)=0,

%G(x,t +&€,7) = A28(x — £). (6.62)
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At

¥ ()

- X

Figure 6.4 Support of G(x,t; €, 7) for fixed &, 7, or the “domain of influence”.

We insert this data into d’Alembert’s solution to get

x+c(t—1)

Gx,1;6,7) = 01 — r)% 8(¢ — £)de

x—c(t—1)
— g@(t—t) {9(x—§+c(t—r)> —9<x—g —c(t—r))}.
(6.63)

We can now use the Green function to write the solution to the inhomogeneous problem as

px, 1) = // G, t;€,1)q(€, ) drdé. (6.64)

The step-function form of G(x, ¢; £, t) allows us to obtain

(1) = f f Gx,1:€, 1)q(&, 7) drdE,

x+c(t—1)
/ dr / 46,7 de
x—c(t—1)
_¢ / / g(&,7) drde, (6.65)
2 JJa

where the domain of integration 2 is shown in Figure 6.5.
We can write the causal Green function in the form of Fourier’s solution of the wave
equation. We claim that

S ) 1k(x S)e—tw(t 7)
G(x,t; = 6.66
€ 1)=CcC / / {czkz PR (6.66)

where the ie plays the same role in enforcing causality as it does for the harmonic
oscillator in one dimension. This is only to be expected. If we decompose a vibrating
string into normal modes, then each mode is an independent oscillator with a),% = k2,
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(xt)

X+ t—r7

(&)

Figure 6.5 The region €2, or the “domain of dependence”.

and the Green function for the PDE is simply the sum ofthe ODE Green functions for each
k mode. To confirm our claim, we exploit our previous results for the single-oscillator
Green function to evaluate the integral over w, and we find

o]

dk . 1
G(x,1;0,0) = O(1)c / Ee’k"msinﬂklct). (6.67)
—0Q

Despite the factor of 1/|k|, there is no singularity at £ = 0, so no i¢ is needed to make the
integral over k£ well defined. We can do the £ integral by recognizing that the integrand is
nothing but the Fourier representation, % sin ak, of a square-wave pulse. We end up with

G(x,10,0) = 9(x)% (0(x+ ct) —0(x — cb)}, (6.68)

the same expression as from our direct construction. We can also write

c ([ dk (i iloc—iclklt  —ikcticlklt
Go,t0,00=< | Z(L {e _e } (>0, (669
2 )27 k|

which is in explicit Fourier-solution form with a(k) = ic/2|k|.

Hllustration: Radiation damping. Figure 6.6 shows a bead of mass M that slides without
friction on the y-axis. The bead is attached to an infinite string which is initially undis-
turbed and lying along the x-axis. The string has tension 7', and a density p, so the speed
of waves on the string is ¢ = /7 /p. We show that either d’Alembert or Fourier can be
used to compute the effect of the string on the motion of the bead.

We first use d’Alembert’s general solution to show that wave energy emitted by the
moving bead gives rise to an effective viscous damping force on it.

The string tension acting on the bead leads to the equation of motion M9 = 73/(0, ¢),
and from the condition of no incoming waves we know that

y(x,t) =yl —ct). (6.70)
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e ;

Figure 6.6 A bead connected to a string.

o x

o X

Figure 6.7 The function ¢ (x) and its derivative.

Thus )/ (0,7) = —(0,)/c. But the bead is attached to the string, so v(¢) = (0, ¢), and
therefore

Mi = — (Z> v. (6.71)

4

The emitted radiation therefore generates a velocity-dependent drag force with friction
coefficient n = T'/c.

We need an infinitely long string for (6.71) to be true for all time. If the string had a
finite length L, then, after a period of 2L /c, energy will be reflected back to the bead and
this will complicate matters.

We now show that Fourier’s mode-decomposition of the string motion, combined with
the Caldeira—Leggett analysis of Chapter 5, yields the same expression for the radiation
damping as the d’Alembert solution. Our bead—string contraption has Lagrangian

L
L= 50,07 - viy©, 01+ / { Py - Zy’z} dx. (6.72)
2 o 127 2

Here, V[y] is some potential energy for the bead.

To deal with the motion of the bead, we introduce a function ¢ (x) such that ¢9(0) = 1
and ¢ (x) decreases rapidly to zero as x increases (see Figure 6.7). We therefore have
—py(x) ~ 8(x). We expand y(x,?) in terms of ¢o(x) and the normal modes of a string
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with fixed ends as

> 2
Y08 = (0,000 () + Y gu(t), | 7, Sinf. (6.73)
n=1

Here k,L = nm. Because y(0,#)¢o(x) describes the motion of only an infinitesimal
length of string, y(0, #) makes a negligible contribution to the string kinetic energy, but
it provides a linear coupling of the bead to the string normal modes, g, (¢), through the
Ty 2 /2 term. Inserting the mode expansion into the Lagrangian, and after about half a
page of arithmetic, we end up with

l o
= THOF ~ O] +30) S+ Y ( - wnqn> -y ( > Y0P,

n=1 n=1 n=1

(6.74)

£ = T\/gkn. (6.75)

This is exactly the Caldeira-Leggett Lagrangian — including their frequency-shift
counter-term that reflects that fact that a static displacement of an infinite string results
in no additional force on the bead." When L becomes large, the eigenvalue density of
states

where w,, = ck;,, and

p@) =) 80— wy) (6.76)
becomes

L
p(w) = —. (6.77)
TC

The Caldeira—Leggett spectral function

T 2
J () = 5 Xn: <win) S(w — wy), (6.78)
is therefore
T 27%%%* 1 L T
J — — . —_— . . —_— = —_ 6.79
(@) 2 Lp ke mc ( c ) @ (6.79)

! For a finite length of string that is fixed at the far end, the string tension does add %Ty(O)2 /L to the static
potential. In the mode expansmn this additional restoring force arises from the first term of — ¢O (x) =~ 1/L+
(2/L) Z — 1 cos kyx in Ty(O)2 f (¢0)2 dx. The subsequent terms provide the Caldeira—Leggett counter-
term. The first-term contrlbutlon has been omitted in (6.74) as being unimportant for large L.
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where we have used ¢ = /T /p. Comparing with Caldeira and Leggett’s J(w) = no,
we see that the effective viscosity is given by n = T'/c, as before. The necessity of
having an infinitely long string here translates into the requirement that we must have a
continuum of oscillator modes. It is only after the sum over discrete modes wj is replaced
by an integral over the continuum of w’s that no energy is ever returned to the system
being damped.

For our bead and string, the mode-expansion approach is more complicated than
d’Alembert’s. In the important problem of the drag forces induced by the emission of
radiation from an accelerated charged particle, however, the mode-expansion method
leads to an informative resolution” of the pathologies of the Abraham—Lorentz equation,

21
T 3 M3 4meg

M@ —1V) =Fey, T (6.80)

which is plagued by runaway, or apparently acausal, solutions.

6.3.4 Odd vs. even dimensions

Consider the wave equation for sound in three dimensions. We have a velocity potential
¢ which obeys the wave equation

92 92 92 1 92
N e R Y 631)
ox2  9y?  9z2 % or?

and from which the velocity, density and pressure fluctuations can be extracted as

v = Vd))
PO ;
P1 = —c—2¢,
Pi= pr. (6.82)

In three dimensions, and considering only spherically symmetric waves, the wave
equation becomes

3Pre) 1 3%(re)
a2 2 e (683

with solution
1 r 1 r
b0 = —f (t - Z) +-¢ (r + E> . (6.84)

2 G.W. Ford, R. E. O’Connell, Phys. Lett. A, 157 (1991) 217.
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Consider what happens if we put a point volume source at the origin (the sudden conver-
sion of a negligible volume of solid explosive to a large volume of hot gas, for example).
Let the rate at which volume is being intruded be ¢. The gas velocity very close to the
origin will be

q()
= —. 6.85
v(r, ) =43 (6.85)
Matching this to an outgoing wave gives
q(t) ¢ 1 r 1, r
—= = H=—=—5ft—-)——f"t—-). 6.86
4r? ueo or rZ ( c> rcf ( c) (6.86)
Close to the origin, in the near field, the term o f /r* will dominate, and so
1,
—4—51(0 =f(). (6.87)
7T

Further away, in the far field or radiation field, only the second term will survive, and so
9 1
n="2x Lp(i-T). (6.88)

The far-field velocity-pulse profile vy is therefore the derivative of the near-field v; pulse
profile (Figure 6.8).
The pressure pulse

; 0 .. r
Pr=—pod =i (1 - ") (6.89)

4rrr c
is also of this form. Thus, a sudden localized expansion of gas produces an outgoing
pressure pulse which is first positive and then negative.

This phenomenon can be seen in (old, we hope) news footage of bomb blasts in tropical
regions. A spherical vapour condensation wave can been seen spreading out from the
explosion. The condensation cloud is caused by the air cooling below the dew-point in
the low-pressure region which tails the over-pressure blast.

Av A\ v P

N\ N—

Figure 6.8 Three-dimensional blast wave.
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Figure 6.9 Sheet-source geometry.

Now consider what happens if we have a sheet of explosive, the simultaneous det-
onation of every part of which gives us a one-dimensional plane-wave pulse. We can
obtain the plane wave by adding up the individual spherical waves from each point on
the sheet.

Using the notation defined in Figure 6.9, we have

$(x, 1) =2 /oo LY PRk I (6.90)
X,t) =21 —_— — —— | sds .

R 4
with f'(¢) = —¢q(¢) /4w, where now ¢ is the rate at which volume is being intruded per

unit area of the sheet. We can write this as

2 /Ooof (r - —)‘20“2> dv/x2 + 52

t—x/c
= 2710/ f(r)dr,

—0o0
c t—x/c
= / g(v)dr. (6.91)
—0o0

In the second line we have defined T = ¢t — ~/x% + s2/c, which, inter alia, interchanged
the role of the upper and lower limits on the integral.

Thus, v; = ¢'(x,¢) = %Q(t — x/c). Since the near-field motion produced by the
intruding gas is v (r) = %c’](t), the far-field displacement exactly reproduces the initial
motion, suitably delayed of course. (The factor 1/2 is because half the intruded volume
goes towards producing a pulse in the negative direction.)
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Figure 6.10 Line-source geometry.

In three dimensions, the far-field motion is the first derivative of the near-field motion.
In one dimension, the far-field motion is exactly the same as the near-field motion. In two
dimensions the far-field motion should therefore be the half-derivative of the near-field
motion — but how do you half-differentiate a function? An answer is suggested by the
theory of Laplace transformations as

d def F(f)
(E) Fo) \/_/OO =y (6.92)

Let us now repeat the explosive sheet calculation for an exploding wire.
Using the geometry shown in Figure 6.10, we have

ds=d <\/r2 — x2> _ o rdr (6.93)

Py ——)

and combining the contributions of the two parts of the wire that are the same distance

from p, we can write
| r 2rdr
$x,1) = / S(-%) 5=
x T c r2 — x2

_> / (-0 —rj”_ . (6.94)

with () = —q(t)/4x, where now ¢ is the volume intruded per unit length. We may
approximate 7> — x> & 2x(r — x) for the near parts of the wire where » A x, since these
make the dominant contribution to the integral. We also set ¢ = ¢ — r/c, and then have

2¢ [U=x/0) dr
d(x, 1) = «/_—/— f (@ \/ﬁ’

\/Z = i 6.95
/ Vi=x/o—z (9
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=

Figure 6.11 In two dimensions the far-field pulse has a long tail.

The far-field velocity is the x gradient of this,

1) = [2¢ /(t_x/c) dr 6.96)
vy (7, .
! 27¢ t—x/c) -7

and is therefore proportional to the 1/2-derivative of g(t — r/c).

A plot of near-field and far-field motions in Figure 6.11 shows how the far-field pulse
never completely dies away to zero. This long tail means that one cannot use digital
signalling in two dimensions.

Moral tale: One of our colleagues was performing numerical work on earthquake
propagation. The source of his waves was a long, deep linear fault, so he used the
two-dimensional wave equation. Not wanting to be troubled by the actual creation of the
wave pulse, he took as initial data an outgoing finite-width pulse. After a short propaga-
tion time his numerical solution appeared to misbehave. New pulses were being emitted
from the fault long after the initial one. He wasted several months in a vain attempt to
improve the stability of his code before he realized that what he was seeing was real. The
lack of a long tail on his pulse meant that it could not have been created by a briefly active
line source. The new “unphysical” waves were a consequence of the source striving to
suppress the long tail of the initial pulse. Moral: Always check that a solution of the
form you seek actually exists before you waste your time trying to compute it.

Exercise 6.4: Use the calculus of improper integrals to show that, provided F'(—o0) = 0,

we have
F(r) F(T)
<«/—/oo -t ) «/_/oo — (©97)

This means that

1 1
d (d\? d\?d
i (@) ro=(3) Gro 0
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6.4 Heat equation

Fourier’s heat equation

By 9%

is the archetypal parabolic equation. It often comes with initial data ¢ (x, ¢ = 0), but this
is not Cauchy data, as the curve ¢ = const. is a characteristic.
The heat equation is also known as the diffission equation.

6.4.1 Heat kernel

If we Fourier transform the initial data

et =0) = / =k g et (6.100)
o0 2T
and write
(1) = f =K g ke, (6.101)
o0 2T

we can plug this into the heat equation and find that
a¢ .
B—‘f = —«k*¢. (6.102)

Hence,

P(x, 1) = / ” @cz(k,r)e"kx
27

—0o0
© dk - .

_ / Gk 0l (6.103)
—00

We may now express & (k,0) in terms of ¢ (x, 0) and rearrange the order of integration

to get
6, 0) = / ak ( f 6 (£, 0)e¢ dé) ekt
—00 27 \J_xo

~ / ) ( / ) ﬁe"k“”’ﬂ $(5,0)ds
—oo \J_xo 27

= / Gx,§,0)9(,0)d§, (6.104)

—00
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A Gt 1)

1S

Figure 6.12 The heat kernel at three successive times.

where
© dk . 2 1 1
G(x,&,1) = o8kt ex {——x— 2}. 6.105
wen=[ & o |- nG -0 e109)

Here, G(x, &, t) is the heat kernel. 1t represents the spreading of a unit blob of heat.
As the heat spreads, the total amount of heat, represented by the area under the curve
in Figure 6.12, remains constant:

/oo ﬁexp{—%{t(}c—f)z} dx = 1. (6.106)

The heat kernel possesses a semigroup property

ee]

Gx, .t + 1) = f e, n, 12)G (0, £, 11)d. (6.107)

Exercise: Prove this.

6.4.2 Causal Green function

Now we consider the inhomogeneous heat equation

ou  d%u
E — ﬁ =q(x,1), (6.108)

with initial data u(x, 0) = uy(x). We define a causal Green function by

2 _ 2 GO, 1E,7) = 8(x — £)8( — 1) (6.109)
<&_@) (xa 7$’t - X é: T :
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and the requirement that G(x, ¢; £, 1) = 0ift < t. Integrating the equation from¢t = 7—¢
to t = 7 + ¢ tells us that

G, t+e&&,1)=86x—§&). (6.110)

Taking this delta function as initial data ¢ (x, = 7) and inserting into (6.104) we read off

Gx,t;6,1) =60t —1) ( —f;‘)z} (6.111)

1
——————eX
A7 —1) p{ 4(t
We apply this Green function to the solution of a problem involving both a heat
source and initial data given at # = 0 on the entire real line. We exploit a vari-
ant of the Lagrange-identity method we used for solving one-dimensional ODEs with
inhomogeneous boundary conditions. Let

3 0
=— - —, 6.112
ST 9t ox? (6.112)
and observe that its formal adjoint,
t 3 02
D =—-——-— 6.113
Xt 9t 3)62 ( )

is a “backward” heat-equation operator. The corresponding “backward” Green function

G, t6,1)=0(r —1) ( —5)2} (6.114)

1
A7t = 1) eXp{ 4(

obeys
D!,Glx,156,1) = 8(x — £)8(t — 1), (6.115)

with adjoint boundary conditions. These make G' anti-causal, in that G*(t — 7) vanishes
when ¢ > 7. Now we make use of the two-dimensional Lagrange identity

00 T
/ dx / dt{u(x, HD! Gl (x, 1€, 7) — (Dx,tu(x, t))GT(x,z;s,r)}
—00 0

=/_OO dx{u(x,O)GT(x,o;s,r)}—/oo

—00

dx {u(x, )G (x, T:E, r)} .
(6.116)

Assume that (&, 7) lies within the region of integration. Then the left-hand side is equal to

00 T
u(g,r)—/ dxf dt{q(x,z)GT(x,t;g,r)}. (6.117)
—00 0
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On the right-hand side, the second integral vanishes because G is zero on ¢ = 7. Thus,

00 T e’}
u(g,r)zf dx/ dt{q(x,z)GT(x,t;g,r)}Jr/ {u(x,O)GT(x,o;g,r)}dx.
—00 0 —00
(6.118)

Rewriting this by using
Gl(x,1:6,7) = G, T5x, 1), (6.119)

and relabelling x <> £ and ¢ <> 7, we have

o0 o0 t
ux, 1) = / Gx, 15, 0)uo(€) di + f / G(x,1;6,0)q(E, )dedr.  (6.120)
o) —00 J0

Note how the effects of any heat source ¢(x, ¢) active prior to the initial-data epoch at
t = 0 have been subsumed into the evolution of the initial data.

6.4.3 Duhamel’s principle

Often, the temperature of the spatial boundary of a region is specified in addition to the
initial data. Dealing with this type of problem leads us to a new strategy.
Suppose we are required to solve

du 9%u

for the semi-infinite rod shown in Figure 6.13. We are given a specified temperature,
u(0,1) = h(¢), at the end x = 0, and for all other points x > 0 we are given an initial
condition u(x, 0) = 0.

We begin by finding a solution w(x, ¢) that satisfies the heat equation with w(0, ¢) = 1
and initial data w(x,0) = 0, x > 0. This solution is constructed in Problem 6.14, and is

w=0(f) {1 —erf <2%/z>} (6.122)

u(x,t)

Figure 6.13 Semi-infinite rod heated at one end.
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X
Figure 6.14  Error function.
Here erf (x) is the error function
Flr) = /x -2 4 (6.123)
erf(x) = — e A .
v Jo

which has the properties that erf (0) = 0 and erf (x) — 1 as x — oo. See Figure 6.14.
If we were given

h(t) = hob(t — 1), (6.124)
then the desired solution would be
u(x,t) = how(x,t — tp). (6.125)
For a sum

h(t) = Zhne(t — 1), (6.126)

the principle of superposition (i.e. the linearity of the problem) tells us that the solution
is the corresponding sum

uCe,t) = hyw(x,t — ty). (6.127)
n
We therefore decompose /4(¢) into a sum of step functions

t
h(t):h(0)+/ h(z)dt
0

= h(0) + /OO 0(t — )h(t)dr. (6.128)
0
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It should now be clear that

t
u(x,t) = / w(x,t — )h(t) dt + h(O)w(x, 1)
0

|
= —/ (—w(x,t— t)> h(t)drt
0 ot

t
= / (iw(x,t — r)) h(t)drt. (6.129)
o \0t

This is called Duhamels solution, and the trick of expressing the data as a sum of
Heaviside step functions is called Duhamel’s principle.

We do not need to be as clever as Duhamel. We could have obtained this result by
using the method of images to find a suitable causal Green function for the half-line, and
then using the same Lagrange-identity method as before.

6.5 Potential theory

The study of boundary value problems involving the Laplacian is usually known as
“potential theory”. We seek solutions to these problems in some region €2, whose
boundary we denote by the symbol 9€2.

Poisson’s equation, —V2yx (r) = f(r), r € , and the Laplace equation to which it
reduces when f(r) = 0, come along with various boundary conditions, of which the
commonest are

x=g() on 09Q (Dirichlet),
m-V)y =g(r) on 09Q (Neumann). (6.130)

A function for which V2 x = 0 in some region € is said to be harmonic there.

6.5.1 Uniqueness and existence of solutions

We begin by observing that we need to be a little more precise about what it means for
a solution to “take” a given value on a boundary. If we ask for a solution to the problem
V2 = 0 within @ = {(x,y) € R? : x> +)? < 1} and ¢ = 1 on 3L, someone might
claim that the function defined by setting ¢ (x,y) = 0 for x> + y*> < 1 and ¢(x,y) = 1
for x> +y? = 1 does the job — but such a discontinuous “solution” is hardly what we
had in mind when we stated the problem. We must interpret the phrase “takes a given
value on the boundary” as meaning that the boundary data is the limit, as we approach
the boundary, of the solution within €.

With this understanding, we assert that a function harmonic in a bounded subset €2 of
R” is uniquely determined by the values it takes on the boundary of Q2. To see that this
is s0, suppose that ¢; and ¢, both satisfy V2¢ = 0 in €2, and coincide on the boundary.
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Then x = ¢1 — ¢ obeys V2x = 0 in €, and is zero on the boundary. Integrating by
parts we find that

/|Vx|2d”r:/ x(n-V)yxdS =0. (6.131)
Q Q2

Here dS is the element of area on the boundary and n the outward-directed normal. Now,
because the second derivatives exist, the partial derivatives entering into V y must be
continuous, and so the vanishing of integral of |V x |? tells us that V x is zero everywhere
within 2. This means that x is constant — and because it is zero on the boundary it is
zero everywhere.

An almost identical argument shows that if €2 is a bounded connected region, and if
@1 and @, both satisfy V?¢ = 0 within  and take the same values of (n - V)¢ on the
boundary, then ¢; = ¢ + const. We have therefore shown that, if it exists, the solution
of the Dirichlet boundary value problem is unique, and the solution of the Neumann
problem is unique up to the addition of an arbitrary constant.

In the Neumann case, with boundary condition (n - V)¢ = g(r), integration by parts
gives

fvzgz)d"r:/ (n~V)<pdS=f gds, (6.132)
Q aQ Q2

and so the boundary data g(r) must satisfy [ 90 & dS = 0 if a solution to V2p = 0is to
exist. This is an example of the Fredholm alternative that relates the existence of a non-
trivial null space to constraints on the source terms. For the inhomogeneous equation
—V2¢ =, the Fredholm constraint becomes

/mgdSJr/Qfd"r:o. (6.133)

Given that we have satisfied any Fredholm constraint, do solutions to the Dirichlet and
Neumann problem always exist? That solutions should exist is suggested by physics:
the Dirichlet problem corresponds to an electrostatic problem with specified boundary
potentials and the Neumann problem corresponds to finding the electric potential within
a resistive material with prescribed current sources on the boundary. The Fredholm
constraint says that if we drive current into the material, we must let it out somewhere.
Surely solutions always exist to these physics problems? In the Dirichlet case we can even
make a mathematically plausible argument for existence: we observe that the boundary
value problem

V=0, reQ
p=f, reoQ (6.134)

is solved by taking ¢ to be the x that minimizes the functional

JIx1= / \Vx|*d"r (6.135)
Q
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over the set of continuously differentiable functions taking the given boundary values.
Since J[x] is positive, and hence bounded below, it seems intuitively obvious that there
must be some function x for which J[x] is a minimum. The appeal of this Dirichlet
principle argument led even Riemann astray. The fallacy was exposed by Weierstrass
who provided counter-examples.

Consider, for example, the problem of finding a function ¢(x, y) obeying VZ¢ = 0
within the punctured disc D’ = {(x,y) € R? : 0 < x?> +y* < 1} with boundary data
@(x,y) = 1 on the outer boundary at x> +3? = 1 and ¢(0,0) = 0 on the inner boundary
at the origin. We substitute the trial functions

Xe (6, ) = (243D, >0, (6.136)

all of which satisfy the boundary data, into the positive functional

JIx] =/ |V x |2 dxdy (6.137)
D/

to find J[xy] = 2 «. This number can be made as small as we like, and so the infimum
of the functional J[y] is zero. But if there is a minimizing ¢, then J[¢] = 0 implies that
@ is a constant, and a constant cannot satisfy the boundary conditions.

An analogous problem reveals itself in three dimensions when the boundary of €2 has
a sharp re-entrant spike that is held at a different potential from the rest of the boundary.
In this case we can again find a sequence of trial functions x (r) for which J[x ] becomes
arbitrarily small, but the sequence of x ’s has no limit satisfying the boundary conditions.
The physics argument also fails: if we tried to create a physical realization of this situation,
the electric field would become infinite near the spike, and the charge would leak off
and thwart our attempts to establish the potential difference. For reasonably smooth
boundaries, however, a minimizing function does exist.

The Dirichlet—Poisson problem

—V(r)=f), req,
o) =g(r), reiq, (6.138)

and the Neumann—Poisson problem

—V2p(r)=f(r), xeg,
(n-V)p(r) =g(r), xeciqQ,

supplemented with the Fredholm constraint

/fd”r%—/ gdS=0 (6.139)
Q aQ
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also have solutions when 92 is reasonably smooth. For the Neumann—Poisson problem,
with the Fredholm constraint as stated, the region €2 must be connected, but its boundary
need not be. For example, 2 can be the region between two nested spherical shells.

Exercise 6.5: Why did we insist that the region Q2 be connected in our discussion of
the Neumann problem? (Hint: how must we modify the Fredholm constraint when 2
consists of two or more disconnected regions?)

Exercise 6.6: Neumann variational principles. Let Q2 be a bounded and connected three-
dimensional region with a smooth boundary. Given a function f defined on €2 and such
that [, f d*r = 0, define the functional

— 1 2 _ 3
JIxl= EIVXI xfpdr.
Q
Suppose that ¢ is a solution of the Neumann problem

—V(r) =f(r), reg,
(m-V)p(r) =0, red.

Show that

1
JIx] =J[<p]+/Q§IV(x — )P dr > Jlg]

1 1
— _ v/ 2d3 :__/ d3.
/92| o dr ==z | of &r

Deduce that ¢ is determined, up to the addition of a constant, as the function that
minimizes J[x] over the space of all continuously differentiable x (and not just over
functions satisfying the Neumann boundary condition).

Similarly, for g a function defined on the boundary 92 and such that 9o &dS =0, set

1
Klxl= [ IV P dir — / xgds.
Q a0
Now suppose that ¢ is a solution of the Neumann problem

—V2p(r)=0, req,
n-V)p(r) =g(), rei.

Show that

1
K[x]=1<[¢]+/95|vu _ o2 dr = K9]

1 1
=— —|V¢|2d3r=——/ $g ds.
/522 2 Jaq
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Deduce that ¢ is determined up to a constant as the function that minimizes K[ x | over the
space of all continuously differentiable x (and, again, not just over functions satisfying
the Neumann boundary condition).

Show that when /" and g fail to satisfy the integral conditions required for the existence
of the Neumann solution, the corresponding functionals are not bounded below, and so
no minimizing function can exist.

Exercise 6.7: Helmholtz decomposition. Let Q be a bounded connected three-
dimensional region with smooth boundary 92.

(a) Cite the conditions for the existence of a solution to a suitable Neumann problem
to show that if u is a smooth vector field defined in €2, then there exist a unique
solenoidal (i.e having zero divergence) vector field v with v-n = 0 on the boundary
0%, and a unique (up to the addition of a constant) scalar field ¢ such that

u=v+ Vo.

Here n is the outward normal to the (assumed smooth) bounding surface of €2.

(b) In many cases (but not always) we can write a solenoidal vector field vas v = curl w.
Again by appealing to the conditions for existence and uniqueness of a Neumann
problem solution, show that if we can write v = curl w, then w is not unique, and
we can always demand that it obey the conditions divw = 0 andw-n = 0.

(c) Appeal to the Helmholtz decomposition of part (a) with u — (v - V)v to show that
in the Euler equation

av

” +vV-V)v=—VP, v-n=0o0n0dQ

governing the motion of an incompressible (div v = 0) fluid the instantaneous flow
field v(x,y,z, ¢) uniquely determines dv/d¢, and hence the time evolution of the
flow. (This observation provides the basis of practical algorithms for computing
incompressible flows.)

We can always write the solenoidal field as v = curl w + h, where h obeys V?h = 0
with suitable boundary conditions. See Exercise 6.16.

6.5.2 Separation of variables
Cartesian coordinates

When the region of interest is a square or a rectangle, we can solve Laplace boundary
problems by separating the Laplace operator in cartesian coordinates. Let

— + — =0, (6.140)
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and write
p=Xx®YO), (6.141)
so that
13°%x  193%Y
)_(WJr?a_yZ:O' (6.142)

Since the first term is a function of x only, and the second of y only, both must be
constants and the sum of these constants must be zero. Therefore

laz_X I
X ox? ’
1%y
AT K2, (6.143)
y
or, equivalently,
?’x
o HEX =0,
%Y
— — kY =0. (6.144)
dy

The number that we have, for later convenience, written as k2 is called a separation
constant. The solutions are X = ¢** and Y = ¢*®. Thus

¢ = etk ethy (6.145)

or a sum of such terms where the allowed &’s are determined by the boundary conditions.
How do we know that the separated form X (x)Y (y) captures all possible solutions?
We can be confident that we have them all if we can use the separated solutions to solve
boundary value problems with arbitrary boundary data.
We can use our separated solutions to construct the unique harmonic function taking
given values on the sides of a square of side L shown in Figure 6.15. To see how to do
this, consider the four families of functions

2 1 . NTX h nmwy
=.,/= sin — sinh ——,
PLo =\ Lsinhnr " L L

2 1 ih nwx . nmwy
=,/- sinh — sin ——,
¥z L sinh nr L L

2 1 .onax . nw(L—y)
n

= — S —_—,
¥3n L sinh nm L L

2 1 . ono(L—x) . nmy
=,/- h —. 6.146
Pan L sinh nr - L - L ( )
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Figure 6.15 Square region.

Each of these comprises solutions to V2¢ = 0. The family ©1,,(x,) has been constructed
so that every member is zero on three sides of the square, but on the side y = L it
becomes ¢ ,(x,L) = /2/Lsin(nx/L). The ¢; ,(x, L) therefore constitute a complete
orthonormal set in terms of which we can expand the boundary data on the side y = L.
Similarly, the other families are non-zero on only one side, and are complete there. Thus,
any boundary data can be expanded in terms of these four function sets, and the solution
to the boundary value problem is given by a sum

4

P =YY amn@ma(x,y). (6.147)

m=1 n=1

The solution to V2¢ = 0 in the unit square with ¢ = 1 on the side y = 1 and zero on
the other sides is, for example (see Figure 6.16)

oo

4 1

px,y) = r; (2n + 1)z sinh2n + D7

sin<(2n + l)nx) sinh((2n + 1)er).
(6.148)

For cubes, and higher dimensional hypercubes, we can use similar boundary expansions.
For the unit cube in three dimensions we would use

1
O1am (X,3,X) = sin(nx) sin(may) sinh (nzx/ n? + mz) ,
sinh (T[\/}’lz + m2>

to expand the data on the face z = 1, together with five other solution families, one for
each of the other five faces of the cube.
If some of the boundaries are at infinity, we may need only some of these functions.

Example: Figure 6.17 shows three conducting sheets, each infinite in the z-direction.
The central one has width a, and is held at voltage V. The outer two extend to infinity
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Figure 6.16 Plot of first 30 terms in Equation (6.148).

L

Figure 6.17 Conducting sheets.

also in the y-direction, and are grounded. The resulting potential should tend to zero as
Ixl, [yl = oo.
The voltage in the x = 0 plane is

® dk ity
9(0.y,2) = / W ke, (6.149)
oo 2T
where
az 2V
ak) =1y / R dy = 70 sin(ka/2). (6.150)
—a/2
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Then, taking into account the boundary condition at large x, the solution to V¢ = 0 is
* dk ;
Q(x,,2) = / —a(k)e e kIl (6.151)
o0 2T
The evaluation of this integral, and finding the charge distribution on the sheets, is left
as an exercise.
The Cauchy problem is ill-posed

Although the Laplace equation has no characteristics, the Cauchy data problem is i//-
posed, meaning that the solution is not a continuous function of the data. To see this,
suppose we are given V2¢ = 0 with Cauchy data on y = 0:

@(x,0) =0,
dg .
— = e sin kx. (6.152)
ay y=0
Then
0(x,) = %sin(/cx) sinh(ky). (6.153)

Provided £ is large enough — even if ¢ is tiny — the exponential growth of the hyperbolic
sine will make this arbitrarily large. Any infinitesimal uncertainty in the high-frequency
part of the initial data will be vastly amplified, and the solution, although formally
correct, is useless in practice.

Polar coordinates

We can use the separation of variables method in polar coordinates. Here,

% 1ax 1 9%y

Viy=—5 + - = —5.
=92 T e T2 02

(6.154)
Set
x(r,0) = RO ©). (6.155)
Then VZx = 0 implies
s 82R+18R L] GRLC)
R \2  ror 0 962
=m’ —m’, (6.156)
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where in the second line we have written the separation constant as m?. Therefore,

2

d*e
e me =0, (6.157)

implying that ® = ¢, where m must be an integer if @ is to be single-valued, and

2a’2R+ R _ o = (6.158)
D T T '

whose solutions are R = r* when m # 0, and 1 or In» when m = 0. The general
solution is therefore a sum of these

x = Ao+ Bolnr + Z(Amrlml + By Imhyeimo (6.159)
m#Q

The singular terms, In  and »~”!, are not solutions at the origin, and should be omitted
when that point is part of the region where V2 x = 0.

Example: Dirichlet problem in the interior of the unit circle (Figure 6.18). Solve V2 x =
0in Q = {r e R? : |r| < 1} with x =f(0@)ondQ = {|r| = 1}.
We expand

o
Xr0)= Y Ay, (6.160)

m=—0o0

and read off the coefficients from the boundary data as

1 2

Ap = — e ™ £0") de’. (6.161)
2w 0

Figure 6.18 Dirichlet problem in the unit circle.
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Thus,

1 2 o ) ,
X=5- > e p 0" deo. (6.162)
T 0 m=—00

We can sum the geometric series

o0 —i—0'
Z r\mleim(9—9/) _ 1 + re l( )
1 — rel0=0") 1 — pe—i(6=0")

m=—00
1 —r2
= . 6.163
1 —2rcos(@ —0') +r2 ( )
Therefore,
1 [ 1—7?

,0) = — (6 do’. 6.164
x(r,6) 2n/0 <1—2rcos(9—0/)+r2>f( ) (6.164)

This expression is known as the Poisson kernel formula. Observe how the integrand
sharpens towards a delta function as » approaches unity, and so ensures that the limiting
value of x (r,0) is consistent with the boundary data.

If we set » = 0 in the Poisson formula, we find
1 2w
x(0,0) = T A JACAHY- LR (6.165)

We deduce that if V2 x = 0 in some domain then the value of x at a point in the domain
is the average of its values on any circle centred on the chosen point and lying wholly
in the domain.

This average-value property means that y can have no local maxima or minima
within . The same result holds in R”, and a formal theorem to this effect can be
proved:

Theorem: (The mean-value theorem for harmonic functions): If x is harmonic
(V2 = 0) within the bounded (open, connected) domain Q@ € R”, and is continu-
ous on its closure Q, and ifm < x <M ondS thenm < y < M within Q — unless,
that is, m = M, when x = m is constant.

Pie-shaped regions

Electrostatics problems involving regions with corners can often be understood by
solving Laplace’s equation within a pie-shaped region.

Figure 6.19 shows a pie-shaped region of opening angle « and radius R. If the boundary
value of the potential is zero on the wedge and non-zero on the boundary arc, we can
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Figure 6.19 A pie-shaped region of opening angle .

seek solutions as a sum of , 6 separated terms

o
9(r,0) = > ay"™/*sin <@) . (6.166)
n=1 o

Here the trigonometric function is not 27 periodic, but instead has been constructed so
as to make ¢ vanish at & = 0 and 0 = «. These solutions show that close to the edge of
a conducting wedge of external opening angle «, the surface charge density o usually
varies as o (1) oc r¢/7 =1,

If we have non-zero boundary data on the edge of the wedge at0 = «, buthave ¢ = 0
on the edge at & = 0 and on the curved arc » = R, then the solutions can be expressed

as a continuous sum of r, 8 separated terms

R v r\—iv\ sinh(v6)
vir6) = 2_1/0 av) <<I_€> Bl (E) ) sinh(va) a,
= /‘00 a(v) sinfv ln(r/R)]Sinhﬂ dv. (6.167)
0

sinh(var)

The Mellin sine transformation can be used to compute the coefficient function a(v).
This transformation lets us write

f(r):%/ooF(v)sin(vlnr)dv, 0<r<l, (6.168)
0
where
b dr
F) = / sin(vInr)f(r) —. (6.169)
0 r

The Mellin sine transformation is a disguised version of the Fourier sine transform of
functions on [0, c0). We simply map the positive x-axis onto the interval (0, 1] by the
change of variables x = — Inr.
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Despite its complexity when expressed in terms of these formulae, the simple solution
@(r,0) = ab is often the physically relevant one when the two sides of the wedge are
held at different potentials and the potential is allowed to vary on the curved arc.

Example: Consider a pie-shaped region of opening angle 7 and radius R = oco. This
region can be considered to be the upper half-plane. Suppose that we are told that the
positive x-axis is held at potential +1/2 and the negative x-axis is at potential —1/2,
and are required to find the potential for positive y. If we separate Laplace’s equation in
cartesian coordinates and match to the boundary data on the x-axes, we end up with

1L [0 .
Oxy(X,) = — —e Ysin(kx) dk.

T Jo k

On the other hand, the function
1
Pro(r,0) = ;(77/2 —0)

satisfies both Laplace’s equation and the boundary data. At this point we ought to worry
that we do not have enough data to determine the solution uniquely — nothing was said

in the statement of the problem about the behaviour of ¢ on the boundary arc at infinity
— but a little effort shows that

1 (1 1
—/ —eh sin(kx) dk = — tan™! (J—C> , vy>0
TJo k g y
1
= — (/2 -9), (6.170)
T

and so the two expressions for ¢ (x,y) are equal.

6.5.3 Eigenfunction expansions

Elliptic operators are the natural analogues of the one-dimensional linear differential
operators we studied in earlier chapters.
The operator L = —V? is formally self-adjoint with respect to the inner product

(9, x) = // @™ x dxdy. (6.171)

This property follows from Green’s identity

/ /Q {#" (=920 = (=v29y"x | axay = /d " V0 = 99" ] - nds
(6.172)

where 0€2 is the boundary of the region €2 and n is the outward normal on the boundary.
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The method of separation of variables also allows us to solve eigenvalue problems
involving the Laplace operator. For example, the Dirichlet eigenvalue problem requires
us to find the eigenfunctions and eigenvalues of the operator

L=-V? D(L) = {¢p € L*[Q]: ¢ =0, on ). (6.173)

Suppose €2 is the rectangle 0 <x <L,, 0 <y <L,. The normalized eigenfunctions are

¢ ( ) = i i —y (6 174)
X s sin .
nm (X, / [y / Ly P

with eigenvalues

n2n2 m2n'2
A = ( ) + . (6.175)

The eigenfunctions are orthonormal,
/ P AXAY = Sy Sy (6.176)

and complete. Thus, any function in L>[€2] can be expanded as

@) =Y Aumum(x.y), (6.177)
myn=1
where
Ao = / e )f () dxdy. (6.178)

We can find a complete set of eigenfunctions in product form whenever we can sepa-
rate the Laplace operator in a system of coordinates &; such that the boundary becomes
& = const. Completeness in the multidimensional space is then guaranteed by the com-
pleteness of the eigenfunctions of each one-dimensional differential operator. For other
than rectangular coordinates, however, the separated eigenfunctions are not elementary
functions.

The Laplacian has a complete set of Dirichlet eigenfunctions in any region, but in
general these eigenfunctions cannot be written as separated products of one-dimensional
functions.
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6.5.4 Green functions

Once we know the eigenfunctions ¢, and eigenvalues A, for —V? in a region 2, we can
write down the Green function as

1
gr) =3 =gy ().

For example, the Green function for the Laplacian in the entire R” is given by the sum
over eigenfunctions

d"k eik(r—r’)
) = —_— 6.179
g(r,r) ST ( )
Thus
n
—Vfg(r, r/) _ %eik.(r—w) — 5"(r . r/). (6.180)
T

We can evaluate the integral for any »n by using Schwinger s trick to turn the integrand
into a Gaussian:

(2m)"

/ 7\ 1 i
= ds| ./ — e &
0 s ) Qmy"

1 * -2 —tlr—r'|>/4
= 2’17[—”/2 A dtt e
I R AN 1=n/2
~ 22 (E - ) 4

= : : " 6.181
_<n—2)sn_1(|r—r’|> ' o180

Here, I' (x) is Euler’s Gamma function:

o d'k . ,
g(ra r/) Z/ dS/ —elk'(r_r)e—skz

0

o0

I'x) = / dirle™, (6.182)
0
and
2nn/2
= T (6.183)

is the surface area of the n-dimensional unit ball.
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For three dimensions we find

oy L
rr)=—
£ 4 r— 1|

. n=3. (6.184)

In two dimensions the Fourier integral is divergent for small k. We may control this diver-
gence by using dimensional regularization. We pretend that » is a continuous variable
and use

1
Fx)=-Tx+1) (6.185)
X
together with
=" =1+alnx+--- (6.186)

to examine the behaviour of g(r, r’) near n = 2:

N 1 F(n/z) _ _ 12 72
S = (1 (/2 — D) In(x|r — r| )+0[(n 2) ])
1 1 )
=E<n/2_l—21n|r—r|—1n71—y+~->. (6.187)

Here y = —TI''(1) = 0.57721 ... is the Euler—-Mascheroni constant. Although the pole
1/(n — 2) blows up at n = 2, it is independent of position. We simply absorb it, and the
—Inm — y, into an undetermined additive constant. Once we have done this, the limit
n — 2 can be taken and we find

1
gr,r) = ~5- In|r — r'| 4 const., n=2. (6.188)
b4
The constant does not affect the Green-function property, so we can choose any
convenient value for it.
Although we have managed to sweep the small-k divergence of the Fourier integral

under a rug, the hidden infinity still has the capacity to cause problems. The Green
function in R? allows us to solve for ¢(r) in the equation

—V2p = q(r),
with the boundary condition ¢(r) — 0 as |r| — oo, as
p(r) = / g(r,r)qg(r) d’r.

In two dimensions, however we try to adjust the arbitrary constant in (6.188), the diver-
gence of the logarithm at infinity means that there can be no solution to the corresponding
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boundary-value problem unless [ g(r) d3r = 0. This is not a Fredholm-alternative con-
straint because once the constraint is satisfied the solution is unique. The two-dimensional
problem is therefore pathological from the viewpoint of Fredholm theory. This pathology
is of the same character as the non-existence of solutions to the three-dimensional Dirich-
let boundary value problem with boundary spikes. The Fredholm alternative applies, in
general, only to operators possessing a discrete spectrum.

Exercise 6.8: Evaluate our formula for the R” Laplace Green function,

1
(n = 2)Sy—1|r —r'|"=2

g(r,r) =

with S,_; = 27"/2 / ['(n/2), for the case n = 1. Show that the resulting expression for
g(x,x") is not divergent, and obeys

d2
—ﬁg(x,x’) =8(x —x).

Our formula therefore makes sense as a Green function —even though the original integral
(6.179) is linearly divergent at &k = 0! We must defer an explanation of this miracle until

we discuss analytic continuation in the context of complex analysis.
(Hint: recall that I'(1/2) = /7).

6.5.5 Boundary value problems

We now look at how the Green function can be used to solve the interior Dirichlet
boundary-value problem in regions where the method of separation of variables is not
available. Figure 6.20 shows a bounded region €2 possessing a smooth boundary 92.

We wish to solve —VZ2p = q(r) forr € Q and with ¢(r) = f(r) forr € 9. Suppose
we have found a Green function that obeys

—V2gr, ¥y =8"(r—r), rreq, gr,r) =0, reiQ. (6.189)

Figure 6.20 Interior Dirichlet problem.
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We first show that g(r, r’) = g(r’, r) by the same methods we used for one-dimensional
self-adjoint operators. Next we follow the strategy that we used for one-dimensional

inhomogeneous differential equations: we use Lagrange’s identity (in this context called
Green’s theorem) to write

/Q d"r g, ¥)V2o(m) — p(n)Vie(rr)]
= [ _dSe gt ¥io ) = o) Vrgr ) (6.190)
where dS; = n dS;, with n the outward normal to <2 at the point r. The left-hand side is
LHS = /Qd"r{—g(r, r)g(r) + ()" (r — ")},
== /Q d"rg(r,v') g(r) + o),
= /Q d"'rg(’,r) q(r) + ). (6.191)
On the right-hand side, the boundary condition on g(r, r’) makes the first term zero, so
RHS = — /;Q dS.f (r)(n - Vp)g(r,r). (6.192)
Therefore,

() = /Qg(r’,r)q(r)d”r—Agf(r)(n-vr)g(r,r’)dSr. (6.193)

In the language of Chapter 3, the first term is a particular integral and the second (the
boundary integral term) is the complementary function.

Exercise 6.9: Assume that the boundary is a smooth surface. Show that the limit of ¢ (r")
as r’ approaches the boundary is indeed consistent with the boundary data f'(r’). (Hint:
when r, 1’ are very close to it, the boundary can be approximated by a straight-line
segment, and so g(r,r’) can be found by the method of images.)

A similar method works for the exterior Dirichlet problem shown in Figure 6.21. In
this case we seek a Green function obeying

—V2g(r, ¥y =58"(r—r), rreR'\Q gr,r) =0, redQ. (6.194)

(The notation R” \ © means the region outside €2.) We also impose a further boundary
condition by requiring g(r, r’), and hence ¢(r), to tend to zero as |r| — oo. The final
formula for ¢(r) is the same except for the region of integration and the sign of the
boundary term.
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Figure 6.21 Exterior Dirichlet problem.
The hard part of both the interior and exterior problems is to find the Green function
for the given domain.

Exercise 6.10: Suppose that ¢ (x,y) is harmonic in the half-plane y > 0, tends to zero
as y — oo and takes the values f'(x) on the boundary y = 0. Show that

_1 * Yy " dx’ 0
‘P(x»y)—; T—i—yzf(X) X, y=0U

oo (x

Deduce that the “energy” functional

dx
=0

s S [ ivePaa=-3 [
y>0

can be expressed as

/ f {f(X) f(X)} i dic.

x—x
The non-local functional S[f] appears in the quantum version of the Caldeira—Leggett
model. See also Exercise 2.24.

Method of images

When 92 is a sphere or a circle we can find the Dirichlet Green functions for the region
Q2 by using the method of images.

Figure 6.22 shows a circle of radius R. Given a point B outside the circle, and a point
X on the circle, we construct A inside and on the line OB, so that Z/OBX = ZOXA. We
now observe that AXOA is similar to ABOX, and so

OA  0X

— == (6.195)
OX OB
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Figure 6.22 Points inverse with respect to a circle.

Thus, OA x OB = (0X)?> = R?. The points A and B are therefore mutually inverse with
respect to the circle. In particular, the point A does not depend on which point X was
chosen.

Now let AX= r;, BX= r¢ and OB= B. Then, using similar triangles again, we have

AX BX
—_— =, (6.196)
OX OB
or
R B
- =—, (6.197)
ri ro
and so
1 (R 1
_ <_) - — =0. (6.198)
7 \ B 7o

Interpreting the figure as a slice through the centre of a sphere of radius R, we see that if
we put a unit charge at B, then the insertion of an image charge of magnitude ¢ = —R/B
at A serves to keep the entire surface of the sphere at zero potential.

Thus, in three dimensions, and with 2 the region exterior to the sphere, the Dirichlet
Green function is

1 1 R 1
ga(r,rg) = — (— - (—) —) . (6.199)
4 \|Ir — rg| [rg|/ |r —ral

In two dimensions, we find similarly that

1
ga(r.rp) = —5—(Inlr — rp = In|r — ra| = In(ira|/R) ). (6.200)
T

has go(r,rg) = 0 for r on the circle. Thus, this is the Dirichlet Green function for €2,
the region exterior to the circle.

We can use the same method to construct the interior Green functions for the sphere
and circle.
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6.5.6 Kirchhoff vs. Huygens

Even if we do not have a Green function tailored for the specific region in which we are
interested, we can still use the whole-space Green function to convert the differential
equation into an integral equation, and so make progress. An example of this technique
is provided by Kirchhoff’s partial justification of Huygens’ construction.

The Green function G(r, r’) for the elliptic Helmholtz equation

(=V2 + k)G, r) =83 —r) (6.201)
in R3 is given by

d3k eik~(r—r’) B 1
Qr) k2 +k2  A4mwr—1r/|

ekl (6.202)

Exercise 6.11: Perform the k integration and confirm this.

For solutions of the wave equation with e~/ time dependence, we want a Green
function such that

2
[—vz - (‘”—2)} Gr,r') =83 (r — ), (6.203)
c
and so we have to take «2 negative. We therefore have two possible Green functions

1 N
Gi(r,¥) = mei""r ol (6.204)

where k& = |w|/c. These correspond to taking the real part of k> negative, but giving it an
infinitesimal imaginary part, as we did when discussing resolvent operators in Chapter 5.
If we want outgoing waves, we must take G = G.

Now suppose we want to solve

(V2+ )y =0 (6.205)
in an arbitrary region €2. As before, we use Green’s theorem to write
| {ea )5 + By w5 + 6w | v
= /asz (G, X)Vey (r) — v (Ve G(r, X)) - dS; (6.206)
where dS; = ndS;, with n the outward normal to 0€2 at the point r. The left-hand side is

, ), reQ
"r—r)d"'x = 6.207
me (r—r')d"x h, e (6.207)
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and so
Y = / {Gr,rY(n - VOy () =y () - V)G(r,r)} dSe, r' € Q. (6.208)
Fle)

This must not be thought of as a solution to the wave equation in terms of an integral
over the boundary, analogous to the solution (6.193) of the Dirichlet problem that we
found in the last section. Here, unlike that earlier case, G(r,r’) knows nothing of the
boundary 9€2, and so both terms in the surface integral contribute to . We therefore
have a formula for ¥ (r) in the interior in terms of both Dirichlet and Neumann data
on the boundary 0€2, and giving both over-prescribes the problem. If we take arbitrary
values for ¢y and (n- V)¢ on the boundary, and plug them into (6.208) so as to compute
Y (r) within €2 then there is no reason for the resulting 1/ (r) to reproduce, as r approaches
the boundary, the values v and (n- V) appearing in the integral. If we demand that the
output ¥ (r) does reproduce the input boundary data, then this is equivalent to demanding
that the boundary data come from a solution of the differential equation in a region
encompassing 2.

The mathematical inconsistency of assuming arbitrary boundary data notwithstanding,
this is exactly what we do when we follow Kirchhoff and use (6.208) to provide a
justification of Huygens’ construction as used in optics. Consider the problem of a plane
wave, ¥ = e®, incident on a screen from the left and passing though the aperture
labelled AB in Figure 6.23.

We take as the region 2 everything to the right of the obstacle. The Kirchhoff approx-
imation consists of assuming that the values of ¢ and (n - V)¢ on the surface AB are
e™ and —ike™ , the same as they would be if the obstacle were not there, and that they
are identically zero on all other parts of the boundary. In other words, we completely
ignore any scattering by the material in which the aperture resides. We can then use our

=]
-

Figure 6.23 Huygens’ construction.
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formula to estimate ¥ in the region to the right of the aperture. If we further set

/
(r—r) ik|lr—r'|

V,.G(r,r) ~ ik
r ( ) |r_r,|2

: (6.209)

which is a good approximation provided we are more than a few wavelengths away from
the aperture, we find

. /
ezk\r—r |

, k
Yy~ —

- (1 + cos 6)dS;. (6.210)
471 Japerture T — T

'l

Thus, each part of the wavefront on the surface AB acts as a source for the diffracted
wave in Q.

This result, although still an approximation, provides two substantial improvements
to the naive form of Huygens’ construction as presented in elementary courses:

(1) There is factor of (1 + cos &) which suppresses backward propagating waves. The
traditional exposition of Huygens construction takes no notice of which way the
wave is going, and so provides no explanation as to why a wavefront does not act
as a source for a backward wave.

(ii) There is a factor of i~! = e~#/2 which corrects a 90° error in the phase made by
the naive Huygens construction. For two-dimensional slit geometry we must use the
more complicated two-dimensional Green function (it is a Bessel function), and this
provides an e ~"/4 factor which corrects for the 45° phase error that is manifest in
the Cornu spiral of Fresnel diffraction.

For this reason the Kirchhoff approximation is widely used.

Problem 6.12: Use the method of images to construct (i) the Dirichlet, and (ii) the
Neumann, Green function for the region 2, consisting of everything to the right of
the screen. Use your Green functions to write the solution to the diffraction problem
in this region (a) in terms of the values of i on the aperture surface AB, and (b) in
terms of the values of (n - V)¢ on the aperture surface. In each case, assume that the
boundary data are identically zero on the dark side of the screen. Your expressions should
coincide with the Rayleigh—Sommerfeld diffraction integrals of the first and second kind,
respectively.® Explore the differences between the predictions of these two formulz and
that of Kirchhoff for the case of the diffraction of a plane wave incident on the aperture
from the left.

3 M. Born, E. Wolf, Principles of Optics Section 8.11.
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6.6 Further exercises and problems

Problem 6.13: Critical mass. An infinite slab of fissile material has thickness L. The
neutron density 7(x) in the material obeys the equation

2t

_ = —_ n ,

at ax2 H
where n(x, t) is zero at the surface of the slab atx = 0, L. Here, D is the neutron diffusion
constant, the term An describes the creation of new neutrons by induced fission and the
constant u is the rate of production per unit volume of neutrons by spontaneous fission.

(a) Expand n(x, ¢) as a series,

ne,t) =Y an(O)gn ),

where the ¢, (x) are a complete set of functions you think suitable for solving the
problem.

(b) Find an explicit expression for the coefficients a,, () in terms of their intial
values a,;, (0).

(c) Determine the critical thickness L above which the slab will explode.

(d) Assuming that L < Lcjt, find the equilibrium distribution 7eq(x) of neutrons in
the slab. (You may either sum your series expansion to get an explicit closed-form
answer, or use another (Green function?) method.)

Problem 6.14: Semi-infinite rod. Consider the heat equation

a0 2
— =DV, 0<x<oo,
ot
with the temperature 6 (x, t) obeying the initial condition 8(x,0) = 6p for 0 < x < oo,
and the boundary condition 6(0, #) = 0.

(a) Show thatthe boundary condition atx = 0 may be satisfied at all times by introducing
a suitable mirror image of the initial data in the region —oo < x < 0, and then
applying the heat kernel for the entire real line to this extended initial data. Show
that the resulting solution of the semi-infinite rod problem can be expressed in terms
of the error function

2 X
erf (x) & 7 /0 e de,

as

6(x, 1) = 6o erf (%) .
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(b) Solve the same problem by using a Fourier integral expansion in terms of sin kx on
the half-line 0 < x < oo and obtaining the time evolution of the Fourier coefficients.
Invert the transform and show that your answer reduces to that of part (a). (Hint:
replace the initial condition by 6(x,0) = 6pe <, so that the Fourier transform
converges, and then take the limit ¢ — 0 at the end of your calculation.)

Exercise 6.15: Seasonal heat waves. Suppose that the measured temperature of the air
above the arctic permafrost at time ¢ is expressed as a Fourier series

o0
0(t) =060+ Y _ 0, cosnat,

n=1
where the period 7 = 27 /w is one year. Solve the heat equation for the soil temperature,

0 3%

o Ca
with this boundary condition, and find the temperature 6(z,¢) at a depth z below the
surface as a function of time. Observe that the subsurface temperature fluctuates with
the same period as that of the air, but with a phase lag that depends on the depth. Also
observe that the longest-period temperature fluctuations penetrate the deepest into the
ground. (Hint: for each Fourier component, write 6 as Re[4,(z) exp inwt], where 4,, is
a complex function of z.)

0<z< o

The next problem is an illustration of a Dirichlet principle.

Exercise 6.16: Helmholtz—Hodge decomposition. Given a three-dimensional region €2
with smooth boundary 9%, introduce the real Hilbert space L2, (£2) of finite-norm vector
fields, with inner product

(u, v) :/ u-vdix.
Q

Consider the spaces £L = {v : v = V¢} and 7 = {v : v = curl w} consisting of
vector fields in L2, (S2) that can be written as gradients and curls, respectively. (Strictly

speaking, we should consider the completions of these spaces.)

(a) Show that if we demand that either (or both) of ¢ and the tangential component of
w vanish on 9€2, then the two spaces £ and 7 are mutually orthogonal with respect
to the L2 () inner product.

vece

Letu € L‘z,ec(Q). We will try to express u as the sum of a gradient and a curl by

seeking to make the distance functional
Fulg, Wl = [lu— V¢ — curl w|®

def / lu— V¢ — curlw|2 d*x
Q

equal to zero.
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(b) Show that if we find a w and ¢ that minimize Fy[¢, w], then the residual vector field

h& - V¢ — curlw

obeys curl h = 0 and div h = 0, together with boundary conditions determined by
the constraints imposed on ¢ and w:
(1) If ¢ is unconstrained on 92, but the tangential boundary component of w is
required to vanish, then the component of h normal to the boundary must be zero.
(i1) If ¢ = 0 on L2, but the tangential boundary component of w is unconstrained,
then the tangential boundary component of h must be zero.
(ii1) If ¢ = 0 on 02 and also the tangential boundary component of w is required
to vanish, then h need satisfy no boundary condition.
(c) Assuming that we can find suitable minimizing ¢ and w, deduce that under each
of the three boundary conditions of the previous part, we have a Helmholtz—Hodge
decomposition

u=V¢+curlw+h

into unique parts that are mutually L%ec(Q) orthogonal. Observe that the residual
vector field h is harmonic — i.e. it satisfies the equation V2h = 0, where

v2h © v (div h) — curl (curl h)

is the vector Laplacian acting on h.

If u is sufficiently smooth, there will exist ¢ and w that minimize the distance
lu — V¢ — curl w|| and satisfy the boundary conditions. Whether or not h is needed in
the decomposition is another matter. It depends both on how we constrain ¢ and w, and
on the topology of €2. At issue is whether or not the boundary conditions imposed on h
are sufficient to force it to be zero. If 2 is the interior of a torus, for example, then h can
be non-zero whenever its tangential component is unconstrained.

The Helmholtz—Hodge decomposition is closely related to the vector-field eigenvalue
problems commonly met with in electromagnetism or elasticity. The next few exercises
lead up to this connection.

Exercise 6.17: Self-adjointness and the vector Laplacian. Consider the vector Laplacian
(defined in the previous problem) as a linear operator on the Hilbert space L%eC(Q) .

(a) Show that

/d3x{u~(V2V)—V-(V2u)} :f {(m-u)divv—(n-v)divu
Q Q

—u-(nxcurlv) +v-(nx curlu)}dS
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(b) Deduce from the identity in part (a) that the domain of V2 coincides with the domain
of (V?)T, and hence the vector Laplacian defines a truly self-adjoint operator with
a complete set of mutually orthogonal eigenfunctions, when we take as boundary
conditions one of the following:

(i) Dirichlet-Dirichlet: n-u=0andn x u = 0 on 9£2;

(i) Dirichlet-Neumann: n-u = 0 and n x curlu = 0 on 9%;
(iii)) Neumann—Dirichlet: divu =0 andn x u = 0 on 9%2; .
(iv) Neumann—Neumann: divu = 0 and n x curlu = 0 on 9€2:

(c) Show that the more general Robin boundary conditions

a(n-u)+ Bdiva =0,
A(n x u) + pu(n x curlu) =0,

where @ 8, u v can be position dependent, also give rise to a truly self-adjoint
operator.

Problem 6.18: Cavity electrodynamics and the Hodge—Weyl decomposition. Each of the
self-adjoint boundary conditions in the previous problem gives rise to a complete set of
mutually orthogonal vector eigenfunctions obeying

—Vzun = k,%u,,.

For these eigenfunctions to describe the normal modes of the electric field E and the
magnetic field B (which we identify with H as we will use units in which pg = €9 =
1) within a cavity bounded by a perfect conductor, we need to additionally impose
the Maxwell equations divB = divE = 0 everywhere within 2, and to satisfy the
perfect-conductor boundary conditionsn x E =n-B = 0.

(a) For each eigenfunction u,, corresponding to a non-zero eigenvalue k,%, define

1 1
v, = —zcurl (curlwy,), w, = ——2V(div u,),
kn k"l

so that u,, = v,, + w,. Show that v,, and w,, are, if non-zero, each eigenfunctions
of —V? with eigenvalue k2. The vector eigenfunctions that are not in the null-
space of V2 can therefore be decomposed into their transverse (the v, which obey
divv, = 0) and longitudinal (the w,, which obey curl w,, = 0) parts. However, it is
not immediately clear what boundary conditions the v,, and w,, separately obey.

(b) The boundary-value problems of relevance to electromagnetism are:

—V?2h, = k’h,, within €,

n-h, =0, nxcurlh,=0, ondQ;

)
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(c

~

(d)

6 Partial differential equations

i —V2%e, = kle,, within €,
il
dive, =0, nxe, =0, on 02;
i) —V?b, = kZby, within Q,
il
divb, =0, n xcurlb, =0, ond<.

These problems involve, respectively, the Dirichlet-Neumann, Neumann—Dirichlet
and Neumann—Neumann boundary conditions from the previous problem.
Show that the divergence-free transverse eigenfunctions

1 1 1
H, def k—zcurl (curlh,), E, def k—20url (curle,), B, def k—zcurl (curlby,)

n n n

obeyn-H, =n x E, = n x curl B, = 0 on the boundary, and that from these and
the eigenvalue equations we can deduce thatn x curlH, =n-B, =n-curlE, =0
on the boundary. The perfect-conductor boundary conditions are therefore satisfied.
Also show that the corresponding longitudinal eigenfunctions

1 1 1
. ZVivh), e, def SVdive). B, def 5 V(divb,)
n n n

obey the boundary conditionsn- 7, =n x €, =n x 8, =0.

By considering the counter-example provided by a rectangular box, show that
the Dirichlet-Dirichlet boundary condition is not compatible with a longitudi-
nal+transverse decomposition. (A purely transverse wave incident on such a
boundary will, on reflection, acquire a longitudinal component.)

Show that

0=/nn-Hmd3x=/en~Emd3x=/ﬁn-Bmd3x,
Q Q Q

but that the v,, and w,, obtained from the Dirichlet—Dirichlet boundary condition u,,’s
are not in general orthogonal to each other. Use the continuity of the L%eC(Q) inner
product

X, > X = (X,y) > (X,y)
to show that this individual-eigenfunction orthogonality is retained by limits of sums
of the eigenfunctions. Deduce that, for each of the boundary conditions (i)—(iii) (but
not for the Dirichlet-Dirichlet case), we have the Hodge—Weyl decomposition of

L2,.(8) as the orthogonal direct sum

L2 Q=LOTON,
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where £, 7 are respectively the spaces of functions representable as infinite sums
of the longitudinal and transverse eigenfunctions, and A is the finite-dimensional
space of harmonic (null-space) eigenfunctions.

Complete sets of vector eigenfunctions for the interior of a rectangular box, and for each
of the four sets of boundary conditions we have considered, can be found in Morse and
Feshbach §13.1.

Problem 6.19: Hodge—Weyl and Helmholtz—Hodge. In this exercise we consider the
problem of what classes of vector-valued functions can be expanded in terms of the
various families of eigenfunctions of the previous problem. It is tempting (but wrong)
to think that we are restricted to expanding functions that obey the same boundary
conditions as the eigenfunctions themselves. Thus, we might erroniously expect that
the E, are good only for expanding functions whose divergence vanishes and have
vanishing tangential boundary components, or that the 7, can expand out only curl-free
vector fields with vanishing normal boundary component. That this supposition can be
false was exposed in section 2.2.3, where we showed that functions that are zero at the
endpoints of an interval can be used to expand out functions that are not zero there.
The key point is that each of our four families of u,, constitute a complete orthonormal
set in L%eC(Q), and can therefore be used expand any vector field. As a consequence,
the infinite sum »_ a,E, € 7 can, for example, represent any vector-valued function
ue L%eC(Q) provided only that u possesses no component lying either in the subspace
L of the longitudinal eigenfunctions €,, or in the nullspace N

(a) Let 7 = (E,) be space of functions representable as infinite sums of the E,. Show
that
(E,)* = {u:curlu = 0 within ©, n x u =0 on 9Q}.

Similarly show that

(en)J‘ = {u : divu = 0 within 2, no condition on 92},
(H,)* = {u : curlu = 0 within , no condition on 92},
(7),,)L = {u:divu = 0 within 2, n-u = 0on dQ},

(Bn)J‘ = {u : curl u = 0 within €2, no condition on d<2}.

(ﬂn)J‘ = {u : divu = 0 within 2, no condition on 92},
(b) Use the results of part (a) and the Helmholtz—Hodge decomposition to show that

(Eq) ={ue LECC(Q) : u = curl w, no condition on w on 9$2}.
(€n) = {u € L2,,(Q) 1 u = V¢, where ¢ = 0 on 3$2},

(H,) ={u e L‘z,eC(Q) :u = curlw, where n x w = 0 on 082},

(n,) = {ueL?

vee

(R2) : u = V¢, no condition on ¢ on 92},
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By) ={ue L%eC(Q) :u = curlw, wheren x w = 0 on 9Q2}.

(B,) = (u L2 ():u= Vg, where ¢ = 0 on JQ}.
(c) Conclude from the previous part, that the Hodge-Weyl eigenspace decompositions
2
L. (Q=LOTON

for each of the three vector Laplacian boundary condition families (i), (ii) and (iii)
coincides the Helmholtz—Hodge decompositions under the conditions (i), (ii) and
(iii) in problem 6. 6.16

(d) As an illustration of the practical distinctions between the decompositions in part
(c), take © to be the unit cube in R?, and u = (1, 0, 0) a constant vector field. Show

that with conditions (i) we have u € L, but for (ii) we have u € 7, and for (iii) we
haveu € N.
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The mathematics of real waves

Waves are found everywhere in the physical world, but we often need more than the
simple wave equation to understand them. The principal complications are nonlinearity
and dispersion. In this chapter we will describe the mathematics lying behind some
commonly observed, but still fascinating, phenomena.

7.1 Dispersive waves

In this section we will investigate the effects of dispersion, the dependence of the speed
of propagation on the frequency of the wave. We will see that dispersion has a profound
effect on the behaviour of a wavepacket.

7.1.1 Ocean waves

The most commonly seen dispersive waves are those on the surface of water. Although
often used to illustrate wave motion in class demonstrations, these waves are not as
simple as they seem.

In Chapter 1 we derived the equations governing the motion of water with a free
surface. Now we will solve these equations. Recall that we described the flow by intro-
ducing a velocity potential ¢ such that v = V¢, and a variable %(x, f) which is the depth
of the water at abscissa x (see Figure 7.1).

h(x,t)

Figure 7.1 Water with a free surface.

231
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Again looking back to Chapter 1, we see that the fluid motion is determined by
imposing

V2 =0 (7.1)

everywhere in the bulk of the fluid, together with boundary conditions

a
9 _ 0, on y=0, (7.2)
dy
d¢ 1 2
= + E(V(p) + gy =0, onthe free surface y = A, (7.3)
oh 0 oh o
oh _ 99 %9 _ 0, on the free surface y = h. (7.4)

at  dy = ox ox

Recall the physical interpretation of these equations: the vanishing of the Laplacian of
the velocity potential simply means that the bulk flow is incompressible

divv = V2¢ = 0. (7.5)

The first two of the boundary conditions are also easy to interpret: the first says that no
water escapes through the lower boundary at y = 0. The second, a form of Bernoulli’s
equation, asserts that the free surface is everywhere at constant (atmospheric) pressure.
The remaining boundary condition is more obscure. It states that a fluid particle initially
on the surface stays on the surface. Remember that we set f'(x, v, t) = h(x,t) — v, so the
water surface is given by f'(x, v, r) = 0. If the surface particles are carried with the flow
then the convective derivative of f

df qer Of _
ity + (v-V)f, (7.6)

should vanish on the free surface. Using v = V¢ and the definition of f, this reduces to

oh 9¢oh 0
oh [ 9%0h 39 _ (7.7)
at  dx dx  dy

which is indeed the last boundary condition.
Using our knowledge of solutions of Laplace’s equation, we can immediately write
down a wave-like solution satisfying the boundary condition at y = 0

¢ (x,y,t) = acosh(ky) cos(kx — wt). (7.8)
The tricky part is satisfying the remaining two boundary conditions. The difficulty is that

they are nonlinear, and so couple modes with different wavenumbers. We will circumvent
the difficulty by restricting ourselves to small-amplitude waves, for which the boundary
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conditions can be linearized. Suppressing all terms that contain a product of two or more

small quantities, we are left with
d¢
— +gh=0, 7.9
5 T8 (7.9)
oh o
_ 9 _ (7.10)
at  dy

Because ¢ is already a small quantity, and the wave amplitude is a small quantity,
linearization requires that these equations should be imposed at the equilibrium surface

of the fluid y = hyg. It is convenient to eliminate / to get
92 3
¢ —¢—0, ony = hy. (7.11)

o T8y T
Inserting (7.8) into this boundary condition leads to the dispersion equation
w?* = gk tanh khy, (7.12)
relating the frequency to the wavenumber.
Two limiting cases are of particular interest:
(i) Long waves on shallow water: Here kho < 1, and, in this limit,
w = k\/ghy.
(ii) Waves on deep water.: Here, kho > 1, leading to w = /gk
For deep water, the velocity potential becomes
(7.13)

¢ (x,p,1) = aetV 1 cos(lx — wi).

We see that the disturbance due to the surface wave dies away exponentially, and becomes

very small only a few wavelengths below the surface.
Remember that the velocity of the fluid is v = V¢. To follow the motion of individual

particles of fluid we must solve the equations

dx

— =y = —akek—"o) sin(kx — wt),

dt

d

;); =0 = ake* "0 cos(kx — wt). (7.14)
This is a system of coupled nonlinear differential equations, but to find the small-
amplitude motion of particles at the surface we may, to a first approximation, set
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Figure 7.2  Circular orbits in deep water surface waves.

X = X0, ¥ = hg on the right-hand side. The orbits of the surface particles are therefore
approximately

x(6) = x0 — 2 costox — w),
w
ak .

y(t) = yo — — sin(kxog — wt). (7.15)
w

For right-moving waves, the particle orbits are clockwise circles. At the wave crest the
particles move in the direction of the wave propagation; in the troughs they move in the
opposite direction. Figure 7.2 shows that this motion results in an up-down-asymmetric
cycloidal wave profile.

When the effect of the bottom becomes significant, the circular orbits deform into
ellipses. For shallow water waves, the motion is principally back-and-forth with motion
in the y-direction almost negligible.

7.1.2 Group velocity

The most important effect of dispersion is that the group velocity of the waves — the
speed at which a wavepacket travels — differs from the phase velocity — the speed at
which individual wave crests move. The group velocity is also the speed at which the
energy associated with the waves travels.

Suppose that we have waves with dispersion equation v = w(k). A right-going
wavepacket of finite extent (Figure 7.3), and with initial profile ¢(x), can be Fourier
analysed to give

* dk .
p(x) = f ZA("W' (7.16)

At later times this will evolve to

* dk ikx—iw (k)t
o(x,t) = Z—A(k)e WL (7.17)

oo 2T
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CEVVVY

Figure 7.3 A right-going wavepacket.

Let us suppose for the moment that 4 (k) is non-zero only for a narrow band of wavenum-
bers around ko, and that, restricted to this narrow band, we can approximate the full w (k)
dispersion equation by

w(k) ~ wy + Uk — ko). (7.18)
Thus
% dk . :
o(x, 1) = / EA(k)e’k(x_U’)_’(‘”O_UkO)’. (7.19)
—00

Comparing this with the Fourier expression for the initial profile, we find that
@(x, 1) = e @=Uk)t (v _ Up). (7.20)

The pulse envelope therefore travels at speed U. This velocity

U

I
|
=€

(7.21)

is the group velocity. The individual wave crests, on the other hand, move at the phase
velocity w (k) /k.

When the initial pulse contains a broad range of frequencies we can still explore its
evolution. We make use of a powerful tool for estimating the behaviour of integrals that
contain a large parameter. In this case the parameter is the time . We begin by writing
the Fourier representation of the wave as

*odk o i
o(x, 1) =/ EA(k)e (7.22)

—00

where

k) =k (%‘) — (k). (7.23)
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Now look at the behaviour of this integral as # becomes large, but while we keep the ratio
x/t fixed. Since ¢ is very large, any variation of ¥ with £ will make the integrand a very
rapidly oscillating function of k. Cancellation between adjacent intervals with opposite
phase will cause the net contribution from such a region of the & integration to be very
small. The principal contribution will come from the neighbourhood of stationary phase
points, i.e. points where

dyy x OJw
0=—=-——. 7.24
dk t ok (7.24)
This means that, at points in space where x/¢ = U, we will only get contributions from
the Fourier components with wavenumber satisfying

_Ba)

U=—.
ok

(7.25)

The initial packet will therefore spread out, with those components of the wave having
wavenumber £ travelling at speed

Jw

Ugroup = ﬁ (7.26)

This is the same expression for the group velocity that we obtained in the narrow-band
case. Again this speed of propagation should be contrasted with that of the wave crests,
which travel at

w
Uphase = E (7.27)

The “stationary phase” argument may seem a little hand-waving, but it can be developed
into a systematic approximation scheme. We will do this in Chapter 19.

Example: Water waves. The dispersion equation for waves on deep water is w = /gk.
The phase velocity is therefore

18
Uphase = %9 (7.28)
whilst the group velocity is
1 /g 1
Ugroup = Wk = Evphase- (7.29)

This difference is easily demonstrated by tossing a stone into a pool and observing how
individual wave crests overtake the circular wavepacket and die out at the leading edge,
while new crests and troughs come into being at the rear and make their way to the front.
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This result can be extended to three dimensions with

; dw
’Ulgroup = a—kl (730)
Example: de Broglie waves. The plane-wave solutions of the time-dependent

Schrodinger equation

oy I _,
—— = —— VY, 7.31
Yo T T Y (7.31)
are
w — eik‘r—iwt’ (732)
with
1 2
w(k) = —k~°. (7.33)
2m
The group velocity is therefore
! k (7.34)
\ = —k, .
group m

which is the classical velocity of the particle.

7.1.3 Wakes

There are many circumstances when waves are excited by an object moving at a constant
velocity through a background medium, or by a stationary object immersed in a steady
flow. The resulting wakes carry off energy, and therefore create wave drag. Wakes are
involved, for example, in sonic booms, Cerenkov radiation, the Landau criterion for
superfluidity and Landau damping of plasma oscillations. Here, we will consider some
simple water-wave analogues of these effects. The common principle for all wakes is that
the resulting wave pattern is time independent when observed from the object exciting it.

Example: Obstacle in a stream. Consider a log lying submerged in a rapidly flowing
stream (Figure 7.4).

The obstacle disturbs the water and generates a train of waves. If the log lies athwart
the stream, the problem is essentially one-dimensional and easy to analyse. The essential

—

WO
@,

Figure 7.4 Login a stream.
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point is that the distance of the wave crests from the log does not change with time, and
therefore the wavelength of the disturbance the log creates is selected by the condition
that the phase velocity of the wave coincide with the velocity of the mean flow.! The
group velocity does come into play, however. If the group velocity of the waves is less
than the phase velocity, the energy being deposited in the wave train by the disturbance
will be swept downstream, and the wake will lie behind the obstacle. If the group velocity
is higher than the phase velocity, and this is the case with very short wavelength ripples
on water where surface tension is more important than gravity, the energy will propagate
against the flow, and so the ripples appear upstream of the obstacle.

Example: Kelvin ship waves. A more subtle problem is the pattern of waves left behind
by a ship on deep water. The shape of the pattern is determined by the group velocity
for deep-water waves being one-half that of the phase velocity.

How the wave pattern is formed can be understood from Figure 7.5. In order that the
pattern of wave crests be time independent, the waves emitted in the direction AC must
have phase velocity such that their crests travel from A to C while the ship goes from
A to B. The crest of the wave emitted from the bow of the ship in the direction AC will
therefore lie along the line BC — or at least there would be a wave crest on this line if
the emitted wave energy travelled at the phase velocity. The angle at C must be a right
angle because the direction of propagation is perpendicular to the wave crests. Euclid,
by virtue of his angle-in-a-semicircle theorem, now tells us that the locus of all possible
points C (for all directions of wave emission) is the larger circle. Because, however, the
wave energy only travels at one-half the phase velocity, the waves going in the direction
AC actually have significant amplitude only on the smaller circle, which has half the
radius of the larger. The wake therefore lies on, and within, the Kelvin wedge, whose

Figure 7.5 Kelvin’s ship-wave construction.

! In his book Waves in Fluids, M. J. Lighthill quotes Robert Frost on this phenomenon:

The black stream, catching on a sunken rock,
Flung backward on itself in one white wave,
And the white water rode the black forever,
Not gaining but not losing.
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boundary lies at an angle 6 to the ship’s path. This angle is determined by the ratio
OD/OB=1/3 to be

6 = sin~'(1/3) = 19.5°. (7.35)

Remarkably, this angle, and hence the width of the wake, is independent of the speed of
the ship.

The waves actually on the edge of the wedge are usually the most prominent, and
they will have crests perpendicular to the line AD. This orientation is indicated on the
left-hand figure, and reproduced as the predicted pattern of wavecrests on the right. The
prediction should be compared with the wave systems in Figures 7.6 and 7.7.

7.1.4 Hamilton’s theory of rays

We have seen that wave packets travel at a frequency-dependent group velocity. We can
extend this result to study the motion of waves in weakly inhomogeneous media, and
so derive an analogy between the “geometric optics” limit of wave motion and classical
dynamics.

Consider a packet composed of a roughly uniform train of waves spread out over a
region that is substantially longer and wider than their mean wavelength. The essential
feature of such a wave train is that at any particular point of space and time, x and ¢, it
has a definite phase ® (x, 7). Once we know this phase, we can define the local frequency

Figure 7.6 Large-scale Kelvin wakes. (Image source: US Navy).
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Figure 7.7 Small-scale Kelvin wake. (Photograph by Fabrice Neyret).

 and wavevector k by

BIC) BIC)
w=— (), K=(Z). (7.36)
at ¥ ox; ¢

These definitions are motivated by the idea that
O, ~k-x — wt, (7.37)

at least locally.

We wish to understand how k changes as the wave propagates through a slowly varying
medium. We introduce the inhomogeneity by assuming that the dispersion equation w =
w(k), which is initially derived for a uniform medium, can be extended to w = w(k, X),
where the x dependence arises, for example, as a result of a position-dependent refractive
index. This assumption is only an approximation, but it is a good approximation when
the distance over which the medium changes is much larger than the distance between
wave crests.

Applying the equality of mixed partials to the definitions of k and w gives us

0 ok; dk; ok;
@) -G G -G, o
ax; P at X 3Xj i ax; X
The subscripts indicate what is being left fixed when we differentiate. We must be careful

about this, because we want to use the dispersion equation to express w as a function of
k and x, and the wavevector k will itself be a function of x and ¢.
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Taking this dependence into account, we write

<5> - (a_)k i (%) (a_> (7.39)

We now use (7.38) to rewrite this as

Ok o\ (kY _ (9o
(¥>x - (a_k,) (%)t =" (5)1( (7.40)

Interpreting the left-hand side as a convective derivative

dh; ok + (vg - V)k
_— = —_— v . -’
dt at ), O f '
we read off that
dk; 0
S (9 (7.41)
provided we are moving at velocity
dx; ow
L == . 7.42
di (Vg)t ( ok, >X ( )

Since this is the group velocity, the packet of waves is actually travelling at this speed.

The last two equations therefore tell us how the orientation and wavelength of the wave

train evolve if we ride along with the packet as it is refracted by the inhomogeneity.
The formulae

. Jw
k=——,
ox
Jw
X = —, 7.43
X ™ (7.43)

are Hamilton's ray equations. These Hamilton equations are identical in form to
Hamilton’s equations for classical mechanics

. 0H

p= ox’

. oH

X= —, (7.44)
op

except that k is playing the role of the canonical momentum, p, and w (k, x) replaces the
Hamiltonian, H (p, x). This formal equivalence of geometric optics and classical mechan-
ics was a mystery in Hamilton’s time. Today we understand that classical mechanics is
nothing but the geometric optics limit of wave mechanics.
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7.2 Making waves

Many waves occurring in nature are generated by the energy of some steady flow being
stolen away to drive an oscillatory motion. Familiar examples include the music of a
flute and the waves raised on the surface of water by the wind. The latter process is quite
subtle and was not understood until the work of J. W. Miles in 1957. Miles showed that
in order to excite waves the wind speed has to vary with the height above the water, and
that waves of a given wavelength take energy only from the wind at that height where
the windspeed matches the phase velocity of the wave. The resulting resonant energy
transfer turns out to have analogues in many branches of science. In this section we will
exhibit this phenomenon in the simpler situation where the varying flow is that of the
water itself.

7.2.1 Rayleigh’s equation

Consider water flowing in a shallow channel where friction forces prevent the water in
contact with the stream-bed from moving. We will show that the resulting shear flow
is unstable to the formation of waves on the water surface. The consequences of this
instability are most often seen in a thin sheet of water running down the face of a dam.
The sheet starts off flowing smoothly, but, as the water descends, waves form and break,
and the water reaches the bottom in irregular pulses called roll waves.

It is easiest to describe what is happening from the vantage of a reference frame that
rides along with the surface water. In this frame the velocity profile of the flow will be
as shown in Figure 7.8.

Since the flow is incompressible but not irrotational, we will describe the motion by
using a stream function W, in terms of which the fluid velocity is given by

vy = —0,V,
vy = 3. (7.45)

Figure 7.8 The velocity profile U (y) in a frame at which the surface is at rest.
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This parametrization automatically satisfies V - v = 0, while (the z-component of) the
vorticity becomes

Q = vy — dyuy = VAW, (7.46)
We will consider a stream function of the form?

W(x,p,0) = Yo() + ¥ (e, (7.47)

where o obeys —0,%9 = vy = U(y), and describes the horizontal mean flow. The

term containing ¥ (y) represents a small-amplitude wave disturbance superposed on the

mean flow. We will investigate whether this disturbance grows or decreases with time.
Euler’s equation can be written as

2
\'f—i—VXQ:—V(P—{-%—i-gy):O. (7.48)

Taking the curl of this, and taking into account the two-dimensional character of the
problem, we find that

JQ+ (V- V)Q = 0. (7.49)

This, a general property of two-dimensional incompressible motion, says that vorticity
is convected with the flow. We now express (7.49) in terms of W, when it becomes

V20 + (v V)VZW = 0. (7.50)

Substituting the expression (7.47) into (7.50), and keeping only terms of first order in v,
gives

2 d2
—iw <— - k2> v + iUk <W - k2) ¥+ ikyd,(—d,U) =0,

or

e, U 1
(5 -#) - (52) e =* 720

This is Rayleigh’s equation.’ If only the first term were present, it would have solutions
¥ o e and we would have recovered the results of Section 7.1.1. The second term
is significant, however. It will diverge if there is a point y. such that U(y.) = w/k. In
other words, if there is a depth at which the flow speed coincides with the phase velocity

2 The physical stream function is, of course, the real part of this expression.
3 Lord Rayleigh, Proc. Lond. Math. Soc., 11 (1879) 57.
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of the wave disturbance, thus allowing a resonant interaction between the wave and
flow. An actual infinity in (7.51) will be evaded, though, because w will gain a small
imaginary part @ — wpg + iy. A positive imaginary part means that the wave amplitude
is growing exponentially with time. A negative imaginary part means that the wave is
being damped. With y included, we then have

1 . U—wg/k
(U—ow/k)  (U—wr/k)?+y

_ U — wp/k
(U —wr/k)?+y

S+ i sgn (%) 8<U(y) . a)R/k>

. vy |oU -
S + i sgn <Z) ‘5 § S —yo).  (7.52)

To specify the problem fully we need to impose boundary conditions on v/ (v). On the

lower surface we can set ¥ (0) = 0, as this will keep the fluid at rest there. On the upper
surface y = h we apply Euler’s equation

2
\'f—i-vxSZ:—V(P—i-%—i-gh):O. (1.53)

We observe that P is constant, being atmospheric pressure, and the v /2 can be neglected
as it is of second order in the disturbance. Then, considering the x-component, we have

t k2
—V,gh = —gax/ vydt = —g <E) v (7.54)
on the free surface. To lowest order we can apply the boundary condition on the
equilibrium free surface y = yg. The boundary condition is therefore

ldy kU k?
EE —+ ZW :gE’ Y =)0. (755)

We usually have dU /dy = 0 near the surface, so this simplifies to

1 dy k?

That this is sensible can be confirmed by considering the case of waves on still, deep
water, where ¥ (y) = elflV. The boundary condition then reduces to |k| = gk?/w?, or
w? = g|k|, which is the correct dispersion equation for such waves.

We find the corresponding dispersion equation for waves on shallow flowing water
by computing

1 dy

— 7.57
v ody |, (7.57)
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from Rayleigh’s equation (7.51). Multiplying by ¥* and integrating gives

[ LA, U 1 5
o= [ ol (@) (G amme] o

An integration by parts then gives

Gl L e llE e () o)
—| = dyy|—|+k . 7.59
[w dy]o |G e (5 ) e 059

The lower limit makes no contribution, since v * is zero there. On using (7.52) and taking
the imaginary part, we find

-1

*dl// - V4 82U 104
Im (1/» E)m =sen (1) (Wl ), Mool (60
or
1d¢) y <a2U> U |~ [y )
I — = Z — —_— . 7.61
m(w o), e ()7 (5 Navl, woor 00D

This equation is most useful if the interaction with the flow does not substantially perturb
¥ (y) away from the still-water result 1/ () = sinh(|k|y), and assuming this is so provides
a reasonable first approximation.

If we insert (7.61) into (7.56), where we approximate,

K2 K2 5 K2
JR— ~ R — 21 _—
g\ 7 g 5 g e 12

we find
3
Wy 1 diﬂ)
y = —=Im <——
2gk? vody )y,
3 2

B 4 wp (07U
- (k)”zgk2 ( )2 >yc

We see that either sign of y is allowed by our analysis. Thus the resonant interaction
between the shear flow and wave appears to lead to either exponential growth or damping
of the wave. This is inevitable because our inviscid fluid contains no mechanism for
dissipation, and its motion is necessarily time-reversal invariant. Nonetheless, as in our
discussion of “friction without friction” in Section 5.2.2, only one sign of y is actually
observed. This sign is determined by the initial conditions, but a rigorous explanation

Ty ol
b o0

AU
ay

(7.62)
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of how this works mathematically is not easy, and is the subject of many papers. These
show that the correct sign is given by

N 3 (32_U)
2gk> \ 8y* /,,

Since our velocity profile has 82U /9y* < 0, this means that the waves grow in amplitude.

We can also establish the correct sign for y by computing the change of momentum
in the background flow due to the wave.* The crucial element is whether, in the neigh-
bourhood of the critical depth, more fluid is overtaking the wave than lagging behind it.
This is exactly what the quantity 32U /9y measures.

ol

U Yool
b WOOR

m (7.63)

7.3 Nonlinear waves

Nonlinear effects become important when some dimensionless measure of the amplitude
of the disturbance, say AP/P for a sound wave, or Ah/)\ for a water wave, is no
longer < 1.

7.3.1 Sound in air

The simplest nonlinear wave system is one-dimensional sound propagation in a gas. This
problem was studied by Riemann.

The one-dimensional motion of a fluid is determined by the mass conservation
equation

0:p + 0x(pv) = 0, (7.64)
and Euler’s equation of motion
p (00 + vdyv) = —0,P. (7.65)

In a fluid with equation of state P = P(p), the speed of sound, ¢, is given by

=—. 7.66
<=1 (7.66)

It will in general depend on P, the speed of propagation being usually higher when the
pressure is higher.

Riemann was able to simplify these equations by defining a new thermodynamic
variable 77 (P) as

P
T :/ — dP, (7.67)
Py pc

4 G. E. Vekstein, Amer. J. Phys., 66 (1998) 886.
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where Py is the equilibrium pressure of the undisturbed air. The quantity & obeys

dm 1
= (7.68)
dP  pc
In terms of 7, Euler’s equation divided by p becomes
0V + v,V + coyr = 0, (7.69)
whilst the equation of mass conservation divided by p/c becomes
07T + v0yT + coyv = 0. (7.70)
Adding and subtracting, we get Riemann's equations
h(v+m)+ @W+c)o(v+m) =0,
o/(v—m)+ (W —c)oy(v—m) =0. (7.71)

These assert that the Riemann invariants v &+ m are constant along the characteristic
curves

@ (1.72)

—=v=xe. .

dt
This tells us that signals travel at the speed v & ¢. In other words, they travel, with
respect to the fluid, at the local speed of sound c¢. Using the Riemann equations, we can
propagate initial data v(x,t = 0), 7w (x,¢ = 0) into the future by using the method of
characteristics.

In Figure 7.9 the value of v + 7 is constant along the characteristic curve C%{, which

is the solution of

dx

S =vte (7.73)

Figure 7.9 Nonlinear characteristic curves.
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passing through A. The value of v — 7 is constant along CZ, which is the solution of

% =v—c (7.74)
passing through B. Thus the values of 7 and v at the point P can be found if we know
the initial values of v + 7 at the point A and v — 7 at the point B. Having found v
and  at P we can invert 77 (P) to find the pressure P, and hence ¢, and so continue the
characteristics into the future, as indicated by the dotted lines. We need, of course, to
know v and c¢ at every point along the characteristics Cji and C2 in order to construct
them, and this requires us to treat every point as a “P”. The values of the dynamical
quantities at P therefore depend on the initial data at all points lying between A and B.
This is the domain of dependence of P.

A sound wave caused by a localized excess of pressure will eventually break up
into two distinct pulses, one going forwards and one going backwards. Once these
pulses are sufficiently separated that they no longer interact with one another they are
simple waves. Consider a forward-going pulse propagating into undisturbed air. The
backward characteristics are coming from the undisturbed region where both 7 and v
are zero. Clearly mw — v is zero everywhere on these characteristics, and so 7 = v.
Now 7 + v = 2v = 27 is constant on the forward characteristics, and so v and v are
individually constant along them. Since 7 is constant, so is ¢. With v also being constant,
this means that ¢ 4+ v is constant. In other words, for a simple wave, the characteristics
are straight lines.

This simple-wave simplification contains within it the seeds of its own destruction.
Suppose we have a positive pressure pulse in a fluid whose speed of sound increases
with the pressure. Figure 7.10 shows how, with this assumption, the straight-line char-
acteristics travel faster in the high-pressure region, and eventually catch up with and
intersect the slower-moving characteristics. When this happens the dynamical variables
will become multivalued. How do we deal with this?

Figure 7.10  Simple wave characteristics.
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u
— (a) N (b)

d

(© (@
I O &

Figure 7.11 A breaking nonlinear wave.
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Figure 7.12 Formation of a shock.

7.3.2 Shocks

Let us untangle the multivaluedness by drawing another set of pictures. Suppose u obeys
the nonlinear “half” wave equation

(3 + ud)u = 0. (7.75)

The velocity of propagation of the wave is therefore u itself, so the parts of the wave
with large u will overtake those with smaller u, and the wave will “break”, as shown in
Figure 7.11.

Physics does not permit such multivalued solutions, and what usually happens is that
the assumptions underlying the model which gave rise to the nonlinear equation will no
longer be valid. New terms should be included in the equation which prevent the solution
becoming multivalued, and instead a steep “shock” will form (Figure 7.12).

Examples of an equation with such additional terms are Burgers’ equation

(3 + ud)u = vd2u, (7.76)

and the Korteweg—de Vries (KdV) equation (4.11), which, by a suitable rescaling of x
and ¢, we can write as

(B + ud)u =803 u. (7.77)
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Burgers’ equation, for example, can be thought of as including the effects of thermal
conductivity, which was not included in the derivation of Riemann’s equations. In both
these modified equations, the right-hand side is negligible when u is varying slowly, but it
completely changes the character of the solution when the waves steepen and try to break.
Although these extra terms are essential for the stabilization of the shock, once we
know that such a discontinuous solution has formed, we can find many of its properties
— for example the propagation velocity — from general principles, without needing their
detailed form. All we need is to know what conservation laws are applicable.
Multiplying (3; + ud,)u = 0 by "', we deduce that

1 1
) {;u} + 0, {mu"“ } =0, (7.78)
and this implies that
o
0, = / u" dx (7.79)
—00

is time independent. There are infinitely many of these conservation laws, one for each ».
Suppose that the n-th conservation law continues to hold even in the presence of the
shock, and that the discontinuity is at X (¢). Then

d X (1) 00
— / u" dx + / u"dx} =0. (7.80)
dt | J-w X ()
This is equal to
] ) X (1) 00
u! (X)X —ul, (X)X + / o dx + / o dx =0, (7.81)
—o0 X (1)

where u” (X) = u"(X — €) and v/, (X) = u"(X + ¢€). Now, using (9; + udy)u = 0 in the
regions away from the shock, where it is reliable, we can write this as

) n X (1) N )
Wy —u)X = — / a1 dx — / o dx
n + 1 —00 n + 1 X(@)
n +1 +1
= (n m 1) @ —ut. (7.82)
The velocity at which the shock moves is therefore
n+1 _  n+l
)’(:( " >(”+n =) (7.83)
n+1 @) —u)

Since the shock can only move at one velocity, only one of the infinitely many
conservation laws can continue to hold in the modified theory!
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Example: Burgers’equation. From

(3 + udy)u = vd2.u, (7.84)
we deduce that
1,
st + 0y Eu —voug =0, (7.85)
so that Oy = [udx is conserved, but further investigation shows that no other

conservation law survives. The shock speed is therefore

2

RS Y (7.56)
_2(u+—u_)_2u+ = '
Example: KdV equation. From
(8 + udo)u =833 _u, (7.87)

we deduce that

1
0t + 0y {Euz ) aﬁxu} 0,

1 1 1
) {§u2} + 9, {§u3 — Sud’u+ 58(8xu)2} =0

where the dots refer to an infinite sequence of (not exactly obvious) conservation laws.
Since more than one conservation law survives, the KdV equation cannot have shock-like
solutions. Instead, the steepening wave breaks up into a sequence of solitons.

Example: Hydraulic jump, or bore.

A stationary hydraulic jump is a place in a stream where the fluid abruptly increases in
depth from 7 to A, and simultaneously slows down from supercritical (faster than wave
speed) flow to subcritical (slower than wave speed) flow (Figure 7.13). Such jumps are

> o h Vo >
—_— 2 —_—

hy 4] > >
—_— —_—
— —

Figure 7.13 A hydraulic jump.



252 7 The mathematics of real waves

commonly seen near weirs, and white-water rapids.> A circular hydraulic jump is easily
created in your kitchen sink. The moving equivalent is the tidal bore.

The equations governing uniform (meaning that v is independent of the depth) flow
in channels are mass conservation

0th + 0y {hv} = 0, (7.88)
and Euler’s equation
0:v + vy v = —0y{gh}. (7.89)

We could manipulate these into the Riemann form, and work from there, but it is more
direct to combine them to derive the momentum conservation law

1
3 {hv} + o, {hvz + Eghz} =0. (7.90)

From Euler’s equation, assuming steady flow, © = 0, we can also deduce Bernoulli’s
equation

1 2
Ev + gh = const, (7.91)
which is an energy conservation law. At the jump, mass and momentum must be
conserved:

hivy = hvy,
1 1
hiv} + Egh% = hyv3 + Egh%, (7.92)
and v may be eliminated to find
1 hy
v =g =) +h). (7.93)
2 h

A change of frame reveals that v is the speed at which a wall of water of height & =
(hy — hy) would propagate into stationary water of depth 4.
Bernoulli’s equation is inconsistent with the two equations we have used, and so

1 1

zv% +gh # Evg + gho. (7.94)
This means that energy is being dissipated: for strong jumps, the fluid downstream
is turbulent. For weaker jumps, the energy is radiated away in a train of waves — the
so-called “undular bore”.

5 The breaking crest of Frost’s “white wave” is probably as much an example of a hydraulic jump as of a
smooth downstream wake.
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Example: Shock wave in air. At a shock wave in air we have conservation of mass
P11 = P22, (7.95)
and momentum
p1v} 4+ P| = pov3 + P. (7.96)
In this case, however, Bernoulli’s equation does hold,® so we also have

1 1
—vl 4y = =03 + hy. (7.97)
2 2
Here, / is the specific enthalpy (U + PV per unit mass). Entropy, though, is not con-
served, so we cannot use PV? = const. across the shock. From mass and momentum

conservation alone we find

P, —P
2 = (&) SR (7.98)
p1) p2— p1
For an ideal gas with ¢,/c, = y, we can use energy conservation to eliminate the
densities, and find
+1P,—P
v =co 1+ L2 (7.99)
2y Py

Here, ¢ is the speed of sound in the undisturbed gas.

7.3.3 Weak solutions

We want to make mathematically precise the sense in which a function u with a
discontinuity can be a solution to the differential equation

n

1 1
Bt {—u"} + Bx {I’l—}-_lun+l} = 0, (7100)

even though the equation is surely meaningless if the functions to which the derivatives
are being applied are not in fact differentiable.

6 Recall that enthalpy is conserved in a throttling process even in the presence of dissipation. Bernoulli’s
equation for a gas is the generalization of this thermodynamic result to include the kinetic energy of the gas.
The difference between the shock wave in air, where Bernoulli holds, and the hydraulic jump, where it does
not, is that the enthalpy of the gas keeps track of the lost mechanical energy, which has been absorbed by
the internal degrees of freedom. The Bernoulli equation for channel flow keeps track only of the mechanical
energy of the mean flow.
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We could play around with distributions like the Heaviside step function or the Dirac
delta, but this is unsafe for nonlinear equations, because the product of two distributions
is generally not meaningful. What we do is introduce a new concept. We say that u is a
weak solution to (7.100) if

,/RZ dx dt {u"@,(p + nn?u""'laxq)} =0, (7.101)

for all test functions ¢ in some suitable space 7. This equation has formally been
obtained from (7.100) by multiplying it by ¢(x, ¢), integrating over all space-time, and
then integrating by parts to move the derivatives off u, and onto the smooth function ¢.
If u is assumed smooth then all these manipulations are legitimate and the new equation
(7.101) contains no new information. A conventional solution to (7.100) is therefore also
a weak solution. The new formulation (7.101), however, admits solutions in which u has
shocks.

Let us see what is required of a weak solution if we assume that u is everywhere
smooth except for a single jump from u_ (¢) to uy (¢) at the point X (¢). Let Dy be the
regions to the left and right of the jump, as shown in Figure 7.14. Then the weak-solution
condition (7.101) becomes

0=/ dxdt {u" 3, + . "o —l—/ dx dt u”3,<p+Lu”+18x<p .
5 n—+1 D, n+1
(7.102)
Let
! X (7.103)
n= Q b g .
VIH X2 V14X

X(t)

X

Figure 7.14 The geometry of the domains to the right and left of a jump.
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be the unit outward normal to D_; then, using the divergence theorem, we have

fdxdt{u"ﬁt(p—i— " u"+18x<p}

n+1
n
= /7 dx dt {—(p (atu” + laxu”“)}
+/D dt{(p (—X(t)u"_ + n”?u"“)} (7.104)

Here we have written the integration measure over the boundary as

ds = \/1+ |X)?dt. (7.105)

Performing the same manoeuvre for Dy, and observing that ¢ can be any smooth
function, we deduce that

(i) du" + 50! = 0 within Dy
(i) X —u") = 25T — ") on X ().

The reasoning here is identical to that in Chapter 1, where we considered variations at
endpoints to obtain natural boundary conditions. We therefore end up with the same
equations for the motion of the shock as before.

The notion of weak solutions is widely used in applied mathematics, and it is the
principal ingredient of the finite element method of numerical analysis in continuum
dynamics.

7.4 Solitons

A localized disturbance in a dispersive medium soon falls apart, since its various fre-
quency components travel at differing speeds. At the same time, nonlinear effects will
distort the wave profile. In some systems, however, these effects of dispersion and non-
linearity can compensate each other and give rise to solitons —stable solitary waves which
propagate for long distances without changing their form. Not all equations possessing
wave-like solutions also possess solitary wave solutions. The best known example of
equations that do, are:

(1) The Korteweg—de Vries (KdV) equation, which in the form

ou Ju RE
5 + ua = rE (7.106)

has a solitary-wave solution

1
u(x,t) = 3azsech2§(ax — oz3t) (7.107)
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which travels at speed «?. The larger the amplitude, therefore, the faster the solitary
wave travels. This equation applies to steep waves in shallow water.
(2) The nonlinear Shrédinger (NLS) equation with attractive interactions

1%y )
—_— = — A 7.108
in =5 — MUY, (7.108)

where A > 0. It has solitary-wave solution

e /%sechﬁ(x —Un), (7.109)
m

where

1 5 o
k=mU, w=-mU"— —. (7.110)
2 2m
In this case, the speed is independent of the amplitude, and the moving solution
can be obtained from a stationary one by means of a Galilean boost. The nonlinear
equation for the stationary wavepacket may be solved by observing that

(=82 — 2sech®x) Yo = — o (7.111)

where ¥o(x) = sechx. This is the bound-state of the Poschel-Teller equation that
we have met several times before. The nonlinear Schrédinger equation describes
many systems, including the dynamics of tornadoes, where the solitons manifest as
the knot-like kinks sometimes seen winding their way up thin funnel clouds.’

(3) The sine-Gordon (SG) equation is

2e g m?

W—W‘FFSiHﬂQO:O. (7.112)
This has solitary-wave solutions
4 —1 +my (x—Ut)
o) = tan {e y ] (7.113)

wherey = (1-U 2)_% and |U| < 1. The velocity is not related to the amplitude, and
the moving soliton can again be obtained by boosting a stationary soliton. The boost
is now a Lorentz transformation, and so we only get subluminal solitons, whose
width is Lorentz contracted by the usual relativistic factor of y. The sine-Gordon
equation describes, for example, the evolution of light pulses whose frequency is in

resonance with an atomic transition in the propagation medium.®

7 H. Hasimoto, J. Fluid Mech., 51 (1972) 477.
8 See G. L. Lamb, Rev. Mod. Phys., 43 (1971) 99, for a nice review.
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Figure 7.15 A sine-Gordon solitary wave as a twist in a ribbon of coupled pendulums.

In the case of the sine-Gordon soliton, the origin of the solitary wave is particularly
easy to understand, as it can be realized as a “twist” in a chain of coupled pendulums
(Figure 7.15). The handedness of the twist determines whether we take the 4+ or — sign
in the solution (7.113).

The existence of solitary-wave solutions is interesting in its own right. It was the
fortuitous observation of such a wave by John Scott Russell on the Union Canal, near
Hermiston in Scotland, that founded the subject.” Even more remarkable was Scott
Russell’s subsequent discovery (made in a specially constructed trough in his garden)
of what is now called the soliton property: two colliding solitary waves interact in a
complicated manner yet emerge from the encounter with their form unchanged, having
suffered no more than a slight time delay. Each of the three equations given above has
exact multi-soliton solutions which show this phenomenon.

After languishing for more than a century, soliton theory has grown to be a huge
subject. It is, for example, studied by electrical engineers who use soliton pulses in
fibre-optic communications. No other type of signal can propagate through thousands of
kilometres of undersea cable without degradation. Solitons, or “quantum lumps” are also
important in particle physics. The nucleon can be thought of as a knotted soliton (in this
case called a “skyrmion”) in the pion field, and gauge-field monopole solitons appear in
many string and field theories. The soliton equations themselves are aristocrats among
partial differential equations, with ties into almost every other branch of mathematics.

Practical illustration: Solitons in Optical Fibres. We wish to transmit picosecond pulses
of light with a carrier frequency wq. Suppose that the dispersive properties of the fibre

° “ was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses,
when the boat suddenly stopped — not so the mass of water in the channel which it had put in motion; it
accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind,
rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and
well-defined heap of water, which continued its course along the channel apparently without change of form
or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight
or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in
height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of the
channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful
phenomenon which I have called the Wave of Translation.” — John Scott Russell, 1844.
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are such that the associated wavenumber for frequencies near wg can be expanded as

1
k=Ak+ko+,31(a)—a)o)+Eﬂz(w—wo)2+~-~. (7.114)

Here, B, is the reciprocal of the group velocity, and S, is a parameter called the group
velocity dispersion (GVD). The term Ak parametrizes the change in refractive index
due to nonlinear effects. It is proportional to the mean-square of the electric field. Let
us write the electric field as

E(x,1) = A(x, t)efo7=0t (7.115)

where A(x, t) is a slowly varying envelope function. When we transform from Fourier
variables to space and time we have

0 0
Cwo) > S,k — k) — —it 7.116
(w — wp) v ( 0) e ( )

and so the equation determining 4 becomes

94 . 94 B 0%4
i —ig e

— — — + AKA. 7.117
oz ot 2 92 + ( )

If we set Ak = y|A4%|, where y is normally positive, we have

<8A BA) ,328 A

har) =292

A%A. 7.118
o —ylA| ( )

We may get rid of the first-order time derivative by transforming to a frame moving at
the group velocity. We do this by setting

T =1— Bz,

=z (7.119)
and using the chain rule. The equation for 4 ends up being

;94 &aZ_A —yl4)4. (7.120)

8{ 2 972
This looks like our nonlinear Schrodinger equation, but with the role of space and time
interchanged! Also, the coefficient of the second derivative has the wrong sign so, to
make it coincide with the Schrodinger equation we studied earlier, we must have 8, < 0.
When this condition holds, we are said to be in the “anomalous dispersion” regime —
although this is rather a misnomer since it is the group refiractive index, Ng = ¢/Vgroup,
that is decreasing with frequency, not the ordinary refractive index. For pure SiO; glass,
B2 is negative for wavelengths greater than 1.27 um. We therefore have anomalous
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dispersion in the technologically important region near 1.55 pum, where the glass is most
transparent. In the anomalous dispersion regime we have solitons with

A(C,T) = e@Ifle/2 ﬂz—asech Va(r), (7.121)

14

leading to

E(z,1) = L Va(t — Bz)e®IP212/2 gikoz—ieot (7.122)
V r

This equation describes a pulse propagating at 8, !, which is the group velocity.

Exercise 7.1: Find the expression for the sine-Gordon soliton, by first showing that the
static sine-Gordon equation

e  m* .
——— + —sin =0
ozt 5 Be
implies that
1 72 + m2 ,3 "
- — COS = const.,
2§0 B2 @

and solving this equation (for a suitable choice of the constant) by separation of variables.
Next, show that if /(x) is a solution of the static equation, then f (y x — Ut)), y =
(1 —U*~Y2|U| < 1 is a solution of the time-dependent equation.

Exercise 7.2: Lax pair for the nonlinear Schrodinger equation. Let L be the matrix
differential operator

and let P be the matrix

p_ [i|x|2 -x" }
= ;o
+x ixl
Show that the equation
L=ILP]
is equivalent to the nonlinear Shrédinger equation

ix =—x"—2lx*x.
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7.5 Further exercises and problems

Here are some further problems on nonlinear and dispersive waves.

Problem 7.3: The equation of telegraphy. Oliver Heaviside’s equations relating the
voltage v(x, t) and current i(x, ¢) in a transmission line are

L8i+R' v
- = ——,
ot ax
ov i
C—+Gv=——.
ot 70T Tax

Here R, C, L and G are respectively the resistance, capacitance, inductance and leakance
of each unit length of the line.

(a) Show that Heaviside’s equations lead to v(x, ) obeying

9%v

v
LC— + (LG + RC)— + RGv =
o2 + LG+ )8t + RGv

9%v
x2’

and also to a similar equation for i(x, #).
(b) Seek a travelling-wave solution of the form

v(x, 1) = vy &' E+eD

i(x, t) — i() ei(kx+wt),
and find the dispersion equation relating w and k. From this relation, show that
signals propagate undistorted (i.e. with frequency-independent attenuation) at speed
1/+/LC provided that the Heaviside condition RC = LG is satisfied.

(c) Show thatthe characteristicimpedance Z = vy /iy of the transmission line is given by

| R+ iwL
Z(w) =, ——.
G+ iwC

Deduce that the characteristic impedance is frequency independent if the Heaviside
condition is satisfied.

In practical applications, the Heaviside condition can be satisfied by periodically
inserting extra inductors — known as loading coils — into the line.

Problem 7.4: Pantograph drag. A high-speed train picks up its electrical power via a
pantograph from an overhead line (Figure 7.16). The locomotive travels at speed U and
the pantograph exerts a constant vertical force /' on the power line.

We make the usual small-amplitude approximations and assume (not unrealisti-
cally) that the line is supported in such a way that its vertical displacement obeys an
inhomogeneous Klein—Gordon equation

oy — I + pQPy = Fs(x — Ut),



7.5 Further exercises and problems 261

/\/—\TF

. 2 U
o oo [ [| g Rheil Cymru [Im ﬁ||l —
Oool 00— 1 ool d Oocpoplc— t——3 [ToX ]

Figure 7.16 A high-speed train.

with ¢ = /T /p, the velocity of propagation of short-wavelength transverse waves on
the overhead cable.

(a) Assume that U < ¢ and solve for the steady state displacement of the cable about
the pickup point. (Hint: the disturbance is time-independent when viewed from the
train.)

(b) Now assume that U > c¢. Again find an expression for the displacement of the cable.
(The same hint applies, but the physically appropriate boundary conditions are very
different!)

(c) By equating the rate at which wave-energy

E= f {%p)'/z + %Ty'z + %szyz} dx
is being created to the rate at the which the locomotive is doing work, calculate the
wave-drag on the train. In particular, show that there is no drag at all until U exceeds
c. (Hint: while the front end of the wake is moving at speed U, the trailing end of
the wake is moving forward at the group velocity of the wave-train.)

(d) By carefully considering the force the pantograph exerts on the overhead cable, again
calculate the induced drag. You should get the same answer as in part (c) (Hint: to
the order needed for the calculation, the tension in the cable is the same before and
after the train has passed, but the direction in which the tension acts is different. The
force F is therefore not exactly vertical, but has a small forward component. Don’t
forget that the resultant of the forces is accelerating the cable.)

This problem of wake formation and drag is related both to Cerenkov radiation and to
the Landau criterion for superfluidity.

Exercise 7.5: Inertial waves. A rotating tank of incompressible (o = 1) fluid can host
waves whose restoring force is provided by angular momentum conservation. Suppose
the fluid velocity at the point r is given by

v(r,t) =u(r,f) +  xr,
where u is a perturbation imposed on the rigid rotation of the fluid at angular velocity €2.

(a) Show that when viewed from a coordinate frame rotating with the fluid we have

9 3
M (M _gxutr@xr)-Vu) .
ot~ \or b
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Deduce that the lab-frame Euler equation

ov

-V)v=-VP
5 TV VY ;

becomes, in the rotating frame,

Ju

1
Py +2(Squ)+(u-V)u=—V(P—§|er|2).

We see that in the non-inertial rotating frame the fluid experiences a —2(2 x u)
Coriolis and a V|Q x r|?/2 centrifugal force. By linearizing the rotating-frame
Euler equation, show that for small u we have

ow
5 2(-Viu=0, (*)

where @ = curl u.
(b) Take €2 to be directed along the z-axis. Seek plane-wave solutions to (x) in the form

u(r’ [) — uoei(k-r—wt)

where up is a constant, and show that the dispersion equation for these small-

amplitude inertial waves is
2Q i
o= —_—
k2 + kg + k2

Deduce that the group velocity is directed perpendicular to k —i.e. at right-angles to
the phase velocity. Conclude also that any slow flow that is steady (time independent)
when viewed from the rotating frame is necessarily independent of the coordinate z.
(This is the origin of the phenomenon of Taylor columns, which are columns of
stagnant fluid lying above and below any obstacle immersed in such a flow.)

Exercise 7.6: Nonlinear waves. In this problem we will explore the Riemann invariants
for a fluid with P = A%p3/3. This is the equation of state of a one-dimensional non-
interacting Fermi gas.

(a) From the continuity equation
81/) + ax pU = 07
and Euler’s equation of motion

P (0:v + vixv) = —0yP,
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deduce that

0 0
(E + (Ap +v)a) (Ap +v) =0,

0 0
(E + (—Ap + v)$> (=xp+v)=0.

In what limit do these equations become equivalent to the wave equation for one-
dimensional sound? What is the sound speed in this case?

(b) Show that the Riemann invariants v + Ap are constant on suitably defined charac-
teristic curves. What is the local speed of propagation of the waves moving to the
right or left?

(c) The fluid starts from rest, v = 0, but with a region where the density is higher than
elsewhere. Show that the Riemann equations will inevitably break down at some
later time due to the formation of shock waves.

Exercise 7.7: Burgers shocks. As a simple mathematical model for the formation and
decay of a shock wave consider Burgers’ equation:

0t + udyu = v Bfu.

Note its similarity to the Riemann equations of the previous exercise. The additional
term on the right-hand side introduces dissipation and prevents the solution becoming
multivalued.

(a) Show that if v = 0 any solution of Burgers’ equation having a region where u
decreases to the right will always eventually become multivalued.

(b) Show that the Hopf~Cole transformation, u = —2v 9y In i, leads to i obeying a
heat diffusion equation

Y =vdly.
(c) Show that
w(x’ l) — Aevazt—ax +Bevb2t—bx

is a solution of this heat equation, and so deduce that Burgers’ equation has a shock-
wave-like solution which travels to the right at speed C = v(a + b) = %(uL + ug),
the mean of the wave speeds to the left and right of the shock. Show that the width
of the shock is &~ 4v/|uy — ug|.
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Special functions

In solving Laplace’s equation by the method of separation of variables we come across
the most important of the special functions of mathematical physics. These functions
have been studied for many years, and books such as the Bateman manuscript project’
summarize the results. Any serious student of theoretical physics needs to be familiar
with this material, and should at least read the standard text: 4 Course of Modern Analysis
by E. T. Whittaker and G. N. Watson (Cambridge University Press). Although it was
originally published in 1902, nothing has superseded this book in its accessibility and
usefulness.

8.1 Curvilinear coordinates

Laplace’s equation can be separated in a number of coordinate systems. These are all
orthogonal systems in that the local coordinate axes cross at right angles.
To any system of orthogonal curvilinear coordinates is associated a metric of the form

ds® = h(dx")? + W3 (dx*)? + W3 (dx*)>. (8.1)

This expression tells us the distance Vds? between the adjacent points (x! + dx!,
x% +dx?, x3 +dx3) and (x!, x%,x3). In general, the A; will depend on the coordinates x'.

The most commonly used orthogonal curvilinear coordinate systems are plane polars,
spherical polars and cylindrical polars. The Laplacian also separates in plane elliptic, or
three-dimensional ellipsoidal coordinates and their degenerate limits, such as parabolic
cylindrical coordinates — but these are not so often encountered, and for their properties
we refer the reader to comprehensive treatises such as Morse and Feshbach’s Methods
of Theoretical Physics.

The Bateman manuscript project contains the formula collected by Harry Bateman, who was professor
of Mathematics, Theoretical Physics, and Aeronautics at the California Institute of Technology. After his
death in 1946, several dozen shoe boxes full of file cards were found in his garage. These proved to be
the index to a mountain of paper containing his detailed notes. A subset of the material was eventually
published as the three-volume series Higher Transcendental Functions, and the two-volume Tables of
Integral Transformations, A. Erdélyi et al. eds.

264
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Figure 8.1 Plane polar coordinates.
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Figure 8.2 Spherical coordinates.

Plane polar coordinates

Plane polar coordinates (Figure 8.1) have metric
ds* = dr* + r*de?,
soh.=1,hg =r.

Spherical polar coordinates

This system (Figure 8.2) has metric
ds* = dr* + r*d6* + r* sin? 0d¢2,

soh. =1,hg =71, hg =rsinf.

265

(8.2)

(8.3)
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Figure 8.3 Cylindrical coordinates.

€y

Figure 8.4 Unit basis vectors in plane polar coordinates.

Cylindrical polar coordinates

These have metric (Figure 8.3)
ds* = dr* + r*de® + dz*, (8.4)

soh,=1,hg=r, h, =1.

8.1.1 Div, grad and curl in curvilinear coordinates

It is very useful to know how to write the curvilinear coordinate expressions for the
common operations of the vector calculus. Knowing these, we can then write down the
expression for the Laplace operator.

The gradient operator

We begin with the gradient operator. This is a vector quantity, and to express it we need
to understand how to associate a set of basis vectors with our coordinate system. The
simplest thing to do is to take unit vectors e; tangential to the local coordinate axes
(Figure 8.4). Because the coordinate system is orthogonal, these unit vectors will then
constitute an orthonormal system.
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The vector corresponding to an infinitesimal coordinate displacement dx’ is then given by
dr = hydx'ey + hydx*ey + hzdx’es. (8.5)

Using the orthonormality of the basis vectors, we find that
ds® = |dr|* = h(dx")? 4+ 3 (dx*)? + h3(dx*)?, (8.6)

as before.
In the unit-vector basis, the gradient vector is

—ve—1 (22 1 (% (3¢
grad¢p = Vo = 2 (ax1)e1 + 7 <ax2>e2+ 73 (8x3>e3’ (8.7)

so that

ad
(grad @) - dr = —(pabc1 +
0x

0 d
; ¢ dx? ¢

Tad + ﬁdx{ (8.8)
which is the change in the value ¢ due to the displacement.

The numbers (hdx', hydx?, hydx®) are often called the physical components of the
displacement dr, to distinguish them from the numbers (dx!, dx?, dx>) which are the
coordinate components of dr. The physical components of a displacement vector all have
the dimensions of length. The coordinate components may have different dimensions
and units for each component. In plane polar coordinates, for example, the units will
be meters and radians. This distinction extends to the gradient itself: the coordinate
components of an electric field expressed in polar coordinates will have units of volts
per metre and volts per radian for the radial and angular components, respectively. The
factor 1/hg = r~! serves to convert the latter to volts per metre.

The divergence

The divergence of a vector field A is defined to be the flux of A out of an infinitesimal
region, divided by volume of the region.
In Figure 8.5, the flux out of the two end faces is

0(A1hah3)

dx’dx® [A1hahs) 1y gt 203) — Arhohs] 1,2 3] & dx! dx? dx® ol

(8.9)
Adding the contributions from the other two pairs of faces, and dividing by the volume,
hohyhsydx dx2d3, gives
div A L 8(hhA)—}—a(hhA)—i—a(hhA) (8.10)
VA = — — — . .
Note that in curvilinear coordinates div A is no longer simply V - A, although one often
writes it as such.
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Figure 8.5 Flux out of an infinitesimal volume with sides of length hldxl, hzdxz, h3dx3.

h dx

h dx

Figure 8.6 Line integral round an infinitesimal area with sides of length hydx', hydx? and
normal e3.

The curl

The curl of a vector field A is a vector whose component in the direction of the normal
to an infinitesimal area element is the line integral of A round the infinitesimal area,
divided by the area (Figure 8.0).

The third component is, for example,

(curlA)z =

1 <8h2A2 _ BhlAl) 8.11)

hihy dx! dx2

The other two components are found by cyclically permuting I — 2 — 3 — 1 in this
formula. The curl is thus is no longer equal to V x A, although it is common to write it
as if it were.

Note that the factors of 4; are disposed so that the vector identities

curlgrad ¢ = 0, (8.12)
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and
divcurl A =0, (8.13)

continue to hold for any scalar field ¢, and any vector field A.

8.1.2 The Laplacian in curvilinear coordinates

The Laplacian acting on scalars is “div grad”, and is therefore

1 a (hah3 0 a (hih3 0 a (hihy 0
Vip=—" 12 mi30¢\, 9 (M ov), 9 (Mmop [ (8.14)
hihyhs | 0x; hy 0xg oxa \ hy 0xa ox3 \ h3 0x3
This formula is worth committing to memory.
When the Laplacian is to act on a vector field, we must use the vector Laplacian

V2A = grad div A — curl curl A. (8.15)

In curvilinear coordinates this is no longer equivalent to the Laplacian acting on each
component of A, treating it as if it were a scalar. The expression (8.15) is the appropriate
generalization of the vector Laplacian to curvilinear coordinates because it is defined
in terms of the coordinate independent operators div, grad and curl, and reduces to the
Laplacian on the individual components when the coordinate system is cartesian.

In spherical polars the Laplace operator acting on the scalar field ¢ is

19 [, 18 (. 0 1 9%
V2= - (122) & = (sino L)+ —— 2%
¢ (r Br) 2 sinf 90 (Sm ae) 2 sin? § 092

10%2(rg) 1 1 9 (. 3¢ 1 %
I AT S 0— 2,00
roor? + 2 |sino 26 "7 %0 * sin® 6 9¢?

102(rg) L2

a2 2% (8:10)
where
. 1 9 9 192
Lz——_——sine————, (8.17)
sin @ 96 90 sinZg 9¢2

is (after multiplication by /?) the operator representing the square of the angular
momentum in quantum mechanics.
In cylindrical polars the Laplacian is

v-12,9, Lo +—82 (8.18)
= ——F7V— -y . .
ror ar 1?0902 022
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8.2 Spherical harmonics

We saw that Laplace’s equation in spherical polars is

102(rg) L2
0=-—21—-"09
r o or? r2

To solve this by the method of separation of variables, we factorize
¢ =R(NY(0,9),

so that

1d*GR) 1 (1,

———— ——(=I*v]) =0
Rr dr? r2 (Y )

Taking the separation constant to be /(/ + 1), we have

d*(rR)

LU
dr?

— I+ 1DH@ER) =0,
and

I’Y =1+ Y.

(8.19)

(8.20)

(8.21)

(8.22)

(8.23)

The solution for R is 7 or #—/~!. The equation for ¥ can be further decomposed by
setting ¥ = ®(6)P(¢). Looking back at the definition of 12, we see that we can take

q)(d)) — eim¢

with m an integer to ensure single-valuedness. The equation for ® is then

L 4 (ne?® ™ o I+ 1)®
sin 6 dé d sin29 .

It is convenient to set x = cos 6; then

d d m?
— (1 =x>)— +Il+1)— ®=0.
(dx( x)dx+(+) 1—x2)

8.2.1 Legendre polynomials

We first look at the axially symmetric case where m = 0. We are left with

d , d B
<£(1—x )£+1(1+1)>®_0.

(8.24)

(8.25)

(8.26)

(8.27)
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This is Legendre s equation. We can think of it as an eigenvalue problem
d d
(=0 -x)H=)0w =1+ 1)O®x), (8.28)
dx dx

on the interval —1 < x < 1, this being the range of cosf for real 8. Legendre’s
equation is of Sturm—Liouville form, but with regular singular points at x = +1. Because
the endpoints of the interval are singular, we cannot impose as boundary conditions
that ®, @', or some linear combination of these, be zero there. We do need some
boundary conditions, however, so as to have a self-adjoint operator and a complete set
of eigenfunctions.

Given one or more singular endpoints, a possible route to a well-defined eigenvalue
problem is to require solutions to be square-integrable, and so normalizable. This condi-
tion suffices for the harmonic-oscillator Schrodinger equation, for example, because at
most one of the two solutions is square-integrable. For Legendre’s equation with / = 0,
the two independent solutions are ®(x) = 1 and ®(x) = In(1 4+ x) — In(1 — x). Both
of these solutions have finite L>[—1, 1] norms, and this square integrability persists for
all values of /. Thus, demanding normalizability is not enough to select a unique bound-
ary condition. Instead, each endpoint possesses a one-parameter family of boundary
conditions that lead to self-adjoint operators. We therefore make the more restrictive
demand that the allowed eigenfunctions be finife at the endpoints. Because the north and
south poles of the sphere are not special points, this is a physically reasonable condition.
When / is an integer, then one of the solutions, P;(x), becomes a polynomial, and so is
finite at x = £ 1. The second solution Q;(x) is divergent at both ends, and so is not an
allowed solution. When / is not an integer, neither solution is finite. The eigenvalues
are therefore /(/ + 1) with / zero or a positive integer. Despite its unfamiliar form, the
“finite” boundary condition makes the Legendre operator self-adjoint, and the Legendre
polynomials P;(x) form a complete orthogonal set for L2[—1, 1].

Proving orthogonality is easy: we follow the usual strategy for Sturm—Liouville
equations with non-singular boundary conditions to deduce that

1
[+ 1) — m(m + 1)] / PP dx = [P, ~ PP (1 )] (829)
—1 -
Since the P;’s remain finite at +1, the right-hand side is zero because of the (1 — x?)
factor, and so f _11 P;(x) Py, (x) dx is zero if | £ m. (Observe that this last step differs from
the usual argument where it is the vanishing of the eigenfunction or its derivative that
makes the integrated-out term zero.)

Because they are orthogonal polynomials, the P;(x) can be obtained by applying the
Gram—Schmidt procedure to the sequence 1,x,x?, . . . to obtain polynomials orthogonal
with respect to the w = 1 inner product, and then fixing the normalization constant. The
result of this process can be expressed in closed form as

Pi) = d D! 8.30
l(x)—ﬁw(X—)- (8.30)
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This is called Rodriguez formula. It should be clear that this formula outputs a polynomial
of degree . The coefficient 1/2'/! comes from the traditional normalization for the
Legendre polynomials that makes P;(1) = 1. This convention does not lead to an
orthonormal set. Instead, we have

1
2
Py(x) Py (x) dx = Sim- 8.31
/_1 )Py () d = 5= (8.31)

It is easy to show that this integral is zero if / > m — simply integrate by parts / times
so as to take the / derivatives off (x> — 1)/ and onto (x? — 1), which they kill. We will
evaluate the / = m integral in the next section.

We now show that the P;(x) given by Rodriguez’ formula are indeed solutions of
Legendre’s equation: let v = (x?> — 1)/, then

(1 — x> + 2lxv = 0. (8.32)

We differentiate this / 4 1 times using Leibniz’ theorem

n
) _ T\ (m), (n—m)
uv = u v
[uv] n;)(m)

1
= uwo™ 4+ m/v" D 4 En(n — D" 4L (8.33)
We find that

(A =xH 1D = 1 = D)™ — (¢ + D2xo™D — 11 + 1o,

2xnv]FD = 2510 4211 + 1o, (8.34)

Putting these two terms together we obtain

d? d d!
((1 —xz)ﬁ — 2;% +1( + 1)) W(xz -l =o, (8.35)

which is Legendre’s equation.
The P;(x) have alternating parity

Pi(—x) = (=) Py(x), (8.36)
and the first few are

Po(x) =1,
Pi(x) =x,
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Py(x) = ! 32— 1

2(x)_§( x° — 1),
1 3

P3(x) = 5(5x — 3x),

1
Pa(x) = §(35x4 —30x% +3).

8.2.2 Axisymmetric potential problems

The essential property of the P;(x) is that the general axisymmetric solution of VZ¢ = 0
can be expanded in terms of them as

0r,6) =" (A,r’ n Blr_l_1> P;(cos6). (8.37)
=0

You should memorize this formula. You should also know by heart the explicit expres-
sions for the first four P;(x), and the factor of 2/(2/ 4+ 1) in the orthogonality
formula.

Example: Point charge. Put a unit charge at the point R, and find an expansion for the
potential as a Legendre polynomial series in a neighbourhood of the origin (Figure 8.7).

Let us start by assuming that |r| < |R|. We know that in this region the point charge
potential 1/|r — R] is a solution of Laplace’s equation, and so we can expand

1 1

o0
— _ !
R > 4! Py(cos ). (8.38)

=0

We knew that the coefficients B; were zero because ¢ is finite when » = 0. We can find
the coefficients 4; by setting & = 0 and Taylor expanding

|r—lR| Zﬁ%(”(;‘e)*(%)z“')’ r<R  (839)

Figure 8.7 Geometry for generating function.
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By comparing the two series and noting that P;(1) = 1, we find that 4; = R~/~!. Thus

! li(r)lp( 0) R (8.40)
= — - cosf), r <R. )
Vr2+R2—2rRcos6 R Py R}

This last expression is the generating function formula for Legendre polynomials. It is
also a useful formula to have in your long-term memory.
If |r| > |R|, then we must take

1 1
r—R| 12+ R2 —2rRcos6

o0
= ZB;r_l_lPl(cos 0), (8.41)
=0

because we know that ¢ tends to zero when » = co. We now set & = 0 and compare with

1 1 1 R R\’

to get

1 =I5 (5 meoson, 8.43
\/”2+R2—2chos9_;§ r 1(cos ), <r. (8.43)

Observe that we made no use of the normalization integral

1
/ (PP dx =2/Q21+ 1) (8.44)
-1

in deriving the generating function expansion for the Legendre polynomials. The follow-
ing exercise shows that this expansion, taken together with their previously established
orthogonality property, can be used to establish (8.44).

Exercise 8.1: Use the generating function for Legendre polynomials P;(x) to show that

iy /I{P()}zd /1 ! d D (122, 12 <1
= ——dx=——1In < 1.
‘ 1 1 * 11 =2xz 422 * z 14z)° z

=0

By Taylor expanding the logarithm, and comparing the coefficients of z2/, evaluate
1 2
Jo 1 (Pi(0)) dx.

Example: Aplanet is spinning on its axis and so its shape deviates slightly from a perfect
sphere (Figure 8.8). The position of its surface is given by

R(0,¢) = Ro + nPy(cos ). (8.45)
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Figure 8.8 Deformed planet.

Observe that, to first order in 7, this deformation does not alter the volume of the body.
Assuming that the planet has a uniform density pg, compute the external gravitational
potential of the planet.

The gravitational potential obeys Poisson’s equation

V2¢ = 4nGp(x), (8.46)
where G is Newton’s gravitational constant. We expand ¢ as a power series in 7
¢(r,0) = ¢o(r,0) +ne1(r,0) + ... (8.47)

We also decompose the gravitating mass into a uniform undeformed sphere, which gives
the external potential

Po.oxt (r,0) = — (gnRépo) g r > Ro, (8.48)
and a thin spherical shell of areal mass-density
o0 (0) = ponPa(cosb). (8.49)
The thin shell gives rise to the potential
P1int(r,0) = Ar*P>(cos ), r < Ry, (8.50)

and

1
Prlext(r,0) = B—3P2(cos 0), r > Ry. (8.51)
r
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At the shell we must have @1 int = @1,ext and

aqbl,ext . a(151,int

» S =41Go(0). (8.52)
Thus 4 = BR; >, and
B= _‘g‘nanoRg. (8.53)
Putting this together, we have
b(r0) = — (gnGpoRg> % — g (nanORg) w L O0M?), >Ry (8.54)

8.2.3 General spherical harmonics

When we do not have axisymmetry, we need the full set of spherical harmonics. These
involve solutions of

d d m?
— (1 =x>)—+Il+1)— =0 8.55
(Ga-og+iaen-"5)e=o (8.55)

which is the associated Legendre equation. This looks like another complicated equation
with singular endpoints, but its bounded solutions can be obtained by differentiating
Legendre polynomials. On substituting y = (1 — x2)"/?z(x) into (8.55), and comparing
the resulting equation for z(x) with the m-th derivative of Legendre’s equation, we
find that

‘ d"
PP S ()" (1 =" T Pi) (8.56)

is a solution of (8.55) that remains finite (m = 0) or goes to zero (m > 0) at the endpoints
x = *1. Since P;(x) is a polynomial of degree /, we must have P;"(x) = 0 if m > /. For
each /, the allowed values of m in this formula are therefore 0, 1,. .., /. Our definition
(8.56) of the P;"(x) can be extended to negative integer m by interpreting d —lml g —lml
as an instruction to integrate the Legendre polynomial m times, instead of differentiating
it, but the resulting Pl_lm| (x) are proportional to P} (x), so nothing new is gained by this
conceit.

The spherical harmonics are the normalized product of these associated Legendre
functions with the corresponding %

Y/ (0,8) o P" (cos0)e™®,  —I<m<I. (8.57)

The first few are

\/%T (8.58)
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Yl1 = —,/%sin@ei‘f’,
I=1 ) = %cos 0, (8.59)

—1 _ 3 . —i¢
Y =,/g;sinfe?,
2 _ 1 /15 i 20 2ip
Y5 = g4/35sin"0e”?,

Y, = —,/% sin6 cos 0 e'®,

1=2 (v} =2 (3cos?0— 1), (8.60)
YZ*1 = 5%—frsiné?cosee”'d’,

-2 _ 1 [15 2, i
Y,"=3 2nsm@e .

The spherical harmonics compose an orthonormal

2 bg
/ de / sin 040 [Y7"(0,9)]" Y1 0, ¢) = 81 Spumr (8.61)
0 0

and complete

00 l
D DO HTY0.9) = 8(d — ¢)S(cos8’ —cosB)  (8.62)

=0 m=—1

set of functions on the unit sphere. In terms of them, the general solution to VZ¢ = 0 is

00 !
0,6,0) =3 3 (A’ + B 1) 110, 9). (8.63)

=0 m=—1

This is definitely a formula to remember.
For m = 0, the spherical harmonics are independent of the azimuthal angle ¢, and so
must be proportional to the Legendre polynomials. The exact relation is

00, = 214; Lprcos ). (8.64)

If we use a unit vector n to denote a point on the unit sphere, we have the symmetry
properties

Y"m)]* = (=D"Y, "),  Y"(—m) = (=D'¥/"(n). (8.65)

These identities are useful when we wish to know how quantum mechanical wavefunc-
tions transform under time reversal or parity.
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There is an addition theorem
P;(co 14 E Y 0/ (ﬁ Y 0 (b 8.66

where y is the angle between the directions (0, ¢) and (6', ¢’), and is found from
cosy = cosf cos + sin @ sin 6’ cos(¢p — ¢). (8.67)

The addition theorem is established by first showing that the right-hand side is rotation-
ally invariant, and then setting the direction (8, ¢’) to point along the z-axis. Addition
theorems of this sort are useful because they allow one to replace a simple function of
an entangled variable by a sum of functions of unentangled variables. For example, the
point-charge potential can be disentangled as

I r ) .
r_w| 232;517<1H>W<9¢H13W¢> (8.68)

where r_ is the smaller of |r| or |[r|, and r is the greater and (0, ¢), (6', @) specify the
direction of r, r’, respectively. This expansion is derived by combining the generating
function for the Legendre polynomials with the addition formula. It is useful for defining
and evaluating multipole expansions.

Exercise 8.2: Show that

Y]l X+ iy,

Yl0 x z,

Yl_1 X — iy

Y3 x+iy)%,
Y, (x + iy)z,
Yy o {x? 4?7 — 222,
o x —iy)z,
Yy ? (x —iy)?,

where x2 +y? 4 z2 = 1 are the usual cartesian coordinates, restricted to the unit sphere.

8.3 Bessel functions
In cylindrical polar coordinates, Laplace’s equation is

19 a<p 1 9% 9%
0=V3¢g=-—r— —~ 4+ = 8.69
= e TR T a2 (8.69)
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If we set ¢ = R(r)e™?e*™ we find that R(r) obeys

d*R 1dR ,  m?
dr? s rdr (k B ,,_2) k=0 (8.70)
Now
d’y ldy V2
ﬁ+)—cdx+<l—;)y=0 (8.71)

is Bessel s equation and its solutions are Bessel functions of order v. The solutions for R
will therefore be Bessel functions of order m, but with x replaced by 4r.

8.3.1 Cylindrical Bessel functions

We now set about solving Bessel’s equation,

Pl (12w =0 (8.72)
dx?  xdx 2 )= '
This has a regular singular point at the origin, and an irregular singular point at infinity.

We seek a series solution of the form
y=x*(1+aix +ax>+--+), (8.73)

and find from the indicial equation that A = =£v. Setting A = v and inserting the series
into the equation, we find, with a conventional choice for normalization, that

oo

ST e

n=

Here (n+v)! = I'(n+v+1). The functions J,, (x) are called cylindrical Bessel functions.
If v is an integer we find that J_, (x) = (—1)"J,(x), so we have only found one of the
two independent solutions. It is therefore traditional to define the Neumann function
Jy(x) cosvm — J_V(x)

Ny (x) = (8.75)
sm VT

as this remains an independent second solution even as v becomes integral. At short
distance, and for v not an integer

520 = (3t

1 /x\—v
Nv(x)zg(z) )+ (8.76)
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When v tends to zero, we have
S =1— 124
o(x) = 4x
2
No(x) = (;) (Inx/24+y)+---, (8.77)

where y = 0.57721 ... denotes the Euler—Mascheroni constant. For fixed v, and x > v,
we have the asymptotic expansions

2 1 1 1
Jy(x) ~,/—cos|x—-vwr — -7 1+0(-)), (8.78)
TX 2 4 x
2 . 1 1 1
Nyx)~,/—sin|{x—zvr—-7|J{1+0(-)]). (8.79)
X 2 4 X

It is therefore natural to define the Hankel functions

2 .

HS])(X) =Jy(x) +iN,(x) ~ ,/ 5@“"*””/2*”/4)’ (8.80)
2 .

HP (x) = Jy (x) — iNy (x) ~ [ —e ™ 0vm/2=7/4), (8.81)
X

We will derive these asymptotic forms in Chapter 19.

Generating function

The two-dimensional wave equation

, 192
Vi-5o3) 0000 =0 (8.82)
has solutions
@ = '™ J, (kr), (8.83)

where k£ = |w|/c. Equivalently, the two-dimensional Helmholtz equation
(V2+EkHd =0, (8.84)

has solutions e, (kr). It also has solutions with J, (k) replaced by N, (kr), but these
are not finite at the origin. Since the e”?J,(kr) are the only solutions that are finite at
the origin, any other finite solution should be expandable in terms of them. In particular,
we should be able to expand a plane-wave solution:

e =M =" g, e, (k). (8.85)

n
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As we will see in a moment, the @,,’s are all unity, so in fact

00
eikrsine — Z einan(kr). (8.86)

n=—oo

This generating function is the historical origin of the Bessel functions. They were
introduced by the astronomer Wilhelm Bessel as a method of expressing the eccentric
anomaly of a planetary position as a Fourier sine series in the mean anomaly —a modern
version of Hipparchus’ epicycles.

From the generating function we see that

1 [
J,,(x) — _/ e—1n6+1xsm@ do. (887)
2w 0
Whenever you come across a formula like this, involving the Fourier integral of the
exponential of a trigonometric function, you are probably dealing with a Bessel function.
The generating function can also be written as

x (l— l) o
VT = N . (8.88)
n=—0o0
Expanding the left-hand side and using the binomial theorem, we find
LHS — i (x)m 1 Z ( + 9! D4
N 2) m! rls! =D ’
m=0 r+s=m
(o oo o]
x\7ts S
=3>er5) 5
2 rls!
r=0 s=0
o o
(_1)S X\ 2s+n
= " — = . 8.89
2 {Zs!(s+n)! (2) } (8.89)
n=—00 s=0

We recognize that the sum in the braces is the series expansion defining J,(x). This
therefore proves the generating function formula.

Bessel identities

There are many identities and integrals involving Bessel functions. The standard refer-
ence is the monumental Treatise on the Theory of Bessel Functions by G. N. Watson.
Here are just a few formule for your delectation:

(i) Starting from the generating function

exp {%x (r - ;)} = Y ", (8.90)

n=—0o0
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we can, with a few lines of work, establish the recurrence relations

2700 = S 1) — s (), (8.91)
) = 1 () et @, (8.92)
together with
T = —J1 (), (8.93)
B =3 S ), (8.94)

(i1) From the series expansion for J,(x) we find

d
o (X" @)} = x"Jp1 (). (8.95)

(iii) By similar methods, we find

1d\" _, o —nem
(m) @) = (D ). (8.96)

(iv) Again from the series expansion, we find

0
1
Jo(ax)e Pdx = ——. (8.97)
fo Ja? + p?
Semiclassical picture
The Schrédinger equation
h2
—— V> =Ey (8.98)
2m
can be separated in cylindrical polar coordinates, and has eigenfunctions
Vi (r,0) = Jy(kr)e™. (8.99)

The eigenvalues are £ = h%k?/2m. The quantity L = %l is the angular momentum of the
Schrodinger particle about the origin. If we impose rigid-wall boundary conditions that
Y1 (r,0) vanish on the circle » = R, then the allowed k form a discrete set k; ,, where
Ji(k; ,R) = 0. To find the energy eigenvalues we therefore need to know the location
of the zeros of J;(x). There is no closed form equation for these numbers, but they are
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tabulated. The zeros for kR > [ are also approximated by the zeros of the asymptotic

eXpreSSl()n
Jl(‘dz) w 2 Cos ‘da 11;1 1"‘1 > (8.1@[)
T kR 2 4

which are located at

kiR = S+ 4 Qnt D (8.101)
’ 2 4 2
If we let R — o0, then the spectrum becomes continuous and we are describing uncon-
fined scattering states. Since the particles are free, their classical motion is in a straight
line at constant velocity. A classical particle making a closest approach at a distance i,
has angular momentum L = pryi,. Since p = hk is the particle’s linear momentum,
we have [ = kryi,. Because the classical particle is never closer than 7y, the quantum
mechanical wavefunction representing such a particle will become evanescent (i.e. tend
rapidly to zero) as soon as r is smaller than ryi,. We therefore expect that J;(kr) =~ 0 if
kr < 1. This effect is dramatically illustrated by the Mathematica™ plot in Figure 8.9.
Improved asymptotic expressions, which give a better estimate of the J;(kr) zeros,
are the approximations

[ 2
Ji(hkr) = | — cos(kx — 10 — 7 /4), 7> Fmin,
kx
[ 2 .
Ny(kr) ~ v sin(kx — 10 —w/4), 7> rpin- (8.102)
b4

Here 6 = cos™ ! (rmin/r) and x = r sin 6 are functions of ». They have a geometric origin
in the right-angled triangle in Figure 8.10. The parameter x has the physical interpretation

Figure 8.9  Jigo(x).
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Figure 8.10 The geometric origin of x(r) and 6 () in (8.102).
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Figure 8.11 A collection of trajectories, each missing the origin by 7y, leaves a “hole”.

of being the distance, measured from the point of closest approach to the origin, along
the straight-line classical trajectory. The approximation is quite accurate once » exceeds
’min Dy more than a few percent.

The asymptotic »~!/2 fall-off of the Bessel function is also understandable in the
semiclassical picture.

By the uncertainty principle, a particle with definite angular momentum must have
completely uncertain angular position. The wavefunction J;(kr)e'’? therefore represents
a coherent superposition of beams of particles approaching from all directions, but all
missing the origin by the same distance (see Figures 8.11 and 8.12). The density of
classical particle trajectories is infinite at » = ryi,, forming a caustic. By “conservation
of lines”, the particle density falls off as 1 /7 as we move outwards. The particle density
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Figure 8.12  The hole appearing in Figure 8.11 is visible in the real part of vy 20(r0) =
ei200J20(kT).

is proportional to ||, so v itself decreases as #~'/2. In contrast to the classical particle
density, the quantum mechanical wavefunction amplitude remains finite at the caustic —
the “geometric optics” infinity being tempered by diffraction effects.

Exercise 8.3: The WKB (Wentzel-Kramers—Brillouin) approximation to a solution of
the Schrédinger equation

d>y
dx?

+ VXY (x) = Eyx)

sets

v(x) ~ \/% exp :j:i/:/c(g)dg} ,

where k(x) = «/E — V(x), and a is some conveniently chosen constant. This form of
the approximation is valid in classically allowed regions, where « is real, and away
from “turning points” where « goes to zero. In a classically forbidden region, where « is
imaginary, the solutions should decay exponentially. The connection rule that matches
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the standing wave in the classically allowed region onto the decaying solution is

1 X 1 X T
2vﬁﬁﬁwﬁp{_‘£'“@dﬂ}_’v%GSws{xlK@”ﬁ’_Z}’

where a is the classical turning point. (The connection is safely made only in the direction
of the arrow. This is because a small error in the phase of the cosine will introduce a
small admixture of the growing solution, which will eventually swamp the decaying
solution.)

Show that setting y(r) = =124 (r) in Bessel’s equation

dy ldy Py
R A AT A &
dr’  rdr + r2 Y

reduces it to Schrodinger form

2y (P —1/4)
B dar? + r2

v =k

From this show that a WKB approximation to y(r) is
r /02 — b2
exp :I:ikf p—d,o , r>b
b P
: {zilkx(r) —16(r)]}
= ———exp{ZLi[kx(r) — 16(r)]},
Vx(r)

where kb = /12 — 1/4 ~ [, and x(r) and 6 (r) were defined in connection with (8.102).
Deduce that the expressions (8.102) are WKB approximations and are therefore accurate
once we are away from the classical turning point at » = b = rpy;y.

J’(i’)%m

8.3.2 Orthogonality and completeness

We can write the equation obeyed by J, (k) in Sturm-Liouville form. We have

1d [ dy m?
oo GE) + <k2 — r—2>y = 0. (8.103)

Comparison with the standard Sturm—Liouville equation shows that the weight function,
w(r), is r, and the eigenvalues are k2.
From Lagrange’s identity we obtain

R
(k} — k) / I (k1) (ko) r dr
0

= R [kaJm (k1 R, (k2R) — k1 (kaR)J,, (k1 R)] . (8.104)
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We have no contribution from the origin on the right-hand side because all J,, Bessel
functions except Jy vanish there, whilst Jj(0) = 0. For each m we get a set of orthog-
onal functions, J,(k,x), provided the k,R are chosen to be roots of J,,(k,R) = 0 or
J,(knR) = 0.

We can find the normalization constants by differentiating (8.104) with respect to ki
and then setting k1 = k; in the result. We find

/OR[Jm(kr)]zrdr - %Rz [[J,;(kR)]z n <1 - k’;%) [Jm(kR)]z} ,
_ %RZ [[J,, (kR — J,,_I(kR)JnH(kR)] . (8.105)

(The second equality follows on applying the recurrence relations for the J,(kr), and
provides an expression that is perhaps easier to remember.) For Dirichlet boundary
conditions we will require k,R to be a zero of J,;,, and so we have

fo R[Jm(kr)]zr dr = %RZ [J,’n(kR)]z. (8.106)

For Neumann boundary conditions we require &, R to be a zero of J;,. In this case

2

/()R[Jm(kr)Tr dr = %RZ (1 - %) [Jm(kR)]2. (8.107)

Example: Harmonic function in a cylinder. We wish to solve V27 = 0 within a cylinder
of height L and radius a (Figure 8.13). The voltage is prescribed on the upper surface
of the cylinder: V' (r,0,L) = U(r,0). We are told that /' = 0 on all other parts of the
boundary.

The general solution of Laplace’s equation will be a sum of terms such as

sinh(kz) I (k1) sin(mé)
{cosh(kz) } x {Nm(kr) } x {cos(me) } > (8.108)

S .
1
i
7

Figure 8.13  Cylinder geometry.
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where the braces indicate a choice of upper or lower functions. We must take only the
sinh(kz) terms because we know that /' = 0 atz = 0, and only the J,,(kr) terms because
V' is finite at » = 0. The ks are also restricted by the boundary condition on the sides of
the cylinder to be such that J,,(ka) = 0. We therefore expand the prescribed voltage as

U(r,0) = Z sinh (kL) Sy (ki) [Apm Sin(m0) + By, cos(mb)], (8.109)

m,n

and use the orthonormality of the trigonometric and Bessel function to find the
coefficients to be

2cosech(kyml) 7 a .
Apm = ——————— | do | U@,0)Jnk 0) rd 8.110
" ma@l @l Jo /o . 0)JmUer) sin(md) rdr,— (8.110)
2cosech(kyul) [** a
Byw = —5———— do | U@, 0)Juk 0) rd 0. (8111
nm naz[Jyln(knma)]z 0 /(; (r, 0)Jm(kymr) cos(m@) rdr, m # 0, ( )

and

1 2cosech(k,oL)

"7 2 w2k P Jo

2 a
do / U (r, 0)Jo(knor) rdr. (8.112)
0

Then we fit the boundary data expansion to the general solution, and so find

V(r,0,2) = sinh(kumz)Jon Gynr) [ Sin(m) + By cosm)].  (8.113)

m,n

Hankel transforms

When the radius, R, of the region in which we are performing our eigenfunction expansion
becomes infinite, the eigenvalue spectrum will become continuous, and the sum over
the discrete &, Bessel-function zeros must be replaced by an integral over k. By using
the asymptotic approximation

[ 2 1 1
Ju(kR) ~ s cos <kR - Emr — Zn) , (8.114)

we may estimate the normalization integral as

R 2 R
/ [Jm(kr)] rdr ~ 2 1+ 0(1). (8.115)
0 wk

We also find that the asymptotic density of Bessel zeros is

dn R
— = —. 8.116
dk T ( )
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Putting these two results together shows that the continuous-spectrum orthogonality and
completeness relations are

/ OOJn (k) (K'7) rdr = %5(1( — k), (8.117)

0

/OOJn(kr)J,,(kr/) kdk = lzS(r -7, (8.118)
0 r

respectively. These two equations establish that the Hankel transform (also called the
Fourier—Bessel transform) of a function f'(r), which is defined by

Fk = / " e (v dr, 8.119)
0
has as its inverse
Sr) = / OOJn(kr)F(k)k dk. (8.120)
0

(See exercise 8.14 for an alternative derivation of the Hankel-transform pair.)
Some Hankel transform pairs:

o 1
/ e YIykr) dr = —,
0 k2 + a2
[’} Jo(kr) e~
/0 e — kdk = P (8.121)

f“ (o) d 0, k < a,
cos(ar ) dr =
0 ‘ 1/Vk* —a?, k> a.

 Jo(kr) 1
NEEr A ' 8.122
a m ” cos(ar) ( )
* 1 2 _ k2 k
f Sin(a}")._]o(kr) dr = /'\/07, <a,
’ 0, k> a.
@ Jo(kr) 1
———= kdk = — sin(ar). 8.123
/0 VaZ — k2 B ( ( )

Example: Weber’s disc problem. Consider a thin isolated conducting disc of radius a
lying on the xy-plane in R3. The disc is held at potential V. We seek the potential ¥ in
the entirety of R?, such that ¥ — 0 at infinity.

It is easiest to first find 7 in the half-space z > 0, and then extend the solutiontoz < 0
by symmetry. Because the problem is axisymmetric, we will make use of cylindrical
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polar coordinates with their origin at the centre of the disc. In the region z > 0 the
potential V (r,z) obeys

V2V (r,z) =0, z>0,
V(r,z) = 0 |z|] = oo,
Vir,0)=Vy, r<a,

1%

oz

=0, r>a. (8.124)
z=0

This is a mixed boundary value problem. We have imposed Dirichlet boundary conditions
on r < a and Neumann boundary conditions for » > a.

We expand the axisymmetric solution of Laplace’s equation in terms of Bessel
functions as

oo
V(r,z) = / Ak)e ™™ gy (kr) dk, (8.125)
0
and so require the unknown coeffcient function A(k) to obey
o
/ AR)JgtkrYdk =Vy, r<a
0
oo
/ kA(k)Jo(krydk =0, 7> a. (8.126)
0
No elementary algorithm for solving such a pair of dual integral equations exists. In this

case, however, some inspired guesswork helps. By integrating the first equation of the
transform pair (8.122) with respect to a, we discover that

 sin(ar) /2, k <a,
Jotkr) dr = 8.127
/0 r o) dr {sin_l(a/k), k> a. ( )

With this result in hand, we then observe that (8.123) tells us that the function

2V sin(k
Ahy = 2Lt (8.128)
wk
satisfies both equations. Thus
2Vy [ dk
Virz) =22 | ¢kl sin(ka)Jo(kr) —=. (8.129)
7 Jo

The potential on the plane z = 0 can be evaluated explicitly to be

Vo, r<a,

. (8.130)
2Vy/m)sin™ (a/r), r > a.

V(r,0) = {
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The charge distribution on the disc can also be found as

aVv aVv
o(r)= — - —
0z Z=0_ 0z =0,
avy [
= 2% | sin(ak)Jo dk
T Jo
4
= # r<a. (8.131)

ava? — 2

8.3.3 Modified Bessel functions

When £ is real the Bessel function J, (k») and the Neumann N, (k») function oscillate at
large distance. When £ is purely imaginary, it is convenient to combine them so as to
have functions that grow or decay exponentially. These combinations are the modified
Bessel functions I, (kr) and K, (kr).

These functions are initially defined for non-integer v by

I,(x) = iV J, (ix), (8.132)
Ko@) = ——— @) — L, (). (8.133)
2sin v

The factor of i™" in the definition of 7, (x) is inserted to make 7, real. Our definition
of K, (x) is that in Abramowitz and Stegun’s Handbook of Mathematical Functions. It
differs from that of Whittaker and Watson, who divide by tan vrr instead of sin vr.

At short distance, and for v > 0,

L) = (g)ﬁJr (8.134)
Ko(x) = %F(v) (g)_ T (8.135)
When v becomes an integer we must take limits, and in particular
Io(x)=1+%x2+~~~, (8.136)
Ko(x) = —(nx/2+y)+--- (8.137)
The large x asymptotic behaviour is
I, (x) ~ ! e, x— oo, (8.138)
V2rx
Ky ~ ——¢™, x> oo (8.139)

V2x
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From the expression for J,,(x) as an integral, we have
1 2r 1 k4
I,(x) = — f M0 ¥ o8t gy — — / cos(nf)e*°s%dp (8.140)
27 0 T Jo

for integer n. When 7 is not an integer we still have an expression for /,, (x) as an integral,
but now it is

1 [7 sinvg [

I,(x) = —/ cos(v0)e* 0 dh — / emxeoshi=vi gy (8.141)
T Jo T 0

Here we need |arg x| < /2 for the second integral to converge. The origin of the “extra”

infinite integral must remain a mystery until we learn how to use complex integral

methods for solving differential equations. From the definition of K, (x) in terms of /,

we find

o0
K, (x) :/ e N cosh(vr) dt, |argx| < /2. (8.142)
0

Physics illustration: Light propagation in optical fibres. Consider the propagation of
light of frequency wp down a straight section of optical fibre. Typical fibres are made
of two materials: an outer layer, or cladding, with refractive index n,, and an inner core
with refractive index n; > ny. The core of a fibre used for communication is usually
less than 10 wm in diameter.

We will treat the light field £ as a scalar. (This is not a particularly good approximation
for real fibres, but the complications due to the vector character of the electromagnetic
field are considerable.) We suppose that E obeys

2E  3°E 32E n(x,y) 9%E

P T 7 =0. 8.143
9x2 + ay2 922 2 9 ( )

Here n(x, y) is the refractive index of the fibre, which is assumed to lie along the z-axis.
We set

E(,y,z,1) = ¥ (x,p,z)ekor—iont (8.144)

where ky = wp/c. The amplitude v is a (relatively) slowly varying envelope function.
Plugging into the wave equation we find that
32 32 32
LA A P 1 (n(xwz ko)w=o.
c?

+ — + 2ikp— +

— + — 8.145
ox2 9?2 92 0z ( )

Because v is slowly varying, we neglect the second derivative of ¢ with respect to z,
and this becomes

Ay <32 92

2zko— =\t 3 2) v +k0 ( - nz(x,y)> v, (8.146)
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which is the two-dimensional time-dependent Schrodinger equation, but with ¢ replaced
by z/2kg, where z is the distance down the fibre. The wave modes that will be trapped
and guided by the fibre will be those corresponding to bound states of the axisymmetric
potential

V(x,y) = k(1 —n?(r)). (8.147)

If these bound states have (negative) “energy” E,, then ¥ o e~£2/2k0_ and so the actual
wavenumber for frequency wy is

k = ko — En/2ko. (8.148)
In order to have a unique propagation velocity for signals on the fibre, it is therefore
necessary that the potential support one, and only one, bound state.

If

nry=m, r<a,

=nm, r>a, (8.149)

then the bound state solutions will be of the form

e etPz ] (1), r<a,
V(r,0) = o (8.150)
Ae”’ee’ﬁan(yr), r>a,
where
K2 = (kg — B, (8.151)
y? = (B* — n3kd). (8.152)

To ensure that we have a solution decaying away from the core, we need 8 to be such
that both k and y are real. We therefore require

2 132 2
ny > — > ns. 8.153
1 K2 2 ( )

At the interface both ¥ and its radial derivative must be continuous, and so we will have
a solution only if B is such that

Jr(ka) _ K/ (ya)
Tnka) ~ Ku(ya)

This Schrodinger approximation to the wave equation has other applications. It is called
the paraxial approximation.
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8.3.4 Spherical Bessel functions

Consider the wave equation

(- 252)
\ p(r,0,¢,t) =0 (8.154)

c2 9t?

in spherical polar coordinates. To apply separation of variables, we set

¢ =Y O,)x (1), (8.155)
and find that
A’y  2dx I(I+1) w?
S+ S =0 (8.156)
Substitute x = »~!/2R(r) and we have
|
%-ﬁ-%z—f-{-(?—j—(ltzz)Z)R:O. (8.157)

This is Bessel’s equation with v (I + %)2. Therefore the general solution is
R= AJH% (kr) +BJ717% (kr), (8.158)

where k£ = |w|/c. Now inspection of the series definition of the J, reveals that

[ 2
Ji(x) =,/ —sinx, (8.159)
2 X
/2
J 1(x) =,/ —cosx, (8.160)
2 X

so these Bessel functions are actually elementary functions. This is true of all Bessel
functions of half-integer order, v = £1/2,£3/2,... We define the spherical Bessel

functions by’
, fis
Jix) = ,/ﬂJ,%(x), (8.161)

ny(x) = (_1)l+1\/§J_(/+£)(x)' (8.162)

2 We are using the definitions from Schiff’s Quantum Mechanics.
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The first few are
. I
Jo(x) = —sinx,
X
) 1 . 1
Jitx) = — sinx — —cosx,
X X
) 3 1\ . 3
Ja(x) = — — T ] sinx — — cosx,
X X X
1
no(x) = ——cosx,
x

1 .
ni(x) = ) coSXx — T sinx,

3 1 3 .
ny(x) = — 373 cosx—;smx.

Despite the appearance of negative powers of x, the j;(x) are all finite at x = 0. The
ny(x) all diverge to —oo as x — 0. In general

Ji(x) = fi(x) sinx + g (x) cos(x), (8.163)
n;(x) = —f;(x) cos(x) + g;(x) sinx, (8.164)

where f;(x) and g;(x) are polynomials in 1/x.
We also define the spherical Hankel functions by

A () = ji@) + in (x), (8.165)
AP () = i) — ing(x). (8.166)
These behave like
5O ) ~ )lcei(xf[l+l]n/2)’ (8.167)
1P ) ~ )16 o ite—U+117/2) (8.168)
at large x.

The solution to the wave equation regular at the origin is therefore a sum of terms
such as

P am(r,0,0,1) = ji(kr) Y0, p)e ™, (8.169)
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Dr
Figure 8.14  Fission core.

where @ = #ck, with k > 0. For example, the plane wave ¢’ has expansion

o0
e = M08 = X (21 + 1)ilj; (kr)Py(cos 0), (8.170)
=0

or equivalently, using (8.66),

o) l
R =dr Y 3 itk [ | v @.171)

1=0 m=—1

where K, F are unit vectors in the direction of k and r, respectively, and are used as a
shorthand notation to indicate the angles that should be inserted into the spherical har-
monics. This angular-momentum-adapted expansion of a plane wave provides a useful
tool in scattering theory.

Exercise 8.4: Peierls’problem. Critical mass. The core of a nuclear device consists of a
sphere of fissile 233U of radius R. It is surrounded by a thick shell of non-fissile material
which acts as a neutron reflector, or tamper (Figure 8.14).

In the core, the fast neutron density n(r, ¢) obeys

d

a—’tl — v+ DpVin, (8.172)
Here the term with v accounts for the production of additional neutrons due to induced
fission. The term with Dr describes the diffusion of the fast neutrons. In the tamper the
neutron flux obeys

= DrV?n. (8.173)
Both the neutron density # and flux j = Dp rVn, are continuous across the interface
between the two materials. Find an equation determining the critical radius R. above
which the neutron density grows exponentially. Show that the critical radius for an
assembly with a tamper consisting of 238U (D7 = Dr) is one-half of that for a core
surrounded only by air (D7 = 00), and so the use of a thick 23U tamper reduces the
critical mass by a factor of eight.



8.3 Bessel functions

Factorization and recurrence

The equation obeyed by the spherical Bessel function is

dx? x dx x2

d?y; 2dy; 10+
———+ xi =k,

or, in Sturm—Liouville form,

x2 dx dx

L d [ dy\ 10+1)
- <x2—1> + a2 = K x.
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(8.174)

(8.175)

The corresponding differential operator is formally self-adjoint with respect to the inner

product

o
o= [ o
Now, the operator

> 2d 11+

S xdx x2
d [-1 d [+1
D=|—— — ,
! (dx+ X ><dx+ x)
d [+2 d /
D =|— —_ 4.
! (dx+ X >( dx+x>

2

Dy =

factorizes as

or as

Since, with respect to the w = x

(d)* 1d , d 2
_— = ————X = - -,

inner product, we have

we can write

Dy = A4 = A 4],

where

d [+1
A =|— .
! <dx+ x)

(8.176)

(8.177)

(8.178)

(8.179)

(8.180)

(8.181)

(8.182)
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From this we can deduce
Ay < ji-1, (8.183)
Al i o (8.184)

The constants of proportionality are in each case unity. The same recurrence formula
hold for the spherical Neumann functions #;.

8.4 Singular endpoints

In this section we will exploit our knowledge of the Laplace eigenfunctions in spherical
and plane polar coordinates to illustrate Weyl’s theory of self-adjoint boundary condi-
tions at singular endpoints. We also connect Weyl’s theory with concepts from scattering
theory.

8.4.1 Weyl’s theorem

Consider the Sturm—Liouville eigenvalue problem

1
Ly = —E[p(r)y/]’ +q(r)y =iy (8.185)

on the interval [0, R]. Here p(r), g(r) and w(r) are all supposed real, so the equation is
formally self-adjoint with respect to the inner product

R
(u,v)w:/ wuv dr. (8.186)
0

If » = 0 is a singular point of (8.185), then we will be unable to impose boundary
conditions of our accustomed form

ay(0) +by'(0) = 0 (8.187)

because one or both of the linearly independent solutions y () and y» () will diverge as
r — 0. The range of possibilities was ennumerated by Weyl:

Theorem: (Hermann Weyl, 1910): Suppose that r = 0 is a singular point andr = R a
regular point of the differential equation (8.185). Then

1 Either:
(a) Limit-circle case: There exists a Ly such that both of the linearly independent
solutions to (8.185) have a w norm that is convergent in the vicinity of r = 0. In
this case both solutions have convergent w norm for all values of A.
Or
(b) Limit-point case: No more than one solution has convergent w norm for any A.
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II. In either case, whenever Im A # 0, there is at least one finite-norm solution. When
A lies on the real axis there may or may not exist a finite norm solution.

We will not attempt to prove Weyl’s theorem. The proof is not difficult and may be
found in many standard texts.” It is just a little more technical than the level of this book.
We will instead illustrate it with enough examples to make the result plausible, and its
practical consequences clear.

When we come to construct the resolvent R; (r,7") obeying

(L —=ADR(r,r") = 8(r —71") (8.188)

by writing it as a product of y_ and y~ we are obliged to choose a normalizable function
for y, the solution obeying the boundary condition at » = 0. We must do this so that
the range of R, will be in L2[0, R]. In the limit-point case, and when Im A # 0, there
is only one choice for y_. There is therefore a unique resolvent, a unique self-adjoint
operator L — A/ of which R;, is the inverse, and hence L is a uniquely specified differential
operator.*

In the limit-circle case there is more than one choice for y_ and hence more than
one way of making L into a self-adjoint operator. To what boundary conditions do these
choices correspond?

Suppose that the two normalizable solutions for A = Ag are y;(r) and y(r). The
essence of Weyl’s theorem is that once we are sufficiently close to » = 0 the exact value
of A is unimportant and all solutions behave as a linear combination of these two. We
can therefore impose as a boundary condition that the allowed solutions be proportional
to a specified real linear combination

y(r) cayi(r) +bya(r), r— 0. (8.189)

This is a natural generalization of the regular case where we have a solution y; () with
boundary conditions y(0) = 1, »;(0) = 0, so y1(r) ~ 1, and a solution y(r) with
2(0) = 0,5(0) = 1, s0 y2(r) ~ r. The regular self-adjoint boundary condition

ay(0) + by’ (0) = 0 (8.190)
with real a, b then forces y(7) to be
y(#) < by1(r) —ay2(r) ~b1 —ar, r— 0. (8.191)

Example: Consider the radial part of the Laplace eigenvalue problem in two dimensions.

2
Ly =19 (/Z—f)ju’%w:kzw. (8.192)

3 For example: Ivar Stackgold Boundary Value Problems of Mathematical Physics, Volume I (STAM 2000).

4 When  is on the real axis then there may be no normalizable solution, and R;, cannot exist. This will occur
only when A is in the continuous spectrum of the operator L, and is not a problem as the same operator L is
obtained for any A.
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The differential operator L is formally self-adjoint with respect to the inner product

R
<1/f,x>=/0 Y* X rdr. (8.193)

When k% = 0, the m* # 0 equation has solutions i/ = »*”, and, of the normalization
integrals

R R
/ P rdr, / lr=™|? rdr, (8.194)
0 0

only the first, containing the positive power of r, is convergent. For m # 0 we are
therefore in Weyl’s limit-point case. For m? = 0, however, the k2 = 0 solutions are
Y1 (r) = 1 and ¥ (r) = Inr. Both normalization integrals

R R
f 12 rdr, f | In 7|? rdr (8.195)
0 0

converge and we are in the limit-circle case at r = 0. When k%> > 0 these solutions
become

Jolkr) =1 — %(kr)z +---
2
No(kr) = <;> (n(kr/2) + 1+ - - (8.196)

Both remain normalizable, in conformity with Weyl’s theorem. The self-adjoint bound-
ary conditions at » — 0 are therefore that near » = 0 the allowed functions become
proportional to

l+alnr (8.197)

with o some specified real constant.

Example: Consider the radial equation that arises when we separate the Laplace
eigenvalue problem in spherical polar coordinates.

1 (d ,dy\ A+,
) (d/ dr>+ 2 Y =k"Y. (8.198)

When k = 0 this has solutions ¥ = #/, ¥~/=1. For non-zero / only the first of the
normalization integrals

R R
/ 22 dr, f 2224y, (8.199)
0 0
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is finite. Thus, for / # 0, we are again in the limit-point case, and the boundary condition
at the origin is uniquely determined by the requirement that the solution be normalizable.

When / = 0, however, the two k2 = 0 solutions are ¥; () = 1 and ¥ (r) = 1/r.
Both integrals

R R
/ ¥ dr, / 2% dr (8.200)
0 0

converge, so we are again in the limit-circle case. For positive k2, these solutions
evolve into

sin kr cos kr

Vik(r) = jolkr) = o Yo i (r) = —kno(kr) = - (8.201)

Nearr = 0, we have 1 x ~ 1 and Y x ~ 1/r, exactly the same behaviour as the k=0
solutions.

We obtain a self-adjoint operator if we choose a constant a; and demand that all
functions in the domain be proportional to

Y~ 1— "7 (8.202)

as we approach » = 0. If we write the solution with this boundary condition as

in(k in(k ki
() = sin(kr + 1) — cosy (sm( r) +tang cos( r))
r r
t
~kcosn<1 v an”), (8.203)
kr
we can read off the phase shift 1 as
tan n (k) = —kay. (8.204)

These boundary conditions arise in quantum mechanics when we study the scattering of
particles whose de Broglie wavelength is much larger than the range of the scattering
potential. The incident wave is unable to resolve any of the internal structure of the
potential and perceives its effect only as a singular boundary condition at the origin. In
this context the constant a; is called the scattering length. This physical model explains
why only the / = 0 partial waves have a choice of boundary condition: classical particles
with angular momentum / # 0 would miss the origin by a distance i, = //k and never
see the potential.

The quantum picture also helps explain the physical origin of the distinction between
the limit-point and limit-circle cases. A point potential can have a bound state that
extends far beyond the short range of the potential. If the corresponding eigenfunction
is normalizable, the bound particle has a significant amplitude to be found at non-
zero r, and this amplitude must be included in the completeness relation and in the
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eigenfunction expansion of the Green function. When the state is not normalizable,
however, the particle spends all its time very close to the potential, and its eigenfunction
makes zero contribution to the Green function and completeness sum at any non-zero
r. Any admixture of this non-normalizable state allowed by the boundary conditions
can therefore be ignored, and, as far as the external world is concerned, all boundary
conditions look alike. The next few exercises will illustrate this.

Exercise 8.5: The two-dimensional “delta function” potential. Consider the quantum
mechanical problem in R?

(~V2+V(rD) v = Ey

with V' an attractive circular square well:

—\/ma?, r<a
Vir)=
, r>a.

The factor of 7w a? has been inserted to make this a regulated version of V' (r) = —182(r).
Let u = /A/ma?.

(i) By matching the functions

Ko(kr), r>a,

00 {Jo (ur), r<a

at » = a, show that as a becomes small, we can scale A towards zero in such a way
that the well becomes infinitely deep yet there remains a single bound state with
finite binding energy

4 5, _
E0£K2=—2€ 2y =4/
a

It is only after scaling A in this way that we have a well-defined quantum mechanical
problem with a “point” potential.

(i1) Show that in the scaling limit, the associated wavefunction obeys the singular-
endpoint boundary condition

Yy@r)—>l4+alnr, r—20

where

1
o= —-
y +1Ink/2

Observe that by varying k> between 0 and co we can make o be any real number.
So the entire range of possible self-adjoint boundary conditions may be obtained
by specifying the binding energy of an attractive potential.
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(iii) Assume that we have fixed the boundary conditions by specifying «, and consider
the scattering of unbound particles off the short-range potential. It is natural to
define the phase shift n(k) so that

Y (r) = cos nJo(kr) — sin nNy (kr)

[ 2
~ | ——cos(kr —/4+1n), r— oo
wkr
2
cotn = (—) Ink/k.
T

Exercise 8.6: The three-dimensional “delta function” potential. Repeat the calculation
of the previous exercise for the case of a three-dimensional delta function potential

Show that

_ 3
Vo) — [ A@rdd/3), r<a

, r>a.

(1) Show that as we take a — 0, the delta function strength A can be adjusted so that
the scattering length becomes

A 1\ !
aA¢ = —_—
g 4wa?  a
and remains finite.

(i1) Show that when this a; is positive, the attractive potential supports a single bound
state with external wavefunction

Y (r) le_'("
r

where k = a; !

Exercise 8.7: The pseudo-potential. Consider a particle of mass p confined in a large
sphere of radius R. At the centre of the sphere is a singular potential whose effects can
be parametrized by its scattering length a, and the resultant phase shift

n(k) ~ tann(k) = —ask.

In the absence of the potential, the normalized / = 0 wavefunctions would be

) = 1 sink,r
) =\ 3R

where k, = nw/R.



304 8 Special functions

(i) Show that the presence of the singular potential perturbs the v, eigenstate so that
its energy E, changes by an amount

12 2a.k}

AE, =
2u R

(i) Show this energy shift can be written as if it were the result of applying first-order
perturbation theory

AE, ~ (n]Vpsln) = / a2V s ()

to an artificial pseudo-potential

2ragh?

Vps(r) = 8.

Although the energy shift is small when R is large, it is not a first-order perturbation
effect and the pseudo-potential is a convenient fiction which serves to parametrize the
effect of the true potential. Even the sign of the pseudo-potential may differ from that
of the actual short-distance potential. For our attractive “delta function”, for example,
the pseudo-potential changes from being attractive to being repulsive as the bound state
is peeled off the bottom of the unbound continuum. The change of sign occurs not by
a, passing through zero, but by it passing through infinity. It is difficult to manipulate a
single potential so as to see this dramatic effect, but when the particles have spin, and a
spin-dependent interaction potential, it is possible to use a magnetic field to arrange for
a bound state of one spin configuration to pass through the zero of energy of the other.
The resulting Feshbach resonance has the same effect on the scattering length as the
conceptually simpler shape resonance obtained by tuning the single potential.

The pseudo-potential formula is commonly used to describe the pairwise interaction of
a dilute gas of particles of mass m, where it reads

2
Vs (r) = AT 53 4, (8.205)

m

The internal energy-density of the gas due to the two-body interaction then becomes

1 4rah?
u(p) = - o
2 m

where p is the particle-number density.

The factor-of-two difference between the formula in the exercise and (8.205) arises
because the 11 in the exercise must be understood as the reduced mass . = m* /(m+m) =
m/2 of the pair of interacting particles.
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Example: In n dimensions, the “/ = 0” part of the Laplace operator is

& m-1d
dr? roodr

This is formally self adjoint with respect to the natural inner product
o
(W X0 :/ Yty dr. (8.206)
0

The zero eigenvalue solutions are /1 (r) = 1 and ¥»(r) = r>~". The second of these
ceases to be normalizable once n > 4. In four space dimensions and above, therefore,
we are always in the limit-point case. No point interaction — no matter how strong —
can affect the physics. This non-interaction result extends, with slight modification, to
the quantum field theory of relativistic particles. Here we find that contact interactions
become irrelevent or non-renormalizable in more than four space-time dimensions.

8.5 Further exercises and problems

Here are some further problems involving Legendre polynomials, associated Legendre
functions and Bessel functions.

Exercise 8.8: A sphere of radius @ is made by joining two conducting hemispheres
along their equators. The hemispheres are electrically insulated from one another and
maintained at two different potentials V; and V5.

(a) Starting from the general expression

o]

b
Vr,0) = Z (a;rl + ,,1_41—1) P;(cos9)

=0

find an integral expression for the coefficients a;, b; that are relevant to the electric
field outside the sphere. Evaluate the integrals giving b1, b, and b3.

(b) Use your results from part (a) to compute the electric dipole moment of the sphere
as a function of the potential difference V7 — V5.

(c) Now the two hemispheres are electrically connected and the entire surface is at one
potential. The sphere is immersed in a uniform electric field E. What is its dipole
moment now?

Problem 8.9: Tides and gravity. The Earth is not exactly spherical. Two major causes
of the deviation from sphericity are the Earth’s rotation and the tidal forces it feels from
the Sun and the Moon. In this problem we will study the effects of rotation and tides on
a self-gravitating sphere of fluid of uniform density py.
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(a) Consider the equilibrium of a nearly spherical body of fluid rotating homogeneously
with angular velocity wg. Show that the effect of rotation can be accounted for by
introducing an “effective gravitational potential”

Peff = Pgrav + %W%RZ(PZ(COS 0) — 1),
where R, 6 are spherical coordinates defined with their origin in the centre of the
body and Z along the axis of rotation.
(b) Asmall planet is in a circular orbit about a distant massive star. It rotates about an axis
perpendicular to the plane of the orbit so that it always keeps the same face directed
towards the star. Show that the planet experiences an effective external potential

Ptidal = —92R2P2 (cos ),

together with a potential, of the same sort as in part (a), that arises from the once-
per-orbit rotation. Here Q2 is the orbital angular velocity, and R, 6 are spherical
coordinates defined with their origin at the centre of the planet and Z pointing at
the star.

(c) Each of the external potentials slightly deforms the initially spherical planet so that
the surface is given by

R(O,¢) = Ry + nPy(cosb).

(with € being measured with respect to different axes for the rotation and tidal
effects). Show that, to first order in 5, this deformation does not alter the volume of
the body. Observe that positive n corresponds to a prolate spheroid and negative n
to an oblate one.

(d) The gravitational field of the deformed spheroid can be found by approximating it
as an undeformed homogeneous sphere of radius Ry, together with a thin spherical
shell of radius Ry and surface mass density o = ponPa(cos#). Use the general
axisymmetric solution

o0

pRO,0) = <A,R’ T i) Py(cost)

RI+1
1=0
of Laplace’s equation, together with Poisson’s equation
V2 = 47 Gp(r)
for the gravitational potential, to obtain expressions for ¢gpe) in the regions R > Ry
and R < Ry.

(e) The surface of the fluid will be an equipotential of the combined potentials of the
homogeneous sphere, the thin shell and the effective external potential of the tidal or
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centrifugal forces. Use this fact to find  (to lowest order in the angular velocities) for
the two cases. Do not include the centrifugal potential from part (b) when computing
the tidal distortion. We never include the variation of the centrifugal potential across
a planet when calculating tidal effects. This is because this variation is due to the
once-per-year rotation, and contributes to the oblate equatorial bulge and not to the

2 2
_5 ok L _ 15 @Ry
3 TnGpg» A Mtide = 5 3G pp-

prolate tidal bulge.’ (Answer: Nrot =

Exercise 8.10: Dielectric sphere. Consider a solid dielectric sphere of radius a and
permittivity €. The sphere is placed in an electric field which takes the constant value
E = Eyz a long distance from the sphere. Recall that Maxwell’s equations require that
D, and E| be continuous across the surface of the sphere.

(a) Use the expansions

®;, = ZA;rlPl(cos 0)
!

Do = Y _(Brr' + Cr~' 1) Py(cos )
i

and find all non-zero coefficients 4;, B;, C;.
(b) Show that the E field inside the sphere is uniform and of magnitude éfz"eo Ey.
(c) Show that the electric field is unchanged if the dielectric is replaced by the

polarization-induced surface charge density

€ — €
€ + 2¢g

Oinduced = 3€0 ( ) Eycosf.

(Some systems of units may require extra 47’s in this last expression. In ST units D =
€E = ¢gE + P, and the polarization-induced charge density is pindquced = —V - P.)

Exercise 8.11: Hollow sphere. The potential on a spherical surface of radius a is @ (6, ¢).
We want to express the potential inside the sphere as an integral over the surface in a
manner analagous to the Poisson kernel in two dimensions.

(a) By using the generating function for Legendre polynomials, show that

1— 2

(1472 —2rcos6)3/2

o0
= 2(21 + Dr'Pi(cosh), r < 1.
=0

5 Our Earth rotates about its axis 365% + 1 times in a year, not 365% times. The “+1” is this effect.
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(b) Starting from the expansion

o0 !
Diy(r,0,0) =Y Y A’ Y0, )

1=0 m=—I

Am = L [Y"(0,¢)]" ©(0,¢)d cosd d
al S2 !

and using the addition formula for spherical harmonics, show that

a(@ —r?) (0,9

dcost'dg’
47 2 (r2 4+ a% — 2ar cos y)3/2 ¢

q)in(r,ea ¢) =

where cosy = cos8 cos 8’ + sin 0 sin 0’ cos(¢p — ¢’).
(c) By setting » = 0, deduce that a three-dimensional harmonic function cannot have a
local maximum or minimum.

Problem 8.12: We have several times met with the Poschel-Teller eigenvalue problem

2
<—j? —n(n+ l)sechzx) v =Ey, (*)

in the particular case that n = 1. We now consider this problem for any positive integer 7.
(a) Set & = tanhx in (x) and show that it becomes

E
(—E(l—s )—%_ a4 1)+ 5 Sz)w 0.

(b) Compare the equation in part (a) with the associated Legendre equation and deduce

that the bound-state eigenfunctions and eigenvalues of the original Poschel-Teller
equation are

YUm(x) = P"(tanhx), En=-m? m=1,...,n,

where P} (£) is the associated Legendre function. Observe that the list of bound

states does not include Yy = Pg(tanh x) = Py(tanhx). This is because g is not

normalizable, being the lowest of the unbound £ > 0 continuous-spectrum states.
(c) Now seek continuous spectrum solutions to (%) in the form

i (x) = €'/ (tanh x),
and show if we take £ = k%, where k is any real number, then ' (£) obeys

2
f+2(k s)i+n(n+1)f_o (x%)
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(d) Letus denote by P,(qk) (&) the solutions of (x*) that reduce to the Legendre polynomial
P, (&) when k£ = 0. Show that the first few P,(qk) (&) are

PP =1,
PP (&) =& — ik,

PP ) = %(352 — 1 — 3ike — K?).

Explore the properties of the P,Sk) (&), and show that they include
() P (=& = (=P P ®).

(i) (0 + DPY (€)= @n+ DxPP €) — (0 + K2 /mPL, 6).

i) PP (1) = (1 — ik)(2 — ik) ... (n — ik)/n!.

(The P,(lk) (&) are the v = —u = ik special case of the Jacobi polynomials P,(,”’“ ) &))

Problem 8.13: Bessel functions and impact parameters. In two dimensions we can
expand a plane wave as

oo
eiky — Z Jn (kr)el'ne .

n=—0o0

(a) What do you think the resultant wave will look like if we take only a finite segment
of this sum? For example

17

Px) =Y Julkr)e™.

=10
Think about:

(1) The quantum interpretation of A/ as angular momentum = hkd, where d is the
impact parameter, the amount by which the incoming particle misses the origin.
(i1) Diffraction: one cannot have a plane wave of finite width.

(b) After writing down your best guess for the previous part, confirm your understanding
by using Mathematica or another package to plot the real part of ¢ as defined above.
The following Mathematica code may work.

Clear[bit, tot]

bit[l_,x_,y_]:=Cos[l ArcTan[x,y]]Besseld[1l,Sqgrt[x"2+y~21]
tot[x_,y ] :=Sum[bit[l,x,y],{1,10,17}]

ContourPlot[tot[x,v], {x,-40,40},{y,-40,40},PlotPoints ->200]
Display["wave",\%, "EPS"]

Run it, or some similar code, as a batchfile. Try different ranges for the sum.
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Exercise 8.14: Consider the two-dimensional Fourier transform
fk) = / ™Xf (x) d%x

of a function that in polar coordinates is of the form f'(r,0) = exp{—ilO}f (r).

(a) Show that

F(K) = 2ile "% / Ji(kr)f (r) rdr,
0
where k, 6y are the polar coordinates of k.

(b) Use the inversion formula for the two-dimensional Fourier transform to establish
the inversion formula (8.120) for the Hankel transform

Fk) = fmJl(kr)f(r) rdr.
0
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Integral equations

A problem involving a differential equation can often be recast as one involving an
integral equation. Sometimes this new formulation suggests a method of attack or approx-
imation scheme that would not have been apparent in the original language. It is also
usually easier to extract general properties of the solution when the problem is expressed
as an integral equation.

9.1 Illustrations

Here are some examples.

A boundary-value problem: Consider the differential equation for the unknown u(x)
"+ AV XDu=0 9.1

with the boundary conditions #(0) = u(L) = 0. To turn this into an integral equation we
introduce the Green function

1
1x(y—1L), 0<x<y<lL,
Gy = |7V Y 92)
1
yx—1), 0<y=<x=<IL,
so that
d2
—EG(X,J/) =3 —y). 93)

Then we can pretend that AV (x)u(x) in the differential equation is a known source term,
and substitute it for “/(x)” in the usual Green function solution. We end up with

L
u(x) + A/ G, )V »)u(y)dx = 0. 9.4)
0

This integral equation for u has not solved the problem, but is equivalent to the original
problem. Note, in particular, that the boundary conditions are implicit in this formulation:
if we set x = 0 or L in the second term, it becomes zero because the Green function is
zero at those points. The integral equation then says that u(0) and u(L) are both zero.

311
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An initial value problem: Consider essentially the same differential equation as before,
but now with initial data:

"+ V@u=0, w0 =0, u0)=1. 9.5)

In this case, we claim that the inhomogeneous integral equation

u(x) — /x(x — OV @ut)dt = x (9.6)
0

is equivalent to the given problem. Let us check the claim. First, the initial conditions.
Rewrite the integral equation as

ulx) =x+ /x(x — 0V (u(?) dt, 9.7
0

so it is manifest that #(0) = 0. Now differentiate to get
X
W(x) =1 +f V(t)u(t) dt. (9.8)
0

This shows that #/(0) = 1, as required. Differentiating once more confirms
that v’ = V (x)u.

These examples reveal that one advantage of the integral equation formulation is
that the boundary or initial value conditions are automatically encoded in the integral
equation itself, and do not have to be added as riders.

9.2 Classification of integral equations

The classification of linear integral equations is best described by a list:

(A) (i) Limits on integrals fixed = Fredholm equation.
(i1) One integration limit is x = Volterra equation.
(B) (i) Unknown under integral only = Type L.
(i1) Unknown also outside integral = Type II.
(C) (i) Homogeneous.
(il)) Inhomogeneous.

For example,

L
u(x) = /O Glx,u(y) dy 9.9)
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is a Type Il homogeneous Fredholm equation, whilst
X
ulx) =x+ / =0V (u) dt (9.10)
0

is a Type Il inhomogeneous Volterra equation.
The equation

b
10 = [ Kewuo) ©.11)
a
an inhomogeneous Type I Fredholm equation, is analogous to the matrix equation
Kx = b. 9.12)
On the other hand, the equation
1 b
u(x) = 5 / K(x,y)u(y)dy, 9.13)
a

a homogeneous Type II Fredholm equation, is analogous to the matrix eigenvalue
problem

Kx = Ax. (9.14)

Finally,

F) = / K y)u(y) dy, 0.15)

an inhomogeneous Type I Volterra equation, is the analogue of a system of linear
equations involving an upper triangular matrix.

The function K (x, y) appearing in these expressions is called the kernel. The phrase
“kernel of the integral operator” can therefore refer either to the function K or the
null-space of the operator. The context should make clear which meaning is intended.

9.3 Integral transforms

When the kernel of the Fredholm equation is of the form K (x — y), with x and y taking

values on the entire real line, then it is translation invariant and we can solve the integral
equation by using the Fourier transformation
o0

k) = Fu) = / u(x)e™ dx (9.16)
—0o0

o
ulx) =F @) = / U(k)e ™ ﬁ.

—00

(9.17)
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Integral equations involving translation-invariant Volterra kernels usually succumb to a
Laplace transform

up) = L) = /OO u(x)e P* dx (9.18)
0
1 y+ioo
u(x) =L@ = — / U(p)eP™ dp. (9.19)
2mi y—ioco

The Laplace inversion formula is the Bromwich contour integral, where y is chosen so
that all the singularities of %(p) lie to the left of the contour. In practice one finds the
inverse Laplace transform by using a table of Laplace transforms, such as the Bateman
tables of integral transforms mentioned in the introduction to Chapter 8.

For kernels of the form K (x/y) the Mellin transform,

o) = M(u) = / u(x)x® ! dx (9.20)
0
1 y+ioco
ux) = M@ = —/ U(o)x° do, 9.21)
27l Jy—ico

is the tool of choice. Again the inversion formula requires a Bromwich contour integral,
and so usually requires tables of Mellin transforms.

9.3.1 Fourier methods

The class of problems that succumb to a Fourier transform can be thought of as a
continuous version of a matrix problem where the entries in the matrix depend only
on their distance from the main diagonal (Figure 9.1).

Example: Consider the Type II Fredholm equation

u(x) — A f - e P Muydy = £ (x), (9.22)

—00

where we will assume that A < 1/2. Here the x-space kernel operator

Kx—y)=8x—y)—re F (9.23)

Figure 9.1 The matrix form of the equation ffooo Kx—yu@)dy =f(x).
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has Fourier transform

20 K+ -20) kK+ad

Kiy=1- = = :
) 2 +1 2 +1 2 +1

(9.24)

where @ = 1 — 2. From

<k2 +a?

W) wick) = 7 (b (9.25)

we find

- 4+1\~
H(k) = <ﬁ>f(k)
2

_(1+ 12 70 9.26
— (14 )T, 926)

Inverting the Fourier transform gives

1_2

? / " ey dy
2a  J_s

u(x) =f(x) +
A Yy
=f)+—— ] e M) dy. 9.27
o+ [ F0)dy 927)
This solution is no longer valid when the parameter A exceeds 1/2. This is because zero

then lies in the spectrum of the operator we are attempting to invert. The spectrum is
continuous and the Fredholm alternative does not apply.

9.3.2 Laplace transform methods

The Volterra problem

/XK(x—y)u(y)dy =f(x), O0<x<oo0 (9.28)
0

can also be solved by the application of an integral transform. In this case we observe
that the value of K (x) is only needed for positive x (see Figure 9.2), and this suggests
that we take a Laplace transform over the positive real axis.

Abel's equation

As an example of Laplace methods, consider Abel’s equation

o
S = fo mu(y)dy, (9.29)
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Figure 9.2 We only require the value of K(x) for x positive, and # and f can be set to zero
forx < 0.

= <—dX dg

Figure 9.3 Regions of integration for the convolution theorem: (a) Integrating over y at fixed x,
then over x; (b) integrating over 7 at fixed &, then over &.

where we are given f'(x) and wish to find u(x). Here it is clear that we need f(0) = 0
for the equation to make sense. We have met this integral transformation before in the
definition of the “half-derivative”. It is an example of the more general equation of
the form

S = /0 Kx = y)u(y) dy. (9.30)

Let us take the Laplace transform of both sides of (9.30):

Lf(p) = /0 e ( /O K(x—y)u(y)dy)dx

= /:de /OEly e PK(x —y)u(y). (9.31)
Now we make the change of variables (see Figure 9.3)
x=§&+n,
y=n. (9.32)
This has Jacobian
ax,y)

= 9.33
aEm 039
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and the integral becomes
Lror= [ [ ek @uon dsdn
0 Jo
= [T k@ [ e an
0 0

= LK(p) Lu(p). (9.34)

Thus the Laplace transform of a Volterra convolution is the product of the Laplace
transforms. We can now invert:

For Abel’s equation, we have
K(x) = 9.36
fx’

the Laplace transform of which is

1

o0
LK (p) = / X2 le™P¥ gy =p 12T <2
0

) =p 2 /x. (9.37)

Therefore, the Laplace transform of the solution u(x) is

Lup) = ——p2(Lf) = L (rppLp). 9.38)
ﬁ T

Now f(0) = 0, and so

d
pLf =L (51‘ ) , (9.39)

as may be seen by an integration by parts in the definition. Using this observation, and
depending on whether we put the p next to f or outside the parentheses, we conclude
that the solution of Abel’s equation can be written in two equivalent ways:

1d [~ 1 A T
ww =% /0 =SV = /0 = )

Proving the equality of these two expressions was a problem we set ourselves in
Chapter 6.

Here is another way of establishing the equality: assume for the moment that K (0) is
finite, and that, as we have already noted, ' (0) = 0. Then,

d X
F Ly ©41)
X Jo
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is equal to

Koyw+ [ T G- 2 0 db,
= KOy - [ aKG-pr0)dy
— KO () — /0 Loy (Ka - ) dy + /O K- 0) dy
= K(0)f (x) — K(0)f (x) — K(x)f (0) + /0 xK x=nf' ) dy
= /O ’ K(x —y)f () dy. (9.42)

Since K (0) cancelled out, we need not worry that it is divergent! More rigorously, we
should regularize the improper integral by raising the lower limit on the integral to a
small positive quantity, and then taking the limit to zero at the end of the calculation.

Radon transforms

An Abel integral equation lies at the heart of the method for reconstructing the image in a
computer aided tomography (CAT) scan. By rotating an X-ray source about a patient and
recording the direction-dependent shadow, we measure the integral of his or her tissue
density f(x, y) along all lines in a slice (which we will take to be the xy-plane) through
his or her body. The resulting information is the Radon transform F of the function f".

Figure 9.4 The geometry of the CAT scan Radon transformation, showing the location of the
point P with coordinates x = pcos@ — ¢sinf,y = psinf + ¢ cosf.
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If we parametrize the family of lines by p and 6, as shown in Figure 9.4, we have
oo
F(p,0) = / f(pcos6 —tsinf,psin€ 4t cos b)) dt,
—00
= f 8(xcosO +ysin6 — p)f(x,y) dxdy. (9.43)
R2

We will assume that f* is zero outside some finite region (the patient), and so these
integrals converge.

We wish to invert the transformation and recover f from the data F'(p, 6). This problem
was solved by Johann Radon in 1917. Radon made clever use of the Euclidean group
to simplify the problem. He observed that we may take the point O at which we wish to
find f to be the origin, and defined'

2
Fo(p) = L/ / 8(xcos@ + ysinbh — p) f(x,y) dxdy ¢ db. (9.44)
2w 0 R2

Thus Fo(p) is the angular average over all lines tangent to a circle of radius p about the
desired inversion point. Radon then observed that if he additionally defines

2
fr)= L f(rcos¢,rsing)de (9.45)
2w 0

then he can substitute £ () for £ (x, y) in (9.44) without changing the value of the integral.
Furthermore £'(0) = £(0,0). Hence, taking polar coordinates in the xy-plane, he has

1 2 B
Fo(p) = P / {f S(rcos¢cosf + rsingsiné — p)f (r) rd¢dr} do. (9.46)
T Jo R2
We can now use

1
HEEDS TP o (9.47)

n
where the sum is over the zeros ¢, of g(¢) = r cos(6 — ¢) — p, to perform the ¢ integral.
Any given point x = 7 cos ¢, y = rsin ¢ lies on two distinct lines if and only if p < 7.
Thus g(¢) has two zeros if p < r, but none if » < p. Consequently

1 2w o0 ) _

! We trust that the reader will forgive the anachronism of our expressing Radon’s formula in terms of Dirac’s
delta function.
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Nothing in the inner integral depends on 6. The outer integral is therefore trivial, and so

Fo(p) = / f(r) rdr. (9.49)
4 —P

We can extract Fo(p) from the data. We could therefore solve the Abel equation (9.49)

and recover the complete function f (). We are only interested in £ (0), however, and it
is easier to verify a claimed solution. Radon asserts that

- 1 * 1 0
£(0,0) =F(0) = —— f ! (—Fo(p)> dp. (9.50)
7wJo p\op

To prove that his claim is true we must first take the derivative of Fo(p) and show that

( FO(P)> / ﬁ( f(r)) ©0.51)

The details of this computation are left as an exercise. It is little different from the
differentiation of the integral transform at the end of the last section. We then substitute
(9.51) into (9.50) and evaluate the resulting integral

=——[wl{/ f’ip (—fm) } 9.52)

by exchanging the order of the integrations, as shown in Figure 9.5.
After the interchange we have

2 [ " 1 J -

Since
r 1 T
——dp=—, (9.54)
/0 V2 —p? 2
Ap p=r b A D p=r
r !

Figure 9.5 (a) In (9.52) we integrate first over » and then over p. The inner r integral is therefore
from r = p to r = co. (b) In (9.53) we integrate first over p and then over r. The inner p integral
therefore runs fromp =0top =r.
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the inner integral is independent of . We thus obtain

I=- / <8ij<r>) dr = F(0) = £(0,0). (9.55)
0 r

Radon’s inversion formula is therefore correct.

Although Radon found a closed-form inversion formula, the numerical problem of
reconstructing the image from the partial and noisy data obtained from a practical CAT
scanner is quite delicate, and remains an active area of research.

9.4 Separable kernels

Let
N
K@x,y) =) pi0)a), (9.56)
i=1

where {p;} and {q;} are two linearly independent sets of functions. The range of K is
therefore the span (p;) of the set {p;}. Such kernels are said to be separable. The theory
of integral equations containing such kernels is especially transparent.

9.4.1 Eigenvalue problem

Consider the eigenvalue problem

Au(x):/K(x,y)u(y) dy (9.57)
D

for a separable kernel. Here, D is some range of integration, and x € D. If L # 0, we
know that  has to be in the range of K, so we can write

u(x) =Y Epi(x). (9.58)

Inserting this into the integral, we find that our problem reduces to the finite matrix
eigenvalue equation

A = A&, (9.59)
where

Ay = /D qi(V)p;(v) dy. (9.60)

Matters are especially simple when ¢; = p}. In this case 4; = A]*l, so the matrix

A is hermitian and has N linearly independent eigenvectors. Further, none of the N
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associated eigenvalues can be zero. To see that this is so suppose that v(x) = >, ;i (x)
is an eigenvector with zero eigenvalue. In other words, suppose that

0= P /D DI . (9.61)

Since the p;(x) are linearly independent, we must have

0= /D ;0P dy =0, (9.62)
for each i separately. Multiplying by ¢ and summing we find
2
0= /D ‘ZP/(V)Q dy = /D ()| dy, (9.63)
J

and so v(x) itself must have been zero. The remaining (infinite in number) eigenfunctions
span (g;)* and have A = 0.

9.4.2 Inhomogeneous problem

It is easiest to discuss inhomogeneous separable-kernel problems by example. Consider
the equation

1
U = £ () + /0 K pu(y) dy, (9.64)

where K (x,y) = xy. Here, f (x) and p are given, and u(x) is to be found. We know that
u(x) must be of the form

u(x) =f(x) + ax, (9.65)

and the only task is to find the constant a. We plug  into the integral equation and, after
cancelling a common factor of x, we find

1 1 1
a=u/0 yu(y)dy=uf0 yf(V)dy+aufO y* dy. (9.66)

The last integral is equal to ua/3, so

1 1
4 (1 - 5#) — /0 V) dy, 9.67)

and finally

1
_ . I
uw) =) +x = [0 9.68)
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Notice that this solution is meaningless if © = 3. We can relate this to the eigenvalues
of the kernel K (x, y) = xy. The eigenvalue problem for this kernel is

1
Au(x) :/ xyu(y) dy. (9.69)
0

On substituting u(x) = ax, this reduces to Aax = ax/3, and so A = 1/3. All other
eigenvalues are zero. Our inhomogeneous equation was of the form

(1—uKu=f (9.70)

and the operator (1 — wK) has an infinite set of eigenfunctions with eigenvalue 1, and
a single eigenfunction, ug(x) = x, with eigenvalue (1 — /3). The eigenvalue becomes
zero, and hence the inverse ceases to exist, when y = 3.

A solution to the problem (1 — uK)u = f may still exist even when © = 3. But
now, applying the Fredholm alternative, we see that f must satisfy the condition that it
be orthogonal to all solutions of (I — uK) v = 0. Since our kernel is hermitian, this
means that / must be orthogonal to the zero mode ug(x) = x. For the case of u = 3, the
equation is

1
ulx) =f(x)+ 3/ xyu(y) dy, 9.71)
0
and to have a solution f must obey fol yf (y) dy = 0. We again set u = f(x) +ax, and find
1 1
a=3 / yf ) dy + a3 / y*dy, 9.72)
0 0
but now this reduces to a = a. The general solution is therefore

u=f(x)+ax 9.73)

with a arbitrary.

9.5 Singular integral equations

Equations involving principal-part integrals, such as the airfoil equation

P! 1
L / () —— dx = £ ), (9.74)
) xX—y

in which £ is given and we are to find ¢, are called singular integral equations. Their
solution depends on what conditions are imposed on the unknown function ¢(x) at the
endpoints of the integration region. We will consider only this simplest example here.”

2 The classic text is N. I. Muskhelishvili, Singular Integral Equations.
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9.5.1 Solution via Tchebychef polynomials
Recall the definition of the Tchebychef polynomials from Chapter 2. We set

T, (x) = cos(n cos™! x), (9.75)

sin(n cos~ ! x)

1
Up_1(x) = = T, (9.76)

sin(cos~! x)
These are the Tchebychef polynomials of the first and second kind, respectively. The

orthogonality of the functions cos n6 and sin n6 over the interval [0, 7] translates into

1

1

/ ) Tu@) dy = by Sy mom = 0, 9.77)
141 —x2

where hg = 7, h, = w/2,n > 0 and
! T
f V1=x2U,_1(x) Up—1 () dx = 5 Spum, nym > 0. (9.78)
-1

The sets {T,,(x)} and {U,(x)} are complete in L%U[O, 1] with the weight functions w =
(1=x)""2and w = (1 —x2)1/2, respectively.
Rather less obvious are the principal-part integral identities (valid for —1 <y < 1)

! 1 1
P/ — ———dx =0, (9.79)
1A l—=x2x—y
! 1 1
P/ T, (x) dx=nU,_1(y), n>0, (9.80)
~1 /1 —x? x—y
and
1
1
P/ V1=x2U,_1(x) dx=—nT,(y), n>0. (9.81)
-1 xX=Yy

These correspond, after we set x = cos 6 and y = cos ¢, to the trigonometric integrals

b 9 1
P/ _cosmh g SN0 (9.82)
o cosf —cos¢ sin ¢

and

T sin @ sin nf
P ———— df = —m cosng, (9.83)
0 cosf —cos¢

respectively. We will motivate and derive these formula at the end of this section.
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Granted the validity of these principal-part integrals we can solve the integral equation

P [l 1
L / PO ——dv =), yel-11] (9.84)
T J_q X =y

for ¢ in terms of /', subject to the condition that ¢ be bounded at x = £1. We show that
no solution exists unless f satisfies the condition

b
/_1 ﬁf(x) dx = O, (985)

but if /" does satisfy this condition then there is a unique solution

o) =

/1 — 12 1
—%P / 1 ! /() Lo, (9.86)

1 —x

To understand why this is the solution, and why there is a condition on f', expand
o
fx) = Z b T, (x). (9.87)
n=1

Here, the condition on f translates into the absence of a term involving 7o = 1 in the
expansion. Then,

9 = —V1=32) byUp-1(), (9.88)
n=1

with b,, the coefficients that appear in the expansion of /', solves the problem. That this is
so may be seen on substituting this expansion for ¢ into the integral equation and using
the second of the principal-part identities. This identity provides no way to generate a
term with 7j; hence the constraint. Next we observe that the expansion for ¢ is generated
term-by-term from the expansion for f* by substituting this into the integral form of the
solution and using the first principal-part identity.

Similarly, we solve for ¢(y) in

P ! 1
—/ @(x) dx=f(@), yel-11], (9.89)
T Jq X =y

where now g is permitted to be singular atx = =£1. In this case there is always a solution,

but it is not unique. The solutions are

1
dx +

C
x—y J1=32

(9.90)

1 1
=—— P V1 —=x2
o) Sy [1 x%f (x)
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where C is an arbitrary constant. To see this, expand

f@) =" a,Us 1), (9.91)
n=1
and then
1 o0
Px) = = (; anT,(x) + CTO) 9.92)

satisfies the equation for any value of the constant C. Again the expansion for ¢ is
generated from that of /by use of the second principal-part identity.

Explanation of the principal-part identities

The principal-part identities can be extracted from the analytic properties of the resolvent
operator Ry (n — n') = H — Al );,,1,' for a tight-binding model of the conduction band
in a one-dimensional crystal with nearest neighbour hopping. The eigenfunctions ug (n)
for this problem obey

urm+ 1) +ug(n—1) = Eug(n) (9.93)
and are
up(n) =", -7 <60 <, (9.94)

with energy eigenvalues £ = 2 cos6.
The resolvent R; (n) obeys

Ro(n+1)+Ry(n—1) — AR, (n) = 8,0, neZ, (9.95)

and can be expanded in terms of the energy eigenfunctions as

% (] T i(n—n')0 46
R.(n—n) = E % = / 2e— - (9.96)
B — _x2cosf — A 2m

If we set A = 2 cos ¢, we observe that

b4 ind do 1 )
/ ¢ W i Img o0 (9.97)
_z2cosf —2cos¢ 2 2ising

That this integral is correct can be confirmed by observing that it is evaluating the Fourier
coefficient of the double geometric series

e¢]

o 2isi
Z e~ im0 pilnlg _ anb’ Im¢ > 0. (9.98)
2cosf —2cos ¢

n=—oo



9.6 Wiener—Hopf equations [ 327

By writing "’ = cosnf + i sin nf and observing that the sine term integrates to zero,

we find that

g

0

/ COSNT 4o = —(cosne + isinng), (9.99)
0 cosf —cos¢ ising

where n > 0, and again we have taken Im ¢ > 0. Now let ¢ approach the real axis from
above, and apply the Plemelj formula. We find

T 0 3
P/ _cosnb g — p SN0 (9.100)
o cosf —cos¢ sin ¢
This is the first principal-part integral identity. The second identity,
7 sin O sin no
P/ SIS 4 — —rcosng, (9.101)
o cosf —cos¢
is obtained from the first by using the addition theorems for the sine and cosine.
9.6 Wiener—Hopf equations I
We have seen that Volterra equations of the form
X
/ Kx—y)u()dy=f(x), 0<x< o0, (9.102)
0

having translation invariant kernels, may be solved for u by using a Laplace transform.
The apparently innocent modification (see Figure 9.6)

/ Kx—»u@y)dy=f(x), 0<x<o0 (9.103)
0

leads to an equation that is much harder to deal with. In these Wiener—Hopf equations,
we are still only interested in the upper left quadrant of the continuous matrix K (x — y)
and K (x — y) still has entries depending only on their distance from the main diagonal.

1
e

|

1

|

1

|

)
|

~

Figure 9.6 The matrix form of (9.103).
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Now, however, we make use of the values of K (x) for all of —oo < x < oo. This suggests
the use of a Fourier transform. The problem is that, in order to Fourier transform, we
must integrate over the entire real line on both sides of the equation and this requires us
to know the values of f'(x) for negative values of x — but we have not been given this
information (and do not really need it). We therefore make the replacement

fSx) = f(x) +gx), (9.104)

where f'(x) is non-zero only for positive x, and g(x) non-zero only for negative x. We
then solve

/OOK(x e AT (9.105)
0

gx), —oo<x<0,

so as to find u and g simultaneously. In other words, we extend the problem to one on
the whole real line, but with the negative-x source term g(x) chosen so that the solution
u(x) is non-zero only for positive x. We represent this pictorially in Figure 9.7.

To find u and g we try to make an “LU” decomposition of the matrix K into the
product K = L~'U of an upper triangular matrix U (x — y) and a lower triangular matrix
L™ (x — y); see Figure 9.8. Written out in full, the product L~ U is

K(x—y) =/OO L'\ — U —y)dt. (9.106)

—00

-1 éx

Figure 9.8 The matrix decomposition K = Lu.
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Now the inverse of a lower triangular matrix is also lower triangular, and so L(x — y)
itself is lower triangular. This means that the function U (x) is zero for negative x, whilst
L(x) is zero when x is positive.

If we can find such a decomposition, then on multiplying both sides by L, Equation
(9.103) becomes

/X Ux—yu(y)dy =hx), 0<x<oo, (9.107)
0

where

def

h(x) = /OOL(X - dy, 0<x<oo. (9.108)

These two equations come from the upper half of the full matrix equation represented
in Figure 9.9.

The lower parts of the matrix equation have no influence on (9.107) and (9.108): the
function /(x) depends only on f', and while g(x) should be chosen to give the column of
zeros below /4, we do not, in principle, need to know it. This is because we could solve
the Volterra equation Uu = & (9.107) via a Laplace transform. In practice (as we will
see) it is easier to find g(x), and then, knowing the (f', g) column vector, obtain u(x) by
solving (9.105). This we can do by Fourier transform.

The difficulty lies in finding the LU decomposition. For finite matrices this decompo-
sition is a standard technique in numerical linear algebra. It is equivalent to the method
of Gaussian elimination, which, although we were probably never told its name, is the
strategy taught in high school for solving simultaneous equations. For continuously infi-
nite matrices, however, making such a decomposition demands techniques far beyond
those learned in school. It is a particular case of the scalar Riemann—Hilbert problem,
and its solution requires the use of complex variable methods.

On taking the Fourier transform of (9.106) we see that we are being asked to factorize

K(k) = [LUO U k) (9.109)

Figure 9.9 Equation (9.107) and the definition (9.108) correspond to the upper half of these two
matrix equations.
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where
~ oo .
Uk) = / e U (x) dx (9.110)
0

is analytic (i.e. has no poles or other singularities) in the region Im £ > 0, and similarly

0
L(k) = / e®L(x) dx 9.111)
—0oQ

has no poles for Imk < 0, these analyticity conditions being consequences of the
vanishing conditions U(x —y) = 0,x < y and L(x —y) = 0, x > y. There will be more
than one way of factoring K into functions with these no-pole properties, but, because
the inverse of an upper or lower triangular matrix is also upper or lower triangular,
the matrices U ™' (x — ) and L~ (x — y) have the same vanishing properties, and,
because these inverse matrices correspond to the reciprocals of the Fourier transform,
we must also demand that U (k) and Z(k) have no zeros in the upper and lower half-
plane, respectively. The combined no-poles, no-zeros conditions will usually determine
the factors up to constants. If we are able to factorize K (k) in this manner, we have
effected the LU decomposition. When K (k) is a rational function of & we can factorize
by inspection. In the general case, more sophistication is required.

Example: Let us solve the equation

o
u(x) — K/ e " Muy) dy = f (), (9.112)
0
where we will assume that A < 1/2. Here the kernel function is
K(x,y) = 8(x —y) —de ", (9.113)

This has Fourier transform

~ 21 KR4+0—=2x) [(k+ia\ [ k—i\""
Kk)y=1- = = 9.114
*) k*+1 k* +1 <k+i><k—ia> ’ ( )

where a> = 1 — 2. We were able to factorize this by inspection with

k+ia Z(k): k—i

Uk) = ,
) k+i k —ia

(9.115)
having poles and zeros only in the lower (respectively upper) half-plane. We could now
transform back into x-space to find U (x — y), L(x — y) and solve the Volterra equation
Uu = h. Itis, however, less effort to work directly with the Fourier transformed equation
in the form

k+ia\ - k—i\ ~ -
< A ) ugp (k) = <m> (f+- (k) +g—(k)). (9.116)
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Here we have placed subscripts onf(k), g(k) and u(k) to remind us that these Fourier
transforms are analytic in the upper (4) or lower (—) half-plane. Since the left-hand side
of this equation is analytic in the upper half-plane, so must be the right-hand side. We
therefore choose g_ (k) to eliminate the potential pole at k& = ia that might arise from
the first term on the right. This we can do by setting

k—i
(k )g ()— _—y

for some as yet undetermined constant ««. (Observe that the resultant g_ (k) is indeed
analytic in the lower half-plane. This analyticity ensures that g(x) is zero for positive x.)
We can now solve for u(k) as

- k+i\ (k—i)\~ ki) «
uk) = <k+i )(k—ia)'f+(k)+<k+ia) k—ia

(9.117)

K2 +1~ k+i
k2 +a 2f+(k) k—2 T B
l k+i
=Fil) + - 2f+<k> T (9.118)
The inverse Fourier transform of
k+i
- 9.119
k? + a? ©.119)
is
m(l — lal sgn(x))e 1M, (9.120)
and that of
1 —a? 2A
< - (9.121)
4+a?2 k241 -2))
is
A
e VI, (9.122)
1-2x
Consequently

)\. o0
u@) =f(x)+ \/T—H/o e VIR () dy

+ B(1 — /1T =2xsgnx)e VI72AK, (9.123)
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Here B is some multiple of v, and we have used the fact that f'(y) is zero for negative y to
make the lower limit on the integral 0 instead of —oo. We determine the as yet unknown
B from the requirement that u(x) = 0 for x < 0. We find that this will be the case if
we take

)\, o
-~ -y dy. 9.124
B a(a+1)/oe £y dy (9.124)
The solution is therefore, for x > 0,

u(x) = f(x) + VIR () dy

)\. o
y————— e
\/1—2)»/(;

A= 7D) e*m?f/ VI () dy. (9.125)
1—2x+/1—-2x 0

Not every invertible n-by-n matrix has a plain LU decomposition. For a related reason
not every Wiener—Hopf equation can be solved so simply. Instead there is a topological
index theorem that determines whether solutions can exist, and, if solutions do exist,
whether they are unique. We shall therefore return to this problem once we have aquired
a deeper understanding of the interaction between topology and complex analysis.

9.7 Some functional analysis

We have hitherto avoided, as far as it is possible, the full rigours of mathematics. For
most of us, and for most of the time, we can solve our physics problems by using calculus
rather than analysis. It is worth, nonetheless, being familiar with the proper mathematical
language so that when something tricky comes up we know where to look for help. The
modern setting for the mathematical study of integral and differential equations is the
discipline of functional analysis, and the classic text for the mathematically inclined
physicist is the four-volume set Methods of Modern Mathematical Physics by Michael
Reed and Barry Simon. We cannot summarize these volumes in a few paragraphs, but
we can try to provide enough background for us to be able to explain a few issues that
may have puzzled the alert reader.

This section requires the reader to have sufficient background in real analysis to know
what it means for a set to be compact.

9.7.1 Bounded and compact operators

(i) Alinear operator K : L?> — L? is bounded if there is a positive number M such that

IKx| < Mllx|l, V¥x e L. (9.126)
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If K is bounded then the smallest such M is the norm of K, which we denote by
[IK||. Thus

K[l < LK {lx]l- (9.127)

For a finite-dimensional matrix, ||K|| is the largest eigenvalue of K. The function
Kx is a continuous function of x if, and only if, it is bounded. “Bounded” and “con-
tinuous” are therefore synonyms. Linear differential operators are never bounded,
and this is the source of most of the complications in their theory.

(i1) If the operators 4 and B are bounded, then so is 4B and

(iii)

(iv)

48] < Il4]I1B]|- (9.128)

A linear operator K : L> — L? is compact (or completely continuous) if it maps
bounded sets in L? to relatively compact sets (sets whose closure is compact).
Equivalently, K is compact if the image sequence Kx, of every bounded sequence
of functions x,, contains a convergent subsequence. Compact = continuous, but
not vice versa. One can show that, given any positive number M, a compact self-
adjoint operator has only a finite number of eigenvalues with A outside the interval
[—M,M]. The eigenvectors u, with non-zero eigenvalues span the range of the
operator. Any vector can therefore be written

u=uo+ Yy au;, (9.129)
i

where ug lies in the null-space of K. The Green function of a linear differential
operator defined on a finite interval is usually the integral kernel of a compact
operator.

If K is compact then

H=I+K (9.130)

is Fredholm. This means that A has a finite-dimensional kernel and co-kernel, and
that the Fredholm alternative applies.

(v) An integral kernel is Hilbert—Schmidt if

f \K (&, m)* dedn < . (9.131)

This means that K can be expanded in terms of a complete orthonormal set {¢,,} as

K@) =Y A} () (9.132)

n,m=1
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in the sense that

N.M
N}}gm Z Apmbnd), — K| = 0. (9.133)
nm=1
Now the finite sum
N.M
Z Ann1¢n(x)¢;:1(y) (9.134)
n,m=1

is automatically compact since it is bounded and has finite-dimensional range. (The
unit ball in a Hilbert space is relatively compact < the space is finite dimensional.)
Thus, Hilbert—Schmidt implies that K is approximated in norm by compact opera-
tors. But it is not hard to show that a norm-convergent limit of compact operators
is compact, so K itself is compact. Thus

Hilbert-Schmidt = compact.

It is easy to test a given kernel to see if it is Hilbert—-Schmidt (simply use the
definition) and therein lies the utility of the concept.

If we have a Hilbert—Schmidt Green function g, we can recast our differential equation
as an integral equation with g as kernel, and this is why the Fredholm alternative works
for a large class of linear differential equations.

Example: Consider the Legendre-equation operator
d d
L=——(1-x")— 9.135
dx (1 =x% dx ( )

acting on functions u € Lz[—l, 1] with boundary conditions that u be finite at the
endpoints. This operator has a normalized zero mode ug = 1/+/2, so it cannot have an
inverse. There exists, however, a modified Green function g(x, x’) that satisfies

1
Lu:(S(x—x’)—E. (9.136)
Itis
, 1 1
gx,x)=1In2— 373 In(1 +x-)(1 —x2), (9.137)

where x.. is the greater of x and x/, and x the lesser. We may verify that

1 pl
/ / lg(x,x")|? dxdx’ < oo, (9.138)
—1J—1
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so g is Hilbert—Schmidt and therefore the kernel of a compact operator. The eigenvalue
problem

Lity = Aytty (9.139)

can be recast as the integral equation

1
Hnlipn :/ g0, XN, (x"y dx’ (9.140)
—1

with @, = A, I, The compactness of g guarantees that there is a complete set of eigen-
functions (these being the Legendre polynomials P,(x) for n > 0) having eigenvalues
un = 1/n(n+1). The operator g also has the eigenfunction Py with eigenvalue o = 0.
This example provides the justification for the claim that the “finite” boundary conditions
we adopted for the Legendre equation in Chapter 8 give us a self-adjoint operator.

Note that K (x, y) does not have to be bounded for K to be Hilbert—Schmidt.

Example: The kernel

1
Ke,y)=——, Il <1 (9.141)
(=)
is Hilbert—Schmidt provided o < %
Example: The kernel
1 —m|x—y|
K(x,y) == "7, xyeR (9.142)
2m

is not Hilbert—Schmidt because |K (x — y)| is constant along the lines x — y = constant,
which lie parallel to the diagonal. K has a continuous spectrum consisting of all positive
real numbers less than 1/m?. It cannot be compact, therefore, but it is bounded with
IK| = 1/m?. The integral equation (9.22) contains this kernel, and the Fredholm
alternative does not apply to it.

9.7.2 Closed operators

One motivation for our including a brief account of functional analysis is that an attentive
reader will have realized that some of the statements we have made in earlier chapters
appear to be inconsistent. We have asserted in Chapter 2 that no significance can be
attached to the value of an L? function at any particular point — only integrated averages
matter. In later chapters, though, we have happily imposed boundary conditions that
require these very functions to take specified values at the endpoints of our interval.
In this section we will resolve this paradox. The apparent contradiction is intimately
connected with our imposing boundary conditions only on derivatives of lower order



336 9 Integral equations

than that of the differential equation, but understanding why this is so requires some
function-analytic language.

Differential operators L are never continuous; we cannot deduce from u, — u that
Lu,, — Lu. Differential operators can be closed, however. A closed operator is one for
which whenever a sequence u, converges to a limit # and at the same time the image
sequence Lu,, also converges to a limit /', then u is in the domain of L and Lu = f. The
name is not meant to imply that the domain of definition is closed, but indicates instead
that the graph of L — this being the set {«, Lu} considered as a subset of [%[a, b] x L?[a, b]
— contains its limit points and so is a closed set.

Any self-adjoint operator is automatically closed. To see why this is so, recall that in
defining the adjoint of an operator 4, we say that y is in the domain of 47 if there is a z
such that (y, Ax) = (z, x) for all x in the domain of 4. We then set ATy = z. Now suppose
thaty, — yand ATy, = z, — z. The Cauchy—Schwartz—Bunyakovski inequality shows
that the inner product is a continuous function of its arguments. Consequently, if x is
in the domain of 4, we can take the limit of (y,, Ax) = (47y,,x) = (z,,x) to deduce
that (y, Ax) = (z,x). But this means that y is in the domain of AT, and z = ATy. The
adjoint of any operator is therefore a closed operator. A self-adjoint operator, being its
own adjoint, is therefore necessarily closed.

A deep result states that a closed operator defined on a closed domain is bounded.
Since they are always unbounded, the domain of a closed differential operator can never
be a closed set.

An operator may not be closed but may be closable, in that we can make it closed by
including additional functions in its domain. The essential requirement for closability is
that we never have two sequences u, and v, which converge to the same limit, w, while
Luy, and Lv, both converge, but to different limits. Closability is equivalent to requiring
that if u, — 0 and Lu, converges, then Lu, converges to zero.

Example: Let L = d /dx. Suppose that u,, — 0and Lu,, — f. If ¢ is a smooth L? function
that vanishes at 0, 1, then

1 1 du 1
/ of dx = lim / p—dx=— lim | ¢ u,dx=0. (9.143)
0 n—oo 0

dx n—o00 fq

Here we have used the continuity of the inner product to justify the interchange of the
order of limit and integral. By the same arguments we used when dealing with the
calculus of variations, we deduce that f = 0. Thus d/dx is closable.

If an operator is closable, we may as well add the extra functions to its domain and
make it closed. Let us consider what closure means for the operator

I = j_x, D(L) = {y € C'[0,1] : y/(0) = 0}. (9.144)

Here, in fixing the derivative at the endpoint, we are imposing a boundary condition of
higher order than we ought.
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Figure 9.10 limy_, ¢ yq =y in L2[0,1] .

[

Figure 9.11 3, — ) in 12[0,1].

Consider the sequence of differentiable functions y, shown in Figure 9.10. These
functions have vanishing derivative at x = 0, but tend in L? to a function y whose
derivative is non-zero at x = 0.

Figure 9.11 shows that the derivative of these functions also converges in L?.

If we want L to be closed, we should therefore extend the domain of definition of L to
include functions with non-vanishing endpoint derivative. We can also use this method
to add to the domain of L functions that are only piecewise differentiable — i.e. functions
with a discontinuous derivative.

Now consider what happens if we try to extend the domain of

L=2 DW=y el O =0) (9.145)

to include functions that do not vanish at the endpoint. Take the sequence of functions
Ya shown in Figure 9.12. These functions vanish at the origin, and converge in L2 to a
function that does not vanish at the origin.

Now, as Figure 9.13 shows, the derivatives converge towards the derivative of the limit
function — together with a delta function near the origin. The area under the functions
Iy, (x)|? grows without bound and the sequence Ly, becomes infinitely far from the
derivative of the limit function when distance is measured in the L norm.
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Figure 9.12 lim, 0y, =y in L2[0,1].

1/a - -

a

Figure 9.13  y, — 8(x), but the delta function is not an element of 12 [0, 1].

We therefore cannot use closure to extend the domain to include these functions.
Another way of saying this is that in order for the weak derivative of y to be in L2,
and therefore for y to be in the domain of d/dx, the function y need not be classically
differentiable, but its L? equivalence class must contain a continuous function — and
continuous functions do have well-defined values. It is the values of this continuous
representative that are constrained by the boundary conditions.

This story repeats for differential operators of any order: if we try to impose boundary
conditions of too high an order, they are washed out in the process of closing the operator.
Boundary conditions of lower order cannot be eliminated, however, and so make sense
as statements involving functions in L?.

9.8 Series solutions

One of the advantages of recasting a problem as an integral equation is that the equation
often suggests a systematic approximation scheme. Usually we start from the solution
of an exactly solvable problem and expand the desired solution about it as an infinite
series in some small parameter. The terms in such a perturbation series may become
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progressively harder to evaluate, but, if we are lucky, the sum of the first few will prove
adaquate for our purposes.
9.8.1 Liouville-Neumann—Born series

The geometric series
S=1l—-x4x>—x34... (9.146)
converges to 1/(1 4 x) provided |x| < 1. Suppose we wish to solve
U+ rK)yp =f (9.147)
where K is an integral operator. It is then natural to write
e=U+21K) 7" =0 =2K+12K> =K+ )f, (9.148)

where
K2(x,y) = f K(x,2)K(z,y) dz,
K3 (x,y) = f K (x,21)K (21,22)K (22, ) dz1dz3, (9.149)

and so on. This Liouville—Neumann series will converge, and yield a solution to the
problem, provided that A||K|| < 1. In quantum mechanics this series is known as the
Born series.

9.8.2 Fredholm series

A familiar result from high-school algebra is Cramer s rule, which gives the solution of
a set of linear equations in terms of ratios of determinants. For example, the system of
equations

aiix1 + appxay + ajzxz = by,
az1x1 + axnxy + axnxz = by,

az1xy + azxy + azzx; = bs, (9.150)
has solution

1 by an a3 air b1 ais air ap b
X1=—=\by axn a3|, x2=—=la by ax|, x3=—l|a axn b,
b3y azx as az; by as3 as; asxn b3

(9.151)
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where

al a2 ais
D= \ay ay apy|. (9.152)
as;p dadszy ass

Although not as computationally efficient as standard Gaussian elimination, Cramer’s
rule is useful in that it is a closed-form solution. It is equivalent to the statement that
the inverse of a matrix is given by the transposed matrix of the cofactors, divided by the
determinant.

A similar formula for integral equations was given by Fredholm. The equations he
considered were, in operator form,

I+ 1K) =1, (9.153)

where [ is the identity operator, K is an integral operator with kernel K(x,y) and A a
parameter. We motivate Fredholm’s formula by giving an expansion for the determinant
of a finite matrix. Let K be an n-by-n matrix

1+ AK1 AK17 MK,

def Mo 1+AKy --- MK,
D) = det(I+AK) = ) . . , (9.154)

AK1 AKp oo 14 AKy,
Then
n )\,m
D(\) = ZO — A, (9.155)
m=!

where 4o = 1,41 =tr K =), Kj,

n Kiiy  Kiiy Kiji
» A3= Z Kiiy  Kiyiy  Kiyis | - (9.156)
inizis=1 |Kiiy  Kisiy  Kisiy

n

Kilil Ki]iz

Ay =
Ki2i1 Kiziz

i1,i=1

The pattern for the rest of the terms should be obvious, as should the proof.

As observed above, the inverse of a matrix is the reciprocal of the determinant of the
matrix multiplied by the transposed matrix of the cofactors. So, if D,,,, is the cofactor of
the term in D(A) associated with K, then the solution of the matrix equation

I+2K)x=b (9.157)
is

_ D;/,lbl +Du2b2 + "l‘D,u.nbn
e D(2) '

(9.158)
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If © # v we have

2 K,y Ky 31 R Bt B
Dy =1+ 22 30 (W00 A0 S K K+
- iv i 21 &
i ni Kizv Kizil Kiziz

When u = v we have

D;w = 5;1115()"),
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(9.159)

(9.160)

where [N)(A) is the expression analogous to D(A), but with the u-th row and column

deleted.

These elementary results suggest the definition of the Fredholm determinant of the

integral kernel K (x,y),a < x,y < b, as

X am
D(X) = Det |I + AK| = Z

m=0

e

where dg = 1, 4 = TrK = [ K(x,x) dx,
o /T K(x,an)  K(r,x)
2 =
aJa

dxdx,
K(r,x1) Ka,xp)| &7

K(xy,x1) K(xp,x2)

b b b
A3=/// K(x2,x1) K(x2,x2)

K(x3,x1) K(x3,x2)
etc. We also define

K(x,y)

b
D(x,y, 1) = AK (x, )\Zf
(x,y,A) (x5, ) + ke

K(x,y)

K(x,51)

K(x1,x3)
K (xp,x3)| dx1dxpdxs,
K (x3,x3)

K(x,§)
K(,8)

K(x,6)

3

1 b pb
H%// KGEL,y) K@EL&) KELe)|dade + -

K&,y) K&2,&1) K(2,8)

and then

1

b
00 =)+ 5o / DCry, () dy

is the solution of the equation

b
000 + A f Ky)p)dy =1 ().

(9.161)

(9.162)

(9.163)

(9.164)

(9.165)
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If|K(x,y)| < M in [a, b] X [a, b], the Fredholm series for D()) and D(x, y, \.) converge
for all A, and define entire functions. In this feature it is unlike the Neumann series,

which has a finite radius of convergence.
The proof of these claims follows from the identity

b
D(x,y,A) + AD(M)K (x,y) + )»/ D(x,§,MK(§,y)d§ =0,
or, more compactly with G(x,y) = D(x,y,1)/D(}),
U+ G+ AK) =1.

For details see Whitaker and Watson §11.2.

Example: The equation
1
p(x) =x+ /\/ e (y) dy
0
gives us
1
D) =1-— gk, D(x,y,A) = Axy

and so

3x

px) = 3—.

(We have considered this equation and solution before, in Section 9.4.)

9.9 Further exercises and problems

Exercise 9.1: The following problems should be relatively easy.

(a) Solve the inhomogeneous Type II Fredholm integral equation

1
u(x) = ex+A/ xyu(y)dy.
0

(b) Solve the homogeneous Type II Fredholm integral equation

u(x) =X /n sin(x —y)u(y)dy.
0

(c) Solve the integral equation

1
u(x):x+/\/ Oox +yH) u(y) dy
0

to second order in A using

(9.166)

(9.167)

(9.168)

(9.169)

(9.170)
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(i) the Neumann series; and

(i1) the Fredholm series.
(d) By differentiating, solve the integral equation: u(x) = x + fg u(y) dy.
(e) Solve the integral equation: u(x) = x> + fol xyu(y)dy.
(f) Find the eigenfunction(s) and eigenvalue(s) of the integral equation

1
u(x) = kf e ul)dy.
0

(g) Solve the integral equation: u(x) = €* + A fol e Y u(y) dy.
(h) Solve the integral equation

1
u(x) =x+/ dy (1 +xy) u(y)
0

for the unknown function u(x).
Exercise 9.2: Solve the integral equation

1
u(x) =f(x)+k/ x3y3u(y)dy, 0<x<l1
0

for the unknown u(x) in terms of the given function f'(x). For what values of A does a
unique solution u(x) exist without restrictions on f(x)? For what value A = 1y does a
solution exist only if / (x) satisfies some condition? Using the language of the Fredholm
alternative, and the range and null-space of the relevant operators, explain what is
happening when A = Ag. For the case A = X¢ find explicitly the condition on f'(x)
and, assuming this condition is satisfied, write down the corresponding general solution
for u(x). Check that this solution does indeed satisfy the integral equation.

Exercise 9.3: Use a Laplace transform to find the solution to the generalized Abel
equation

X
fx) = f x—0Hu@dt, 0<u<l,
0
where f'(x) is given and f(0) = 0. Your solution will be of the form
X
u(x) = / K(x —0f (tdt,
0

and you should give an explicit expression for the kernel K (x — ¢).
You will find the formula

o0
/ P le™Pldr=p T (w), p>0
0

to be useful.



344 9 Integral equations

Exercise 9.4: Translationally invariant kernels.

(a) Consider the integral equation: u(x) = g(x) + A f fooo K (x,y) u(y) dy, with the trans-
lationally invariant kernel K (x, y) = Q(x —y), in which g, A and Q are known. Show
that the Fourier transforms #, g and 0 satisfy 1(q) = g(¢)/{1— \/EAQ(q)}. Expand
this result to second order in A to recover the second-order Liouville-Neumann—Born
series.

(b) Use Fourier transforms to find a solution of the integral equation

u(x) = e M 4 A/OO e P u@)dy

—00

that remains finite as |x| — oco.
(c) Use Laplace transforms to find a solution of the integral equation

X
u(x) = e + k/ e Fupydy x> 0.
0

Exercise 9.5: The integral equation

a2 —sw, =0
T Jo x+y

relates the unknown function ¢ to the known function .
(i) Show that the changes of variables

x=exp2§, y=-exp2n,
¢ (exp2n) expn =¥ (n), f(exp2§) exp& =g(§),

convert the integral equation into one that can be solved by an integral transform.
(i) Hence, or otherwise, construct an explicit formula for ¢ (x) in terms of a double
integral involving f'(y).

You may use without proof the integral

/oo d%. e—isé;' _ T '
_s _cosh&  coshms/2

Exercise 9.6: Using Mellin transforms. Recall that the Mellin transform f(s) of the
function f'(¢) is defined by

fs) = / At~ f ().
0

(a) Giventwo functions, /' (¢) and g(¢), a Mellin convolution f *g can be defined through

o0 d
(f*g)(t)=f0 f(lu_l)g(u)gu_
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Show that the Mellin transform of the Mellin convolution f * g is

Fagls) = /0 51 % )0 di = F(9)F().

Similarly find the Mellin transform of

def

(fHg) () = /O f(tu)g(u) du.

(b) The unknown function F(¢) satisfies Fox’s integral equation,
oo
F()=G@) +/ dv Q(tv) F(v),
0

in which G and Q are known. Solve for the Mellin transform F in terms of the Mellin
transforms G and Q.

Exercise 9.7: Some more easy problems:

(a) Solve the Lalesco—Picard integral equation

1 o0
u(x) = cos ux + —/ dye ().
4J)

(b) For A # 3, solve the integral equation

1
¢x) =1 +?»/0 dyxyd(y).

(c) By taking derivatives, show that the solution of the Volterra equation

x:/ dy (e"+ ) ¥ (»)
0

satisfies a first-order differential equation. Hence, solve the integral equation.
Exercise 9.8: Principal-part integrals.

(a) If w is real, show that

o0 w
P/ e ! du:—Zﬁewa/ e du.

—00 u—w 0

(This is easier than it looks.)
(b) If y is real, but not in the interval (—1, 1), show that

/1 1 e T
G -0VI=22 ST
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Now lety € (—1,1). Show that

1
1
Pf ———dx=0
1 (¥ —x0)/1 —x2
(This is harder than it looks.)

Exercise 9.9: Consider the integral equation

1
u(x) = g(@) + 1 /0 Kx,y) u(y) dy,

in which only u is unknown.

(a) Write down the solution u(x) to second order in the Liouville-Neumann—Born series.
(b) Suppose g(x) = x and K(x,y) = sin2wxy. Compute u(x) to second order in the
Liouville-Neumann—Born series.

Exercise 9.10: Show that the application of the Fredholm series method to the equation

1
() =x+ A /0 Gy + 1)) dy

gives

2. 1,
DOY=1—Zh— =2
377

and

D(x,y, ) = Alxy +y7) + A P T3y +ZJ’ .
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Vectors and tensors

In this chapter we explain how a vector space V' gives rise to a family of associated tensor
spaces, and how mathematical objects such as linear maps or quadratic forms should be
understood as being elements of these spaces. We then apply these ideas to physics. We
make extensive use of notions and notations from the appendix on linear algebra, so it
may help to review that material before we begin.

10.1 Covariant and contravariant vectors

When we have a vector space V over R, and {ej, e, ..., e,} and {€], ¢}, ..., e} are both
bases for V/, then we may expand each of the basis vectors e, in terms of the e;L as

e, =ale,. (10.1)

We are here, as usual, using the Einstein summation convention that repeated indices
are to be summed over. Written out in full for a three-dimensional space, the expansion
would be

el =ale| +dle) +aje;,
ey = ale| + dde) + a3},
e3 = ale| + dde) + ale;.
We could also have expanded the €}, in terms of the e, as
/ —1 /
¢, = (@ Hle,. (10.2)

As the notation implies, the matrices of coefficients a and (@~ H¥ are inverses of each
other:

a“(@ " = (aHHal = 5. (10.3)

If we know the components x* of a vector x in the e,, basis then the components x"* of
X in the e;L basis are obtained from

x =x"e, =x"e, = (x"a})) ¢, (10.4)

347
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by comparing the coefficients of e;L. We find that x’* = a}/x". Observe how the e,
and the x* transform in “opposite” directions. The components x** are therefore said to
transform contravariantly.

Associated with the vector space V' is its dual space V*, whose elements are covectors,
i.e. linear maps f : V' — R. Iff € V* and x = x"e,, we use the linearity property to
evaluate f(x) as

f(x) = f(x"e,) = x*f(ey) = X" f,.. (10.5)

Here, the set of numbers f,, = f(e,) are the components of the covector f. If we change
basis so that e, = a’f e;L then

fo =f(ey) = f(ale)) = al'f(e],) = al'f. (10.6)

v

We conclude that f;, = al; f;i The f,, components transform in the same manner as the
basis. They are therefore said to transform covariantly. In physics it is traditional to
call the the set of numbers x* with upstairs indices (the components of) a contravariant
vector. Similarly, the set of numbers f,, with downstairs indices is called (the components
of) a covariant vector. Thus, contravariant vectors are elements of V' and covariant
vectors are elements of V'*.

The relationship between V" and V* is one of mutual duality, and to mathematicians it is
only a matter of convenience which space is " and which space is V*. The evaluation of
f € ' onx € V is therefore often written as a “pairing” (f, x), which gives equal status
to the objects being put together to get a number. A physics example of such a mutually
dual pair is provided by the space of displacements x and the space of wavenumbers
k. The units of x and k are different (metres versus metres~!). There is therefore no
meaning to “x + k”, and x and k are not elements of the same vector space. The “dot”
in expressions such as

Y (x) = & (10.7)

cannot be a true inner product (which requires the objects it links to be in the same vector
space) but is instead a pairing

(k,x) = k(x) = k,x*. (10.8)

In describing the physical world we usually give priority to the space in which we live,
breathe and move, and so treat it as being “V”. The displacement vector x then becomes
the contravariant vector, and the Fourier-space wave number k, being the more abstract
quantity, becomes the covariant covector.

Our vector space may come equipped with a metric that is derived from a non-
degenerate inner product. We regard the inner product as being a bilinear form g :
V x V — R, so the length ||x|| of a vector x is \/g(X, X). The set of numbers

guv = g(ey, ey) (10.9)



10.1 Covariant and contravariant vectors 349

comprises (the components of) the metric tensor. In terms of them, the inner product
(x,y) of the pair of vectors x = x*e,, and y = y*e, becomes

(x,y) =gx,y) = gux"y" (10.10)

Real-valued inner products are always symmetric, so g(x,y) = g(y,X) and g, = gup.-
As the product is non-degenerate, the matrix g, has an inverse, which is traditionally
written as g"V. Thus

guwg” =g g =8, (10.11)

The additional structure provided by the metric permits us to identify V with V'*.
The identification is possible, because, given any f € V*, we can find a vector f € V'
such that

~

f(x) = (f,x). (10.12)
We obtain f by solving the equation
fu=guf” (10.13)

to get f” = g"*f,. We may now drop the tilde and identify f with 1, and hence V
with V*. When we do this, we say that the covariant components f,, are related to the
contravariant components f* by raising

St =g""h, (10.14)

or lowering

S = guf”s (10.15)

the index u using the metric tensor. Bear in mind that this ' = V* identification depends
crucially on the metric. A different metric will, in general, identify an f € V* with a
completely different f € V.

We may play this game in the Euclidean space E” with its “dot” inner product. Given
a vector x and a basis e,, for which g,,, = e,, - e,, we can define two sets of components
for the same vector. Firstly the coefficients x* appearing in the basis expansion

x = xte,, (10.16)
and secondly the “components”
Xy =€, X =g(e,,Xx) = g(eu.axvev) = g(ey, e)x" = g;wxv (10.17)

of x along the basis vectors. These two sets of numbers are then respectively called
the contravariant and covariant components of the vector x. If the e, constitute an
orthonormal basis, where g,,, = §,,,,, then the two sets of components (covariant and con-
travariant) are numerically coincident. In a non-orthogonal basis they will be different,
and we must take care never to add contravariant components to covariant ones.
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10.2 Tensors

We now introduce tensors in two ways: firstly as sets of numbers labelled by indices
and equipped with transformation laws that tell us how these numbers change as we
change basis; and secondly as basis-independent objects that are elements of a vector
space constructed by taking multiple tensor products of the spaces V" and V*.

10.2.1 Transformation rules

After we change basis e;, — e;L, where e, = al) e;L, the metric tensor will be represented
by a new set of components

=g(€).€). (10.18)

These are related to the old components by
Quv = gley, e)) = glale),,a)e,) = aha)g(e),€,) = afa] g, (10.19)

This transformation rule for g,,,, has both of its subscripts behaving like the downstairs
indices of a covector. We therefore say that g, transforms as a doubly covariant tensor.
Written out in full, for a two-dimensional space, the transformation law is
1.1,/ 1.2 21,7 22
g1l = ajaigy +ajaigy +aja 8 +a1a182,
1.1 7 1.2 7/ 2.1 7 2.2 7
812 = a1ax8)y + 14381, + ajaxgyy + ajaz8y,
1.1 7 1.2 7 2.1 7 2.2 7
821 = aya18)y + aa18|y + 43418y + a3a18y,
1.1 7 1.2 7 2.1 7 2.2 7
822 = ayay81 + axa381, + a3a381 + 43a587)-
In three dimensions each row would have nine terms, and sixteen in four dimensions.

A set of numbers Q% whose indices range from 1 to the dimension of the space
and that transforms as

yde>

0 e = (@%@ al'afal 0F g0, (10.20)
or conversely as
0 s = atay @ @3 @ L e, (10.21)

comprises the components of a doubly contravariant, triply covariant tensor. More
compactly, the 0%f yse are the components of a tensor of type (2,3). Tensors of type
(p,q) are defined analogously. The total number of indices p + ¢ is called the rank of
the tensor.

Note how the indices are wired up in the transformation rules (10.20) and (10.21):
free (not summed over) upstairs indices on the left-hand side of the equations match to
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free upstairs indices on the right-hand side, similarly for the downstairs indices. Also
upstairs indices are summed only with downstairs ones.

Similar conditions apply to equations relating tensors in any particular basis. If they
are violated you do not have a valid tensor equation — meaning that an equation valid in
one basis will not be valid in another basis. Thus an equation

A", =B"",_+C", (10.22)

VA = VAT

is fine, but

?
A”’v}» =B’ A + CH + DMU)J (1023)

VAOO

has something wrong in each term.

Incidentally, although not illegal, it is a good idea not to write tensor indices directly
underneath one another —i.e. do not write QZ].] — because if you raise or lower indices
using the metric tensor, and some pages later in a calculation try to put them back where
they were, they might end up in the wrong order.

Tensor algebra

The sum of two tensors of a given type is also a tensor of that type. The sum of two
tensors of different types is not a tensor. Thus each particular type of tensor constitutes a
distinct vector space, but one derived from the common underlying vector space whose
change-of-basis formula is being utilized.
Tensors can be combined by multiplication: if 4" ,; and B" ap are tensors of type
(1,2) and (1, 3), respectively, then
c*?

— 4%, B (10.24)

VAPO T poT

is a tensor of type (2, 5).

An important operation is contraction, which consists of setting one or more con-
travariant index equal to a covariant index and summing over the repeated indices. This
reduces the rank of the tensor. So, for example,

Dpgr = C% e (10.25)

is atensor of type (0, 3). Similarly f(x) = f,x" is a type (0, 0) tensor, i.e. an invariant —a
number that takes the same value in all bases. Upper indices can only be contracted with
lower indices, and vice versa. For example, the array of numbers 4, = Bypp obtained
from the type (0, 3) tensor Byg,, is not a tensor of type (0, 1).

The contraction procedure outputs a tensor because setting an upper index and a lower
index to a common value © and summing over p leads to the factor ... (aHk aﬁ ...
appearing in the transformation rule. Now

(@ Hlkal =58, (10.26)
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and the Kronecker delta effects a summation over the corresponding pair of indices in
the transformed tensor.

Although often associated with general relativity, tensors occur in many places in
physics. They are used, for example, in elasticity theory, where the word “tensor” in its
modern meaning was introduced by Woldemar Voigt in 1898. Voigt, following Cauchy
and Green, described the infinitesimal deformation of an elastic body by the strain tensor
eqp, which is a tensor of type (0,2). The forces to which the strain gives rise are described
by the stress tensor o**. A generalization of Hooke’s law relates stress to strain via a
tensor of elastic constants c*#7% as

0% = Ve ;. (10.27)

We study stress and strain in more detail later in this chapter.

Exercise 10.1: Show that g/¥, the matrix inverse of the metric tensor g,,,, is indeed a
doubly contravariant tensor, as the position of its indices suggests.

10.2.2 Tensor character of linear maps and quadratic forms

As an illustration of the tensor concept and of the need to distinguish between upstairs
and downstairs indices, we contrast the properties of matrices representing linear maps
and those representing quadratic forms.

Alinear map M : V' — V is an object that exists independently of any basis. Given a
basis, however, it is represented by a matrix M*, obtained by examining the action of
the map on the basis elements:

M(e,) = e,M",. (10.28)
Acting on x we get a new vector y = M (x), where
ey =y=M(x) =M(x'e,) =x"M(e,) =x"M" e, = M’ x"e,. (10.29)
We therefore have
y=M" XM, (10.30)

which is the usual matrix multiplication y = Mx. When we change basis, e, =
at e;“ then

eVM”M =M(e,) = M(aﬁefo) = aﬁM(efo) = aﬁeéM"; = aﬁ(a‘l);evM";. (10.31)
Comparing coefficients of e,, we find

-1
MY, = ala oM, (10.32)
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or, conversely,
M, =@ "hayM’,. (10.33)

Thus a matrix representing a linear map has the tensor character suggested by the position
of its indices, i.e. it transforms as a type (1, 1) tensor. We can derive the same formula
in matrix notation. In the new basis the vectors x and y have new components x’ = Ax,
and y’ = Ay. Consequently y = Mx becomes

y = Ay = AMx = AMA~ 'Y/, (10.34)
and the matrix representing the map M has new components
M = AMA~. (10.35)

Now consider the quadratic form Q : V' — R that is obtained from a symmetric
bilinear form O : V' x V' — R by setting Q(x) = Q(X, x). We can write

O0(x) = Quuxtx’ = x* 0,y x¥ = x7Qx, (10.36)

where O, = O(e,, e,) are the entries in the symmetric matrix Q, the suffix T" denotes
transposition, and x” Qx is standard matrix-multiplication notation. Just as does the
metric tensor, the coefficients O, transform as a type (0, 2) tensor:

Ouv = d%all Olg. (10.37)

In matrix notation the vector x again transforms to have new components x’ = Ax, but
x'T = xTAT. Consequently

xTQ'x' = x"ATQ Ax. (10.38)
Thus
Q=ATQA. (10.39)

The message is that linear maps and quadratic forms can both be represented by matrices,
but these matrices correspond to distinct types of tensor and transform differently under
a change of basis.

A matrix representing a linear map has a basis-independent determinant. Similarly the
trace of a matrix representing a linear map

oM & e (10.40)

is a tensor of type (0, 0), i.e. a scalar, and therefore basis independent. On the other hand,
while you can certainly compute the determinant or the trace of the matrix representing
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a quadratic form in some particular basis, when you change basis and calculate the
determinant or trace of the transformed matrix, you will get a different number.

It is possible to make a quadratic form out of a linear map, but this requires using the
metric to lower the contravariant index on the matrix representing the map:

O(x) = x"gu, 0";x* =x- Qx. (10.41)

Be careful, therefore: the matrices “Q” in x” Qx and in x - Qx are representing different
mathematical objects.

Exercise 10.2: In this problem we will use the distinction between the transformation
law of a quadratic form and that of a linear map to resolve the following “paradox”:

o In quantum mechanics we are taught that the matrices representing two operators can
be simultaneously diagonalized only if they commute.
o In classical mechanics we are taught how, given the Lagrangian

1. . 1
L=y <§%Mij‘1j - EQiViij> ,
7
to construct normal coordinates Q; such that L becomes
L., 1 5 5
LZZ 79 — @il ).
i

We have apparantly managed to simultaneously diagonalize the matrices M;; —
diag(1,...,1) and V;; — diag (w%, e, a),%), even though there is no reason for them to
commute with each other!

Show that when M and V are a pair of symmetric matrices, with M being posi-
tive definite, then there exists an invertible matrix A such that ATMA and AT VA are
simultaneously diagonal. (Hint: consider M as defining an inner product, and use the
Gramm-—Schmidt procedure to first find an orthonormal frame in which Ml; = §;;. Then
show that the matrix corresponding to V in this frame can be diagonalized by a further
transformation that does not perturb the already diagonal ]\4;)

10.2.3 Tensor product spaces

We may regard the set of numbers Q% yse as being the components of an object Q that
is an element of the vector space of type (2, 3) tensors. We denote this vector space by
the symbol V' ® V' ® V* ® V* ® V*, the notation indicating that it is derived from the
original V" and its dual V* by taking tensor products of these spaces. The tensor Q is to
be thought of as existing as an element of V' @ V @ V* ® V* ® V* independently of any
basis, but given a basis {e,} for V/, and the dual basis {e*"} for }'*, we expand it as

Q=0" e, Qe e @e*. (10.42)
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Here the tensor product symbol “®” is distributive

a®(b+c)=a®b+a®ec,
(a+b)®c=a®c+bRec, (10.43)
and associative
@a®b)®c=a® (beec), (10.44)
but is not commutative
a®b#b®a. (10.45)

Everything commutes with the field, however,
AMa®b) =(Aa) @b =a ® (Ab). (10.406)
If we change basis e, = ay e:3 then these rules lead, for example, to
eq ® ep = ayay €, ®¢),. (10.47)
From this change-of-basis formula, we deduce that
T¢q @ e = TP ajyaj ¢ ® €|, = T e ® e, (10.48)
where
" = 1 ). (10.49)

The analogous formula for e, ® eg ® €7 ® e ® e*¢ reproduces the transformation rule
for the components of Q.

The meaning of the tensor product of a collection of vector spaces should now be
clear: if e, consititute a basis for V, the space V' ® V is, for example, the space of
all linear combinations' of the abstract symbols e, ® e,, which we declare by fiat to
constitute a basis for this space. There is no geometric significance (as there is with a
vector product a x b) to the tensor product a ® b, so the e, ® e, are simply useful
place-keepers. Remember that these are ordered pairs, e, @ e, # e, @ €.

! Do not confuse the tensor-product space ¥ ® W with the cartesian product ¥ x . The latter is the set of
all ordered pairs (x,y), x € V,y € W. The tensor product includes also formal sums of such pairs. The
cartesian product of two vector spaces can be given the structure of a vector space by defining an addition
operation A(X1,y1) + 1 (X2,¥2) = (AX] + X2, Ay + (y2), but this construction does not lead to the tensor
product. Instead it defines the direct sum V & W.
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Although there is no geometric meaning, it is possible, however, to give an algebraic
meaning to a product like e** ®e** @e*" by viewing it as a multilinear form V' x V x V :—
R. We define

e’ @ e @ e (eq,ep,€y) = 5 8 5. (10.50)
We may also regard it as a linearmap V' ® V' ® V' :— R by defining

et @e ®e* (e ®ep®ey) =5 8 8y (10.51)

and extending the definition to general elements of V' ® V' ® V' by linearity. In this way
we establish an isomorphism

Verrert=rerer)t. (10.52)

This multiple personality is typical of tensor spaces. We have already seen that the metric
tensor is simultaneously an element of V* ® V* andamapg: V — V*.

Tensor products and quantum mechanics

When we have two quantum-mechanical systems having Hilbert spaces H! and H®,
the Hilbert space for the combined system is H" ® H®. Quantum mechanics books
usually denote the vectors in these spaces by the Dirac “bra-ket” notation in which
the basis vectors of the separate spaces are denoted by” |n1) and |n5), and that of the
combined space by |ny,n7). In this notation, a state in the combined system is a linear
combination

W) = Y |ni,na) (m1,ma| 9). (10.53)

ny,nz

This is the tensor product in disguise. To unmask it, we simply make the notational
translation

W) — W
(n1,my| W) — Y™
1
1) — etV

) — )

In1,nz) — el ®@ el (10.54)
Then (10.53) becomes
V=g el @ef). (10.55)

2 We assume for notational convenience that the Hilbert spaces are finite dimensional.
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Entanglement: Suppose that HD has basis egl), e e,(,,l) and H® has basis e§2)’ e, eg,z).
The Hilbert space H" ® H is then nm dimensional. Consider a state

v =yle @e? e D @ H?. (10.56)
If we can find vectors

@ = ¢e) e 1O,

X = /e e H?, (10.57)
such that
V=0@X=4¢ye ®e” (10.58)

then the tensor W is said to be decomposable and the two quantum systems are said to
be unentangled. If there are no such vectors then the two systems are entangled in the
sense of the Einstein—Podolski—-Rosen (EPR) paradox.

Quantum states are really in one-to-one correspondence with rays in the Hilbert space,
rather than vectors. If we denote the n-dimensional vector space over the field of the
complex numbers as C" , the space of rays, in which we do not distinguish between the
vectors x and Ax when A # 0, is denoted by CP"~! and is called complex projective
space. Complex projective space is where algebraic geometry is studied. The set of
decomposable states may be thought of as a subset of the complex projective space
CP"=1_and, since, as the following exercise shows, this subset is defined by a finite
number of homogeneous polynomial equations, it forms what algebraic geometers call
a variety. This particular subset is known as the Segre variety.

Exercise 10.3: The Segre conditions for a state to be decomposable.

(i) By counting the number of independent components that are at our disposal in ¥,
and comparing that number with the number of free parameters in ® ® X, show
that the coefficients ¥ must satisfy (n — 1)(m — 1) relations if the state is to be
decomposable.

(i1) If the state is decomposable, show that

vy

0= ‘wkf Y

for all sets of indices i,j, k, [.

(iii) Assume that ¥!! is not zero. Using your count from part (i) as a guide, find a
subset of the relations from part (ii) that constitute a necessary and sufficient set
of conditions for the state W to be decomposable. Include a proof that your set is
indeed sufficient.



358 10 Vectors and tensors

10.2.4 Symmetric and skew-symmetric tensors

By examining the transformation rule you may see that if a pair of upstairs or downstairs
indices is symmetric (say Q""" ;. = Q" ;1) or skew-symmetric (O*" ;5. = —O0"¥ ,57)
in one basis, it remains so after the basis has been changed. (This is not true of a pair
composed of one upstairs and one downstairs index.) It makes sense, therefore, to define
symmetric and skew-symmetric tensor product spaces. Thus skew-symmetric doubly-
contravariant tensors can be regarded as belonging to the space denoted by /\2 V and
expanded as

1
A= EAW e, Aey, (10.59)

where the coefficients are skew-symmetric, A" = —A4"*, and the wedge product of the
basis elements is associative and distributive, as is the tensor product, but in addition
obeys e, A e, = —e, A e,. The “1/2” (replaced by 1/p! when there are p indices)
is convenient in that each independent component only appears once in the sum. For
example, in three dimensions,

1
EA’“’ e e, =A%e  ney+ AP ey nes + A ey Ay (10.60)

Symmetric doubly contravariant tensors can be regarded as belonging to the space
sym?V and expanded as

S=5%e, Oes (10.61)

where e, © eg = eg O e, and S = §P* (We do not insert a “1/2” here because
including it leads to no particular simplification in any consequent equations.)

We can treat these symmetric and skew-symmetric products as symmetric or skew
multilinear forms. Define, for example,

e neP (e, e,) = 8%80 — 5%6F, (10.62)
and
e nef (e, ney) =0%80 — 5250 (10.63)

We need two terms on the right-hand side of these examples because the skew-symmetry
of e** A e*#(, ) in its slots does not allow us the luxury of demanding that the e, be
inserted in the exact order of the e** to get a non-zero answer. Because the p-th order
analogue of (10.62) form has p! terms on its right-hand side, some authors like to divide
the right-hand side by p! in this definition. We prefer the one above, though. With our
definition, and with A = %A wet Ae” and B = %B”‘ﬁ ey A eg, we have

A(B)_fAWB’“’ ZA VB, (10.64)

n<v

so the sum is only over independent terms.
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The wedge (A) product notation is standard in mathematics wherever skew-symmetry
is implied.” The “sym” and © are not. Different authors use different notations for spaces
of symmetric tensors. This reflects the fact that skew-symmetric tensors are extremely
useful and appear in many different parts of mathematics, while symmetric ones have
fewer special properties (although they are common in physics). Compare the relative
usefulness of determinants and permanents.

Exercise 10.4: Show that in d dimensions:

(i) the dimension of the space of skew-symmetric covariant tensors with p indices is

d!/p\(d —p)!;
(ii) the dimension of the space of symmetric covariant tensors with p indices is

d+p—Dl/pld—- DL
Bosons and fermions

Spaces of symmetric and skew-symmetric tensors appear whenever we deal with the
quantum mechanics of many indistinguishable particles possessing Bose or Fermi statis-
tics. If we have a Hilbert space H of single-particle states with basis e; then the N-boson
space is Sym" 1 which consists of states

® =12 Ne; Oey O--- O ey, (10.65)

and the N-fermion space is /\N ‘H, which contains states

1 RV
v = ﬁ\plllzmlN € ANejp N Aejy. (1066)

The symmetry of the Bose wavefunction
@il...ia...i,g...l'N — @il...iﬂ...ia...iN, (1067)
and the skew-symmetry of the Fermion wavefunction
\Ijil---ia---iﬂ---iN — _\Ijil---iﬁ---ia---"N’ (1068)
under the interchange of the particle labels «, 8 is then natural.

Slater determinants and the Pliicker relations: Some N-fermion states can be decom-
posed into a product of single-particle states

V=9, A¥rA - AYy
=Y YR e Al A Al (10.69)

3 Skew products and abstract vector spaces were introduced simultaneously in Hermann Grassmann’s Aus-
dehnungslehre (1844). Grassmann’s mathematics was not appreciated in his lifetime. In his disappointment
he turned to other fields, making significant contributions to the theory of colour mixtures (Grassmann’s
law), and to the philology of Indo-European languages (another Grassmann’s law).
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Comparing the coefficients of e;; Ae;, A--- Ae; in(10.66) and (10.69) shows that the
many-body wavefunction can then be written as

wil 1/,i2 .. IpiN
1 1 1
Wit 1/,21 wzz o 1/;21" (10.70)
Ip]‘;} 1/,]13 .. w]’;llv

The wavefunction is therefore given by a single Slater determinant. Such wavefunc-
tions correspond to a very special class of states. The general many-fermion state is not
decomposable, and its wavefunction can only be expressed as a sum of many Slater deter-
minants. The Hartree—Fock method of quantum chemistry is a variational approximation
that takes such a single Slater determinant as its trial wavefunction and varies only the
one-particle wavefunctions (i|v,) = 1//5. It is a remarkably successful approximation,
given the very restricted class of wavefunctions it explores.

As with the Segre condition for two distinguishable quantum systems to be unentan-
gled, there is a set of necessary and sufficient conditions on the W12V for the state W
to be decomposable into single-particle states. The conditions are that

WitiziN-1lgiaiz-Jin+1l — (10.71)

for any choice of indices i1, ...iy—1 andjy, . ..,jn+1. The square brackets [. . .] indicate
that the expression is to be antisymmetrized over the indices enclosed in the brackets.
For example, a three-particle state is decomposable if and only if

W2/ _ 22U gl gius o ghi2iagduas — (), (10.72)

These conditions are called the Pliicker relations after Julius Pliicker who discovered
them long before the advent of quantum mechanics.” It is easy to show that Pliicker’s
relations are necessary conditions for decomposability. It takes more sophistication to
show that they are sufficient. We will therefore defer this task to the exercises at the end
of the chapter. As far as we are aware, the Pliicker relations are not exploited by quantum
chemists, but, in disguise as the Hirota bilinear equations, they constitute the geometric
condition underpinning the many-soliton solutions of the Korteweg—de Vries and other
soliton equations.

4 As well as his extensive work in algebraic geometry, Pliicker (1801-68) made important discoveries in
experimental physics. He was, for example, the first person to observe the deflection of cathode rays —
beams of electrons — by a magnetic field, and the first to point out that each element had its characteristic
emission spectrum.
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10.2.5 Kronecker and Levi-Civita tensors
Suppose the tensor 8}, is defined, with respect to some basis, to be unity if 4 = v and
zero otherwise. In a new basis it will transform to

Sl =al(a )7L = ali@ )l =8l (10.73)

In other words the Kronecker delta symbol of type (1, 1) has the same numerical com-
ponents in all coordinate systems. This is not true of the Kronecker delta symbol of type
0,2),1.e. of 6.

Now consider an #-dimensional space with a tensor 1, ..., Whose components, in
some basis, coincide with the Levi-Civita symbol €, .. ,.,,- We find that in a new frame
the components are

Mgy = @ @ D2 (@) €0y,
= €uypn..in (ail)l (071)2 e (afl)n"éulvz...un
= €urpr.psy det A7
= Nurpug.giy det AL (10.74)

Thus, unlike the 8}, the Levi-Civita symbol is not quite a tensor.
Consider also the quantity

Vg & Jdetigul. (10.75)

Here we assume that the metric is positive-definite, so that the square root is real, and
that we have taken the positive square root. Since

det [g],,] = det[(a 1) (a7 gpo] = (det A)det [gy], (10.76)
we see that
Ve = |detA|! /2. (10.77)

Thus /g is also not quite an invariant. This is only to be expected, because g( , )
is a quadratic form and we know that there is no basis-independent meaning to the
determinant of such an object.

Now define

Epip.ttn = /& €t pir .t (10.78)

and assume that €,,,,. 4, has the type (0,7n) tensor character implied by its indices.
When we look at how this transforms, and restrict ourselves to orientation preserving
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changes of basis, i.e. ones for which det A is positive, we see that factors of det A
conspire to give

SI/iIMZ-~~Mn = \/geumz--»uw (10.79)

A similar exercise indicates that if we define €”!#2» to be numerically equal to
€ilin...ptn then

M2t L M2 (10.80)

NG

also transforms as a tensor — in this case a type (n, 0) contravariant one — provided that
the factor of 1/, /g is always calculated with respect to the current basis.

If the dimension # is even and we are given a skew-symmetric tensor F,,,, we can
therefore construct an invariant

1
gttty e By = ﬁemm‘"“"Fﬂmz o Fu (10.81)

Similarly, given a skew-symmetric covariant tensor F,, .. ,,, With m (< n) indices we
can form its dual, denoted by F*, an (n — m)-contravariant tensor with components

L g

1--Mm «/§m| K1 Mem -

We meet this “dual” tensor again, when we study differential forms.

1
(F*)l/varlmILn — _‘SILIMZmMnFM (1082)
m!

10.3 Cartesian tensors

If we restrict ourselves to cartesian coordinate systems having orthonormal basis vectors,
so that g;; = &;;, then there are considerable simplifications. In particular, we do not have
to make a distinction between co- and contravariant indices. We shall usually write their
indices as roman-alphabet suffixes.

A change of basis from one orthogonal n-dimensional basis e; to another e} will set

¢, = Oy, (10.83)

where the numbers Oj; are the entries in an orthogonal matrix O, i.e. areal matrix obeying
070 = 007 =1, where T denotes the transpose. The set of n-by-# orthogonal matrices
constitutes the orthogonal group O(n).

10.3.1 Isotropic tensors

The Kronecker 8;; with both indices downstairs is unchanged by O(n) transformations,

8 = OwOpdy = Oy Oj = O Of; = 8, (10.84)
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and has the same components in any cartesian frame. We say that its components are
numerically invariant. A similar property holds for tensors made up of products of J;;,
such as

Tijklmn = 5ij8k15mn- (10.85)

It is possible to show” that any tensor whose components are numerically invariant under
all orthogonal transformations is a sum of products of this form. The most general O(n)
invariant tensor of rank four is, for example.

adiiSp + Bidy + v Sudjk. (10.86)

The determinant of an orthogonal transformation must be £1. If we only allow
orientation-preserving changes of basis then we restrict ourselves to orthogonal trans-
formations O;; with det O = 1. These are the proper orthogonal transformations. In n
dimensions they constitute the group SO(n). Under SO(n) transformations, both §;; and
€i1iy...i, are numerically invariant and the most general SO(n) invariant tensors consist
of sums of products of §;;’s and €;,;,..;,’s. The most general SO(4)-invariant rank-four
tensor is, for example,

adiibp + Béidy + v 0iudjx + A€k (10.87)

Tensors that are numerically invariant under SO(n) are known as isotropic tensors.
As there is no longer any distinction between co- and contravariant indices, we can
now contract any pair of indices. In three dimensions, for example,

Bijii = €nij€nii (10.88)

is a rank-four isotropic tensor. Now ¢;, ; 1is not invariant when we transform via an
orthogonal transformation with det O = —1, but the product of two €’s is invariant under
such transformations. The tensor Bjjy; is therefore numerically invariant under the larger

group O(3) and must be expressible as
Bijk = o858 + By + v S (10.89)

for some coefficients «, 8 and y. The following exercise explores some consequences
of this and related facts.

Exercise 10.5: We defined the n-dimensional Levi-Civita symbol by requiring that
€i1ir...i, b€ antisymmetric in all pairs of indices, and €12, = 1.

5 The proof is surprisingly complicated. See, for example, M. Spivak, A Comprehensive Introduction to
Differential Geometry (second edition) Vol. V, pp. 466—481.
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(a) Show that €123 = €231 = €312, but that €1234 = —€2341 = €3412 = —€4123.
(b) Show that

€ijk€irjk = 0 8jy Sy + Tive other terms,

where you should write out all six terms explicitly.

(c) Show that €ijk€ij'k = sj/"Skk’ — jk’81g"-

(d) For dimension n = 4, write out €;;€;7;/; as a sum of products of §’s similar to the
one in part (c).

Exercise 10.6: Vector products. The vector product of two three-vectors may be written
in cartesian components as (a X b); = €;;.a;by. Use this and your results about € from
the previous exercise to show that

(i)a-(bxe)=b-(ecxa)=c-(axbh),
(ii) ax (bxc)=1(a-c)b—(a-b)c,
(i) (axb)-(exd)=(a-c)(b-d)—(a-d)(b-c).
(iv) Ifwetakea, b, candd, withd = b, to be unit vectors, show that the identities (i) and
(iii) become the sine and cosine rule, respectively, of spherical trigonometry. (Hint:
for the spherical sine rule, begin by showing thata-[(axb) x (ax¢c)] = a-(b xc¢).)

10.3.2 Stress and strain

As an illustration of the utility of cartesian tensors, we consider their application to
elasticity.

Suppose that an elastic body is slightly deformed so that the particle that was originally
at the point with cartesian coordinates x; is moved to x; 4+ ;. We define the (infinitesimal)
strain tensor ej; by

1 37’]]' 87),‘
i==-\—+—). 10.90
€y 2 <8x,- + 3)(;/' ( )

It is automatically symmetric: e; = e;;. We will leave for later (Exercise 11.3) a discus-
sion of why this is the natural definition of strain, and also the modifications necessary
were we to employ a non-cartesian coordinate system.

To define the stress tensor o;; we consider the portion 2 of the body in Figure 10.1,
and an element of area dS = nd|S| on its boundary. Here, n is the unit normal vector
pointing out of Q2. The force F exerted on this surface element by the parts of the body
exterior to 2 has components

F,'=O'i]'l’ljd|S|. (1091)

That F is a linear function of nd|S| can be seen by considering the forces on a small
tetrahedron, three of whose sides coincide with the coordinate planes, the fourth side
having n as its normal. In the limit that the lengths of the sides go to zero as €, the mass
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Figure 10.1 Stress forces.

of the body scales to zero as €3, but the forces are proprtional to the areas of the sides
and go to zero only as €2. Only if the linear relation holds true can the acceleration of
the tetrahedron remain finite. A similar argument applied to torques and the moment of
inertia of a small cube shows that o = 07;.

A generalization of Hooke’s law,

Ojj = Cijkl€kl» (10.92)

relates the stress to the strain via the tensor of elastic constants c;jy;. This rank-four tensor
has the symmetry properties

Cijkl = Cklij = Cjiki = Cijlk- (10.93)

In other words, the tensor is symmetric under the interchange of the first and second
pairs of indices, and also under the interchange of the individual indices in either pair.

For an isotropic material — a material whose properties are invariant under the rotation
group SO(3) —the tensor of elastic constants must be an isotropic tensor. The most general
such tensor with the required symmetries is

Cijki = A8k + w(8ikdjr + 8itdjk)- (10.94)

An isotropic material is therefore characterized by only two independent parameters,
A and p. These are called the Lamé constants after the mathematical engineer Gabriel
Lamé. In terms of them the generalized Hooke’s law becomes

Ojj = )\8,'/'6]{]{ + 2,bL€ij. (1095)

By considering particular deformations, we can express the more directly measurable
bulk modulus, shear modulus, Young's modulus and Poisson s ratio in terms of A and w.
The bulk modulus « is defined by

dv
dP = k. (10.96)
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where an infinitesimal isotropic external pressure dP causes a change V — V + dV
in the volume of the material. This applied pressure corresponds to a surface stress of

ojj = —&;; dP. An isotropic expansion displaces points in the material so that
1dv
ni = 57?&% (10.97)
The strains are therefore given by
1 dr
Inserting this strain into the stress—strain relation gives
2 \dV
3 14
Thus
2
K =)»+§,u. (10.100)

To define the shear modulus, we assume a deformation 1| = 0x;, so ejp = ex; = 6/2,
with all other e;; vanishing (see Figure 10.2).

The applied shear stress is 012 = o02;. The shear modulus is defined to be o1,/6.
Inserting the strain components into the stress—strain relation gives

o1 = ub, (10.101)

and so the shear modulus is equal to the Lamé constant ;. We can therefore write the
generalized Hooke’s law as

o = 211 (e — Loye) + wewdy, (10.102)

which reveals that the shear modulus is associated with the traceless part of the strain
tensor, and the bulk modulus with the trace.

Figure 10.2  Shear strain. The arrows show the direction of the applied stresses. The o>1 on the
vertical faces are necessary to stop the body rotating.
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Figure 10.3  Forces on a stretched wire.

Young’s modulus Y is measured by stretching a wire of initial length L and square
cross-section of side /¥ under a tension 7 = o33 W2.
We define Y so that
dL
o33 =Y—. (10.103)
L
At the same time as the wire stretches, its width changes W — W +dW . Poisson’s ratio
o is defined by
aw dL

) 10.104
W o7 ( )

so that o is positive if the wire gets thinner as it gets longer. The displacements are

dL
=Z —_—
n3 )

daw dL
m=y <7> =0y <T> ) (10.105)
so the strain components are
_ & cen =W (10.1006)
€3 = e el T en = o = 0. .
We therefore have
dL
o33 = (1 =20) + 20 (T ). (10.107)
leading to
Y =x(1-20)+2u. (10.108)

Now, the side of the wire is a free surface with no forces acting on it, so

dL
0=o0p =01 =l —20) — 20 1) <T) (10.109)
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This tells us that®

and

y (Pt
M\ )

Other relations, following from those above, are

Y = 3k(l — 20),
=2u(l+o).

Exercise 10.7: Show that the symmetries

Cijkl = Chiij = Cjikl = Cijlk

(10.110)

(10.111)

(10.112)

imply that a general homogeneous material has 21 independent elastic constants. (This

result was originally obtained by George Green, of Green function fame.)

Exercise 10.8: A steel beam is forged so that its cross-section has the shape of a region
I' € R?. When undeformed, it lies along the z-axis. The centroid O of each cross-section

is defined so that

/xdxdy:/ydxdy:O,
r r

when the coordinates x, y are taken with the centroid O as the origin. The beam is
slightly bent away from the z-axis so that the line of centroids remains in the yz-plane
(see Figure 10.4). At a particular cross-section with centroid O, the line of centroids has

radius of curvature R.

Figure 10.4 Bent beam.

6 Poisson and Cauchy erroneously believed that A = i, and hence that o = 1/4.
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Figure 10.5 The original (dashed) and anticlastically deformed (full) cross-section.

Assume that the deformation in the vicinity of O is such that

o

Nx = — 2,
1 2 2 2

ny=ﬁ{0(x -y)—z }
1

, = —VZ.

N = 2y

Observe that for this assumed deformation, and for a positive Poisson ratio, the cross-
section deforms anticlastically — the sides bend up as the beam bends down. This is
shown in Figure 10.5.

Compute the strain tensor resulting from the assumed deformation, and show that its
only non-zero components are

o o
_Eya €y = _Eya €zz =

Y
Ozz = E Y,

and that all other components of the stress tensor vanish (Figure 10.6). Deduce from this

vanishing that the assumed deformation satisfies the free-surface boundary condition,

and so is indeed the way the beam responds when it is bent by forces applied at its ends.
The work done in bending the beam

1
Exx = Ey

Next, show that

1 3
Zejicijer d’x
beam 2

is stored as elastic energy. Show that for our bent rod this energy is equal to

YI (1 YI
[7 <ﬁ> dS’\'/‘?()//) dZ,
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-]
-—
-

T

Figure 10.6 The distribution of forces o, exerted on the left-hand part of the bent rod by the
material to its right.

where s is the arc-length taken along the line of centroids of the beam,

1=/y2dxdy
r

is the moment of inertia of the region I' about the x axis and y” denotes the second
derivative of the deflection of the beam with respect to z (which approximates the arc-
length). This last formula for the strain energy has been used in a number of our calculus
of variations problems.

10.3.3 Maxwell stress tensor

Consider a small cubical element of an elastic body. If the stress tensor were position
independent, the external forces on each pair of opposing faces of the cube would be
equal in magnitude but pointing in opposite directions. There would therefore be no net
external force on the cube. When oj; is not constant then we claim that the total force
acting on an infinitesimal element of volume dV is

Fi = o4V (10.113)

To see that this assertion is correct, consider a finite region 2 with boundary 92, and
use the divergence theorem to write the total force on €2 as

F}‘“:f oiin;d|S| =/ djoidV . (10.114)
Q2 Q

Whenever the force-per-unit-volume f; acting on a body can be written in the form
Ji = 9j05;, we refer to o; as a “stress tensor”, by analogy with stress in an elastic solid.
Asan example, let E and B be electric and magnetic fields. For simplicity, initially assume
them to be static. The force per unit volume exerted by these fields on a distribution of
charge p and current j is

f=pE+jxB. (10.115)
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From Gauss’ law p = div D, and with D = ¢gE, we find that the force per unit volume
due to the electric field has components

PE; = QD)E; = o((EiE) — E; OE:)
= co( (EiE) — £ iE )
1
= €0d; (E,-Ej - 5(s,,|}5|2> : (10.116)

Here, in passing from the first line to the second, we have used the fact that curl E is
zero for static fields, and so 0;£; = 0;E;. Similarly, using j = curl H, together with
B = poH and divB = 0, we find that the force per unit volume due to the magnetic
field has components

A 1
G x B); = tod) (Hho - 551,.|H|2> . (10.117)

The quantity

1 1
0 =€ <E,-Ej — E5,»]-|E|2> + uo (HiHj — 53,-]-|H|2) (10.118)

is called the Maxwell stress tensor. Its utility lies in the fact that the total electromagnetic
force on an isolated body is the integral of the Maxwell stress over its surface. We do
not need to know the fields within the body.

Michael Faraday was the first to intuit a picture of electromagnetic stresses and
attributed both a longitudinal tension and a mutual lateral repulsion to the field lines.
Maxwell’s tensor expresses this idea mathematically.

Exercise 10.9: Allow the fields in the preceding calculation to be time dependent. Show
that Maxwell’s equations

oB .
curlE=——, divB =0,
ot

., oD .
curlH=j+ o divD = p,

with B = uoH, D = ¢E and ¢ = 1/./uo€o, lead to
. 0 [1
(pE +j x B); + % c_2(E x H); ¢ = dj0y.

The left-hand side is the time rate of change of the mechanical (first term) and
electromagnetic (second term) momentum density. Observe that we can equivalently
write

a1
- {C—2<E x H»} +3(=0y) = —(PE +] x B);,
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and think of this as a local field-momentum conservation law. In this interpretation —o;
is thought of as the momentum flux tensor, its entries being the flux in direction j of the
component of field momentum in direction i. The term on the right-hand side is the rate
at which momentum is being supplied to the electromagnetic field by the charges and
currents.

10.4 Further exercises and problems

Exercise 10.10: Quotient theorem. Suppose that you have come up with some recipe for
generating an array of numbers 7%
these numbers are the components of a triply contravariant tensor. Suppose further that
you know that, given the components a;; of an arbitrary doubly covariant tensor, the
numbers

in any coordinate frame, and want to know whether

Tgkajk =

transform as the components of a contravariant vector. Show that 7% does indeed
transform as a triply contravariant tensor. (The natural generalization of this result to
arbitrary tensor types is known as the quotient theorem.)

Exercise 10.11: Let T* '/ be the 3-by-3 array of components of a tensor. Show that the
quantities

a=T, b=T,T; c=TT;T%
are invariant. Further show that the eigenvalues of the linear map represented by the
matrix 7' ’ ; can be found by solving the cubic equation

1 1
-kt i(a2 — b — g(a3 —3ab+2¢) =0.

Exercise 10.12: Let the covariant tensor R;j; possess the following symmetries:

() Ryt = —Rjiks,
(1) Rijxr = —Riyjuk,
(iil) Ry + Rigy + Rijx = 0.

Use the properties (i), (ii), (iii) to show that:

(@) Rijkr = Rygj-

(b) If Ryklxiijkyl = 0 for all vectors x', y/, then Rijp = 0.

(c) If Bj; is a symmetric covariant tensor and we set A;; = By Bj; — By Bji, then 4y
has the same symmetries as R;jy;.

Exercise 10.13: Write out Euler’s equation for fluid motion

V+ (v-V)v=—-Vh
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in cartesian tensor notation. Transform it into
. 1,
V—vVvXxXw=-V EV +h),

where @ = V x v is the vorticity. Deduce Bernoulli’s theorem, that for steady (v = 0)
flow the quantity %Vz + / is constant along streamlines.

Exercise 10.14: The elastic properties of an infinite homogeneous and isotropic solid of
density p are described by Lamé constants A and p. Show that the equation of motion
for small-amplitude vibrations is

3%n; 3% 3%n;
Eh_ .
o2 = Wy TR

Here n; are the cartesian components of the displacement vector 5(X, #) of the particle
initially at the point x. Seek plane-wave solutions of the form

n = aexp{ik - x — iwt},

and deduce that there are two possible types of wave: longitudinal “P-waves”, which

have phase velocity
A+2u
vp = >
e

and transverse “S-waves”, which have phase velocity

l/L
vs = [ —.
Vo

Exercise 10.15: Symmetric integration. Show that the n-dimensional integral

d"k 5
[aﬂyé = W(kakﬂkyk(?)f(k )
is equal to
A(8updys + 8uydps + Sasdpy),
where
1 d"k

— 252 2
A= n(n+2) (z;r)n(k VS ED.
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Similarly evaluate

d"k
Lugvse = | ——— (kogkgh, kske) £ (k2).
Byd /(2ﬂ)n( PRy KRS )f( )

Exercise 10.16: Write down the most general three-dimensional isotropic tensors of rank
two and three.

In piezoelectric materials, the application of an electric field £; induces a mechanical
strain that is described by a rank-two symmetric tensor

ejj = dijiEx,

where djj;, is a third-rank tensor that depends only on the material. Show that e;; can only
be non-zero in an anisotropic material.

Exercise 10.17: In three dimensions, a rank-five isotropic tensor Tz, is a linear combi-
nation of expressions of the form ¢;, ;,, 8,5 for some assignment of the indices i, 7, k, [, m
to the iy, . .., is. Show that, on taking into account the symmetries of the Kronecker and
Levi-Civita symbols, we can construct ten distinct products €;, 1,4, 8;,i5. Only six of these
are linearly independent, however. Show, for example, that

€ijkSim — €jkiSim + €xtiSjm — €1ijpm = 0,

and find the three other independent relations of this sort.’
(Hint: begin by showing that, in three dimensions,

5i1i5 (Si]l'() 8i1i7 8i1i8
Tl R

i3is i3ig i3i7 i3ig

Bisis  Oigig  Oigiz  Oigig

and contract with €;;,;,.)

Problem 10.18: The Pliicker relations. This problem provides a challenging test of your
understanding of linear algebra. It leads you through the task of deriving the necessary
and sufficient conditions for

A=dA"hey Ao one e Ny
to be decomposable as
A=firnHh A ... AT
The trick is to introduce two subspaces of V,

7 Such relations are called syzygies. A recipe for constructing linearly independent basis sets of isotropic
tensors can be found in: G. F. Smith, 7ensor, 19 (1968) 79.
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(1) W, the smallest subspace of ¥ such that A € /\k w,
(i) W ={veV:vAA=0}

and explore their relationship.

(a) Show that if {w, wy, ..., w,} constitute a basis for W', then
A=W AWIA - AW, AQ
for some ¢ € /\k " V. Conclude that W' C W, and that equality holds if and only
if A is decomposable, in which case W = W’ = span{f] ...f;}.
(b) Now show that ¥ is the image space of /\k_1 V* under the map that takes
E = E,-lu_ikfle""'1 A AT g /\k_lV*
to
()AL 5, A"V eV
Deduce that the condition W C W’ is that
(z’(E)A) AA=0, VEe A\Flr
(c) By taking
E = AL A€tk
show that the condition in part (b) can be written as
AN g AL A, = 0.
Deduce that the necessary and sufficient conditions for decomposability are that

Aik=1U1 giof3 1] — 0,

for all possible index sets iy,...,ik—1,/1,---jk+1. Here [...] denotes anti-
symmetrization of the enclosed indices.
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Differential calculus on manifolds

In this section we will apply what we have learned about vectors and tensors in linear
algebra to vector and tensor fields in a general curvilinear coordinate system. Our aim is
to introduce the reader to the modern language of advanced calculus, and in particular
to the calculus of differential forms on surfaces and manifolds.

11.1 Vector and covector fields

Vector fields — electric, magnetic, velocity fields, and so on — appear everywhere in
physics. After perhaps struggling with it in introductory courses, we rather take the field
concept for granted. There remain subtleties, however. Consider an electric field. It
makes sense to add two field vectors at a single point, but there is no physical meaning
to the sum of field vectors E(x1) and E(x») at two distinct points. We should therefore
regard all possible electric fields at a single point as living in a vector space, but each
different point in space comes with its own field-vector space.

This view seems even more reasonable when we consider velocity vectors describing
motion on a curved surface. A velocity vector lives in the fangent space to the surface
at each point, and each of these spaces is a differently oriented subspace of the higher-
dimensional ambient space (see Figure 11.1).

Mathematicians call such a collection of vector spaces — one for each of the points
in a surface — a vector bundle over the surface. Thus, the tangent bundle over a surface
is the totality of all vector spaces tangent to the surface. Why a bundle? This word is
used because the individual tangent spaces are not completely independent, but are tied
together in a rather non-obvious way. Try to construct a smooth field of unit vectors
tangent to the surface of a sphere. However hard you work you will end up in trouble

Figure 11.1 Each point on a surface has its own vector space of tangents.

376
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somewhere. You cannot comb a hairy ball. On the surface of a torus you will have no
such problems. You can comb a hairy doughnut. The tangent spaces collectively know
something about the surface they are tangent to.

Although we spoke in the previous paragraph of vectors tangent to a curved surface, it
is useful to generalize this idea to vectors lying in the tangent space of an n-dimensional
manifold, or n-manifold. An n-manifold M is essentially a space that locally looks like
a part of R”. This means that some open neighbourhood of each point x € M can be
parametrized by an n-dimensional coordinate system. A coordinate parametrization is
called a chart. Unless M is R” itself (or part of it), a chart will cover only part of M, and
more than one will be required for complete coverage. Where a pair of charts overlap,
we demand that the transformation formula giving one set of coordinates as a function of
the other be a smooth (C*) function, and possess a smooth inverse.' A collection of such
smoothly related coordinate charts covering all of M is called an atlas. The advantage
of thinking in terms of manifolds is that we do not have to understand their properties as
arising from some embedding in a higher dimensional space. Whatever structure they
have, they possess in, and of, themselves.

Classical mechanics provides a familiar illustration of these ideas. Except in patho-
logical cases, the configuration space M of a mechanical system is a manifold. When
the system has n degrees of freedom we use generalized coordinates ¢', i = 1,...,n
to parametrize M. The tangent bundle of M then provides the setting for Lagrangian
mechanics. This bundle, denoted by 7M, is the 2n-dimensional space each of whose

points consists of a point g = (¢', ..., ¢") in M paired with a tangent vector lying in the
tangent space M, at that point. If we think of the tangent vector as a velocity, the natural
coordinates on TM become (g, qz, g4, 4%, ..., ¢"), and these are the variables

that appear in the Lagrangian of the system.

If we consider a vector tangent to some curved surface, it will stick out of it. If we
have a vector tangent to a manifold, it is a straight arrow lying atop bent coordinates.
Should we restrict the length of the vector so that it does not stick out too far? Are we
restricted to only infinitesimal vectors? It is best to avoid all this by adopting a clever
notion of what a vector in a tangent space is. The idea is to focus on a well-defined
object such as a derivative. Suppose that our space has coordinates x*. (These are not
the contravariant components of some vector.) A directional derivative is an object such
as X"9,, where 9, is shorthand for d/dx*. When the components X* are functions of
the coordinates x°, this object is called a tangent-vector field, and we write”

X =X"0,. (11.1)

1" A formal definition of a manifold contains some further technical restrictions (that the space be Hausdorff
and paracompact) that are designed to eliminate pathologies. We are more interested in doing calculus than
in proving theorems, and so we will ignore these niceties.

2 We are going to stop using bold symbols to distinguish between intrinsic objects and their components,
because from now on almost everything will be something other than a number, and too much black ink
would just be confusing.
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We regard the d,, at a point x as a basis for TM, the tangent-vector space at x, and the
X" (x) as the (contravariant) components of the vector X at that point. Although they
are not little arrows, what the 9d,, are is mathematically clear, and so we know perfectly
well how to deal with them.

When we change coordinate system from x* to z¥ by regarding the x*’s as invertable
functions of the z"’s, i.e.

=Xl 22,
¥ =x2¢cN 222N,
n __ .n 1 2 n 112
x"=x"(z",z%,...,2"), (11.2)

then the chain rule for partial differentiation gives

a 09z 9 [0z¥ o 13
o o  \awn ) (11.3)

where 9], is shorthand for 3/9z". By demanding that

I

X =X"9, =X"d, (11.4)

we find the components in the z” coordinate frame to be

8 vV
XV =) xn, (11.5)
dxH

Conversely, using

ax° 9zY ox°

_ — o
dzV 9xH  dxk Ou> (116
we have
a vV
XV = (8;))(’#. (11.7)

This, then, is the transformation law for a contravariant vector.

It is worth pointing out that the basis vectors d,, are not unit vectors. As we have no
metric, and therefore no notion of length anyway, we cannot try to normalize them. If
you insist on drawing (small?) arrows, think of d; as starting at a point (x1 X2, x)
and with its head at (x' + 1,x2,...,x"); see Figure 11.2. Of course this is only a good
picture if the coordinates are not too “curvy”.

Example: The surface of the unit sphere is a manifold. It is usually denoted by S2. We
may label its points with spherical polar coordinates,  measuring the co-latitude and ¢
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Figure 11.2 Approximate picture of the vectors d; and 9, at the point X = (2,4).

measuring the longitude. These will be useful everywhere except at the north and south
poles, where they become singular because at & = 0 or 7 all values of the longitude ¢
correspond to the same point. In this coordinate basis, the tangent vector representing
the velocity field due to a rigid rotation of one radian per second about the z-axis is

V, = 0. (11.8)
Similarly

Vy = —sin¢ dg — cotd cos ¢ dp,
Vy = cos¢ dg — cotf sin iy, (11.9)
respectively represent rigid rotations about the x- and y-axes.
We now know how to think about vectors. What about their dual-space partners, the

covectors? These live in the cotangent bundle T* M, and for them a cute notational game,
due to Elie Cartan, is played. We write the basis vectors dual to the 9, as dx*( ). Thus

dxt (d,) = 81 (11.10)

When evaluated on a vector field X = X*0,, the basis covectors dx/ return its
components:

A (X) = de" (X"9,) = XVdx" (3,) = XV81 = XM, (11.11)

Now, any smooth function f € C*° (M) will give rise to a field of covectors in 7*M.
This is because a vector field X acts on the scalar function /" as

Xf = X" o,f (11.12)

and Xf is another scalar function. This new function gives a number — and thus an
element of the field R — at each point x € M. But this is exactly what a covector does: it
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takes in a vector at a point and returns a number. We will call this covector field “df™. It
is essentially the gradient of /. Thus
def 8f

) S X =X (11.13)

If we take f* to be the coordinate x*, we have

8 v
' (X) = X" axu = XM8, = X", (11.14)
X

so this viewpoint is consistent with our previous definition of dx". Thus

af of
dfX) = —X" = —d" (X 11.15
I X) = S X = e () (1L.15)
for any vector field X. In other words, we can expand df as
af

df = ——dx". 11.16

= (11.16)
This is not some approximation to a change in f', but is an exact expansion of the covector
field df in terms of the basis covectors dx*.

We may retain something of the notion that dx* represents the (contravariant) compo-
nents of a small displacement in x provided that we think of dx** as a machine into which
we insert the small displacement (a vector) and have it spit out the numerical components
Sx*. This is the same distinction that we make between sin( ) as a function into which
one can plug x, and sin x, the number that results from inserting in this particular value
of x. Although seemingly innocent, we know that it is a distinction of great power.

The change of coordinates transformation law for a covector field f,, is found from

fudxt =1, dz", (11.17)
by using
0 n
it = ( al )dz”. (11.18)
dzv
We find
oxHt
1= (azv)f“‘ (11.19)

A
A general tensor such as 0"* pot transforms as

e az* 9zM dx¥ 9x% 9x¢ af

oM (=T

= 9w 5P 927 920 57 2 v (11.20)
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Observe how the indices are wired up: Those for the new tensor coefficients in the
new coordinates, z, are attached to the new z’s, and those for the old coefficients are
attached to the old x’s. Upstairs indices go in the numerator of each partial derivative,
and downstairs ones are in the denominator.

The language of bundles and sections

At the beginning of this section, we introduced the notion of a vector bundle. This is a
particular example of the more general concept of a fibre bundle, where the vector space
at each point in the manifold is replaced by a “fibre” over that point. The fibre can be any
mathematical object, such as a set, tensor space or another manifold. Mathematicians
visualize the bundle as a collection of fibres growing out of the manifold, much as stalks
of wheat grow out of the soil. When one slices through a patch of wheat with a scythe,
the blade exposes a cross-section of the stalks. By analogy, a choice of an element of the
the fibre over each point in the manifold is called a cross-section, or, more commonly,
a section of the bundle. In this language, a tangent-vector field becomes a section of the
tangent bundle, and a field of covectors becomes a section of the cotangent bundle.
We provide a more detailed account of bundles in Chapter 16.

11.2 Differentiating tensors

Iff is a function then 9,/ are components of the covariant vector df. Suppose that a** is
a contravariant vector. Are d,a" the components of a type (1, 1) tensor? The answer is
no! In general, differentiating the components of a tensor does not give rise to another
tensor. One can see why at two levels:

(a) Consider the transformation laws. They contain expressions of the form dx* /dz".
If we differentiate both sides of the transformation law of a tensor, these factors are
also differentiated, but tensor transformation laws never contain second derivatives,
such as 8%x* /9z"9z°.

(b) Differentiation requires subtracting vectors or tensors at different points — but vectors
at different points are in different vector spaces, so their difference is not defined.

These two reasons are really one and the same. We need to be cleverer to get new tensors
by differentiating old ones.

11.2.1 Lie bracket

One way to proceed is to note that the vector field X is an operator. It makes sense,
therefore, to try to compose two of them to make another. Look at XY, for example:

BV &
XY = X", (YVd,) = X*Y'92, + X" <a u>3”' (11.21)
X
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What are we to make of this? Not much! There is no particular interpretation for the
second derivative, and as we saw above, it does not transform nicely. But suppose we
take a commutator:

[X,Y] = XY — YX = (X3, 7") — Y*(3,X")) 8. (11.22)

The second derivatives have cancelled, and what remains is a directional derivative and
s0 a bona fide vector field. The components

[X,Y]" = X (0, Y") — Y*(3,X") (11.23)

are the components of a new contravariant vector field made from the two old vector
fields. This new vector field is called the Lie bracket of the two fields, and has a geometric
interpretation.

To understand the geometry of the Lie bracket, we first define the flow associated
with a tangent-vector field X. This is the map that takes a point x9 and maps it to x(¢)
by solving the family of equations

d "
% = Xt A2, ), (11.24)

with initial condition x*(0) = xg . In words, we regard X as the velocity field of a
flowing fluid, and let x ride along with the fluid.

Now envisage X and Y as two velocity fields. Suppose we flow along X for a brief
time ¢, then along Y for another brief interval s. Next we switch back to X, but with a
minus sign, for time ¢, and then to —Y for a final interval of s. We have tried to retrace
our path, but a short exercise with Taylor’s theorem shows that we will fail to return
to our exact starting point. We will miss by dx* = st[X, Y]#, plus corrections of cubic
order in s and ¢ (see Figure 11.3).

sY

-sY tX

stXY

Figure 11.3 We try to retrace our steps but fail to return by a distance proportional to the Lie
bracket.
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Example: Let

Vy = —sin¢ dg — cotd cos ¢ dp,
V) = cos ¢ dy — cot 6 sin ¢ 0,

be two vector fields in 7'(S%). We find that
[VX7 Vy] = _V27
where V; = 0.

Frobenius’ theorem

Suppose that in some region of a d-dimensional manifold M we are given n < d linearly
independent tangent-vector fields X;. Such a set is called a distribution by differential
geometers. (The concept has nothing to do with probability, or with objects like “§(x)”
which are also called “distributions”.) At each point x, the span (X;(x)) of the field
vectors forms a subspace of the tangent space TM,, and we can picture this subspace
as a fragment of an n-dimensional surface passing through x. It is possible that these
surface fragments fit together to make a stack of smooth surfaces — called a foliation
(see Figure 11.4) — that fill out the d-dimensional space, and have the given X; as their
tangent vectors.

If this is the case then starting from x and taking steps only along the X; we find
ourselves restricted to the n-surface, or n-submanifold, N passing though the original
point x.

Alternatively, the surface fragments may form such an incoherent jumble that starting
from x and moving only along the X; we can find our way to any point in the neighbour-
hood of x. It is also possible that some intermediate case applies, so that moving along
the X; restricts us to an m-surface, where d > m > n. The Lie bracket provides us with
the appropriate tool with which to investigate these possibilities.

First a definition: if there are functions cljk (x) such that

X5, X1 = ¢ ()X, (11.25)

Figure 11.4 A local foliation.
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i.e. the Lie brackets close within the set {X;} at each point x, then the distribution is
said to be involutive, and the vector fields are said to be “in involution” with each other.
When our given distribution is involutive, then the first case holds, and, at least locally,
there is a foliation by n-submanifolds V. A formal statement of this is:

Theorem: (Frobenius): A smooth (C*°) involutive distribution is completely integrable:
locally, there are coordinates x*,u = 1,...,d such that X; = ZZ:I X[“BM, and the
surfaces N through each point are in the form x* = const. for p = n+1,...,d.
Conversely, if such coordinates exist then the distribution is involutive.

A half-proof : If such coordinates exist then it is obvious that the Lie bracket of any pair
of vectors in the form X; = ZZ:] X!, can also be expanded in terms of the first  basis
vectors. A logically equivalent statement exploits the geometric interpretation of the Lie
bracket: if the Lie brackets of the fields X; do not close within the n-dimensional span
of the X;, then a sequence of back-and-forth mancevres along the X; allows us to escape
into a new direction, and so the X; cannot be tangent to an n-surface. Establishing the
converse — that closure implies the existence of the foliation — is rather more technical,
and we will not attempt it.

Involutive and non-involutive distributions appear in classical mechanics under the
guise of holonomic and anholonomic constraints. In mechanics, constraints are not usu-
ally given as a list of the directions (vector fields) in which we are free to move, but instead
as a list of restrictions imposed on the permitted motion. In a d-dimensional mechanical
system we might have a set of m independent constraints of the form “)L (@g"* =0,

i = 1,...,m. Such restrictions are most naturally expressed in terms of the covector
fields
d
o' =) ol (@dg", i=1<i<m. (11.26)
n=1

We can write the constraints as the m conditions w'(§) = 0 that must be satisfied if
q = ¢"9, is to be an allowed motion. The list of constraints is known a Pfaffian system
of equations. These equations indirectly determine an n = d —m dimensional distribution
of permitted motions. The Pfaffian system is said to be integrable if this distribution is
involutive, and hence integrable. In this case there is a set of m functions g’(¢) and an
invertible m-by-m matrix f* (q) such that

o' =Y f(q)dg. (11.27)

j=1

The functions g’(g) can, for example, be taken to be the coordinate functions x*,
w=n-+1,...,d, that label the foliating surfaces N in the statement of Frobenius’
theorem. The system of integrable constraints w'(g) = 0 thus restricts us to the surfaces
g'(g) = constant.
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For example, consider a particle moving in three dimensions. If we are told that the
velocity vector is constrained by w(¢) = 0, where

w=xdx+ydy+zdz (11.28)

we realize that the particle is being forced to move on a sphere passing through the
initial point. In spherical coordinates the associated distribution is the set {99, 9y}, which
is clearly involutive because [dg, dy] = 0. The functions f'(x,y, z) and g(x, y, z) from the
previous paragraph can be taken to be » = /x2 + y2 + z2, and the constraint covector
written as w = f dg = rdr.

The foliation is the family of nested spheres whose centre is the origin. (The foliation
is not global because it becomes singular at » = 0.) Constraints like this, which restrict
the motion to a surface, are said to be holonomic.

Suppose, on the other hand, we have a ball rolling on a table. Here, we have a five-
dimensional configuration manifold M = R? x S3, parametrized by the centre of mass
(x,») € R? of the ball and the three Euler angles (0, ¢, ¥) € S° defining its orientation.
Three no-slip rolling conditions

x= sinfsing + 6 cosg,
y= — sin 6 cos ¢ + 6 sin ¢,
0= 1 cosb+ ¢, (11.29)

(see Exercise 11.17) link the rate of change of the Euler angles to the velocity of the centre
of' mass. At each point in this five-dimensional manifold we are free to roll the ball in two
directions, and so we might expect that the reachable configurations constitute a two-
dimensional surface embedded in the full five-dimensional space. The two vector fields

rolly = 9 — sin¢ cotd 9y + cos ¢ dg + cosec d sin ¢ dy,,
rolly = 9y, + cos ¢ cot 6 dy + sin ¢ dg — cosec 6 cos ¢ Iy, (11.30)

describing the permitted x- and y-direction rolling motion are not in involution, how-
ever. By calculating enough Lie brackets we eventually obtain five linearly independent
velocity vector fields, and starting from one configuration we can reach any other. The
no-slip rolling condition is said to be non-integrable, or anholonomic. Such systems are
tricky to deal with in Lagrangian dynamics.

The following exercise provides a familiar example of the utility of non-holonomic
constraints:

Exercise 11.1: Parallel parking using Lie brackets. The configuration space of a car is
four dimensional, and parametrized by coordinates (x, y, 8, ¢), as shown in Figure 11.5.
Define the following vector fields:
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Figure 11.5 Coordinates for car parking.

(a) (front wheel) drive = cos ¢ (cos dx + sin 6 9)) + sin ¢ dg.
(b) steer = 9.

(c) (front wheel) skid = — sin ¢(cos 6 9, + sin 6 dy,) + cos ¢ dg.
(d) park = —sin6 3y + cos 6 9y.

Explain why these are apt names for the vector fields, and compute the six Lie brackets:

[steer, drive], [steer, skid], [skid, drive],

[park, drive], [park, park], [park, skid].

The driver can use only the operations () drive and (%) steer to mancevre the car. Use
the geometric interpretation of the Lie bracket to explain how a suitable sequence of
motions (forward, reverse and turning the steering wheel) can be used to manoeuvre a
car sideways into a parking space.

11.2.2 Lie derivative

Another derivative that we can define is the Lie derivative along a vector field X. It is
defined by its action on a scalar function /" as

Lxf € x1, (1131)

on a vector field by

Lyy € x, v, (11.32)

and on anything else by requiring it to be a derivation, meaning that it obeys Leibniz’
rule. For example, let us compute the Lie derivative of a covector F'. We first introduce
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an arbitrary vector field ¥ and plug it into F to get the scalar function F(Y). Leibniz’
rule is then the statement that

LxF(Y)=LxF)Y)+F(LxY). (11.33)

Since F'(Y) is a function and Y is a vector, both of whose derivatives we know how to
compute, we know the first and third of the three terms in this equation. From Lx F'(Y) =
XF(Y)and F(LyY) = F([X,Y]), we have

XF(Y) = (LxF)(Y) + F(IX, Y], (11.34)
and so

(LxF)(Y) = XF(Y) — F(X, Y]). (11.35)
In components, this becomes

(LxF)(Y)=XY0,(F,Y*) — F,(X"9,Y" — Y"3,X")
= (X"0,F, + F,9,X")Y" (11.36)
Note how all the derivatives of Y* have cancelled, so LxF( ) depends only on the
local value of Y. The Lie derivative of F is therefore still a covector field. This is true
in general: the Lie derivative does not change the tensor character of the objects on

which it acts. Dropping the passive spectator field Y, we have a formula for LxF in
components:

(LxF), =X 8,F, + F,0,X". (11.37)

Another example is provided by the Lie derivative of a type (0,2) tensor, such as a
metric tensor. This is

(ﬁXg);w =Xa8ag/w +g/wzavXa +gavauXa~ (11.38)

The Lie derivative of a metric measures the extent to which the displacement x* —
X% 4+ €X%(x) deforms the geometry. If we write the metric as

g(, ) =guk) dx @dx", (11.39)

we can understand both this geometric interpretation and the origin of the three terms
appearing in the Lie derivative. We simply make the displacement x* — x* + € X% in
the coefficients g, (x) and in the two dx®. In the latter we write

X«
oxP

d(x* 4+ eX?) = dx® + e ——dxP. (11.40)
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Figure 11.6 Computing the Lie derivative of a vector.

Then we see that

guv(x) dx' ® dx¥ — [g//,u(x) + G(Xaaagu,u ~|—glm8vX°‘ +gav8MX“)] dx* @ dx¥
= [guv + €(Lxg) ] dxt @ dx". (11.41)

A displacement field X that does not change distances between points, i.c. one that gives
rise to an isometry, must therefore satisfy Lxg = 0. Such an X is said to be a Killing field
after Wilhelm Killing who introduced them in his study of non-Euclidean geometries.

The geometric interpretation of the Lie derivative of a vector field is as follows: in
order to compute the X directional derivative of a vector field Y, we need to be able to
subtract the vector Y (x) from the vector ¥ (x+€X), divide by € and take the limite — 0.
To do this we have somehow to get the vector Y (x) from the point x, where it normally
resides, to the new point x 4+ €X, so both vectors are elements of the same vector space.
The Lie derivative achieves this by carrying the old vector to the new point along the
field X (see Figure 11.6).

Imagine the vector Y as drawn in ink in a flowing fluid whose velocity field is X.
Initially the tail of ¥ is at x and its head is at x + Y. After flowing for a time €, its tail is at
X + €X —1i.e. exactly where the tail of Y (x + €X) lies. Where the head of the transported
vector ends up depends on how the flow has stretched and rotated the ink, but it is this
distorted vector that is subtracted from Y (x + €X) to gete Ly Y = €[X, Y].

Exercise 11.2: The metric on the unit sphere equipped with polar coordinates is
g(, )=do®do +sin*0dp @ dp.
Consider
Vy = —sin¢ dg — coté cos ¢ 9y,

which is the vector field of a rigid rotation about the x-axis. Compute the Lie derivative
Ly, g, and show that it is zero.

Exercise 11.3: Suppose we have an unstrained block of material in real space. A coordi-
nate system £!, £2, £3, is attached to the material of the body. The point with coordinate &
is located at (x! (&), x2(£),x3(€)) where x!, x%, x? are the usual R3 cartesian coordinates.
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(a) Show that the induced metric in the £ coordinate system is

3

ax? ox?
g =) S ger

a=1

(b) The body is now deformed by an infinitesimal strain vector field n(£). The atom
with coordinate £# is moved to what was &* 4+ n# (&), or, equivalently, the atom
initially at cartesian coordinate x(£) is moved to x* + n*dx?/d&". Show that the
new induced metric is

g + Sg//,v =guw + [rng;uw

(c) Define the strain tensor to be 1/2 of the Lie derivative of the metric with respect
to the deformation. If the original £ coordinate system coincided with the cartesian
one, show that this definition reduces to the familiar form

(o, omp
=2 \oxt " oxa )’
all tensors being cartesian.

(d) Part (c) gave us the geometric definitition of infinitesimal strain. If the body is
deformed substantially, the Cauchy—Green finite strain tensor is defined as

1
E;w(é) = E (g;w _g;(LOu)> 5

where gfﬂ} is the metric in the undeformed body and g,,, the metric in the deformed
body. Explain why this is a reasonable definition.

11.3 Exterior calculus

11.3.1 Differential forms

The objects we introduced in Section 11.1, the dx*, are called 1-forms, or differential
1-forms. They are fields living in the cotangent bundle 7*M of M. More precisely, they
are sections of the cotangent bundle. Sections of the bundle whose fibre above x € M is
the p-th skew-symmetric tensor power AP (T*M,) of the cotangent space are known as
p-forms.

For example,

A = Aydxet = Aydx" + Apdx* + Azdx® (11.42)

is a 1-form,

1
F = S Fupd dx” = Fiadx' A dx? + Fazdx® Adx® + Fade® Adx' (11.43)
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is a 2-form, and

1
Q= EQMW At Adx” Adx® = Qa3 de! Ad® A dxd (11.44)

is a 3-form. All the coefficients are skew-symmetric tensors, so, for example,
Quve = Quop = Loy = —Qupe = —Quov = — Qo (11.45)

In each example we have explicitly written out all the independent terms for the case of
three dimensions. Note how the p! disappears when we do this and keep only distinct
components. In d dimensions the space of p-forms is d!/p!(d — p)! dimensional, and all
p-forms with p > d vanish identically.

As with the wedge products in Chapter 1, we regard a p-form as a p-linear skew-
symetric function with p slots into which we can drop vectors to get a number. For
example the basis two-forms give

chwmmwzﬁg—%& (11.46)

The analogous expression for a p-form would have p! terms. We can define an algebra of
differential forms by “wedging” them together in the obvious way, so that the product of a
p-form with a g-form is a (p + ¢g)-form. The wedge product is associative and distributive
but not, of course, commutative. Instead, if a is a p-form and b a g-form, then

anb=(—=1Ybnra. (11.47)

Actually it is customary in this game to suppress the “A” and simply write FF =
%F wo dxtdx”, it being assumed that you know that dx"dx” = —dx"dx" — what else
could it be?

11.3.2 The exterior derivative

These p-forms may seem rather complicated, so it is perhaps surprising that all the vector
calculus (div, grad, curl, the divergence theorem and Stokes’ theorem, etc.) that you have
learned in the past reduce, in terms of them, to two simple formula! Indeed Elie Cartan’s
calculus of p-forms is slowly supplanting traditional vector calculus, much as Willard
Gibbs’ and Oliver Heaviside’s vector calculus supplanted the tedious component-by-
component formulea you find in Maxwell’s Treatise on Electricity and Magnetism.

The basic tool is the exterior derivative “d”, which we now define axiomatically:

(i) If f is a function (0-form), then df coincides with the previous definition, i.e.
df (X) = Xf for any vector field X.
(il) d is an anti-derivation: if a is a p-form and b a g-form then

d@anb)=danb+ (—=1)YaAdb. (11.48)
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(iii) Poincaré’s lemma: d* = 0, meaning that d(da) = 0 for any p-form a.
(iv) d is linear. That d(xa) = ada, for constant o follows already from (i) and (ii), so
the new fact is that d(a + b) = da + db.

It is not immediately obvious that axioms (i), (ii) and (iii) are compatible with
one another. If we use axiom (i), (ii) and d(dx’) = 0 to compute the d of Q =

1 . )
dQ = —(d,....i,)dx" - dx'r
p! seeestp
1 k g i i
= — 0k y,..i, dx dx" - dx'P. (11.49)
p! seeestp
Now compute

ddQ) = !

— (382, ) dx'dx*ax’t - dx'r. (11.50)

..... i

Fortunately this is zero because 9;0; 2 = 9;0;€2, while dxldxk = —dxkdx!.
As another example let 4 = Ardx" + Ardx? + Azdx3. Then

94, oA 94, o4
dAd = (—2 - —1> dld® + ( L _ —3) d3dx!

axl oax2 x> ox!
+ (% — {:)—1:332> dx*dx?
= % vdxtdxt, (11.51)
where
Fyy = 0,4, —8,A4,. (11.52)

You will recognize the components of curl A hiding in here.
Again, if F = Frodx'dx? + Fazdx?dx + F31dx3dx! then

oF oF oF
JF — < 23 31 12

Tt 5t >dx1dx2dx3. (11.53)
X X X

This looks like a divergence.

The axiom d?> = 0 encompasses both “curl grad = 0” and “div curl = 07, together
with an infinite number of higher-dimensional analogues. The familiar “curl =V x>,
meanwhile, is only defined in three-dimensional space.

The exterior derivative takes p-forms to (p+ 1)-forms, i.e. skew-symmetric type (0, p)
tensors to skew-symmetric (0, p 4+ 1) tensors. How does “d” get around the fact that the
derivative of a tensor is not a tensor? Well, if you apply the transformation law for 4,,,
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and the chain rule to axi,t to find the transformation law for £, = 9,4, — 9,4, you will
see why: all the derivatives of the gxi; cancel, and F;,, is a bona fide tensor of type (0, 2).
This sort of cancellation is why skew-symmetric objects are useful, and symmetric ones
less so.

Exercise 11.4: Use axiom (ii) to compute d(d(a A b)) and confirm that it is zero.

Closed and exact forms
The Poincaré lemma, d% = 0, leads to some important terminology:

(i) A p-form w is said to be closed if dw = 0.
(i) A p-form w is said to exact if w = dn for some (p — 1)-form 5.

An exact form is necessarily closed, but a closed form is not necessarily exact. The
question of when closed = exact is one involving the global topology of the space in
which the forms are defined, and will be the subject of Chapter 13.

Cartan's formulce

It is sometimes useful to have expressions for the action of d coupled with the evaluation
of the subsequent (p + 1) forms.

If f,n,w are 0, 1, 2-forms, respectively, then df',dn,dw are 1,2, 3-forms. When we
plug in the appropriate number of vector fields X, Y, Z, then, after some labour, we
will find

df (X) = Xf. (11.54)

dnX,Y) =Xn¥) — YnX) —n(X, Y]). (11.55)
do(X,Y,2) =Xw(Y,Z) + Yo(Z,X) + Zo(X,Y)

—o(X,Y1,2) — 0(Y,Z1.X) — o((Z,X], Y). (11.56)

These formule, and their higher-p analogues, express d in terms of geometric objects,
and so make it clear that the exterior derivative is itself a geometric object, independent
of any particular coordinate choice.

Let us demonstrate the correctness of the second formula. With n = n,dx", the
left-hand side, dn(X, Y), is equal to

Auny dxtdx"(X,Y) = 9,mXHY" —X"YH). (11.57)
The right-hand side is equal to
XH9, (YY) — YH3,(nuXY) — ny (XH0, Y — YH3,X"). (11.58)

On using the product rule for the derivatives in the first two terms, we find that all
derivatives of the components of X and Y cancel, and we are left with exactly those
terms appearing on the left.
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Exercise 11.5: Letw',i=1,...,r,bea linearly independent set of 1-forms defining a
Pfaffian system (see Section 11.2.1) in d dimensions.

(1) Use Cartan’s formula to show that the corresponding (d — r)-dimensional dis-
tribution is involutive if and only if there is an r-by-r matrix of 1-forms 6 i
such that

,
dof =30 Ao

J=1

(ii) Show that the conditions in part (i) are satisfied if there are r functions g’ and an
invertible 7-by-r matrix of functions f* j such that

r
o' =) fdg.
j=1
In this case foliation surfaces are given by the conditions g’ (x) = const.,i = 1,...,r.

It is also possible, but considerably harder, to show that (i) = (ii). Doing so would
constitute a proof of Frobenius’ theorem.

Exercise 11.6: Let w be a closed 2-form, and let Null(w) be the space of vector fields
X such that w(X, ) = 0. Use the Cartan formule to show that if X, Y € Null(w), then
[X, Y] € Null(w).

Lie derivative of forms

Given a p-form w and a vector field X, we can form a (p — 1)-form called iy w by writing

pslots
ixo(...... )=0olX, ...... ). (11.59)
p—1slots p—1slots

Acting on a O-form, iy is defined to be 0. This procedure is called the interior
multiplication by X . It is simply a contraction

k
wji/2~-Jp —> a)ka“:ij . (1160)
but it is convenient to have a special symbol for this operation. It is perhaps surprising
that iy turns out to be an anti-derivation, just as is d. If n and w are p and g forms

respectively, then

ix(n Aw) = (ixn) Ao+ (=1)!n A (ixw), (11.61)
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even though iy involves no differentiation. For example, if X = X#9,,, then

ix (dx™ Adx") =dxt* Adx’ (X%, ),
= XH*dx" — dx" X",
= (ixdx") A (dx") — dx" A (ixdx"). (11.62)
One reason for introducing iy is that there is a nice (and profound) formula for the Lie

derivative of a p-form in terms of iy. The formula is called the infinitesimal homotopy
relation. It reads

Lyow = (diy + ixd)o. (11.63)

This formula is proved by verifying that it is true for functions and 1-forms, and then
showing that it is a derivation — in other words that it satisfies Leibniz’ rule. From the
derivation property of the Lie derivative, we immediately deduce that the formula works
for any p-form.

That the formula is true for functions should be obvious: since iyf = 0 by definition,
we have

dix +ixd)f =ixdf =df (X)) =Xf = Lxf. (11.64)
To show that the formula works for one forms, we evaluate

(dix +ixd)(fy dx") = d(fLX") + ix (3, f, dxPdx")
= 3, (X )dx" + 8, (X Hdx¥ — XVdxM)
= (X"0yfy + /0, X" )dxH. (11.65)
In going from the second to the third line, we have interchanged the dummy labels
i <> v in the term containing dx”. We recognize that the 1-form in the last line is
indeed Lxf.
To show that diy + ixd is a derivation we must apply d ix + ixd to a A b and use the

anti-derivation property of iy and d. This is straightforward once we recall that d takes
a p-form to a (p + 1)-form while ix takes a p-form to a (p — 1)-form.

Exercise 11.7: Let
1

®=—w. id'" - dx'?.
pt

Use the anti-derivation property of iy to show that

1 . .
YO = ———— Wgiy._j, X " dx"? - - - dx?,

(p—D!
and so verify the equivalence of (11.59) and (11.60).
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Exercise 11.8: Use the infinitesimal homotopy relation to show that £ and d commute,
i.e. for w a p-form, we have

d(Lxw) = Lx(dw).

11.4 Physical applications

11.4.1 Maxwell’s equations

In relativistic® four-dimensional tensor notation the two source-free Maxwell’s equations

0B
curlE = ——,
ot

divB = 0, (11.66)

reduce to the single equation

oF,, n oF n 0F)u

dx* dxH dxV =0, (11.67)
where
0 —E. —E, —E
Fy = g _;Z % _ii . (11.68)
E. B, —By 0

The “F” is traditional, for Michael Faraday. In form language, the relativistic equation
becomes the even more compact expression dFF = 0, where
1 o
= EF wvdxt dx

= Bydydz + Bydzdx + B.dxdy + Eydxdt + E,dydt + E.dzdt, (11.69)

is a Minkowski-space 2-form.

Exercise 11.9: Verify that the source-free Maxwell equations are indeed equivalent
todF = 0.

The equation dF = 0is automatically satisfied if we introduce a 4-vector 1-form potential
A = —¢dt + Axdx + Aydy + A.dz and set I = dA.

3 In this section we will use units in which ¢ = €y = ug = 1. We take the Minkowski metric to be
guv =diag(=1,1,1,1) where x0 = t,xl = x, etc.
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The two Maxwell equations with sources

divD = p,

. dD
curlH:yi—E, (11.70)

reduce in 4-tensor notation to the single equation
QuFHY =J". (11.71)

Here J#* = (p, ) is the current 4-vector.

This source equation takes a little more work to express in form language, but it can
be done. We need a new concept: the Hodge “star” dual of a form. In d dimensions
the “x” map takes a p-form to a (d — p)-form. It depends on both the metric and the
orientation. The latter means a canonical choice of the order in which to write our basis
forms, with orderings that differ by an even permutation being counted as the same. The
full d-dimensional definition involves the Levi-Civita duality operation of Chapter 10,
combined with the use of the metric tensor to raise indices. Recall that , /g = \/det—gw .
(In Minkowski-signature metrics we should replace ,/g by \/—g.) We define “x” to be
a linear map

P (d—p)
* /\(T*M) - /\ (T*M) (11.72)
such that
wdx't . dir & @ VEEY GGy dPHd (11.T3)

Although this definition looks a trifle involved, computations involving it are not so
intimidating. The trick is to work, whenever possible, with oriented orthonormal frames.

If we are in Euclidean space and {e*/!, ¢*”2, ..., e*} is an ordering of the orthonormal
basis for (7*M), whose orientation is equivalent to {e*!, e*2, ..., e*?} then
* (€1 A €2 A Ae) = el A @2 AL A e¥id (11.74)

For example, in three dimensions, and with x,y,z our usual cartesian coordinates,
we have

*dx = dydz,
*dy = dzdx,
*xdz = dxdy. (11.75)
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An analogous method works for Minkowski-signature (—, 4, 4, 4+) metrics, except that
now we must include a minus sign for each negatively normed d¢ factor in the form
being “starred”. Taking {dt, dx, dy, dz} as our oriented basis, we therefore find*

*xdxdy = —dzdt,

*dydz = —dxdt,

*dzdx = —dydt,

* dxdt = dydz,

*dydt = dzdx,

* dzdt = dxdy. (11.76)

For example, the first of these equations is derived by observing that (dxdy)(—dzdt) =

dtdxdydz, and that there is no “d¢” in the product dxdy. The fourth follows from observing

that (dxdt)(—dydx) = dtdxdydz, but there is a negative-normed “dt” in the product dxdt.
The + map is constructed so that if

1 o .
o= —djp. ,dX N dx'? - dxP, (11.77)
P! v
and
1 o .
B = —=Bii..i,dx" dx" - - - dx, (11.78)
p !
then
an&xB) =B A (xa) = {a,B)o, (11.79)

where the inner product (o, 8) is defined to be the invariant

1 .. .. .
(a, B) = I;glmg’m .. .glpfﬂ()tl']l'zmjpﬁjljzmjp, (11.80)
and o is the volume form

o= Jgdalda? - dx?. (11.81)

In future we will write o * 8 for @ A (xf). Bear in mind that the “x” in this expression
is acting on f and is not some new kind of binary operation.
We now apply these ideas to Maxwell. From the field-strength 2-form

F = Bydydz + Bydzdx + B.dxdy + Exdxdt + E,dydt + E.dzd, (11.82)

4 See for example: C. W. Misner, K. S. Thorn and J. A. Wheeler, Gravitation (MTW) p. 108.
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we get a dual 2-form
*f = —Bydxdt — Bydydt — B.dzdt + E,dydz + E\,dzdx + E.dxdy. (11.83)

We can check that we have correctly computed the Hodge star of F' by taking the wedge
product, for which we find

1
FaF = (FuF"o = (Bf + B} + B} — E; — E, — E)dtdxdydz.  (11.84)

Observe that the expression B> — E? is a Lorentz scalar. Similarly, from the current
1-form

J = Judxt = —pdt + jedx +j,dy + j-dz, (11.85)

we derive the dual current 3-form

*J = p dxdydz — jidtdydz — j,dtdzdx — j.dtdxdy, (11.86)
and check that
JxJ = (Mo = (=p* +)7 +j; +j2)dtdxdydz. (11.87)
Observe that
dxJ = (g—'(; + diVj) dtdxdydz = 0 (11.88)

expresses the charge conservation law.

Writing out the terms explicitly shows that the source-containing Maxwell equations
reduce to d x FF = «J. All four Maxwell equations are therefore very compactly
expressed as

dF =0, d*F =%J.

Observe that current conservation d xJ = 0 follows from the second Maxwell equation
as a consequence of d% = 0.

Exercise 11.10: Show that for a p-form w in d Euclidean dimensions we have
*xxw = (—1)PI Py,

Show, further, that for a Minkowski metric an additional minus sign has to be inserted.
(For example,  x F = —F, even though (—1)2¢4=2 = 1))
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11.4.2 Hamilton’s equations

Hamiltonian dynamics take place in phase space, a manifold with coordinates
(q',....q"p",...,p"). Since momentum is a naturally covariant vector,” phase space
is usually the cotangent bundle T*M of the configuration manifold M. We are writing
the indices on the p’s upstairs though, because we are considering them as coordinates
in T*M.

We expect that you are familiar with Hamilton’s equations in their g, p setting. Here,
we shall describe them as they appear in a modern book on Mechanics, such as Abrahams
and Marsden’s Foundations of Mechanics, or V. 1. Arnold’s Mathematical Methods of
Classical Mechanics.

Phase space is an example of a symplectic manifold, a manifold equipped with a
symplectic form — a closed, non-degenerate, 2-form field

1 i
w= Ea)g/dx dx’ . (11.89)

Recall that the word closed means that dw = 0. Non-degenerate means that for any
point x the statement that w (X, Y) = 0 for all vectors ¥ € TM, implies that X = 0 at
that point (or equivalently that for all x the matrix w;;(x) has an inverse ¥ (x)).

Given a Hamiltonian function H on our symplectic manifold, we define a velocity
vector-field vy by solving

dH = iy, = —o(vy,) (11.90)

for vy. If the symplectic form is w = dp'dq' + dp*dq® + - - - + dp"dq", this is nothing
but a fancy form of Hamilton’s equations. To see this, we write

dH = —dq' + —dp' 11.91
og + oy P ( )

and use the customary notation (¢',p) for the velocity-in-phase-space components,
so that

—g D g0 11.92
UH_qa_qi+pa_;9i' (11.92)

Now we work out
lyy® = dpidqi(iljaq/ _i_]‘}iap].’)
=pldq’ — §'dp’, (11.93)

5 To convince yourself of this, remember that in quantum mechanics Pu = —ihaxiﬂ, and the gradient of a

function is a covector.
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so, comparing coefficients of dp’ and dg' on the two sides of dH = —i,,, w, we read off
. 0H ; oH

§=— p=-— (11.94)
ap’ aq’

Darboux’ theorem, which we will not try to prove, says that for any point x we
can always find coordinates p, g, valid in some neighbourhood of x, such that v =
dp'dg" + dp*dq* + - - - dp”dq" . Given this fact, it is not unreasonable to think that there
is little to be gained by using the abstract differential-form language. In simple cases this
is so, and the traditional methods are fine. It may be, however, that the neighbourhood
of x where the Darboux coordinates work is not the entire phase space, and we need to
cover the space with overlapping p, g coordinate charts. Then, what is a p in one chart
will usually be a combination of p’s and ¢’s in another. In this case, the traditional form of
Hamilton’s equations loses its appeal in comparison to the coordinate-free dH = —iy, w.

Given two functions Hy, H, we can define their Poisson bracket {H1, H>}. Its impor-
tance lies in Dirac’s observation that the passage from classical mechanics to quantum
mechanics is accomplished by replacing the Poisson bracket of two quantities, 4 and B,
with the commutator of the corresponding operators A, and B:

LB <« h{A,B}+0(h2). (11.95)

We define the Poisson bracket by®

dH.
(Hy, Hy) & 72 _— (11.96)
t H,
Now, vy, Hy = dHy(vy,), and Hamilton’s equations say that dip(vy,) =
® (VHy , U, ). Thus,
{Hy, H2} = o (Vg viy)- (11.97)

The skew symmetry of @ (vy,, vy,) shows that despite the asymmetrical appearance of
the definition we have skew symmetry: {H, H,} = —{H», H1}.
Moreover, since

v, (HoH3) = (v Ha)H3 + Hy (v H3), (11.98)
the Poisson bracket is a derivation:
{H\, H2H3} = (Hy, Ha}H3 + Ho{Hy, H3}. (11.99)

% Our definition differs in sign from the traditional one, but has the advantage of minimizing the number of
minus signs in subsequent equations.
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Neither the skew symmetry nor the derivation property require the condition that dw = 0.
What does need w to be closed is the Jacobi identity:

{{H1, Ho}, H3} + ({H, H3}, Hi} + {{H3, Hi}, H2} = 0. (11.100)
We establish Jacobi by using Cartan’s formula in the form
dw(leva2>UH3) = Ule(UHQsUH3) + UHZQ)(UHpUHl) + UH3CU(UH13UH2)

— o([va, v, |, vey) — o (v, vy ), vEy)

—CU([UH3,’L}H1],’L)H2). (11101)

It is relatively straightforward to interpret each term in the first of these lines as Poisson
brackets. For example,

v @ (Vpy, V) = v (Hp, H3} = {Hy, {H, H3}}. (11.102)

Relating the terms in the second line to Poisson brackets requires a little more effort. We
proceed as follows:

o ([vey, v ), vey) = —o (g, Ve, v, D)
= dH3([v,, vh, 1)
= [vH,, v, 1H3
= vy, (v, H3) — v, (v, H3)
= {H\,{H>, H3}} — {H>, {H1, H3}}
= {H), {H2, H3}} + {Ha, {H3, H1}}. (11.103)

Adding everything together now shows that

0= da)(UHl,UHZ,’UH3)

= —{{H\, K2}, H3} — {{Ha, H3}, Hi} — {{H3, H1 }, Ho ). (11.104)
If we rearrange the Jacobi identity as
{H\, {Hy, H3}} — {Ha, {H\, H3}} = {{H\, H2}, H3}, (11.105)
we see that it is equivalent to
(Vr,, v, | = v, )

The algebra of Poisson brackets is therefore homomorphic to the algebra of the Lie
brackets. The correspondence is not an isomorphism, however: the assignment H — vy
fails to be one-to-one because constant functions map to the zero vector field.
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Exercise 11.11: Use the infinitesimal homotopy relation, to show that £,,, @ = 0, where
vy is the vector field corresponding to H. Suppose now that the phase space is 2n
dimensional. Show that in local Darboux coordinates the 2n-form w” /n! is, up to a sign,
the phase-space volume element d"p d"q. Show that £, " /n! = 0 and that this result
is Liouville s theorem on the conservation of phase-space volume.

The classical mechanics of spin

It is sometimes said in books on quantum mechanics that the spin of an electron, or other
elementary particle, is a purely quantum concept and cannot be described by classical
mechanics. This statement is false, but spin is the simplest system in which traditional
physicists’ methods become ugly and it helps to use the modern symplectic language. A
“spin” S can be regarded as a fixed length vector that can point in any direction in R3.
We will take it to be of unit length so that its components are

Sy = sin @ cos ¢,
S, = sinf sin ¢,

S, =cosb, (11.106)

where 0 and ¢ are polar coordinates on the 2-sphere S2.

The surface of the sphere turns out to be both the configuration space and the phase
space. In particular the phase space for a spin is not the cotangent bundle of the configu-
ration space. This has to be so: we learned from Niels Bohr that a 2n-dimensional phase
space contains roughly one quantum state for every /" of phase-space volume. A cotan-
gent bundle always has infinite volume, so its corresponding Hilbert space is necessarily
infinite dimensional. A quantum spin, however, has a finite-dimensional Hilbert space
so its classical phase space must have a finite total volume. This finite-volume phase
space seems unnatural in the traditional view of mechanics, but it fits comfortably into
the modern symplectic picture.

We want to treat all points on the sphere alike, and so it is natural to take the symplectic
2-form to be proportional to the element of area. Suppose that w = sin 8 d6d¢. We could
write @ = —d cos6 d¢ and regard ¢ as “q” and — cos 6 as “p” (Darboux’ theorem in
action!), but this identification is singular at the north and south poles of the sphere, and,
besides, it obscures the spherical symmetry of the problem, which is manifest when we
think of w as d(area).

Let us take our Hamiltonian to be H = BS,, corresponding to an applied magnetic
field in the x-direction, and see what Hamilton’s equations give for the motion. First we
take the exterior derivative

d(BS,) = B(cos 0 cos ¢pd6 — sin 6 sin ¢pd¢p). (11.107)
This is to be set equal to

—w(vgs,, ) =1’ (—sin0)d¢ + v? sin6do. (11.108)
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Comparing coefficients of d6 and d¢, we get
vess,) = 178s + P8, = B(sin pdg + cos ¢ cot 0), (11.109)

i.e. B times the velocity vector for a rotation about the x-axis. This velocity field therefore
describes a steady Larmor precession of the spin about the applied field. This is exactly
the motion predicted by quantum mechanics. Similarly, setting B = 1, we find

vs, = — oS ¢y + sin ¢ cot 69y,
Vg, = —0g. (11.110)
From these velocity fields we can compute the Poisson brackets:
(55,5} = o (vs,, vs,)
= sin 0d6d¢ (sin ¢y + cos ¢ cot B9y, — cos ¢pdy + sin ¢ cot 6gp)
= sin 6 (sin’ ¢cotd + cos? ¢ cot )
=cosf = S,.

Repeating the exercise leads to

{stSy} =5,
{Sy: Sz} =S,
(82,8} = Sy~ (11111)

These Poisson brackets for our classical “spin” are to be compared with the commutation
relations [Sx, Sy] = th etc. for the quantum spin operators Sl

11.5 Covariant derivatives

Covariant derivatives are a general class of derivatives that act on sections of a vector or
tensor bundle over a manifold. We will begin by considering derivatives on the tangent
bundle, and in the exercises indicate how the idea generalizes to other bundles.

11.5.1 Connections

The Lie and exterior derivatives require no structure beyond that which comes for
free with our manifold. Another type of derivative that can act on tangent-space vec-
tors and tensors is the covariant derivative Vy = X"V . This requires an additional
mathematical object called an affine connection.

The covariant derivative is defined by:

(1) Its action on scalar functions as

Vxf = Xf. (11.112)
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(ii) Its action on a basis set of tangent-vector fields e, (x) = e (x) 9, (alocal frame, or
vielbein’) by introducing a set of functions a)’;.k (x) and setting

Ve & = €' . (11.113)

(iii) Extending this definition to any other type of tensor by requiring Vy to be a
derivation.
(iv) Requiring that the result of applying Vx to a tensor is a tensor of the same type.

The set of functions a)"jk (x) is the connection. In any local coordinate chart we can choose
them at will, and different choices define different covariant derivatives. (There may be
global compatibility constraints, however, which appear when we assemble the charts
into an atlas.)

Warning: Despite having the appearance of one, w"jk is not a tensor. It transforms
inhomogeneously under a change of frame or coordinates — see Equation (11.132).

We can, of course, take as our basis vectors the coordinate vectors e, = 9,,. When we
do this it is traditional to use the symbol I" for the coordinate frame connection instead
of w. Thus,

Vie, = Ve e, = eI (11.114)

The numbers FAW are often called Christoffel symbols.
As an example consider the covariant derivative of a vector fVe,. Using the derivation
property we have

Vu(fvev) = (aufv)ev +fuvuev
= @ "ey +1 e,

=e, {9/ +/ T} (11.115)

In the first line we have used the defining property that Ve, acts on the functions /" as
9y, and in the last line we interchanged the dummy indices v and A. We often abuse the
notation by writing only the components, and set

Vouf’ =" + 1T (11.116)
Similarly, acting on the components of a mixed tensor, we would write
Vud® gy = 0,4%, + T, A gy — T p,A%,, — T, 4% ;. (11.117)

When we use this notation, we are no longer regarding the tensor components as
“functions”.

7 In practice viel, “many”, is replaced by the appropriate German numeral: ein-, zwei-, drei-, vier-, fiinf-, .. .,
indicating the dimension. The word bein means “leg”.
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Observe that the plus and minus signs in (11.117) are required so that, for example,
the covariant derivative of the scalar function f,,g“ is

Vi (fag”) = O (fag”)
= (Oufe) & + o (3:8")
= (dufou — il o) €% + for (38™ + €' T%0)
= (Vo) & +/fu (V%) (11.118)

and so satisfies the derivation property.

Parallel transport

We have defined the covariant derivative via its formal calculus properties. It has, how-
ever, a geometrical interpretation. As with the Lie derivative, in order to compute the
derivative along X of the vector field Y, we have to somehow carry the vector Y (x)
from the tangent space TM, to the tangent space 7M.y, where we can subtract it from
Y (x+€X) . The Lie derivative carries Y along with the X flow. The covariant derivative
implicitly carries Y by “parallel transport”. If y : s + x"(s) is a parametrized curve
with tangent vector X#9,,, where

Xﬂ_dx“
ds’

(11.119)
then we say that the vector field Y (x*(s)) is parallel transported along the curve y if

VyY =0, (11.120)

at each point x*(s). Thus, a vector that in the vielbein frame e; at x has components Y’
will, after being parallel transported to x + €X, end up with components

Y —ew'y Y XE. (11.121)

In a coordinate frame, after parallel transport through an infinitesimal displacement 5x*,
the vector Y9, will have components

YW - YV =T, Y exk, (11.122)
and so

SXPV, YV = YV (x4 8x*) — (VY (x) — V5, Y 6xH)
= 8x{0,Y" + TV, 7). (11.123)
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Curvature and torsion

As we said earlier, the connection a)"jk (x) is not itself a tensor. Two important quantities
which are tensors, are associated with Vy:

(i) The torsion
TWX,Y)=VyY —VyX —[X,Y]. (11.124)

The quantity 7' (X, Y) is a vector depending linearly on X, Y, so T at the point x is a
map TMy x TMy — TM,, and so a tensor of type (1,2). In a coordinate frame it has
components

T = T4 —Thy,. (11.125)
(i1) The Riemann curvature tensor
RX,Y)Z =VxVyZ —VyVzZ — Vix.y|Z. (11.126)

The quantity R(X, Y)Z is also a vector, so R(X, Y) is a linear map TM, — TM,,
and thus R itself is a tensor of type (1,3). Written out in a coordinate frame, we have

Ry = 8, 0%, — 9, 0%, + 1%, T gy — T, T4, (11.127)

If our manifold comes equipped with a metric tensor g, (and is thus a Riemann
manifold), and if we require both that 7 = 0 and V,gus = 0, then the connection
is uniquely determined, and is called the Riemann, or Levi-Civita, connection. In a
coordinate frame it is given by

1
Fa/w = Egom (au.g)»v + augu.k - akg/w) . (11128)

This is the connection that appears in general relativity.

The curvature tensor measures the degree of path dependence in parallel transport: if
YV (x) is parallel transported along a path y : s — x*(s) from a to b, and if we deform
y so that x*(s) — x*(s) + dx**(s) while keeping the endpoints a, b fixed, then

b
8Y%(b) = — / R% 10 (x) VP (x)8x dx”. (11.129)

If R% g, = 0 then the effect of parallel transport from a to b will be independent of the
route taken.

The geometric interpretation of 7}, is less transparent. On a two-dimensional surface
a connection is torsion free when the tangent space “rolls without slipping” along the
curve y.
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Exercise 11.12: Metric compatibility. Show that the Riemann connection

1
Fa/w = Ega)\ (aug)»u + Ovgua — akg/w)

follows from the torsion-free condition I'*,, = TI'%,, together with the metric
compatibility condition

Vigap = 01 8op — T ap 8up — Iy av = 0.

Show that “metric compatibility” means that the operation of raising or lowering indices
commutes with covariant derivation.

Exercise 11.13: Geodesic equation. Let y : s — x*(s) be a parametrized path from a
to b. Show that the Euler—Lagrange equation that follows from minimizing the distance
functional

b
Sy) = / ngjclijcv ds,
a
where the dots denote differentiation with respect to the parameter s, is

d?xH e dx® dxP
ds? “$ 45 ds

Here I'# g is the Riemann connection (11.128).

Exercise 11.14: Show that if 4" is a vector field then, for the Riemann connection,

VvV, A* = La‘/gAu

T /g e
In other words, show that
o | dvg
Moy =—=—-.
/g OxH

Deduce that the Laplacian acting on a scalar field ¢ can be defined by setting either
V2¢ = 8uv V,u Vo,

or

d¢
2 y7Y)
V2 = N7 —axv),

|
/g OxH

the two definitions being equivalent.
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11.5.2 Cartan’s form viewpoint

Let e¥(x) = e*fl;(x)dx“ be the basis of 1-forms dual to the vielbein frame e;(x) =
ef (x)9,. Since

8 =e"(ey) = e e, (11.130)
the matrices e*{L and e are inverses of one another. We can use them to change from
roman vielbein indices to Greek coordinate frame indices. For example:

g = g(e;, ¢) = ¢ guve; (11.131)
and
o'k = e (Bped)el +e*helel T, (11.132)

Cartan regards the connection as being a matrix € of 1-forms with matrix entries
', = ') dx*. In this language Equation (11.113) becomes

Vxe = e’ (X). (11.133)

Cartan’s viewpoint separates off the index u, which refers to the direction §x* o« X* in
which we are differentiating, from the matrix indices i and j that act on the components of
the vector or tensor being differentiated. This separation becomes very natural when the
vector space spanned by the e;(x) is no longer the tangent space, but some other “inter-
nal” vector space attached to the point x. Such internal spaces are common in physics,
an important example being the “colour space” of gauge field theories. Physicists, fol-
lowing Hermann Weyl, call a connection on an internal space a “gauge potential”. To
mathematicians it is simply a connection on the vector bundle that has the internal spaces
as its fibres.

Cartan also regards the torsion T and curvature R as forms; in this case vector- and
matrix-valued 2-forms, respectively, with entries

. 1 .
T = ST dd ", (11.134)

dxdx" . (11.135)

R —lRi
k — 2 kuv

In his form language the equations defining the torsion and curvature become Cartan s
Structure equations:

de” + o', ne¥ =T, (11.136)
and

do'y + o', Aol = R (11.137)
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The last equation can be written more compactly as
dQ+QAQ=R. (11.138)
From this, by taking the exterior derivative, we obtain the Bianchi identity
dR—RAQ+QAR=0. (11.139)

On a Riemann manifold, we can take the vielbein frame e; to be orthonormal. In this
case the roman-index metric g; = g(e;, ¢;) becomes §;;. There is then no distinction
between covariant and contravariant roman indices, and the connection and curvature
forms, 2, R, being infinitesimal rotations, become skew symmetric matrices:

wj = —awi, Ry =—Rj. (11.140)

11.6 Further exercises and problems

Exercise 11.15: Consider the vector fields X = yd,, ¥ = 0, in R2. Find the flows
associated with these fields, and use them to verify the statements made in Section
11.2.1 about the geometric interpretation of the Lie bracket.

Exercise 11.16: Show that the pair of vector fields L, = xd, — ydy and L, = z9, — x0,
in R? is in involution wherever they are both non-zero. Show further that the general
solution of the system of partial differential equations

(xdy —ydy)f =0,
(x0; —z0y)f =0,

inR3 is f,y,z)=F 2+ y2 + z%), where F is an arbitrary function.

Exercise 11.17: In the rolling conditions (11.29) we are using the “Y” convention for
Euler angles. In this convention 6 and ¢ are the usual spherical polar coordinate angles
with respect to the space-fixed xyz-axes. They specify the direction of the body-fixed
Z-axis about which we make the final ¢ rotation — see Figure 11.7.

(a) Show that (11.29) are indeed the no-slip rolling conditions

X= wy,
Y = —Wy,
0= w,,

where (wy, w,, ;) are the components of the ball’s angular velocity in the xyz space-
fixed frame.
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Figure 11.7 The “Y” convention for Euler angles. The XYZ axes are fixed to the ball, and the
xyz-axes are fixed in space. We first rotate the ball through an angle ¢ about the z-axis, thus taking
y — Y/, then through 0 about Y’, and finally through v about Z, so taking Y’ — Y.

(b) Solve the three constraints in (11.29) so as to obtain the vector fields rolly, rolly
of (11.30).
(c) Show that

[rolly, rolly] = —spin,,

where spin, = 9y, corresponds to a rotation about a vertical axis through the point
of contact. This is a new motion, being forbidden by the w, = 0 condition.
(d) Show that

[spin,, rolly] = spin,,

[spin,, rolly] = spiny,
where the new vector fields

spin, = —(rolly — 9),
spiny = (rolly — 9,),

correspond to rotations of the ball about the space-fixed x- and y-axes through its
centre, and with the centre of mass held fixed.

We have generated five independent vector fields from the original two. Therefore, by
sufficient rolling to-and-fro, we can position the ball anywhere on the table, and in any
orientation.
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Exercise 11.18: The semiclassical dynamics of charge —e electrons in a magnetic solid
are governed by the equations®

de(k .

I = E()—ka,
ok

R oV .

k=—— —er xB.
ar

Here k is the Bloch momentum of the electron, r is its position, € (k) its band energy (in
the extended-zone scheme) and B(r) is the external magnetic field. The components €2;
of the Berry curvature Q2 (k) are given in terms of the periodic part |u(k)) of the Bloch

wavefunctions of the band by
o o1 ou | ou ou | du
== {—|—)—(—|—)]-
P \\ ok ok |\ oky | 0k,

The only property of 2 (k) needed for the present problem, however, is that divg 2 = 0.

(a) Show that these equations are Hamiltonian, with
H(r,k) =€¢®k)+ V(r)
and with
w = dhidx; — geijkBi(r)dxjdxk 1 %e,_-,-kQ,-(k)dlgdkk
as the symplectic form.”

(b) Confirm that the w defined in part (b) is closed, and that the Poisson brackets are
given by

v kS
byl == eB. 0
ey o} = — o+ B

P (1+eB-Q)’

eijkeBk

kikiy = —I———.
tis fg) (1+eB-Q)

(c) Show that the conserved phase-space volume > /3! is equal to
(1+ eB- Q)d’ kd’x,
instead of the naively expected d>kd>x.

8 M.C. Chang, Q. Niu, Phys. Rev. Lett., 75 (1995) 1348.
° C. Duval, Z. Horvath, P. A. Horvathy, L. Martina, P. C. Stichel, Mod. Phys. Lett., B 20 (2006) 373.
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The following two exercises show that Cartan’s expression for the curvature tensor

remains valid for covariant differentiation in “internal” spaces. There is, however, no
natural concept analogous to the torsion tensor for internal spaces.

Exercise 11.19: Non-abelian gauge fields as matrix-valued forms. In a non-abelian
Yang—Mills gauge theory, such as QCD, the vector potential

A =A,dx*
is matrix-valued, meaning that the components A4, are matrices which do not necessarily
commute with each other. (These matrices are elements of the Lie algebra of the gauge

group, but we won’t need this fact here.) The matrix-valued curvature, or field-strength,
2-form F is defined by

F=dA+4* = %F,wdx“dx".
Here a combined matrix and wedge product is to be understood:
(A% = A% A Ay = A%y A, dxPdx” .
(i) Show that A% = %[A w>Avldxtdx¥, and hence show that
Fiy =04, — 0,4, + [Au, 40].
(i1) Define the gauge-covariant derivatives
V=0, + A4y,

and show that the commutator [V,,, V, ] of two of these is equal to F;,,,. Show further
that if X, Y are two vector fields with Lie bracket [X, Y] and Vx = X#V,,, then

FX,Y) =[Vx,Vyl = Vix,1-
(iii) Show that F’ obeys the Bianchi identity
dF — FA+ AF = 0.

Again wedge and matrix products are to be understood. This equation is the non-
abelian version of the source-free Maxwell equation dFF = 0.

(iv) Show that, in any number of dimensions, the Bianchi identity implies that the 4-
form tr (F?) is closed, i.e. that dtr (F?) = 0. Similarly show that the 2n-form
tr (F) is closed. (Here the “tr” means a trace over the roman matrix indices, and
not over the Greek space-time indices.)
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(v) Show that,
2 2 3
tr (F°) :d{tr <AdA+ §A )}

The 3-form tr (4dA + %A3) is called a Chern—Simons form.

Exercise 11.20: Gauge transformations. Here we consider how the matrix-valued vector
potential transforms when we make a change of gauge. In other words, we seek the
non-abelian version of 4, — A, + 0,¢.

(i) Let g be an invertible matrix, and g a matrix describing a small change in g.

Show that the corresponding change in the inverse matrix is given by §(g™') =

—g g7

(i) Show that under the gauge transformation
A— A% =g '4g + g7 dg,

we have F — g~ !Fg. (Hint: the labour is minimized by exploiting the covariant
derivative identity in part (ii) of the previous exercise.)

(iii) Deduce that tr (F") is gauge invariant.

(iv) Show that a necessary condition for the matrix-valued gauge field 4 to be “pure
gauge”, i.e. for there to be a position-dependent matrix g(x) such that 4 = g~ !dg,
is that /' = 0, where F is the curvature 2-form of the previous exercise. (If we are
working in a simply connected region, then F' = 0 is also a sufficient condition for
there to be a g such that A = g~'dg, but this is a little harder to prove.)

In a gauge theory based on a Lie group G, the matrices g will be elements of the group,
or, more generally, they will form a matrix representation of the group.
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Integration on manifolds

One usually thinks of integration as requiring measure — a notion of volume, and hence
of size and length, and so a metric. A metric, however, is not required for integrating
differential forms. They come pre-equipped with whatever notion of length, area or
volume is required.

12.1 Basic notions

12.1.1 Line integrals

Consider, for example, the form df’. We want to try to give a meaning to the symbol

I = frdf. (12.1)

Here, I is a path in our space starting at some point Py and ending at the point P;.
Any reasonable definition of 7; should end up with the answer that we would immedi-
ately write down if we saw an expression like /| in an elementary calculus class. This
answer is

L= /F df = f(P1) = f(Py). (12.2)

No notion of a metric is needed here. There is, however, a geometric picture of what we
have done. We draw in our space the surfaces ...,f(x) = —1,f(x) = 0,f(x) = 1,...,
and perhaps fill in intermediate values if necessary. We then start at Py and travel from
there to P, keeping track of how many of these surfaces we pass through (with sign —1,
if we pass back through them). The integral of df is this number. Figure 12.1 illustrates
a case in which [.df =55 —15=4.

What we have defined is a signed integral. If we parametrize the path as x(s), 0 <
s < 1, and with x(0) = Py, x(1) = P; we have

1 df
11=/0 <ds>ds (12.3)

where the right-hand side is an ordinary one-variable integral. It is important that we did

not write ‘ % ‘ in this integral. The absence of the modulus sign ensures that if we partially

414
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=1 2 3 4 5 6

Figure 12.1 The integral of a 1-form.

Figure 12.2 Additivity of o (X,y).

retrace our route, so that we pass over some part of I' three times — twice forward and
once back — we obtain the same answer as if we went only forward.

12.1.2 Skew-symmetry and orientations

What about integrating 2- and 3-forms? Why the skew-symmetry? To answer these
questions, think about assigning some sort of “area” in R? to the parallelogram defined
by the two vectors x, y. This is going to be some function of the two vectors. Let us call
it w (x,y). What properties do we demand of this function? There are at least three:

(i) Scaling: If we double the length of one of the vectors, we expect the area to double.
Generalizing this, we demand that w (Ax, uy) = (Aw)w(x,y). (Note that we are
not putting modulus signs on the lengths, so we are allowing negative “areas”, and
allowing for the sign to change when we reverse the direction of a vector.)

(i1) Additivity: The drawing in Figure 12.2 shows that we ought to have

w(X] +X2,¥) = w(X1,y) + ©(X2,Y), (12.4)

similarly for the second slots.
(iii) Degeneration: If the two sides coincide, the area should be zero. Thus w(x, x) = 0.
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The first two properties show that @ should be a multilinear form. The third shows
that it must be skew-symmetric:

0=0x+y,x+y =oXxX) +oiXYy) +oly,x)+o(y,y)
=oXYy) + oy, x). (12.5)

So we have

These are exactly the properties possessed by a 2-form. Similarly, a 3-form outputs a
volume element.

These volume elements are oriented. Remember that an orientation of a set of vectors
is a choice of order in which to write them. If we interchange two vectors, the orien-
tation changes sign. We do not distinguish orientations related by an even number of
interchanges. A p-form assigns a signed (&) p-dimensional volume element to an ori-
entated set of vectors. If we change the orientation, we change the sign of the volume
element.

Orientable and non-orientable manifolds

In the classic video game Asteroids, you could select periodic boundary conditions so
that your spaceship would leave the right-hand side of the screen and re-appear on the left
(Figure 12.3). The game universe was topologically a torus 7'2. Suppose that we modify
the game code so that each bit of the spaceship re-appears at the point diametrically
opposite the point it left. This does not seem like a drastic change until you play a game
with a left-hand drive (US) spaceship. If you send the ship off the screen and watch as it

/4
4 4

\
A v

b

Figure 12.3 A spaceship leaves one side of the screen and returns on the other with (a) torus
boundary conditions, (b) projective-plane boundary conditions. Observe how, in case (b), the
spaceship has changed from being left-handed to being right-handed.
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re-appears on the opposite side, you will observe the ship transmogrify into a right-hand-
drive (British) craft. If we ourselves made such an excursion, we would end up starving
to death because all our left-handed digestive enzymes would have been converted to
right-handed ones. The game-space we have constructed is topologically equivalent to
the real projective plane RP?. The lack of a global notion of being left- or right-handed
makes it an example of a non-orientable manifold.

A manifold or surface is orientable if we can choose a global orientation for the
tangent bundle. The simplest way to do this would be to find a smoothly varying set of
basis-vector fields, e, (x), on the surface and define the orientation by choosing an order,
e;(x),ex(x),...,e (x), in which to write them. In general, however, a globally defined
smooth basis will not exist (try to construct one for the two-sphere, S2!). We will, how-
ever, be able to find a continuously varying orientated basis eY) (x), eg) x),... ,eg) (x)
for each member, labelled by (i), of an atlas of coordinate charts. We should choose
the charts so that the intersection of any pair forms a connected set. Assuming that this
has been done, the orientation of a pair of overlapping charts is said to coincide if the
determinant, det 4, of the map e,(j) = Al‘ie,(,’ ) relating the bases in the region of overlap,
is positive.! If bases can be chosen so that all overlap determinants are positive, the
manifold is orientable and the selected bases define the orientation. If bases cannot be
so chosen, the manifold or surface is non-orientable.

Exercise 12.1: Consider a three-dimensional ball B3 with diametrically opposite points
of its surface identified. What would happen to an aircraft flying through the surface of
the ball? Would it change handedness, turn inside out or simply turn upside down? Is
this ball an orientable 3-manifold?

12.2 Integrating p-forms

A p-form is naturally integrated over an oriented p-dimensional surface or manifold.
Rather than start with an abstract definition, we will first explain this pictorially, and
then translate the pictures into mathematics.

12.2.1 Counting boxes

To visualize integrating 2-forms let us try to make sense of

/ dfdg, (12.7)
Q

where Q2 is an oriented two-dimensional surface embedded in three dimensions. The
surfaces f = const. and g = const. break the space up into a series of tubes. The oriented

! The determinant will have the same sign in the entire overlap region. If it did not, continuity and con-
nectedness would force it to be zero somewhere, implying that one of the putative bases was not linearly
independent there.
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Figure 12.4 The integration region cuts the tubes into parallelograms.

surface €2 cuts these tubes in a two-dimensional mesh of (oriented) parallelograms as
shown in Figure 12.4.

We define an integral by counting how many parallelograms (including fractions of a
parallelogram) there are, taking the number to be positive if the parallelogram given by
the mesh is oriented in the same way as the surface, and negative otherwise. To compute

/M@ (12.8)
Q

we do the same, but weight each parallelogram, by the value of % at that point. The
integral [, o fdxdy, over aregion in RR2, thus ends up being the number we would compute
in a multivariate calculus class, but the integral |, o.fdydx would be minus this. Similarly
we compute

ﬁ#@% (12.9)

of the 3-form df dg dh over the oriented volume E, by counting how many boxes defined
by the level surfaces of f, g, 4 are included in E.

An equivalent way of thinking of the integral of a p-form uses its definition as a
skew-symmetric p-linear function. Accordingly we evaluate

h:/@ (12.10)
Q

where w is a 2-form, and 2 is an oriented 2-surface, by plugging vectors into w. In
Figure 12.5 we show a tiling of the surface 2 by a collection of (infinitesimal) parallel-
ograms, each defined by an oriented pair of vector v| and v, that lie in the tangent space
at one corner point x of the parallelogram. At each point x, we insert these vectors into
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Figure 12.5 A tiling of Q2 with small oriented parallelograms.

the 2-form (in the order specified by their orientation) to get @ (vy, v2), and then sum the
resulting numbers over all the parallelograms to get I5. Similarly, we integrate a p-form
over an oriented p-dimensional region by decomposing the region into infinitesimal p-
dimensional oriented parallelepipeds, inserting their defining vectors into the form, and
summing their contributions.

12.2.2 Relation to conventional integrals

In the previous section we explained how to think pictorially about the integral. Here,
we interpret the pictures as multivariable calculus.

We begin by motivating our recipe by considering a change of variables in an integral
in RZ. Suppose we set x; = x(y1,12), X2 = x2(¥1,)2) in

14=/f(x)dx1dx2, (12.11)
Q
and use
ax! ax!
dx' = —ady' + —dy?
X oy Y+ 52 Ve,
9x2 ax2
dx* = a—yldyl + a—yzdyz. (12.12)

Since dy'dy? = —dy*dy", we have

ax! ox2  9x? ox!
1.2 172
Thus
) 1 .2
/f(x)dxldxz =/ L2 g2 (12.14)
Q o G112
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aatyh

( . . .
01,7 18 the Jacobian determinant

where

aix!,yh ax! 9x2  ox? ox!
— == -], (12.15)
aptyh oyt ayr oyl 9y
and Q' is the integration region in the new variables. There is therefore no need to include
an explicit Jacobian factor when changing variables in an integral of a p-form over a
p-dimensional space — it comes for free with the form.

This observation leads us to the general prescription: to evaluate |, o , the integral of
a p-form

1

w = —'a)mm_“#ﬁdx’“ <o dxte (12.16)
p

over the region €2 of a p-dimensional surface in a d > p dimensional space, substitute a
parametrization

I =xlEL e e,

M =xl(E gL D), (12.17)
of the surface into w. Next, use
axt
ait = 2 get (12.18)
&
so that
Axil dxlp
© = OGE iy 3 " @dsl - dEP, (12.19)

which we regard as a p-form on 2. (Our customary 1/p! is absent here because we have
chosen a particular order for the d£’s.) Then

def - ﬁ% B 4
[0 [ oy o s e, (12.20)

where the right-hand side is an ordinary multiple integral. This recipe is a generalization
of the formula (12.3), which reduced the integral of a 1-form to an ordinary single-
variable integral. Because the appropriate Jacobian factor appears automatically, the
numerical value of the integral does not depend on the choice of parametrization of the
surface.
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Example: To integrate the 2-form x dydz over the surface of a two-dimensional sphere
of radius R, we parametrize the surface with polar angles as

X = Rsin¢sin6,

y=Rcos¢sinb,

z = Rcos6. (12.21)
Then
dy = —Rsin ¢ sinfd¢ + Rcos ¢ cos 6d6,
dz = —Rsin6do, (12.22)
and so
xdydz = R*sin’¢ sin®0 dpdo. (12.23)

We therefore evaluate

2r pm
/ xdydz = R® / / sin’¢ sin’6 dpd6
sphere 0 0

2 T
=R / sin¢ d¢ / sin®0 do
0 0
1
=R3n/ (1 —00529)d0059
-1

4 3
= Sk, (12.24)

The volume form

Although we do not need any notion of length to integrate a differential form, a p-
dimensional surface embedded or immersed in R does inherit a distance scale from
the R? Euclidean metric, and this can be used to define the area or volume of the
surface. When the cartesian coordinates x!, . .., x? of a point in the surface are given as
x4 (& 1. ,&P), where the & L., &P are coordinates on the surface, then the inherited,
or induced, metric is

“ds*" =g(, ) = gu dE* @ dEY, (12.25)
where
d
ax?4 9x?
guv = Z 55K 35V (12.26)

a=1
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The volume form associated with the induced metric is
d(Volume) = /g d&' - - d&P, (12.27)

where g = det (g,,,). The integral of this p-form over a p-dimensional region gives the
area, or p-dimensional volume, of the region.

If we change the parametrization of the surface from £* to ¢#, neither the d&' - - - d&P
nor the ,/g are separately invariant, but the Jacobian arising from the change of
the p-form, d&'---d&P — d¢'-.-d¢P cancels against the factor coming from the
transformation law of the metric tensor g;,, — g;w, leading to

Jgdg! ... dgP = Vedet - deP. (12.28)

The volume of the surface is therefore independent of the coordinate system used to
evaluate it.

Example: The induced metric on the surface of a unit-radius two-sphere embedded in
RR3 is, expressed in polar angles,

“ds?" =g(, ) =dO0 ®d6 +sin’0 dp @ dé.

Thus

1

22
= == 9
g ‘ 0 sin” 6,

sin® 6
and

d(Area) = sin6 dOd¢.

12.3 Stokes’ theorem

All of the integral theorems of classical vector calculus are special cases of

Stokes’ theorem: If 92 denotes the (oriented) boundary of the (oriented) region €2, then

/dw:/ .
Q 9

We will not provide a detailed proof. Apart from notation, it would parallel the proof
of Stokes’ or Green’s theorems in ordinary vector calculus: the exterior derivative d has
been defined so that the theorem holds for an infinitesimal square, cube or hypercube. We
therefore divide 2 into many such small regions. We then observe that the contributions
of the interior boundary faces cancel because all interior faces are shared between two
adjacent regions, and so occur twice with opposite orientations. Only the contribution
of the outer boundary remains.
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Example: 1f Q is a region of R?, then from
1
d [E(x dy —ydx)] = dxdy,
we have
1
Area () = / dxdy = —/ (xdy —ydx).
Q 2 Joe
Example: Again, if Q is a region of R?, then from d[r2d6 /2] = r drd® we have

Area (2) = /

1
rdrdd = —f rde.
Q 2 Jaa

Example: 1f Q is the interior of a sphere of radius R, then

4
/ dxdydz = / xdydz = —mR>.
Q FYe 3

Here we have referred back to (12.24) to evaluate the surface integral.

Example: Archimedes’ tombstone. Archimedes of Syracuse gave instructions that his
tombstone should have displayed on it a diagram consisting of a sphere and circum-
scribed cylinder. Cicero, while serving as questor in Sicily, had the stone restored.”
Cicero himself suggested that this act was the only significant contribution by a Roman
to the history of pure mathematics. The carving on the stone was to commemorate
Archimedes’ results about the areas and volumes of spheres, including the one illus-
trated in Figure 12.6, that the area of the spherical cap cut off by slicing through the
cylinder is equal to the area cut off on the cylinder.

Figure 12.6  Sphere and circumscribed cylinder.

2 Marcus Tullius Cicero, Tusculan Disputations, Book V, Sections 64—66.
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We can understand this result via Stokes’ theorem: if the 2-sphere S is parametrized
by spherical polar coordinates 6, ¢, and €2 is a region on the sphere, then

Area (2) = / sin0dOd¢ = / (1 —cos0)do,
Q a0
and applying this to the figure, where the cap is defined by 6 < 6y, gives
Area (cap) = 27 (1 — cosbp),

which is indeed the area cut off on the cylinder.

Exercise 12.2: The sphere S” can be thought of as the locus of points in R"*! obeying
Z;’ill (x")? = 1. Use its invariance under orthogonal transformations to show that the
element of surface “volume” of the n-sphere can be written as

1
d(Volume on §") = —'ealaz_”amxﬂ” dx® .. dxSrt.
n!

Use Stokes’ theorem to relate the integral of this form over the surface of the sphere
to the volume of the solid unit sphere. Confirm that we get the correct proportionality
between the volume of the solid unit sphere and the volume or area of its surface.

12.4 Applications

We now know how to integrate forms. What sort of forms should we seek to integrate?
For a physicist working with a classical or quantum field, a plentiful supply of interesting
forms is obtained by using the field to pull back geometric objects.

12.4.1 Pull-backs and push-forwards

If we have a map ¢ from a manifold M to another manifold N, and we choose a point
x € M, we can push forward a vector from TM, to TNy ), in the obvious way (map head-
to-head and tail-to-tail). This map is denoted by ¢, : TM, — TNy (y); see Figure 12.7.
If the vector X has components X** and the map takes the point with coordinates x*
to one with coordinates £/ (x), the vector ¢, X has components
oEH
(P X = =XV (12.29)
axV
This looks like the transformation formula for contravariant vector components under a
change of coordinate system. What we are doing here is conceptually different, however.
A change of coordinates produces a passive transformation — i.e. a new description for
an unchanging vector. A push-forward is an active transformation — we are changing a
vector into a different one. Furthermore, the map from A — N is not being assumed to
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Figure 12.7 Pushing forward a vector X from TMy to TN y)-.

be one-to-one, so, contrary to the requirement imposed on a coordinate transformation,
it may not be possible to invert the functions £ (x) and write the x"’s as functions of
the £#°s.

While we can push forward individual vectors, we cannot always push forward a
vector field X from TM to TN. If two distinct points, x| and x», should happen to
map to the same point £ € N, and X (x1) # X (x2), we would not know whether to
choose ¢, [X (x1)] or ¢« [X (x2)] as [¢«X](£). This problem does not occur for differential
forms. Amap ¢ : M — N induces a natural, and always well-defined, pull-back map
o* . NP (T*N) — AP (T*M) which works as follows: given a form w € AP (T*N),
we define ¢*w as a form on M by specifying what we get when we plug the vectors
X1,X2,...,Xp, € TM into it. We evaluate the form at x € M by pushing the vectors X;(x)
forward from TM, to TNy ), plugging them into w at ¢ (x) and declaring the result to
be the evaluation of ¢*w on the X; at x. Symbolically

[¢*w](Xl,X2s .. ’Xp) = w(¢*Xl’¢*X2’ e >¢**X}7) (1230)

This may seem rather abstract, but the idea is in practice quite simple: if the map takes
xeM — &E(x) e N,and if

1 . .
= i ..i,)dE" .. dEY, (12.31)
7
then

1 ) . .
o= Ewmz.‘.z’p[é(x)]dé” ()dE? (x) - - - dE™ (x)

1 0g" 0g™ b
= ];willé--jp[g(x)] dxi 9xi2 o oxH1

dxtp - dxtr, (12.32)

Computationally, the process of pulling back a form is so transparent that it is easy to
confuse it with a simple change of variable. That it is not the same operation will become
clear in the next few sections where we consider maps that are many-to-one.
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Exercise 12.3: Show that the operation of taking an exterior derivative commutes with
a pull-back:

d [¢*a)] = ¢*(dw).

Exercise 12.4: 1fthe map ¢ : M — N is invertible then we may push forward a vector
field X on M to get a vector field ¢, X on N. Show that

Lx[¢p*w] = ¢* [Lpxo].

Exercise 12.5: Again assume that ¢ : M — N is invertible. By using the coordinate
expressions for the Lie bracket along with the effect of a push-forward, show that if X,
Y are vector fields on TM then

¢ ([X, Y]) = [ X, s Y],

as vector fields on TN.

12.4.2 Spin textures

As an application of pull-backs we consider some of the topological aspects of spin
textures which are fields of unit vectors n, or “spins”, in two or three dimensions.
Consider a smooth map ¢ : R?> — S? that assigns x — n(x), where n is a three-
dimensional unit vector whose tip defines a point on the 2-sphere S2. A physical example
of'such an n(x) would be the local direction of the spin polarization in a ferromagnetically
coupled two-dimensional electron gas.
In terms of n, the area 2-form on the 2-sphere becomes

1 1
Q= on (dn x dn) = Eeljknldnldnk. (12.33)
The ¢ map pulls this area-form back to
1 . . . .
F=¢'Q= z(eijkn’&ﬂnlavnk)dx“dx" = (ejun' 311 donb) dx! dx? (12.34)

which is a differential form in R?. We will call it the topological charge density. It
measures the area on the 2-sphere swept out by the n vectors as we explore a square in
R? of side dx! by dx?.

Suppose now that the n tends to the same unit vector n(co) at large distance in all
directions. This allows us to think of “infinity” as a single point, and the assignment
@ : x — n(x) as a map from S? to S2. Such maps are characterized topologically by
their “fopological charge”, or winding number N which counts the number of times
the image of the originating x-sphere wraps round the target n-sphere. A mathematician
would call this number the Brouwer degree of the map ¢. It is intuitively plausible that
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a continuous map from a sphere to itself will wrap a whole number of times, and so we
expect

S {Eijknialnjaznk} dx' a2, (12.35)

4 R2
to be an integer. We will soon show that this is indeed so, but first we will demonstrate
that N is a topological invariant.

In two dimensions the form F = ¢*Q is automatically closed because the exterior
derivative of any 2-form is zero — there being no 3-forms in two dimensions. Even if
we consider a field n(x', ..., x™) in m > 2 dimensions, however, we still have dF = 0.
This is because

dF = Ee’/kagnlaunjankdx"dx“dx”. (12.36)

If we plug infinitesimal vectors into the dx* to get their components x*, we have to
evaluate the triple-product of three vectors n' = 9,,n'8x*, each of which is tangent to
the 2-sphere. But the tangent space of S2 is two-dimensional, so any three tangent vectors
t1, to, t3, are linearly dependent and their triple-product t; - (t; X t3) is therefore zero.

Although it is closed, FF = ¢*Q will not generally be the d of a globally defined
I-form. Suppose, however, that we vary the map so that n(x) — n(x) + én(x). The
corresponding change in the topological charge density is

§F = ¢*[n- (d(6mn) x dn)], (12.37)
and this variation can be written as a total derivative:
8F = d{g*[n - (5n x dn)]} = d{e;n'sn8,n* dx"}. (12.38)

In these manipulations we have used én - (dn x dn) = dn - (6n x dn) = 0, the triple-
products being zero for the linear-dependence reason adduced earlier. From Stokes’
theorem, we have

SN = | 8F = / €' 81 8y n* dxt. (12.39)
S2 952

Because the sphere has no boundary, i.e. 3S> = f, the last integral vanishes, so we
conclude that SN = 0 under any smooth deformation of the map n(x). This is what we
mean when we say that N is a topological invariant. Equivalently, on R?, with n constant
at infinity, we have

SN = | o6F = / €jn'8n 3, nF dxt, (12.40)
R2 r

where T is a curve surrounding the origin at large distance. Again N = 0, this time
because 8,,nF = 0 everywhere on T
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In some physical applications, the field n winds in localized regions called skyrmions.
These knots in the spin field behave very much as elementary particles, retaining their
identity as they move through the system. The winding number counts how many
skyrmions (minus the number of anti-skyrmions, which wind with opposite orienta-
tion) there are. To construct a smooth multi-skyrmion map ¢ : R*> — §2 with positive
winding number N, take a set of N 4+ 1 complex numbers A, ay, ..., ay and another set
of N complex numbers by, . .., by such that no b coincides with any a. Then put

(z—a1)...(z—ay)

: 9
e tan — = A 12.41
2 (z—=>5b1)...(z—by) ( )

where z = x! 4 ix?, and 6 and ¢ are spherical polar coordinates specifying the direction
n at the point (x', x?). At the points z = a; the vector n points straight up, and at the
points z = b; it points straight down. You will show in Exercise 12.12 that this particular
n-field configuration minimizes the energy functional

1
E[n] = Ef(aln.aln+82n.azn) dx' dx?

1
— 5/ (|vn1|2 VA2 + |Vn3|2) dxldy? (12.42)
for the given winding number N. In the next section we will explain the geometric origin
of the mysterious combination ¢’ tan 6 /2.

12.4.3 The Hopf map

You may recall that in Section 10.2.3 we defined complex projective space CP" to be
the set of rays in a complex (n + 1)-dimensional vector space. A ray is an equivalence
class of vectors [¢1,¢2, ..., nt1], Where the ¢; are not all zero, and where we do not
distinguish between [{1, {2, ..., ¢u+1] and [AL1, A2, . .., Auy1] for non-zero complex
A. The space of rays is a 2n-dimensional real manifold: in a region where ¢, does not
vanish, we can take as coordinates the real numbers &1,...,&,, n1,...,n, where

. 1 . '9) . e
£ +in = , Bt = v iy = =
Cn+1 Cnt1 Cnt1

(12.43)

Similar coordinate charts can be constructed in the regions where other ¢; are non-zero.
Every point in CP” lies in at least one of these coordinate charts, and the coordinate
transformation rules for going from one chart to another are smooth.

The simplest complex projective space, CP!, is the real 2-sphere S? in disguise.
This rather non-obvious fact is revealed by the use of a stereographic map to make the
equivalence class [£], 2] € CP! correspond to a point n on the sphere. When ¢; is non-
zero, the class [¢1, ¢»] is uniquely determined by the ratio ¢ /¢1 = |¢2/¢1]€’?, which we
plot on the complex plane. We think of this copy of C as being the xy-plane in R3. We
then draw a straight line connecting the plotted point to the south pole of a unit sphere
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Figure 12.8 Two views of the stereographic map between the 2-sphere and the complex plane.
The point ¢ = ¢5/¢] € C corresponds to the unit vector n € S2.

circumscribed about the origin in R3. The point where this line (continued, if necessary)
intersects the sphere is the tip of the unit vector n.

If ¢, were zero, n would end up at the north pole, where the R? coordinate z takes
the value z = 1. If £ goes to zero with ¢ fixed, n moves smoothly to the south pole
z = —1. We therefore extend the definition of our map to the case {; = 0 by making the
equivalence class [0, £»] correspond to the south pole. We can find an explicit formula
for this map. Figure 12.8 shows that ¢,/¢; = €/® tan §/2, and this relation suggests the
use of the “#”-substitution formulz:

sinf = 11—22, cosf = L_L—Z, (12.44)
where ¢ = tan /2. Since the x, y,z components of n are given by
n' = sin6 cos P,
n® = sin 6 sin ¢,
nd = cosb, (12.45)
we find that
RPN (573} s 1—ln/al (12.46)

o+ n/al e 1+ 16/

We can multiply through by |¢1|> = ¢,¢1, and so write this correspondence in a more
symmetrical manner:

nl — 18+ 6
1611% + 1621%

21 410 -6
i\laP+1a?)’
3 ol —lof?

== = 12.47
ST (1247)
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This last form can be conveniently expressed in terms of the Pauli sigma matrices

~ 0 1 - 0 —i ~ 1 0
61—(1 0), 0‘2—<l, O), 0'3—(0 _1> (12.48)

as
fean( D)
e
P = G ((1) _?) (2) (12.49)
where

z1\ _ 1 ((1)
- (12.50)
<22> VI + 1002 \&2

is a normalized 2-vector, which we think of as a spinor.
The correspondence CP! ~ $? now has a quantum-mechanical interpretation: any
unit 3-vector n can be obtained as the expectation value of the & matrices in a normalized

spinor state. Conversely, any normalized spinor ¥ = (z1,z2)7 gives rise to a unit
vector via
n' = yiety. (12.51)
Now, since
1=zl + 2l (12.52)

the normalized spinor can be thought of as defining a point in S°. This means that the
one-to-one correspondence [z1,z2] <> n also gives rise to a map from S — S2. This is
called the Hopf map:

Hopf : §3 — §2. (12.53)

The dimension reduces from three to two, so the Hopf map cannot be one-to-one. Even
after we have normalized [¢1, ¢2], we are still left with a choice of overall phase. Both
(z1,22) and (z1€”, zp€'?), although distinct points in S>, correspond to the same point in
CP!, and hence in S2. The inverse image of a point in S? is a geodesic circle in S3. Later,
we will show that any two such geodesic circles are linked, and this makes the Hopf
map topologically non-trivial, in that it cannot be continuously deformed to a constant
map — i.e. to a map that takes all of S> to a single point in S2.
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Exercise 12.6: We have seen that the stereographic map relates the point with spherical
polar coordinates 6, ¢ to the complex number

¢ =¢é%tan6/2.

We can therefore set { = & +in and take &, n as stereographic coordinates on the sphere.
Show that in these coordinates the sphere metric is given by

g(, )=do®do +sin*0dp ® do

2 _ _
= m(dC ®d; +d; ®de)

and that the area 2-form becomes
Q=sinbdd ANdo
= 2 dc Adt
1+ 12122
4

- G dn (12.54)

12.4.4 Homotopy and the Hopf map

We can use the Hopf map to factor the map ¢ : x — n(x) via the 3-sphere by specifying
the spinor ¥ at each point, instead of the vector n, and so mapping indirectly

Hopf
<p:R21>S3 =X S2.

It might seem that for a given spin-field n(x) we can choose the overall phase of ¥ (x) =
(z1 (), z2(x))T as we like; however, if we demand that the z;’s be continuous functions of
x then there is a rather non-obvious topological restriction which has important physical
consequences. To see how this comes about, we first express the winding number in
terms of the z;. We find (after a page or two of algebra) that

2
o 2
F = (ean'o1n ") dx'dx® = =3 (01Z:00z — 097;012;) dx' dx”, (12.55)
1

i=1

and so the topological charge N is given by

2
1
N=— f > (01Zidpz; — 097:012)) dx'dx’. (12.56)
2mi P
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Now, when written in terms of the z; variables, the form F becomes a total derivative:

2

Z (0120221 — 0Z;012;) dx d®
i=1

2
1
{— Z Zi0,2i — (9420)z1) dx“} ) (12.57)
! i=1

Furthermore, because n is fixed at large distance, we have (z1,2z2) = € (c1, c3) near
infinity, where c1, ¢; are constants with |c; |2 + |cz|2 = 1. Thus, near infinity,

S}

1

2i
! i=1

(Ziduzi — (3uZ0)zi) — (e1]* + |e2l*)do = db. (12.58)
We combine this observation with Stokes’ theorem to obtain

=3 / Z Zi0,uzi — (9uZ1)zi) dxt = —/de (12.59)
i

Here, as in the previous section, I" is a curve surrounding the origin at large distance.
Now [ d6 is the total change in 6 as we circle the boundary. While the phase ' has
to return to its original value after a round trip, the angle 6 can increase by an integer
multiple of 27z. The winding number § d6 /2w can therefore be non-zero, but must be
an integer.

We have uncovered the rather surprising fact that the topological charge of the map
¢ : §? — 5% is equal to the winding number of the phase angle 6 at infinity. This is the
topological restriction referred to in the preceding paragraph. As a byproduct, we have
confirmed our conjecture that the topological charge N is an integer. The existence of this
integer invariant shows that the smooth maps ¢ : §> — 2 fall into distinct homotopy
classes labelled by N. Maps with different values of N cannot be continuously deformed
into one another, and, while we have not shown that it is so, two maps with the same
value of N can be deformed into each other.

Maps that can be continuously deformed one into the other are said to be homotopic.
The set of homotopy classes of the maps of the n-sphere into a manifold M is denoted
by 7,(M). In the present case M = S2. We are therefore claiming that

(%) = Z, (12.60)

where we are identifying the homotopy class with its winding number N € Z.

12.4.5 The Hopf'index

We have so far discussed maps from S2 to S2. It is perhaps not too surprising that such
maps are classified by a winding number. What is rather more surprising is that maps
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~N 7

Figure 12.9 A twisted cable with N = 5.

¢ : 8> — §? also have an associated topological number. If we continue to assume
that n tends to a constant vector at infinity so that we can think of R3 U {00} as being
S3, this number will label the homotopy classes 73(S?) of fields of unit vectors n in
three dimensions. We will think of the third dimension as being time. In this situation an
interesting set of n fields to consider are the n(x, ¢) corresponding moving skyrmions.
The world-lines of these skyrmions will be tubes outside of which n is constant, and
such that on any slice through the tube, n will cover the target n-sphere once.

To motivate the formula we will find for the topological number, we begin with a
problem from magnetostatics. Suppose we are given a cable originally made up of a
bundle of many parallel wires. The cable is then twisted N times about its axis and bent
into a closed loop, the end of each individual wire being attached to its beginning to
make a continuous circuit (Figure 12.9). A current / flows in the cable in such a manner
that each individual wire carries only an infinitesimal part §/; of the total. The sense of
the current is such that as we flow with it around the cable each wire wraps N times
anticlockwise about all the others. The current produces a magnetic field B. Can we
determine the integer twisting number N knowing only this B field?

The answer is yes. We use Ampeére’s law in integral form,

% B - dr = (current encircled by I'). (12.61)
r

We also observe that the current density V x B = J at a point is directed along the tangent
to the wire passing through that point. We therefore integrate along each individual wire
as it encircles the others, and sum over the wires to find

NI? = Z 51,-7§B.dri=/B.Jd3x=/B-(vxB)d3x. (12.62)
wires i

‘We now apply this insight to our three-dimensional field of unit vectors n(x). The quantity
playing the role of the current density J is the fopological current

1 . .
Jo = Eeaﬂveijknlaﬂnlavnk : (12.63)
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Observe that divJ = 0. This is simply another way of saying that the 2-form F' = ¢p*Q
is closed.
The flux of J through a surface S is

lszJ.dszst (12.64)

and this is the area of the spherical surface covered by the n’s. A skyrmion, for example,
has total topological current / = 47, the total surface area of the 2-sphere. The skyrmion
world-line will play the role of the cable, and the inverse images in R3 of points on S?
correspond to the individual wires.

In form language, the field corresponding to B can be any 1-form A such that
d4 = F. Thus

1 3 1
Nitopf = [—2/R3B~Jd X= 1 fR3AF (12.65)

will be an integer. This integer is the Hopf linking number, or Hopf index, and counts
the number of times the skyrmion twists before it bites its tail to form a closed-loop
world-line.

There is another way of obtaining this formula, and of understanding the number
1672, We observe that the two-form F and the one-form A4 are the pull-back from S> to
IR3 along v of the forms

2
1
F = - E (dE,-dzi - dZ,‘dE,‘) N
1
i=1

2
1
=- Zidz; — z;dz;), 12.66
A iZ(z z; — z;dZ;) ( )

i=1

respectively. If we substitute z; » = &1 2 + in1 2, we find that
AF = 8(&1dmd&xdny — md&i1dérdny + Edmdéidny — mdérdéidny).  (12.67)

We know from Exercise 12.2 that this expression is eight times the volume 3-form on
the 3-sphere. Now the total volume of the unit 3-sphere is 272, and so, from our factored
map x — ¥ — n we have that

1 1
Nuopt = Ten? /R} Y*(AF) = 32 /W ¥*d(Volume on S°) (12.68)

is the number of times the normalized spinor v (x) covers S3 as x covers R3. For the
Hopf map itself, this number is unity, and so the loop in S> that is the inverse image of
a point in S will twist once around any other such inverse image loop.
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We have now established that
m3(8%) = Z. (12.69)

This result, implying that there are many maps from the 3-sphere to the 2-sphere that are
not smoothly deformable to a constant map, was a great surprise when Hopfdiscovered it.

One of the principal physics consequences of the existence of the Hopf index is that
“quantum lump” quasi-particles such as the skyrmion can be fermions, even though they
are described by commuting (and therefore bosonic) fields.

To understand how this can be, we first explain that the collection of homotopy classes
,(M) is not just a set. It has the additional structure of being a group: we can compose
two homotopy classes to get a third, the composition is associative, and each homotopy
class has an inverse. To define the group composition law, we think of S” as the interior
of an n-dimensional cube with the map f : " — M taking a fixed value mo € M at all
points on the boundary of the cube. The boundary can then be considered to be a single
point on S”. We then take one of the » dimensions as being “time” and place two cubes
and their maps f1, f> into contact, with ] being “earlier” and /> being “later”. We thus
get a continuous map from a bigger box into M. The homotopy class of this map, after
we relax the condition that the map takes the value m( on the common boundary, defines
the composition [f2] o [f1] of the two homotopy classes corresponding to f1 and f>. The
composition may be shown to be independent of the choice of representative functions
in the two classes. The inverse of a homotopy class [f] is obtained by reversing the
direction of “time” for each of the maps in the class. This group structure appears to
depend on the fixed point mg. As long as M is arcwise connected, however, the groups
obtained from different mq’s are isomorphic, or equivalent. In the case of m; (Sz) =7
and 73(S?) = Z, the composition law is simply the addition of the integers N € Z that
label the classes. A useful exposition of homotopy theory for physicists is to be found in
a review article by David Mermin.’

When we quantize using Feynman’s “sum over histories” path integral, we have the
option of multiplying the contributions of histories f* that are not deformable into one
another by distinct phase factors exp{i¢ ([f])}. The choice of phases must, however,
be compatible with the composition of histories by concatenating one after the other
— the same operation as composing homotopy classes. This means that the product
exp{io ([f1]))} exp{ip ([/2])} of the phase factors for two possible histories must be the
phase factor exp{i¢p ([f2] o [f1])} assigned to the composition of their homotopy classes.
If our quantum system consists of spins n in two space and one time dimension we can
consistently assign a phase factor exp(imr Nyyopr) to a history. The rotation of a single
skyrmion twists the world-line cable through 27 and so makes Nyopr = 1. The rotation
therefore causes the wavefunction to change sign. We will show, in the next section,
that a history where two particles change places can be continuously deformed into a
history where they do not interchange, but instead one of them is twisted through 27r. The

3 N. D. Mermin, Rev. Mod. Phys., 51 (1979) 591.
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wavefunction of a pair of skyrmions therefore changes sign when they are interchanged.
This means that the quantized skyrmion is a fermion.

12.4.6 Twist and writhe

Consider two oriented non-intersecting closed curves y; and y, in R3. Imagine that y,
carries a unit current in the direction of its orientation and so gives rise to a magnetic
field. Ampére’s law then tells us that the number of times y; encircles y; is

Lk(y1,y2) = y§ B(ry) - dry

71
1 — -(d d

_ 1 (rp —r2) - ( l‘13>< r2) (12.70)
4 nJIm r; — ;|

Here the second expression follows from the first by an application of the Biot—Savart
law to compute the B field due to the current. This expression also shows that Lk (y1, y2),
which is called the Gauss linking number, is symmetric under the interchange y; <
of the two curves. It changes sign, however, if one of the curves changes orientation, or
if the pair of curves is reflected in a mirror.

We can relate the Gauss linking number to the Brouwer degree of a map. Introduce
parameters ¢1, t with 0 < #1,# < 1 to label points on the two curves. The curves are
closed, so r;(0) = ri(1), and similarly for r,. Let us also define a unit vector

ri(t1) —ra(f2)

_ = 12.71
[ri(t1) — r2(t)] ¢ )

n(t,n) =

Then

! 1) —ra(t 3 3
Lk(y1,y2) = —?ﬁ 7§ M ) <ﬂ % ﬂ) dtidy
4 Jyy Jy, Iri(t) —r2(2)| ot 0n

1 an 9
[ o (2 ) dndn (12.72)
4 2 ot ot

is seen to be (minus) the winding number of the map
n:[0,1] x [0,1] > §? (12.73)

of the 2-torus into the sphere. Our previous results on maps into the 2-sphere therefore
confirm our Ampere-law intuition that Lk(y1, ) is an integer. The linking number is
also topological invariant, being unchanged under any deformation of the curves that
does not cause one to pass through the other.

An important application of these ideas occurs in biology, where the curves are the
two complementary strands of a closed loop of DNA. We can think of two such parallel
curves as forming the edges of a ribbon {y1, y»} of width €. Let us denote by y the curve
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Figure 12.10  An oriented ribbon {y1, y»} showing the vectors t and u.

r(¢) running along the axis of the ribbon midway between y; and y». The unit tangent

to y at the point r(¢) is

0
LGN

where, as usual, the dots denote differentiation with respect to z. We also introduce a

unit vector u(¢) that is perpendicular to t(¢) and lies in the ribbon, pointing from ry(¢)

to ry(7); see Figure 12.10.

We will assign a common value of the parameter ¢ to a point on y and the points
nearest to r(¢) on y; and y,. Consequently

10 (12.74)

1
ri(t) =r@) — 7€ u(?)
1
r () =r{) + 7€ u(?). (12.75)
We can express u as
U=oXxu (12.76)

for some angular-velocity vector @(¢). The quantity
1
Tw=— 7€ (w-t)dt (12.77)
2 J,

is called the rwist of the ribbon. It is not usually an integer, and is a property of the ribbon
{y1, 2} itself, being independent of the choice of parametrization z.

If we set ry(¢) and r(¢) equal to the single axis curve r(¢) in the integrand of (12.70),
the resulting “self-linking” integral, or writhe,

Wi def ng 7{ (r(t1) —r(t2)) - (iF(t1) x £ (12)) diydiy (12.78)
ar [, J, lr(t) —r(t)?
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remains convergent despite the factor of |r(¢;) — r(#) I in the denominator. However,
if we try to achieve this substitution by making the width of the ribbon € tend to zero,
we find that the vector n(#1, t;) abruptly reverses its direction as #1 passes ;. In the limit
of infinitesimal width this violent motion provides a delta-function contribution

—(w - )8t — ) dty ANdty (12.79)

to the 2-sphere area swept out by n, and this contribution is invisible to the writhe
integral. The writhe is a property only of the overall shape of the axis curve y, and is
independent both of the ribbon that contains it, and of the choice of parametrization.
The linking number, on the other hand, is independent of €, so the ¢ — 0 limit of the
linking-number integral is not the integral of the ¢ — 0 limit of its integrand. Instead
we have

Lk(y1, 12) = %%(a»t) di + %% % (r(f) — r(f)) - (F(t1) X £(2)) dirdty.
y y Jy

T lr(t1) — r(t)?

(12.80)
This formula
Lk = Tw + Wr (12.81)

is known as the Calugareanu—White—Fuller relation, and is the basis for the claim, made
in the previous section, that the world-line of an extended particle with an exchange
(Wr = £1) can be deformed into a world-line with a 27 rotation (Tw = +1) without
changing the topologically invariant linking number.
By setting
r(n) —r(t)

n(tl,tz) = m (1282)

we can express the writhe as

1 on  on
Wr=—— | n-(2=x 22 dndn, (12.83)
4 2 dat ot

but we must take care to recognize that this new n(#1, #;) is discontinuous across the line
t =t = tp. Itis equal to t(¢) for #; infinitesimally larger than #,, and equal to —t(?)
when # is infinitesimally smaller than #,. By cutting the square domain of integration
and reassembling it into a rhomboid, as shown in Figure 12.11, we obtain a continuous
integrand and see that the writhe is (minus) the 2-sphere area (counted with multiplicities
and divided by 477) of a region whose boundary is composed of two curves I', the tangent
indicatrix, or tantrix, on whichn = t(¢), and its oppositely oriented antipodal counterpart
I'" on which n = —t(z).
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12/ = O
D A

t

Figure 12.11 Cutting and reassembling the domain of integration in (12.83).

The 2-sphere area 2(I") bounded by T is only determined by I" up to the addition
of integer multiples of 47z. Taking note that the “wrong” orientation of the boundary I
(see Figure 12.11 again) compensates for the minus sign before the integral in (12.83),
we have

47 Wr = 2Q(T) + d7n. (12.84)

Thus,

Wr = LQ(I‘), mod 1. (12.85)
2
We can do better than (12.85) once we realize that by allowing crossings we can contin-
uously deform any closed curve into a perfect circle. Each self-crossing causes Lk and
Wr (but not Tw which, being a local functional, does not care about crossings) to jump
by +2. For a perfect circle Wr = 0 whilst 2 = 2. We therefore have an improved
estimate of the additive integer that is left undetermined by I', and from it we obtain

1
Wr =1+ -—Q(I'), mod2. (12.86)
T

This result is due to Brock Fuller.*
We can use our ribbon language to describe conformational transitions in long
molecules. The elastic energy of a closed rod (or DNA molecule) can be approximated by

E = / {101((,) 1) + lﬁxz} ds. (12.87)
L 12 2

Here we are parametrizing the curve by its arc-length s. The constant « is the torsional
stiffness coefficient, 8 is the flexural stiffness and

d*r(s)
ds?

K(s) = (12.88)

|
T | ds

4 F. Brock Fuller, Proc. Natl. Acad. Sci. USA, 75 (1978) 3557.
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Figure 12.12 A molecule initially with Lk = 3, Tw = 3, Wr = 0 writhes to a new configuration
with Lk = 3, Tw = 0, Wr = 3.

is the local curvature. Suppose that our molecule has linking number #, i.e. it was twisted
n times before the ends were joined together to make a loop.

When 8 > « the molecule will minimize its bending energy by forming a planar
circle with Wr ~ 0 and Tw =~ n. If we increase «, or decrease S, there will come a point
at which the molecule will seek to save torsional energy at the expense of bending, and
will suddenly writhe into a new configuration with Wr & n and Tw ~ 0 (Figure 12.12).
Such twist-to-writhe transformations will be familiar to anyone who has struggled to
coil a garden hose or electric cable.

12.5 Further exercises and problems

Exercise 12.7: A 2-form is expressed in cartesian coordinates as

1
w = — (zdxdy + xdydz + ydzdx)
r

where r = /x2 + 2 + 22,

(a) Evaluate dw for r # 0.
(b) Evaluate the integral

¢=/w,
P

over the infinite plane P = {—00 <x < 00,—00 <y < 00,z = 1}.
(c) A sphere is embedded into R? by the map ¢, which takes the point (6, ¢) € S to
the point (x,y,z) € R3, where

X = Rcos¢sind,
y=Rsingsind,

z = Rcos0.
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Pull back w and find the 2-form ¢*w on the sphere. (Hint: the form ¢*w is both famil-
iar and simple. If you end up with an intractable mess of trigonometric functions,
you have made an algebraic error.)

(d) By exploiting the result of part (c), or otherwise, evaluate the integral

b = / w
S2(R)

where S2(R) is the surface of a 2-sphere of radius R centred at the origin.

The following four exercises all explore the same geometric facts relating to Stokes’
theorem and the area 2-form of a sphere, but in different physical settings.

Exercise 12.8: A flywheel of moment of inertia / can rotate without friction about an
axle whose direction is specified by a unit vector n (Figure 12.13). The flywheel and axle
are initially stationary. The direction n of the axle is made to describe a simple closed
curve y = 92 on the unit sphere, and is then left stationary.

Show that once the axle has returned to rest in its initial direction, the flywheel has
also returned to rest, but has rotated through an angle 6 = Area(2) when compared
with its initial orientation. The area of €2 is to be counted as positive if the path y
surrounds it in a clockwise sense, and negative otherwise. Observe that the path y
bounds two regions with opposite orientations. Taking into account the fact that we
cannot define the rotation angle at intermediate steps, show that the area of either region
can be used to compute 6, the results being physically indistinguishable. (Hint: show
that the component L; = I (s 4 ¢ cos 0) of the flywheel’s angular momentum along the
axle is a constant of the motion.)

Exercise 12.9: A ball of unit radius rolls without slipping on a table. The ball moves in
such a way that the point in contact with table describes a closed path y = 92 on the
ball. (The corresponding path on the table will not necessarily be closed.) Show that the
final orientation of the ball will be such that it has rotated, when compared with its initial

Figure 12.13  Flywheel.
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Figure 12.14 Serret-—Frenet frames.

orientation, through an angle ¢ = Area(€2) about a vertical axis through its centre. As in
the previous problem, the area is counted positive if y encircles €2 in an anticlockwise
sense. (Hint: recall the no-slip rolling condition é + Y cos6 = 0 from (11.29).)

Exercise 12.10: Let a curve in R3 be parametrized by its arc-length s as r(s). Then the
unit tangent to the curve is given by

. def dr
ts) =r = —.
() =r ds

The principal normal n(s) and the binormal b(s) to the curve are defined by the require-
ment that t = xn with the curvature « (s) positive, and that t, nand b = t x n form a
right-handed orthonormal frame (Figure 12.14).

(a) Show that there exists a scalar t(s), the forsion of the curve, such that t, n and b
obey the Serret—Frenet relations

t 0 « 0\ [t
njl=|-« 0 < n
b 0 -7 0/ \b

(b) Any pair of mutually orthogonal unit vectors ej (s), €2 (s) perpendicular to t and such
that e; x e, = t can serve as an orthonormal frame for vectors in the normal plane.
A basis pair ey, e; with the property

é-ep—€-e1 =0

is said to be parallel, or Fermi—Walker, transported along the curve. In other words,
a parallel-transported 3-frame t, e, e, slides along the curve r(s) in such a way that
the component of its angular velocity in the t direction is always zero. Show that the
Serret—Frenet frame e; = n, e; = b is not parallel transported, but instead rotates
at angular velocity 6 = t with respect to a parallel-transported frame.

(c) Consider a finite segment of the curve such that the initial and final Serret—Frenet
frames are parallel, and so t(s) defines a closed path y = 92 on the unit sphere. Fill
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in the line-by-line justifications for the following sequence of manipulations:

1 .
/rds:—/(b~l'l—n~b)ds
Y 2Jy

=%/y(bodn—n'db)

=l/(db-dn—dn~db) ()
2 Ja

= l/{(a’b~t)(t-a’n) — (dn - t)(t - db)}
2 Ja

= l/{(b-a’t)(dt'n) — (n-dt)(dt-b)}
2 Jg

1
= —— t-(dt xdt
2/;2 (dt x dt)

= —Area(Q).

(The line marked ‘(%) is the one that requires most thought. How can we define “b”
and “n” in the interior of Q7?)

(d) Conclude that a Fermi—Walker transported frame will have rotated through an angle
6 = Area(f2), compared to its initial orientation, by the time it reaches the end of
the curve.

The plane of transversely polarized light propagating in a monomode optical fibre is
Fermi—Walker transported, and this rotation can be studied experimentally.’

Exercise 12.11: Foucault’s pendulum (in disguise). A particle of mass m is constrained
by a pair of frictionless plates to move in a plane IT that passes through the origin O.
The particle is attracted to O by a force —«r, and it therefore executes harmonic motion
within IT. The orientation of the plane, specified by a normal vector n, can be altered in
such a way that IT continues to pass through the centre of attraction O.

(a) Show that the constrained motion is described by the equation
mr + kr = A(f)n,

and determine A(¢) in terms of m, n and ¥.
(b) Initially the particle motion is given by

r(t) = Acos(wt + ¢).

5 A. Tomita, R. Y. Chao, Phys. Rev. Lett., 57 (1986) 937.
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Now assume that n changes direction slowly compared to the frequency w = /k /m.
Seek a solution in the form

r(t) = A(t) cos(wt + ¢),

and show that A = —n(i1 - A). Deduce that |A| remains constant, and so A = @ x A
for some angular velocity vector @. Show that @ is perpendicular to n.

(c) Show that the results of part (b) imply that the direction of oscillation A is “par-
allel transported”, in the sense of the previous problem. Conclude that if n slowly
describes a closed loop ¥ = 92 on the unit sphere, then the direction of oscillation
A ends up rotated through an angle 6 = Area(<2).

The next exercise introduces a clever trick for solving some of the nonlinear partial
differential equations of field theory. The class of equations to which it and its general-
izations are applicable is rather restricted, but when they work they provide a complete
multi-soliton solution.

Problem 12.12: In this problem you will find the spin field n(x) that minimizes the
energy functional

1
E[n] = 5/ (|w‘|2 £ Va2 + |Vn3|2> dx'di?
RZ

for a given positive winding number N.

(a) Use the results of Exercise 12.6 to write the winding number N, defined in (12.35),
and the energy functional £[n] as

4
4N = | —————— @150 — d19¢) di'dx®
T /(1+€2+n2)2(1§27) 11028) dx dx”,

_ 1 4 2 2 2 2\ 1,2
e =5 [ e (7 + 6 + @i+ @) dela,

where £ and 7 are stereographic coordinates on S? specifying the direction of the
unit vector n.
(b) Deduce the inequality

def 1

4
E—4nN = — (3 +id)(E +in) P dx e > 0.
2[ Ty @ +io)E +im

(c) Deduce that, for winding number N > 0, the minimum-energy solutions have energy
E = 4z N and are obtained by solving the first-order linear partial differential
equation

0 0 )
< + )(§+m)=0.

axl o2
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(d) Solve the partial differential equation in part (c), and hence show that the minimal-
energy solutions with winding number N > 0 are given by

(z—al)...(z—aN)
(z—b1)...(z—by)’

E+in=2A

wherez = x! +ix?, and A, ay, ...,ay and by, . . ., by are arbitrary complex numbers
— except that no @ may coincide with any b. This is the solution that we displayed at
the end of Section 12.4.2.

(e) Repeat the analysis for N < 0. Show that the solutions are given in terms of rational

functions of z = x! — ix2.

The idea of combining the energy functional and the topological charge into a single,
manifestly positive, functional is due to Evgueny Bogomol’nyi. The resulting first-order
linear equation is therefore called a Bogomolnyi equation. If we had tried to find a solution
directly in terms of n, we would have ended up with a horribly nonlinear second-order
partial differential equation.

Exercise 12.13: Lobachevski space. The hyperbolic plane of Lobachevski geometry can
be realized by embedding the Z > R branch of the two-sheeted hyperboloid Z* — X2 —
Y? = R? into a Minkowski space with metric ds* = —dZ? + dX? + dY>.

We can parametrize the embedded surface by making an “imaginary radius” version
of the stereographic map, in which the point P on the hyperboloid is labelled by the
coordinates of the point Q on the XY -plane (see Figure 12.15).

z

Figure 12.15 A slice through the embedding of two-dimensional Lobachevski space into three-
dimensional Minkowski space, showing the stereographic parametrization of the embedded space
by the Poincaré disc X%+ v% < R2
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(i) Show that this embedding induces the metric

4R*
g(, )= S(dX ®@dX +dY ®dY), X*+Y? <R,

(RZ _X2 _ Y2)

of the Poincaré disc model (see Problem 1.7) on the hyperboloid.
(i) Use the induced metric to show that the area of a disc of hyperbolic radius p is
given by

Area = 47 R%sinh? (%) — 27R%(cosh(p/R) — 1),
and so is only given by 77 p? when p is small compared to the scale R of the hyperbolic

space. It suffices to consider circles with their centres at the origin. You will first
need to show that the hyperbolic distance p from the centre of the disc to a point at

Euclidean distance 7 is
R+r
=Rln .
g (R - r)

Exercise 12.14: Faraday’s “flux rule” for computing the electromotive force £ in a circuit
containing a thin moving wire is usually derived by the following manipulations:

55% (E+v xB)-dr
Q2

=/curlE'dS—‘¢ B (v xdr)
Q aQ

B
:—/—-dS—y{ B (v x dr)
Q 0t 90

d
=—— | B-dS.
dt/gz

(a) Show that if we parametrize the surface Q2 as x* (u, v, t), with u, v labelling points
on €2, and t parametrizing the evolution of €2, then the corresponding manipulations
in the covariant differential-form version of Maxwell’s equations lead to

d
—/F:fEVFZ/iVFZ— f,
dt Jo Q a0 a0

where V* = 9x* /ot and f = —ipF.
(b) Show that if we take 7 to be the proper time along the world-line of each element
of , then V' is the 4-velocity

1
V= ——(1,v),
V1 —v2

and f = —iy F becomes the 1-form corresponding to the Lorentz-force 4-vector.
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It is not clear that the terms in this covariant form of Faraday’s law can be given any
physical interpretation outside the low-velocity limit. When parts of 9<2 have different
velocities, the relation of the integrals to measurements made at fixed coordinate time
requires thought.”

The next pair of exercises explores some physics appearances of the continuum Hopf
linking number (12.65).

Exercise 12.15: The equations governing the motion of an incompressible inviscid fluid
are V - v = 0 and Euler’s equation

DV ger 0V
— = — +(v-V)v=-VP,
Dt ot ( )
Recall that the operator d/d¢ + v - V, here written as D/Dt, is called the convective

derivative.

(a) Take the curl of Euler’s equation to show that if @ = V x v is the vorticity then

Do _ 90 v V)= (@ Vv
Dt~ 3t h ’

(b) Combine Euler’s equation with part (a) to show that

0= o3 )]
—WV-w)=V-jo|=v"-P];.
Dt 2

(c) Show that if 2 is a volume moving with the fluid, and /" is a scalar function, then

d (o
E/Qf(r,t)dV_/QDt dv.

(d) Conclude that when w is zero at infinity the Aelicity

1=/vo(va)dV=fv~de

is a constant of the motion.

The helicity measures the Hopf linking number of the vortex lines. The discovery’ of
its conservation launched the field of topological fluid dynamics.

Exercise 12.16: Let B =V x A and E = —0A /9t — V¢ be the electric and magnetic
fields in an incompressible and perfectly conducting fluid. In such a fluid, the co-moving
electromotive force E 4 v x B must vanish everywhere.

6 See E. Marx, J. Franklin Inst., 300 (1975) 353.
7 H. K. Moffatt, J. Fluid Mech., 35 (1969) 117.



448 12 Integration on manifolds
(a) Use Maxwell’s equations to show that
0A
— =vXx (VxA)—Vog,
ot
oB
— =V x (v x B).
ot
(b) From part (a) show that the convective derivative of A - B is given by

D
E(A-B)=V~{B(A'V_¢)}'

(c) By using the same reasoning as in the previous problem, and assuming that B is zero
at infinity, conclude that Woltjer s invariant,

/(A-B) av = /e,j,{AiajAkd% = /AF,

is a constant of the motion.

This result shows that the Hopf linking number of the magnetic field lines is independent
of time. It is an essential ingredient in the geodynamo theory of the Earth’s magnetic
field.
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An introduction to differential topology

Topology is the study of the consequences of continuity. We all know that a continuous
real function defined on a connected interval and positive at one point and negative
at another must take the value zero at some point between. This fact seems obvious
— although a course of real analysis will convince you of the need for a proof. A less
obvious fact, but one that follows from the previous one, is that a continuous function
defined on the unit circle must posses two diametrically opposite points at which it
takes the same value. To see that this is so, consider /(6 + &) — £ (0). This difference
(if not initially zero, in which case there is nothing further to prove) changes sign as
6 is advanced through 7, because the two terms exchange roles. It was therefore zero
somewhere. This observation has practical application in daily life: our local coffee shop
contains four-legged tables that wobble because the floor is not level. They are round
tables, however, and because they possess no misguided levelling screws all four legs
have the same length. We are therefore guaranteed that by rotating the table about its
centre through an angle of less than 7 /2 we will find a stable location. A ninety-degree
rotation interchanges the pair of legs that are both on the ground with the pair that are
rocking, and at the change-over point all four legs must be simultaneously on the ground.

Similar effects with a practical significance for physics appear when we try to extend
our vector and tensor calculus from a local region to an entire manifold. A smooth field
of vectors tangent to the sphere S> will always possess a zero — i.e. a point at which
the vector field vanishes. On the torus 72, however, we can construct a nowhere-zero
vector field. This shows that the global topology of the manifold influences the way in
which the tangent spaces are glued together to form the tangent bundle. To study this
influence in a systematic manner we need first to understand how to characterize the
global structure of a manifold, and then to see how this structure affects the mathematical
and physical objects that live on it.

13.1 Homeomorphism and diffeomorphism

In the previous chapter we met with a number of topological invariants associated with
mappings. These homotopy invariants were unaffected by continuous deformations of
a map, and served to distinguish between topologically distinct mappings. Similarly,
homology invariants help classify topologically distinct manifolds. The analogue of the
winding number is the set of Betti numbers of a manifold. If two manifolds have different
Betti numbers they are certainly distinct. Unfortunately, if two manifolds have the same

449
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Betti numbers, we cannot be sure that they are topologically identical. It is a Holy Grail
of topology to find a complete set of invariants such that having them all coincide would
be enough to say that two manifolds were topologically the same.

In the previous paragraph we were deliberately vague in our use of the terms “distinct”
and the “same”. Two topological spaces (spaces equipped with a definition of what is
to be considered an open set) are regarded as being the “same”, or homeomorphic,
if there is a one-to-one, onto, continuous map between them whose inverse is also
continuous. Manifolds come with the additional structure of differentiability: we may
therefore talk of “smooth” maps, meaning that their expression in coordinates is infinitely
(C®) differentiable. We regard two manifolds as being the “same”, or diffeomorphic,
if there is a one-to-one onto C*° map between them whose inverse is also C*°. The
distinction between homeomorphism and diffeomorphism sounds like a mere technical
nicety, but it has consequences for physics. Edward Witten discovered' that there are
992 distinct 11-spheres. These are manifolds that are all homeomorphic to the 11-sphere,
but diffeomorphically inequivalent. This fact is crucial for the cancellation of global
gravitational anomalies in the Eg x Eg or SO(32) symmetric superstring theories.

Since we are interested in the consequences of topology for calculus, we shall restrict
ourselves to the interpretation “same” = diffeomorphic.

13.2 Cohomology

Betti numbers arise in answer to what seems like a simple calculus problem: when can
a vector field whose divergence vanishes be written as the curl of something? We shall
see that the answer depends on the global structure of the space the field inhabits.

13.2.1 Retractable spaces: Converse of Poincaré’s lemma

Poincaré’s lemma asserts that @> = 0. In traditional vector-calculus language this reduces
to the statements curl (grad ¢) = 0 and div (curlw) = 0. We often assume that the
converse is true: if curlv = 0, we expect that we can find a ¢ such that v = grad ¢,
and if div v = 0 that we can find a w such that v = curl w. You know a formula for the
first case:

¢(x):/xv~dx, (13.1)

0

but you probably do not know the corresponding formula for w. Using differential forms,
and provided the space in which these forms live has suitable topological properties, it
is straightforward to find a solution for the general problem: If w is closed, meaning that
dw = 0, find x such that w = d .

' E. Witten, Comm. Math. Phys., 117 (1986) 197.
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The “suitable topological properties” referred to in the previous paragraph is that the
space be retractable. Suppose that the closed form w is defined in a domain 2. We say
that €2 is retractable to the point O if there exists a smooth map ¢, : 2 — Q which
depends continuously on a parameter ¢ € [0, 1] and for which ¢ (x) = x and ¢ (x) = O.
Applying this retraction map to the form, we will then have ¢fw = w and pjo = 0. Let
us set ¢;(x*) = x*(¢). Define n(x, t) to be the velocity-vector field that corresponds to
the coordinate flow:

dx*

= n*(x, 1). (13.2)

An easy exercise, using the interpretation of the Lie derivative in (11.41), shows that

d

5 (#i0) = Ly(@fo). (13.3)

We now use the infinitesimal homotopy relation and our assumption that dow = 0, and
hence (from Exercise 12.3) that d(¢;w) = 0, to write

Ly(¢; @) = (ind + diy)(¢f ©) = dliy(¢fw)]. (13.4)

Using this, we can integrate up with respect to ¢ to find

1
w:¢Tw—g06kw=d</ i,,(q)t*a))dl). (13.5)
0
Thus

1
X :/0 in (] w)dt (13.6)

solves our problem.

This magic formula for x makes use of nearly all the “calculus on manifolds” concepts
that we have introduced so far. The notation is so powerful that it has also suppressed
nearly everything that a traditionally educated physicist would find familiar. We will
therefore unpack the symbols by means of a concrete example. Let us take €2 to be the
whole of R3. This can be retracted to the origin via the map ¢, (x*) = x*(f) = tx**. The
velocity field whose flow gives

x* (@) = tx"(1)

is n*(x, t) = x™ /t. To verity this, compute

dx*™ (1)
dt

=x(1) = %X“(t),
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so x*(¢) is indeed the solution to
dxt
— = x@),1).
7 =" (x(0), 1)

Now let us apply this retraction to w = Adydz + Bdzdx + Cdxdy with

04 0B aC
do=|—+—+ — ) dxdydz = 0.
ax  dy 0z

The pull-back ¢} gives
oo = A(tx, ty, 1z)d (ty)d (tz) + (two similar terms).
The interior product with
1 ad a 0
n= 7 <xa +y5 +z£)

then gives

inpfw = tA(tx, ty, tz)(y dz — z dy) + (two similar terms).

Finally we form the ordinary integral over ¢ to get

1
X =/O in(pf w)dt

1
= / A(tx, 1y, tz)tdti| (ydz — zdy)

1
+ / B(tx, 1y, tz)tdti| (zdx — xdz)
0

1
+ f C(tx, by, tz)tdt:| (xdy — ydx).
0

(13.7)

(13.8)

(13.9)

(13.10)

(13.11)

In this expression the integrals in the square brackets are just numerical coefficients, i.e.
the “dt” is not part of the 1-form. It is instructive, because not entirely trivial, to let “d”
act on x and verify that the construction works. If we focus first on the term involving

A, we find that d[ fol A(tx, ty, tz)t dt](ydz — zdy) can be grouped as

! o[ 94 94 94
2L+t |\ x— +y—+z— )¢ dt|dydz
0 ax ay 0z

1
04
— / 2 ™ dt (xdydz + ydzdx + zdxdy).
0 X

(13.12)
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The first of these terms is equal to

1
|:/ % {ﬂA(tx, ty, tz)] dt] dydz = A(x,y,x) dydz, (13.13)
0

which is part of w. The second term will combine with the terms involving B, C, to
become

',/84 3B dC
- " — 4+ — + — ) dt (xdydz + ydzdx + zdxdy), (13.14)
0 ax  ady 0z

which is zero by our hypothesis. Putting together the 4, B, C terms does, therefore,
reconstitute w.

13.2.2 Obstructions to exactness

The condition that €2 be retractable plays an essential role in the converse to Poincaré’s
lemma. In its absence, dw = 0 does not guarantee that there is an x such that w = dx.
Consider, for example, a vector field v with curlv = 0 in a two-dimensional annulus
Q = {Ry < |r|] < Ry}. In the annulus (a non-retractable space) the condition that
curl v = 0 does not prohibit §. v - dr being non-zero for some closed path I encircling
the central hole. When this line integral is non-zero then there can be no single-valued
x such that v = grad x. If there were such a x, then

%V-dr = x(0) — x(0) = 0. (13.15)
r

A non-zero value for 351“ v - dr therefore constitutes an obstruction to the existence of a
x such that v = grad .

Example: The sphere S? is not retractable: any attempt to pull its points back to the north
pole will necessarily tear a hole in the surface somewhere. Related to this fact is that
whilst the area 2-form sin 6d6d¢ is closed, it cannot be written as the d of something.
We can try to write

sinfdod¢ = d[(1 — cos0)d¢], (13.16)
but the 1-form (1 — cos 8)d¢ is singular at the south pole, 8 = w. We could try

sinfdbd¢ = d[(—1 — cos 0)d¢], (13.17)
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but this is singular at the north pole, 8 = 0. There is no escape. We know that
/ sinf0dfd¢ = 4m, (13.18)
S2

but if sin 0d0d¢ = d x then Stokes’ theorem says that

fsz sin0dOde — X =0 (13.19)

because 35> = . Again, a non-zero value for | @ over some boundary-less region has
provided an obstruction to finding an x such that w = dx.

13.2.3 De Rham cohomology

We have seen that, sometimes, the condition dw = 0 allows us to find a x such that
w = dyx, and sometimes it does not. If the region in which we seek x is retractable,
we can always construct it. If the region is not retractable there may be an obstruction
to the existence of x. In order to describe the various possibilities we introduce the
language of cohomology, or more precisely de Rham cohomology, named for the Swiss
mathematician Georges de Rham who did the most to create it.

For simplicity, suppose that we are working in a compact manifold M without bound-
ary. Let Q7(M) = AP(T*M) be the space of all smooth p-form fields. It is a vector
space over R: we can add p-form fields and multiply them by real constants, but, as
is the vector space C°°(M) of smooth functions on M, it is infinite dimensional. The
subspace ZP (M) of closed forms — those with dw = 0 — is also an infinite-dimensional
vector space, and the same is true of the space B” (M) of exact forms — those that can be
written as w = dx for some globally defined (p — 1)-form yx. Now consider the space
H? = 7P /BP which is the space of closed forms modulo exact forms. In this space we do
not distinguish between two forms, w1 and w, when thereisa x, such thatw; = wy+d .
We say that w; and w, are cohomologous in HP (M), and write w1 ~ w;. We will use
the symbol [w] to denote the equivalence class of forms cohomologous to w. Now a
miracle happens! For a compact manifold M, the space H” (M) is finite dimensional! It
is called the p-th (de Rham) cohomology space of the manifold, and depends only on
the global topology of M. In particular, it does not depend on any metric we may have
chosen for M.

Sometimes we write HgR (M,R) to make clear that we are dealing with de Rham
cohomology, and that we are working with vector spaces over the real numbers. This is
because there is also a valuable space Hé’R (M, Z), where we only allow multiplication
by integers.

The cohomology space HgR(M ,R) codifies all potential obstructions to solving the
problem of finding a (p — 1)-form x such that d x = w: we can find such a yx if and only
if w is cohomologous to zero in HY, (M, R). If HY (M, R) = {0}, which is the case if M
is retractable, then all closed p-forms are cohomologous to zero. If HgR (M,R) # {0},
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then some closed p-forms w will not be cohomologous to zero. We can test whether

wo~0eH ([;R (M,R) by forming suitable integrals.

13.3 Homology

To understand what the suitable integrals, of the last section are, we need to think about
the spaces that are the cohomology spaces’ vector-space duals. These homology spaces
are simple to understand pictorially.

The basic idea is that, given a region 2, we can find its boundary 9€2. Inspection of
a few simple cases will soon lead to the conclusion that the “boundary of a boundary”
consists of nothing. In symbols, 8> = 0. The statement “9%> = 0” is clearly analogous
to “d? = 0”, and, pursuing the analogy, we can construct a vector space of “regions”
and define two “regions” as being homologous if they differ by the boundary of another
“region”.

13.3.1 Chains, cycles and boundaries

We begin by making precise the vague notions of region and boundary.

Simplicial complexes

The set of all curves and surfaces in a manifold M is infinite dimensional, but the
homology spaces are finite dimensional. Life would be much easier if we could use
finite-dimensional spaces throughout. Mathematicians therefore do what any computa-
tionally minded physicist would do: they approximate the smooth manifold by a discrete
polygonal grid.> Were they interested in distances, they would necessarily use many
small polygons so as to obtain a good approximation to the detailed shape of the mani-
fold. The global topology, though, can often be captured by a rather coarse discretization.
The result of this process is to reduce a complicated problem in differential geometry to
one of simple algebra. The resulting theory is therefore known as algebraic topology.

It turns out to be convenient to approximate the manifold by generalized trian-
gles. We therefore dissect M into line segments (if one-dimensional), triangles (if
two-dimensional), tetrahedra (if three-dimensional) or higher-dimensional p-simplices
(singular: simplex). The rules for the dissection are (see Figure 13.1):

(a) Every point must belong to at least one simplex.
(b) A point can belong to only a finite number of simplices.
(c) Two different simplices either have no points in common, or

2 This discrete approximation leads to what is known as simplicial homology. Simplicial homology is rather
primitive and old fashioned, having been supplanted by singular homology and the theory of CW complexes.
The modern definitions are superior for proving theorems, but are less intuitive, and for smooth manifolds
lead to the same conclusions as the simpler-to-describe simplicial theory.
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T

Figure 13.1 Triangles, or 2-simplices, that are (a) allowed, (b) not allowed in a dissection. In (b)
the problem is that only parts of edges are in common.

P . P
®
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)
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Figure 13.2 A triangulation of the 2-torus. (a) The torus as a rectangle with periodic boundary
conditions: the two edges labelled o will be glued together point-by-point along the arrows when
we reassemble the torus, and so are to be regarded as a single edge. The two sides labelled 8 will
be glued similarly. (b) The assembled torus: all four P’s are now in the same place, and correspond
to a single point.

(i) one is a face (or edge, or vertex) of the other;
(i1) the set of points in common is the whole of a shared face (or edge, or vertex).

The collection of simplices composing the dissected space is called a simplicial complex.
We will denote it by S.

We may not need many triangles to capture the global topology. For example,
Figure 13.2 shows how a two-dimensional torus can be decomposed into two 2-simplices
(triangles) bounded by three 1-simplices (edges) «, B, v, and with only a single 0-simplex
(vertex) P. Computations are easier to describe, however, if each simplex in the decom-
position is uniquely specified by its vertices. For this, we usually need a slightly finer
dissection. Figure 13.3 shows a decomposition of the torus into 18 triangles, each of
which is uniquely labelled by three points drawn from a set of nine vertices. In this
figure vertices with identical labels are to be regarded as the same vertex, as are the
corresponding sides of triangles. Thus, each of the edges P P, P,P3, P3P at the top of
the figure are to be glued point-by-point to the corresponding edges on the bottom of the
figure; similarly along the sides. The resulting simplicial complex then has 27 edges.

We may triangulate the sphere S? as a tetrahedron with vertices Py, Py, P3, P4. This
dissection has six edges: PP, P1P3, P1 P4, P2P3, PoP4, P3P4, and four faces: P, P3P,
P{P3P4, P{P>P4 and P P,P3 (see Figure 13.4).
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Figure 13.3 A second triangulation of the 2-torus.

Figure 13.4 A tetrahedral triangulation of the 2-sphere. The circulating arrows on the faces
indicate the choice of orientation P1 P> P4 and P, P3Py.

p-chains

We assign to simplices an orientation defined by the order in which we write their
defining vertices. The interchange of any pair of vertices reverses the orientation, and
we consider there to be a relative minus sign between oppositely oriented but otherwise
identical simplices: P,P1P3P4 = —P1P>P3P;4.

We now construct abstract vector spaces C,(S,R) of p-chains which have oriented
p-simplices as their basis vectors. The most general elements of C>(S, R), with S being
the tetrahedral triangulation of the sphere S2, would be

a1PrP3Py + apP1 P3Py + a3P1PyPy + a4 P1PrP3, (13.20)

where the coefficients ay, . . ., a4 are real numbers. We regard the distinct faces as being
linearly independent basis elements for C>(S,R). The space is therefore four dimen-
sional. If we had triangulated the sphere so that it had 16 triangular faces, the space C;
would be 16 dimensional.
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Similarly, the general element of C; (S, R) would be
b1 PPy + byP1P3 + b3P1 P4 + bsyPrP3 + b5sPr P4 + bgP3 Py, (13.21)

and so C1 (S, R) is a six-dimensional space spanned by the edges of the tetrahedron. For
Co(S,R) we have

c1P1 4+ Py + ¢c3P3 + 4Py, (13.22)

and so Cy (S, R) is four dimensional, and spanned by the vertices. Our manifold comprises
only the surface of the 2-sphere, so there is no such thing as C3(S, R).

The reason for making the field R explicit in these definitions is that we sometimes
gain more information about the topology if we allow only integer coefficients. The
space of such p-chains is then denoted by C, (S, Z). Because a vector space requires that
coefficients be drawn from a field, these objects are no longer vector spaces. They can
be thought of as either modules — “vector spaces” whose coefficients are drawn from a
ring — or as additive abelian groups.

The boundary operator

We now introduce a linear map 9, : C, — C,_, called the boundary operator. Its
action on a p-simplex is

p+1
P Piy - Pipy = Y (=1 'Py Py Py, (13.23)
j=1

where the “hat” indicates that P;; is to be omitted. The resulting (p — 1)-chain is called
the boundary of the simplex. For example (see Figure 13.5)

02(P2P3Py) = P3Py — P2Py + P2 P,
= P3Py + P4Py + P P3. (13.24)

The boundary of a line segment is the difference of its endpoints

01(P1Py) =P, — Py. (13.25)

@

Figure 13.5 The oriented triangle Py P3P4 has boundary P3Py + P4P> + P P3.
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Figure 13.6 Compatibly oriented simplices.

Finally, for any point,
dP; = 0. (13.26)

Because 9, is defined to be a linear map, when it is applied to a p-chain ¢ = ays1+azs2 +
-+ -+ ays,, where the 5; are p-simplices, we have d,c = 19,51 +a20p52 + - - - + @, 9p5y.

When we take the “9” of a chain of compatibly oriented simplices that together make
up some region, the internal boundaries cancel in pairs, and the “boundary” of the chain
really is the oriented geometric boundary of the region. For example, in Figure 13.6 we
find that

0(P1PsPy + PyPsP4 + P3P4Ps + P1P3Ps) = P1P3 + P3Py + P4Py + P2 Py,
(13.27)

which is the anticlockwise directed boundary of the square.

For each of the examples above, we find that 9,13, s = 0. From the definition (13.23)
we can easily establish that this identity holds for any p-simplex s. As chains are sums
of simplices and 9, is linear, it remains true for any ¢ € C,. Thus 9,19, = 0. We will
usually abbreviate this statement as 8% = 0.

Cycles, boundaries and homology

A chain complex is a doubly infinite sequence of spaces (these can be vector spaces,
modules, abelian groups, or many other mathematical objects) such as ..., C_,, C_y,
Co, C1, Cy .. ., together with structure-preserving maps
9 3 3 32

o35 00, (13.28)
possessing the property that 9,19, = 0. The finite sequence of C,’s that we con-
structed from our simplicial complex is an example of a chain complex where C, is
zero-dimensional for p < 0 orp > d. Chain complexes are a useful tool in mathematics,
and the ideas that we explain in this section have many applications.

Given any chain complex we can define two important linear subspaces of each of
the C,’s. The first is the space Z, of p-cycles. This consists of those z € C, such
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that d,z = 0. The second is the space B, of p-boundaries, and consists of those b €
Cp such that b = 9,11c for some ¢ € C,1. Because 32 = 0, the boundaries By
constitute a subspace of Z,. From these spaces we form the quotient space H, = Z,/B,,,
consisting of equivalence classes of p-cycles, where we deem z| and z; to be equivalent,
or homologous, if they differ by a boundary: z; = z; + dc. We write the equivalence
class of cycles homologous to z; as [z;]. The space H,, or, more accurately, H,(R), is
called the p-th (simplicial) homology space of the chain complex. It becomes the p-th
homology group if R is replaced by the integers.

‘We can construct these homology spaces for any chain complex. When the chain com-
plex is derived from a simplicial complex decomposition of a manifold M a remarkable
thing happens. The spaces Cp, Z, and B, all depend on the details of how the manifold M
has been dissected to form the simplicial complex S. The homology space H,,, however,
is independent of the dissection. This is neither obvious nor easy to prove. We will rely
on examples to make it plausible. Granted this independence, we will write H,(M), or
H,(M,R), so as to make it clear that /1, is a property of M. The dimension b, of H,(M)
is called the p-th Betti number of the manifold:

b, & dim H,(M). (13.29)

Example: The 2-sphere. For the tetrahedral dissection of the 2-sphere, any vertex is P;
homologous to any other, as P; — P; = d(P;P;) and all P;P; belong to C;. Furthermore,
aP; = 0, so Hy(S?) is one-dimensional. In general, the dimension of Hy(M) is the
number of disconnected pieces making up M. We will write Hy(S?) = R, regarding R
as the archetype of a one-dimensional vector space.

Now let us consider H; (S2). We first find the space of 1-cycles Z;. An element of C}
will be in Z; only if each vertex that is the beginning of an edge is also the end of an
edge, and that these edges have the same coefficient. Thus,

z] = PoP3 + P3Ps + P4P>
is a cycle, as is
zp = P1P4 + P4P> + P> Py.

These are both boundaries of faces of the tetrahedron. It should be fairly easy to convince
yourself that Z; is the space of linear combinations of these together with boundaries of
the other faces

z3 = P1P4 + P4P3 + P3P,
z4 = P1P3 + P3P + P, P.

Any three of these are linearly independent, and so Z is three-dimensional. Because all of
the cycles are boundaries, every element of Z; is homologous to 0, and so H; (S%) = {0}.
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(¢4

Figure 13.7 A basis of 1-cycles on the 2-torus.

We also see that H>(S2) = R. Here the basis element is
PyP3P4 — P\ P3Py + P1PyPy — P P, P3, (13.30)

which is the 2-chain corresponding to the entire surface of the sphere. It would be the
boundary of the solid tetrahedron, but does not count as a boundary because the interior
of the tetrahedron is not part of the simplicial complex.

Example: The torus. Consider the 2-torus T 2 We will see that Hy(T?) = R, H,(T?) =
R? = R® R and H>(T?) = R. A natural basis for the two-dimensional H; (T%) consists
of the 1-cycles «, § portrayed in Figure 13.7.

The cycle y that, in Figure 13.2, winds once around the torus is homologous to o + S.
In terms of the second triangulation of the torus (Figure 13.3) we would have

a = P\P, + P,P3 + P3Py,
B = P{P7 + P7P4 + P4P, (13.31)

and

y = P1Pg + P3P + PPy
=a + B+ d(P1PsPy + PsPoPy + PyPoP3 + - - -). (13.32)

Example: The projective plane. The projective plane RP? can be regarded as a rectangle
with diametrically opposite points identified. Suppose we decompose RP? into eight
triangles, as in Figure 13.8.

Consider the “entire surface”

0 = P|PyP5s 4+ P\PsPy+ - -- € C2(RP?), (13.33)
consisting of the sum of all eight 2-simplices with the orientation indicated in the figure.

Letaw = PPy + PyP3 and B = P P4+ P4Pj3 be the sides of the rectangle running along
the bottom horizontal and left vertical sides of the figure, respectively. In each case they
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Figure 13.8 A triangulation of the projective plane.

run from P; to P3. Then

0(0) = P1Py + PyP3 + P3Py + P4P1 + P1Py + P2P3 + P3Py + P4 Py
—2(a—B) £0. (13.34)

Although RP? has no actual edge that we can fall off, from the homological viewpoint
it does have a boundary! This represents the conflict between local orientation of each
of the 2-simplices and the global non-orientability of RP?. The surface o of RP? is not
a two-cycle, therefore. Indeed Z, (RP?), and a fortiori H>(RP?), contain only the zero
vector. The only 1-cycle is @ — 8 which runs from P; to Py via P, P3 and P4, but (13.34)
shows that this is the boundary of 1o. Thus /> (RP%,R) = {0} and H; (RP2,R) = {0},
while Hy(RP?,R) = R.

We can now see the advantage of restricting ourselves to integer coefficients. When
we are not allowed fractions, the cycle y = (o — ) is no longer a boundary, although
2(a — p) is the boundary of o. Thus, using the symbol Z; to denote the additive group
of the integers modulo 2, we can write H; (RP?,Z) = Z,. This homology space is a set
with only two members {0y, 1y }. The finite group H; (RP2,7Z) = 7, is said to be the
torsion part of the homology — a confusing terminology because this torsion has nothing
to do with the torsion tensor of Riemannian geometry.

We introduced real-number homology first, because the theory of vector spaces is
simpler than that of modules, and more familiar to physicists. The torsion is, however,
invisible to the real-number homology. We were therefore buying a simplification at the
expense of throwing away information.

The Euler character

The sum

d
x (M) & 3 (=1 dim Hy (M, R) (13.35)

p=0
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is called the Euler character of the manifold M. For example, the 2-sphere has x (S%) =
2, the projective plane has x (RP?) = 1 and the n-torus has x (7”) = 0. This number
is manifestly a topological invariant because the individual dim H, (M, R) are. We will
show that the Euler character is also equal to V' — E 4+ F — - - - where V' is the number of
vertices, E is the number of edges and F is the number of faces in the simplicial dissection.
The dots are for higher dimensional spaces, where the alternating sum continues with
(—1)? times the number of p-simplices. In other words, we are claiming that

d
X(M) = " (=1) dim C,(M). (13.36)
p=0

It is not so obvious that this new sum is a topological invariant. The individual dimensions
of the spaces of p-chains depend on the details of how we dissect M into simplices. If
our claim is to be correct, the dependence must somehow drop out when we take the
alternating sum.

Auseful tool for working with alternating sums of vector-space dimensions is provided
by the notion of an exact sequence. We say that a set of vector spaces V), with maps
Jo o Vp = Vpy1 is an exact sequence if Ker (f,) = Im (f,—1). For example, if all
cycles were boundaries then the set of spaces C, with the maps 9, taking us from
Cp to C,—1 would constitute an exact sequence — albeit with p decreasing rather than
increasing, but this is irrelevent. When the homology is non-zero, however, we only have
Im (f,—1) C Ker (f,), and the number dim /), = dim (Ker f,) — dim (Imf, 1) provides
a measure of how far this set inclusion falls short of being an equality.

Suppose that

{0} f, Vi N, v, RN/ v, Jn, {0} (13.37)

is a finite-length exact sequence. Here, {0} is the vector space containing only the zero
vector. Being linear, fy maps 0 to 0. Also f,, maps everything in 7, to 0. Since this last
map takes everything to zero, and what is mapped to zero is the image of the penultimate
map, we have V,, = Imf,_;. Similarly, the fact that Ker fj = Imfy = {0} shows that
Imf; € V; is an isomorphic image of V. This situation is represented pictorially in
Figure 13.9.

Now the range—null-space theorem tells us that

dim V), = dim (Imf,) + dim (Ker f,)
= dim (Imf,) + dim (Imf,_1). (13.38)

When we take the alternating sum of the dimensions, and use dim (Imf)) = 0 and
dim (Im ;) = 0, we find that the sum telescopes to give

> (=17 dim ¥, = 0. (13.39)
p=0
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Figure 13.9 A schematic representation of an exact sequence.

The vanishing of this alternating sum is one of the principal properties of an exact
sequence.

Now, for our sequence of spaces C, with the maps 9, : C, — C,_1, we have
dim (Ker d,) = dim (Im d,41) + dim /. Using this and the range—null-space theorem
in the same manner as above, shows that

d d
Z(—l)pdim Cp(M) = Z(—l)pdime(M). (13.40)
p=0 p=0

This confirms our claim.

Exercise 13.1: Count the number of vertices, edges and faces in the triangulation we
used to compute the homology groups of the real projective plane RP?. Verify that
V — E + F =1, and that this is the same number that we get by evaluating

x (RP?) = dim Hy(RP?,R) — dim H; (RP?, R) + dim Hy (RP?, R).
Exercise 13.2: Show that the sequence
0> 13w

of vector spaces being exact means that the map ¢ : ' — W is one-to-one and onto,
and hence an isomorphism V' = W.

Exercise 13.3: Show that a short exact sequence
0> 4585 C— {0

of vector spaces is just a sophisticated way of asserting that C = B/A. More precisely,
show that the map i is injective (one-to-one), so 4 can be considered to be a subspace
of B. Then show that the map = is surjective (onto), and can be regarded as projecting
B onto the equivalence classes B/A.
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Exercise 13.4: Let o : A — B be a linear map. Show that
{0)—>Kera - 4 -5 B 5 Cokera — {0}

is an exact sequence. (Recall that Coker o« = B/Im «.)

13.3.2 Relative homology

Mathematicians have invented powerful tools for computing homology. In this section
we introduce one of them: the exact sequence of a pair. We describe this tool in detail
because a homotopy analogue of this exact sequence is used in physics to classify defects
such as dislocations, vortices and monopoles. Homotopy theory is, however, harder, and
requires more technical apparatus than homology, so the ideas are easier to explain here.

We have seen that it is useful to think of complicated manifolds as being assembled
out of simpler ones. We constructed the torus, for example, by gluing together edges of
a rectangle. Another construction technique involves shrinking parts of a manifold to a
point. Think, for example, of the unit 2-disc as being a circle of cloth with a drawstring
sewn into its boundary. Now pull the string tight to form a spherical bag. The continuous
functions on the resulting 2-sphere are those continuous functions on the disc that took
the same value at all points on its boundary. Recall that we used this idea in Section
12.4.2, where we claimed that those spin textures in R? that point in a fixed direction at
infinity can be thought of as spin textures on the 2-sphere. We now extend this shrinking
trick to homology.

Suppose that we have a chain complex consisting of spaces C,, and boundary opera-
tions d,. We denote this chain complex by (C, 9). Another set of spaces and boundary
operations (C’, d") is a subcomplex of (C, d) ifeach C,, € C, and 8}’, (¢) = dy(c) for each
ce C]’,. This situation arises if we have a simplicial complex S and some subset S’ that
is itself a simplicial complex, and take C[’, = Cp(S").

Since each C 1/7 is a subspace of C, we can form the quotient spaces C,/ C1/7 and make
them into a chain complex by defining, for ¢ + C,, € C,/C,,

dp(c+C)) = e+ Cp . (13.41)

It easy to see that this operation is well defined (i.e. it gives the same output independent
of the choice of representative in the equivalence class ¢+ CIQ), that 51, :Cp—> Cpyisa
linear map, and that 5p_15p = 0. We have constructed a new chain complex (C/C’, 9).
We can therefore form its homology spaces in the usual way. The resulting vector space,
or abelian group, H,(C/C’) is the p-th relative homology group of C modulo C'. When
C’ and C arise from simplicial complexes S C S, these spaces are what remains of
the homology of S after every chain in S’ has been shrunk to a point. In this case, it is
customary to write H,(S,S") instead of H,(C/C’), and similarly write the chain, cycle
and boundary spaces as C,,(S,S"), Z,(S,S") and B, (S, S") respectively.
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Example: Constructing the 2-sphere S* from the 2-ball (or disc) B>. We regard B> to
be the triangular simplex PP, P3, and its boundary, the 1-sphere or circle S I to be the
simplicial complex containing the points Py, P>, P3 and the sides P1 P, P,P3, P3P, but
not the interior of the triangle. We wish to contract this boundary complex to a point, and
form the relative chain complexes and their homology spaces. Of the spaces we quotient
by, Co(S 1) is spanned by the points P;, P>, P3, the 1-chain space C;(S 1) is spanned by
the sides P1P;, P2 P3, P3P, while Cy (Sl) = {0}. The space of relative chains C; (B1 ,8h
consists of multiples of P1P2P3 + Co(S 1 ), and the boundary

52(1’11’21’3 + Cz(Sl)) = (PyP3 + P3Py + P1Py) + C1(Sh) (13.42)

is equivalent to zero because P,P3 + P3P + P1P; € C (Sl). Thus P1P2P3 + Co(SY)
is a non-bounding cycle and spans H>(B?,S'), which is therefore one-dimensional.
This space is isomorphic to the one-dimensional H; (82). Similarly H; (B2, 81 is zero
dimensional, and so isomorphic to H (S2). This is because all chains in C; (B2, S!) are
in C;(S') and therefore equivalent to zero.

A peculiarity, however, is that Hy (Bz, S is not isomorphic to Hy (Sz) = R. Instead,
we find that Hy(B%, S') = {0} because all the points are equivalent to zero. This vanish-
ing is characteristic of the zeroth relative homology space Hy(S,S’) for the simplicial
triangulation of any connected manifold. It occurs because S being connected means
that any point P in S can be reached by walking along edges from any other point, in
particular from a point P’ in S’. This makes P homologous to P’, and so equivalent to
zero in Hy(S,S").

Exact homology sequence of a pair

Homological algebra is full of miracles. Here we describe one of them. From the ingre-
dients we have at hand, we can construct a semi-infinite sequence of spaces and linear
maps between them

S HL(S) 2D H(S) 2 Hy(S,8) —%
fsp— *p— Ogp—
H,_ (8“2 H, 1 (S) 25 H, (8,8 25
DU Ho(S) S HoS) TS Hos,S) 2% 0y, (13.43)

The maps iy, and 7, are induced by the natural injection i, : C,(S") — C,(S) and
projection 1, : C,(S) = C,(S)/Cp(S"). It is only necessary to check that

Tp—10p = IpTrp,

ip—13p = pip, (13.44)
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to see that they are compatible with the passage from the chain spaces to the homology
spaces. More discussion is required of the connection map 0y, that takes us from one
row to the next in the displayed form of (13.43).

The connection map is constructed as follows: let 4 € H,(S,S"). Then h = z +
B,(S,8") for some cycle z € Z(S,5"), and in turn z = ¢ + C,(S") for some ¢ € C,(S).
(So two choices of representative of equivalence class are being made here.) Now 5pz =0
which means that d,c € Cp—1 (S”). This fact, when combined with Op—10p = 0, tells us
that 9,c € Z,_1(S"). We now define the 9, image of / to be

Bup(h) = dpc + Bp_1(S"). (13.45)

This sounds rather involved, but let’s say it again in words: an element of H, (S, S "Yis a
relative p-cycle modulo S’. This means that its boundary is not necessarily zero, but may
be a non-zero element of C,_1(S"). Since this element is the boundary of something its
own boundary vanishes, so it is a (p — 1)-cycle in C,—1(S”) and hence a representative
of a homology class in H,_1(S"). This homology class is the output of the 3, map.

The miracle is that the sequence of maps (13.43) is exact. It is an example of a standard
homological algebra construction of a long exact sequence out of a family of short exact
sequences, in this case out of the sequences

{0} = Cp(S) = Cp(S) = C,p(S,8") — {0}. (13.46)

Proving that the long sequence is exact is straightforward. All one must do is check each
map to see that it has the properties required. This exercise in what is called diagram
chasing is left to the reader.

The long exact sequence that we have constructed is called the exact homology
sequence of a pair. If we know that certain homology spaces are zero dimensional, it
provides a powerful tool for computing other spaces in the sequence. As an illustration,
consider the sequence of the pair B! and §” for n > 0:

R N0 (AR WIS TG e ) s Hy (8™
——
= {0}
lap—1 nt1y Tl n+1 on dip-1 n
2 Hy B TS, B sm 25 H, o (S")
—— —
= {0}
2w @ty IS B s 2 Hy(s")
N— e ——
= {0} =R
20 Hy(B™Y) IS Hy(B"H, 5™ 29, 10}, (13.47)
———

=R
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We have inserted here the easily established data that /), (B"1) = {0} for p > 0 (which
is a consequence of the (n 4 1)-ball being a contractible space), and that Hy (B™t1) and
Hy(S™) are one-dimensional because they consist of a single connected component. We
read off, from the {0} — 4 — B — {0} exact subsequences, the isomorphisms

H,(B"™,8") = H,_1(S"), p>1, (13.48)
and from the exact sequence
(0} —> H; (B, 8" > R — R — Hy(B"!, 5" — {0} (13.49)

that Hy(B"t!,8") = {0} = Hy(B"t!,8"). The first of these equalities holds because
Hy(B"™!,8™) is the kernel of the isomorphism R — R, and the second because
Ho(B"1,8™) is the range of a surjective null map.

In the case n = 0, we have to modify our last conclusion because Hy (S H=R®Ris
two-dimensional. (Remember that Hy(M) counts the number of disconnected compo-
nents of M, and the 0-sphere S consists of the two disconnected points Py, P, lying in
the boundary of the interval B' = P1P,.) As a consequence, the last five maps in (13.47)
become

0y > H;(B',S")) > R®R — R — Hy(B", 5% — {0} (13.50)

This tells us that #; (B!, S°) = R and Hy(B', S°) = {0}.

Exact homotopy sequence of a pair

The construction of a long exact sequence from a short exact sequence is a very powerful
technique. It has become almost ubiquitous in advanced mathematics. Here we briefly
describe an application to homotopy theory.

We have met the homotopy groups 7, (M) in Section 12.4.4. As we saw there, homo-
topy groups can be used to classify defects or textures in physical systems in which some
field takes values in a manifold M. Suppose that the local physical properties of a system
are invariant under the action of a Lie group G — for example the high-temperature phase
of a ferromagnet may be invariant under the rotation group SO(3). Now suppose that
system undergoes spontaneous symmetry breaking and becomes invariant only under a
subgroup H. Then manifold of inequivalent states is the coset G/H. For a ferromagnet
the symmetry breaking will be from G = SO(3) to H = SO(2) where SO(2) is the group
of rotations about the axis of magnetization. G/H is then the 2-sphere of the direction
in which the magnetization can point.

The group 7,(G) can be taken to be the set of continuous maps of an n-dimensional
cube into the group G, with the surface of the cube mapping to the identity element
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e € G. We similarly define the relative homotopy group 7,(G, H) of G modulo H to be
the set of continuous maps of the cube into G, with all but one face of the cube mapping
to e, but with the remaining face mapping to the subgroup H. It can then be shown that
m,(G/H) = 7, (G, H) (the hard part is to show that any continuous map into G/H can
be represented as the projection of some continuous map into G).

The short exact sequence

e} > H> G5 G/H — (e} (13.51)

of group homomorphisms (where {e} is the group consisting only of the identity element)
then gives rise to the long exact sequence

= m(H) = 1,(G) > 1,(G,H) >y (H) —> - - . (13.52)

The derivation and utility of this exact sequence is very well described in the review
article by Mermin cited in Section 12.4.4. We have therefore contented ourselves with
simply displaying the result so that the reader can see the similarity between the homology
theorem and its homotopy-theory analogue.

13.4 De Rham’s theorem

We still have not related homology to cohomology. The link is provided by integration.
The integral provides a natural pairing of a p-chain ¢ and a p-form w: if ¢ = ays1 +
azsy + - - - + aus,, where the s; are simplices, we set

(c,w) = Za,-/ . (13.53)

The perhaps mysterious notion of “adding” geometric simplices is thus given a concrete
interpretation in terms of adding real numbers.
Stokes’ theorem now reads

(0c,w) = (¢, dw), (13.54)
suggesting thatd and d should be regarded as adjoints of each other. From this observation
follows the key fact that the pairing between chains and forms descends to a pairing
between homology classes and cohomology classes. In other words,

z4+0c,w+dy) = (z,w), (13.55)

so it does not matter which representatives of the two equivalence classes we take when
we compute the integral. Let us see why this is so.
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Suppose z € Z, and wy = w1 +dn. Then

= (z,01) (13.56)

because dz = 0. Thus, all elements of the cohomology class of w return the same answer
when integrated over a cycle.
Similarly, if ® € ZP and ¢; = ¢| + da then

(cz,w)=/w+/ w
c1 da
=/ a)+/dw
cl a
:/CO
c1

= (c1,w),

since dw = 0.

All this means that we can consider the equivalence classes of closed forms composing
HgR (M) to be elements of (H,(M))*, the dual space of H,(M) — hence the “co” in
cohomology. The existence of the pairing does not automatically mean that HdpR is the
dual space to H, (M), however, because there might be elements of the dual space that
are not in Hf;R, and there might be distinct elements of Hfl’R that give identical answers
when integrated over any cycle, and so correspond to the same element in (H,(M))*.
This does not happen, however, when the manifold is compact: De Rham showed that,
for compact manifolds, (H,(M,R))* = Hé’R (M,R). We will not try to prove this, but
be satisfied with some examples.

The statement (H,(M))* = HgR (M) neatly summarizes de Rham’s results, but, in
practice, the more explicit statements given below are more useful.

Theorem: (de Rham) Suppose that M is a compact manifold.
(1) A closed p-form w is exact if and only if

/Z‘w =0 (13.57)

Sor all cycles z; € Z,. It suffices to check this for one representative of each
homology class.
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(2) Ifzi € Zp, i =1,...,dim H), is a basis for the p-th homology space, and a; a set of
numbers, one for each z;, then there exists a closed p-form o such that

/ w = q;. (13.58)
If ' constitute a basis of the vector space HP (M) then the matrix of numbers

Q,jz(zi,d)zfa/ (13.59)

is called the period matrix, and the Q2 themselves are the periods.

Example: Hi(T?) = R@®R is two-dimensional. Since a finite-dimensional vector space
and its dual have the same dimension, de Rham tells us that Hle(T 2) is also two-
dimensional. If we take as coordinates on 72 the angles 6 and ¢, then the basis elements,
or generators, of the cohomology spaces are the forms “d6” and “d¢”. We have inserted
the quotes to stress that these expressions are not the d of a function. The angles 6 and
¢ are not functions on the torus, since they are not single-valued. The homology basis
1-cycles can be taken as zp running from 6 = 0 to 6 = 27 along ¢ = 7, and z4 running
from ¢ = 0to ¢ = 2 along 6§ = m. Clearly, w = apdbf/2mw + agpdp/2m returns
fza ® = ap and f% w = ay for any ag,ay, so {d0/27,d¢/27} and {zg,zy} are dual
bases.

Example: We have earlier computed the homology groups H>(RP?,R) = {0} and
H{(RP2,R) = {0}. De Rham therefore tells us that H>(RP2,R) = {0} and
H'(RP?,R) = {0}. From this we deduce that all closed 1- and 2-forms on the projective
plane RP? are exact.

Example: As an illustration of de Rham part (1), observe that it is easy to show that a
closed 1-form ¢ can be written as df’, provided that [, 0=0 for all cycles. We simply
define f = f;; ¢, and observe that the proviso ensures that /' is not multivalued.

Example: A more subtle problem is to show that, given a 2-form w on §2, with | @o=0
there is a globally defined x such that w = dx. We begin by covering S by two open
sets D, and D_ which have the form of caps such that D includes all of S except for
a neighbourhood of the south pole, while D_ includes all of S except a neighbourhood
of the north pole, and the intersection, Dy N D_, has the topology of an annulus, or
cingulum, encircling the equator (Figure 13.10).

Since both Dy and D_ are contractible, there are one-forms x4 and x_ such that
w=dyyinDy and w = dy_ in D_. Thus,

d(x4 —x-)=0, in Dy ND_. (13.60)
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Figure 13.10 A covering of the 2-sphere by a pair of contractable caps.

Dividing the sphere into two disjoint sets with a common (but opposingly oriented)
boundary I' € Dy N D_, we have

0= / = f(m . (13.61)
52 r

and this is true for any such curve I". Thus, by the previous example,

¢p=x+—x-)=df (13.62)

for some smooth function /" defined in D4+ N D_. We now introduce a partition of unity
subordinate to the cover of S? by Dy and D_. This partition is a pair of non-negative
smooth functions, p+, such that p is non-zero only in D, p_ is non-zero only in D_
and p+ 4+ p— = 1. Now

S =p+f — (=p-)f, (13.63)

and f_ = p4f is a function defined everywhere on D_. Similarly £y = (—p_)f is a
function on D . Notice the interchange of &+ labels! This is not a mistake. The function
£ is not defined outside D4 N D_, but we can define p_f everywhere on D, because
f gets multiplied by zero wherever we have no specific value to assign to it. We now
observe that

X+ + df+ = X- + dff, in D+ ND_. (1364)

Thus w = dy, where x is defined everywhere by the rule

_ ) x++dfy, inDy,

13.65
x—+df—-, inD_. ( )

It does not matter which definition we take in the cingular region D N D_, because the
two definitions coincide there.
The methods of this example can be extended to give a proof of de Rham’s claims.
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13.5 Poincaré duality

De Rham’s theorem does not require that our manifold M be orientable. Our next results
do, however, require orientability. We therefore assume throughout this section that M is
a compact, orientable, D-dimensional manifold. We will also require that M is a closed
manifold — meaning that it has no boundary.

We begin with the observation that if the forms w; and w, are closed then so is w| Aw;.
Furthermore, if one or both of w{, w, is exact then the product w; A w» is also exact. It
follows that the cohomology class [ A w2] of w1 A w, depends only on the cohomology
classes [w;] and [w>]. The wedge product thus induces a map

HP(M,R) x H1(M,R) A HPTI(M,R), (13.66)
which is called the “cup product” of the cohomology classes. It is written as
[w1 A w2] = [w1] U [w2], (13.67)

and gives the cohomology the structure of a graded-commutative ring, denoted by
H*(M,R).

More significant for us than the ring structure is that, given o € HP (M, R), we can
obtain a real number by forming |  @- (This is the point at which we need orientability.
We only know how to integrate over orientable chains, and so cannot even define |, @
when M is not orientable.) We can combine this integral with the cup product to make
any cohomology class [f] € HP~?(M,R) into an element F of (H?(M,R))*. We do
this by setting

F(lgD =foAg (13.68)

foreach [g] € HP (M, R). Furthermore, it is possible to show that we can get any element
F of (HP(M,R))* in this way, and the corresponding [f] is unique. But de Rham has
already given us a way of identifying the elements of (H?(M,R))* with the cycles in
H,(M,R)! There is, therefore, a one-to-one onto map

Hy(M,R) <> HP™P(M,R). (13.69)
In particular the dimensions of these two spaces must coincide:
bp(M) = bp_p(M). (13.70)

This equality of Betti numbers is called Poincaré duality. Poincaré originally conceived
of it geometrically. His idea was to construct from each simplicial triangulation S of
M a new “dual” triangulation S’, where, in two dimensions for example, we place a
new vertex at the centre of each triangle, and join the vertices by lines through each
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side of the old triangles to make new cells — each new cell containing one of the old
vertices. If we are lucky, this process will have the effect of replacing each p-simplex
by a (D — p)-simplex, and so set up a map between C,(S) and Cp_,(S’) that turns the
homology “upside down”. The new cells are not always simplices, however, and it is
hard to make this construction systematic. Poincaré’s original recipe was flawed.

Our present approach to Poincaré’s result is asserting that for each basis p-cycle class
/] there is a unique (up to cohomology) (D — p)-form @} such that

/ny:/M‘”?_p A (13.71)

We can construct this a),l-) physically” by taking a representative cycle zf in the homol-
ogy class [zf ] and thinking of it as a surface with a conserved unit (d — p)-form current
flowing in its vicinity. An example would be the two-form topological current running
along the one-dimensional world-line of a skyrmion. (See the discussion surrounding
Equation (12.64).) The a)iD_p form a basis for H?~P(M,R). We can therefore expand

f ~ fiw? ™ and similarly for the closed p-form g, to obtain

P «

/Mg AN =111, ), (13.72)

where the matrix

def

1) 216 = [ of P A (13.73)

M
is called the intersection form. From its definition we see that / (i, j) satisfies the symmetry
1G,)) = (=1PP7P1G 0. (13.74)

Less obvious is that /(7,/) is an integer that reports the number of times (counted with
orientation) that the cycles zf and sz_p intersect. This latter fact can be understood from

our construction of the cuf) as unit currents localized near the ZID—P cycles. The integrand
in (13.73) is non-zero only in the neighbourhood of the intersections of zf’ with szfp ,
and at each intersection constitutes a D-form that integrates up to give 1.

This claim is illustrated in the left-hand part of Figure 13.11, which shows a region
surrounding the intersection of the o and B 1-cycles on the 2-torus. The coordinate
system has been chosen so that the o cycle runs along the x-axis and the 8 cycle along
the y-axis. Each cycle is surrounded by the narrow shaded regions —w < y < w and
—w < x < w, respectively. To construct suitable forms w, and wg we select a smooth
function f(x) that vanishes for |x| > w and such that [/ dx = 1. In the local chart we
can then set

a)a :f(y) dya
wpg = —f (x) dx,
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N
Figure 13.11 The intersection of two cycles: [(a,8) =1=1—-1+1.

both these forms being closed. The intersection number is given by the integral

I(a,B) = /a)a A wg =/ fx)f(y)dxdy = 1. (13.75)

The right-hand part of Figure 13.11 illustrates why this intersection number depends only
on the homology classes of the two 1-cycles, and not on their particular instantiation as
curves.

We can more conveniently re-express (13.72) in terms of the periods of the forms

e /Zp f=1ahf g€ / b8 =1G.D¢, (13.76)
as
/Mngz %:K(i,j) /pr zj’ﬂ’g’ (13.77)
where
K@) =161 G.DIK D) =17"(,i) (13.78)

is the transpose of the inverse of the intersection-form matrix. The decomposition (13.77)
of the integral of the product of a pair of closed forms into a bilinear form in their periods
is one of the two principal results of this section, the other being (13.70).

In simple cases, we can obtain the decomposition (13.77) by more direct methods.
Suppose, for example, that we label the cycles generating the homology group H (T?)
of the 2-torus as « and B, and that @ and b are closed (da = db = 0), but not necessarily
exact, 1-forms. We will show that

/Tza/\b:/aa/ﬂb—/ab/ﬁa. (13.79)
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<> I U Ip

Figure 13.12 Cut-open torus.

To do this, we cut the torus along the cycles o and 8 and open it out into a rectangle with
sides of length L, and L, (see Figure 13.12). The cycles « and 8 will form the sides of
the rectangle, and we will take them as lying parallel to the x- and y-axes, respectively.
Functions on the forus now become functions on the rectangle. Not all functions on
the rectangle descend from functions on the torus, however. Only those functions that
satisfy the periodic boundary conditions f(0,y) = f(Ly,y) and f'(x,0) = f(x,L,) can
be considered (mathematicians would say “can be /iffed”) to be functions on the torus.
Since the rectangle (but not the torus) is retractable, we can write ¢ = df where f is a
function on the rectangle — but not necessarily a function on the torus, i.e. / will not, in
general, be periodic. Since a A b = d(fb), we can now use Stokes’ theorem to evaluate

/a/\b:/ @y = | . (13.80)
72 T2 T2

The two integrals on the two vertical sides of the rectangle can be combined to a single
integral over the points of the 1-cycle B:

/ , 1fb=/5[f'(Lx,y) —f0,)]b. (13.81)
vertica

We now observe that [f(Ly,y) — f(0,y)] is a constant, and so can be taken out of the
integral. It is a constant because all paths from the point (0, y) to (L, y) are homologous
to the one-cycle «, so the difference f (Ly,») — f(0,y) is equal to [ » @ Thus,

Jrwen —rommp=[af e (13.82)
B o JB
Similarly, the contribution of the two horizontal sides is
/ [ (.0) — £ (G Ly)Tb = — / a / b. (13.83)
o B o

On putting the contributions of both pairs of sides together, the claimed result follows.
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13.6 Characteristic classes

A supply of elements of H2"(M,R) and H*"(M,7) is provided by the characteristic
classes associated with connections on vector bundles over the manifold M.
Recall that connections appear in covariant derivatives

v, o, +4,, (13.84)
and are to be thought of as matrix-valued one-forms 4 = A,dx". In the quantum
mechanics of charged particles the covariant derivative that appears in the Schrodinger
equation is

0

_ Y - 4Maxwell
p= g — dedy . (13.85)

Here, e is the charge of the particle on whose wavefunction the derivative acts, and
A,l\faxwe“ is the usual electromagnetic vector potential. The matrix-valued connection
1-form is therefore

A = —iedNvellgyh, (13.86)

In this case the matrix is one-by-one.
In a non-abelian gauge theory with gauge group G the connection becomes

A = ik A%, (13.87)

The ’):a are hermitian matrices that have commutation relations [’):a,’):h] = zj; Cb,).:c, where
the £, are the structure constants of the Lie algebra of the group G. The A, therefore
form a representation of the Lie algebra, and this representation plays the role of the
“charge” of the non-abelian gauge particle.

For covariant derivatives acting on a tangent vector field f“e, on a Riemann
n-manifold, where the e, are an orthonormal vielbein frame, we have

A = wappdx®, (13.88)

where, for each p, the coefficients wqp, = —wpq, can be thought of as the entries in a
skew symmetric n-by-n matrix. These matrices are elements of the Lie algebra o(n) of
the orthogonal group O(n).

In all these cases we define the curvature two-form to be F = dA + A%, where
a combined matrix and wedge product is to be understood in 4%. In Exercises 11.19
and 11.20 you used the Bianchi identity to show that the gauge-invariant 2n-forms
tr (F") were closed. The integrals of these forms over cycles provide numbers that are
topological invariants of the bundle. For example, in four-dimensional QCD, the integral

1
cr = _W/ tr (F?) (13.89)
e Jo
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over a compactified four-dimensional manifold €2 is an integer that a mathematician
would call the second Chern number of the non-abelian gauge bundle, and that a physicist
would call the instanton number of the gauge field configuration. The closed forms
themselves are called characteristic classes.

In the following section we will show that the integrals of characteristic classes are
indeed topological invariants. We also explain something of what these invariants are
measuring, and illustrate why, when suitably normalized, they are integer-valued.

13.6.1 Topological invariance

Suppose that we have been given a connection 4 and slightly deform it 4 — 4 + §4.
Then F — F + 6F where

OF =d(84) + 34 A+ ASA. (13.90)
Using the Bianchi identity dFF = FA — AF, we find that

Str(F™) = ntr(8F F" 1)
= ntr(d(SAF"™ ) + ntr(SAAF"™") + ntr(4 SAF™™ 1)
=ntr(dSAF"™") + ntr(SAAF"™™ ") — ntr(SA F" ' 4)
=d{ntr@a ). (13.91)
The last line of (13.91) is equal to the penultimate line because all but the first and
last terms arising from the dF’s in d {tr(SA F ”_1)} cancel in pairs. A globally defined
change in 4 therefore changes tr(F”") by the d of something, and so does not change its
cohomology class, or its integral over a cycle.
At first sight, this invariance under deformation suggests that all the tr(#") are exact
forms — they can apparently all be written as tr (F”*) = dwy,—1(4) for some (2n—1)-form

w2n—1(A4). To find wy,,—1(4) all we have to do is deform the connection to zero by setting
A; =tAand

Fy = dA; + A% = tdA + 1> 4>, (13.92)
Then 64; = Adt, and

d n n—1

() =d {ntr(AF, )} . (13.93)

Integrating up from ¢ = 0, we find

1
tr(F"):d{n/ tr(AF;’—l)dt}. (13.94)
0
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For example
1
tr(F*) =d {2 / tr(A(tdA + £*4%) dt}
0
2 3
=dtr| AdA + EA . (13.95)

You should recognize here the w3(4) = tr(4d4 + %A3) Chern—Simons form of Exer-
cise 11.19. The naive conclusion — that all the tr(F") are exact — is false, however. What
the computation actually shows is that when [ tr(F") # 0 we cannot find a globally
defined 1-form 4 representing the connection or gauge field. With no global 4, we cannot
globally deform 4 to zero.
Consider, for example, an abelian U(1) gauge field on the 2-sphere S2. When the first
Chern number
1
cq=—1|] F (13.96)
2mi Js2
is non-zero, there can be no globally defined 1-form 4 such that ' = dA4. Glance back,
however, at Figure 13.10 on page 472. There we see that the retractability of the spherical
caps D+ guarantees that there are 1-forms A4 defined on D4 such that F = d44 in Dy
In the cingular region Dy N D_ where they are both defined, A and 4_ will be related
by a gauge transformation. For a U(1) gauge field, the matrix g appearing in the general
gauge transformation rule

A— A8 =g ' 4g+ g ldg (13.97)
of Exercise 11.20 becomes the phase e/X € U(1). Consequently
AL =A_+e XdeX =A_+idy in DyND_. (13.98)

The U(1) group element e'X is required to be single valued in D, N D_, but the angle x
may be multivalued. We now write c; as the sum of integrals over the north and south
hemispheres of $2, and use Stokes’ theorem to reduce this sum to a single integral over
the hemispheres’ common boundary, the equator I":

1 1
1= -— F+— F
271 Jorth 271 Jsouth
1 1
= dA+ + — dA,
271 Jnorth 271 Jsouth
_ 1 1
B 2mi r * 2mwi r B
1

=— | dx. (13.99)
2w r
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We see that ¢ is an integer that counts the winding of x as we circle I'. Anon-zero integer
cannot be continuously reduced to zero, and if we attempt to deform 4 — t4 — 0, we
will violate the required single-valuedness of the U(1) group element e'X .

Although the Chern—Simons forms wy,—1(A4) cannot be defined globally, they are still
very useful in physics. They occur as Wess—Zumino terms describing the low-energy
properties of various quantum field theories, the prototype being the Skyrme—Witten
model of hadrons.’

13.6.2 Chern characters and Chern classes

Any gauge-invariant polynomial (with exterior multiplication of forms understood) in
F provides a closed, topologically invariant, differential form. Certain combinations,
however, have additional desirable properties, and so have been given names.

The form
1 i n
ch,(F)=tr{— [ —F (13.100)
n! \ 2w

is called the n-th Chern character. It is convenient to think of this 2n-form as being the
n-th term in a generating-function expansion

ch(F) & ¢ {exp <§F>} — cho(F) + chi(F) + cha(F) +---,  (13.101)

where chq (F) def tr 7 is the dimension of the space on which the ’):a act. This formal sum
of forms of different degree is called the total Chern character. The n! normalization
is chosen because it makes the Chern character behave nicely when we combine vector
bundles — as we now do.

Given two vector bundles over the same manifold, having fibres U, and V over the
point x, we can make a new bundle with the direct sum U, @ ¥y as fibre over x. This
resulting bundle is called the Whitney sum of the bundles. Similarly we can make a
tensor-product bundle whose fibre over x is U, ® V.

Let us use the notation ch(U) to represent the Chern character of the bundle with
fibres Uy, and U @ V' to denote the Whitney sum. Then we have

ch(U @ V) = ch(U) + ch(V), (13.102)
and

ch(U ® V) = ch(U) A ch(¥). (13.103)

The second of these formulae comes about because if ’):5,1) is a Lie algebra element acting
on V(D and Af,z) the corresponding element acting on ¥ ®, then they act on the tensor

3 E. Witten, Nucl. Phys., B223 (1983) 422; ibid. B223 (1983) 433.
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product ¥ ® V' as
WD 530 @1+ 1032, (13.104)

where [ is the identity operator on the appropriate space in the tensor product, and for
matrices 4 and B we have

tr{exp(A®I+1Q®B)} =tr{expAd ® expB} = tr {exp A} tr {exp B} . (13.105)
In terms of the individual ch, (7), Equations (13.102) and (13.103) read
ch,(U® V) =ch,(U) + ch,(V), (13.106)

and

n
ch,(U® V)= chyn(U) Achu(V). (13.107)
m=0
Related to the Chern characters are the Chern classes. These are wedge-product

polynomials in the Chern characters, and are defined, via the matrix expansion

det (I +4) = 1 +trA+%<(trA)2—trA2) ¥, (13.108)
by the generating function for the total Chern class:
c¢(F) = det (I+%F):1+cl(F)+cz(F)+---. (13.109)
Thus
c1(F) =ch|(F), cF)= %chl(F) A chi(F) — chy(F), (13.110)

and so on.
For matrices 4 and B we have det(4 @ B) = det(A4) det(B), and this leads to

cUV) =cU) AcV). (13.111)

Although the Chern classes are more complicated in appearance than the Chern char-
acters, they are introduced because their integrals over cycles turn out to be integers,
and this property remains true of integer-coefficient sums of products of Chern classes.
The cohomology classes [c,, (F')] are therefore elements of the integer cohomology ring
H*(M,Z). This property does not hold for the Chern characters, whose integrals over
cycles can be fractions. The cohomology classes [ch, (F)] are therefore only elements
of H*(M, Q).
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When we integrate products of Chern classes of total degree 2m over closed 2m-
dimensional orientable manifolds we get integer Chern numbers. These integers can
be related to generalized winding numbers, and characterize the extent to which the
gauge transformations that relate the connection fields in different patches serve to twist
the vector bundle. Unfortunately it requires a considerable amount of combinatorial
machinery (the Schubert calculus of complex Grassmannians) to explain these integers.

Pontryagin and Euler classes

When the fibres of a vector bundle are vector spaces over R, the complex skew-hermitian
matrices Ay are replaced by real skew symmetric matrices. The Lie algebra of the n-
by-n matrices ihg was a subalgebra of u(n). The Lie algebra of the n-by-n real, skew
symmetric, matrices is a subalgebra of o(n). Now, the trace of an odd power of any
skew symmetric matrix is zero. As a consequence, Chern characters and Chern classes
containing an odd number of F’s all vanish. The remaining real 4sn-forms are known as
Pontryagin classes. The precise definition is

() E (D en ). (13.112)

Pontryagin classes help to classify bundles whose gauge transformations are elements
of O(n). If we restrict ourselves to gauge transformations that lie in SO(n), as we
would when considering the tangent bundle of an orientable Riemann manifold, then
we can make a gauge-invariant polynomial out of the skew-symmetric matrix-valued F
by forming its Pfaffian.

Recall (or see Exercise A.18) that the Pfaffian of a skew symmetric 2n-by-2n matrix
A with entries a; is

1
PfA = Weil,...iznailiz v iy qigg- (13113)

The Euler class of the tangent bundle of a 2n-dimensional orientable manifold is defined
via its skew-symmetric Riemann-curvature form

1
R = ERa;,,,wa’x"dx” (13.114)
to be
1
e(R) =Pf (—R) (13.115)
21
In four dimensions, for example, this becomes the 4-form

1
e(R) = WeabcdRabRcd. (13 11 6)
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The generalized Gauss—Bonnet theorem asserts — for an oriented, even-dimensional,
manifold without boundary — that the Euler character is given by

x (M) :/ e(R). (13.117)
M

We will not prove this theorem, but in Section 16.3.6 we will illustrate the strategy that
leads to Chern’s influential proof.

Exercise 13.5: Show that

1
ey (F) = g((chl(F))3 — 6chy(F)chy(F) + 12¢hy (F)).

13.7 Hodge theory and the Morse index

The Laplacian, when acting on a scalar function ¢ in R3, is simply div (grad ¢), but
when acting on a vector v it becomes

Vv = grad (divv) — curl (curl v). (13.118)

Why this weird expression? How should the Laplacian act on other types of fields?

For general curvilinear coordinates in R”, a reasonable definition for the Laplacian
of a vector or tensor field T is V>T = g"’V, V, T, where V,, is the flat-space covariant
derivative. This is the unique coordinate-independent object that reduces in cartesian
coordinates to the ordinary Laplacian acting on the individual components of T. The
proof that the rather different-seeming (13.118) holds for vectors is that it too is con-
structed out of coordinate-independent operations, and in cartesian coordinates reduces
to the ordinary Laplacian acting on the individual components of v. It must therefore
coincide with the covariant derivative definition. Why it should work out this way is
not exactly obvious. Now, div, grad and curl can all be expressed in differential-form
language, and therefore so can the scalar and vector Laplacian. Moreover, when we
let the Laplacian act on any p-form the general pattern becomes clear. The differential-
form definition of the Laplacian, and the exploration of its consequences, was the work
of William Hodge in the 1930s. His theory has natural applications to the topology of
manifolds.

13.7.1 The Laplacian on p-forms

Suppose that M is an oriented, compact, D-dimensional manifold without boundary. We
can make the space 7 (M) of p-form fields on M into an L? Hilbert space by introducing
the positive-definite inner product

1 o
(a,b), = (b,a), =/ a*b:;/d’jx g aiyiy...iy b1 (13.119)

M
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Here, the subscript p denotes the order of the forms in the product, and should not be
confused with the p we have elsewhere used to label the norm in Z” Banach spaces. The
presence of the ,/g and the Hodge * operator tells us that this inner product depends on
both the metric on M and the global orientation.

We can use this new inner product to define a “hermitian adjoint” § = d of the exterior
differential operator d. The inverted commas “. . .” are because this hermitian adjoint is
not quite an adjoint operator in the normal sense — d takes us from one vector space to
another — but it is constructed in an analogous manner. We define § by requiring that

(da,b),1 = (a,8b),, (13.120)

where « is an arbitrary p-form and b an arbitrary (p + 1)-form. Now recall that  takes
p-forms to (D — p) forms, and so d x b is a (D — p) form. Acting twice on a (D — p)-form
with x gives us back the original form multiplied by (—1)?°~). We use this to compute

daxb) =daxb+ (—1)Pa(d x b)
=daxb+ (=P (=1L P g% (xd x b)
—daxb— (=) g (xd % b). (13.121)

In obtaining the last line we have observed that p(p — 1) is an even integer and so
(—=1)?1=P) = 1. Now, using Stokes’ theorem, and the absence of a boundary to discard
the integrated-out part, we conclude that

/(da)*bz(—l)Dp“/ ax (xd *b), (13.122)
M M
or

(da,b), 1 = (=) a, (xd %)b), (13.123)

and so 8b = (—1)PPH (xd x)b. This was for § acting on a (p — 1) form. Actingonap
form instead we have

§=(—PPPH g x. (13.124)
Observe how the sequence of maps in x d x works:
P M) =5 PP an) -4 QP () s Pl (), (13.125)

The net effect is that § takes a p-form to a (p— 1)-form. Observe also that 8% oc x d? » = 0.
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We now define a second-order partial differential operator A, to be the combination
A, =48d +ds, (13.126)

acting on p-forms. This maps a p-form to a p-form. A slightly tedious calculation in
cartesian coordinates will show that, for flat space,

Ay = —V? (13.127)

on each component of a p-form. This A, is therefore the natural definition for (minus)
the Laplacian acting on differential forms. It is usually called the Laplace—Beltrami
operator.

Using (a,db) = (5a,b) we have

((3d + d8)a,b), = (8a,8b),_| + (da,db),,, = {a, (5d + dS)b),, (13.128)

and so we deduce that A, is self-adjoint on €7 (M). The middle terms in (13.128) are
both positive, so we also see that A, is a positive operator — i.e. all its eigenvalues are
positive or zero.

Suppose that A,a = 0. Then (13.128) for @ = b becomes

0= (8a,8a), | + (da,da),. ;. (13.129)

Because both of these inner products are positive or zero, the vanishing of their sum
requires them to be individually zero. Thus A,a = 0 implies that da = éa = 0. By
analogy with harmonic functions, we call a form that is annihilated by A, a harmonic
form. Recall that a form a is closed if da = 0. We correspondingly say that a is co-closed
if §a = 0. A differential form is therefore harmonic if and only if it is both closed and
co-closed.

When a self-adjoint operator A4 is Fredholm (i.e. the solutions of the equation Ax = y
are governed by the Fredholm alternative) the vector space on which 4 acts is decomposed
into a direct sum of the kernel and range of the operator

V = Ker (4) ® Im (4). (13.130)

It may be shown that our Laplace—Beltrami A, is a Fredholm operator, and so for any
p-form w there is an 7 such that w can be written as

w=(ds+8dym+y
=da+B+7y, (13.131)

where o« = 81, 8 = dn and y is harmonic. This result is known as the Hodge decomposi-
tion of w. Itis a form-language generalization of the Hodge—Weyl and Helmholtz—Hodge
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decompositions of Chapter 6. It is easy to see that «, 8 and y are uniquely determined
by w. If they were not, then we could find some «, B and y such that

0=da+58+y (13.132)

with non-zero da, 68 and y. To see that this is not possible, take the d of (13.132) and
then the inner product of the result with 8. Because d(da) = dy = 0, we end up with

0= (B,dép)
= (8p,4B). (13.133)

Thus 68 = 0. Now apply § to the two remaining terms of (13.132) and take an inner
product with «. Because §y = 0, we find (do,da) = 0, and so da = 0. What now
remains of (13.132) asserts that y = 0.

Suppose that w is closed. Then our strategy of taking the d of the decomposition

w=da+58+y, (13.134)

followed by an inner product with g, leads to §8 = 0. A closed form can thus be
decomposed as

w=da+y, (13.135)

with o and y unique. Each cohomology class in H? (M) therefore contains a unique
harmonic representative. Since any harmonic function is closed, and hence a representa-
tive of some cohomology class, we conclude that there is a one-to-one correspondence
between p-form solutions of Laplace’s equation and elements of H” (M). In particular

dim(Ker Ap) = dim (H?(M)) = b, (13.136)

Here by, is the p-th Betti number. From this we immediately deduce from the definition
of the Euler character (13.35) that

D
X M) =3 (— 1y dim(Ker Ap), (13.137)
p=0

where x (M) is the Euler character of the manifold M. There is therefore an intimate
relationship between the null-spaces of the second-order partial differential operators
A, and the global topology of the manifold in which they live. This is an example of an
index theorem.

Just as for the ordinary Laplace operator, A, has a complete set of eigenfunctions with
associated eigenvalues A. Because the manifold is compact and hence has finite volume,
the spectrum will be discrete. Remarkably, the topological influence we uncovered above
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is restricted to the zero-eigenvalue spaces of p-forms. To see this, suppose that we have
a p-form eigenfunction u;, for A,:

Apuy = Auy,. (13.138)
Then

Aduy, = d Apu;,
=d(dé + dd)uy,
= (dd)du,,
= (8d + dd)du,,
= Apt1duy,. (13.139)

Thus, provided it is not identically zero, du;. is a (p + 1)-form eigenfunction of A, 1)
with eigenvalue A. Similarly, §u; is a (p — 1)-form eigenfunction also with eigenvalue A.

Can du;, be zero? Yes! It will certainly be zero if u,, itself is the d of something. What
is less obvious is that it will be zero only if it is the d of something. To see this suppose
that duy = 0 and A # 0. Then

Auy = (8d + dd)uy, = d(Suy). (13.140)

Thus du; = 0 implies that u; = dn, where n = Su, /A. We see that for A non-zero,
the operators d and § map the A eigenspaces of A into one another, and the kernel of
d acting on p-form eigenfunctions is precisely the image of d acting on (p — 1)-form
eigenfunctions. In other words, when restricted to positive A eigenspaces of A, the
cohomology is trivial.

The set of spaces ¥, together with the maps d : V> — Vp* ", | therefore constitute an
exact sequence when A # 0, and so the alternating sum of their dimensions must be
zero. We have therefore established that

. M), r=0,
—1dim v = X 13.141
? Pdimvy =200 L, (13.141)

All the topological information resides in the null-spaces, therefore.

Exercise 13.6: Show that if w is closed and co-closed then so is x w. Deduce that for a
compact orientable D-manifold we have b, = bp_,. This observation therefore gives
another way of understanding Poincaré duality.

13.7.2 Morse theory

Suppose, as in the previous section, that M is a D-dimensional compact manifold without
boundary and V' : M — R is a smooth function. The global topology of M imposes
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some constraints on the possible maxima, minima and saddle points of /. Suppose that
P is a stationary point of V. Taking coordinates such that P is at x** = 0, we can expand

1
Vix)=V(0) + EH,wx’“‘x” +-- (13.142)

Here, the matrix H,,, is the Hessian

def 02V
H, = . 13.143
- axHaxY |, ( )

We can change coordinates so as to reduce the Hessian to a canonical form which is
diagonal and has only £1, 0 on its diagonal:

—1I,
Hy, = I, : (13.144)
OD—m—n

If there are no zeros on the diagonal then the stationary point is said to be non-degenerate.
The number m of downward-bending directions is then called the index of V' at P. If P
were a local maximum, then m = D, n = 0. If it were a local minimum then m = 0,
n = D. When all its stationary points are non-degenerate, V is said to be a Morse function.
This is the generic case. Degenerate stationary points can be regarded as arising from
the merging of two or more non-degenerate points.

The Morse index theorem asserts that if V' is a Morse function, and if we define Ny
to be the number of stationary points with index 0 (i.e. local minima), and Nj to be the
number of stationary points with index 1, etc. then

D
D (=1)"Np = x (M). (13.145)
m=0

Here x (M) is the Euler character of M. Thus, a function on the two-dimensional torus
(which has x = 0) can have a local maximum, a local minimum and two saddle points,
but cannot have only one local maximum, one local minimum and no saddle points. On
a 2-sphere (x = 2), if V" has one local maximum and one local minimum it can have no
saddle points.

Closely related to the Morse index theorem is the Poincaré—Hopf theorem. This counts
the isolated zeros of a tangent-vector field X on a compact D-manifold and, amongst
other things, explains why we cannot comb a hairy ball. An isolated zero is a point
z, at which X becomes zero, and that has a neighbourhood in which there is no other
zero. If X possesses only finitely many zeros then each of them will be isolated. For
an isolated zero, we can define a vector field index at z, by surrounding it with a small
(D — 1)-sphere on which X does not vanish. The direction of X at each point on this
sphere then provides a map from the sphere to itself. The index i(z,) is defined to be the
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Figure 13.13 Two-dimensional vector fields and their streamlines near zeros with indices (a)
i) = +1,(0) i(zp) = 1, (©) i(ze) = +1.
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Figure 13.14 Gradient vector field and streamlines in a 2-simplex.
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winding number (Brouwer degree) of this map (Figure 13.13). This index can be any
integer, but in the special case that X is the gradient of a Morse function it takes the
value i(z,) = (—1)™ where m is the Morse index at z;,.

The Poincaré—Hopf theorem states that, for a compact manifold without boundary,
and for a tangent vector field with only finitely many zeros,

Z i(zn) = x(M). (13.146)

Zeros n

A tangent-vector field must therefore always have at least one zero unless x (M) = 0.
For example, since the 2-sphere has y = 2, it cannot be combed.

If one is prepared to believe that ) . - i(z,) is the same integer for all tangent vector
fields X on M, it is simple to show that this integer must be equal to the Euler character
of M. Consider, for ease of visualization, a 2-manifold. Triangulate M and take X to be
the gradient field of a function with local minima at each vertex, saddle points on the
edges and local maxima at the centre of each face (see Figure 13.14). It must be clear
that this particular field X has

Z i(zg) =V —E+F = x(M). (13.147)

Zeros n
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In the case of a two-dimensional oriented surface equipped with a smooth metric, it is
also simple to demonstrate the invariance of the index sum. Consider two vector fields X
and Y. Triangulate M so that all zeros of both fields lie in the interior of the faces of the
simplices. The metric allows us to compute the angle 6 between X and Y wherever they
are both non-zero, and in particular on the edges of the simplices. For each 2-simplex o
we compute the total change A6 in the angle as we circumnavigate its boundary. This
change is an integral multiple of 27, with the integer counting the difference

D (C E Y () (13.148)

zeros of Xeo zeros of Yeo

of the indices of the zeros within 0. On summing over all triangles o, each edge is
traversed twice, once in each direction, so ) A6 vanishes. The total index of X is
therefore the same as that of Y.

This pairwise cancellation argument can be extended to non-orientable surfaces, such
as the projective plane. In this case the edges constituting the homological “boundary”
of the closed surface are traversed twice in the same direction, but the angle 6 at a point
on one edge is paired with —@ at the corresponding point of the other edge.

Supersymmetric quantum mechanics

Edward Witten gave a beautiful proof of the Morse index theorem for a closed orientable
manifold M by re-interpreting the Laplace—Beltrami operator as the Hamiltonian of
supersymmetric quantum mechanics on M. Witten’s idea had a profound impact, and led
to quantum physics serving as a rich source of inspiration and insight for mathematicians.
We have seen most of the ingredients of this re-interpretation in previous chapters.
Indeed you should have experienced a sense of déja v when you saw d and § mapping
eigenfunctions of one differential operator into eigenfunctions of a related operator.

We begin with a novel way to think of the calculus of differential forms. We introduce
a set of fermion annihilation and creation operators ¥* and ¥ ™ which anticommute,
Y'Y = —yVyH, and obey the anticommutation relation

W vy = vy 1y =g, (13.149)

Here, gV is the metric tensor, and the Greek indices u and v range from 1 to D. As is
usual when we are given annihilation and creation operators, we also introduce a vacuum
state |0) which is killed by all the annihilation operators: ¥#|0) = 0. The states

@ty ™), (13.150)

with each of the p; taking the value 1 or 0, then constitute a basis for 2°-dimensional
Hilbert space. We call p = ", p; the fermion number of the state. We assume that
(0]0) = 1 and use the anticommutation relations to show that

Oy .ty gty Ty T 0)



13.7 Hodge theory and the Morse index 491
is zero unless p = ¢, in which case it is equal to
ghtigh?Va ... gtV + (permutations).
We now make the correspondence
ﬁmwwmwmwmmwwmeﬁmwwmwwW~mM(uwn
to identify p-fermion states with p-forms. We think of fy;, ;1,....s, (x) as being the wave-

function of a particle moving on M, with the subscripts informing us there are fermions
occupying the states w;. It is then natural to take the inner product of

1
la) = anz,w(x)w“‘ AR AL 1) (13.152)
and
1
|m:amw%wmw”ww?nwwm (13.153)
to be

1
(a,b) = / d"x gﬁ azmz‘,.ﬂp(x)bvlvz..‘vq () (Ofyhr ...yt I/fTU] . I/ITVq|0)
M q!
1
= 3pq/ de«/E}; Ay, VB2 (), (13.154)
M !

This coincides with the Hodge inner product of the corresponding forms.

If we lower the index on ¥* by defining v, to be g, ¥/ then the action of the
annihilation operator X * 1, on a p-fermion state coincides with the action of the interior
multiplication iy on the corresponding p-form. All the other operations of the exterior
calculus can also be expressed in terms of the v and v 1’s. In particular, in cartesian
coordinates where g, = 8,,,,, we can identify d with v 73,,. To find the operator that
corresponds to the Hodge §, we compute

s=d' =@Mt =alyt = -yt = —yH,. (13.155)

The hermitian adjoint of 9, is here being taken with respect to the standard L*(RP)

inner product. This computation becomes more complicated when when g, becomes

position dependent. The adjoint 8; then involves the derivative of ,/g, and ¥ and 9,

no longer commute. For this reason, and because such complications are inessential for

what follows, we will delay discussing this general case until the end of this section.
Having found a simple formula for §, it is now automatic to compute

ds +58d = —(y™", ¥} 0,8, = —6"V8,0, = —V>. (13.156)
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This is much easier than deriving the same result by using § = (—1)PPHP+1 « dx.

Witten’s fermionic formalism simplifies a number of computations involving 8, but
his real innovation was to consider a deformation of the exterior calculus by introducing
the operators

dy=e VWGV ® 5, = VW gV, (13.157)
and the ¢-deformed
Ay = did; + 8,d;. (13.158)

Here, V (x) is the Morse function whose stationary points we seek to count.

It is easy to see that the deformed derivative continues to obey a’[2 = 0. We also
see that dw = 0 if and only if dje " @ = 0. Similarly, if @ = dn then e v =
d;e™" 1. The cohomology of d is therefore transformed into the cohomology of d; by
multiplication by e, Since the exponential function is never zero, this correspondence
is invertible and the mapping is an isomorphism. In particular the dimensions of the
spaces Ker (d;),/Im (d;),—1 are t-independent and coincide with the = 0 Betti numbers
by,. Furthermore, the -deformed Laplace—Beltrami operator remains Fredholm with only

positive or zero eigenvalues. We can therefore make a Hodge decomposition
w=do+&B+y, (13.159)
where A,y = 0, and conclude that
dim (Ker (A)p) = b, (13.160)

as before. The non-zero eigenvalue spaces will also continue to form exact sequences.
Nothing seems to have changed! Why do we introduce d; then? The motivation is that
when ¢ becomes large we can use our knowledge of quantum mechanics to compute the
Morse index.

To do this, we expand out

dy = v (@, +10,7)
8 = =y (0, —tdu V) (13.161)
and find
did; + 8idy = V2 + 2|V 2+ 1y T yr102 v (13.162)

This can be thought of as a Schrodinger Hamiltonian on M containing a potential £2|V V|2
and a fermionic term [y ", y¥] Biv V. When ¢ is large and positive the potential will
be large and positive everywhere except near those points where V¥ = 0. The wave-
functions of all low-energy states, and in particular all zero-energy states, will therefore
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be concentrated at precisely the stationary points we are investigating. Let us focus on
a particular stationary point, which we will take as the origin of our coordinate system,
and see if any zero-energy state is localized there. We first rotate the coordinate system
about the origin so that the Hessian matrix 3,2w V'|o becomes diagonal with eigenvalues
Ay The Schrodinger problem can then be approximated by a sum of harmonic oscillator
Hamiltonians

Apy ~ Z{———szx oyt v } (13.163)

i=1

The commutator [wTi, '] takes the value +1 if the i-th fermion state is occupied, and
—1 if it is not. The spectrum of the approximate Hamiltonian is therefore

£ NI+ 2m) £ 44} (13.164)
i=1

Here the n; label the harmonic oscillator states. The lowest-energy states will have all the
n; = 0. To get a state with zero energy we must arrange for the &+ sign to be negative (no
fermion in state /) whenever A; is positive, and to be positive (fermion state i occupied)
whenever }; is negative. The fermion number “p” of the zero-energy state is therefore
equal to the number of negative A; — i.e. to the index of the critical point! We can,
in this manner, find one zero-energy state for each critical point. All other states have
energies proportional to ¢, and therefore large. Since the number of zero-energy states
having fermion number p is the Betti number b, the harmonic oscillator approximation
suggests that b, = Nj,.

If we could trust our computation of the energy spectrum, we would have established
the Morse theorem

D D
D (=DPN, =Y (=1, = x (M), (13.165)

p=0

by having the two sums agree term by term. Our computation is only approximate,
however. While there can be no more zero-energy states than those we have found, some
states that appear to be zero modes may instead have small positive energy. This might
arise from tunnelling between the different potential minima, or from the higher-order
corrections to the harmonic oscillator potentials, both effects we have neglected. We can
therefore only be confident that

N, = by, (13.166)

The remarkable thing is that, for the Morse index, this does not matter! 1f one of our
putative zero modes gains a small positive energy, it is now in the non-zero eigenvalue
sector of the spectrum. The exact-sequence property therefore tells us that one of the
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other putative zero modes must also be a not-quite-zero mode state with exactly the same
energy. This second state will have a fermion number that differs from the first by plus
or minus one. An error in counting the zero energy states therefore cancels out when we
take the alternating sum. Our unreliable estimate b, ~ N, has thus provided us with an
exact computation of the Morse index.

We have described Witten’s argument as if the manifold M were flat. When the
manifold M is not flat, however, the curvature will not affect our computations. Once
the parameter ¢ is large, the low-energy eigenfunctions will be so tightly localized about
the critical points that they will be hard-pressed to detect the curvature. Even if the
curvature can effect an infintesimal energy shift, the exact-sequence argument again
shows that this does not affect the alternating sum.

The Weitzenbéck formula

Although we were able to evade them when proving the Morse index theorem, it is
interesting to uncover the workings of the nitty-gritty Riemann tensor index machinary
that lie concealed behind the polished facade of Hodge’s d, § calculus.

Let us assume that our manifold M is equipped with a torsion-free connection I'*,, =
I'#,,, and use this connection to define the action of an operator %u by specifying its
commutators with c-number functions £, and with the ¥# and v ’s:

NVuf1= 3,
V9™ = =1y,
[V, "1 = —T" vt (13.167)
We also set @MO) = 0. These rules allow us to compute the action of @M on

Srvpizeesyy, @Y T 77 10). For example

G (R 100) = (190w ™ 1+ £9779,) 10)
= (VA0 ™ + £l 90, ¥ 1) 10)
= @fo =Ll )9 10)

= (Vi) v'10), (13.168)

where

Vufo = 0ufy — T ufa (13.169)

is the usual covariant derivative acting on the componenents of a covariant vector.

A

The metric g"V counts as a c-number function, and so [V, g/#] is not zero, but is
instead d,g"”. This might be disturbing — being able pass the metric through a covariant
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derivative is a basic compatibility condition in Riemann geometry — but all is not lost.
V., (with a caret) is not quite the same beast as V,,. We proceed as follows:

~

dag"" = [Va, g""]
= [V, (v, ¥"}]
= Voo 91+ Vo, v v
= — (M Y — (T Y e,
= —g"M TV — g"* THe. (13.170)
Thus, we conclude that

0ug"" + 8" T ay + &M THas = Vag"” = 0. (13.171)

Metric compatibility is therefore satisfied, and the connection is therefore the standard
Riemannian

1
Fap.v = Egak (aug)»v + 0vgus — 8Ag/w) . (13.172)

Knowing this, we can compute the adjoint of @M:

(@MY = _é@u\/g

=—-V,—0,In/g

= —(Vu +T"0). (13.173)
That I'",, is the logarithmic derivative of ,/g is a standard identity for the Riemann
connection (see Exercise 11.14). The resultant formula for (%M)Jr can be used to verify
that the second and third equations in (13.167) are compatible with each other.

We can also compute [[@#, @v], Y], and from it deduce that
[V Vol = Ry 92, (13.174)

where

R0 = 3,T%0 — 3T %g, + T T gy — T T 5, (13.175)

is the Riemann curvature tensor.
We now define d to be

d=vy™"v,. (13.176)
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Its action coincides with the usual d because the symmetry of the I'j},’s ensures that
their contributions cancel. From this we find that § is

= (v
= @; YH
= —(Vu + ")yt
= YV +TV0) + TH 0y
N (13.177)

The Laplace—Beltrami operator can now be worked out as
ds +6d = — (W‘%W% + W%W“%)
= = ("0 = 170 Vo) + 9 19, 9,0)
= — (" 0V =T Vo) + v YT W R ). (13.178)

By making use of the symmetries R0y = Ryuos and Rojvy = —Roiuw We can tidy up
the curvature term to get

ds +8d = —g"’ (V¥ =T 1, Vo) — T u Py ™ vV Rup . (13.179)

This result is called the Weitzenbéck formula. An equivalent formula can be derived
directly from (13.124), but only with a great deal more effort. The part without the cur-
vature tensor is called the Bochner Laplacian. It is normally written as B = —gH"V, V,
with V,, being understood to be acting on the index v, and therefore tacitly containing
the extra I}, that must be made explicit —as we have in (13.179) — when we define the

action of V,, via commutators. The Bochner Laplacian can also be written as
B=Vg"v, (13.180)

which shows that it is a positive operator.

13.8 Further exercises and problems

Exercise 13.7: Let
A=Acdx+A,dy+ A, dz

be a closed form in R3. Use the formula (13.6) of Section 13.2.1 to find a scalar ¢(x, y, z)
such that 4 = dg. Compute the exterior derivative from your expression for ¢ and verify
that it reconstitutes 4.
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Exercise 13.8: By considering the example of the unit disc in two dimensions, show
that the condition of being closed — in the sense of having no boundary — is a necessary
condition in the statement of Poincaré duality. What goes wrong with our construction
of the elements of HP~7 (M) from cycles in Hy,(M) in this case?

Exercise 13.9: Use Poincaré duality to show that the Euler character of any odd-
dimensional closed manifold is zero.
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Groups and group representations

Groups usually appear in physics as symmetries of the system or model we are studying.
Often the symmetry operation involves a linear transformation, and this naturally leads
to the idea of finding sets of matrices having the same multiplication table as the group.
These sets are called representations of the group. Given a group, we endeavour to find
and classify all possible representations.

14.1 Basic ideas

We begin with a rapid review of basic group theory.

14.1.1 Group axioms

A group G is a set with a binary operation that assigns to each ordered pair (g1, g>) of
elements a third element, g3, usually written with multiplicative notation as g3 = g12».
The binary operation, or product, obeys the following rules:

(i) Associativity: g1(g283) = (8182)g3.
(ii) Existence of an identity: there is an element' e € G such that eg = g forallg € G.
(iii) Existence of an inverse: for each g € G there is an element g~ ! suchthatg~!g = e.

From these axioms there follow some conclusions that are so basic that they are often
included in the axioms themselves, but since they are not independent, we state them as
corollaries.

Corollary: (i):gg~ ' =e.

1 1

Proof: Start from g~ 'g = e, and multiply on the right by g ' to get g 'gg™! = eg™! =

g~ !, where we have used the left identity property of e at the last step. Now multiply on

the left by (g~!)~!, and use associativity to get gg~! = e.

Corollary: (ii): ge = g.
Proof: Write ge =g(g™'g) = (gg7')g =eg =g.
Corollary: (iii): The identity e is unique.

! The symbol “e” is often used for the identity element, from the German Einkeit, meaning “unity”.

498
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Proof: Suppose there is another element e; such that ejg = eg = g. Multiply on the

right byg_1 to get eje = 2 =c, buteje =e,s0e] = e.

Corollary: (iv): The inverse of a given element g is unique.

Proof: Let g1g = gog = e. Use the result of Corollary (i), that any left inverse is also a
right inverse, to multiply on the right by g1, and so find that g; = g».

Two elements g; and g, are said to commute if g1g» = gog;. If the group has the
property that g1g2 = gog) for all g1,g2 € G, it is said to be abelian, otherwise it is
non-abelian.

If the set G contains only finitely many elements, the group G is said to be finite. The
number of elements in the group, |G|, is called the order of the group.

Examples of groups

(1) The integers Z under addition. The binary operation is (n,m) +— n + m, and “0”
plays the role of the identity element. This is not a finite group.

(2) The integers modulo n under addition. (m,m’) +> m + m’, mod n. This group is
denoted by Z,, and is finite.

(3) The non-zero integers modulo p (a prime) under multiplication (m,m’) >
mm', mod p. Here “1” is the identity element. If the modulus is not a prime number,
we do not get a group (why not?). This group is sometimes denoted by (Z,)*.

(4) The set of numbers {2,4, 6, 8} under multiplication modulo 10. Here, the number
“6” plays the role of the identity!

(5) The set of functions

1 —1
fie) =z h@=1—. A ="
—Z z
1
@ =2 @ =1-z f&)=——

z—1,

with (f;, f;) = fiof;. Here, the “o” is a standard notation for composition of functions:
(i 0 )@ = fi(i(@)).

(6) The set of rotations in three dimensions, equivalently the set of 3-by-3 real matrices
0, obeying OO = I and det O = 1. This is the group SO(3). SO(n) is defined
analogously as the group of rotations in » dimensions. If we relax the condition
on the determinant we get the orthogonal group O(n). Both SO(n) and O(n) are
examples of Lie groups. A Lie group is a group that is also a manifold M, and whose
multiplication law is a smooth function M x M — M.

(7) Groups are often specified by giving a list of generators and relations. For example
the cyclic group of order n, denoted by C,, is specified by giving the generator a
and relation a” = e. Similarly, the dihedral group D, has two generators a, b and
relations a” = e, b*> = e, (ab)*> = e. This group has order 2.
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14 Groups and group representations

14.1.2 Elementary properties

Here are the basic properties of groups that we need:

(i)

(ii)

(iif)

(iv)

)

(vi)

Subgroups: If a subset of elements of a group forms a group, it is called a subgroup.
For example, Z1, has a subgroup consisting of {0, 3, 6,9}. Any group G possesses
at least two subgroups: the entirety of G itself, and the subgroup containing only the
identity element {e}. These are known as the ¢rivial subgroups. Any other subgroups
are called proper subgroups.

Cosets: Given a subgroup H C G, having elements {41, 4, ...}, and an element
g € G, we form the (left) coset gH = {gh1,gh>,...}. If two cosets g H and go H
intersect, they coincide. (Proof: if g1hy = goha, then go = g1(hh, l) and so
g1H = goH.) If H is a finite group, each coset has the same number of distinct
elements as H. (Proof: if gh; = ghy then left multiplication by g~! shows that
h1 = hy.) If the order of G is also finite, the group G is decomposed into an integer
number of cosets,

G=giH+gH+ -, (14.1)

where “+” denotes the union of disjoint sets. From this we see that the order of H
must divide the order of G. This result is called Lagrange s theorem. The set whose
elements are the cosets is denoted by G/H.

Normal subgroups: A subgroup H = {h1,hy,...} of G is said to be normal, or
invariant, if g7'Hg = H for all g € G. This notation means that the set of
elements g~ 'Hg = {g~'h1g,g ' hyg, ...} coincides with H, or equivalently that
the map & — g~ 'hg does not take # € H out of H, but simply scrambles the order
of the elements of H.

Quotient groups: Given a normal subgroup H, we can define a multiplication rule
on the set of cosets G/H = {gH, g2H, ...} by taking a representative element
from each of g;H, and g;H, taking the product of these elements, and defining
(gifl)(giH) to be the coset in which this product lies. This coset is independent
of the representative elements chosen (this would not be so were the subgroup not
normal). The resulting group is called the quotient group of G by H, and is denoted
by G/H. (Note that the symbol “G/H” is used to denote both the set of cosets, and,
when it exists, the group whose elements are these cosets.)

Simple groups: A group G with no normal subgroups is said to be sim-
ple. The finite simple groups have been classified. They fall into various
infinite families (cyclic groups, alternating groups, 16 families of Lie type)
together with 26 sporadic groups, the largest of which, the Monster, has
order 808,017,424,794,512,875,886,459,904,961,710,757,005,754, 368,000,000,
000. The mysterious “Monstrous moonshine” links its representation theory to the
elliptic modular function J(t) and to string theory.

Conjugacy and conjugacy classes: Two group elements g1, g, are said to be con-
Jjugate in G if there is an element g € G such that g = g~ !g1g. If g is conjugate
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to g, we write g1 ~ g». Conjugacy is an equivalence relation,” and, for finite
groups, the resulting conjugacy classes have orders that divide the order of G. To
see this, consider the conjugacy class containing the element g. Observe that the set
H of elements 4 € G such that 7~ 'gh = g forms a subgroup. The set of elements
conjugate to g can be identified with the coset space G/H. The order of G divided
by the order of the conjugacy class is therefore |H|.

Example: In the rotation group SO(3), the conjugacy classes are the sets of rotations
through the same angle, but about different axes.

Example: In the group U(n), of n-by-n unitary matrices, the conjugacy classes are the
set of matrices possessing the same eigenvalues.

Example: Permutations. The permutation group on 7 objects, S, has order n!. Suppose
we consider permutations 71, 772 in Sg such that 71 maps

1 2 3 4 5 6 7 8
IR A
2 3 1 5 4 7 6 8

and 7 maps

1 2 3 4 5 6 7 8
7T22J,
2

w <«
NG
W o
o <«
- <«
o0 <—

The product 73 o 771 then takes
1 2 3 4 5 6 7 8
mom |4 4 4 L 4Ll
34 2 6 5 8 71
We can write these partitions out more compactly by using Paolo Ruffini’s cycle notation:

71 = (123)(45)(67)(8), 75 = (12345678), 2 07 = (132468)(5)(7).

In this notation, each number is mapped to the one immediately to its right, with the last
number in each bracket, or cycle, wrapping round to map to the first. Thus 71 (1) = 2,
m1(2) = 3, m1(3) = 1. The “8”, being both first and last in its cycle, maps to itself:
m1(8) = 8. Any permutation with this cycle pattern, (x * ) () (%) (), is in the same

2 An equivalence relation, ~, is a binary relation that is
(1) Reflexive: 4 ~ A.
(ii) Symmetric:A~B <= B~A.
(iii) Transitive:A~B, B~C — A~C.
Such a relation breaks a set up into disjoint equivalence classes.
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conjugacy class as 1. We say that 1 possesses one 1-cycle, two 2-cycles and one
3-cycle. The class (71,72, . .., 7,) having r; 1-cycles, r 2-cycles, etc., where r| + 2r; +
-« -+ nr, = n, contains

n!
T2 T AR (D) 272 (1) < - 1 ()

elements. The sign of the permutation,
SENTT = €x(l)w ()7 (3)...7v,(n)
is equal to
sgn = (+D)"(=D2(FD3 (=D - .
We have, for any two permutations 71, 7,
sgn (71)sgn (72) = sgn (1] o 72),

so the even (sgn m = +1) permutations form an invariant subgroup called the alternating
group, A,. The group A, is simple for n > 5, and Ruffini (1801) showed that this
simplicity prevents the solution of the general quintic by radicals. His work was ignored,
however, and later independently rediscovered by Abel (1824) and Galois (1829).

If we write out the group elements in some order {e, g1, g2, . . .}, and then multiply on
the left

gle,g1,&2,...} =1{g,881,82,- .}

then the ordered list {g, gg1,g2>, ...} is a permutation of the original list. Any group
G is therefore a subgroup of the permutation group S|g|. This result is called Cayley s
theorem. Cayley’s theorem arguably held up the development of group theory for many
years by its suggestion that permutations were the only groups worthy of study.

Exercise 14.1: Let Hy, H> be two subgroups of a group G. Show that H; N H; is also a
subgroup.

Exercise 14.2: Let G be any group.

(a) ThesubsetZ(G) of G consisting of those g € G that commute with all other elements
of the group is called the centre of the group. Show that Z(G) is a subgroup of G.

(b) If g is an element of G, the set Cg(g) of elements of G that commute with g is called
the centralizer of g in G. Show that it is a subgroup of G.

(c) If H is a subgroup of G, the set of elements of G that commute with all elements of
H is the centralizer Cg(H) of H in G. Show that it is a subgroup of G.

(d) IfH is asubgroup of G, the set Ng(H) C G consisting of those g such that g~ ' Hg =
H is called the normalizer of H in G. Show that Ng(H) is a subgroup of G, and that
H is a normal subgroup of Ng(H).
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Table 14.1 Multiplication table of G. To find 4B look in row A4 column B.

Q
~

Mo AW~

O AwR~

AU~ ~ [
DAamh ~% | W
RN ~U MmO |0
T ~armAaOab | o
~a WA N| X

Exercise 14.3: Show that the set of powers gg of an element gg € G form a subgroup.
Now, let p be a prime number. Recall that the set {1,2,...p — 1} forms the group (Z,)*
under multiplication modulo p. By appealing to Lagrange’s theorem, prove Fermat’s
little theorem that for any prime p, and positive integer a that is not divisible by p,
we have @?~! = 1, mod p. (Fermat actually used the binomial theorem to show that
a’ = a, mod p for any a — divisible by p or not.)

Exercise 14.4: Use Fermat’s theorem from the previous exercise to establish the mathe-
matical identity underlying the RSA algorithm for public-key cryptography: Let p, g be
prime and N = pq. First, use Euclid’s algorithm for the highest common factor (HCF)
of two numbers to show that if the integer e is coprime to” (p — 1)(g — 1), then there is
an integer d such that

de =1, mod (p — 1)(g — 1).
Then show that if
C =M° modN (encryption)
then
M = C? modN (decryption).

The numbers e and N can be made known to the public, but it is hard to find the secret
decoding key, d, unless the factors p and ¢ of N are known.

Exercise 14.5: Consider the group G with multiplication table shown in Table 14.1.
This group has a proper subgroup H = {/, 4, B}, and the corresponding (left) cosets
are '[H ={l,A,B}and CH = {C,D,E}.

(i) Construct the conjugacy classes of this group.
(i) Show that {/,A4, B} and {C, D, E} are indeed the left cosets of H.

3 Has no factors in common with.
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(iii) Determine whether H is a normal subgroup.
(iv) If so, construct the group multiplication table for the corresponding quotient group.

Exercise 14.6: Let H and K be groups. Make the cartesian product G = H x K into
a group by introducing a multiplication rule * for elements of the cartesian product by
setting:

(h1, k1) * (ha, ko) = (hiho, ki ko).

Show that G, equipped with * as its product, satisfies the group axioms. The resultant
group is called the direct product of H and K.

Exercise 14.7: If F and G are groups, a map ¢ : ' — G that preserves the group
structure, i.e. if p(g1)p(22) = ¢(g1g2), is called a group homomorphism. If ¢ is such a
homomorphism show that ¢ (er) = eg, where er and eg are the identity element in F,
G respectively.

Exercise 14.8: If ¢ : F — G is a group homomorphism, and if we define Ker(¢) as the
set of elements /€ F that map to e, show that Ker(¢) is a normal subgroup of F'.

14.1.3 Group actions on sets

Groups usually appear in physics as symmetries: they act on a physical object to change
it in some way, perhaps while leaving some other property invariant.

Suppose X is a set. We call its elements “points”. A group action on X is a map
g € G: X — X that takes a point x € X to a new point that we denote by gx € X, and
such that g»(g1x) = (g2g1)x, and ex = x. There is some standard vocabulary for group
actions:

(1) Given a pointx € X we define the orbit of x to be the set Gx & {gx:g e G} CX.
(i) The action of the group is transitive if any orbit is the whole of X.

(iii) The action is effective, or faithful, if the map g : X — X being the identity map
implies that g = e. Another way of saying this is that the action is effective if the
map G — Map (X — X) is one-to-one. If the action of G is not faithful, the set
of g € G that acts as the identity map forms an invariant subgroup A of G, and the
quotient group G/H has a faithful action.

(iv) The action is free if the existence of an x such that gx = x implies that g = e. In
this case, we equivalently say that g acts without fixed points.

If the group acts freely and transitively then, having chosen a fiducial point xg, we
can uniquely label every point in X by the group element g such that x = gxg. (If g1
and g> both take xo — x, then g~ ! g2x0 = Xx¢. By the free-action property we deduce
that gfl 2 = e, and g = g7.) In this case we might, for some purposes, identify X
with G.

Suppose the group acts transitively, but not freely. Let H be the set of elements that
leaves xg fixed. This is clearly a subgroup of G, and if g1xo = gaxo we have g ! g €EH,
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or g1H = goH. The space X can therefore be identified with the space of cosets G/H.
Such sets are called quotient spaces or homogeneous spaces. Many spaces of significance
in physics can be thought of as cosets in this way.

Example: The rotation group SO(3) acts transitively on the 2-sphere S2. The SO(2)
subgroup of rotations about the z-axis leaves the north pole of the sphere fixed. We can
therefore identify S? ~ SO(3)/SO(2).

Many phase transitions are a result of spontaneous symmetry breaking. For example
the water — ice transition results in the continuous translation invariance of the liquid
water being broken down to the discrete translation invariance of the crystal lattice of
the solid ice. When a system with symmetry group G spontaneously breaks the sym-
metry to a subgroup H, the set of inequivalent ground states can be identified with the
homogeneous space G/H.

14.2 Representations

An n-dimensional representation of a group G is formally defined to be a homomorphism
from G to a subgroup of GL(n, C), the group of invertible n-by-n matrices with complex
entries. In effect, it is a set of n-by-n matrices that obey the group multiplication rules

D(g1)D(g2) = D(g122), D(g~ ") =[D@)17". (14.2)

Given such a representation, we can form another one D’(g) by conjugation with any
fixed invertible matrix C

D'(g) = C™'D(g)C. (14.3)

If D'(g) is obtained from D(g) in this way, we say that D and D’ are equivalent repre-
sentations and write D ~ D’. We can think of D and D’ as being matrices representing
the same linear map, but in different bases. Our task in the rest of this chapter is to find
and classify all representations of a finite group G, up to equivalence.

Real and pseudo-real representations

We can form a new representation from D(g) by setting
D'(g) = D*(g),

where D*(g) denotes the matrix whose entries are the complex conjugates of those in
D(g). Suppose D* ~ D. It may then be possible to find a basis in which the matrices
have only real entries. In this case we say the representation is real. It may be, however,
that D* ~ D but we cannot find a basis in which the matrices become real. In this case
we say that D is pseudo-real.



506 14 Groups and group representations

Example: Consider the defining representation of SU(2) (the group of 2-by-2 unitary
matrices with unit determinant). Such matrices are necessarily of the form

a —b*
U= (b a*) s (14.4)

where @ and b are complex numbers with |a|> + |b|> = 1. They are therefore specified
by three real parameters, and so the group manifold is three-dimensional. Now

a —b*\" _(a" =D
b at) \b*  a)’
_ 0 1\ [fa —-b*\[/0 -1
“\-1 0/ \b a* ) \1 0/’
-1
0 -1 a —=b*\ [0 -1
-0 %) G0 )
and so U ~ U*. It is not possible to find a basis in which all SU(2) matrices are
simultaneously real, however. If such a basis existed then, in that basis, a and b would

be real, and we could specify the matrices by only two real parameters — but we have
seen that we need three real numbers to describe all possible SU(2) matrices.

Direct sum and direct product

We can obtain new representations from old by combining them.
Given two representations D(l)(g) and D@ (g), we can form their direct sum
DD @ D@ as the set of block-diagonal matrices

DD (g) 0
( 0 po (g)> : (14.6)

The dimension of this new representation is the sum of the dimensions of the two con-
stituent representations. We are particularly interested in taking a representation and
breaking it up as a direct sum of simpler representations.

Given two representations DV (g), D@ (g), we can combine them in a different way
by taking their direct product D'V’ @ D®, which is the natural action of the group on the
tensor product of the representation spaces. In other words, if DV (g)ej(l) = elleg.l) (2)

and D@ (g)e]@ = eEZ)Di(jZ) (g), we define

(DO @ DD)(g)(ef" ® ¢?) = (¢ ® )DL @D (). (147)

We think of D]S) (g)Dl(jz) (g) being the entries in the direct-product matrix

(DY (g) ® D (@)1,
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whose rows and columns are indexed by pairs of numbers. The dimension of the product
representation is therefore the product of the dimensions of its factors.

Exercise 14.9: Show that if D(g) is a representation, then so is
D'(g) =D HI',

where the superscript T denotes the transposed matrix.

Exercise 14.10: Show that a map that assigns every element of a group G to the
1-by-1 identity matrix is a representation. It is, not unreasonably, called the trivial
representation.

Exercise 14.11: A representation D : G — GL(n,C) that assigns an element g € G
to the n-by-n identity matrix 7, if and only if g = e is said to be faithful. Let D be a
non-trivial, but non-faithful, representation of G by n-by-n matrices. Let H C G consist
of those elements / such that D(k) = I,. Show that A is a normal subgroup of G, and
that D descends to a faithful representation of the quotient group G/H.

Exercise 14.12: Let A and B be linear maps from U — U and let C and D be linear
maps from ¥ — V. Then the direct products 4 ® C and B ® D are linear maps from
U®V — U® V. Show that

A®C)YBRD)=(AB) ® (CD).
Show also that
A C)B@ D)= (4B) & (CD).

Exercise 14.13: Let A and B be m-by-m and n-by-n matrices, respectively, and let /,
denote the n-by-n unit matrix. Show that:

(i) tr(4 ® B) = tr(4) + tr(B).
(i) tr(4 ® B) = tr(4) tr(B).
(iii) exp(4 @ B) = exp(4) @ exp(B).
(iv) exp4 ® I, + I, ® B) = exp(4) ® exp(B).
(v) det(4 @ B) = det(4) det(B).
(vi) det(4 ® B) = (det(4))"(det(B))™.

14.2.1 Reducibility and irreducibility

The “atoms” of representation theory are those representations that cannot, even by
a clever choice of basis, be decomposed into, or reduced to, a direct sum of smaller
representations. Such a representation is said to be irreducible. 1t is usually not easy to
tell just by looking at a representation whether it is reducible or not. To do this, we need
to develop some tools. We begin with a more powerful definition of irreducibility.
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Figure 14.1 Block-partitioned reducible matrices.

Figure 14.2 Completely reducible matrices.

We first introduce the notion of an invariant subspace. Suppose we have a set {4, } of
linear maps acting on a vector space V. A subspace U C V is an invariant subspace for
the setifx € U = Ay x € U for all 4,. The set {4y} is irreducible if the only invariant
subspaces are V itself and {0}. Conversely, if there is a non-trivial invariant subspace,
then the set* of operators is reducible.

Ifthe A, ’s possess a non-trivial invariant subspace U, and we decompose V' = UDU’,
where U’ is a complementary subspace, then, in a basis adapted to this decomposition,
the matrices 4, take the block-partitioned form of Figure 14.1.

If we can find a> complementary subspace U’ that is also invariant, then we have the
block partitioned form of Figure 14.2.

We say that such matrices are completely reducible. When our linear operators are
unitary with respect to some inner product, we can take the complementary subspace
to be the orthogonal complement. This, by unitarity, is automatically invariant. Thus,
unitarity and reducibility implies complete reducibility.

Schur’s lemma

The most useful results concerning irreducibility come from:

Schur’s lemma: Suppose we have two sets of linear operators A, : U — U, and By :
V' — V, that act irreducibly on their spaces, and an intertwining operator A : U — V'
such that

AAy =By A, (14.8)

for all «. Then either

# Irreducibility is a property of the set as a whole. Any individual matrix always has a non-trivial invariant
subspace because it possesses at least one eigenvector.
> Remember that complementary subspaces are not unique.
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(a A=0,
or

(b) A is one-to-one and onto (and hence invertible), in which case U and V' have the
same dimension and 4, = A~ 'ByA.

The proof is straightforward: The relation (14.8) shows that Ker (A) € U and Im(A) <
V" are invariant subspaces for the sets {4y} and {B,} respectively. Consequently, either
A =0, or Ker (A) = {0} and Im(A) = V. In the latter case A is one-to-one and onto,
and hence invertible.

Corollary: 1f {44} acts irreducibly on an n-dimensional vector space, and there is an
operator A such that

Ady = AgA, (14.9)

then either A =0 or A = Al.

To see this, observe that (14.9) remains true if A is replaced by (A — x/). Now
det (A — xI) is a polynomial in x of degree n, and, by the fundamental theorem of
algebra, has at least one root, x = A. Since its determinant is zero, (A — A[) is not
invertible, and so must vanish by Schur’s lemma.

14.2.2 Characters and orthogonality
Unitary representations of finite groups

Let G be a finite group and let g — D(g) be a representation of G by matrices acting on a
vector space V. Let (x,y) denote a positive-definite, conjugate-symmetric, sesquilinear
inner product of two vectors in V. From ( , ) we construct a new inner product ( , )
by averaging over the group

1
(x,y) = — Y (D(2)x, D(Q)y). (14.10)

Gl 7%

It is easy to see that this new inner product remains positive definite, and in addition has
the property that

(D(@)x,D(@)y) = (X,y). (14.11)

This means that the maps D(g) : ¥V — V are unitary with respect to the new product. If
we change basis to one that is orthonormal with respect to this new product, then the D(g)
become unitary matrices, with D(g~!) = D~ (g) = D'(g), where D,Tj (g) = [Dji(9)]*
denotes the conjugate-transposed matrix.

We conclude that representations of finite groups can always be taken to be unitary.
This leads to the important consequence that for such representations reducibility implies
complete reducibility.



510 14 Groups and group representations

Warning: In this construction it is essential that the sum over the g € G converges.
This is guaranteed for a finite group, but may not work for infinite groups. In particular,
non-compact Lie groups, such as the Lorentz group, have no finite dimensional unitary
representations.

Orthogonality of the matrix elements

Now let D/ (g) : ¥; — V; be the matrices of an irreducible representation or irrep.
Here, J is a label that distinguishes inequivalent irreps from one another. We will use
the symbol dim J to denote the dimension of the representation vector space V.

Let DX be an irrep that is either identical to D or inequivalent to it, and let M;; be a
matrix possessing the appropriate number of rows and columns for the product D’ MDX
to be defined, but otherwise arbitrary. The sum

A=Y "D/ (g HMD*(g) (14.12)

geG
obeys D’ (g) A = ADX (g) for any g. Consequently, Schur’s lemma tells us that

A=Y Dji(g" YMyDf () = A(M)8;8”%. (14.13)

geG

We are here summing over repeated indices, and have written A(M) to stress that the
number A depends on the chosen matrix M. Now take M to be zero everywhere except
for one entry of unity in row j column k. Then we have

> DigDf(g) = hdin, 8™ (14.14)

geG

where we have relabelled A to indicate its dependence on the location (7, k) of the non-
zero entry in M. We can find the constants A by assuming that K = J, setting i = /
and summing over i. We find

G18jx = Ajx dimJ. (14.15)

Putting these results together we find that

ZD’(g )Dy(g) =

geG

@ 3jk5i,5JK . (14.16)

dimJ
This matrix-element orthogonality theorem is often called the grand orthogonality
theorem because of its utility.

When our matrices D(g) are unitary, we can write the orthogonality theorem in a
slightly prettier form:

(Dé (g)) N(©) = ——8us8’® (14.17)

1
Gl 7= m.J
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If we consider complex-valued functions G — C as forming a vector space, then the
individual matrix entries Dj are elements of this space and this form shows that they are
mutually orthogonal with respect to the natural sesquilinear inner product.

There can be no more orthogonal functions on G than the dimension of the function
space itself, which is |G|. We therefore have a constraint

> (dimJ)* < |G| (14.18)
J

that places a limit on how many inequivalent representations can exist. In fact, as you
will show later, the equality holds: the sum of the squares of the dimensions of the
inequivalent irreducible representations is equal to the order of G, and consequently the
matrix elements form a complete orthonormal set of functions on G.

Class functions and characters

Because
tr (C~'DC) = tr D, (14.19)

the trace of a representation matrix is the same for equivalent representations.
Furthermore, because

rD(g; 'gen) = r (D™ ()D@D() ) = r D), (14.20)

the trace is the same for all group elements in a conjugacy class. The character,

x(@) < trD(g), (14.21)

is therefore said to be a class function.
By taking the trace of the matrix-element orthogonality relation we see that the
characters x/ = tr D’ of the irreducible representations obey

1 * 1 *
=Y (K@) K== d(x) K= = 0422
Gl = |G| =
g€ i
where d; is the number of elements in the i-th conjugacy class.

The completeness of the matrix elements as functions on G implies that the characters
form a complete orthonormal set of functions on the space of conjugacy classes equipped
with the inner product

def 1 *
o E 2 (dd) (14.23)
i
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Table 14.2 Character table of Sy.

Typical element and class size

Sqe (1) (12) (123) (1234) (12)(34)
Irrep 1 6 8 6 3
Ay 1 1 1 1 1
Ay 1 -1 1 -1 1

E 2 0 -1 0 2
T 3 1 0 -1 -1
7> 3 -1 0 1 -1

Consequently there are exactly as many inequivalent irreducible representations as there
are conjugacy classes in the group.

Given a reducible representation, D(g), we can find out exactly which irreps J it
contains, and how many times, ny, they occur. We do this by forming the compound
character

x(g) =trD(g) (14.24)

and observing that if we can find a basis in which

D(g) =D (@D Q@ )dD* (g dD*QD--)®--, (14.25)
ny terms nyp terms
then
x(@) =mx' (@ +nmx*e) + - (14.26)

From this we find that the multiplicities are given by

ny = (o x”) = %Zd,- 0" 1] (14.27)
1
There are extensive tables of group characters. Table 14.2 shows, for example, the
characters of the group Ss of permutations on four objects.
Since x”(e) = dimJ we see that the irreps 4 and 4, are one-dimensional, that £
is two-dimensional, and that T ; are both three-dimensional. Also we confirm that the
sum of the squares of the dimensions

141422432432 =24=4

is equal to the order of the group.
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As a further illustration of how to read Table 14.2, let us verify the orthonormality of
the characters of the representations 77 and 7>. We have

| . |
<xT1,xT2):EZdi (Xfl) xfzzﬁ[lss — 611 +8:0-0 — 6:1-1 + 31 - 1]=0,
i

1 " |
xMx™y = ﬁZdi (x,-Tl) x = g [133 4611 +800 46114311 = 1,
i

The sum giving (x 72, x72) = 1 is identical to this.

Exercise 14.14: Let D' and D? be representations with characters x!(g) and x2(g)
respectively. Show that the character of the direct product representation D' ® D? is
given by

X' (@) = x' (@) x*(@).

14.2.3 The group algebra

Given a finite group G, we construct a vector space C(G) whose basis vectors are
in one-to-one correspondence with the elements of the group. We denote the vector
corresponding to the group element g by the boldface symbol g. A general element of
C(G) is therefore a formal sum

X =x1g1 +x28 + - + X686 (14.28)

We take products of these sums by using the group multiplication rule. If g1g» = g3 we
set g1g> = g3, and require the product to be distributive with respect to vector-space
addition. Thus

gX = x18g1 +x2882 + - - - + XG|88|G|- (14.29)

The resulting mathematical structure is called the group algebra. It was introduced by
Frobenius.

The group algebra, considered as a vector space, is automatically a representation. We
define the natural action of G on C(G) by setting

D(g)gi = ggi = gD;i(g)- (14.30)

The matrices Dj;(g) make up the regular representation. Because the list gg1, g8, . ..
is a permutation of the list g1, g>, .. ., their matrix entries consist of 1’s and 0’s, with
exactly one non-zero entry in each row and each column.
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Exercise 14.15: Show that the character of the regular representation has x (e) = |G|,
and x(g) =0, forg # e.

Exercise 14.16: Use the previous exercise to show that the number of times an
n-dimensional irrep occurs in the regular representation is n. Deduce that |G| =
>, (dimJ )2, and from this construct the completeness proof for the representations
and characters.

Projection operators

A representation D’ of the group G automatically provides a representation of the group
algebra. We simply set

Dxigi+ng+-) E a0 @)+ 0D @)+ (14.31)

Certain linear combinations of group elements turn out to be very useful because the
corresponding matrices can be used to project out vectors possessing desirable symmetry
properties.

Consider the elements

oy = I § (Do) (14.32)

Gl =%

of the group algebra. These have the property that

gies = dim/ > [D‘é,s(g)]* (g18)

Gl =%

€D, (g1). (14.33)

In going from the first to the second line we have changed summation variables from
g— gfl g, and in going from the second to the third line we have used the representation

property to write D’ (g;'g) = D’ (g7 D’ (2).
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From g 1eé 5= e/ D’ (g1) and the matrix-element orthogonality, it follows that

yB - ya
dimJ *
J K K
€yp €5 = Gl Z[Déﬂ(g)] geys
geG
dimJ *
= > [pls@] PE @ek;
|G| i
= 8K 8485, €&
=6"K54, ¢/ . 14.34
By Cas

For each J, this multiplication rule of the e‘é 8 is identical to that of matrices having zero
entries everywhere except for the (o, 8)-th, which is a “1”. There are (dimJ )2 of these
eé 8 for each n-dimensional representation J, and they are linearly independent. Because
>, (dimJ )? = |G|, they form a basis for the algebra. In particular every element of G
can be reconstructed as

g=> Dj(ge]. (14.35)
J
We can also define the useful objects
dimJ *
P =Y ¢ = G 3 [Xf(g)] g (14.36)
i geG
They have the property
PP = sKPK NP =1, (14.37)
J

where T is the identity element of C(G). The P’ are therefore projection operators
composing a resolution of the identity. Their utility resides in the fact that when D(g) is
a reducible representation acting on a linear space

V= @ vy, (14.38)
J

then setting g — D(g) in the formula for P/ results in a projection matrix from ¥ onto
the irreducible component V. To see how this comes about, let v € V" and, for any fixed
D, set

vi=¢€v, (14.39)
where eév should be understood as shorthand for D(eﬁj)v. Then

D(g)vi = gej,v = €/,vD}(g) = V;Dj(g). (14.40)
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We see that the v;, if not all zero, are basis vectors for V. Since P/ is a sum of the
eé, the vector P’ v is a sum of such vectors, and therefore lies in V. The advantage of
using P’ over any individual e‘l; is that P/ can be computed from character tables, i.e.

its construction does not require knowledge of the irreducible representation matrices.

The algebra of classes

If a conjugacy class C; consists of the elements {g1, g2, . ..g4}, we can define C; to be
the corresponding element of the group algebra:

Ci= @+t ) (14.41)
1

(The factor of 1/d; is a conventional normalization.) Because conjugation merely per-
mutes the elements of a conjugacy class, we have g~'C;g = C; for all g € C(G).
The C; therefore commute with every element of C(G). Conversely any element
of C(G) that commutes with every element in C(G) must be a linear combination:
C = ¢1C1 4+ 2C; + ... The subspace of C(G) consisting of sums of the classes is
therefore the centre Z[C(G)] of the group algebra. Because the product C;C; commutes
with every element, it lies in Z[C(G)], and so there are constants cijk such that

CiCi =) cifCp. (14.42)
k

We can regard the C; as being linear maps from Z[C(G)] to itself, whose associated
matrices have entries (C;)* = c,-jk. These matrices commute, and can be simultaneously
diagonalized. We will leave it as an exercise for the reader to demonstrate that

X0

J

P = (X—l> P. (14.43)
Here xj = x{,, = dimJ. The common eigenvectors of the C; are therefore the pro-
jection operators P/, and the eigenvalues AZJ = X,-J / X({ are, up to normalization, the
characters. Equation (14.43) provides a convenient method for computing the characters
from knowledge only of the coefficients c,jk appearing in the class multiplication table.
Once we have found the eigenvalues )»{ , we recover the X[J by noting that X({ is real and
positive, and that ) _; d,-l)(iJ|2 = |G|.

Exercise 14.17: Use Schur’s lemma to show that for an irrep D’ (g) we have

1 1
— 3" D)) = —8ux!
d; o) (&) dimJ i Xi >

and hence establish (14.43).
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14.3 Physics applications

14.3.1 Quantum mechanics

When a group G = {g;} acts on a mechanical system, then G will act as a set of linear
operators D(g) on the Hilbert space H of the corresponding quantum system. Thus H
will be a representation® space for G. If the group is a symmetry of the system then the
D(g) will commute with the Hamiltonian H. If this is so, and if we can decompose

H= P Hs (14.44)

irrepsJ

into H-invariant irreps of G then Schur’s lemma tells us that in each s the Hamiltonian
H will act as a multiple of the identity operator. In other words every state in H; will
be an eigenstate of H with a common energy EJ.

This fact can greatly simplify the task of finding the energy levels. If an irrep J
occurs only once in the decomposition of H then we can find the eigenstates directly by
applying the projection operator P/ to vectors in . If the irrep occurs n; times in the
decomposition, then P’ will project to the reducible subspace

HioH; & -Hyj=MOQH,.

ny copies

Here M is an ny-dimensional multiplicity space. The Hamiltonian H will act in M as
an ny-by-n; matrix. In other words, if the vectors

In,i) = |n) @ i) e M H, (14.45)
form a basis for M ® H,s, with n labelling which copy of H,; the vector |n, i) lies in, then

Hin,i) = |m,i\H’

mn»>

D(@)In,i) = [n,/)D(2). (14.46)

Diagonalizing H;, provides us with n; H-invariant copies of H, and gives us the energy
eigenstates.

Consider, for example, the molecule Cgp (buckminsterfullerene) consisting of 60
carbon atoms in the form of a soccer ball. The chemically active electrons can be treated
in a tight-binding approximation in which the Hilbert space has dimension 60 — one -
orbital basis state for each carbon atom. The geometric symmetry group of the molecule

6 The rules of quantum mechanics only require that D(g1)D(gp) = ¢'¢ (&1 ’32)D(g1g2). A set of matrices that
obeys the group multiplication rule “up to a phase” is called a projective (or ray) representation. In many
cases, however, we can choose the D(g) so that ¢ is not needed. This is the case in all the examples we
discuss.
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Table 14.3 Character table for the group Y.

Typical element and class size

Y e Cs c? G C;

12 12 15 20
1 1 1 1
L -1 0

-1 0

-1 -1 0 1
0 0 1 -1

S
DR W W = =

|

Q

-

Figure 14.3 A sketch of the tight-binding electronic energy levels of Cgg.

is Y, = Y x Z;, where Y is the rotational symmetry group of the icosahedron (a subgroup
of SO(3)) and Z; is the parity inversion o : r — —r. The characters of Y are displayed
in Table 14.3. In this table t = %(«/g — 1) denotes the golden mean. The class Cs
is the set of 27/5 rotations about an axis through the centres of a pair of antipodal
pentagonal faces, the class C3 is the set of of 277/3 rotations about an axis through the
centres of a pair of antipodal hexagonal faces and C; is the set of 7 rotations through the
midpoints of a pair of antipodal edges, each lying between two adjacent hexagonal faces.
The geometric symmetry group acts on the 60-dimensional Hilbert space by permuting
the basis states concurrently with their associated atoms. Figure 14.3 shows how the
60 states are disposed into energy levels.” Each level is labelled by a lower-case letter
specifying the irrep of Y, and by a subscript g or u standing for gerade (German for

7 After R. C. Haddon, L. E. Brus, K. Raghavachari, Chem. Phys. Lett., 125 (1986) 459.
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even) or ungerade (German for odd) that indicates whether the wavefunction is even or
odd under the inversion o : r — —r.

The buckyball is roughly spherical, and the lowest 25 states can be thought of as being
derived fromthe L = 0, 1,2, 3, 4 eigenstates, where L is the angular momentum quantum
number that classifies the energy levels for an electron moving on a perfect sphere. In
the many-electron ground-state, the 30 single-particle states with energy below £ < 0
are each occupied by pairs of spin up/down electrons. The 30 states with £ > 0 are
empty.

To explain, for example, why three copies of 7 appear, and why two of these are 77,
and one T, we must investigate the manner in which the 60-dimensional Hilbert space
decomposes into irreducible representations of the 120-element group Y},. Problem 14.23
leads us through this computation, and shows that no irrep of ¥, occurs more than three
times. In finding the energy levels, we therefore never have to diagonalize a matrix
bigger than 3-by-3.

The equality of the energies of the s, and g, levels at £ = —1 is an accidental
degeneracy. 1t is not required by the symmetry, and will presumably disappear in a
more sophisticated calculation. The appearance of many “accidental” degeneracies in an
energy spectrum hints that there may be a hidden symmetry that arises from something
beyond geometry. For example, in the Schrodinger spectrum of the hydrogen atom all
states with the same principal quantum number » have the same energy although they
correspond to different irreps L = 1,...,n— 1 of O(3). This degeneracy occurs because
the classical Kepler-orbit problem has symmetry group O(4), rather than the naively
expected O(3) rotational symmetry.

14.3.2 Vibrational spectrum of H,O

The small vibrations of a mechanical system with n degrees of freedom are governed by
a Lagrangian of the form

. T . 1 T
L=—-x Mx—=-x Vx (14.47)
2 2

where M and V' are symmetric n-by-n matrices, and with M being positive definite. This
Lagrangian leads to the equations of motion

MX = Vx. (14.48)
We look for normal mode solutions x(7) o e®ix;, where the vectors x; obey
—wIMx; = Vx;. (14.49)
The normal-mode frequencies are solutions of the secular equation

det (V — w?’M) =0, (14.50)
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and modes with distinct frequencies are orthogonal with respect to the inner product
defined by M,

(x,y) =x"My. (14.51)

We are interested in solving this problem for vibrations about the equilibrium config-
uration of a molecule. Suppose this equilibrium configuration has a symmetry group G.
This gives rise to an n-dimensional representation on the space of x’s in which

g:x— D(g)x (14.52)
leaves both the intertia matrix M and the potential matrix 7" unchanged:
(D@1 MD(g) =M, D) VD(g) =V. (14.53)
Consequently, if we have an eigenvector x; with frequency w;,
—wIMx; = Vx; (14.54)

we see that D(g)x; also satisfies this equation. The frequency eigenspaces are therefore
left invariant by the action of D(g) and, barring accidental degeneracy, there will be
a one-to-one correspondence between the frequency eigenspaces and the irreducible
representations occurring in D(g).

Consider, for example, the vibrational modes of the water molecule H, O (Figure 14.4).
This familiar molecule has symmetry group C», which is generated by two elements: a
rotation a through 7 about an axis through the oxygen atom, and a reflection b in the
plane through the oxygen atom and bisecting the angle between the two hydrogens. The
product ab is a reflection in the plane defined by the equilibrium position of the three
atoms. The relations are > = b*> = (ab)> = e, and the characters are displayed in
Table 14.4.

The group Cy,, is abelian, so all the representations are one dimensional.

N

Figure 14.4 Water molecule.
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Table 14.4 Character table of Cyy,.

Class and size

Coy e a b ab

Irrep 1 1 1 1
Ay 1 1 1 1
Ap 1 1 -1 -1
By 1 -1 1 -1
By 1 -1 -1 1

To find out what representations occur when Cy,, acts, we need to find the character
of its action D(g) on the nine-dimensional vector
X = (XOJO,ZO,XHI »VH;>ZH,; ;tzayH2>ZH2)~ (1455)

Here the coordinates xy,,yH,,2H, €tc. denote the displacements of the labelled atom
from its equilibrium position.
We take the molecule as lying in the xy-plane, with the z pointing towards us. The
effect of the symmetry operations on the atomic displacements is
D(a)X = (_an +J’O, —Z0, —XHj» +J/H2, —ZH,, —XH;, +yH1 » TZH, )9
D(b)x = (_xO’ +y0> +209 _xH27 +yH29 +ZH2: _le s +J/H1 s +ZH1 )9
D(ab)x = (+x03 +yO’ —Z0, +xH1 s +yH1 s _ZH] ) +xH29 +yH23 _ZHZ)'

Notice how the transformations D(a), D(b) have interchanged the displacement coor-
dinates of the two hydrogen atoms. In calculating the character of a transformation we
need look only at the effect on atoms that are left fixed — those that are moved have
matrix elements only in non-diagonal positions. Thus, when computing the compound
characters for a b, we can focus on the oxygen atom. For ab we need to look at all three
atoms. We find

xPe) =9,

P@=-1+1-1=-1,

Pl =—-14+1+1=1,
xPab)y=1+1-1+14+1—-14+141-1=3.

By using the orthogonality relations, we find the decomposition

9 1 1 1 1
-1 1 1 ~1 ~1

d=3100 o 2 3] (14.56)

3 1 ~1 ~1 1
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or
XD =33 4 2B+ 3P (14.57)

Thus, the nine-dimensional representation decomposes as
D =341 ® A4, ® 2B ©3B;. (14.58)

How do we exploit this? First we cut out the junk. Out of the nine modes, six cor-
respond to easily identified zero-frequency motions — three of translation and three
rotations. A translation in the x-direction would have xo = xy, = xp, = &, all other
entries being zero. This displacement vector changes sign under both a and b, but is
left fixed by ab. This behaviour is characteristic of the representation B,. Similarly
we can identify A as translation in y, and Bj as translation in z. A rotation about the
y-axis makes zy, = —zH, = ¢. This is left fixed by a, but changes sign under b
and ab, so the y rotation mode is 4>. Similarly, rotations about the x- and z-axes cor-
respond to By and B, respectively. All that is left for genuine vibrational modes is
241 D B».

We now apply the projection operator

1
Pl = Z[(xf" (@)*D(e) + (x(@)*D(b) + (x* (0))*D(b) + (x (ab))*D(ab)]

(14.59)
to VH, x, a small displacement of /; in the x-direction. We find
A1 1
P VH x = Z(VHl,x — VHy,x — VHox + VH],x)
1
= E(VHl,x - VHz,X)~ (1460)
This mode is an eigenvector for the vibration problem.
If we apply P! to vy, , and vo,, we find
ph 1
VH,,y = E(VHl,y + VHz,y)a
Plivo, =vo,, (14.61)

but we are not quite done. These modes are contaminated by the y translation direction
zero mode, which is also in an 4| representation. After we make our modes orthogonal
to this, there is only one left, and this has yn, = yn, = —yomo/(2mu) = a1, all other
components vanishing.
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We can similarly find vectors corresponding to B> as

1
PBzVH],x = E(le,x +VH2,X)

1
B
p 2VHl,y = E(VHl,y — VH, )

B
P 2VO,x = VOx

and these need to be cleared of both translations in the x-direction and rotations about
the z-axis, both of which transform under B,. Again there is only one mode left and it is

yHl = —sz = (X_)CHl = (x_)CH2 = ﬁxo =aj (14.62)

where « is chosen to ensure that there is no angular momentum about O, and § to
make the total x linear momentum vanish. We have therefore found three true vibration
eigenmodes, two transforming under 4; and one under B, as advertised earlier. The
eigenfrequencies, of course, depend on the details of the spring constants, but now that
we have the eigenvectors we can just plug them in to find these.

14.3.3 Crystal field splittings

A quantum mechanical system has a symmetry G if the Hamiltonian H obeys
D Y (@)AD(g) = H, (14.63)

for some group action D(g) : ‘H — 'H on the Hilbert space. If follows that the
eigenspaces, H; , of states with a common eigenvalue, X, are invariant subspaces for the
representation D(g).

We often need to understand how a degeneracy is lifted by perturbations that break
G down to a smaller subgroup H. An n-dimensional irreducible representation of G
is automatically a representation of any subgroup of G, but in general it is no longer
irreducible. Thus the n-fold degenerate level is split into multiplets, one for each of
the irreducible representations of H contained in the original representation. The man-
ner in which an originally irreducible representation decomposes under restriction to a
subgroup is known as the branching rule for the representation.

A physically important case is given by the breaking of the full SO(3) rotation symme-
try ofanisolated atomic Hamiltonian by a crystal field. Suppose the crystal has octohedral
symmetry. The characters of the octohedral group are displayed in Table 14.5.

The classes are labelled by the rotation angles, C; being a twofold rotation axis
(6 = ), C3 a threefold axis (0 = 27r/3), etc.

The character of the J = [ representation of SO(3) is

sin(27 + 1)6/2

!
6) = :
x(©) sin6/2

(14.64)
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Table 14.5 Character table of the octohedral group O.

Class (size)
0O e CB) CIB) C(6) C4(6)
A7 1 1 1 1 1
Ay 1 1 1 —1 -1
E 2 —1 2 0 0
F 3 0 -1 1 -1
F1 3 0 -1 -1 1

Table 14.6 Characters evaluated on rotation classes.

Class (size)

I e G38) C3(3) Ca(6) Cy(6)

0 1 1 1 1 1
1 3 0 —1 —1 —1
2 5 -1 1 1 -1
3.7 1 —1 -1 -1
4 9 0 1 1 1

and the first few x!’s evaluated on the rotation angles of the classes of O are dsiplayed

in Table 14.6.

The ninefold degenerate / = 4 multiplet therefore decomposes as

or

9 ! 2 3 3
0 | 1 0 0
=]+ 2f+|=1]+]=1], (14.65)
1 1 0 - 1
1 1 0 1 -
X0 = xM + 1+ 11+ (14.66)

The octohedral crystal field splits the nine states into four multiplets with symmetries
Ay, E, F1, F> and degeneracies 1, 2, 3 and 3, respectively.

We have considered only the simplest case here, ignoring the complications introduced
by reflection symmetries, and by two-valued spinor representations of the rotation group.
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14.4 Further exercises and problems

We begin with some technologically important applications of group theory to cryptog-
raphy and number theory.

Exercise 14.18: The set Z, forms a group under multiplication only when # is a prime
number. Show, however, that the subset U(Z,,) C Z,, of elements of Z,, that are co-prime
to n is a group. It is the group of units of the ring Z,,.

Exercise 14.19: Cyclic groups. A group G is said to be cyclic if its elements consist
of powers a” of an element a, called the generator. The group will be of finite order
|G| = mifa™ = a° = e for some m € Z7.

(a) Show that a group of prime order is necessarily cyclic, and that any element other
than the identity can serve as its generator. (Hint: let @ be any element other than e
and consider the subgroup consisting of powers a.)

(b) Show that any subgroup of a cyclic group is itself cyclic.

Exercise 14.20: Cyclic groups and cryptography. In a large cyclic group G it can be
relatively easy to compute a*, but to recover x given 4 = a* one might have to compute
& and compare it with /2 for every 1 < y < |G|. If |G| has several hundred digits, such a
brute force search could take longer than the age of the Universe. Rather more efficient
algorithms for this discrete logarithm problem exist, but the difficulty is still sufficient
for it to be useful in cryptography.

(a) Diffie—Hellman key exchange. This algorithm allows Alice and Bob to establish a
secret key that can be used with a conventional cypher without Eve, who is listening
to their conversation, being able to reconstruct it. Alice chooses a random element
g € G and an integer x between 1 and |G| and computes g*. She sends g and
g* to Bob, but keeps x to herself. Bob chooses an integer y and computes g” and
¥ = (g*)’. He keeps y secret and sends g” to Alice, who computes g = (g”)*.
Show that, although Eve knows g, g¢” and g*, she cannot obtain Alice and Bob’s
secret key g without solving the discrete logarithm problem.

(b) Elgamal public key encryption. This algorithm, based on Diffie-Hellman, was
inve